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Seeking Knowledge in the Flood of Facts

Dedicated 1o the memory of Professor Helena Rasiowa - a fruly outsianding scientlisl,
a superh leacher, an extraordi~ary hwmen being, and an unforgctiable friend.

Ryszard §. Michalski
George Mason University
Fairfax, VA 22030

Abstract. Due to an enormous expansion of contputer technology, electronic
networks and databases, modern societies are suffering fromn a severe information
overload. The navigation through the masses of available {facts and information in
order to derive desired knowledge is becoming increasingly difficult. This creates a
significant demand for intelligent systems capable of assisting data analysts m ex-
tracting goal-oriented knowledge fromn large volumnes of data. This paper presents
a multistrategy methodology and a system, INLEN, for knowledge discovery in
large relational databases. The system integrates data base, knowledge base and
machine learning technologies. 1t offers a data analyst an integrated interface and
a wide range of knowledge gencration operators, as described in the Inferemtial
Theory of Learning. Presented ideas are illustrated by results from experiments

with INLEN.

1 Introduction

The current information age is characterized by an enormous proliferation of data gen-
erated and stored about all kinds of human activities. An increasing proportion of these
data is recorded in the form of computer databases. This makes the data easily ac-
cessible and analyzable by computer technology. The rapid growth databases has not,
however, been matched with a parallel development of powerful new methods and tools
for analyzing data, and deriving from them desirable knowledge.

Although existing data analysis tools are very useful and important, they continue to
be oriented primarily toward extraction of quantitative statistical characteristics. These
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tools include determination of statistical correlations, cluster analysis, numerical taxon-
omy, regression analysis, stochastic models, times series analysis, noniinear estimation
techniques, relaxation techniques. various curve-fitling methods, and other.

The above conventional techniques seein to be particularly useful for such tasks as
producing statistical data summaries, fitting equations to data, revealing data orgamza-
tion on the basis of various numerical measures, developing mathematical data models,
ete. Tlheir results facilitate useful data interpretations, and can help to galn important
insights into the processes that generated the data.

These interpretations and insighis arc the ultimate knowledge sought for by a data
analyst. Yet, they have to be developed by a human data analyst.

As the quantity of available data increases, the complexity of these processes may
outstrip capabilities of a humau data analyst.

Summarizing, traditional techniques offer powerful tools and have important practical
applications in data analysis, but they also suffer frouy inherent limitations. For example,
statistical data analysis can discover a correlation between given variables, but 1t caunot
produce a couceptual characterization or a casual explanation why such a correlation
exists. Neither it can develop a justification of this correlation in terms of higher- level
concepls or analogies. Statistical analysis can determine a central tendency and variabil-
ity of various properties, and a regression analysis can fit a complex curve to a sel of
data points. These techniques cannot. however, develop a qualitative characterization of
the data points in abstract terms, or draw an analogy hetween this characterization and
some regularity in another domain. They cannot generate knowledge by themselves from
past experience and use it for solving new probierms.

A numerical taxonomy technique can create a classification of entities, and specify a
numerical similarity among the entities assembled into the same or different classes. It
will not hypothesize, however, reasons for the entities being in the same class, or build
qualitative descriptions of the classes created. Attributes that define the similanty, as
well as the similarity measures, must be defined by a data analyst in advance. These
~ techniques cannot generate relevant attributes and appropriate similarity measures by
themselves. All the above processes require complex syinbolic reasoning that relates high
level concepts and goals of the analysis to available quantitative measures, and performs
data transformations relevant to these goals.

This paper proposes a methodology for assisting a data analyst in perform some of
the above data analysis functions.

2 APPLYING MACHINE LEARNING TO DATA ANALYSIS

This research aims at demonstrating that symbolic methods of machine learning and
discovery offer powerful new tools for data analysis. These tools are able to perform new
type of operations on data, and therefore widen the scope of data analysis tasks that
can be automated or semi-automated. In particular, they can perform concepiual datla
analysis, that is, to derive high-level data descriptions and discover qualitative patterns
in data. Below is a brief review some of these methods in the context of the data analysis
applications.
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2.1 Rule learning from examples

One class of machine learning 1ethods that are potentially useful for data analysis are
based on methods for inductive learuing [rom exainples. Given a set of examples of
different classes (or concepts), and problem relevant knowledge (" background knowl-
edge”), an inductive learning method hypothesizes a general description of each class.
The description is usually expressed as a set of decision rules or as a decision tree.

A decision rule can have different forins; here we will assuime the following form:

CLASS <:: CONDITION,

where CLASS denotes a class or a concept that is assigned to an entity, if that entity
satisfies the CONDITION. The CONDITION is typically a conjunction of elementary
conditions on the values of single attributes, or a disjunction of such conjunctions (a
DNF form). Here, we will assume that if the CLASS needs a disjunctive description,
then several conjunctive rules are associated with the same CLASS. For example, Figure
1 gives an example of a disjunctive description of Class 1 in the form of two rules.

Class 1 <1 Jacket Color is Red, Green or Blue &
Head Shape is Round or Octagonal

Class 1 <:: Head Shape is Square and Jacket Color is Yellow

Fig.1. A two-rule description of Class 1.

These rules characterize a class of robot-figures used in the EMERALD system of
learning and discovery programs. Paraphrasing, " A robot belongs to Class 1, if the color
of its jacket is red, green or blue, and lis head is round or octagonal; or, alternatively, if
the color of its jacket is vellow and its head is square.”

In a decision tree representation, nodes correspoud Lo attributes, branches stemming
from the nodes to attribule values, and leaves to individual classes (e.g., Quinlan, 1986).
A decision tree can be simply transformed into an equivalent set of decision rules (a
ruleset) by traversing all paths from the root to individual leaves. The opposite process,
that is, transforming a ruleset into a decision tree is not so direct. The reason is that a
rule representation is more pow=rful than a decision tree representation, meaning that
the decision tree that is logically equivalent to a given ruleset may contain superfluous
attributes and be more complex (e.g., Michalski, 1990). It should also be noted that
if the decision tree is allowed to be more general than decision rules from which is it
derived, then such decision tree is often simipler than the decision tree obtained directly
fromn examples (Imam and Michalski, 1993).

The EMERALD system, mentioned above, combines five programs exhibiting dif-
ferent learning and discovery capabilities (Kaufman, Michalski, and Schultz, 1989; and
Kaufman, Schultz and Michalski, 1991). These capabilities iniclude decision rule learning
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from examples, learning distinctions between structures, conceptual clustering, predict-
ing object sequences, and deriving cquations characterizing data about physical pro-
cesses.

The rules in Figure 1 were geucrated by the rule learning program {version AQ-15;
Michalski, Hong and Mozetic, 19806) from a set of "positive” and "negative” examples
of robotfigures. This paper concentrates ou the applicability of the two of the above
capabilities to data analysis, specifically, for rale learning and conceptual clustering. For
a deseription of other capabilities see, e.g., ( Kaufinan, Michalski and Kerschberg, 1990.)

Most inductive rule learning methods learn aftribetional descriptions of entities 1in
a class, i.e., descriptions that invelve only binary or multiple-valued attributes. Some
methods learn structural descriplions, which characterize entities in terms of both, at-
tribute valucs, as well as relationslips that Liold amnong components of the entities. Such
relationships are represented by multi-place predicates (Michalski, 1983}, For data analy-
sis, most directly applicable are progratus for learning attributional descriptions, because
typical databases characterize entities in terms of attnbutes.

The input to an attributional learning progratn include a set of examples for each
decision class, and "background knowledge™ relevant to the learning problem. The exam-
ples are in the formn of vectors of atiribute- value pairs associated with a given decision
class. In many cases, background knowledge {BK) is limited to the information about
the legal values the attributes, their type (the scale of measurement), and the preference
crilerion for choosing among candidate hypotheses. Such a criterion is defined by the
user in advance. In addilion to BK, a learning method miay have a representafional bias,
e.g., may constrain the form of descriptions Lo only a certain type of expressions, e.g., sin-
gle conjunctions, decision trees, sets of conjunctive rules, DN expressions, etc. In some
methods, BK may include more information. e.g., constratnis on the interrelationship he-
tween various attributes, rules for gencrating higher level concepts or attributes, and/or
some initial hypothesis (e.g., Michalski. 1983). Learned rules are usually consisient and
completc with regard to thie inputl data. This means that they completely and correctly
classify all the original "training” exaniples. Section 4 presents example solutions from
the inductive concept learning prograin AQLH. In sone applications, especially those
imvolving learning rules from noisy data or learning flexible concepts (Michalsk:, 1990},
it may be advantageous to learn description that may be incomplete or inconsistent

{Bergadano et al, 1990).

- Attributional descriptions can be easily visnalized by mapping them into a set of cells
in a certain diagram. Such diagrau is a planar represcutation of a multidimensional space
spanned over the set of attributes {Michalski, 1978; Wnek et al,, 1990). For example,
Figure 2, shows a diagrammatic visualization of the rules from Figure 1.

This above diagram was generated by the visualization program DIAV (Wnek, el al.,
1990). Each cell in the diagram represents onc combination of values of the attributes.
For example. the cell marked by au X represents the vector: (HeadShape=S, Holding=5§,
Jacket Color=R, IsSmiling=TF"). The four darker-shaded areas, marked Class1 (A}, rep-
resent rule A, and the lighter-shaded area, marked Class 1 (B), represents rule B. In such
a diagram, conjunctive rules correspond to certain regular arrangements of cells and can
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be easily recognized (Michalski, 1978)

The diagrammnatic visualization can be used for displaying the target concept (i.e.,
the concept to be learned), the training exaruples (the examples and counter-examples
of the concept), aud the actual concept learned by a method. By comparning the target
concept with the learned concept. one can determine the error area, i.e., the area con-
taining all examples that wounld be incorrectly classified by the learned concept. Such
a diagrammatic visualization method can illustrate any kind of attributional learning
process (Wnek, 1990). Since a data table used in the data analysis can be viewed as a
set of points in a multidimensional space, the visualization technique can be a useful
tool for representing the data and the leamed symbolic descriptions (in the case when
the space is not too large).

X lt- Fin gl Smaikelk DIAY Blindew

Role A: Class1 <: Jacket Coloris Red, Green or Bluc &
Head Shape is Round or Oclagonal

lilu!e]l:. Class 1 <2 Head Shape s Sguacre and Jucket Color is
. Yellow
(U X ) BER B M BEI B B 3 B AL 2 13 R B e 01 £ s Bak )

Fig. 2. Visualization of rules from Iigure 1.

A program for learning concept descriptions from examples can be used for two classes
of data analysis problems:

- determining differences between different groups of entities in a data set {i.e., learning

a discriminant concept description). Such differences will be expressed as symbolic
descriptions or rules.
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- developing descriptions characterizing one or more groups of entities (Section 3 il-
lustrates an operator for learning concept descriptions (learning the charactersstic
concept description).

Section 3 will illustrate these Ltwo types of descriptions. Some more advanced problems
in the area of learning concepts fromn exanmiples clude:

e Learning from incorrect data, i.e., learning from examples that may contain certain
number of errors or noise.

e Learning from incomplele dafa, i.c., learning from examples in which the values of
some attributes are unknown.

o Learning flezible concepis, i.e., concepts that lack precise definition and whose mean-
ing is context-dependent {Michalski, 1990).

Because all such problems occur in analyzing data, the discussed inethods are poten-
tially useful for data analysis.

2.2 Conceptual clustering

Another class of methods developed in symbolic machine learning is concerned with the
problem of developing a classification of a given set of entities. The problem is similar
to that considered in traditional cluster analysis, but is defined in a more general way.
Given a set of attributional descriptions of sonie entities, a language for characterizing
classes of entities {concepts), and some cluster quality criterion, group the entities to
classes that maximize the classification quality” and define general (extension) symbolic
descriptions of these classes.

Thus, a conceptual clustering prograin seeks not only a classification (a dendrogram)
but also a symbolic description of the proposed classes {clusters). In determining the
quality of the classification, the properties of the class descriptions are taken into con-
sideration. A conventional ("similarity-based™) clusteriug method clusters entities on the
basis of a similarity function that is a function of the propertics (attribute values) of the
objects being compared O; and Os:

Similarity(0, O2) = f(properties(0; ), properties{O2 })

In contrast, a conceptual clustering progran clusters entities on the basis of a conceptual
cohesiveness that is a function of not only properties of the entities, but also of the set
of concepts C C (specified by the language for characterizing the classes of entities), and
of the environment € {a set of neighboring examples):

Conceplual cohesiveness (O1.04) = {(properties(QO;), properties(0O2),C,E)
The clustering quality criterion takes into consideration the "fit” of cluster description to

the data, the simplicity of the description, and some other elementary criteria (Michalski,
Stepp and Diday, 1981). Section 3 gives an illustration of conceptual clustering.
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2.3 Other symbolic operators on data

Metliods for learning rules from examples usually assume that the exampies are expressed
mn terms of atiributes thai are given a priori. These attributes must be sufficiently rele-
vant to the problem, otherwise, the resulting rules will be poor. One unportant advantage
of symbolic methods is that they can relatively casily determine irrelevant attributes. In
these methods, an attribute is irrelevant or weakly relevant, if there is a complete and
consistent class description that does not use this atiribute. Induetive learning programs
such as rule-learning AQ or decision tree lcarning ID3 can relatively easily cope with
large number of irrelevant attributes.

If, however, many attributes are used in the data set, the speed of a rule learning
program is affected. In such a situation, one can employ an operator that determines the
most relevant attributes in the data, from the viewpoint of a given learning task. Only
these attributes are used in the learning process.

There can also be very many exatuples of the saine class, more than necessary for
successful learning. In a such situation, one miay apply an operator that selects the
most representative examples of a give class. A method for determining such examples
is described in {Michalski and Larson, {978).

In many applications, it is not easy to delermine a priori what attributes are most
relevant to the problem at hand. The original attributes are usually dictated by the
available measurements. In such a situation, one may apply an operator that searches
for new attributes that represent certain functions or transformations of the original
attributes (Bongard, 1970). Problems of designing such operators are considered in the
area of constructive induction (Michalski, 1983). For example, constructive induction
prograins, AQ 17-HCl and AQ17-DCI, cau generate new attributes by combining initially
given attributes in may different ways {Michalski, Bleodorn and Wnek, 1991}, or by
detecting patterns in decision rules {Wnek and Michalski, 1993 ).

3 ILLUSTRATING DATA ANALYSIS OPERATORS VIA
GENERAL DATA TABLE

Many sysmbolic data analysis operators can be illustrated by a general data table (GDT)
(Figure 3). The columus in such a GDT correspond to the initial attributes selected to
characterize given entities, Each attribute is assigned a domain and a type. The domain
is the set of all possible values thai an attribute can take on, which may include *7”
("unknown”) and N/A ("not applicable”). The type defines the order of the values in
the domain (the scale). In machine learning, attributes are ofien divided to nominal type
{no order), linear type (total order), and structured ( a hierarchical order).

Rows in the table correspond to individual entities characterized by attributes as-
signed to columns. An entry in the table can thus be a specific value of an atiribute,
a symbol 7 (meaning that value is unknown), or a symbol N/A, if the given attribute
does not apply to the given entity. For example, the color attribute applies to physical
objects, but does not usually apply to abstract entities.
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Original Atribuies Derived Astributes

— ~ ¥

Jrorveseriativo Seiacting repramant ative attr ibwe s
Bmples

Fig. 3. An illnstration of the role of different kuowledge generation operators.

One problem of data analysis is to determine if some designated ("output”) attribute
in a table depends on other attributes. A more complex problem 1s to determine a general
form of this relationship. The latter problem becomes a concept learning from examples
problem, if the output attribute is nominal {its value set is unordered). In such a case,
one column in the data table is designated Lo represent the output attribute. Its values
denote classes whose descriptions are to be learned. In Figure 3, it is the first column.
In conceptual clustering, there is no such colwmn, as there no a priori classes to which
entities belong (therefore it is a forn of "unsupervised learning” ). Based on such a table,
Figure 3 illustrates the role of the operators described above.

Concept learning from ezxamples:

Classes of examples are sets of rows in the table which have the same value of the
output variable. The operator determines general descriptions (rulesets) characterizing
the classes of examples.

Ezample selection:

This operator selects rows in the table thal correspond to the most representative ex-
amples of different classes.

Atiribule selection:

This operator selects columns that correspond to the most relevant attributes for char-
acterizing given classes or the differences amnong them.

Generaling new aitribules:

The problem is to generate additional coluinus that correspond to new attributes gen-
erated by a certain procedure. These new attributes are created by using the problem
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background knowledge, and/or special heuristic procedures (Michalski, Bloedorn and
Whaek, 1991; Wnek and Michalski, 1993).

Conceplual clustering:

The problem is to split the rows of the table to groups of rows that correspond to ”
conceptual clusters,” that is sets of entities with high conceptual cohesiveness. An addi-
tional column is added to the table that corresponds to a new "output attribute.” The
values of this attribute in the table denote the proposed class of each entity (Michalski,
Stepp and Diday, 1991; Michalski and Stepp, 1993).

Learning from imperfeclt data:

In some situations, the entries of the data table are missing, or are incorrect. The problem
is to determine the best (e.g., the most plausible) hypothesis that accounts for all or the
most of the data.

Machine learning research has d.veloped a large number of methods that can be used
as data analysis operators. Many of these methods and their implementations have been
described in (Michalski, Carboneli and Mitchell, 1983 and 1986; Forsyth and Rada, 1986;
Kodratoff, 1988, and Kodratoff and Michalski, 1990, Michie, 1991; Shapiro, 1993). This
section will illustrate the knowledge generation operators described above by a simple
example./Suppose we are given a data table as shown in Figure 4. The table lists some
microcomputers that have been used in the past and their technical characteristics.

Microcomputer; Display [RAM| ROM |Processor|No.Keys
Apple 11 Color.TV]| 48K | 10K {6502 52
Atari 800 Color .TV| 48K | 10K 6502 57-63
Comm. VIC 20 Color TV{ 32K | 11-16K]| 65024 64-63
Exidi Sorceror | B/W_TV] 48K| 4K Z80 57-63
Zenith 118 Builtin | 64K 1K BOSCGA 64-73
Zenith 1189 Built_in | 64K] 8K Z80 64-73
HP 85 Built_in | 32K] 80K | HP g2
Horizon Terminal | 64K | 8K Z80 57-63
Challenger B/W_TV} 32K{ 10K 6502 53-56
0O-5 11 Series | B/W_.TV| 48K| 10K |6502C | 53-56
TRS-80 1 B/W_TV| 48K | 12K | Z8¢C 53-56
TRS-80 111 Built.in | 48K | 14K Z80 64-73

Fig. 4. An Example of a Data Table.

Suppose now that we would like to determine a conceptual classification of the micro-




94 Ryszard 5. Michalski
computers in the Data Table in Figure 4. This is done by applying a conceptual clustering
operator, CLUSTER. Inputs to this operator are data in Figure 4 plus value sets of the
attributes, a criterion for measuring clustering quality, and a parameter suggesting the
number of classes.

The results from applying this operator are shown in Figure 5, for the suggested
number of classes 2 and 3. The results. consist of two components: an extended data
table, and a set of rules. The new data table has two additional columns: the first
column indicates the ”numerical name” of the class assigned to each tuple (entity) in
the generated two- class clustering, and ihe second colutnn indicates the numerical name
of the class in three-class clustering.

The second component are (wo sets of rules: the first ruleset describes classes in the
two-class clustering, and the second ruleset describes classes in the three-class clustering

(Figure 6).

INPUT ouUTPUT
{added to input table)

Microcomputer{ Display {RAM| ROM {Processor]{No l{eys] 2-Group} 3-Group
Apple 11 Color. TV 481K | 10K 6502 |52 1 1
Atan 800 CDlOI..TV 481 | 10k 6502 87-63 1 1
Comm. VIC 20{ Color TV} 32K | 11-16I:| 6502A | 64-63 1 2
Exidi Sorceror | B/W_TV] 48K | 41x Z80 57-63 1 2
Zenith 118 Built.in { 64K 18 8080A 64-73 2 3
Zenith 1189 Builtin | 641K | 8K 280 64-73 2 3
HP 85 Built.in | 32K | 80k HP 92 1 2
Horizon Terminal i 64K | 81« Z80 57-63 1 2
Challenger | B/W.TV| 32K{10K |6502 |53-56 1 1
0-S 11 Series | B/W_TV| 48| 10K 6502C 53-56 1 2
TRS-80 1 B/W._TV| 48K | 12K | Z80 53-56 1 1
TRS-80 111 Bailt.in | 48K 14KX Z80 64-73 1 1

Fig.5. An exiended table generated as a result of the CLUSTER operator.

Suppose now that we use the extended data table in Figure 5 as an 1nput to a pro-
gram for learning concepts from examples. Suppose that the parameters of the operator,
GENRULE, call for determining discriminant descriptions of the classes (a description
that uses the minimum conditions to discriminate between given classes). The resulis
are shown in Figure 7.
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Rules characterizing 2-class clustering.

[Class 1] = [RAM = 16K..48K]
[Class 1] <= [Nokeys < 63]

[Class 2] <= [RAM = 64K] & [No.heys>6d]

Rules characterizing 3-class clusiering:
[Class 1] <= [Processor = 6502 v 808%0A v Z80] & [ROM = 101..14K]

[Class 2] <= [Processor = 6502A Vv 6502C v HP]
[Class 2] ¢= [ROM = 1K..8K] & [Display # Built.in]

[Class 3] <= [Processor = 6502 v 8080A v Z80] & [ROM
[Display = Built_in}

1K..8K] &

Fig. 6. Rules characterizing classes created by the CLUSTER operator.

Rules for a 2-class differentaiion created by operator DIFF

[Class 1] <= [Display # Built.in]
[Class 1 ] &= [ROM > UK]

[Class 2 | <= [RAM = 64K} & [No_keys = 64-73]
Rules for a 3-class differentation created by operator DIFF

{Class 1] = [Processor = Z80 Vv 6502] & [ROM = 10K..14K]

[Class 2] <= [Processor = 6502C V 6502A v HP]
[Class 2] <= [ROM = 4K..8K] & [Display = B/W_TV v Term]

[Class 3] <= [ROM = 1K..8K] & Display = Built_in]

Fig. 7. Discriminant rules generated by GENRULE operator.

95

Comiparing rules in Figure 6 with those on Figure 7 (the latter were generated without
knowledge of the former), one can see that they similar but not identical. Rules in Figure
7 are stmpler, and express only information needed for discriminating between the classes.
(The rules in Figure G are called characleristic descriplions; such rules may contain the
maximal number of characteristics common for a given class (Michalski, 1983)). Both
sets of rules (in Figure 6 and 7) are complele and consistent with all the examples in the
table in Figure 5, i.e., they cover all examples and do not cover any counter-examples of

each class.



96 Ryszard 5. Michalski

4 INLEN: AN INTEGRATED SYSTEM FOR KNOWLEDGE
DISCOVERY

CLUSTER and RULEGEN are exaples ol operators that produce new knowledge from
given data and knowledge. These operators have been described i the Inferential Theory
of Learning {Michalski, 1994) as fundawental inowledge generalion operators (generally,
transmuiations). The theory. which views every form of learning and discovery as a
search through a knowledge space. has identified several other operators, generally called
knowledge transmautations, such as abstraction, explanation, simnilization, ete.

To make knowledge generation operatlors casily available to a data analyst, they have
been integrated inlo one system. called INLEN (haubinan, Michalski and Kerschberg,
1990; Michalski et al. 1992). INLEN has integrated a wide range of knowledge generation
operalors, including both symbolic operators {developed m Macline Learning research)
and conventional statistical data analysis operators. To facilitate the application of these
operators, INLEN combines a relational dafa base technology with a knowledge base
technology. The database technology is used for storing and updating data tables, and
the knowledge base technology is used for sloring and updating rules.

A general diagram of INLEN is presented in Figure 8. (The name is an acronym from
inference and learning. )

Ptabase
Maintanance
QOperators
'\ﬁ“m n s r L A& moA ] 2 oA 4 ®m om 4 * m
Qpemmt-g oY s o o ayfps @ @ 9 e 1
GO N iR
G0 o Lol B Koowledge
A R At :
" s : Maintanance
B R ‘, : Operators
- S —— - (EMO)

Fig.8. A general diagram of the INLEN system for concepinal data analysis.

The system offers a data analyst three classcs of data manipulation and knowledge
generation operators:

o DMO: Database Maintenance Qperators. These operators are conventional operators
for creating, modifying and accessing data tables.

e I{MO: Knowledge Mainitenance Operators. These operators play a similar role as the
DMO, but they apply to the rules in the knowledge base.

e KGO: Knowledge Generation Operators. These operators perform symbolic and nu-
merical data analysis operations on data and knowledge to produce new knowledge.
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They are based on various machine learnin g and inference programs, on conventional
data analysis techniques.

The systemt also iucludes data and knowledge visualization operators for visualizing
results of data analysis. The diagrammatic visualization nmethod, described briefly above,
1s used for displaying effects of symibolic operations on discrete data.

The KGOs operators are the heart of the INLEN system. To facilitate their use, the
concept of a knowledge segment was introduced. A knowledge seginent is a structure that
links some table or tables from the database with some rules from the knowledge base.
Such knowledge segments are both iuputs and omputs of KGO operators. Thus, KGOs
can be viewed as modules for perfloriiing complex inferences on knowledge segments in
order to create new knowledge segents.

An execution of a KGO usually requires some background knowledge (BL), and is
guided by some parameters. The B specifies the facts about the application domain,
provides information about legal value sets of attributes, about their types and the
scale, constraints and relationships anjong attributes, etc. The paramelers specify how
to choose an output description from multiple possibilities. KGOs can usually work in
either incremental or batch mode. 1n the incremental mode, they try to improve or
refine the existing knowledge; while in the batch mode, they try to create entirely new
knowledge from facts in the database, using knowledge. the knowledge base.

LG Os in INLEN can be classified into several groups, based on the type of the output
they generate. Each group includes a nuniber of specific operators.

¢ GENRULE operators generate various kinds of rules from given facts. They include
operators that generate symbolic descriptions of data, e.g., generate rules character-
1zing a set of facts, discriminale between groups of facts, build decision trees, char-
acterize a sequence of events, and determine differences between sequences. They
also include operators generating equations characterizing qualitatively and quanti-
tatively numerical data sets, aud build conceptual hierarchies.

* TRANSRULE operators perform various transfornations of the riales, e.g., generalize
or specialize, abstract or concretize given rulcs.

* GENATR operators generate new attributes, or select the most representative at-
tributes from a given set (using methods of constructive induction).

* GENEVE operators generate events, facts or exainples that satisfy given rules, select
the most representative events from a given set., determine an example that is similar
to a given example, or predict a value of a given variable

* ANAREL operators analyze mathematical, statistical and logical relationships ex-
istiug in the data, e.g., they may determine the degree of similarity between two
examples, check if there is an implicative relationship between two variables, deter-
mine statistical propertics of the data.

» TEST operator tests the performance of given set of rules on an assuied set of facts.
The primary output from the operator is a confusion matrix, i.e., a table whose (i,j)th
element shows how many examples from the class i were classified by the rules to be
in class j.
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For more details about these operators the reader can consult papers by Kaufman,
Michalski and Kerschberg (1990) and Michalski et al. {1992).

5 EXAMPLE OF APPLICATION: DISCOVERING
DEMOGRAPHIC AND ECONOMIC PATTERNS IN THE
WORLD DATA

This section briefly illustrates an application of INLEN to discover economic and demo-
graphic patterns characteristic of different regious of the world in 1965 and 1990. The

database consisted of characterizations of each country in terms of 95 attributes, such
as

- population
- growth rate
— percentage of the labor force in industry
-~ percentage of land area devoled to agriculture
— per capita GNP
— individual life expectancy
— percentage of population over age 63
and others.

Using 1ts constructive induction capabilities, the system is able to construct additional
derived attributes that are especially relevant to a given class of tasks. For example, it
may construct an attribute: " Change in the life expectancy between 1980-90.”

In the experiment reported below, several operators have been applied, such as con-
ceptual clustering, representation space optirnization, empirical rule induction, rule op-

timization and rule testing and example matching. Here are few examples of general
patterns found by INLEN:

~ SE Europe has rural, heavily agricultural societies
— There is low resource allocation to education in Mediterranean Europe
— Developed Far Eastern couuntries, such as Japan and Korea, have low death rate

The system created classes of countries, "regional patierns”, and defined typical
characteristics for these regions. It also found exceptional countries that do not follow
typical patterns for their region. Here are exampies of such cases:

— Canada resembles the Far East more than the US in some respects, such as popu-
lation growth rale, allocation of GNP to medicine, agricultural labor force, infant
mortality rate, death rate, percentage of the labor force in industry.

— lialy is influenced more by Western than Southern Europe

— China is very similar to (formerly) Communist countries of Southeastern Europe

— Island countries tend Lo deviate from the nearby mainland’s patterns.
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Although many of the found characteristics and proposed classifications of the world
regions are known, some of them have been novel. The main achievement of this exper-
iment, 1s, however, not the knowledge discovered. but a demonstration of the capability
of INLEN to discover plansible and understandable patterns in large volumes of data.

6 SUMMARY

An enormous proliferation and growth of databases has created a demand for new type
of data analysis systeins that can not only numerically but also conceptually characterize
data and derive useful knowledge from them. In particular, such systems should be able
to determine logical relationships, qualitative evaluations and causal dependencies in the
data, which are very important for luman data imterpretation and decision making. To
derive such knowledge, these systems need to be able to represent and take advantage
of prior knowledge about the data.

The paper has described a methodology and a large-scale multistrategy knowledge
discovery system, INLEN, which is designed with such objectives in mind. INLEN in-
tegrates data base, knowledge base and machine learning and discovery technologies.
It Incorporates a large family of operators that perforn symbolic data and knowledge
manipulation, and extraction of various kinds of knowledge. These operators include
rule generation, selection of most relevant attributes or data items, generation of new
attributes, building conceptual hierarchies, generation of equations and others.

Although many INLEN operators are based on the programs already developed, more
research is requited to make them adequate or efficient for analysis of large volumes of
data, and to determine new operators. Future rescarch uneeds also to mvestigate other
types of symbolic learning and discovery operators that would be useful for data anal ysis.
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