

# SEEKING KNOWLEDGE IN THE FLOOD OF FACTS

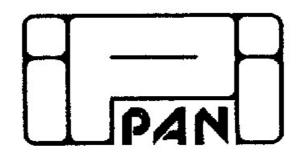
by

R. S. Michalski

# Intelligent Information Systems

Proceedings of the Workshop

Wigry, Poland, 6-10 June, 1994



Warszawa 1994

Intelligent Information Systems III Proceedings of the Workshop held in Wigry, Poland, 6-10 June, 1994

#### Scientific Editors

# Prof. Dr Mirosław Dąbrowski

Institute of Computer Science, Polish Academy of Sciences, Ordona 21, 01-237 Warsaw, Poland

## Dr Maciej Michalewicz

Institute of Computer Science, Polish Academy of Sciences, Ordona 21, 01-237 Warsaw, Poland

#### Prof. Dr Zbigniew Raś

University of North Carolina, Department of Computer Science Charlotte, N.C. 28223, USA. Institute of Computer Science, Polish Academy of Sciences, Ordona 21, 01-237 Warsaw, Poland

©Copyright by Instytut Podstaw Informatyki PAN, Warszawa, 1994

ISBN 83-900820-3-9

Papers have been reproduced without authors corrections.

First edition

Texsetting by Urszula Kruś

## International Workshop on

# Intelligent Information Systems III

Wigry, Poland, 6-10 June 1994

## **Program Committee**

Miroslaw Dąbrowski Institute of Computer Science,

Polish Academy of Sciences

– chairman

Andrzej Jankowski University of Warsaw

Andrzej Florczyk Bureau of Information Technology

Andrzej Florczyk Bureau of Information Tech at the Council of Ministers

\_

Maciej Michalewicz Institute of Computer Science,

Polish Academy of Sciences - secretary

Ryszard Michalski George Mason University

Zdzisław Pawlak Institute of Computer Science,

Warsaw University of Technology

Zbigniew W. Raś University of North Carolina

Jan Żytkow Wichita State University

Intelligent Information Systems III Proceedings of the Workshop held in Wigry, Poland, 6-10 June, 1994

pages 85- 102

# Seeking Knowledge in the Flood of Facts

Dedicated to the memory of Professor Helena Rasiowa - a truly outstanding scientist, a superb teacher, an extraordinary human being, and an unforgettable friend.

Ryszard S. Michalski George Mason University Fairfax, VA 22030

Abstract. Due to an enormous expansion of computer technology, electronic networks and databases, modern societies are suffering from a severe information overload. The navigation through the masses of available facts and information in order to derive desired knowledge is becoming increasingly difficult. This creates a significant demand for intelligent systems capable of assisting data analysts in extracting goal-oriented knowledge from large volumes of data. This paper presents a multistrategy methodology and a system, INLEN, for knowledge discovery in large relational databases. The system integrates data base, knowledge base and machine learning technologies. It offers a data analyst an integrated interface and a wide range of knowledge generation operators, as described in the Inferential Theory of Learning. Presented ideas are illustrated by results from experiments with INLEN.

#### 1 Introduction

The current information age is characterized by an enormous proliferation of data generated and stored about all kinds of human activities. An increasing proportion of these data is recorded in the form of computer databases. This makes the data easily accessible and analyzable by computer technology. The rapid growth databases has not, however, been matched with a parallel development of powerful new methods and tools for analyzing data, and deriving from them desirable knowledge.

Although existing data analysis tools are very useful and important, they continue to be oriented primarily toward extraction of quantitative statistical characteristics. These tools include determination of statistical correlations, cluster analysis, numerical taxonomy, regression analysis, stochastic models, times series analysis, nonlinear estimation techniques, relaxation techniques, various curve-fitting methods, and other.

The above conventional techniques seem to be particularly useful for such tasks as producing statistical data summaries, fitting equations to data, revealing data organization on the basis of various numerical measures, developing mathematical data models, etc. Their results facilitate useful data interpretations, and can help to gain important insights into the processes that generated the data.

These interpretations and insights are the ultimate knowledge sought for by a data analyst. Yet, they have to be developed by a human data analyst.

As the quantity of available data increases, the complexity of these processes may outstrip capabilities of a human data analyst.

Summarizing, traditional techniques offer powerful tools and have important practical applications in data analysis, but they also suffer from inherent limitations. For example, statistical data analysis can discover a correlation between given variables, but it cannot produce a conceptual characterization or a casual explanation why such a correlation exists. Neither it can develop a justification of this correlation in terms of higher-level concepts or analogies. Statistical analysis can determine a central tendency and variability of various properties, and a regression analysis can fit a complex curve to a set of data points. These techniques cannot, however, develop a qualitative characterization of the data points in abstract terms, or draw an analogy between this characterization and some regularity in another domain. They cannot generate knowledge by themselves from past experience and use it for solving new problems.

A numerical taxonomy technique can create a classification of entities, and specify a numerical similarity among the entities assembled into the same or different classes. It will not hypothesize, however, reasons for the entities being in the same class, or build qualitative descriptions of the classes created. Attributes that define the similarity, as well as the similarity measures, must be defined by a data analyst in advance. These techniques cannot generate relevant attributes and appropriate similarity measures by themselves. All the above processes require complex symbolic reasoning that relates high level concepts and goals of the analysis to available quantitative measures, and performs data transformations relevant to these goals.

This paper proposes a methodology for assisting a data analyst in perform some of the above data analysis functions.

## 2 APPLYING MACHINE LEARNING TO DATA ANALYSIS

This research aims at demonstrating that symbolic methods of machine learning and discovery offer powerful new tools for data analysis. These tools are able to perform new type of operations on data, and therefore widen the scope of data analysis tasks that can be automated or semi-automated. In particular, they can perform conceptual data analysis, that is, to derive high-level data descriptions and discover qualitative patterns in data. Below is a brief review some of these methods in the context of the data analysis applications.

## 2.1 Rule learning from examples

One class of machine learning methods that are potentially useful for data analysis are based on methods for inductive learning from examples. Given a set of examples of different classes (or concepts), and problem relevant knowledge ("background knowledge"), an inductive learning method hypothesizes a general description of each class. The description is usually expressed as a set of decision rules or as a decision tree.

A decision rule can have different forms; here we will assume the following form:

CLASS <:: CONDITION,

where CLASS denotes a class or a concept that is assigned to an entity, if that entity satisfies the CONDITION. The CONDITION is typically a conjunction of elementary conditions on the values of single attributes, or a disjunction of such conjunctions (a DNF form). Here, we will assume that if the CLASS needs a disjunctive description, then several conjunctive rules are associated with the same CLASS. For example, Figure 1 gives an example of a disjunctive description of Class 1 in the form of two rules.

Class 1 <:: Jacket Color is Red, Green or Blue & Head Shape is Round or Octagonal

Class 1 <:: Head Shape is Square and Jacket Color is Yellow

Fig. 1. A two-rule description of Class 1.

These rules characterize a class of robot-figures used in the EMERALD system of learning and discovery programs. Paraphrasing, "A robot belongs to Class 1, if the color of its jacket is red, green or blue, and his head is round or octagonal; or, alternatively, if the color of its jacket is yellow and its head is square."

In a decision tree representation, nodes correspond to attributes, branches stemming from the nodes to attribute values, and leaves to individual classes (e.g., Quinlan, 1986). A decision tree can be simply transformed into an equivalent set of decision rules (a ruleset) by traversing all paths from the root to individual leaves. The opposite process, that is, transforming a ruleset into a decision tree is not so direct. The reason is that a rule representation is more powerful than a decision tree representation, meaning that the decision tree that is logically equivalent to a given ruleset may contain superfluous attributes and be more complex (e.g., Michalski, 1990). It should also be noted that if the decision tree is allowed to be more general than decision rules from which is it derived, then such decision tree is often simpler than the decision tree obtained directly from examples (Imam and Michalski, 1993).

The EMERALD system, mentioned above, combines five programs exhibiting different learning and discovery capabilities (Kaufman, Michalski, and Schultz, 1989; and Kaufman, Schultz and Michalski, 1991). These capabilities include decision rule learning

from examples, learning distinctions between structures, conceptual clustering, predicting object sequences, and deriving equations characterizing data about physical processes.

The rules in Figure 1 were generated by the rule learning program (version AQ-15; Michalski, Hong and Mozetic, 1986) from a set of "positive" and "negative" examples of robot-figures. This paper concentrates on the applicability of the two of the above capabilities to data analysis, specifically, for rule learning and conceptual clustering. For a description of other capabilities see, e.g., (Kaufman, Michalski and Kerschberg, 1990.)

Most inductive rule learning methods learn attributional descriptions of entities in a class, i.e., descriptions that involve only binary or multiple-valued attributes. Some methods learn structural descriptions, which characterize entities in terms of both, attribute values, as well as relationships that hold among components of the entities. Such relationships are represented by multi-place predicates (Michalski, 1983). For data analysis, most directly applicable are programs for learning attributional descriptions, because typical databases characterize entities in terms of attributes.

The input to an attributional learning program include a set of examples for each decision class, and "background knowledge" relevant to the learning problem. The examples are in the form of vectors of attribute- value pairs associated with a given decision class. In many cases, background knowledge (BK) is limited to the information about the legal values the attributes, their type (the scale of measurement), and the preference criterion for choosing among candidate hypotheses. Such a criterion is defined by the user in advance. In addition to BK, a learning method may have a representational bias, e.g., may constrain the form of descriptions to only a certain type of expressions, e.g., single conjunctions, decision trees, sets of conjunctive rules, DNF expressions, etc. In some methods, BK may include more information, e.g., constraints on the interrelationship between various attributes, rules for generating higher level concepts or attributes, and/or some initial hypothesis (e.g., Michalski. 1983). Learned rules are usually consistent and complete with regard to the input data. This means that they completely and correctly classify all the original "training" examples. Section 4 presents example solutions from the inductive concept learning program AQ15. In some applications, especially those involving learning rules from noisy data or learning flexible concepts (Michalski, 1990), it may be advantageous to learn description that may be incomplete or inconsistent (Bergadano et al, 1990).

Attributional descriptions can be easily visualized by mapping them into a set of cells in a certain diagram. Such diagram is a planar representation of a multidimensional space spanned over the set of attributes (Michalski, 1978; Wnek et al., 1990). For example, Figure 2, shows a diagrammatic visualization of the rules from Figure 1.

This above diagram was generated by the visualization program DIAV (Wnek, et al., 1990). Each cell in the diagram represents one combination of values of the attributes. For example, the cell marked by an X represents the vector: (HeadShape=S, Holding=S, Jacket Color=R, IsSmiling=F). The four darker-shaded areas, marked Class 1 (A), represent rule A, and the lighter-shaded area, marked Class 1 (B), represents rule B. In such a diagram, conjunctive rules correspond to certain regular arrangements of cells and can

be easily recognized (Michalski, 1978)

The diagrammatic visualization can be used for displaying the target concept (i.e., the concept to be learned), the training examples (the examples and counter-examples of the concept), and the actual concept learned by a method. By comparing the target concept with the learned concept, one can determine the error area, i.e., the area containing all examples that would be incorrectly classified by the learned concept. Such a diagrammatic visualization method can illustrate any kind of attributional learning process (Wnek, 1990). Since a data table used in the data analysis can be viewed as a set of points in a multidimensional space, the visualization technique can be a useful tool for representing the data and the learned symbolic descriptions (in the case when the space is not too large).

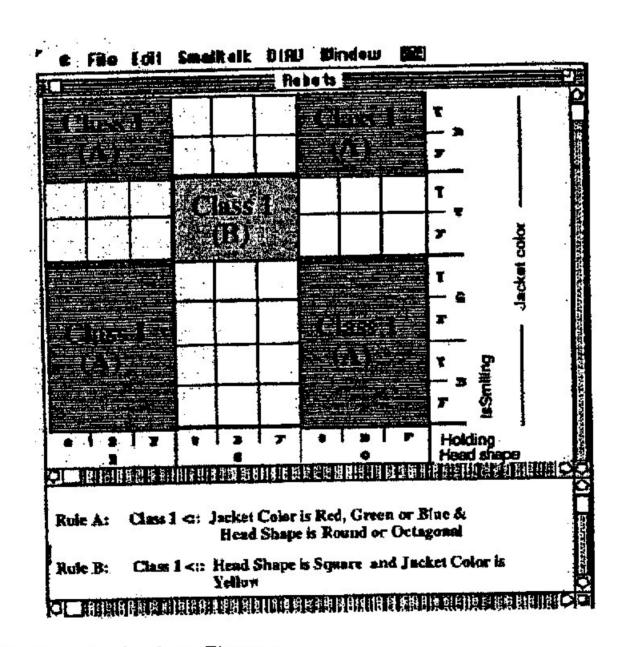


Fig. 2. Visualization of rules from Figure 1.

A program for learning concept descriptions from examples can be used for two classes of data analysis problems:

- determining differences between different groups of entities in a data set (i.e., learning a discriminant concept description). Such differences will be expressed as symbolic descriptions or rules.

- developing descriptions characterizing one or more groups of entities (Section 3 illustrates an operator for learning concept descriptions (learning the *characteristic* concept description).

Section 3 will illustrate these two types of descriptions. Some more advanced problems in the area of learning concepts from examples include:

- Learning from incorrect data, i.e., learning from examples that may contain certain number of errors or noise.
- Learning from incomplete data, i.e., learning from examples in which the values of some attributes are unknown.
- Learning flexible concepts, i.e., concepts that lack precise definition and whose meaning is context-dependent (Michalski, 1990).

Because all such problems occur in analyzing data, the discussed methods are potentially useful for data analysis.

#### 2.2 Conceptual clustering

Another class of methods developed in symbolic machine learning is concerned with the problem of developing a classification of a given set of entities. The problem is similar to that considered in traditional cluster analysis, but is defined in a more general way. Given a set of attributional descriptions of some entities, a language for characterizing classes of entities (concepts), and some cluster quality criterion, group the entities to classes that maximize the "classification quality" and define general (extension) symbolic descriptions of these classes.

Thus, a conceptual clustering program seeks not only a classification (a dendrogram) but also a symbolic description of the proposed classes (clusters). In determining the quality of the classification, the properties of the class descriptions are taken into consideration. A conventional ("similarity-based") clustering method clusters entities on the basis of a similarity function that is a function of the properties (attribute values) of the objects being compared  $O_1$  and  $O_2$ :

$$Similarity(O_1, O_2) = f(properties(O_1), properties(O_2))$$

In contrast, a conceptual clustering program clusters entities on the basis of a conceptual cohesiveness that is a function of not only properties of the entities, but also of the set of concepts C C (specified by the language for characterizing the classes of entities), and of the environment E (a set of neighboring examples):

```
Conceptual cohesiveness (O_1,O_2) = f(properties(O_1), properties(O_2), C, E)
```

The clustering quality criterion takes into consideration the "fit" of cluster description to the data, the simplicity of the description, and some other elementary criteria (Michalski, Stepp and Diday, 1981). Section 3 gives an illustration of conceptual clustering.

#### 2.3 Other symbolic operators on data

Methods for learning rules from examples usually assume that the examples are expressed in terms of attributes that are given a priori. These attributes must be sufficiently relevant to the problem, otherwise, the resulting rules will be poor. One important advantage of symbolic methods is that they can relatively easily determine irrelevant attributes. In these methods, an attribute is irrelevant or weakly relevant, if there is a complete and consistent class description that does not use this attribute. Inductive learning programs such as rule-learning AQ or decision tree learning ID3 can relatively easily cope with large number of irrelevant attributes.

If, however, many attributes are used in the data set, the speed of a rule learning program is affected. In such a situation, one can employ an operator that determines the most relevant attributes in the data, from the viewpoint of a given learning task. Only these attributes are used in the learning process.

There can also be very many examples of the same class, more than necessary for successful learning. In a such situation, one may apply an operator that selects the most representative examples of a give class. A method for determining such examples is described in (Michalski and Larson, 1978).

In many applications, it is not easy to determine a priori what attributes are most relevant to the problem at hand. The original attributes are usually dictated by the available measurements. In such a situation, one may apply an operator that searches for new attributes that represent certain functions or transformations of the original attributes (Bongard, 1970). Problems of designing such operators are considered in the area of constructive induction (Michalski, 1983). For example, constructive induction programs, AQ 17-HCl and AQ17-DCl, can generate new attributes by combining initially given attributes in may different ways (Michalski, Bleodorn and Wnek, 1991), or by detecting patterns in decision rules (Wnek and Michalski, 1993).

# 3 ILLUSTRATING DATA ANALYSIS OPERATORS VIA GENERAL DATA TABLE

Many sysmbolic data analysis operators can be illustrated by a general data table (GDT) (Figure 3). The columns in such a GDT correspond to the initial attributes selected to characterize given entities. Each attribute is assigned a domain and a type. The domain is the set of all possible values that an attribute can take on, which may include "?" ("unknown") and N/A ("not applicable"). The type defines the order of the values in the domain (the scale). In machine learning, attributes are often divided to nominal type (no order), linear type (total order), and structured (a hierarchical order).

Rows in the table correspond to individual entities characterized by attributes assigned to columns. An entry in the table can thus be a specific value of an attribute, a symbol? (meaning that value is unknown), or a symbol N/A, if the given attribute does not apply to the given entity. For example, the color attribute applies to physical objects, but does not usually apply to abstract entities.

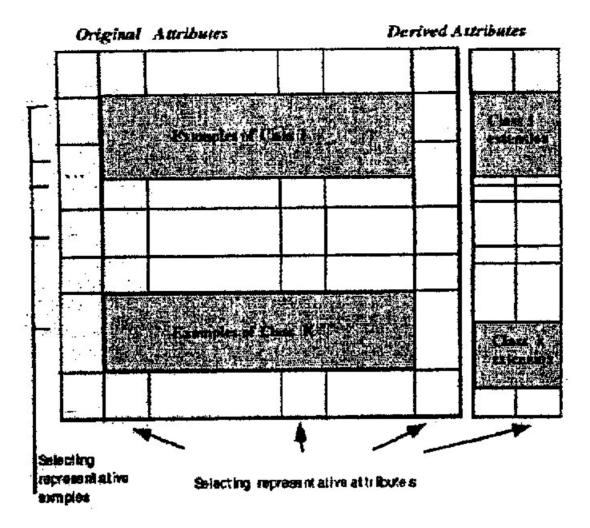


Fig. 3. An illustration of the role of different knowledge generation operators.

One problem of data analysis is to determine if some designated ("output") attribute in a table depends on other attributes. A more complex problem is to determine a general form of this relationship. The latter problem becomes a concept learning from examples problem, if the output attribute is nominal (its value set is unordered). In such a case, one column in the data table is designated to represent the output attribute. Its values denote classes whose descriptions are to be learned. In Figure 3, it is the first column. In conceptual clustering, there is no such column, as there no a priori classes to which entities belong (therefore it is a form of "unsupervised learning"). Based on such a table, Figure 3 illustrates the role of the operators described above.

#### Concept learning from examples:

Classes of examples are sets of rows in the table which have the same value of the output variable. The operator determines general descriptions (rulesets) characterizing the classes of examples.

#### Example selection:

This operator selects rows in the table that correspond to the most representative examples of different classes.

#### Attribute selection:

This operator selects columns that correspond to the most relevant attributes for characterizing given classes or the differences among them.

#### Generating new attributes:

The problem is to generate additional columns that correspond to new attributes generated by a certain procedure. These new attributes are created by using the problem

background knowledge, and/or special heuristic procedures (Michalski, Bloedorn and Wnek, 1991; Wnek and Michalski, 1993).

#### Conceptual clustering:

The problem is to split the rows of the table to groups of rows that correspond to "conceptual clusters," that is sets of entities with high conceptual cohesiveness. An additional column is added to the table that corresponds to a new "output attribute." The values of this attribute in the table denote the proposed class of each entity (Michalski, Stepp and Diday, 1991; Michalski and Stepp, 1993).

#### Learning from imperfect data:

In some situations, the entries of the data table are missing, or are incorrect. The problem is to determine the best (e.g., the most plausible) hypothesis that accounts for all or the most of the data.

Machine learning research has developed a large number of methods that can be used as data analysis operators. Many of these methods and their implementations have been described in (Michalski, Carbonell and Mitchell, 1983 and 1986; Forsyth and Rada, 1986; Kodratoff, 1988, and Kodratoff and Michalski, 1990, Michie, 1991; Shapiro, 1993). This section will illustrate the knowledge generation operators described above by a simple example. Suppose we are given a data table as shown in Figure 4. The table lists some microcomputers that have been used in the past and their technical characteristics.

| Microcomputer  | Display  | RAM | ROM    | Processor | No_Keys |
|----------------|----------|-----|--------|-----------|---------|
| Apple II       | Color_TV | 48K | 10K    | 6502      | 52      |
| Atari 800      | Color_TV | 48K | 10K    | 6502      | 57-63   |
| Comm. VIC 20   | Color_TV | 32K | 11-16K | 6502A     | 64-63   |
| Exidi Sorceror | B/W_TV   | 48K | 4K     | Z80       | 57-63   |
| Zenith 118     | Built_in | 64K | 1K     | 8080A     | 64-73   |
| Zenith 1189    | Built_in | 64K | 8K     | Z80       | 64-73   |
| HP 85          | Built_in | 32K | 80K    | HP        | 92      |
| Horizon        | Terminal | 64K | 8K     | Z80       | 57-63   |
| Challenger     | B/W_TV   | 32K | 10K    | 6502      | 53-56   |
| O-S 11 Series  | B/W_TV   | 48K | 10K    | 6502C     | 53-56   |
| TRS-80 I       | B/W_TV   | 48K | 12K    | Z80       | 53-56   |
| TRS-80 III     | Built_in | 48K | 14K    | Z80       | 64-73   |

Fig. 4. An Example of a Data Table.

Suppose now that we would like to determine a conceptual classification of the micro-

computers in the Data Table in Figure 4. This is done by applying a conceptual clustering operator, CLUSTER. Inputs to this operator are data in Figure 4 plus value sets of the attributes, a criterion for measuring clustering quality, and a parameter suggesting the number of classes.

The results from applying this operator are shown in Figure 5, for the suggested number of classes 2 and 3. The results consist of two components: an extended data table, and a set of rules. The new data table has two additional columns: the first column indicates the "numerical name" of the class assigned to each tuple (entity) in the generated two-class clustering, and the second column indicates the numerical name of the class in three-class clustering.

The second component are two sets of rules: the first ruleset describes classes in the two-class clustering, and the second ruleset describes classes in the three-class clustering (Figure 6).

| INPUT          |          |     |        |             |         | OUTPUT (added to input table) |         |
|----------------|----------|-----|--------|-------------|---------|-------------------------------|---------|
|                |          |     |        |             |         |                               |         |
| Microcomputer  | Display  | RAM | ROM    | Processor   | No_Keys | 2-Group                       | 3-Group |
| Apple II       | Color_TV | 48K | 10K    | 6502        | 52      | 1                             | 1       |
| Atari 800      | Color_TV | 48K | 10K    | 6502        | 57-63   | 1                             | 1       |
| Comm. VIC 20   | Color_TV | 32K | 11-16K | 6502A       | 64-63   | 1                             | 2       |
| Exidi Sorceror | B/W_TV   | 48K | 4 K    | Z80         | 57-63   | 1                             | 2       |
| Zenith 118     | Built_in | 64K | 1K     | 8080A       | 64-73   | 2                             | 3       |
| Zenith 1189    | Built_in | 64K | 8K     | Z80         | 64-73   | 2                             | 3       |
| HP 85          | Built_in | 32K | 80К    | HP          | 92      | 1                             | 2       |
| Horizon        | Terminal | 64K | 8K     | <b>Z</b> 80 | 57-63   | 1                             | 2       |
| Challenger     | B/W_TV   | 32K | 10K    | 6502        | 53-56   | 1                             | 1       |
| O-S 11 Series  | B/W_TV   | 48K | 10K    | 6502C       | 53-56   | 1                             | 2       |
| TRS-80 I       | B/W_TV   | 48K | 12K    | Z80         | 53-56   | 1                             | 1       |
| TRS-80 III     | Built_in | 48K | 14K    | Z80         | 64-73   | 1                             | 1       |

Fig. 5. An extended table generated as a result of the CLUSTER operator.

Suppose now that we use the extended data table in Figure 5 as an input to a program for learning concepts from examples. Suppose that the parameters of the operator, GENRULE, call for determining discriminant descriptions of the classes (a description that uses the minimum conditions to discriminate between given classes). The results are shown in Figure 7.

Rules characterizing 2-class clustering:

```
[Class 1] ← [RAM = 16K..48K]
[Class 1] ← [No_keys ≤ 63]

[Class 2] ← [RAM = 64K] & [No_Keys>64]

Rules characterizing 3-class clustering:
[Class 1] ← [Processor = 6502 ∨ 8080A ∨ Z80] & [ROM = 10K..14K]

[Class 2] ← [Processor = 6502A ∨ 6502C ∨ HP]
[Class 2] ← [ROM = 1K..8K] & [Display ≠ Built_in]

[Class 3] ← [Processor = 6502 ∨ 8080A ∨ Z80] & [ROM = 1K..8K] & [Display = Built_in]
```

Fig. 6. Rules characterizing classes created by the CLUSTER operator.

Rules for a 2-class differentation created by operator DIFF

```
[Class 1] ← [Display ≠ Built_in]
[Class 1] ← [ROM ≥ 14K]

[Class 2] ← [RAM = 64K] & [No_keys = 64-73]

Rules for a 3-class differentation created by operator DIFF

[Class 1] ← [Processor = Z80 ∨ 6502] & [ROM = 10K..14K]

[Class 2] ← [Processor = 6502C ∨ 6502A ∨ HP]
[Class 2] ← [ROM = 4K..8K] & [Display = B/W_TV ∨ Term]

[Class 3] ← [ROM = 1K..8K] & Display = Built_in]
```

Fig. 7. Discriminant rules generated by GENRULE operator.

Comparing rules in Figure 6 with those on Figure 7 (the latter were generated without knowledge of the former), one can see that they similar but not identical. Rules in Figure 7 are simpler, and express only information needed for discriminating between the classes. (The rules in Figure 6 are called *characteristic descriptions*; such rules may contain the maximal number of characteristics common for a given class (Michalski, 1983)). Both sets of rules (in Figure 6 and 7) are *complete* and *consistent* with all the examples in the table in Figure 5, i.e., they cover all examples and do not cover any counter-examples of each class.

# 4 INLEN: AN INTEGRATED SYSTEM FOR KNOWLEDGE DISCOVERY

CLUSTER and RULEGEN are examples of operators that produce new knowledge from given data and knowledge. These operators have been described in the Inferential Theory of Learning (Michalski, 1994) as fundamental knowledge generation operators (generally, transmutations). The theory, which views every form of learning and discovery as a search through a knowledge space, has identified several other operators, generally called knowledge transmutations, such as abstraction, explanation, similization, etc.

To make knowledge generation operators easily available to a data analyst, they have been integrated into one system, called INLEN (Kaufman, Michalski and Kerschberg, 1990; Michalski et al. 1992). INLEN has integrated a wide range of knowledge generation operators, including both symbolic operators (developed in Machine Learning research) and conventional statistical data analysis operators. To facilitate the application of these operators, INLEN combines a relational data base technology with a knowledge base technology. The database technology is used for storing and updating data tables, and the knowledge base technology is used for storing and updating rules.

A general diagram of INLEN is presented in Figure 8. (The name is an acronym from inference and learning.)

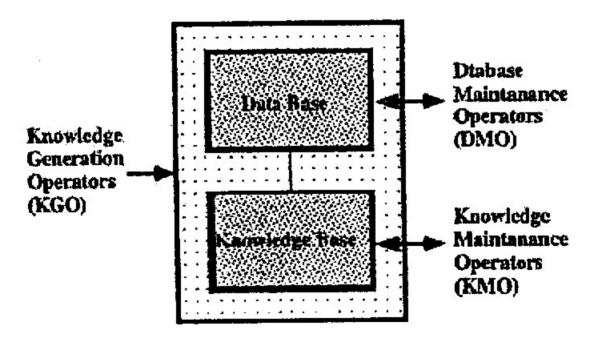


Fig. 8. A general diagram of the INLEN system for conceptual data analysis.

The system offers a data analyst three classes of data manipulation and knowledge generation operators:

- DMO: Database Maintenance Operators. These operators are conventional operators for creating, modifying and accessing data tables.
- KMO: Knowledge Maintenance Operators. These operators play a similar role as the DMO, but they apply to the rules in the knowledge base.
- KGO: Knowledge Generation Operators. These operators perform symbolic and numerical data analysis operations on data and knowledge to produce new knowledge.

They are based on various machine learning and inference programs, on conventional data analysis techniques.

The system also includes data and knowledge visualization operators for visualizing results of data analysis. The diagrammatic visualization method, described briefly above, is used for displaying effects of symbolic operations on discrete data.

The KGOs operators are the heart of the INLEN system. To facilitate their use, the concept of a knowledge segment was introduced. A knowledge segment is a structure that links some table or tables from the database with some rules from the knowledge base. Such knowledge segments are both inputs and outputs of KGO operators. Thus, KGOs can be viewed as modules for performing complex inferences on knowledge segments in order to create new knowledge segments.

An execution of a KGO usually requires some background knowledge (BK), and is guided by some parameters. The BK specifies the facts about the application domain, provides information about legal value sets of attributes, about their types and the scale, constraints and relationships among attributes, etc. The parameters specify how to choose an output description from multiple possibilities. KGOs can usually work in either incremental or batch mode. In the incremental mode, they try to improve or refine the existing knowledge; while in the batch mode, they try to create entirely new knowledge from facts in the database, using knowledge, the knowledge base.

KGOs in INLEN can be classified into several groups, based on the type of the output they generate. Each group includes a number of specific operators.

- GENRULE operators generate various kinds of rules from given facts. They include operators that generate symbolic descriptions of data, e.g., generate rules characterizing a set of facts, discriminate between groups of facts, build decision trees, characterize a sequence of events, and determine differences between sequences. They also include operators generating equations characterizing qualitatively and quantitatively numerical data sets, and build conceptual hierarchies.
- TRANSRULE operators perform various transformations of the rules, e.g., generalize or specialize, abstract or concretize given rules.
- GENATR operators generate new attributes, or select the most representative attributes from a given set (using methods of constructive induction).
- GENEVE operators generate events, facts or examples that satisfy given rules, select the most representative events from a given set., determine an example that is similar to a given example, or predict a value of a given variable
- ANAREL operators analyze mathematical, statistical and logical relationships existing in the data, e.g., they may determine the degree of similarity between two examples, check if there is an implicative relationship between two variables, determine statistical properties of the data.
- TEST operator tests the performance of given set of rules on an assumed set of facts. The primary output from the operator is a confusion matrix, i.e., a table whose (i,j)th element shows how many examples from the class i were classified by the rules to be in class j.

For more details about these operators the reader can consult papers by Kaufman, Michalski and Kerschberg (1990) and Michalski et al. (1992).

# 5 EXAMPLE OF APPLICATION: DISCOVERING DEMOGRAPHIC AND ECONOMIC PATTERNS IN THE WORLD DATA

This section briefly illustrates an application of INLEN to discover economic and demographic patterns characteristic of different regions of the world in 1965 and 1990. The database consisted of characterizations of each country in terms of 95 attributes, such as

- population
- growth rate
- percentage of the labor force in industry
- percentage of land area devoted to agriculture
- per capita GNP
- individual life expectancy
- percentage of population over age 65 and others.

Using its constructive induction capabilities, the system is able to construct additional derived attributes that are especially relevant to a given class of tasks. For example, it may construct an attribute: "Change in the life expectancy between 1980-90."

In the experiment reported below, several operators have been applied, such as conceptual clustering, representation space optimization, empirical rule induction, rule optimization and rule testing and example matching. Here are few examples of general patterns found by INLEN:

- SE Europe has rural, heavily agricultural societies
- There is low resource allocation to education in Mediterranean Europe
- Developed Far Eastern countries, such as Japan and Korea, have low death rate

The system created classes of countries, "regional patterns", and defined typical characteristics for these regions. It also found exceptional countries that do not follow typical patterns for their region. Here are examples of such cases:

- Canada resembles the Far East more than the US in some respects, such as population growth rate, allocation of GNP to medicine, agricultural labor force, infant mortality rate, death rate, percentage of the labor force in industry.
- Italy is influenced more by Western than Southern Europe
- China is very similar to (formerly) Communist countries of Southeastern Europe
- Island countries tend to deviate from the nearby mainland's patterns.

Although many of the found characteristics and proposed classifications of the world regions are known, some of them have been novel. The main achievement of this experiment is, however, not the knowledge discovered, but a demonstration of the capability of INLEN to discover plausible and understandable patterns in large volumes of data.

#### 6 SUMMARY

An enormous proliferation and growth of databases has created a demand for new type of data analysis systems that can not only numerically but also conceptually characterize data and derive useful knowledge from them. In particular, such systems should be able to determine logical relationships, qualitative evaluations and causal dependencies in the data, which are very important for human data interpretation and decision making. To derive such knowledge, these systems need to be able to represent and take advantage of prior knowledge about the data.

The paper has described a methodology and a large-scale multistrategy knowledge discovery system, INLEN, which is designed with such objectives in mind. INLEN integrates data base, knowledge base and machine learning and discovery technologies. It incorporates a large family of operators that perform symbolic data and knowledge manipulation, and extraction of various kinds of knowledge. These operators include rule generation, selection of most relevant attributes or data items, generation of new attributes, building conceptual hierarchies, generation of equations and others.

Although many INLEN operators are based on the programs already developed, more research is required to make them adequate or efficient for analysis of large volumes of data, and to determine new operators. Future research needs also to investigate other types of symbolic learning and discovery operators that would be useful for data analysis.

#### ACKNOWLEDGMENTS

The author thanks Ken Kaufman, Eric Bloedorn and Janusz Wnek for useful comments and criticism. The main contribution to the implementation of INLEN is due Ken Kaufman, who also performed the experiments on INLEN's applications to determining economical and demographical patterns in world data. The illustration of decision rules using the GLD (General Logic Diagram) was prepared by Janusz Wnek.

This research was conducted in the Center for Artificial Intelligence at George Mason University, whose research is supported in part by the Advanced Research Projects Agency under Grant No. N00014-91-J- 1854, administered by the office of Naval Research, and the Grant No. F49620-92-J-549, administered by the Air Force Office of Scientific Research, in part by the Office of Naval Research under Grant No.N00014-91-J-1351, and in part by the National Science Foundation under Grants No. IRI-9020266 and DMI-9496192.

# REFERENCES

- Bergadano, F., Matwin, S., Michalski, R.S., and Zhang, J., "Learning Two-Tiered Descriptions of Flexible Concepts: The POSEIDON System," Reports of Machine Learning and Inference Laboratory, MLI 90-9, Center for Artificial Intelligence, George Mason University, Fairfax, VA September 1990.
- Bongard, N., Pattern Recognition, Spartan Books, New York, 1970 (a translation from Russian).
- Brachman, R., Selfridge, P., Terveen, L., Altman, B., Halper, F., Kirk, T., Lazar, A., McGuiness, D., Resnick, L., and Borgida, A., "Integrated Support for Data Archeology," Proceedings of the AAAI-93 Workshop on Knowledge Discovery in Databases, pp., 197-211, Washington D.C., 1993.
- Carbone, P., and Kerschberg, L., "Intelligent Mediation in Active Knowledge Mining: Goals and General Description," Proceedings of the AAAI-93 Workshop on Knowledge Discovery in Databases, pp. 241-253, Washington D.C., 1993.
- Chan, P., and Stolfo, S., "Toward Parallel and Distributed Learning by Meta-Learning," Proceedings of the AAAI-93 Workshop on Knowledge Discovery in Databases, pp. 227-240, Washington D.C., 1993.
- Cheng, P.C.-H and Simon, H.A., "The Right Representation for Discovery: Finding the Conservation of Momentum," Proceedings of the Ninth International Conference on Machine Learning, Aberdeen Scotland, pp. 62-71, 1992.
- Cooper, G., "A Bayesian Method for Learning Probabilistic Networks that Contain Hidden Variables," Proceedings of the AAAI-93 Workshop on Knowledge Discovery in Databases, pp. 112-124, Washington D.C., 1993.
- Dzeroski, S., "Inductive Logic Programming for KDD: an Overview," Proceedings of the AAAI-93 Workshop on Knowledge Discovery in Databases, pp. 125-137, Washington D.C., 1993.
- Piatetski-Shapiro, G. (ed.), "Proceedings of the AAAI-93 Workshop on Knowledge Discovery in Databases, pp. 14-27, Washington D.C., 1993.
  - Forsyth, R. and Rada, Roy, Machine Learning: applications in expert systems and information retrieval, Pitman, 1986.
- Imam, I.F., Michalski, R.S., and Kerschberg, L., "Discovering Attribute Dependence in Databases by Integrating Symbolic Learning and Statistical Techniques," Proceedings of the AAAI-93 Workshop on Knowledge Discovery in Databases, pp. 264-275, Washington D.C., 1993.
- Imam, I.F. and Michalski, R.S., Learning Decision Trees from Decision Rules: A Method and Initial Results from a Comparative Study, Journal of Intelligent Information Systems, Vol. 2, pp. 279-304, 1993.
- Kaufman, K.A., Michalski, R.S. and Schultz, A.C., "EMERALD 1: An Integrated System of Machine Learning and Discovery Programs for Education and Research, User's Guide", Reports of the Machine Learning and Inference Laboratory, MLI 89-11, Center for Artificial Intelligence, George Mason University, Fairfax, VA, 1989.
- Kaufman, K.A., Michalski, R.S., and Kerschberg, L., "Mining for Knowledge in Databases: Goals and General Description of the INLEN System," Proceedings of IJCAI-89

- Workshop on Knowledge Discovery in Databases, Detroit, MI, August 1989.
- Kaufman, K.A., Michalski, R.S., and Kerschberg, L., AN ARCHITECTURE FOR Knowledge Discovery from Facts: Integrating Database, Knowledge Base and Machine Learning in INLEN, in Machine Learning and Inference Reports, to appear in 1991.
- Kloesgen, W., "Some Implementation Aspects of a Discovery System," Proceedings of the AAAI-93 Workshop on Knowledge Discovery in Databases, pp. 212-226, Washington D.C., 1993.
- Kodratoff, Y., Introduction to Machine Learning, Pittman, 1988.
- Klopotek, M., Michalewicz M., Wierzchon, S., Ekstracja Wiedzy w Sieci Bayesowskiej, Materialy Konferencji Naukowej Praktyczne Aspekty Sztucznej Inteligencji, Instytut Podstaw Informatyki, Polska Akademia Nauk (Proceedings of the Polish conference on the Practical Aspects of Artificial Intelligence), Zakopane 7-11, 12, 1992.
- Major, J., and Mangano, J., "Selecting Among Rules Induced from a Hurricane Database," Proceedings of the AAAI-93 Workshop on Knowledge Discovery in Databases, pp. 28-44, Washington D.C., 1993.
- Michalski, R. S., Stepp, R. and Diday, E.," A Recent Advance in Data Analysis: Clustering Objects into Classes Characterized by Conjunctive Concepts," Invited chapter in the book Progress in Pattern Recognition, Vol. 1, L. Kanal and A. Rosenfeld (Editors), pp. 33-55., 1981.
- Michalski, R.S. and Stepp, R., "Learning from Observation: Conceptual Clustering," Machine Learning: An Artificial Intelligence Approach, Morgan Kaufman, 1993.
- Michalski, R.S., "Learning Flexible Concepts: Fundamental Ideas and a Method Based on Two-tiered Representation", Machine Learning: An Artificial Intelligence Approach, Vol. III, Y. Kodratoff and R.S. Michalski (Eds.), Morgan Kaufmann Publishers, 1990.
- Michalski, R.S., "A Planar Geometrical Model for Representing Multi- Dimensional Discrete Spaces and Multiple-Valued Logic Functions, "Report No. 897, Department of Computer Science, University of Illinois, Urbana, January 1978.
- Michalski, R.S., "A Theory and Methodology of Inductive Learning" (Modified version of 1983-3), Artificial Intelligence, 1983., pp. 111-161, 1983.
- Michalski, R.S., Kerschberg, L., Kaufman, K. and Ribeiro, J., "Mining for Knowledge in Databases: The INLEN Architecture, Initial Implementation and First Results," Journal of Intelligent Information Systems, pp. 85-113, Vol. 1, No. 1, August, 1992.
- Michalski, Inferential Theory of Learning: Developing Foundations for Multistrategy Learning, Machine Learning: A Multistrategy Learning Approach Vol. 4, Morgan Kaufmann Publishers, 1994.
- Michie, D., Methodologies from Machine Learning in Data Analysis and Software, The Computer Journal, vol.34, No. 6, 1991.
- Quinlan, J.R., "Induction of Decision Trees," Machine Learning, Vol. 1, No. 1, pp. 81-106, 1986.
- Wnek, J., Sarma, J., Wahab, A., Michalski, R.S., "Comparing Learning Paradigms via Diagrammatic Visualization: A Case Study in Single Concept Learning using Symbolic, Neural Net and Genetic Algorithm Methods," Reports of the Machine Learning

- and Inference Laboratory, MLI 90-2, Center for Artificial Intelligence, George Mason University, Fairfax, VA, January 1990.
- Wnek, J. and Michalski, R.S., "Hypothesis-driven Constructive Induction in AQ17-HCI: A Method and Experiments," Machine Learning, Special Issue on Evaluating and Changing Representations, 1993.
- Zembowicz, R. and Zytkow, J., "Testing the Existence of Functional Relationships in Data," Proceedings of the AAAI-93 Workshop on Knowledge Discovery in Databases, pp. 102-111, Washington D.C., 1993.
- Zembowicz, R. and Zytkow, J.M., "Discovery of Equations: Experimental Evaluation of Convergence," Proceedings of AAAI-92, WSan Jose CA, pp. 70-75, 1992.
- Zytkow, J.M., Zhu, J. and Zembowicz, R., "Operational Definition Refinement: A Discovery Process," Proceedings of AAAI-92, WSan Jose CA, pp. 76-81, 1992.
- Zytkow, J.M., Zhu, J. and Zembowicz, R., "The First Phase of Real- World Discovery: Determining Repeatability and Error of Experiments," Proceedings of the Ninth International Conference on Machine Learning, Aberdeen Scotland, pp. 480-485, 1992.