
DECISION-GUIDED RECOMMENDERS� 
WITH COMPOSITE ALTERNATIVES� 

by� 

Khalid Alodhaibi� 
A Dissertation� 

Submitted to the� 
Graduate Faculty� 

of� 
George Mason University� 
in Partial Fulfillment of� 

The Requirements for the Degree� 
of� 

Doctor of Philosophy� 
Infonnation Technology� 

C~
 
Dr. Alexander Brodsky, Dissertation 

rY ~ Director 

~ ==?\ Dr. George MihaIla, Committee Member 

~~~r.Larry Kerschberg, Committee Member 

~~Ur. Jes<ica Lin, Committee Member 

f)~ LZ.5c?7 Dr. David Schum, Committee Member 

Dr. Daniel Menasce, Senior Associate Dean 

Lloyd 1. Griffiths, Dean, The Vo[genau School 
of Engineering 

Date: ----I-Z-f-t~//j+-UO------'--1.../I-- Summer Semester 20 I ] 
George Mason University, Fairfax, VA 



Decision-Guided Recommenders With Composite Alternatives

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Khalid Alodhaibi
Master of Business Administration

Santa Clara Univeristy, 2006
Bachelor of Science

King Saud University, 1998

Director: Alexander Brodsky, Associate Professor
Department of Computer Science

Summer Semester 2011
George Mason University

Fairfax, VA

ii



Copyright c© 2011 by Khalid Alodhaibi
All Rights Reserved

ii



Dedication

I dedicate this dissertation to my wonderful wife Reema. Shetook care of us while doing
her PhD and that is impressive.

iii



Acknowledgments

I would like to express my deepest gratitude to my advisor andmentor, Prof. Alex
Brodsky for his endless support and patience. My research would not exist if not for his
continuous guidance and supervision. He believed in me and led me along the road to reach
my goal; I am deeply grateful.

I am also very grateful to Dr. George Mihaila from Google Inc.who served as a
committee member, and provided continues feedback and help. Dr. Mihaila was willing to
meet with me every week over the past three years, and guide meand my research to be
where I am now. He was very patient and accommodating when I drove over 14 times to
New York and spent a day or two every time to either implement an idea or finish writing a
paper together.

I am also very grateful to my committee members, Dr. David Schum, Dr. Larry Ker-
schberg, and Dr. Jessica Lin for serving on my committee and for generously giving me
their time and advice every time I needed them.

I would like also to thank my son Ibrahim (Abo 3ug) and my daughter Alya Boo for
allowing me to be away several days a month so I can work on my research and catch up
with reading. But I knew they were having great time with my wonderful wife Reema.

I offer special thanks to King Faisal Specialist hospital and research Center, which
granted me the PhD scholarship, and to my country, which funded my education. Specifi-
cally, Mr. Hamad Aldaig, who continuously encouraged me to continue my education and
journey in life. Also I would like to thank Dr. Abdullah Aldalaan, and Mr. Abdulaziz
Albahkaly for helping me with my scholarship work.

I also wish to thank my brothers and sisters for their continuous support and encour-
agements. They all have expressed words of wisdom and great inspiration.

My special appreciation goes to my best friend and colleagueKhalid Albarrak who has
been one of the greatest resources to rely on. Khalid and I started the PhD journey together
and I can not count how many days and nights we complained to each other about work
and school challenges. I deeply wish him the best of luck in everything.

A big thank you goes to Susan Lee and Dan Rhoads from my management team at IBM
for helping and supporting me over the past 7 years while doing my MBA and PhD work.
They were following up on my progress all the way and showed mea true team spirit.

iv



Table of Contents

Page

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .viii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Research Challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Problem Statement and Summary of Contributions . . . . . . .. . . . . . 6

1.4 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Content-based Recommender . . . . . . . . . . . . . . . . . . . . . . . .. 20

2.3 Collaborative Filtering . . . . . . . . . . . . . . . . . . . . . . . . . .. . 21

2.4 Knowledge-based systems . . . . . . . . . . . . . . . . . . . . . . . . . .24

2.5 Hybrid approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Diversity of recommendation set . . . . . . . . . . . . . . . . . . . .. . . 29

2.7 Utility function elicitation . . . . . . . . . . . . . . . . . . . . . .. . . . . 35

2.8 Summary of the Evaluation of Related Work . . . . . . . . . . . . .. . . . 38

3 Composite Alternatives Framework . . . . . . . . . . . . . . . . . . . .. . . . 43

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 DG-RCA Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Composite Recommendation Knowledge Base (CRKB) . . . . . .. . . . . 48

3.4 Recommender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Feedback Extractor, Preference Learning . . . . . . . . . . . .. . . . . . . 50

3.6 Use Case - Travel Package Application . . . . . . . . . . . . . . . .. . . . 50

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Iterative Utility Elicitation for Diversified Composite Recommendations . . . . . 57

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

v



4.2 Utility Axis Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 62

4.3 Diversity Layering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Validation - User Case Study . . . . . . . . . . . . . . . . . . . . . . . .. 72

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 A Randomized Algorithm for Maximizing the Diversity of Recommendations . . 82

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Utility space vs. Diversity space . . . . . . . . . . . . . . . . . . .. . . . 87

5.3 Diversity Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . .. 98

5.4.1 Evaluation of RandDivFixed . . . . . . . . . . . . . . . . . . . . . 99

5.4.2 Evaluation of RandDivFloat . . . . . . . . . . . . . . . . . . . . . 102

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 An Adaptive Utility Learning Method for Composite Recommendations . . . . . 106

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 Adaptive Selection of Initial Utility Axes . . . . . . . . . . .. . . . . . . 109

6.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . .. 112

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7 A Confidence-Based Recommender with Adaptive Diversity . .. . . . . . . . . 115

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2 Collaborative Filtering Technique . . . . . . . . . . . . . . . . .. . . . . 119

7.3 Adaptive Diversity Approach . . . . . . . . . . . . . . . . . . . . . . .. . 122

7.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . .. 128

7.4.1 Collaborative Filtering Evaluation . . . . . . . . . . . . . .. . . . 128

7.4.2 Adaptive Diversity Evaluation . . . . . . . . . . . . . . . . . . .. 129

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8 Conclusions and Future Research Directions . . . . . . . . . . . .. . . . . . . . 134

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . .. . 139

Appendix A: Research Publications . . . . . . . . . . . . . . . . . . . . .. . . . . . 143

Appendix B: Human Subjects Review Board (HSRB) . . . . . . . . . . .. . . . . . 144

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155

vi



List of Tables

Table Page

5.1 RandDivFixed Running Time . . . . . . . . . . . . . . . . . . . . . . . . .100

7.1 Adaptive Diversity Example . . . . . . . . . . . . . . . . . . . . . . . .. 123

7.2 Comparison of CF techniques . . . . . . . . . . . . . . . . . . . . . . . .129

7.3 Comparison of diversification techniques . . . . . . . . . . . .. . . . . . . 130

vii



List of Figures

Figure Page

2.1 Framework for the analysis and classification of recommender systems. [68] 18

2.2 Diversity approaches by Smyth [17] . . . . . . . . . . . . . . . . . .. . . 32

2.3 Summary of approach-based classification of recommender systems . . . . 39

3.1 DG-RCA Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Family travel service metric view hierarchy [5] . . . . . . .. . . . . . . . 51

3.3 Source schemas [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Travel Accommodation Metrics view . . . . . . . . . . . . . . . . . .. . . 53

3.5 Air Travel Metrics view . . . . . . . . . . . . . . . . . . . . . . . . . . . .54

3.6 Rental Vehicle Metrics view . . . . . . . . . . . . . . . . . . . . . . . .. 55

3.7 Family Travel Metrics view . . . . . . . . . . . . . . . . . . . . . . . . .. 56

4.1 Example of Utility Axis Selection . . . . . . . . . . . . . . . . . . .. . . 65

4.2 Recommendation view . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Diversity Layering Example . . . . . . . . . . . . . . . . . . . . . . . .. 70

4.4 Average Recall vs. Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Average Precision vs. Rank . . . . . . . . . . . . . . . . . . . . . . . . .. 77

5.1 MDP Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Probabilities of Recommendation Selections . . . . . . . . .. . . . . . . . 96

5.3 Convergence to Optimum Solution . . . . . . . . . . . . . . . . . . . .. . 100

5.4 RandDivFixed versus Greedy . . . . . . . . . . . . . . . . . . . . . . . .. 101

5.5 Relative Diversity Value . . . . . . . . . . . . . . . . . . . . . . . . . .. 103

5.6 RandDivFloat versus EigenSolver . . . . . . . . . . . . . . . . . . .. . . 104

5.7 Execution Times of EigenSolver and RandDivFloat . . . . . .. . . . . . . 105

6.1 Example of Learned Utility Axes . . . . . . . . . . . . . . . . . . . . .. . 110

6.2 Average Utility Improvement for Each User . . . . . . . . . . . .. . . . . 113

7.1 Average Precision at Rankk . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.2 Average Recall at Rankk . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

viii



8.1 Possible and actual hybrid recommender systems . . . . . . .. . . . . . . 138

8.2 Flowchart for initial learning of dimensions . . . . . . . . .. . . . . . . . 140

ix



Abstract

DECISION-GUIDED RECOMMENDERS WITH COMPOSITE ALTERNATIVES

Khalid Alodhaibi, PhD

George Mason University, 2011

Dissertation Director: Alexander Brodsky

Recommender systems aim to support users in their decision-making process while in-

teracting with large information spaces and recommend items of interest to users based on

preferences they have expressed, either explicitly or implicitly. Recommender systems are

increasingly used with product and service selection over the Internet. Although technology

has made it easy to search for and interact with most information types, the volume surge

in data presented is overwhelming and hard to filter. While state-of-the-art recommender

systems focus on atomic products or services, this researchfocuses on developing a frame-

work, models and algorithms for recommending composite services and products based

on decision optimization. Composite services are characterized by a set of sub-services,

which, in turn, can be composite or atomic and make the recommendation space very large

(or infinite, for continuous case). Complex recommendationmodels involving composite

alternatives, such as product configurations and service packages, have not been addressed.

The proposed framework contains models that allow for fast and easy user preference elic-

itation that can be captured in a utility function, and provides algorithms for diversifying

a recommendation set. Such recommendations will be dynamically defined using database

views extended with decision optimization based on mathematical programming.



A key challenge addressed in this research is combining the flexibility of diversity rank-

ing functionality with the capabilities of information processing to learn and capture users’

preferences through an iterative learning process.

The proposed framework presents a method for utility function elicitation, which is

based on iteratively refining a set of axes in then-dimensional utility space. User prefer-

ences are initially learned using regression analysis or Collaborative Filtering (CF) tech-

niques. At every step, the user is asked to rank a set of recommendations, each being

optimal for one of the current axes. Based on the user feedback, utility axes are adaptively

adjusted based on a confidence degree. Consequently, the utility function is constructed.

In addition, the framework proposes a new approach to diversify a set of recommenda-

tions, which is based on constructing and using anm-dimensional diversity feature space,

which is separate from the utility space used for utility elicitation. Furthermore, the frame-

work presents a diversity algorithm to address the Maximum Diversity Problem (MDP) of

recommendations, which is randomized and based on iterative relaxation of selections by

the Greedy algorithm with an exponential probability distribution.

Finally, the proposed framework is validated with several experimental studies using

publically available datasets, such as MovieLens and Yahoo, to measure the efficacy and

efficiency against state-of-the art algorithms and techniques. The results show that the

proposed algorithm is highly efficient computationally, and consistently outperforms com-

peting algorithms and systems in terms of precision, recall, diversity measures, and MAE

(mean absolute error). In addition, the proposed frameworkconverges to the optimal or

near-optimal solutions in under 100 ms using a machine with Intel Core 2 Duo CPU

2.53GHz and 3GB RAM. The proposed collaborative filtering technique achieved a pre-

cision of 90% on average.



Chapter 1: Introduction

While interacting with large information spaces, Recommender Systems aim to support

users in their decision-making process and recommend itemsof interest to users based

on preferences they have expressed, either explicitly or implicitly. Recommender systems

are increasingly used with product and service selection over the Internet. While state-of-

the-art recommender systems focus on atomic products or services, this research focuses on

developing a framework, models and algorithms for recommending composite services and

products based on decision optimization, and eliciting user preferences within the context

of recommender systems. The proposed framework combines the flexibility of diversity

ranking functionality with the information processing capabilities to learn and capture the

preferences of the user through an iterative learning process. The framework proposes and

informs the user of what is available in terms of composite recommendations with mini-

mum interaction from the user side. In sections 1.1, 1.2 and 1.3, I explain the motivation

and the research challenge, state the problem, and provide asummary of research contri-

butions.
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1.1 Motivation

One of the main challenges we face is information overload. Although technology has

made it easy to search for, and interact with most information types, the ever-expanding

volume and increasing complexity of information on the Web has made recommender sys-

tems essential tools for users in a variety of information seeking or e-commerce activities.

This trend of information overload is increasing and mandates efficient ways of learning

user preferences. Recommender systems help overcome this problem by exposing users

to the most relevant items. Naive information retrieval (IR) approaches (e.g., [3,19,119])

provide mechanisms for effective fuzzy ranking, but are less appropriate to use when intel-

ligence is needed in the recommendation process [35,69], especially when recommending

complex products and services. Traditional Database Management Systems have shown

efficient handling of data with solid integrity, but lack theranking capability needed for

answering Information Retrieval (IR) queries. In addition, DBMS are also not capable of

providing diversity functionalities needed for recommender systems.

Recommender technology is the central piece of the information-seeking puzzle. Major

e-commerce sites such as Amazon and Yahoo use recommendation technology in many

ways. Many new systems are on their way (e.g. Microsoft Bing)and entrepreneurs are

competing to find the right approach to use this technology effectively. Related research

went so far as to ask the question “Will recommenders kill search?”, and analyzed emerging

topics regarding recommender systems as a whole and specifically their role in the industry

[47].
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In an article published in CNN Money, entitled “The race to create a ’smart’ Google”,

Fortune magazine writer Jeffrey M. O’Brien, writes: “The Web, they say, is leaving the

era of search and entering one of discovery. What’s the difference? Search is what you

do when you’re looking for something. Discovery is when something wonderful that you

didn’t know existed, or didn’t know how to ask for, finds you.”

1.2 Research Challenge

Recommender systems (e.g., [1,37,49,80,90]) are expectedto guide the user to find the

most suitable products and services. Recommender systems suggest items of interest to

users based on preferences they have expressed, either explicitly or implicitly.

The need for decision guidance over information retrieval becomes more obvious when

interacting with the Internet where information space is large. Although technology has

made it easy to search for and interact with most informationtypes, the volume surge in

data presented is overwhelming and hard to filter. The trend of information overload is

increasing with the recent shift toward customized productbundles and service composi-

tions. Composite services are characterized by a set of sub-services, which, in turn, can

be composite or atomic and make the recommendation space very large (exponential in

number of components, or infinite, for continuous case), andimplicitly defined.

In addition, the new surge of current mobile computing devices such as PDAs and WAP-

enabled mobile phones with screen size that could be 200 times smaller than that of a PC, is

introducing pressure on recommender systems to move beyondthe accuracy measure. This

3



technological trend requires that we carefully choose which recommendations to return in

a single search [101]. If the few returned recommendations are similar to each other, then

it is unlikely that the user will be satisfied [26].

Thus, key market drivers are information overload, productbundles and service com-

positions, and display size limitations, which are competing with each other. From one

end, information overload is mainly influenced by the growing usage of the Internet, and

service compositions. On the other end, the popularity of Web-enabled mobile devices is

introducing space size limitations.

To address these competing drivers, recommender systems need to carefully “reduce”

the large information space into a small number of recommendation that are highly relevant

to users and meet the display size limitations. The reduction of information space can

be addressed by incorporating optimization techniques to choose the best item(s) from

some set of available alternatives. To perform optimization, recommender systems must be

able to elicit the utility function that captures the users’preferences. Given the accurately

elicited utility function, optimization enables recommender systems to identify and present

users with a small number of recommendations that are optimal or near-optimal with regard

to the utility function.

The elicited utility is only an estimate of users’ preferences, because users may not have

explained their preferences accurately, or the recommender system could not capture the

preferences precisely. Therefore, it is important that thesmall number of recommendations

returned be not only near-optimal, but also sufficiently diverse. The reason for diversity is

to account for uncertainty in elicited utility and allow theuser sufficient freedom of choice.

4



For this reason, many practical systems are interactive, allowing the user to scroll through

a set of choices to make a decision [73].

There has been extensive research in the area of recommendersystems (e.g., [1,22,68]).

Popular surveys of recommendation techniques classify recommender systems as either

content-based, collaborative, or hybrid systems. Content-based systems often employ clas-

sifier techniques to recommend an item to a user based upon a description of the item and a

profile of the user’s interests. In contrast, collaborativerecommenders use the preferences

of “similar” users, rather than the characteristics of an item, to make suggestions to the

current user. More recently, utility-based, knowledge-based, and demographic techniques

have been introduced for reasoning about recommendations.Most existing recommender

systems are dealing with several challenges and techniques, such as multi-criteria rank-

ing (e.g., [11,17,42,50,72,91,101]), intrusiveness of feedback (e.g., [1,2,34]), diversity of

recommendations (e.g., [17,41,63,63,73,81,101,109]), and utility function elicitation (e.g.,

[10,15,28,43,79,93,94,105,108,110]). Many commercial and research prototype systems

employing one or more of these techniques have been proposedto recommend flights,

movies, restaurants, and news articles (e.g., [1,22,61]).However, these systems recom-

mend only atomic products or services. Composite services are characterized by a set of

sub-services, which, in turn, can be composite or atomic andmake the recommendation

space very large (exponential in number of components, or infinite, for continuous case),

and implicitly defined. Most existing recommender systems provide users with a list of

atomic items as a recommendation, e.g., a book or DVD. However, several domains can

benefit from a system capable of recommending packages of items, in the form of bundled

5



sets, such as travel packages or electronic systems configuration (e.g., stereo entertainment,

personal computer).

Addressing challenges outlined above in the context of complex recommendation mod-

els involving composite alternatives such as product configurations and service packages

adds another dimension of complexity and have not been addressed. While there are few

research recommender systems (e.g., [91,122]) that provide product bundling, the selection

of atomic products in a bundle is done manually by the user as in [91]. From the system

perspective, it is still an “atomic” offering. Work presented in [122] introduced a “shop-

bot” to search online for the lowest price of a bundle of products. Similarly, there are a

few commercial recommender systems such as Expedia and Travelocity that provide par-

tial product bundling, but again, the composition needs to be performed manually by the

user, where the system is acting as a filtering agent to limit available options as the user

moves from one atomic service to another. I further details research challenges and related

work in Chapter 2.

1.3 Problem Statement and Summary of Contributions

As discussed, the existing recommender systems support only atomic products and ser-

vices. The objective of this research is to developa unified framework for composite rec-

ommendationsbased on decision optimization. The framework contains models that allow

for fast and easy userpreference elicitation, which is captured as a utility function, and pro-

vides an efficientalgorithm to diversify a set of recommendations. Such recommendations

6



are dynamically defined using database views extended with decision optimization based

on mathematical programming. In addition, this research conducts comprehensivevalida-

tion studiesto measure the effectiveness and efficiency of the proposed approach. A key

problem to address in this research is to combine the flexibility of diversity ranking func-

tionality with the information processing capabilities tolearn and capture the preferences

of the user through an iterative learning process. More specifically, the key contributions

of this research are:

1. Framework for recommending composite products and services: I developed a

framework based on the CARD approach [5], extended with a two-phase iterative

process of 1) utility function elicitation and 2) diversification of a recommendation

set. While there are several recommender systems that exist(e.g., [1,22,104]), their

scope is atomic products and services. The proposed “Decision-Guided Recom-

mender with Composite Alternatives (DG-RCA)” framework supports compos-

ite product and service definitions, and recommendations are based on dynamically

learned utility function and decision optimization. Composite services are character-

ized by a set of subservices, which, in turn, can be compositeor atomic. This leads to

a very large recommendation space (exponential in the number of components). As

a result, the existing ranking methodologies would not scale when the number of at-

tributes is very large. The proposed framework involves fast and easy interaction with

the user to (a) dynamically elicit the weighted utility function, and then (b) produce a

diverse set of recommendation that contains an optimal recommendation in terms of

7



the estimated utility function. Finally, there are severalhybrid recommender systems

exist where two or more recommendation techniques are combined to produce better

recommendation results. DG-RCA learns the utility of the user with a collaborative

filtering technique then cascades the result set to be refinedwith a knowledge-based

technique based on diversity space, and finally presents theuser with a diverse set

of composite products and services. According to popular hybrid recommender sur-

veys [13,22,40], and to the best of my knowledge, there is no hybrid recommender

system that combines Collaborative Filtering and knowledge-based recommendation

techniques in this sequence. DG-RCA is the first recommendersystem that utilizes

a hybridization approach based on a cascaded collaborativefiltering and knowledge-

based recommendation techniques.

2. Utility function elicitation and learning: I developed methods for utility function

elicitation and learning, including cases when no prior knowledge of user prefer-

ence is given. The learning process continues as feedback isextracted from the

user. Methods are based on alow-dimensional utility space (as opposed to thehigh-

dimensional recommendation/diversity space). Because weare working in compos-

ite products and services space, the number of attributes isvery large due to the

multitude of composite services. Consequently, the recommendation/diversity space

is toohigh-dimensional to learn the recommendation utility accurately and needs an

exponentially large learning set and time for accurate learning.

The method is based on iteratively refining a set of axes in then-dimensional utility

8



space, starting from the utility space standard axes when nohistorical learning is

utilized. At every step, the user is asked to rank a set of recommendations, each

being optimal for one of the current axes. Based on the user feedback, the method

refines the set of axes that become closer to each other. Consequently, the utility

function is constructed.

To add breadth to the research, the utility function elicitation is enhanced to be adap-

tive with a regression analysis technique, to predict the preferences of the current

user. The preference learning is based on an historical multi-criteria rating submitted

by the same user on similar products or services. Using a consistent family of criteria

m1, · · · , mn, each criterion is represented by a rating given by the user as a real value

mi in the range of[mi∗, m
∗
i ] wheremi∗ andm∗

i are the worst and the best level of

thei-th criterion respectively.

In addition, utility elicitation is expanded to include learning from other users with

similar preferences, where historical total rating data isavailable for users. A new

technique is introduced for “collaborative filtering” learning of the current user. It

estimates similarity among users based on a confidence measure indicating the degree

to which we rely on these users’ ratings when predicting ratings for the current user.

The technique is light yet efficient, and is based on a threshold for the number of

co-rated items. It enforces a positive correlation threshold between any two users.

Works of Nielsen et al, Suryadi et al, Russell et al, and Chajewska et al [73,96,99

,101] elicit the utility function from a database of observed behavioral patterns, while
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Chajewska [111] focuses on eliciting the utility function from a database of already

elicited utility functions. All of these approaches are targeted to produce a utility

function from a database. While few recommender systems provide for estimating

and refining the preferences of the user [68,106,116,120], works such as Pazzani

[81] have exemplified the need for such techniques. However,none of these works,

to the best of my knowledge, work on recommendations for composite product and

services, which makes the recommendation space very large.

3. Methods for diversifying a recommendation set: I developed methods for diver-

sity using the separation of utility space from recommendation/diversity space. Re-

turning the user a set of recommendations basedonly on the accuracy measure of

the utility function learned could result in a set of recommendations where items

are often similar to each other and do not have sufficient diversity. Working with

composite space has the challenge of the selecting from larger space, but also gives

an opportunity to diversify using higher-dimension recommendation/diversity space.

One of the key contributions of this research is the “novel” approach for separating

utility space from recommendation/diversity space, and basing the diversification of

the returned set on the recommendation/diversity space. The result set contains a

recommendation that optimizes the learned weighted utility function. In addition, I

present a randomized algorithm that provides a competitivesolution with respect to

finding a diverse set from candidate recommendations. The algorithm is lightweight

yet efficient. The idea of the algorithm is to iteratively relax the selection by the
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Greedy algorithm [16,101] with an exponential probabilitydistribution. This relax-

ation allows the algorithm to identify a better solution with high probability. Finally,

the randomized diversity algorithm is enhanced to be adaptive based on learning. To

the best of my knowledge, this research is the first attempt toincorporate learning

when diversifying a recommendation set.

The work presented in [16,52,81] details several algorithms for selecting diverse rec-

ommendation alternatives based on the similarity of individual attributes. The work

done by Linden, et al [64], also suggests a diverse ranking algorithm. These meth-

ods choose a set of alternatives based on a distance measure calculated for each of

the multiple criteria. Zhang and Hurley [73] used a similar approach with respect to

calculating diversity, but their similarity measure of recommendations was based on

a set rather than individual recommendations. However, allreferenced work above

provides diversity by compromising similarity in a way thatoptimizes the similarity-

diversity trade-off, namely uses the same space for similarity and diversity. In addi-

tion, learning has never been leveraged to impact the scope of a candidate set when

diversifying.

4. DG-RCA research prototype: I developed the relevant components of DG-RCA to

model highly-complex service compositions for the travel domain, which includes

accommodations, rental vehicles, and air transportation.In addition, components of

DG-RCA were developed to demonstrate the applicability of the DG-RCA frame-

work for the movie domain as described by Yahoo! movies and MovieLens datasets.
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Some prototype travel domain systems exist (e.g., ATA , ITR [91],SPIRE [51]); how-

ever, all of these prototypes recommend atomic travel services, except for ITR, which

works with composite products. However, the composition isperformed manually

by the user. The relevant components of the proposed prototype provides alternative

solutions of packages for users and decision makers based onthe different models

and methods defined.

5. Extensive validation studies:I conducted extensive validation studies to prove the

effectiveness and efficiency of different components of DG-RCA framework. With

the approval from Human Subjects Review Board (HSRB) at George Mason Univer-

sity, I conducted a user study of 30 users to measure quality and convergence of the

DG-RCA framework. Case studies are limited by how many usersare interviewed

and do not scale. In addition, I used both synthetically generated datasets as well as

data extracted from a publicly available travel site. Finally, I used publicly available

datasets by Yahoo! Movies, and MovieLens. For example, Yahoo movies dataset has

multi- criteria ranking of 34,800 ratings for 1,716 users. MovieLens dataset (movie-

lens.umn.edu) has 10 million ratings for 10681 movies by 71567 users. Both datasets

were split into training data and test data.

I examined the efficacy of the DG-RCA framework by developingspecific perfor-

mance measurements of the algorithms proposed, and compared with state-of-the art

available algorithms [e.g., 17,73,101]. Validation studies conducted show that the

DG-RCA framework significantly outperforms competing algorithms and systems in
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terms of precision, recall, and MAE (mean absolute error) [1,104].

1.4 Thesis Statement

Decision-Guided Recommender can be developed to support composite alternatives, which

will:

• Automate bundling of products and services selection in an optimal way.

• Outperform existing recommender systems in terms of quality of composite recom-

mendations.

• Be feasible in terms of algorithms efficiency and scalability.

The approach undertaken in this research involved extensions of the work done by

Brodsky, et al, to develop a recommender framework that supports composite product and

service definitions. The following chapters provide more details about areas I worked on.

This dissertation is organized as follows:

• Chapter 2: Related work

• Chapter 3: Composite Alternatives Framework (DG-RCA framework). In this chap-

ter, I cover the main components of DG-RCA and how they interact with each other.

• Chapter 4: Iterative Utility Elicitation for Diversified Composite Recommendations.

In this chapter, I describe the utility function elicitation method when no historical
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data is available (using the utility space standard axes), and the diversity method,

which uses the same space used by utility function elicitation.

• Chapter 5: A Randomized Algorithm for Maximizing the Diversity of Recommen-

dations. In this chapter, I describe the refined diversity approach and algorithm.

• Chapter 6: An Adaptive Utility Learning Method for Composite Recommendations.

In this chapter, I present a method for learning the user preference based on multi

criteria ranking.

• Chapter 7: A Confidence-Based Recommender with Adaptive Diversity. In this

chapter, a collaborative filtering technique is introducedto learn the preference of

the user when total rating historical data is used. In addition, the diversity method is

refined to be adaptive and incorporate learning.

• Chapter 8: Conclusions and Future Work.
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Chapter 2: Related work

2.1 Introduction

A recommender system can be viewed as a complex service, which is composed of inter-

related components, such as users, items (products or services), utility function, and the

returned recommendation set. The problem can be formulatedas follows [1]:

• Let C be the set of all users and letS be the set of all possible items that can be

recommended.

• Let u be a utility function that measures the usefulness of items to user c.

• For each userc ∈ C, we want to choose such items ∈ S that maximizes the user

utility u.

Understanding the preference of the user and knowing what isavailable in terms of

products and services are two crucial elements for recommender systems to succeed. An-

other challenge is how the recommender leverages the utility better to enhance the matching

process.

Recommender systems have been extensively studied since the mid-1990s. Recent pop-

ular surveys (e.g., [1,22,68]) classify the current generation of recommendation in many
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ways. Figure 2.1 shows an example of how many ways recommender systems can be

classified. Of interest to this research is classification based on approach, and classifica-

tion that is based on recommendation techniques. Starting with classification based on

approach; there are several categories such as content-based, collaborative, and knowledge

based recommendation approaches.

Content-based systems (e.g., [1,81,87]) often employ classifier techniques that rely on

information retrieval and information filtering to recommend an item to a user based upon

a description of the item and a profile of the user’s interests. The user will be recommended

items similar to the ones the user preferred in the past basedon item profiles. More for-

mally, the utility u(c, s) of item s for userc is estimated based on the utilitiesu(c, si)

assigned by user c to itemssi ∈ S that are “similar” to item s [1]. An example would be

searching a flight using Expedia.com, where we provide keyword(s) and the recommender

system matches the keyword with flights in its repository.

In contrast, Collaborative recommenders (e.g., [1,14,56,58,71,112]) use the preferences

of “similar” users, rather than the characteristics of an item, to make suggestions to the

current user. The user will be recommended items that peoplewith similar tastes and

preferences liked in the past. Try to predict the utility of items for a particular user based

on the items previously rated by similar users (stereotypes). A collaborative-based system

uses aggregation in some ways. In the simplest case, it uses simple average, or uses the

weighted sum, where closer users are weighted more.
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The hybrid approach (e.g., [4,62,67,100,107]) combines methods from collaborative

and content-based approaches. More recently, utility-based, knowledge-based, and demo-

graphic systems have each suggested different techniques for providing recommendations.

Systems employing one or more of these techniques have been proposed to recommend

flights, movies, restaurants, and news articles (e.g., [1,22,61]). In sections 2.2 - 2.5 I pro-

vide more details about each.

Another way to classify recommender systems is based on techniques, either heuristic-

based (e.g., [112]) or model-based (e.g., [58]). The main difference between model-based

techniques and heuristic-based techniques is how to calculate the utility (rating) predic-

tions. In the heuristic-based approach, calculation of predicted utility (rating) is based on

some ad hoc heuristic rules, whereas in the model-based approach, calculation is based on

a model learned from the underlying data using statistical learning techniques [1].

The research community has identified several areas where recommender systems can

be enhanced to produce better outcome that meets and exceedsusers expectations (e.g., [1,

5, 17, 18, 58]):

• Improving the understanding of users and items: In most Todays recommender sys-

tems, there is a basic understanding and information usage in user and item profiles;

most recommendations is based on secluded matching betweenone or two features

in either the user or item profiles. Sophisticated analysis and artificial intelligence

methodologies are becoming a necessity. An example would bekeeping a track of

users transactional histories to enable the learning process. The profile of user i can
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Figure 2.1: Framework for the analysis and classification ofrecommender systems. [68]

be defined as a vector of p features, i.e.,Ci = (a1i, · · · , aip) , Also, let the profile

of item j be defined as a vector of r features, i.e.Sj = (bj1, · · · , bjr). Features can

mean different concepts in different applications, such asnumbers, categories, rules,

sequences, etc.

• Incorporating the contextual information into the recommendation process: Most ex-

isting recommender systems are limited to two dimensional space where only USER
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x ITEM space is considered. There might be some situations where more than two-

dimensional User x Item space is appropriate and needed. An example would be in

the travel recommender system s domain some considerationsof time season is a

must where a package during summer time may not be appropriate to recommend at

New Year season.

• Supporting multi-criteria ratings, in some applications,such as restaurant recom-

menders, there is more than the price that would attract users to enjoy a restaurant,

in this case restaurant ratings should be based on all or mostcriteria that users would

pay attention to before they proceed with their choices, it would be important to

consider most or all of the following in the rating process : food, decor, and service

• Providing more flexible and less intrusive types of recommendations: Many Rec-

ommender systems (RSs) are intrusive where they require explicit and significant

feedback from the user. Feedback will continue to be a primary factor in the recom-

mender system concept, however, new generation of recommender systems should

look for new ways to extract information from users implicitly. An example would

be how long the user spend reading a specific document to inferhow much the user

liked this document and give it higher rating without explicitly asking the user. How

to determine an optimal number of ratings the system should ask from a new user

remain a challenge, for example, MovieLens.org first asks the user to rate a prede-

fined number of movies (e.g., 20). In the MovieLens.org case,the cost of rating each

movie is c and the cost of rating n movies is c*n). Then, the intrusiveness problem
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can be formulated as an optimization problem; each additional rating supplied by the

user increases the accuracy of recommendations.

• Providing a balance between diversity and optimality: Mostrecommender systems

only limit the scope of recommendations to how similar the result set is to the query

submitted by the user without incorporating enough diversity in the result set. Pro-

viding diversity to the user will demonstrate different dimensions of possible choices

that users can choose from. Basing our result only on similarity might reduce the

users ability to make the smartest possible choice.

2.2 Content-based Recommender

The user will be recommended items similar to the ones the user preferred in the past; based

on item profile. Mainly based on information retrieval [3,19,119] and information filtering

research [35,69], an example would be searching a document in Google website, where we

provide a keyword and Google recommender system will match it with documents in its

repository (the web). In content-based recommendation methods, the utilityu(c, s) of item

s for user c is estimated based on the utilitiesu(c, si) assigned by user c to itemssi ∈ S

that are “similar” to item s [1].

There are some Limitations with content-based approach such as [1]:

• Limited by the features of the objects: parsed automatically by a computer or as-

signed manually; so the easier the parsing of object features the more powerful the

content-based recommender system becomes.
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• Two items represented by the same set of features are indistinguishable, and example

is two papers are published on the web and both contain same keywords, then a

search for those keywords will result in Google returning both documents without

(to a degree) knowing which paper is better in term of quality.

• Overspecialization: due to the fact that content-based recommender system try to

match what we liked in the past with features of existing items, it tends to only return

similar objects to the category of items we liked in the past,this result in less diverse

list of recommendation; however we can introduce some randomness as some papers

stated but this also introduce another challenge that is if you are only limited to return

the user a limited number of recommendation (usually small)then this will impact the

quality of our result set if some of those recommendations are selected in a random

way that we are not sure of the degree of users‘ likeness.

• New User Problem : The user has to rate a sufficient number of items before the

system can really understand the users preferences.(start-up problem)

2.3 Collaborative Filtering

As one of the most promising and successful approaches to building recommender sys-

tems, collaborative filtering (CF) leverages the known preferences of certain users to make

recommendations or predictions of the unknown preferencesfor other users. The user will

be recommended items that people with similar tastes and preferences liked in the past.
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Try to predict the utility of items for a particular user based on the items previously rated

by other users (stereotypes). Collaborative based systemsuse aggregation in some ways:

In the simplest case uses simple average, or uses the weighted sum, where closer users are

weighted more. Early generation collaborative filtering systems, such as GroupLens [61],

use the user rating data to calculate the similarity or weight between users or items and

make predictions or recommendations according to those calculated similarity values. CF

techniques have less impact of overspecialization, where it can recommend any item, even

the ones that are dissimilar to those seen in the past, however there are some limitations

[1]:

• New User Problem: as described in content-based systems.

• New Item Problem: Until the new item is rated by a substantialnumber of users, the

recommender system would not be able to recommend it.

• Sparsity: the success of the collaborative recommender system depends on the avail-

ability of a critical mass of users, so if only a small number of users used the system

and those users share a taste that is different than the norm then the outcome of the

collaborative-based system may not be predictable nor useful; to overcome this issue

we can employ some “demographic filtering” until a certain number of users use the

system to lessen the effect of sparsity.

• Gray Sheep: Gray sheep refers to those users with opinions that are not consistently

agree or disagree with any group of people and thus do not benefit from collaborative

filtering [104].
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Collaborative filtering approaches are surveyed in [1,14,62,104,112]. Collaborative fil-

tering can be memory-based or model-based. With memory-based methods, the similarity

correlation can be based on items or users [1,104], there areseveral limitations for the

memory-based technique since the similarity values are based on common items. As a

result, memory-based techniques could become unreliable when data are sparse and the

common items are therefore few [112]. Model-based approachis becoming more popular

and more research is focusing on it [1], Model-based methodsfirst learn a a model and

then use it for predicting the suitability of an item to a user. To alleviate the data sparsity

problem, many approaches have been proposed such as e.g., latent semantic model [45]

Singular Value Decomposition [55,105].

As noted in [1,6,7,8,17], research in recommender systems is moving toward the qual-

ity of the recommended set from the accuracy of the prediction. Pair-wise preference be-

tween items for users, e.g., EigenRank [65], probabilisticlatent preference analysis [66]

and Bayesian probabilistic ranking [89], however, all these approaches can suffer signifi-

cantly from expensive computations. In our previous work [7], we have demonstrated how

using EigenSolver to produce 5 diverse recommendations could take 225 seconds, while

it took only 1 second for other techniques. A solution that requires external Solvers, does

not scale because it requires solving a binary combinatorial problem with a binary variable

per each recommendation. The computational overhead of this approach becomes more

pronounced in the case of composite recommendations where the number of candidate

recommendations is large.
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2.4 Knowledge-based systems

Knowledge based methods are gaining popularity in recently, where the reliance on user or

item profiles is less, and true intelligence is added to the recommendation process. Models

used for the purpose of recommendation are based on inferring what the customer might

be interested in. As stated by Burke [22] “The knowledge usedby a knowledge-based rec-

ommender can also take many forms. Google uses information about the links between

web pages to infer popularity and authoritative value”. Knowledge-based systems are dis-

tinguished where no portfolio effect exist. This significantly reduces the drawbacks of new

user and item profile. There are three types of knowledge thatare involved in such a system

[1]:

• Catalog knowledge: Knowledge about the objects being recommended and their fea-

tures. For example, a restaurant recommender system shouldknow that “Thai” cui-

sine is a kind of “Asian” cuisine.

• Functional knowledge: The system must be able to map betweenthe users needs and

the object that might satisfy those needs. For example, the system must know that a

need for a romantic dinner spot could be met by a restaurant that is “quiet with an

ocean view”.

• User knowledge: To provide good recommendations, the system must have some

knowledge about the user. This might take the form of generaldemographic infor-

mation or specific information about the need for which a recommendation is sought.
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2.5 Hybrid approaches

Hybrid recommender systems combine two or more recommendation techniques to maxi-

mize better performance by using one technique and minimizethe drawbacks of any other

individual one. There are many different ways to leverage hybridization [13], most com-

monly, collaborative filtering is combined with some other technique to avoid the ramp-up

problem exists with CF techniques [1,22]. Most recent, hybrid techniques are also lever-

aging Context-aware in areas of social networking [4,100,107], e.g. Facebook.com , fur-

thermore, a new class of recommenders are introduced (reciprocal) where people are both

the subjects and objects, i.e., online dating [67]. Work in [123] presented a hybrid filter-

ing method and a case-based reasoning framework for enhancing the effectiveness of Web

search. Below I list some common methods combination:

• Weighted: A weighted hybrid recommender is one in which two or more score of

each recommended item is computed. Each score is a result of recommendation

technique in the system. For example, the simplest form is a linear combination of

recommendation scores [22]. It is important to point out that each score is calcu-

lated separately by the recommendation technique. Depending on the hybridization

method, the final score is determined. The P-Tango system uses a simple average

hybrid method using collaborative and content-based recommenders [30], however
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it gradually adjusts the weighting of predictions as the learning about the user im-

proves. Other weighted hybrid techniques do not use numericscores, rather a vot-

ing mechanism is utilized, an example is the hybridization of collaborative, content-

based and demographic methods presented in [82].

The benefit of a weighted hybrid is that the strength of each method contributes to the

overall capabilities of the recommendation process and adjustments of weights can

follow accordingly. However, it is hard to assume that scores of different methods

used are reliable across the space of possible items. An example is that CF technique

will continue to suffer in terms of accuracy score for those items with a small number

of raters [22].

• Switching: A switching hybrid utilizes a confidence measure to determine the switch-

ing in item-level. It uses some criterion to switch between recommendation tech-

niques. For example, it calculates the predication and the confidence level of an item,

if the confidence falls below a threshold, then the hybrid recommender switches to

different recommendation method to determine the suitability of that item.

The DailyLearner recommender uses a content/collaborative hybrid where a content-

based method is attempted first. Depending on a confidence level, if it is low then a

collaborative method is used. This switching in The DailyLearner recommender is

expected to suffer from the ramp-up problem, which exists inboth the collaborative

and the content-based systems [22].

Hybrid systems that use Switching technique, need to account for switching criteria.
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This introduces additional complexity into the recommendation process. However,

having the option of switching in such hybrid systems is an advantage where the

strengths and weaknesses of combined methods can be leveraged and avoided re-

spectively.

• Mixed: Some Hybrid systems use a Mixed technique with respect to determining

what recommendation to include in the presented result set.The hybrid system ini-

tially produces a large number of recommendations simultaneously. For example,

some of those recommendations were produced using CF technique while others

were determined using content-based technique, finally thehybrid recommender will

mix some of each and present a result set to the user. Usually,a ranking of items or

selection of a single best recommendation is needed, at which point some kind of

combination technique must be employed [22].

Smyth and Cotter [102] uses this approach to assemble a recommended program

called “The PTV system” for suggesting television viewing.Based on the description

of TV shows, it uses content-based techniques and collaborative information about

the preferences of other users. Recommendations from the two techniques are com-

bined together in the final suggested list. The mixed hybrid avoids the “new item”

start-up problem due to the use of the content-based component, but it continues to

suffer from “new user” start-up issue exists in CF and content-based systems. Other

implementations of the mixed hybrid, ProfBuilder [118] andPickAFlick [23,24],

present multiple recommendation sources side-by-side.
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• Feature Combination: Another way to build a hybrid system is to consider the

information of specific technique as simply additional feature data associated with

each example and use another technique over this augmented dataset.

For example, the inductive rule learner Ripper was applied to the task of recommend-

ing movies using both user ratings and content features. As aresult, Basu et al [16]

report on experiments shows they achieved significant improvements in precision

over a purely collaborative approach. However, the improvement is precision did not

hold when authors considered all available content features.

The feature combination hybrid lets the system consider collaborative data without

relying on it exclusively, so it reduces the sensitivity of the system to the number of

users who have rated an item. Conversely, it lets the system have information about

the inherent similarity of items that are otherwise opaque to a collaborative system.

• Cascade: The key in using the Cascade approach is the sequence in a staged pro-

cess. In this technique, one recommendation technique is employed first to produce

a list of candidates and then a second technique is applied onthis produced list of

candidates to determine the final list of recommendations. Burke [22] presented the

restaurant recommender EntreeC, which is a cascaded knowledge-based and col-

laborative recommender. EntreeC starts off with knowledgeof restaurants to make

recommendations based on the users stated interests. The resulting recommendation

list are of equal preference at this point in time, and then a collaborative technique is

employed to determine the top five restaurants to present theuser with.
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Due to the notion of staged process in cascading techniques,it allows the system to

only apply the second technique on smaller number of candidates that are believed

to be of high quality based on the first technique. This is specifically important when

we deal with composite recommendation space, where the number of recommenda-

tions is significantly large, in addition to the number of attributes representing each

recommendation. We avoid the second technique on items thatare sufficiently poorly

rated by the first technique. Because we are only applying thecascade’s second step

on a smaller set of items that scored higher with respect to utility of first technique,

it is more efficient than other hybridization techniques such as, weighted hybrid that

examines all items, which could result in a severe scalability impact in the case of

composite products and services. In addition, the cascade is accommodating by its

nature where all items made it to the list will have equal chances of rating predication

by the second technique. However, it is important to point out that the first technique

needs to be chosen carefully as its ratings can only be refined, not overturned.

2.6 Diversity of recommendation set

Diversity has been studied in many science areas such as social, physical and management

(e.g., [41,59,63,76,109]). One of the main enablers of diversity is incorporating multi-

criteria ratings. The diversity concept has not been fully explored and utilized in most of

the existing recommender systems. With the recent surge in collaborative similarity-based

recommenders, such as Amazon.com, a number of multi-criteria ranking methods have
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been proposed. Of significant importance to this research iswork suggesting the impor-

tance of diversity-sensitive recommendation sets to provide a balance between diversity

and optimality, and the need for presenting the user with a range of options and not with a

homogeneous set of alternatives [1,5,6,7,9,17,26,31,41]. However, most recommender sys-

tems limit recommendations to those that are relevant to users’ requests. Therefore, their

recommendations are often similar to each other and do not provide enough diversity.

Several researchers have presented informal arguments that diversity of recommenda-

tions is often a desirable feature in recommender systems and could be as important as

similarity in some cases [17,101]. For example, news article service Daily-Learner filters

out items not only if they are too different from the users’ preferences, but also if they

are too similar to something the user has seen before [1]. In addition, [17,73,101] dis-

cussed measures to evaluate the novelty of a specific recommendation. Furthermore, [32]

presented a statistical dispersion called the Gini coefficient to measure the effect of sales

diversity in recommender systems. The Gini coefficient is a common measure of distri-

butional inequality. This paper examined recommender systems effect on buying behavior

and offered initial evidence that recommender systems do influence sales diversity. Also,

[26] shows that a list of diverse recommendations scored lower in accuracy measure but

users liked that diverse set more, compared to a none diverseset.

Presented in [38] are several GRASP algorithms for MDP and tested them on medium

size datasets. Their optimum solution strategy required long processing time (20 hours of

CPU time). Proposed in [31], are tabu search-based algorithms for MDP. The proposed

algorithm is based on the tabu search methodology and incorporates memory structures for
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both construction and improvement. The work [39] proposed different GRASP heuristics

for MDP, which used “distinct construction procedures” that includes “a path-relinking”

technique. However, their best technique took 10 sec to find the target solution for a set

of 200 candidates. The work in [85] proposed a branch and bound algorithm, which on

average took 12.51 sec to find an optimal solution on a set of 50recommendation, which is

much smaller than the number of composite recommendations we work with.

The work presented in [17,72,101] details several algorithms for selecting diverse rec-

ommendation sets based on the similarity of individual attributes. Three different ap-

proaches are presented in Figure 2.2 [17], namely BoundedRandomSelection, GreedySe-

lection, and BoundedGreedySelection where diversity is given by compromising similarity

in a way that optimizes the similarity-diversity trade-off.

BoundedRandomSelection is randomly chooses from a boundedresult set that is the

most similar to the target result. The other approach is called GreedySelection, where se-

lection is picked from all domains of results; the most similar recommendation is picked

first. Consequent recommendations are chosen based on theirquality. Quality is deter-

mined as a combination of how similar the recommendation in question is to the target and

how diverse the recommendation is from already picked recommendations. This approach

is expected to provide more diversity than the previous approach because the result set is

larger and the chances of missing a more diverse recommendation in the BoundedRan-

domSelection approach are more likely to happen. The third approach is a combination of

both approaches mentioned, where a diverse set of recommendations is constructed from

a bounded result set. Of interest is GreedySelection approach, where diversity of a set is
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Figure 2.2: Diversity approaches by Smyth [17]

calculated by adding the distance between every 2 members inthe set. The total is nor-

malized to give the total diversity of a set. The maximum diversity is not guaranteed with

the GreedySelection approach as the first recommendation selected is always the one with

the highest similarity to the target and, in every subsequent iteration, the recommendation

selected is the one with the highest diversity with respect to the set of recommendations

already selected during the previous iterations. As it stands this algorithm is expensive.

For a case-base of n candidate recommendations, during eachof the k iterations we must

calculate the diversity of each remaining case relative to those recommendation(s) so far

32



selected. This means an average of(n − k/2) relative diversity calculations in each itera-

tion, or k ∗ (n − k/2) calculations overall. Similar to [72], the work by Zhang [73] used

a similar approach with respect to calculating diversity. However, measuring similarity of

recommendations was based on the set rather than individualrecommendations within a

set. A recommendation with low similarity to the target might make it to the list because

the set it belongs to has a similarity score that is above a threshold with respect to the whole

set. In addition, in problem two of the paper, a set is constructed under the constraint that

the diversity of the set is greater than some diversity threshold and the total similarity be-

tween the elements of the set and the target is maximized. Therecommendation set is

calculated by engaging an external quadratic programming solver. It is not clear whether

this approach can scale well in case of composite recommendation space as they introduce

a binary vector y to indicate if the item is part of the final list or not. This raises the question

if a programming solver is the best strategy or if a lightweight algorithm (heuristics) would

be sufficient for finding a set with optimal or near-optimal diversity. However, this work

is based on measures such as Euclidean distance or Hamming distance calculated for pairs

of attribute values. The work done by Linden, et al [64], alsosuggests a diverse ranking

algorithm. Like the Diversity layering algorithm presented in this paper, the method pro-

posed in [64] also makes recommendations by finding solutions that optimize one attribute

of the solution; however, the multi-criteria ranking method presented here optimizes each

attribute while bounding the allowable degradation in overall utility. In this way, the rec-

ommendations made by the Diversity layering algorithm offers the user a broad view of the

solution space while maintaining an acceptable overall utility.
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Furthermore, authors of [33] discussed how diversity can beincreased where similarity

is fully preserved using layering technique. Also, [33] discussed the case where similar-

ity is strictly relaxed to allow some loss of similarity to optimize diversity. In addition,

[73] presented the competing goals of maximizing the diversity of the retrieved list while

maintaining adequate similarity to the user query as a binary optimization problem, where

the similarity measure of recommendations was based on a setrather than individual rec-

ommendations. Also, as observed in experiments described in Chapter 5, Section 4, the

approach in [73] does not scale because it requires solving abinary combinatorial prob-

lem with a binary variable per each recommendation. The computational overhead of this

approach becomes more pronounced in the case of composite recommendations where the

number of candidate recommendations is large.

As adopted in this research, researchers in [17,72,73,101]used the definition of diver-

sity as the average dissimilarity. However, their referenced work above provides diversity

by compromising similarity to optimize the similarity-diversity trade-off, namely use the

same space for similarity and diversity. This is in contrastto our approach where we sepa-

rate utility space from diversity space. The separation would result in similarity and diver-

sity complementing each other, and not competing over the same goal. Recommendations

made by our diversity approach offer the user a broad view of the solution space while

maintaining a superior score against the overall utility.

Finally, to the best of our knowledge, most work that has beenpublished deal with

atomic products and services, while our work is addressing recommendations for composite

products and services, which makes the recommendation space very large (or infinite, for
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continuous selected quantities). This is in particular important when we compare with

solution strategies that use external solvers. With such techniques, the recommendation

space is expected to be small or at most medium size to delivergood results in reasonable

amount of time.

2.7 Utility function elicitation

Ideally, decision making should be based on full knowledge of the utility function of the

decision maker. However, in many cases, this may not be possible all the time. Acquiring

such knowledge may not be an easy task due to several reasons such as the size of the out-

come space, the complexity of the utility elicitation process [113,118], and finally, the time

allowed to elicit the utility function from the users’ perspective [10,15]. This explains why,

people and systems tend to make decisions with only partial utility information, therefore,

whatever questions asked for the purpose of eliciting the utility need to be carefully chosen.

Due to challenges stated above, we see a surge in research in the utility function elicitation.

In addition, there are two major categories of preference statements that we can be used

to learn the preference of the user [110,111]:

1. Dyadic (comparative) statements, indicating a relationbetween two referents using

the concepts such as “better”,“worse”, and “equal in value to”.

2. Monadic (classificatory) statements, evaluating a single referent using ordinal lan-

guage concepts such as “good”, “very bad”, and “worst”.
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There are known techniques for learning with preference statements above such as rank-

ing and rating respectively. However, Most of the preference statements that could be used

may suffer from the “generalizing nature” where these statements usually can only capture

the preference of a subset of attributes. This creates an ambiguity with respect to actual

preferences of the user, an example would be the following: If we present the user 5 rec-

ommendationsA1, · · · , A5 then ask the user to rank or rate presented recommendations.If

recommendationA2 andA4 stretch for example the saving dimension while recommenda-

tionsA3 andA5 stretch on enjoyment dimension, then all of the above recommendations

may have “other” attributes that the user may prefer or base their decision on, however

those “other” attributes could or could not be captured in our utility function such as the

location of the vacation or the number of days. So if the user indicates a preference toward

recommendationsA2 (which stretches on saving) andA5 (which stretches on enjoyment)

but the two recommendations share some other attributes such as number of days or loca-

tion then this preference choice of the user would make it harder for the utility function

elicitation process to know the reason for the decision of the user, since number of day

and/or location are not captured in the utility. Above example shows the need for careful

selection of dimensions or attributes in the utility function.

There are several approaches for eliciting utility functions, most of which aim for semi-

automated learning of a decision makers utility function. One approach is iterative learning

and refinement of the users utility function using a value of information approach [113].

Another approach is by eliciting the utility function from adatabase of observed behav-

ioral patterns [79,105,108,110]. A third approach is by eliciting the utility function from
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a database of already elicited utility functions [111]. Most related to this research is the

work by Jameson, et al. [53] and Linden, et al. [64] which presented models for eliciting

partial utility and reasoning with such models with regard to certainty for domains such as

shopping and airline reservations. Poh and Horvitz [83] presented the benefit of refining

utility information. Work presented by Jimison et al. [54] discussed the value of explicitly

representing uncertainty for some key utility attributes in medical decision models when

interacting with users. Finally, [113] where they treat utility as a random variable that is

drawn from a known distribution. The use medical databases of utility functions to esti-

mate the distribution of utility functions in the population and then use this estimate as a

prior when elicit utilities from the new users they advise. However, The space of possible

outcomes depending on attributes used was only 70 which is extremely small compared to

composite spaces.

While few recommender systems provide for estimating and refining the preferences of

the user [68], works such as [81] have exemplified the need forsuch techniques. However,

none of these works, to the best of our knowledge, work on recommendations for compos-

ite products and services, which makes the recommendation space very large (or infinite,

for continuous selected quantities), and implicitly defined. In contrast, the DG-RCA frame-

work deals with the recommendation space of composite products and services by using

decision optimization when extracting recommendations that optimize specific axis in the

utility space.

37



2.8 Summary of the Evaluation of Related Work

Recommender systems employ different representation models, ranking methods, and learn-

ing techniques to recommend solutions in a variety of domains. I have presented compre-

hensive analysis of recommender systems, and more details can be found in [1,22,68,108].

Most relevant to our work are those systems supporting multi-criteria ranking methods,

utility function elicitation, dynamic learning of user preferences, and diversity of recom-

mendations.

In summary of classifying recommender systems based on approach, Figure 2.3 presents

the most common methods of recommendations such as content-based, collaborative, and

knowledge-based recommendation approaches. For each technique, it lists:

• The background information needed beforehand about user and/or items.

• Input from the user during the recommendation process.

• Description of the recommendation technique.

• Example(s) of the technique.

The majority of recommender systems recommend only atomic products or services,

and are designed for a single target domain and do not providea general framework for

the development of recommender systems. Complex recommendation models involving

composite alternatives, such as product configurations andservice packages, are rarely

addressed. In addition, there is limited leverage of information in user and item profiles.

Most recommendations are based on secluded matching between one or two features in
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Figure 2.3: Summary of approach-based classification of recommender systems

either the user or item profiles [1]. Sophisticated analysisand knowledge of profiles are

becoming a necessity to optimize individual criterion. Theshift toward knowledge-based

and utility-based recommender systems that can overcome the reliance on user and item

profiles is still developing.

Multi-criteria recommender systems characterize recommendation alternatives as asso-

ciated attribute-value pairs. Multi criteria decision making has been analyzed from several

perspectives [11,42,120] in different science areas [50,77,106]. Authors of [116] listed
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and analyzed several multi-criteria decision making Methodologies such as Analytic Hi-

erarchy Process (AHP), Goal Programming, and Simple Multi-Attribute Rating Technique

(SMART). However, the majority of recommender systems relyon a single ranking or util-

ity score. In many applications, there are multiple criteria that need to be taken into account,

such as price, quality and enjoyment. Recently, multi-criteria ranking has been explored

in recommendation set retrieval [1,17,101]. These methodschoose a set of alternatives

based on a distance measure calculated for each of the multiple criteria. Case-based recom-

menders often evaluate recommendation alternatives according to their similarity to a target

solution [17,72,91,101]. In contrast, utility-based recommenders make recommendations

often based on a single utility score [22,68]. The DG-RCA recommender framework is

used to construct utility-based recommenders; however, many of the DG-RCA components

could be used to accommodate similarity-based recommendation. Multi-criteria ranking

can help provide a balance between diversity and optimality. However, most recommender

systems limit recommendations to those that are relevant tousers requests. Therefore, their

recommendations are often similar to each other and do not provide enough diversity. Di-

versity is important because it helps users become aware of choices they may not have

thought of.

In addition, when diversity is used, the same space is used for utility and diversity result-

ing in “trade-off” between accuracy or utility optimality from one end, and diversity from

the other end. Furthermore, all diversification techniqueslisted above diversify against all

candidate set in a static way, while our diversification technique is adaptive where the scope

of candidate set changes based on learning and the preference of each user.
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There are several collaborative and diversity techniques that are published in the area of

recommended systems. However, each of these techniques works independently, and not

a in a hybrid way. According to an extensive survey of hybrid recommended systems by

Burke [22], one of the hybrid areas that has not been exploredyet is combining collabo-

rative filtering technique with knowledge-based technique, which is what I am presenting

in this research. To the best of my knowledge, this is the firstattempt of a cascaded hy-

brid recommender to combine a collaborative filtering technique with a knowledge-based

technique (adaptive diversity).

Finally, many recommender systems are intrusive where theyrequire explicit feedback

from the user and often at a significant level of user involvement. For example, before

recommending any movies, MovieLens.org expects the user torate a predefined number

of movies (e.g., 20). This request comes with costs on the user [1]. However, DG-RCA

does not require any explicit feedback prior to using the system. Initially, DG-RCA would

recommend a set of alternatives to choose from or provide feedback on. In addition, DG-

RCA uses a simple feedback extraction mechanism, where users are asked only to place

recommendations in a stratum that is typically quick and easy. The number of recommen-

dations to rank becomes smaller with each iteration. According to our user study in chapter

4 section 4, only 3 out of 30 people complained about the explicit feedback required. As

will be discussed in more details in chapter 4 section 2, the utility function elicitation of

DG-RCA allows for less intrusive learning. Initially, the DG-RCA is capable of recom-

mending alternatives without the need to extract feedback.In addition, DG-RCA could

work with previously calculated utilities. This utility can be obtained by domain experts
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or calculated using historical data. Finally, the DG-RCA framework deals with the recom-

mendation space of composite products and services by usingdecision optimization when

extracting recommendations that optimize specific axis in the utility space. Such problems

are more complex when the number of alternatives is large (possibly infinite); however, I

noticed that our framework converges after two questions, as explained in the case study

section. In general, the proposed approach is a unified framework to recommend compos-

ite products and services and incorporates multi-criteriaranking. The framework has a less

intrusive user preference learning experience during the utility function elicitation process,

and it has the ability to support the notion of a diverse recommendation set.
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Chapter 3: Composite Alternatives Framework

3.1 Introduction

Recommender systems facilitates the decision-making process of users. Their value in-

creases when interacting with large information spaces. They recommend items of interest

to users based on preferences they have expressed, either explicitly or implicitly. While the

state-of-the-art recommender systems focus on atomic products or services, this research

focuses on developing a framework for recommending composite services and products

based on decision optimization, and eliciting user preferences. The Decision-Guided Rec-

ommender with Composite Alternatives (DG-RCA) framework combines the flexibility of

diversity ranking functionality with the information processing capabilities to learn and

capture the preferences of the user through an iterative learning process.

The approach undertaken in this research involves extensions of the Alternative Rec-

ommendation Development (CARD) framework by Brodsky, et al, [5] to develop a recom-

mender framework that supports composite product and service definitions. . The CARD

framework leverages partial knowledge specification, decision optimization, and dynamic

preference learning to select from composite recommendation alternatives - that is, mul-

tidimensional recommendations, made up of a number of subcomponents, which satisfy

global decision constraints.
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The framework is based on Decision Guidance Management System (DGMS) [18],

DGMS is a productivity platform for the fast development of database applications requir-

ing closed-loop data acquisition, learning, prediction, and decision optimization. DGMS

data model extends the relational model with stochastic attributes over which a probability

distribution function is defined, it leverages Decision Guidance Query Language (DGQL).

DGQL, is used to specify several decision guidance views supporting prediction, optimiza-

tion, and learning:

• Prediction: DGQL provides transformers to define new attributes. a transformer is

a program that computes outputs from inputs. A prediction view is specified by a

DGQL query, in which the WHERE and/or the SELECT clause involve a probabilis-

tic logical formula that contains random variables.

• Decision optimization: uses choice-null (c-null) for someattributes in view defini-

tions. A DG-SQL query that involves C-nulls essentially defines a set of (possibly

stochastic) relations, each corresponding to a query answer with a different instanti-

ation of values for C-nulls. A decision query returns an optimal answer, such as max

or min.

• Learning, takes place using Learning null attributes or parameters (L-null). Learned

parameters are unknown at the time of a transformers definition, but can be learned

using a learning set produced by queries from the database.

This chapter is organized as follows. Section 3.2 describesthe DG-RCA framework.

Section 3.3 outlines the Composite Recommendation Knowledge Base (CRKB). Sections
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3.4 3.5 and 3.6 describe the components of the framework and their interaction with the

CRKB. Section 3.7 illustrates the CARD framework with a travel recommender example.

Section 3.8 is the summary.

3.2 DG-RCA Framework

DG-RCA is a framework that supports composite product and service, top-k decision op-

timization, and dynamic preference learning. Subservicescan be atomic or composite.

DG-RCA combines the flexibility of diversity ranking functionality with the information

processing capabilities to learn and capture the preferences of the user through an iterative

learning process. The framework proposes and informs the user of what is available in

terms of composite recommendations with minimum interaction from the user side. For

example, travel packages are composed of many services including ground and air trans-

portation, accommodations, and activities. Each atomic and composite service is associated

with metrics, such as cost, duration, and enjoyment ranking. An example to demonstrate the

use of the system is to consider a family that would like to reserve roundtrip air transporta-

tion, accommodations at two separate destinations, and a rental vehicle for transportation

between the two destinations. The family can travel any timewithin a specified window

and can travel to their destinations in any order as long as the flights arrive and depart from

the first destination.

DG-RCA extends the CARD framework [5]. The framework consists of three steps:

• Clustering the recommendation space.
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• Selecting the utility axis

• Diversifying the recommendations.

The recommendation process is depicted in Figure 3.1. As shown in the diagram, the

process is initiated when the user submits a request to the Recommender that contains

both the users decision constraints and profile data. When the Recommender receives the

request, it uses the service instance data provided by external data sources and the rec-

ommendation definitions data stored in the Composite Recommendation Knowledge Base

(CRKB) to start the clustering step to determine which cluster the user is interested in.

The recommendation space is split into a number of clusters,where each cluster contains a

number of packages (recommendations). Examples of clusters are: honeymooners, single,

family, etc. The clusters are extracted from historical purchase data cross-referenced with

user demographic data. However, this is beyond the scope of our research at this point.

Currently, I just assume that these clusters exist and packages can therefore be targeted to

specific user groups. The recommender will return a set of recommendations to the user.

Each recommendation from the set will represent a cluster and maximizes the total utility

function in its cluster. Initially I will give equal weight to metric attributes as we are in an

early stage to conclude what the user might value more with respect to metrics attributes

(e.g. saving, enjoyment). Domain knowledge could also be used to determine how to assign

weights and selections of metric attributes, consequentlycalculating the global utility func-

tion. When the user indicates her preference and the chosen recommendation determines

her preferred cluster, future recommendation space is limited to the chosen cluster.
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Next, the Preference Learner starts the iterative process of learning the utility vector

of metrics attributes, e.g., saving, location attractiveness, enjoyment. This step starts with

presenting the user with a number of distinguishable recommendations in terms of utility

vectors. Each recommendation returned will stretch the dimension it represents (e.g., sav-

ing) and relaxes on the other dimensions (e.g. enjoyment, location attractiveness, etc). The

process continues iteratively updating the utility vectorevery time, based on the feedback

of the user until an exit point is reached (e.g., indicating “no difference” between recom-

mendations presented). Upon exit, the recommendation space will be constructed into the

Recommendation View, according to the utility vector learned.

Finally, the Recommender constructs a set of diverse recommendations. Diversity is

based on recommendation space, where each recommendation is characterized by a vector

in n dimensional space. It starts with the recommendation that maximizes the utility func-

tion calculated, and each consequent recommendation represents a diverse choice within

the recommendation space. The system provides the user witha given number of diverse

alternatives to choose from. At this point, the user can select the most preferred alterna-

tive or she can provide a (partial) ranking of the suggested alternatives to the Feedback

Extractor. Feedback from the user will be honored if she has chosen to view additional

suggestions. Then ask the user to rank the set of recommendation presented, and weight

vector of recommendation(s) ranked the highest will be usedas a base to reconstruct the

utility function and update preference parameters, consequently present a new set of di-

verse recommendation in an iterative fashion. The process ends if the user either chooses

a recommendation (and consequently the services to implement the selected alternative are
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invoked) or exits the recommendation process.

Figure 3.1: DG-RCA Framework

3.3 Composite Recommendation Knowledge Base (CRKB)

The CRKB stores the internal data and the modeling components used to construct recom-

mendation sets [5]:

User Profile Maintains information about the current client and contains: domain-

specific user data to select an appropriate recommendation template (demographic), and
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Recommendation constraints, such as the number of dependents and the budget limit.

Service Metric ViewsExtracts information from raw tables based on the user profile

and data, such as cost, duration, or enjoyment ranking that characterizes the service. Ser-

vice Metric Views can be atomic or composite.

Recommendation ViewsProcess and rank recommendations based on diversity rank-

ing function (transformer). Each Recommendation View is associated with a Service Met-

ric View. Transformers and Learned Transformer Parameters: Transformers are parametric

functions that define metric attributes of a composite service given the values of metric

attributes of the subservices. Some transformer parameters (e.g., coefficients) may not be

known a priori, but learned, and they are called l-null.

Historical Preference Data and Current User Preference Data CRKB stores His-

torical Preference Data for each Recommendation View. For example, ifr1, r2 are tuples

from the Service View and have the same user attributes, if the user indicates that the ser-

vice instance defined byr1 is preferred over the service instance defined byr2, then CRKB

will capture this information for future learning.

3.4 Recommender

In order to provide recommendations, the Recommender materializes the corresponding

Recommendation View, and returns an ordered set of recommendations. Recommenda-

tion Views are based on Service Metric Views, which are used to define, for every service

instance, key attributes and metric attributes. Key attributes are the attributes selected to
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uniquely identify a product or service instance within a Service Metric View. Metric at-

tributes represent those attributes that can be used to measure the suitability of an alterna-

tive.

3.5 Feedback Extractor, Preference Learning

Raw preference data is collected each time a user interacts with the Feedback Extractor.

For each Recommendation View, historical preference data is maintained. The first data

set stores the key attribute-value pairs for all past recommendation alternatives. A corre-

sponding second data set stores a history of the preferred recommendation alternatives. The

Feedback Extractor elicits a partial ordering of the recommendation set, for example, what

has been liked and what has not. Feedback is submitted to the preference learner along with

the Recommendation View and Service metrics view. Learningtransformers allow for the

exploitation of domain expert knowledge in defining metric attributes. An example is the

use of l-null to calculate coefficients.

3.6 Use Case - Travel Package Application

Consider a family that would like to reserve roundtrip air transportation, accommodations

at two separate destinations, and a rental vehicle for transportation between the two desti-

nations. The family can travel any time within a specified window and can travel to their

destinations in any order as long as the flights arrive and depart from the first destination.
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[5]. The Service Metric View hierarchy for the travel example, shown in Figure 3.2, in-

cludes the composite (root) view, Family Travel Metrics, and the three atomic views Travel

Accommodation Metrics, Air Travel Metrics, and Rental Vehicle Metrics. Family Travel

Metrics defines the composite recommendation model for the recommendation of family

travel packages. Each of the atomic views represents an element of the family travel pack-

age recommendation model.

Figure 3.2: Family travel service metric view hierarchy [5]

The views in Figure 3.2 are constructed from the bottom up. The atomic views are

populated by combining external service provider data withinternal user profile data and

learned preferences. The composed view is then populated using the data generated by

the atomic views. The schemas for the source tables used in the family travel example are

listed in Figure 3.3.

The Accommodation Service Metric Views: For each Atomic service we create a

Service Metrics View, In order to demonstrate the construction of the family travel Service

Metric View hierarchy, consider the Travel Accommodation Metrics view defined and de-

picted in Figure 3.4 we start with Accommodation service view: travelerID and accommID
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Figure 3.3: Source schemas [5]

are key attributes, the remaining metric attributes, amenities, nostars are taken directly

from the Accommodation Packages source. In contrast, accEnjoyment and accCost both

represent dynamically computable expressions.

The flights Service Metric Views: The Air Travel Metrics view characterizes flights.

As presented in Figure 3.5 : class, hops, flightTime, and airCost are direct projections of the

source database. The metric attribute flightEnjoyment represents an expression preference

for a specific flight using stored coefficients.

The Car rental Service Metric Views: It defines all feasible rental car alternatives. As
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Figure 3.4: Travel Accommodation Metrics view

presented in Figure 3.6, the attributes pickupDate and returnDate will be populated with all

rental pickup and return dates that meet the specified constraints. The metric attribute

rentCost is defined by an expression which dynamically calculates the total rental cost for

each of the rental alternatives.

Family Travel Metrics view: Family Travel Metrics view definition is presented Fig-

ure 3.7 and it defines all feasible family vacation packages.This includes flights both to

and from the first destination, accommodations at both the first and second destinations,

and a rental vehicle for travel between the first and second destinations.
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Figure 3.5: Air Travel Metrics view

3.7 Summary

Recommender systems will continue to face the challenge of learning the preference of the

user with minimum interaction from the user side. Consequently, return the user with a set

of recommendations that are optimal or near-optimal with respect to the user preference.

Many recommender systems are intrusive where they require explicit feedback from the

user and often at a significant level of user involvement. Forexample, before recommend-

ing any movies, MovieLens.org expects the user to rate a predefined number of movies
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Figure 3.6: Rental Vehicle Metrics view

(e.g., 20). This request comes with costs on the end-user [1]. However, DG-RCA does not

require any explicit feedback prior to using the system. Initially, DG-RCA would recom-

mend a set of alternatives to choose from or provide feedbackon. In this chapter, we studied

methods for providing recommendations on composite bundles of products and services,

which are dynamically defined using database views extendedwith decision optimization

using mathematical programming. We proposed a framework for (1) finding recommenda-

tion cluster, (2) user utility elicitation using decision optimization, and (3) The notion of

presenting a diverse set of recommendations to extract a balanced set of both optimal and
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Figure 3.7: Family Travel Metrics view

diverse recommendations.

There are few recommender systems that estimate and refine the preferences of the user

[61], works such as [64] have exemplified the need for such techniques. The DG-RCA

framework integrates support for the estimation and refinement of user preferences into the

application development model [5]. The development of effective and accurate decision

guidance systems must keep pace with the dynamic nature of the products and services.
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Chapter 4: Iterative Utility Elicitation for Diversified

Composite Recommendations

4.1 Introduction

DG-RCA is a recommender system that supports composite product and service, top-k

decision optimization, and dynamic preference learning. DG-RCA combines the flexibility

of diversity ranking functionality with the information processing capabilities to learn and

capture the preferences of the user through an iterative learning process. The framework

proposes and informs the user of what is available in terms ofcomposite recommendations

with minimum interaction from the user side. As explained indetails in chapter 3, DG-

RCA extends the CARD framework [5]. DG-RCA consists of threesteps:

• Clustering the recommendation space.

• Selecting the utility axis.

• Diversifying the recommendations.

The process is initiated when the user submits a request to the system which contains

both the users decision constraints and profile data. Then the recommendation space is

split into a number of clusters, where each cluster containsa number of packages (recom-

mendations). Examples of clusters are: honeymooners, single, family, etc. The clusters
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are extracted from historical purchase data cross-referenced with user demographic data.

However, this is beyond the scope of our research at this point. Currently, I just assume

that these clusters exist and packages can therefore be targeted to specific user groups. The

recommender will return a set of recommendations to the user. Each recommendation from

the set will represent a cluster and maximizes the total utility function in its cluster. Ini-

tially I will give equal weight to metric attributes as we arein an early stage to conclude

what the user might value more with respect to metrics attributes (e.g. saving, enjoyment).

Domain knowledge could also be used to determine how to assign weights and selections

of metric attributes, consequently calculating the globalutility function. When the user

indicates her preference and the chosen recommendation determines her preferred cluster,

future recommendation space is limited to the chosen cluster. Next, the Preference Learner

starts the iterative process of learning the utility vectorof metrics attributes, e.g., saving,

location attractiveness, enjoyment. This step starts withpresenting the user with a num-

ber of distinguishable recommendations in terms of utilityvectors. Each recommendation

returned will stretch the dimension it represents (e.g., saving) and relaxes on the other di-

mensions (e.g. enjoyment, location attractiveness, etc).The process continues iteratively

updating the utility vector every time, based on the feedback of the user until an exit point is

reached (e.g., indicating “no difference” between recommendations presented). Upon exit,

the recommendation space will be constructed into the Recommendation View, according

to the utility vector learned. Finally, the Recommender constructs a set of diverse recom-

mendations. Diversity is based on recommendation space, where each recommendation is

characterized by a vector inn dimensional space. It starts with the recommendation that
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maximizes the utility function calculated, and each consequent recommendation represents

a diverse choice within the recommendation space. The system provides the user with a

given number of diverse alternatives to choose from. At thispoint, the user can select the

most preferred alternative or she can provide a (partial) ranking of the suggested alterna-

tives to the Feedback Extractor. Feedback from the user willbe honored if she has chosen

to view additional suggestions. Then ask the user to rank theset of recommendation pre-

sented, and weight vector of recommendation(s) ranked the highest will be used as a base

to reconstruct the utility function and update preference parameters, consequently present

a new set of diverse recommendation in an iterative fashion.The process ends if the user

either chooses a recommendation or exits the recommendation process.

The user has the option of restarting any of the main steps at anytime: Cluster, Optimize,

and Diversify. Restarting the Diversify step uses originalutility weight vectors obtained

from the utility axes elicitation step. Currently, I am exploring the Recommender switching

among 3 modes at different stages:

• During the clustering step where it presents a number of recommendations, where

each recommendation represents a cluster.

• During utility axes selection, where the recommender uses nutility vectors, each

represents a stratum formulated by Preference Learner.

• During the diversification step, where the Recommender returns a diverse set of rec-

ommendations. At this stage, the Recommender constructs one utility function from

either:
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⋄ the utility axis selection step.

⋄ After extracting feedback from the user on presented diverse recommendations.

The CARD Framework [5] supports composite product and service definitions, and rec-

ommendations are based on dynamically learned utility function and decision optimization.

Composite services in CARD are characterized by a set of sub-services, which, in turn, can

be composite or atomic. CARD uses a decision-guidance querylanguage DG-SQL to de-

fine recommendation views, which specify multiple utility metrics, and the weighted utility

function. However, the CARD framework has a number of limitations. First, it assumes the

knowledge of the estimated utility function, whereas oftenthis may not be available, but

needs to be extracted from the user. Second, in some cases, a recommendation space may

have different utility functions for different cluster of recommendation, which the CARD

framework does not address. For example, a person may be considering different cate-

gories of vacation packages, such as family, romantic or business travel, and would apply

different utilities for these categories. Furthermore, the diversity method of CARD has not

been mathematically formalized or tested.

In this research, we adopt the CARD framework and resolve thelimitations outlined

above. More specifically, the contributions of this chapterare as follows. First, we propose

a framework for finding a diverse recommendation set, when noprior knowledge on user

preference is given. The framework involves interaction with the user to (1) choose a

recommendation cluster the user is interested in, (2) dynamic elicitation of the weighted

utility function, and then (3) generating a diverse set of recommendation that contains an
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optimal recommendation in terms of the estimated utility function.

Second, we develop a method for utility function elicitation. It is based on an iteratively

refining a set of axes in the n-dimensional utility space, starting from the utility space

standard axes. At every step, the user is asked to rank a set ofrecommendations, each

being optimal for one of the current axes. Based on the user feedback, the method refines

the set of axes which become closer to each other, until the user cannot differentiate among

them.

Third, we formalize the notion of a diverse recommendation set by defining the notion

of m-layered recommendations. These recommendations containone that optimizes the

learned weighted utility function. Then, the space of all non-dominated1 recommendations

(the “skyline”) is split intom layers, so that the first layer contains all recommendations

whose utility is at least the maximum utility minus1
m

of the utility function range; the

second up to2
m

and so on. Within each layer, a recommendation is chosen thatoptimizes

one dimension of the utility space.

Fourth, we conducted a preliminary experimental study on the efficacy of the proposed

framework, comparing precision and recall of ranked recommendations of a popular com-

mercial travel site (called herein System A) vs. the DG-RCA framework using the same

underlying set of flights and accommodations. The study showed that DG-RCA signifi-

cantly outperformed System A. Furthermore, DG-RCA showed an average recall of 26%

at rank 5 compared to 16% for System A, and an average precision of 100% at rank 1 com-

pared to 36% for System A. While the preliminary study did notdirectly assess the level

1One recommendation dominates another if it is at least as good as the other in all respects.
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of diversity provided by DG-RCA, we conjecture that recall studied is partly reflective of

recommendations diversity.

This chapter is organized as follows: Section 4.2 describesthe Utility axis selection

of DG-RCA. Section 4.3 describes the Diversity Layering of the DG-RCA framework.

Section 4.4 presents a case study for the purpose of validating the framework. Section 4.5

is the summary and possible extensions.

4.2 Utility Axis Selection

Now that we know what cluster the user is in, we will limit our recommendation space to

the chosen cluster, and then deploy an iterative method to learn the user’s preference with

respect ton dimensional utility space (e.g., Enjoyment, Saving, Location attractiveness,

etc.). Intuitively, at each step of the iterative process, we maintain a set of utility axes, which

become “closer” to each other with every iteration until theuser can no longer differentiate

among them in terms of the preference. At that time the iterative process stops, and a final

utility function is constructed. We first describe the overall process and then summarize it

with an algorithm.

Recommendations spaceℜ, consists of composite products and services, each recom-

mendation is represented by a tuple in a Service Metric View.A recommendation could

be a vacation package the user can choose. Each recommendation is mapped to a utility

vector~u, from ann dimensional utility spaceU , which is presented asRn
+, we denote this

mapping by:~U : ℜ → R
n
+. Components of a utility vector~u = (u1, u2, · · · , un), are
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associated with metrics such as Enjoyment, Saving, Location attractiveness, etc. Each met-

ric has an associated domainDi, 1 ≤ i ≤ n. For exampleDSaving = R+, DEnjoyment =

{0, 1, · · · , 10}, DLocation = {0, 1, · · · , 10}. We assume the Location metric represents the

attractiveness on a scale from 0 to 10 (this can be extracted from domain knowledge). Each

domainDi has a total ordering “better than” denoted�Di
. For example, for domain Saving,

a1 �Saving a2 ⇔ a1 ≥ a2. The utility model assumes linearity with respect to each utility

dimension; an increase of the value on any dimension resultsin a proportional increase of

the total utility value. The ratio between the total utilityvalue increase and the increase on

a dimension is constant.

We model the relative importance the user places in each dimension by means of a

vector of weights~w = (w1, w2, · · · , wn), where|~w| =
√

∑n

i=1 w2
i = 1, which we call an

axis. Each componentwi captures the weight of thei-th dimension. The total utility of a

recommendationrk w.r.t. axis~w is defined asU~w(~u) = w1u1 +w2u2 + · · ·+wnun = ~w ·~u.

I point out that the utility elicitation method is robust to changes in measuring units on the

dimensions. More precisely, the order imposed in the recommendations set by the learned

utility axis is the same regardless on the units chosen on each dimension.

In the beginning, we assume no prior knowledge of the users subjective weights along

each dimension, and would like to learn it as follows. We start with n axes, that represent

the original dimensions in the utility space i.e.,
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~w1 = (1, 0, · · · , 0)

· · ·

~wn = (0, 0, · · · , 1)

(4.1)

In every iteration, a current set of axes is modified as follows. For each axis in the cur-

rent set, we select a recommendation that maximizes the total utility according to that axis.

For example, if we have 3 axes, we would present the user with 3different composite rec-

ommendations, each exhibiting the highest utility w.r.t. the corresponding axis. Figure 6.1

exemplifies recommendations proposed to the user.

We then ask the user to partition these recommendations intoup tok preference strata,

where stratum 1 represents the best recommendations, stratum 2 the second best etc. Note

that, each stratum may have 1 or more recommendations in it, and that 2 or more recom-

mendations in the same stratum indicates that the user doesn’t have a preference among

them. Our goal from this step is to allow the user to inform thesystem of how to adjust the

learned total utility function to better reflect her preference. The feedback extracted from

the user, i.e., the preference strata, is used to move the current axis closer to the learned

utility function.

We first replace each~wi as follows. Letri be a recommendation that maximizes

U ~wi
(~ui), where~ui is a utility vector associated withri. We then replace~wi with the axis

~ui

‖ ~ui‖
, where the notation‖ · ‖ means the norm of the vector. Then, for every rankk, we

calculate the normalized mean,
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Figure 4.1: Example of Utility Axis Selection

µi = µ({ ~wi|rank(ri) = k}) =

∑

rank(ri)=k

~wi

∥

∥

∥

∥

∥

∥

∑

rank(ri)=k

~wi

∥

∥

∥

∥

∥

∥

(4.2)

We now build new axes~w1, · · · , ~wk, wherek is the number of strata, as follows:
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For stratum 1, ~w1 := ~µ1

For stratum 2, ~w2 := µ( ~w1, ~µ2)

For stratumi, ~wi := µ(µ( ~w1, · · · , ~wi−1), ~µi),

where3 ≤ i ≤ k

Intuitively, after adjusting~w1, · · · , ~wi−1, we do not yet know the user’s preference

among them, but do know that they are preferable over stratai, represented with~µi. There-

fore, we create new axis~wi as the vector mean ofµ( ~w1, · · · , ~wi−1) and ~µi, intuitively

moving it towardµ( ~w1, · · · , ~wi−1) “half way”. For example, assume the user is presented

with 3 recommendationsr1, r2, andr3, according to utility vectors~u1, ~u2, and ~u3 respec-

tively. The user placed recommendationr1 in stratum 1 and both recommendationsr2 and

r3 in stratum 2. First, for all recommendations, we replace~wi with the axis ~ui

‖ ~ui‖
. Second,

we calculate the mean utility vector ofr2 andr3 asµ2 = µ( ~wr2, ~wr3). Third, we calculate

~w2 := µ( ~w1, ~µ2) Finally, we use the resulting~w2 to calculate the new recommendationr′2

as shown in Figure 6.1. The iterative process continues eachtime with a new set of axes,

until all proposed recommendations, optimal w.r.t. the current axes, are in a single stratum

1. This means recommendations presented are indifferent, i.e., the user can not differentiate

among recommendations suggested. As a final step, we calculate the normalized mean one

more time of the resulting axes to be used as the utility weight vector in the next step of our

framework, described in this chapter in section 5, that is diversity layering. Algorithm 1

captures the process of utility axis selection.
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Algorithm 1 Algorithm of utility axis selection
1: for i = 1 to n do
2: ~wi = the vector with 1 on thei-th component and 0 everywhere else
3: end for
4: p = n
5: while p > 1 do
6: for i = 1 to p do
7: ri = a recommendation which maximizesU ~wi

8: Recalculatewi using the weights of presentedri

9: end for
10: Ask the user to place each recommendation presented in a stratum where 1 is the

best, 2 is next best, etc;
11: MaxRank = the max stratum label assigned by the user;
12: for k = 1 to MaxRankdo
13: Collect all recommendations labeledk;
14: ~uk = the mean of the weight vectors for recommendations labeledk;
15: end for
16: for k = 2 to MaxRankdo
17: ~wk := µ(µ( ~w1, · · · , ~wk−1), ~µk)
18: end for
19: p = MaxRank
20: end while
21: return ~w1

4.3 Diversity Layering

Now that we know more about the user in terms of the utility axis, we construct the global

utility function where weights given to each metric attribute reflect the attractiveness of

recommendations to the user. However, giving recommendations by the utility learned may

not provide sufficient diversity of recommendations. We would like to return a diverse set

of recommendations with a range of options that are not too similar and which are ranked

by the learned utility. For example, a person whose utility is mostly in favor of low price

may decide to take a very attractive travel package even if the price is not minimal. In this

section, we develop diversity layering method to provide diverse recommendations sorted

by the utility. This is done by a recommendation view. The syntax template of a composite
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diverse recommendationMyRecommendation
selectV.∗, w1 ∗ u1 + · · ·+ wn ∗ un as utility
from MVview V
where userconstraints
order by utility, u1, · · · , un

[ layersm]
limit k;

Figure 4.2: Recommendation view

Recommendation View is depicted in Figure 4.2.

Each Recommendation View is associated with the corresponding Service Metric View

(SMV), which appears in thefrom clause. Examples of SMV are Rental vehicle, Airline

flights, Travel Accommodation, or a combined travel package. Thewhere clause contains

user constraints, e.g., the maximum budget and duration of travel. Theselectclause returns

all the key and metric attributes of the service instance, along with utility that has been

learned in the utility axis selection step. We introduce a new optimal clauselayers which

indicates how many layers to split the recommendation spaceinto. Thelimit indicates the

number of recommendations the user would like to be presented with. Thelimit value could

be a configuration or user-defined parameter. Intuitively, to reach diversity we start with the

optimal recommendation (in terms of the learned utility) and then dynamically partition the

recommendation space into m layers. Recommendations in thefirst layer have the utility

function close to the max utility up to1
m

(Umax − Umin), i.e. their utility is in the interval

[Umax −
1
m

(Umax − Umin), Umax]. Recommendations in thei-th layer have utility in the

interval[Umax −
i
m

(Umax − Umin, Umax]. Within each layer we selectn recommendations
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to maximize each dimension of the utility space in turn. Finally, we return the user a set ofk

recommendations (in terms of the learned utility) chosen from them layers, after removing

duplicates and sorting them by utility. We first illustrate the diversity layering method using

an example, and then present a formal definition of diversitylayering. Consider an example

depicted in Figure 4.3, for three layers, i.e.,m = 3 in the layers clause and givenorder

by utility, u1, u2. There are two dimensions,u1 andu2 of the utility space (i.e. metrics

relevant to selection), andUw is the learned global utility. For example,u1 can stand for

(total-budget cost), i.e., Saving, andu2 for the Location attractiveness factor of family

travel. The two-dimensional polyhedral set in the figure depicts all possible utility vectors

of recommendations.

We note that recommendations (e.g.r0, r11, r12, r21, r22, r31, r32) residing on the “sky-

line” are the non-dominated choices of the recommendation space. For example, recom-

mendationd in the figure is dominated byr0, the utility vector ofr0 is higher than that of

d in both dimensions. First, we eliminate all dominated recommendations, and thus are

left with the “skyline”, which is denoted with the thick line. From theorder by clause,

the user indicated thatu1 is more important thanu2. The recommendationr0 maximizes

the global utilityU . Then the skyline is split into three layers. The first is correspond-

ing to the area above the highest dashed line which corresponds to recommendations with

utility U ≥ Umax −
1
3
(Umax − Umin), and select recommendationsr11, r12 that maximize

dimensionsu1 andu2 respectively. Similarly, the second and third layers correspond to

U ≥ Umax −
2
3
(Umax − Umin) andU ≥ Umin respectively. As a result, we extract recom-

mendationsr21, r22, r31, r32. If the user requests four recommendations (i.e.,limit = 4), then
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Figure 4.3: Diversity Layering Example
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(r0, r11, r12, r21) will be returned in this order, and iflimit = 6,(r0, r11, r12, r21, r22, r31, r32)

will be returned. Intuitively, maximizing each metric component in turns gives diversity,

while restricting the global utility within its layer controls the distance from the optimal

global utility. More formally, given two recommendationsr1, r2 in ℜ and the correspond-

ing utility vectors~u = (u1, u2, · · · , un) and~v = (v1, v2, · · · , vn) respectively inRn
+, we

say thatr1 dominatesr2, denotedr1 � r2, if ui ≥ vi for all i, 1 ≤ i ≤ n. Intuitively, one

recommendation dominates another if it is at least as good asthe other in all respects. We

denote bȳℜ the set of all non-dominated recommendations i.e.,

ℜ̄ = {r|¬(∃r′ ∈ ℜ)r′ � r} (4.3)

As before,~U is the utility mapping,~U : ℜ → R
n
+ . Below we useUmax, Umin defined

as:

Umax = maxUw(~U(r)) s.t. r ∈ ℜ̄ (4.4)

Umin = min Uw(~U(r)) s.t. r ∈ ℜ̄ (4.5)

Definition 1. Anm-layered recommendation set is a set:

{r0, r11, · · · , r1n, r21, · · · r2n, · · · rm1, · · · rmn of recommendations such that:

1. r0 ∈ ℜ̄, rij ∈ ℜ̄ for all 1 ≤ i ≤ n, 1 ≤ j ≤ m (i.e. only non-dominated recommen-

dations are included).
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2. U(r0) ≥ U(r11) ≥ · · · ≥ U(r1n) ≥ · · · ≥ U(rm1) ≥ · · · ≥ U(rmn) for all

1 ≤ i ≤ n, 1 ≤ j ≤ m .

3. r0 = argmaxrUw(~U(r)) s.t. r ∈ ℜ̄.

4. For every1 ≤ i ≤ n, 1 ≤ j ≤ m, rij = argmaxrUw(~U(r)) s.t.

r ∈ {= argmaxr ~Uj(r)|r ∈ ℜ̄ ∧ Uw(~U(r)) ≥ Umax −
1
m

(Umax − Umin)}.

Anm-layeredk-recommendation is a sequence(r0, r1, · · · , rk−1) such that:

• r0, r1, · · · , rk−1 ∈ {r0, r11, · · · , rmn}

• All r0, r1, · · · , rk−1 are different

• r0, r1, · · · , rk−1 are sorted in lexicographical order ofUw, u1,· · · , un.

Finally, ak-recommendation is anm-layeredk recommendation, wherem is selected to be

the minimum of the number of layers that produce at leastk recommendations. Note that a

k-recommendation is returned whenlayersm clause is omitted.

4.4 Validation - User Case Study

In order to evaluate our proposed recommender system, we conducted a user study of 30

users (with HSRB approval provided in Appendix B). The objective of the study was to

verify the following hypotheses:

1. Our system achieves a better recall and precision than a non-personalized travel rec-

ommender system.
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2. The interactive elicitation of the utility axis imposes an acceptable overhead to the

users.

3. The vertical diversity layering step increases the recall.

Hypothesis 1 is justified by the widespread adoption of recall and precision as a standard

measure for validation in Information Retrieval(IR) [e.g.12,26,27,28]. Recall is the per-

centage of correctly predicted “high“ ratings among all theratings known to be “high“ [1],

while precision is the percentage of truly “high“ ratings among those that were predicted to

be “high“ by the recommender system [1]. The reason we chose Hypothesis 2 is to measure

the burden caused by our interactive framework and determine if it is acceptable in view

of the perceived benefits. Finally, we wanted to test Hypothesis 3 so that we can assess

the usefulness of the vertical diversity layering. We loaded our systems database with real

data about vacation packages extracted from a popular travel commercial website, which

we will call System A.

We conducted the user study aiming to estimate the recall andprecision of our system.

Specifically; we submitted a request for a three week vacation in Los Angeles, California

starting on May 1, 2009, including roundtrip airfare from Washington Dulles Airport. We

then extracted all packages returned by System A, keeping just the cost and number of

stars (enjoyment) of each package. Since we wanted to evaluate the quality of the top

results returned by our system against System A, we limited the number of results shown

to the user to five. We surveyed a total of 30 users, all workingprofessionals.
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For DG-RCA, in the first phase we learned the users utility function through a two step

dialog: at each step, we present the user with two choices, one with a better enjoyment

(number of stars), and the other with a smaller cost, as described in this chapter in section

4. Depending on the user’s answers, their inferred utility function can reflect the following:

• a strong sensitivity to price (PP)

• a moderate preference for less expensive packages (PQ)

• a moderate preference to higher quality packages (QP)

• a strong bias towards high quality packages (QQ)

The distribution of answers was as follows:

• 6 users in the PP category

• 18 users in the PQ category

• 4 users in the QP category

• 2 users in the QQ category

In the second phase, I computed five recommendations using the diversity layering

method described in this chapter in section 5 and presented them to the user in descend-

ing order of their utility (according to the personalized utility function estimated in the

first phase). For System A, we just presented the top five recommendations in the order

suggested by the website.
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Figure 4.4: Average Recall vs. Rank

We then asked the users to rate each of the ten recommendations on a scale of 1 to 5,

where:

• 5 means “definitely buy”,

• 4 means “likely to buy”,

• 3 means “neutral”,

• 2 means “unlikely to buy” and
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• 1 means “definitely not buy”.

We point out that users surveyed did not know which recommendation set came from

which system.

In order to estimate recall at a given rank, we gathered all the packages rated 4 or 5

by any user, call that set “Buy“ (this is the set of all recommendations which the users

considered buying). Then, we counted how many of these recommendations were present

in the topk results returned by DG-RCA system and System A. Formally,

recall(k) =
|{r ∈ Buy|rank(r) ≤ k}|

|Buy|
(4.6)

For each of the two systems we then computed the average recall at each rankk by

taking the average ofrecall(k) across all the 30 users. The results are summarized in

Figure 7.2. As we can see, already at rank 2, our system returned 18% of the relevant

packages compared to 6% for System A. Moreover, our system returned 26% of the relevant

recommendations in the top 5 results. By contrast, System A returned only 16% of the

relevant results in the top 5.

In order to estimate precision, we counted how many of the recommendations in the

topk results were actually in the set Buy. Formally,

precision(k) =
|{r ∈ Buy|rank(r) ≤ k}|

k
(4.7)
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Figure 4.5: Average Precision vs. Rank

For each of the two systems we computed the average precisionat each rankk by

taking the average ofprecision(k) across all the 30 users. The results are summarized in

Figure 7.1. As we can see, at rank 1, all of the recommendations returned by DG-RCA in

the top position were actually relevant, compared to 36% forSystem A. At rank 2, 75%

of our recommendations were relevant compared to 18% for System A. In fact, at every

rank our system considerably outperformed System A with respect to precision. In order

to determine the statistical significance of our results, weassume a uniform distribution of
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ratings over the set of available packages, meaning that a package selected at random has an

equal chance of receiving any of the 5 user ratings. Under this assumption, the probability

of a randomly selected package to be rated “buy” (rating 4 or 5) is 2/5. DG-RCA selected

52 packages rated Buy out of 150 trials (5 results for 30 users), which can occur by chance

with a probability of 2.76%. Therefore, hypothesis 1 is confirmed with adequate statistical

significance (p-value of 0.0276). We believe the better quality of our results comes from

personalizing the utility function according to the learned user preferences. While System

A returns the same set of results to every user, we make an attempt to learn more about

what each particular user is interested in. Since this extrastep is imposing an extra burden

on the end user, we included at the end of our survey the following question: “Would

you be willing to spend a few more minutes answering few questions so that the system

can learn about you and, consequently, provide you more personalized recommendations,

considering the amount of the transaction?”. The vast majority of the surveyed users (27

out of 30) answered “yes”, which confirms hypothesis 2.

Finally, for hypothesis 3, we examined the distribution of the “buy” ratings within the

vertical layers in the ranked result lists. Here, we observed that all the “buy” ratings were

restricted to the first position and the top-most layer (positions 2 and 3), and all the rec-

ommendations in the bottom layer were rated either “neutral” or “not buy”, therefore not

improving the recall. We believe this is due to the rather lowvalue we chose as a threshold

for utility in this particular experiment. More work is needed to study whether a carefully

calibrated threshold leads to improved recall beyond the top-most layer.
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4.5 Summary

In this chapter, we studied methods for providing recommendations on composite bundles

of products and services, which are dynamically defined using database views extended

with decision optimization using mathematical programming. We proposed a framework

for finding a diverse recommendation set, when no prior knowledge on user preference

is given, which includes (1) finding recommendation cluster, (2) user utility elicitation

using decision optimization, and (3) partitioning the recommendation space into layers to

extract a balanced set of both optimal and diverse recommendations. We also conducted a

preliminary experimental study, which showed that the DG-RCA framework significantly

outperforms a popular commercial system in terms of precision and recall.

Many recommender systems are intrusive where they require explicit feedback from

the user and often at a significant level of user involvement.For example, before rec-

ommending any movies, MovieLens.org expects the user to rate a predefined number of

movies (e.g., 20). This request comes with costs on the end-user [1]. However, DG-RCA

does not require any explicit feedback prior to using the system. Initially, DG-RCA would

recommend a set of alternatives to choose from or provide feedback on. In addition, DG-

RCA uses a simple feedback extraction mechanism, where users are only asked to place

recommendations in a stratum which is typically quick and easy, furthermore, the number

of recommendations to rank becomes smaller after the previous iteration. According to our

user study, only 3 out of 30 people complained about the explicit feedback required.

As discussed in more details in section 4.2, the utility function elicitation of DG-RCA
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allows for less intrusive learning. Initially, DG-RCA is capable of recommending alter-

natives without the need to extract feedback. In addition, DG-RCA could work with pre-

viously calculated utilities. This utility can be obtainedby domain experts or calculated

using historical data. Finally, the DG-RCA framework dealswith the recommendation

space of composite products and services by using decision optimization when extracting

recommendations that optimize specific axis in the utility space. Such problems are more

complex when there is a large number of alternatives (possibly infinite), however, we no-

ticed that our framework converges after 2 questions as explained in the case study section.

As we saw in section 4.4, the diversity layering method did not improve recall according

to the user case study. Specifically, while all recommendations ranked 1 and 2 by DG-

RCA were rated 5 or 4 by users, corresponding to “definitely buy” and “likely to buy”

respectively, most recommendations presented to users ranked 3 and more were mostly

rated “unlikely to buy” or “definitely not buy” by users. Intuitively, the reason for a low

rating received in rank 3 and more is because the same space which is utility space is

used for similarity and diversity. Diversification is basedon utility space. In Chapter 5,

I will address this limitations and refine the currently developed method for diversifying

a recommendation set. I introduce a new approach for diversifying the recommendation

space: an n-dimensional recommendation space is constructed and used for diversification.

This space is separate from the utility space that is used forutility elicitation, where a

distance function is constructed to be used for diversification while using the learned utility

function.
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Many research questions remain open. They include (1) identify the right balance be-

tween optimality of recommendations (in terms of the learned utility) and diversity, and

refining algorithms to reflect that balance; (2) developing efficient algorithms for diversity

layering queries, which take advantage of simultaneous optimization of multiple constraint

problems; (3) expanding the diversity layering to incorporate users feedback on diverse

recommendations.
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Chapter 5: A Randomized Algorithm for Maximizing the

Diversity of Recommendations

5.1 Introduction

The vast number of products and services offered via the web inevitably results in in-

formation overload for users. The shift toward customized product bundles and service

compositions will only compound this problem in the future.

This chapter focuses on the maximum diversity problem (MDP)to recommend compos-

ite products and/or services. Recent popular surveys (e.g., [1,22,68])) classify the current

generation of recommendation methods into three main categories: content-based, collabo-

rative, and hybrid recommendation approaches. Content-based systems often employ clas-

sifier techniques that rely on information retrieval and information filtering to recommend

an item to a user based upon a description of the item and a profile of the users interests.

In contrast, Collaborative recommenders use the preferences of “similar” users, rather than

the characteristics of an item, to make suggestions to the current user. The hybrid ap-

proach combines two or more methods to produce a recommendation set. More recently,

utility-based, knowledge-based, and demographic systemshave each suggested different

techniques for providing recommendations. Systems employing one or more of these tech-

niques have been proposed to recommend flights, movies, restaurants, and news articles
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(e.g., [1,12,17,31]). Most of today’s recommender systemsrecommend only atomic prod-

ucts or services. Complex recommendation models involvingcomposite alternatives, such

as product configurations and service packages, are rarely addressed. In addition to other

desirable research areas, most research in this field is focused on improving the accuracy of

the recommendation set with respect to the query submitted,but less attention is given to-

ward improving the utility of the recommendation set [73]. Diversity is important because

it helps users to be aware of choices they may not have thoughtof, and allows returning a

set of recommendations with a range of options that are not too similar yet score high with

respect to the utility (e.g., represented by the query). Forexample, a person whose utility is

mostly in favor of low price may decide to buy an attractive travel package even if the price

is not minimal as long as the price is within a reasonable range. It is wise to assume that

users want to be returned a set of alternatives that are similar to the query but not similar to

each other. Assume you submit a query for a laptop computer with a specific price range

and all models returned are from the same manufacturer. If you cannot purchase this brand

for some reason, then all presented recommendations are useless [17].

Recent work (e.g., [5,6,17,33,73,101]) on diversity assumed a trade-off between simi-

larity and diversity. The reason for this assumption is the use of the same space, which is

utility space, for similarity and diversity simultaneously. The more diverse the result set is,

the less similar that set to the query submitted. For example, if the user submits a query

for a laptop with price of $1500, then introducing diversifyto the returned set would result

in presenting the user different variation of prices, because we are using the same utility

space for similarity and diversity. However, some presented recommendations may cost
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more than what the customer has stated. In this paper, we question the similarity-diversity

trade-off assumption for a new reason. We suggest that when multiple recommendations

are retrieved for a given target query (or utility), the similarity of these cases (relative to the

utility), as well as their diversity (relative to each other), must be both explicitly maximized.

To the best of our knowledge, all diversity techniques use the same space for similarity and

diversity resulting into two goals competing with each other.

We are proposing a method for diversifying a recommendationset using the separation

of utility space, e.g., in travel domain, utility can be represented by metrics such asSaving

andEnjoyment, from diversity space. Diversity space would be represented by metrics

that are different from those of utility space, for example,Activity typesandDuration of

the trip. Typically, utility space is low dimensional, whereas diversity space is of consider-

ably higher dimensionality. This way, we can guarantee thatall returned recommendations

score high (possibly highest) against the utility functionbut are also diverse compared to

each other. It is important to point out that the formal definition of the MDP problem is

concerned with returning a diverse set of alternatives to the user, regardless of the space

used. In this paper, our focus is to introduce and then separate two spaces: the utility space

and the diversity space. Throughout the paper, we restrict our focus to the diversity space,

since all the candidate recommendations already score highwith respect to utility. In ad-

dition, since the determination of relevant attributes of the Diversity space is not included

in the scope of the formal research problem, we informally discuss the selection criteria of

attributes and their characteristics.

Working with campsite products and services has the challenge of the selecting from
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larger space, but also gives an opportunity to diversify using higher-dimension diversity

space (where features of composite products or services arenumerous). In addition, we

introduce and apply a new approach in this application domain for diversification, which

outperformed the popular state-of-the art diversity algorithms that have been published

[33,73,101].

The CARD Framework [5] supports composite product and service definitions, and

gives recommendations that are based on dynamically learned utility function and deci-

sion optimization. Composite services in CARD are characterized by a set of sub-services,

which, in turn, can be composite or atomic. CARD uses a decision-guidance query lan-

guage (DGQL) to define recommendation views, which specify multiple utility metrics,

and the weighted utility function.

DG-RCA [6] is based on CARD framework [5]. DG-RCA suggested efficient technique

to elicit utility function and a diversity method using the same utility space. The case

study conducted in DG-RCA (Chapter 4 Section 4) showed strength in utility function

elicitation. However, its diversity method did not improverecall. Specifically, while most

recommendations ranked 1 and 2 by DG-RCA were rated “definitely buy” or “likely to buy”

by users, most recommendations presented to users ranked 3 and more were mostly rated

“unlikely to buy” or “definitely not buy”. Intuitively, the reason for low rating received

in rank 3 and more is because we used the same space, which is utility space for both

similarity and diversity. In this paper, we adopt the DG-RCAframework and resolve the

limitations outlined above. The key idea of this paper is to separate the utility space (to

be used for utility elicitation) from the higher-dimensional diversity space (to be used for
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diversification). More specifically, the contributions of this paper are as follows.

First, we introduce a new approach for diversifying a set of recommendations. An

m-dimensional diversity space is constructed and used, which is separate from the utility

space that is used for utility elicitation. In the diversityspace, a distance function is con-

structed to be used for diversifying recommendations that score high in terms of the learned

utility function. That is, these recommendations are optimal or near-optimal in terms of the

learned utility function and chosen to be the most diverse from each other.

Second, we present a randomized algorithm that provides a competitive solution with

respect to finding a diverse set from candidate recommendations. The algorithm is lightweight

yet efficient. The idea of the algorithm is to iteratively relax the selection by the Greedy

algorithm [17,101], with an exponential probability distribution. This relaxation allows our

algorithm to identify a better solution with high probability.

Third, we conducted extensive experimental studies on the efficacy of the proposed

algorithm to compare precision and scalability of our ranked recommendations with the two

state-of-the art algorithms: Greedy [17,101] and Eigensolver [73]. Experiments suggest

that the proposed algorithm outperforms Greedy and Eigensolver with respect to the quality

of results. Furthermore, we were able to verify that fork up to 7 andn up to 100, our

algorithm converges to optimal solution in under 100ms. In addition, we present different

series of experiments designed to evaluate the proposed algorithms’ parameters for the

exponential probability distribution and the number of repetition of the algorithm.

This chapter is organized as follows: Section 5.2 discussesDiversity space with Utility

space. Section 5.3 presents and explains the proposed diversity algorithm. Section 5.4
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covers the validation part. Section 5.5 is the summary and possible extensions.

5.2 Utility space vs. Diversity space

The new surge of current mobile computing devices such as PDAs and WAP-enabled mo-

bile phones with screen size that could be 200 times smaller than that of a PC, is adding

another pressure on recommender systems to move beyond the accuracy measure when

producing recommendation list [17]. This reduces the number of recommendations that

can be returned in a single search. If the few returned recommendations are similar to each

other, then it is unlikely the user will be satisfied. In addition, [96] makes the argument that

diversity is also important for news aggregator sites because the resulting diverse set makes

many people as possible feel that their viewpoint is heard. Furthermore, the utility is only

an estimate to users’ preferences, because users may have not explained their preference

accurately, or they did but the recommender system could notcapture the preference pre-

cisely. For this reason, many practical systems are interactive, allowing the user to scroll

through a set of choices to make a decision [73].

We assume that composite products and/or services from the setℜ, called the recom-

mendation space, are offered for purchase by a recommender system. Recommendations

fromℜ could be a vacation package the user can choose, and could be represented in many

ways, e.g., a tuple in a Service Metric View [5,6]. Each recommendation is associated

with a user-specific utility vector~u = (u1, u2, · · · , un) from ann-dimensional utility space

87



U = U1 × · · · × Un whereU1, . . . , Un are “basic” domains. This is denoted by a map-

ping ~u : ℜ → U . Components of the utility vectoru1, u2, · · · , un are associated with

metrics such asEnjoyment, Saving, Locationattractiveness, etc. Each metric has an asso-

ciated domainUi, 1 ≤ i ≤ n. For exampleUSaving = R+, UEnjoyment = {0, 1, · · · , 10},

ULocation = {0, 1, · · · , 10}. We assume the Location metric represents the attractive-

ness on a scale from 0 to 10 (this can be extracted from domain knowledge). Each do-

mainUi has a total ordering “better than” denoted�Ui
. For example, for domain Saving,

a1 �Saving a2 ⇔ a1 ≥ a2.

As presented in DG-RCA [6], the utility function is elicitedfor individual users by

using a method that is based on iteratively refining a set of axes in then-dimensional

utility space, starting from the utility space standard axes. The DG-RCA paper also gave

a diversity algorithm working in the same utility space. Theidea was to iteratively relax

the distanceǫ from the maximum utility and optimize different utility metrics, e.g., Saving

and Enjoyment within the relaxationǫ. However, as experimentally observed, although

relaxingǫ beyond a certain small value increased diversity (in the utility space), it quickly

makes recommendations irrelevant. This gave us the key ideaof this paper, which is to

introduce a separate space for diversity while limiting recommendations to be sufficiently

close (up to a smallǫ) to the maximum utility.

Thus, in this chapter we propose that each recommendation also be associated with

a “diversity” vector~v = (v1, v2, · · · , vm), from anm-dimensional diversity spaceV =

V1 × · · · × Vm whereV1, . . . , Vm are “basic” domains. Components of diversity vector

v1, v2, · · · , vm are associated with metrics such asactivity type, hotel locatione.g., the
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geographical position (Latitude, Longitude),package description, etc. Furthermore, we

assume that eachVi, 1 ≤ i ≤ m has a distance functiondi : V 2
i → R+. For example,

distancedi could be Euclidian distance for hotel location, the depth difference on activity

taxonomy hierarchy for the activities, or1− cosine TF/IDF keyword similarity for package

description.

Finally, we define the distance between two diversity vectors~x = (x1, x2, · · · , xm) and

~y = (y1, y2, · · · , ym) by combining the distances on the basic diversity domains, for exam-

ple
√

d1(x1, y1)2 + d2(x2, y2)2 + · · · , dm(xm, ym)2, and the distance between two recom-

mendationsrx andry as the distance between their diversity vectors~v(rx) and~v(ry).

We calculate the diversity of a set similar to [6,17,33,73,101], that is the average dis-

tance between every two members in a sets. Diversity(s) =
Pk

i=1

Pk
j=i+1 d(i,j)

k
2
∗(k−1)

, where

k = |S|.

Diversifying using the diversity space will address the issue that has been raised by

[5,6,17,33,73,101] which is that the joint goal of offeringa set S of high diversity and of

high matching value, stand in opposition to each other.

The proper separation of metrics attributes into utility and diversity spaces requires do-

main expertise. There are some properties of dimensions that make them more suitable

to be used as either utility or diversity dimensions. We suggest that only a small number

of dimensions is used as utility dimensions, otherwise, it would be difficult for users to

precisely express their individualized utility functions. In addition, metrics of utility space

need to have totally ordered domains so the user can compare choices. On the other hand,
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the diversity space could have a large number of dimensions since more diversity dimen-

sions will enable a higher diversity. In addition, metrics of the diversity space tend to be

more categorical and are not required to have totally ordered domains, as long as we have

a distance function well-defined.

Depending on how interactive the utility function elicitation is, a diversity metric could

be redefined to become utility metric. For example, if we initially use the hotelactivity

typeas a diversity metric, if the recommender system notices that a user shows significant

interest in beach activities, thenactivity typecould be dynamically redefined to be a utility

metric with “beach” ranked highest.

5.3 Diversity Approach

Our proposed diversity approach is a lightweight yet efficient randomized algorithm that

both incorporates and relaxes Greedy by selecting from the best candidate points accord-

ing to an exponential probability distribution [12]. This relaxation allows our algorithm

to identify a better solution with high probability. The proposed approach can be used

and applied on any space provided it is multi-dimensional. The proposed approach is not

limited to be used with DG-RCA framework, but as a continuation of our work, we are

using DG-RCA framework to present the approach. In addition, The proposed approach

can be applied with any utility function. However, in our framework, the utility function

is constructed during the utility axis selection step [6] where weights given to each metric

attribute reflect the attractiveness of recommendations tothe user. It is obvious that poor
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utility function would result in a retrieval set that will not satisfy the user regardless of how

diverse the set is [73]. In addition, giving recommendations by the utility learned may not

provide sufficient diversity of recommendations. We would like to return a set of composite

alternatives (recommendations) that are optimal or near-optimal with respect to utility yet

each is unique in terms of other package characteristics.

In this section, we discuss two variations of the MDP (with respect to the first point

selection) and the proposed algorithm to address them. In addition, we present pseudocode

of two flavors of the algorithm.

Problem Definition [MAXDIV] : Given a setℜ of N items and one distinguished item

r in ℜ, find a subsetS ⊂ ℜ such that:

• r ∈ S

• |S| = k

• Diversity(S) = maxT⊂ℜ , |T |=k Diversity(T )

One of the most popular heuristics to address this problem isthe Greedy approach. Two

heuristics were presented in [101], the best of which with respect to diversity is the “greedy

selection”. The first point to be selected is always the one with the highest similarity to

the target. During each subsequent iteration, the case selected is the one with the highest

combination of: (1) similarity to the target and (2) diversity with respect to the set of cases

selected during the previous iteration. Presented in [33],how diversity can be increased

using layering. In addition, [33] discussed the case where similarity is strictly relaxed to

optimize diversity. However, [33] achieved less diversitythan Greedy. As it stands, Greedy
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will always choose the case that has maximum distance to whathas been chosen so far, but

this may not provide the optimum solution toward the end. Letus consider the example

presented in Figure 5.1.

r

r3

1r 2

4r

0.3

0.1

1

0.2

0.2

0.1

Figure 5.1: MDP Example

In this example, we show how the Greedy can get a solution arbitrarily far from op-

timum. We have a set of four candidate recommendations{r1, r2, r3, r4} and we would

like to pick the most diverse three recommendations from this set with diversity distances

presented by edges between every two points1. As assumed by [17,33,101], there will be

a starting point, sayr1, that maximizes the utility. Let us examine the operation ofthe

1For visual clarity, edges length do not represent the actualdistance between any two points
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Greedy algorithm, step by step:

1. Start withr1.

2. Pick the point with maximum distance fromr1. Since the distances ared(r2, r1) =

0.3, d(r3, r1) = 0.2, andd(r4, r1) = 0.1, Greedy must pickr2 at this step.

3. Pick the point with maximum combined distance to the points already selected. Since

the combined distances for the two possible candidates ared(r3, r1) + d(r3, r2) =

0.2 + 0.2 = 0.4, andd(r4, r1) + d(r4, r2) = 0.1 + 0.1 = 0.2, Greedy will pickr3.

Therefore, the complete solution found by Greedy is the set{r1, r2, r3}. The resulting

diversity of this solution is the average distance between any two points, which is0.2333.

However, the optimum solution for this diversity problem is{r1, r3, r4} with a diversity of

0.4333. The reason Greedy missed the optimum solution is because itgreedily picksr2

at step 2, when a better choice would have been to pickr3, which enables the optimum

solution.

Algorithm 2 RandDivFixed(R, r, k, nrep, α)

1: for rep = 1 to nrep do
2: sol = {r1}
3: for i = 2 to k do
4: S ← Select(R − sol, sol, L)
5: m← Pick(S, P, α)
6: sol ← sol ∪ {m}
7: end for
8: if Diversity(sol) > Diversity(best sol) then
9: best sol ← sol

10: end if
11: end for
12: return best sol

Inspired by the above example, we are proposing a randomizedalgorithm. We start
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with describing the algorithm and the pseudocode is given inAlgorithm 2. The parameters

are as follows:R is a set of candidate recommendations (already selected such that their

utility is within a fixed thresholdǫ from the maximum utility), a fixed recommendationr to

be used as starting point (r is the recommendation with maximum utility),k is the number

of recommendations that need to be returned,nrep is the number of iterations, andα is

a fixed attenuation factor. The main loop repeatedly builds asolutionsol and retains the

best solution found so far inbest sol. At each iteration the solution is first initialized to the

fixed recommendationr. For each of thek−1 remaining slots, a recommendation is picked

from a list of the top candidate recommendations, ordered bytheir combined distance to

the points selected so far (see function Select in Algorithm3).

Algorithm 3 Select(C, sol, t)

1: for i = 1 to t do
2: V [i]← 0
3: end for
4: t← min(t, |C|)
5: for all r ∈ C do
6: if |sol| > 0 then
7: d← Σs∈soldist(r, s)
8: else
9: d← maxs∈C dist(r, s)

10: end if
11: for i = 1 to t do
12: if d > V [i] then
13: for j = t down to i + 1 do
14: V [j], S[j]← V [j − 1], S[j − 1]
15: end for
16: V [i], S[i]← d, r
17: break
18: end if
19: end for
20: end for
21: return S

Thus, the top candidate in this list is picked with a given probability P , the second best

94



with a smaller probabilityαP , the third best with probabilityα2P , and thei-th best candi-

date with probabilityαi−1P . The last candidate is picked if none of the better candidates

in the list is picked (see function Pick in Algorithm 4).

We repeat this processnrep times and in every iteration we calculate the diversity of

the resulting set and compare it with the highest diversity found so far, and finally return

the best solution found. Intuitively, a smallerP allows the algorithm to take more risk at

each step, and a largerP limits this risk. In Section 5.4 we show the impact of varyingthis

parameter on the number of steps until converging to an optimal (or near-optimal) solution.

Going back to the example in Figure 5.1, we will analyze the probability that our ap-

proach would find the optimum solution. Figure 5.2 presents possible recommendation

selection paths and their probability according to our algorithm. When we start withr1 as

a starting point, there will be three different choices to pick from with different probabil-

ity for each. Thus,r2 is picked with probabilityp, r3 with probabilityαp andr4 with the

residual probability1 − p − αp. Let us denote the optimum solution byq = {r1, r3, r4},

and calculate the probability that we can find it with certainnumber of repetition for the

algorithm. Clearly, at each iteration of the algorithm, there are two possibilities to get to

optimum solutionq, specifically〈r1, r3, r4〉 and〈r1, r4, r3〉. For 〈r1, r3, r4〉 the probability

isαp2 and for〈r1, r4, r3〉, the probability is(1−p−αp)p. In each iteration of the algorithm,

the solutionq will be found with probabilityαp2 + p− p2−αp2 = p(1− p). Therefore, in

nrep iterations, the probability to findq in anyof the iterations is1− the probability to miss

q in everyiteration, that is:1− (1− p(1− p))n
rep. Forp = 0.7 andnrep = 50 this amounts

to over99.999%
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Figure 5.2: Probabilities of Recommendation Selections

The following problem is a variation of the MAXDIV, which removes the constraint

on a fixed point. We call this problem MAXDIV-U (short for maximum diversity uncon-

strained). The domain of applicability of this problem is larger than recommender systems.

Consider, for example, a wireless phone company which wantsto select locations for in-

stallingk new cell towers from a setR of candidate locations, in such a way as to maximize

the coverage. Clearly, the more diverse the set of selected locations is, the better the cover-

age (not considering other factors like elevation, obstructing buildings, etc.).
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Algorithm 4 Pick(S, P, α)

1: t← |S|
2: rand← rnd() {between 0 and 1}
3: for i = 1 to t− 1 do
4: if rand < P then
5: return S[i]
6: else
7: return P+ = α · P
8: end if
9: end for

10: return S[t]

Problem Definition [MAXDIV-U] : Given a setℜ of N items, find a subsetS ⊂ ℜ

such that:

• |S| = k

• Diversity(S) = maxT⊂ℜ , |T |=k Diversity(T )

Several methods (e.g., [31,38,39,73,88]) for solving MAXDIV-U have been proposed

in recent years. Clearly, exhaustively enumerating all subsets ofℜ with k elements is

exponential ink and thus impractical.

The Greedy algorithm can be used with the starting pointr selected such that it maxi-

mizesmaxs∈ℜ d(s, r). However, as we have shown, Greedy can obtain solutions far from

optimal.

Another approach is proposed in [73] which relaxes MAXDIV-Uto a trust-region prob-

lem. There, the proposed solution involves solving a parameterized eigen value problem

and then quantize the resulting real solution to a binary oneby retaining thek largest eigen

values found, which we call here EigenSolver.

We extend our proposed randomized algorithm by allowing it to pick the starting point
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from a list ofL recommendations that have the largest maximum distance to other recom-

mendations. The pseudocode for this algorithm is given in Algorithm 5.

Algorithm 5 RandDivFloat(R, k)

1: for rep = 1 to nrep do
2: sol = ∅
3: for i = 1 to k do
4: S ← Select(R − sol, sol, L)
5: m← Pick(S, P )
6: sol ← sol ∪ {m}
7: end for
8: if Diversity(sol) > Diversity(best sol) then
9: best sol ← sol

10: end if
11: end for
12: return best sol

5.4 Experimental Evaluation

In order to evaluate the effectiveness and efficiency of the proposed approach, we used

both synthetically generated datasets as well as data extracted from a publicly available

travel site. The synthetic data was obtained by generating random distances in a set of

1000 points, first with skewed distribution then with a uniform distribution. All generated

distances were between 0 and 1. The travel data consisted of aset of 714 hotel records

including location (latitude, longitude), activities anddescription. For the hotel dataset, we

defined a distance function by combining the following attribute-specific distances: Euclid-

ian distance for hotel location, the depth difference on activity taxonomy hierarchy for the

activities, and1− cosine TF/IDF keyword similarity for description, then pre-computed

distances between every two hotels.
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We start by evaluating RandDivFixed against Exhaustive andGreedy. Then we compare

the effectiveness and performance of RandDivFloat againstEigenSolver [73].

5.4.1 Evaluation of RandDivFixed

For the first experiment, we used the hotel dataset and we ran 100 tests on randomly se-

lected samples using a machine with Intel Core 2 Duo CPU 2.53GHz and 3GB RAM. We

used a sampling ratio of1
7
, thus each sample consisted of about 100 hotels. For each run,

we run the Exhaustive algorithm to calculate the optimum diversity for that sample. Then,

we ran RandDivFixed withP = 0.4 for k from 3 to 7. We could not run tests for higher

values ofk because Exhaustive already took 18 hours to complete the 100tests fork = 7

(for k = 8 it would take 100 times more time). For each test we measured the percentage

of time RandDivFixed reaches the optimum solution after a variable number of iterations

(the parameternrep in Algorithm 2). We show the results in Figure 5.3.

This experiment shows that RandDivFixed always converges to the optimum solution

in at most 1500 iterations, with a total running time of at most 0.1151 seconds per test (see

Table 5.1 for details). We repeated this experiment with various values for the parameter

P (0.4, 0.5, 0.6, 0.7) in Algorithm 2 to study the impact on the convergence to the optimal

solution. We noticed that for higher values ofP the algorithm achieves a higher quality

faster but takes more iterations to converge to the optimum solution. Conversely, with low

values ofP the algorithm starts with much poorer solutions in the first few iterations, but

converges to the optimal solution within 1500 iterations. The practical relevance of this
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Figure 5.3: Convergence to Optimum Solution

observation is that one can adjust the value ofP to fit within a time budget: under time

pressure, it would be better to run with a high value ofP to improve the chances that a

better solution is found faster; conversely, under more abundant resources, one might want

to use a low value ofP to obtain the optimal solution towards the end.

Table 5.1: RandDivFixed Running Time
k = 3 k = 4 k = 5 k = 6 k = 7
0.0319 s 0.0492 s 0.0720 s 0.0942 s 0.1151 s
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In the same experiment we also ran the Greedy algorithm and recorded the percentage

of time RandDivFixed obtains a better solution than Greedy,using different numbers of

repetitions. The results are shown in Figure 5.4. Notice that this time we were able to

compare with Greedy using larger values fork (up to 15).

Figure 5.4: RandDivFixed versus Greedy

This experiment shows that RandDivFixed always produces a solution at least as good

as Greedy, and for all values ofk, a solution strictly better than Greedy is found between

15% (fork = 3) and 95% (fork = 15) of the time, when RandDivFixed is repeated 1500

times.
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From the above experiment we noticed that the absolute diversity values found by the

algorithms are dependent on the data distribution of the distances between the points in the

dataset. The next experiment presents how changes in the distance distribution affects the

ratio between the diversity found by Greedy compared to RandDivFixed. For this exper-

iment we used a synthetically generated dataset of 100 points with a skewed data distri-

bution for the distances. The relative diversity value obtained by Greedy when comparing

with RandDivFixed as a baseline is shown in Figure 5.5. For this dataset, the diversity

value obtained by Greedy is between 5% (fork = 3) and 13% (fork = 15) off the diversity

value obtained by RandDivFixed. For fairness, we repeated this experiment with uniformly

distributed random dataset and Greedy was only between 2% and 3% off RandDivFixed.

This shows that in practice, the absolute diversity improvement will be dependent on the

actual data and distance function used. However, across alltests we ran, RandDivFixed

was consistently outperforming Greedy.

5.4.2 Evaluation of RandDivFloat

As discussed in Section 5.3, the unconstrained diversity maximization problem (MAXDIV-

U) can be solved using RandDivFloat or the EigenSolver solution proposed in [73]. In this

section, we compare the two approaches both for effectiveness and running time. For this

experiment shown in Figure 5.6, we used the same hotel dataset.

This experiment shows that RandDivFloat almost always produces a solution strictly
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Figure 5.5: Relative Diversity Value

better than EigenSolver, even when RandDivFloat is repeated as little as 10 times. More-

over, fork ≥ 6, RandDivFloat always outperforms EigenSolver.

Next, we wanted to examine the scalability of both algorithmwith respect to the size of

the dataset. For this purpose, we varied the sampling ratio for the dataset selection between

1
7

to 7
7

(at 7
7
, all 714 hotels are selected). We ran the experiments with differentk values

(between 3 and 15) and the results are not much different (between 3 and 15), so we show

only the running time fork = 5 for both algorithms in Figure 5.7. The maximum running

time for RandDivFloat is about 1 second (for 714 points), whereas EigenSolver takes over
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Figure 5.6: RandDivFloat versus EigenSolver

225 seconds on the same dataset.

5.5 Summary

In this paper, we introduced a new approach for diversifyinga set of recommendations,

where anm-dimensional diversity space is constructed and used. In addition, we proposed

and validated a randomized algorithm to address the MaximumDiversity Problem (MDP)

which is both highly effective and scalable in our experiments. Many research questions
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Figure 5.7: Execution Times of EigenSolver and RandDivFloat

remain open. They include (1) how to select the probabilityP and the factorα for the

randomized algorithm in order to converge in the fewest number of repetitions; (2) how to

efficiently detect when the best found solution is in fact optimal, or at least within a given

factor of the optimal solution; and (3) how does the choice ofa distance function affect the

quality of the solutions found by each algorithm.
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Chapter 6: An Adaptive Utility Learning Method for

Composite Recommendations

6.1 Introduction

This chapter focuses on learning and eliciting user preferences to recommend composite

services and products. Most of today’s recommender systemsrely on a single ranking

or utility score, whereas, in many applications, there are multiple criteria that need to be

taken into account, such as price, quality and enjoyment. Recently, multi-criteria ranking

has been explored in recommendation set retrieval (e.g. [5,6,7,9,68,108]). These methods

choose a set of alternatives based on a distance measure calculated for each of the multiple

criteria. Multi-criteria ranking can help provide a balance between diversity and optimality.

Recent popular surveys (e.g., [1,22,68]) classify the current generation of recommen-

dation methods into three main categories: content-based,collaborative, and hybrid rec-

ommendation approaches. Another way to classify recommender systems is based on tech-

niques: either heuristic-based or model-based [1]. The main difference between model-

based techniques and heuristic-based techniques is how to calculate the utility (rating) pre-

dictions. In the heuristic-based approach, calculation ofpredicted utility (rating) is based

on some ad hoc heuristic rules, whereas in the model based approach, calculation is based

on a model learned from the underlying data using statistical learning techniques [1]. For
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comprehensive analysis of recommender systems refer to [1,68]. Most relevant to our

work are those systems supporting multi-criteria ranking methods, utility function elicita-

tion, and dynamic learning of user preferences. There are several approaches for eliciting

utility functions, most of which aim for semi-automated learning of a decision makers’

utility function [113]. One approach is iterative learningand refinement of the users’ util-

ity function using a value of information approach. Anotherapproach is by eliciting the

utility function from a database of observed behavioral patterns. A third approach is by

eliciting the utility function from a database of already elicited utility functions. While few

recommender systems provide for estimating and refining thepreferences of the user [68].

However, none of these works, to the best of our knowledge, work on recommendations

for composite product and services, which makes the recommendation space very large (or

infinite, for continuous selected quantities), and implicitly defined.

The CARD Framework [5] supports composite product and service definitions, and

gives recommendations that are based on dynamically learned utility function and deci-

sion optimization. Composite services in CARD are characterized by a set of sub-services,

which, in turn, can be composite or atomic. CARD uses a decision-guidance query lan-

guage (DGQL) to define recommendation views, which specify multiple utility metrics,

and the weighted utility function. DG-RCA [6.7.9] is based on CARD framework. DG-

RCA suggested a technique to elicit utility function and a diversity method. However,

the DG-RCA framework has a number of limitations. Up to this point, DG-RCA doesn’t

leverage historical information about users and thereforehas to always start the utility elici-

tation process from standard utility axes. In addition, DG-RCA uses a static (non-adaptive)
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method to converge axes after extracting feedback from the user. In this paper we ad-

dress limitations outlined above, more specifically, the contributions of this chapter are as

follows.

First, we incorporated a regression analysis technique to predict the user preference.

The preference learning is based on historical multi criteria rating submitted by the same

user on similar products or services. There is a consistent family of criteriam1, · · · , mn,

each criterion is represented by a rating given by the user asa real valuemi in the range of

[mi∗, m
∗
i ] wheremi∗ andm∗

i are the worst and the best level of thei-th criterion respec-

tively.

Second, we enhanced the DG-RCA method for utility function elicitation, that is based

on an iteratively refining a set of axes in the n-dimensional utility space. The starting point

of utility function of the prospective user is learned by history mining. Based on the learned

weights, an adaptive technique is used to adjust the standard axes toward learned axes

depending on confidence degree. Then the user is presented with a set of recommendations

each being optimal for one of the current axes.

Third, we conducted extensive experimental studies on the efficacy of the proposed

algorithm to compare precision of our ranked recommendations with the previously used

[6] standard axes technique. We found and used a dataset in the Yahoo! Movies Web

site (http://movies.yahoo.com) to demonstrate system’s performance. The study suggests

that significant improvements in the utility of recommendations can be obtained using the

proposed method.

This chapter is organized as follows: Section 6.2 describesthe Adaptive Selection of
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Initial Utility Axes, and explains the motive and benefits ofusing an adaptive axes selection

compared with standard one. Section 6.3 presents experimental studies for the purpose of

validating the framework using Yahoo movie dataset. Section 6.4 is the summary and

possible extensions.

6.2 Adaptive Selection of Initial Utility Axes

As noted in Chapter 4, Section 2, the original utility axes selection method presented in

[6] has not leveraged historical information to learn the preference of the user, resulting in

the use of standard utility axes. In addition, the adjustment of axes has been static. In this

section, we describe the new proposed adaptive algorithm for selecting the initial utility

axes for the iterative utility elicitation for a given user.The algorithm has three phases.

First, we analyze the historical information consisting ofmulti-criteria ratings of previously

purchased products, to produce an estimated utility axis for the user. Second, depending

on the computed confidence on this derived utility axis, we adjust the standard utility axes

toward the learned utility axis. The degree by which the axesare altered is proportional

to the confidence in the learned utility. Third, for each of the modified axes, we select a

recommendation which exhibits the best utility according to that axis and present them to

the user. Therefore, the number of recommendations presented to the user is equal to the

number of criteria (or axes).

Figure 6.1 exemplifies recommendations proposed to the user.

Phase I: Learning the User Preferences

109



Figure 6.1: Example of Learned Utility Axes

In this phase, we collect all the previous ratingsRu on previously purchased products

from the current useru. These include ratings on each of the individual criteria aswell as an

overall rating. One rating is a tuple of the formr = (u1, · · · , un, u), whereu1, · · · , un are

the ratings on the individual criteria andu is the overall rating. Subsequently, we express

the overall utility functionU(r) as a weighted sum of marginal utility values on each of

the individual criteria:U(r) = Σi=1,nwi ∗ ui. Learning the user preferences amounts to

approximating the overall rating by the overall utility function applied on the individual

criteria ratings. This reduces to finding the values of the weightsw1, · · · , wn that minimize
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the approximation error:

error(w1, · · · , wn) = Σr∈Ru
(u− Σi=1,nwi ∗ ui)

2

Finding the values ofw1, · · · , wn that minimizeerror(w1, · · · , wn) can be done for ex-

ample using a non-linear solver package, or though a varietyof other methods [60]. In

our implementation, we used an fast randomized heuristic approach that computes a good

approximation of the optimum weights. The user preferencesare thus expressed through a

utility axis ~w = (w1, · · · , wn).

Phase II: Deriving Utility Axes

In the second phase, we deriven utility axes by altering then standard axes~sa1, . . . , ~san

towards the utility axis~w learned in Phase I. The amount by which the standard axes are

altered is proportional to the confidenceα in the learned utility. We compute the confidence

as follows:

α = 1− error∗

whereerror∗ ∈ [0, 1] is the normalized approximation error:

error∗ = error(w1, · · · , wn)/(|Ru| ∗max(u)2).

The algorithm for computing the modified axes is given in Algorithm 6.

Algorithm 6 Computing modified axes
1: for i = 1 to n do
2: ~mai = (1− α) · ~sai + α · ~w
3: end for

Phase III: Selecting Recommendations
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Once then modified axes are computed in Phase II, we selectn recommendations from

the set of Candidate Recommendations (CR) as follows: for each modified axis~mai we

pick one recommendationr which maximizes the estimated utility with respect to utility

axis ~mai:

U ~mai
(r) = Σj=1,nmaij · rj

6.3 Experimental Evaluation

In order to evaluate our proposed recommender system, we used the publicly available

dataset in Yahoo! Movies Web site (http://movies.yahoo.com) to demonstrate system’s

performance. The dataset has rating information submittedby users for several movies.

These ratings include four criteria which are a) story, b) acting, c) direction and d) visuals,

in addition to an overall rating, user ID, and movie ID. The collected data came from

randomly selected movies encoded with a serial number from 1to 48. Each user has rated

at least 7 movies up to 48 movies. The rating values as given bythe users were in range

of 1 to 13. The dataset has 34,800 ratings for 1,716 users. Finally, the entire data set

as described is separated into two disjoint sets, the training set used for the purpose of

learning the preference of the user, and the test set used forevaluating the overall utility of

the recommendations.

For each user we generated 4 recommendations which score best on the standard axes

and 4 recommendations using the modified axes computed usingthe adaptive method de-

scribed in Section 6.2.
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Figure 6.2: Average Utility Improvement for Each User

Figure 6.2 plots the improvement in average utility of the recommendations generated

using the adaptive method over the recommendations generated using the standard axes

method. As we can see, for the vast majority of the users, the adaptive method produces

significant improvements in utility (as high as 9 points on the 1 to 13 scale, with 1 to 4

points typical improvement).
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6.4 Summary

In this paper we refined a method for providing recommendations of products and services.

The method learns the users’ preferences from historical data, and according to the confi-

dence degree, adjusts standard utility axes in then-dimensional utility space to reflect what

has been learned, and finally presents the user with a number of recommendations, each of

which is optimal for an axis. Many research questions remainopen. They include (1) how

to enhance the method for users with no or low history information; (2) how to enhance the

learning of the current user’s preferences to incorporate learning from other similar users

(“collaborative filtering”).
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Chapter 7: A Confidence-Based Recommender with

Adaptive Diversity

7.1 Introduction

This chapter focuses on presenting a collaborative filtering (CF) technique and the impact

of adaptive diversity to recommend composite products and/or services. Content-based sys-

tems often employ classifier techniques that rely on information retrieval and information

filtering to recommend an item to a user based upon a description of the item and a profile

of the users interests. In contrast, Collaborative recommenders use the preferences of “sim-

ilar” users, rather than the characteristics of an item, to make suggestions to the current user.

The hybrid approach combines methods from collaborative and content-based approaches.

More recently, utility-based, knowledge-based, and demographic systems have each sug-

gested different techniques for providing recommendations. Systems employing one or

more of these techniques have been proposed to recommend flights, movies, restaurants,

and news articles (e.g., [1,12,17,31]).

There are several hybrid recommender exists where two or more techniques are com-

bined to produce better recommendation results. Accordingto a popular hybrid recom-

mender survey [22], and to the best of our knowledge, there isno hybrid recommender

system that combines CF and knowledge-based in such sequence. DG-RCA is the first
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recommender system that utilizes hybridization techniques which are based on a cascaded

collaborative recommender and knowledge-based. DG-RCA framework presents a hybrid

recommender system that is a cascaded collaborative recommender and knowledge-based.

DG-RCA learns the utility of the user with a collaborative filtering technique then cascade

the result set to be refined with a knowledge-based techniquebased on diversity space, and

finally present the user with a diverse set of composite products and services.

Content-based and Collaborative-based techniques both have limitations, however, it

is been noted that CF techniques outperform those of Content-based, most of the time

[1,98,104]. The basic principle of CF is that if user X and user Y shared the same taste

or preference in the past, then to a degree, we can predict what they might like in the

future. Recent surveys [1,104] classify CF methods into memory-based and model-based.

Memory-based methods use the rating data of users to calculate the similarity with other

users and make predictions for recommendations according to those calculated similarity

values, an example is http://www.amazon.com/. Memory-based methods could result in

less reliable similarity measures when data are sparse and common items are few between

users. This limitation can be addressed using Model-based CF methods. Model-based

methods use the pure rating data to estimate or learn a model to make predictions [1,104],

an example is MovieLens and Netflix prize.

Recently, multi-criteria ranking has been explored in recommendation set retrieval

[1,5,6,7,8,17,68]. These methods choose a set of alternatives based on a distance mea-

sure calculated for each of the multiple criteria. Most research in the field of recommender

systems is focused on improving the accuracy of the recommendation set with respect to
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the query submitted, but less attention is given toward improving the quality of the rec-

ommendation set [73]. Multi-criteria ranking can address this issue and help provide a

balance between diversity and optimality. Limiting recommendations only to those that

are relevant to users’ requests, would result in returning aset of alternatives that are often

similar to each other and do not provide enough diversity. Diversity is important because

it helps users to be aware of choices they may not have thoughtof, and allows returning a

set of recommendations with a range of options that are not too similar yet score high with

respect to the utility (e.g., represented by the query). Forexample, a person whose utility is

mostly in favor of low price may decide to buy an attractive travel package even if the price

is not minimal as long as the price is within a reasonable range. It is wise to assume that

users want to be returned a set of alternatives that are similar to the query but not similar to

each other. Assume you submit a query for a laptop computer with a specific price range

and all models returned are from the same manufacturer. If you cannot purchase this brand

for some reason, then all presented recommendations are useless [17].

DG-RCA [6,8] suggested an efficient technique to elicit utility function on utility space

and a diversity method using the diversity utility space. The case study conducted in DG-

RCA showed strength in utility function elicitation. In addition, DG-RCA [7] presented

the separation ofutility space, e.g., in travel domain, utility can be represented by metrics

such asSavingandEnjoyment, fromdiversity space. Diversity space would be represented

by metrics that are different from those of utility space, for example,Activity typesand

Duration of the trip. Typically, utility space is low dimensional, whereas diversity space

is of considerably higher dimensionality. However, DG-RCAdid not examine the quality
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of recommendation when diversity is introduced. In addition, DG-RCA has not leveraged

learning from users’ historical information which resulted in using the standard utility axes

when starting the utility elicitation process. Furthermore, the presented diversity technique

was static where the used diversification technique did not leverage learning to introduce

adaptability when diversifying the result set. To the best of my knowledge, this is the first

attempt to incorporate learning from historical data into the diversity process where the

scope of candidate recommendation space is refined to reflectusers’ preferences.

In this chapter, we adopt the DG-RCA framework and resolve the limitations outlined

above. The key idea of this paper is to introduce a collaborative filtering technique in

the framework, and measure the quality of recommendation set when using an adaptive

diversification technique. More specifically, the contributions of this chapter are as follows.

First, we introduce a new technique for collaborative filtering to learn the preference

of the user from history rating data, and then estimate similarity among users based on

confidence measure. The technique is light yet efficient, andis based on a threshold for

the number of co-rated items. It enforces a positive correlation threshold between any two

users. Our Confidence-based collaborative filtering technique is able to identify recom-

mendations that are optimal or near-optimal in terms of the learned utility.

Second, we refined a randomized diversity algorithm that provides a competitive solu-

tion with respect to finding a diverse set from candidate recommendations. The randomized

algorithm is adjusted to be adaptive based on learning, and limits the scope of candidate

result set for diversity. The algorithm is to iteratively relax the selection by the Greedy

algorithm [17,101], with an exponential probability distribution.
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Third, we conducted extensive experimental studies on the efficacy of the proposed CF

method proposed to compare precision of our ranked recommendations with a baseline,

where a prediction for an item is that item’s mean rating, andthe item-based k-Nearest

Neighbor (kNN) algorithm. In addition, we measured the impact of adaptive diversity on

the quality of the result set presented. Experiments suggest that the proposed CF algorithm

consistently identifies result sets with an average precision of 90% and Mean Absolute Er-

ror of less than 8% . In addition, we show how is the proposed adaptive diversity technique

achieved mean actual rating of 4.469 out of 5.0 and over 84% ofdiversity on a dataset of

10 million ratings for 10681 movies by 71567 users from Movielens (movielens.umn.edu).

This chapter is organized as follows: Section 7.2 presents and explains the proposed

CF algorithm. Section 7.3 discusses the idea and impact of Adaptive Diversity. Section 7.4

covers the validation part. Section 7.5 is the summary and possible extensions.

7.2 Collaborative Filtering Technique

DG-RCA [6,7,8] is mainly based on leveraging multi-criteria for decision making. The

notion ofn-dimensional utility space andm-dimensional diversity space is direct represen-

tation of moving beyond single criteria decision making. However, one of the limitations

of the DG-RCA framework is the lack of users’ preference learning. To alleviate this, in

this work we are focusing on exploiting the available historical information gathered from

users’ past interactions with the system. Specifically, we propose a collaborative filtering

technique that incorporates a lightweight learning of similarity among users.
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When deciding which users to consider for collaborative filtering, it is important to

select users that are sufficiently similar to the current user. There are several aspects to

this: first, in order for a user to be considered as relevant for the current user, she needs to

have at least a certain number of rated items in common with the current user; second, the

ratings on the common items need to be positively correlated; finally, the correlation among

the ratings from the two users needs to be sufficiently strong. The correlation between the

ratings of two usersx andy is defined as the standard Pearson correlation coefficient:

corr(x, y) =

∑

s∈Sxy

(rx,s − r̄x)(ry,s − r̄y)

√

∑

s∈Sxy

(rx,s − r̄x)
2

∑

s∈Sxy

(ry,s − r̄y)
2

whereSxy are the common items rated by usersx andy andr̄x denotes the average of all

of userx’s past ratings.

Formally, if we denote byrc,s the rating given to items by userc, we define the set̂C

of relevant users for a given userc as follows:

Ĉ = {c′ : |Sxy| ≥ min support ∧ corr(s′, s) > min corr}

wheremin support is a threshold for the number of co-rated items andmin corr is a

positive threshold on the correlation between two users.

Once we established the setĈ of relevant users for a given userc, we will now focus
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on deriving a predicted rating for a new item from the ratingsgiven by relevant users. Intu-

itively, the ratings coming from relevant users need to be combined to produce a predicted

rating. One possible way of deriving a predicted rating for item s′ is to simply take the

average of all ratingsrc′,s′ coming from relevant usersc′ ∈ Ĉ. However, while simple,

this method has several drawbacks. First, it doesn’t account for differences in the effective

rating scales of different users: some users may be more willing to give high ratings while

others are more strict. Second, it treats all relevant users’ ratings the same way, even though

some users are more strongly correlated with the current user than others.

Our proposed CF technique aims to use the similarity betweenrelevant users and the

current user as a confidence measure indicating the degree towhich we rely on these users’

ratings when predicting ratings for the current user. We call our CF techniqueConfidence-

based Collaborative Filtering(CCF). Specifically, CCF combines the ratings from relevant

users as follows:

rc,s = r̄c + α
∑

c′∈Ĉ

corr(c′, c)k × (rc′,s − r̄c′)

whereα = 1/
∑

c′∈Ĉ corr(c′, c)k is a normalization factor andk is an attenuation parameter

that determines the degree of confidence in the ratings learned from relevant users.

Once the predicted ratings are computed for each movie, the method returns the top 5

items in order of their predicted rating as recommendation set to the user.

The advantage of this method is twofold: first, it gives more weight to ratings coming

from strongly correlated users; second, it also accounts for the different rating scales by

appropriately translating the ratings from relevant usersc′ into the rating scale of the current
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userc.

7.3 Adaptive Diversity Approach

The new surge of current mobile computing devices such as PDAs and WAP-enabled mo-

bile phones with screen size that could be 200 times smaller than that of a PC, is adding

another pressure on recommender systems to move beyond the accuracy measure when

producing recommendation list [17]. This reduces the number of recommendations that

can be returned in a single search. If the few returned recommendations are similar to each

other, then it is unlikely the user will be satisfied. In addition, [96] makes the argument that

diversity is also important for news aggregator sites because the resulting diverse set makes

many people as possible feel that their viewpoint is heard. Furthermore, the utility is only

an estimate to users’ preferences, because users may have not explained their preference

accurately, or they did but the recommender system could notcapture the preference pre-

cisely. For this reason, many practical systems are interactive, allowing the user to scroll

through a set of choices to make a decision [73].

Inspired by the idea of the example presented in [33], we illustrate our adaptive diver-

sity approach for increasing diversity while preserving similarity in Table 7.1. We compare

utility and diversity for three different approaches : Confidence-based Collaborative Filter-

ing (CCF), Static Diversity Set (SDS), Adaptive Diversity Set (ADS). CCF is defined as

the set of 5 recommendations that have the highest predictedrating, SDS is defined as the
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set of 5 recommendations that are most diverse (based on certain criterion) among candi-

date recommendations without learning from user preferences. ADS is the set that is most

diverse from the candidate result set and adaptive to the learned user preferences.

Table 7.1: Adaptive Diversity Example
ID Utility Genre Visuals CCF SDS ADS
5 1 Drama A 1 1 1
7 1 Drama B 1 1 1
3 0.67 Comedy B 1
15 0.67 Drama D 1 1 1
20 0.67 Crime D 1
33 0.67 Drama C 1 1
2 0.67 Drama D 1
1 0.67 Drama D
11 0.33 Sci-Fi E 1
40 0.33 Sci-Fi E

MU 0.802 0.734 0.802
DIV 0.8 1.00 0.9

The example we are using is an artificial case in the movie domain. Let us assume the

result set presented in Table 7.1 contains the top 10 movies with respect to Utility score. We

would like to recommend a set of 5 movies form each method (CCF, SDS, ADS) to the user

based on her purchase history. The 1’s in the last three columns show the selected 5 movies

for each method. We calculate the mean utility (MU) by averaging the utility of the items

in the result sets identified. for example, the set of movies chosen by CCF is{5, 7, 3, 15,

20}, the mean utility MU= 1+1+0.67+0.67+0.67
5

= 0.802. We calculate the Diversity for each

approach using the standard method presented in [3,5,9,18,22]. The diversity of a set is the

average distance between any two members in a sets. DIV (s) =
Pk

i=1

Pk
j=i+1

d(i,j)
k
2
∗(k−1)

, where
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k = |S|. For simplicity of illustration,We calculate the distanced between any two itemsi

andj to be 1 if they are different on the Visuals criterion and 0 otherwise. for example, the

diversity (DIV) of CCF (based onVisuals) = (1+1+1+1)+(0+1+1)+(1+1)+(0)
5

2
∗4

= 0.8. The CCF

method (described in Section 7.2) selects the top 5 movies according to the predicted utility.

The SDS method diversifies according to the Visuals criterion, so it picks the top most

movie for each distinct Visuals value. The ADS method is leveraging the learned genre

preferences of this user (e.g. the user has shown a strong preference to the Drama genre)

by diversifying on Visuals while at the same time staying within the preferred genres.

The reason for SDS to get relatively lower score with regard to mean utility is the fact

that diversification was based on unconditional candidate recommendation space (namely

choosing the most diverse recommendation set on Visuals). The adaptive diversification

technique allowed us to choose a set of recommendations thatscored the highest with

respect to mean utility of 0.802 (same as CCF), and at the sametime scored high with

respect to average diversity with score of 0.9. This is an example that shows leveraging

multi-criteria ranking can lead to optimal or near-optimalsolutions with respect to mean

utility and diversity at the same time.

We start with describing our proposed adaptive diversity set approach (ADS). ADS is

a lightweight yet efficient randomized algorithm that both incorporates and relaxes Greedy

by selecting from the best candidate points according to an exponential probability dis-

tribution [7]. This relaxation allows our algorithm to identify a better solution with high

probability. The proposed approach can be used and applied on any space provided it is
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multi-dimensional. The proposed approach is not limited tobe used with DG-RCA frame-

work, but as a continuation of our work, we are using DG-RCA framework to present the

approach. In addition, The proposed approach can be appliedwith any utility function.

However, in our framework, the utility measure is based on our Confidence-based Collab-

orative Filtering (CCF). It is obvious that a poor CF technique would result in a retrieval

set that will not satisfy the user regardless of how diverse the set is [88]. In addition, giving

recommendations by the utility learned may not provide sufficient diversity of recommen-

dations. Our goal is to return a set of composite alternatives (recommendations) that are

optimal or near-optimal with respect to utility yet each is unique in terms of other package

characteristics.

ADS algorithm is an enhanced version of the RandDivFixed algorithm presented in [7].

The difference between AdaptiveDiversity (ADS) and SDS (referred in [7] as RandDiv-

Fixed) lies in the way we identify candidate sets at each step: in the case of AdaptiveDiver-

sity, the function AdaptiveSelect constructs a set of candidates based on the learned prefer-

ences of the user, whereas the basic Select function does notincorporate any learned infor-

mation. The pseudocode for the Adaptive Diversity algorithm is shown in Algorithm 7.

The parameters are as follows:R is a set of candidate recommendations (already se-

lected such that their utility is within a fixed thresholdǫ from the maximum utility), a fixed

recommendationr to be used as starting point (r is the recommendation with maximum

utility), k is the number of recommendations that need to be returned,nrep is the number

of iterations, andα is a fixed attenuation factor. The main loop repeatedly builds a solution

sol and retains the best solution found so far inbest sol. At each iteration the solution is
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Algorithm 7 AdaptiveDiversity(R, r, k, nrep, α)

1: for rep = 1 to nrep do
2: sol = {r1}
3: for i = 2 to k do
4: S ← AdaptiveSelect(R− sol, sol, L)
5: m← Pick(S, P, α)
6: sol ← sol ∪ {m}
7: end for
8: if Diversity(sol) > Diversity(best sol) then
9: best sol ← sol

10: end if
11: end for
12: return best sol

first initialized to the fixed recommendationr. For each of thek − 1 remaining slots, a

recommendation is picked from a list of the top candidate recommendations, ordered by

their combined distance to the points selected so far (see function AdaptiveSelect in Algo-

rithm 8). We point out thatCAdaptive will contain the list of recommendations that satisfy

conditions from user preference learning.

After AdaptiveSelect returns a list of candidates, the top candidate is picked with a given

probabilityP , the second best with a smaller probabilityαP , the third best with probability

α2P , and thei-th best candidate with probabilityαi−1P . The last candidate is picked if

none of the better candidates in the list is picked. (see function Pick in Algorithm 9).

We repeat this processnrep times and in every iteration we calculate the diversity of the

resulting set and compare it with the highest diversity found so far, and finally return the

best solution found. Intuitively, a smallerP allows the algorithm to take more risk at each

step, and a largerP limits this risk.
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Algorithm 8 AdaptiveSelect(C, sol, t)

1: for i = 1 to t do
2: V [i]← 0
3: end for
4: t← min(t, |C|)
5: for all r ∈ C do
6: if r ∈ CAdaptive then
7: if |sol| > 0 then
8: d← Σs∈soldist(r, s)
9: else

10: d← maxs∈C dist(r, s)
11: end if
12: for i = 1 to t do
13: if d > V [i] then
14: for j = t down to i + 1 do
15: V [j], S[j]← V [j − 1], S[j − 1]
16: end for
17: V [i], S[i]← d, r
18: break
19: end if
20: end for
21: end if
22: end for
23: return S

Algorithm 9 Pick(S, P, α)

1: t← |S|
2: rand← rnd() {between 0 and 1}
3: for i = 1 to t− 1 do
4: if rand < P then
5: return S[i]
6: else
7: P+ = α · P
8: end if
9: end for

10: return S[t]
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7.4 Experimental Evaluation

In order to evaluate the effectiveness of the proposed approach, we used a dataset of 10

million ratings for 10681 movies by 71567 users from Movielens (movielens.umn.edu).

This dataset was split into training data and test data. Eachexperiment was run 100 times

and the variation on results was (+/- 1%) on average. The ratings are on a scale from 1 to 5

(5 being the best).

7.4.1 Collaborative Filtering Evaluation

In this section we do a comparative study between our proposed CF technique CCF (confidence-

based collaborative filtering) described in Section 7.2 andtwo other CF techniques: BAS -

a baseline, where a prediction for an item is that item’s meanrating, and KNN - the item

based k-nearest neighbor as described in [1]. Since there are a large number of CF tech-

niques in existence, we cannot compare with all, and we are limiting our comparison to

the two above mentioned techniques. All three methods select the top 5 movies in order of

their predicted rating for each user.

As evaluation metrics we use the established MAE (mean absolute error) [1,104] which

is a measure of accuracy of the predicted rating compared to the actual rating in the test

dataset, as well as MAR (mean actual rating), which is simplythe average actual rating

of the recommendation result set computed by each technique. The results are shown in

Table 7.2.

As we can see from this table, CCF outperforms the other two techniques both in terms
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Table 7.2: Comparison of CF techniques
BAS KNN CCF

MAR 4.097 4.114 4.469
MAE 0.266 0.211 0.075

of mean actual rating (almost 9% better than KNN) and mean absolute error (three times

smaller error than KNN).

7.4.2 Adaptive Diversity Evaluation

We now focus on evaluating the additional benefit of the adaptive diversification method

(ADS) described in Section 7.3. The scope of the comparison in this section is as fol-

lows: we are comparing ADS against a static (non-adaptive) diversification technique SDS

as presented in [7] and our own utility-based CCF (no diversity). For fairness, all three

techniques (ADS, SDS and CCF) use the same predicted rating mechanism described in

Section 7.2. The only difference among them is the way the results are diversified: ADS

diversifies recommendations while being mindful of the learned user preferences (e.g. in-

terest in specific movie genres); SDS maximizes the diversity of the result set irrespective

of any learned user preferences; and CCF does not attempt to diversify the result set and

simply returns the top 5 movies, according to their predicted rating.

To begin with, we use the same MAR and MAE evaluation metrics as before (Sec-

tion 7.4.1). In addition, we are also measuring the diversity (DIV) of the result sets as

described in Section 7.3. The CCF results are obtained from the same run as before, and
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the ADS and SDS are ran on the same data as CCF, for fairness. The results are shown in

Table 7.2.

Table 7.3: Comparison of diversification techniques
CCF SDS ADS

MAR 4.469 4.293 4.466
DIV 0.768 0.997 0.841
MAE 0.075 0.128 0.074

The results show that ADS is almost identical with CCF in terms of utility metrics

(MAR and MAE) while at the same time offering a much better diversity than CCF. The

SDS algorithm, on the other hand, while producing the most diverse result sets, exhibits a

significant degradation in terms of utility metrics (MAR andMAE). This is, in part, due to

the fact that SDS maximizes diversity even if that sacrificesthe utility.

Next, we compare the popular classification accuracy metrics of average precision and

recall [1,104] at rankk (k = 1, · · · , 5) of the three methods. In our experiments, we

consider a movie with an actual rating of 4 and above in the test data set to be a hit.

Average precision at a given rankk is the average percentage of hits presented in the

topk results. The measured precision at ranks 1 to 5 is shown in Figure 7.1. As reference

point, we calculated the average precision for an algorithmthat selects movies at random

(RND).

As we can see, the average precision of all three methods (CCF, SDS, and ADS) is over

80% at all ranks. This is attributable to the quality of the predicted ratings from our CCF

technique. However, the average precision of the SDS methoddegrades at ranks 3, 4 and
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Figure 7.1: Average Precision at Rankk

5 because at this point the impact of sacrificing utility for the sake of diversity becomes

noticeable. On the other hand, ADS does not suffer from this issue because it leverages

the multi-criteria ranking where the result set was diversified by fixing one criterion to the

learned values and restricting the diversification scope tothe remaining criteria.

Average recall at a given rankk is the average percentage of all the movies rated above

4 by the current user (in the test data set) which are present in the topk results of that user.

As reference point, we also calculated the theoretical bestpossible recall for each user by

simulating a hypothetical optimum algorithm (OPT) which recommends only hits to each
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user. Thus, the recall at rankk for OPT isk divided by the total number of movies in the

test dataset. The measured recall at ranks 1 to 5 is shown in Figure 7.2.

Figure 7.2: Average Recall at Rankk

At first glance, the absolute recall values may seem low (lessthan 5%). However, one

should put these numbers into perspective by comparing themwith the recall obtained by

the theoretical best algorithm (OPT). Moreover, what is important is that the average recall

is increasing with rank which is an indication that on average many of the results that are

presented are in fact hits (as confirmed by the precision results too).
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7.5 Summary

Multi-criteria ranking continues to enhance the quality ofresults when used in recom-

mender systems. In our previous work [7], we have presented acase where multi-criteria

learning of utility can enhance the quality of recommendations by 9% compared to single

criterion learning. In this validation, we have shown how a better recommendation can be

presented after multi-criteria ranking enabled adaptive diversity. One of the most popular

recommender systems surveys have stated [1] the need to movebeyond single criterion

to extend capabilities of recommenders, for example, many restaurant guides, such as Za-

gats Guide, provide three criteria for restaurant ratings:food, decor, and service. Most of

today’s recommender systems recommend only atomic products or services. Complex rec-

ommendation models are rarely addressed, and one of the mainenablers for working with

composite alternatives is the use of multi-criteria. Many research questions remain open,

such as how can we incorporate our confidence-based CF technique into our Utility Axis

Selection in [6]. In addition, we would like to examine if Adaptive Diversity technique

could be enhanced to provide recommendations with higher Utility.
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Chapter 8: Conclusions and Future Research Directions

This chapter summarizes the research presented in this dissertation and suggests directions

for future work.

8.1 Conclusions

I have discussed the challenges related to recommender systems, and presented a unified

framework for recommending composite products and services. The framework incorpo-

rates an iterative process of 1) utility function elicitation and 2) diversification of a recom-

mendation set. While there are several recommender systemsexist (e.g., [1,22,104]), their

scope is atomic products and services. There are several research (e.g., [91,92,94,103]) and

commercial (Expedia.com, and Travelocity.com) recommender systems, however, they ei-

ther provide partial product bundling, or the composition step is completed manually by

the user. The proposed framework supports composite product and service definitions,

and recommendations are based on dynamically learned utility function and decision op-

timization. The framework involves fast and easy interaction with the user to (a) choose

a recommendation cluster the user is interested in, (b) dynamic elicitation of the weighted

utility function, and then (c) generating a diverse set of recommendation that contains an

optimal recommendation in terms of the estimated utility function.
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In the case where no historical data exists to learn from, we developed a method for

utility function elicitation. It is based on an iterativelyrefining a set of axes in the n-

dimensional utility space, starting from the utility spacestandard axes. At every step, the

user is asked to rank a set of recommendations, each being optimal for one of the current

axes. Based on the user feedback, the method refines the set ofaxes which become closer to

each other, until the user cannot differentiate among them.To add breadth to my research,

I have expanded learning of utility function with a new technique for collaborative filtering

to learn the preference of the user from history rating data,and then estimate similarity

among users based on a confidence measure. The technique is light yet efficient, and is

based on a threshold for the number of co-rated items. It enforces a positive correlation

threshold between any two users. Our Confidence-based collaborative filtering technique

is able to identify recommendations that are optimal or near-optimal in terms of the learned

utility. In addition, preference learning has been leveraged with the existence of historical

multi criteria rating data submitted by the same user on similar products or services. In-

stead of initially starting with the standard utility axes in the utility axes elicitation step,

preference learning is added resulting in an adaptive utility learning. We used a regression

analysis technique to predict the user preference when there is a consistent family of crite-

ria m1, · · · , mn, each criterion is represented by a rating given by the user as a real value

mi in the range of[mi∗, m
∗
i ] wheremi∗ andm∗

i are the worst and the best level of thei-th

criterion respectively.

The learning process and utility function refinement continues as feedback is extracted

from the user. Methods proposed are based on a low-dimensional utility space (as opposed
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to the high-dimensional recommendation space). Because weare working in composite

products and services space, the number of attributes is very large due to multitude of

composite services, consequently, the “feature/diversity space” is too high-dimensional to

learn the recommendation utility accurately and needs exponentially large learning set and

time for accurate learning. The method is based on iteratively refining a set of axes in the

n-dimensional utility space, starting from the utility space standard axes. At every step,

the user is asked to rank a set of recommendations, each beingoptimal for one of the

current axes. Based on the user feedback, the method refines the set of axes that become

closer to each other. Consequently, the utility function isconstructed. Works of Nielsen

et al, Suryadi et al, Russell et al, and Chajewska et al [79,105,108,110] elicit the utility

function from a database of observed behavioral patterns, while Chajewska, [111] focuses

on eliciting the utility function from a database of alreadyelicited utility functions. All

of these approaches are targeted to produce a utility function from a database. While few

recommender systems provide for estimating and refining thepreferences of the user [68],

works such as Pazzani [81] have exemplified the need for such techniques. However, none

of these works, to the best of my knowledge, work on recommendations for composite

product and services, which makes the recommendation spacevery large.

We have defined methods for diversifying a recommendation set using the separation of

utility space from recommendation space. Working with campsite space has the challenge

of selecting from larger space, but also gives an opportunity to diversify using higher-

dimension diversity space. Giving recommendations by the utility learned may not provide

sufficient diversity resulting in a recommendation set where members are often similar to
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each other.

In addition, I have developed a research prototype for the different components of DG-

RCA to model highly-complex service compositions for the movies domain and the travel

domain, which includes accommodations, rental vehicles, and air transportation. Some

prototype travel domain systems exist (e.g., ATA , ITR [91],SPIRE [51]); however, all

of these prototypes recommend atomic travel services, except for ITR, which works with

composite products, but the composition is performed manually by the user. The travel

tool proposed will provide alternative solutions of travelpackages for users and decision

makers based on the different models and methods defined.

Furthermore, I conducted extensive experimental studies to prove the efficacy of DG-

RCA approach by developing specific performance measurements of algorithms proposed,

and compared with state-of-the art available algorithms (e.g., [17,73,101]). Most if not all

experimental studies conducted shows that the proposed framework significantly outper-

forms in many aspects of quality and scalability. Our validation datasets included publicly

available data sets with user ratings such as movielens.org, as well as data extracted from

popular commercial systems. I have also completed a case study that required interviewing

30.

Finally, the framework presented a hybrid recommender system that is a cascaded col-

laborative recommender and knowledge-based hybrid. Working with composite products

and services mandates that algorithms and techniques used to be efficient and can scale well

due to the large size of candidate recommendation space. According to a popular hybrid
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Figure 8.1: Possible and actual hybrid recommender systems

recommender survey [22], and to the best of my knowledge, DG-RCA is the first rec-

ommender system that utilizes hybridization techniques based on cascaded collaborative

filtering and knowledge-based. As presented in Figure 8.1, DG-RCA is the only recom-

mender system that learns the utility of the user with a collaborative filtering technique

then cascade the result set to be refined with a knowledge-based technique that is based

on using the diversity space to employ our diversification technique and finally present the

user with a diverse set of composite products and services.
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8.2 Future Research Directions

Many questions remain for future research. DG-RCA has several components and each

component could be looked at from different aspect. In this section, I point out some focus

areas to explore further. They mainly include issues related to:

Expand diversity step to enhance learning of utility function: In current research,

the preference learning ended when the utility elicitationstep ended. Specifically, once we

proceed to the diversity step, the utility function elicitation does not incorporate users feed-

back to improve the learned utility function. Consequently, not use what has been learned

from the diversity step with regard to feedback extracted. One of the future research areas

is how to incorporate users feedback from diversity step to reconstruct the utility func-

tion. The goal is to make the utility function elicitation a continues process, where learning

and refining the axes is not limited to the utility axes selection step but also expanded to

leverage the users feedback from the recommendation diversity phase.

Examine utility dimensions represent what matters: In my research, it is assumed

that utility and diversity dimensions represent the true dimensional preference of the user

based on domain expertise knowledge. However, this assumption may not hold accurate

all the time, one way to resolve this issue is to examine and refine utility dimensions them-

selves and not only their weights. Below is a flow chart in Figure 8.2 that represents the

major steps and decision points for providing the user with adiverse set of recommen-

dation(s) based on learning from feedback extracted. The focus of the flowchart is more

toward dimensions and whether they represent what all what the user base their judgment

139



on or not, and if those dimensions are measurable or not.

Figure 8.2: Flowchart for initial learning of dimensions

Group decision making: This is a popular research area [44,70,114], where the input

of several participants is combined to produce or recommendone product or service that

captures the preference of most and hopefully all participants. Juan et. al [57] introduced a

novel method of making recommendations to groups based on existing techniques of col-

laborative filtering and taking into account the group personality composition. The scope

of my research was mainly focused on single user interaction, and there is a value in ex-

panding it to address and incorporate inputs from more than one user. Conflict among users
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is one of the issues to consider when dealing with group decision making. One proposed

way is to extract a representative sample of the dataset and then apply a regression anal-

ysis technique to determine the solution with least contradictions among users’ rating or

ranking. This solution can be later mapped to a utility function that can be applied against

the complete of solutions and measure its’ success. This process can be iterative until we

identify the best utility function with respect to precision.

Interaction with DGQL: A key modeling technology for DG-RCA is Decision Guid-

ance Query Language (DGQL). Significant effort and time would be required to modify,

extend, and build a new recommender system with composite alternatives from scratch.

Therefore, It is desirable to extend the DGQL with views for recommending composite

alternatives in terms of syntax and formal semantics, and develop efficient algorithms to

evaluate DGQL queries. Traditional Database Management Systems have shown efficient

handling of data with solid integrity, but lack the ranking capability needed for answering

Information Retrieval (IR) queries. IR provides mechanisms for effective fuzzy ranking.

Rank-aware query processing has emerged to support top-k queries in DB (e.g., [20,21,48]).

Efficient rank aggregation and combining scoring functionshave been proposed in [36]. In

addition, [48] has suggested an approach for top-k results based on joining multiple inputs.

However, these inputs are atomic products and services. Ourfocus is producing top-k re-

sults of composite products that are composed of another composite or atomic products or

services.

Clustering technique to determine the appropriate domain: One of the areas to

consider and explore more is the clustering step. Currently, We start with the clustering
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step to determine what cluster the user is interested in. Ourrecommendation space is split

into a number of clusters, where each cluster contains a number of packages (recommenda-

tions). Examples of clusters are: honeymooners, single, family, etc. Basically, clusters are

extracted from historical purchase data cross-referencedwith user demographic data. How-

ever, this is beyond the scope of our research at this point. Currently, we just assume that

these clusters exist and packages can therefore be targetedto specific user groups. We then

return a package to represent the corresponding cluster. Each recommendation returned is

the highest total utility function in its cluster. Initially, we will give equal weight to met-

ric attributes as it is too early to conclude what the user might value more with respect to

metrics attributes (e.g. Saving, Enjoyment). However, domain knowledge could also be

used to determine how to assign weights and selections of metrics attributes, consequently

calculating the global utility function. The clustering mechanism could be one of the fol-

lowing: 1) As simple as distinct selections from recommendation space on package type.

2) Another way is to construct a linear function by combiningfeatures from the underlying

atomic services such as rental car, airline flight type, or number of stars of the hotel. 3)

Using supervised learning and classification techniques such as Support vector machines

(SVM) [117].
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Appendix A: Research Publications

This research has resulted in the following publications:

• Alodhaibi, Khalid. Brodsky, Alexander. Mihaila, George A.: COD: Iterative Utility

Elicitation for Diversified Composite Recommendations. HICSS, 2010 43rd Hawaii

International Conference on System Sciences, 2010: p.1-10.

• Alodhaibi, Khalid. Brodsky, Alexander. Mihaila, George A.: A Randomized Algo-

rithm for Maximizing the Diversity of Recommendations. HICSS, 2011 44th Hawaii

International Conference on System Sciences, 2011.

• Alodhaibi, Khalid. Brodsky, Alexander. Mihaila, George A.: An Adaptive Utility

Learning Method for Composite Recommendations. ICMIA November 30 - Decem-

ber 2, 2010, Seoul, Korea.

• Alodhaibi, Khalid. Brodsky, Alexander. Mihaila, George A.: A Confidence-Based

Recommender with Adaptive Diversity. IEEE SYMPOSIUM SERIES ON COMPU-

TATIONAL INTELLIGENCE, APRIL 11-15, 2011, PARIS, FRANCE: P.36-43.
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