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ABSTRACT 

IMPROVING DECISION MODELING: ENHANCING MULTI-ENTITY DECISION 

GRAPH MODELING CAPABILITY AND SUPPORTING KNOWLEDGE REUSE 

Mark A. Locher, Ph.D. 

George Mason University, 2019 

Dissertation Director: Dr. Paulo C. G. Costa 

 

Formal decision-making quality is affected by the capabilities of the decision- making 

tools and the availability of reusable decision knowledge. Decision graphs are a powerful 

decision modeling framework. Many decision graph elements are probabilistic, and each 

requires a Local Probability Distribution (LPD) specifying the probabilities of each state 

in that element. State-of-the-art implementations have first-order expressivity, where the 

computer can automatically create decision graphs with a varying number of entities (e.g. 

people, decisions, alternatives, etc.). Varying the entities creates different model configu-

rations. For every possible model configuration, the modeling tool must define the LPD, 

using information provided by the modeler. Existing first-order expressive decision graph 

implementations have a critical limitation arising from a lack of research on the full range 

of capabilities required by a modeling tool to create these LPD. This lack restricts model-

ing of important types of decision problems. Compounding this limitation is a lack of de-
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cision knowledge reuse capabilities, reducing decision modelers’ ability to learn from 

other modelers’ experiences on similar decision problems, increasing modeling time and 

the possibility of an incomplete model. 

 

The research focused on eliminating modeling tool limitations and creating a knowledge 

reuse capability. First, it developed a new approach, dependency modeling, that identified 

a set of LPD behaviors that provide a robust capability to any first-order expressive mod-

eling tool and includes ten new LPD development language capabilities that significantly 

extend the range of problems that can be modeled. Second, dependency modeling uncov-

ered eight design patterns useful for modeling in any probabilistic first-order expressive 

framework. Third, it refined and integrated four factors that differentiate decision prob-

lems, identifying information reuse requirements and uncovering additional modeling 

tool needs. Fourth, it addressed the additional needs uncovered, developing algorithms to 

address decision problem asymmetry, developing a more efficient approach to model 

context variation, and defining modeling approaches for decision problems with varying 

entity counts. Fifth, it created decision templates as a decision knowledge reuse tool. An 

initial evaluation provided preliminary data that the template could reduce model devel-

opment time by 50%, with 75% of participants assessing the template as useful or very 

useful in completing the experimental task. 
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INTRODUCTION 

1.1 Problem Introduction 

This dissertation presents research results designed to improve decision-making 

support tools. The research focused on expanding modeling capabilities to address a wid-

er range of significant decision problems and on developing knowledge reuse capabilities 

across problem sets to speed and enhance decision problem structuring and modeling. 

Decision making is an important human activity, with consequences that ripple 

through the lives of the decision-maker, people affected by the decision, and the greater 

environment within which they live. A decision problem is a felt need by a decision-

maker that there is a disconnect between the current situation and a desired future. This 

disconnect may be due to some obstacle to overcome or an opportunity to achieve a de-

sirable outcome (Grünig and Kühn 2013). The primary formal approach to decision mak-

ing is called decision analysis. It combines systems analysis, decision theory, epistemic 

probability, and cognitive psychology into a comprehensive approach to decision making. 

Decision analysis uses a decision problem structuring process that transforms a vaguely 

defined problem into a clearly articulated decision problem with achievable alternatives. 

A key product of the structuring process is a decision model, often graphical, that pre-

sents all available relevant information in an organized and understandable form that aids 
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the decision-maker. If the model is executable, the decision-maker can explore the ramifi-

cations of changes to model elements (R. A. Howard 1966). 

The power of a decision model is affected by the capabilities of the tools used to 

create that model. The decision graph (DG) is a versatile graphical modeling tool for de-

cision-making, able to visualize and manipulate the same information as several other 

graphical decision support tools, such as decision trees, objective hierarchies / value 

trees, event / fault trees, and ends-means diagrams. It is a derivative of the influence dia-

gram (Ronald A. Howard and Matheson 1984) that extends a Bayesian Network (BN) 

(Pearl 1988) into the decision-making domain (Cooper 1988). Bayesian networks are a 

well-developed technology for modeling problems with probabilistic uncertainty (Finn 

Jensen 1996). A Bayesian network is a set of nodes representing random variables which 

model elements of a domain of interest. The directed arcs between nodes represent de-

pendencies between nodes. The node from which the arc originates is called a parent of 

the node where the arc terminates. Decision graphs (DG) extend BNs by adding nodes 

that represent decision and utility elements. These allow a decision graph to compactly 

model the elements of a decision problem and visualize the dependencies between them 

(F. V. Jensen and Nielsen 2007). An important BN / DG feature is that every RV has a 

local probability distribution (LPD) that specifies the probability of each of its states giv-

en the states of its parent RVs.  

Both BNs and decision graphs have a significant limitation – they can only model 

problems with a static structure. If the number of entities modeled by the problem chang-

es, the model needs to be rebuilt. A modeling tool is first-order expressive if it can handle 
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varying entity counts. A first-order expressive modeling capability is sufficient to model 

anything executable by a computer (Sowa 2000). Multi-Entity Bayesian Networks 

(MEBN) are a first-order expressive extension of BNs. It provides a formal procedure to 

restructure a BN when information about new entities needs to be incorporated (Laskey 

2008). Just as BNs were extended to decision graphs, MEBN has been extended to a 

Multi-Entity Decision Graph (MEDG) capability (Matsumoto 2019). Unfortunately, its 

initial implementation – UnBBayes-MEDG - falls short in providing decision-makers 

with a decision support tool that brings the advantages of first-order expressiveness. For 

instance, it has a limited ability to use random variables whose states are entities rather 

than fixed categorical values or Boolean. This limitation restricts the use of decisions 

where the alternatives are a varying list of entities rather than a fixed list. This limitation 

arises from a research gap in understanding the range of actions that a computer needs to 

take to develop each probabilistic node’s LPD, given a possibly varying number of parent 

nodes. Additional limitations identified in this research are an inability to automatically 

handle certain types of decision model structures and inefficiencies in addressing deci-

sion context. These limitations severely hinder the use of the MEDG implementation in 

real-world decision problems. This dissertation’s first research objective was to push the 

current state-of-the art of decision graph modeling capabilities so that decision graph 

tools can be applied as a first-order expressive decision tool across a broader range of de-

cision problems. I identified the range of behaviors an LPD creation capability needed to 

create LPDs for any first-order expressive decision graph modeling framework. I also 

explored the effects that different decision problem characteristics had on the range of 
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modeling capabilities that any decision graph modeling tool needed to model decision 

problems with those varying characteristics. 

The second research objective was to improve decision knowledge reuse in deci-

sion structuring, one of the most important processes in decision making (von Winterfeldt 

1980). This process defines the decision model and develops all available relevant deci-

sion information. But structuring is considered an art form, with limited tool support to 

assist the process (von Winterfeldt and Edwards 2007). Mintzberg et al. identified the 

fundamental approach to decision problem structuring: decompose the problem to a level 

where the decision-maker either has knowledge about the elements of the decision prob-

lem or can identify what information must be developed to solve the decision problem. 

Then, the elements are recomposed into a decision model (Mintzberg, Raisinghani, and 

Théorêt 1976). This makes knowledge reuse central to this process. 

Decision problems can be categorized by common characteristics. Individual 

problems may differ in detail and vary in model structure specifics. But knowing the gen-

eral model structure and the types of information used for a class of decision problems 

speeds model development and focuses structuring resources to improve decision quality. 

In addition, different problem classes may have similarities that allow knowledge reuse at 

a higher level of generality. For instance, many decision problem classes use a form of 

sequential down selection, where selection criteria and objectives are successively re-

fined, which narrows and refines the decision alternatives under consideration. Tools to 

support knowledge reuse need to address the varying level of granularity in the applicable 

knowledge being transferred from one decision problem to another. 
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Both MEBN and MEDG have two features that support information reuse. One is 

their use of a knowledge fragment-based approach. These knowledge fragments, called 

MEBN / MEDG Fragments (MFrags), represent probabilistic relationships among a con-

ceptually meaningful group of uncertain attributes and relationships between entities 

(Laskey 2008). The second feature is the use of Probabilistic Web Ontology Language 

(PR-OWL) (Paulo Cesar G. Costa 2005; Rommel N. Carvalho, Laskey, and Costa 2017), 

an upper ontology for defining probabilistic ontologies expressed in the MEBN language. 

PR-OWL extends the Web Ontology Language (OWL) to allow probabilistic knowledge. 

OWL is a widely used standard for creating, sharing and reusing ontologies of various 

domains (Pascal Hitzler et al. 2012). PR-OWL can both create OWL-based ontologies 

and reuse existing OWL-based ontologies created by others, enhancing knowledge reuse 

capabilities. 

MFrags can be shared among different problems that have common characteris-

tics. They can also be mined for patterns and relationships for use in similar problems 

where the fragment itself is not an exact fit. In those cases, it is useful to access the key 

development information used to develop them. This provides important background in-

formation to understand how they can be adapted. A vehicle to capture that information 

would provide decision-makers useful material in solving new decision problems.  

Von Winterfeldt suggested organizing knowledge about specific problem classes 

using Prototypical Analytic Structures (PAS) (von Winterfeldt 1980). Analytic structures 

are a set of graphical models (e.g., objective hierarchy / value tree, decision tree, ends-

means diagram, influence diagram, event / fault tree, belief nets.) and tables (e.g., conse-
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quence tables) that capture decision making information for a specific problem for use by 

the decision-maker. For each problem class, a set of PAS, filled with information relevant 

to that class, could be developed. While attractive, the PAS concept was never fleshed 

out. Decision graphs can represent most of these graphical forms. Having a knowledge 

source that identifies the information for different problem classes would be valuable. 

This dissertation’s second research objective resulted in developing a decision structuring 

knowledge reuse tool. 

1.2 Research Problem and Solution Approach 

The decision graph is a versatile tool for modeling decision problems, and the 

Multi-Entity Decision Graph (MEDG) modeling framework provides a versatile capabil-

ity to model decision problems where the number of entities modeled can vary between 

instances when a decision solution is needed. But the shortcomings in the initial MEDG 

implementation identify research shortfalls in understanding the capabilities a first-order 

expressive decision graph tool needs to address important problems. In addition, MEDG 

brings some valuable knowledge reuse capabilities. But there is a need for a more com-

prehensive decision-making focused toolset for improving knowledge reuse among clas-

ses of decision problems. The literature has proposed concepts for enhancing this, but, to 

date, none are known to have been implemented. In other words, a gap exists between the 

current state-of-the-art and the knowledge tools needed to support advanced decision 

modeling with consistent and coherent knowledge reuse. 
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To address this knowledge gap, four research efforts were pursued: 

• Explore wide range of decision problems to identify differentiating characteris-

tics. Identify impacts on a decision graph modeling tool’s capabilities and deci-

sion structuring knowledge reuse requirements 

• Conduct a comprehensive assessment of the LPD creation process to identify the 

capabilities needed in any first-order expressive probabilistic modeling capabili-

ties. Develop specific enhancements for the MEDG implementation 

• Use results from above two efforts to develop needed capabilities for decision 

graph modeling tools 

• Use results from the first effort to develop a knowledge reuse-based decision 

structuring support tool. 

These four research efforts resulted in five contributions to the state-of-the-art for 

decision-making support. 

1.3 Dissertation Structure and Research Contributions 

The structure of this dissertation follows the four research efforts and their contri-

butions. First, Chapter 2 provides the necessary background information to understand 

the contributions. Then, Chapter 3 explores the characteristics that differentiates decision 

problems. Understanding these characteristics sets the stage for Chapters 5 and 6. This 

exploration makes two contributions to the state-of-the-art. The first contribution is a new 

characterization of decision problem differentiators. Four important differentiators were 

found: context, problem type, decision pattern, and uncertainty.  
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Understanding a decision’s context is acknowledged to be important to structuring 

a problem but is lightly discussed in the decision analysis literature. Several useful con-

cepts were found in the larger artificial intelligence literature that was adapted to refine 

the concept of decision context. The key idea is that context has both internal decision-

maker and external situation factors that interact to define the context. The context differ-

entiator identifies four major ways in which the decision context affects the characteriza-

tion of a specific decision problem. This provides a basis for modeling context and identi-

fies decision context information that should be in in a decision knowledge reuse tool.  

The second differentiator is problem type. Five basic problem types were identi-

fied, which provide key insight into the knowledge required in the structuring process. 

Between the problem types, there are differences in problem objective, starting point for 

structuring, focus of the structuring process, and core processes used in resolving the 

problem. These are key items of information for a knowledge reuse tool. 

The third differentiator is the decision pattern, the organization and sequencing of 

decisions within a decision problem. Thirteen decision patterns are identified, which col-

lectively cover the major examples of decision problems found in the literature. The key 

distinction in these patterns is their emphasis on whether information learning occurs 

within the decision model and the basic flow structure through the decision model. These 

decision patterns help identify needed modeling enhancements and are themselves useful 

information in guiding a structuring process. 

The fourth differentiator is the magnitude of uncertainty. Uncertainty shapes the 

structuring approach and the resulting decision model. As uncertainty increases, the pro-
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cess increases its emphasis on mitigating the effects of uncertainty. Information on how 

to deal with uncertainty is a useful element for a knowledge reuse tool. Collectively, 

these differentiators identified needed decision graph modeling tool enhancements and 

knowledge reuse tool requirements and are a contribution to the decision-making state-

of-the-art. 

Chapter 4 identifies the limitations of the currently implemented local probability 

distribution (LPD) capabilities and then designs solutions that enhance implementation of 

first-order expressive probabilistic modeling. This research created dependency modeling 

to explore the range of interactions between parent RVs in influencing the child RV’s lo-

cal probability distribution (LPD). Chance RVs in any first-order expressive probabilistic 

modeling framework are based on knowledge representation / engineering concepts. 

They explicitly model an entity’s attributes, relationships, and functions. Each has a dis-

tinct characteristic and interact differently with other types. These concepts are widely 

used to model knowledge in many domains. Exploring at this level means the results are 

potentially applicable to those domains. For each parent / child combination type, a sce-

nario was developed and modeled. The LPD in the model was analyzed to determine the 

behaviors required to create that LPD. The process is also described in detail in Appendix 

A. These models were then mined to find a robust set of LPD creation behaviors. The ex-

isting UnBBayes-MEDG LPD language was used as a baseline to identify which of these 

behaviors required new language capabilities. The research’s second contribution are a 

set of LPD behaviors that provide a robust capability to any first-order expressive model-

ing tool and includes ten new LPD development language capabilities that significantly 
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extend the range of problems that can be modeled. They are first described behaviorally, 

and then are given a MEBN/MEDG LPD language implementation form to assist in un-

derstanding the required behavior. The behavioral description allows developer of other 

first-order expressive modeling systems to understand what the specific capability is do-

ing and then implement in their system-specific language. The model scenarios also pro-

vide a set of implementation-independent test cases for validating the LPD language en-

hancements. The third contribution from this research are eight design patterns for first-

order expressive modeling that have not been comprehensively documented in the litera-

ture. In going through each of the dependency model cases, eight structural patterns be-

came apparent, in addition to LPD behavior. Two of the patterns have been described in 

the literature, the other six were not. These patterns are general to first-order expressive 

modeling and useful as guides for in that modeling. The results are also fully documented 

in Appendix B. 

Chapter 5 describes this research’s fourth contribution, a set of first-order expres-

sive decision graph modeling enhancements. One problem addressed is how a decision 

graph modeling tool can effectively model and solve problems that have significant 

asymmetry. Asymmetry occurs when previous decisions or learned information alter the 

allowable paths or states in the network. The enhancements implement automated support 

for asymmetry handling for decision problems with varying numbers of involved entities. 

These enhancements affect the model design, model visualization, structuring algorithms 

and solution process. An example problem is used to demonstrate the viability of the en-

hancements.  
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A second decision graph tool enhancement is an efficient approach to modeling 

problems with significant context variation, where a change in context changes the desir-

able decision attributes, the consequences / criteria used to evaluate the alternatives, and 

the value placed on those criteria. Having a model that encompasses the full range of var-

iation can result in large models. This enhancement allows only those model elements 

relevant to a specific context to be instantiated in the model, reducing computer resource 

demands. The third enhancement is to define needed modeler actions in modeling of 

problems with varying entity counts, either as states in an RV or as objects of a decision. 

Chapter 6 addresses knowledge reuse and develops a decision-making focused 

knowledge reuse tool. It would greatly assist the human modeler if knowledge relevant to 

a problem were packaged in a form that clearly showed what was already known about a 

problem, and what information the modeler needs to develop/elicit. The fifth contribution 

is the decision template, a tool that integrates the knowledge needs identified by the dif-

ferentiator analysis, the decision problem elements ontology, and the results of a decision 

structuring decomposition process into a coherent knowledge reuse format. It also incor-

porated the various decision problem decomposition products used in the field. The deci-

sion template is adaptive. It begins with a general top-level template that is a shell for po-

tential information content. It can be developed out to support a problem class. Finally, 

one can develop it into a detailed support template for a specific decision problem. 

To test the effectiveness of the concept, a simplified decision template package 

was developed to support a class project in a heterogeneous data fusion class at George 

Mason University. The project was to develop a data fusion / decision support system for 
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a fighter aircraft self-defense system. The students in the class formed six teams, and 

each team developed its own version of the system. The system architecture naturally di-

vided into a fusion element and a decision support element. Based on the benchmark 

model, the two elements were roughly equivalent in model complexity. Two decision 

templates were created, one for the fusion element and one for the decision support ele-

ment. Three teams were given one template, while the other three were given the other. 

Each student was asked to provide data on how much time they worked on different as-

pects of the project, and to complete a post-project evaluation. Twelve of 13 students par-

ticipated. 75% indicated the decision template was a useful tool. The collected time data 

had significant limitations, but it provided some evidence that the decision template pro-

vided 50 – 70% time reduction in developing the described model element versus the 

model element for which they did not receive a template. 

Chapter 7 identifies avenues for further development and summarizes the effort. 
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BACKGROUND 

The relevant background supporting this work will be covered in five sections. 

The first discusses the general background for formal decision-making. The next exam-

ines problem structuring concepts and approaches within the literature. The third covers 

graphical modeling approaches to visualize and analyze the results of problem structur-

ing. The fourth section discusses knowledge representation and reuse concepts. The final 

section describes Multi-Entity Bayesian Networks (MEBN) and Multi-Entity Decision 

Graphs (MEDG). 

2.1 Decision-making 

Decision-making has been examined as an important human activity for a long 

time (Buchanan and O’Connell 2006). But the discussion was qualitative until the 18th 

century, when Bernoulli published his “Exposition of a New Theory on the Measurement 

of Risk” (Bernoulli 1738). This paper presented the idea of quantifiable utility. In 1926, 

Ramsey wrote the first paper linking subjective probability and utility (Ramsey 1931). 

Modern approaches to formal decision-making trace to Von Neumann and Morgenstern’s 

normative theory of decision-making, laying out a set of axioms for decision-making un-

der conditions of uncertain knowledge (von Neumann and Morgenstern 1947). 

Decision analysis is the normative approach to decision-making. It is built upon 

Von Neumann and Morgenstern’s work. The mathematical foundation is decision theory, 
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developed by Savage (1954) and fully codified by 1964 (Pratt, Raiffa, and Schlaifer 

1964). Decision analysis is more than decision theory. Howard, who coined the term “de-

cision analysis” in 1966, defined it as 

“… a logical procedure for the balancing of the factors that influence a decision. The 

procedure incorporates uncertainties, values, and preferences in a basic structure that 

models the decision. ……. The essence of the procedure is the construction of a struc-

tural model of the decision in a form suitable for computation and manipulation; the 

realization of this model is often a set of computer programs. (R. A. Howard 1966). 

Numerous researchers made key contributions to decision analysis. Keeney and 

Raiffa produced the standard reference for multi-criteria decision-making (Keeney and 

Raiffa 1976). An early summary of the decision analysis process is the Handbook for De-

cision Analysis (Barclay et al. 1977). Von Winderfeldt and Edwards provided a compre-

hensive description of organizational and psychological considerations (Von Winterfeldt 

and Edwards 1986). Keeney provided an extensive development of user objective analy-

sis (Keeney 1992). Standard works include Watson and Buede (1987), Raiffa (1997), Pe-

terson (2009) and Clemen and Reilly (2014). 

All decision problems occur within a decision environment, sometimes called a 

decision context (Clemen and Reilly 2014) or a decision situation (Zsambok 1996). With-

in this environment, they have four characteristics: 

• A disconnect between the current state and a desired state, where “desired” is de-

fined by the decision-maker in terms of one or more fundamental objectives 

• Two or more viable alternatives that might achieve the desired state 

• Each alternative has a set of consequences, either positive or negative, that affect 

the fundamental objectives 
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• One or more of these consequences vary between alternatives 

• One or more criteria, mapped to the consequences, by which to evaluate those al-

ternatives 

• A degree of uncertainty about the above characteristics. Uncertainty may range 

from none to complete ignorance (Grünig and Kühn 2013). 

A formal decision process also requires: 

• The consequences of each alternative under each chance outcome must not only 

be known, but the value to the decision-maker must be definable in some quanti-

tative form (ordinal or cardinal) 

• A well-defined rule or set of rules that identifies what the best decision is 

• A specific formal procedure available by which to do this (White 1969). 

A decision problem meeting these characteristics is considered well-structured. 

While decision analysis is normally taught as proceeding to a decision recommendation, 

it may stop short of that. Instead, it may provide a decision-maker a: 

• Complete model of the problem, including available decisions alternatives, but 

makes no recommendation 

• Downselected set of alternatives for consideration 

• Sorted list of decision alternatives into meaningful categories for evaluation (e.g. 

“Implementable now”, “Needs modification”, “Not recommended”) 

• Ranked order list of alternatives, without a recommendation (Roy 2005). 
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2.2 Decision Problem Structuring 

Decision problem structuring has been defined as “…the process by which a deci-

sion situation is transformed into a form enabling choice” (Dillon 2002). The structuring 

process should deliver a decision problem model that address the decision-maker’s in-

formation needs and be of such a quality that further analysis is unlikely to give signifi-

cant new insights. Phillips terms this a requisite decision model (Phillips 1984). 

An important question is what the basic structuring process is. Mintzberg et al. 

provided a key insight over 40 years ago – decompose the problem into known elements: 

“This research indicates that, when faced with a complex, unprogrammed situation, the 

decision-maker seeks to reduce the decision into subdecisions to which he applies gen-

eral purpose interchangeable sets of procedures and routines. In other words, the deci-

sion-maker deals with unstructured situations by factoring them into familiar structur-

able elements” (Mintzberg, Raisinghani, and Théorêt 1976). 

This observation highlights the importance of knowledge reuse in the decision-

making process. But how to perform problem structuring is an open question. In 1980 

and again in 2007, von Winterfeldt said 

“Structuring decision problems into a formally acceptable and manageable format is 

probably the most important step of decision analysis. Since presently no sound meth-

odology for structuring exists, this step is still an art left to the intuition and craftsman-

ship of the individual analyst” (von Winterfeldt 1980, von Winterfeldt and Edwards 

2007). 

Belton and Stewart place problem structuring within an iterative five step solution 

process. It includes: 

• Problem identification 

• Problem structuring: Determine stakeholders, values, goals, external environment, 

constraints, key issues, initial alternatives, uncertainties 



 

17 

 

• Model building: Refine alternatives, define criteria, elicit detailed values 

• Use model to inform and challenge thinking: Synthesize information, challenge 

intuition, create new alternatives and conduct robustness and sensitivity analyses 

• Develop action plan (Belton and Stewart 2002). 

The literature outlines several structuring approaches. One is a basic intuitive ap-

proach, guided by the decision analyst’s experience and implicit knowledge. Another ap-

proach is to use a taxonomic approach, in which relevant problem characteristics are 

mapped against prototypical decision types, and the analytic structure for the most appro-

priate type match used (Vári and Vecsenyi 1984). Two different ways of defining this 

taxonomy have been presented. Brown and Ulvila published a detailed taxonomy struc-

ture, matching problem structure to analytic characteristics (Brown and Ulvila 1976). 

Brennan et al. proposed a similar taxonomic approach for modeling health technology 

options (Brennan, Chick, and Davies 2006). Von Winterfeldt proposed an alternative ap-

proach, that the taxonomy be based on substantive differences in the problem content. He 

suggested that each problem type, such as site selection or regulatory development, had 

distinctive characteristics. He identified several examples, but never fully developed the 

approach (von Winterfeldt and Edwards 2007). A third structuring approach is to use 

prepackaged modeling software to structure the problem using the features of the model-

ing system. This approach is called a Decision Support System (DSS) generator 

(Bonczek, Holsapple, and Whinston 1981). 

Decision problem structuring research in the last 15 years has focused on multi-

criteria decision problems with multiple stakeholders (Scheubrein and Zionts 2006; Fran-
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co and Montibelller 2009; Belton and Stewart 2010). Integrating the objectives, criteria 

and values of multiple stakeholders drove the structuring focus to the use of Soft Opera-

tions Research (Soft OR) techniques / Problem Structuring Methods (PSMs). Focused on 

supporting decision problem knowledge elicitation, these include: 

• Strength / Weakness / Opportunity / Threat (SWOT) analysis (Sorenson and Vidal 

1999) 

• Strategic Choice Approach (SCA) (Friend and Hickling 2005) 

• Scenario methodology (O’Brien 2004; Montibeller, Gummer, and Tumidei 2006; 

Stewart, French, and Rios 2013). 

The predominant approach today is the DSS generator. A DSS generator provides 

tools and capabilities for creating a problem-specific DSS, including structuring the deci-

sion problem (Power and Sharda 2007). Examples of DSS generators include Analyti-

ca®, Decision Programming Language®, Expert Choice®, Logical Decisions® and Pre-

cision Tree®. A limitation of these generators is they provide very limited, if any, tools 

for uncovering and reusing previous decision knowledge. 

Not all problems can be well-structured. Rittel and Webber identified the charac-

teristics of what they termed a “wicked problem” - those problems for which there is no 

definitive formulation of what the problem is, or decision-maker agreement on the ele-

ments of the problem. In addition, there is often no agreement on the decision-making 

rule (Rittel and Webber 1973). Ackoff identified a similar concept, that he called “messy 

problems” (Ackoff 1974). Many social problems that involve multiple groups tend to be 

wicked or messy problems. Snowden extended the idea of a wicked problem with his 
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Cynefin model, which highlights the importance of being able to determine and under-

stand cause and effect relationships. In those cases where cause and effect can only be 

known after the fact (post decision), or where the situation is so new that cause and effect 

are not discernable, decision-making becomes an iterative “probe and evaluate” activity 

(Snowden and Boone 2007). Lipshitz and Strauss identified a different type of ill-

structured problem, one in which the decision-maker did not have enough information to 

make a sound decision. In that case, they noted a decision-maker often used several tech-

niques to stall making a decision (Lipshitz and Strauss 1997). 

2.3 Graphical Models 

The outcome of a structuring process is a decision model. There are two desirable 

characteristics in such a model: 

• It presents information in a human understandable form 

• It is executable. The model has an underlying mathematical / logical engine that 

allows one to draw various inferences from the model, and to examine effects of 

changes in model structure or parameters. 

Human beings have a natural ability to grasp information presented visually. This 

makes graphical modeling an attractive approach. Such models highlight the key relation-

ships between the model elements. Decision analysis has developed or adopted several 

graphical modeling approaches. They can be binned into four categories. The first focus 

on modeling situational factors whose presence / absence affects the consequences of de-

cisions. Commonly used models include belief networks (Pearl 1988), fault trees (Ericson 

1999), and event trees (American Institute of Chemical Engineers 2008). The second cat-
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egory map decision alternatives to the utility (or value) they provide the decision-maker. 

These include means-ends diagrams (Manheim and Hall 1968), decision trees (Terek 

2005), and decision graphs / influence diagrams (Ronald A. Howard and Matheson 1984; 

F. V. Jensen and Nielsen 2007). The third category focuses on objectives / values presen-

tation, highlighting the factors important to the decision-maker. Objective hierarchies 

(Granger 1964) / Value Trees (Von Winterfeldt and Edwards 1986) and consequence ta-

bles (Gregory et al. 2012) are included here. The fourth are supporting tools such as mind 

maps (Buzan and Buzan 1996) and Strength / Weakness / Opportunity / Threat (SWOT) 

analysis charts (Sorenson and Vidal 1999). 

Historically, decision trees have been widely used, but they become unwieldy for 

complex problems. Other than decision trees, the various graphical models list above in 

the first two categories are types of network diagrams. These diagrams model key attrib-

utes and relationships as nodes in a network, with the arcs between nodes representing 

dependencies between nodes. Network diagrams provide decision information more 

compactly than decision trees for almost all decision problems. Two important types of 

network diagrams are Bayesian networks and decision graphs. 

2.3.1 Bayesian Networks 

Bayesian networks (BN) are an efficient tool for reasoning about information with 

probabilistic uncertainty (Pearl 1988). A Bayesian network B = (N, V, E, PN) provides a 

factorized joint probability distribution on a set of random variables N. The network has a 

directed acyclic graph (V, E), where each vertex vi ∈ V represents a specific random var-

iable ni ∈ N. A directed edge ej ∈ E represents a conditional dependency between two 
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random variables. Each random variable ni has two or more mutually exclusive and com-

prehensively exhaustive states. For each random variable ni, there is a set of zero or more 

random variables called the parent set of ni, Pa(ni), each having a directed edge to ni. A 

parent configuration (PC) is the assignment of a specific state to each random variable in 

the parent set. Finally, each RV ni has a set PN that has a probability function that assigns 

a conditional probability P(ni |Pa(ni)) to each state of ni for every PC in the parent set. 

The conditional probabilities collectively are called a local probability distribution 

(LPD). For any RV ni that has a finite number of states and a finite PC, it can be repre-

sented in tabular form, normally called a conditional probability table (CPT). The joint 

probability distribution for a set of specific random variable states in (N, PN) is 

 

∏ 𝑃((𝑛𝑖)|𝑃𝑎(𝑛𝑖))

𝑛𝑖∈𝑁

 

Equation 1: Bayesian network joint probability distribution 

 

Bayesian networks can reason probabilistically, logically (set probabilities to 0/1) 

or qualitatively (set probabilities to - / 0 /+) (Wellman 1990). This makes them a power-

ful tool for modeling acyclical problems. 

2.3.2 Decision Graphs 

Decision graphs (DG) provide a compact means of visualizing a decision prob-

lem. They are a merger of influence diagram visualization concepts with Bayesian net-

work probability management concepts. Influence diagrams model dependencies between 

elements of a decision problem. They provide a broad range of capabilities, being able to 
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represent deterministic, probabilistic and functional cases (Ronald A. Howard and 

Matheson 1984). Influence diagrams predate Bayesian networks and did not have the full 

set of tools needed to correctly model probabilistic dependencies or to propagate eviden-

tial impacts through a network (Pearl 2005). Later work by a number of researchers pro-

vided the theoretical underpinnings to merge the two, resulting in decision graphs (F. V. 

Jensen and Nielsen 2007). Figure 1 shows the elements of a decision graph. They have 

three node types: chance nodes (identical to Bayesian network nodes); decision nodes, 

whose states are the decision alternatives; and value nodes (also called utility nodes), 

which assign utility values to each parent configuration. The arcs between the nodes iden-

tify dependencies between nodes. Probabilities and value information that are explicitly 

included in a decision tree are documented in tables or as functional equations associated  

 

 
Figure 1: Decision graph elements 
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with each node and are not normally displayed on a decision graph. One can propagate 

evidence in a decision graph, using new evidence to change one’s understanding of the 

various probabilities on the graph. Evidence propagation in a decision graph can use the 

same exact or approximate algorithms as Bayesian networks. When propagating evi-

dence, utility nodes and arcs into decision nodes are ignored (Jensen and Nielsen 2013). 

No-forgetting is commonly assumed in decision graphs that have multiple deci-

sions. This means that for every decision, the decision-maker remembers both the choices 

made in all previous decisions in the model and all information provided via information 

arcs to previous decisions. The sequence in which they occur is called the decision past. 

For any decision, decision past items before that decision may influence that decision. 

However, they may not all do so. Those that could influence the decision are called the 

required past for that decision. Required past for a decision node is analogous to parents 

for a chance node. For each possible combination of the required past states, there is an 

optimal decision (Nielsen and Jensen 2004). The collection of all optimal decisions for all 

required past states is the optimal policy for that node. 

A decision problem is symmetric if, in the decision tree model, every decision 

past element is included in the same order on every path through the tree. Problems with-

out this characteristic are called asymmetric. In asymmetric problems, the decision se-

quence through the graph can be dynamic, with learned information or previous decisions 

changing the path. A decision graph then is a representation of possible decisions and 

learned information, some of which may not occur in the model’s execution. Such a deci-

sion graph provides a plan of what could occur and what the appropriate responses are. 
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There are three forms of decision asymmetry. Functional asymmetry occurs when 

a previous decision or learned information disallows one or more alternatives in a follow-

on decision. Structural asymmetry occurs when a previous decision or learned infor-

mation nullifies the effects of one or more decision graph nodes in the decision problem 

under consideration. Under structural asymmetry, one can say that there are multiple ver-

sions of the decision graph, guided by the previous decisions and learned information. In 

order asymmetry, one has a sequence of decisions, with learning occurring between sub-

sets of decisions. This learning can affect the value of follow-on decisions, and the order 

in which decisions should be made is itself a decision problem.  

For a symmetric decision graph, finding the optimal policy is straightforward. The 

original solution algorithm is the Shachter algorithm, and like solving a decision tree, it 

uses a roll-back algorithm (Shachter 1986). Alternate approaches to solving an influence 

diagram include variations on the junction tree algorithm (Shachter and Bhattacharjya 

2010; Frank Jensen, Jensen, and Dittmer 1994; Madsen and Nilsson 2001), game trees 

(Shenoy 1998) and valuation networks (Shenoy 1992). If the problem being modeled is 

asymmetric, then either the problem must be made symmetric by adding dummy nodes, 

states or arcs to the graph, or by using a solution algorithm designed to cope with asym-

metry. These approaches are discussed in Chapter 5. 

2.4 Knowledge Reuse 

Knowledge reuse is desirable in decision-making, as it reduces the cost of making 

the decision, and provides opportunities to improve decision quality. Most often, a com-

plete body of knowledge from one decision is not reusable in toto, but elements of it are. 
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Potentially reuseable elements of knowledge are called knowledge fragments. The origi-

nal concept of a knowledge fragment was that it encapsulates either a relationship on a 

set of entities or define one or more attributes of an entity. A Resource Description 

Framework (RDF) triplet is one of the most elementary knowledge fragments (Herman et 

al. 2015). A more complex knowledge fragment concept is a rule of the form “If A, then 

B” (S. J. Russell and Norvig 2018). The definition of knowledge fragment used in this 

dissertation is derived from the network fragment (Laskey and Mahoney 1997). For some 

collection of entities, a knowledge fragment is a set of related entity attributes and rela-

tionships together with the dependencies (possibly probabilistic) among them, which cap-

tures both concepts expressed above. The idea of developing and integrating knowledge 

fragments is widespread. For instance, it is used in failure modes and effects analysis 

(Teoh and Case 2005), military planning (Ryan 2007), medical product development 

(Mohan, Jain, and Ramesh 2007), social network analysis (Santos et al. 2008), system 

engineering requirements (López, Astudillo, and Cysneiros 2008), and Information Tech-

nology security (Fenz, Parkin, and van Moorsel 2011). 

Knowledge fragments can be formed into a knowledge base about some domain. 

Following Brachman and Levesque, five basic concepts define a knowledge base that de-

scribes some domain. The first is entity, or named individual. These are the domain ele-

ments. Each entity is typed, using a unary predicate that assigns each entity to a class. 

The features of an entity are described by attributes (also called properties or data type 

relationships), each one assigned by a unary predicate. Relationships (also called role or 

object type relationship) between entities are described by n-ary predicates. Finally,  
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functions are a special form of relationship, in which the object of the relationship is a 

specific entity assigned from a mutually exclusive collectively exhaustive class of entities 

(Brachman and Levesque 2004). 

There are two basic approaches to developing knowledge fragments: ontologies 

and rules. An ontology focuses on a common understanding about a domain of interest 

between agents (human or machine). It is a formal vocabulary of terms for a specific do-

main of interest. It provides a rigorous descriptive model that defines a term by describ-

ing its relationships with other terms in the ontology, using explicit semantic representa-

tions and logic-based formalisms (Tetlow et al. 2006). An ontology is a specification of 

domain knowledge, defining the technical means for working with knowledge. Ontology 

uses include information integration, information retrieval, semantically enhancing con-

tent management, knowledge management and support for community portals (Grimm 

2010). The Web Ontology Language (OWL) is a standard and widely used language for 

specifying ontologies (Consortium 2012). A rule-based approach describes what actions 

or inferences may be drawn given a set of rules and facts. Rules are a collection of if-then 

statements, while facts are assertions about entities in the domain of interest (Grosan and 

Abraham 2011). Bayesian networks and decision graphs may be seen as an extension of a 

rule-based system that requires completeness of all the rules and incorporates uncertainty 

about the rules. 
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2.5 First Order Expressive Graphical Models 

2.5.1 Background 

Both BNs and DGs are propositionally-logic expressive – both the number of 

nodes (chance, decision and utility) and the parent set of each node are fixed. This limits 

their applicability because they cannot model most dependencies between a variable 

number of domain entities (Milch and Russell 2010). The case where the number of enti-

ties can vary between model instantiation is known as first-order expressivity. Develop-

ment of first-order expressive Bayesian networks has been part of a larger effort to devel-

op first-order expressive probabilistic logics. These logics merge first-order logic (or a 

fragment of first-order logic) with uncertainty reasoning (Poole 2011; S. Russell 2015). 

Modeling capabilities for first-order expressive probabilistic logics developed along three 

tracks: probabilistic description logics, probabilistic logic programming and probabilistic 

graphical models. 

Description logics are fragments of first-order logic with an emphasis on compu-

tational tractability and decidability. Description logics are strongly associated with 

knowledge representation and reasoning efforts (Baader et al. 2003). They provide a se-

mantic and reasoning basis for variants of OWL (McGuinness and Van Harmelen 2004; 

Consortium 2012). Early work in extending them probabilistically started with P-Classic 

(Koller, Levy, and Pfeffer 1997). Probabilistic versions of the most expressive descrip-

tion logic languages used in OWL have been developed, called P-SHOQ and P-SHOIN 

(Lukasiewicz 2008). The logic programming track extended the concepts of logical pro-

gramming languages like Prolog, which have a first-order expressivity for models with-
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out uncertainty, by adding the ability to address probabilistic uncertainty. Efforts includ-

ed Independent Choice Logic (Poole 1997), Bayesian Logic (Milch et al. 2007), and 

Church (Goodman et al. 2012). The probabilistic graphical models track extended graph-

ical models from a fixed-entity or limited variable entity count propositional logic level 

to a first-order level. The probabilistic graphical models track itself has two subtracks: 

Markov (undirected) networks and Bayesian (directed) networks. Markov networks use 

undirected networks, allowing them to model cycles. This makes them useful in domains 

such as visual recognition, social network analysis, and object identification. The down-

side of Markov networks is that the potential functions in such networks must be speci-

fied globally. Change to any part of the network requires a respecification of all the po-

tentials assigned to every node in the network (Koller and Friedman 2009). In addition, 

their lack of direction means they cannot model causality, only correlation. Markov net-

works have a propositional expressivity. The extension of Markov networks to first-order 

logic is known as Markov Logic Networks (Richardson and Domingos 2006; Domingos 

and Lowd 2009). For Bayesian networks, the emphasis has been on extending Bayesian 

network capabilities from a fixed set of entities (established by the model builder) to a 

capability that could model problems where the number of entities vary between problem 

instantiations. This active research area resulted in such capabilities as Object Oriented 

Bayesian Networks (OOBN) (Koller and Pfeffer 1997), Probabilistic Relational Models 

(PRM) (Getoor et al. 2007), Probabilistic Entity-Relationship Models (Heckerman, 

Meek, and Koller 2007), Object-Oriented Probabilistic Relational Modeling Language 

(OPRML) (C. Howard 2010) and MEBN (Laskey 2008). 
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First-order Bayesian network capabilities have four primary characteristics be-

yond a Bayesian network. First, they have some form of template structure that identifies 

the types of RVs and the dependencies between RV types in a model. There is a basic 

requirement that the set of templates be logically consistent. Second, they require a 

knowledge representation structure. There has been significant efforts to integrate OWL 

with first-order Bayesian network tools (Paulo Cesar G. Costa 2005; Matsumoto, Car-

valho, Costa, et al. 2011; Rommel N. Carvalho, Laskey, and Costa 2017). Third, there is 

a database that identifies the entities in a specific instance of the model and has findings 

(evidence) on zero or more RVs of specific entities. Fourth, it has a specification for how 

the local probability distribution is created for each RV, given a varying number of parent 

entities for each RV. In addition, a first-order Bayesian network requires an adjustment to 

its inferencing process. The older approach is to create a grounded Bayesian network for 

a given template structure, knowledge base, and LPD specification. The grounded Bayes-

ian network is an ordinary Bayesian network that has the specific entities, attributes and 

relationship captured in the knowledge base. It can be queried and updated using standard 

Bayesian network techniques (Mahoney and Laskey 1998; Pfeffer 1999). Grounded net-

works can be very large and possibly be computationally intractable. A significant re-

search effort is developing lifted inferencing, which limits the degree of grounded model-

ing required (Kersting 2012; Kimmig, Mihalkova, and Getoor 2015). 

2.5.2 Multi-Entity Bayesian Networks 

A recent review of implementations of first-order Bayesian network modeling 

found three viable implementations: PRM, MEBN and OPRML (C. Howard and 
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Stumptner 2014). A review of probabilistic reasoning methods for use in automated driv-

ing situational awareness identified MEBN, with a fuzzy logic extension, as the most 

broadly capable approach for probabilistic first order logic modeling in this domain (Go-

lestan et al. 2016). 

MEBN represents the world as a collection of inter-related entities, with relation-

ships between them. Entity and relationship knowledge are modeled as a collection of 

reusable knowledge elements, called MEBN Fragments (MFrags). A MEBN Theory 

(MTheory) is a set of well-defined MFrags that collectively satisfy first-order logical 

constraints ensuring a unique joint probability distribution (P. C. G. Costa and Laskey 

2005). Formally, an MFrag F = (C, I, R, G, D) consists of a finite set C of context value 

assignment terms; a finite set I of input random variable terms; a finite set R of resident 

random variable terms; a fragment graph G; and a set D of local probability distribu-

tions, one for each member of R. The sets C, I, and R are pairwise disjoint. The fragment 

graph G is an acyclic directed graph whose nodes are in one-to-one correspondence with 

the random variables in I ∪R, such that random variables in I correspond to root nodes in 

G. Local probability distributions in D specify the conditional probability distributions 

for the resident random variables (Laskey 2008). 

Figure 2 shows an example MFrag. This simplified example models the informal 

statement that a student’s performance in a course depends (partially) on a professor’s 

teaching ability. In MEBN, ordinary variables (OV) are placeholders for entities from 

some domain. The pentagonal nodes are context nodes. They represent the conditions that 

must be met for the MFrag to be applicable. In this example, the two IsA context nodes 
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Figure 2: MFrag example 

 

identify the domain class from which an OV takes entities. If there are no entities in a 

domain, this MFrag is not used. 

The context node Teaches(p, s) specifies the condition that a specific professor 

entity must teach a specific student entity for this MFrag to have meaning. Teaches(p, s) 

is an RV defined in a separate MFrag. The rounded node is a resident node. Each RV is a 

resident node on one MFrag, which defines its states and provides a local probability dis-

tribution defining the probability of each state depending on the state(s) of its parent(s). 

The trapezoidal node is an input node, signifying an RV that is a parent RV that is de-

fined in another MFrag. The arrow between the input and resident nodes indicates there is 

a probabilistic dependency between them. An MFrag must have one resident node. It can 

have as many resident, input and context nodes as a designer wants to incorporate. How-

ever, small MFrag sizes facilitate knowledge reuse. To represent a domain or problem, 

the modeler creates one or more logically consistent MFrags that define the domain. 

There is also a list (possibly varying) of entities in the domain. Finally, there may be find-

ing MFrags, which provide observed evidence about RV states for specific entities. In the 

example above, the entities could be “Kathy is a professor”, “Paul is a student”, and the 
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finding MFrags be “Kathy teaches Paul”, and “Kathy has good teaching abilities”. An 

introduction to MEBN can be found in P. C. G. Costa and Laskey (2005). 

The MFrags are the templates for the grounded Bayesian networks, called Situa-

tion Specific Bayesian Networks (SSBN). An SSBN is a standard BN and any BN solu-

tion algorithm can be used on it. One current MEBN implementation is UnBBayes-

MEBN (Matsumoto, Carvalho, Ladeira, et al. 2011), which includes a Knowledge Repre-

sentation (KR) capability to model the entity class structure and key relationships be-

tween entities. It uses the Probabilistic Web Ontology Language (PR-OWL), a probabil-

istic extension of OWL. The latest PR-OWL version uses Protégé® as its knowledge rep-

resentation tool (Rommel Novaes Carvalho 2011). It also includes an LPD script lan-

guage for creating scripts that define the LPD for each RV state given the possible varia-

tions in the RV’s parent configurations. 

2.5.3 Multi-Entity Decision Graphs 

The Multi-Entity Decision Graph (MEDG) is a first-order expressive decision 

modeling framework. It extends MEBN by adding the elements of a decision graph and 

incorporating decision theoretic reasoning. A MEDG Theory is defined by one or more 

MEDG Fragments (called MFrags when the reference to MEDG vice MEBN is clear) 

along with the associated list of entities and finding MFrags. Three types of nodes can be 

resident on a MEDG Fragment: probabilistic, decision, and utility. The interpretations of 

the nodes and the arcs between them follow the decision graph conventions (Section 

2.3.2 / Figure 1 on page 22). The only known MEDG implementation is  
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UnBBayes-MEDG1. This implementation uses an extended version of the MEBN Local 

Probability Distribution script language (shortened to LPD language when the reference 

to MEDG or MEBN is clear) that allows it to specify a real-number valued utility distri-

bution for utility nodes (MEDG decision nodes have no local probability distribution). 

The implementation uses PR-OWL-Decision (PROWL-D), a decision problem focused 

framework for building and reasoning about probabilistic ontologies. It is an OWL-based 

ontology language that syntactically and semantically supports near first-order expres-

siveness2 and uncertainty, with the explicit representation of decisions and utilities of a 

decision maker. Documents written in PROWL-D can be understood to be computer-

readable representations of MEDG Theories. (Matsumoto 2019). A Situation Specific 

Decision Graph (also called a Situation Specific Influence Diagram) is a grounded deci-

sion graph model instantiated from the MTheory and associated set of entities and finding 

MFrags. 

The UnBBayes-MEDG implementation has a significant limitation – it can cor-

rectly structure decision problems where the decision alternatives are varying set of enti-

ties from a class (rather than being a fixed list), but it cannot provide a solution recom-

mendation. This is caused by a shortcoming in the LPD language – it has very limited 

abilities to create LPDs for parent configurations that have parents whose states are enti-

 
1 

https://sourceforge.net/projects/unbbayes/files/UnBBayes%20Plugin%20Framework/Plu

gins/Probabilistic%20Networks/MEDG/. Using this plug-in requires loading the Un-

BBayes framework and several other plugins. 

2 It specifically use OWL-DL, which uses a description logic fragment of first-order 

logic and does not have full first-order expressiveness. 

https://sourceforge.net/projects/unbbayes/files/UnBBayes%20Plugin%20Framework/Plugins/Probabilistic%20Networks/MEDG/
https://sourceforge.net/projects/unbbayes/files/UnBBayes%20Plugin%20Framework/Plugins/Probabilistic%20Networks/MEDG/
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ties. This limitation affects both MEBN and MEDG. The discovery of this limitation 

raised questions as to the range of capabilities an LPD language for first-order expressive 

modeling should have. A literature review found no comprehensive discussion on this 

topic. There were discussions on handling of individual types of first-order uncertainties 

(e.g. attribute uncertainty (Pfeffer 1999), reference and property uncertainty (Getoor et al. 

2007), identity uncertainty (Pasula et al. 2002), and number uncertainty (Milch et al. 

2007) ) and discussions about LPD approaches that simplify the workload of (e.g. inde-

pendence of causal influences ((Dıez and Druzdzel 2006), aggregators ((Kazemi et al. 

2017)). But nothing discussed the range of behaviors required to create LPDs in a first-

order expressive modeling tool. Identifying the behaviors an LPD language needs to de-

fine a broad scope of possible LPDs is a driving requirement. 
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DECISION PROBLEM DIFFERENTIATORS 

Chapter 2 outlined the common characteristics of decision problems and the fea-

tures of decision graphs that model those characteristics. Closing research gaps that limit 

effective decision graph implementations and knowledge reuse tool development also 

require an understanding of the differentiators between different decision problems. 

These differentiators establish the range of capabilities needed in decision graph imple-

mentations and the knowledge categories needed in a decision knowledge reuse tool. 

The literature identifies a significant number of different classes of decision prob-

lems. A partial list is in Figure 3. Each class has common characteristics in each class that 

are common among specific instances of a problem class that also differentiate the class 

from other decision problems. As an example, Von Winterfeldt observed that facility sit-

ing has the following characteristics: 

• Sequential screening from candidate areas to possible sites, to a preferred set, to 

final site-specific evaluations 

• Multi-objective nature with emphasis on generic classes of objectives: investment 

and operating cost, economic benefits, environmental impacts, social impacts, and 

political considerations 

• The process of organizing, collecting, and evaluating information is similar in 

many problems (von Winterfeldt 1980). 
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Figure 3: Decision problem class examples 

 

But not all of these characteristics are unique to facility siting. With different de-

tails, they are characteristic of many types of decision problems. It includes choice prob-

lems (e.g. choosing a college, buying a new personal computer) and procurements for 

which many bidders are anticipated. These three characteristics are examples of possible 

differentiators. Sequential screening is an example of a decision pattern. The multi-

objective nature with specific classes of objectives are a specific example of the contents 

of a decision model. The information management process is a specific case of a core 

structuring process. 

This chapter identifies four significant differentiators developed from a literature 

review of decision problem characteristics. They are context, basic problem type, deci-

sion patterns, and degree of uncertainty. In addition, this research organized the elements 

of a decision problem into a decision problem element schema. This schema does three 

things: First, it identifies the elements of a decision problem. Second, it defines the key 
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relationships between the problem elements, which is needed when modeling multi-entity 

decision problems. Third, it establishes a core modeling pattern applicable to every deci-

sion graph-based model and identifies where decision problem structuring results are 

mapped to the decision model. Collectively, the differentiators and the decision problem 

elements schema contribute to advancing the decision modeling state-of-the-art by identi-

fying needed capability enhancements in decision graph modeling tools and knowledge 

reuse tool content. 

3.1 Decision Problem Characteristics: Literature Review 

The decision-making literature describes multiple decision problem characteris-

tics, and researchers have developed taxonomies based on these characteristics. In most 

cases, these focus on one or two factors or on a specific domain. Degree of uncertainty is 

one key characteristic. For example, Scherpereel developed a three-class taxonomy, 

based on the degree of uncertainty and dynamics in the problem (certain / static proper-

ties, probabilistic uncertainty / defined dynamic properties and genuine uncertainty / 

complex dynamics), which is a common division in the literature (Scherpereel 2006). 

Snowden’s Cynefin model focused on the uncertainty in understanding the cause-and-

effect relationships in a decision problem. This model classifies problems into four types 

based on the degree of cause / effect uncertainty (known, probabilistically known, vague-

ly and incompletely known, and completely unknown) (Snowden and Boone 2007). 

Another characteristic is general problem types. Some authors divided problems 

into binary classes, such as a basic difference between choice problems, where the alter-

natives are known at the start of the decision structuring process, and design problems, 
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where the alternatives have to be unearthed or created (Simon 1967). Others divided them 

into threat versus opportunity problems (Grünig and Kühn 2013), or planning versus con-

trol decisions (Walther 2018). Alternate approaches classify problem types into specific 

areas, such as Nutt’s classification of eight decision areas in industry (technology, reor-

ganizations, controls, marketing, products and services, personnel, financing inputs, and 

location) (Nutt 1993) or a noncomprehensive breakout of application areas (Keefer, 

Kirkwood, and Corner 2004). Additional decision problem characteristics include man-

agement level / problem scope (strategic, operational, tactical) (A. J. Rowe 1962) or 

problem solving approach (Nickols 2012). 

Several authors organized several characteristics into a structure. Thrall (1984) 

suggested that decision problems have at least three significant characteristics: the num-

ber of decision-makers, number of decision criteria, and number of decisions. Klein-

dorfer, Kunreuther, and Schoemaker (1993) identified context, decision-maker structure 

and eleven decision problem characteristics as a structure for differentiating decision 

problems. Reich and Kapeliuk (2005) suggest that there are four dimensions for organiz-

ing the decision problem space: the task to be solved, available technologies, organiza-

tions, and the people involved. Grünig and Kühn (2013) organized multiple characteris-

tics to differentiate decision problems. 

In reviewing the literature for effects on decision graph modeling tool capabilities 

and knowledge reuse, four differentiators became evident. First, context was identified as 

having broad effects on decision-making. Second, defining the specific decision problem 

is an important early structuring activity. Having a prototypical set of problems types aids 
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this activity. Third, decision problems differentiate themselves based on the pattern of 

decisions in the model. Fourth, the degree of uncertainty in the decision problem drives 

the structuring process. In addition, an understanding of how the decision problem ele-

ments relate to one another is useful for developing a knowledge reuse capability and in 

understanding how to do decision graph modeling. 

3.2 Context 

Understanding the decision context is considered key to decision-making (Brézil-

lon and Brézillon 2008; Clemen and Reilly 2014) and is a part of the decision problem 

structuring process (Von Winterfeldt and Edwards 1986; Watson and Buede 1987). But 

the definition of decision context varies significantly. The Oxford English Dictionary de-

fines context as “The circumstances that form the setting for an event, statement, or idea, 

and in terms of which it can be fully understood” (OED 2017). This is a very broad and 

flexible definition. Within the decision-making literature, one finds two primary interpre-

tations. 

The dominant view of decision context is that it is closely related to situation or 

environment (Clemen 1997). Within naturalistic decision-making, context is very strong-

ly identified with situation. Context (as situation) has a leading role, in that a key decision 

is to decide what the specific context is. Once the context is identified, fashioning an ap-

propriate response tends to be rapid, as described in models such as the recognition-

primed decision model (G. A. Klein, Calderwood, and Clinton-Cirocco 1988) and situa-

tional awareness for decision-making (Endsley 1995). 
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On the other hand, some researchers in strategic organizational decision-making 

adopted a very expansive view of context. Here, it encompasses decision-maker charac-

teristics and background, decision problem characteristics, organization structure and 

characteristics, and the external environment (Dean, Sharfman, and Ford 1991; Sharfman 

and Dean 1997; Shepherd and Rudd 2014). 

The artificial intelligence community has explored context as well, often as part 

of developing decision-making applications. An early summary is in Brézillon (1999). 

Much of the artificial intelligence literature focuses on the situation aspect of context. For 

example, in designing context-aware systems, Dey states that “Context is any information 

that can be used to characterize the situation of an entity. An entity is a person, place, or 

object that is considered relevant to the interaction between a user and an application, in-

cluding the user and applications themselves” (Dey 2001). In recent years, mobile and 

pervasive computing has spurred significant context research (Bettini et al. 2010). The 

current state-of-the art in context-aware system development is in Alegre, Augusto, and 

Clark (2016). 

Öztürk and Aamodt (1997) provide an interesting and useful set of insights. They 

divide context into internal (decision-maker specific) and external (situation) elements. 

Ozturk (1999) identifies two specific features of context that are relevant to decision-

making: 

• Context focuses attention on specific problem aspects 

• Context changes shift the focus of attention. 
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This has been pithily summarized by Gundersen’s observation that “what context is 

changes with its context” (Gundersen 2013). Recommender systems include user prefer-

ences, usually in the form of ratings, to identify choices that share similar characteristics 

(Adomavicius and Tuzhilin 2015). In their work on context in information fusion sys-

tems, Snidaro et al. split context into internal and external factors, and identified a mutual 

interaction between the two (Snidaro, García, and Llinas 2015). 

Two key observations about context shape the decision structuring / knowledge 

reuse process. First, the full context is not often known by the decision marker at the time 

a need for a decision is triggered. The triggering need may simply be a sense that some-

thing is wrong or that an improvement is needed. Therefore, a significant part of the 

structuring process is to identify what the relevant context is, how much of it the deci-

sion-maker already knows, and what must be developed during the structuring process. 

For some decision problems, very little is known about the relevant context and that the 

primary decision problem is to establish what the context is. Second, context may be dy-

namic. The degree of time stability of context information can drive the decision process, 

including its stability from decision process start to decision point, and from decision 

point to outcomes. The degree of stability can affect both the decision choices being con-

sidered and the available time to execute the decision process. 

There have been several approaches to formally modeling context in support of 

decision processes. This includes conceptual context graphs (Brézillon and Brézillon 

2008), Contextors (Coutaz and Rey 2002), HyCoRE (Beamon and Kumar 2010), and 

Context Recognition Network (CRN) Toolbox (Bannach, Amft, and Lukowicz 2008). 
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These approaches collectively are limited to situation context only (no decision-maker 

element considerations) and in some cases are application-domain specific (e.g. wearable 

IT) or have a limited ability to manage context uncertainty. Examining the products of a 

number of these approaches, it became obvious that BN/DGs were inherently capable of 

perform context modeling of situations. 

3.2.1 The Decision Context Model 

Odd Gundersen built a context model (Figure 4) using the internal / external in-

sights from Öztürk and Aamodt (Gundersen 2013). He considers context to have both an 

internal and an external aspect vis-à-vis a decision-maker, and he casts it within the deci-

sion-maker’s need to assess the situation within which the decision-maker must operate. 

The external elements all relate to the situation in which the decision problem is embed-

ded. The internal elements are the key decision-maker factors that shape how the deci-

sion-maker views the decision problem. 

Gunderson uses Endsley’s situation awareness model to define the elements of a 

situation. Endsley developed a widely used model of how a decision-maker understands a 

situation. The model includes the perception of the elements of a situation, the compre-

hension of what the elements and their relationships mean to a decision-maker, and the  

 

 
Figure 4: Elements of Gunderson's context model 
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projection of the future states of a situation (Endsley 1995). Gunderson used situation 

semantics (Devlin 2008) to provide a modeling framework for the elements of a situation. 

Finally, Ozturk and Aamodt’s knowledge-level context model provides, within a deci-

sion-making environment, a basis for integrating the decision-maker’s elements with the 

situational elements (Öztürk and Aamodt 1997). 

The Decision Context Model (DCM) builds upon Gundersen’s work. It starts with 

the key insights he incorporates: 

• Decision-making context arises out of the interactions between a specific set of 

external elements (the situation) that a decision-maker faces and the decision-

maker’s internal elements 

• Context focuses attention on aspects of the situation and internal elements, not all 

of them 

• Context changes as situation or decision-maker internal factors change. 

The model is extended in several dimensions, resulting in the model shown in 

Figure 5. A key modification is to recognize multiple parties in a decision context, called 

stakeholders. Stakeholders fall into one of two categories: decision-maker and affected 

party. Decision-maker is the party (or parties) that make the decision. Affected party rep-

resents individuals or groups affected by a decision, who have some input into the deci-

sion-making process, but do not make the decision. There may be several different af-

fected parties, each with their own internal context factors The DCM does not define the 

structure of a decision-maker. This can be a single individual, a group with a decision-

making rule (e.g. majority voting) or a multi-party negotiation process. The research 
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Figure 5: Elements of the Decision Context Model (DCM) 

 

below assumes a unary decision-maker. The Decision Context Model structure can sup-

port future research on the different effects of multiple-decision-maker structures. 

3.2.1.1 External (Situation) Elements 

The external elements are part of a single situation, applicable to all the stake-

holders. The DCM recognizes that different stakeholders can have a different view of a 

situation. This difference of situation knowledge is included as a stakeholder internal el-

ement (see next section below). 

To model the situation, the DCM uses Sowa’s entity ontology in lieu of Endsley’s 

model. Endsley’s model has a process orientation, how situational awareness is achieved, 

rather than a structural orientation, what a situation is. Sowa’s ontology structure fits 

nicely with the MEDG knowledge representation scheme. Entities can either be anything 

existing in the physical world or be abstract concepts. They may be either time-stable 

(objects / concepts that are recognizably the same or similar over some time scale) or 
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time-varying (such as an event or process). Most important, entities can be composed of 

other entities. Sowa uses entity relationship at three distinct levels as a differentiator. The 

first is in isolation, where the entity in question is treated as having no internal structure. 

One looks only at entity’s attributes, or inherent characteristics. Relationships between 

entities are addressed in the second and third levels. The second level focuses on specific 

relationships among a small set of entities, which is ideal for a Template implementation. 

The third level is the situation level, a set of multiple entities (either objects or events) 

with multiple attributes interacting in multiple relationships (Sowa 2000). 

A situation has a purpose, established by some agent that “determines why the in-

teraction of entities in the situation are significant.” That agent often is not the decision-

maker, and does not even have to be human (Sowa 2000). Purpose ties the entities into a 

coherent whole and is the key characteristic that distinguishes one situation from another. 

One comprehends a situation when one determines its purpose. As an example, consider 

a military commander who must assess and react to a significant increase in military ac-

tivity in a neighboring adversary country. Knowing whether the purpose of the activity is 

to attack or defend against another state, suppress domestic unrest, conduct a large-scale 

exercise, or execute a coup d’état will be a key factor guiding the decision-maker’s ac-

tions. In this case, the purposive agent is the military commander of the involved adver-

sary forces. Comprehending a situation also provides one an understanding of what the 

elements of the situation should be and allows one to project how a situation could un-

fold. 
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3.2.1.2 Internal Elements 

For each stakeholder, there are six internal elements that affect the decision-

making process. 

Standpoint summarizes the decision-maker’s overall perspective, analogously as 

purpose captures an overall situation. Standpoint captures the stakeholder’s position and 

viewpoint within the problem space (Schum 1994). The standpoint of a corporate CEO is 

different than the standpoint of a government regulator. It helps to define the decision-

maker’s values and objectives (as noted in the adage “where you stand depends on where 

you sit”), but other influences can affect those for a specific stakeholder. 

Objectives are the outcomes a decision-maker expects to achieve by making the 

decision. These are also called ends (Von Winterfeldt and Edwards 1986) or fundamental 

objectives (Keeney 1992). 

Values represent fundamental principles and priorities the decision-maker will 

abide by in making decisions. Values shape the objectives, delineate acceptable alterna-

tives, and guide the relative weighting between multiple objectives (Thomsen 2004; 

Jones 2014). The importance of both stakeholder’s objectives and values to a decision 

problem is widely discussed in the decision making literature (e.g., Watson and Buede 

1987; Keeney 1992; Grünig and Kühn 2013; Clemen and Reilly 2014). 

Related Plans are other on-going or planned activities of interest to the stakehold-

er that could be affected by one or more decision options (Öztürk and Aamodt 1997). 

While the effect of a decision alternative on these other activities may be incorporated 
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into the objectives, it is important to identify that decision-making includes understanding 

what outside of the immediate decision problem is affected by the decision. 

Situation-relevant knowledge includes everything a stakeholder understands about 

a decision problem, and the knowledge background through which a situation is inter-

preted. It merges Gundersen’s Principal Knowledge and Experience. As noted in section 

3.2.1.1, there is only one situation. But each stakeholder’s perception of the situation de-

pends on the stakeholder’s knowledge about the situation. Differences in knowledge, 

along with differences in values, mean different stakeholders may focus on different situ-

ation elements. 

Resources are assets available to the stakeholder that shape the possible decision 

options. These resources include physical assets, knowledge, time and financial assets. 

Resources affect the range of viable alternatives and may be items requiring tracking in a 

decision model. 

3.2.2 Context Differentiator Impact on Decision Graph Modeling and Knowledge 

Reuse 

Decision context identifies four major differences between decision problems, as 

shown in Table 1. These differences become important items to identify in a knowledge 

reuse tool. In addition, they drive a decision graph capability requirement for modeling 

context variation. 

The first difference is problem focus - whether the decision context is dominated 

by the decision-maker’s internal elements or the situation. This corresponds roughly to 

Keeney’s division of problem structuring approaches into value-focused versus  
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Table 1: Context-derived decision problem differences 

 
 

alternative-focused approaches (Keeney 1992). He argues that for many decision prob-

lems, rather than focusing on the specific decision situation and decision alternatives, it is 

more appropriate to begin with a thorough understanding of the decision-maker’s objec-

tives and values. Once those are understood, then the decision-maker is in a better posi-

tion to frame the decision, or multiple decisions if this enhanced understanding identifies 

that there are several areas in which decision problems exist. 

On the other hand, a significant number of decision problems are situation-driven, 

and in some cases, recognizing the correct situation is the primary decision-making prob-

lem. As noted by Klein and other naturalistic decision-making researchers, once a deci-

sion-maker is able to correctly identify a situation, the appropriate decision alternative is 

often readily identifiable (G. Klein, Calderwood, and Clinton-Cirocco 2010). If the deci-

sion context is significantly time-constrained, immediately implementing a viable option 

can be the most rational decision a decision-maker can make. Situation and objective / 

values are both important to all decision problems. But one may be well understood while 
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determining the other is a key structuring activity. Context focus identifies a key 

knowledge reuse element. 

The second context difference is the degree of context variation in a specific prob-

lem. If the problem is to select a restaurant, the selection criteria and the relative weights 

between them can vary significantly between a romantic dinner and a business dinner. 

The context can also be changed by information learned while executing the decision-

making model. Decision problems with a high degree of context variation require more 

extensive modeling, and benefit from modeling features that enable a specific context 

variant to be modeled as appropriate. The degree of context variation is also a knowledge 

reuse content element.  

The third way decision context difference is context dynamics. This is the degree 

of change in the decision context over time. The issue here is not the effects of context 

learning, but whether what is known / learned about the context is outdated by significant 

changes in the decision context. Highly dynamic decision contexts shorten the available 

decision-making time and require a more adaptive problem structuring process. There are 

two important intervals. The first is the degree of change expected prior to making the 

decision. The second is the degree of change expected between the time decision structur-

ing is initiated to the time a decision alternative can be implemented. Highly dynamic 

decision context requires a shorter decision cycle, and this knowledge needs to be cap-

tured in a decision knowledge reuse tool. 

The fourth decision context difference is in stakeholder considerations. Decision 

problems with significant stakeholder divergence require a different problem structuring 
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approach. This places significant emphasis on understanding the stakeholder environ-

ment. The stakeholders include both the decision-maker and affected parties that have an 

influence on the decision process. A rough division of stakeholder organization is to di-

vide it into four categories. The first is where there is a single decision-maker and a lim-

ited or no role for any affected parties. The second is where the decision-maker is a group 

that makes decisions via some formal rule, such as majority voting. In this case, all af-

fected parties are represented in the group. The third is where there is a decision-maker 

(either single or formal group) where affected parties can provide inputs to the decision 

process. The final option is where there is no formal decision-maker. Rather, the decision 

is a negotiated agreement between affected parties. A decision problem knowledge reuse 

tool should capture key decision-making structure information and problem class specific 

information on working with the stakeholders. 

3.3 Decision Problem Type 

Framing a decision is an important early decision action. It defines a precise 

statement of the decision to be made. Framing is aided by selecting the appropriate deci-

sion problem type. This is the basic orientation of the decision problem. Nickols suggests 

there are three basic types. Consider the decision framing choices of an owner of a failed 

industrial process machine. She could repair the machine, which is a restoration problem 

type. Here, one primarily wants to return to a previous acceptable state. The second is to 

replace the machine with one that offers major improvements over the existing machine. 

This is a refinement problem type. The third would be to redesign the workflow to elimi-

nate the need for the machine. Designing out the need for the machine or combining 
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functions with a new type of machine would be the outcome here. This is a creative prob-

lem type, focused on creating substantial, major changes that result in dramatically im-

proved results (Nickols 2012). 

There are at least two additional problem types. The first is that some decision 

problems involve determining a state. Determination problems are widespread. For ex-

ample, a criminal jury must determine whether the facts and law presented to them suffi-

ciently support a finding of guilty. Many information fusion problems have this require-

ment to determine a state. The determination often is probabilistic, that there is a high 

likelihood that x is the case, but for decision purposes, it will be treated as if x is actually 

the case. This occurs from a tradeoff that one is better off treating x as the case even if it 

is not, rather than ignoring it and accepting the risk that it is the case. The second type is 

when a decision-maker must respond to a determination from another source. In some 

cases, a single predetermined choice is appropriate. In other cases, a decision-maker must 

select from a set of choices. For example, consider an aircraft pilot who learns that the 

weather at the planned destination is no longer acceptable and the plane must now divert 

to an alternate airport. If there are several acceptable alternatives, the pilot must decide. 

Table 2, modified from Nickols (2012), identifies the key characteristics of each basic 

decision problem type. A problem type has four key characteristics. First is the general 

objective, guiding and focusing the decision-making actions. The starting point specifies 

where the structuring process begins. The focal point identifies what the primary empha-

sis of the structuring process is. Core processes are the primary processes used to define 

the contents of the decision model. All of these are content for a knowledge reuse tool. 
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Table 2: Decision problem type characteristics and their structuring process effects 

Characteristic Determination Response Restoration Refinement Creation 

Objective 

Establish 

specific state  

React to state 

change 

Return 

something to a 

predefined 

state 

Improve upon 

a predefined 

state 

Create new 

arrangement 

much superior to 

present  

Starting Point 

Context / 

Background 

State change 

effect 

Triggering 

condition (e.g. 

symptoms) 

Existing 

system / 

structure / 

arrangement 

Required / 

desired end-state 

Focal Point 

Information 

fusion  

Options Causes and 

corrective 

measures 

Constraints, 

restraints, and 

modifications 

Required 

structure to 

achieve end state 

Core Processes 

Information 

collection / 

evaluation 

Option 

analysis; 

determination 

acceptance 

Trouble 

shooting; cause 

assessment 

Analysis – 

what are limits 

Design – what 

are possibilities  

 

 

3.4 Decision Patterns 

The third differentiator is the decision pattern applicable to the decision problem catego-

ry. A decision problem may have multiple decisions that are chained together in various 

ways. Figure 6 below gives a decision pattern hierarchy. The top-level branch is decision 

instances. A decision instance is a set of one or more decisions to be made. If there is 

more than one decision in an instance, there is no learning between decisions. That is, 

there is no information node between two or more decisions that is triggered by one deci-

sion and the information passed to a second decision. For instance, a doctor must decide 

on whether to order any of three possible tests. If the doctor decides on all three prior to 

receiving any results, this is a single decision instance. If the doctor decides them one at a 

time and awaits results before deciding the next, there are three decision instances. In that 

case, the solution process that establishes the alternative values may be complex. 
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Figure 6: Hierarchy of decision patterns 

 

The figure identifies thirteen patterns. Four are single instance patterns, and nine 

are multiple instance patterns, subdivided into sequential and hierarchical patterns. The 

simplest pattern is a single decision. An example is a jury determining guilt or innocence 

in a trial. Observe that while the decision pattern is simple, there can be a complex infor-

mation fusion element that supports that single decision. 

Slightly more complex is when there are multiple independent decisions that need 

to be made. This pattern occurs when there is a common source of information support-

ing multiple decisions, but the decisions do not affect one another. For instance, a breeder 

discovers that one of her horses has a genetic defect. There is then a set of decisions 

about whether each living ancestor, sibling, and cousin should continue to be bred. The 

decision on each is based on the risk of a foal receiving the recessive gene from both par-

ents. 

The third single instance pattern is the integrative pattern. Here, there is a set of 

decisions that are made jointly (e.g. there is no learning between the decisions in the set), 
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but collectively have constraints that must be met. Integrative patterns all exhibit func-

tional asymmetry. The pattern has two distinct subclasses. The first is the constrained de-

cision pattern. One decision alternative is not compatible with some of the alternatives of 

another decision that must be made simultaneously. For instance, a fighter aircraft facing 

an enemy aircraft has multiple decisions to make, such as making a defensive maneuver 

and launching a missile. But some defensive maneuvers are violent; a missile cannot be 

launched if they are chosen. The second integrative decision subclass is the distributive 

pattern. One is distributing a resource among the possible decision alternatives, and the 

total set of alternatives cannot be selected. For instance, a portfolio decision problem or 

any resource allocation problem requires that the sum of a resource type applied to possi-

ble choices does not exceed some limit. Sequencing or scheduling problems also have 

this pattern if all decisions must be made up front. If learning is allowed between some or 

all decisions, this becomes an unordered decision. 

For multiple decision instances, there are two basic approaches: sequential and hi-

erarchical. This follows from Saaty and Shih's (2009) distinction between network and 

hierarchical structures of influence between network elements. If the flow of influence is 

among elements without a logical grouping of a hierarchy of elements, a sequential pat-

tern exists. One pattern is the planning pattern, where there is a defined ordering of the 

decisions. An example is an information gathering decision followed by an action deci-

sion, which uses the result of the information gathering as part of its decision. While the 

pattern is relatively simple, multiple items may be connected to make complex models. In 

addition, the structure may have functional or structural asymmetry, if information gath-
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ering results activate different decisions. For example, a model may have a contingency 

track of decisions and actions activated only if some distinct state is detected. In the un-

ordered pattern, the ordering of the decisions is itself part of the decision problem. This 

pattern exhibits order asymmetry. Diagnostic / repair problems are an example of the un-

ordered pattern. The sequencing of the diagnostic activities is the primary decision prob-

lem here. The key characteristic here is that between every decision there is learning and 

under some conditions, the need to continue making decisions is not required. 

A sequential refinement problem differs from most other patterns in that the deci-

sion model is rebuilt several times, adding detail and complexity as it is rebuilt. The deci-

sions and the scope of the problem also become more focused. The facility siting problem 

is an example of this decision pattern. Here, there is a progressive down select of candi-

date locations, with an initial broad set of criteria to guide the initial down select, fol-

lowed by refining the criteria to guide the next round of down selection. The repetitive 

decision pattern is any problem where the structure of the decision is repeated multiple 

times. A partially observable Markov decision problem is an example of this pattern. The 

final sequential pattern is the sequential select with updating pattern. Here there is a se-

quencing activity in which there is learning that can cause a restructuring of the sequence. 

This is an extension of the ordering problem described above. There are ordering deci-

sions to be made, but the order may be reset based on new information gained along the 

way. This can include repeating actions that were done in earlier decisions. Real-time 

problems in contingency or medical management can follow this pattern, where new in-

formation forces the decision-maker to restructure a sequence of actions. 
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In the hierarchical patterns, decisions are made at different levels in a hierarchy 

and can influence other levels. A key differentiator for the hierarchical design pattern is 

each level has its own value structure for determining its decisions. The only path from 

decisions at one level to another level go through decisions at the other level. This form 

makes these patterns structurally asymmetric. The hierarchical nature often comes by 

segregating decisions by their scope and the time required to make them. A common 

form is organizational level of differences. Top level management may provide broad 

strategic direction, with a requirement that lower levels determine how to implement the 

direction at their level. Hierarchical decisions differentiate based on whether the modeled 

information flow is uni-directional or bi-directional. A delegated refinement is the com-

mon form of a uni-directional hierarchical problem. In this pattern, there is a higher level 

that decides some generally desired outcome. Implementation is made by lower levels 

making decisions about alternative approaches that implement the direction. There may 

be multiple levels of delegations in the model. Delegated refinement is widely used in 

hierarchical organizations. The bi-directional hierarchical patterns allow feedback from 

the lower to the higher levels. This feedback can cause the higher level to reevaluate a 

previous decision. The delegated refinement with feedback pattern is used whenever one 

has hierarchically divided control responsibilities. Status information from a lower level 

may signal a need to adjust the overall strategy at a higher level. While delegated refine-

ment focuses on control, the activation pattern focuses on information. It models prob-

lems where the decision-maker controls several information collection assets, where each 

asset has its own local control responsibilities for its operations. Finally, probe and re-
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sponse is an information seeking pattern used when one has great uncertainty about a sit-

uation. Like the sequential refinement pattern, it differs from most other patterns by hav-

ing a set of models that are created by updating previous models. Here, one creates a re-

vised model of the situation one is trying to understand and uses it to conduct an experi-

ment or information development action to test the fit of the model to the observed fea-

tures of the situation. The probe and response pattern is the control structure for the revi-

sion process. 

The primary impact these patterns have on modeling requirements is that many 

patterns exhibit one or more forms of asymmetry. Many decision graph implementations 

require that the modeler address the asymmetry as part of the modeling process. Incorpo-

rating automated symmetry handling frees the modeler from this task and its associated 

and its associated errors. For knowledge reuse, identifying the applicable patterns for a 

decision problem class provides useful information. 

3.5 Magnitude of Uncertainty 

Uncertainty is a barrier to decision-making. Under extreme uncertainty, decision-

makers often refuse to make decision except in dire circumstance (Lipshitz and Strauss 

1997). Decision uncertainty is much broader than the existence of chance outcomes that 

affect the consequences of a decision alternative. It includes uncertainty (including com-

plete ignorance) about the range of available alternatives, their attributes and conse-

quences, and the value of those consequences to the decision-maker (Berkeley and Hum-

phreys 1982). One can have uncertainty about any element within the Decision Problem 

Elements Schema (Section 3.6, page 59), including relevant decision context. A decision-
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maker desires to eliminate as many uncertainties as possible and to understand the range, 

scope and impact of any remaining uncertainties. How one addresses uncertainty in a de-

cision model depends on its magnitude. Integrating work by Scherpereel (2006), Snow-

den and Boone (2007), Stirling and Scoones (2009), and Kwakkel, Walker, and Haasnoot 

(2016), one can categorize uncertainty into four magnitude levels (Table 3). 

The impact of increasing magnitude of uncertainty is threefold. First, the structur-

ing process is partially driven by the degree and nature of uncertainty at the beginning of 

the process. The structuring process includes uncertainty reduction / elimination activi-

ties. If significant second-order uncertainties or ignorance exist, the structuring process 

tends to focus on them. Second, the uncertainty remaining at the end of the process af-

fects the resulting model. Stirling and Scoones (2009) found that as the degree of uncer-

tainty in either the likelihood of events or knowledge of outcomes increased, the structur-

ing activities and decision-making processes changed. Specifically, alternatives are creat-

ed and evaluated based on their ability to address the uncertainty. Decision knowledge 

reuse tools need to include common uncertainties and approaches to addressing them.  

 

Table 3: Levels of uncertainty 

Magnitude level Degree of uncertainty 

Certainty No significant uncertainties 

1
st
 order probabilistic 

uncertainty 

Defined uncertainty (point) about likelihood of future events.  Everything else 

known with certainty 

2
nd

 order 

Bounded uncertainty (range) on one or more elements of decision model. Includes 

event likelihoods, magnitude of consequences, levels of alternative attributes (in-

cluding achievability), and achievable criteria values 

Ignorance 
Lack of information to make an informed judgement of the range of uncertainty on 

one or more elements of the decision model  
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The larger uncertainty, business and risk management literature has some useful insights 

that should be incorporated (see e.g. Han, Klein, and Arora 2011; Miller and Shamsie 

1999; W. D. Rowe 1994). The third impact is on decision modeling. Decision graphs are 

designed to address problems with certainty or first-order probabilistic uncertainty. One 

can use sensitivity analysis to understand the range of effects of second-order uncertainty. 

Incorporating such capabilities into a modeling toolset would be useful. 

3.6 Decision Problem Element Schema 

As part of this dissertation research, it was useful to develop a comprehensive top-

level schema of the decision-making elements. This schema defines the elements of a de-

cision problem and the major relationships between those elements. It incorporates the 

differentiator elements previously discussed. This schema has two objectives: 

• Identify how the elements relate to each other in the structuring process, with a 

focus on the effects on knowledge reuse 

• Identify what decision problem elements could be included in a decision model, 

and what the major relationships are between them. 

In addition to literature review on decision analysis and decision structuring dis-

cussed in Chapter Two, I also explored the literature on decision problem ontologies. 

While this schema is at a more general level than an ontology, the decision ontology lit-

erature did identify concepts appropriate to this research. There have been only a few ef-

forts to specifically define a decision ontology. Efforts include work in the R&D project 

selection (Liu, Tian, and Ma 2004), software architecture (Kruchten 2004), smart home 

support (Latfi, Lefebvre, and Descheneaux 2007), chemical engineering domain (Theis-
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sen and Marquardt 2008), and information systems engineering (Kornyshova and De-

neckère 2010). Of these, Latfi, Lefebvre, and Descheneaux (2007) emphasize the integra-

tion of a rather simple decision ontology with others that collectively describe the domain 

of interest. Theissen and Marquardt (2008) emphasize the interaction between a decision 

ontology and a decision-making process ontology, while Kornyshova and Deneckère 

(2010) provide a comprehensive class-oriented structure of decision elements. 

The Decision Problem Element Schema is organized following the major structur-

ing activities of establishing the context, framing the problem, and developing the specif-

ic decision elements. It is shown in Figure 7. The first level is the Context Level, com-

prised of the Stakeholder, the Situation and the Stakeholder Factors classes (elements  

 
Figure 7: Decision Problem Element Schema 
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defined below). A context may cause the decision-make to trigger one or more Framed 

Decision Problems at the Framing Level. A framed decision problem has a basic problem 

type orientation, which sets a focus that selects the relevant elements of the Situation and 

Stakeholder Factors for further analysis. 

It is possible for a context to trigger multiple framed decision problems. If so, 

they tend to be loosely coupled, with a different model for each. At the Decision Level, a 

framed decision problem may require multiple decisions. An example would be a doctor 

deciding upon various diagnostic tests prior to deciding upon a treatment regime. Each 

decision has its own elements, although they usually overlap between decisions. At this 

level, there is normally a close coupling between decisions. At each level, the schema 

identifies the element classes, major relationships among the elements, and key class at-

tributes. 

3.6.1 Context Level Elements 

At the context level, there are two major classes: Stakeholder and Context, with 

each having two subclasses. Stakeholder represents all parties that have an interest in the 

decision, and that have some voice in making the decision. Each Stakeholder entity has a 

key attribute, has-Standpoint (see Section 3.2.1.2, page 40). The Stakeholder class has 

two subclasses. One is Decision-Maker, which is the entity(ies) that make the decision. 

The class has a key attribute, has-Structure, characterizing the decision-making structure 

for this decision problem. It may be a single individual, a collection of individuals that 

act as a unified entity for decision making purposes, or a negotiating group. The second 

subclass is Affected Party, which includes all entities that have some voice in the deci-
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sion-making process, but do not actually make the decision. Each Affected Party entity 

has a has-Influence relationship with the decision-maker, reflecting the level of influence 

that an Affected Party has on the Decision-maker. 

Stakeholder has a has-a relationship with Context, which provides the lens 

through which a stakeholder views and defines a decision problem. Context has two sub-

classes: Situation and Stakeholder-Factor. Situation delineates the elements of the world, 

that capture the aspects of the world relevant to a Stakeholder. The focus of a situation is 

on the time sequence of changes among the entities. A situation has a key attribute called 

purpose. This is the underlying reason or condition that differentiates situations. Many 

fusion models are situation models. It is expected that for decision problems with a sig-

nificant situation, a distinct domain-specific model will be developed, using processes not 

described here. For decision making, the decision situation in a decision model consists 

of those elements of the situation model that represent the information that a decision-

maker should learn during the decision-making process. 

Situation is common to all stakeholders; however, certain elements of the situa-

tion may not be relevant to a specific stakeholder. Situation has a set of has-Interaction 

relationships with Stakeholder-Factor. This is a bi-directional relationship (not necessari-

ly symmetric) that signals that certain situational elements and states trigger certain 

Stakeholder factors, and that specific Stakeholder factors drive the stakeholder to monitor 

specific situation elements. 

For each Stakeholder, the Stakeholder-Factor subclass captures key elements of 

the Stakeholder as it relates to a specific context. It has five subclasses: 
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• Decision-Objectives, which are the ultimate outcomes a stakeholder expects the 

decision to support. Its attributes are the states of the objective and the desired 

outcome 

• Values, the guiding principles and considerations that shape a stakeholder’s pref-

erences 

• Related-Plans, which are ongoing and planned activities that can be affected by or 

affect a decision 

• Situation-Relevant-Knowledge, a set of facts regarding the knowledge each stake-

holder has regarding the situation 

• Resources, a description of the relevant resources available to a stakeholder. 

As stated above, Stakeholder-Factor has a major bi-directional relationship with Situa-

tion via the has-interaction relationship. 

There are four key relationships between the Context Level and the Framed Deci-

sion Problem Level. The first is triggers, between the Decision-Maker and the Framed-

Decision-Problem. This signals the decision-maker’s judgment that a need exists for a 

decision. This triggers the decision structuring process with initial focus on framing the 

problem and identifying the relevant aspects of context. The frames relationship high-

lights the decision maker’s role in specifying what exactly the problem is that will be 

analyzed. In addition, there are the has-Situation-Element and has-Relevant-Factors rela-

tionships, described in the next section. 
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3.6.2 Framing Level 

The Framing Level has three classes: Framed-Decision-Problem,  

Framing-Specific-Situation, and Framing-Specific-Stakeholder-Factors. The Decision-

maker triggers and frames a Framed Decision Problem, that describes the specific deci-

sion problem to be addressed. In addition, the decision-maker identifies the boundary 

conditions (scope, range of effort, excluded or mandatory inclusion factors), captured via 

a set of Conditions attributes. In addition to the frames and triggers relationship with the 

decision-maker, the Framed-Decision-Problem class has two important relationships. 

The sets-Situation-Focus relationship with the Framing-Specific-Situation class works 

with the has-Situation-Elements relationship between Situation and Framing-Specific-

Situation to define what situation factors are relevant to the framed problem. For the 

structuring process, this also defines what additional refinement to the situation model are 

required. The Framing-Specific-Situation class has selected elements of the situation, de-

termined relevant to the framed decision problem. 

Similarly, the sets-Factor-Focus relationship with the Framing-Specific-

Stakeholder-Factors class works with the has-Relevant-Factors relationship between 

Stakeholder-Factor class and Framing-Specific-Stakeholder-Factors class to define the 

stakeholder factors relevant to the specific framed decision problem. Framing-Specific-

Stakeholder-Factors class is a subset of all stakeholder factors that the framed decision 

focus identifies as relevant to the framed decision problem. These two classes have a ma-

jor influence on the Decision Level elements. 
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3.6.3 Decision Level 

A framed decision problem may contain more than one decision, so the first class 

at the Decision Level is the Decision class. The specifies relationship from Framed-

Decision-Problem links a framed decision problem to the specific decisions at the deci-

sion level. The way a specific decision problem is framed also provides boundaries on 

what alternatives are acceptable. For example, if the problem is a broken machine, and 

the decision frame is to repair it, the alternative space is different than if the decision 

frame is to replace it. 

Alternative is the class of all decision options under consideration for a specific 

decision. Each entity in Alternative has a set of attributes that define each entity’s major 

characteristics, as applicable to the decision problem. Three major enabling relationships 

affect what alternatives are viable. The specifies relationship limits selected alternatives 

to those that match the decision needs. The bounds relationship with the Framing -

Specific-Situation class bounds specific alternatives to what is relevant to situation, while 

the bounds-Acceptable relationship with the Framing-Specific-Stakeholder-Factors class 

bounds acceptable alternatives given the stakeholder values, resources and related plans. 

In addition, the Criteria class identifies the required alternative attributes (sets-Attributes) 

to properly evaluate the alternatives. 

Alternative has two major enabling relationships that influence other elements. 

First, affects identifies that specific alternatives have an influence on what instances of 

future events are possible. Second, specific alternatives map to specific possible conse-

quences via the influences relationship. 
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Future-Event are those situation entities whose states may change or be revealed 

at some time in the future. In addition, an alternative may trigger possible future events 

for specific alternatives (e.g. major nuclear accident if a nuclear option is chosen for an 

electrical power plant. The Future-Event class influences, via can-cause relationship, 

both the types of consequences that may occur and their magnitudes. Consequence are 

the outcomes relevant to a stakeholder that occur from the interplay between alternatives 

and future events. The sets-Relevance relationship from the Framing-Specific-

Stakeholder-Factors class establishes which potential consequences are significant to a 

stakeholder and must be considered in the decision. 

The Criteria class has abstract entities that define how a consequence will be 

evaluated. The criteria are derived from the Stakeholder factors. This is captured in the 

schema by the establishes relationship from the Framing-Specific-Stakeholder-Factors. 

Criteria has a convertedTo relationship with Utility Structure class. Utility Struc-

ture transform the specific criteria levels to a common scale that allows trade-offs be-

tween criteria. Each utility entity has the following attributes: 

• Weight relative to other utilities 

• Criteria inputs 

• Conversion method from criteria to utility. This conversion method includes risk 

attitude, constraints (e.g. min or max required criterion levels), and interactions 

between criteria inputs (which may be nonlinear). 
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In UnBBayes-MEDG, multiple utility entities have a linear additivity relationship 

with each other. Nonlinear interactions and criterial dependencies are captured within a 

specific utility entity. 

The above elements can be formed into a core decision graph model fragment 

(Figure 8 below). It represents the basic information flow from a specific decision 

through to the utility node(s) that assess the utility of each alternative. This fragment can 

be used for any decision problem that can be modeled by a decision graph. Of the seven 

types of nodes shown, two are mandatory in any decision graph: the decision node with 

alternatives (created using the Decision and Alternatives class information) and the utility 

node (derived from the Utility-Structure class). Without either of these nodes, one does 

not have a decision graph. A specific decision will have only one node. A modeler may 

use as many utility nodes as useful to the modeling and understand the problem3. Wheth-

er one uses the remaining five node types depends on the decision problem and the  

 

 
Figure 8: Decision graph core model fragment 

 
3 Subject to a standard decision graph convention that multiple utility nodes are combined assuming 

additive independence between utility elements. 
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modeler’s need for clarity. Note that the Criterion node can be embedded into the utility 

node, but this should be done only for simple problems. For more complex problems, it is 

useful to decompose the problem elements to specifically identify the different criteria. 

One can also embed the consequence node type information into a set of criteria nodes. A 

future events node is used only when there is the probabilistic future event that can affect 

the outcome of a decision. While the figure shows only one node of each type, one may 

use as many as is useful. In addition, any of the non-utility node types shown may be a 

decision graph fragment that models a complex set of interactions that create a future 

event or consequence. One may also use criterion and utility nodes to model an objective 

hierarchy decomposition. 

Either of the two information state nodes exist only when there is prior knowledge 

that will be made available to the decision-maker before making the decision. Infor-

mation state nodes that provide information about a future event are most often modeled 

using the parent-child configuration shown in Figure 8. Other information state nodes 

may connect to other nodes in the model. Like the other node types, the information state 

node may be a complex set of nodes that develop the information provided to the deci-

sion-maker. 

3.7 Conclusion 

This chapter explored the key decision characteristics that establish needs for 

first-order expressive decision graph capabilities and decision structuring support tools. 

This advanced the decision modeling state-of-the art by identifying and refining a set of 

four decision problem differentiators - context, problem type, decision pattern, and uncer-
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tainty - that establish first-order expressive decision graph capability needs and relevant 

content for a knowledge reuse tool. It also created an schema of decision modeling ele-

ments focused on supporting first-order expressive modeling. This schema defines the 

relationships between the decision elements, which is useful for supporting decision 

graph modeling. 
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LOCAL PROBABILITY DISTRIBUTION LANGUAGE 

REQUIREMENTS 

Early research identified that the local probability distribution (LPD) script lan-

guage in the UnBBayes-MEDG implementation could not address parent configurations 

where one or more parents have entities as states, rather than a Boolean or a fixed cate-

gorical list of possible states. Without this capability, UnBBayes-MEDG cannot model 

problems where the possible decision alternatives can vary from instantiation to instantia-

tion. As discussed in section 2.5.3 above, this was a result of a research gap on the range 

of requirements for a LPD creation language supporting first-order expressive probabilis-

tic modeling. This chapter describes the approach taken to fill that gap and its results. The 

research developed a new approach to explore how different types of parent RVs interact 

with each other structurally and within the LPD to define the child RV’s probabilities. 

Because the focus is on LPDs, the results are applicable to both Bayesian networks and 

decision graphs.  

The results are described at two levels of implementation specificity. The higher 

level is applicable to any first-order expressive probabilistic modeling framework whose 

models can be expressed as grounded Bayesian networks or decision graphs. The results 

at this level are described behaviorally, defining actions that must be done in an LPD cre-

ation language. The lower level is for implementations of Multi-Entity Bayesian Net-
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works and Multi-Entity Decision Graphs. They take advantage of certain features of the 

MEBN/MEDG approach to identify capabilities implementations can have. While fo-

cused on the UnBBayes implementation, the concepts are readily adaptable to other 

MEBN / MEDG implementations. 

This chapter first describes the key concepts of the existing UnBBayes-MEDG 

LPD script language, providing a baseline of LPD behaviors. Next, it outlines the de-

pendency modeling approach, describing why the dependency modeling approach is both 

comprehensive and applicable to modeling a wide range of domain. Details are found in 

Appendix A. Dependency modeling explored LPD behaviors in 37 cases. The results are 

described, identifying the needed LPD creation behavior (called LPD behavior for short) 

in non-implementation specific language, and then in the UnBBayes-MEDG-specific 

LPD script language (called LPD language for short). The results also identified model-

ing patterns useful for the design of any first-order expressive modeling capability. Ap-

pendix B provides pattern details and examples. The patterns’ usefulness is demonstrated 

by showing how they identify a solution to a longstanding upgrade request to the Un-

BBayes software. Finally, the dependency modeling effort also identified two useful 

modeling features that should be in any implementation of a first-order expressive model-

ing framework. 

4.1 Overview of the UnBBayes-MEDG Local Probability Distributions (LPD) 

Script Language 

The fundamental approach in creating the LPD in first-order expressive probabil-

istic modeling is conditional matching and count. In the MEBN specification, this is 
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called influence counting (Laskey 2008). For any parent configuration, a set of conditions 

are identified, and the number of parent instances that meet that set of conditions are 

counted. This sections discusses a specific LPD creation language that is part of Un-

BBayes-MEBN and UnBBayes-MEDG implementations. These implementations share a 

common LPD language. Both implementations assume a finite number of entities, and 

the LPD language creates LPDs in tabular form. Its basic form is 

IF ANY / ALL paramsubset HAVE (Boolean Function) [ fur-

ther IF conditions or probability assignment ] 

ELSE … 

 

Paramsubset is a list of ordinary variables (OVs), placeholders for the entities 

that will be tested in the IF statement. The OVs are comma or dot-separated. The Bool-

ean function is a set of parent RVs whose states will be tested. It has the form of 

Node=NodeState, where Node is the RV name and NodeState is a specific state of 

the RV. There may be any combination of nodes (RVs) using “&” (and), “|” (or) and “~” 

(not). Any Boolean function can be implemented with “and” / “not” or “or” / “not” 

(Enderton 2001). RVs used in the Boolean Function must have an OV that is called 

out in the paramsubset list. There is no requirement that all the OVs in an RV must be 

called out. For each PC, ANY checks if there is at least one set of entities whose RVs 

meet the Boolean function condition. ALL requires that all possible entities meet the 

Boolean Function condition. If the ANY / ALL conditions are met, one may either 

immediately assign a probability to the states or test additional conditions before assign-

ing probabilities. Any IF statement whose conditions are met results in a probability as-

signment before the IF statement is closed. 



 

73 

 

The ELSE statement closes an IF statement. It is active whenever the previous 

IF statement fails to find any matches. The ELSE statement may have either further IF 

statement (i.e. ELSE IF…) or have a final probability assignment. Every LPD ends with 

a final ELSE statement, which is the default probability distribution when nothing match-

es the previous IF conditions. 

The basic behavior is a count of the number of entity combinations that meet the 

specified conditions. When determining how many entity combinations meet the Boolean 

condition, it uses only the entities instantiated in the parent configuration (PC). Any other 

entities in a class are ignored. The count results are available for use through the  

CARDINALITY(paramsubset) command. For any paramsubset, only one cardinality 

result is available at a time. No fine grained results are possible (e.g. how many entity 

combinations are in each of N possible states). A CARDINALITY value is available until 

the IF statement that generated it is closed. 

It is important to understand exactly how IF ANY paramsubset counts. 

When paramsubset has a single variable, CARDINALITY counts the number of enti-

ties represented by that variable that meet the Boolean function condition. When there are 

multiple variables in paramsubset, then CARDINALITY counts the combination of 

entities represented by those variables that meet the Boolean function condition. For ex-

ample, assume paramsubset has three variables, f.m.c, where the parent configu-

ration has two entities from f, three from m and four from c. Then there are 24 possible 
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entity combinations among f.m.c and each combination is tested to see if it meets the 

Boolean function condition4.  

4.2 Dependency Modeling - Identifying Required LPD Behavior5 

To uncover the full range of needed LPD language enhancements, this research 

explored a comprehensive range of possible parent configuration interactions, using a 

newly developed approach called dependency modeling. Dependency modeling looks at 

how combinations of RVs that model an entity’s attributes, its relationships with other 

entities and its functions interact with each other in the LPD. It designates three RV 

types: 

• Attribute random variable (A-type), with a single OV, model attributes. For each 

entity in a class, an A-type RV assigns a probability to each possible attribute 

state, drawn from a fixed (categorical) list 

• Relationship random variable (R-type RV) with two OVs. It implements relation-

ships such as isFriendsWith(x,y). It has Boolean states 

• Functional random variable (F-type), model functions, and has two entity varia-

bles. One is the OV, the entity that is the subject of the RV. Since an F-type RV 

has entities as states, there is a second variable, called a state variable, that repre-

sents the states of the RV. This state variable is used in dependency modeling. 

 
4 The UnBBayes LPD language is intended as a general purpose language, able to model a wide varie-

ty of possible LPDs. This can make it computationally inefficient. It is recognized that some problem do-

mains benefits from more specialized computationally efficient approaches. Capabilities to incorporate 

such approaches are also being pursued. That work is outside the scope of this dissertation. 

5 The approach is highlighted here and described in detail in Appendix A. 
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Assume there is an RV called MachineLocation(m). It models a functional relation-

ship between a specific machine entity and the room it is located in ( F-type RV). When 

dependency modeling requires knowing what the state variable is, the RV is annotated as 

MachineLocation(m)/r. It is possible for the same variable to be an OV for one 

RV and the state variable for another RV. 

Since dependency modeling explores needed LPD behaviors for first-order ex-

pressive probabilistic modeling, it uses a template approach for its models. The template 

captures the basic model structure. In the model instantiation for a specific problem do-

main, the grounded model may have multiple instances of each RV type in the template. 

Dependency modeling focuses on combinations of RV types and how the parent interac-

tions with each other influence the dependency with the child RV. The concepts modeled 

by the different RV type - attribute, relationship, and functional relationship - are 

knowledge representation concepts, used in knowledge modeling of a wide range of do-

mains. Different interactions between RV types define different conditional counting be-

haviors. By exploring the range of interactions at the knowledge representation level of 

abstraction, one has confidence that the results are both widely applicable and reasonably 

complete. For the research done here, it explores different models where, at the template 

level, a child RV has one parent and where it has two parents. Figure 9 provides an ex-

ample of each. Since there are three designated RV types, there are nine possible models 

with a single parent, and eighteen possible models with two RV parents, as shown in Fig-

ure 10. 
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Figure 9: Templates where the child RV has one or two parents at the template level 

 

In the usage here, the child RV is always RV3, and A / F / R identifies the RV type. In 

the two-parent-type models, the numeric identifiers for the parents (e.g. F1, R2) are re-

versible. There is no requirement for RVs to be different. In the two-parent-type models, 

if both parents have the same RV-type (e.g. an F-type RV), the two RV's may be the 

same or they may be different6. The dependency models in Figure 10 do not include  

 

 
Figure 10: Dependency models with one or two parent RV types representing entity attributes (A), functional 

model and the informal interpretation of the meaning of the dependency. 

 
6 If they are the same RV, they must have different OVs, with constraints added that they cannot be the 

same entity. 
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OVs or state variables, and multiple variable combinations may be used. For the single 

parent models, there can be from one to four distinct OVs or state variables, and multiple 

variable combinations may be used. The two parent models can have up to six distinct 

variables (from every RV has the same variable to each RV has a different variable for its 

represented entity and its states). For many of the dependency models, different variable 

combinations can create a different grounded model. In the modeling, A(x) means x is the 

OV of the A-type RV A, F(x)/y is an F-type RV with x as the OV for the represented en-

tity and y is the state variable, and R(x,y) means x and y are the R-type RV’s OVs. 

The construction algorithm uses the OVs in determining the structure of the 

grounded model. Each instantiated RV is for a specific entity or set of entities. If a parent 

RV has the same OV as the child, the parent OV must be the same entity as the child's 

OV. For the OV(s) not the same as the child's OV(s), one RV of that parent is instantiated 

for every entity in the class (subject to context variable limitations). Different combina-

tions of functional relationships (F) or relationships (R) in the template can instantiate 

different parent sets for the same basic dependency model. Figure 11 below gives an ex-

ample. It has two different instantiations of the same dependency model (A1, F2, A3), but 

the order of the variables for the F2 RV type is inverted between the two. The idea being 

modeled in both cases is that the status of a manufacturing machine (working / 

broken) depends on the room’s temperature (normal / hot). Which room the ma-

chine is in is uncertain. This uncertainty is captured by the F2 RV-type. In Figure 11A,  
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Figure 11: Inverting the variables in RV F2 results in a different pattern 

 

this is MachineLocation. In Figure 11B, the F-type RV is RoomOccupant - note 

that it is the inverse of MachineLocation and its OVs are inversed. This results in 

two different parent sets. Assume the database has four machine entities and four room 

entities. In Figure 11A, MachineLocation has the same OV as MachineStatus, 

so only one RV is instantiated7. In Figure 11B, RoomOccupant has a different OV, so 

four instances are instantiated (state variables are not used in the construction algorithm). 

Different variable combinations (OVs and state variables) can also affect the un-

derstanding of what is being modeled. There are collectively 39 distinct variable combi-

nations cases for the one-parent-type dependencies and 414 cases for the two-parent-type 

dependencies. As discussed in Appendix A, it is difficult to find meaningful examples for 

many of these cases, especially when each RV has variables different from every other. 

 
7 In Figure 11A, there is a unmodeled requirement that a room can have only one machine in it. It was 

not modeled because it adds additional nodes that clutter the point of the model and does not affect the LPD 

under discussion. It could be modeled by including the remaining three MachineLocation nodes (for ma-

chines m2, m3 and m4) and adding a constraint node enforcing the requirement that each machine must be 

in a separate room. In Figure 11B, the constraint is modeled, using an embedded constraint approach. Note 

the state NA with 0 probability in RV MachineStatus_M1. See Appendix A.4, page 179 for constraint dis-

cussion. 
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Meaningful examples generally require that entities are shared among the RVs. So, this 

effort was restricted to having two distinct variables in the one-parent-type models, and 

two or three variables for the two-parent-type models. There is an additional requirement 

that a parent and the child RV must share a variable. Cases where every RV had the same 

variable were excluded, as these had a simple structure. This resulted in 41 cases. For 

each model, a simple example was created that had a reasonable dependency between 

parent(s) and child. In four models, no meaningful example could be found. This resulted 

in 37 cases for which the LPD interactions could be explored. For some of the cases, the 

existing LPD language capabilities were sufficient. But most required additional capabili-

ties.  

4.3 Patterns 

It became obvious that there are recurring patterns in the model structures and 

LPD behavior. Eight distinct patterns were identified. These patterns have both a struc-

tural component and an internal LPD behavior component. The structural component is 

driven by the OV combinations, as discussed above. The internal LPD behavior results 

from the interaction between the knowledge representation concepts, as captured by the 

RV types. The patterns have two uses. First, they represent general behavior that is appli-

cable to a variety of domains. As such, they are available for modeling support. Second, 

the patterns describe needed LPD behaviors. This section highlights the patterns, focus-

ing on what they reveal about LPD language capabilities. The needed behaviors are iden-

tified in this section. Implementation details are deferred to the section 4.4. The patterns 
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are discussed in-depth in Appendix B. The patterns fall into three major areas that are 

called selector, existential selector, and embedded dependency. 

4.3.1 Selector Patterns 

In the Selector patterns, the Template has either an F-type or A-type RV (listed as 

either F2 or A2) with the same OV as the child RV. In the grounded model, this RV in-

stantiates only one instance and acts as the selector. It identifies a condition that the in-

stantiated RVs of the other variable type (RV1) must meet for the instantiated variables to 

have an influence on the child RV. There are three selector patterns: Select-One, Select-

Match and Child-Select. 

In the Select-One pattern, the selector is an F-type RV. The state variable is the 

same variable as an OV for the other parent RV. The LPD for this pattern always exhibits 

context specific independence. This pattern is a generalization of the well-known pattern 

used to resolve reference uncertainty (Getoor and Grant 2006; Getoor et al. 2007). Figure 

11A above has this pattern, in which a specific instance of RV A1 (RoomTemp) has an 

influence on a child RV A3 (MachineStatus). The child’s OV may be from the same 

or different class than the OV in A1. The functional relationship in RV F2 enables the 

dependency between A1 and A3, identifying the specific A1 entity with the influence. 

The LPD behavior is to identify and use the state of the specific instance of the RV A1 

whose OV entity is the same entity as the state variable of the selector. Figure 12 below 

gives the LPD behavior for two CPT parent configuration lines. To address this type of 

parent configuration and reasoning model, the needed LPD behavior are to 
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Figure 12: Select-one LPD behavior 

 

 

• Recognize entity states 

• Use an F-type RV’s entity state as an indirect reference to the RV instance of in-

terest. Specifically, one needs to able to say 

(State(A1(State(F2))=statex)), where A1 and F2 are the parent RVs.  

The implementation described in section 4.4 below has a different form but the same ef-

fect. 

The Select Match pattern has the same structural pattern as the select-one pattern, 

but a different LPD behavior. In this pattern, the selector identifies a state of interest, and 

the LPD language then counts the number of the other parent-type instantiations that 

match the selector state. In this case, the selector may be either an F-type or an A-type RV. 

The LPD behavior depends on the parent types. If the selector (RV2) is an F-type RV, 

then so is RV1, and the comparison is how many RV1 instances have the same entity state 

as RV2, e.g. 

COUNT ((State(RV2)= State(RV1)). 

 

If the selector is an A-type RV, so is RV1, and the two RVs have an embedded 

dependency that specifies how the two RVs interact to establish the child RV’s state 
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probabilities. The count behavior is more complex and will be shown below. In either 

case, the child RV in this pattern may be either an F-type or R-type RV. If it is an F-type, 

the OV of RV1 must be the same as the state variable (both are from the same class) of the 

child RV. If it is an R-type, its other OV must be the same OV as in RV1. A simple case 

with F-type parents is shown in Figure 13. Here, the basic dependency is that a machine 

can be in a room only if the same organization both owns the machine and is the assigned 

tenant of the room. In this example, there are four rooms and two possible organizations.  

For each parent configuration, the number of matches is counted. The Select-

Match pattern requires the LPD language have an entity attribution capability. It must 

know which entities in the Tenant RV instances matched the selector. In general, entity 

attribution is needed whenever the child RV is an F-type RV – the LPD language needs 

to know which entities in the child RV’s states have a positive probability. The assigned 

probability in this example is 1/(# of matches) for the entities whose Tenant state matches 

the selector. 

 

 
Figure 13: Select-match LPD behavior with F-Type Patterns 
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The counting used for the example in Figure 13 is simple. But the Select-Match pattern 

(and others) can require more robust counting capabilities. Consider the example in Fig-

ure 14. It is also a machine location problem. But here, the selector is an attribute, not a 

functional relationship. The probability that a machine is in a particular room depends on 

its size and the sizes of the different rooms. Any size machine can be in any size room, 

but a machine is more likely to be in a room the closer the room size is to the machine’s 

size. The likelihood is also shown in the figure, where 3x means three times more likely 

than in the least similar room. In this example, a possible conditional probability for the 

ith room is 

 

 𝑤𝑖 / ∑ 𝑤𝑗𝑛𝑗𝑗 , where wi, wj are the likelihood weights of each room, based on the 

degree of match to the selector attribute, nj is the number of rooms that have the weight 

assigned to state j and j is the number of states. 
Equation 2: Conditional probability of the ith room in the select-match example 

 

 

 
Figure 14: Attribute-based select-match example with multiple states8 

 
8 If there is a constraint that only one machine may be in a room, the same comments as made in foot-

note 7 apply 



 

84 

 

The probability depends both on the number of rooms and the number that have each size. 

The LPD language here needs to count all possible conditions for MachineSize / 

RoomSize and organize by degree of match before assigning probabilities. This 

capability is called state counting. In addition to the entity state recognition capability 

discussed above, this example requires the following LPD behaviors: 

• Entity attribution - know which entities of RV1 match the selector criterion 

• State counting 

The Child Select pattern applies to certain dependencies for an R-type child RV. 

In this pattern, both OVs in the R-type child RV are involved in setting state probabili-

ties. As in all selector patterns, one child RV OV has the same class as the selector RV2. 

There are two variants. In the first, both parent RVs are F-type RVs. Here, the other OV 

from the child RV is used to determine whether the selected RV1’s state supports a state 

of True. Specifically, the child RV has a state of True if the selected RV1 instance has 

the same entity for its state as the second OV in the child. In the second variant, the selec-

tor is an F-type RV and the other parent is an A-type RV. The OVs of both parents match 

the same OV in the child. In this case, the F-type RV’s state variable and the other child 

OV are from the same class. If they match (unlike OVs for an RV’s entity, state variables 

are not bound by a child’s OVs), then the child RV has a state of True. Otherwise, it is 

False. The Child-Select examples explored requires the LPD behavior to have access to 

the entity instances in the child RV’s OV to be able to make comparisons such as  

State(RV1)= OVi(RV3), Where OVi is the OV in ith position from the 

left. 
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4.3.2 Existential Selector Patterns 

The second pattern category, Existential Selector, occurs across most of the cases 

examined. These patterns involve either a R-type or F-type RV as selector. If it is a R-

type RV, one or both of its OVs will be the same as for the child OV. If the child RV has 

only one OV (A-type or F-type), one of the R-type’s OV will be free. If the selector is a 

F-type RV, it is that RV’s state variable, not OV, that will be the same as the child RV’s 

OV. These patterns differ from the selector patterns in that they instantiate multiple in-

stances of the selector RV, instead of only one. Each existential selector determines 

whether a specific relationship exists for each entity in the class of entities that may in-

fluence the child RV. If it does exist, the instances of a second RV type with the same 

entity have an effect. Uncertainty of a relationship’s existence is a form of property un-

certainty, hence the existential name (Poole 2011). These patterns use a variety of count-

ing behaviors. 

In the Existential Paired pattern, the instantiations of both parent RVs are paired 

based on a common entity in their OV. The selector determines whether the entity is in-

volved in the LPD. The state of RV1 determines the dependency. Figure 15 gives an  

example, where a student’s grades partially depend on their professors’ teaching abilities. 

There are four possible professors. The existential selector is Teaches. Only if a profes-

sor teaches John, does their teaching ability matter.  

This example lends itself to conditional K out of N counting, where N is the num-

ber of John’s professors, while K is the number of those professors that have Excellent 

teaching ability. The current LPD language can do this counting, but it has a limited  
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Figure 15: Existential paired pattern 

 

ability to use the results in making probability assignments. Specifically, it can use the 

counts to assign probabilities based on arithmetic operations (e.g. probability Good 

=.6+k/n*0.4, including using min/max functions). More nuanced probability assignments 

occur if the LPD language would support: 

• Using the cardinality / count results in an IF condition. 

• Using table matching 

• Using parametric probability distributions 

An IF cardinality LPD language capability could be used as follows. Let CAR-

DINALITY(s) be the number of John’s teachers and CARDINALITY(p) be the num-

ber of John’s teachers with Excellent teaching abilities. The usage would be 

IF ANY s HAVE (CARDINALITY(s) = 3) [ IF ANY p HAVE (CAR-

DINALITY(p) = 0) [ Good = 0.3, Poor =0.7]] ELSE… 

 

ELSE repeats the above for CARDINALITY(p) of 1, 2, 3, with appropriate probability 

assignments. This IF capability would also be useful for implementing constraint re-

quirements, such as “a room may hold only one machine”, or “a person has two biologi-

cal parents”. 
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Using counting results as a conditional test parameter is a needed capability, but it 

results in a significant LPD language writing workload. Putting the probabilities in a table 

with a look up function would simplify the effort. This table and function are comparable 

to the Excel® lookup function. Finally, enabling the LPD to have a broader range of 

functions, including allowing predefined probability functions, would allow more proba-

bility models. For example, the logistic function is a viable probability distribution func-

tion for a variety of problems that use count-based aggregations (Kazemi et al. 2014). 

In the Multi-Existential pattern, each selector instance is applied against multiple 

instances of the second RV type. Rather than pairing between specific instances, it works 

across subsets (or all) of the instances. Figure 16 models the case where there are three 

possible individuals as the first author of a particular paper P1. Which person it is de-

pends on two things: the topics the paper covers (hasTopic), and the expertise of each 

of the possible authors on those topics (expertOn). A paper can touch upon several top-

ics. HasTopic is the existential selector in this model. For each topic covered by the 

paper, the LPD behavior is to determines which possible author has expertise in that top-

ic. The assigned conditional probability then depends on the range of expertise of each 

 

 
Figure 16: Multi-existential example – need for by-entity counting capability 
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possible author (e.g. William is an expert in two of the paper’s topics). The person with 

the most expertise is more likely to be first author. This requires an ability to count states 

by specific entities. That is, for each possible author, the LPD language must count the 

number of topics they have expertise in. In addition, this example requires entity attribu-

tion, tying the count to an entity. 

The Existential Child pattern is like the Child Select pattern discussed above, in 

that there is a direct dependency between the child RV’s OV instance(s) and the selec-

tors’ states. Instead of a single selector, there are multiple existential selectors. In some 

examples, the child RV’s OV(s) identifies a state that an existential selector must match 

for that selector to have an influence. In other cases, the child RV’s OV(s) are the selec-

tors. Figure 17 gives an example of the latter. The premise here is that the probability that 

two people are married depends partially upon knowing how many biological children 

they have in common – the more children, the more likely they are married.  

 

 
Figure 17: Existential child pattern, where the child OVs are the selectors 
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The required LPD behavior is  

Count number of child entities where State(FatherOf) = 

OV1(MarriedTo) AND State(MotherOf = OV2(MarriedTo),where 

OV1 and OV2 are the first and second OV in MarriedTo 

 

This counts the number of child entities whose parents match F1 and M1, the specific fa-

ther and mother entities identified in MarriedTo. Since one cares only about the 

total number and not which possible children match, there is no need for attribution or 

count by entity. 

4.3.3 Embedded Dependency Patterns 

The embedded dependency pattern are patterns applicable to one-parent-type cas-

es. Because of the rules discussed in section 4.2 above, there are always two variables in 

one-parent-type cases, and both the parent and the child share at least only variable. 

These patterns model the influences an entity’s attribute has on one of its relationships 

(including functional relationships), influence of an entity’s relationship on one of its at-

tributes, and the influence of a relationship on another relationship. There are three pat-

terns within this category: conversion patterns, inversion patterns, and existence pat-

terns. 

The Conversion pattern is used to convert an F-type RV to an equivalent set of 

R-type RVs, and vice-versa. It is useful when the knowledge base has information in one 

form, but when the other form is more appropriate for the model. The resulting RV(s) has 

the same semantic sense as the parent RV(s). For example, if the parent is an F-type RV 

called FatherOf(child), a possible conversion could be the child RV 



 

90 

 

hasFather(child,father). The naming of the RVs and determining whether the 

two RVs have the same semantic meaning is the modeler’s responsibility. The pattern on-

ly ensures that the uncertainties among the states is preserved between the RVs. Any F-

type can be converted into a set of R-type RVs, one for each entity in the F-type’s state 

variable. The resulting set of R-type RVs will be inherently constrained - only one 

instance can be true at any one time and the sum of the probabilities of each R-type RV 

being true must equal 1 across the set of R-type RVs. An R-to-F conversion can occur 

when the set of R-types is constrained to meet these same two conditions. If so, then one 

can convert them to a single functional F-type RV. 

Inversion patterns provide the inverse of a relationship, which is not necessarily 

the same relationship with the variable order reversed. For example, hasFriend(x,y) 

is normally considered a symmetric relationship and is its own inverse. But 

hasChild(x,y) and hasParent(y,x) are each an antisymmetric relationship, but 

can be considered inverses of each other. If the inverse of a relationship is a different re-

lationship, the modeler needs to understand the nature of the inversion. If the relationship 

is identified using a verb phrase, one can always create an inverse (in the English lan-

guage) by switching the voice (active / passive) of the verb. For example, hasFa-

ther(x,y) and isFatherOf(y,x) are considered inverses of each other with the 

normal meaning assigned to those verb phrases in the English language. But often one is 

interested in an inverse that describes the relationship differently, such as 

hasChild(x,y) and hasParent(y,x). In those cases, the dependency between 

the two may not be as tightly bound. 
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Because relationships can be expressed either as R-type (always) and F-type (for a 

functional relationship), there are four possible implementations. In the F-F case (e.g. 

BeltLocation(belt)/ machine to BeltOn(machine)/ belt) 9, there must 

be a one-to-one relationship between the entities in the OV and state variable of the two 

RVs. The R-R case (hasGrandparent(y,x) to hasGrandchild(x,y)) is the most 

flexible, as it puts the least restrictions on what can be modeled. In the R – F case, there is 

a requirement that the R-type parent must be functional for the OV that is also the OV of 

the child variable. The last case, F – R, is unlike the conversion case. The resulting set of 

R-type RVs may have different constraints. For example, while the FatherOf relation-

ship is constrained, inversing it to a hasChild relationship is not constrained in the 

number of children a father can have. But for a specific child, only one hasChild rela-

tionship can be true, if the parent class is filled only by fathers or by mothers (but not 

both – then the constraint is two RVs must be true). 

Existence patterns are single parent patterns that describe dependencies between 

attributes and relationships. In these patterns, the same entity has both the attribute and 

the relationship under consideration, and the state of one influences the state of the other.  

All the patterns discussed above model basic knowledge representation interac-

tions. While specific examples are given to aid understandability, these patterns are not 

domain specific, and are widely applicable in first-order expressive probabilistic model-

ing. 

 
9 State variables are shown for understandability 
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4.4 LPD Language Changes 

The dependency modeling exploration and the resulting patterns identified the required 

LPD behaviors. Table 4 highlights the both the overall LPD behaviors, as described in 

section 4.3, and the implementation for UnBBayes. The first four behaviors were previ-

ously implemented, as described in Section 4.1. The remaining ten behaviors are en-

hancements to the LPD language: eight enhance conditional counting, two expand the 

probability assignment options. The first enhancement is to allow the LPD language to 

recognize and use states that are entities of a class, rather than categorical or Boolean 

states. It applies specifically to F-type RVs. The enhancement recognizes that the Boole-

an function (RV2 = OV…) is a valid state reference, equivalent to (RV2 = state ). 

The added requirement is that the OV must be called out in the parameter subset. In a PC, 

each RV instance has a defined state (Boolean, categorical or entity). The form RV=OV 

signals the replacement of the OV with the entity state of the RV. Its use assumes that 

only one instance of RV is created, as fixed by the structure of the model. This enhance-

ment enables the uses specified below. 

The second enhancement is to perform indirect referencing. The Select-One pat-

tern identified a need to do so – specifically, the need to identify the entity whose attrib-

ute or relationship influences the child. The implementation for the example in Figure 12 

(page 81) is 

IF ANY m.r HAVE (MachineLocation = r &  

RoomTemp = normal) 
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Table 4: Local Probability Distribution behaviors and language enhancements 

Behavior Command 

Multiple condition testing IF ANY paramsubset HAVE  

(Boolean Function) 

Nested Ifs IF ANY paramsubset HAVE…. [ 
       IF ANY paramsubset HAVE….  

Summary count by entity combination CARDINALITY(paramsubset) 

Probability assignment With modeler defined values or arithmetic 
function, with MIN / MAX 

Recognize entity states   IF ANY paramsubset HAVE  
(RV = OV …..) 

Perform indirect referencing 
(RV1(RV2) = state) 

IF ANY paramsubset HAVE  

(RV2 = OV & RV1 = state…) 

Perform state comparison (RV1 = RV2) IF ANY paramsubset HAVE 

(RV1(OV) = RV2(OV)…) 

May have multiple OVs 

Identify the specific entities of a class 
that met the IF conditions 

COLLECT#(OV) 

Use child RV’s OVs as test conditions Implemented as part of entity states 
recognition 

Count by RV states IF ANY paramsubset HAVE 

(…RVx = state1, COUNT1) ORSC 

(…RVx = state2, COUNT2) 

ORSC….. 

Count by individual entity FOR EACH paramsubset{IF 

ANY…….., COUNT#(a)) [WAIT]} 

Allow conditional behavior based on 
the count results  

IF COUNT# < / > / = x 

may use CARDINALITY as well 

Use cardinality / count in lookup ta-
bles for probability assignments,  

TABLE / TABLEMATCH 

Enhance use of parametric probability 
distributions 

Add exponentiation and combinatoric 
functions. Add interface to common proba-
bility functions 
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Here MachineLocation always is a single instance with a specific entity state in each 

parent configuration. Within the LPD language, this dynamically fixes the r OV to a spe-

cific entity, the entity state of MachineLocation. Only one RoomTemp instance has 

the same entity. 

The third enhancement is to perform entity state comparison. The select match 

pattern in Figure 13 on page 82 identified the need for this capability. Its implementation 

is 

IF ANY m.r.o HAVE (Owner (m) =Tenant(r)) 

 

The count in this case is the number of Tenant states that match the owner state. This 

works correctly only when there is one possible entity for the OV of one of the RVs 

called out in the Boolean function. The variable o is in parameter subset because it is the 

state variable being compared between the two RVs. 

The fourth enhancement is to allow the LPD language access to the entities repre-

sented by OVs in the child RV. This enables comparing specific parent RV entities (OV 

or state variable) to the child’s entities, as required by the Child-Select (page 84) and Ex-

istential-Child patterns (page 88). 

 The fifth enhancement is to support entity attribution. This is done via the COL-

LECT#(OV) command. It supports probability assignments to F-type RVs. This command 

provides entity attribution. It collects the specific entities whose properties meet the IF 

conditions. In the example in Figure 13 (page 82), one needs to know which room entities 
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have the same owner as the machine entity. COLLECT#(OV) is a list of entities. There 

may be multiple collects made. “#” is replaced by a unique numeric value to distinguish 

the different instances of COLLECT. OV identifies the class whose entities are collected. 

COLLECT#(OV) is then used in the probability assignment section of the LPD. In the ex-

ample, it would be used in the probability assignment section of the LPD as follows: 

COLLECT1(r) = 1/CARDINALITY(m.r.o) 

 

This states that each entity in COLLECT1(r) is assigned a probability of 1 over the 

number of entities that met the match condition. For the second PC line in Figure 13 

(page 82), it results in 

r2 0.5,  

r3 0.5 

 

The next two changes enhance the LPD language’s counting capabilities, by ena-

bling state counting and by-entity counting. A limitation of the current LPD language is 

that it cannot do state counting. It allows the LPD to step through the state conditions and 

count the occurrences of each prior to assigning the child RV's state probabilities. Figure 

14 (page 83) gives an example of the need. One needs to know the count of each possible 

state to correctly compute the conditional probability. The sixth enhancement, state 

counting, has two parts. First, it adds an ORSC (“or State Count”) condition to the IF 

statement. It tells the script interpreter that the IF statement is not complete until all the 

conditions tested by the ORSC clause(s) is completed. The full implementation is 

IF ANY paramsubset HAVE (RV2=stateX)  

[IF ANY paramsubset HAVE (RV1= state1, COUNT1, COL-

LECT1(OV)) ORSC (…RV1 = state2, COUNT2, COLLECT2(OV)) 

ORSC…. 
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which continues until all the states of RV1 have been counted. 

The second part adds a new option for recording counts. Presently, such infor-

mation is accessed via the CARDINALITY command. But CARDINALITY has two limi-

tations. First, CARDINALITY provides a summary count. Here, it would provide a count 

of all the entity sets that met one of the state conditions. But we need a count by state. 

Second, CARDINALITY only retains count information to the end of the IF-statement 

that generated it. But there are cases where one needs to keep that information, possibly 

to the end of evaluating a PC. For example, if one is using a state count to obtain the val-

ue of the child’s state probabilities, the state count is not complete until all IF state-

ments have been assessed. To retain compatibility with legacy applications, a new com-

mand is used: COUNT#, where # is a number assigned by the developer. Each subclause 

within the ORSC extended if clause has its own distinct COUNT# value. The LPD lan-

guage user can associate each instance of COUNT# with a particular state and can use it in 

the LPD probability assignment. The implementation for the example in Figure 14 (page 

83) is 

IF ANY m HAVE (MACHINESIZE = LARGE) 

[If any R have (ROOMSIZE = LARGEROOM, count1, collect1(r)) ORSC 

(ROOMSIZE = MEDIUMROOM, count2, collect2(r)) ORSC (ROOMSIZE = 

SMALLROOM, COUNT3, COLLECT3(r)) 

[COLLECT1(r) = 3/(3*COUNT1+2*COUNT2+COUNT3), 

COLLECT2(r) = 2/(3*COUNT1+2*COUNT2+COUNT3), 

COLLECT3(r) = 1/(3*COUNT1+2*COUNT2+COUNT3) ] 

ELSE…. 

 

The LPD would be repeated for the other two MachineSize RV states, with 

appropriate adjustments for the numeric values in the probability assignment section. 
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The seventh enhancement enables by-entity counting. The example in Figure 16 

(page 87) identifies the need for by-entity counting. The driver here is that in the exam-

ple, there is nothing to group the counting by the possible authors. The enhancement uses 

a for-loop construct to provide this grouping 

FOR EACH OV {IF ANY paramsubset HAVE (Boolean expression, 

COUNT(OV)), an optional IF COUNT(OV) test, [probability assignment or 

WAIT]} [probability assignment] 

 

There are six distinct features of this construct (OV is replaced by the actual OV symbol): 

• The FOR EACH OV segment tells the LPD interpreter to loop through the remain-

ing section with the OV value fixed to a particular entity on each pass 

• The {} contains the conditional testing executed during the looping. It may use 

any legal Boolean expression 

• COUNT(OV) is a two-column list. The first column identifies the entity from the 

class of OV that is being counted. The second column is the count for that OV 

• Within the {}, one may make an immediate probability assignment. For example, 

if the segment being counted has a constraint condition that fails, one may imme-

diately make an NA assignment (see enhancement seven below). This ends the ex-

pression 

• If there is no immediate probability assignment, WAIT is used in the probability 

assignment section to signal that probability assignments will be made after the 

looping is completed 
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• The final item is the probability assignment. Since COUNT(OV) already includes 

the specific entity to which a count is assigned, it serves as both a COUNT and a 

COLLECT. 

The use for COUNT in the Figure 16 example (page 87) is  

COUNT(a) = COUNT(a) / SUM(COUNT(a)) 
 

This means that the probability for an entity in a is the count for that entity divided by the 

sum of the counts for all entities in a. 

The eighth enhancement allows COUNT# and CARDINALITY to be used in IF 

conditions. For example, suppose there is a constraint condition where the set of parent 

RVs may have only one instantiated node with a certain state. An IF command is exe-

cuted to test for that condition. One could then use CARDINALITY as follows: 

IF CARDINALITY(paramsubset) > 1 OR CARDINALI-

TY(paramsubset) <1 [ NA = 1] 

 

>, <, and = are all allowable test conditions. Either side of the IF statement can 

be any Boolean combination of COUNTS / CARDINALITY, and any arithmetic combina-

tion of COUNTS / CARDINALITY and / or numbers. 

The ninth enhancement is to incorporate lookup tables. A lookup table eliminates 

the need for lengthy probability assignment sections using the IF CARDINALITY / 

IF COUNT# commands. The TABLE command is used to build the table. Its form is 

TABLE((ordered list of allowable COUNT or CARDINALITY names) (list of 

names of child states in order used in Template)) 

(COUNT1a,…,COUNTna, probability state 1a, …., probability state ma) 

(COUNT1x,…,COUNTnx, probability state 1x, …., probability state mx) 
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Example: 

 TABLE(COUNT1, CARDINALITY(m.r), Short, Average, Tall) 

(2, 2, 0.8, 0.2, 0) 

(2, 1, 0.4, 0.4, 0.2 

(2, 0, 0.2, 0.7. 0.1) 

(1, 1, 0, 0.2, 0.8) 

(1, 0, 0, 0.1, 0.9) 

(0, 0, 0, 0, 1) 

 

The largest numeric value should be interpreted as that value or anything greater. 

This allows for capped tables. In the case above, a COUNT1 of 4 and a  

CARDINALITY(m.r) of 1 will use the 2, 1 probability values. 

TABLEMATCH is invoked within a probability assignment segment (the […….] ). 

It is a complete assignment. No other entries are needed for that specific [….].  

EX: [TABLEMATCH(COUNT1, CARDINALITY(m.r)] 

 

The tenth enhancement adds a broader range of mathematical functions, including 

exponentiation and combinatorics, for use in making probability assignments. It also al-

lows access to a probability function library for commonly used probability distributions. 

 

4.5 Using the Patterns 

This section provides an example of how the design patterns can be used. They 

identified a solution to a long-standing capability request for UnBBayes-MEBN. Both 

MEBN and MEDG use context variables (CV) to identify specific conditions that must 

be met before instantiating RVs in an SSBN / SSDG. Often the CV is of the form F(x) = 

y or R(x, y), where F is an F-type RV and R is a Boolean R-type RV. Any entity that 

does not meet the CV requirement is not instantiated in the SSBN using that MFrag’s 

RVs. If the database has findings that an entity meets or does not meet the condition in 
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the CV, the construction algorithm knows whether to instantiate RV's with that entity. In 

those cases, the RV identified in the CV is not a part of the SSBN. But if there is uncer-

tainty whether a CV is true for an entity, then a different approach is required. In those 

cases, the MEBN specification calls for instantiating the CV in the SSBN. The Un-

BBayes MEBN and MEDG implementations can only instantiate CVs of the form  

F(x) = y, where the x OV is the identical OV to one of the child RV’s OVs. It does not 

instantiate CVs of the form F(y) = x, where x, not y, is a child RV OV, or of the form 

R(x,y). In addition, the current implementation instantiates the CV as a distinct RV type 

separate from the RV that is used to form the CV. This means that any information in the 

MTheory about parents or children of that RV are not incorporated in the SSBN. 

The patterns described in section 4.3 above provide the way to correctly imple-

ment CV uncertainty for these three forms. In these forms, the relationship modeled by 

the CV licenses a dependency between the two entities in the relationship. This allows 

the attributes / relationships of the parent entity to influence the child RV. When one is 

uncertain as to which specific entity has the relationship for the child RV’s entity, one has 

reference or property uncertainty. Reference uncertainty occurs in the form F(x) = y, 

where x is the same OV as in the child RV. In implementing it, one uses the Select One 

pattern. 

When the form is either F(y) = x (x is also a child RV OV) or R(x,y), one has 

property uncertainty (one does not know whether a property exists between a specific set 

of entities). The form R(x,y) is modeled using the Existential Paired pattern, while the 

form F(y) = x is modeled using the Existential Child pattern. The implementation is 
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straightforward. When uncertainty exists in a CV with one of these three forms, the RV 

represented in the CV is instantiated in the SSBN, using the construction algorithm rules. 

The resident MFrag for the RV in the CV is checked and any parents to that RV are in-

stantiated as well. In addition, any children to that RV may be instantiated in accordance 

with the construction algorithm. An arc is drawn from each instantiated CV RV to the 

child RV. The LPD in the child RV is modified to account for the new parent(s). First, 

the OVs in the CV RV are added to the paramsubset. The y OV should already be in 

the existing paramsubset, as this is the OV for the RV that has the influence on the child 

RV. Second, in the LPD script where the y OV is invoked, add either F = y &…, F = x 

&…, or R = True & …. to the condition list, where F or R is the RV name and it is fol-

lowed by the existing LPD condition statement. 

When modeling problems with constraint variables of the form (where x, but not 

y, is also the child RV’s OV) or, the modeler must address whether there are constraints 

on how many instances may be true ( if R(x,y) ) or have the child’s entity for its state (if 

F(y) = x). If there is a constraint, it needs to be included in the CV’s MFrag. 

4.6 Other Modeling Tool Enhancements 

The dependency modeling effort identified two useful modeling enhancements, 

applicable to any first-order expressive probabilistic modeling framework. The first is to 

allow mixed entity / attribute states for functional RVs. This makes it possible to use 

functional RVs when there is the possibility that no relationship of the type represented 

by the RV exists for the entity. For example, in much of the Western world, a person may 

be legally married to one other person but does not have to be married. If one has a  
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MarriedTo(x) RV where the state variable represents the possible marriage partners, it 

would be helpful to have a state of NotMarried as well. Also, if there is an embedded 

constraint on the RV10, there needs to be an ability to add an NA or similar state to map 

parent configurations that violate the constraint to that state. These added states should 

not be part of the entity class, as they will be invoked as entities in every case where the 

class is invoked. 

The second is to define a fixed finding for all instances of RVs used as constraint 

nodes. Constraint nodes only work when they have a finding that states that the probabil-

ity of the state to which the disallowed PCs map to has a probability of zero. In the cur-

rent implementation, the user must add a finding for every constraint node instantiated in 

the model. It would be useful to enable the model developer to declare that every instance 

of an RV in an template will always have a finding of “x”. The template structure is mod-

ified to add an optional field in the section where states are defined to declare that a spe-

cific state always has a probability of 1 (true) or 0 (false). Any instance of that RV will 

then have a finding created with that information. 

4.7 LPD Language Requirements Conclusions 

The LPD undergirds a first-order expressive probabilistic modeling tool’s capabil-

ities, providing the probability and utility information used in the decision graph’s solu-

tion algorithm. The robustness of the LPD language capabilities affect the range of deci-

sion problems the DG can address. Dependency modeling was developed for this re-

 
10 See appendix A.4 for details if interested 
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search to explore how RVs that model knowledge representation concepts interact in an 

LPD. These concepts are widely used to model semantic content in many domains. This 

makes dependency modeling results applicable to the decision theoretic modeling of 

those domains. The analysis of the results identified ten generally applicable LPD lan-

guage enhancements needed to model all the LPDs represented in the dependency model-

ing cases. The modeling results also provide test cases for verifying the correctness of the 

implementation of these enhancements. In addition to identifying LPD language changes, 

the case analysis uncovered eight structural patterns that are useful in any first-order ex-

pressive probabilistic or decision modeling. The patterns connect the external structural 

and the internal LPD behavior. Two patterns provided a solution for a long-standing Un-

BBayes-MEBN deficiency report. This sets the stage for enhancing decision graph mod-

eling capabilities. 
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DECISION MODELING ENHANCEMENTS 

This chapter details enhancements to increase the range of decision problems that 

the first-order expressive decision graph tool implementations can address. The analysis 

of decision problem differentiators discussed in Chapter 3 identified two desirable en-

hancements: asymmetry management and context variation. Decision graphs cannot in-

herently handle asymmetric problems. The standard solution algorithms require a sym-

metric decision graph. This chapter presents two algorithms that symmetrize decision 

graphs in preparation for solution. For context variation, a modeler could include all pos-

sible context variations in a single decision graph. But this can result in a large decision 

graph, most of which is not used in a specific case. One can tailor the instantiated deci-

sion graph to a specific context if one’s modeling framework allows the use of attribute 

RV-based context variables. While the Multi-Entity Decision Graph modeling framework 

does, its current implementation, UnBBayes-MEDG, does not. How to do so in any 

MEDG implementation is addressed below. Finally, Chapter 4 addressed the LPD behav-

iors needed to use functional relationship RVs, which have entities as states, as parents to 

other nodes. These LPD behaviors also allow the modeling of decision problems where a 

decision node has alternatives defined as entities from a class. But modeling entity alter-

natives adds additional modeling requirements that a modeler needs to be aware of. These 
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are described in this chapter. Asymmetry management, improved context variation mod-

eling, and modeling demands for entity alternatives are discussed below. 

5.1 Enhancing Asymmetry Management Capabilities 

This section describes changes that enhance modeling of asymmetric decision 

problems in a first-order expressive decision modeling tool. Chapter 2 identified that for 

problems with multiple decisions, the effects of learned information and prior decisions 

can introduce decision graph asymmetry. There are three kinds of decision problem 

asymmetry: 

• Functional asymmetry occurs when a previous decision or learned information 

disallows one or more alternatives in a follow-on decision. The integrative, se-

quential, and hierarchical patterns from Chapter 3 can have functional asymmetry 

• Structural asymmetry occurs when a previous decision or learned information nul-

lifies the effects of one or more decision graph nodes in the decision problem un-

der consideration. Here, there are multiple decision paths through the decision 

graph, driven by the effects of previous decisions and learned information 

• Order asymmetry, when one has a sequence of decisions with learning occurring 

between decisions. This learning affects the value of follow-on decisions, and the 

order in which decisions should be made is itself a decision problem. 

The Granddad decision problem described in Figure 18 below exhibits all three 

forms of asymmetry. Figure 19 provides an initial Granddad problem model. It does not 

show the problem’s asymmetry characteristics. In addition, standard decision graph solu-

tion algorithms will not execute correctly on this graph. 
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Figure 18: The Granddad problem  

 

 

 
Figure 19: Initial Granddad problem model, demonstrating need for asymmetry visualization 

Granddad promised his three granddaughters that he would take them on an adventure. He still 

hadn’t made up his mind on what to do. The choices are between going to an amusement park or an 

outdoor adventure park. He decided he would ask them what they wanted to do. For each choice, 

Granddad would have to decide which one of two nearby amusement parks or one of two outdoor ad-

venture parks they would go to. Which one will be selected depends on the costs and difference in at-

tractions of each option, and how happy the girls will be with their adventure. 

 For the selected choice, Granddad would need to pick the route to get there. For each choice, there 

are three routes: use a very convenient toll road that would get them there quickly, take a scenic route 

that Granddad enjoys taking, or take a route that would go by a special bakery shop the girls love to 

visit. If Granddad forgets to bring the toll road transponder, he cannot take the toll road. 

First, Granddad must get to the girls’ house. But he cannot start the car. He suspects three likely 

causes: clogged fuel filter, broken ignition cable, or a faulty engine controller. He has a spare for 

each. Each takes a different amount of time to replace and each has a different probability of resolv-

ing the problem. If replacing them didn’t work, he can rent a car at a rental agency up the street. He 

can select the rental car option at any time. Granddad wants to minimize the amount of time and cost 

for repairing the car. There is no obvious sequence to resolving this problem. 

Granddad’s overall goal is to maximize his “granddad points”, while keeping the costs reasonable. 
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5.1.1 Asymmetry Visualization 

The key reason for developing a graphical model is to provide the decision-maker 

with a visual display of all knowledge relevant to the decision problem. As shown in Fig-

ure 19, asymmetry is not visually apparent in a standard decision graph. Two distinct vis-

ualization methods are proposed in the literature: the sequential influence diagram and 

the decision analysis network. The methods are shown in Figure 20. The sequential influ-

ence diagram method adds a dashed line to signal the existence of either functional or 

structural asymmetry. The dashed lines are labeled with either the parent state that trig-

gers functional asymmetry and the inhibited child RV state, or the parent state 

 

 
Figure 20: Approaches to asymmetry visualization - Sequential Influence Diagram vs Decision Analysis Network 
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that indicates the link exists (for structural asymmetry). Solid lines show functional links 

that one node’s state depends on another node’s state. A pair of nodes may have both a 

structural and a functional relationship. (F. V. Jensen, Nielsen, and Shenoy 2006). The 

decision analysis network method uses conventional decision graph lines, but adds dis-

tinct markings to signal asymmetry. Functional asymmetry is signaled by the single slash 

on an arc, while structural asymmetry is signaled by the double slash on an arc. This 

method does not display the specific condition(s) that trigger the asymmetry. Rather, de-

tailed asymmetry information is included in an associated compatibility restriction table 

(CRT) (Díez et al. 2014). In both methods, order asymmetry is indicated by enclosing all 

involved nodes within a dashed ordering oval. 

For MEDG implementations, the proposed asymmetry visualization method uses 

the Decision Analysis Network method to visualize asymmetry. It is a less cluttered 

method, but still effectively signals the presence of an asymmetry. Figure 21 shows the 

asymmetry visualization of the Granddad problem. All the nodes affected by order 

asymmetry are included within an ordering oval. If multiple instances of order asym-

metry exist, each has its own ordering oval. Each possible decision is identified separate-

ly within the oval. The chance nodes represent the possible consequences of decisions. 

These can include a stopping condition, which means that the underlying problem has 

been resolved or is unresolvable within the current decision set. In either case, no more 

decisions from the current set are required. The compatibility restriction table (CRT) is 

part of the node data section within the specific implementation. It includes information 

not only to support the visualization, but information needed to support automatic 
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Figure 21: Granddad problem with asymmetry markings 

 

asymmetry handling. The node with the CRT is the affected node. The parent node(s) that 

create the asymmetry are the trigger node(s). The parent configuration (the states) of the 

trigger node(s) that create the functional or structural asymmetry are collectively called 

the triggering condition(s). The dependency structure among the nodes is visualized in 

the template’s graphical section. 

Each affected node has a CRT. In addition, decision and chance nodes within an 

ordering oval each have a CRT. The CRT format in Figure 22 has three parts. The first is 

a checkbox to identify the type of asymmetry the node is involved with. A node may 

have multiple asymmetries. The second part provides five items of information needed to 

manage order asymmetry. Order asymmetry nodes are identified by having the same or-

der problem number. This allows the construction algorithm to identify and associate all 

involved nodes. The name of the decision supernode name must be provided in at least 
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one CRT. If the affected node is a consequence node, it has a consequence supernode 

name. Consequence nodes with the same supernode name will be merged into a single 

supernode with that name. The name may be the same as one of the consequence names 

being merged, or a unique name not found in the MTheory. If a consequence node has a 

stopping condition, that condition is identified in this section. A stopping condition sig-

nals that a previous action has resolved the problem or entered a condition where the cur-

rent decision set is no longer applicable. Finally, there is an entry to identify whether re-

solving the order asymmetry requires a positive first decision, or whether it is possible 

that no decisions are made at all (e.g. the prior information may be optimal for making 

the decision). The third part provides information on restricted states and provides key 

information for all three forms of asymmetry. It identifies the specific parent configura-

tions (PC) that trigger the asymmetry. For functional asymmetry, the restricted state box 

identifies the node state inhibited (one PC and one inhibited state per line). For structural  

 

 
Figure 22: Compatibility restriction table template 
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asymmetry the restricted state is ?All, which signals that all states are restricted. For 

order asymmetry, the compatibility restriction table identifies which set of alternatives 

are restricted for use in follow-on decisions. The grounded model construction algorithm 

is modified so that when a node with a restriction table is found, the appropriate visuali-

zation marker is included on the graph. This visually signals to a reviewer that a re-

striction table exists for that node. The next section describes the table’s use. 

5.1.2 Symmetrization Process 

Asymmetry adds a dynamic element to decision graphs. During the graph execu-

tion, learned information or prior decisions can eliminate decision options, make seg-

ments of the decision graph irrelevant, or make the appropriate decision order uncertain. 

Standard solution algorithms do not work on asymmetric graphs. The literature docu-

ments several solution approaches that work on asymmetric graphs, but only one claims 

to work on all forms of asymmetry (F. V. Jensen, Nielsen, and Shenoy 2006). However, 

it has not been widely adopted. The other option is to symmetrize the graph, modifying 

the decision graph by adding or modifying elements to account for these dynamic effects. 

Each asymmetry type requires a different set of modifications. The literature tends to de-

scribe these at a general level, with limited implementation detail. The best one found is 

König (2012). These are described below. It is recognized that symmetrization has signif-

icant scalability issues when dealing with order asymmetry. This should spur future work 

to develop a more scalable approach. Section 0 then provides two algorithms that apply 

these actions automatically. 
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5.1.2.1 Symmetrizing Functional Asymmetry 

Functional asymmetry is easiest to symmetrize, as only the affected node requires 

action. Essentially, one inhibits one or more states, but not all of the states, when the trig-

gering condition(s) exist (if all states are inhibited, one has structural asymmetry, not 

functional asymmetry). Figure 23 identifies the basic graph additions needed to symme-

trize graphs with functional asymmetry. If the affected node is a chance node, no special 

action is required. Inhibiting a chance node state means giving it 0 probability, and this is 

done within the node’s LPD. As only decision nodes require additional action under func-

tional asymmetry, all references to functional asymmetry will be for affected decision 

nodes only. 

In a standard DG, one cannot dynamically eliminate decision alternatives from con-

sideration when a triggering condition exists. Instead, one makes these alternatives unat-

tractive by ensuring that when the triggering conditions exist, they have the lowest ex-

pected utility of all the decision alternatives in the affected decision nodes. There are two 

ways to do this. The easiest way to do this is to add a lockout utility node (or lockout 

node) to the graph. This is a utility node which assigns a decision alternative a large 

negative value when a triggering condition exists to inhibit it11. The lockout node has the 

triggering condition node(s) and the affected decision node as its only parents. In the 

lockout node, the local utility distribution assigns a value of 0 to every combination of 

non-triggering parent configuration and decision alternatives. For a parent configuration  

 
11 This assumes the standard decision graph convention that higher utility values are preferred over 

lower utility values.  
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Figure 23: Basic additions to symmetrize decision graphs with functional or structural asymmetry 
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that is a triggering condition, the local utility distribution assigns a large negative value to 

that PC. This value (which is the least negative value required) is obtained as follows: 

• Identify every utility node that is d-connected to the affected decision node (using 

a standard BN d-connection algorithm (e.g., F. V. Jensen and Nielsen 2007)) 

• For each such node, identify the largest utility value (call it xi, i is an index num-

ber for each utility node that is d-connected to the affected decision node) and the 

smallest utility value (call it yi) 

• Calculate X = ∑ 𝑥𝑖𝑖  and Y = ∑ 𝑥𝑖𝑖 . X is the highest possible utility value that any 

alternative in the affected decision node can get, and Y the is the lowest. There is 

no requirement that any decision alternative can achieve X or Y 

• The lockout utility value is -(X-Y+1). The lockout utility value can be any num-

ber more negative than this. 

Observe that since X is the highest possible utility value any alternative from the 

affected decision node can achieve, adding -(X-Y+1) to X means that the utility value of 

a restricted alternative when the triggering condition(s) exist is Y-1, a lower utility than 

any other decision alternative. This is sufficient for addressing functional asymmetry. An 

alternate approach is to add arcs from both the triggering nodes and decision node to each 

utility node that is d-connected to that decision node. For acceptable PCs, the existing 

values remain the same. Inhibited combinations have a large negative value, obtained the 

same way as for a lockout node. This approach adds significant size to the utility node 

table. 
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5.1.2.2 Symmetrizing Structural Asymmetry 

There are two variants of structural asymmetry and the symmetrization approach 

differs between them. The first is when only a single node’s influence is eliminated. This 

applies to information nodes preceding a decision node. A previous decision may have 

decided not to collect the information represented in the information node, or previous 

learned information identified that learning that information became impossible. In those 

cases, while the information node has no influence, the associated decision node and its 

descendant nodes still have influence. The second is when a sequence of nodes has its 

influence eliminated when the triggering condition(s) exist. In the granddad problem, if 

the girls choose to go to the amusement park, then the nodes associated with selecting an 

adventure park have no influence. 

For any implementation, the first variant should be handled in the decision model-

ing process, and will not be part of the structural asymmetry handling algorithm de-

scribed in Section 0 below. This variant has the form shown in Figure 24. For all  

 

 
Figure 24: Form for a single node structural asymmetry problem 
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cases where information may not exist, the modeler adds a NotAvailable state (or 

equivalent) to the information node. When the triggering condition(s) exist, the infor-

mation node LPD assigns a probability of 1 to the state NotAvailable. This approach 

can also be used for information nodes in decision graphs where there is a possibility that 

the requested information may not be received in time to support the decision. Time-

sensitive decision problems often have this characteristic. Having NotAvailable as a 

state signals that the desired information may not be available at the time a decision must 

be made. The effect of the NotAvailable state (or its equivalent) is to leave probabili-

ties unchanged in the decision graph. This is because of the way the CPT for the  

InfoNode is constructed. Observe that when the triggering condition D1b exists, every PC 

that includes D1b has the identical probability assignment. When this is the case, the 

probabilities of the other parent nodes will not change from their previous states. This has 

the same effect as if the InfoNode did not exist. 

For the second variant of structurally asymmetric graphs, the decision graph is 

modified to add states / decision alternatives to the nodes affected by the asymmetry that 

signal that these nodes have no influence in the decision-making process when the trig-

gering condition exists. This is defined to mean that the affected nodes do not change the 

overall utility values of optimum decisions in the unaffected portions of the decision 

graph, and that any decisions in the affected segments have an optimum alternative that 

signals that no decision was actually made, whenever the trigger conditions exist.  
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This dissertation uses an Absurd state to signal that the RV modeled in the af-

fected node12 has no effect on the overall outcome. This use of an Absurd state is de-

rived from MEBN to signal that the concept of the attribute or relationship in the RV is 

meaningless, irrelevant, or contradictory for the particular application of that RV (Laskey 

2008). Model implementations are free to choose any state name appropriate to their de-

cision domain. To add the Absurd state to RVs modeling relationship (Boolean) or 

functional relationship, the ability to add categorical states to RVs with noncategorical 

states as discussed in section 4.6 above must be implemented. 

To symmetrize structural asymmetry, one begins by adding Absurd to the af-

fected node (see also Figure 23, page 113). In addition, when the affected node is a: 

• Chance node - add an LPD script language line that states that if the triggering PC 

exists, the probability of Absurd is 1 

• Decision node - add a lockout utility node with only the trigger node(s) and the 

decision node as parents. If a triggering condition exists, the value of any decision 

state other than Absurd is negative and Absurd is 0. If not, then the allowable 

states have a 0 value while Absurd has the large negative value 

• Utility node – assign a value of 0 when all its parents are Absurd. See next para-

graphs for utilities for PCs with at least one nonabsurd state. 

The lockout utility negative value uses the procedure described in section 5.1.2.1. It is 

done only after all affected utility nodes have a value of 0 assigned as the value of Ab-

 
12 The discussion here will use the terms RV and chance nodes interchangeably. Nodes may also in-

clude decision nodes and utility nodes 
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surd parents. This ensures that the lockout value will always force the non-Absurd de-

cision alternatives to having a total utility less than zero when the triggering condition(s) 

exist. Since Absurd has a utility of zero, this will give Absurd the highest utility val-

ue whenever the triggering condition(s) exist. 

Since this variant of structural asymmetry affects more than one node, additional 

action is required to propagate the Absurd state for as long as it is applicable. First, the 

Absurd state is added to every descendant node of the affected node. For each descend-

ant chance or utility node, its LPD is modified so that the node’s state is Absurd if every 

parent is in the Absurd state. If the descendant node is a decision node, any information 

node that has an arc to that decision node is a possible triggering node, with Absurd be-

ing the triggering condition. One adds a lockout node with that decision node and its in-

formation node(s) as parents. If all information nodes have state Absurd, the lockout 

node’s utility values are set using the same procedure described in the second paragraph 

above. 

A merging node is any node which is in the path between the affected node and 

the utility node, and which has more than one parent. If none exist, the procedure de-

scribed above is sufficient to symmetrize the network, as will be proven below. If merg-

ing nodes do exist, then additional action may be required. For merging nodes, three pos-

sible configurations are possible, as shown in Figure 25. In all configurations, it is 
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Figure 25: Structural symmetrization actions for descendent nodes 
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assumed that the decision sequence13 is established and that a single information or deci-

sion node has been identified as the starting node. In each case, node C is a merging 

node. Observe that in cases A and B, all nodes below node I2 form an isolated graph 

segment. That is, all chains from nodes D1, D2, I1, A, B, C, E, and V to the rest of the 

graph go through I2 (chains through utility nodes are ignored). I2 triggers whether D2 

and the path from D2 to the utility node has any influence. If the affected node is part of 

an isolated graph segment, then all the nodes in the isolated graph segment have no influ-

ence on the decision process when the triggering condition exists. This is because all in-

formation flows through the trigger node(s), which isolates the segment from the rest of 

the graph. 

In case A, all paths to the merging node route through the trigger node, I2. Every 

node in the isolated graph segment is a descendant of the affected node, D2. In this case, 

setting D2 to Absurd will set every other node to Absurd as well. This is because each 

node has LPD language that sets its state to Absurd whenever all of its parents are in the 

Absurd state. In case B, the isolated graph segment includes a path of nodes that begin 

from a root node. In the Granddad problem, both the amusement park decision and the 

adventure park decision have root nodes. Because that root node path is isolated from the 

rest of the graph, it loses any influence when the affected node does. All nodes on the 

paths from the affected node to the utility node have an Absurd state. The LPD in the 

 
13 The decision sequence is the order in which decisions are made and states of information nodes are 

revealed. If order asymmetry exists, it must be resolved before the sequence can be established. Algorithms 

exist to establish the sequence (F. V. Jensen and Nielsen 2007). It is possible for the sequence to contain 

subsets of nodes where the sequence does not affect the overall utility computation. A sequence within 

those subsets may be arbitrarily made. 
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merge node is instead set so that the node is in the Absurd state if any parent is in the 

Absurd state. Because of this, the nodes in the path from the root node have no influ-

ence as well. No changes are needed in those nodes. In this case, the utility node has an 

LUD that for PCs with any parent in the Absurd state, the utility value is 0. 

If there is at least one chain between a node’s parents and the starting node that 

does not go through the affected node, then the path embedded in that chain can have an 

independent existence. Case C in Figure 25 shows an example. The nodes I1-D1-A-C-V 

have a chain to the rest of the graph that does not go through node I2. The graph segment 

is not isolated. If the trigger conditions exist, then only the affected node (D2 in this case) 

and any node whose parents all must be in the Absurd state when the trigger conditions 

exist have no influence (B in this case). The rest of the nodes have influence. In the 

Granddad problem, both the utility node ParkExperience and the decision node 

Route are non-isolated merging nodes. For determining whether a graph segment is iso-

lated, chains through utility nodes are ignored. But a utility node may be a leaf node on 

multiple chains, like ParkExperience, making it a non-isolated node, even if all 

nodes on a specific chain to that utility node are isolated. It is isolated only if all chains to 

it have the same triggering conditions. 

If Node C is a decision node, then a lockout node is instantiated between A, B, I1 

and C. The LPD states that only if A, I1 and B all have the absurd state, then C has a 

large negative value for any state but Absurd. Otherwise, it is Absurd that has the neg-

ative value. If node C is a chance or utility node, the behavior for node C is determined 

by nodes I1 and A only. Node B has no influence. The modeler must specify in the LPD 
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what happens in node C when node B is in the Absurd state. In the MEBN / MEDG 

modeling framework, there already is a requirement to specify an LPD for when one or 

more parent nodes identified in the Template does not exist. Since the Absurd state 

means that the node has no influence, it is appropriate to use this existing LPD capability 

to specify the states of a merging node when one or more parents may be in the Absurd 

state. If the merge node is a utility node (as in the GrandDad problem), the LUD specifies 

that only the state of the non-absurd parents have influence. Those utility values may be 

different from the values when there are no parents in the Absurd state. 

The effect of structural asymmetry is to eliminate the influence of a segment of 

the decision graph when a triggering condition exists. This means that none of the deci-

sion alternatives in that segment are selected, and the segment contributes nothing to the 

overall utility score of the decision graph. The above symmetrization actions enable that 

to occur while still allowing the use of standard decision graph solution algorithms. The 

use of Absurd as a state for the chance nodes allows the assignment of a probability to a 

state that signals the node is irrelevant. Adding Absurd as a decision alternative and us-

ing lockout utility nodes force Absurd to have the highest utility value (of 0) whenever 

the triggering condition(s) exist. The Absurd propagation process described above en-

sure that the non-lockout utility nodes that are descendants of the affected decision nodes 

get Absurd states in their possible parent configurations, and therefore assign 0 utility to 

those configurations. The Absurd propagation process addresses how to handle propa-

gation in isolated graph segments and when merging nodes exist. 
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There is one remaining configuration that has not been explicitly addressed. It is 

possible to have a decision node d-connected to a utility node through a network chain 

such as is shown in Figure 24 on page 115. Observe that utility node U1 is influenced by 

decision node D1. Assume D1 is an affected node for triggering node not shown on the 

figure. The Absurd propagation process applies only to descendant nodes of D1.  

FutureEvents and U1 are not descendants of D1. How is the influence of D1 on  

FutureEvents and U1 eliminated when the triggering condition exists? Observe that 

the propagation process gives InfoNode an Absurd state and modifies InfoNode ‘s 

LPD to assign a probability of 1 whenever D1’s Absurd state is in the parent configu-

ration. This has the same effect on FutureEvents as the NotAvailable state does. 

The probability distribution for different parent configurations of FutureEvents 

doesn’t change whenever D1’s configuration is the Absurd state. In those case, D1 has 

no influence on FutureEvents. No additional action is needed to symmetrize the 

graph when the d-connection configuration in Figure 24 exists. 

5.1.2.3 Symmetrizing Order Asymmetry 

Order asymmetry exist when one has a set of decisions to make, and there is 

learning between subsets of decisions. This learning has the potential to give different 

expected utilities depending on the order in which the decisions are made. The decision 

process has two questions to address: 

• In what order should the decisions be made?  

• For each decision what is the optimal decision alternative? 
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Order asymmetry is visualized with an oval that captures the decision nodes, con-

sequence nodes that signal the consequences of the various decisions, and utility nodes 

providing the cost of each decision. Each decision and consequence node within the oval 

has a CRT that provides needed information for symmetrizing the graph. The nodes with-

in the ordering oval must meet the requirements in Figure 26. 

The distinction between test and action decisions is important. Test decisions only 

result in information that changes the decision-maker’s understanding of the probabilities 

of some world state. An action decision may resolve the problem. If it does, then no fu-

ture decisions are needed. As a result, there can be two kinds of consequence nodes with-

in the ordering oval – one that has stopping conditions, where an action decision resolved 

the problem, and one without stopping conditions. 

The fundamental problem is that the standard decision graph solution algorithms 

requires a defined decision sequence, while order asymmetry says that determining the 

sequence is one of the decision problems. A solution is to change the question from  

 

 
Figure 26: Order asymmetry node requirements 

 

Design requirements  

• All decisions are either test decisions, whose consequence is a test result that can change the 

probability of some world state, or action decisions, whose consequence may resolve the problem 

of interest 

• All decisions made by the same entity  

• Each decision has two or more alternative.  

• One alternative for all decisions is not to do anything regarding this decision. That alternative 

has the same name in all decisions 

• Each decision is made once 

• A consequence that can signal that the problem is resolved is said to have a stopping condition. 

• The state that signals the problem is resolved has the same name in all consequence nodes that 

have stopping conditions 
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“which decision should be decided first?” to “of all of the decision alternatives in all of 

the decisions, which one should be the first one selected?” One then repeats the question 

for all of the remaining alternatives, until one has N answers, where N is the number of 

original decisions. To do this, one replaces the nodes in the ordering oval with their su-

pernode equivalent. A supernode is a decision graph node that results from merging the 

states / alternatives of a set of original nodes into a single node. There are four types of 

supernodes described below.  

The decision supernode has all of the alternatives of the original set of decision 

nodes, except for the alternative “no decision” or equivalent (specified on CRT). Instead, 

it is replaced by the Absurd state. Once created, N copies are made, where N is the 

number of original decisions. The copies have the same OV / entity as the original deci-

sions (see requirement in Figure 26 that they are the same for all decision nodes). The 

supernode is given an additional OV, called an index OV, representing a class created for 

this purpose. It has N entities that are ordered. This OV distinguishes the decision super-

nodes from each other and sequences the supernodes. 

If there are test decisions, then there are test consequence nodes without any stop-

ping conditions. These are merged into a test consequences supernode. This supernode 

has all of the states of the various merged nodes. It has the decision supernode as a par-

ent, and the collective set of nondecision-node parents found in the merged nodes. It 

merges the LPDs (in LPD language form) of each merged node. N copies are created, 

with the same OVs (including the index OV) as the decision supernode. Each copy is se-

quenced, and the ith test consequence supernode has the ith decision supernode as a par-
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ent. The ith test consequence supernode has an information arc to the ith+1 decision su-

pernode. 

Likewise, if the CRT indicates that at least one original consequences node has a 

stopping condition, then a stopping consequence supernode is created. It merges all con-

sequences nodes that have a stopping condition. It has all the parents that the original set 

of stopping consequences nodes had. Like the test consequence supernode, N copies are 

made and given the same OVs as the decision supernode. It merges the LPDs (in LPD 

language form) of each merged node. The ith stopping consequence node also has the ith 

decision supernode as a parent, and has an information arc to the ith+1 decision super-

node. 

Since every consequence supernode has a decision supernode as a parent, there 

can be test decisions that were not in the original set of stopping condition consequence 

nodes. These are assigned a non-stopping condition state in the LPD. Likewise, there can 

be action decisions that were not in the original set of test consequence nodes. These are 

assigned to a NoInfoAvailable state or equivalent in the LPD. 

The original set of decision nodes each had a utility node that identified the cost 

of that decision. These utility nodes are also merged into a decision cost utility super-

node. Like the other supernodes, it has the same expanded set of OVs as the decision su-

pernode. It is also replicated N times. The ith copy becomes a child to the ith decision 

supernode. 

If there are any action decisions in the set of original decision nodes, this means 

that something can be done within the ordering oval set of decision nodes to resolve the 
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problem, and all possible actions will be tried until the problem is resolved, or gathered 

evidence indicates it is impossible for the remaining actions to resolve the problem  

There are two important constraints that must be enforced. The first is that for 

each original decision, only one alternative from that decision's alternative set can be 

chosen. Second, when a stopping condition is reached, any remaining decision super-

nodes need to be forced to the Absurd state. For ordering problems with only test deci-

sions, only the first constraint exists. The constraint is enforced by a lockout node. (N-1)* 

N/2 lockout nodes are created. Each has two decision supernodes as parents, and are as-

signed so that every possible pair combination of decision supernodes has a lockout node. 

The assigned lockout node values are shown in Table 5B (next page). Lockout node val-

ues are assigned depending on whether the parents chose alternatives from the same or 

different original decisions. 

For action decisions, two types of lockout notes are created. The first is the same 

as used for testing-only decisions, but only (N-2)*(N-1)/2 are instantiated. They are as-

signed pairwise only to non-sequential pairs of decision supernodes. For the sequential 

pairs (DSNi and DSNi+1), a different lockout node is created. It has three parents: DSNi, 

DSNi+1, and CSNi. It uses the lockout node value rules shown in Table 5A (next page). In 

addition to enforcing the condition that the alternatives must be from different original 

decision nodes, it also enforces the condition that if a stopping condition is reached, the 

following decision must be the Absurd alternative. It also enforces that Absurd cannot 

be the selected alternative if the stopping condition has not yet been met. 
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There is one additional change for decision supernodes that have action decisions. 

Because the cost of decision alternatives is usually specified as a negative number while 

the Absurd has a zero value, it is possible for the solution algorithm to select Absurd 

as the optimum decision alternative for the first decision supernode. To avoid this, the 

CRT can specify that a positive first decision is required. This means that Absurd is not 

a state for the first decision supernode14. 

Figure 27 shows the order symmetrization result for the Granddad problem. In 

looking at the decision graph, one sees that it has a similar structure as the original graph. 

However, the decision nodes are now sequenced, and each has all of the alternatives of  

 

Table 5: Order asymmetry lockout node values 

 

 
14 It is possible for a test decision only ordering problem to select none of the tests. This occurs when 

the cost of any of the tests exceed the expected utility of the results. In this case, a positive first decision is 

not required and the first decision supernode has an Absurd state. 
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Figure 27: Order symmetrization of the Granddad problem 
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all of the original decision nodes. This allows a standard solution algorithm to test all 

possible combinations of allowable decision alternatives to determine both what is the 

optimum sequence of original decisions and what is the optimum decision alternatives for 

each original decision. The specific algorithms for automatically symmetrizing an asym-

metric graph are in the next section. 

5.1.3 Symmetrization Algorithms 

This research created two algorithms to automatically symmetrize a decision 

graph – one to address order asymmetry, given in Figure 28 and Figure 29 below, and  

 

 
Figure 28: Order asymmetry symmetrization algorithm (Part 1 of 2) 

Initialization 

1. Conduct initialization per functional / structural asymmetry symmetrization algorithm 

2. Identify all nodes and associated CRTs with the same problem number / name 

3. For all nodes being merged into a supernode – if there are identical state names, each identical 

name is appended with the name of the node, including entity name, it came from.  

 

Creating Decision Super Nodes (DSN) 

1. Create a DSN that incorporates all of the decision alternatives in the original set of decision nodes 

a. Merge all decisions alternatives from the decision node into a single decision super node (DSN) 

except for any Absurd states 

b. Add an Absurd state to the DSN 

c. If an original decision node had more than one non- Absurd state, identify the alternatives that 

came from the same decision node 

d. Assign DSN name from CRT 

2. Replicate the DSN N times, N is the number of original decision nodes 

a. Each DSN keeps the original ordinary variable (OV)  

b. Each DSN receives an additional OV representing a class with N ordered entities (OV is an 

index ) 

c. DSN replicas are ordered based on the index order  

3. If the CRT requires a positive first decision, Absurd is removed from the DSN replica with the 

first order index entity. 

4. All information arcs that went into any of the original decision nodes now go into the first DSN. 

Per no-forgetting, they are known to all succeeding DSNs. 

Creating a Utility Super Node (USN) for decision costs 

5. Create a USN by merging the cost utility nodes from the original decisions Pj;lhop 

a. Replicate N times. Use the same OVs as for the DSN. 

b. Create a directed edge from DSNi to USNi 

c. Incorporate the utility node LUD information for each decision parent in the original cost utili-

ty nodes into the USN 
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Figure 29: Order asymmetry symmetrization algorithm (Part 2 of 2) 

 

one for the initialization and symmetrization of functional / structural asymmetry, shown 

in Figure 30. Both algorithms use the compatibility restriction table data to identify where 

symmetrization is needed. 

Creating a Consequence Super Node (CSN) 

6. One or two CSNs are required. Identify using the consequence number / name from the CRT 

a. If two CSNs are created, note which one has the stopping condition 

7. For each CSN, merge all states from the set of consequence nodes with the same consequence 

node number. Name the node using the distinct name identified in the CRT  

a. Add an Absurd state to the CSN.  

b. Add a directed edge from any parents external to the ordering oval for any CN merged into the 

CSN 

8. Replicate the CSN N times, using the same OVs as for the DSN  

9. Create a directed edge: 

a. From DSNi to CSNi 

b. From CSNi to DSNi+1 

c. If DSN
i+1

 does not exist, create an edge(s) to the nodes that are shown as child nodes outside 

of the ordering oval, as shown on the graph (it is possible that no such node exist) 

10. Transfer the LPD language from each of the original CNs merged 

a. Change the name of the parent node to the name of the DSN 

b. Add LPD that if DSNi = Absurd, CSNi = Absurd  

c. If CSN is a test CSN, and DSN includes alternatives not in the original set of CNs, add state 

NoInfoAvailable, with probability 1 for those alternatives. 

d. If CSN is a stopping condition CSN, and DSN includes alternatives not in the original set of 

CNs, assign those alternatives to the non-stopping condition state with probability 1. 

Creating Lockout nodes 

12. If there is a CSN with stopping conditions, two sets of lockout utility nodes are created 

a. Create N-1 Sequential Lockout Nodes (SLN). N is the number of DSN. The SLNs have the 

same OVs as the DSN (The last index is not used) 

i. SLNi has DSNi, DSNi+1,and the CSNi with stopping conditions as parents 

ii. The LPD is given in Table 5A 

b. If N > 2, create (N-2)(N-1)/2 NonSequential Lockout Nodes (NSLN) 

i. They have an OV from class created for this purpose. It has (N-2)(N-1)/2 entities. No or-

dering is required. 

ii. Each NSLN has a pair of nonsequential DSNs as parents. Collectively, they cover all pos-

sible nonsequential pairs of parents 

iii. The LPD is given in Table 5B 

13. If there is no CSN with stopping conditions, only one set of lockout utility nodes are created 

a. Create (N-1)*N/2 Lockout Nodes. They have OVs from the same class as the NSLNs in 11.b 

above, but with (N-1)*N/2 entities 

b. Each lockout node has a pair of DSNs as parents 

c. The LPD is given in Table 5B 
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Figure 30: Functional / structural asymmetry symmetrization algorithm 

  

Initialization 

1. Identify the decision sequence (decision past) (Algorithm in Jensen / Nielsen 2007) 

2. For each node in the decision sequence, check if the node has a compatibility restriction table 

a. Maintain list in decision sequence order of affected nodes and asymmetry types 

b. For nodes with order asymmetry, also include both problem number and supernode name 

3. Create initial SSDG (Human-understandable model) with markings generated from list 
 

Create Solution Version 

4. Determine if order asymmetry exists. If so, run the order symmetrization algorithm for each prob-

lem number 

5. For each node on the asymmetry list, determine if functional or structural asymmetry 

6. If functional,  

a. add a lockout utility node with the affected decision node and the trigger node(s) as parents, as 

identified in affected node’s CRT. 

b. Determine all utility nodes that are d-connected to the affected decision node 

c. Sum up best possible utility values and the worst possible utility values from all d-connected 

utility nodes. The negative lockout value is -(sum(best values) – sum(worst values) +1) 

d. In the lockout node, create LUD language that if a parent configuration (PC) has a CRT-

identified restricted state, that PC is assigned the negative lockout value as the utility value. 

e. Otherwise, assign a “0” utility value 

7. If structural, check if the descendant nodes from an isolated graph segment.  

a. Select each utility node on a path from the affected node. 

b. Search for a chain from the utility node to the starting node that does not run through either 

the affected node or any of the trigger nodes 

i. Any chain that runs through another utility node is ignored 

ii. If no chain is found, all of the descendant nodes and any nodes that end in a root node 

form an isolated graph segment. 

iii. For any utility node, if it does have a separate chain that does not run through any of the 

descendant nodes from the affected node, all descendant nodes but that utility node are 

isolated. 

c. If the nodes are isolated, add the Absurd state to affected node and every node descendant 

from the affected node in the isolated graph segment 

i. To the affected node and each descendant node, add chance / utility LPD language or a 

decision node lockout node to activate Absurd. 

ii. Decision nodes – algorithm for setting the lockout value is the same as in 6c, but is not 

run until all affected utility nodes have had the “0” utility value added ( 7.c.iv below) 

iii. Chance node LPD language includes (IF ANY paramsubset HAVE (parent1 = Absurd 

or…parentn = Absurd) [Absurd = 1] 

iv. Utility node LUD language includes (IF ANY paramsubset HAVE (parent1 = Absurd 

or…parentn = Absurd) [Utility = 0] 

d. If not isolated, add Absurd state to affected node and LPD language / lockout node to acti-

vate. Then add Absurd and LPD or LUD language / lockout node to every descendent node 

whose ancestor chains all go only through the affected node or trigger node. 

i. For non-isolated merge nodes with at least one parent that is not an affected path parent, 

modify the existing node LPD for missing parent to also apply when that parent has the 

Absurd state. 
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5.2 Addressing Context Variation 

Chapter 3 identified context variation as a significant factor within some decision 

problems. Context variation means that based on a specific context setting, any element 

within the decision model may vary between settings. An example of context variation is 

selecting a restaurant for a dinner. The purpose of the dinner affects the selection criteria 

and the utilities of each criterion. A business dinner has different emphasis on a restau-

rant’s attributes than a romantic dinner. In any decision graph, one has two choices for 

modeling context variation. First, one could create a decision graph that incorporates each 

possible context variation and uses context selectors to identify which RVs and which 

parts of the LPD within those RVs are applicable to a particular setting. This can lead to 

large graphs that are difficult to follow, with significant information embedded in the 

LPD (including the utility node LPD). The second approach to modeling context varia-

tion is as a structural asymmetry problem. The context switching node would act as a 

trigger node identifying that a specific section of the graph is active and that the remain-

der have no effect on this particular decision. This approach reduces the size of the tables 

but can add a significant number of nodes to the graph, especially if there are a signifi-

cant number of variations possible within the problem. 

For MEDG, a third alternative exists. This is to enhance UnBBayes-MEDG’s 

context variable (CV) capabilities. Chapter 2 identified that a context variable sets a con-

dition that must be met for instantiating an RV in an MFrag. Context variables can also 

restrict which entities may be instantiated in an RV. Chapter 4 presented two UnBBayes-

MEDG enhancements for handling context variables, both related to functional and rela-
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tionship RVs. This section details a third enhancement, using an attribute RVs as context 

variables. Here, one has a context variable of the form ContextSetting = StateX. 

For each possible value of StateX, a set of MFrags are developed that define the 

appropriate decision graph for that decision problem context. Figure 31 provides an 

MTheory for a simplified implementation of the restaurant selection problem. This 

MTheory assumes a variable list of restaurant list. The context switching node is  

DinnerPurpose, found in the Context_MFrag. It has two states: Business and Roman-

tic. There is an MFrag for each context, with the context variable containing DinnerPur-

pose and its applicable state in each MFrag. In each MFrag, there are four resident nodes 

that have similar functions, but have distinct names. This avoids having RVs being de-

fined in two different MFrags. Each MFrag assesses ambience differently, evaluating the 

choice based on having an ambience conducive to the context. In addition, each has a  

 

 
Figure 31: Restaurant MTheory showing use of attribute context variable to set context variation 
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distinct attribute. A restaurant that has a dance floor can be attractive for a romantic even-

ing, while a good bar for an after-dinner conversation is a business meeting considera-

tion. In addition, the utility values given to each attribute can vary between the two 

MFrags. There are two restaurant attributes that do not change between contexts: cost and 

food type. By placing them in a different MFrag and then using them as input nodes, they 

can be defined once. 

The initial presumption is that the context setting is known, so that only one of the 

two MFrags is used. If the context is uncertain, one has context variable uncertainty. 

There is a difference between the uncertainty effect of an attribute CV and the functional 

and relationship CVs addressed in Chapter 4. Those CVs determine which entities get 

instantiated for a set of RVs within an MFrag. An attribute CV determines which MFrag 

from a set of MFrags gets instantiated. This means that if there is attribute CV uncertain-

ty, every MFrag associated with that CV is instantiated. This makes the problem structur-

ally asymmetric, with the attribute CV becoming the trigger node. The question becomes 

which RV(s) does the trigger RV trigger? The answer is developed when the MFrag is 

developed. The modeler identifies the affected node(s), and builds a CRT signaling struc-

tural asymmetry and that the CV node is the triggering node. 

There are three modifications required to implement this enhancement. First, 

modify UnBBayes-MEDG to recognize and store an attribute CV. The current implemen-

tation can create an attribute-based context variable, but deletes the variable state when 

storing. Second, modify the construction algorithm to recognize the attribute CV and to 

instantiate the MFrag. Third, modify the construction algorithm to address attribute CV 
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uncertainty. If the attribute RV CV is uncertain, then the construction algorithm needs to 

search through the node(s) within the MFrags to locate the CRT that has the CV as a trig-

gering node. If the CV is certain (100% in a state), then the portion of the CRT identify-

ing the CV as a trigger node is ignored. If there is CV uncertainty, the construction algo-

rithm instantiates the attribute RV, instantiates the nodes on each MFrag for which the 

attribute RV has nonzero probability, draws an arc from the attribute RV node to each of 

the affected node, and includes a visualization symbol on each arc that structural asym-

metry exists. The structural asymmetry symmetrization algorithm is run prior to the solu-

tion process. 

5.3 Modeling Variable Decisions 

This section discusses the effects of modeling variable decisions. Decisions may 

vary in one of two ways: 

• The alternatives for a specific decision may vary between instances on the prob-

lem. For example, alternatives for movie watching will vary from week to week 

• The objects about which decisions are made may vary. For example, the number 

of threats facing a military aircraft self-defense system can vary, affecting the set 

of decisions to address those threats. 

First-order expressive decision graph modeling is intended to model problems 

where these can vary. There are two primary modeling effects of allowing variable deci-

sions: 

• One must explicitly model those attributes of a decision alternative or decision 

object that affect the decision recommendations 
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• For decisions about varying decision objects, one must identify and model inter-

actions between decisions. 

Decisions with varying alternatives will model the alternatives as entities in a class. This 

allows the decision-maker to modify the alternatives before executing the model, by 

modifying the class entities. The key modeling addition is that for each possible alterna-

tive, the decision-maker must enter a finding with the relevant attribute values for each 

alternative. The criteria assess the relevant attributes of each decision alternative. To do 

this, the modeler must know what the value of each attribute is. When dealing with a 

fixed set of alternatives, the attribute values are known when the templates are developed. 

Sometimes, one does not need to explicitly include a decision graph node for each deci-

sion attribute. Rather, one can use that information implicitly in the LPD, stating if alter-

native X is chosen, the probability distribution of criteria Y is A. But when there are vari-

able alternatives, this means one does not know what the alternatives are when the tem-

plates are developed. Rather, one knows what the relevant attributes are, and what their 

possible values are. These are modeled as attribute chance nodes. When the model is run, 

the decision-maker enters the possible alternatives into the database and enters a finding 

for each alternative’s attribute node(s) specifying what the state of each attribute each. 

Figure 32 gives a simple example. The template for the example is on the left side. The 

node Attribute1(Alt) is used to specify the state of each alternative’s attrib-

ute1. The right side shows the grounded model when the data base has three entities in 

the Alternative class, and a finding for Attribute1 for each Alt (Alt1, etc.). The 

Criterion_D1 LPD uses the select-one pattern with Decision_D1 is the selector. 
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Figure 32: Template and grounded model for a simple variable alternative decision problem, showing how the 

attribute nodes are used 

 

When dealing with a varying set of decision objects, one has two considerations. 

First, there often is some information about each decision object that is relevant to the 

decision. For decisions with a fixed set of alternatives or decision objects, these attributes 

may be implicitly modeled. For variable decision objects, they need to be explicitly mod-

eled. Figure 33 gives a simple example for a three-object problem. The template in Figure 

33 does not indicate how the decisions among the decision objects can interact with each 

other. The decision patterns in Chapter 3 identified three possibilities: independent, 

 

 
Figure 33: Template and grounded model for a simple variable decision objects problem, showing how the in-

formation nodes are used 
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integrative, and unordered sequential. If they are independent, the template in Figure 33 

is complete. If they are integrative, this means there is some constraint among the deci-

sions and their alternatives. This means there is functional asymmetry in the model, and a 

functional asymmetry CRT is required for each affected decision node. If there is an or-

dering with learning between decisions required, then the problem has order asymmetry 

and the items in sections 5.1.1 and 5.1.2 above are required. 

5.4 Summary 

This chapter identified the changes in template design, model visualization, struc-

turing process and algorithms, and solution process needed to correctly model and solve 

problems with asymmetry. The research developed two algorithms applicable to any first-

order expressive decision graph tool that collectively relieve the modeler from manually 

symmetrizing a decision graph, significantly reducing the chance for error. The research 

also developed a new attribute RV based context variable, along with the construction 

algorithm procedures for handling uncertainty in that context variable. This allows 

MEDG implementations to model context variation in an easy to understand manner, re-

ducing model size and complexity. Finally, it identified specific modeling considerations 

for variable decision problems and described what needed to be done if these kinds of 

problems also have asymmetry. 
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DECISION STRUCTURING KNOWLEDGE REUSE SUPPORT 

Decision problem structuring is the process that transforms an incompletely de-

fined decision problem into a form enabling choice (Dillon 2002). Structuring focuses on 

developing the decision information the decision-maker needs, presented in a decision 

model and supporting documentation. This arguable makes decision problem structuring 

the most important step in solving a decision problem. Yet there is a limited set of tools 

designed to assist structuring (von Winterfeldt and Edwards 2007). Knowledge reuse 

tools support a modeler / decision-maker with information from previous and related de-

cision efforts. This would reduce structuring time and can improve the quality of the de-

cision model. UnBBayes-MEDG has an infrastructure to support MFrag-level knowledge 

reuse. But to facilitate reuse, knowledge should also be at a higher level of generality, 

enabling the decision-maker to adapt it to the specific problem. This chapter develops a 

comprehensive decision knowledge reuse tool, called a decision template, that is usable 

with any decision modeling capability, and can significantly aid in structuring and model-

ing decision problems. 

6.1 Structuring Products 

Decision knowledge is captured through the decision structuring process’s prod-

ucts. The literature identifies multiple approaches and specific steps for decision struc-
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tures (e.g. Clemen and Reilly 2014; Grünig and Kühn 2013; Belton and Stewart 2010; 

von Winterfeldt and Fasolo 2009). The process can be divided into three main areas: 

• Context identification: understanding the relevant situation, the structure of the 

decision maker, the internal factors of each stakeholder (often grouped by com-

mon interests), and the context differences identified in Section 3.2.2 

• Decision problem framing: refining the felt need / issue that triggers a decision 

requirement into a focused problem statement and desired outcomes (the objec-

tives) sufficiently clear to guide the remaining decision structuring actions  

• Decision element development: defining and populating the decision elements 

supporting each specific decision that must be made. 

The decision elements are the primary content for the decision model. The pro-

cess potentially develops a number of products, many focused on the decomposition of 

problem elements to a level where they can be modeled. These products can be grouped 

into four categories: 

• Situation models that identify cause and effect or correlations significant to un-

derstanding a decision problem - includes fault trees, event trees, consequence 

analysis, and Bayesian networks 

• Objective hierarchies, which capture fundamental decision-maker objectives and 

then decompose them to lower-level objectives that are measurable – called a val-

ue tree if it has criteria and relative weighting of those criteria 

• Decision outcome models, modeling the flow from decision alternatives through 

to the utility of the various consequences - includes ends-means diagrams, deci-
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sion trees, and influence diagrams. If there is no uncertainty about the conse-

quences, a consequences table maps alternatives to criteria 

• Supporting tools, such as mind maps, Strength / Weakness / Opportunity / Threat 

(SWOT) analysis chart, and strategy charts. 

The decision problem elements schema (per section 3.6) identifies a core decision 

model applicable to any decision problem that can be modeled as a decision graph. This 

captures the information flow from the decision and future events information through to 

potential consequences, criteria evaluating the consequences, and the utility of criteria 

levels. This flow is central in every decision pattern identified in section 3.4. Figure 34 

maps the graphical structures listed above to the areas of the core decision model that 

they support. For example, a decision-maker’s objectives / values decomposes to measur-

able criteria via an objective hierarchy / value tree, and these become the criteria - utility 

segment of the model. 

 

 
Figure 34: Supporting analytic decision models mapped to core decision model 
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A decision problem class has a common problem type and uses a common set of 

decision patterns. Problem type identifies the general objective, structuring starting point, 

problem focus areas, and core processes required to solve the problem. These provide a 

basis for identifying the general information needs of a problem from that class. The de-

cision patterns from Chapter 3 and the core decision model shown in Figure 34 provide a 

starting point for the decomposition process. It is possible that a problem class may have 

two or more problem types within it. For example, a decision model may include both a 

determination as to the state of the world, and an appropriate response to that determina-

tion. 

Finally, decision structuring can also be viewed as an uncertainty reduction pro-

cess. At the beginning of the process, much about the problem is unknown. Through in-

formation development and discovery activities, much of the uncertainty is reduced or 

eliminated. Sometimes, significant uncertainties remain, and the structuring process 

should provide options for addressing the remaining uncertainty. 

6.2 Decision Templates 

The knowledge reuse support tool developed here is called a decision template. It 

is an organized collection of decision problem information usable by a decision modeler 

in structuring a decision problem. It focuses on two things: 

• Identifying information items to be developed during the structuring process 

• Providing examples of the kinds of information applicable to a problem class or a 

specific problem. 
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Decision templates can vary significantly in their information content. There are 

three levels of specificity: generic, problem class, and problem specific. The generic de-

cision template is a shell that identifies the types of information that the structuring pro-

cess for any decision problem needs to develop. The format is shown in Table 6. It identi-

fies the information content of a decision template and its general form, but it does not 

specify a detailed format. It is divided into three parts. The first part covers the decision 

context. The most important piece of information in decision context is what is the top-

level objective(s) that this decision problem supports. This is not necessarily the objective 

of the decision problem itself but may be a higher-level objective that is driving the need 

for this decision problem. The next information item is the context focus – what the pri-

mary driver for this problem is. It can be externally driven by the situation / decision al-

ternatives, or by the decision-maker’s objectives and values. It is important for the mod-

eler to know the context variation. The contents of a decision model can vary due to a 

range of possibilities for a situation’s purpose or for a decision-maker’s standpoint. The 

model needs to adapt as these vary. An important item is the context’s dynamics – the 

speed at which the context changes. There are two important time frames: how stable is 

the context until the decision is made, and how stable is it until the decision can be im-

plemented. These two considerations determine the amount of time available for making 

the decision.  

Next are four stakeholder internal factors: the stakeholder’s core values, the relat-

ed plans that are affected or influence this decision, the resources available to a decision-

maker and the decision- maker’s situation-relevant knowledge. The stakeholder’s core 
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Table 6: Decision template general organization and contents 

Decision Template for XXXX 

Decision Context 

Top Level Goal(s): General statement of the decision problem and overall objectives it will support 

Decision-maker Structure: Identifies decision 

makers, decision making process, and stake-

holders to be consulted during the structuring 

process. 

Key Stakeholder Factors: 

- Values: Fundamental principles / priorities that 

guide stakeholder in decision-making 

Context Focus: Situation / Alternatives or Ob-

jectives / Values 

- Related Plans: Identifies other activities that 

affect or be affected by this decision 

Context Variation: Within a problem or class, 

range over which context elements may vary 

 - Resources: For bounding feasible alternatives 

and identifying resource considerations tracked 

in the decision model 

Context Dynamics: Identifies how stable the 

context is and over what timeframe it is likely to 

change. 

Situation: Overall external environment and its 

effects on areas of interest to the decision-maker 

and stakeholders  

Decision Framing 

Problem Statement: Succinct specific problem description 

Applicable Decision Patterns: Per figure 6. 

May have added problem class or specific prob-

lem details 

Problem Type: Per table 2 

- Starting Point: Per table 2, with added infor-

mation to describe the problem-specific Starting 

Point Relevant Situation Aspects: Situation elements 

that will be included in model 

Relevant Stakeholder Factors: Objectives / 

values / plans driving evaluation criteria 

- Focal Point: Per table 2, with added problem 

details 

Key Uncertainties: Identified uncertainties to 

be addressed in analysis process 

- Core Processes: Per table 2, with added prob-

lem details 

Decision Problem Elements 

Architectural Decomposition: Problem decomposition to a model supporting level 

Decomposition supporting products 

Objective Hierarchy / Value Tree: Includes 

the decomposition from top level objectives to 

specific criteria. Includes criteria weighting (i.e. 

trade-offs between criteria) and decision-maker's 

risk attitude 

Strategy Chart: Identifies the specific decisions 

that are part of the problem, their alternatives, 

the relevant attributes of each decision and pro-

hibited or mandatory combinations of decisions / 

alternatives 

Information State / Future Events Develop-

ment: Identify and assess future events and situ-

ation factors that could affect the consequences 

of various alternatives 

Problem Class Specific Products: Products 

identified as useful for specific problem classes 

of for a specific decision problem 

Problem Class Prototypical Elements 

Future Events: Prototypical future events 

common / significant to this problem class 

Consequences: Prototypical consequences 

common / significant to this problem class 

Criteria: Prototypical criteria widely used in 

this problem class. May also include low-level 

objective functions 

Utility consideration: Prototypical utility fac-

tors (Risk, weighting) prototypical to this prob-

lem class. May also be decision-maker / stake-

holder focused 
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values are the basic principles that guide both people and organizations in making deci-

sions. These shape the decision objectives, the acceptable alternatives for achieving those 

objectives, and the process used in decision-making. Second, related plans need to be 

identified and examined for their effects on the decision problem. In many cases, the de-

cision alternatives are modified to account for related plans. The third stakeholder factor 

to consider are available resources. They are important for three reasons. First, they de-

termine how much problem structuring can be done. Second, available resources set the 

upper limits on allowable alternatives. An alternative that cannot be implemented due to 

lack of resources is worthless. Finally, some resource decisions may need to be part of 

the decision model. In sequential or hierarchical models, the decision-maker may need to 

keep track of certain resource status.  

The final decision-maker factor is the degree to which the decision problem’s sit-

uation is known. In some problems, determining the situation is the decision problem. 

The final context factor element is the nature and structure of the decision-maker: who is 

it; if not a single person, how is the decision made; and if there are affected parties that 

do not have a formal decision making role, how do they provide input. 

The next part of the decision template covers the decision framing. Here, the most 

important information element is the problem statement developed by the decision-

maker. The next information element is the problem type. As discussed in Chapter Three, 

the problem type establishes three very important structuring considerations: the starting 

point from which structuring starts, the focal point which guides the structuring process, 
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and the core processed used in structuring. There are four other major decision framing 

information items: 

• The basic decision pattern applicable to this problem. 

• Relevant aspects of the decision situation - these are either information states that 

will be known before the decision must be made, or future events that will influ-

ence the consequences of decision 

• Relevant aspects of the stakeholder factors that need to be incorporated into the 

decision model 

• Key uncertainties to be addressed. 

The third part of the decision template identifies the information necessary to de-

compose the problem and build the decision model. One develops a top-level problem 

architecture based on the starting point and the applicable decision pattern. These then 

guide the decomposition process. For different problem classes, there can be a general 

decomposition approach, describing how typical problems are decomposed to their ele-

ments. These are captured in the architectural decomposition. 

For each decision in the model, the core model guides the development of the 

model elements needed to show the effect of a decision on the decision-maker’s objec-

tives. These elements may or may not be directly migrated into the decision model. In 

developing the decision model, one looks at the core decision model and divides it into 

two parts. The first part is captured in the information state / future events nodes. These 

nodes can be a very elaborate network that develops the information the decision-maker 

needs and / or identifies the precursors for future events that affect the decision process. 



 

148 

 

This network may be built using tools such as event trees, fault trees, or Bayesian net-

works. For example, for a restoration problem type, one begins with the problem symp-

toms and the objective of restoring something to a previous state. The decomposition 

process then identifies tests and actions necessary to do so. These are captured in a model 

that identifies the decision actions and information states of the problem. The template 

section of information states / future events provides knowledge on this area. 

The second part decomposes the path from the decision and its alternatives to the 

utility nodes. For any decision problem, the decision and utility nodes are the minimum 

required nodes. The additional nodes are used in more complex cases to show the chain 

of reasoning of how a decision alternative, interacting with future events, would receive a 

specific utility value. The consequences node is most appropriate when a future event 

may interact with an alternative to produce some outcome of interest in decision-maker. 

Like the information state and future events nodes, the consequence node is often a prod-

uct of a detailed analysis of the causes and effects between the future event and the deci-

sion alternative. A consequence analysis can provide insight on how this interaction can 

unfold.  

The consequence node then feeds one or more criteria nodes that establishes the 

decision-makers evaluation of that outcome. The objective hierarchy / value tree provides 

supporting knowledge for these model elements. 

The last two decision template items are the strategy charts and the problem class 

specific products. For some problems, developing decision alternative are a significant 

effort. This is especially to for creative problem types. A strategy chart can identify pos-
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sibilities for the decision-maker. The last section is used for knowledge not covered under 

the other sections, but which should be considered. 

For a problem class template, the last section provides prototypical examples of 

the major decision problem elements. The decision template provides a comprehensive 

yet flexible format for capturing and conveying decision knowledge for use in decision 

problem structuring. 

6.3 Uncertainty Support 

An important structuring consideration is addressing the remaining uncertainty. 

Chapter 3 identifies four levels of uncertainty. Some decision problems have no signifi-

cant uncertainty, which allows straightforward determination of the consequences of any 

decision alternative. Many decision problems have first order uncertainty about the oc-

currence of future events, information states, or consequence levels. Here, the probabili-

ties are known with certainty. A decision theoretic approach is generally considered ade-

quate for first-order uncertainty. Second-order uncertainty occurs when probabilities are 

not known with certainty, value levels are uncertain, or some relationship is only vaguely 

known. Ignorance exists whenever one cannot identify the information necessary to de-

velop one or more aspects of the decision model. Second order uncertainty or ignorance 

means that one cannot confidently understand the risks associated with a decision alterna-

tive. This often makes decision-makers unwilling to decide. When significant decision-

relevant information is only vaguely known or missing, the decision model should be 

modified to address those uncertainties. 
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Table 7 identifies options to address such uncertainty. It incorporates options 

identified by Etzioni (1989), Lipshitz and Strauss (1997), Regan et al. (2005), 

Scherpereel (2006) and Stirling and Scoones (2009). These options are generally not as  

 

Table 7: Decision structuring considerations for addressing uncertainty 

Criteria Changes  
Incorporate robustness  

criteria 
Assess options on their robustness  to uncertainty variations 

Incorporate resilience criteria Assess options on their ability to recover from adverse consequences 
Decision Alterntive Changes  

Robustness Explicitly develop alternatives that are robust to identified uncertainty 
Resilence 

Explicitly develop alternatives that can rapidly recover from possible  
adverse consequences. 

Tentative  / reversible  
options 

Develop options that may or may not be implemented, or that can be  
easily undone if circumstances warrant it. 

Preparatory options 
Develop options that allow provide capability to respond to unanticipated 
negative developments (e.g., put forces on the alert, leave some resources 
unused). 

Variability control options 
Develop options that focus on controlling the range of specific 
 uncertainties 

Decision Evaluation  

Alternative evaluations 
For significant probabilistic uncertainty, use evaluation techniques such as 
minimax or maximin   

Model Structure Changes  
Decision staggering 

Incrementalize decision implementation so that effects can be assessed 
and future increments adjusted 

Fractionalize decisions 
Divide decision problem into multiple semi-independent decision problems 
that can beassessed and implemented seperately 

Contingency decisions 
Include contingency paths in the decision model for possible future events 
or consequences  

Problem Bounding 
Avoidance 

Avoid options with significant uncertainty.  Bound decision problem to 
avoid aspects of significant uncertainty 

Tranfer Transfer the risk from the uncertainty to another entity (e.g. insurance) 
Adjust time horizon 

Improve predictability by shortening the problem time horizon to avoid 
time-dependent uncertainties 

Rescope to exploratory 
Reframe the problem to focus on resolving key uncertainties.   Includes 
efforts to establish cause-and-effect relations, understand complex  
interactions, and understand new phenomena 
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desirable as being able to eliminate the uncertainty entirely. But for some decision prob-

lems, one must either accept that uncertainty and address it, or avoid the decision prob-

lem entirely. The first set of options assess alternatives for their consequences across the 

range of uncertainty. It uses criteria for robustness (ability of an alternative to deliver sat-

isfactory results across a wide range of uncertainty) and resilience (ability to recover at 

from an adverse outcome) as a significant part of the evaluation. Sensitivity analysis is 

often used to assess robustness. Resilience is often evaluated by the time or effort re-

quired to recover from an adverse consequence.  

The second set of options modify the set of alternatives under consideration to in-

clude options that specifically address the uncertainty. These include specifically devel-

oping alternatives that have a high degree of robustness or resilience. Alternatives that are 

easily reversible or tentative provide decision-makers options to readily change course 

should future events so dictate. One can also include alternatives that are preparatory or 

contingent. This includes alternatives that enable future decisions and establish contin-

gency reserves. The last alternatives-based uncertainty approach is to develop alternatives 

specifically focused on eliminating the uncertainty. For example, if a source of supply is 

an uncertainty, developing an internal ability to provide that item is an uncertainty elimi-

nation action. 

A third option to mitigating uncertainty is to change the decision evaluation ap-

proach. Techniques such as minimax regret or maximin are specifically designed for 

making decisions under significant uncertainty (Clemen and Reilly 2014). Fourth, one 

can change the structure of the decision model to address the uncertainty. The decision 
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itself may be staggered (alternatives broken into parts, and implemented incrementally, 

with information development and reassessment between increments) and / or fractionat-

ed (divided into multiple subdecisions that address different parts of the decision prob-

lem). One can also develop contingency paths, with a branching set of decisions and re-

sults that would occur if some future condition were to occur. The fifth set of options is to 

rescope the decision problem boundaries. The decision problem may be more narrowly 

focused, to avoid significant uncertainty areas. One may seek to transfer the risks of the 

decision to another party (e.g. via insurance or market options). Or one may shorten the 

time horizon which the decision is expected to affect, reducing time-induced uncertain-

ties. Finally, if extreme uncertainty / ignorance exists, the decision process refocuses to 

decisions that aim at understanding the factors driving the uncertainty and learning about 

new options once those factors are understood. 

In a world where problem complexity is increasing and significant uncertainties 

exist that cannot be resolved or significantly reduced, the decision-maker requires options 

to address these uncertainties as part of the decision-making process. The above list con-

solidates a range of possible options that have been identified in the literature. 

6.4 Evaluation of Decision Template Value 

To assess the value of a decision template to a model developer, an experiment 

was conducted at George Mason University (GMU). A graduate level class on heteroge-

neous information fusion and decision support had a course project requirement to devel-

op a fusion / decision support system. The system supports a fighter aircraft pilot by fus-

ing the information received from various aircraft sensor systems about threats to the air-
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craft, and then makes recommendations to the pilot about the appropriate reactions to 

those threats. The system is implemented as a decision graph. The system architecture 

naturally decomposes to a fusion element and a decision support element. The benchmark 

model has 43 nodes, with 22 nodes in the fusion element and 21 nodes in the decision 

support element. 

6.4.1 Study Setup 

Each student received an extensive project background information document 

(not the decision template) with sufficient information to understand what was being 

modeled (scenario and background material), develop the model, and derive the condi-

tional probability tables and the utility node values. In addition, the students each re-

ceived a modified decision template package. The design document had a significant 

amount of information that would be included in a problem-specific decision template. 

The student’s template excluded that information. It was developed as a specific decision 

problem level template. It showed a complete decomposition from the high-level system 

diagram to the individual decision graph nodes used in the system. In addition, support-

ing documentation graphic structures were developed including an objective hierarchy, 

decision list, consequence table and a threat response table. Two decision template ver-

sions were created, one for the fusion element and one for the decision support element. 

The class was divided into six teams, each with two or three people. Half of the 

teams received the fusion element decision template; the other half received the decision 

support element decision template. Essentially, each team received a completed model 
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without probability or utility tables for half of the required system. Students were asked 

to do two things: 

• Track the amount of time they spent on the project, separated into four categories: 

general preparation, fusion element development, decision element development, 

and testing and report writing 

• Complete a seven-question evaluation after they turned in their projects. 

The evaluation had two sections. The first were four questions focused on the de-

cision template to determine whether the students thought that it was: 

1. Clear and understandable 

2. Useful in completing the project 

3. Whether it contributed to understanding the overall project requirements. 

4. Whether it made a significant difference in the amount of effort the team had to 

expend on each element. 

Each question had a 5-point scale, with a verbal descriptor for each score. A score 

of 1 means that the decision template rated poorly for that question, 3 was an “average” 

or “some” value, and 5 indicated the template rated very well. 

The second section had three questions, again on a 5-point scale, that assessed the 

overall project. 

5. The project’s perceived level of difficulty (1-very easy to 5-very hard) 

6. The overall quality of the information received in the project - both the back-

ground information document and decision templates (1-very incomplete to 5 – 

complete and comprehensive) 
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7. Whether the project is useful in developing data fusion skills (1-not useful to 5-

very useful). 

Students could also provide written comments if they so desired. 

The experiment was executed following a study plan that was reviewed and ap-

proved by the GMU Institutional Review Board. Study participation was voluntary and 

was not a grading factor. The course instructor was not present or involved in study-

specific interactions with the students. Nothing was shared with the instructor until after 

final grades were submitted. Copies of the evaluation and decision templates, additional 

project information, and additional data analysis are in Appendix C. 

6.4.2 Study Results 

Of the 13 students in the class, 12 participated in the study. The basic evaluation 

scheme was twofold: 

• Compare the amount of time students spent on the element for which they had a 

decision template versus the amount of time on the element for which they did 

not. Since the model itself was roughly balanced between the two elements, it was 

estimated that they should take about the same amount of time on each if they did 

not have the decision template 

• Assess how the students rated the decision templates on the four criteria, and then 

to determine if there were any correlation between the decision template criteria 

scores and the project assessments. 
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6.4.2.1 Data Analysis 

Nine of 12 students provided time data. Data from two students was very general 

(e.g. more than 1 month / 5-6 hours a week) and was unusable. Data from a third student 

was suspect due to team dynamics issues and was not used. Of the remaining six, data 

was received from four students who received the decision element template and two 

who received the fusion element template. Three decision element students were on the 

same team, while the two fusion element students were on the same team. The time data  

is shown in Table 8 below. The student identifier indicated which template they received 

(D – Decision, F- Fusion). 

There is a question about the data from D3 – D5, who each reported identical time 

spent on the project. The team was very coherent and appeared to spend significant 

amounts of time together on classwork (not just this project). It is possible they recorded 

the time mutually. 

The questionnaire data is in Table 9 below. The group average and standard devi-

ation for each question are shown at the bottom. In the analysis that follows, no data 

points were eliminated for being outliers. However, there are two individuals for whom 

there are data questions. For D6, there is one item in the data that may be an error. The 

 

Table 8: Time data received 

 

Work Area D3 D4 D5 D7 F1 F2

Prep 3 3 3 3 10 2

Fusion Element 20 20 20 5 5 5

Decision Element 9 9 9 2 15 20

Integration/ Reporting 4 4 4 2 0 20

Person (times in hours )

Same Team Same Team
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Table 9: Questionnaire results 

 
 

student entered “5” for every question except question #4, where a “1” was entered. So 

the student said that the template was clear and understandable, was very helpful in com-

pleting the project, contributed significantly to understanding the problem, and then said 

the template made it harder to perform for the decision element (to which their template 

applied) than for the fusion element. Looking at the way the question was worded, it is 

possible that the student misinterpreted the question and answered it as if they were eval-

uating the model element for which they did not have a template. Student F4 identified 

that there was a specific circumstance that made completing the project difficult. Key re-

sults from the data: 

• 78% of the individual template ratings were positive (ratings of 4 or 5)  

• Nine of 12 students (75%) agreed that the templates made it either easier or much 

easier to develop the model 
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• Nine of 12 (75%) of the averaged template ratings had averages of 4 or higher, 

indicating that the template was understandable and helpful in completing the pro-

ject. 

• Eight of 12 (66%) of students rated the project as hard or very hard. None found it 

easy 

• Eleven of 12 (91%) students found the project material (background information 

and template) at least adequate. Seven (58%) said it was at least mostly compre-

hensive and clear. 

• Nine of 12 (75%) students found the project useful for developing fusion skills. 

• Difference in average ratings between students that received the decision template 

than those that received the fusion template. The average template rating was 4.4 

for students who received the decision template vs 3.2 for the ones who received 

the fusion template, and the average project ratings were 4 versus 3.5.  

Six correlation analyses were done, comparing project scores to the average tem-

plate scores and the different project score elements to each other. All showed a nonzero 

trend line, but in five cases, the R2 score was less than 0.1. (all analyses results are in Ap-

pendix 4). One did, as seen in Figure 35. The number next to a dot indicates that more 

than one answer fell on that chart point. The chart shows a significant correlation be-

tween the students’ assessment of the value of the project in learning fusion / decision 

support system technologies and their average on the template rating. In looking at the 

data, the nine students that had average template scores of 4 or higher also rated the pro-

ject value as a 4 or 5. 
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Figure 35: Correlation results for the project's learning value and the average template score 

 

6.4.2.2 Discussion 

There are three items of interest in the data. First, while the time data has signifi-

cant shortcomings, there is some indication of the potential time savings. Accepting the 

time data as is, one can see that the duration for the element for which the team members 

received a template was about 55% - 71% less than the one for which they did not. The 

unweighted average reduction by team (and half team in the case of D7) is 62%. 

Second, the differences in ratings between the students who received the decision 

element template versus the fusion element template was surprising. The going in as-

sumption was that two elements were roughly equal in difficulty. The rating difference 

was for both the template and the overall project. It is especially surprising because the 

fusion element students had a lower average rating on project difficulty than the decision 

element students – 3.8 versus 4.1, 5 is “very difficult”. The project difference is primarily 

driven by lower assessments of overall project information quality and project learning 

value. There are several possible explanations. One is that the templates were not equally 
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informative about their elements. While possible, it is doubtful because both gave the 

same level of detail about the decision graph design for that element. Second, the as-

sumption of rough equivalence in complexity of effort may have been incorrect. This 

could be due to two factors. One is it is possible that the inherent complexity of the deci-

sion element was greater than the fusion element. The other is that the students’ relative 

experience level was greater for the fusion element than the decision element. In looking 

at the course schedule, one sees a significant difference in class time spent on fusion (6 

lessons) versus spent on decision support (3 lessons). In either case, it is possible that 

students who got the decision element template received more value from the template 

than those who received the fusion element. This could also affect their assessments on 

quality and overall learning value. This would support the idea that a decision template is 

especially useful when dealing with a decision problem class for which one has less fa-

miliarity. 

The third area is the effect of the two sets of scores that Section 6.4.2.1 identified 

had possible issues. The analysis was redone the score changed from 1 to 5 from the one 

student and without the data from the other. The overall rating averages increase, but it 

doesn’t significantly change the assessments. The fusion element average score increases, 

but there was still a difference in average scores between the two elements. The correla-

tion analyses were also redone without those scores. There was a significant change in 

only one correlation. The r2 score for the project quality information vs project learning 

value jumped from 0.09 to 0.33. 
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Overall, the study results indicate that a significant majority of the students found 

the decision templates aided their ability to complete a challenging project within a short 

time frame (six weeks). 

6.5 Summary 

This chapter defines decision templates, a tool for enabling decision knowledge 

reuse among decision analysis efforts. The chapter first maps the contents of widely used 

decision modeling tools to the core decision model defined in Chapter 3. Then, it takes 

the key information items determined by the Chapter 3 differentiators and the core deci-

sion model contents and integrates them into a usable form, the decision template. A sim-

plified version was created to support developing a fusion / decision support system class 

project; a significant majority of the students found the template useful in completing the 

project. 
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FUTURE RESEARCH AND SUMMARY  

7.1 Areas for Future Research 

There are at least three significant avenues for follow-on research to expand capa-

bilities beyond the levels described here. One is to expand dependency modeling to three 

and four parent types. As decision problems become more complex and the number of 

interacting RV parent types increases, one can expect additional LPD behavior beyond 

the current capabilities. As the number of RV types increase, so does the count of mean-

ingful ordinary variable combinations. This also opens the opportunity for a cross disci-

plinary exploration of the chains of interactions between entities that have meaningful 

dependencies (see Appendix A, section A.2 for a discussion of entity variable combina-

tions), which in turn could require new LPD capabilities. Research in this area benefits 

from expertise in knowledge representation, artificial intelligence rule-based modeling, 

semantics, and epistemology. 

Another useful line of follow-on research is to develop an asymmetry capable so-

lution algorithm, especially for ordering problems. For ordering problems, standard solu-

tion algorithms can generate very large utility tables during the solution process, possibly 

exceeding the memory capacity of the computer. Adding lockout nodes can increase 

these table sizes even further. The proposed asymmetry solution algorithms in the litera-

ture preprocess the graph into a tree or lattice structure that divides the graph into smaller 
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subgraphs. They then process the subgraphs in steps. One shortcoming this research not-

ed in those algorithms is the need for extra steps to address merging random variables 

(Figure 25, page 119), not accounted in the algorithms. 

A third avenue of follow-on research is improved support for decision problems 

with second-order uncertainty or areas of ignorance. While it is unlikely to develop a 

comprehensive decision theoretic capability for that level of uncertainty, some research 

has already been done for decision-making under extreme uncertainty. The insights from 

this line of research could be mined for identifying additional capabilities to allow a deci-

sion graph to provide at least some support to modeling and solving these kinds of prob-

lems. 

7.2 Summary of Research Completed and Contributions to the State-of-the-Art 

This research extended the state-of-the-art in decision-making support by achiev-

ing its two research objectives: enhance first-order expressive decision graph tool capa-

bilities and improve decision knowledge reuse capabilities in support of decision structur-

ing. Chapter 1 identified that a key objective of the decision-making process is to develop 

a decision model that provides the decision maker an organized, readily understandable 

presentation of the relevant decision information. The quality of the decision model de-

pends both on the capability of the modeling tools and the available information related 

to the decision problem. Decision graphs are identified as a powerful modeling tool, ca-

pable of representing most of the widely used graphical analytical structures used in deci-

sion analysis. MEDG is a recently developed decision modeling framework with first or-

der expressivity. Theoretically, this gives it the capability to model almost any problem 
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executable on a computer. But the initial implementation has several significant limita-

tions. In addition, the structuring process that develops the decision model is not well 

supported with tools for decision knowledge reuse. These limitations are not unique to 

the MEDG implementation. 

To enhance the decision graph tool capabilities and to improve decision problem 

knowledge reuse capabilities, this research undertook four complementary research ef-

forts. To understand the needed capabilities any decision graph modeling tool should 

have, the first research effort explored decision problem differentiators - the factors that 

define the envelope of required modeling capabilities. Four differentiators were identi-

fied. The first is context, identified in the literature as a major decision problem factor. 

Modeling context variation is an important capability. But there were shortcomings in the 

way context was defined and this research developed a refined decision context model 

that focused on the interaction effects between the decision situation and the decision 

maker’s internal factors. The refined model also defines knowledge categories useful for 

knowledge reuse. 

The second differentiator is basic problem type. The literature review uncovered a 

problem type differentiator. The original concept identified three basic problem types. 

Each type differed on its overall objective, the structuring starting point, the structuring 

focal point, and the core processes used in structuring. These are significant elements of 

information that should be included in a knowledge reuse tool. Follow-on research added 

two additional types to cover the range of decision problems found in the literature. 



 

165 

 

The third differentiator is the decision problem’s sequencing of decisions and 

learned information – its pattern. The literature both explicitly and implicitly described 

multiple decision patterns. This research organized them into a taxonomy, using the pres-

ence / absence of decision learning within the model and flow structure as the major dis-

tinguishers between patterns. Decision learning is the defining element for decision 

asymmetry and the effects are widely discussed. The pattern taxonomy developed here is 

the first known taxonomy to use it as a distinguisher.  

Uncertainty is the fourth differentiator. It is especially important for many prob-

lems today where the level of uncertainty has moved beyond first order probabilistic un-

certainty. The key effect of uncertainty is on the structuring process. The more significant 

the level of uncertainty is that cannot be resolved during the structuring process, the more 

the structuring process changes focus from finding an optimal solution to mitigating the 

effects of the uncertainty. Identifying and providing uncertainty mitigations options for 

use in decision structuring is valuable information for a knowledge reuse tool. The re-

fined set of differentiators are a contribution to the decision modeling state-of-the-art. 

The second research effort enhanced the local probability distribution (LPD) lan-

guage capabilities, which enhance any first-order expressive probabilistic modeling tool. 

The initial research uncovered a significant problem with the lack of LPD capability for 

handling of parent RVs whose states are entities rather than a fixed list. Rather than nar-

rowly focusing on fixing that limitation, this research undertook a comprehensive explo-

ration to determine what kinds of LPD capabilities any first-order expressive modeling 

capability needs. It developed a new approach for examining how parent random varia-
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bles interact with each other, both structurally and in the local probability distribution, to 

define the probability of the states of the child RV. Called dependency modeling, it fo-

cuses on random variables that model the knowledge representation concepts of attribute, 

function, and relationship and how they interact with each other and with different com-

binations of the ordinary variables (the entity placeholders). These knowledge representa-

tion concepts are used in modeling many domains of human activity, making the depend-

ency modeling results widely applicable. Dependency modeling is the first known ap-

proach for exploring first-order expressive modeling capabilities at the knowledge repre-

sentation level. In this case, dependency modeling created and evaluated 37 specific in-

teraction cases. The analysis of the results identified a set of LPD behaviors that provide 

a robust capability to any first-order expressive modeling tool and includes ten new LPD 

development language capabilities that significantly extend the range of problems that 

can be modeled. In addition to identifying LPD changes, the interaction case analysis un-

covered eight structural patterns that are useful in first-order expressive modeling. Two 

patterns provided a solution for a long-standing UnBBayes upgrade request. The first-

order expressive LPD behaviors / enhancements and modeling patterns expand the range 

of tools designed for first-order expressive probabilistic modeling and are this research’s 

second and third contribution to the decision modeling state-of-the-art. 

The third research effort focused on developing enhancements for the decision 

graph modeling tool capabilities, resulting in three specific enhancements that collective-

ly are this research’s fourth contribution. The first are two algorithms to automatically 

symmetrize asymmetric decision graphs. Differentiator analysis identified that asym-
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metry is present in many important decision problems. Asymmetry makes additional de-

mands on the modeling and solution process. This research adopted an effective asym-

metry visualization approach found in the literature. The solution process requires either 

an algorithm that operates on an asymmetric graph, or requires graph symmetrization pri-

or to using standard algorithms. No widely used asymmetric graph solution algorithm 

exists, so symmetrization is the selected course. Symmetrization adds additional nodes 

and states to a graph, which can clutter a human-understandable graph. The selected ap-

proach is to allow the human-understandable graph to remain asymmetric with selected 

annotations that explicitly identify to the decision maker the types and locations of 

asymmetry present in the problem. Prior to running a solution algorithm, two symmetri-

zation algorithms developed by this research are run to symmetrize the graph. This allows 

both the benefit of a human-understandable graph and the use of standard solution algo-

rithms.  

The second enhancement expands UnBBayes-MEDG’s capabilities to efficiently 

implement context variations. It allows the modeler to develop multiple MFrags for a de-

cision problem that has different context possibilities (e.g. selecting restaurant for a ro-

mantic dinner versus a business dinner) and uses an attribute RV as a context variable for 

selecting the appropriate set of MFrags. The present implementation does not allow use 

of attribute RVs as context variables. This enhancement is available to any modeling 

framework that uses a context variable approach. The third enhancement describe for 

model builders the additional demands that variable entity decision problems make on the 

modeling process. Collectively, these enhancements improve decision modeling tool ca-
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pabilities, improving decision support capabilities and are this research’s fourth contri-

bution to the decision modeling state-of-the-art. 

The fourth research effort’s contribution is a knowledge reuse support tool, called 

a decision template. It is an organized collection of decision problem information usable 

by a decision modeler in structuring a decision problem. It focuses on two things: 

• Identifying information items to be developed during the structuring process 

• Providing examples of the kinds of information applicable to a problem class or a 

specific problem. 

Decision templates incorporate the decision information identified in the differen-

tiator analysis and the decision elements schema development. I conducted a study to 

evaluate the decision template’s usefulness. A graduate course on fusion and decision 

support had a class project to develop a fusion / decision support system, modeled as a 

decision graph. The project naturally decomposed to a fusion element and a decision sup-

port element. A decision template was developed for each element, and each student team 

received one of the two templates. The basic evaluation approach was to assess both 

quantitatively and qualitatively the benefit of the template on the modeling process by 

comparing effort on the element for which a template was received versus the one for 

which it was not.  

Nine of 12 participating graduate students (75%) agreed that the templates made it 

either easier or much easier to develop the model. The time data collected during the 

study had significant shortcomings; it provides some support that the template for that 

element reduced development time by 50 – 70%. Finally, there was a strong correlation 
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between the students’ positive assessment of the decision templates and their positive as-

sessment of the overall value of doing the class project. In summary, the study found that 

the decision templates significantly aided this group’s ability to complete a challenging 

project within a short time frame (six weeks). The decision template is this research’s 

fifth contribution to the decision modeling state-of-the-art. 

In conclusion, this research provides five contributions that advance the state-of-

the-art in first-order expressive decision modeling: 

• Developed set of decision problem differentiators characterizing decision prob-

lems on factors important to decision modeling and knowledge reuse 

• Created ten LPD language capabilities that significantly expand the range of prob-

lems that may be modeled by a first-order expressive modeling capability. 

• Discovered set of eight modeling patterns useful in any probabilistic first-order 

expressive modeling 

• Created three enhancements specifically focused on decision graph modeling, im-

proving decision model visualization, context variation support, and variable enti-

ty modeling. 

• Developed knowledge reuse support tool, the decision template, and demonstrated 

that the concept was viable and useful.  

The research effort also identified three lines of follow-on research that could en-

hance decision modeling capabilities and explore issues of significance to the decision-

making community. 
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APPENDIX A  
DEPENDENCY MODELING 

This appendix describes the dependency modeling process, the approach used, to 

identify the range of needed LPD behaviors. This process was developed to provide a t 

comprehensive exploration of how different types of parent RVs interacted with each 

other to establish the child RV’s LPD. This identifies the full range of needed LPD lan-

guage enhancements for any first-order expressive probabilistic modeling tool. This pro-

vides confidence that these tools can address a broad range of problems. The results are 

described in Appendix B. Two complementary items are also discussed. First, the value 

of expanding the LPD language’s use of various probability distribution approaches be-

came apparent and is discussed. Second, constraints are important in first order expres-

sive modeling. How to incorporate them is also discussed. 

A.1 Dependency Model Development 

Dependency modeling explores the range of interactions between different com-

binations of types of parent RVs to understand the demands made on the LPD language. 

As covered in chapter 2, RVs model an entity’s attributes, relationships, and functional 

relationships. This leads to three RV types: 

• Attribute random variable (A-Type), with a single OV, model attributes. For each 

entity in a class, this unary RV assigns a probability to each possible state of an 

attribute for that entity. 
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• Relationship random variable (R-Type) with two OVs. It implements relation-

ships such as isFriendsWith(x,y), read “x is Friends with y”. These use 

Boolean states. 

• Functional random variable (F-type), model functions, and has two entity varia-

bles. One is the OV, the entity that is the subject of the RV. Since an F-type RV 

has entities as states, there is a second variable, called a state variable, that repre-

sents the states of the RV. This state variable is used in dependency modeling. 

The RV MachineLocation(m) is a F-type RV. It models a functional relationship 

between a specific machine entity and the room it is located in. When dependency model-

ing requires knowing what the state variable is, the RV is annotated as MachineLoca-

tion(m)/r. It is possible for the same variable to be an OV for one RV and the state 

variable for another RV. OVs are placeholders for entities as specific class. There is no 

limit on an RV’s arity. 

The model builder may use multiple OVs to model complex relationships (e.g. 

Purchased (person,item, date)). In this effort, RV arity is limited as shown 

above. Modeling more complex relationships is future work. In a first-order expressive 

modeling template, a class may have multiple OVs. If two RVs in a template have the 

same OV, this signals that they are intended to model the same entity. If they have differ-

ent OVs from the same class, the entities may be the same or different. Context variables 

may be necessary to enforce the desired distinction (( x ≠ y) means that the entity in x 

cannot be the same as in y). 
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This exploration focused on combinations of RV types. This means they can rep-

resent a wide range of problems and domains. Models explored the range of possible de-

pendencies among and between attributes and relationships. The models are templates 

where an RV has a single parent, and where it has two parents. A parent in a template can 

instantiate multiple RVs in the grounded model. Since there are three RV types, there are 

nine possible models with a single parent, and eighteen possible models with two RV 

parents, as shown in Figure 36. In the models, the child RV (also called the target RV – 

this is the one for which the LPD is defined) is always RV3, and A / F / R identify the RV 

type. In the two parent cases, the numeric identifiers for the parents (e.g. F1, R2) are re-

versible. There is no requirement for RVs to be different. In the two parent-type models, 

if both parents have the same RV-type (e.g. an F-type RV), the two RV's may be the 

same or they may be different15. 

 

 
Figure 36: Dependency models with one or two parent RV types representing entity attributes (A), functional 

relationships (F) or binary relationships (R) in the Template 

 
15 If they are the same RV, they must have different OVs, with constraints added that they cannot be 

the same entity. 
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A.2 Effects of Different Variable Combinations 

The dependency models in Figure 36 does not include OVs or state variables 

(SV). Different variable combinations may be used in the same model. For the single par-

ent models, there can be from 1 to 4 distinct OV/SVs, depending on RV types used. The 

two parent models can have up to 6 distinct OV/SVs (from every RV has the same 

OV/SV to each RV has a different set of OV/SVs). 

Different variable combinations result in different grounded models, so it is im-

portant to understand how the construction algorithm uses the template and database to 

create the grounded model. We assume the use of a query-specific construction algo-

rithm, rather than creating a grounded model able to address any query. The query is of 

the form “What is the state of RV3 for specific entity “a” or “a and b” (if RV binary)?” 

The query-specific construction algorithm begins with the query RV(s). One instance of 

RV3 is instantiated with the queried entity(ies). Then, the algorithm looks at the OVs in 

each parent node in the template16. If the OV of an RV is the same as for the child RV, it 

is bound. The algorithm creates one instance of that RV, with the same entity as the child 

RV. If the OV is different than the child RV’s OV, it is free17. One parent instance of that 

RV is instantiated for every entity in the OV’s class. When the parent is a binary R-type 

RV and the child is unary, then if they have a common OV, the R-Type parent will in-

stantiate as many RV instances as there are entities in the free OV’s class. The common 

 
16 SVs representing F-type states are ignored in the construction algorithm.  

17 An template may have context variables that limit the entities that are present in a network. In gen-

eral, the analysis here assumes no such context variables are in the template, unless there are two OVs from 

the same class and the model structure does not distinguish them. 
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OV is bound and will have the same entity as the child RV. If an R-type RV has two OVs 

different from the child RV’s OV, the algorithm will instantiate m*n instances, where m 

and n are the cardinalities of the two classes represented by the OVs. For a template, the 

algorithm completes when it has instantiated every RV in the template with the number 

of bound and free OVs. 

Different combinations instantiate different parent sets for the same basic depend-

ency model. Figure 37 below gives an example, where there is the same dependency 

model (A1, F2, A3) but the order of the variables for the F2 RV type is inverted. In this 

modeling, A(x) means x is the OV of the RV A, while F(x)/y means x is the OV in the 

RV’s name and y is the SV of the state entities. Figure 37 models the effect of a room’s 

temperature on a machine’s operational status. A room’s temperature affects a machine’s 

status only when the machine is in that room. Here, one is uncertain as to which room a 

specific machine is in. The database has four rooms and four machines. One queries on 

the status of machine M1. RoomTemperature and MachineStatus are both attrib-

ute type random variables and are identical between the two examples. The F2 random 

variable has its OV and state variable classes inverted between the two examples. The  

 

 
Figure 37: Inverting the variables in RV F2 results in a different pattern 



 

175 

 

actual F-type random variables (MachineLocation and RoomOccupant) are in-

verses of each other. This results in two different parent sets. In Figure 37A, the F-type 

RV has the same OV as the child. One instance of that RV is instantiated. In Figure 37B, 

it has a different OV, so four instances are instantiated. These are two different struc-

tures18. 

Different variable combinations also affect the understanding of what is being 

modeled. There are collectively 39 distinct variable combinations for the one-parent type 

dependencies and 414 for the two-parent type dependencies. However, finding meaning-

ful interpretations for many of these variable combinations is difficult, especially when 

each RV has ordinary / state variables different from every other. Consider the following 

instantiation for the template in Figure 2 on page 31: If “Kathy has good teaching abili-

ties” and if “Kathy teaches Mark”, then “Mark has good student performance.” Consider 

now that the template has four OVs (say p1,p2,s1,s2), instead of two. An instantia-

tion then could be If “Kathy has good teaching abilities” and if “Paulo teaches Mark”, 

then “Rommel has good student performance.” Both examples have the same dependency 

model, but only the first one seems to make sense. In the second case, one does not see 

the connection between the entities being modeled. It is possible to identify circumstanc-

es where there exists enough shared background knowledge that such an entity combina-

 
18 In this example, there is a unmodeled requirement that a room can have only one machine in it. It 

was not modeled because it adds additional nodes that clutter the point of the model and does not affect the 

LPD under discussion. It could be modeled by including the remaining three MachineLocation nodes (for 

machines m2, m3 and m4) and adding a constraint node enforcing the requirement that each machine must 

be in a separate room. In Figure 11B, the constraint is modeled, using an embedded constraint approach. 

Note the state NA with 0 probability in RV MachineStatus_M1. See Appendix A.4, page 179 for constraint 

discussion. 
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tion would make sense. But most often, one expects there is an interaction between the 

specific entities identified in the entity instance. This led to a search for variable combi-

nations that carried meaningful semantic information. 

In looking at the possible variable combinations, it became apparent that the con-

cepts modeled by RV combinations make sense when they had common entities between 

them. The search generated four rules. First, cases where every RV has the same variable 

are eliminated. They create very simple models (only one instance of each parent-type is 

instantiated) and require all relationships and functional relationships to be reflexive. 

They do not require new LPD behaviors beyond what other models require. Second, the 

child RV must share at least one variable with at least one parent RV. This enables a 

meaningful connection between the concepts modeled in the parent and child RVs. Third, 

the one-parent-type models are limited to two variables. The second rule already limits 

models involving attributes to have no more than two variables. For one-parent-type 

models involving a mix of relationships and functional relationships, rule one allows 

combinations of three variables. But they require additional constraints and care in mod-

eling that has been deferred for future work. For instance, one could have an R1 → R3 

combination of R1(X, Z) → R3(X, Y), that is, some relationship R1 influences a relation-

ship R3. In general, it is difficult to find meaningful dependencies if X, Y and Z all come 

from different classes. There are possibilities if, for example, Y and Z each come from a 

different subclass of a specific superclass. One can also have the case where two varia-

bles come from the same class, say Y and Z. In both cases, one would need to take care in 

modeling to avoid circularity and many cases require additional constraints to ensure cor-
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rect modeling. The fourth rule limits two-parent-type cases to no more than three varia-

bles. 

The effect of these rules is to force entity sharing between RVs. Three variable 

sharing schemes were identified. The first was an enabling scheme. One parent RV, mod-

eling a relationship or functional relationship, shares variables, one with the other parent 

and one with the child. This licenses the dependency between the other two RVs. Both 

examples in Figure 37 are examples of this scheme. The second variable scheme is a 

pass-through scheme that applies to relationships or functional relationships. It occurs 

when there is a dependency between three relationships where the one parent has entity x 

in a relationship / functional relationship with entity z and the other parent has entity z is 

in a relationship / functional relationship with entity y (either the same kind of relation-

ship or different). There then can be a meaningful relationship between x and y, captured 

in the child RV. If the three relationships are identical, and the entities are from the same 

class, then this is a transitive relationship. However, there is no requirement that they are 

identical. An example is if hasChild(x,z), and if isParentOf(z,y) then  

isGrandparentOf(x,y).19 Pass-throughs also support dependencies between parent 

relationship RVs and a child attribute RV. The third variable scheme is a common varia-

ble. Here, the parent RVs share a variable in the same OV position, enabling a dependen-

cy for a relationship for the other two variables. 

 
19 There is no claim that the dependency modeling approach establishes this dependency. Rather, the 

modeler identifies that this specific dependency exists in the domain being modeled.  
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Applying these four rules to the dependency models shown in Figure 36 resulted 

in 41 cases. Then, there was an attempt to build a scenario for each case. In four cases, 

viable scenarios could not be found. Almost always, those cases required additional rela-

tionships to license the dependencies between the OVs. For instance, no meaningful sce-

nario could be found for cases where one or two attribute-type parents influenced a child 

attribute RV without assuming a relationship between the OVs. This required that a third 

parent type be added. In addition, no scenarios could be found for two F- type RVs influ-

encing an A- type RV, or an F- type RV and A-type RV influencing a child F-type RV. 

This reduced the number of test cases to 37. Exploring these test cases led to the results in 

Chapter 4 and Appendix B. 

A.3 Canonical Probability Distributions 

In a BN with discrete states and a fixed number of parents, the LPD is expressed 

as a conditional probability table (CPT). As a first-order expressive probabilistic model 

can vary in the number of parents, the LPD is instead a function that specifies, for each 

RV instantiated, how to assign a conditional probability based on the number of parents 

and their specific states. Where the number of possible entities is small, or where the ef-

fective influence of the number of parents can be capped (such as “for 5 or more parents 

with state = X”), the conditional probabilities can be explicitly defined in the LPD. Oth-

erwise, the LPD must have a functional form that defines the conditional probabilities. 

A significant problem in first-order expressive probabilistic models is the expo-

nential growth in the number of probabilities required as the number of parents increases. 

This creates problems for probability development whether via expert elicitation or ma-



 

179 

 

chine learning. If the LPD involves a complex degree of interactions among the parents, 

the problem is unavoidable. But for many problems, the LPD can be simplified by ex-

ploiting one or more independence conditions. These are context specific independence 

(CSI), independence of causal influences (ICI), and aggregators. Taking full advantage of 

these independence conditions requires specific LPD language capabilities. 

CSI occurs in an LPD when only a portion of the parent configuration is needed to estab-

lish the child RV’s probabilities. For example, the model in Figure 37A exhibits CSI. 

Although it has five parents, the state of MachineLocation limits the influence of the 

RoomTemp parents to only one RoomTemp, the one with the same room as its OV as 

MachineLocation has for its SV. ICI requires that two or more parent RVs do not 

have synergistic interactions with each other in the child RV’s LPD. That is, the influence 

of each parent on the child RV’s state probabilities does not depend on the state of any 

other parent. ICI models can be expressed using combining rules. Figure 38A shows the 

structure of an ICI model using a combining rule approach. The parents are the Xis. Each 

Xi stochastically influences the state of a Yi. As there are no arcs from any Xi to Yj, i ≠j, 

each Yi is conditionally independent of all parents except Xi 
20. The states of the Yis are 

then combined using some type of deterministic functional equation. The first combining 

rule model (noisy-or) used the logical OR as the deterministic equation (Pearl 1988). 

Other commonly used combining rules are the noisy-and, noisy-max, and noisy-min. ICI 

models can be built using any Boolean function – see Lucas (2005) or 

 
20 The Xis may have direct dependencies (e.g. Xi may directly influence Xj, i≠j). These do not affect the 

child RV LPD. 
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Figure 38: ICI-based combining rule and aggregator models 

 

van Gerven, Lucas, and van der Weide (2008). Some Boolean ICI models can be extend-

ed to multiple state models by exchanging the Boolean deterministic function for its al-

gebraic extension (e.g. using Max instead of Or). There also has been some work on al-

lowing a limited degree of LPD-level interaction between parents. This is especially the 

case in the medical domain, where drugs may have positive or negative synergy when 

used together (Woudenberg, van der Gaag, and Rademaker 2015). 

In an aggregator, the states of the parent configurations are first combined via one 

or more deterministic functions, and the results used to create a deterministic RV. This 

RV then interacts stochastically with the child RV (see Figure 38B). A very simple ex-

ample is to estimate a student’s likelihood of success in a graduate program based on her 

performance in her undergraduate courses. An aggregator would average the grades in all 

courses (the Xis) to obtain a single value (the grade point average, in the Y RV). Then, 

there would be a probabilistic correlation between GPA and success in a graduate pro-
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gram. Both ICI models and aggregator models depend heavily on the use of deterministic 

functions. Table 10 identifies commonly used functions. 

Where the deterministic function produces a fixed or limited number of states, the 

stochastic function can be a CPT. If the aggregator produces a variable number of states, 

a functional probability model is often used. Here, the aggregation output (variable Y) 

provides the parameters of the function. This model is either a standard probability distri-

bution (e.g. binomial, logistic, Poisson, etc.) or a custom-built probability model, usually 

based on some form of machine learning or expert elicitation. There are several examples 

in Kazemi et al. (2017). Kazemi et al. (2014) discuss the sensitivity of various probability 

models to different aggregator functions as the size of the underlying aggregated popula-

tion changes. A good introduction to both ICI and aggregator models (called simple ca-

nonical models) is by Dıez and Druzdzel (2006).  

 

Table 10: Commonly used combining rule and aggregator functions 

 

Function Form 

Max / Or* y = Max(x1,….,xn) 

Min / And* y = Min(x1,….,xn) 

Sum y = (x1 +….+xn) 

Proportion yj = 
(x1 +⋯.+xn)| 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  𝑗 )

(x1 +⋯.+xn)
** 

Average y = (x1 +….+xn)/n 

Linear 

combination 

y = (a1x1 +….+ anxn) 

Count  

- Histogram*** yj = Count(x1,….,xn | Conditionj)** 

- K-of-N **** yj= Count(x1,….,xn | Condition)** 

* Or / And if xi are Boolean 

**Count if condition j met. One condition for K-of-N 

*** Can determine median and mode from histogram 

****K-of-N support functions Exact (k=r), Threshold (k≥ r) 

and Ceiling (k ≤ r) 
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Under conditions of nonuniqueness, where all P(Yi|Xi) are identical, it is possible 

to implement a combining rule as an aggregator. It can be done even when the Xis are 

uncertain. Because of this feature, it has become common to group both aggregators and 

combining rules as aggregators, especially in the PRM community (e.g. Raedt et al. 

(2016)). However, combining rules can also be applied to models where non-uniqueness 

holds, i.e. the P(Yi|Xi) are not identical, while aggregators cannot. ICI models with dif-

ferent probabilities are widely used, especially in the medical domain. See Bermejo et al. 

(2013), Magrini, Luciani, and Stefanini (2016), or Anand and Downs (2008) for exam-

ples and recent extensions. 

A.4 Constraints 

Often the problem environment has constraints among the attribute and/or rela-

tionship instances that must be captured to accurately model the problem. They fall into 

two categories: restrictions on the state of one or more parents, based on the state of other 

parent nodes; and restrictions on state of a child RV based on the state of one or more 

other child RVs. Constraints between parents and a child RV are enforced in the child 

RV’s LPD. The relationship modeled between two OVs in a RV are not inherently con-

strained by the form of the RV. But in the intended understanding of the relationship, 

there may be a constraint on the number of entities instantiating a particular RV that may 

be true in a parent configuration. BN or DG modeling needs to include elements that en-

force the appropriate constraint. These include: 

• Many-to-Many: This is the unconstrained case. In the RV  

isFriendsWith(x,y), an instance of x may have multiple friends y and vice 
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versa. The normal understanding of “Friend” does not imply any constraints on 

the number of friends one may have. 

• N-to-Many or Many-to-N: With this constraint, only N entity possibilities in the 

first or second position may be true. N can be changed to “at-least N” or “at-most 

N”. For example, for the RV hasChild(p,c), a human child c has two bio-

logical parents p, but a parent may have any number of children (including none). 

• One-to-One: any relationship with a one-to-one functional relationship between 

the entity instances of the two OV/state variables. 

The following simplified problem is used throughout this section. It models pre-

dicting whether a woman has a child, as influenced by whether the woman is married to 

the father of a particular child. Figure 39 shows the template, while the model’s database 

states that there exists a woman (W), a child (C) and three possible fathers (F1, F2, F3). It 

has the simplifying constraint that the woman must be married to one husband, who 

comes from the set of possible fathers. For the data given above, the construction 

algorithm creates the grounded BN shown in Figure 40A. Because this model has not yet 

addressed the constraint, it will not execute correctly. 

 

 
Figure 39: Constraint example Template, where probability of a woman having children depends on whether 

she is married to the father of possible child. Constraint is that she is married to exactly one possible father 
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Figure 40: Grounded model, with three ways to implement marriage constraint 

 

There are three ways to model constraints: direct parent dependency, constraint 

node, or embedded constraint. The first approach is to add dependencies among the par-

ent RVs that implement the constraint. Figure 40B shows a grounded model with parent 

dependencies. To do this requires a total order be on the entities in the classes affected by 

the constraints. The order may be natural (e.g. greater than, less than, etc.) or arbitrary. 

While a natural ordering is limited to one class, an arbitrary ordering can extend across 

multiple classes. In this approach, dependencies among the parents are used to enforce 

constraints. The core LPD is that any instance of the isMarriedTo RV type will have 

state False if any of its parents have state True. Assuming a uniform prior probability 

across all the instances of that RV type is appropriate, the probability that each entity in 

the order is married is 

 

P(MarriedTo) =1 /(cardinality(entity set) – Order number +1) 
Equation 3: Direct constraint approach’s probability assignment to each ordered entity 
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While this example is simple, more complex constraints require a more complex 

LPD, which is harder to understand. Constraint nodes provide an easier approach. These 

are nodes added to the BN specifically to implement the constraint(s). Constraint nodes 

can be used to enforce constraints among any set of nodes. Figure 40C shows the basic 

pattern for a global constraint node, as implemented in the example model. There is a 

Boolean node, called the constraint node, with arcs from the nodes on which the con-

straint(s) is to be enforced. In its LPD, the conditions for which a parent configuration 

meets the constraint maps to True (e.g. in the example, exactly one MarriedTo RV has 

state = True). Otherwise, it maps to False. The constraint node has an database finding 

that the state of the constraint node must be True. This enforces the constraint. Constraint 

nodes and direct parent dependency are functionally equivalent, and if the constraint node 

is absorbed into its parents, then one converts Figure 40C into Figure 40B. It is generally 

easier to specify the LPD in terms of allowable and unallowable parent configurations, 

making the constraint node easier to implement. This is especially the case when a con-

straint applies across multiple classes or multiple types of RVs. A constraint node may be 

total or partial. The first is illustrated in the figure above, in which a single node applies 

the constraint to all nodes of one or more RV types as a group21. A partial constraint node 

applies to a subset of the nodes, and there may be multiple such nodes to enforce the 

overall constraint. Constraints can also be applied to a set of child RVs, using either ap-

proach. For instance, if each entity that instantiates a child RV must have a unique state, 

then a global or set of partial constraint nodes can be used to implement the constraint. 

 
21 It can enforce as many constraints as applicable to the same set of parents  
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When a constraint node is used, it adds additional nodes to the BN and increases 

the complexity of the network. For constraints among parent nodes (including subsets of 

parent nodes), it is possible to embed the constraints into the LPD of the child RV. The 

set of states of the child RV is augmented with a new state whose purpose is to imple-

ment one or more constraints among the parent RVs. The patterns in Appendix 2 use NA 

(for “Not Allowed”). For each child RV instance that has an NA, there is a finding that the 

NA state must be false; e.g. it is not allowed. Figure 40D above shows the use of an em-

bedded constraint. The LPD is constructed in two parts. First, all the parent configura-

tions that have constraint violations are mapped to NA (same approach as for a constraint 

node). Then the remaining parent configurations are mapped to their child states with the 

conditional probability appropriate to that PC. 

The above approaches have a problem if one is implementing a 1-of-n constraint, 

as in the example. If prior information assigns different probabilities to the nodes being 

constrained, then the constraint approaches described above will change the value of 

those nodes. Fenton et al. (2016) discovered a relatively straightforward way to correctly 

initiate the prior probabilities. They also identify means to allow one to model “0 or 1 of 

cases”, such as allowing a person not to be married in the example used above. 
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APPENDIX B  
FIRST-ORDER EXPRESSIVE BAYESIAN NETWORK MODELING PATTERNS 

This appendix details the first-order expressive Bayesian network modeling pat-

terns this research identified. Then, it goes into depth on the patterns, which are divided 

into three categories. The patterns were uncovered during the dependency modeling anal-

ysis effort described in Appendix A. A key feature of these patterns is that the structural 

arrangements in the template shapes the structure of the instantiated grounded model. 

This, in turn, influences the structure of the LPD. This is also the basis for the LPD script 

language needs identified in Chapter 4. While this research focused on Bayesian net-

works, it can be readily applied to probabilistic logic programs, as any BN can be imple-

mented using an equivalently expressive probabilistic logic language (Poole 2008). The 

LPD examples described below represent the actions to be performed, not the specific 

implementation described in Chapter 4. 

B.1 Modeling Patterns in the Literature. 

Modeling patterns discussions in the literature can be grouped into three 

categories: domain-specific patterns, common domain-independent element patterns, and 

qualitative probabilistic network patterns. Various patterns to guide domain-specific mod-

els have been developed. Examples include situational awareness models (Park et al. 

2014), legal argumentation (Vlek et al. 2014), project risk management (Al-Rousan, 

Sulaiman, and Salam 2009), maintenance system management (Medina-Oliva, Weber, 
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and Iung 2013), return on investment analysis (Yet et al. 2016) and disease process mod-

eling (Shpitser 2010). These patterns focus on identifying relevant entity classes, key at-

tributes and relationships, and the most common or most important dependencies be-

tween the attributes or relationships for a specific domain. 

Several authors have identified specific patterns that can be used across domains. 

Although not focused on BNs specifically, Schum identified a number of patterns for 

probabilistic reasoning about conclusions drawn from data using probabilistic graphical 

models (Schum 1994). Neil, Fenton, and Nielson identified five basic patterns, that they 

called idioms: 

• Definitional / syntheses: nodes that synthesize results from several parents, such 

as defining a system’s safety in terms of the frequency of safety events and their 

severity. Parent divorcing (Olesen et al. 1989) is included in this pattern 

• Cause-consequence: modeling uncertainty in causal processes 

• Measurement: modeling errors in a measurement process 

• Induction: modeling inductive reasoning 

• Reconciliation: modeling uncertainty when combining results from different 

measurements (Neil, Fenton, and Nielson 2000). 

They later applied their idiom concept to the legal domain, providing six additional pat-

terns widely applicable to any domain where one is reasoning about possible conclusions 

drawn from data (e.g. intelligence analysis, market analysis, investigative work, etc.) 

These patterns predominately focused on their structural aspects (Fenton, Neil, and La-

gnado 2013). 
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Helsper and Van Der Gaag took Neil et al’s measurement pattern and developed a 

more comprehensive pattern for reporting and evaluating testing results (Helsper and van 

der Gaag 2005). Almond et al. provided a set of patterns for use in incorporating common 

effects patterns in measuring outcomes that result from a common stimulus (Almond et 

al. 2009). These patterns also focused on their structural aspects. 

The probabilistic relational modeling and Bayesian logic communities identified 

basic patterns relating to various uncertainties that can exist in a first-order model. These 

include attribute uncertainty (e.g., missing data) (Pfeffer 1999), reference and existence 

uncertainty (Getoor et al. 2007), type uncertainty (Koller, Levy, and Pfeffer 1997), num-

ber uncertainty (Milch et al. 2007), and identity uncertainty (Pasula 2003). In addition to 

the above, patterns identified in widely used teaching texts include constraint modeling 

using constraint variables, dealing with bidirectional relations, and simplifying modeling 

using temporal transformation or naïve Bayes (F. V. Jensen and Nielsen 2007; Kjaerulff 

and Madsen 2013). These patterns included both structural and LPD aspects. 

Finally, there are qualitative probabilistic networks (QPNs). Wellman proposed 

QPNs as a means to qualitatively understand the behavior of a BN (Wellman 1990). A 

key use has been to assist model development by identifying deficiencies and providing 

an efficient network model (Renooij and van der Gaag 2002). Lucas used QPNs to initi-

ate a study of modeling patterns using Boolean combining rules under the independence 

of causal interactions assumption (Lucas 2005). The study was then expanded to assess 

all 16 binary Boolean patterns for applicability to BN modeling (van Gerven, Lucas, and 

van der Weide 2008). 
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B.2 Patterns 

As discussed in chapter 4 and appendix A, 37 specific cases were created which 

instantiated a variety of structural arrangements. For each, the actions the LPD needed to 

take to assign a probability to each of the states were identified. This appendix focuses on 

both the structures resulting from the RV-Type / OV combination, and the interactions 

within the LPD. Recurring behavior patterns were noted during the exploration. They 

grouped themselves into three major categories, called selector, existential selector, and 

impacted dependencies. For each pattern, there is a figure showing one or two examples. 

In general, the figure includes 

• Dependency model case with a generic variable combination (x, y, z) 

• Template with the scenario model. Scenario is described in the text 

• Question being address in the scenario, as a query 

• Knowledge base with number of entities, and grounded model  

• Constraints enforced in the grounded model. All constraints are enforced using an 

embedded constraint node approach 

• Basic dependency between parent(s) and child RVs 

• Required LPD behavior 

B.2.1 Selector Patterns 

Selector patterns are two-parent-type models where the template has either an F-

type or A-type RV with the same OV as the child RV. Because it has the same OV as the 

child, only one instance will be instantiated. This instantiated RV acts as the selector. It 

identifies a condition that the instantiated RVs of the other variable type must meet for 



 

191 

 

the instantiated variables to have an influence on the child RV. There are three selector 

patterns: Select-One, Select-Match and Child-Select. 

In the Select-One pattern, the selector is an F-Type RV and the state variable of 

the selector is an OV for the other parent RV-type. In this pattern the LPD always exhib-

its context specific independence. 

Figure 41 shows two examples of this pattern. Example #1 is a well-known pat-

tern used to resolve reference uncertainty (Getoor and Grant 2006; Getoor et al. 2007). 

The example begins with the basic pattern, in which an attribute RV A1 with entities 

from the class represented by OV y has an influence on a specific entity with attribute 

RV A3 (whose OV may be from the same or different class than the OV in A1). The 

functional relationship in RV F2 enables the dependency between A1 and A3. The tem-

plate in example 1 captures the fact that a machine is in a particular room (as defined in 

MachineLocation(M)), and the room has a temperature of either normal or hot. The 

room’s temperature affects the probability of the machine’s status, either normal or over-

heated, per the LPD table. Here, one is uncertain about which room the machine is in but 

does know that it must be in one of four rooms. The construction algorithm takes the 

template and the database entry that there are four possible rooms to create the grounded 

model. In the LPD, MachineLocation_M1 acts as a selector. For each parent config-

uration, it identifies the one room whose state will establish the probabilities for that PC, 

using the probabilities expressed in the table. The figure includes a representative set of 

LPD actions visualizing the CSI characteristics.
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Figure 41: Select-One pattern examples 
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A key LPD behavior is to perform indirect referencing. Here, the state of the F-type se-

lector is the room of interest. Indirect referencing allows us to say 

State(RoomTemp(State(MachineLocation))) 

to indicate we want to know the room temperature of the room that is the state of the Ma-

chineLocation RV.  

While example #1 is an attribute-to-attribute example, where the selector licenses 

the dependency, one can create similar patterns with dependencies that include relation-

ships. This is useful when doing probabilistic social network analysis. In example #2, 

there is a dependency model where a R-type RV influences an F-type child RV, with a F-

type RV enabling the dependency. The specific example models the probability that a 

particular woman is the mother of a child, depending on whether she is married to the 

father of the child. The template shows three entity classes. The knowledge base identi-

fies three men as possible fathers and three women who could each be married to one of 

the men. The lists of possible mothers and fathers is collectively exhaustive. A key con-

straint is that each man and each woman can be married to at most one person. In the 

grounded model, the MotherOf RV (the query node) includes an NA state. This model 

uses an embedded constraint node approach. FatherOf has the same OV as Moth-

erOf, so only one instance is created. FatherOf is the selector. The variables in Mar-

riedTo are free, so it will instantiate |z| * |y|22 instance RVs. 

 
22 |x| is cardinality of the class from which x is drawn 
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This example has two interesting features. First, the marriage constraint applies 

individually to six different people, resulting in 6 constraints, one for each person in the 

knowledge base. The constraints are partial constraints across the parent set. Figure 42 

visualizes the constraints needed. Each row in the parent set corresponds a specific man, 

and each column to a woman. In the LPD, constraints are checked first, and the constraint 

is applied for each man and woman (row and column respectively). If there are more than 

one marriage in any row or column, that parent configuration has 100% probability of 

NA. Constraints can eliminate a significant number of parent configurations from consid-

eration. Here, there are 1536 parent configurations; constraint violations eliminate 1434. 

The second interesting feature is that the LPD requires parent entity attribution, 

knowledge of the specific parent entities that match a specified condition to properly 

assign the child RV’s state probabilities. For all PCs that meet the constraints, the state of 

the selector RV, FatherOf, is determined, and the True states of the three  

MarriedTo RVs with that man are counted. In this case, the count will be either zero or 

one, as the constraint has already NA the PCs that have more than one MarriedTo being 

True. If the count is zero, then each of the possible mothers will have a uniform  

 

 
Figure 42: Multiple constraints 

At most one MarriedTo is True in each row and column 
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probability, 1/|Woman|23. If the count is 1, then a 75% probability is assigned to the 

woman who is married to the father, while the remaining women each receive a uniform 

share of the remaining probability, e.g. 0.25 / (|Woman| -1). In this case, the LPD needs 

to know which specific woman is the married one, because the child RV states also come 

from the Woman class. Entity attribution is required whenever the child RV is an F-type 

RV, as its states are entities. 

In the Select Match pattern, the selector identifies a state of interest and the LPD 

examines the other parent type to identify which ones match the selector state. In this case, 

the selector may be either an F-type or an A-type RV. This pattern requires entity 

attribution. The selector RV has the same OV as the child RV, so only one instance of the 

selector variable is instantiated. Figure 43 highlights two examples of this pattern. In the 

first example, two F-type RVs collectively influence an F-type child RV, and both parent 

types have the same state variable (o). In the example, which room a particular machine 

is in (the MachineLocation RV) depends on matching information from both the 

room choices and the selected machine. There are three classes involved: machine, room, 

and organization, with one machine entity, four room entities and two organization enti-

ties. For this model, there is a requirement that a machine can only be in a room whose 

tenant is the same organization that owns the machine. This becomes the selector condi-

tion the entities of the other RV type must match. Owner_m1 is the selector, and the

 
23 |Woman| is the cardinality of the class Woman 



 

196 

 

 
Figure 43: Select Match pattern examples 
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states of the child RV are from the same class (room) as the OV for the RV Tenant. We 

are looking for the behavior 

COUNT ((State(RV2)= State(RV1)) 

 

 In the LPD excerpt, one sees three parent configurations, each with the state of  

Owner_m1 being o1. In the first line, the tenant of rooms r1, r2 and r4 is also or-

ganization o1. The child RV probability is then 1/Count for each of the rooms that met 

this condition (r1,r2,r4). The second LPD behavior line shows Owner_m1 state be-

ing o2, with only tenant r2 and r3 having the same state. The grounded model shows 

that MachineLocation_m1 has an NA with probability 0, indicating the existence of 

an embedded constraint in the LPD that the machine must be in one of the four rooms. 

However, there are two parent configurations where this is not possible. In the first, ma-

chine m1 is owned by organization o1 while the four rooms are tenanted by o2, while 

the second parent configuration is reversed. In both cases, the probability of the machine 

being in any room is zero. The embedded constraint indicates that these two parent con-

figurations have no meaning in this model. Line 3 of the LPD excerpt shows one of the 

two disallowed PCs. 

In the select match pattern, it is possible for an attribute to be a selector. This de-

pends on exploiting an embedded dependency between two attributes associated with dif-

ferent entities. Example #2 uses the A1-A2-F3 dependency model, with each attribute 

having a different OV, and the child RV having one parent OV as its OV and the other 

parent OV as its state variables. Let us assume there are three different machine sizes (say 
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large, medium and small) and three different room sizes (large room, medium room and 

small room). The machines can be in any type of room, but a machine is three as likely to 

be in a room that matches its size than in the most different room. It is twice as likely to 

be in a room that is nearest to its size. In the example, there are four possible rooms. In 

the LPD, the probability of being in a specific room depends on the total number of 

rooms, and on how many rooms have the same size type as the machine, versus a differ-

ent size type. The probability distribution is determined via a functional probability speci-

fication. 

 

P(room y) = 
𝑀𝑎𝑡𝑐ℎ 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟

3∗# 𝑅𝑜𝑜𝑚𝑠 𝑀𝑎𝑡𝑐ℎ+2∗#𝑅𝑜𝑜𝑚𝑠 𝑁𝑒𝑥𝑡 𝑠𝑖𝑧𝑒+1∗𝐿𝑒𝑎𝑠𝑡𝑆𝑖𝑧𝑒𝑡 𝑀𝑎𝑡𝑐ℎ
 

 

Match Indicator = 3 if size of Room y matches machine size, 2 if size is next best size, 

otherwise 1. 

 
Equation 4: Probability of specific room depends on its size match and number of rooms with each size 

 

Note that this LPD requires that every possible size combination be counted be-

fore the probability assignment is made. This is called state counting capability, e.g., how 

many rooms of each size are there. In addition, it also requires entity attribution. 

The third selector-based pattern is the Child Select pattern. It applies to certain 

dependencies that have a R-type RV as the child. In this pattern, one OV in the R-type 

child RV is the OV of the selector, while the other OV is used to determine whether the 

parent configuration supports a state of True. Consider example #1 in Figure 44. 

Whether a belt is owned by a particular organization depends on which machine it is on 
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Figure 44: Child Select pattern example 
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and who owns that machine. The premise is that the owner of a machine owns all the 

parts on it. The grounded model shows three machines and three possible owning organi-

zations. BeltLocation is the selector. The LPD acts very much as in the Select-One 

pattern, in that the selector identifies one instance of the other parent RV type as having 

influence. 

However, rather than just using the state of that RV instance in the LPD, the LPD 

compares the state of the parent RV Owner to the second OV of the child RV. If they 

match, the child RV state is True. Otherwise, it is False. In the figure, the LPD lan-

guage uses two forms of indirect referencing. The first, State(Owner(State 

(BeltLocation))), says that the OV entity of the owner RV is the state of the  

BeltLocation, where BeltLocation states are M1, M2 and M3. The second, 

OV2(BeltOwnedBy), identifies the entity instance in the second OV position (counted 

from the left) of the RV inside the parentheses. The full LPD can be read as 

“If the state of Owner, whose entity is the state of BeltLocation, equals the 

entity of the second OV position of BeltOwnedBy, then the probability of 

True is 1 

 

An indirect referencing capability is needed when dealing with entity states from a possi-

bly vary list. 

Example #2 shows a more direct variant. In this case, the selector itself must 

match the child RV’s OV. The model addresses whether a person (William) has a son 

(Jamie). The available information is that there are three people who are potential fathers 

of a child, and the possible sex of the child. There are two conditions that must be met. 

First, the selector FatherOf must itself match a criterion. For the child RV to be 
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True, the possible father must be the same as the instance of the Father OV in the child 

RV. Second, the sex of the child must be male. In this case, one OV in the child RV spec-

ifies the entity of interest (the Child class OV), while the other OV is a condition that 

must be met by the selector. 

B.2.2 Existential Selector Patterns 

The second pattern category, Existential Selector, involve either a R-type or F-

type RV. If it is a R-type RV, one or both of its OVs will be the same as for the child OV. 

If the child RV has only one OV (A-type or F-Type), one of the R-type’s OV will be free. 

If there is a F-Type RV, it is that RV’s state variable, not OV, that will match the child 

RV’s OV. These patterns differ from the selector patterns in that they instantiate multiple 

instances of the selector RV, instead of only one. Each existential selector determines 

whether a specific instance of the second RV type has an effect or not. Uncertainty of a 

relationship’s existence is a form of property uncertainty, hence the existential name 

(Poole 2011). These patterns use a variety of counting behaviors. There are three existen-

tial selector patterns: Existential-Paired, Multi-Existential and Child Existential. 

In the Existential Paired pattern, a distinct instance of an existential selector is 

paired with an instance of the second RV type in the template. Example #1 of Figure 45 

gives a paradigmatic example. The premise is that student’s overall grades depend par-

tially on his professors’ teaching abilities. Assume there are four possible professors, and 

each professor has either excellent or mediocre teaching abilities. Only the ones 

that teach the student will influence his grades (Teaches is the selector). Hence, there is 

a pairing between each instance of the Relationship RV Teaches(p,s) and the
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Figure 45: Existential Paired pattern examples 
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attribute RV TeachingAbility(p) for that professor entity. A commonly used LPD 

is a k-out-of-n aggregator model, where n is the total number of the existential selector 

instances that are true. For those professors that teach the student, k is the number of 

teachers with excellent teaching ability. Note the NotAStudent state for cases where 

no professor teaches the purported student. A probability value is attached to each k-out-

of-n state, as established by expert judgment, data learning, etc. While this example has 

binary states for both the attribute and child RVs, it can readily be extended to multiple 

states. A k-out-of-n count then becomes a state count. 

The second example is a refinement, where the entity associated with ParentOf 

can be refined to FatherOf, if the entity is male. A key item to making this model work 

is to ensure two constraints are properly accounted for. First, there must be exactly two 

biological parents. Second, one parent must be male and one female. 

One can also see that if the relationship existential selector variable has an en-

forced many-to-one constraint, then this pattern gives an equivalent result as the refer-

ence uncertainty multiplexor in the Select One pattern. For example, the SonOf(f,c) 

RV, where f is the biological father class and c is the child class, is constrained to having 

only one father per child instance. This constrained relationship could also be modeled as 

FatherOf(c). 

In the Multi-Existential pattern, each selector instance is applied against multi-

ple instances of the second RV type. Rather than pairing between specific instances, it 

works across subsets (or all) of the instances. Example #1 in Figure 46 models the case 

that a woman has one or more children, based on whether the woman is married to a man 
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Figure 46: Multi-Existential pattern examples 
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and then counts how many children that man has. There is also a default probability value 

in case the woman is not married. There is a constraint that the woman of interest can be 

married to one man or not be married at all. This is modeled by an embedded constraint 

in hasChild, as indicated by the NA state. Note that in the grounded model, there is a 

25% probability that the woman is not married. isMarriedTo acts as an existential se-

lector, but there is no one-to-one pairing between isMarriedTo and FatherOf. Ra-

ther, for each instance where isMarriedTo is True, one counts how many Father-

Of RVs have the same entity as its state as the husband in isMarriedTo. A probability 

value is based on that count. Example #2 shows the pattern when one relationship influ-

ences the state of another relationship. Here, one is assessing who the first author is on a 

paper, based on the paper’s topics and the areas of topical expertise of various possible 

authors. This example includes a simplifying constraint that the list of possible first au-

thors is complete. The existential selector is the hasTopic RV, which identifies the 

possible topics of a paper of interest. For each topic, there is an associated probability 

that a particular professor has expertise in that topic. The LPD here counts the number of 

professors that have expertise in a particular topic area. The higher the count, the less 

likely any particular professor is the first author. However, if the paper has multiple top-

ics, then added weight is given to those professors who have expertise in more topics. 

The Existential Child pattern is like the Child Select pattern discussed above, in 

that there is a dependency between the child RV’s OV instance(s) and the selectors’ 

states. Instead of a single selector, there are multiple existential selectors. Example #1 in 
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Figure 47 assesses whether two people are married based on the number of common chil-

dren they have. In the example, there are three children and three possible mothers and 

fathers. There is an assumption that the list of mothers and fathers is complete. For each 

child, the LPD checks whether the states of MotherOf and FatherOf match the re-

spective mother or father OV in MarriedTo. The count of common children is then ap-

plied to a probability table to get the probability for each possible PC from this model’s 

parent set. 

Example #2 looks like an Existential Paired pattern but has a context specific in-

dependence (CSI) twist. Here, the problem is to determine the status of a specific ma-

chine (M1), based on the status of a cooling fan belt on that machine. There is uncertainty 

about which belt is on which machine (BeltLocation). There is also uncertainty 

about the status of each belt. There is a constraint on this problem (The NA in En-

gineStatus). There must be at least one belt on the machine. In each PC, the LPD 

looks at the location and status for each belt. Because one is interested only in machine 

M1, the LPD checks whether the state of BeltLocation matches the OV in the child 

RV, EngineStatus. This gives the LPD a CSI twist. If the machine is not M1, it is 

ignored. If it is, then the belt status of the associated belt affects Engine Status 

states per the probabilities of the table. 

Although this research focused on single and dual RV-type parents to identify the 

patterns, many real-world problems require more complex implementations of the pat-

terns. Selection patterns are widely used, especially within probabilistic relational  
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Figure 47: Existential Child pattern examples 
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models. One can extend these patterns to a multiple RV-Type problem. One example is a 

three RV-type model, where two parent RV-types are used as existential selectors. The 

original model was developed by Kazemi et al (Kazemi et al. 2017). They explored the 

performance of various aggregators on a common problem. The intent was to understand 

performance differences, rather than developing the most capable system for the problem. 

The problem is to determine the gender of a movie rater, given a data base of movie rat-

ings given by raters whose gender are known. The template is in Figure 48. This example 

uses one aggregator they developed, which has a double selection process24. The data 

base includes entities for Movie and Rater, and has multiple relations and attributes. For 

this model, one relationship and one attribute are used: Rates(r,m), a Boolean relation 

that states whether a particular rater has rated a specific movie, and the gender attribute of 

the raters. In this model, the RV for Rates(r,m) is used twice – once to identify the set 

of movies the rater being queried about has rated, and another time to identify which of 

those movies the rest of the raters have rated. The context node ~(X=Y) ensures that in-

formation about the query entity is not included in the LPD model.  

  

 
Figure 48: Movie rater gender model 

 
24 They explored six different aggregator models, which used different mixes of data in the knowledge 

base. I selected one for this demonstration. 
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The probability equation is 

 

𝑃(𝐺𝑒𝑛𝑑𝑒𝑟(𝑥) = 𝐹𝑒𝑚𝑎𝑙𝑒 | 𝐸)

=  
𝑐 + ∑ [𝐼(𝑅𝑎𝑡𝑒𝑠(𝑥, 𝑚)) ∗ ∑ (𝐼(𝑅𝑎𝑡𝑒𝑠(𝑦, 𝑚) ∗ 𝐼(𝐺𝑒𝑛𝑑𝑒𝑟(𝑦) = 𝐹))]𝑦 𝑚

2𝑐 + ∑ [𝐼(𝑅𝑎𝑡𝑒𝑠(𝑥, 𝑚)) ∗ ∑ 𝐼(𝑅𝑎𝑡𝑒𝑠(𝑦, 𝑚))]𝑦 𝑚 

 

Equation 5: Movie rater probability equation 

 

Where m is the set of movies and I is an indicator function with value 1 if the RV 

instance has state True or the specified state is true (e.g. gender = female), else it 

is 0. The constant c represents a pseudo count as a prior and is established via a learning 

algorithm prior to using the model. 

The model is a conditional double count model. For each movie, if rater x has not 

rated it, it is ignored. This is the first selector (Rates(X, M). If rater x has rated it, the 

second selector guides the counting of both the number of female raters (denominator), 

and total number of raters (numerator). 

B.2.3 Embedded Dependency Patterns 

The third pattern category are Embedded Dependency patterns. These all are 

single parent type patterns. There is not a second RV type that enables the linkage be-

tween the first RV type and the child RV. The research identified two different embedded 

dependency patterns: conversion / inversion patterns and existence patterns. 

The Conversion pattern switches an F-type RV to an equivalent set of R-type 

RVs, and vice-versa. It is useful when the knowledge base has information in one form, 
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but when the other form is more appropriate for the model. An example of each is shown 

in Figure 49. The F-to-R conversion is a simplified model converting a functional 

representation of possible causes of death (assumed to be collectively exhaustive) to a 

series of Relationship RVs, one for each cause. The LPD is guided by the child’s OV. If 

the state of the parent CauseOfDeath matches the Cause class OV in 

DeathCausedBy, then the child’s state is True. Otherwise, it is False. 

In the R-to-F conversion, one is taking a constrained (exactly one) group of Rela-

tionship RVs and converting them to a single functional F-type RV. The LPD is identical 

to an embedded constraint node. All PCs with more than one parent true or with no par-

ent true map to the NA state. For remaining PCs, the state of the child is set to the Parent 

entity that has a state True. 

The Inversion pattern provides the inverse of a relationship, which is not neces-

sarily the same relationship with the variable order reversed. For example,  

hasFriend(x,y) is normally considered a symmetric relationship and is its own in-

verse. But hasChild(x,y) and hasParent(y,x) are each an antisymmetric relation-

ship, but are considered inverses of each other. If the inverse of a relationship is a differ-

ent relationship, the modeler needs to understand the nature of the inversion. The naming 

of the RVs and determining whether the two RVs have the same semantic meaning is the 

modeler’s responsibility. The pattern only ensures that the uncertainties among the states 

is preserved between the RVs. Trivially, one can always create an inverse by switching 

the voice (active / passive) of the verb phrase that defines the relationship. For example, 
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Figure 49: Conversion / Inversion patterns 
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hasFather(x,y) and isFatherOf(y,x) are formally inverses of each other. But 

often one is interested in an inverse that describes the relationship differently, such as 

hasChild(x,y) and hasParent(y,x). In those cases, the dependency between the 

two may not be as tightly bound. 

Because relationships can be expressed either as R-type (always) and F-type (for a 

functional relationship), there are four possible implementations, as shown in Figure 49. 

In the F-F case (BeltLocation(b) / m to BeltOn(m) / b), there must be a one-to-one 

relationship between the entities in the OV and state variable of the two RVs. The NA 

constraint in the child RV enforces this requirement. Note the effect of having this con-

straint on the grounded model. While the query would be on one entity, the query-

specific construction algorithm will instantiate a child RV for each entity in the OV class. 

This occurs because the finding on each BeltOn RV instance that NA must have zero 

probability means that each BeltOn instance becomes d-connected to every other Bel-

tOn. The LPD is straightforward – the specific belt on a machine is the parent with the 

same state as the OV of that machine. The LPD includes a count command, which counts 

the number of instances that meets the criterion between the parentheses. 

The R-R case (hasGrandparent(y,x) to hasGrandchild(x,y)) is the 

most flexible, as it puts the least restrictions on what can be modeled. In the example, the 

LPD is simply that the probabilities of hasGrandparent(y,x) are the probabilities of 

hasGrandchild(x,y). In the R – F case, there is a requirement that the R-type parent 

must be functional for the OV that is also the OV of the child variable (child in the ex-

ample). If a child can have two biological fathers, this violates the mutually exclusive na-
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ture of FatherOf. The embedded constraint exists to enforce this requirement. For 

those PCs that meet the constraint, the LPD looks for which hasChild instance is 

True, and assigns a probability of 1 to the child state that is the same entity as the parent 

OV. The last case, F – R, is an example where the inverse has additional characteristics. 

Instead of the grandparent / grandchild inverses, one now has an F-type parent called 

PaternalGrandfatherOf with a R-type child RV (hasGrandchild). 

hasGrandchild is not tied so tightly to the parent RV. It is possible for the paternal 

grandfather to be one person, while the OV in hasGrandchild is true for another per-

son. This is because a human child has two grandfathers, of which one is the paternal 

grandfather. The LPD table provides a probability for this case. 

Existence patterns are single parent patterns that describe dependencies between 

attributes and relationships. In these patterns, the same entity has both the attribute and 

the relationship under consideration, and the state of one influences the state of the other. 

Figure 50 gives three examples. In the first, an attribute (a person’s sex) affects whether 

that person can be the mother of another person. In the LPD, all male persons have zero 

probability, while females have a uniform probability whose value depends on their 

count. In this example, the list of possible mothers is assumed to be complete. 

In the second example, a set of relationships BossOf influence whether a man-

ager is a busy person. In this case, the LPD looks at a set of employees and counts if a 

particular manager is their boss. The higher the count, the higher the degree of busyness. 

In this example, the states of busyness are a sequence of qualitative levels of busyness, 
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Figure 50: Existence patterns 
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rather than a yes/no assessment. In the third example, an attribute (Personality) in-

fluences the likelihood that a person will be friends with another person. The LPD is a 

straightforward implementation, with conditional probabilities for each of the states of 

the parents. 
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APPENDIX C  
DECISION TEMPLATE EVALUATION BACKGROUND AND RESULTS 

To assess the value of a decision template to a model developer, an experiment 

was conducted at George Mason University (GMU). A graduate level class on heteroge-

neous information fusion and decision support had a course project requirement to devel-

op a fusion / decision support system. This appendix provides the background infor-

mation that describes the top-level project requirements, the decision templates provided 

to the students, and the analysis results of the collected evaluation information. 

C.1 Project Background Information 

The objective of the class project is to build a fusion / decision support system for 

a notional fighter aircraft self-defense system. The system supports a fighter aircraft pilot 

by fusing the information received from various aircraft sensor systems about threats to 

the aircraft and recommends appropriate actions to the pilot. 

The scenario is that two countries, Blueland and Redland, are at war with each 

other. They are adjacent countries on a large island, which they also share with a neutral 

third country, Grayland. A Blueland Air Force fighter unit is preparing to launch a small 

strike on a target within Redland, using four BlueFighter aircraft. They will face Redland 

aircraft, the XFighter, YFighter and RedBomber. All are equipped with air-to-air infrared 

(IR) guided missiles, and the two fighters also have radar guided missiles. For this sce-

nario, there are no cannons on any aircraft. In addition, Redland also has two types of ra-
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dar-guided antiaircraft artillery (AAA) systems, four types of radar guided surface to air 

missile (SAM) systems, and an IR guided man portable SAM system. Grayland previous-

ly bought X and Y fighters from Redland and uses them to aggressively maintain its neu-

trality. Blueland also has IR missile armed BlueBombers. All three countries have un-

armed military and civil aircraft. The scenario has several simplifying assumptions to 

keep the modeling reasonable for the available time. 

Each BlueFighter aircraft has a fusion / decision support system to aid the pilot in 

avoiding or defeating threats. The system architecture naturally decomposes to a fusion 

element and a decision support element. Each aircraft has six sensors to detect and identi-

fy threats, which provide the inputs to the fusion element: 

• Radar system (RS) - reports on the numbers, speed, range and heading of aircraft 

detected in the sector forward of the aircraft 

• Radar warning receiver (RWR) - reports the type, operating mode, signal strength, 

and heading to various radar systems detected in the environment 

• Missile warning receiver (MWR) – detects missile launch in the aircraft’s vicinity 

• Identify friend and foe (IFF) - a system that uses a cryptographically encoded sig-

nal to query other aircraft to determine if they are friendly 

• Navigation system (NS) – provides the aircraft’s location and altitude 

• Pilot reporting (PR) – Pilot input that a missile threat was visually detected. 

Based on this information, the fusion element determines three things and passes them to 

the decision support element: 

• Identity of the type of threat 
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• Whether the BlueFighter aircraft is heading into or away from the threat 

• Level of threat posed to the aircraft. 

The decision support element then determines the appropriate actions to the threat. Four 

concurrent decisions are made: 

• Whether to conduct an extreme defensive maneuver, called a break, to avoid an 

incoming missile threat with concurrent electronic countermeasures (ECM), or to 

deviate the flight path to move away from the threat - with or without ECM, or do 

nothing. Maneuvering negatively affects reaching the target at the scheduled time 

• Whether to engage an aircraft threat with an air to air missile, or conduct a feint 

by placing the radar into missile launch mode without actually launching the mis-

sile (thereby activating the threat aircraft’s RWR and forcing the pilot to react as 

if a missile were launched), or doing nothing. There are no air-to-surface missiles 

• Whether to turn the radar off to reduce the electronic signature of the aircraft and 

thereby reduce its detectability to opposing radar detection systems. This also re-

duces the pilot’s situational awareness of threat aircraft 

• Whether to turn the IFF off, for the same reason as turning the radar off. 

There are several prohibited combinations of choices. 

• No missile launch or feint can be done if a break maneuver is selected 

• No missile launches can occur if the threat aircraft is not in range, or if there are 

no missiles available to reach the threat aircraft 

• The radar cannot be turned off if a missile launch or feint is selected 

• If the IFF is turned on, the radar cannot be turned off. 
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The system was implemented as a decision graph, using the Netica® modeling 

tool. The benchmark decision graph model (Figure 51) has 43 nodes, with 22 nodes in the 

fusion element and 21 nodes in the decision support element. 

C.2 Project Decision Templates and Evaluation Requirements 

The class was divided into six teams, each with two or three people. Each team 

received a project design document with the scenario and background material necessary 

to develop the model, and information to derive the conditional probability tables and the 

utility node values. In addition, two decision template packages were developed, one for 

the fusion element (Figure 52 and Figure 53) and one for the decision support element 

(Figure 54 through Figure 56). The templates are at the specific decision problem level. 

They give a complete decomposition from the high-level system diagram to the individu-

al decision graph nodes used in the system. Along with the architectural decomposition, 

supporting documentation graphic structures were developed including an objective hier-

archy, decision list, consequence table, and a threat response table. The last two tables 

were included in the design document given to all students, not in the decision template. 

The consequence table was given as a set of probabilities of successfully defeating a 

threat given the defensive responses used. The threat response table, shown in Table 11, 

gives the optimal defensive responses to different threat levels. The threat level is deter-

mined by the following five columns next to threat level. The project design document 

included a significant amount of information that normally would be part of the decision 

template. This information was not replicated in the decision template. The template pro-

vided additional detailed design information useful in completing the model. Half of 
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Figure 51: Benchmark model for the fighter aircraft system. Dashed line delineates the two main elements of the system 
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Figure 52: Fusion element decision template (part 1 of 2) 



 

222 

 

 
Figure 53: Fusion element decision template (part 2 of 2) 
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Figure 54: Decision element decision template (part 1 of 3) 
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Figure 55: Decision support element decision template (part 2 of 3) 
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Figure 56: Decision support element decision template (part 3 of 3) 
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Table 11: Threat response table 

 
 

the teams received the fusion element decision template; the other half received the deci-

sion support element decision template. Students were asked to do two things: 

• Track the amount of time they spent on the project, separated into four categories: 

general preparation, fusion element development, decision element development, 

and testing and report writing 

• Complete a seven-question evaluation after they turned in their projects 

The time collection / evaluation questionnaire is shown in Figure 57 (front page) 

and Figure 58 (back page). 

 

Threat Level 

Missile 

Launch  Radar Mode Envelope Threat Entity Heading Response 

1ps (missile 

attack) Yes None 

In IR 

Envelope Portable SAM Any Break w/ ECM 

1ar (missile 

attack) Yes Locked 

In Radar 

Envelope 

X, YFighter, any 

Radar SAM Any Break w/ ECM 

1ai (missile 

attack) Yes Any 

In IR 

Envelope 

X, YFighter, 

Bomber Any Break w/ ECM 

1g (gun 

attack) No Locked 

In 

Envelope Any AAA Any Break w/ ECM  

2 No Any 

In IR 

Envelope X,YFighter, Bomber Any 

Launch Missile, 

Deviate 

3a No Locked 

In Radar 

Envelope X,YFighter Any 

Launch Missile, 

ECM, Deviate 

3s No Locked 

In Radar 

Envelope Any Radar SAM Any Deviate w/ ECM 

4a No 

None, Search, 

Track 

In Radar 

Envelope X,Yfighter, Bomber Any 

Launch Missile, 

ECM, Deviate  

4s No 

None, Search, 

Track 

In Radar 

Envelope 

Any AAA or Radar 

SAM Any Deviate w/ ECM 

5a No Locked Near X,YFighter Any 

Launch Missile, 

ECM, Deviate  

5s No Locked Near 

Any AAA or Radar 

SAM Any Deviate , ECM 

6a No Track Near X,YFighter, Bomber 

Away - Ignore / Toward - 

Deviate with engage 

6s No Track Near 

Any AAA or Radar 

SAM 

Away - Ignore / Toward - 

Deviate 

7a No None, Search Near X,YFighter, Bomber 

Away - Ignore / Toward - 

Deviate with engage 

7s No None, Search Near 

Any AAA or Radar 

SAM 

Away - Ignore / Toward - 

Deviate 

8a No Any Far X,YFighter, Bomber 

Away - Ignore / Toward - 

Deviate 

8s No Any  Far 

Any AAA or  Radar 

SAM 

Away - Ignore / Toward - 

Deviate 

No Threat No Any  Any Other Aircraft, None Any Ignore 

Friendly No Any Any 

Blue Fighter, Blue 

Bomber Any Ignore 
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Figure 57: Front page of project evaluation form 

SYST 584 Data Fusion / Decision Support Study Evaluation 

Team Identifier:        

Which Decision Template did you get (circle one)?   Fusion Element         Decision Element 

Regarding the decision template you received, please circle the response that best fits your 

judgement for that question 

1. The decision template provided was clear and understandable 

1 2 3 4 5 

Poor Fair  Average Good  Excellent  

 

2. The information in the decision template was useful in completing the project 

 

1 2 3 4 5 
Not helpful at all Marginally 

helpful 
Helpful for some 

areas 
Helpful for many 

areas 
Very Helpful 

 

3. The decision template contributed to understanding the overall requirements of the project 

1 2 3 4 5 

Contradicted or 
confused the 

project 
requirements 

Provided some 
confusion 

No significant 
effect 

Contributed 
some 

understanding 

Contributed 
significantly 

 

4. Consider the effort you put in developing the fusion element of the model, and the effort 

you put in developing the fusion element.  You received a template for one of them.   

Compared to the element for which no template was provided, the template made the 

effort for the element it described: 

1 2 3 4 5 
Harder to 
perform 

Somewhat harder No significant 
difference 

Easier Much easier 

 

 

The following questions assess the project as a whole 

5. The project’s level of difficulty was 

1 2 3 4 5 

Very Easy Easy Average Hard Very Hard 
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Figure 58: Back page of project evaluation form 

 

The experiment plan was reviewed and approved by the GMU Institutional Re-

view Board process, and the experiment executed in accordance with the plan. Participa-

tion in the study was voluntary and did not affect the students’ grades. 

6.   The material provided for the project (Background information and template) was 

1 2 3 4 5 

Significantly 
incomplete 

Missing some 
key information 

Generally 
adequate to 

complete the 
project   

Mostly complete 
and 

comprehensive 

Very complete 
and 

comprehensive 

7.   The project was useful in developing skills in heterogenous data fusion 

 

1 2 3 4 5 

Not useful Marginally 
useful 

Somewhat 
useful  

Useful Very useful 

     

If you collected the amount of time you spent on this project, please enter the information 

below.  If you did not, ignore this section 

Total Time (hours) you (individual team member) spent on: 

- General preparation:  ______________________________________ 

 

- Developing and Testing Fusion Element: _______________________ 

 

- Developing Decision Support Element:_________________________ 

 

- Integration, Evaluation and Report Writing: _____________________ 

 

 

Any comments you have on the decision template or the project (Optional): 
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C.3 Study results and analysis 

Of the 13 students in the class, 12 participated in the study. As discussed in chap-

ter 6, both the time data and the students’ evaluations were analyzed. The time data is 

discussed in chapter 6 and there is nothing to add here. Table 12 provides the template / 

project evaluation scores provided by each student. The student identifier indicated which 

template they received (D – Decision, F- Fusion). The basic evaluation scheme was to 

compare the amount of time students spent on the element for which they had a decision 

template versus the amount of time on the element for which they did not. Since the 

model itself was roughly balanced between the two elements, it was expected that they 

should take about the same amount of time to develop. 

The group average and standard deviation for each question are shown at the bot-

tom. As discussed in Section 6.4, there are two individuals for whom there are questions  

 

Table 12: Questionnaire results 
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about the input. D6 may have misunderstood question #4, since the data given there is 

significantly inconsistent with the other answers. F4 indicated there was a specific cir-

cumstance that made completing the project difficult. In the analysis that follows, no data 

points were eliminated for being outliers, but in several cases, elimination of those two 

data points slightly changes the results. This will be pointed out in the discussion. 

The primary observations regarding the scores are covered in section 6.4. This 

appendix will cover some additional correlation analysis that was done. This looked for 

nonzero correlations among the different scores (see Figure 59 for results). The number 

next to a dot indicates that more than one answer fell on that chart point. The top row as-

sessed correlations between the student’s averaged template score and the three project-

related scores. The one in the top left looks at the student’s average template ratings with 

how they rated the project difficulty. The chart includes a trend line showing that the av-

erage template assessment goes down as the assessment of project difficulty increased, 

although there is a low coefficient of determination (r2). When the lowest student tem-

plate score was removed, the trend line is flat. 

The second graph, in the top middle, plots the student’s average template score 

versus their assessment of the overall quality of the total information package (design 

document and template). One would expect that there would be positive trend between 

how they scored the template and how they scored the total package. If the students 

viewed the decision templates the same as they viewed the entire decision package, the 

trend line would follow the red line on the chart. Seven of 12 students rated the templates 
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higher than they did the total package, while two rated them lower. There is a small posi-

tive correlation, but it appears to be insignificant. 

The graph in the top right plots the average template score against the student’s 

assessment of the project’s learning value. As discussed in section 6.4, there was a strong 

correlation between a student’s assessment of the project’s learning value and the as-

sessment of the decision templates. 

The bottom row of Figure 59 looks for correlations between project-level assess-

ment questions. No significant correlations were found. The summary results are present-

ed in section 6.4.  
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Figure 59: Correlation analysis between average template scores versus different project scores (top row) and among project scores (bottom row) 
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