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ABSTRACT 

MAXIMIZING THE COST OF SHORTEST PATHS BETWEEN FACILITIES 
THROUGH OPTIMAL PRODUCT CATEGORY LOCATIONS 

Thomas Gertin, M.S 

George Mason University, 2012 

Thesis Director: Dr. Kevin M. Curtin 

 

A location model is introduced that maximizes the shortest Traveling Salesman 

Problem (TSP) path between facilities. A scenario has been created where retailers that 

are interested in designing store layouts wish to maximize the amount of time customers 

spend in their store. Product location data has been collected from a real supermarket and 

a representative undirected network has been created. An enumeration method will be 

used to determine the optimal location of three product categories in the supermarket 

network. The results contain 5 optimal paths, with an improvement of 32 percent over the 

store’s existing shortest path. In addition linear programming and heuristics are used to 

generate solutions and compare the results to the enumeration method. These same 

methods can be used in other disciplines to optimize product locations or locate 

undesirable facilities. Future research can test scenarios with additional constraints or 

find ways to minimize processing time. 
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INTRODUCTION 

Network analysis is a significant research area if GIScience(Curtin 2007). 

Network analysis rests firmly on the theoretical foundation of the mathematical sub 

disciplines of graph theory and topology and can be used to solve spatial problems(Curtin 

2007). The new type of network analysis that is being introduced is a network location 

problem, which involves selecting network locations on an existing network. This type of 

problem is related the Traveling Salesman Problem (TSP). 

The TSP is one of the classic problems in Operations Research and Location 

Science and is extensively studied(Lawler E.L. et al. 1985). The TSP can be described as 

finding the shortest route (tour) for a salesman starting from a given city, visiting each of 

a specified group of cities, and then returning to the original point of departure(Dantzig, 

Fulkerson, and Johnson 1954). The TSP is a hard combinatorial optimization problem for 

which to date no optimal algorithm is known(Crowder and Padberg 1980). Often 

heuristic methods are used to find good solutions to TSPs. The TSP has many 

applications including areas of production management, vehicle routing, and vehicle 

scheduling(Crowder and Padberg 1980).  

A scenario is being introduced where the cities themselves can be moved. 

Therefore the TSP solution will change for each different placement. This situation has 

not been studied extensively in the literature. This paper will focus on where to place 
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products (cities) to maximize the TSP solution. This problem will be referred to as the 

MAXIMIN TSP problem. The MAXIMIN TSP has potentially many applications 

including for military, business, government, and sports applications.  

The MAXIMIN TSP will be formally described and an objective function will be 

presented. Different types of solution methods will be described and compared, as they 

pertain to the problem under consideration. Several avenues have been identified in the 

literature review process that could reduce the complexity of the problem. Related 

problems have been found that could lead to an optimal solution. This paper will focus on 

maximizing the cost of the shortest paths in a retail grocery store application.  

Many retail environments try to maximize the amount of time customers spend in 

their store. In stores like supermarkets, many types of shoppers have a greater chance of 

filling their shopping carts the more time they spend browsing throughout the store. 

Marketers have spent a great deal of time and research attempting to determine how 

customers travel within stores and how they shop in general. Floor layouts strongly 

influence in-store patterns, shopping patterns, and operational efficiency(Vrechopoulos et 

al. 2004). Store layout design can satisfy buyers’ requirements as well as influence their 

wants and preferences(Vrechopoulos et al. 2004). As an example, Wal-Mart has 

experimented by building 85,000 ft2 stores and 115,000 ft2 stores that had identical 

amounts of fixtures and merchandise. Customers ended up spending more time and 

money in the larger stores(Dunne and Lusch 2007). 

Customers tend to not deviate much from the order of the shortest path that 

connects all of their purchases(Hui, Fader, and Bradlow 2009b).  Rearranging the location of 
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product categories would change the order of purchases and paths of the customers. The 

premise of this research, is that by finding the optimal product category locations within a 

store layout one can increase the amount of time customers spend in a store. This case 

study is modeled after a brick and mortar supermarket in order to better apply the 

findings to the real world. Optimization techniques are used to test different locations for 

three main product categories. The methods produce the optimal locations that would 

create the longest shortest path for a shopper to traverse. The network dataset uses time 

based on geographic distances to model the costs to traverse each edge.  

In the next section, the different research that has been conducted in regards to 

shopping paths and location problems is revised, with a background on the methods used 

to solve similar problems. This is followed by a description of the general framework, 

which includes exhaustive enumeration, linear programming, and heuristic techniques. In 

section 4, the data used is discussed along with how it was produced. Section 5 discusses 

the empirical results. Section 6 contains a summary of the results and compares the 

advantages and disadvantages of using different methods. Finally in section 7, additional 

opportunities for future research are described. 

 



4 
 

BACKGROUND AND LITERATURE REVIEW 

The MAXIMIN TSP is a type of network location problem. Network location 

problems involve selecting network locations on an existing network such that an 

objective is optimized(Curtin 2007). These types of problems are highly combinatorially 

complex, although some recent attempts have been made to integrate GIS and optimal 

solution software in order to solve these problems optimally(Curtin 2007). 

In the standard traveling salesman problem (TSP), the scenario describes a 

salesman visiting different cities. The type of applications can vary widely, as the TSP 

has been applied to vehicle routing and computer wiring. The TSP is a problem of 

combinatorial optimization. Maximizing the cost of shortest paths between facilities 

through optimal product category locations is also a problem of combinatorial 

optimization that includes a TSP component. Linear programming is a tool that can be 

used to solve TSP problems of a certain size efficiently. 

Linear programming has been ranked among the most important scientific 

advances of the mid-20th century and is an integral component of Operations 

Research(Hillier). Larger problems of combinatorial complexity can be too difficult for 

linear programming methods to solve. In these cases heuristics can provide a good 

solution that is not guaranteed to be optimal. A background of linear programming and 
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heuristic procedures is discussed, followed by related problems to maximizing shortest 

paths. 

 

Linear Programming 
 
 

Linear Programming is used to solve location science problems optimally, such as 

the p-dispersion problem, p-median problem, and the TSP. Optimization means finding a 

best solution among several feasible alternatives(George L. Nemhauser 1966). The 

representation of a problem in abstract or symbolic form is known as a mathematical 

model(George L. Nemhauser 1966). Theories of optimization existed long before the 

development of Calculus. Characterizing optimization problems by mathematical models 

goes back to the ancient Greeks(Schichl 2004). Nevertheless, the formal development of 

optimization theory came from calculus. After the invention of calculus, mathematicians 

worked actively on optimization problems. The theory was developed for mathematical 

models containing continuous variables and differentiable functions. Although the theory 

provided solution procedures for problems with several variables, the theory was not 

adequate to deal computationally with models containing a very large number of 

variables.  

In the 1940s there was a reawakening and change of direction in the study of 

optimization theory. This renaissance was stimulated by the war effort. Two significant 

events that occurred around the same time are the work of scientists and mathematicians 

on military operational problems, and the invention and development of the digital 
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computer. The scientific approach to military problems became the field of study known 

as operations research. The formulation and solution of mathematical models of 

optimization is an integral part of operations research. These models of complex logistic, 

production, and distribution systems are generally characterized by a large number of 

variables, and are not suited to be solved by calculus.  

The modeling and analysis of an operations research problem in general, evolves 

through several stages(Mokhtar S. Zazaraa, John J. Jarvis, and Hanif D. Sherali 2010). 

The first phase involves a detailed study of the system, data collection, and the 

identification of the specific problem that needs to be analyzed(Mokhtar S. Zazaraa, John 

J. Jarvis, and Hanif D. Sherali 2010). The next step involves representing the problem 

though a mathematical model. It is important to make sure that the model satisfactorily 

represents the system being analyzed, while keeping the model mathematically tractable. 

The next step is to come up with a solution. The proper technique must be selected. After 

a solution is determined, it can be analyzed, and the problem can possibly be restructured. 

To apply it to the real world, the solution would be implemented. The solution of 

problems in this manner is intended as a means of generating alternative solutions to 

inform the decision-making process. The process should never replace the decision 

maker.  

The Traveling Salesman problem is an integer linear program(Robert J. 

Vanderbei 2008). This means that some or all of the variables are constrained to be 

integers. In the TSP, a city is in a certain step of the solution. There are no fractional 

steps or cities. Generally, integer programming problems are more difficult to solve 
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compared to linear programming problems(Robert J. Vanderbei 2008). However, the 

simplex algorithm and the capability it provides to efficiently solve a sequence of linear 

programs is basic to solving integer programs(Chen, Batson, and Dang 2010). Branch 

and Bound is a search technique that is used to solve integer linear problems once the 

simplex method finds a fractional optional solution.  

The Branch and Bound algorithm involves solving a potentially large number of 

related linear programming problems in its search for an optimal integer solution(Robert 

J. Vanderbei 2008). It is possible but unlikely that the solution to the problem has all 

integer components when ignoring the integer constraints. The simplest strategy would be 

to round each resulting solution value to its nearest integer value. This is not the best 

strategy. In fact, the integer solution so obtained might not even be feasible, since we 

know that the solution to a linear programming problem is at the vertex of the feasible set 

and so the movement might go outside of the feasible set(Robert J. Vanderbei 2008). The 

linear programming problem obtained by dropping the integrality constraint is called the 

LP-relaxation. Since it has fewer constraints, its optimal solution provides an upper 

bound on the optimal solution to the integer programming problem(Robert J. Vanderbei 

2008). A sequence of relaxations can more tightly constrain the solution space and lead to 

an integer solution. 

Heuristics 
 

Heuristic techniques can be used to obtain a good solution or an approximate 

solution for an integer program or a combinatorial optimization problem(Chen, Batson, 
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and Dang 2010). Heuristics are part of generally recommended solution strategies to 

develop good, approximate solutions as well as tighter lower bounds(Chen, Batson, and 

Dang 2010). Heuristics can be used at each node in branch and cut. Heuristics can 

become the starting point for an algorithm, significantly reducing the number of iterations 

to converge to the solution(Chen, Batson, and Dang 2010). Local search, Tabu search, 

and Genetic algorithms are three heuristic approaches that have been successfully applied 

to Mixed Integer Problems (MIPs)(Chen, Batson, and Dang 2010).   

The heuristic algorithms for TSPs can be classified as construction algorithms, 

improvement algorithms, and hybrid algorithms(Kim, Shim, and Zhang 1998). 

Construction algorithms are those in which the tour is constructed by including points in 

the tours, usually one at a time, until a complete tour is developed. In improvement 

algorithms, a given initial solution is improved, if possible, by transposing two or more 

points in the initial tour. With regards to improvement algorithms, there exist multiple 

strategies when dealing with interchanges. Hybrid algorithms use a construction 

algorithm to obtain an initial solution and then improve it using an improvement 

algorithm.  

Greedy algorithms start with a partial solution and repeatedly extend it until a 

complete solution is obtained. At each stage the locally optimal choice is made. For a 

given problem there can be many different greedy algorithms corresponding to different 

ways to define what form a partial solution takes, different forms for the partial solution, 

and different ways of doing an extension. The nearest neighbor algorithm is an example 

of a greedy algorithm for solving the TSP. It is as follows: “At each stage visit an 
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unvisited city nearest to the current city.” The nearest neighbor algorithm is also an 

example of a construction heuristic. 

Random search is an extremely basic improvement heuristic. It only explores the 

search space by randomly selecting solutions and evaluates their fitness(Sivanandam S.N. 

and Deepa S.N. 2008). This is a simple strategy, and is rarely used by itself. Interesting 

qualities of random search are that if the solution obtained is not optimal, it can always be 

improved by continuing to run the algorithm(Sivanandam S.N. and Deepa S.N. 2008). A 

random search never gets stuck in a local optimum. Finally theoretically, if the search 

space is finite, random search is guaranteed to reach the optimal solution.  

Local search heuristics for facility location problems are extremely 

straightforward. The idea is to start with any feasible solution and then to iteratively 

improve the solution by repeatedly moving to the best “neighboring” feasible solution, 

where one solution is a neighbor of another if it can be obtained by either adding a 

facility, deleting a facility, or changing the location of a facility.  

Interchange heuristics, also known as hill-climbing or substitution heuristics 

belong to the family of local search. It is when the choice of a neighbor solution is done 

by taking the one locally maximizing the criteria. An initial feasible solution is selected, 

often randomly. Then iterations take place, with candidate sites being swapped with 

existing sites. If an improvement is found in the objective function, the swap is accepted. 

Further swaps can occur to further improve the objective function. Interchange heuristics 

can be trapped in local optima. There can be differences in how swaps occur between 

different interchange heuristics, and different versions of interchange heuristics will 
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perform differently for different problems(Dr. Kevin M. Curtin 2011). Stochastic Hill 

Climbing iterates by randomly choosing a solution in the neighborhood of the current 

solution and retains this new solution only if it improves the objective 

function(Sivanandam S.N. and Deepa S.N. 2008). 

The 2-Opt algorithm is a well-known heuristic for the TSP problem. It is a type of 

local search improvement heuristic. A 2-Opt exchange consists of eliminating two edges 

and reconnecting them in a new way to form a new tour. This is done for all pairs, and 

the length that gives the shortest tour is picked. This procedure is iterated until no more 

improvements can be made. The Lin-Kernighan heuristic is the most popular TSP 

heuristic and is a generalization of 2-Opt and 3-Opt. 

Tabu search is a strategy for solving combinatorial optimization problems whose 

applications range from graph theory to general pure and mixed integer programming 

problems(Glover and others 1989). Tabu search guides the heuristic to continue 

exploration without becoming confounded by an absence of improving moves, and 

without falling back into a local optimum from which it previously emerged(Glover and 

others 1989). Tabu search uses memory structures that describe visited solutions. If a 

potential solution has been previously visited within a certain time period or has violated 

a certain rule, it is marked so the algorithm does not visit that location repeatedly.  

Genetic algorithms mimic the process of natural evolution. In a genetic algorithm, 

chromosomes encode candidate solutions to an optimization problem. The algorithm 

evolves with each generation to a better solution. The search is only guided by the fitness 

value associated to every individual in the population. This value is used to rank 
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individuals depending on their relative suitability for the problem being 

solved(Sivanandam S.N. and Deepa S.N. 2008). If the reproduction operators are just 

producing new random solutions without any concrete links to the one selected from the 

last generations, the genetic algorithm is just doing nothing else than a random search.  

Similar problems 

Warehouse Layout Problems 
 

Comparable in scale to grocery stores, warehouse layout problems have been 

studied extensively. They consist of a variety of problems including storing, architectural 

design and general layout problems, picking, response time for order processing, 

minimization of travel distances in the warehouse, routing of pickers or automated guided 

vehicles (AGV), and personnel and machine scheduling(Vrysagotis and Kontis 2011). A 

good warehouse layout configuration may significantly reduce the travel distance for 

order picking and increase efficiency for successful supply chain operation(Sooksaksun 

and Kachitvichyanukul). Often the building configuration is already decided and known 

for an existing distribution center. The necessary remaining steps for layout design are 

determining the location of stock items and order-picking policy within a distribution 

center(Liu 2004). 

Minimization problems of travel distance in warehouses concern calculating the 

shortest path for the points in the warehouse where ordered products are kept(Vrysagotis 

and Kontis 2011). Many different types of mathematical solutions have been used to 

solve warehouse layout problems including linear programming, particle swarm 

optimization, and genetic algorithms(Vrysagotis and Kontis 2011). Simulation models 
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have also been used to solve warehouse layout problems (Vrysagotis and Kontis 

2011).The basic model that is used is to rank items based on their size and popularity, and 

locate the smallest and most popular items closest to the input/output (I/O) 

point(Vrysagotis and Kontis 2011). The Cube per order index (COI) value is widely used 

to rank the items, it is the ratio of the item’s storage space requirement to its 

popularity(Vrysagotis and Kontis 2011). 

There are typically three storage policies in warehouse operations: randomized 

storage, dedicated storage, or class-based storage(T. N. Larson, March, and Kusiak 

1997). In randomized storage, inventory is allocated to a location, based on the available 

space at the time of storage(T. N. Larson, March, and Kusiak 1997). In dedicated storage, 

inventory is assigned to a predetermined location based on throughput and storage 

requirements(T. N. Larson, March, and Kusiak 1997). Class-based storage is a 

compromise between randomized and dedicated storage(T. N. Larson, March, and Kusiak 

1997). The tradeoff between randomized storage and dedicated storage is that dedicated 

storage usually reduces the material handling cost, but more total storage space is 

required(T. N. Larson, March, and Kusiak 1997). The type of storage in a grocery store 

would be dedicated storage, as the objective of grouping products into similar categories 

is more important than fitting the most items into the store.  

When placing the actual items or storage zones in particular areas, a minimization 

optimization problem is not usually run. The items with lowest COI rank are specified to 

be located adjacent to the primary aisle. It is understandable why this simple allocation 

method exists in placing products in warehouse layout problems. First, the networks are 
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fairly straightforward; this makes it easy to geometrically determine which nodes are 

closest to the I/O point. Secondly, due to the fact that the costs are being minimized, 

products that have the greatest demand can simply be placed closest to the I/O point. 

Complex analysis is not needed.  

 

 

Figure 1. Warehouse Layout Problems. Darker shading indicates more convenient locations for items with 
better COI value [10]. 
 

A need for a better solution becomes more apparent for more complex networks 

or when the objective is to maximize the cost of the shortest path. A typical grocery store 

has cross aisles, aisles of different lengths, as well as different sections along the 

perimeter of the store. This makes it difficult to intuitively see how to spread out the 

products in the store such that it will create the longest shortest path.  
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Retail Marketing 
 

Different strategies have been tested in order to increase the amount of time and 

money customers spend in retail locations. This includes determining the store size, 

cross-category management, building effective aisle and display management strategies, 

and store layout design. Retailers have experimented with different sizes of stores 

including supercenters and hypermarkets. The hypermarket is a retailing format that 

integrates a supermarket with a department store. It is around one and a half times larger 

than a typical 140,000 to 160,000 square-foot supercenter. Despite success in Europe and 

Central and South America, hypermarkets have not been successful in U.S. 

markets(Dunne and Lusch 2007). However, Wal-Mart’s experience with supercenters 

demonstrated that a larger aisle size permitted greater access to merchandise, which in 

turn led to greater sales(Dunne and Lusch 2007). Most recently, Wal-mart is planning on 

opening many Neighborhood Market and Marketside stores. The Neighborhood Market 

stores run about 42,000 ft2, and the Marketside stores run about 10,000 ft2 (Anon.). Retail 

and store managers must decide how to present merchandise through item allocation and 

arrangement on store shelves. Through store monitoring, control, and planning they can 

adjust the workload of each store sector(Bruzzone and Longo 2010). Software and modeling 

can assist with these tasks. Examples include ShelfLogic (http://www.shelflogic.com); 

this software generates planograms in order to extract the most from retail displays. 3D 

visualization can enhance managerial activities such as refurbishment and item 

arrangement on shelves(Bruzzone and Longo 2010). Path data has been used to capture 

subjects’ eye movement when viewing advertisements(Hui, Fader, and Bradlow 2009a). Cross-
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category management deals with demand attraction between categories. Retailers can use 

results of affinity to plan more effective in-store layouts and promotion strategies to 

increase their customers’ cross-buying of products(Bezawada et al. 2009).  

Innovative research has been done in studying in-store shopping patterns. In one 

study, RFID tags were attached to the bottom of shopping carts and emitted a signal 

every five seconds to receptors placed around the store(J. Larson, Bradlow, and Fader 2005). 

Multivariate clustering was performed on shoppers’ paths to find clusters of paths in the 

store(J. Larson, Bradlow, and Fader 2005). Using actual real path data, certain myths 

about shopper travel behavior were dispelled including behavior related to the 

“racetrack”, and traveling up and down aisles. Most shoppers tend to only travel select 

aisles, and usually travel only partly through an aisle instead of traversing the entire 

length(J. Larson, Bradlow, and Fader 2005). The perimeter of the store, or “race track”, 

serves as the main thoroughfare and is an area where shoppers spend most of their time(J. 

Larson, Bradlow, and Fader 2005). 

Creating an environment that maximizes the amount of time shoppers spend in the 

store, can lead to an increase in sales. When focusing marketing strategies towards 

customers, market segmentation can be useful in grouping customers. The knowledge 

gained through examining the heterogeneous needs and purchase patterns of customers, 

enables the retail organization to identify those segments that offer the most promising 

opportunities(Segal and Giacobbe 1994). Clustering methods have been used by Dr. Herb 

Sorensen on a large number of shoppers to develop behavioral segmentation(Sorensen 

2009). He grouped them into three groups titled Quick, Fill-in, and Stock-up. 
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Supermarket retailers focus on Stock-up shoppers the most. Stock-up shoppers spend a 

long-time in the store and cover a lot of area. The fact that there are separate and 

behaviorally different groups of shoppers highlight the danger of using averages to 

generalize their characteristics.  

Various methods regarding how retailers study and influence customer behavior 

have been reviewed. Designing successful retail environments involves many different 

factors, in this paper we focus on store layout and product category location. Store 

layouts include free flow, grid, loop, and spine. Grid layouts are more commonly used in 

supermarkets and drugstores(Dunne and Lusch 2007). The grid layout is best used in 

retail environments in which the majority of customers wish to shop the entire store. The 

literature supports that it would be valuable to test a store layout after it is implemented to 

see if any behavioral aspects of shoppers affect the desired outcome. 

Location Science 
 

The field of location science deals with the optimal location of facilities, 

personnel, or services. In 1970, ReVelle published an important paper called “Central 

Facilities Location.” This paper solves a p-median problem and was significant in the 

development of the field of location science.  

 

Equation 1. p-Median problem 
𝑎𝑖 = The population of the 𝑖𝑡ℎ community 
𝑑𝑖𝑗 = The shortest distance from community 𝑖 to community 𝑗 
𝑥𝑖𝑗 = {0 if community 𝑖 does not assign to community 𝑗, 1 if community 𝑖 does assign to 
community 𝑗} 
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Objective Function: 
Minimize 

𝑧 =  ��𝑎𝑖𝑑𝑖𝑗𝑥𝑖𝑗
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Constraint 2: 

𝑥𝑖𝑗 + �𝑥𝑗𝑘 ≤ 1
𝑛

𝑘=1
𝑘≠𝑗

      

𝑖 = 1,2, … ,𝑛  
𝑗 = 1,2, … ,𝑛  

𝑖 ≠ 𝑗 
 
Constraint 3: 

�𝑥𝑗𝑘 = 1
𝑛

𝑘=1

     𝑗 = 1,2, … ,𝑛 

Constraint 4: 
𝑥𝑗𝑗 ≥ 𝑥𝑖𝑗       
𝑖 = 1,2, … ,𝑛 
𝑗 = 1,2, … ,𝑛 

𝑖 ≥ 𝑗 
Constraint 5: 

�𝑥𝑖𝑖 = 𝑚
𝑛

𝑖=1

 

 where 𝑚 = number of central facilities 
 

In the literature review of the paper “Central Facilities Location,” ReVelle 

describes the research that solved similar problems, through heuristic methods. ReVelle’s 

formulation makes use of linear programming to optimally locate central facilities in a 

road network(ReVelle and Swain 1970). This was at the time period when this problem 
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was receiving greater attention due to advances in mathematical programming and 

computer-aided computation(ReVelle and Swain 1970).  One can take any heuristic 

solution and tell whether it is optimal with a linear programming solution(ReVelle and 

Swain 1970).  

 Most location models deal with minimizing some function of the distance 

between desirable facilities such as warehouses, service centers, and police stations(Erkut 

and Neuman 1989). Some examples of obnoxious facilities include nuclear power 

stations, military installations, and pollution producing industrial plants(Welch and Salhi 

1997). These undesirable facilities warrant an analysis that maximizes the shortest 

distance from customer locations or from other undesirable facilities. In the perspective 

of the supermarket owner, a model that maximizes the shortest distance between product 

location categories would be more appropriate. Customers tend not to deviate from the 

shortest path that connects all of their purchases(Hui, Fader, and Bradlow 2009b).  If the 

shortest path is maximized, the customers will spend more time shopping and have a 

greater opportunity to fill their carts. When deciding on spatial configuration for 

modeling, it is important to consider different characteristics such as 

physical/nonphysical, continuous/discrete, and the presence/degree of constraints(Hui, 

Fader, and Bradlow 2009a).  

Church and Garfinkel dealt with the problem of locating a point on a network so 

as to maximize the sum of its weighted distances to the nodes(Church and Garfinkel 

1978). The literature is filled with instances of problems of locating a facility or facilities 

close to a given set of points. Finding the location of an obnoxious facility or facilities is 



19 
 

not covered as frequently(Church and Garfinkel 1978). Church and Garfinkel state that 

the extension of the maxian model to the location of multiple facilities is not 

straightforward. They mention a natural possibility is to let the p-maxian problem be that 

of locating p points simultaneously far from a given set of nodes and also far from each 

other.  

In the case of non-obnoxious set of location problems, the objective function to be 

optimized is often of a p-minisum or p-minimax form. In the case of obnoxious facilities 

the problem is reformulated as a p-maxian/p-maxisum problem or a p-maximin 

problem(Welch and Salhi 1997).  

In the generic single undesirable facility model, the decision maker wishes to 

locate the new facility such that some measure of the distances between the new facility 

and the existing facilities is maximized(Erkut and Neuman 1989). Our model will be 

more similar to multiple facility problems, where there are no existing facilities, and the 

objective is to maximize some function of distances between new facilities. This problem 

is also known as the p-dispersion problem. The p-dispersion problem aims to maximize 

the minimum separation distance between facilities. 

 

Equation 2. p-Dispersion problem 
Objective Function: 
 
Maximize 𝐷 
 
 
Constraints: 
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�𝑿𝒊 = 𝒑
𝒏

𝒊=𝟏

 

 
 
𝑫 ≤  𝒅𝒊𝒋  �𝟏 + 𝑴(𝟏 − 𝑿𝒊) + 𝑴�𝟏 − 𝑿𝒋�� for all i,j∈ 𝑁 | i < 𝑗 
 
𝑿𝒊 ∈ {𝟎,𝟏}     for all i∈ 𝑁       
 
𝐷 = smallest separation distance between any pair of open facilities 
𝑋𝑖  = {1, if a facility locates at node i} 
           0, otherwise 
𝑛 = number of potential facility sites 
𝑝 = number of facilities to be located 
𝑁 = set of potential facility sites 
𝑀 = a very large number 
𝑑𝑖𝑗  = shortest path distance between node i and node j. 
 

In the p-dispersion problem, there will generally be one pair of facilities that 

determines the maximin distance(Michael J Kuby 1987). The discrete p-dispersion 

problem without assuming a specific problem space is NP-complete(Erkut and Neuman 

1989). An important difference between the MAXIMIN TSP and the p-dispersion 

problem is that the aim is not to maximize the shortest distance between facilities, instead 

the goal is to maximize the shortest path between all facilities. This objective requires a 

computationally complex traveling salesman problem to exist within the problem 

framework.   

The maxisum dispersion problem is related to the p-dispersion problem (a 

maximin problem) in the same way that the p-median problem (a minisum problem) is 

related to the p-center problem (a minimax problem)(M.J. Kuby 1987). The maxisum 

problem maximizes the sum of distances (or average of distances) between open 
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facilities(M.J. Kuby 1987). A drawback is that some pairs of facilities could conceivably 

be placed very near to each other(M.J. Kuby 1987). 

 

Equation 3. Maxisum dispersion problem 
Objective Function: 
 
Maximize  

� � 𝑍𝑖𝑗𝑑𝑖𝑗

𝑛

𝑗=𝑖+1

𝑛

𝑖=1

 

 
Constraints: 
 
 

�𝑿𝒊 = 𝒑
𝒏

𝒊=𝟏

 

 
 
𝒁𝒊𝒋 ≤  𝑿𝒊  for all i,j| j > 𝑖 
𝒁𝒊𝒋 ≤  𝑿𝒋  for all i,j| j > 𝑖 
 
 
𝑿𝒊 ∈ {𝟎,𝟏} for all i∈ 𝑁       
 
𝑍𝑖𝑗  = {1, if facilities are located at both 𝑖 and 𝑗}  
           0, otherwise 
𝑝 = number of facilities to be located 
𝑁 = set of potential facility sites 
𝑋𝑖  = {1, if a facility locates at node i} 
           0, otherwise 
𝑑𝑖𝑗  = shortest path distance between node i and node j. 
 

 The p-dispersion and maxisum dispersion problems are two problems that 

disperse points in some sort of optimal way. It is unknown however if their results will 

maximize the min TSP path optimally. The p-dispersion and maxisum dispersion 
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problems will be solved optimally and results will be compared to the MAX MIN TSP 

result solved by enumeration. Solving this problem through enumeration is very hard, due 

to its combinatorial complexity, and incalculable in many circumstances. If the solution 

to the p-dispersion or maxisum problem results in a solution that also satisfies the MAX 

MIN TSP, then it would greatly decrease processing time. 

 

 

 

 

 
Placement A 
Maximum minimum separation = 
1 
Sum of distances : 30 =8+8+14    
optimal maxisum solution 
TSP solution = 15   * maximizes 
the TSP solution 

Placement B 
Maximum minimum separation = 
2   optimal p-dispersion solution 
Sum of distances : 29 = 12+7+9    
TSP solution = 14    
  

Figure 2. Comparison of two facility placements on a simple network 
 

Figure 2 contains two different facility placements on a simple network. 

Calculating the optimal p-dispersion, maxisum, and TSP solutions for this network can be 

done by hand. In this network the facility placement that provides the optimal maxisum 

solution also maximizes the TSP solution. It is unclear if the maxisum always beats the p-

dispersion problem when maximizing the TSP solution. 
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Much work has been done in location theory in the last 60 years, but a small 

percentage of the research relates to locating undesirable facilities(Erkut and Neuman 

1989). An even smaller percentage of research has been related to locating mutually 

undesirable or several undesirable facilities(Erkut and Neuman 1989). No piece of 

literature has been found that determines optimal locations for products within a retail 

setting that maximizes the shortest paths between them. 
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METHODS 

The problem here is defined as finding the longest shortest path between a defined 

number of facilities in the network. In other words, the optimal solution will be the 

shortest path with the greatest cost that must be traversed in order to travel to each vertex. 

It is possible to have multiple optimal solutions. This problem is loosely related to 

finding the diameter of a graph, a widely used descriptive statistic of graphs. The 

diameter of a graph finds the longest shortest path between any two graph vertices. To 

find the diameter of a graph, the shortest path between each pair of vertices must be 

found. The greatest length of any of these paths is the diameter of the graph. Floyd’s 

algorithm is a graph analysis algorithm for finding shortest paths between all pairs of 

vertices in a weighted graph(Floyd 1962). A single execution of the algorithm runs with 

the time complexity of O(n3), however the algorithm does not include details on the paths 

themselves. Finding the shortest route between more than two vertices requires the use of 

a TSP solution and will make the problem NP-complete.  

The defined problem has specific criteria and constraints associated with it. The 

problem is being solved in a network solution space, with network distance measures, 

using different weights. Multiple facilities are to be located within our network, three to 

be exact. The problem has only a single objective, to maximize the shortest path between 

all facilities.  
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 Objective Function 

A standard version of the problem requires starting from a given place, visiting 

subsequent stops, and returning to the starting place. The placement of the given number 

of subsequent stops can be rearranged on any of the nodes in the network. The optimal 

solution is one that maximizes the total distance traveled. The objective function (Z) is 

then used to find the tour with the maximum sum of all costs (distances) from the set of 

tours in the network that minimize the sum of all costs (distances) of all of the selected 

elements of each tour: 

 

Equation 4. MAXIMIN TSP problem 
𝑛= the number of nodes in the network 

𝑟= the number of stops to be visited 

𝑦= what is being chosen from the set 𝑣 

𝑣= the number variations of tours in network: 

(𝑛 + 𝑟 − 1)!
𝑟! (𝑛 − 1)!

 

𝑖, 𝑗, 𝑘= indices of stops that can take integer values from 1 to n 

𝑡= the time period, or step in the route between the stops 

𝑥𝑖𝑗𝑡= 1 if the edge of the network from i to j is used in step t of the route, 0 

otherwise 

𝑑𝑖𝑗= the distance or cost from stop i to stop j 
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max
𝑦∈𝑣

) (Minimize
1 1 1
∑∑∑
= = =

=
n

i

n

j

n

t
ijtij xdZ

 

The tour is subject to the following constraints:  

Since the traveler cannot travel between more than one pair of stops at one time, 

for all values of 𝑡, exactly one arc must be traversed, hence: 

tx
n

i

n

j
ijt  allfor  1  

1 1

=∑∑
= =  

For each stop, 𝑖, there is just one other stop which is being reached from it, at 

some time, hence: 

ix
n

j

n

t
ijt  allfor  1  

1 1
=∑∑

= =  

For all stops, there is some other stop from which it is being reached, at some 

time, hence: 

jx
n

i

n

t
ijt  allfor  1  

1 1
=∑∑

= =  

When a stop is reached at time 𝑡, it must be left at time 𝑡 +  1, in order to exclude 

disconnected sub-tours that would otherwise meet all of the above constraints. These sub-

tour elimination constraints are formulated as: 

 

 

In addition to the above constraints the decision variables must be integers taking 

only the value 0 or 1: 

tjxx
n

k
jkt

n

i
ijt  and  allfor  

1
1

1
∑∑
=

+
=

=
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tjixijt  and , , allfor  1 ,0=  

 

Enumeration 

ESRI network analysis tools contain a solver that finds the least-cost route 

between multiple stops. With 3 stops, the Route solver will need to generate the optimal 

sequence of visiting the stop locations. This is the Traveling Salesman Problem (TSP). 

The task of the TSP is to find the shortest possible tour that visits each destination exactly 

once, given a list of destinations and their pair wise distances. The TSP solver starts by 

generating an origin-destination cost matrix between all the stops to be sequenced and 

uses a Tabu search-based algorithm to approximate the best sequence of stops. It has 

been shown that the ESRI TSP solver achieves optimal results with small datasets(Dr. 

Kevin M. Curtin 2011). 
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Figure 3. Model of implementation 
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To find the optimal solution, Route solver was run for every combination of 

product category locations for the three product categories throughout the store. In 

computing the number of combinations in regards to 3 product locations that can be 

selected from 118 nodes, there are 266,916 different combinations that need to be 

accounted for. Choosing four product locations would result in 7,673,835 possible 

combinations, and choosing five product locations would result in 174,963,438 possible 

combinations. 

 

Equation 5. Combinations without repetition equation 

𝐶𝑟𝑛 =
𝑛!

𝑟! (𝑛 − 𝑟)!
 

𝐶3118 =
118!

3! (118 − 3)!
 

 

For each iteration of Route solver, the start and end nodes are fixed. For 3 

products, the output will generate 266,916 shortest paths, the shortest path with the 

longest total distance the final answer. The nodes that make up this final path will be the 

locations of the optimal product category locations. A comparison will be made between 

the optimal solution and where the products are actually placed in the original 

supermarket layout. 
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ModelBuilder was used in ArcGIS to generate the computational model. A route 

layer was made from the store network. Then stop locations were added from five 

different layers to the route layer. Each layer represented all stops that belonged to a 

certain stop order. For example, the first layer consisted of 266,916 identical rows of the 

same node. This was because the first stop represented the supermarket entrance and 

remained constant for each path combination. The fifth layer also consisted of identical 

rows representing the supermarket exit. Layers two, three, and four had rows that had a 

variation of nodes. 

Optimization Software 

There are many different types of software available to solve linear programming 

and integer programming problems. These include Excel’s solver option, MatLab’s 

optimization toolbox, IBM’s Cplex, MPL Modeling System, LINDO, Frontline Systems 

solver, AMPL and GLPK. The functionality of most of these software packages was 

explored. Some software had limitations on what types of problems they could handle; 

others had limitations on the number of constraints they could process.  

CPLEX was used to run the p-dispersion and maxisum dispersion problems. 

CPLEX is a professional solver for linear programming problems (LP), mixed integer 

linear programming problems (MIP), and quadratic programming problems (QP). The 

MPS data format was used. The MPS format separates the data into its own separate file.  

This makes it easier to test the same problem with different datasets, as well as import 

data from other sources into the problem configuration you are trying to solve.  

Heuristics 
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Local search heuristics start with a given feasible solution and attempt to improve 

the objective function value by limiting changes in one or a few nodes(Chen, Batson, and 

Dang 2010). This type of heuristic applies a rule to select an element from a set.  

Two types of farthest-neighbor heuristics have been created. They both apply 

certain rules to select elements from the origin-destination (OD) matrix that contains the 

shortest paths from all origins to all destinations. The heuristics were written in C#, and 

the program used the OD matrix as the input in .csv format. A custom program was 

created named Heuristic Calculator.  

 

 
Figure 4. Heuristic Calculator Program  
 

Farthest Neighbor Heuristic   
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This heuristic orders the distances found in the OD matrix. Depending on X 

facilities being chosen, the farthest neighbor heuristic finds the largest distances in the 

OD matrix that satisfies containing x nodes. Each value in the OD matrix is the shortest 

distance between two nodes. The heuristic has to take into account whether the number of 

facilities chosen is even or odd. If the number of facilities is even, then the heuristic 

divides that number by 2 (ex. 4 facilities chosen, 4/2 = 2. Then the heuristic finds the 

largest X values in the matrix equal to the result (ex. top 2 largest values OD matrix). The 

heuristic then makes sure that none of the values chosen share a node connection. In the 

5-node example, if 5 facilities were chosen, then the top 2 values chosen would be the 

two connections with a value of 5. These connections do not share node connections, so 

the 4 nodes that comprise these connections would be selected. These nodes are 1, 2, 3, 

and 4. 

 



33 
 

 
Figure 5. 5-node example for solving the MAX TSP with Heuristics 
 

If an odd number of facilities were chosen, the difference is that one is added to 

the number of facilities chosen before it is divided by 2 (ex. 5 facilities chosen, (5 + 1)/2 

= 3). Also, the heuristic makes sure that there exists one node that shares one connection 

between two chosen values. In the 4-node example, 3 values would need to be chosen. 

The two highest values contain a cost of 5. These consist of nodes 1, 2, 3, and 4. The next 

4 values could not be chosen because they all share a connection with two nodes that are 

already chosen. The next value down the list that shares a connection between only one 

node of a previously selected value is 3. This would ensure node 5 is also included in the 
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solution to the problem. The farthest neighbor heuristic has a significant drawback, the 

largest values can potentially be close to each other.  

The pseudocode for the farthest neighbor heuristic is as follows: 

 

USER inputs the number of facilities to be located 

USER checks a box to decided whether to set start and end nodes 

SET heuristic list = all of the distance values in the OD matrix ordered from greatest to 

lowest cost 

 

IF number of facilities chosen to be located is even 

 SET X = number of facilities chosen to be located / 2 

 IF the checkbox that sets the start and end nodes is checked  

  add the start and end nodes to the problem 

 END IF 

 FOR i = 1 to X 

  add the row (node) number from heuristic list(i) to the solution 

  add the column (column) number from heuristic list(i) to the solution 

  IF solution has any duplicate nodes 

   remove duplicate nodes and increment X by 1 

  END IF 

 ENDFOR 

DISPLAY solution   
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END IF 

 

IF number of facilities chosen to be located is odd 

SET X = (number of facilities chosen to be located + 1) / 2 

 IF the checkbox that sets the start and end nodes is checked  

  add the start and end nodes to the problem 

 END IF 

 FOR i = 1 to X 

  IF there is a need to use a temporary solution list 

clear the temporary solution list and repopulate it with the solution  

list 

 END IF 

add the row (node) number from heuristic list(i) to the temporary solution 

add the column (column) number from heuristic list(i) to the temporary 

solution 

  sort the temporary solution  

  IF temporary solution has any duplicate nodes 

   record if there is one duplicate 

  END IF 

  IF i is the last item in X 

   IF there exists only one node match 

    add two nodes to solution set, make sure to reset temporary   
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    solution list 

   END IF 

   IF two nodes are matched 

    increment X by one 

   END IF 

  END IF 

 ENDFOR 

END IF 

 

Farthest Neighbor Pair Heuristic  

The farthest neighbor pair heuristic alleviates this problem of having nodes close 

to each other. The first step of the farthest neighbor pair heuristic is to find the largest 

value in the OD matrix. This selects the two nodes that are the farthest apart. The next 

step calculates the sum of the distances between the previous two selected nodes and 

every other node not selected. The largest sum is chosen to be the location for the next 

facility. This step is iterated until the required numbers of facilities are chosen.  

The pseudocode for the farthest neighbor pair heuristic is as follows: 

 

USER inputs the number of facilities to be located 

USER checks a box to decided whether to set start and end nodes 
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SET heuristic list = all of the distance values in the OD matrix ordered from greatest to 

lowest cost 

SET X = number of facilities chosen to be located 

IF the checkbox that sets the start and end nodes is checked  

 add the start and end nodes to the problem, make them A and B 

increment X by two 

ELSE 

add the two nodes from the greatest value of the heuristic list as the first two 

nodes in the solution, make them A and B 

FOR i = 3 to X 

 FOR each node in the network 

  sum the distance between the node and node A, and the node and node B 

  nodepick = greatest value 

  check to see that nodepick isn’t a selected node already 

 ENDFOR 

SET A = B 

SET B = nodepick 

ENDFOR 

   

Farthest Neighbor Sum Heuristic 

The farthest neighbor sum heuristic is identical to the farthest neighbor pair 

heuristic except that in each step the sum of the distances between all of the previously 
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selected nodes and every other node not selected is calculated. The largest sum is chosen 

to be the location for the next facility. This step is iterated until the required numbers of 

facilities are chosen. This heuristic was created due to the fact that in the farthest 

neighbor pair heuristic only taking into account the previous 2 selected nodes can cause 

the next selected node to be close to an existing node that was selected. 
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DATA 

A local grocery store in Fairfax, Virginia was visited in May 2011 and its store 

layout was used to create a network graph. All of the grocery store’s product categories 

and locations were documented; in addition several distance measurements were made in 

order to make a realistic and accurate model. The goal is to find the optimal product 

category locations using the existing grid layout framework. The shelves, which serve as 

barriers where customers cannot cross, were taken into account when creating the 

network. ESRI’s ArcGIS has been used for geospatial analysis, creation, storage, and 

visualization. ESRI’s Network Analyst library provides objects for working with network 

datasets. These objects will allow for network analysis to be performed on undirected 

networks.  

In order to come up with a more realistic scenario, Stock-up shoppers were 

determined to be the most important group for deciding what product categories should 

be considered for relocation. Supermarket retailers focus on Stock-up shoppers the most. 

An annual report from Progressive Grocer gave us some insight on who these Stock-up 

shoppers might be. In 69 percent of households, the female head of household is the 

primary shopper(Anonymous 2002). The primary shopper tends to make 2 weekly trips 

to the supermarket and has a major trip time of 54 min(Anonymous 2002). Out of the 18 

categories accounted for in the 2002 annual report of Progressive Grocer, shoppers spent 
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the most money in fresh meat & seafood, beverages, and produce categories(Anonymous 

2002). These three product categories will be used in this analysis, even though the type 

of product will not affect the results unless a constraint that perishable products can only 

be located in an aisle with refrigeration is enforced. 

There are 222 edges and 118 vertices in the network. The Beta index, a measure 

of connectivity, is 1.88. Complex networks have a value greater than 1. Another measure 

of connectivity is the Gamma index, the range of values range from 0 to 1, with 1 

representing a completely connected network. The Gamma value of the network is 0.64. 

 

 

Figure 6. Grocery store represented by a graph of 118 nodes 
  



41 
 

Our network graph allows us to represent a physical 2-D environment. The aisles 

located throughout the store create natural barriers to pedestrian movement, yet at the 

same time limit the amount of possible paths. This lends itself well to being represented 

by a network graph. This is the same reason why the modeling is discrete, there are finite 

sections in the store for different product categories that can be represented by nodes.  

There are no constraints on turns and the graph is planar. While in the physical world a 

pedestrian’s path is limited by the aisles, there are no barriers in the network graph and 

the appropriate costs of traversal are incorporated in the network graph configuration as 

well as the costs of the edges. The costs of edges represent 5 seconds or 2.5 seconds for 

any particular edge. 

The shortest path was calculated from each node to each other node. All values 

were stored in an origin-destination (OD) matrix. Network Analyst in ArcMap is able to 

generate shortest paths for all origins and destinations. To get the data into the right form 

for CPLEX, the data was parsed and translated to a matrix form. A custom program 

called OD Matrix Generator was created, it took an excel file as an input. It parsed each 

line, which represented a specific origin destination combination and cost, and created an 

OD matrix in text form as the output. 
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Figure 7. OD Matrix Generator 
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RESULTS 

Enumeration Results 
 

There are five alternate optimal solutions to the problem. All of the optimal 

shortest paths have a cost of 137.5 seconds. The shortest path of the current grocery store 

layout was calculated. The shortest path of the current real-world placement is 92.5 

seconds, as shown in Figure 5. This results in a 32 percent increase for any one of the five 

optimal paths. The five different maximum shortest paths are shown in Figures 8 thru 12. 

Having five different optimal paths will increase the flexibility that store managers have 

in modifying their store layout. Other criteria not tested for in this experiment can be used 

to determine which of the remaining five paths the best is. Finally, there is the flexibility 

of deciding where each product category goes amongst any of the three possible selected 

nodes. 
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Figure 8. 1 out of the 5 Maximum Shortest Paths 
 

 
Figure 9. 2 out of the 5 Maximum Shortest Paths 
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Figure 10. 3 out of the 5 Maximum Shortest Paths 
 

 
Figure 11. 4 out of the 5 Maximum Shortest Paths 
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Figure 12. 5 out of the 5 Maximum Shortest Paths 
 

 

 
Figure 13. shortest path of actual store layout 
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There is little variability in the five optimal paths. Node 17 was found in all five 

paths. In a grouping of three of the five paths, only one of the three facility locations 

changed. In the remaining two paths, only one of the facility locations was different as 

well. Node 17, which is the bakery section of the actual store, is at the edge of the graph 

and requires the customer to backtrack in most cases. All of the optimal paths have the 

customer cutting across the aisles to reach node 17 as the first destination. It would be 

interesting to see if customers would actually take this route to get to the first product 

category or travel through the outside aisle, the traditional ‘race track’ in many 

supermarkets.  

In several cases the shortest path selection that returns to the checkout nodes 

requires the customer to switch aisles midway through the store. It would be interesting 

to note if customers would follow this behavior or stay in the same aisle. This would be a 

case of travel deviation from the TSP solution, which was found to be a large proportion 

of trip length in a TSP optimality study (Hui, Fader, and Bradlow 2009b). 

The enumeration method took over 7.5 hours to process using ESRI ArcGIS and 

Microsoft Excel software. The machine was a laptop with a 2.4 GHz i5CPU running on a 

64-bit Windows 7 system with 4 GB of ram. 

Optimization Results 

p-Dispersion Tests 
 

The p-dispersion problem in CPLEX was run with the grocery store dataset for 3 

facilities. The Mixed Integer Linear Programming (MILP) objective was 42.5 seconds. 

The three facilities were located on nodes 17, 53, and 84. The smallest separation 
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distance between any pair of open facilities was between nodes 17 and 54. The TSP path 

was then found on these three facilities adding the start and end nodes. The cost of the 

TSP path was 125 seconds.  

 
Figure 14. p-dispersion result 
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Figure 15. TSP path on p-dispersion result 
 

Next, the p-dispersion problem was run with 5 stops. The start and end stops were 

fixed. The result had an objective value of 15 seconds. The selected nodes were the start 

node, end node, 17, 59, and 18. The start and end nodes added an upper limit on the p-

dispersion function. The shortest path value between the start and end nodes was already 

15 seconds. Therefore the objective value could not be greater than 15 seconds.  
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Figure 16. p-dispersion result, 5-stops 
 

Using the nodes from the final result, a TSP solution was run. The total cost was 

130 seconds. This was a good result, yet it fell short of 137.5 second optimal path 

generated using enumeration. 
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Figure 17. TSP path on p-dispersion result, 5-stops 
 

For the next test, the shortest path between the start and end nodes was artificially 

lengthened to 60 seconds. The purpose of this was to not let the shortest path distance 

between the start and end nodes limit the smallest separation distance between any pair of 

open facilities. The p-dispersion problem was run again, and the final result was 127.5 

seconds. Looking at the result, the path is very similar to figure 12, one of the optimal 

paths generated by enumeration.  The difference is that the other path used node 90 

instead of 79, 90 was one node further down. This resulted in the 10 second difference 

between the two TSP paths.  
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Figure 18. TSP path on 5-stop problem with lengthened shortest path between start and end nodes 
 

Table 1. Processing times for p-dispersion problem 
Number of stops Processing Time 

5 3:96 sec 

10 6:07 sec 

15  5:83 sec 

20 32:79 sec 

 

Maxisum Dispersion Tests 
 

The maxisum dispersion problem in CPLEX was run with the grocery store 

dataset for 3 locating three facilities and setting fixed start and end stops, a total of 5 

facilities. The Mixed Integer Linear Programming (MILP) objective was 66887. The 
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selected facilities were the start node, end node, 9, 17, and 19. The cost of the resulting 

TSP path is 130 seconds. The maxisum dispersion problem was more processing 

intensive than the p-dispersion problem taking 2 hours 28 minutes and 21 seconds to run 

with 5 facilities. A 6 facility maxisum dispersion problem could not be completed on 

CPLEX due to the system running low on memory. 

 

 
Figure 19. TSP path on maxisum dispersion result, 5-nodes 
 

Heuristic Results 
 
Farthest Neighbor Heuristic   
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The Farthest Neighbor Heuristic was calculated using the heuristic calculator 

program. Five facilities were selected with the start and end stops being set to nodes 53 

and 118, respectively. The result included nodes 53, 118, 17, 106, and 18 being selected. 

The cost of the resulting TSP path is 127.5 seconds. The Farthest Neighbor Heuristic took 

less than 5 sec to run to completion. 

 

 
Figure 20. TSP path on Farthest Neighbor Heuristic result, 5-nodes 
 

Farthest Neighbor Pair Heuristic 
 

The Farthest Neighbor Heuristic was calculated using the heuristic calculator 

program. Five facilities were selected with the start and end nodes being set to nodes 53 

and 118, respectively. The final result included nodes 53, 118, 37, 55, and 17 being 
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selected. The cost of the resulting TSP path is 122.5 seconds. The Farthest Neighbor Pair 

Heuristic took less than 5 sec to run to completion. 

 

 
Figure 21. TSP path on Farthest Neighbor Pair Heuristic result, 5-nodes 
 

Farthest Neighbor Sum Heuristic 
 

The Farthest Neighbor Heuristic was calculated using the heuristic calculator 

program. Five facilities were selected with the start and end nodes being set to nodes 53 

and 118, respectively. The final result included nodes 53, 118, 37, 17, and 18 being 

selected. The cost of the resulting TSP path is 127.5 seconds. The Farthest Neighbor Sum 

Heuristic took less than 5 sec to run to completion. 
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Figure 22. TSP path on Farthest Neighbor Sum Heuristic result, 5-nodes 
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CONCLUSIONS 

In this research, multiple types of analysis were performed regarding 

combinations of shortest paths between different product category locations. Locations 

were chosen to maximize the shortest TSP path by enumerating all possible combinations 

of TSP paths. Undirected graph networks can be used to adequately model and test 

different product placements in grocery stores. Similar methods could be applied in other 

types of stores or facilities where optimizing paths would be beneficial.  

The enumeration method produced the best result. An important consideration is 

not to have too large of a network with too many nodes and edges. Adding one more 

facility to be located would have increased the number of combinations to process from 

266,916 to 7,673,835. Using enumeration to solve the MAXIMIN TSP problem can 

quickly become infeasible with too many facilities to locate. 

The p-dispersion problem and maxisum dispersion problems were solved to 

optimality for their respective problems. The optimal solutions to these problems did not 

produce a better result to the MAXIMIN TSP problem than the enumeration method. 

They were close however for the particular network data set used and the number of 

facilities placed. CPLEX was able to process the p-dispersion problem with up to 30 

facilities in under 33 seconds.  
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The heuristic methods produced competitive results. The farthest neighbor 

heuristic and the farthest neighbor sum heuristic produced a TSP result of 127.5 seconds. 

This matched the result of the p-dispersion result, but fell short of the maxisum result. 

The farthest neighbor pair heuristic fell a bit short with a time of 122.5 seconds. The 

advantages of the heuristic methods are that they are the fastest to compute. Increasing 

the number of products to place would increase the processing time by a negligible 

amount.   

Choosing the best method to solve the MAXIMIN TSP would depend on what the 

requirements are in achieving the optimal solution as well as the processing requirements 

for implementation. The amount of time needed to generate a solution is dependent on 

the available hardware. Distributed computing and scalable infrastructure can increase 

the capability to solve more complex limit. However, there is a limit to what computers 

can solve when dealing with problems of combinatorial complexity. The MAXIMIN TSP 

is even more complex than the TSP, which itself is NP-complete. The MAXIMIN TSP 

requires the TSP to be calculated for each combination of possible product placements in 

the network. 

Achieving the optimal solution might not lead to the desired result in the real 

world. Human behavior is unpredictable and certain assumptions can fail to take into 

account the possibility of irrational behavior. The MAXIMIN TSP solution can become a 

first step in trying various ways to increase profits. Customers have been shown to 

deviate from the TSP path but not deviate much from the order of the shortest path(Hui, 

Fader, and Bradlow 2009b). This rational would suggest placing other complementary 
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products with high profits margins where the products were placed when solving the 

MAXIMIN TSP.  

It remains to be seen whether supermarkets would want to implement changing 

their layout to optimize the longest shortest path. Spreading out commonly purchased 

items might cause customers to become disgruntled. It is unknown at what limit 

customers can be inconvenienced that would cause losses in business. Certain physical 

constraints might prohibit rearranging the store. Perishable items such as meat and dairy 

need refrigeration; this might limit the possible locations for these product categories. 

The MAXIMIN TSP problem can be easily applied problems involving other 

types of facilities. Amusement parks and convention centers often have an incentive for 

their visitors to spend more time on their grounds. Networks are used to model a variety 

of different things including non-physical spaces. Game developers might want players to 

achieve certain task or get certain items while maximizing the amount of time they spend 

in a virtual world.  

Decisions that involve security issues are another class of problems that be aided 

with a MAXIMIN TSP solution. Many counties implement security measures for 

spreading out the necessary materials that are required to create weapons of mass 

destruction. Valuable information is being stored in critical data centers around the world, 

including in data centers deployed in theaters. A MAXIMIN TSP solution can aid when 

deciding where to construct facilities and store materials. Intelligence gathering-activities 

can focus on documenting activities and patterns of groups of people. This type of data 

can be represented by networks. Therefore the MAXIMIN TSP can identify crucial 
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locations that can make the adversary incur the greatest cost in acquiring supplies to 

conduct nefarious activities. 
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FUTURE RESEARCH 

This paper successfully demonstrated the benefits of optimizing the location of 

product categories. In the process it opened up many possible avenues for future research. 

There are opportunities to create more complex iterative heuristics and compare the 

results. TABU search, simulated annealing, and genetic algorithms can be tested. 

The next logical step would be to test an optimal solution in an actual 

supermarket. We could determine first if maximizing the shortest path would actually 

increase the amount of time shoppers spend in a store. To test this we could attach RFID 

tags to shopping carts. It would be interesting to compare shoppers’ actual paths to the 

optimal TSP paths. The study of paths with the conjunction of studying different product 

category locations, may lead to a better understanding of consumer behavior and goals. 

Point-of-sale data has been matched with the cart movement records to provide data of 

the items purchased, and to integrate grocery store shopping path and purchase behavior 

[6]. 

Testing could be done to see if maximizing the shortest path increases sales, this 

would not be dependent on having RFID tags. Taking a closer look at a store’s purchase 

history would help us determine market segments better and ultimately select better 

product categories. Mobile devices equipped with GPS devices are more prevalent, it 

could be easier to model shoppers’ actual paths in an outdoor market. Methods can be 
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tested that add additional constraints; these can include limiting certain node locations for 

certain products or placing limits on edges. Network costs can take on different values 

than distance or time, for example it would be interesting to use values that represent 

products’ affinity towards each other. A hypothesis could be proposed that 

complementary products that have the greatest affinity could be dispersed in order to lure 

customers to cover a greater distance of the store.  

Game theory is a mathematical theory that deals with the general features of 

competitive and cooperative situations between intelligent decisions makers(Hillier). It 

would be interesting to apply game theory to the grocery store problem described in this 

paper. There is a type of competition that arises between the shoppers and the owner of 

the store, each who have different objectives. It would be possible to formulate this as a 

two-person, zero-sum game. A sticking point might be that from the shoppers’ 

perspective, they might never be aware of the product dispersion strategy the store owner 

has at their disposal. 

In solving the MAXIMIN TSP problem, the assumption has been that the 

networks could not be modified. In many real-world scenarios the option exists to modify 

the network space in order to reach a better solution. In the literature, alternative models 

have been produced that could reduce the distances workers travel by more than 20 

percent compared to the traditional rectangular warehouse design(Gue and Meller 2009). 

It would be interesting to apply aisle configuration research to my problem. Additional 

research could test time-sensitivity on optimal networks in different retail outlets. 

Shoppers’ travel time vary across formats(Fox, Montgomery, and Lodish 2004). For 
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example, shoppers at drug stores are more sensitive to travel time than other formats(Fox, 

Montgomery, and Lodish 2004). 
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