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Abstract

TWO-STAGE ROBUST OPTIMIZATION WITH APPLICATIONS IN HEALTH
CARE AND COMBINATORIAL OPTIMIZATION

Saba Neyshabouri, PhD

George Mason University, 2016

Dissertation Director: Dr. Karla Hoffman, Dr. Bjorn Berg

The development of new robust optimization models is motivated by the need

for risk-based decision making in health care operations. Surgery scheduling has

attracted a great deal of attention due to its importance in health care outcomes and

costs. We apply robust optimization theory to the surgery scheduling problem and

downstream capacity planning problem to address important questions regarding the

impact of uncertainty in surgery duration and length-of-stay (LOS) in the surgical

intensive care units on hospital resource planning and scheduling operations.

In this dissertation we focus our research on decision making under uncertainty

using the framework of two-stage robust optimization. We develop exact solution

methods for optimization problems that include binary variables. We contribute to

the theory of robust optimization by addressing special cases when the uncertainty is

discrete in nature and depends how decisions made in one period will impact outcomes

in future periods.

We propose a novel two-stage robust optimization formulation that models the



discrete nature of the patient’s LOS using a column-and-constraint generation ap-

proach that is new to the literature. The proposed algorithm successfully handles

both the discrete nature of the uncertainty and multi-stage impact. We apply the

approach to surgery scheduling where the availability of downstream critical care fa-

cilities can seriously impact patient outcomes. Our computational tests show that

this methodology can solve, or provide high quality solutions, to realistic problem

instances in reasonable time (one hour). The solution structure provides decision

makers with insights on the underlying trade-offs between operational performance

of the system, such as patient throughput and risk metrics for patients.

Motivated by applications in health care and surgery scheduling, we study a more

general problem in greater detail, the robust generalized assignment problem (GAP).

The robust GAP is of great importance and appears in many other application do-

mains such as modeling the supply chain and scheduling the manufacturing of multiple

items. Often, these decisions are made without concern for the impacts of incorrect

specification and variability of the data.

We develop a two-stage robust formulation for the generalized assignment problem

where the resource requirements for job-resource pairs are uncertain. We study the

structure of this problem and improve the existing solution methods by strengthening

the constraints that are passed to the master problem.

While models similar to the robust GAP have received previous attention in the

literature, we provide a counter-example for a compact formulation that has been

proposed to obtain exact optimal solutions. We improve upon that work by proposing

valid inequalities and improve the quality of the solutions obtained by that method.

Our computational study of the robust GAP shows our proposed method can

handle instances of medium size problems in reasonable amounts of time (less than an

hour). Using simulation we provide better understanding of the impact of uncertainty



and robustness in resource allocation and its implications on load allocations. Solu-

tions tend to distribute risky jobs among resources to reduce the chance of going over

capacity, which in turn implies fairness in the allocation of loads.



Chapter 1: Introduction

The development of the field of robust optimization models is motivated by the need

for risk-based decision making when the impact of the incorrect specification of data

can significantly impact the overall success of the endeavor. Health care operations

is one area where worst-case scenarios must be considered because the impact of an

incorrect decision can be life-threatening. We apply robust optimization theory to the

surgery scheduling problem and consider the downstream capacity of the intensive

care facilities in order to assure that patients needing these critical care facilities

receive them for the period of time required for a proper recovery. Thus, the problem

addressed is the important one of how to model the trade-offs between maximizing

the use of expensive surgical facilities and the availability of downstream intensive

care facilities when there is uncertainty in both surgery duration and in the resultant

length-of-stay (LOS) in the surgical intensive care units (SICU). To our knowledge,

this is the first attempt at considering these downstream when optimizing surgical

schedules using robust optimization.

To solve this problem, our research focuses on decision-making under uncertainty

using the framework of two-stage robust optimization. We develop exact solution

methods for optimization problems that include binary variables. We also contribute

to the theory of robust optimization by addressing special cases when uncertainty is

discrete in nature and when decisions impact the definition of uncertainty.

We propose a novel two-stage robust optimization formulation that models the dis-

crete nature of the LOS for patients staying in the SICU using an adapted column-and-

constraint generation approach that is new to the literature. The proposed algorithm
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successfully handles both the discrete nature of the uncertainty and its dependence

on decisions. Our computational tests show that this methodology can solve realis-

tic problem instances of surgical scheduling problems in reasonable amounts of time

(an hour). The solution structure provides decision makers with insights on the un-

derlying trade-offs between operational performance of the system, such as patient

throughput, and risk metrics for patients.

Motivated by applications in health care and surgery scheduling, we study a more

general problem in greater detail, the robust generalized assignment problem (GAP)

which has multiple applications.

We first provide an overview of the surgical scheduling problem, we then intro-

duce our robust optimization approach to solving that problem and finally take the

results of this modeling effort and show they can be applied to the generalized assign-

ment problem, a problem often encouraged in manufacturing scheduling, inventory

optimization, and supply chain management

1.1 Surgery Scheduling

Decision-making in health care has become a very important problem and is being

studied extensively. The U.S. health care system is dealing with the major issues

of associated skyrocketing costs and patient concerns about outcomes. As in every

developed country, health care costs are rising faster than the GDP and there are

quality problems such as medical errors, and prevalent overuse and underuse of re-

sources [Green, 2012]. For example, the cost of healthcare in the U.S. in 2011 was

over 17.6% of the national gross domestic product; equal to over 2.9 trillion dollars

[Martin et al., 2011]. This highlights the importance of improving the efficiency of

the health care system and how even minor systematic improvements can translate

2



into great savings.

Hospital operations, and surgery departments in particular, are important ele-

ments in the health care system and offer life-saving services. Surgical suites’ op-

erations consume around 10% of hospital’s budget. In addition, deferrable surgery

procedures may account for up to 52% of all hospital admissions [Gupta, 2007]. In

terms of costs, surgeries account for more than 40% of a hospital’s total revenues and

expenses [Erdogan et al., 2011]. In fact, the operating cost of a surgery department

is approximately one-third of the total operating costs of the hospital [Macario et al.,

1995]. Other sources mention that surgeries account for approximately two-thirds

of the hospital revenues [Jackson, 2002]. This highlights the importance of effective

management of surgical suits in hospitals.

An important aspect of high quality health care delivery in a surgery department

is the assignment of appropriate post-operative care which is usually provided by

specialized units such as Post-Anesthesia Care Unit (PACU), Intensive Care Unit

(ICU), or Surgical Intensive Care Unit (SICU). To show the importance of these

downstream resources, [Jonnalagadda et al., 2005] show that 15% of the total surgery

cancellation is due to the lack of an available recovery bed in the hospital they studied.

Similarly, [Sobolev et al., 2005] show that the Length-Of-Stay (LOS) in the ICU and

the bed availability in the ICU affect the surgery schedule. This is mainly due to

the existence of uncertainty in patients’ LOS in such units and limited capacity of

aforementioned units.

While a large portion of the literature in surgery scheduling focuses on strategic

and tactical planning of surgeries, operational decisions that are made over a short

period of time have not received the same attention. Studying and proposing meth-

ods to include inherent sources of uncertainty, that may not conform to well-known

probability distributions due to the short term decision period, poses great challenges

3



in planning.

This dissertation applies Robust Optimization (RO) to this context. RO proves

to be a flexible method in modeling such uncertainties and allows us to propose plans

that address costs and risks simultaneously. This allows decision makers to study

the trade-offs between cost and risk and choose plans that conform to their cost-risk

preferences.

1.2 Decision-Making Under Uncertainty

Stochastic programming (SP) theory, extends the deterministic optimization tech-

niques to be applied when some or all of the parameters in an optimization model

are random and belong to specific distributions. [Birge and Louveaux, 2011] pro-

vide a through introduction to the theory and various modeling techniques used in

stochastic programming.

Robust optimization (RO) is another methodology designed to address the exis-

tence of uncertainty in all or a subset of parameters of an optimization model. The

most basic form of a RO model does not assume any distributional information and

only assumes that uncertain parameters belong to a known (deterministic) set known

as the uncertainty set, which makes it inherently different than the SP theory. RO

aims to find the best set of decisions with respect to the worst-case realization of

the uncertainty. For more in depth treatment on RO theory readers are referred to

[Ben-Tal et al., 2009] and references therein.

Recently, the idea of distributionally robust optimization (DRO) is proposed to

bridge the gap between the SP and RO theories. DRO assumes that the uncertain

parameters in the optimization problem come from a distribution that is unknown to

us. Therefore it assumes a set of possible distributions which is called an ambiguity

4



set and optimizes with respect to the worst-case distribution [Bertsimas et al., 2011].

Not considering uncertainty and randomness in optimization applications can gen-

erate solutions that are highly sub-optimal and sometimes infeasible to the problem

when the data of the problem takes on values considerably different from those as-

sumed in the deterministic formulation. There are numerous application areas where

both SP and RO are used to address the issue of randomness and uncertainty.

In this dissertation, we turn our focus on two-stage robust optimization where

decisions are broken into two sets. Here-and-now decisions that have to be made

prior to the realization of uncertainty, and wait-and-see decisions which are made

after uncertainty is realized, as a corrective action.

The two-stage setting is of particular importance since it allows us to construct a

mathematical model for decision making processes. In many cased we do not know the

value of parameters with certainty and only have knowldege of the possible values for

these parameters. Two-stage SP has been extensively studied and applied to model

problems in this setting [Birge and Louveaux, 2011]. Two-stage RO (2RO) is relatively

new and has only recently been applied to far fewer applications. While RO offers

a natural framework for risk-averse decision making, its use of uncertainty sets to

model the uncertain parameters can offer more flexible ways to integrate uncertainty

into the decision making process that is suitable for data-driven approaches.

Traditionally, uncertainty sets are modeled as convex sets which has allowed for

use of efficient methods and approximations for solving RO and 2RO problems. In

reality, uncertainty may not present itself in such form. We present an application

where uncertain parameters are discrete and cannot be modeled as convex set.

In addition, due to the complexity of two-stage RO, the literature is heavily fo-

cused on finding high quality approximations for these problems [Bertsimas et al.,
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2011]. While this is an important stream of research, we believe increased computa-

tional power can allow us to employ exact solution methods to solve problem instances

of real size. Thus it is important to study and improve exact solutions methods for

such problems.

[Wallace and Ziemba, 2005] list applications such as fleet management, production

planning and scheduling, supply chain optimization, network resource utilization,

and unit commitment problem to be a few of the numerous applications where SP

methodology is employed to address the stochastic nature of the problem.

[Gabrel et al., 2014b] present many of the recent applications of RO in decision

making problems. To name a few areas where RO is being used extensively applied,

the authors count inventory and logistics optimization, facility location, finance, and

revenue management. However, few of these applications consider downstream im-

pacts. In this dissertation we focus on applications in health care, specifically in

surgery scheduling and consider the downstream impact on ICU availability

1.3 The Generalized Assignment Problem

Finally, we study the characteristics of the generalized assignment problem. GAP

tends to show itself in many important applications such as capacitated facility loca-

tion and supply chain. In addition, it has been used in the surgery scheduling context

for assigning surgeries to operating rooms with limited length for each shift. In many

applications, such as in surgery scheduling, the resource requirement for a given job

(surgery) is not exactly known. Uncertainty in resource requirements can change the

way decisions are made by introducing the risk of not having enough capacity on a

resource and requiring to purchase more capacity. The structure of the problem is

similar to that presented earlier with a few minor changes.
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Looking at the capacity of each of surgical facilities and their structures but not

considering the downstream units, provides a general framework that applies to a

much broader application domain: inventory management, manufacturing scheduling,

supply chain distribution assignment, etc., all fall under this domain.

We provide new constraints that tighten the master problem formulation and show

how these constraints impact both solution quality and computational speed.

1.4 Thesis Overview

In Chapter 2, we present an introductory overview of the topics in stochastic pro-

gramming and robust optimization. Next, the literature on surgery scheduling and

downstream units are covered. Finally, a brief introduction to the literature of the

generalized assignment problem is provided.

Chapter 3 presents a detailed introduction and formulation of the integrated

surgery scheduling problem. Using the theory of robust optimization, a two-stage

robust formulation for the surgery scheduling and downstream capacity planning is

presented. In our setting we consider the uncertainty in both surgery duration and

length-of-stay (LOS) for patients. We present a novel formulation to capture the

discrete nature of the uncertainty in LOS for patients. A detailed study of the struc-

tural properties for this problem allows us to modify and adapt the solution methods

in the literature to find exact solutions for this problem. Computational simulation

tests are performed to assess the performance of the proposed algorithm as well as

the quality of the obtained solutions.

Chapter 4 considers the generalized assignment problem and presents a detailed

study of the robust generalized assignment problem (RGAP). We formulate the

7



two-stage robust generalized assignment problem with resource requirement uncer-

tainty. We propose solution methods based on cutting-plane method [Kelley, 1960]

and column-and-constraint generation method [Zeng and Zhao, 2013]. We study the

structural properties of the proposed formulation and present results to improve the

performance of each solution method. In our investigation, we find a counter example

to a formulation which is the only known compact formulation to the two-stage ro-

bust bin-packing problem [Denton et al., 2010] and show their formulation produces

upper bounds on the problem, but does not guarantee optimal solutions. We propose

valid inequalities that improve the results obtained from their formulation. Finally,

we present our computational results from our proposed solution methodology and

a simulation study to understand the implications of including uncertainty in the

model.

Chapter 5 summarizes our contributions in this dissertation and outlines future

research avenues.
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Chapter 2: Literature Review

In this chapter we introduce a brief summary of decision-making under uncertainty.

We provide an overview of the underlying theory of stochastic programming (SP)

and robust optimization (RO). Next, we provide an overview of the literature in

the applications that are going to be covered in this thesis is presented and what

stochastic issues are important to these problem areas.

2.1 Stochastic Programming

Stochastic programming deals with decision-making problems in which all or a subset

of the parameters are modeled as random variables. Therefore, there should be a

distribution associated with the randam parameters in the problem. The aim is to

optimize with respect to a measure that includes the randomness such as the expected

value, the variance, or the probability distribution. For example, in a newsvendor

problem, the goal is minimize the expected cost while the demand is random. Other

problems aims to find a set of decisions that minimizes the total costs constrained to

assure that certain constraints are met with high probability. For a detailed treatment

and references on the topics in SP that are beyond the scope of this thesis, readers

are refered to [Birge and Louveaux, 2011] and the references therein.

SP has been used in many recent applications such as inventory management

[Küçükyavuz, 2011], supply chain management [Santoso et al., 2005], and disaster

management [Rawls and Turnquist, 2010]. More applications are cited in [Wallace

and Ziemba, 2005] and references therein.
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2.1.1 Two-Stage Stochastic Programming

Decision-making problems can be broken down into two broad categories of static

problems and dynamic problems. In static models, there is one set of decisions that

has to be made prior to the realization of the random variables and the goal is to

optimize a probabilistic measure such as expected value. These decisions are called

here-and-now decisions which corresponds to the fact that they should be made before

the uncertainty unravels. In static problems, there are no other decisions to be made.

To explain the case of dynamic decision-making problems, we focus on two-stage

stochastic programming (2SSP) where the decisions are divided into two categories:

(1) here-and-now or first-stage decisions which have to be made prior to the realization

of the random parameters in the problem, (2) wait-and-see or recourse decisions

which are the decisions that are made after the realization of the random parameters.

Consider the case of newsvendor problem. The decision-maker has to make the first-

stage decisions of how many papers to order before knowing the exact realization of the

random parameter, demand. After first-stage decisions are made, random parameters

materialize and the demand is known. In the second-stage the decision-maker (in our

case the newsvendor) can take recourse actions such as selling the remaining papers

at a lower price or incurring a penalty for unsatisfied demand.

In 2SSP, the goal is to minimize (maximize) the first-stage costs (profit) plus the

expected value of recourse costs (profit). The 2SSP problem can be formulated as

follows:
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min c′x+ Eξ[min q(ω)′y(ω)] (2.1a)

s.t.

Ax = b (2.1b)

Wy(ω) + T (ω)x = h(ω) (2.1c)

x ≥ 0, y(ω) ≥ 0 (2.1d)

where first stage-decisions are shown by vector x and second-stage decisions are based

on the random parameters and shown by the vector y(ω). ξ is a random vector

defined on the probability space, (Ω,Ξ, P ), and A and W are known matrices of

conforming sizes. W is called the recourse matrix. For each ω, T (ω), q(ω), and

h(ω) create the stochastic components of the problem, we obtain the vector ξ(ω) =

(q(ω), h(ω), T1(ω), .., Tm(ω)), where Ti(ω) is the i-th row of T (ω). Eξ represents the

mathematical expectation with respect to ξ.

The objective (2.1a) is to minimize the first-stage costs as well as the expected cost

of the second-stage. The first set of constraints (2.1b) represent the restrictions on the

first-stage decision variables which are not dependent on the random variables. The

second set of constraints (2.1c), captures the relation ship between the second-stage

decisions y and the first-stage decisions x. It also shows that some of the parameters

in the constraints for the second-stage are also dependent on the random variables.

In most cases of 2SSP, random parameters are represented by a finite number of

possibilities, labeled as scenarios. Each scenario represents one realization of all the

parameters that are random. In this way, the random variables are represented by
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a discrete joint distribution and there is a probability associated with each scenario

realization which makes the calculation of the expected value possible.

2.1.2 Solution Methods

Deterministic-Equivalent Formulation

There are multiple ways to solve a 2SSP problem. The most trivial way is to solve the

deterministic-equivalent problem as a large-scale optimization problem. Assume set

Ω is the set of all scenarios for the random parameters. The deterministic-equivalent

formulation can be written as follows:

min c′x+
∑
s∈Ω

psq
′
sys (2.2a)

s.t.

Ax = b (2.2b)

Wys + Tsx = hs s ∈ Ω (2.2c)

x ≥ 0, ys ≥ 0 s ∈ Ω (2.2d)

The objective (2.2a) minimizes the sum of first-stage costs as well as the expected

cost of the second-stage. Note that ps is the probability associated to scenario s ∈ Ω.

In addition for each scenario s ∈ Ω a set of recourse variables ys is defined to measure

the recourse decisions for each scenario. The constraints in the second-stage (2.2c) are

also written for each scenario. This means that the restrictions in the second-stage

have to be satisfied for every scenario s. As can be seen, this formulation makes a
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copy of second-stage decisions for each scenario and adds |Ω| copies of the second-

stage constraints to the formulation. In case that the number of scenarios are large,

the formulation can grow very fast.

2.1.3 Decomposition-based Methods

There are multiple decomposition-based methods to address 2SSP problems that take

advantage of the special structure of this class of problems. Direct decomposition

methods such as cutting-plane methods aim to construct a sequence of approxima-

tions for the objective of the 2SSP by outer linearizing the recourse problem. Dual

decomposition methods are another approach to solve multi-stage stochastic pro-

gramming problems. Readers are referred to [Ruszczyński, 1997] for more detailed

discussion of these solution methods.

Here we present the L-shaped method as an example of a solution algorithm

for 2SSP. Thanks to the special structure of the 2SSP which has a block-diagonal

coefficient matrix, decomposition-based methods can be employed to solve the 2SSP

to optimality. Consider the following formulation:

min c′x+Q(x) (2.3a)

s.t.

Ax = b (2.3b)

x ≥ 0 (2.3c)

Where Q(x) = E[Q(x, ξs)] in which Q(x, ξs) can be written as the following opti-

mization problem:
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min q′sys (2.4a)

s.t.

Wys + Tsx = hs (2.4b)

ys ≥ 0 (2.4c)

Considering the structure of the 2SSP, [Van Slyke and Wets, 1969] proposed the

L-shaped method which is based on Bender’s decomposition introduced in [Benders,

1962].

Here we present the case with complete recourse, which means that the second-

stage problem always has a feasible solution. The general steps of the L-shaped

method can be summarized as follows:

• Step 1- Solve the master problem which corresponds to the first-stage formu-

lation and obtain the optimal first-stage decisions x and lower bound on the

optimal solution.

• Step 2- For each scenario s ∈ Ω solve the second-stage problem Q(x, ξs) and

obtain the optimal ys and update the upper bound on the optimal solution.

• Step 3- Check for the optimality criteria:

– Step 3.1- If optimal, return x, ys ∀s as the optimal solution.

– Step 3.2- If not optimal, add an optimality cut to the master and go to

Step 1.

Note that the L-shaped algorithm adds one constraint to the master problem at
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each iteration of the algorithm. In the case that the second-stage problem is easy to

solve, one can improve the performance by solving smaller and easier problems rather

than one large-scale optimization.

2.1.4 Multicut L-Shaped Method

[Birge and Louveaux, 1988] introduced the multicut version of the L-shaped method

which adds as many as |Ω| constraints to the master problem at each iteration. The

authors prove that the multicut version has superior performance compared to the

single cut version of the algorithm. The only downside to this method is that the

number of constraints in the master problem grows faster than the single cut version.

There are many other methods to solve the 2SSP problem and its variants. Inter-

ested readers are referred to [Birge, 1997], [Birge and Louveaux, 2011], and [Shapiro

et al., 2014] and references therein.

2.2 Robust Optimization

Robust optimization is a relatively new approach for decision making under uncer-

tainty which was introduced by [El Ghaoui et al., 1998], [Ben-Tal and Nemirovski,

1998], and [Bertsimas and Sim, 2004]. Unlike the stochastic programming theory

which assumes distributional information about uncertain parameters and aims to

optimize an expectation measure [Birge and Louveaux, 2011], RO does not need

distributional information and produces optimal solutions that are feasible for a de-

fined set of values that uncertain parameters can take. In other words, RO seeks

to optimize against the worst-case realization of uncertainty. It can also produce a

probabilistic guarantee for the feasibility of the solutions. The conservatism of the

solution can be controlled by the means of a defined budget of uncertainty. In cases
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where obtaining probabilistic information is not possible or infeasibility cannot be

tolerated, RO offers a flexible framework for producing good solutions. [Bertsimas

et al., 2011] and [Gabrel et al., 2014b] provide surveys of the existing literature on the

theory and applications of the robust optimization. [Ben-Tal et al., 2009] provides a

comprehensive treatment for the general topics in RO.

RO has been successfully applied to various applications where traditional stochas-

tic methods are not applicable. For example, the use of distributional information for

short-term planning of surgeries may not provide appropriate solutions, while better

results can be obtained by considering a data-driven approach that requires specific

information for each patient. To better understand why distributional information

can be misleading in short term planning, consider the case when all patients on a

surgery list who need a specific type of surgery (for example heart surgery). In re-

ality, there can be cases that for a week, the number of patients with complicated

surgeries that require higher than average length-of-stays. While sampling from the

distribution may not reflect on the cases that needs to be scheduled for that week.

Using stochastic programming methods or sampling methods will not consider the

fact that the week under study has this characteristic. RO on the other hand, can

include case-specific information and facilitate such short-term planning complexities.

Additionally, RO methodology provides means to obtain solutions that are protected

against worst case realization of uncertainty. This characteristic is especially of great

interest in the health care settings such as surgery planning, since the outcome of

not considering these sources of uncertainty can have serious impacts on the health

outcome of patients. Using RO enables the decision makers to provide efficient use of

surgical facilities while ensuring against disastrous outcomes. Thus, this methodology

is most useful where unlikely results can have extreme consequences.
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2.2.1 Static Models

The origins of RO can be traced back to [Soyster, 1973] which considered column-wise

uncertainty in the coefficients of the decision variables in the constraints. In his work,

the aim was to optimize the decisions such that they are feasible for all realizations

of uncertainty. In this article, each parameter could take on values belonging to a

specific range which translates into box uncertainty.

Little work is done on this topic until the late 90’s where [Ben-Tal and Nemirovski,

1998] introduces RO for general convex optimization problems. In this work they

assumed that the uncertainty was enclosed within an ellipsoid. In [Ben-Tal and

Nemirovski, 1999], RO for linear programming (LP) problems is introduced while the

uncertainty is modeled to belong to an ellipsoidal set. [Ben-Tal and Nemirovski, 2000]

study the impact of uncertainty in parameters in linear programming (LP) problems.

Here is a generalized formulation for a static RO problem presented in [Ben-Tal et al.,

2009]:

min
x
{ sup

(c,A,b)∈U
c′x : Ax ≤ b ∀(c, A, b) ∈ U}, (2.5)

which can be reformulated as

min
x,t
{t : c′x ≤ t, Ax ≤ b ∀(c, A, b) ∈ U}. (2.6)

The formulation 2.6 is called the Robust Counterpart (RC) of the original problem.

It is important to note that in this setting all decisions are here-and-now decisions

and the goal is to find decisions that are feasible for all realizations of uncertainty.

The robust counterpart of an LP with an ellipsoidal uncertainty can be reformulated

and solved as a conic quadratic program, which has higher computational cost than

solving an LP.
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Later, [Bertsimas and Sim, 2004] introduced a modeling approach that is relying

on the observation that, naturally not all the uncertain parameters simultaneously

take on their worst-case values. The authors suggest defining the uncertainty to be

row-wise, meaning that all the uncertain parameters belonging to a constraint are

independent of the other constraints. In addition, the number of parameters that can

deviate to their worst-case realization is constrained to be less than a predetermined

budget of uncertainty. The budget of uncertainty can be used to control the level

of conservatism in the RO. In addition, since the uncertainty set is in the form of a

polytope, the RC of the LP remains an LP with additional variables and constraints.

In [Bertsimas and Sim, 2003] the authors apply the idea of RO with their proposed

definition of an uncertainty set to a class of Integer Programs (IP) and network flow

problems. They show that the robust counterpart of an IP remains an IP.

The resulting RC formulations can be solved using standard commercial solvers

that are capable of handing structured convex optimization problems and integer

programming problems.

2.2.2 Adaptive Models

Unlike static models, adaptive or adjustable models divide the decision-making process

into multiple stages. The term “adjustable” is used to point out that decision-makers

have the opportunity to adjust their decisions after the realization of uncertain param-

eters which is similar to recourse decisions. Similar to two-stage stochastic programs

([Birge and Louveaux, 2011]), two-stage (adaptive) robust optimization addresses the

cases when the decisions can be split into two different sets. First, here-and-now de-

cisions that have to be made prior to the realization of the uncertainty. After the

uncertainty is realized, wait-and-see decisions are made. These are the recourse de-

cisions that are made to correct for the impact of the uncertainty. In contrast to the
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stochastic programming formulation where the realization of uncertainty is a result

of a stochastic process (e.g., sample from a distribution, simulation), the realization

of uncertainty in the RO methodology is a product of an optimization model.

[Ben-Tal et al., 2004] was the first to introduce the idea for adjustable robust solu-

tions for LP. The authors show that adjustable robust counterparts (ARCs) generally

provide solutions that are less conservative than the static model. On the other hand,

while solving the static formulation is tractable, ARC is generally NP-hard.

[Atamtürk and Zhang, 2007] propose a two-stage robust optimization approach

for a network design problem where the demand is uncertain. Theoretical complex-

ity results and special cases are presented. The methodology is applied to various

problems such as lot-sizing, and location-transportation.

[Thiele et al., 2009] present methods for robust LP with recourse when the un-

certainty is in the right-hand-side of the recourse constraints. The authors propose

a cutting-plane algorithm based on [Kelley, 1960] which operates similar to Bender’s

decomposition [Benders, 1962] and the L-shaped method [Van Slyke and Wets, 1969].

Here we present a general formulation for the two-stage robust optimization (2SRO):

min
{x:Ax≥b,x⊆Rn

+}
cTx+ max

u∈U
min

y∈S(x,u)
dTy (2.7)

in which S(x, u) = {y : Wy ≥ h − Ex −Mu, y ⊆ Rm+}. W,E and M are matrices

of appropriate sizes. Vectors are denoted using lowercase letters and assumed to be

of conforming dimensions. The first-stage decisions are captured by vector x and

recourse decisions are shown using vector y. Note that the uncertainty is captured

using the vector u that belongs to the uncertainty set U . The set of feasible solutions

for the second-stage depends on both first-stage decisions x and the realization of

the uncertain parameter u and is defined by S(x, u). The difference between 2SRO

19



and 2SSP is apparent in this formulation. In 2SSP we aim to minimize the expected

cost for the second-stage. In 2SRO the expectation operator is switched with a

maximization operator. Note that the expectation operator is a linear operator while

the maximization is another optimization problem.

2.2.3 Solution Methods

Affinely Adjustable Robust Counterpart (AARC)

The idea for AARC was first proposed in [Ben-Tal et al., 2004]. After realizing that

the ARC problems are, in general, NP-hard, the authors considered alternative ap-

proaches to make the problem tractable. They proposed a more restricted model for

ARC formulations. In affinely adjustable robust formulations, it is assumed that the

recourse (adjustable) decisions are restricted to be a function of uncertain parame-

ters. More specifically, adjustable variables are restricted to be affine functions of

the uncertain parameters. With this restriction, the authors show that the AARC

formulation is indeed a large-scale LP and tractable. They apply this framework to

an inventory problem and show that AARC outperforms the static formulation in

terms of costs.

Finite Adaptability

The idea of finite adaptability was first proposed by [Bertsimas and Caramanis, 2010].

The general idea is to restrict the number of possible recourse decisions to be finite.

In reality, each realization of uncertainty can have its own set of recourse decisions

and for the case of convex uncertainty sets, this can translate into an infinite number

of recourse decisions. Finite adaptability restricts the number of possible recourse
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decisions, or adjustments, that can be made after the realization of uncertain param-

eters. The authors show that when recourse costs are known, finite adaptable models

have better performances than the static models. In addition they can approximate

the fully adaptable problem. In the fully adaptable problem, the decision-maker has

a set of recourse decisions for each realization of uncertainty.

[Hanasusanto et al., 2015] extend the idea of finite adaptability to two-stage robust

binary problems where the decision-maker pre-commits to K second-stage policies. In

this case, the recourse decisions are binary variables.

Constraint Generation or Cutting Plane Methods

As mentioned before [Thiele et al., 2009] proposed the general two-stage robust LP

with recourse and uncertainty in the right-hand-side. In order to be able to solve the

tri-level optimization of min−max−min form, the authors rely on strong duality

and reformulate the inner minimization problem into a maximization using its dual

which creates one maximization in the second-stage with bilinear terms. In some

cases, thanks to the structure of the uncertainty sets that are defined, one can refor-

mulate the second-stage as a mixed-integer linear program. The second-stage problem

serves as the adversarial problem since it aims to find the worst-case realization of

uncertainty to incur the highest cost.

[Gabrel et al., 2014a] propose a similar approach for the two-stage robust location

transportation problem when the demand is uncertain.

The overview of the proposed constraint generation algorithm is as follows:

• Step 1- Solve the master problem which corresponds to the first-stage formu-

lation and obtain the optimal first-stage decisions x and lowerbound LB.

• Step 2- For the given first-stage decision x solve the adversarial second-stage
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problemQ(x,U) and obtain the optimal recourse decision y as well as worst-case

scenario for the uncertain parameter u and update the upperbound UB.

• Step 3- Check for the optimality criteria (UB − LB ≤ ε):

– Step 3.1- If optimal, return x as the optimal solution.

– Step 3.2- If not optimal, add an optimality cut to the master and go to

Step 1.

As can be seen, the constraint generation method is very similar to the L-shaped

method for the 2SSP problem, where a Bender’s cut based on duality arguments is

added to the problem.

Column-and-Constraint Generation Method (C&CG)

[Zeng and Zhao, 2013] propose a new algorithm to solve the 2SRO problem. The

algorithm is based on the idea that if one could enumerate all the possible scenarios

for the uncertain parameters, a large-scale deterministic equivalent formulation for

the 2SRO can be written. In the fully adaptable case, each scenario requires its own

set of recourse variables and second-stage constraints. Since the total enumeration

of the scenarios can lead to an infinite number of scenarios, a decomposition-based

approach is employed to identify the scenarios and add the relating variables and

constraints in the form represented by the deterministic equivalent problem. They

show that the worst-case performance of their algorithm is better than the constraint

generation methods proposed by [Thiele et al., 2009] and [Gabrel et al., 2014a] and

they provide computational results for location transportation problems.

Since we have employed a solution methodology that stems from the C&CG, we

briefly explain how this algorithm works. [Zeng and Zhao, 2013] mention that the
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2SRO problem 2.7 can be written as the following large scale deterministic-equivalent

problem:

min
x

cTx+ θ (2.8a)

s.t.

Ax ≥ b (2.8b)

θ ≥ dTyk k = 1, .., r (2.8c)

Ex+Wyk ≥ h−Muk k = 1, .., r (2.8d)

x ⊆ Rn+, yk ⊆ Rn+ k = 1, .., r (2.8e)

The recourse problem Q(x) = {maxu∈U min dTy : Wy ≥ h − Ex −Mu, y ⊆ Rm+}

identifies the worst-case scenario for the uncertain parameter u for a given first-stage

decision x. Assuming that the second-stage problem has complete recourse, meaning

that for every first-stage decision the recourse is feasible, and is bounded for all feasible

first-stage decisions, the C&CG algorithm has the following structure:

• Step 1- Set LB = −∞, UB = +∞, k = 0, and O = ∅.
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• Step 2- Solve the following master problem:

min
x

cTx+ θ (2.9a)

s.t.

Ax ≥ b (2.9b)

θ ≥ dTyi ∀i ∈ O (2.9c)

Ex+Wyi ≥ h−Mui ∀i ≤ k (2.9d)

x ⊆ Rn+, yi ⊆ Rn+ ∀i ≤ k (2.9e)

Obtain the optimal solution (x∗k+1, θ
∗
k+1, y

1∗, .., yk∗) and set LB = cTx∗k+1 +θ∗k+1.

• Step 3- Solve the subproblem Q(x∗k+1) in and update UB = min{UB, cTx∗k+1 +

Q(x∗k+1)}.

• Step 4- If UB−LB ≤ ε, optimal solution is found, return x∗k+1 and terminate.

Otherwise do

– Step 4.1- Add the new variables yk+1 and the following constraints to the

master problem:

θ ≥ dTyk+1 (2.10a)

Ex+Wyk+1 ≥ h−Muk+1 (2.10b)

where uk+1 is the optimal solution (worst-case scenario) obtained solving

Q(x∗k+1). Update k ← k + 1, O ← O ∪ {k + 1} and go to Step 2.
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2.3 Surgery and Downstream Capacity Planning

Surgery planning covers a variety of decision-making problems within the health care

setting. Decision-making regarding surgery planning can be broken down and studied

at three different levels:

• Strategic Level- Decisions at this level are aimed to identify the future demand

and assign the resources such that the overall demand over a long period is

satisfied. For example, the decision of what type of specialties to be offered is

a strategic decision. This is also known as case mix planning which is usually

done by the hospital leadership.

• Tactical Level- Decisions at this level aim to identify a master plan that

assigns the surgery blocks to different specialties. These plans are generally

cyclic. Minor changes occur throughout the planning horizon, which is in the

order of a few months.

• Operational Level- Decisions at the operational level deal with day-to-day

operations. For example, assigning the time and operating room (OR) for a

specific patient is an operational decision.

In this research, we turn our focus to the operational decisions, and specifically

those decisions concerned with elective patient scheduling.

Surgical suites’ operations consume around 10% of hospital’s budget [Gupta,

2007]. In addition, deferrable surgery procedures may account for up to 52% of all

hospital admissions [Gupta, 2007]. This shows that efficient management of elective

procedures can result in potentially large improvements in the overall performance

of hospitals. Operating rooms (ORs) are one of the most expensive resources in
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hospitals and require highly skilled staff, expensive resources, and sophisticated tech-

nologies. Up to 70% of all hospital admissions involve a stay in the OR department

[van Oostrum et al., 2008]. In terms of costs, surgeries account for more than 40%

of a hospital’s total revenues and expenses [Erdogan et al., 2011]. In fact, the oper-

ating cost of a surgery department is approximately one-third of the total operating

costs of the hospital [Macario et al., 1995]. On the other hand surgeries account for

approximately two-thirds of the hospital revenues [Jackson, 2002].

The quality of care is an especially important factor in managing hospital op-

erations. The inability to deliver high quality care can incur high costs and poor

outcomes. In surgery departments, surgery cancellations result in prolonged stays,

delayed preoperative treatments and repeated preoperative tests and treatments [Gul

et al., 2012]. Cancellations have been found to incur a cost of $1700-$2000 per case

[Argo et al., 2009]. The task of efficient surgery planning is complicated by multi-

ple contributing factors such as uncertainty in surgery duration and limited available

resources such as operating rooms, surgeons, and OR staff.

An important aspect of high quality health care delivery in a surgery department

is the assignment of appropriate post-operative care which is usually provided by

specialized units such as Post-Anesthesia Care Unit (PACU), Intensive Care Unit

(ICU), or Surgical Intensive Care Unit (SICU). To show the importance of these

downstream resources, [Jonnalagadda et al., 2005] shows that 15% of the total surgery

cancellation is due to the lack of an available recovery bed in the hospital they studied.

Similarly, [Sobolev et al., 2005] show that the Length-Of-Stay (LOS) in the ICU

and bed availability in the ICU affect surgery schedules. This is mainly due to the

uncertainty in patients’ LOS in such units and limited capacity of the aforementioned

units. In the case of lack of available capacity for patients in such units, the following

policies can be employed:
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• Cancellation of an already planned surgery which leads to cancellation costs

as well as patient discomfort.

• Premature discharge or transfer of a patient from one of these care units

in order to free a bed for another patient.

Each policy affects the system differently. While surgery cancellation costs are

estimated in previous studies, it is difficult to quantify the value of patient discomfort.

On the other hand, [Utzolino et al., 2010] show that the readmission rate to the SICU

for patients with unplanned discharge from the SICU was 25.1% which is almost four

times that of those who where discharged electively (8.3%). They also show that

the mortality rate for patients who are readmitted to the SICU (13.3%) is almost six

times higher than those who are not readmitted (2.28%). These statistics illustrate the

need for careful consideration of downstream capacity when determining a surgical

schedule. It is important to mention that it is very difficult to quantify the costs

related to mentioned risks.

This research focuses on the decision process of assigning elective surgery patients

to available surgery blocks under the block scheduling policy. We assume that emer-

gency patients have a specialized unit allocated to them and we do not include the

emergency surgeries in our study.

Under the block scheduling framework, operating room schedules are divided into

multiple blocks of defined lengths and each block is assigned to a surgical team or a

specific specialty (e.g., Cardiology, ENT, Neurology, etc.). Each specialty is allowed

to schedule surgeries in their allocated block. Usually, surgery blocks are planned to

be cyclical that repeats itself on a weekly or biweekly basis.

The problem of planning operating/surgery room operations has been well studied

in the literature in different categories such as block scheduling, capacity planning,
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and surgery sequencing to name a few. Readers are encouraged to refer to [Cardoen

et al., 2010], [Gupta, 2007], [Ferrand et al., 2014], [Guerriero and Guido, 2011], [De-

meulemeester et al., 2013] for in-depth reviews of the literature related to multiple

problems addressed in the previous research efforts.

Thanks to the existing extensive and recent surveys on this topic, we turn our focus

to the articles that are recent and are closely related to our subject. [Hsu et al., 2003]

set to minimize the number of nurses in the PACU (Post Anesthesia Care Unit) by

determining the surgery sequences in a single day setting. They formulate the problem

as a deterministic no-wait, two-stage process shop scheduling problem and solve it

using a tabu search-based algorithm. Although the proposed algorithm is shown to

be effective in finding near optimal solutions, uncertainty is not addressed in their

setting. As shown by [Marcon and Dexter, 2006] through a discrete event simulation,

different surgery sequencing policies have significant impact on the congestion and

resource requirements in the PACU. [Gupta, 2007] employs a dynamic programming

formulation for the elective surgery booking problem. While downstream resources

are considered in this model, the multi-period nature of the demand for downstream

resources has not been addressed. In fact the author states that “a tractable model

of the surgery booking control problem is difficult to formulate because, following

surgery, patients may require care for several days in a downstream unit and the

lengths of stay are not known with certainty. Thus, each booked surgery consumes

an unknown and discrete chunk of the downstream unit’s resources.”

[Bam et al., 2015] provide a mixed-integer linear program (MILP) for surgery

scheduling considering PACU resources. They show that the problem is hard to solve

using general solvers. They propose a method to generate the parameters for surgery

duration and LOS in the PACU such that they are hedged against the uncertainty.

Next they propose a two-step heuristic that first assigns patients to ORs and then
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finds a sequence to satisfy the limited resources in the PACU. Simulation results

show that the proposed solutions from the heuristic are robust to uncertainty in the

parameters.

In reality, the LOS for patients in the ICU or SICU can be longer than one day

and is not deterministic. [Truong et al., 2013] uses dynamic programming to obtain

optimal policies while considering the multi-period demand for downstream units.

The decision is to identify the number of elective patients to serve. The authors show

that localized decision rules with the focus on a single unit in the hospital can result

in up to 60% higher costs. While this formulation includes uncertainty in LOS and

emergency arrivals, the model does not explicitly consider the individual capacity

requirements for each surgery block at surgery stage.

[Pham and Klinkert, 2008] and [Fei et al., 2008] consider the surgical planning

problem with deterministic durations. [Lamiri et al., 2009] propose a stochastic opti-

mization approach for surgery planning problem where arrivals for emergency patients

are random. However, the surgery duration is deterministic.

There are multiple sources of uncertainty in surgery planning and decision making

under uncertainty is a much more difficult task. For example, uncertain surgery dura-

tion, which is case-dependent, can be a cause for overtime. Emergency arrivals to the

operating rooms can lead into disruption of the planned schedule. Finally, uncertain

LOS in the SICU/ICU can cause cancellation in surgeries and early discharges due

to a lack available SICU beds.

Stochastic programming (SP) and robust optimization (RO) techniques have been

used to address the uncertainty in surgery durations. [Denton et al., 2010] provide

a two-stage stochastic program as well as a robust optimization model to obtain the

optimal assignment of surgery blocks to operating rooms. They show that the value

of the stochastic solution is highest when the overtime costs are high. They also
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show that their robust formulation provides high quality solutions quickly. [Deng

et al., 2014] propose a chance-constrained programming and a distributionally robust

model to the surgery planning problem under uncertain surgery durations. Their

formulation finds the optimal operating rooms to open, as well as the assignment

and sequencing of surgeries to the ORs. [Gul et al., 2012] propose a multi-stage

mixed-integer programming approach to assign surgeries to operating rooms over a

finite horizon. They assume surgery durations, as well as patient demand for surgery

are random and aim to minimize expected cost of cancellations, postponements, and

OR overtime costs. They propose a progressive hedging algorithm and heuristics to

obtain solutions.

[Addis et al., 2014] propose a robust optimization approach for assigning patients

to surgery blocks in a block scheduling setting. They assume uncertain duration

for surgeries and propose a static robust formulation to minimize a function that

penalizes associated waiting time, urgency, and tardiness of patients. Although this

modeling effort provides a robust formulation for the surgery planning problem, there

is no focus on the downstream resources and their effect of the schedule. In addition,

the formulation employs a static formulation that does not include any recourse deci-

sions. [Shylo et al., 2012] propose a model for the batch scheduling of surgeries with

uncertain duration to surgery blocks. The goal is to maximize the expected utilization

of operating rooms subject to a set of probabilistic capacity constraints. The authors

show that their proposed method produces significantly better schedules in terms

of performance as compared to simple heuristic scheduling rules. While addressing

the high-volume batch scheduling, the proposed methodology does not address the

downstream effects of the proposed schedule.

[Min and Yih, 2010] propose a two-stage stochastic programming approach to

model the elective surgery planning problem. They consider uncertainty in both
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surgery duration and the LOS in the SICU. They employ sample average approxima-

tion to obtain optimal solutions to this problem. While this study addresses the un-

certainty in both surgery duration and LOS, the two-stage formulation is risk-neutral,

i.e., it uses the expectation (mean) as the form of the objective in the second-stage.

The use of distributional information may not be appropriate for construction of

scenarios for short-term planning. For example the surgery duration and LOS dis-

tribution for a small group of heart patients on the waiting list for the upcoming

week, may be drastically different than the general distribution obtained from the

data collected over years.

[Fügener et al., 2014] consider the master surgery scheduling (MSS) problem and

its effects on the downstream units. They propose an analytical approach to calculate

the exact distribution for downstream resources for a given MSS. Next they define

multiple cost measures resulting from the MSS and methods to minimize these costs.

They rely on the existence of empirical data for every specialty such as admission

probability, LOS probability, etc., to characterize the probability distributions. Ob-

taining an accurate estimate for these probabilities is not always possible and requires

large number of data points.

As can be seen, the surgery planning problem with downstream resource capac-

ity considerations under uncertainty has received relatively less attention while it is

known that not having a holistic planning approach and focusing on isolated units in-

creases the chance of suboptimal or globally infeasibe solutions [Fügener et al., 2014].

In our study, we focus on elective surgery patients with uncertain surgery duration

and LOS in the SICU. However, we model these uncertainties within the framework

of a robust optimization model. The main reason for employing this approach is that

in many cases, obtaining and characterizing a probability distribution can be very dif-

ficult. In addition, the existence of distributions will not necessarily ensure tractable
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solution methods. The first difficulty is producing the number of scenarios that can

be a representative sample of the multi-dimensional uncertainty which can be pro-

hibitively large. Next, the two-stage stochastic programming approach requires the

evaluation of the second-stage for each scenario, which if coupled with large number

of scenarios can cause tractability issues.

2.4 Combinatorial Optimization

An important area in decision-making is combinatorial optimization (CO). CO is a

powerful tool for modeling many complex problems and has enabled the optimization

field to tackle very important applications. In this section we present a brief review

of literature on two important and well-known classes of CO problems that can be

used to model many applications including health care operations.

2.4.1 Generalized Assignment Problem (GAP)

The generalized assignment problem (GAP) is the problem of optimally assigning n

jobs to m constrained resources. Each job has to be assigned and the amount of

resource on each machine foe a given job is known. The goal is to either minimize

the assignment costs or to maximize the assignment profit [Wolsey and Nemhauser,

2014].

The deterministic version of this problem (DGAP) aims to assign jobs to resources

in order to optimize an objective function in the form of revenues or costs, while

ensuring that the required capacity for each resource does not exceed the available

capacity of the machine. In order to formally develop the formulation for DGAP, we
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define the parameters as follows:

i index of resources, i = 1, ...,m

j index for jobs, j = 1, ..., n

Ri amount of resource i available, i = 1, ...,m

rij amount of resource i needed by job j if assigned, i = 1, ...,m, j = 1, ..., n

cij cost of assigning resource i to job j, i = 1, ...,m, j = 1, ..., n.

The decision variable is defined for all resource-job pairs as follows:

xij =


1 if job j is assigned to resource i

0 otherwise
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Considering the definitions, DGAP can be formulated as follows:

min
m∑
i=1

n∑
j=1

cijxij (2.11a)

s.t.

m∑
i=1

xij = 1 ∀j (2.11b)

n∑
j=1

rijxij ≤ Ri ∀i (2.11c)

xij ∈ {0, 1} ∀i, j (2.11d)

Objective function 2.11a is the minimization of the assignment costs. Constraint

2.11b ensures that each job is exactly assigned to one resource. Constraint 2.11c en-

sures that for each resource, the total required capacity is not exceeding the available

capacity. Constraint 2.11d defines the binary domain of the decision variables.

GAP has been extensively studied. It is a classic problem in CO and its structure

can be seen as a subproblem in many different applications. [Öncan, 2007] provides

an excellent survey of different extensions to GAP and various solutions techniques

that are employed. Scheduling applications, transportation and routing applications,

telecommunication applications, and location problems are a few applications where

GAP appears as a subproblem.

There are two different types of uncertainty that have been considered in the

literature. The first type is when the capacity of resources or resource requirements

are not exactly known. The second type is if the job or machine availability is

uncertain.
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[Albareda-Sambola et al., 2006] address the later type of uncertainty in which

only a random subset of jobs are required to be processed. A two-stage stochastic

programming formulation is developed in which the first-stage decisions are the as-

signment of jobs to resources and in the second-stage, some jobs may have to be

reassigned due to resource overloads.

[Albareda-Sambola and Fernández, 2000] consider the stochastic GAP with Bernoulli

demands. Two policies are proposed to handle the infeasibility of the realized demand

vector. The authors show that the policy constructed based on the chance-constraints

performs the best in terms of the objective function value and avoiding infeasibility.

The literature on using robust optimization formulations of the generalized assign-

ment problem is very sparse. [Fu et al., 2014] present a robust optimization approach

for bottleneck GAP under uncertainty in the amount of available resources in each ma-

chine. The uncertainty is modeled using scenarios. Robustness is assured by defining

the objective function that aims to minimize a linear combination of expected costs,

variance of costs, and sum of infeasibilities.

Special cases of GAP can be used to formulate surgery scheduling optimization.

The main difference between GAP and surgery scheduling is the assumption that the

resource requirements in GAP depend on both the jobs and the machines. In surgery

scheduling, surgery durations only depend on the surgery itself and not on the surgery

block they are assigned to.

Stochastic programming (SP) techniques have been used to address uncertain

parameters in GAP. However, exact and known distributional information is required

for the use of stochastic programming techniques. In addition, in the case of two-stage

SP, usually a large number of scenarios is required to characterize the uncertainty

which can pose intractability due to the large size of the problem or prohibitive

number of sub-problems to be solved.
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2.4.2 Extensions to Bin Packing (BP) Problem

The bin packing (BP) problem is an important and well-studied class of CO prob-

lem (see [Hoffman and Padberg, 2001] and references therein). It can viewed as an

extension and generalization to the GAP where the number of resources (machines)

that can be used is a decision variable and each resource (machine) has a fixed cost

associated with it. The problem parameters for the deterministic bin packing (DBP)

problem can be defined as follows:

i index of resources, i = 1, ...,m

j index for jobs, j = 1, ..., n

Ri amount of resource i available, i = 1, ...,m

fi amount of fixed cost for utilizing resource i, i = 1, ...,m

rij amount of resource i needed by job j if assigned, i = 1, ...,m, j = 1, ..., n

cij cost of assigning resource i to job j, i = 1, ...,m, j = 1, ..., n.

The decision variable is defined for all resource-job pairs as follows:

xij =


1 if job j is assigned to resource i

0 otherwise
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yi =


1 if machine i is used

0 otherwise

Considering the definitions, DGAP can be formulated as follows:

min
m∑
i=1

fiyi +
m∑
i=1

n∑
j=1

cijxij (2.12a)

s.t.

m∑
i=1

xij = 1 ∀j (2.12b)

n∑
j=1

rijxij ≤ Riyi ∀i (2.12c)

yi, xij ∈ {0, 1} ∀i, j (2.12d)

In this formulation, if machine i is not used then yi = 0, therefore no job can

be assigned to that machine since the second set of constraints 2.12c forces those

assignments to be zero. This formulation is used in health care applications where the

variable yi corresponds to opening an operating room and xij captures the assignment

of surgery blocks to operating rooms.

The bin packing formulation for this application is used by [Denton et al., 2010].

The propose a 2SSP and robust optimization approach to address this problem. The

robust formulation is proposed as an approximation for the 2SSP formulation. The

authors also provide a heuristic to find solutions quickly and show that the robust

formulation and their proposed heuristic find high quality solutions quickly. We later
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study the robust formulation proposed by [Denton et al., 2010] in greater details in

Chapter 4.

[Berg and Denton, 2014] provide fast approximation algorithms for online schedul-

ing of patients in an outpatient setting in which the problem is also modeled as a

bin packing problem. The authors show the theoretical performance guarantees for

list-based approximation methods as well as an approximation is common in practice.

The authors show that the policy of reserving rooms for patient groups in advance

can perform very poorly.

[Bam et al., 2015] aim to address the problem of assigning surgeries to ORs as

well as surgery sequencing to mitigate downstream capacity issues in the PACU. Due

to the complexities, the authors propose a 2-phase approach. First, they propose a

bin packing formulation and heuristic for assigning surgeries to ORs. Next, in phase

2 they create the sequence of surgeries. They show that their easy-to-implement

heuristics performs very well in both deterministic and stochastic settings.

In next chapter, we provide a detailed description of the surgery scheduling while

considering the downstream capacity at the SICU. We propose a two-stage robust

formulation for to create schedules that are robust against the uncertainties in the

surgery duration and patient’s LOS in the SICU.
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Chapter 3: Robust Surgery Scheduling

Considering Downstream Capacity

3.1 Model Development

In this section, the model development for surgery and downstream capacity planning

under uncertainty is presented. We first provide some notation, then a deterministic

formulation is presented. Next, we define our model of uncertainty in detail. Finally,

the robust formulation to model this problem is presented. We study the structure

of the proposed formulation and its characteristics in the subsequent section.

3.1.1 Definitions and Deterministic Formulation

We define set B as the set of surgery blocks in a given decision period (usually a week

or two weeks long). Set S defines the set of specialties that are included in the cyclic

schedule. Each block, b ∈ B, is dedicated to only one type of specialty while there

can be multiple blocks of the same specialty during a cycle in the surgery schedule.

Bs is used to denote the set of blocks for specialty s during the planning horizon. Set

I = {1, ..., n} represents the elective surgery patients. Set Is ⊆ I represents the set of

patients that require specialty s. Note that each patient is assigned to one specialty.

Therefore patient i of specialty s can be assigned to any of the blocks b ∈ Bs during

the planning horizon. We assume, without loss of generality, that the length of the

planning horizon is T days and is an integer multiple of the surgery schedule cycle

length. Each surgery block b has a pre-allocated length of time which is denoted by
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Table 3.1: Definition of parameters

Symbol Definition
S Set of all the specialties s = 1, .., |S|
B Set of all the surgery blocks b in the master surgery schedule
I Set of all the patients i = 1, .., n that are waiting to be assigned for surgery
T Length of the decision period in days
Bs Set of surgery blocks that perform surgeries with specialty s ∈ S
Is Set of patients that require surgeries with specialty s ∈ S
cs Overtime cost for specialty s ∈ S
b′ Index for the dummy surgery block
tb Index for the day of surgery block b ∈ B
hb Length of surgery block b ∈ B
di Surgery duration for patient i ∈ I in
li Length-of-stay for patient i ∈ I in the SICU
rt Number of available SICU beds on day t = 1, .., T
et Unit cost for not having a SICU bed for patient
aib Cost of assigning patient i ∈ I to surgery block b ∈ B

hb on a specific day tb. Due to uncertainty in surgery times, a surgery block may

need to use extra time to finish the scheduled surgeries. Therefore, overtime cost

cs for each unit of time is incurred for specialty s. For ease of modeling, a dummy

block b′ ∈ B, is considered for patients who are not assigned to any surgery blocks

during the planning horizon T and are postponed be assigned to surgery during the

next planning horizon. The cost of assigning patient i to each block is defined as

aib, where aib < aib′ ∀b 6= b′. This represents the admission costs for each patient

considering their waiting times and priorities.

Associated with each patient i, there is the length-of-stay li which denotes the

number of consecutive days that the patient is required to stay in the SICU following

surgery. In addition, there is the surgery duration di, which represents the time

required to perform the surgery for patient i. The SICU has limited number of beds

on each day, represented by rt. In the case of lack of capacity in the SICU, a patient
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will be denied admission to the SICU and/or has to be transferred to units with lower

level of care. The cost incurred for each day a patient is not receiving the care in the

SICU is denoted by et. Table 3.1 summarizes the list of sets and parameters used in

our model.

To formulate the problem, we define xsib be equal to one if patient i with specialty

s is assigned to perform surgery on block b, and is set to zero otherwise. yit is one

if patient i is in need of a SICU bed on day t, and is zero otherwise. Continuous

decision variable ob captures the amount of overtime incurred during the surgery in

block b. ut counts the number of patients on day t that are in need of a SICU bed,

but cannot receive a bed due to the lack of capacity.

Here we provide the Deterministic Operating Room Planning with Downstream
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Capacity (DORP-DC) before introducing its robust counterpart.

min
∑
s∈S

∑
i∈I

∑
b∈B

aibxsib +
∑
s∈S

∑
b∈Bs\{b′}

csob +
T∑
t=1

etut (3.1a)

s.t.

∑
b∈Bs∪{b′}

xsib = 1 i ∈ Is, s ∈ S

(3.1b)

∑
i∈Is

dixsib ≤ hb + ob b ∈ Bs \ {b′}, s ∈ S

(3.1c)

yit ≥ xsib s ∈ S, i ∈ Is, b ∈ Bs, t = tb, .., tb + li − 1

(3.1d)

∑
i∈I

yit ≤ rt + ut ∀t

(3.1e)

yit, xsib ∈ {0, 1}, ob ≥ 0, ut ≥ 0 ∀s, i, b, t

(3.1f)

In DORP-DC, the objective (3.1a) is to minimize a measure of total costs. The

first term on the left is the sum of the cost of assigning patients to surgery blocks

(which includes patient priority and waiting time). The second term calculates the

overtime costs in surgery blocks. The third term measures the total cost of lack of

SICU capacity which causes premature discharges or transfers. The first constraints,

(3.1b), enforce the assignment of patients to blocks, requiring each patient to be

assigned exactly once (including the dummy surgery block) to a block within the
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required specialty. In cases when patient i has to be assigned for surgery and cannot

be postponed to the next decision period, we can add xsib′ = 0 as a constraint to

enforce an assignment during the current period. The second constraints, (3.1c),

calculate the value of overtime for each surgery block based on the assignments and

surgery duration. Constraints (3.1d) are defined to indicate if a patient is in need of

a SICU bed on any given day based on their assignment and LOS. This constraint

ensures that patient i stays in the SICU for li consecutive days upon performing the

surgery on day tb, which is the day of surgery for block b. Constraints (3.1e) enforces

the SICU capacity limitation and calculates the number of patients that need SICU

beds for each day, but cannot be accepted to the SICU due to lack of capacity. In

this setting, we assume there is another downstream unit with lower level of care

(e.g., general ward) with unlimited capacity, where patients that cannot have a SICU

bed are transferred. There is a penalty cost incurred for such transfer to model the

undesired health risks imposed on patients due to receiving a lower level of care.

This model does not select which patients are to be transferred out of the SICU, and

assumes when a bed becomes available, patients are transferred back to the SICU.

These assumptions are not restrictive since the decision for transferring a patient out

of the SICU should be based on his/her medical conditions and our formulation does

not consider such information. In addition, it makes sense to bring patients back to

SICU as soon as beds are available so patients receive the appropriate level of care.

Note that the value for the variable ut is integer since both yit and rt are integer

valued. Therefore, we can drop the constraint that forces variable u to be integer.

The final constraints, (3.1f), define the domain for the decision variables.
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3.1.2 Robust Model

In our deterministic formulation, it is assumed that all the parameters of the problem

are known with certainty. However in reality, it is very difficult, if not impossible,

to predict the values for surgery duration and LOS in the SICU. Therefore, these

parameters are assumed to be uncertain while belonging to a known set.

Considering the uncertainty and the decision process, this problem can be viewed

as a two-stage process in which decisions to assign patients to surgery blocks (xsib) are

made in the first stage. Next, uncertainty in the surgery duration and LOS for each

assigned patient is realized. In the second stage, the goal is to minimize the defined

worst-case scenario for the overtime and denied SICU admission costs. This is an

adaptive process which tries to employ the best recourse decision after the realization

of uncertainty. Considering the worst-case realization of uncertainty can be a suitable

approach since the risk associated with not satisfying the SICU bed requirements can

have very adverse effects on patients safety and health.

We assume that only a subset of uncertain parameters will deviate from their

nominal value and try to minimize the the worst-case costs. Let us define d̃i ∈

[di, di+ d̂i], in which di is the nominal value for surgery duration for patient i, while d̂i

is the total deviation from the nominal value that the duration can have. Without loss

of generality, for LOS, we define l̃i ∈ {li, . . . , li+ l̂i} to represent the uncertainty set for

LOS in the SICU for patient i. For simplicity, we further assume that the LOS for each

patient is integer-valued and it is corresponding to the number of days; however, to

model a finer granularity in time, shorter time periods can be considered (e.g. hours,

shifts). Note that the assumption for integer-valued LOS is very close to reality since

SICU release decisions are generally made once a day by care providers. In the case of

surgery durations, zi =
d̃i − di
d̂i

is the normalized deviation from the nominal surgery
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duration for patient i and 0 ≤ zi ≤ 1. Following the notation defined by [Bertsimas

and Sim, 2004], we define Γd = (Γ1
d, . . . ,Γ

|S|
d ) as the budget of uncertainty vector for

surgery durations within each specialty. Then we enforce
∑

i∈Is zi ≤ Γsd, ∀s, which

limits the total possible normalized deviation from the nominal value being less than

the budget of uncertainty, Γsd. In other words, if Γsd is integer-valued, only Γsd patients

of specialty s can have surgery durations equal to their highest possible duration. In

a simpler case, we can define Γd to be a single parameter that limits the deviations

over all specialties.

Different surgery types and specialties have different levels of uncertainty asso-

ciated to them. For example, the possibility of deviation from the nominal time in

a standard joint replacement surgery is expected to be far less than an open-heart

surgery due to the inherent uncertainties and possible complicating factors. There-

fore, based on the preference of management, different uncertainty budgets can be

allocated to different specialties. In case the decision-maker has no preference or infor-

mation on specialty-related risks, the formulation can be easily adapted by defining a

single inequality for the budget of uncertainty rather than |S| inequalities. The same

ideas and assumptions can be applied to define the uncertainty set for the LOS in the

SICU.

Following the same assumption made for surgery durations, we define
l̃i − li
l̂i

,∀i

and enforce the budget of uncertainty Γl = (Γ1
l , . . . ,Γ

|S|
l ) for LOS in the SICU as

∑
i∈Is

l̃i − li
l̂i
≤ Γsl ,∀s. We also assume that the realization of uncertainty in surgery

duration is independent from the realization in the LOS.

We define the uncertainty sets for surgery duration and LOS as follows:
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Ud = {d ∈ Rn : d̃i = di + zid̂i, 0 ≤ zi ≤ 1 ∀i,
∑
i∈Is

zi ≤ Γsd ∀s} (3.2)

Ul = {l ∈ Rn : l̃i ∈ {li, . . . , li + l̂i} ∀i,
∑
i∈Is

l̃i − li
l̂i
≤ Γsl ∀s}. (3.3)

The data for the nominal values and worst-case deviations can be obtained from

subject matter experts, physicians, or managers that have detailed information about

each patient’s health and conditions. Depending on the risk-attitude of the decision-

maker, a value for the budget of uncertainty is chosen. Higher values of the uncer-

tainty budget allow for larger deviations in uncertain parameters and the resulting

schedules are more conservative.

Considering the assumptions and definitions mentioned earlier, the formulation

for the Robust Adaptive Surgery Planning with Downstream Capacity (RASP-DC)

problem can be written as follows:

min
∑
s∈S

∑
i∈I

∑
b∈B

aibxsib + opt[R(x,Γd,Γl)] (3.4a)

s.t.

∑
b∈Bs∪{b′}

xsib = 1 i ∈ Is, s ∈ S (3.4b)

xsib ∈ {0, 1} ∀s, i, b (3.4c)

where opt[R(x,Γd,Γl)] is the optimal solution to the recourse problem, R[(x,Γd,Γl)]:
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max
d̃∈Ud,l̃∈Ul

min
∑
s∈S

∑
b∈Bs\{b′}

csob +
T∑
t=1

etut (3.5a)

s.t.

∑
i∈Is

d̃ixsib ≤ hb + ob b ∈ Bs \ {b′}, s ∈ S

(3.5b)

yit ≥ xsib s ∈ S, i ∈ Is, b ∈ Bs, t = tb, .., tb + l̃i − 1

(3.5c)

∑
i∈I

yit ≤ rt + ut ∀t

(3.5d)

yit ∈ {0, 1}, ob ≥ 0, ut ≥ 0. ∀s, i, b, t

(3.5e)

Note that in our formulation we have not considered an upperbound on the value

of overtime decision variables (ob, ∀b) which makes the development of our two-stage

formulation simpler due to the complete recourse property. In reality, the overtime

cannot exceed a certain amount of time and our formulation can be extended by

adding upperbound constraints on variables ob,∀b. Considering an upperbound for

these variables will eliminate the complete recourse property and requires the solu-

tion procedure to include feasibility cuts as well as the optimality cuts (see [Birge and

Louveaux, 2011] chapters 3 and 5). Another way to address this issue is to create a
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convex piece-wise linear cost structure for overtime in surgery durations. Such struc-

ture would also require a more complex treatment since it requires binary variables in

the second-stage to model the piece-wise linear cost structure. We choose to utilize

the simpler formulation with simple recourse since the derivation for the case that

requires feasibility cuts is a straight forward extension of this work.

In the first stage, prior to any knowledge of the realization of uncertainty, as-

signment decisions are made. Patients are assigned to surgery blocks. During the

operations, the value for surgery duration will be realized and the costs of overtime

for each surgery block is incurred. In addition, the LOS in the SICU is realized which

determines the utilization of the SICU capacity and possible denied admissions or

transfers. The uncertainty exists in the technology matrix of the first constraints,

(3.5b), and the set of indices of the forth set of constraints, (3.5c). In fact, using this

formulation, if the LOS is uncertain, the number of constraints of type (3.5c) will be

uncertain which poses serious complexity issues for solving this problem. One can re-

formulate this constraint as
∑tb+l̃i−1

t=tb
yit ≥ l̃ixsib ∀s, i, b, however, these constraints

cannot solve this complexity issue either, since they have an uncertain number of

variables in the summation in the left-hand-side. The goal of the decision-maker is

to minimize the costs associated with surgery block overtimes and denied admissions

to the SICU. The goal of the second-stage problem is to minimize the worst-case

recourse costs based on the definition of the uncertainty sets. It is important to note

that this formulation cannot be supplied to any solver in the presented form. An

extensive formulation can be obtained by enumerating all the possible realizations of

uncertainty. However this is prohibitive even for problems of medium size.

Note that in recourse problem R[(x,Γd,Γl)], ((3.5a)-(3.5e)), xsib is not a decision

variable. First-stage decision variable values x are passed to the second-stage as

parameters. It is clear from the formulation of recourse problem R[(x,Γd,Γl)] that
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the variables related to the surgery block overtime, ob, are independent from the

variables capturing the status of the SICU bed capacity, yit, and denied admissions,

ut. This observation helps us to decompose the recourse problem further into two

different and important problems: (1) Surgery Block Capacity (SBC) problem

which aims to calculate the worst-case minimum overtime costs due to deviations

in surgery durations, (2) Downstream Capacity (DC) problem which aims to

calculate the worst-case minimum costs of denied admissions to the SICU due to the

deviations in the LOS.

Following the observation on the separability of these problems we can reformulate

the robust adaptive surgery planning with downstream capacity as follows:

min
∑
s∈S

∑
i∈I

∑
b∈B

aibxsib + opt[Rd(x,Γd)] + opt[Rl(x,Γl)] (3.6a)

s.t.

∑
b∈Bs∪{b′}

xsib = 1 i ∈ Is, s ∈ S

(3.6b)

xsib ∈ {0, 1} ∀s, i, b (3.6c)

where opt[R(x,Γd)] is the optimal value of the surgery block capacity recourse problem
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Rd[(x,Γd)]:

max
d̃∈Ud

min
∑
s∈S

∑
b∈Bs\{b′}

csob (3.7a)

s.t.

∑
i∈Is

d̃ixsib ≤ hb + ob b ∈ Bs \ {b′}, s ∈ S (3.7b)

ob ≥ 0 ∀b (3.7c)

and opt[Rl(x,Γl)] is the optimal value of the downstream capacity recourse problem

Rl[(x,Γl)]:

max
l̃∈Ul

min
T∑
t=1

etut (3.8a)

s.t.

yit ≥ xsib s ∈ S, i ∈ Is, b ∈ Bs, t = tb, .., tb + l̃i − 1 (3.8b)

∑
i∈I

yit ≤ rt + ut ∀t (3.8c)

yit ∈ {0, 1}, ut ≥ 0. ∀i, t (3.8d)

While in our case (having simple recourse) the second-stage problem can be for-

mulated as a maximization problem, we chose to use the max−min formulation to

allow for a universal treatment of the second-stage subproblems. In addition, the

proposed formulation is based on the definition of the two-stage robust optimization

problems in the literature which allows for easier extension of more complex recourse
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structures for future research.

In the following sections, we study each of these problems in depth and present

insightful structural properties that provide insight to each of these problems. The

properties are employed to provide a mixed-integer linear programming (MILP) re-

formulation for each of the sub-problems that can be solved using commercial solvers.

3.2 Structural Properties

In this section, we study the structural properties of surgery block capacity and

downstream capacity problems. These insights help us reformulate these problems

to more tractable mixed-integer linear programs (MILPs) that can be solved using

commercial solvers, which in turn allows us to solve the overall surgery planning

problem.

3.2.1 Surgery Block Capacity Problem

In this section, we focus on the surgery block capacity recourse problem defined by

(3.7a)-(3.7c). This problem is a two-level optimization problem in which, first, a

maximization over the uncertainty set defines the outer-level problem and seeks the

worst-case scenario for a given surgery assignment. After the realization of the surgery

durations, the inner-minimization problem aims to minimize the overall overtime

costs. In the inner-minimization problem, the only decision variables are those that

capture the overtime for each surgery block (ob,∀b), and they are continuous. Using

the definition of the uncertainty set Ud, we can substitute for the values of d̃i and
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have the surgery block capacity recourse problem as follows:

max∑
i∈Is

zi≤Γs
d,∀s,0≤zi≤1,∀i

min
∑
s∈S

∑
b∈Bs\{b′}

csob (3.9a)

s.t.

∑
i∈Is

(di + d̂izi)xsib ≤ hb + ob b ∈ Bs \ {b′}, s ∈ S (3.9b)

ob ≥ 0. ∀b (3.9c)

Since the inner-minimization is a linear program, strong duality can be used to

substitute the inner-minimization problem with its dual, which can be written as a

single maximization problem as follows:

max
∑
s∈S

∑
b∈Bs

[∑
i∈Is

(di + d̂izi)xsib − hb

]
πsb (3.10a)

s.t.

∑
i∈Is

zi ≤ Γsd s ∈ S (3.10b)

0 ≤ πsb ≤ cs s ∈ S, b ∈ Bs (3.10c)

0 ≤ zi ≤ 1. ∀i (3.10d)

(3.10a)-(3.10d) is the reformulation for the surgery block capacity recourse prob-

lem Rd(x,Γd) that transforms the max−min objective into a single maximization

problem. Note that variable πb is the dual variable associated with the capacity con-

straint (3.9b) for surgery block b. Due to the existence of the bilinear term ziπ
s
b , the
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second-stage problem Rd(x,Γd) is the maximization of a bilinear function over linear

constraints. Bilinear programming is a special case of quadratic programming and

the objective function, in general, is neither convex nor concave [Gallo and Ülkücü,

1977]. This is a limiting factor in using standard convex optimization solvers to ob-

tain optimal solutions to the second-stage problem. The following propositions, based

on the structure of the recourse problem, enable us to reformulate the second-stage

problem r(x,Γr) as a mixed-integer linear program (MILP).

Proposition 3.2.1. If the components of the budget of uncertainty Γd are integer

values, there exists an optimal solution (π∗, z∗) to the second-stage problem Rd(x,Γd)

such that z∗i ∈ {0, 1},∀i.

Proof. Let us define the feasible region for the second-stage problem by the following

polyhedra Π = {π ∈ Rm|0 ≤ πsb ≤ cs,∀s, b ∈ Bs} and Z(Γd) = {z ∈ Rn|
∑

i∈Is zi ≤

Γsd,∀s, 0 ≤ zi ≤ 1,∀i}. Note that both sets Π and Z(Γd) are bounded (all variables

are bounded) and therefore an optimal solution (π∗, z∗) exists such that π∗ is an

extreme point of Π and z∗ is an extreme point of Z(Γd) [Gallo and Ülkücü, 1977].

This implies that when Γd is composed of all integer values, there exists an optimal

solution such that z∗ ∈ {0, 1}n (also see [Gabrel et al., 2014a]).

Proposition 3.2.2. For any s ∈ S, b ∈ Bs in the second-stage, the optimal solution

is πsb
∗ ∈ {0, cs}.

Proof. Due to the structure of the objective function one of the following cases is true

for any πsb , s ∈ S, b ∈ Bs:

• First, consider the case that for a given block b with specialty s, assignment

vector x, and deviation vector z,
∑

i∈Is(di + d̂izi)xsib−hb > 0. In this case, due

to the maximization of the objective function, the optimal value for πsb is its

upperbound cs.
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• Second, consider the case that for a given block b with specialty s, assignment x,

and deviation vector z,
∑

i∈Is(di+ d̂izi)xsib−hb ≤ 0. This means that given the

assignment and the deviations for resource consumption parameters, resource

consumption will not exceed the available capacity hb. In this case, due to the

maximization of the objective, πsb = 0.

As a result of 3.2.1 and 3.2.2 we can reformulate and solve (3.9a)-(3.9c) as a MILP.

Next we consider the downstream capacity problem and its structural properties.

3.2.2 Downstream Capacity Problem

In this section, we turn our focus to the downstream capacity recourse problem. The

formulation is presented by (3.8a)-(3.8d). Note that the maximization over the uncer-

tain parameter l̃ is impossible in the current formulation since l̃ is in the set of indexes

of the constraint (3.8b) and not in the inequalities. In other words, the maximization

has to decide the number of constraints of type (3.8b) as decision variables. There is

no existing method to address problems of this structure. This motivates the need for

a new formulation such that we can transfer the decision variable l̃ into the equations.

Here, we provide a new formulation for DCP by redefining our decision variables.

As explained before, we can divide the process into three different decision-making

stages. In the first stage, patients are assigned to surgery blocks. Considering the un-

certainty in surgery duration and LOS and the definition of the budget of uncertainty,

uncertain parameters assume their value in the second stage. We assume the second

stage decisions are made by an adversary. For the third stage, we aim to minimize

the cost of recourse for the previous stages. In order to formulate this problem we
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need to redefine our variables as vit = 1 if patient i enters SICU by day t, 0 otherwise,

and wit = 1 if patient i leaves SICU by day t, 0 otherwise.

It is important to note that “by” is used in the definition of the variables rather

than “at.” Stemming directly from the definition of the variables, the following

inequalities hold:

vit ≤ vi,t+1 ∀i, t (3.11a)

wit ≤ wi,t+1. ∀i, t (3.11b)

The first inequality indicates that if a patient has arrived to the SICU by day t

(vit = 1), then he/she has arrived by the days after t. Therefore, all the variables

for those days must equal 1. The second inequality indicates the same principle for

leaving the SICU.

Defining the variables in this way naturally adapts to our problem setup and

stages. Variables vit are automatically defined after the first stage decisions are made.

Next, the worst-case second-stage recourse costs are calculated by choosing the times

that patients will leave the SICU, controlled by variables wit. The LOS for patient

i is equal to
∑T

t=1(vit − wit), and the number of patients in the SICU on day t is

equal to
∑n

i=1(vit−wit). This requires us to redefine the uncertainty set based on the

variables that represent the uncertainty as the SICU departure time. Note that this

reformulation transforms the parameter for the LOS (l) (which does not depend on

the arrival to the SICU) into an arrival/departure process. While using the arrival

and departure times we can simply calculate the LOS, the definition of uncertainty

changes to be the time that a patient is released from the SICU.
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Alternative Representation of Uncertainty

As discussed before, each patient i has a LOS (l̃i) at the SICU that belongs to the

discrete set {li, . . . , li + l̂i}. We assume, without the loss of generality, that the LOS

is defined to be integer which means that the LOS cannot be a fraction of a day and

both li and l̂i are also integer. We can consider fractions of a day by further dividing

the steps in the time-windows. Note that the definition of our variables naturally

adapts to our assumptions on the LOS in the SICU. These assumptions along with

the value of first-stage variables help us fix the values of a subset of variables as

follows:

vit ≥ xsib t = tb, ∀s, i ∈ Is, b ∈ Bs (3.12a)

vit ≤ 1− xsib t = 1, .., tb − 1, ∀s, i ∈ Is, b ∈ Bs (3.12b)

wit ≥ xsib t = tb + li + l̂i − 1, .., T,∀s, i ∈ Is, b ∈ Bs (3.12c)

wit ≤ 1− xsib. t = 1, .., tb + li − 1,∀s, i ∈ Is, b ∈ Bs. (3.12d)

The first inequalities, (3.12a), ensure that each patient goes to the SICU on the day

of surgery, while the second set of inequalities, (3.12b), enforce that patients cannot

go to the SICU before the day of surgery. The third set of inequalities, (3.12c), ensure

that each patient can only stay in the SICU for at most li + l̂i days. The forth set of

inequalities, (3.12d), ensure that patients cannot leave the SICU before the minimum

LOS in the SICU, which is li days.

Considering that the LOS for patient i can be written as l̃i =
∑T

t=1(vit−wit), the

mathematical representation of the budget of uncertainty constraint can be written

as follows:
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∑
i∈Is,l̂i>0,xib′=0

[∑T
t=1(vit − wit)− li

l̂i

]
≤ Γsl ∀s, (3.13)

which is defined for the patients that have uncertainty in the LOS and are assigned

to have a surgery during the planning horizon.

The set that characterizes the uncertainty in the LOS in the SICU can be redefined

based on their departure time from the SICU, while their arrival is an input parameter

to define the uncertainty set as follows:

Ul(x, v) = {w ∈ {0, 1}n×T : (3.11b), (3.12c)− (3.12d), (3.13)}. (3.14)

This novel definition of the variables and reformulation of the uncertainty set

allows us to incorporate the random parameter in the problem as a decision variable so

it can easily adapt to the robust optimization approach. To the best of our knowledge,

this is the first study such that the definition of uncertainty set depends on the first-

stage variables.

Resulting Solvable Formulation

Considering the structural properties based on the definition of our variables, the ro-

bust adaptive surgery planning with downstream capacity problem can be formulated

as a two-stage problem. In the first stage, decisions regarding the assignment of pa-

tients to surgery blocks (xsib) are made. The by-product of this stage is the time for

each patient to enter the SICU (vit) which can be obtained using inequalities (3.11a),

(3.12a), and (3.12b). Variables vit represent the arrival of patients to the SICU based

on the assignment of patients to the surgery blocks and the variable definitions.

Variables vit naturally belong to the first stage of the problem and do not have
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any impact of the objective value of the first stage nor limit the feasible region for

variables xib.

The downstream capacity recourse problem, R(x,v,Γl), can be written as follows:

max
w∈Ul(x,v)

min
T∑
t=1

etut (3.15a)

s.t.

∑
i∈I

vit − wit ≤ rt + ut ∀t (3.15b)

ut ≥ 0. ∀i, t (3.15c)

The objective function (3.15a) is the maximization of the denied admission costs

over the uncertainty set which controls the the discharge date, and consequently the

LOS for each patient. The first constraint (3.15b) calculates the number of denied

admissions to the SICU based on the arrivals to the SICU (determined by vit) and the

SICU discharges (determined by wit) for each day. The second constraints, (3.15c),

define the range for the number of denied admissions.

Note that this problem has two levels. The first level is finding the worst-case

realization of LOS for patients. Next, the decision-maker aims to minimize the costs

associated with the realized LOS and required transfer costs. In this formulation,

the inner-minimization problem is a linear program and all the arrival variables (vit)

are decided during the first stage while departure variables (wit) are decided through

finding the worst-case (maximization) realization of uncertainty in the second stage.

It can be seen that although the variables ut are defined to be continuous, since rt

is integer and arrivals and departure variables are binary, the optimal value for ut is

always integer.
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In order to be able to solve the downstream capacity recourse problem (3.15a)-

(3.15c), we apply strong duality to reformulate the inner-minimization as a maximiza-

tion problem and also substitute for the definition of the uncertainty set Ul(x,v). The

downstream capacity recourse problem Rl(x,v,Γl) is presented as follows:

max
T∑
t=1

[∑
i∈I

(vit − wit)− rt

]
λt

(3.16a)

s.t.

∑
i∈Is,l̂i>0,xib′=0

[∑T
t=1(vit − wit)− li

l̂i

]
≤ Γsl ∀s

(3.16b)

wit ≥ xsib t = tb + li + l̂i − 1, .., T,∀s, i ∈ Is, b ∈ Bs

(3.16c)

wit ≤ 1− xib t = 1, .., tb + li − 1,∀s, i ∈ Is, b ∈ Bs

(3.16d)

wit ≤ wi,t+1 ∀s, i ∈ Is, b ∈ Bs,∀t

(3.16e)

0 ≤ λt ≤ et ∀t

(3.16f)

wit ∈ {0, 1}. ∀i, t

(3.16g)
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Note that in the downstream capacity sub-problem, vit are first-stage variables

and have known values when solving the second stage. λt is the dual variable asso-

ciated with the SICU capacity constraint (3.15b). In an economical sense, it defines

the price of denied admission to the SICU. Therefore, the objective function is the

maximization of the cost for denied admissions (3.16a). The first constraints (3.16b)

enforce the budget of uncertainty for maximum possible deviations in LOS for each

specialty group. These constraints allow the decision-maker to be able to have dif-

ferent risk preferences for different specialties. The second (3.16c) and third (3.16d)

set of constraints fix the value for wit such that no patient can leave the SICU before

its minimum LOS (li) has passed, and each patient cannot stay in the SICU longer

than largest possible LOS (li + l̂i). The forth constraints, (3.16e), are defined based

on the definition of the variable wit. The fifth constraints (3.16f) define the range for

the values of the dual variables λt. Finally, the last set of constraints (3.16g) define

the domain for the variable wit.

This formulation is, in fact, a bilinear program which is generally non-convex.

Next we exploit some of the structrural properties of the downstream capacity re-

course problem Rl(x, y,Γl) presented by (3.16a)-(3.16g) and propose a mixed-integer

linear programming reformulation that can be solved using traditional methods.

The following proposition characterizes the optimal value for the cost of denied

admissions in the downstream capacity recourse problem, which helps us reformulate

DC into a MILP.

Proposition 3.2.3. For any t = 1, . . . , T in the second-stage, an optimal solution to

Rl(x, v,Γl) can be find such that, λ∗t ∈ {0, et}.

Proof. Similar to the proof for the Proposition 3.2.2.
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In the next section, we outline the steps of our exact solution methodology to

solve our problem.

3.3 Solution Technique

The formulations for the SBC and DC subproblems are bilinear programs and, in

general, are not convex. In order to be able to address the Robust Adaptive Surgery

Planning with Downstream Capacity (RASP-DC) problem, we need to be able to

solve each of these problems.

In the light of Propositions 3.2.1 and 3.2.2 we can reformulate the bilinear second-

stage problem Rd(x,Γd) as an MILP, RMIP
d (x,Γd), by defining psib = πsbzi,∀s, i ∈

Is, b ∈ Bs as follows:

max
∑
s∈S

∑
b∈Bs

∑
i∈Is

dixsib +
∑
s∈S

∑
b∈Bs

∑
i∈Is

d̂ixsibp
s
ib −

∑
s∈S

∑
b∈Bs

hbπb (3.17a)

s.t.

∑
i∈Is

zi ≤ Γsd s ∈ S

(3.17b)

0 ≤ πsb ≤ cs s ∈ S, b ∈ Bs

(3.17c)

psib ≤ cszi s ∈ S, b ∈ Bs

(3.17d)

zi ∈ {0, 1}, psib ≥ 0. ∀s, b, i

(3.17e)
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The MILP formulation (3.17a)-(3.17e) can be solved using standard solvers to

obtain a solution for the surgery block capacity recourse problem. Next, we explore

the structural properties of the SBCP in order to gain deeper insight that can be

employed to improve the efficiency of the solution approach.

It can be observed from the formulation proposed for the surgery block capacity

recourse problem RMIP
d (x,Γd) that the problem of calculating the worst-case over-

time cost for surgery blocks can be decomposed into |S| separate and independent

problems that are connected only through the first-stage decision variables xsib. In

other words, the worst-case overtime costs can be calculated separately for each spe-

cialty s ∈ S. This property can be used when the size of the recourse problem over

all specialties is large and a smaller problem for each specialty can be solved. In

addition, this characteristic can be employed to devise a multi-cut approach similar

to the well-known multi-cut L-shaped method in stochastic programming (see [Birge

and Louveaux, 2011] and references there in).

As for the DC subproblem, the objective function for (3.16a) includes a bilinear

term, witλt, and since wit is defined to be a binary decision variable, we can simply

reformulate the problem using the same technique in previous sections by having

qit = witλt,∀i, t. Keeping in mind the negative coefficient of qit in the objective

function, the linearization requires the addition of qit ≤ λt,∀i, t, qit ≤ etwit,∀i, t,

and qit ≥ λt − et(1 − wit),∀i, t as constraints. The first inequality is redundant as

a result of the Proposition 3.2.3. The MILP downstream capacity recourse problem

RMIP
l (x, v,Γl), can be written as:
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max
T∑
t=1

∑
i∈I

vitλt −
T∑
t=1

∑
i∈I

qit −
T∑
t=1

rtλt

(3.18a)

s.t.

∑
i∈Is,l̂i>0

[∑T
t=1(vit − wit)− li

l̂i

]
≤ Γsl ∀s

(3.18b)

wit ≥ xsib t = tb + li + l̂i − 1, .., T,∀s, i ∈ Is, b ∈ Bs

(3.18c)

wit ≤ 1− xsib t = 1, .., tb + li − 1, ∀s, i ∈ Is, b ∈ Bs

(3.18d)

wit ≤ wi,t+1 ∀s, i ∈ Is, b ∈ Bs, ∀t

(3.18e)

qit ≥ λt − et(1− wit) ∀s, i ∈ Is, b ∈ Bs, ∀t

(3.18f)

qit ≤ etwit ∀i, t

(3.18g)

0 ≤ λt ≤ et ∀t

(3.18h)

wit ∈ {0, 1}. ∀i, t

(3.18i)
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In the recourse formulation (3.18a)-(3.18i), the subset of variables wit are fixed for

some values of t. More specifically, the second and third constraints fix the values for

wit to either 1, or 0. In fact, for each patient i, the only binary variables that are not

fixed are {wit : t = tb + li − 1, ..., tb + li + l̂i − 1, tb : xib = 1}. In other words, for each

patient i, only l̂i of the variables wit are not fixed. Therefore, the number of fractional

values in the optimal solution of the LP-relaxation of RMIP
l (x, y,Γl) is bounded by∑n

i=1 l̂i. In the case that the deviations in the LOS at the SICU are relatively small

compared to the decision making horizon T , only a small percentage of variables can

be fractional and the number of variables to be branched on is small compared to the

size of the problem.

The linear relaxation of this formulation does not necessarily yield optimal solu-

tions where all the variables wit are binary. The reasons for non-integer values are

solely due to the existence of the first constraint (3.18b) (the budget of uncertainty)

and (3.18f) despite the fact that all the other constraints are facet defining [Bertsimas

and Patterson, 1998].

Unlike the surgery block capacity problem, the downstream capacity recourse

problemRMIP
l (x, y,Γl) cannot be decomposed into independent sub-problems for each

specialty. The main reason is that patients from different specialties share common

resources in the SICU.

In the next section 3.3.1, we explain why the existing methods in the literature,

namely cutting-plane method based on Kelley’s cutting-plane (CP) algorithm [Kelley,

1960] or L-shaped method [Van Slyke and Wets, 1969],[Thiele et al., 2009], and the

column-and-constraint generation method (C&CG) [Zeng and Zhao, 2013] cannot be

directly employed to solve the RASP-DC.
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3.3.1 Deficiencies of Previously Developed Methods

The first approach proposed to solve the two-stage robust optimization (2SRO) prob-

lems is introduced by [Thiele et al., 2009] and has its roots in the cutting-plane

method ([Kelley, 1960] and [Van Slyke and Wets, 1969]). In their setting, the defini-

tion of the uncertainty set does not depend on the first-stage variables and the use

of the proposed method produces optimal solutions. In the case of the CP method,

a 2SRO problem is decomposed into a master and a recourse problem. The master

problem generates first-stage decisions (in our case a surgery schedule is the first-

stage set of decisions) and the recourse problem identifies the worst-case outcome of

uncertainty and its associated cost for a given first-stage decision. In other words, the

recourse problem in a 2SRO problem is a scenario generation problem that creates

worst-case scenarios of uncertain parameters. This method relies on introducing the

dual variables of the recourse problem into the master problem.

In the case of applying the CP method to the RASP-DC, the cut that is passed

to the master problem from the DC subproblem has the following form:

θl ≥
T∑
t=1

[
n∑
i=1

(vit − wkit)− rt

]
λkt , k = 1, .., K, (3.19)

where K is the number of constraints generated. Constraints (3.19), generated from

the the DC subproblem, are not valid optimality cuts and can potentially cut off the

optimal solution. The reason is, in fact, due to the dependency between the first-stage

variables vit (arrival to the SICU) and uncertainty variables wit (departure from the

SICU). Note that the LOS for each patient is bounded such that li ≤ l̃i ≤ li+ l̂i. While

these restrictions are considered in the DC subproblem using constraints (3.16c) and

(3.16d), constraints (3.19) do not explicitly consider the earliest possible arrival time
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associated with a given departure time.

As an illustration, consider the case in which after solving the restricted master

problem the arrival day for patient i is the second day (vi,1 = 0 and vit = 1, t = 2, ...T )

and li = 2 and l̂i = 1. Keep in mind patient i can be scheduled such that his/her

arrival to the SICU is on day one, and such a schedule is also feasible but not optimal

in the current restricted master problem. The maximum LOS for patient i is three

days. Assume a case in which the optimal solution to the DC subproblem chooses

the departure day to be day five (wit = 0, t < 5 and wit = 1, t ≥ 5 ), therefore

li =
∑T

t=1 vit − wit = 3. In addition, let us assume that λ5 > 0, which means that on

day five the number of patients in need of a SICU bed has exceeded the SICU capacity.

Since there is not enough capacity in the SICU for t = 5, adding constraints of the

form (3.19) can potentially remove vi1 = 1 as a costly solution such that variable vi1

cannot be equal to one anymore. On the other hand, for a departure on day five for

patient i, arrival on day one cannot be considered since it assumes a possible LOS of

four days for this patient while the maximum LOS for patient i can be three days.

In other words, this cut removes the arrival to the SICU on day one, based on the

scenario where the patient leaves the SICU on day five, which clearly is an invalid

scenario, considering the maximum LOS for that patient. Because these constraints

do not consider the restriction on the arrival times that should be in effect by the

definition of the uncertainty set, they can potentially remove solutions that have

better objective values.

Column-and-constraint generation (C&CG) is proposed by [Zeng and Zhao, 2013]

and introduces a large-scale deterministic equivalent formulation for the 2SRO that

relies on identifying all the scenarios for the uncertain parameters. Unlike the CP

methods, C&CG does not include the dual variables associated to the recourse prob-

lem in the master problem. The master problem includes constraints in the form
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of the deterministic problem for every realization of uncertainty. However, as the

number of uncertain parameters increases, the number of scenarios for uncertainty

increases exponentially. The authors present an iterative approach to address this

issue.

Note that if we apply the proposed C&CG algorithm to our problem, specifically

considering the downstream capacity subproblem, at each iteration k, we solve the

DC subproblem and introduce this invalid constraint into the master problem:

n∑
i=1

vit − wkit ≤ rt + ukt , ∀t (3.20)

in which wk corresponds to the vector of worst-case departure times with respect to

the first-stage surgery assignments in iteration k. uk is the vector of recourse variables

corresponding to the specific first-stage decisions and realization of uncertainty.

The reason that the constraint (3.20) is not a valid cut is similar to the argument

made for the CP method, discussed earlier this section. In essence, this constraint

does not consider the restrictions on the LOS for patients when it is passed to the

master problem. It is important to note that if we do not consider the downstream

capacity and only focus on the uncertainty in surgery duration, both the CP and

C&CG method can be applied to solve the problem since the uncertainty set is not

dependent on the first-stage decisions.

In the next subsection, we propose an adapted C&CG, such that it addresses the

dependence of the uncertainty set and the first-stage decisions.

Next, in Section 3.3.2 we propose an adapted (C&CG) algorithm based on [Zeng

and Zhao, 2013] to solve the RASP-DC and two-stage robust problems of similar

structure, specifically stage-dependent uncertainty sets.
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3.3.2 Adapted-C&CG Method

We adapt the C&CG method so it can address the issue of a first-stage-dependent

uncertainty set as defined in our formulation. Our adapted column-and-constraint

generation (A-C&CG) algorithm employs the deterministic formulation DORD-DC

to address the decision making in the master problem, while the uncertainty is realized

through solving the SBC and DC subproblems. By doing so, the uncertainty defined in

the master problem for the LOS is an independent parameter. In the DC subproblem,

we define the problem such that the definition of the uncertainty changes to the time

the patient is released from the SICU given their admission time. Algorithm 1 presents

the A-C&CG to solve the RASP-DC.

The proposed A-C&CG algorithm resembles the original C&CG while it allows for

the use of more sophisticated uncertainty sets. In addition, it shows great flexibility in

modeling a problem as a robust optimization problem. The second-stage formulations

serve as a scenario-generation step and our algorithm allows us to use a different

formulation, rather than the one based on the deterministic equivalent to generate

the scenarios.

In the formulation for the master problem in the A-C&CG method, the original

capacity constraints are employed. However, since the value for the uncertain pa-

rameters (deviations in surgery duration denoted by z and departure from the SICU

denoted by w) is not known in advance, at each iteration, we solve the master problem

and obtain the optimal first-stage decisions. Then, the worst-case realization of the

uncertain parameters for the given first-stage decision variables is obtained by solving

the recourse formulations. The information is passed back to the master problem by

introducing new variables and constraints and then the master is solved again.

Note that A-C&CG has a better worst-case performance than the CP methods.

It can be seen that in the C&CG method, only the extreme points of the uncertainty
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Initialization;

Set LB = −∞, UB = +∞, K = 0, O = ∅.;
Master: Solve the following master problem.

min
∑
s∈S

n∑
i=1

∑
b∈B

aibxsib + θ (3.21a)

s.t.

θ ≥
∑
s∈S

∑
b∈Bs\{b′}

cso
k
b +

T∑
t=1

etu
k
t ∀k ∈ O

(3.21b)∑
b∈Bs∪{b′}

xsib = 1 i ∈ Is, s ∈ S

(3.21c)∑
i∈Is

dki xsib ≤ hb + okb ∀k ≤ K, b ∈ Bs \ {b′}, s ∈ S

(3.21d)

ykit ≥ xsib s ∈ S, i ∈ Is, b ∈ Bs, t = tb, .., tb + lki − 1, ∀k ≤ K
(3.21e)∑

i∈I

ykit ≤ rt + ukt ∀t, ∀k ≤ K

(3.21f)

xsib, y
k
it ∈ {0, 1}, okb ≥ 0, ukt ≥ 0 ∀s, i, b, t, ∀k ≤ K

(3.21g)

Obtain the optimal solution (x∗K+1, θ
∗
K+1, y

1∗, .., yK∗, o1∗, .., oK∗, u1∗, .., uK∗) and

set LB = aTx∗K+1 + θ∗K+1;
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Recourse:

• Step 1- Create arrival parameter vit such that, if xsib = 1, vit = 1, ∀t ≥ tb, and
vit = 0, ∀t < tb, else if xsib′ = 1 (assignment to the dummy block), set vit = 0, ∀t.

• Step 2- Use parameter vit to construct the DC subproblem (3.18a)-(3.18i).

Solve the SBC subproblem (3.17a)-(3.17e) with objective value S∗K+1. Solve the DC

subproblem (3.18a)-(3.18i) with objective value D∗K+1. Update

UB = min{UB, cTx∗K+1 + S∗K+1 +D∗K+1}.;
Set U ← min{U,

∑
s∈S

∑
i∈Is

∑
b∈Bs∪{b′} aibx

sk
ib +∑

s∈S
∑

b∈Bs

[∑
i∈Is(di + d̂iz

k
i )xsib − hb

]
πskb +

∑T
t=1

[∑n
i=1(yit − wkit)− rt

]
λkt };

if U − L ≤ ε then
The optimal solution for RASP-DC is found;

else
go to Add-Cut routine;

end

Add-Cut:

• Step 1 Using the results of DC subproblem and departure variables wit,∀i, t,
calculate the LOS for each patient at iteration K + 1 such that

lK+1
i =

∑T
t=1 vit − w∗it, ∀i.

• Step 2 Add variables oK+1
b , ∀b, yK+1

it ,∀i, t, and uK+1
t , ∀t and the following

constraints to the master problem:

θ ≥
∑
s∈S

∑
b∈Bs\{b′}

cso
K+1
b +

T∑
t=1

etu
K+1
t (3.22a)

∑
i∈Is

dK+1
i xsib ≤ hb + oK+1

b b ∈ Bs \ {b′}, s ∈ S

(3.22b)

yK+1
it ≥ xsib s ∈ S, i ∈ Is, b ∈ Bs, t = tb, .., tb + lK+1

i − 1

(3.22c)

T∑
t=1

yK+1
it ≤ rt + uK+1

t ∀t

(3.22d)

where dk+1 is the optimal solution (worst-case scenario for surgery duration)

obtained by solving the SBC subproblem and lK+1 is obtained from the optimal
solution of the DC subproblem. Update K ← K + 1, O ← O ∪ {K + 1} and go to

Master routine;

Algorithm 1: A-C&CG Algorithm for RASP-DC.
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sets are required in the formulation of the problem. However, for the CP method,

the extreme points of both the uncertainty sets and the dual variables of the inner-

minimization problems are needed (for detailed proof see [Zeng and Zhao, 2013] and

its electronic companion).

As it can be seen from the outline of the A-C&CG algorithm, at each iteration

|B|+ (n+ 1)T new variables are added to the master problem. Furthermore, at each

iteration k, |B|+ T + 1 +
∑

i∈I l
k
i new constraints are added to the master problem.

Note that lki is the realization of the LOS for patient i at iteration k. Therefore, it is

likely that for problems with a high number of patients and high levels of uncertainty

(large values for l̂), the size of the master problem will grow very fast.

3.4 Computational Experiments

3.4.1 Data and Problem Setting

The numerical results in this section are based on the practice configuration presented

by [Min and Yih, 2010]. There are 10 ORs and 32 available surgical blocks per week.

The assignment of ORs to surgical blocks is shown in Table 3.2 and we use this

example to produce a weekly block schedule. There are nine different surgical groups

that perform surgeries. Each group has at least one surgical block during the week,

while some have multiple blocks. A patient can be scheduled for surgery in one of

the available blocks. We assume each block is eight hours long.

Each specialty s has a mean surgery duration µsd and a standard deviation σsd. We

use these statistics to create a list of patients such that each patient has a unique set of

nominal values and deviations in surgery duration and LOS. Each number is randomly

selected from a distribution that is specific to each specialty. The nominal surgery
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Table 3.2: Block schedule structure.

OR Room Monday Tuesday Wednesday Thursday Friday

OR 1 ENT ENT ENT
OR 2 ENT ENT ENT
OR 3 OBGYN OBGYN OBGYN
OR 4 ORTHO ORTHO ORTHO ORTHO
OR 5 ORTHO NEURO
OR 6 GEN GEN GEN GEN
OR 7 GEN GEN GEN GEN
OR 8 OPHTH OPHTH OPHTH OPHTH
OR 9 VASCULAR CARDIAC VASCULAR
OR 10 UROLOGY ORTHO

duration for patient i, di, is randomly generated from a lognormal distribution with

the mean and standard deviation for the patient’s required specialty [Strum et al.,

2000]. The worst case deviation in surgery duration for patient i, d̂i, is chosen as

d̂i = ασsid where α ∼ U(0.5, 1.5).

We assume the average LOS in the SICU of ENT (Ear, Nose, and Throat),

OBGYN (Obstetrics and Gynecology), ORTHO (Orthopedic), NEURO (Neurosurgery),

GEN (General surgery), OPHTH (Ophthalmology), VASCULAR, CARDIAC and

UROLOGY are 0.1 day, 2 days, 1.5 days, 2 days, 0.05 day, 0.05 day, 3.5 days, 2 days

and 0.8 day, respectively. We further assume that the standard deviation for LOS in

the SICU for each specialty is equal to its mean. The nominal LOS for patient i, li,

is then generated from a log normal distribution with proposed mean and standard

deviations and rounded down to obtain an integer valued. The worst case deviation in

LOS for each patient i, l̂i, is generated from a uniform integer distribution Uint(1, 4).

Note that these numbers may be far from the reality, specifically considering that we

are assigning uncertainty to all patients. However, the proposed setting for generating

data allows us to test our proposed formulation to understand its behavior.
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Each specialty has a relative importance factor which is used as a multiplier to

address the relative importance of one specialty over another. For example, heart

surgeries are relatively more important than elective knee surgeries. This feature

enables the decision-maker to specify the existing relative importance among different

specialties. In addition, each patient has a specific multiplier (which in reality can

be provided by her/his physician or a subject matter expert) which identifies the

importance or the level of emergency of her/his case with respect to other patients

in the same specialty. To generate cases, each patient receives a random integer from

Uint(1, 10). With this assumption, the optimization gives the emergency cases more

priority in scheduling surgeries.

The percentage of patients in need of a specific surgery is used to generate lists

of patients randomly. Overtime costs incurred to each block are chosen to reflect

the relative importance of the specialty. Therefore, for each specialty the overtime

cost is chosen to be 100 times the relative importance multiplier per hour. Table 3.3

provides detailed information on the surgery duration statistics, case mix, and the

relative importance of each specialty.

Table 3.3: Statistics for surgery duration based on surgery type.

Surgical group µsd (minute) σsd (minute) Percentage (% of surgeries) Relative importance

ENT 74 37 21.34 1
OBGYN 86 40 9.26 2
ORTHO 107 44 23.26 2
NEURO 160 77 5.04 5

GEN 93 49 22.12 1
OPHTH 38 19 2.98 2

VASCULAR 120 61 8.2 4
CARDIAC 240 103 2.44 5
UROLOGY 64 52 5.36 3
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For the patients that are assigned to the dummy block, we assume that they have

to wait until the beginning of the next week for the next round of assignments. The

waiting time is calculated by subtracting the assignment day from the initial day

when the patient is added to the list. The cost for having one denied admission to

the SICU or patient transfer (for each day that a patient is out of SICU) is set to be

100.

3.4.2 Performance Analysis

In order to evaluate the proposed solution methodology, tests were generated with

different numbers of patients. We used a single budget of uncertainty to limit the

deviations in LOS (Γl) and one for surgery duration (Γd) rather than a vector. In

other words, we assume that the decision-maker does not have specialty-specific risk

behavior. The value for each of these budgets can vary from zero to the number of

patients. Therefore, for a problem with 10 patients, there are 100 combinations to

be solved. To reduce the computational burden, we limit the solution time to be

1,000 seconds for each specific choice of parameters Γd and Γl. All the computational

experiments are coded in Python programming language and Gurobi 6.0 solver is

used as the optimization solver. All the tests are run on a Windows machine with an

Intel Core i5, 3.20GHz CPU, and 4 GB of RAM.

In order to isolate the impact of uncertainty in surgery duration, we keep Γl = 0

and varied the value of Γd. The reverse is done to study the impact of uncertainty in

LOS. Figure (3.1) illustrates an example with 10 patients and three SICU beds, and

another example with 40 patients and 10 SICU beds.

Figure (3.1) illustrates the performance of the solution methodology for different

variations of Γl and Γd. Figure (3.1a) shows an instance with 10 patients and three

SICU beds, where Γl = 0, and Γd is increasing from zero to 10. It can be seen that
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(a) (b)

(c) (d)

Figure 3.1: Plots for the performance of the algorithm when the source of uncertainty
is changed.

for all choices of Γd, the instances are all solved to optimality under one second. On

the other hand, Figure (3.1b) is the same instance when Γd is held constant at zero

and Γl is increasing. Note that the time required to solve this instance when Γl is

changing is significantly higher (with a maximum running time close to 30 seconds)

than the case when Γl = 0. Note that solution times and iteration counts are shown

on the same axis and scale. It can also be seen that for all values of Γl the instances

are solved to optimality, but the objective value is higher compared to the case when

the only source of uncertainty is in the surgery duration. While this behavior is very

dependent on the structure of the objective and cost functions, there is a logical reason

for this behavior under the given assumptions. Under the assumption of uncertain
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LOS, in the case of not having enough capacity in the SICU on a specific case, the

optimization either moves the surgery of the patient to another day or assigns the

patient to the wait-list for the following weeks. Therefore the uncertainty in the LOS

coupled with congestion in the SICU, reduces the congestion in the operating rooms.

For the case of 40 patients, Figure (3.1c) shows that for all values of Γd when

Γl = 0, the problem is solved to optimality. However, it can be seen in Figure (3.1d)

that most of the instances went over the 1,000 second time limit.

As the number of patients increases, the impact of uncertainty in surgery duration

on the surgery schedule will increase. To test this, we generated instances with 70

patients and five SICU beds. We changed the values for Γl and Γd by 10% increments

in the number of patients that have deviations associated with them. The results are

shown in Figure (3.2). Figure (3.2a) shows the contours for the objective value for

different pairs of budget parameters. The section with the highest value (red color)

is for the combinations that could not be solved to optimality. This can also be

seen in Figure (3.2c) which shows the optimality gap for each combination of budget

parameters. It can be seen that instances with parameters 20% ≤ Γl ≤ 40% and

10% ≤ Γd ≤ 30% pose the most computational challenge. An interesting observation

is that these combinations took fewer iterations (see Figure (3.2b)), which means that

each iteration took longer time to be completed. Figure (3.2a) also shows that as the

value for the parameter Γl increases, the impact of increasing Γd on the objective value

is greater. Figure (3.2d) shows that both uncertainty in LOS and surgery duration

can result in postponing surgeries. When Γd = 0, an increase in Γl results in large

increase in the number of postponed patients. When Γl = 0, an increase in Γd results

in a smaller increase as compared to the pervious case. However, when Γl ≥ 40%,

increasing the value of Γd results in a fast increase in the number of patients being

postponed. It is evidence that both sources of uncertainty can play a critical role in
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(a) (b)

(c) (d)

Figure 3.2: Results for an example with 70 patients and five beds, when both Γl and
Γd can change.

creating the optimal surgery schedule.

Depending on the value of Γ and size of the uncertainty set (possible realizations of

uncertainty) the number of iterations required to solve each instance can be different.

Through testing, we observed that the computational burden of the case when LOS

uncertainty is much higher than the case when surgery durations are uncertain. In

addition, the case of uncertain LOS has not been studied as extensive as the case

of uncertain surgery durations. From here on out, in all of our instances we fix

Γd = 0 and only change the value of Γl. This helps us turn our focus to the impact

of uncertainty in the LOS in downstream units on the surgery schedule, an area of
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research which has received far less attention, and reduce the complexity of the results

presented.

To evaluate the performance of the algorithm, problem instances with size n =

5, 10, 15 patients are generated randomly. The number of beds in the SICU is fixed

to three beds. 10 instances of each size are generated and the optimal objective value

or best solution found is recorded. The best solution found for the recourse costs is

calculated. The number of iterations and running time of the algorithm for each value

of Γl is also recorded. The number of patients that could not be assigned for a surgery

during the planning horizon and have to be postponed are also calculated. Table 3.4

presents detailed results for these test cases.The table shows the average (µ) and

standard deviation (σ) of the performance parameters for across the ten instances.
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Figure (3.3) compares the average objective value, running time, iteration count

and the average number of patients that are postponed as Γl increases for these

instances. It can be seen that for n = 5 and 10 all instances are solved to optimality.

When n = 15 some of the instances could not be solved to optimality when Γl ∈

{2, 3, 4, 5} within the 1,000 second time limit. In our setting, as the number of

patients (n) increases, the complexity of the problem increases exponentially. Since

the uncertainty for LOS is chosen to be uniform random integers between one and

four, the average number of possible realizations of uncertainty when Γl = n is 2.5n.

It can be seen that the running time for the case of n = 15 is much larger than the

smaller cases. Our assumption in defining the deviations in LOS for patients are for

illustrative purposes. In the case of more routine surgeries where the uncertainty in

LOS is insignificant, many patients will have l̂ = 0, thus significantly reducing the

size of the uncertainty set Ul.

To better understand the quality of the solution provided by the our proposed

model, we need to quantify the impact of a proposed surgery schedule on operational

efficiency and quality of service.

3.4.3 Analyzing The Solution Quality

In order to understand and quantify the value of the proposed surgery schedule, we

focus on the utilization rate of the SICU beds as an operational metric, where the

decision-maker’s aim is to keep the utilization rate of these expensive resources high

to increase the efficiency of the system.

To analyze the quality of service and risks we focus on two important metrics.

First, the probability of not having enough SICU capacity (which is equivalent to

the probability of having to transfer a patient to a unit with lower level of care) is

calculated. This is similar to probabilistic constraints which guarantee a probability
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Figure 3.3: Aggregate comparison between the objective value (top left), running time
(top right), iterations (bottom left), and the number of postponed patients (bottom
right) for n = 5, 10, 15.

for feasibility of one or a set of constraints (see [Birge and Louveaux, 2011], chapter

2.7). This is an important metric that helps decision-makers understand the chances

of having to reduce the quality of service. In other words, it calculates the risk

associated with a surgery schedule.

On the other hand, risk alone does not provide enough insight into the recourse

actions that are required to be taken. Therefore, it is important to have an idea of

how many transfers to lower quality units may be required. In many health care

settings, the capacity of the SICU is determined by the number of nurses that are

assigned to it. For a decision-maker, adding one nurse to the schedule to cover the

expected number of transfers is much more desirable than having to hire five nurses.
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This metric calculates the magnitude of risk associated with a surgery schedule.

In order to calculate the proposed operational and risk measures, a simulation

model is developed. The decision-maker has to decide the value of Γl before the

realization of uncertainty. In reality, the number of patients whose LOS can deviate

from the nominal value can be different from Γl. For each fixed value of Γl, n + 1

different cases of deviations can happen.

The simulation model randomly selects k ∈ {0, . . . , n} patients and generates

LOSs that are uniformly distributed between l and l+ l̂. Using the proposed surgery

schedule from the optimization step, we calculate if a transfer is required and the

number of transfers required for that realization. In addition, we calculate the uti-

lization rate for the SICU resources. This process is performed for 200 replications

for each value of k (the number of patients that actually deviate from their nomi-

nal value). Then, the average probability of transfer, average number of transfers

required, and average utilization rate for the SICU is calculated.

Figure (3.4) illustrates the simulation results of previously generated instances of

size n = 5, 10, 15. All plots show the uncertainty, as the number of patients who

deviate from their nominal LOS on the x-axis. The left column of figures, show

the probability of having a transfer on the y-axis and each line is associated with a

surgery schedule with specific value for Γl. It can be seen that as uncertainty increases,

meaning that more patients deviate from their nominal LOS, the probability of having

a transfer increases. On the other hand, as we increase Γl, the probability of not

having enough SICU capacity decreases, such that at Γl = 3 for the case of n = 5,

this probability is almost zero for all cases of deviation. This behavior is repeated for

cases with n = 10 and 15.

The middle column of Figure (3.4) illustrates the utilization rate of the SICU

beds. It can be seen that as the uncertainty increases (moving to the right of the
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Figure 3.4: Simulation results: Impact of Γl and uncertainty on transfer probability,
utilization rate, and required transfers.

x-axis), the number of patients who deviate from their nominal LOS and have longer

LOSs which translates into higher utilization rate. For Γl > 0, as Γl increases, the

decision-maker becomes more conservative, thus creating schedules with larger slacks

to accommodate uncertainty, which results in lower utilization rate. For the case of

Γl = 0, as the uncertainty increases, the increase in the utilization rate is not as

fast. This is due to the fact that by choosing Γl = 0, the decision-maker assumes no

uncertainty in LOS, thus creating a tight schedule that assigns patients to the days

at the beginning of the week while the rest of the week is empty. As uncertainty

increases, due to the lack of available beds in the first few days, many transfers are
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required but the available capacity towards the end of the week remains untouched.

The right column of Figure (3.4) illustrates the average number of transfers that

is required for each schedule in the presence of uncertainty. As uncertainty increases,

there is greater chance for not having enough SICU beds, thus increasing the number

of transfers. However, increasing the value of Γl can greatly reduce the number of

transfers that are required. For example, in the case of n = 15 and Γl = 4, even if

all patients deviate from their nominal LOS, there will be, on average, four transfers

required.

As previously mentioned, the number of available nurses is an important factor in

determining the capacity of the SICU. Note that this can be decided by the manager

by designing the nurse schedules. Using our proposed methodology, the decision-

maker can determine the staffing levels required to meet the throughput requirement.

In other words, the decision-maker can identify the impact of extra resources on

scheduling decisions. As an example, we generate an instance with n = 10 patients.

By changing the number of beds from one to 10, optimal solutions for all values of Γl

are obtained. To understand the throughput of each schedule, the number of patients

that are postponed to have the surgery in future weeks is shown in Figure (3.5).

It can be seen in Figure (3.5a) that as the value of Γl increases, more conserva-

tive schedules are built, thus more patients get postponed to perform their surgeries

later. Increasing the number of beds from one to three will reduce the postponements

from eight down to four even in cases where the decision-maker decides to be very

conservative (high Γl). Looking at the costs of surgery schedules in Figure (3.5b), the

decision-maker can decide the best level of staffing for the SICU. In addition, using

this method, the decision-maker is capable of understanding the trade-off between

the SICU resource level and the throughput of the operating rooms.

We have assumed that the cost of postponing a surgery is equal to the cost of
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Figure 3.5: Impact of SICU capacity on the throughput and cost.

waiting to have a surgery during the next week. A patient that is postponed may

not receive a surgery appointment at the beginning of, or during, the next week.

Therefore, the decision-maker may require to incur higher costs for patients that are

postponed to perform their surgeries later. In order to accommodate this feature, we

introduced a multiplier γ ∈ {1, . . . , 10}. This multiplier is multiplied by the waiting

cost for the patients that are postponed. As the multiplier increases, the cost of

postponing a patient increases. Depending on the cost structure, the postponing

cost can surpass the cost of having a transfer out of the SICU, in which case, the

optimization decides to risk having a transfer. This feature is important for health

care providers as postponing a surgery can be very costly at destination medical

centers.

As an example, an instance with n = 10 patients and three SICU beds is generated.

We changed the value of γ from 1 to 10. The case of γ = 1 is equivalent to our

original assumption on the cost structure. We solved this instance for all values of

Γl and Figure (3.6) shows how the optimization risks having transfers as the cost of
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postponing increases. It can be seen that in the case of low downstream capacity, the

optimization schedules patients with large values of l̂ far away from each other. This

is done to minimize the chance of overlapping stays in the SICU which can reduce

the number of SICU beds for a long period. This can be used as a rule of thumb for

practitioners to mitigate the impact of uncertainty in LOS while scheduling surgeries.

Figure 3.6: Impact of increasing the postponement cost on number of postponements.

We aim to propose a modeling approach that considers the uncertainty in surgery

duration and LOS and enables the decision-maker to adjust for her/his risk pref-

erences. In addition, the optimization model, coupled with a simulation model to

analyze the quality of solutions (similar to our simulation model), can provide the

decision-maker with variety of trade offs that can be made in managing the surgery

planning process. Our approach can be used as a dashboard for decision-makers

to provide them with different alternatives and the characteristics of each schedule.

This will greatly improve the decision making process by assisting the managers with

making well-informed and educated decisions.
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Figure 3.7 provides an example based on the tests we ran for the case with n = 15

patients and three SICU beds.

Figure 3.7: Comparing operational and risk metrics between Γl = 2 and Γl = 4.

It can be seen in Figure 3.7, that the probability of having transfers (left y-axis)

changes for different risk preferences Γl = 2 and Γl = 4 in the face of uncertainty.

If all patients have deviations in their LOS, the probability of requiring a transfer is

one at Γl = 2, while it is less than 0.4 if Γl = 4. In terms of the number of transfers

required when all patients have deviations (right y-axis), at Γl = 2, more than eight

transfers are needed while at Γ = 4, the required number of transfers is less than one.

As for the utilization rate, it can be seen that when all patients have deviation in

their LOS, both values for Γl have utilization rates greater than 0.8. This is a great

example of how our proposed model can help decision-makers choose well-informed

alternatives.
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3.4.4 Results for larger instances

To test the capabilities of the proposed method, we aimed to solve problems compa-

rable to real cases in terms of size. We modified our data generation scheme based on

two observations: (1) not every patient that undergoes surgery requires a stay in the

SICU, and (2) not every patient that stays in the SICU has uncertainty associated

with his/her LOS. Thus, it is safe to assume that specialties that have smaller aver-

age LOS, also have lower chances of having deviations. In other words, uncertainties

in the LOS for patients in some specialties are less than others (e.g., ORTHO vs

CARDIAC).

In our test generation, the nominal LOS was created using a geometric distribu-

tion while the deviation in LOS was randomly generated such that specialties with

greater average LOS have higher chance of deviation. In addition, the deviations were

perturbed by a random number drawn from U(0, 2) times the standard deviation of

the LOS to create different deviations for each patient, and allow for extreme cases

where patients in specialties with low average LOS to have high deviations.

Problems were generated with 70 patients and five beds, and 140 patients with 10

SICU beds. For each size, 10 random instances were generated and solved using the

proposed method. Run time for each value of Γl was restricted to 1000 seconds. In

these instances, not every patient has a positive value for l̂ and therefore the number

of patients that could deviate from their nominal value changes from one instance to

another. The budget of uncertainty was changed to consider this fact and a budget

of uncertainty Γl = 50% means that up to 50% of patients that have positive l̂ can

have full deviations in their LOS.

In our cases with 70 patients, the average number of patients with positive values

for l̂ is 22.9 (and maximum of 27), while the same parameter for the case of 140
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patients is 46.9 (and maximum of 58). Average values for the objective function,

number of iterations, run time (in seconds), optimality gap, and number of patients

that are postponed to be scheduled in next decision period is reported in Table 3.5.

Optimality gaps are calculated only based on the information from the proposed

algorithm, however, tighter gaps can be calculated using the solutions obtained for

different values of Γl for the same instance. As it can be seen, as the problem size grows

the number of instances where optimality is reached decreases ,which is expected,

considering the complexity of the problem at hand. On the other hand, the average

optimality gap does not exceed 10.5%, which can be considered as good solution

quality.

We performed our simulation (1000 replications) analysis to analyze the opera-

tional characteristics of the solutions obtained. We have only reported the results

where all the patients in the simulation are allowed to deviate from their nominal

value. SICU utilization rate, probability of being denied admission to the SICU due

to lack of available beds, and average number of beds that is required to cover the lack

of capacity are also reported in Table 3.5. Results follow the general trend observed

in smaller instances, presented earlier in this section.

3.5 Conclusion

In this chapter, we have proposed a formulation for surgery scheduling while con-

sidering the downstream units. We apply two-stage robust optimization to address

the inherent uncertainty in surgery duration and length-of-stay in the downstream

unit. Since the uncertainty in LOS translates into uncertainty in the number of con-

straints, a novel modeling approach is proposed to address the challenges in modeling
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Table 3.5: Average results for 10 instances of each problem size

Size Γl (%) Objective Iter. Time Gap (%) Postpone Util. Deny Prob. Transfer No.

n = 70
Bed = 5

0 1776.7 2 1.024 0 2.7 0.613 0.948 4.747
10 1930.3 56 160.882 0.179 3.8 0.637 0.549 1.283
20 2135.3 107.4 586.38 2.056 5.3 0.592 0.334 0.625
30 2284.5 107 759.373 3.819 6.8 0.557 0.166 0.238
40 2322.8 77.4 451.137 2.595 8.9 0.514 0.045 0.054
50 2297.4 35.7 135.687 0.82 9.7 0.495 0.009 0.009
60 2275 18 24.285 0 10.2 0.488 0 0
70 2275 12.8 7.955 0 10.2 0.488 0 0
80 2275 15.5 11.903 0 10.2 0.487 0 0
90 2275 15.9 7.917 0 10.2 0.486 0 0
100 2275 2.6 1.295 0 10.2 0.486 0 0

n = 140
Bed = 10

0 4363.067 2 3.941 0 16.2 0.676 0.77 3.336
10 4615 46.7 1000 3.095 16.9 0.669 0.291 0.46
20 4968.933 34.9 1000 7.987 18.4 0.621 0.088 0.113
30 5163.2 30.5 1000 10.082 19.8 0.592 0.024 0.026
40 5269.9 30.9 1000 10.455 21 0.571 0.038 0.044
50 5064.367 34.8 957.336 5.605 22.9 0.533 0.007 0.007
60 4932 41.7 845.762 2.77 23.2 0.529 0.019 0.021
70 4886.667 50.1 777.093 1.778 23.7 0.537 0.005 0.005
80 4877.867 51.1 696.876 1.648 23.8 0.532 0.004 0.004
90 4849.867 53.4 479.735 0.925 23.9 0.528 0.02 0.022
100 4810.267 2 2.336 0 24.2 0.522 0 0

this aspect. The proposed formulation can be applied to other domains with simi-

lar downstream considerations such as project scheduling. We studied the structural

properties of the proposed formulations and reformulated them into solvable MILPs

and proposed an exact solution algorithm to solve this problem.

Extensive computational experiments show that this model has the potential of

being employed to manage multi-stage care operations. Our simulation model quan-

tifies the impact of our robust model on the utilization of the downstream resources.

Our framework, coupled with a simulation model, helps the decision-maker under-

stand the level of risk associated with each proposed surgery schedule and the impact

of her/his attitude towards risk. An important insight is that by considering the

uncertainty in the LOS, the congestion in the OR can be implicitly alleviated. In

addition, the existing trade-offs between different elements in this setting are shown

in our computational experiments.
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The proposed algorithm may not be efficient for cases with large number of pa-

tients with large uncertainty sets. Finding better lower bounds can greatly improve

the running time of the proposed algorithm. Effective bounding techniques show

promise by using the scenarios generated for different values of Γ can be employed to

improve the performance of the algorithm. We hope to continue this development in

our future work.

In the next chapter, motivated by the applications in surgery scheduling, we

study the two-stage robust generalized assignment problem, formulations, and so-

lution methods.
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Chapter 4: The Robust Generalized Assignment

Problem

4.1 Introduction

The generalized assignment problem (GAP) is a well-studied subject with many ap-

plications in constrained-resource planning problems. The deterministic version of

this problem (DGAP) aims to assign jobs to resources in order to optimize an objec-

tive function (i.e., either maximizing revenues or minimizing costs), while ensuring

that the required capacity for each resource does not exceed the available capacity.

This chapter is motivated by the application of scheduling surgeries in surgery blocks

or operating rooms. While the duration of the surgeries do not depend on the op-

erating room they are performed in, the generalized assignment problem relaxes this

assumption and assumes each job-resource pair has a specific resource requirement.

In order to formally develop the formulation for DGAP, we define the parameters as
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follows:

i index of resources, i = 1, ...,m

j index for jobs, j = 1, ..., n

Ri amount of resource i available, i = 1, ...,m

rij amount of resource i needed by job j if assigned, i = 1, ...,m, j = 1, ..., n

cij cost of assigning resource i to job j, i = 1, ...,m, j = 1, ..., n.

The decision variable is defined for all resource-job pairs as follows:

xij =


1 if job j is assigned to resource i

0 otherwise.
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Considering the definitions, DGAP can be formulated as follows:

DGAP : min
m∑
i=1

n∑
j=1

cijxij (4.1a)

s.t.

m∑
i=1

xij = 1 ∀j (4.1b)

n∑
j=1

rijxij ≤ Ri ∀i (4.1c)

xij ∈ {0, 1} ∀i, j (4.1d)

Objective function (4.1a) is the minimization of the assignment costs. Constraint

(4.1b) ensures that each job is assigned to exactly one resource. Constraint (4.1c)

ensures that for each resource, the total required capacity by the jobs assigned to

that machine, does not exceed the available capacity. Constraint (4.1d) defines the

binary domain of the decision variables.

DGAP is known to be an NP-hard problem. Iterative approaches, such as La-

grangian Relaxation or branch-and-price are used to solve problems with large num-

bers of jobs and resources [Savelsbergh, 1997].

All the parameters of DGAP are deterministic and known with certainty. However,

in practical cases not all the information is likely to be known with certainty. In order

to motivate this modeling approach, consider the case of assignment of surgeries to

surgery blocks in a hospital. In many hospitals, blocks of time are assigned to each

specialty/surgeon in order to perform their surgeries in their allocated block. A

given day typically have multiple blocks scheduled to an OR. There is a cyclic block
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schedule for all the specialties that offer surgeries in a hospital. Each block has a

specific day and a defined length. This is known as the block booking policy. Under

the block booking policy, patients with specific surgery requirements can be assigned

to a subset of these blocks, however, the length of the surgery for each patient is not

known with certainty. We assume each patient, based on his/her conditions, can have

a nominal surgery duration that can be provided by the physician or historical data.

Also, considering the known complications that can occur during the surgery, the

physician can also provide a maximum length of time that may be needed to perform

the surgery. The goal is to assign surgeries to blocks in order to minimize the costs

of operations and increase utilization of the resources. On the other hand, basing

assignment decisions only on the nominal durations can push the surgery blocks into

overtime or surgery cancellations. In other words, if the uncertainty is not considered

to make assignment decisions, the required length of time to perform surgeries within a

block can exceed the block length (capacity) which can cause delays and cancellations

in the subsequent surgeries and can possibly cause patient discomfort or health issues.

Further, surgery rooms are staffed with highly trained workers and the overtime costs

can be very high.

The goal is to generate a surgery plan that considers the uncertainties in the

surgery durations while taking into account the level of conservatism of the decision

makers to minimize the costs of patient admission and improve the care quality by

reducing delays or cancellations.

Stochastic programming (SP) techniques have been used to address uncertain

parameters in GAP. However, exact and known distributional information is required

for the use of stochastic programming techniques. In addition, in the case of two-stage

SP,usually a large number of scenarios is required to characterize the uncertainty

which can pose intractability due to the large size of the problem or prohibitive
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number of sub-problems to be solved.

We choose to model the generalized assignment problem with uncertain resource

requirements as a two-stage robust optimization model. Our model does not require

any information on the distribution of the random parameters, but rather only re-

quires lower and upper bounds on the possible values for the uncertain parameters. In

other words, each parameter is required to belong to a known set or range of values.

4.2 Modeling Two-Stage Robust Generalized As-

signment Problem

In the two-stage robust generalized assignment model (2RoGAP) the values for the

resource required by each job rij to be uncertain while belonging to a known set. The

uncertainty exists in the technology matrix of the second constraint in DGAP.

This problem can be viewed as a two-stage process in which decisions to assign

jobs to resources (or patients to surgery blocks) (xij) are made in the first stage.

Next, uncertainty in the resource requirement (surgery duration) is realized. In the

second stage, the goal is to minimize the defined worst-case scenario for the costs

of not having enough resources. We define oi as the amount of resource i required

beyond the available capacity. Also, bi is the penalty for each unit of the resource i

that cannot be allocated to a job. In practical cases, oi represents the amount of extra

resource required and in the case of surgery planning, it is representing the overtime

needed by a surgery block.

We assume that only a subset of uncertain parameters will deviate from their

nominal value and try to minimize the worst-case costs when some subset of jobs

(surgeries) deviate to their maximum value in resource requirements. Let us define

r̃ij ∈ [rij, rij + r̂ij], in which rij is the nominal value for the resource required for
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job j if it is assigned to resource i, while r̂ij is the total deviation from the nominal

value that the resource requirement can have. Next, we define zij =
r̃ij − rij
r̂ij

as the

normalized deviation of the resource requirement for job j when assigned to resource

i. Note that 0 ≤ zij ≤ 1 holds. Following the notation defined by [Bertsimas and Sim,

2004], we define Γ as the budget of uncertainty for surgery resource requirements. By

enforcing
∑m

i=1

∑n
j=1 zij ≤ Γ, we limit the total possible normalized deviation from

the nominal value being less than the budget of uncertainty Γ. In other words, if Γ is

integer-valued, only Γ of jobs can have resource requirements equal to their highest

possible resource usage, rij + r̂ij. Note that the resource requirement rij can only be

positive if job j is assigned to the resource i. Therefore following inequality should is

required to enforce this condition:

zij ≤ xij. ∀i, j (4.2)

We define the uncertainty set U which is the set of all the possible realizations for

resource requirements as follows:

U = {r ∈ Rn : r̃ij = rij + zij r̂ij, 0 ≤ zij ≤ 1, zij ≤ xij,
m∑
i=1

n∑
j=1

zij ≤ Γ}. (4.3)

Considering the definitions for the uncertainty model presented above, the formu-

lation for the Two-Stage Robust Generalized-Assignment Problem (2RoGAP) can be

written as follows:
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min
m∑
i=1

n∑
j=1

cijxij + opt[R(x,Γ)] (4.4a)

s.t.

m∑
i=1

xij = 1 ∀j (4.4b)

xij ∈ {0, 1} ∀i, j (4.4c)

in which opt[R(x,Γ)] is the optimal solution of the recourse problem R(x,Γ) and can

be written as:

max
r∈U

min
m∑
i=1

bioi (4.5a)

s.t.

n∑
j=1

r̃ijxij ≤ Ri + oi ∀i (4.5b)

oi ≥ 0 ∀i (4.5c)

Objective function (4.4a) is to minimize the cost of assignment as well as the

second-stage cost which is the minimization of the worst-case recourse costs. Con-

straint (4.4b) makes sure that each job is assigned to exactly one resource. The

second-stage objective function (4.5a) is the minimization of the worst-case recourse

costs. Note that bi is the unit penalty/cost for a lack of resource i and oi is the

amount of shortage of resource i. Constraint (4.5b) calculates the amount of shortage
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based on the realization of the usage parameter r̃ij and assignment decision xij.

Based on the definition of the uncertainty set U , we have:

max∑m
i=1

∑n
j=1 zij≤Γ,zij≤xij

min
m∑
i=1

bioi (4.6a)

s.t.

n∑
j=1

(rij + zij r̂ij)xij ≤ Ri + oi ∀i (4.6b)

oi ≥ 0 ∀i (4.6c)

Note that we replaced the uncertain parameter r̃ij by its definition from U . Vari-

ables zij are in the outer-maximization part of the second-stage and are only known

parameters to the inner-minimization. xij are variables in the first stage problem

(4.4a)-(4.4c), and they become known parameters to the second-stage problem.

It can be seen that the inner-minimization problem (4.6a)-(4.6c) is a linear pro-

gram and we can replace the inner-minimization problem by its dual problem and
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combine the objective functions and rewrite the recourse problem R(x,Γ) as follows:

max
m∑
i=1

[
n∑
j=1

(rij + zij r̂ij)xij −Ri

]
πi (4.7a)

s.t.

m∑
i=1

n∑
j=1

zij ≤ Γ (4.7b)

zij ≤ xij ∀i, j (4.7c)

0 ≤ πi ≤ bi ∀i (4.7d)

0 ≤ zij ≤ 1. ∀i, j (4.7e)

Note that variable πi is the dual variable associated with capacity constraint

for the resource i. Due to the existence of the bilinear term
∑m

i=1

∑n
j=1 r̂ijxijzijπi

the second-stage problem R(x,Γ) is the maximization of a bilinear function over a

linear constraint. Since xij ∈ {0, 1}, the constraint (4.7e) is redundant. Bilinear

programming is a special case of quadratic programming problems and the objective

function, in general, is neither convex or concave [Gallo and Ülkücü, 1977]. This

is a limiting factor in using standard convex optimization solvers to obtain optimal

solutions to the second-stage problem. Proposition 4.2.1, enables us to reformulate

the second-stage problem r(x,Γr) as a mixed-integer linear program (MILP).

Proposition 4.2.1. If the budget of uncertainty Γ is an integer number, there exists

and optimal solution (π∗, z∗) to the second-stage problem R(x,Γ) such that z∗ij ∈

{0, 1}, ∀i, j.

Proof. Let us define the feasible region for the second-stage problem by the fol-

lowing polyhedra Π = {π ∈ Rm|0 ≤ πi ≤ bi, ∀i} and Z(Γ, x) = {z ∈ Rm ×
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Rn|
∑m

i=1

∑n
j=1 zij ≤ Γ, 0 ≤ zij ≤ xij,∀i, j}. Note that both sets Π and Z(Γ, x)

are clearly bounded (all variables are bounded) and therefore and optimal solution

(π∗, z∗) exists such that π∗ is an extreme point of Π and z∗ is an extreme point of

Z(Γ, x) (see [Gallo and Ülkücü, 1977] for detailed discussion). On the other hand,

the vector for variable x is composed of binary elements defined in the first stage of

the problem. This implies when Γ is an integer number, then z∗ ∈ {0, 1}m×n (see

[Gabrel et al., 2014a]).

In the light of 4.2.1 we can reformulate the bilinear second-stage problem R(x,Γ)

as an MILP RL(x,Γ) by defining pij = πizij, ∀i, j as follows:

max
m∑
i=1

n∑
j=1

rijxijπi +
m∑
i=1

n∑
j=1

r̂ijxijpij −
m∑
i=1

Riπi (4.8a)

s.t.

m∑
i=1

n∑
j=1

zij ≤ Γ (4.8b)

zij ≤ xij ∀i, j (4.8c)

0 ≤ πi ≤ bi ∀i (4.8d)

pij ≤ πi ∀i, j (4.8e)

pij ≤ bizij ∀i, j (4.8f)

pij ≥ 0, zij ∈ {0, 1}. ∀i, j (4.8g)

In the next section we present Kelley’s cutting plane algorithm in order to solve

2RoGAP as well as some results based on the structural properties of the second-stage

101



problem RL(x,Γ).

4.2.1 Alternate Formulation

In this section, we propose another formulation for the second-stage problem that has

fewer number of variables which can increase the efficiency of the solution time for

second-stage problem.

Proposition 4.2.2. The following formulation is an equivalent formulation for the

second-stage problem RL(x,Γ).

max
m∑
i=1

n∑
j=1

rijxijπi +
m∑
i=1

n∑
j=1

r̂ijxijpij −
m∑
i=1

Riπi (4.9a)

s.t.

n∑
j=1

zj ≤ Γ (4.9b)

0 ≤ πi ≤ bi ∀i (4.9c)

pij ≤ πi ∀i, j (4.9d)

pij ≤ bizj ∀i, j (4.9e)

pij ≥ 0, zj ∈ {0, 1} ∀i, j (4.9f)

Proof. In the original formulation, due to the inequalities zij ≤ xij,∀i, j and
∑m

i=1 xij =

1,∀j, for any given resource i, only one variable zij can be equal to one. In other

words, since the assignment of jobs to resources are already known, we can reduce

the second-stage to finding which jobs are going to deviate to cause the largest over-

time cost. Therefore, we can reduce the formulation to include only zj as decision

variables.
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4.3 Solution and Structural Properties

Considering the development of the second-stage resource capacity sub-problem, the

information in the form of worst-case realization of the resource requirements for a

given assignment from the sub-problem can be passed to the master problem. The

restricted master problem that does not include all the possible realizations of the

uncertain parameters, provide a lowerbound on the optimal solution of 2RoGAP. .

LetW be the set of all the feasible solutions to the MILP recourse problem RL(x,Γ).

Since the objective function is linear, the optimal solution is an extreme point of

conv(W) which is the convex hull for the set of feasible solutions. This allows us to

formulate the two-stage robust generalized-assignment master problem (2RoGap−m)

as follows:

min
m∑
i=1

n∑
j=1

cijxij + θ (4.10a)

s.t.

θ ≥
m∑
i=1

n∑
j=1

rijxijπ
k
i +

m∑
i=1

n∑
j=1

r̂ijxijπ
k
i z

k
ij −

m∑
i=1

Riπ
k
i k = 1, .., K (4.10b)

m∑
i=1

xij = 1 ∀j (4.10c)

xij ∈ {0, 1}, θ ≥ 0 ∀i, j, k (4.10d)

where (pkij, π
k
i , z

k
ij) and pkij = πki z

k
ij with k = 1, ..., K are the extreme points of the

conv(W) for fixed values of first-stage decisions x, y and Γ. Therefore, we have an

optimization problem with a linear objective function and an exponential number of

constraints. On the other hand, in order to obtain an extreme point of conv(W) we

103



need to solve RL(x,Γ) which is an MILP that in general, is an NP-hard problem and

requires Branch-and-Bound based(B&B) method to obtain a solution.

Now, to employ Kelley’s algorithm, the general idea is to iteratively generate new

extreme points of conv(W) by solving the recourse problem RL(x,Γ), and add them

to the master problem (2RoGAP −m) until the optimality conditions are satisfied.

The optimal value for 2RoGAP −m is a lower bound for the the optimal value

of the robust problem (2RoGAP), since it only contains a subset of the constraints

(cuts). Therefore, as the constraints are added to the master problem, the value

for the lower bound, L, is going to be non decreasing. As for the upper bound, at

each iteration k, since the solution vector (xk, πk, pk) is feasible for 2RoGAP − m,

the upper bound value U , is the minimum solution value over all generated solutions

up to iteration k. In addition, as the number of extreme points to the conv(W) is

bounded (although it has exponential number of extreme points), the algorithm stops

within a finite number of iterations.

We rely on the strength of the formulation and the efficiency of the solver in

handling the second-stage problem. The cutting-plane algorithm for solving 2RoGAP

is presented by Algorithm 2.

As it can be seen in Algorithm 2, at each iteration the second stage problem

RL(x,Γ), which is an MILP, has to be solved to optimality in order to obtain an

extreme point of the convex hull of its feasible region. We can explore the structural

properties of the second-stage problem R(x,Γ) in order to increase the efficiency of

the algorithm.

Structure of the objective and valid inequalities Considering the objective

function (4.7a) has the maximization of
∑m

i=1

[∑n
j=1(rij + zij r̂ij)xij −Ri

]
πi, two dif-

ferent conditions can happen for each choice of variable x which is captured by the

following proposition.
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Algorithm 2: Kelly’s Algorithm for 2RoGAP

Data: c,Γ,m, n, b, ε

Initialization;

define 2RoGAP −m containing one extreme point (p0, π0) such that

p0 = π0 = 0;

set L← 0, U ← +∞, k ← 1 and go to Master routine;

Master: Solve master problem 2RoGAP −m;

2RoGAP −m : min
m∑
i=1

n∑
j=1

cijxij + θ

subject to

θ ≥
m∑
i=1

n∑
j=1

rijxijπ
l
i +

m∑
i=1

n∑
j=1

r̂ijxijp
l
ij −

m∑
i=1

Riπ
l
i l = 1, ..., k − 1

m∑
i=1

xij = 1 ∀j

xij ∈ {0, 1}, θ ≥ 0 ∀i, b, t

and have (xk, θk) as its optimal solution;

Update L←
∑m

i=1

∑n
j=1 cijx

k
ij + θk and go to Recourse routine;

Recourse: For fixed values xk, solve the recourse problem RL(xk,Γ) and have

(pk, πk, zk) as its optimal solution;

Set U ← min{U,
∑m

i=1

∑n
j=1 cijx

k
ij +

∑m
i=1

∑n
j=1 rijxijπ

k
i +

∑m
i=1

∑n
j=1 r̂ijxijp

k
ij −∑m

i=1Riπ
k
i };

if U − L ≤ ε then
(xk, θk) is the optimal solution for 2RoGAP;

else
go to Add-Cut routine;

end

Add-Cut: Add the following constraint using (pk, πk, zk) obtained from
Recourse step:

θ ≥
m∑
i=1

n∑
j=1

rijxijπ
k
i +

m∑
i=1

n∑
j=1

r̂ijxijπ
k
i z

k
ij −

m∑
i=1

Riπ
k
i

to the master problem 2RoGAP −m and k ← k+ 1 and go to Master Routine;
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Proposition 4.3.1. For any i = 1, ..,m in the second-stage optimal solution, πi ∈

{0, bi}.

Proof. Due to the structure of the objective function one of the following cases is true

for any πi, i = 1, ..,m:

• The case that for a given resource i and assignment vector x and deviation

vector z,
∑n

j=1(rij + r̂ijzij)xij − Ri > 0. In this case, due to maximization of

the objective, πi will assume its upperbound bi.

• The case that for a given resource i and assignment x and deviation vector

z,
∑n

j=1(rij + r̂ijzij)xij − Ri ≤ 0. This means that given the assignment and

the deviations for resource consumption parameters, resource consumption will

not exceed the available capacity Ri. In this case, due to maximization of the

objective, πi = 0.

The second-stage problem, R(x,Γ), seeks to maximize the cost of not having

enough capacity for each resource, considering that the number of jobs that can as-

sume their maximum resource-consumption parameter is bounded by the budget of

uncertainty, Γ. Note that Proposition 4.2.1 states that at optimality, each resource

consumption parameter can only deviate fully to its maximum value and partial

deviations potentially produce sub-optimal solutions. In other words, the second-

stage problem is to find a subset of assigned jobs, Js, such that |Js| ≤ Γ, and their

resource consumption maximizes the cost of not having enough resources. The fol-

lowing proposition presents the valid inequalities for the second-stage problem in the

forms of optimality-cuts. These cuts are used to cut off sub-optimal solutions from

the feasible region of the problem.
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Proposition 4.3.2. For any given pair (j′, j) ∈ J × J and resource i ∈ I, such that

xij′ = xij = 1 and r̂ij′ ≤ r̂ij, the inequality zij′ ≤ zij is a valid inequality for the

optimal solution to the second-stage problem.

Proof. Consider the simple case of single resource and two jobs j = 1, 2, and the

budget of uncertainty Γ = 1. Assume r̂1 ≤ r̂2 and r1 + r2 ≥ R, i.e., there is lack of

resource. Obviously, both jobs are assigned to the only existing resource and since

there is lack of resource we have π = b. The second-stage problem can be written as

follows:

max [(r1 + r̂1z1) + (r2 + r̂2z2)−R] π

subject to

z1 + z2 ≤ Γ

0 ≤ π ≤ b

z1, z2 ∈ {0, 1}

in which the objective function can be rewritten as [r1 + r2 + r̂1z1 + r̂2z2 −R] π. Since

Γr = 1 and r̂1 ≤ r̂2, the inequality f1 = [r1 + r2 + r̂1 −R]b < [r1 + r2 + r̂2 −R]b = f2

holds. f1 is the objective value when z1 = 1 and z2 = 0, while f2 is the objective value

for z1 = 0, z2 = 1. It can be seen that inequality z1 ≤ z2 is a valid optimality-cut for

this problem since it does remove the sub-optimal solution (z1 = 1, z2 = 0) and does

not cut the optimal value (z1 = 0, z2 = 1).

In order to prove the proposition, we need to show that the feasible solutions in

which the inequality does not hold, are not optimal. Consider the set Ji as the set of

jobs that are assigned to the resource i = 1, ..,m, in a given feasible solution (x, z, π).

Consider (j1, j2) ∈ Ji such that r̂ij1 ≤ r̂ij2 and zij1 = 1 and zij2 = 0, Thus, zij1 � zij2 .
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The proposed inequality does not hold for this feasible solution. The value of the ob-

jective function can be written as f1 =
∑m

i=1

∑
j∈Ji\{j1,j2}

[
(rij + t̂ijzij) + r̂ij1 −Ri

]
πi.

Since r̂ij1 ≤ r̂ij2 , the inequality f1 ≤
∑m

i=1

∑
j∈Ji\{j1,j2}

[
(rij + t̂ijzij) + r̂ij2 −Ri

]
πi =

f2 holds. f2 is the objective value for a feasible solution (x, z′, π) in which all the val-

ues for z′ is equal to the components of z with the exception of z′ij1 = 0 and z′ij2 = 1.

Clearly this solution is still feasible since the sum of all deviations has not changed.

However, this new solution improves the objective function and therefore zij1 ≤ zij2

is valid inequality for the optimal solution.

It can be seen from the Proposition 4.3.2, that the cuts should be added to the

second-stage problem dynamically. This means that after each time of solving the

master problem 2RoGAP −m, we need to identify the set of jobs that are assigned

to each resource i = 1, ..,m, namely Ji, based on the assignment decision variables

x. The jobs assigned to resource i need to be sorted based on the value for r̂ij, and

the valid inequality can be added to increase the efficiency of the solution of second-

stage problem. At the next iteration, upon obtaining new solution for x, cuts that

were added in the previous iteration have to be removed and new cuts based on the

parameters have to be generated. This process can be tedious and in each iteration

we need to sort the values for the deviation parameters that are assigned to each

resource, which can adversely affect the performance of our algorithm. The following

proposition introduces valid inequalities for the optimal solution of the second-stage

problem that can be introduced in the original formulation of RL(x,Γ).

Proposition 4.3.3. For any given pair (j′, j) ∈ J × J and resource i ∈ I, such that

r̂ij′ ≤ r̂ij, the inequality zij′ ≤ zij + (1 − xij) is a valid inequality for the optimal

solution to the second-stage problem.

Proof. For a given resource i and pair of jobs (j′, j) such that r̂ij′ ≤ r̂ij, one of the

following cases is true:
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• Case 1- If both jobs are assigned to resource i which means xij′ = xij = 1. In

this case the proposed inequality is reduced to zij′ ≤ zij.

• Case 2- If j′ is assigned to i while job j is not assigned to i, we have xij′ =

1, xij = 0. In this case the proposed inequality reduces to zij′ ≤ 1, which is true

for all z.

• Case 3- If j′ is not assigned to i while job j is assigned to i, we have xij′ =

0, xij = 1. Based on the formulation of the second-stage problem, zij′ ≤ xij′ ,

which fixes the value of zoj′ to 0. The proposed inequality reduces to zij ≥ 0,

which is true for all z.

Proposition 4.3.3 can be used to reformulate the second-stage problem to include

the optimality cuts in the original formulation. This formulation requires a slightly

different definition on the problem parameters. In order to present the formulation,

we need to sort the deviation parameter r̂ij for each resource i = 1, ..,m in ascending
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order. The formulation is as follows:

max
m∑
i=1

n∑
j=1

rijxijπi +
m∑
i=1

n∑
j=1

r̂ijxijpij −
m∑
i=1

Riπi (4.11a)

s.t.

m∑
i=1

n∑
j=1

zij ≤ Γr (4.11b)

zij ≤ xij ∀i, j (4.11c)

zij ≤ zik + (1− xik) ∀i, j, k > j (4.11d)

0 ≤ πi ≤ bi ∀i (4.11e)

pij ≤ πi ∀i, j (4.11f)

pij ≤ bizij ∀i, j (4.11g)

pij ≥ 0, zij ∈ {0, 1} ∀i, j (4.11h)

in which the only difference is adding constraint (4.11d) which is derived in Proposi-

tion 4.3.3. Note that the new formulation hasm

[
n(n− 1)

2

]
more constraints than the

original second-stage problem RL(x,Γ). The hope is that by adding these constraints,

the second-stage problem solution will not require large number of branch-and-bound

iterations and can be more effectively handled especially when we are using a stan-

dard branch-and-bound algorithm. For example, in problems with the introduced

optimality cuts, at each node of the branch-and-bound tree, fixing any zij variable

will fix all other variables zij′ such that xij′ = 1.
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4.3.1 Column-&-Constraint Generation (C&CG) Method

In this section we present the C&CG method introduced by [Zeng and Zhao, 2013]

to solve the 2RoGAP. The idea behind the C&CG method stems from the fact that

any robust optimization problem can be formulated as a large-scale optimization

problem. Consider set Z as the set of all the possible realizations for the variable z for

resource consumption from the uncertainty set Ur. The two-stage robust generalized

assignment problem can be formulated as follows:

min
m∑
i=1

n∑
j=1

cijxij + θ (4.12a)

s.t.

m∑
i=1

xij = 1 ∀j (4.12b)

n∑
j=1

(rij + zkij r̂ij)xij ≤ Ri + oki ∀i, k (4.12c)

θ ≥
m∑
i=1

bio
k
i ∀k (4.12d)

xij ∈ {0, 1}, θ, oki ≥ 0. ∀i, j, k (4.12e)

The objective function (4.12a) aims to minimize the assignment cost plus the

worst-case overage costs. The first constraints (4.12b) make sure each job is assigned

to a machine. The second constraints (4.12c) makes sure that for each resource i, and

under specific scenario k the resource consumed is below the available amount or the

overage is captured. Note that 0 ≤ zkij ≤ 1 will determine what value for resource

consumption for job j on resource i, which is bounded by rij and rij + r̂ij. The third

constraints (4.12d) capture the overage cost under each scenario. The last constraints
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Algorithm 3: C&CG Algorithm for 2RoGAP

Data: c,Γ,m, n, b, ε

Initialization;

define 2RoGAP − CCG containing one extreme point (p0, π0) such that

p0 = π0 = 0;

set L← 0, U ← +∞, K = {1}, iter ← 1, zk = 0 and go to Master routine;

Master: Solve master problem 2RoGAP − CCG;

min
m∑
i=1

n∑
j=1

cijxij + θ

s.t.

m∑
i=1

xij = 1 ∀j

xij ∈ {0, 1}, θ ≥ 0 ∀i, j, k

and have (xl, θl) as its optimal solution;

Update L←
∑m

i=1

∑n
j=1 cijx

l
ij + θl and go to Recourse routine;

Recourse: For fixed values xl, solve the recourse problem (4.8a)-(4.8g)

RL(xl,Γ) and have (zl, pl, πl) as its optimal solution;

Set U ←
min{U,

∑m
i=1

∑n
j=1 cijx

l
ij+
∑m

i=1

∑n
j=1 rijx

l
ijπ

l
i+
∑m

i=1

∑n
j=1 r̂ijx

l
ijp

l
ij−
∑m

i=1Riπ
l
i};

if U − L ≤ ε then
(xl, θl) is the optimal solution for 2RoGAP;

else
go to Add Columns-and-Constraints routine;

end

Add Columns-and-Constraints: Add variables oki and constraints
n∑
j=1

(rij + zlij r̂ij)xij ≤ Ri + oki ∀i

θ ≥
m∑
i=1

bio
k
i

oki ≥ 0 ∀i

to the master problem 2RoGAP −m, set k ← k + 1 and go to Master Routine;
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(4.12e), define the domain for decision variables.

This is a large-scale optimization problem since the number of possible realizations

for the vectors of deviations is very large. Therefore, a two-stage formulation is

proposed where the second-stage acts as the scenario-generation step and provide

upper bounds on the solution. The main difference between the cutting-plane (CP)

methods such as the L-shaped method and C&CG is the form of the master problem.

In CP methods, as shown in the previous section, at each iteration one constraint

in the form of the objective function of the dual of the second-stage is added to

the master problem. In C&CG, after realization of uncertain parameters, a set of

constraints in the form of the original deterministic formulation of the problem is

added to the master. Algorithm 3 presents the steps required to solve this problem.

Stronger Constraints for C&CG

As described previously, when the assignment of jobs to resources is known, the

second-stage problem aims to find out which jobs have deviations, rather than finding

which job-resource pair has a deviations. Thus, we can redefine the second-stage to

include deviation variables that only depend on jobs.

In 2RoGAP, the realization of uncertainty depends on the assignment of the job

to the resources. In other words, the second-stage finds the worst case deviations

in resource consumption for specific job-resource assignments, and as the assignment

changes, the worst case deviations may change. This definition of uncertainty is also

used in [Denton et al., 2010] to model the length of the surgery blocks assigned to

different operating rooms.

We previously showed that for a given assignment, the problem of finding the

worst case deviations for job-resource pairs boils down to finding out which jobs are

deviating. Here, we claim that the scenario that only contains the deviations for jobs

regardless of the resources they are assigned to is a valid scenario and creates a valid
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set of constraints, that are stronger than the original formulation.

Proposition 4.3.4. Assume zl is the optimal solution to the second-stage problem

(4.9a)-(4.9f) for specific assignment xl. Constraints (4.15) are valid and stronger for

the master problem than (4.12c)

n∑
j=1

(rij + zlj r̂ij)xij ≤ Ri + oki ∀i. (4.15)

Proof. First, we show that these constraints capture the worst-case cost for the as-

signment xl that resulted in the deviations. In other words, if instead of (4.9a)-(4.9f),

we solved (4.8a)-(4.8g) and obtained optimal zlij for each job-resource pair, we have:

n∑
j=1

(rij + zlj r̂ij)x
l
ij =

n∑
j=1

(rij + zlij r̂ij)x
l
ij.

This is true because zlij = zljx
l
ij. In other words, for the assignment xlij = 1 the

resource consumptions are calculated the same. Note that if job j has a deviations

then zlj = 1 and zlij = 1. Therefore, the resource consumption for resource i, given

that assignment, is correctly calculated.

Next, we need to show that these constraints do not impose overage costs incor-

rectly. Thus we need to prove that no matter the assignment, the proposed set of

deviating jobs is a valid scenario. Note that no matter what the assignment is, all the

jobs are assigned to resources and the uncertainty set is restricted by the value of the

budget of uncertainty Γ which restricts the sum of normalized deviations in resource

consumption for the assigned jobs. Therefore, the scenario zlj,∀j does not violate the

budget of uncertainty.

For any other assignment x′, the zljx
′
ij creates a unique job-resource pair deviation
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(z′ij = zljx
′
ij) that still satisfies the definition of a valid scenario. If this scenario z′ij is

the worst case scenario for x′ij, it imposes the overage costs correctly. In the case this

is not the worst case scenario, the imposed cost is less than the worst case. Thus, the

second-stage will produce a different scenario z′′j to calculate the worst case overage

costs and be added to the master.

The scenario zj,∀j is the aggregated version of zij,∀i, j since zj =
∑m

i=1 zij. Thus

it includes the overage costs (not necessarily the worst case costs) for all the assign-

ments where a certain set of jobs are deviating.

To clarify on the strength of the constraints, consider the case of assigning jobs to

resources where Γ = n. This means that all the jobs will deviate to their worst case

resource consumption and r̃ij = rij+ r̂ij ∀i, j, and the problem becomes deterministic.

However, if we choose to solve the problem using job-resource deviation scenarios

zij (which will have n ones and the rest zero), the constraints only consider the

overcost for jobs deviating from their nominal resource consumption in a specific

assignment (in a given iteration). Therefore, the master problem finds a different

assignment where the values for deviation zij = 0 which does not impose overage

costs. However, we already know that no matter what the assignments are, the

worst-case scenario is when all of the jobs jobs deviate to their maximum resource

consumption. Aggregated scenario zj,∀j is a vector of ones of size n, and imposes the

deviation in all jobs no matter what job-resource assignment is chosen. Therefore,

the constraints create stronger lower bounds to the master by combining multiple

scenarios into one aggregated scenario that is independent of the assignment.

Similar to the C&CG, we can construct stronger inequalities for the CP method

in order to improve the computational performance of Algorithm 2. To do so, at each

iteration k we solve the second stage problem with variables zj. We then replace the

115



constraints (4.10b) with the following constraints in the master problem:

θ ≥
m∑
i=1

n∑
j=1

rijxijπ
k
i +

m∑
i=1

n∑
j=1

r̂ijxijπ
k
i z

k
j −

m∑
i=1

Riπ
k
i .

In the next section we present another formulation based on [Denton et al., 2010],

which presented a formulation for two-stage robust extensible bin-packing with an

application to assigning surgery blocks to operating rooms. We follow their steps and

adapt their formulation to two-stage robust GAP.

4.3.2 Previous Robust Extensible Bin-Packing Model

The steps taken in this section to derive the deterministic equivalent formulation for

the two-stage robust GAP closely follow the steps presented in [Denton et al., 2010],

and the model is named DMBH, after the authors (Denton-Miller-Balasubramanian-

Huschka) of the paper.

Consider the DGAP (4.1a)-(4.1d) in which the resource consumption coefficient

for job-resource pairs belongs to the following uncertainty set

U(Γ) = {r̃ ⊂ Rm×n|r̃ij ∈ [rij, rij + r̂ij],
∑

(i,j):xij=1

r̃ij − rij
r̂ij

≤ Γ ∀i, j} (4.16)

which is similar to the original uncertainty set defined in our previous formulations.

The total deviation from the nominal resource consumption for the job-resource pairs

is restricted to be less than or equal to the budget Γ. The robust problem can be
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formulated as follows:

min
m∑
i=1

n∑
j=1

cijxij +R(x,U(Γ)) (4.17a)

s.t.

m∑
i=1

xij = 1 ∀j (4.17b)

xij ∈ {0, 1} ∀i, j (4.17c)

in which the recourse can be formulated as :

R(x,U(Γ)) = max
m∑
i=1

bi max{0,
∑

(i,j):xij=1

r̃ij −Ri} (4.18a)

s.t.

∑
(i,j):xij=1

r̃ij − rij
r̂ij

≤ Γ (4.18b)

rij ≤ r̃ij ≤ rij + r̂ij. ∀i, j (4.18c)

As it can be seen in the first stage problem (4.17a)-(4.17c), we aim to minimize

the assignment cost and recourse cost with the restriction that each job j should

be assigned to a resource i. The recourse problem R(x,U(Γ)) finds the worst case

overage cost over all resources for a given assignment x and uncertainty budget Γ. The

decisions are the values for the resource consumption coefficients which are bounded

by their nominal and worst case values. In addition, the total normalized deviation

from the nominal job-resource resource consumption cannot exceed the budget of

uncertainty Γ.
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This formulation is very similar to the previously presented formulations earlier

this chapter. However, we aim to reformulate this problem into a single optimization

problem that does not require a CP or C&CG type solution methodology and can be

solved directly using a solver, as a single optimization problem.

In the objective of the recourse problem, either having or not having overage in a

resource can happen. Thus we can reformulate the recourse problem as follows:

max
m∑
i=1

bi(
n∑
j=1

r̃ij −Ri)zi (4.19a)

s.t.

m∑
i=1

n∑
j=1

r̃ij − rijxijzi
r̂ij

≤ Γ (4.19b)

rijxijzi ≤ r̃ij ≤ (rij + r̂ij)xijzi ∀i, j (4.19c)

zi ∈ {0, 1}. ∀i (4.19d)

Note that in this formulation variables zi ∀i are different than the previous defi-

nition. Note that if there is overage for resource i, then zi = 1 to include the overage

cost for that resource in the objective. In addition, from constraints (4.19c), if there

is an overage, the resource consumption coefficient will be bounded to its nominal and

worst case values, otherwise it will be fixed to zero and will not affect the objective

function or budget of uncertainty constraint.

Considering the fact that when zi = 1, r̃ij = 0 holds, we can linearize the objective

118



and formulate the recourse as the following optimization:

max
m∑
i=1

n∑
j=1

bir̃ij −
m∑
i=1

biRizi (4.20a)

s.t.

(4.19b)− (4.19d).

Following the same steps presented by [Denton et al., 2010], we make the change

of variable

∆ij =
r̃ij − rijxijzi

r̂ij
.

With the new variable definition, the recourse problem can be reformulated as

follows:

max
m∑
i=1

n∑
j=1

bir̂ij∆ij +
m∑
i=1

n∑
j=1

birijxijzi −
m∑
i=1

biRizi (4.21a)

s.t.

m∑
i=1

n∑
j=1

∆ij ≤ Γ (4.21b)

0 ≤ ∆ij ≤ xijzi ∀i, j (4.21c)

zi ∈ {0, 1}. ∀i (4.21d)

Theorem 4.3.5. Proposition 6 in [Denton et al., 2010]: The polyhedron X = {(∆, z) :

(4.21b)− (4.21c); 0 ≤ zi ≤ 1,∀i} has integer extreme points.

Proof. See the proof of Proposition 6 in [Denton et al., 2010].
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In light of the theorem 4.3.5, the authors employ strong duality to the linear

relaxation of (4.21a)-(4.21d) to reformulate the recourse as a minimization problem

and integrate it into the first stage as a single minimization problem as follows:

min
m∑
i=1

n∑
j=1

cijxij + Γα +
m∑
i=1

γi (4.22a)

s.t.

m∑
i=1

xij = 1 (4.22b)

α + βij ≥ bir̂ij ∀i, j (4.22c)

−
n∑
j=1

xijβij + γi ≥ −bi(Ri −
n∑
j=1

rijxij) ∀i (4.22d)

xij ∈ {0, 1}, α, βij, γi ≥ 0. ∀i, j (4.22e)

Note that α is the dual variable corresponding to the uncertainty budget constraint

(4.21b). βij defines the dual variables corresponding to the constraints (4.21c). Fi-

nally, γi defines the dual variables corresponding to the linear relaxation of binary

constraints (4.21d). In addition there is a nonlinear term in the constraints (4.22d).

[Denton et al., 2010] propose a reformulation to replace xijβij with a new variable

120



κij to obtain the following formulation:

min
m∑
i=1

n∑
j=1

cijxij + Γα +
m∑
i=1

γi (4.23a)

s.t.

m∑
i=1

xij = 1 (4.23b)

α + κij ≥ bir̂ijxij ∀i, j (4.23c)

n∑
j=1

κij ≤ bi(Ri −
n∑
j=1

rijxij) + γi ∀i (4.23d)

xij ∈ {0, 1}, α, κij, γi ≥ 0 ∀i, j (4.23e)

which produces solutions with the same objective value as the formulation (4.22a)-

(4.22e). To see the proof, refer to Proposition 7 in [Denton et al., 2010].

Here we challenge the proposed formulation (DMBH), specifically Proposition 6

in [Denton et al., 2010].

Proposition 4.3.6. Theorem 4.3.5 is not correct. That is, not all the extreme points

of the polyhedron X = {(∆, z) : (4.21b)− (4.21c); 0 ≤ zi ≤ 1, ∀i} are integer.

Proof. We provide a simple example where this polyhedron has a non integer extreme

point. Consider the simple case where there are only two jobs (j = 2) and one

resource (i = 1). Therefore, we can drop the index for resource and keep the index

for jobs. Assume the assignment where both jobs are assigned to the resource, thus

x1 = x2 = 1. In addition, consider the case where the budget of uncertainty Γ = 1.

The feasible region for the linear relaxation of the second-stage problem (4.21a)-

(4.21d) is captured by the following equations after adding the slack variables:
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∆1 +∆2 +s1 = 1
∆1 −z +s2 = 0

∆2 −z +s3 = 0
z +s4 = 1

If we choose the set of basic variables to be the set {∆1,∆2, z, s4} and solve for

the system of linear equations, the basic feasible solutions {∆1 = 0.5,∆2 = 0.5, z =

0.5, s4 = 0.5} is obtained which is clearly a non integer extreme point for the feasible

region, which can result in over-estimation of the recourse costs and creation of invalid

realizations of uncertain parameters. Figure 4.1 represents the feasible region for our

example, which clearly confirms the existence of a non integer extreme point.

To clarify more on the Proposition 6 in [Denton et al., 2010], we also explain

why their proof is not correct. First, we present the proof of the Theorem 4.3.5, as

explained in the paper:

“First, observe that X ′ = {(∆, z) : (4.21c), 0 ≤ zi ≤ 1,∀i} is an integral poly-

hedron, because the constraint matrix is totally unimodular ((4.21c) has exactly one

coefficient of 1 and one coefficient of −1 in each row, and the bounds on zi define an

identity matrix). Next, observe that X ′′ = {(∆, z) ∈ X ′ :
∑

(i,j) ∆ij = Γ} is a subset

of X (defined in the Theorem 4.3.5) in which all extreme points are integer. Finally,

observe that all extreme points of X are either extreme points of X ′′, or extreme points

of X ′ in which (4.21b) is satisfied by strict inequality. ”

The main issue comes from the fact that while both X ′ and XΓ = {(∆, z) :∑
(i,j) ∆ij ≤ Γ, 0 ≤ ∆ij ≤ 1} have integer extreme points, the intersection of the two

polytope can create other extreme points that do not belong to the extreme points

of either sets. In other words, assuming that X ′′ , the intersection of the hyperplane

for the budget of uncertainty with X ′, has all integer extreme points is incorrect.
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Figure 4.1: Feasible region for problem with two jobs and one resource and Γ = 1.
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Figure 4.2: Intersection of the sets X ′ and XΓ in our example.

Figure 4.2 shows the intersection of the sets X ′ and XΓ for our example, and how

each set has integer extreme points independently, while their intersection does not.

Note that [Ardestani-Jaafari and Delage, 2016] has provided a counter-argument by

providing an example, in their report, to point out the error in [Denton et al., 2010].

Our findings are independent of their work.

Implications - As shown in Proposition 4.3.6, the second stage formulation (4.21a)-

(4.21d) may not have an integer optimal solution for certain assignments. Thus, its

dual will overestimate the overage costs in the objective for those assignments. This

can cause some assignments that may be optimal to become infeasible in the formula-

tion (4.23a)-(4.23e). Therefore, there can be instances where the DMBH formulation

will provide a solution that is not, in fact, optimal. It is important to note that solu-

tions from the DMBH formulation are, in fact, feasible assignments to the two-stage
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Table 4.1: Comparison of results between DMBH and C&CG methods for an instance
m = 5, n = 15.

Γ
DMBH C&CG

Objective Recourse Run Time (s) Iterations Objective Recourse Run Time (s)
0 240 0 0.016 2 240 0 0.11
1 281.33 12.33 0.016 5 258 0 0.423
2 292.33 3.33 0.031 7 279 0 0.451
3 294 5 0.031 10 294 5 0.69
4 294 5 0.054 8 294 5 0.633
5 294 5 0.031 6 294 5 0.364
6 294 5 0.016 7 294 5 0.451
7 294 5 0.016 5 294 5 0.306
8 294 5 0.031 4 294 5 0.234
9 294 5 0.016 4 294 5 0.23
10 294 5 0.016 4 294 5 0.232
11 294 5 0.016 4 294 5 0.234
12 294 5 0.031 4 294 5 0.23
13 294 5 0.016 4 294 5 0.228
14 294 5 0.016 3 294 5 0.168
15 294 5 0.016 2 294 5 0.109

robust GAP. Table 4.1 compares the results for a randomly generated instance with

m = 5 and n = 15 that is solved by both DMBH and C&CG method. It can be

seen in this instance, for the cases where Γ ∈ {1, 2}, the objective value and recourse

costs from DMBH are greater than those produced by the C&CG method. These are

the cases where the DMBH provides sub-optimal assignments and overestimates the

recourse costs. On the other hand, it can be seen that DMBH offers superior running

time as compared to the iterative C&CG method, and in many cases provides the

true optimal solution.

Since the DMBH formulation tends to provide feasible solutions in a non iterative

way (unlike C&CG and CP methods), it converges to a good feasible solution relatively

quickly. We can take advantage of this formulation and the feasible solution provided

by the DMBH formulation to establish high quality upper-bounds in our proposed

iterative methods.

125



A Proposed Improved Formulation

As previously discussed, the linear relaxation of the formulation (4.21a)-(4.21d) does

not necessarily produce integer solutions, thus can lead to sub-optimal solutions as

well as an over-estimation of the recourse costs. On the other hand, the final for-

mulation (4.23a)-(4.23e) offers a better computational performance since, unlike the

iterative methods, it does not require solving the master problem for each iteration.

It is of great interest to improve the formulation (4.21a)-(4.21d) without increas-

ing its complexity so its relaxation has a smaller integrality gap. This can improve

the resulting robust formulation to provide solutions that are closer to the optimal

solution.

Based on the structure of the feasible space (4.19b)-(4.21d), we can add a set of

constraints that are valid for the integer problem and can strengthen the LP relaxation

of the feasible set.

Proposition 4.3.7. Constraints of type

n∑
j=1

∆ij ≤ Γzi ∀i (4.24a)

are valid inequalities for a set defined by the constraints (4.19b)-(4.21d).

Proof. First, we show that inequalities (4.24a) do not remove any feasible integer

solutions. Note that if zi = 0 then ∆ij = 0 ∀j due to (4.21c). Therefore, (4.24a) is

not affecting that solution. If zi = 1, then (4.24a) is still a valid constraint because

it is not more restrictive than (4.21b).

Next, we show that inequalities (4.24a) do remove some fractional solutions, thus

improving the linear relaxation of (4.19a)-(4.21d). As previously showen in our

counter example, the solution ∆1 = ∆2 = z = 0.5 is a feasible solution to the

linear relaxation of (4.19b)-(4.21d) when Γ = 1. Inequality ∆1 + ∆2 ≤ z does not

126



hold for this solution. Thus this inequality removes a fractional solution and improves

the integrality gap.

The recourse problem (4.21a)-(4.21d) can be formulated by adding the constraints

(4.24a). Let νi,∀i be the corresponding dual variables for these constraints. Taking

the dual of the linear relaxation of this formulation and substituting it with the first

stage, and the linearization provides the following formulation:

min
m∑
i=1

n∑
j=1

cijxij + Γα +
m∑
i=1

γi (4.25a)

s.t.

m∑
i=1

xij = 1 (4.25b)

α + νi + κij ≥ bir̂ijxij ∀i, j (4.25c)

Γνi +
n∑
j=1

κij ≤ bi(Ri −
n∑
j=1

rijxij) + γi ∀i (4.25d)

xij ∈ {0, 1}, α, κij, γi, νi ≥ 0. ∀i, j (4.25e)

Note that the linearization of the variables βijxij = κij remains the same and holds

for the improved formulation as discussed in [Denton et al., 2010]. This formulation

offers stronger upperbounds on the true optimal solution of the problem compared to

the original DMBH formulation.

It is important to note that solving the same instance addressed in Table 4.1 using

our improved version of DMBH yields the optimal solution for all values of Γ. Table

4.2 shows the results for an instance m = 5 and n = 15 that is solved by the original

DMBH formulation, our improved version, and strong C&CG version to compare the

quality of the solutions generated. This instance is the same instance as the previous
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Table 4.2: Comparing original DMBH formulation with improved DMBH

Γ
DMBH Original DMBH Improved

Objective Recourse Time (s) Gap (%) Objective Recourse Time (s) Gap (%)
0 441 85 0.034 0 441 85 0.021 0
1 635 295 0.085 19.361 532 176 0.028 0
2 701 361 0.154 2.187 686 309 0.096 0
3 750.667 344.667 0.152 0.223 750.667 344.667 0.183 0.223
4 788 382 0.239 0.254 788 382 0.36 0.254
5 822 416 0.413 0 822 416 0.537 0
6 840 449 0.534 0 840 449 0.496 0
7 854 463 0.486 0 854 463 0.48 0
8 868 477 0.669 0 868 477 0.517 0
9 872 494 0.333 0 872 494 0.342 0
10 872 494 0.359 0 872 494 0.357 0
11 872 494 0.218 0 872 494 0.312 0
12 872 494 0.156 0 872 494 0.156 0
13 872 494 0.156 0 872 494 0.144 0
14 872 494 0.133 0 872 494 0.125 0
15 872 494 0.097 0 872 494 0.071 0

one with the only difference of lowering the capacity for resources.

It can be seen in the Table 4.2 that the original DMBH formulation fails to find the

optimal solution for Γ = 1, 2, 3, 4 with the largest gap of over 19% form the optimal

solution (obtained by C&CG) for the case of Γ = 1. Improved DMBH does not find

the optimal solution for Γ = 3, 4 with gaps less than 0.5% and performs similar to

DMBH. However, for Γ = 1, 2, it yields the optimal solution while original DMBH

failed.

We make no claims about the improved formulation to give exact optimal solution,

but we believe it performs at least as good as the original DMBH formulation with

the possibility of great improvement in solution quality.
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4.3.3 Computational Results

Instance Generation

In order to test our proposed algorithms, random instances are generated. For a given

number of resources m, and jobs n, the following data are generated:

• Cost: The assignment cost of a resource i to job j is generated from an integer

uniform distribution Unif(1, 100).

• Nominal resource consumption: The nominal value for resource consump-

tion for each resource-job pair is chosen randomly from Unif(50, 100) distribu-

tion.

• Deviation in resource consumption: The worst-case deviation from the

nominal resource consumption for each resource-job pair is randomly selected

from a Unif(10, 40) distribution.

• Overage cost: The cost of ogoing over capacity for each resource is randomly

selected from a Unif(1, 20) distribution.

• Resource capacity: The capacity for each resource is calculated as a function

of d and d̂ and the number of jobs and machines such that for large values of Γ

the chances of being able to avoid going over the capacity is very small. Here,

is the general form to calculate the capacity for each resource:

Ri =

∑m
i=1

∑n
j=1(dij + d̂ij)

f(m,n)
∀i

in which there are multiple choices for the function f and two of the forms that

were used are f(m,n) = cmn and f(m) = cm2, where c is a constant. The
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capacity of all resources are equal to each other. This is to create cases where

increasing the value of Γ at some point will cause going over capacity.

As discussed before, we presented solution methods based on a cutting-plane (CP)

algorithm and the column-and-constraint generation (C&CG) algorithm. For each

method, we proposed a variant that employs stronger cuts by defining the uncertainty

as a resource-independent deviation in the resource requirement coefficient. All the

tests are run on a Windows machine with an Intel Core i5, 3.20GHz CPU, and 4 GB

of RAM.

To show how the CP method and weak and strong versions of the C&CG compare,

we solved a randomly generated problem with m = 5 and n = 10 for different values

of Γ = 0, .., n using all three methods. Figure 4.4 shows how each method compares

in terms of the number of iterations required to reach to the optimal solution for

different values of Γ. While both methods converge to the same optimal solution for

each value of Γ, the C&CG method that employs stronger constraints has a significant

advantage in convergence over the weak version. Figure 4.3 shows the comparison

between the run times for methods to reach optimality for each value of Γ. It can be

seen that methods that employ the strong constraints have significant advantage over

the variants with the weaker constraints. Figure 4.5 compares how the optimality

gap for the four methods decreases as the number of iterations increases for the case

where Γ = 6.

Our tests show similar trends for different problem sizes. It is important to note

that there is a trade-off between using CP and C&CG method. While C&CG method

tends to improve the convergence by adding multiple constraints at each iteration,

the size of the master problem grows faster compared to the CP method. This can

increase the time required to perform each iteration. To test this, we generated a

random instance with m = 5 and n = 15 and solved it using the strong versions of CP

and C&CG. For the case when Γ = 5, CP takes 16.37 seconds and 42 iterations, while
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Figure 4.3: Iteration comparison between the weak and strong versions of CP and
C&CG methods (Iteration count is the value of the counter k in the algorithm).

C&CG solved the same instance in6.78 seconds and 21 iterations. Figure 4.6 shows

the reduction of optimality gap with respect to the running time of the algorithms.

It shows C&CG has superior convergence than CP in this instance.

Since our results show that C&CG method has a better performance, we conduct

the rest of the computational test using the strong version of the C&CG method.

It is important to note that after solving the robust GAP for a specific value

of Γ, the optimization finds the best allocation of jobs to resources to minimize the

assignment and overage costs for the worst-case deviation of at most Γ jobs from their

nominal resource requirement. In reality, the resource requirements are uncertain and

can have any values in their respective ranges. To analyze the performance of the

robust solutions, a simulation study is performed to measure the average overage
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Figure 4.4: Run time comparison between the weak and strong versions of CP and
C&CG methods (y-axes are not the same scale).

costs incurred for a given assignment. Additionally, the average probability of going

over the capacity in at least one of the resources is calculated.

To perform the simulation, for a given assignment, the resource requirements for

the job-resource pairs (i, j), xij = 1 are chosen from the Unif(dij, dij + d̂ij) distribu-

tion. Note that the simulation does not consider the value of the uncertainty budget

in generating the random numbers and all the jobs have deviations in their resource

requirements from their nominal values.

We created random instances using the scheme discussed above. We estimated the

resource capacity using the function f(m) = 1.1m2. Ten random instances of different

sizes (m,n) ∈ {(5, 10), (5, 20), (10, 20), (10, 30)} are generated and solved using he

strong version of the C&CG method. The values for the budget of uncertainty are

are selected with 10% increments and each instance is solved for different values of Γ.

To clarify, Γ = 10% for a problem with m = 5 and n = 20 means that at most 10%
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Figure 4.5: Optimality gap comparison between the weak and strong versions of CP
and C&CG methods for Γ = 6.

of the jobs can deviate from their nominal values, which translates into at most two

jobs for this specific problem size. To limit the running time for large instances, we

limit the algorithm running time to 500 seconds.

After solving each instance for a specific value of Γ, our simulation code generates

5000 replications for the resource requirements for the best found assignment. Values

for average overage cost and probability of going over the capacity are calculated.

The results are then averaged among the 10 instance for each value of Γ. Table 4.3

includes the results obtained from our tests. Each cell of the table shows a pair of

numeric values. The first is the expected value and the second number represents the

standard deviation of the metrics that are measured.

From the Table 4.3, it can be seen that the time required to solve an instance

depends on the size of the problem and the value of the budget of uncertainty Γ. In
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Figure 4.6: Convergence comparison between the strong versions of CP and C&CG
methods for Γ = 5.

general, when Γ = 0% or Γ = 100%, the problem becomes a deterministic one with

one known scenario. For different values of Γ(%), the total number of scenarios is

bounded by
(
n

Γn

)
. This can be seen from the general pattern in the number of scenarios

required to solve different instances. The objective function and the recourse which

is the worst-case overage costs are also presented. The column named “over cost”

shows the results of the simulation which calculates the average overage cost when

jobs randomly deviate from their nominal values. It can be seen that as Γ increases,

the objective function increases since the worst-case realizations become larger in

impact. However, the average overage cost and probability of going over the capacity

(Over Prob.) decreases as Γ increases. In other words, as we choose to be more
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conservative, the assignment will change to accommodate the risks of jobs deviating

from their nominal value.

It is important to note that while the objective function is non-decreasing in Γ, no

such claim can be made about the assignment costs or recourse costs. Furthermore,

we cannot conclude that average overage cost or overage probability are decreasing

in Γ. This is discussed by an example.

To better understand how Γ impacts the assignments, a random instance with

m = 5 and n = 20 was generated and solved for all the values of Γ ∈ {0, .., n}. Table

4.4 shows the number of iterations, run time, optimal objective value, and recourse

costs for each value of Γ. It can be seen that for Γ ≥ 8 the objective value stays the

same. This means that the optimal assignment for worst-case deviations for these

values of the uncertainty budget is the same. In this case, it can be seen that the

worst-case recourse (overage) costs are not monotonic.

To understand how the assignments impact the performance in the case of ran-

dom realizations of the resource requirements, we performed our simulation analysis

to measure the average utilization rate for each resource for a given value of Γ. Addi-

tionally, we measured the average overage costs for each resource as well to understand

and highlight how loads are assigned to each resource. To measure the impact of the

uncertainty, two different distributions are used. First we use a uniform distribu-

tion same as discussed above. Next, we generate the resource requirements using a

triangular distribution, Tri(dij, dij, dij + d̂ij), with its peak at the nominal value.

Figure 4.7 compares the average utilization rate among the five resources for dif-

ferent values of Γ. It can be seen that for Γ = 0, where the decision maker does not

consider any risk for deviations, the assignments are not balanced and resources one,

two and five, on average, are over-utilized. Including some level of risk Γ = 1, 2, 3 re-

distributes the load among resources such that the average utilization is less volatile.

As the value for Γ goes to eight, there is no way to avoid overage costs. In other
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Figure 4.7: Utilization rate for each resource for different values of Γ for different
distributions.

words, for Γ ≥ 8, worst case realizations will always have overages. In this case

the assignment is changed such that overages are assigned to the resource with the

least overage cost (resource three) while maintaining a low assignment cost. In the

case of the triangular distribution, the general patterns are similar to the uniform

distribution. However, the average rates are smaller compared to the case of uniform

distribution.

Figure 4.8, shows the distribution of average overage costs among different re-

sources for different values of Γ. In the case where Γ = 0, the optimistic assignment

aims to minimize the assignment cost without considering any deviation. The jobs

are assigned to resources with low assignment cost. However, the results from the

simulation shows that there will be a high overage cost for overloaded resources. As

we increase the value of the uncertainty budget, since the optimization is concerned

with the worst-case overage costs, the average overage cost for each resource drops
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Figure 4.8: Average overage cost for each resource for different values of Γ for different
distributions.

significantly. For large values of Γ in which overage costs are unavoidable, the assign-

ment is performed such that resource with lower overage costs incur the cost. The

triangular distribution creates the same patterns of behavior with smaller values.

Finally, we studied the impact of distributions on the probability of having an

overage. It can be seen from Figure 4.9 that if no risk is taken into account, Γ = 0,

with certainty there will be a lack of capacity. As we increase the value of Γ to

six, the probability of having overages drops to zero. As we increase the uncertainty

budget even more, which means that we are very pessimistic about the resource

requirements for jobs and expect more that six jobs to have their largest resource

requirements, the assignment is changed such that the probability of having overages

are increased but the cost of having overages are very small. It can be seen that

triangular distribution, with its peak at the nominal resource requirement value,

estimates a lower probability of overages. This is intuitive since it is more likely for

jobs to have resource requirements closer to their nominal values.
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Figure 4.9: Impact of distribution on the probability of having overages for different
values of Γ.

Figure 4.10 shows how the average total overage costs behave as the value of the

budget of uncertainty is increased. It can be seen that as we increase the value of Γ

to be more than zero, a significant drop in average overage costs happens.

4.4 Conclusion

In this chapter, we presented the formulation and exact solution approach for the

robust generalized assignment problem. We also studied the structural properties of

this problem and proposed a alternative view of uncertainty which results in bet-

ter performance for both CP and C&CG method by strengthening the generated

constraints. We also adapted our formulation based on the DMBH formulation and

showed that their formulation does not necessarily provide the optimal solution. Our

extensive computational tests show the performance of our solution methodology and
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Figure 4.10: Impact of distribution on the average total overage costs for different
values of Γ.

our simulation study gives us a view on how the robust assignments would perform.

139



T
ab

le
4.

3:
R

es
u
lt

s
fo

r
10

in
st

an
ce

s
of

d
iff

er
en

t
si

ze
s

u
si

n
g

th
e

st
ro

n
g

C
&

C
G

(A
ve

ra
ge

,
S
ta

n
d
ar

d
d
ev

ia
ti

on
)

S
iz

e
Γ

(%
)

It
er

a
ti

o
n

T
im

e
(s

)
O

b
je

ct
iv

e
R

ec
o
u

rs
e

G
a
p

(%
)

O
v
er

C
o
st

O
v
er

P
ro

b
.

m
=

5
n

=
1
0

0
(2

,
0
)

(0
.1

2
,

0
.0

3
)

(1
9
4
.2

,
5
0
.1

1
)

(0
,

0
)

(0
,

0
)

(3
4
6
.8

4
,

3
3
4
.4

1
)

(0
.8

4
,

0
.3

1
)

1
0

(5
.2

,
2
.5

9
)

(0
.6

2
,

0
.4

)
(2

4
3
.4

,
7
4
.1

1
)

(1
.6

,
2
.6

1
)

(0
,

0
)

(1
2
.1

6
,

1
4
.4

4
)

(0
.3

3
,

0
.1

7
)

2
0

(9
,

5
.9

6
)

(2
.2

4
,

2
.6

5
)

(3
0
6
,

9
8
.7

)
(3

7
.4

,
2
9
.7

8
)

(0
,

0
)

(2
.3

7
,

1
.9

9
)

(0
.1

7
,

0
.1

2
)

3
0

(6
.6

,
1
.6

7
)

(1
.0

4
,

0
.7

5
)

(3
0
6
,

9
8
.7

)
(3

7
.4

,
2
9
.7

8
)

(0
,

0
)

(2
.4

1
,

2
.0

2
)

(0
.1

7
,

0
.1

2
)

4
0

(5
.4

,
2
.0

7
)

(0
.7

8
,

0
.4

2
)

(3
2
0
.2

,
9
3
.1

6
)

(2
4
.2

,
3
0
.4

4
)

(0
,

0
)

(1
.0

9
,

2
)

(0
.1

,
0
.1

3
)

5
0

(4
.8

,
2
.0

5
)

(0
.7

,
0
.5

9
)

(3
2
0
.2

,
9
3
.1

6
)

(2
4
.2

,
3
0
.4

4
)

(0
,

0
)

(1
.0

8
,

1
.9

6
)

(0
.1

,
0
.1

3
)

6
0

(4
,

1
)

(0
.5

,
0
.1

6
)

(3
2
0
.2

,
9
3
.1

6
)

(2
4
.2

,
3
0
.4

4
)

(0
,

0
)

(1
.0

5
,

1
.8

7
)

(0
.1

,
0
.1

3
)

7
0

(3
.8

,
0
.8

4
)

(0
.4

3
,

0
.1

5
)

(3
2
0
.2

,
9
3
.1

6
)

(2
4
.2

,
3
0
.4

4
)

(0
,

0
)

(1
.0

5
,

1
.8

9
)

(0
.1

,
0
.1

3
)

8
0

(3
.6

,
0
.8

9
)

(0
.3

5
,

0
.2

5
)

(3
2
0
.2

,
9
3
.1

6
)

(2
4
.2

,
3
0
.4

4
)

(0
,

0
)

(1
.1

1
,

2
.0

1
)

(0
.1

,
0
.1

4
)

9
0

(3
.2

,
1
.1

)
(0

.3
2
,

0
.2

1
)

(3
2
0
.2

,
9
3
.1

6
)

(2
4
.2

,
3
0
.4

4
)

(0
,

0
)

(1
.1

,
1
.9

8
)

(0
.1

,
0
.1

3
)

1
0
0

(2
,

0
)

(0
.1

1
,

0
)

(3
2
0
.2

,
9
3
.1

6
)

(2
4
.2

,
3
0
.4

4
)

(0
,

0
)

(1
.1

2
,

1
.9

7
)

(0
.1

,
0
.1

3
)

m
=

5
n

=
2
0

0
(2

,
0
)

(0
.1

7
,

0
.0

7
)

(3
8
4
.6

,
5
6
.2

7
)

(1
.6

,
3
.5

8
)

(0
,

0
)

(9
6
6
.7

6
,

5
2
3
.6

8
)

(0
.9

8
,

0
.0

4
)

1
0

(1
4
.6

,
3
.9

1
)

(5
.4

7
,

2
.8

3
)

(4
4
5
.4

,
5
2
.4

2
)

(1
.4

,
3
.1

3
)

(0
,

0
)

(5
3
.2

9
,

5
3
.9

7
)

(0
.4

1
,

0
.1

8
)

2
0

(7
2
.8

,
1
1
.5

8
)

(4
3
6
.4

8
,

1
3
3
.1

1
)

(5
8
9
.4

,
3
8
.6

2
)

(7
5
,

3
6
.0

8
)

(4
.1

7
,

3
.9

6
)

(9
.2

3
,

1
6
.1

7
)

(0
.3

,
0
.4

3
)

3
0

(4
8
.4

,
1
1
.0

8
)

(2
8
0
.5

3
,

2
1
0
.2

3
)

(5
8
9
.6

,
4
4
.6

1
)

(6
7
.6

,
5
7
.1

7
)

(1
.3

,
2
.2

6
)

(1
5
.1

2
,

2
9
.1

7
)

(0
.3

1
,

0
.4

5
)

4
0

(2
7
.6

,
1
0
.9

2
)

(1
7
1
.9

1
,

1
8
8
.2

4
)

(5
9
5
.4

,
3
9
.0

3
)

(1
5
.8

,
2
6
.4

4
)

(0
,

0
)

(1
.7

4
,

3
.8

9
)

(0
.1

1
,

0
.2

5
)

5
0

(1
8
,

5
.3

4
)

(6
1
.2

9
,

7
5
.2

4
)

(5
9
5
.4

,
3
9
.0

3
)

(1
5
.8

,
2
6
.4

4
)

(0
,

0
)

(1
.7

5
,

3
.9

1
)

(0
.1

1
,

0
.2

5
)

6
0

(1
0
.6

,
2
.5

1
)

(1
4
.5

3
,

1
4
.3

1
)

(5
9
5
.4

,
3
9
.0

3
)

(1
5
.8

,
2
6
.4

4
)

(0
,

0
)

(1
.7

3
,

3
.8

6
)

(0
.1

1
,

0
.2

5
)

7
0

(9
.4

,
2
.6

1
)

(8
.8

6
,

7
.5

8
)

(5
9
5
.4

,
3
9
.0

3
)

(1
5
.8

,
2
6
.4

4
)

(0
,

0
)

(1
.7

5
,

3
.9

2
)

(0
.1

1
,

0
.2

5
)

8
0

(8
.4

,
2
.3

)
(7

.0
4
,

8
.6

2
)

(5
9
5
.4

,
3
9
.0

3
)

(1
5
.8

,
2
6
.4

4
)

(0
,

0
)

(1
.7

1
,

3
.8

3
)

(0
.1

1
,

0
.2

5
)

9
0

(8
.4

,
2
.3

)
(7

.1
1
,

8
.3

6
)

(5
9
5
.4

,
3
9
.0

3
)

(1
5
.8

,
2
6
.4

4
)

(0
,

0
)

(1
.6

8
,

3
.7

5
)

(0
.1

1
,

0
.2

4
)

1
0
0

(2
,

0
)

(0
.2

4
,

0
.0

9
)

(5
9
5
.4

,
3
9
.0

3
)

(1
5
.8

,
2
6
.4

4
)

(0
,

0
)

(1
.7

,
3
.7

9
)

(0
.1

1
,

0
.2

4
)

m
=

1
0

n
=

2
0

0
(2

,
0
)

(0
.2

1
,

0
.0

4
)

(2
2
3
.4

,
3
3
.9

9
)

(0
,

0
)

(0
,

0
)

(1
0
4
9
.9

4
,

1
8
2
.6

1
)

(1
,

0
)

1
0

(4
9
.2

,
4
.0

2
)

(3
3
1
.5

8
,

1
6
2
.7

4
)

(4
4
5
,

5
4
.7

2
)

(5
8
.6

,
3
8
.6

9
)

(0
.6

8
,

1
.5

3
)

(2
2
.3

2
,

1
7
.6

4
)

(0
.6

9
,

0
.4

1
)

2
0

(2
9
.8

,
8
.8

7
)

(2
8
8
.7

,
2
4
0
.3

8
)

(4
7
3
.8

,
6
7
.7

2
)

(5
8
.8

,
4
9
.1

3
)

(0
.6

2
,

1
.0

4
)

(2
3
.1

5
,

2
3
.8

2
)

(0
.6

2
,

0
.5

1
)

3
0

(1
7
.2

,
4
.7

1
)

(7
5
.8

5
,

8
9
.3

)
(4

7
4
.8

,
6
5
.6

1
)

(1
4
.8

,
3
3
.0

9
)

(0
,

0
)

(5
.6

5
,

1
2
.6

4
)

(0
.2

,
0
.4

4
)

4
0

(1
1
,

1
.4

1
)

(1
3
.3

9
,

1
0
.9

3
)

(4
7
4
.8

,
6
5
.6

1
)

(1
4
.8

,
3
3
.0

9
)

(0
,

0
)

(5
.7

5
,

1
2
.8

7
)

(0
.2

,
0
.4

4
)

5
0

(8
.4

,
1
.1

4
)

(3
.6

4
,

1
.8

1
)

(4
7
4
.8

,
6
5
.6

1
)

(1
4
.8

,
3
3
.0

9
)

(0
,

0
)

(5
.7

,
1
2
.7

4
)

(0
.2

,
0
.4

4
)

6
0

(7
,

1
)

(2
.1

6
,

1
.0

4
)

(4
7
4
.8

,
6
5
.6

1
)

(1
4
.8

,
3
3
.0

9
)

(0
,

0
)

(5
.7

4
,

1
2
.8

4
)

(0
.2

,
0
.4

4
)

7
0

(6
.8

,
1
.6

4
)

(2
.1

2
,

0
.8

6
)

(4
7
4
.8

,
6
5
.6

1
)

(1
4
.8

,
3
3
.0

9
)

(0
,

0
)

(5
.7

7
,

1
2
.9

)
(0

.2
,

0
.4

4
)

8
0

(6
.8

,
1
.1

)
(1

.9
9
,

0
.9

5
)

(4
7
4
.8

,
6
5
.6

1
)

(1
4
.8

,
3
3
.0

9
)

(0
,

0
)

(5
.7

4
,

1
2
.8

4
)

(0
.2

,
0
.4

4
)

9
0

(6
.2

,
1
.1

)
(1

.5
1
,

0
.6

9
)

(4
7
4
.8

,
6
5
.6

1
)

(1
4
.8

,
3
3
.0

9
)

(0
,

0
)

(5
.6

8
,

1
2
.6

9
)

(0
.2

,
0
.4

4
)

1
0
0

(2
,

0
)

(0
.2

8
,

0
.0

8
)

(4
7
4
.8

,
6
5
.6

1
)

(1
4
.8

,
3
3
.0

9
)

(0
,

0
)

(5
.6

6
,

1
2
.6

6
)

(0
.2

,
0
.4

4
)

m
=

1
0

n
=

3
0

0
(2

,
0
)

(0
.2

,
0
.0

4
)

(3
2
6
.6

,
3
5
.2

5
)

(0
.6

,
1
.3

4
)

(0
,

0
)

(1
5
4
5
.5

5
,

9
5
2
.6

2
)

(1
,

0
)

1
0

(5
5
.4

,
7
.4

4
)

(3
3
3
.5

4
,

2
2
8
.2

9
)

(5
0
8
.2

,
9
8
.0

2
)

(5
2
.2

,
3
4
.6

8
)

(5
.7

,
6
.2

2
)

(4
.9

6
,

4
.1

1
)

(0
.3

3
,

0
.3

2
)

2
0

(3
4
.8

,
7
.7

9
)

(3
4
8
.9

1
,

2
1
4
.1

4
)

(5
6
1
.6

,
1
7
0
.4

5
)

(8
1
.6

,
1
1
0
.9

1
)

(7
.9

5
,

1
3
.6

6
)

(3
.3

2
,

4
.3

6
)

(0
.2

,
0
.2

5
)

3
0

(2
2
.6

,
4
.7

2
)

(2
4
6
.8

2
,

2
3
8
.3

8
)

(5
7
1
,

1
6
9
.6

8
)

(7
5
.6

,
1
0
1
.4

2
)

(7
.2

4
,

1
1
.8

4
)

(1
.1

2
,

2
.0

9
)

(0
.0

7
,

0
.0

9
)

4
0

(1
6
.2

,
5
.4

5
)

(2
1
2
.7

5
,

2
6
2
.5

6
)

(5
8
3
.4

,
1
9
4
.2

4
)

(8
4
.8

,
1
1
4
.2

5
)

(6
.8

6
,

1
2
.5

4
)

(2
.1

9
,

3
.0

4
)

(0
.1

4
,

0
.2

2
)

5
0

(1
5
.8

,
7
.6

6
)

(2
0
6
.1

9
,

2
6
8
.3

)
(5

4
4
.4

,
1
1
4
.3

8
)

(3
7
.8

,
3
3
.4

7
)

(1
.3

2
,

1
.8

3
)

(0
.0

7
,

0
.0

7
)

(0
.0

1
,

0
.0

2
)

6
0

(1
2
.4

,
5
.1

3
)

(7
9
.6

7
,

9
8
.5

3
)

(5
3
7
.2

,
1
0
4
.9

5
)

(2
8
.4

,
2
7
.9

9
)

(0
,

0
)

(1
.3

7
,

2
.9

6
)

(0
.1

1
,

0
.2

2
)

7
0

(1
0
.4

,
3
.0

5
)

(4
6
.9

5
,

8
4
.7

3
)

(5
3
7
.2

,
1
0
4
.9

5
)

(2
8
.4

,
2
7
.9

9
)

(0
,

0
)

(1
.3

8
,

2
.9

8
)

(0
.1

1
,

0
.2

3
)

8
0

(1
0
.6

,
6
.3

5
)

(4
3
.9

7
,

7
1
.5

6
)

(5
3
7
.2

,
1
0
4
.9

5
)

(2
8
.4

,
2
7
.9

9
)

(0
,

0
)

(1
.2

9
,

2
.7

8
)

(0
.1

1
,

0
.2

2
)

9
0

(1
0
.8

,
6
.6

1
)

(3
1
.0

5
,

4
3
.1

6
)

(5
3
7
.2

,
1
0
4
.9

5
)

(2
8
.4

,
2
7
.9

9
)

(0
,

0
)

(1
.3

8
,

2
.9

9
)

(0
.1

1
,

0
.2

2
)

1
0
0

(2
,

0
)

(0
.4

4
,

0
.2

5
)

(5
3
7
.2

,
1
0
4
.9

5
)

(2
6
,

2
9
.6

7
)

(0
,

0
)

(1
.3

4
,

2
.9

)
(0

.1
1
,

0
.2

2
)

140



Table 4.4: Results from the instance with m = 5 and n = 20

Γ Iteration Time (s) Objective Recourse
0 2 0.12 311 0
1 6 0.38 343 0
2 24 5.23 398 7
3 74 115.02 464 0
4 94 501.5 507 24
5 66 178.39 507 24
6 40 58.81 507 24
7 30 30.39 511 44
8 29 29.56 521 54
9 23 20.33 521 54
10 17 10.51 521 54
11 12 5.06 521 54
12 9 1.83 521 54
13 10 2.63 521 54
14 9 1.52 521 54
15 9 1.39 521 54
16 9 1.39 521 54
17 9 1.4 521 54
18 9 1.48 521 54
19 9 1.4 521 54
20 2 0.12 521 54
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Chapter 5: Discussion and Contributions

Uncertainty is an unavoidable element in our decision-making process. Availability of

data and advances in optimization software enable us to use stochastic programming

(SP) and robust optimization (RO) theories to include uncertainty in our decision-

making process. Through these tools we are able to include such considerations into

our models and enable decision-makers to better understand the consequences of such

uncertain events.

In this dissertation we focused on studying decision-making under uncertainty, in

particular two-stage robust optimization, and finding solution approaches for such

problems.

5.1 Integrated Surgery Scheduling

In Section 3, we studied a problem in which we consider the impact of uncertainty in

the length-of-stay for patients in an ICU, thereby reducing the potential for surgery

schedule disruptions and consequent harm to patients requiring intensive care after

surgery. This problem has a unique structure in which the uncertainty in the length-

of-stay (LOS) belongs to a discrete set. This structure makes the planning very

complex due to making the estimation of downstream resource requirements in the

future very difficult. Such structures have not been addressed in theoretical develop-

ments of robust optimization. The work done in Section 3 is based on [Neyshabouri

and Berg, 2016].

Our definition of uncertainty carefully models the patient’s movements from the

operating rooms to the downstream units and allows us to keep track of the required

142



downstream resources. In addition, we provide a methodology that weights the costs

of not having ICU beds available against the efficiency of using the capacity of the

surgical suits completely. The methodology takes into consideration the stochastic

nature of time required for surgical procedures as well as the variability of the length-

of-stay in ICU facilities. Unlike stochastic optimization, our method does not require

distributional information for each type of surgical procedure. Instead, a robust

optimization that requires a nominal and a maximum parameter for surgical duration

and length-of-stay for each patient is proposed. This information can be obtained

using data-driven approaches, as well as from subject-matter experts.

The robust formulation inherently includes risk into the decision process by op-

timizing against the worst-case realization of the uncertain parameters. To avoid

over-conservative solutions, a budget of uncertainty is defined to control and model

the number of uncertain parameters that take on their worst-case values. Thus,

decision-makers are given the opportunity to control the decisions based on their

attitudes towards risk.

Our robust formulation for surgery scheduling consists of a master problem and

two sub-problems. The master problem serves as the schedule generator and produces

surgery schedules. Each sub-problem serves as the evaluation of the impact of the

generated schedule under uncertainty. Sub-problems provide information in the way

of columns and constraints back to the master problem which is then re-solved to

create a new schedule. The process continues until convergence is achieved.

We show that the special structure of the uncertainty in LOS and its dependence

on the first-stage decisions is new to the literature, and causes proposed solution

methodologies in the literature not to be directly applicable in solving this problem.

We adapt a column-and-constraint generation approach to address this issue.

Computational evaluation of the method showed that as the instances get larger,

proving optimality may not be possible in a reasonable amount of time. However,

143



the methodology does provide provably near optimal solutions within a reasonable

amount of time to problems of medium size. In addition, taking the uncertainty in

downstream units into account can reduce the congestion in the operating rooms.

Simulation studies done as part of this research show the quality of our robust opti-

mization technology in providing the decision-maker with a deeper understanding of

the consequences of the inherent uncertainty. Operational and risk metrics are calcu-

lated which along with costs can provide the decision-maker with alternative surgery

schedules and their likely performance.

Our methodology opens the door for other applications where scheduling ahead

of time with resource considerations are important.

5.2 Generalized Assignment Problem

In Section 4 we studied the very important problem of the generalized assignment

problem (GAP) when resources have a stochastic component, i.e., the capacity re-

quirements are not known with certainty.

In the deterministic version of GAP, the aim is to find the best allocation of jobs

to machines with limited capacity such that the assignment cost is minimized and

no machine capacity restrictions are violated. In our case, we study GAP under

uncertainty in the job-machine resource requirements. Since the amount of capacity

that is required by a job on a machine is not exactly known, there is an inherent risk

in not having sufficient capacity.

We formulate this problem as a two-stage robust optimization problem in which

each job-machine resource requirement belongs to a range. The formulation allows

us to better understand the trade-offs between assignment costs and overage costs

due to uncertainty. We investigate the literature and propose two different solution

algorithms: one is based on Bender’s decomposition and the other is a column-and-

constraint (C&CG) generation method. In both methods, the problem is consisted of
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a master problem and one sub-problem. The master generates assignments, while the

sub-problem evaluates the impact of uncertainty on that assignment and provides the

master with information in the form of cuts (in Bender’s) or columns and constraints

(in C&CG) to revise the assignment, then the master is re-solved. The process

continues until convergence to the optimal solution is achieved.

A careful study of the structural properties of this problem enables us to improve

each of the solution methods by proposing stronger cuts to the master. Intuitively,

these stronger cuts are grouping multiple realizations of uncertainty in one single

scenario which allows for faster improvement of the lower bounds. Our computa-

tional results show these cuts offer substantial improvement in the performance of the

proposed solution algorithms. In general, we found that the column-and-constraint

generation method does better than the cutting-plane methods.

In our study of the literature, we found only one formulation that claims to be

able to formulate a two-stage robust bin-packing problem as a compact optimization

formulation that does not require iterative methods such as C&CG. We are able to

provide a counter-example to show that the proposed formulation may not provide

optimal solutions, but may over-estimates the total costs. We propose valid inequal-

ities to strengthen their formulation and provide numerical experiments to show the

effectiveness of those inequalities.

Our computational tests show that the proposed exact solution procedure can

solve medium-sized instances in a reasonable amount of time. Our simulation study

sheds light on the implications of robustness and uncertainty on the assignment.

Through simulation we show that when uncertainty is considered, the optimal as-

signment tends to reduce the risk of requiring extra capacity, where possible, by

dispersing the load over multiple machines, thereby working to load-balance the ma-

chines. As the decision-maker’s optimism decreases, or the budget of uncertainty

increases, such that overages are unavoidable, the assignment changes to assign risky
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jobs to the machine that has the lower overage cost.

5.3 Future Directions

In this research we focused on exact solution methods. Due to the complexity of the

problems we studied, these exact methods may not be able to always find the optimal

solution, although they find good solutions in reasonable time. Our studies showed

that convergence to the optimal solution can be slow and is directly related to the

quality of the lower bounds generated by our algorithms. One possible avenue for

future research is to accelerate these solution methods by developing tighter cuts and

feeding feasible solutions to the master when possible.

We hoped that using the objective function for different values of the budget of

uncertainty would improve the convergence of the methods. However, our preliminary

tests showed that using the objective values for a certain uncertainty budget as a

lower or upper bound for another does not improve the solution time. Thus, better

bounding techniques are required.

Another avenue for research is to use the structural insights from the formulations

to develop high quality heuristics to obtain high-quality solutions faster.

It is also possible to extend the application of surgery scheduling by accurately

costing various outcomes, inclusion if pre-op, and combining appointment scheduling

and consultation with surgery scheduling.

Finally, one can use this research as a starting step for other applications where

uncertainty occurs as discrete events. Most of the literature in RO does not address

this issue, while the number of instances where the events that are uncertain can take

on only a finite and small number of distinct values, are many.
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