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Abstract: The paper introduces a concept of a4 variable-valued logic system, de-
fines & particular system VL, and demonstrates, by examples, its application as
a language for describing cn&pl&x graphical objects and also as a tool for
zaking inferences about significant proparties of the cbjects or classes of
cbjects. (Included examples show how to use the system to describe a picture
treated as a strusture of interrelatsd components, to deduce a simple rule
characterizing one class of patterns as cpposed to another and ta synthesize a
zinizal set of filters for the discrimination of a collection of textures.] A
brief summary of the computer implemsntations of the developed concepts is alss
included.

1. INTRODUCTICN

In the conventional approach to designing graphical langusges, the problems of
obtaining the simplest of possible equivalent descriptions of an object [;ccorﬁin;
to certain defined criteria) have not received much consideration. Yet, in the
application of the descriptions to the recognition of cbjects, the simplicity of
descripticns plays an important role. Ancther problem related to the recognitian
of cbjects, in particular, of pictures, is to provide a formal tool for Selecting
the most "significant' features of the described cbjects,

A possibility of having s formal system vith mechanisms for obtaining the sim-
plest (in a clearly defined sense) descripticns of cbjects, as well as for finding
their most characteristic fsatures, has a practical importance. The purpose of
the paper is to investigate this possibility, We present here a formal system
with a few simple cperstions (or a language i & broader sense) whicheewhen Suppe
lied with primitives and their relaticns (found in & described object or class of
ctjects )=-produces s description vhich is minimal in s well-defined sense. The
dystem can alsc be used to deduce the simplest rule for recognizing cne class in
the context of an other class (or classes) of objects, This system btelongs to the
domain of logic rather than to that of formal languages and is called varisble-
valued logie. Actually, in the paper we describe one particular system of the
variable-valued logic, namely VL,. It is an outgrowth of my work wvith Professor
Bruce McCormick cn the so-called interval and cartesiasn covers. A number of con-
cepts includad in the systsm are dirsctly relsted to the concepts in our common
reports (Michalski and McCormick (19T1c, 19T2h)).

Since the description of VL. is not available tlssvhere, it wvas necessary to
include it here, and thersfore E‘h.nptn 2 is devoted to the formal definition of
the system. Chapter 31 describes briefly the problem of synthasizing formulas in
the system (vhich satisfy certain cost functicnals) and sumarizes the computer
implexentations of the developed concepts. Chapter L gives a number of simple
examples vhich show, in particuiar, the applicstion cof the systen to inferring,
based on logical principles, & simple rule which characterizes cns class of ob-
J#cts as compared to ancther or to finding & minimal set of filters for diserimi-
naticn of textures, The last example is used to demonstrate hov to apply VL, to
describing s graphical object, viewed as a structurs of interrelated componefits,
(We adopted this order of examples since, &.g., in this last example we assume a
texture as a given attridute of & component of the deseribed cbjeect; and this
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assumption is mors acceptable in the context of the previous example which con-
asidered a problem of the recognition of textures.)

Before the formal exposition of the system, we feel that a few basic assump-
tions underlying its definition should be explained.

First, we assumed that the syntax and semantics of the system should be insep-
arable parts of the vhole, and therefore the formation and interpretation rules of
the system are included as parts of its definition. Second, we did not assume any
conecrete primitive elements in the system, but just numbers which can be interpre-
ted as "numerical names' of anything ve vant, We consider the system as a mechan-
ism which receives these npumerical names as its input and then manipulates them in
a certain vay in order to logically infer some more general properties of the in-
put data. In order to develop such an automatic inference system, we sought help
from the developments of formal logle, Results from many-valued logic seemed to
be especially interesting since the attributes {(or tests) with which we describe
objects often have several values {or cutcomes).

The direct application of many-valued logic to our problems meets, howvever,
different kinds of difficulties. One of them is, for example, that in, say, k-
valued logiec, when applied to deseribing objects or situations, every propesition
is assumed to be k-valued--with no regard to the fact that some of the proposi-
tions can intrinsically require different numbers of truth-values. (E.g., suppcse
ve wanted to apply k-valued logic formalism to describing a human being. Cne of
the attributes we may use, halr color, is many-, say, k-valued. Another, sex, is
intrinsicelly two-valued. Thus difficulties arise with the interpretation of the
k-2 unused walues of the sex attribute, and alsc other unnecessary problems can
occur, )

We found it useful to assume that every proposition (or attributes of objects
involved in a proposition) should be allowed to have its own independent number of
truth-values. This pumber is chosen according to the practical interpretation or
particular purpose. Moreover, to make computetion feasible, it is assumed that
this number is chosen not only finite but as small as is possible without losing
conaiderably in practical validity. A resson for this is that an automatic infer=-
ence system, in order to deduce relevant features or variables for a problem-
oriented description, should have access to a large number of variables, A possi-
bility of handling many variables can, hovever, be provided only if they are
“erudely represented.

{As an illustrative example, consider a doctor who is making a diagnosis based
on cbserved symptoms vhich include, e.g., the temperature of a patient’'s body. We
suspect, that although the range of variability of temperature is, thecretically,
continucus (betveen, say, 9b and 108° F.), a doctor thinks in categories like--~
normal, below normal, high, very high, etec., thus neglecting the exact measure-
ments he is given.)

Another assumption is, that in a logic system which we want to apply to prob-
lems such as pattern recognition, the primitive functions should be selected based
on the practical conaiderations, and--as a general rule--their number should be as
large as is computationally feasible (the opposite of the usual tendency). This
will allow the system to select those primitive functions (from & set of available
functions) which allow it to describe a given cbject in the simplest way. An anal=-
ogy to this is an observation, #.g., that a person, in recognizing objects, usually
applies very simple decision rules but uses different 'primitive functions' each
time, rather than complicated rules with the same fixed'primitive functions'.

To ccnelude, it may be worth noting that the VL, system (or rather developed
programs based on it} can also be applied to a numb&r of problems in artificial
intelligence, switching theory, graph theory, information retrieval, data reduc-

. tion, map coloring, constructing decision graphs, ete.
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BASIC DEFINITICHS

3. Tafinitisn of a Yariable-Valued Logic System

5 variablesvalued logisz system (a VL system) is an ordered quintuple:

(X, H, S, R, Ry) (1}
% is a finite non-empty (f.n.) set of input variables, whose domalrns are

ary ©.c. sets, called input name sets,
4 is a f.n. set, called putput name set,

5 is a f.n. set of ilmproper symbols,
ig a f.n. set of formation rules vhich define well formed formulagd (wEfs)

in tke VL System (er VL forrulas). A string of elements frem X, H or 2
i3 a wif if and only if it can be derived from a finite number of appli-
sations of the formation rules.
RI ig a f.n. set of interpretation rules vhich give an interpretation to the
YL formulas.

In the paper we will focus our attention on one specific system, called VL,.

2.2 Tefinition of zhe VL. Systam
-

VL, is 8 varisble-valued logic system (X, H. S, RF‘ RI}‘ whers:
X iz a set of variables Xy Ay 3 sas X whose domains are sets
HL H2 Hi e H , tespectively, Uhazt
'i = {U 1, sues B l. i®m L, 2y suvy Oy {23
Hi - & natural nunber.
H is a set of constantia
Ha {0, 1y «ves A}, = & natural number. {3}

{Constants in H represent truth-values which can be taken by statements
[ formulas) of the system.)
3 consists af 1l improper symbols:
e 4 AN = 5 = I T & 3
. is the set of the formation rules:

raj

1. A primitive constant from H standing alone is a wIf,

2. A form [xj # ¢, where i g{l, 2, ++oy 0k, # ef= , #}, ¢ --a segquence
of elements of Hi separated by ',' or ':', is 8 wff. If the separa-
tien is by ':', then it is assumed that the first constant is smaller
than the second, e.g. if ¢ is 2t Cae then ¢ < Cge

3. IfV, V¥ and V, are vffs then ¥, (1), Vv, {vritten also as (VlUEJ.
LA and [vl ¥ ‘-'21. Fel=, ¢} are also wifs.

A wff in VL, is also called a VL, formula, Forms [x, # e] and (v, # V]

are called selactors (the former form is alio called a simple selector!.

In the simple selector [xl # ¢], ¢ i3 called the range of x..
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Ir '#' is '"=' then the range is called inclusive, ctherwise exclusive,
R, is a set of interpretation rules which essign to any wff V a value

w(V) eH, depending on values of the variables Xya Xgp wes X
1. The walue wie) of & constant o, ceH, is ¢, which ls denoted by wle) = e,

K, it x, # ¢
2. 1"{[”‘j. #cl)= lﬂ. otherfwise

where x, ¥ ¢ means X, = eorx # ¢ and the relation X =¢ [xI ¥ ¢l is
satisfied if the value of the variable Xy is (is not) cne of the elements
in the sequence e¢. If two elements in ¢ are separsted by ':' then the
relation is also satisfied if the value of x, is {iz not) between the

above two elements. E.g., if ¢ is a sequence 1,3:5,8 then
B . [H, if x, equals 1,3, &, 5, 6, or

vilxy = 1,3:6,8]) {U otherwise

and

: K, if x, equals 0, 2, T (assuming f = 8)

1'r([‘“i #1,3:6,8]) = D: othefvise

The selecter [x, # ¢] is seid to be satisfied if x. # o,

if viv. ) ¥ vﬁ'j
3. v([?l ¥ “21] a, i i e

where the meaning of # and the definition of a selector being satisfied

i

is the same as in 2.
he »(¥) = = viv}
5 v{'li" '-J ) = min{v'['n’ ), v'[‘-fa}]

'.flvé is called a Eroduc‘t. {or :Dnéunction:l of 1-‘1 and 'IE.
6, wlv,vv,) = m{v{vl}, v(v,))

V.V V, is called & sum {or disjunction) of V, and V,.

T. Parentheses ( ) have their usual meaning, i.e, they denote & part of a

formula which is to be evaluated as a whole.
Thus, the sbove interpretation rules interprete \*I.l formulas as expressioms of
functicns:
f: HleEx"‘ Hn—-l-[ (L)

The set H) x Hy x ... x H , 0, = 0, 1, vuiey Bdy £=1, 2, .00y nowill be
dencted by E[hl, h2' R hn], where hi = c{H1]* = H‘i + 1, or briefly by E, and
called the universe of eventa. The elements of E, vectors {xl" Koy cery xn},
xit Ei’ iw1, 2, ...; n, will be called events and dencted by e*, j =10, 1, 2,

+s» +» The universe E hasa h = hh +++ h_ events, thus:

E(n, 2,...,%}-{ }J_O -
where ¥ = h-1 [xieﬂi denctes, for simplieity, that values of x, are frem H).
We will assume that the values of ] are given by a function
y 1+ E—={0, l., aany B} (&)
such that K+
J= v(e)l = Ay ® :i r-] hy . (7
kﬁnnl

*ci58), wherc S is a set, denotes the cardinality of 5
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v ie) is called the number of the event e . E.8., an event & = (2,1,1) in the
universe E(L,3,2) has the numcer <le) = 1 # 12 ¢ 2+3+2 = 15, It is easy to see
tkhat, given vy .e), one can determine e .

vxamples of VL, Formulas:

3.[xl = 2,b:6][x, = 2] ¥ 2["‘2 = 1:3}{x, # 0] v J.[:c3 = 3] (9)
3[alx) = 2][xy # 2,3] = 2[x, # 311 v 2{x, = 2:51(1 v ix, = 35) (3
(3v 2[:2#2]) (S[xl-E]v 1[::2#0]] i)
e formula (8) can be interpreted as an expression of & function
£: E(7,6,4,3) —= {0,1,2,3} (1L}

assuming that c{H b= T,6,4,3 for i = 1,2,3,4, and c{H) = b, The formula assumes
the value 3 if the galectors [x = 2,4:6] and lxh = 2] are satisfied {[independen:
of the values of X, and 113 Thu formula assumes the value 2 if the previous
condition does not hold (since ¥, v V, means max{vl,v }) and the selectors

(x, = 1 :3) and [x, # 0] are sa;i:ried. The formula assumes the value 1 if both
af the previous conditions do not hold and the selactor [33 = 3] is satisfied.

If none of the above conditions hold, the formula assumes the value 0.

Hote that selectors correspond to certain sets of events [event sets), namely
those which satisfy them (thus, selectors select svent sets). 4 TLl formula is
called an interval Hkl formula Lf the range & in each of its selectors is in the
form £y:¢, or ¢ (this formula has direct correspondence to interval covers intra-
duced by Michalski and McCormick (13T1e)). A product of selectors and constants
is called a term. A VL, formula which is a sun {disjunction) of terms (e.g.(B})
is called a disjunctive VL, formula (DVL,). In the sequel ve will mainly con-
sider DVL1 formulas, thus UL will mean DVL. if it is not stated otherwise.

In practice we usually deul with functions which may have an unspecified
valus for some events, that is with functions,

f: E —= HU (% {12}
whers ® denotes an unspecified value ('don't care').

An inccmpletllr specified function f can De considered equivalent to a set
{r boof completely sp:ciflad functions f , each determined by a certain assigm-
mant of specified values (i.e. values fran H) to events e for which rle) = *,

A le formula which expresses any of these functions f will be accepted as an

expression for f.
Punctions of the type (12} will be called varisble-valued logic functions (VL

functions).

It is easy to see that special cases of VL, are e.g. a two=valued Boolean
algebra (if h, = hy = 4.0 ® h o= 2; [x = 1] and [:r.i = 0] would correspond to x,
and X,, rupm:t.i.u'ehr}, nm.umun DhJaint Post Systems (Nutter (1971)), =
Multi-Valued Loglc System described by Glvone and Snelsire (1968).
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2.3 A Gecmetrical Representation of VL Functions

A VL function can be geometrically represented using a generalized logical
diagram (GLD) described by Michalski (1971a). For example, Fig, 1 represents a

functicn:
f: E{4,2,3,31""{0|1|2r3|*}
%Xy 0 1 2 3 & 3 & t 8

o O 1 2 a
0
1 l 1 2 3 3 :z-_{::}
al o | © Czj 26
i
i 2 L1
of 3 3 3 las
2
1 3 53
(3] 4] 2 0 62
3
1| 1 1 n
0|1 21011 ] ol 1 2 X,
0 1 2 X,
Figure 1

Cells of the diagram correspond to events in E(L,2,3,3). This correspondence is
self-exnlanatory, =.g. cellﬁgg corresponds to event =25 = (1,0,2,1).

dumbers on the top and the right of the diagram are the pumbers of the events to
which the cells correspond [note a lexicographical order of the numbers)., Cells
are marked by valuss of the function f applied to the events to which the cells
sorrespond, Empty cells denote events for which egquals ¥,

2.4 Definftion of Minimal ?Ll Formula

A given function f can be expressed by a number of different ?Ll forsulas
{aven for small n, hi and h this number can be very large). For example, the
function f in Fig. 1 is represented by & VLl formula:

& 3lxy = 2llx, = 0llx, = 0,21V 3lx, = 2llx, = 1l(x; = 1] v

3lxy = 0,3][xy = 2][x), = 0,2] Vv 2[x; = 0,1][x, = 0llxy = 1,2](x, = 0,2]
Vi she g Rl ol S aitas = Al =l v
1x, = 0]lx, = 1][x, = 0l[x, = 1,2]V 1[x) = 1,31[x; = 1][xy = 0,1]
v ilxy = Lllxg = 1,210%, = 0,1] {13)
{f: V, where V is a VL formula, means that V is an expression for f}.
The same function f 1s, however, also represented by: ; /
£: 3{:-:3 = 2llx, ¥ 1]V 3[x) = 2]V 2(x5 = 1]V 1x, = 1] (1)
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Fig. 2 shows the event sets which correspond to terms of {1k). (L =: §, where
5 i3 a gelsctor or a product of selectors, means that L is an event set which

satis’ies S).

N
N

XyXa_o 1 2 3 & 8
ol o % o Le
ITANNNN SN\
olo| o Z K R
11 s s Lz
) Eill.' 50 = L, = {x3 = 2][x, # 1]
_._L . 3 53 LE = [xl a 2]
3 3 2 l Y 0 2 Ly ’ (x4 : L
TR e W S

Figure 2

The problem arises of hov to find a h'I.l formula for a given £, which mini-
mizes an assumed cost functional. This functional can involve different charac-
teristics of “1 formulas (e.g. the number of %erms, the number of selectors,
the sum of ranges of variables in the selectors, the different costs of selectors
with different variables, etc.) depending on the applications.

From & practical as well as a computaticnal point of viev, it is convenient
to assume a functicnal A(V) to be in the form:

ALV = (ol W), ay( V), aeey 8, (V) > (15}
whers a.( V], 1 = 1,2,,..bare different single-valued characteristics {attrivutes]
of a t‘n;mx_‘l.n ¥V  expressing f. A formula V is said to be a minioal foreala
under she functional A for the fumction £ iff A(VI< Ath], J = 1,2.3,...,
where {'JJ} are all posaible formulas expressing f

and < denctes a lexicographical order, i.e.
ll[‘.'l < HWJI
) itf or ll(‘” = a.l{‘J'Jl and a,(V)< &2{?_1]'
: or and 8 (V) g qt{vl}
Eere we will primarily comsider a functional {t(V), s(V)) or triefly the (t,s),
wnere t = t(¥}, s = s(V) are the number of terms and the number of selsctors in

al vig Al "';

Vv, respectively.

Thus, & minimal VL., formula for a given fis s I:M.-l formula which has the

1
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minimum number of terms and the minimum nusker of selsctors for that numbsr aof

terms,
The problem of the synthesis of minimal ?Ll formulas is discussed in
Section 3,

2.5 Complex TLI Formulas

Az was previcusly mentioned, a 1-"Ll formula expresses a funetion

f: E— H (16)
In practical applications we may be interested in expressing not just one func-
tion f but a family of functioms with the same domain E: {17)
f: E —= H ' {18)
where
2 k

e= (1, %¢, voun P0), B E—Mu, k=1, 2, vou, m,
Kt = {0, 1, 2, «eey )
H= 1H i 2H T T
Thus
£ Hlxﬂgx...xﬂn—-—lllxzﬂx...xmﬂ (19}
A functicn f is called a complex (er multiple-sutput) VL functiecn. It can be
expressed by a single VL, expression by extending the set X with an additional
variable y vhose domsin is {1, 2, ..., m} and assuming that
# = nax('#, %x, ..., "H).
The role of the variable ¥y i3 expressed by an additional interpretation rule:
8. w(¥[y = e¢]) is interpreted as follows:
the value v(V) is given to functirns £f | y = ¢}.
For example, if V,, V, and V, are VL, formulas vhich do not include the varisble
¥, then

v[y-l.ealvv[:r=3h]\f\r[r=131 {20}
is interpreted as &an expression of a funntinn fs= E e Ef, 3!. hf) where
1 r 2 3 - W A" .
£: \rlv vj, f: '.rl, f: \rl ve va, 1 va {21)

The selector [y = ¢] iz called a function selector. A VL, formula which
includes function selectors is called a gomplex VL, formula,
We axtend a function £ (18) to an incompletely specified funection by

assuming that:

£: E—=(tHU ) x (%8 U x... x(CHV [*}) {22)

3. SYNTHEBIS OF '|.|"I.r1 FORMULAS

3.1 Basic Concepts from Covering Theory

The s:.mthu!.n of & ‘n.l formula f:r:r imtuint a given m:tim f is 'hu-d on
the results of covering thecry (Michalski (1969ab, 19Tlac, 19T2n)). This theory
deals with the problems of expressing sets as unions of certain standard subsets
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{'building blocks') called complexes., One of the basic concepts is that of a

cover of a sat against another set,

Let El and Ec be disjoint event sets in a universe E and sets

L= % (23)

iel
where A g Hi,ti{l.& P X | (2L}
o= fe = (xg, X Xy ) | x;¢ a,} (25}

‘building blocks' which are used to express event sets, Event sets L (23) are
called cartesisn complexes and seis iiii {25)--cartesian literals.

o 1 a..
& eartesien cover C{El| E”) of set E against E is & set LL.i} of cartesian
complexes Li such that
1 0
E;ULif.E\E (26}
If seta ‘Rf. are restricted to sequences of consecutive numbers frem Hi‘ then the
complexes L are called interval complexes and denoted as

m mxbr
el + (27}

h i
where gt = o= (x), X0 e 0kgek M 8 € % € 04

A cover which consists of only interval complexes is called an interval cover .
It is easy to see that a cartesian cover C{EJ'I EG} {or an interval cover

I'[Ell. £)) is equivalent to & 'u'Ll formula (or an interval VL formula) which

expreases & function £f: E —= o, 1, *}, assuming thl;t nEJ' = {In 4|1‘|I-=l = 1}

aod 20 = (s [¢ls) = OF, For exemple, e (i’ e K HUK and

I(g-| €°) = ‘x;‘«.-'x;_xt

then the corresponding “‘1 formulas are:
'l": - [31 - 1'3][x3 i 0'3253] v [‘E - 1.3,"1 and vI - ixl =0:2] v ["'2 - 1:3][Kh- o]

3.2 A Brief Description of & Synthesis Algorithm
A VL function £ (12) can be specified by a family of event sets:
o, P, L ) (28)

whers: s e |f{e) = k}, k=0, 1, «uay Ko
Let M(E,| E,) be a minimal cartesian cover of E, against E, which ia defined as a
cartesian cover with the minimum number of compleXes and minimum oumber of
literals for that number of complexes. Since gartesian complexes correspond to
terms and literals to selectors in a corresponding VL, formula, the cover
M(E,| E,) corresponds to a minimal VL, formula under the functicoal <t,s> .
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An algorithm for constructing a minimal ‘ll'Ll formula under ¢ t,5> for a given
function £ is:

1, Determine the minimal cartesian covera:
M w u(e? IF“'1 AP )

Tt ie o P T

= uirt %)

2, Determine the products of selectors which are eguivalent to complexes in
the covers MH, MH']‘, cee, M

3. Multiply the products equivalent to complezes in Hi--h:r K, in hf“'l ==hy
B=1l, ..., in W -=by 1.

4, The union of mll terms thus obtained 1s = minimsl “’l formuls under {t,s)
for the function f.

For a proof see Michalski (1972a). In the case of the synthesis of a mini-

mal intsrval VLl fermula, the procedure would be the same, except that

interval covers rather than cartesian covers would be constructed,

3.3 Ag Programs

The synthesis of a minimal 'u'Ll formuls was, in 3.2, reduced to the iterative
synthesis of minimal cartesian covers, The synthesils of minimel covers iz, how-
ever, computationelly feasible only in rather simple cases. In general, such
synthesis can require the enumeration of an extensive set of possibilities (the
proof of this is similar to the proof by Zhuravlev {1960) con the necessity of
enumeration in the minimization of switching functicms). But this set of
possibilities (after applying all possible reduction techniques) is usually too
large to make the enumeration feasible., Therefore, the only realistic approach
here is to seek approximate solutions (except for aimple, academic problems).

A good method for an approximate solution should drastically reduce the
number of operations required for a minimal solution and produce a cover which
has a high probability of being close to the minimal one. Moreover, it is highly
desirable to alsoc have an estimate of the distance between the obtained soluticn
and the minimal one, The only existing algorithm (to the best of the author's
knowledge)] which satisfies all 3 criteria is an algorithm *q based on the pringi-
ple of disjoint stars (Michalski 1969a, 1969u).

This algorithm has been quite succesaful in the minimization of switching
functions of many variables (Michalski, Kulpa (1971)) es well as in the synthesis
of interval and cartesian covers (Michalski, Tareski (1972d4)). The algorithm
{velid for any kind of complexes) produces a so-called guasi-minimal cover which.
is an approximately minimal or minimal one,and gives an estimate 4 of the maxi-
mal number of complexes in which the cbtained and minimal covers can differ:
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et = M) £ a (29}
where M1 i3 & quasiminimal cover '
4 is a minimal cover.
Based on this algerithm the following programs*® have been developed at the
Jniversity of Illinois.

1. Ad==31 For the synthesis of interval covers.

2. Ag==lke For the synthesis of cartesian and interval covers {or
mixed, where some literals can be cartesian and some
intervall.

3, AQ--Sem : For the synthesis of cartesian covers of a disjoint
family of event sets (covers of each set against all
the others).

L, AQVALS1 For the synthesis of quasi-minimsl ‘JLl expressions
under a functional {8,, 85, «u. ) vhere a;, 1 <7,
can be chosen (in any order),depending on the applica-
tions,from & set of 7 attributes, such as:

1. t{V)--the number of terms in V,
2, s(V)--the number of selectors in V,
3, g(Vj== the 'degree of generalization' defined as:

1 j;: ﬁi
g(v) = == gl }
& 51 = Lyr {30)

ellyy)
gll,) ™ e
cthl NF)
I..kl--n complex corresponding to the lth term
of the terms in ¥V with the constant K,
5. ——pumber of terms with the constant k,

1.
go-—-tnt.nl aumber of terms in ¥

wheres

=1

™ = (e |fle) = kl.
4, r(V)--a 'range coefficient' defined as:

s(V]

s(¥} » 3 r,vhere r, is the muter of
=1

elements in the range of the jth selector,
and some others (Michalski (1972al).
5. AQVAL/2 For the synthesis of a quasi-minimal family aof 1?1.1
expressions (a complex VL, expression)under the
functional used in AQVAL/1 .

*These programs 4o not include programs pased on the same algorithm for the
synthesis of gwitching circuits developed at the Polish Academy of Scilesnces.
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AlL of the above programs have been written in FL/1 for the IBM 360/75.
(Their descripticn is given in & number of reports: AZ--3i by Michalsk{ and
Tareski (19T72d), AQ--Yc and AQ--3em by Michalski and Raulefs {1972c), AQVAL/L and
AQVAL/Z by Michalski (1972a!), To give an sstizate of their size, e.g. AQ—-3i
has ~ 660 PL/1 statements and AQVAL/2 - ~1L0O PL/1 statements,

. EXAMPLES OF APPLICATIONS OF VLl TQ PATTERN RECOCSKITION

In this chapter we will give some examples of the application of the ?Ll Eys=
tem to pattern recognition, in particular to the synthesis of efficient classify-
ing rules, to the selection of features (based on a logical deduction as opposed
to e.g. a statistical approach), to texture descrimination and to the description
of complex graphical objects. These examples ars very simple--not encyclopedic
in the range of possible applications but gufficient to provide an insight into
the principles and a general appraéiltian of the techniques used.

Example 1
Fig. 3 presents two sets of patterns: Fl and Fo. Find a simple rule for

distinguishing patterns of the first set fr%F patterns of the second.

I F:
f’ A A A A A
D O o —— O
ey  em——
A 4 a4 a A, =0
o o0 oA © & O O Kp- o CO
: — I"'&
— — X,-* 0
A A 4 0O hy=3
( o o o c o o hy s 3
— —=1} hy= 4
P— = he=3
A O o 0
— = _
O a
Flgure 3
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When a man tries to solve this problem, he usually 1nckllfor differences in
the spatial relationships betwveen elements in patterns of the two classes, In
this case, howsver, there are no such differences, and thersfore it seems to be
diffieult {for a man) to find & rule, On the other hand, for a computer program
it is simpler, e.z. %o count the numbers of elements of the same kind (e.g.
circles, triangles, etc.) than to determine their relationships., In the example
anove, Jjust such features happened to be relevant te the problem. The appropri-
ate rule which involves these leatures can be found very easily using the VL
approach. Assume that the numbers of circles, ellipses,triangles, and sguares in
the 'pictures' in Fl or Fa are elements of the input name zets Hl' HE‘ H3 and Hh‘
respectively. Thus, to deseribe any "picture' in Fl ar FO it is sufficient to
assume Hl = [0,1,2}, H, = {0,1,2}, H3 = {0,1,2,3} and Hy = {o,1,2}.

Sets Fl and Fn can now be represented by event sets {{:1, i xh]},x £ Hi’
and the problem becomes that of finding a cartesian cover of Pl against F~, The

result is shown in Fig. L.

L,=X

E(3,3,4,3)
X, X, /

o | i 1
o] | i
21 L,s X
ol
SN Y o5 %
- ff.‘ e / r, / o -, ':{F ? }' = K:‘ *
BN A /..—f/f’;r/’.fy %-’/ 4 /_'»'/’f/ | 195
AT LA 7H % AL, 1 [xy = 11V [xy = 2]
o 0 [
]
2t ! |
2| |o uns Bk
oli1jzfofrlzfjelalafjolrlia x
0 t 2 3 X,
Figure L

The VL, formula which corresgponds to the obtained cover is [:1 = 1] w'[x3 = 2],
that is, it gives the rule: 'if s pattern has 1 circle or 2 triangles, then it

belongs to the set Fl, otherwvise to F .'

Example 2

Consider two classes of cbjects shown in Fig. 5.

If we would try to represent the objlects of Fl and F‘:l by the events defined

in exsmple 1, i.e. by l.'zj_. ooy X.) (vhere Xy» X3s +e, X Fepresent numbers of
eircles, ellipses,triangles, and squares, respectively), then events representing
the first and second class would be identical. Thus, the above attributes are
irrelevant for distinguishing the given 2 classes,
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r-é F“AO
(__O:C? CET)
. a

Figure 5

A5 & next step we cen try checking to sees if the binary relations between the
elements in the pictures are distinguishing features of the two classes. Let us
then introduce new variables xs, Xg and X
where: xg and Xg represent the left and right elements, respectively, in a

binary relation which relates the elements in a given
picture. Their domaiés, H. and H., are "numerical nameg'

5
of these slements: H_ = H.ﬁ a {0,1,2,3,4}

where!: 0 repressnts 2 left circle (if there are two)
l==a circla {or right circle}
g==a Bguare,
3--an allipaa,
ba=g triangle.
x represents relations between the above elements. Its
domain H, consists of 'numerical names' of relations which
are found in the pictures: H, = {0,1,2,31} .
whera: O represents 'none of the relations is satisfied!
l=='on the Left'
2-='contains !
3--'on tep of.!
The class Fl is characterized by the set of svents {15, Xeo xr) in the uni-
verse E{5,5,4):
o= ((4,0,3), (4,1,3), (3,0,3), {3,1,3), (2,1,3), (0,1,1)}
and the class I-‘Q:
0 = {(4,0,2), (4,1,1), (0,1,1), (3,0,2), {3,1,2), (1,2,3)}
(E.g. the event (4,0,3) statea that & triangle is on top of a left circle.)
Event (0,1,1) appears in both classes and thus is not distinctive, so we remove
it from these two sets. ' '
Sets F* and F° specify a function f: E(5,5,4) —= (0,1} (31)
vhera fe |£{e) = 1} = P']' and {e |[fle) = 0} = ?u.
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The minimal VL, formula for f under vhe functional {tep s
where t=-number of terms and

g--the degree of generalization (as defined in 3.3),
tgs [1:5-2:3-0][15! E.:.][x.rtﬂ (32)
“ne forpula can be interpreted as: 'if a square, ellipse, or triangle is on

toe of cne or two circles, then the pisture belongs to :-'J'. ptherwise to FO.'

“re minimal VL. formula under the funetional (t,s) % s——number of selectors

{i.e. we sesk a simpler description while permitting a greater eneralization!
isz

[xg = 0,11(xy = 3] {33}

The formula says: '"if an oblect has any element (since xs vas dropped] on top of

cne or two eircles, then it belongs to class !-'l, otherwise to F‘G.'

If we had found that binary relations were not distinetive, ve could, in a
similar fashion, apply ternary relatfons, etc.
Example

Fig. 6 presents two classes of small 'pictures' which represent vectors

(xlt TR} xg}ls xi E Hi - £a!l'|2r3}:
“71*8|%9
T e
Xs Xh X
These vectors can be interpreted as events characterizing 2 classes of

pictures (or any patterns), The X correspond to certain features which seem to
he relevant in describing the pictures. Looking at these 'events' one can not
observe any similarities between events in the same class and any distinctive
features distinguishing the two classes.

The problem again is to deduce a simple classifying rule. Sets Fl and FD
define a function f£: E(b,%,5 000456044} ——w {0,1,*}, (34)
vhere (e |£(e) = 1} = F* and {e |£(e) = 0} = £°.

We will s=ek the rule by synthesizing a minimal v‘[rl expression of the function f
under {t,8>.

Let us first find the interval VL, formula (which directly corresponds to a
cover I(F* |?°H. Evalustion of interval expressions is usually simpler then
evaluation of non-interval expressions, since We only rave to test if the values
of varisbles lie between certain vn.'l.uleu rather than if they belong to certain

¥ Assuming the functionalc t,gy beans that we went to minimize the number of
‘yules' which are needed to classify cbjects, {terms in a formula), but also that
we require a minimal 'degree of generalization' resulting from these rules,

#® ssauming the functional (t,:) means that we want to minimize the number of
‘rules ' as well as the number of variables in these rules, disregarding the
'degree of generalization' which may arise.
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subsets (of course, the price for that is that the interval formulas ars usually

'longer'l),

E(4,4,4,4,4,44,44) —{0,1,4}

f:

L

N

Figure &
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The first execution of the program AQ-=-31 produced an expressicn:
v, = E:E = 1llxg = 2:3]1 V [x; ¥ 0][x, = z::IExr = U:l][xg 0]V
[2, = 2:3][x, # Ol[x, = 0:2][xg = 2,2} V [x) = 3](x, # 3] A
[xy # 3)[xg = 2:3] (35)
(We could have, of course, used any of the programs listed in section 2:3 asince
each program listed can principally do everything that all of ite predecessors
can,) This =Jcpre==i;an is illustrated in Fig. T, where individual 'pictures’
correspond tc terma of the expresaion.

L - -
L] - - -
V//ﬁh - L] L] -

Figure 7

In Fig, T, means that the corresponding varisble (in order to satisfy
the appropriate selector) should have a value between 1 and 3 (the
meaning of the other cells is analogous); * denotes irrelevant variables.

4 in this execution wasz 1 and the executico time ~~ 13 seccnds.

The next execution (after certain rearrangsmente of the input event sets)
gave an expression (Fig. 8):

v, = [xe- 2:3]{15 = 1:2]V [1:1 = 2:3](x, = 1:2][13 = 1:3] V

[z, = 0)lxg = 1:3][xy = 2:3]

Pigure 8

This expression only has three terms and in toto involves 6 variables {‘J'l
involved T). The value of A was O, and therefore this expression is minimal
under {t7, i.e. thers does not exist s interval VL, formula which would have
less than 3 terms,

Finally, a non-interval formulsa (corrssponding to a cartesian cover) found
by the program AQ--be was (Fig, &):

V=[x ¥ 1i[xg = 1,2](xy # 1]V [x) = 2,3](x, # 3l=g ¥ 2]lxg # 0llxy # 0]

In Fig. 9, cell [J]] means that the corresponding variable should have the
value O, 2 or 3 (ths masning of sther cells is similar ). Execution time {om an

IBM 360/75) was 3.2 sec (the sxecution time in synthesizing cartesian covers is
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usually considerably more than that for intervel covers. In this case, however,

it is less due to applying a speclal operation reduction technique called 'sut-
ting' (Michalski, Tareski, 19724)).

- -
=
* B
Figure 5
Thus, the rule for classifying objects af_Fl and Fo fs: 'if X f 1, ‘5:.11£
u? x @ 1’_§ul = 2.3, :E iuz: x. ¥z, X # 0 and %, ¥ 0, then the object
y o F_,

It involves only two terms and in toto 5 variables (of the 9}, In classify-
ing sbtjects the conditions expressed by these two terms can ba checked in paral-
lel , which would speed up the process (parallel computers, like ILLIAC III
or ILLIAC IV, are therefore of special value for this kind of technique), If we
ware to test these conditions sequentially, then the average number of variables
whose values have to be evaluated would be less than 5 (e.g. 1f we check first
the first condition, which involves 3 varisbles, and an event satisfies it, then
this event is classified without checking the second condition).

The rule thus found- represents a generalization of the input sets F* and F°
in the sense that events which did not oceur in Fl and PD will be clasaified by
the rule. The classification of the new events may, of course, not be correct=-
which would mean that the rule is really not a "true' rule for the classification.
The rule is one of very many possible correct generalizations of the original
data since it classifies the original events perfectly. If a new event would not
be correctly classified, it would mean that the rule should be appropriately
corrected (similar to how people correct hypotheses which explained old facts but
failed when new facts wers learnad).

Angther objection can be that in our system it may not be possible to express
the "true' rule {[e.g. if the rule was, say, Ig * Ii 3 7, since we do not have
appropriate primitives in lel. The system, nevertheless, would find an egquiva-
lent substitute (since any functfon (3L4) cen be expressed in ?Ll].

This rule, of course, could be more 'complicated' than the 'true' one., (This
is why in the Introduction we postulated having as many primitives as is
feasiblae, }

This example deals with ih- recognition of textures. Fiﬁ,_lﬂ.presentn
samples of B differsnt clesses of tp:furen A, B, ... H. The problem is to deter=
mine a set of filters which would allow us to classify unknown textures into the
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atove classes (assuming, however, that the unknown textures are from these

zlasses),

=X RN X XO,
Figure 10

Fig. 1l presents samples of textures from the same classes in a Aigitized
form (with a certain degree of noise and assuming b4 grey lavels 2,1,2,3, which
are represented in the same way as in Fig, 6.)

N

1\‘
A
NS

Figure 11

Assume that the output name set H consists of the 'nunu;ical'names' which are
assigned to the texture classes in the way shown in Fig. 12,

Let x» i1=1; 2, +asy 9 represent grey levels of § neighboring elements in
smatl 3 x 3 squares extracted from the digitized textures:
*11%8|%
%%
x|, %4
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Thus, the input name sets H, are {0,1,2,3}. GLet

Textures | M s {{xy) %g0 Xgu vass xgl}. ke = {0,1,2,..,,T}, be & set of
® T distinct events (x;, X5, +uvy x.g} which oeccur in the sample of
@ the texture class, shown in Fig. 11, with the numerical name k.
® | ¢ 1

% For example, F™, the set of events extracted from texture class
(:) A, 1s:
:E) S = {{2,0,0,1,3,3%,0,0,0), (0,3,2,0,1,2,0,0,0),
@ > {3,3,0,2,0,0,0,0,0)......(3,0,1,0,2,3,0,0,1}}
@ " The first event in F~ represents the top left 3 x 3 square in
the sample of the texture class A (Fig. 11), the second event-
Figure 12

a similar square which is moved one cell teo the right, and so
on, lexicographically, to the last event which represents the bottom right square.
It can be verified that the sets Fk, k=0,1l,...,7 are disjeint. The problem can
now be formulated as that of synthesizing a minimal ‘IJLl expression (under a
suitable functional} of the function:

£: E(L bbb bbb L) — {0,1,2,.,.,7,% (36)
wners {= ]i‘{e] = k} = Fk. B=0,1l,00a4T

Iin this example, hovever, accepting x, 83 b-vglued is redundant in the sense
that events with properly defined binary wvariasbles would also distinguishingly
charscterize the classes,

Transform the samples in Fig. 11 into binary samples by mapping the grey
values 2,3 inte 1 and 0,1 inte 0. The events in Fk will become binary vectors
{xt. x:;_.. aany t;], where :'1' 1{;: i; :i. : E:Jj. The new sets Pk are still disjnitt,
except for the event e = {¢,1,0,0,0,1,0,0,0) vhich appears in the sets PE and F .
7o make all sets disjoint, ve remove e from ?2 and Ph and create a set FB = (e}
which can be interpreted as representing a new clasa 'B or D'.

Fig. 13 illustrates a minimal VL, expressicn under <s,t)> for the VL function
E—= H defined by the sbove sets F', k=1,2...,8, as found by AQVAL/L.
| Individual 'pictures’ correspond to terms in the formula (after returning to
the old variables xi] and represent desired filters for the recognition of tex-
ture classes. E.g., if an event, extracted from an unknown texture, satisfies
the filter in row B or D , then the texture is from the class B or D } if it does
not satisfy the above filter, but satisfiss one of the filters in row G , then
the texture is from the class Gj ete, (To distinguish between class B or D in
the first case, another event for the texture should be extracted and compared
with the filters,)

In order to increase the reliability of recognition, several eventa should be

axtracted from an unknown texturs {(in the extremum cage--all events which occur)
and compared with the filters, When contradictory recognition results are
cbtained, & majority rule can be applied.
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In general, to recognize tex-

®°'® - B 2ol tures which are more 'complicated!’
-

=-=0 or 1 than those considered in our exam-

: A E! e ple, a number of important cpers~

Fals variable tions should be performed prior to

applying the described method.
Among them are, €.g., proper

=] s
=% [+IN*]
50
R
g a8

adjustment of the resolution and the
number of grey levels in picture

®@ 0 e
)=

a5 [l
440 ﬂ?"‘g quantizationy coenatruction of a
(nln]n] ROC ("Receiver-cperating-charac=
Bz O teristic', as defined in statisti-
ONRD wfr ] [=fF]w] ¢cal decision theory) for coptimal
[rin] (=] [=]*}]
selection of event size and distri-
] [ ] %] bution events into classes i etec,
(€ . O 0
\j‘ o el {Read mnd Jayaramamurthy (1372),
Fichalski (197Za).
w| s Q  *] The events with which we des-
O DD <[*E] e
B w|a|w| [(alale] [wje|= eribe textures do not have to be in
the form which we used in the exam-
@ : : * 1: : : m ple, They can, of course, be of
® h-w LB any suitable configuration. When
Figure 13 the textures are complex, not enly

cne set of #1lters, but a family of such sets may have to be constructed, The
members of this family are then applied to an unknown texture in an iterstive
way (Michalski {1972al}.

The next example shows how 1-’1.1 is uged in describing a complex graphical
object. Such an cbject is treated as a structure of interrelated components (or
parts). The components themselves can alsoc be such structures, thus the same
technique is applied in an iterative vay t£ill the descriptions involve ocaly
certain predefined elements.

Twao types of descripticns are congldered:

g-type == which is viewed as an expression of a function
c
fi 2% ewrm R (37)
e
where C is a set of components of the objeect {EC-th- power set of

c) .
B -- & set of relations which relate subsets CigEc of the
object's components.

cr-type— vhich is viewed as an expreasicn of a function
f: ‘xR —=D ) {38)
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vhere D is a set of truth-values representing the 'degree' to which

a relation reR connects a subset of components Clezc.

Here we will restrict ourselves to two-element subsets Citﬂ‘c (1.8, to
binary relations) and D ={0,1}, where 1 means that a relation reR holds,

and O--does not hold,)

EX pY ]
Consider a line drawing in Fig. Lk representing a "house',
Assume, that using certain specialized
Il procedures, an automatic recognition sys-
tem is able to identify, in this line draw-
ing, such elements as squares, rectangles,

A
. H @ ’%W/:/;ﬁ triangles, etc,, determine thelr attributes

) @ (such as 'a vertical' (rectangle),

: e rectangle with a certain texture', ete,)
RN ‘C\x\\\\\\'\ =~ aad avaluate: thelr valesione | foen o sertadn
Pigure 1k vocsbulary of relaticns).

Jur problem is how to use the above information to construct a possibly simple,
easy to handle and logically irredundant deseription of the wvhels house. ({This
description should, e.g., make it easy to cbtain enswers to questions about the
structure of the house,)

Assume that the compenents of the 'house' are numbered ms shown in Fig. 1h,
The numbers (numerical names of the ccmponents) can be interpreted, e.g., as
addresses of locations in a memory where the information about the attributes® of
components is stored. [(In general, when components themselves are structures of
interrelated subcomponents, then a description {not Jjust the attributes) of the
components should be stored. This descripticon is constructed analogoualy to the
description of the entire house.)

c=type description

Let x.L’ Xy e variables whose domains, input name sets Hl' HE* are sets of
numerical names of the "house' components:

Hl = HE = {0,1,2,...,10} (39}
whers:
0 —- line with texture @ below it
l = trapezoid
2 == triangle
3

-- small sguare vith crosa

*In the literature, ateributes of eleaments are usually considered as unarv rala=
ations 2nd =tored (handled) with other relationa, We find such an approach

ratner inconvenlent, except for special cases, especially when the components them-
selves are structures or have many attributes.
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L -- small square to the left of a vertical rectangle

8 == large rectangle

£ == vertical rectangle

7 -- small square to the right of vertical rectangle

8 -- horizontal rectangle with texture &2

9 -- medium rectangle to the right of another medium rectangle

10 -- medium rectangle to the left of ancther medium rectangle,

Let the output name set H be a set of 'numericel names' of the binary rela-

tions found in the picture:
H= {0,1,2,3,4} (40}
where 0 == none of the relations holds
1 == 'to the left of'
2 == 'next to and the left of’
3 == 'on top of'
b —— *contains’

Lat Pk, K=0,1,.0s,lt be sets of events {:-1, Jl'.a}, xlaﬂl. xE;HE. such that the
value of % and %, are components related in the ‘house' by the relation k, keH.
{We will assume that relation 'l' does mot connect 2 objects where one of them is
. contained in a larger object which does not contain the second one},

B.g. FF =l (1,2),(2,5), (5,0), (6,0}, (8,9), (8,20}, {5,0), (10,0)}

Sets F* define a function £ : E —=H, vhere E = {(x, x,) |xgeH,, 1s1,2},
A c-type description is u."h"Ll expression of f_. A minimal VL, formula under (t,s)
for fc is:

£, = b= 1la=h,6,71 V ulxy=2]lx=3] V 3lx;=1](xp=2]
3(x,=21[x,25] V 3(x,5,6,9,10](x;=0] Vv
3[:1-51{:2=9,1ﬂ]\f E[ﬁ*ﬁ][xziﬂ,glv 2lx =9} (x,=10]
1lx,=k,6](x,26,T]V 1[x,=5](x,=10] (L)
{If it is given that some relations are transitive {e.g. "to the left of'), then
the formula could be simplified even further. )

The first term of the formula states that component 3 {*large rectangle'} is
related to 4,6, and T (2 amall squares and & vertical rectangle) by relation b
{contains), ete. Using the forpula, we can easily snswer any guestion like:
'What relation connects components a and p?', "Which components are related to
component & by the relation T 71, 'Which components are related by relation r 77,
etc.

E.g., & question 'Which relation connects compoments 2 {'trisngle'} and 5
{'large rectangle')' can be answered by inspecting terms of the expression, start-
ing with the terms with the highest comstants, in order to find the first term
with selectors that are satisfied if x,»2 snd x,=5, The term 3[:1-21[:2-5] 1s
such a term and thersfore the relation is 3 {on top of), Similarly, we can
ansver the other gquesticns mentioned above.
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The components of '"house' can also be considered as structures and
described in a similar fashion. E.g., the component 5 ['large rectangle') (Flg.
15) can be desecribed as follows,

i b Let xi. :é be varlables with domains Eil = H‘z = {0,1,2,1}
; “~“?".4’ : where 0 represents vertex 0, 1 -- vertex 1,
e 2 -= vertex 2, 3 == vertex 3
2 Zet the output name set H be {0,1,2,3 )}
Figure 15
where 0 == represents 'none of the relations hold'

1 -~ represents the relaticn 'a& segment of a straight line, of length
. i " 4 ’ o !
sy between ®y and %5 'whare iy X, € HJ. = I'-.I2
2 -= 'a segment of a straight line of lengthsbbetween x'l and x.°'
3 == 'a segment of a straight line of length:cr, where c = Va* + b i
between xi and xb
{In order to give an attribute 'large' ta the rectangle, «asand b have to satisfy
certain relations with regard to the size of the 'house',)

A c-type deseription of the rectangle is a \FL.'. expression of a function
f: E——H , vhere E = {l.'xl. x'zll Fx'l, x, eH) = H}
A minimal ‘-le formula under {ta) for £, is:
o 30620,3106,=0,3] V 30k =1,2]1x=1,2]v 2[x)=0,1][x=0,1] V
E[xi!2.3][x'2'2.3] Vi

In a similar way, other components of the 'house' can be described [using
"lower level' components or certain predefined elements).

cr=type description

Assume that Xy Xy have the same meaning as in the c-type dessription,
Introduce a new variable 13 with domain E! equal to the get previcusly defined
as output name set H : i-[3- {0,1,2,3,4 }

As an output name set use the set K = {0,1}, Let FL, F° be sets of events
t'tl' ss x.3:l, x, €l y 1= 1,2,3

?; = {lx}, x5, %;) [x; is related to x, by the relation el

7 o= ({xyg, Xos 13} le is not related to x, by the relstion x,}.

sets 7+ 3nd f9 derine @ function £ {{xl, Xs» 13) Ixicl-li, i=1,2,3} —= H ,
A crotype description is a (minimal under {t,s) ) VL, formula for f_which is:

£ Lxy=5 10,7, 6,71 [xy=b ] V (%72 [x,=3] (=4 ] V [x;=1][x;=2)(x,23] V

(=2 10x,=5 125731V [%,75,6,9,10][x,%0)(x,73] V [x,=8][x,29,10] (x,=3]v
(x,=51[x,=8,9][x,=2] V [11'9][12-10][::3#2] W Exluh,ﬁllxztﬁ,'?][xa-l] )
[x,=5][x,=10]{x=1] (s2)

The ec-type and cr-type descriptions of the 'house' are essentlally equivas-
lent. Computaticnally, the c-type is suited to a term by term evaluation of a
formula, and cr-type to & parallel evaluation. In general, there are also octher
differences between the two types of descripticns with regard to spplications

(er-type, e.g., permits the representation of "weighted' relaticna, with 'de-
grees', i,e, where the set D has more than 2 elem=nts),
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The deseriptions of oblects constructed as illustrated in the above simple ew-
arple can serve as models for these objects and be used for recognizing them in a
broader context {such as a visual scens). In order to use them for recogniticn
purposes, a number of neW cancepts (such as 'equivalence', 'isomorphism', 'homo-
morphism', 'homo-homomorphism' of VL, formulas under & function £), which go be-
yond the scope of the paper, are req ired.
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DLSCUSSION

Rosenfeld:
You glve 3 running time of 13 seconds for Example 3. Do you remember the
simes for Examples U (texture) and 5 (house)?

ishalekirs

I dién't give the running time for Example 4 because the program was riot
corpletely finished when I was writing the paper. The complete version of
AQVAL/1 which we presently have in cperation is considerably faster than the pre-
wious version.

Bosenfeld:

How did you determine the set of properties or relations used in Example S7?
Is this set of properties and relations a complete set by some criterion? If a
machime had to systematically explore a space of possible properties and relaw-
tions for that problem there might be some large comblnatordal number of them,
I may be misjudging, but it 1s my First reaction to the list of properties and
relations given, that you hand=plcked a set which had scme relsvance to reason—
able structural descriptions. Is it possible that this set could have been auto-
matically generated? ;

Michalaki:

We would certainly like to be able to find cut the relevant relations and
eliminate irrelevant ones conpletely automatically. The present work is, of
course, not a solutieon to all the problems. In this partlcular case we have
chosen the most cbvious attributes and relatlons. We have some ideas about how
to attack the problem of finding a deseription by starting from original low
level data ard then producing higher level descriptions using the same approach
in an lterative way.

Rosenfeld:

Then in faet let me comment that the texture examples are very nice in that
rature hands you a simple method of pleking an initial feature space, namely all
the patterns that can cccur in some small nelghborhood. It would be nice if cre
could do such things for higher level problems such as the house. A secornd com-
ment 1s: what you have here 1s potentlally a very powerful grammatical inference
procedures for finding simple structural descriptions. It might be enlightening
to lock at it from that point of view.

MeCormiok:

Michalskli and myself have been In contact with Robert Langridge at Prince-
ton on locking at protain structures and trying to detect a word structure in the
sequence of amine acids. After all, proteins can be constiructed from an alphabet
of 21 letters (amino acids) plus the five discrete angles between adjacent amino
aclds. We intend te try to detect good words within available protelns. Using
this technigue which 15 in effect a grammatical inference procedure, we encounter
a problem of more physical interest than many of those comlng directly from the
study of artiflielal languages.

Rosenfald:

Sclomen Marcus in Romania has also been trylng to write grammars for DNA.
I think he's trying to discover the grammar himself, but you have a powerful auto-
matic tool for doing 1it.

Nake: :
Could you say a word on how you extracted the events in the texture example:

how do you scan, overlapping or not overlapping?
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Michalaki:

At the moment, we work in the following way: we first perform a rumcer of
pre-processing cperations to discover, or to define, the resolution and nurber of
zrey-levels adequate for the given textures. I think that the resolution and
numoer of grey-levels should not be assumed a priori but should be adecpted to the
given texture. Next, we extract sets of events which characterize our textures.
[ would 1like to emphasize that the tendency 13 to make the resolutien ard rumber
of grey-levels as small as possible without losing considerably in practical vali-
dity. In the example with textures, binary representation happened to be good
encugn. Generally, we extract all possible events which occur in the textures,
Then we find the optimal partition of events into classes, and apply ARVAL/L to
synthesize a proper VL expression.

Nake:
Will the parallel processing take care of the inecreasing computation time
when you have flner resolution?

Michalaki:

Yes, parallel computations are very fimportant here. But, again, we check
First 1f such a fine resolution is really needed in our conerete problem, Maybe
we can decrease the resolutlon. This we check by constructing ROC's (receiver
operating characteristics) as defined in statistical deeisicn theory. We den't
want to be killed computationally by not reducing the amount of information when
it is posaible,

Nake:
How do you actually represent the predicates and relations in terms of a
computer language?

Mighalski:
We use characteristic functions wvery successfully.

Naragaimhan:

What slightly disturbs me about this work 1s that there seesms to be an
attermpt here to corvert what primarily are pletordal problems into non-pleteorial
combinatorial problems, The real crux of dealing with pletures 13 to be able to
perform pictorlal operations on plctures in order to abstract what you would call
pragmatic information -- information about pleture structures which need to be
interpreted. MNow, in all the examples you have discussed, you neatly skip this
pictorial processing problem by presenting to your system something that is arti-
culated in non-plotordal form. And then your system merely deals with this In a
completely non-pletorial fashion. And even in the particular example where you
probably do confront your system with a pleterial world, namely textures, your
description of how the system works seems to Imply that your system deals with
this in a coampletely ren—-pletordal fashion. The whole approach seems to be quite
apprepriate in a pictorlal system at some higher level, once one has left the
pictorial domain. But the really open problems at the present stage lle pre-
cisely in the plctorial domain, We still do not know how to handle pictures in
order to come up with relsvant information.

Michalaki:

Tt 1s my hypothesis, that at high levels of informatlon processing cur mird
works in a similar way, whether we want to understand pictures or nen-pletures.
Our primary goal 1s to create an Inference system which Is able tg discover the
general riles independently of the form in which the information i3 glven to it.
Certainly this approach doesn't solve all Image processing problems. We kmow,
for example, that in our visual system we have a lot of bullt-in procedures which
detect certain special properties -—— line detectors, angle detectors, etec. So a
way to attack the pre-processing problem is to have at our disposal a large number
of different speclalized procedures for varlious kinds of primitives, And then
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the next level of processing can be performed by a general inference system of
the kind that I deseribed, I dom't think 1t is pessible that some general SyS5-
“em will be able to do all this pre-processing, We can, however, apply ocur sys-
tem to find filters for primitives like an angle, or a point, or a plece of line,
ete,

Karagimhan;

I would just repeat the question that Rosenfeld asked before. The Lmper-
sant thing 1s, glven a zet of feature filters, presumably your technique will
tell you how to come up with a mirdmum deseription using these filters,

Miohalaki:
Yes, using primitives which have teen detected in the pleture,

darasimhan;

But, you are not trying to tackle the problem of determining the voeabulary
of primitives which will be apprepriate for the class of plctures you are dealing
with. You have a rather powerful procedure, in which it i3 possible to come up
with certain kinds of mindmal descriptions. The minimization 1s done on a cep-
tain vocapulary that is already glven to the gystem. If, using this vocabulary,
various equivalent descriptions can be produced, then your system can come up
with a minimal deseription in scme semse. But the question cng 1s interested in
asking 1s, whether the system can broduce, for 1tself, an appropriate vozabulary .,

Michaleki:

My answer to this question is the following: human belrngs who have to
operate 1in very different envircaments are shle to measure very many different
kinds of properties and primitives. They have bullt in op developed many differ-
ent elementary concepts which they are using in describving the environment.
Therefore, if we wanted to create an artificial man we would have to design all
sorts of primitives which spproximately would be the same as in human beings.
Sut if we want to build a technieal system and lmow to which kind of problems we
w“ant to apply 1t, we can certainly reduce the number of primitives which have to
te at the disposal of the system. That simplifies the technical solution. We
shouldn't demand that a system doas everything for us., Problems as diffisult
a5 finding the set of elementary primitives should be dore with the help of man,
anyway at the present state of the game. But that doesn't mean that man has to
provide really relevant primitives. He should provide a large number of primi-
tives, as large as s computaticnally feasible. Our system will then discover
which primitives and relations are relevant and useful,

Jangen:

Your program creates programs and — noting that this is TC 2 which is
Interested in programming — let me point out that the created program uses the
"MeCarthy or". It evaluates successive predicates until it gets one that is
satisfied.

Michalaki:

I didn't say what algorithm we were applying because there was not enough
time, The algerithm is based on covering theory, To my best knowledge, I do not
oW any work which sclves the problem in a similar way.



