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Abstract

PROBABILITY AND CURRENT PROPAGATORS IN NON-RELATIVISTIC QUAN-
TUM MECHANICS, WITH APPLICATIONS TO RECENT INTERFEROMETER EX-
PERIMENTS

Langhorne Putney Withers, Jr., PhD

George Mason University, 2015

Dissertation Director: Dr. Francesco Narducci

In this dissertation, a theory of probability propagation is developed for standard

quantum mechanics. This theory is applied to study three contemporary interferometer

experiments: three-slit tests of Born’s probability law, a modified version of the Steinberg

two-slit mean-path experiment using a twin detector, and light-pulse atom interferometry.

The theory is based on path integrals to propagate both the probability and current

densities for a quantum-mechanical system. We find that, in order to propagate the prob-

ability and current densities, we must extend them to displaced or bilocal probability and

current densities. We interpret these bilocal quantities to represent wavelike interference of

a particle with itself at any two locations in space. Then we find there are two types of

bilocal current, which include the usual current and the so-called osmotic current as spe-

cial cases. A probabilistic Schrödinger equation for the bilocal probability density results,

which is equivalent to the usual Schrödinger equation. By asking quantum mechanics how

to propagate probability, we discover that quantum mechanics is inherently bilocal.



Chapter 1: Introduction

Quantum mechanics and its extension to relativistic field theories gives the best account of

the physical world that we experience and measure, but we are still testing it and trying to

understand its meaning about 100 years after its birth as a theory. At its core, it assigns

complex-valued amplitudes to particle events, whose probability densities are then given

by the norm-squares of the amplitudes. This is Born’s rule, which might be said to make

tangible sense (probability) out of abstract nonsense (the amplitudes). Einstein’s reaction

to this part of the theory that he and Planck launched was to say, “I can’t believe that God

plays dice with the world.” This is, of course, only the first of many paradoxical features of

quantum mechanics, such as entangled particles and intrinsic spin. That quantum mechan-

ics somehow represents the real world makes it very interesting. We all want to know how

it works, how God does it.

The amplitudes are typically represented as wavefunctions. They evolve or propagate

over time, as governed by the Schrödinger equation. Propagators solve the Schrödinger

equation. For a given Hamiltonian energy expression, the propagator moves the initial

wavefunction forward in time. These amplitude propagators are often hard to compute,

and path integrals for the associated Lagrangian action are often the easiest and most

intuitive way. A natural question comes up. Can we express quantum mechanics in terms of

probabilities alone, without using amplitudes? How would we propagate the probabilities?

This dissertation presents a theory of probability propagation for standard quantum

mechanics. The theory is based on path integrals to propagate both the probability and

current densities for a quantum-mechanical system. We find that, in order to propagate the

probability and current densities, we must extend them to displaced or bilocal probability

and current densities. We interpret these bilocal quantities to represent wavelike interference

1



of a particle with itself at any two locations in space. Then we find there are two types

of bilocal current, which include the usual current and the so-called osmotic current as

special cases. The probabilistic Schrödinger equation results, which is equivalent to the

usual Schrödinger equation. By asking quantum mechanics how to propagate probability,

we discover that quantum mechanics is inherently bilocal.

This theory is applied to study three contemporary interferometer experiments:

• Three-slit tests of Born’s probability rule

• A modified version of the Steinberg two-slit mean path experiment, using a twin

detector

• Light-pulse atom interferometry.

This dissertation contains two chapters of theory and two chapters of applications. Each

chapter has its own introduction, main body, and conclusion. Chapter 2 develops the Blue

functions that propagate the probability and current densities in time. They are analogous

to the Green functions that propagate the wavefunction amplitudes in time. From the Blue

function path integral, we derive a bicontinuity equation for the probability and current

densities. Four examples are given. The Wigner distribution is interpreted in terms of Blue

propagators.

Chapter 3 goes on to develop a bilocal picture of quantum mechanics. We present a

probability theory that shows that at most two events can interfere in standard quantum

mechanics, and immediately apply this to recent experiments to test Born’s rule. The

concept of a twin detector, necessary for actual bilocal detection of an arriving quantum

particle, is introduced. Simple expressions for both kinds of bilocal current are given. By

understanding the currents, we see that the probabilistic Schrödinger equation follows from

the bicontinuity equation. We solve this equation for energy-difference eigenstates, and

directly obtain the von Neumann equation for the density-of-states.

Chapter 4 applies the theory of chapters 2 and 3 to modify the recent weak-value in-

terferometer experiment of Steinberg et al.. By using a twin detector to permit wavelike
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interference, we predict the counter-intuitive result that the de Broglie average path for a

photon should change when the detection mechanism changes. Closed-form formulas for the

predicted probability and current densities are given. Examples of the measured photon’s

tranverse momenta and consequent mean path are plotted.

Chapter 5 addresses light-path atom interferometers, currently being developed as sensi-

tive gravity and magnetic field gradiometers, as well as sensitive rotation sensors and atomic

clocks. We apply the von Neumann equation for the density-of-states, as derived in chapter

3, to stimulated Raman transitions in a three-level atom. Counter- or co-propagating laser

pulses are coherently applied to a cloud of trapped alkali atoms to stimulate a two-photon

absorption and emission that compose the Raman transition. We show how to reduce the

six density-of-states equations for three levels down to three such equations for an effective

two-level system, using an adiabatic approximation. An interesting feature of this theory as

developed by Aspect, Chu, and others, is the concept of closed momentum families associ-

ated with the three atomic levels. Various sequences of laser pulses are possible. For a Hahn

sequence of π/2, π, π/2 pulses, we describe the well-known analogy with the Mach-Zehnder

interferometer, in which a π/2 laser pulse acts as a beamsplitter, and a π laser pulse acts

as a pair of mirrors.

My conclusions are summarized in chapter 6. Supporting calculations are given in the

appendices.

My hope is that the reader will enjoy the ideas and methods presented here, that they

will lead him or her to new insights, and that some of them will prove useful in making new

applications.
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Chapter 2: Probability and Current Density Propagation

Like a Green function to propagate a particle’s wavefunction in time, a Blue

function is introduced to propagate the particle’s probability and current den-

sity. Accordingly, the complete Blue function has four components. They are

constructed from path integrals involving a quantity like the action that we call

the motion. The Blue function acts on the displaced probability density as the

kernel of an integral operator. As a result, we find that the Wigner density oc-

curs as an expression for physical propagation. We also show that, in quantum

mechanics, the displaced current density is conserved bilocally (in two places

at one time), as expressed by a generalized continuity equation.

2.1 Introduction

How particles and waves move, and change states in general, is a central concern of physics.

In quantum theory, moving objects are modeled by propagating their complex-valued prob-

ability amplitudes over time. But in experiments, we typically observe the associated prob-

abilities, the absolute squared norms of the total amplitudes [1]. The probability current

density is known to be locally conserved. Theories of mixed states and interaction with

external systems often require working with probabilities. These considerations motivate

us to study the probabilities in their own right. Specifically, we ask how the probabilities

evolve in time, as the wavefunction evolves in time. It is plausible that a direct approach

to the moving probabilities should give us new insight and simpler calculations.

The Wigner-Weyl approach to non-relativistic quantum mechanics replaces amplitudes

by quasi-probability densities [2][3]. Let us review just enough of this theory to glean one

important hint from it: a simple change of variables. Consider a wavefunction ψ(x′, t′) =
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〈x′|ψ〉 for a particle or system of particles in the state |ψ〉 at some time t′. (In a moment,

we will also be using a later time t′′.) It is the probability amplitude to find the particles

at position coordinates x′ = (x1, x2, . . . , xd). The Weyl transform converts an operator A

into a function over phase space:

A(x′, p′) =
1

(2π~)d

∫ ∞
−∞

eip
′·τ ′/~〈x′ + τ ′

2 | A |x
′ − τ ′

2 〉 dτ
′, (2.1)

for the system at position and momentum (x′, p′) at time t′. In particular, for the density

operator ρ = |ψ〉〈ψ| of a pure state |ψ〉, we define the displaced (two-location) or split

probability as

P(x′t′, τ ′) := 〈x′ + τ ′

2 | ρ |x
′ − τ ′

2 〉

= ψ∗(x′ − τ ′

2 )ψ(x′ + τ ′

2 ). (2.2)

It is complex-valued, but for τ ′ = 0 it reduces to the real-valued probability |ψ(x′)|2. It

has an associated displaced current which is conserved, as we will show later. (It is easy

to extend this expression (2.2) to a mixed state with density operator
∑

k pkρk, where each

state k has probability pk.) Thus for the density operator, the Weyl transform (2.1) is the

Wigner density1

w(x′, p′) =
1

(2π~)d

∫ ∞
−∞

ψ∗(x′ − τ ′

2 )eip
′·τ ′/~ψ(x′ + τ ′

2 )dτ ′. (2.3)

An extra variable τ ′, the spatial separation, has been introduced above. This variable

makes the integral in (2.3) non-local, since it simultaneously probes the wavefunction in

opposite directions about x′ by variations τ ′

2 of every size. The integral is the same when

1Wigner and Szilard constructed this density about the same time as Weyl. Wigner applied it to quantum
corrections in thermodynamics [4][5]. It was anticipated by Dirac and Heisenberg as well.
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we substitute −τ ′ for τ ′, and therefore equals its own complex conjugate. So w is always

real-valued. But it is negative in places, except for Gaussian wavefunctions, so it is not a

true probability density over phase space [6]. However, its marginal integrals along lines

parallel to the p′ and x′ axes give the squared probability densities of the wavefunction over

position and momentum, respectively:

∫
w(x′, p′)dx′ = |ψ(p′)|2 (2.4)

∫
w(x′, p′)dp′ = |ψ(x′)|2. (2.5)

The first integral separates as soon as we change the spatial variables to r′ = x′ − τ ′

2 ,

s′ = x′+ τ ′

2 , with unit Jacobian. The second integral results because
(

1
2π~
)d ∫∞
−∞ e

ip′·τ ′/~dp′ =

δ(τ ′ − 0). The total integral over all of phase space is 1. We may recover ψ itself, up to

a constant (global) phase factor, from the inverse Fourier transform of w [2]. Also, the

expectation value of an operator A given the state |ψ〉 is

〈A〉 ≡ 〈ψ∗ |A|ψ〉 =

∫
ψ∗(x′)Aψ(x′)dx′

= tr(ρA) =

∫∫
A(x′, p′)w(x′, p′) dx′dp′. (2.6)

A proof of the last equality is given in [3]. Here w plays the role of a signed density or

measure over phase space. For further information about the Wigner-Weyl approach see,

e.g., [7–12].

Besides the marginal integral properties above, Wigner found other axioms which the

quasi-density w satisfies, such as how it transforms under Galilean translations, and invari-

ance under time and spatial inversion [13][14]. But the physical meaning or motivation of

the Weyl and Wigner integrals defined by (2.1) and (2.3) is not immediately apparent. For
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example, there is no obvious reason that leads us a priori to construct the Fourier transform

of the displaced probabilities (2.2), based on introducing the auxilliary spacing variable τ ′.

But these abstract integrals produce meaningful results, so they should possess inherent

meaning that we can find out. Ahead, we will come to a bridge in quantum theory from

path integrals to the Wigner density.

The outline of the rest of this chapter is as follows. The path-integral approach to

quantum mechanics is reviewed in section 2.2. In this theory, a Green function propagates

the wavefunction forward in space and time. The Green function itself is a transition

probability amplitude, given by a “sum over histories.” This is a sum of phasors of form

exp {iS/~}. Each phase angle is given by the Lagrangian action integral S =
∫ t

0 L for one

possible path.

In section 2.3, we fuse two of these Green functions to form a Blue function to propagate

the probability density, by means of the simple change of variables above. In section 2.4, the

Blue function is constructed as a path integral involving a quantity like the action that we

call the motion. The classical equations of motion are studied in section 2.5. In section 2.6,

we see that the Blue kernel path integral implies a bilocal, generalized continuity equation,

much as the Green kernel path integral implies the Schrödinger equation. We consider the

four-fold symmetry of the Blue path integral in section 2.7. In section 2.8, we find that the

Wigner density results as a natural expression for zero-time propagation of probability. We

also consider how to propagate the probability density forward in time using line integrals of

the Wigner density in phase space. In section 2.9, we find that the complete Blue function

is a (non-Lorentzian) four-vector kernel, acting upon the displaced probability density. One

component propagates the probability density. The associated 3-vector, given by a related

path integral, produces the propagated probability current density.
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2.2 Green propagator

Let any path of the particle from x′ at time t′ to x′′ at time t′′ be given at N time increments

ε = T/N , as x0 = x′, x1, x2, . . . , xN = x′′. Here xn = x(nε), n = 1, 2, 3, . . . , and T = t′′ − t′.

The path integral expression developed by Feynman for the Green function propagator is

given by [1] [15] [16] [17]:

G(x′′t′′;x′t′) = Dx(t) eiS[x(t)]/~

= 1
C(ε)

∫
dx1
C(ε)

∫
dx2
C(ε) · · ·

∫ dxN−1

C(ε)

exp

{
iε
~
∑N

n=1
m
2

[(
xn−xn−1

ε

)2
− V

(
xn+xn−1

2

)]}
(2.7)

where S[x(t)] =
∫ t′′
t′

(
m
2 ẋ

2 − V (x, ẋ)
)
dt is the Lagrangian action for any path x(t), and

C(ε) is a normalizing constant. As described in section 6 of [18], this formula extends

directly to the case of multiple particles with different masses in Cartesian space, and can

be transformed into other coordinates. Here we introduce a special integral symbol, based

on an Euler-Cornu spiral, to suggest graphically the vector sum of unit phasors over paths.

The phasors typically rotate slowly for paths near the classical stationary path, as depicted

in the middle of the symbol, and rapidly otherwise, as on the extremes of the symbol.

2.3 Blue from Green propagator

To propagate the wavefunction to a later time t′′, we use the Green function or ma-

trix element G(x′′t′′;x′t′) = 〈x′′t′′ |x′t′ 〉. It is the complex amplitude to go from x′t′ to

x′′t′′. Then we operate on the wavefunction by an integral with kernel G: ψ(x′′, t′′) =∫
G(x′′t′′;x′t′)ψ(x′, t′)dx′. In this way, the Green function G propagates ψ forward in space

and time.
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To propagate the probability density |ψ(x′, t′)|2 directly, we define the Blue function B

as

B(x′′t′′;x′t′τ ′) = G∗(x′′t′′;x′ + τ ′

2 , t
′) ·G(x′′t′′;x′ − τ ′

2 , t
′). (2.8)

The Blue function2 is the kernel in a two-sided, two-variable integral operator. It propagates

the probability density of the wavefunction. We see this because the integral splits easily

into a product of two integral operators with the Green propagator as kernel:

∫∫
dx′dτ ′ψ∗(x′ − τ ′

2 )B(x′′t′′;x′t′; τ ′)ψ(x′ + τ ′

2 ) (2.9)

=

∫∫
dx′dτ ′ψ∗(x′ − τ ′

2 )G∗(x′′t′′;x′ − τ ′

2 , t
′)

·G(x′′t′′;x′ + τ ′

2 , t
′)ψ(x′ + τ ′

2 )

=

∫∫
dr′ds′ψ∗(r′)G∗(x′′t′′; r′)G(x′′t′′; s′)ψ(s′)

=

∫
dr′ψ∗(r′)G∗(x′′t′′; r′) ·

∫
ds′G(x′′t′′; s′)ψ(s′)

= ψ∗(x′′, t′′) · ψ(x′′, t′′) = |ψ(x′′, t′′))|2, (2.10)

where we change variables to r′ = x′ − τ ′

2 , s′ = x′ + τ ′

2 .3 As t′′ → t′, the Green function

G→ δ(x′′− x′), while the Blue function B → δ(x′′− x′+ τ ′

2 ) · δ(x′′− x′− τ ′

2 ). Note that, as

defined, the Blue function operates, not on the probability density, P(x′t′) = |ψ(x′, t′))|2,

but on the more general displaced probability density (2.2). To fuse the Green functions

into one Blue kernel, we must split or displace the probabilities in this way. As the operand

of the Blue kernel, this complex displaced density (2.2) is the key to this dissertation.

2This is not named after anyone. The colour merely suggests its close relation and role to the functions
named for George Green.

3It is encouraging that Richard Feynman considered propagation of probability in section 12-7 of [1]. This

was done to include a stochastic external force [f(t)]. To compute state transition probabilities, he began

with the product of Green function kernels G∗(x′′t′′;x′t′) ·G(y′′t′′; y′t′), and expressed this as a double path
integral. But there was no change of variables to form a Blue function.
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We can propagate the displaced probability density itself from time t′ to t′′, in the usual

sense, if we generalize the Blue function slightly by including a final displacement τ ′′, as

follows:

∫∫
dx′dτ ′B(x′′t′′τ ′′;x′t′τ ′) · P(x′t′, τ ′)

=

∫∫
dx′dτ ′ψ∗(x′ − τ ′

2 )B(x′′t′′τ ′′;x′t′τ ′)ψ(x′ + τ ′

2 )

=

∫∫
dx′dτ ′ψ∗(x′ − τ ′

2 )G∗(x′′ − τ ′′

2 , t
′′;x′ − τ ′

2 , t
′)

·G(x′′ + τ ′′

2 , t
′′;x′ + τ ′

2 , t
′)ψ(x′ + τ ′

2 )

=

∫
dr′ψ∗(r′)G∗(x′′ − τ ′′

2 , t
′′; r′) ·

∫
ds′G(x′′ + τ ′′

2 , t
′′; s′)ψ(s′)

= ψ∗(x′′ − τ ′′

2 , t
′′) · ψ(x′′ + τ ′′

2 , t
′′) ≡ P(x′′t′′, τ ′′). (2.11)

Often our interest is in τ ′′ = 0, and then we will omit it from the Blue function’s arguments,

and write B(x′′t′′0;x′t′τ ′) = B(x′′t′′;x′t′τ ′).

A few examples of the Blue functions for a particle in one dimension will be illuminating.

They are based on familiar Green functions. The Blue functions are simpler. Here we find

that, when used to propagate probability, they naturally produce the Wigner density.

Example 0. The Green propagator (matrix element) for a free particle [1] is

G0(x′′t′′;x′t′) = 〈x′′t′′
∣∣x′t′ 〉

=
( m

2πi~T

) 1
2

exp

{
i

~

[ m
2T

(x′′ − x′)2
]}

. (2.12)
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where T = t′′ − t′ is the elapsed time. Then the Blue propagator is

B0(x′′t′′;x′t′τ ′) = G∗0

(
x′′t′′;x′ − τ ′

2 , t
′
)
G0

(
x′′t′′;x′ + τ ′

2 , t
′
)

=
( m

2π~T

)
exp

{
− i
~

[ m
2T

(x′′ − x′ + τ ′

2 )2
]}

× exp

{
i

~

[ m
2T

(x′′ − x′ − τ ′

2 )2
]}

=
( m

2π~T

)
exp

{
− i
~

[
m
x′′ − x′

T

]
· τ ′
}
. (2.13)

The expression in square brackets is the constant momentum

p(x′, x′′, T ) = m
x′′ − x′

T
, (2.14)

which takes the classical free particle from x′ to x′′ in the time T . For any given final point

x′′t′′, this is the equation of a straight line ` in phase space (x′, p′) at the initial time t′.

Therefore, when we integrate with the Blue function as kernel to propagate the wavefunction

probability, we can interpret the integral (2.9) as a line integral in phase space:

|ψ(x′′, t′′))|2 =

∫∫
dx′dτ ′ψ∗(x′ − τ ′

2 )B0(x′′t′′, x′t′τ ′)ψ(x′ + τ ′

2 )

=
( m

2π~T

)∫∫
dx′dτ ′ψ∗(x′ − τ ′

2 )ψ(x′ + τ ′

2 ) exp

{
− i
~

[
m
x′′ − x′

T

]
· τ ′
}

=
( m

2π~T

)∫
`
dx′
∫
dτ ′ψ∗(x′ − τ ′

2 )ψ(x′ + τ ′

2 ) exp

{
− i
~
p(x′, x′′, T ) · τ ′

}

=

(
1

2π~

)∫
`
dp′
∫
dτ ′ψ∗(x′ − τ ′

2 )ψ(x′ + τ ′

2 ) exp

{
i

~
p′ · τ ′

}
. (2.15)
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We see the line integral with parameter dx′ in the (x′, p′) plane in the next to last equality

above. For the last equality, we reparametrize the line integral in terms of momentum using

the slope ∂p′/∂x′ = −m/T . We recognize this as the line integral of the Wigner density

w(x′, p′) (2.3), valid for any propagation time T . For the special case of zero propagation

time, x′ = x′′ is constant, the lines become vertical, and the integral is the same as (2.5).

Example 1. The Green propagator for a linear potential V (x) = −fx is [1]

G1(x′′t′′;x′t′) = 〈x′′t′′
∣∣x′t′ 〉

=
( m

2πi~T

) 1
2

exp

{
− i
~

[
m

2T
(x′′ − x′)2 +

fT

2
(x′′ + x′)− 1

24m
f2T 3

]}
(2.16)

Then the Blue propagator is

B1(x′′t′′;x′t′τ ′) = m
2π~T · exp

{
− i
~

[
m
x′′ − x′

T
− fT

2

]
· τ ′
}
. (2.17)

With no accelerating force f , the classical particle would only have reached x′′− 1
2(f/m)T 2

by the time t′′. So the expression above in square brackets is the initial momentum

p′(x′, x′′, T ) = m
x′′ − x′

T
− fT

2
. (2.18)

The impulse fT (momentum change) delivered by the constant force f over the time T

will push the particle from x′ to x′′. (It will have momentum p′′ = p′ + fT at time t′′.)

For any given end point x′′t′′, this is again the equation of a straight line ` in phase space

(x′, p′) at the initial time t′. Operating with the Blue function as kernel to propagate the

wavefunction probability, much as for a free particle we interpret the integral (2.9) as a line
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p' 

x' 
ωT 

 p'' 

Figure 2.1: Slanted lines in the phase plane for integrating the quantum harmonic oscillator’s Wigner

density. For each fixed destination x′′, the line has the form x′ cosωT +(p′/mω) sinωT = x′′+x[f(s)], where

x is a functional of the forcing function f(s) as in equation (2.21). Integrating it along these lines gives the

wavefunction’s probability density propagated to time T = t′′ − t′. The lines are rotated about the origin

by the angle ωT . The integrals have the form of a Radon projection of the Wigner density w(x′, p′) in this
example.

integral in phase space:

|ψ(x′′, t′′))|2 =

∫∫
dx′dτ ′ψ∗(x′ − τ ′

2 )B1(x′′t′′, x′t′τ ′)ψ(x′ + τ ′

2 )

=
m

2π~T

∫∫
dx′dτ ′ψ∗(x′ − τ ′

2 )ψ(x′ + τ ′

2 ) exp

{
− i
~

[
m
x′′ − x′

T
− fT

2

]
· τ ′
}

=
m

2π~T

∫
`
dx′
∫
dτ ′ψ∗(x′ − τ ′

2 )ψ(x′ + τ ′

2 ) exp

{
− i
~
p′(x′, x′′, T ) · τ ′

}

=
1

2π~

∫
`
dp′
∫
dτ ′ψ∗(x′ − τ ′

2 )ψ(x′ + τ ′

2 ) exp

{
i

~
p′ · τ ′

}
. (2.19)

For the last step, we reparametrized the line integral in terms of momentum using ∂p′/∂x′ =

−m/T again. We see the line integral of the Wigner density w(x′, p′) (2.3). Again for zero

propagation time, x′ = x′′ is constant, the lines are vertical, and the integral reproduces

(2.5).

Example 2. The quantum harmonic oscillator is an important example in both elementary
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and advanced quantum mechanics. It begins with a quadratic potential V (x) = 1
2mω

2x2 −

f(t)x, for any external driving force f(t). The Green propagator is [1]

G2(x′′t′′;x′t′) = 〈x′′t′′
∣∣x′t′ 〉

= e−iθ
(

mω

2π~| sinωT |

) 1
2

exp

{
imω

2~ sinωT

[ (
(x′′2 + x′2

)
cosωT − 2x′′x′

+
2x′′

mω

∫ t′′

t′
f(t) sinω(t− t′) dt+

2x′

mω

∫ t′′

t′
f(t) sinω(t′′ − t) dt

− 2

m2ω2

∫ t′′

t′

∫ t

t′
f(t)f(s) sinω(t′′ − t) sinω(s− t′) ds dt

]}
,

where θ = π
4

(
1 + 2bωTπ c

)
, and bxc denotes the greatest integer n ≤ x. The Blue propagator

is

B2(x′′t′′;x′t′τ ′) =
mω

2π~ |sinωT |

× exp

{
imω

~ sinωT

[
x′ cosωT − x′′ + 1

mω

∫ t′′

t′
f(t) sinω(t′′ − t) dt

]
· τ ′
}

=
mω

2π~ |sinωT |
· exp

{
− i
~
p′ · τ ′

}
. (2.20)

Again we see the classical initial momentum p′ as the coefficient of iτ ′/~ in the exponent

above:

p′(x′t′, x′′t′′) =
mω

sinωT

[
x′′ − x′ cosωT − 1

mω

∫ t′′

t′
f(t) sinω(t′′ − t) dt

]
(2.21)

This interpretation follows, first, by integrating the classical equation of motion for the un-

forced harmonic oscillator, which gives us its path x(t′′) = x′ cosω(t′′ − t′)+(p′/mω) sinω(t′′ − t′).
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Second, the integral part is from the inhomogeneous solution using the Green function for

the classical harmonic oscillator to include the driving force f(t) [19]. For any given end

point x′′t′′, (2.21) is again the equation of a straight line ` in phase space (x′, p′) at the

initial time t′. Propagating the wavefunction probability by means of the Blue function,

again we may interpret the integral (2.9) as a line integral in phase space:

|ψ(x′′, t′′))|2 =

∫∫
dx′dτ ′ψ∗(x′ − τ ′

2 )B2(x′′t′′, x′t′τ ′)ψ(x′ + τ ′

2 )

=
mω

2π~ |sinωT |

∫
`
dx′
∫
dτ ′ψ∗(x′ − τ ′

2 )ψ(x′ + τ ′

2 ) exp

{
− i
~
p′(x′, x′′, T ) · τ ′

}

=
1

2π~ |cosωT |

∫
`
dp′
∫
dτ ′ψ∗(x′ − τ ′

2 )ψ(x′ + τ ′

2 ) exp

{
i

~
p′ · τ ′

}
. (2.22)

For the last step, we reparametrized the line integral in terms of momentum using ∂p′/∂x′ =

−mω cosωT
sinωT , based on equation (2.21). The line integrals in this case naturally constitute

a Radon projection [20][21] of the Wigner density w(x′, p′) (2.3) for offset distance x′′ and

tilt angle θ = ωT , as shown in figure 2.1. For zero propagation time, x′ = x′′ is constant,

θ = 0, the lines are vertical, and the integral reproduces (2.5).

For the quantum harmonic oscillator, the probability propagation equation (2.22) shows

us directly that the Wigner density of the propagated wavefunction is just the original

wavefunction’s Wigner density rotated about the origin by ωT . This fact is well-known

(see, e.g., [14] [3] [22]), but here we have a direct physical explanation for the fact. We will

confirm in section 2.8 that, in general, probability propagation can be expressed naturally

as integration of a generalized Wigner density along curves in phase space.

2.4 General form of Blue functions as path integrals

To construct B as a path integral, we begin with the paths for possible motion in configu-

ration (x) space. From the Green function path integral (2.7), the Blue function can also
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be developed as a path integral. Since B(x′′t′′τ ′′;x′t′τ ′) = G∗(x′′ − τ ′′

2 , t
′′;x′ − τ ′

2 , t
′)G(x′′ +

τ ′′

2 , t
′′;x′+ τ ′

2 , t
′), we begin with two copies of the path integral for G. Let the two sampled

paths be labeled as

x̃0 =
(
x′ − τ ′

2

)
, x̃1, . . . , x̃N−1, x̃N =

(
x′′ − τ ′′

2

)
x0 =

(
x′ + τ ′

2

)
, x1, . . . , xN−1, xN =

(
x′′ + τ ′′

2

)
,

for G∗ and G, respectively. Both paths take place over the same time slices n = 0, . . . , N .

Their end points are displaced. We write the Blue function as

B(x′′t′′τ ′′;x′t′τ ′) = 1
C(ε)

∏N−1
n=1

∫
dx̃n
C(ε) exp

{
−iε
~
∑N

n=1

[
m
2

(
x̃n−x̃n−1

ε

)2
− V

(
x̃n+x̃n−1

2

)]}

· 1
C(ε)

∏N−1
n=1

∫
dxn
C(ε) exp

{
iε
~
∑N

n=1

[
m
2

(
xn−xn−1

ε

)2
− V

(
xn+xn−1

2

)]}

= 1
|C(ε)|2

∫∫
dx̃1dx1
|C(ε)|2

∫∫
dx̃2dx2
|C(ε)|2 · · ·

∫∫ dx̃N−1dxN−1

|C(ε)|2

exp

{
iε
~
∑N

n=1

(
m
2

[(
xn−xn−1

ε

)2
−
(
x̃n−x̃n−1

ε

)2
]

−
[
V
(
xn+xn−1

2

)
− V

(
x̃n+x̃n−1

2

)])}
. (2.23)

The variables are now paired in time order. Next, introduce the change of variables x̃n =

qn − τn/2, xn = qn + τn/2. At the path endpoints we have q0 = x′, τ0 = τ ′, and qN =

x′′, τN = τ ′′. (The change of variables removes the τ displacements at endpoints, while

introducing the variation by τ(t) at the points in between.) This intertwines the double
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integrand for each time n:

B(x′′t′′τ ′′;x′t′τ ′) = 1
|C(ε)|2

∫∫ dq1dτ1
|C(ε)|2

∫∫ dq2dτ2
|C(ε)|2 · · ·

∫∫ dqN−1dτN−1

|C(ε)|2

exp

{
iε
~
∑N

n=1

(
m
2

[(
qn−qn−1+(τn−τn−1)/2

ε

)2
−
(
qn−qn−1−(τn−τn−1)/2

ε

)2
]

−
[
V
(
qn+qn−1+(τn+τn−1)/2

2

)
− V

(
qn+qn−1−(τn+τn−1)/2

2

)])}
.

This reduces to

B(x′′t′′τ ′′;x′t′τ ′) = 1
|C(ε)|2

∫∫ dq1dτ1
|C(ε)|2

∫∫ dq2dτ2
|C(ε)|2 · · ·

∫∫ dqN−1dτN−1

|C(ε)|2

exp
{
iε
~
∑N

n=1

(
m(qn−qn−1)

ε · (τn−τn−1)
ε

−
[
V
(
q̄n + τ̄n

2

)
− V

(
q̄n − τ̄n

2

)])}
. (2.24)

For brevity, in the last step we defined the average values q̄n = 1
2 (qn + qn−1), etc. As

N → ∞ and ε → 0, keeping Nε = T , the Blue function (2.24) can be represented as the

continuous path integral

B(x′′t′′τ ′′;x′t′τ ′) = Dq(t)Dτ(t) ei∆S[q(t),τ(t)]/~, (2.25)

where the displaced action or motion is the line integral

∆S[q(t), τ(t)] =

∫ t′′

t′

(
mq̇τ̇ −

[
V (q + τ

2 )− V (q − τ
2 )
])
dt

=

∫ t′′

t′
[p · τ̇ −∆V ] dt. (2.26)
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Given any function f , we define its displaced difference by ∆f = ∆f(q, τ) = f(q + τ
2 ) −

f(q− τ
2 ). The motion4 is formally the line integral of a difference of displaced Lagrangians,

∆L(q, q̇, τ, τ̇) = L(q + τ
2 , q̇ + τ̇

2 )− L(q − τ
2 , q̇ −

τ̇
2 )

= mq̇ · τ̇ −∆V. (2.27)

To generalize this Lagrangian, two Legendre transformations [23] (replacing independent

variables τ̇ by p ≡ ∂∆L[q(t)]
∂τ̇ = mq̇, and q̇ by σ ≡ ∂∆L[q(t)]

∂q̇ = mτ̇), produce a Hamiltonian as

a function of the new variables,

−∆H(q, p, τ, σ) ≡ ∆L− p · τ̇ − σ · q̇. (2.28)

So in phase space the motion is given formally by

∆S =

∫ t′′

t′
[p · τ̇ + σ · q̇ −∆H(q, τ, p, σ)] dt. (2.29)

This form is confirmed in appendix A, where we derive the Blue propagator path integral

in phase space.

Integrating the first term of the motion (2.26) by parts, we find

∆S[q(t), τ(t)] =
∫ t′′
t′ [mq̇τ̇ −∆V ] dt =

∫ t′′
t′ [p · τ̇ −∆V ] dt

= p · τ |t
′′

t′ −
∫ t′′
t′ [mq̈ · τ + ∆V ] dt

= p′′ ·τ ′′ − p′ ·τ ′ −
∫ t′′
t′ [mq̈ · τ + ∆V ] dt (2.30)

4Coincidentally, the motion has the form of a phase space action [16][17]; see equation (A.1) in appendix

A. It is similar to another action in a phase space, the low-energy action
∫ [

qB
m
xẏ − V (x, y)

]
dt for the lowest

Landau level of a charge q moving in a plane with a normal uniform magnetic field B [16, Ch. 21]. A
potential acts as the Hamiltonian in both this action and the motion.
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where we used endpoint values τ(t′′) = τ ′′ and τ(t′) = τ ′. The discrete form of mq̈ is a

second difference. To be precise, the motion has this discrete form:

∆S[qn, τn] = m
(x′′−qN−1)

ε · τ ′′ −m (q1−x′)
ε · τ ′

−ε
∑N−1

n=1 m
(qn+1−2qn+qn−1)

ε2
· τn

−ε
∑N

n=1

[
V
(
q̄n + τ̄n

2

)
− V

(
q̄n − τ̄n

2

)]
. (2.31)

It is easy to verify that this equals the discrete motion in the exponent of (2.24) above.

Because the Blue function (2.24) operates as a unified kernel inside a double integral

propagator, as in (2.11), we can develop a perturbation theory for relatively weak ∆V (xτt),

similar to that for Green propagators [1][23]. This is based on the series expansion

e−
i
~
∫ t′′
t′ ∆V dt = 1− i

~

(∫ t′′
t′ ∆V dt

)
− 1

2!~2

(∫ t′′
t′ ∆V dt

)2
+ · · · .

We express the Blue function as B(x′′t′′τ ′′;x′t′τ ′) = B0 +B(1) +B(2) + · · · , beginning with

the free particle Blue propagator B0 and the first order correction B1. These are evaluated

in appendices B and C, respectively:

B0 = Dx(t)Dτ(t)exp
{
i
~
∫ t′′
t′ mẋτ̇

}
=
[

m
2π~(t′′−t′)

]d
exp

{
i
~p0(x′′t′′x′t′) · [τ ′′ − τ ′]

}
B(1) = − i

~
∫∫∫

B0(x′′t′′τ ′′;xtτ)∆V (xtτ)B0(xtτ ;x′t′τ ′) dxdτdt

= − i
~T 3

[
m

2π~
]4 [∫

V (r)
[

1
|r−r′| + 1

|r−r′′|

]
exp

{
im
2~T [|r − r′|+ |r − r′′|]2

}
dr

−
∫
V (s)

[
1

|s−s′| + 1
|s−s′′|

]
exp

{
− im

2~T [|s− s′|+ |s− s′′|]2
}
ds
]

(2.32)

B(2) = − 1
~2
∫∫∫ ∫∫∫

B0(x′′t′′τ ′′;x2t2τ2)∆V (x2t2τ2)

B0(x2t2τ2;x1t1τ1)∆V (x1t1τ1)B0(x1t1τ1;x′t′τ ′) dx1dτ1dt1 dx2dτ2dt2

19



where r′, s′ = x′± τ ′

2 , and r′′, s′′ = x′′± τ ′′

2 . The first-order term B(1) of the Blue probability

kernel takes the simple form of a difference of two displaced copies of the first-order term of

the Green amplitude kernel (the second copy conjugated; see equation (6.29) in [1]). It can

be shown that B(1) is − i
~B0× ξ, for ξ real; this may be true similarly for B(2) etc. One may

evaluate B(2) and higher-order terms as ordinary integrals as well. Then substitution of this

perturbation expansion for the Blue kernel B in the propagation integral (2.11) gives the

Born expansion for the wavefunction’s future probability density. But we will not develop

this any further here.

2.5 Classical motion

The classical path q(t) and its path displacement τ(t), together, are stationary paths of

the displaced action ∆S. This form of Hamilton’s principle produces coupled equations of

motion for the pair of paths.

Consider a small path variation η(t) about the stationary path q(t), and a small path

variation ζ(t) about the stationary path displacement τ(t). Both variations are 0 at their

endpoints for t = t′, t′′. Then the two paths are extremal, when the first variation of the

motion integral (2.26) is zero for any small path variations:

0 = δ∆S =

∫ t′′

t′
η
∂L

∂η
+ η̇

∂L

∂η̇
+ ζ

∂L

∂ζ
+ ζ̇

∂L

∂ζ̇
dt

Integrating the second and fourth terms by parts and applying the 0 endpoints gives us

0 = δ∆S =

∫ t′′

t′
η

(
∂L

∂q
− d

dt

∂L

∂q̇

)
+ ζ

(
∂L

∂τ
− d

dt

∂L

∂τ̇

)
dt.

Since this must hold for arbitrary small path variations, the two expressions in parentheses
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are both 0. Therefore, we have a pair of Euler-Lagrange equations of motion

0 =
∂L

∂q
− d

dt

∂L

∂q̇
0 =

∂L

∂τ
− d

dt

∂L

∂τ̇
. (2.33)

For the Blue Lagrangian L (q, q̇, τ, τ̇) defined in (2.26), these immediately yield the classical

equations of motion

mq̈ = − ∂

∂τ

[
V (q + τ

2 )− V (q − τ
2 )
]

(2.34)

mτ̈ = − ∂

∂q

[
V (q + τ

2 )− V (q − τ
2 )
]
. (2.35)

Since ∂(V +−V −)
∂τ = 1

2
∂(V ++V −)

∂q , and ∂(V +−V −)
∂q = 1

2
∂(V ++V −)

∂τ , the two equations almost

separate:

mq̈ = − ∂

∂q
1
2

[
V (q + τ

2 ) + V (q − τ
2 )
]

(2.36)

mτ̈ = − ∂

∂τ
1
2

[
V (q + τ

2 ) + V (q − τ
2 )
]
. (2.37)

These are apparently Newtonian equations of motion for a particle moving in the average

potential

V̄ (q, τ) = 1
2

[
V (q + τ

2 ) + V (q − τ
2 )
]
, (2.38)

when we fix τ or q, respectively. This potential V̄ is an even function of τ . (Also note that

equations (2.34) and (2.35) revert to two separate copies of Newton’s equation of motion,

if we change variables back to xn = qn + τn/2, x̃n = qn − τn/2.)

Let us evaluate the classical motion ∆Scl. Using the classical equation of motion (2.34)
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in the expression (2.30), for the case τ ′′ = 0 the motion integral (2.26) for the stationary

(classical) path becomes

∆Scl = −p′τ ′ −
∫ t′′
t′

[
V (q + τ

2 )− V (q − τ
2 )

−τ ∂
∂τ

(
V (q + τ

2 )− V (q − τ
2 )
)]
dt.

= −p′τ ′ +
∫ t′′
t′

[
1
12V

(3)(q)τ3 + 1
920V

(5)(q)τ5 · · ·
]
dt,

where the last expression is one-dimensional and V (k) denotes the kth derivative of V .

Note that the Legendre transform to replace the variable τ by χ = ∂∆V
∂τ in ∆V (x, τ) is

U(x, χ) = ∆V − τ · ∂∆V
∂τ = ∆V − τ · χ. In these terms, the classical action becomes

∆Scl = −p′ · τ ′ −
∫ t′′
t′ U dt.

If V is quadratic, the motion ∆Scl = − i
~p
′ · τ ′. Then by substituting expressions for

the respective initial momenta p′ = p′(x′′t′′, x′t′) into Examples 0,1,2, we easily recover

their Blue functions. If V is smooth, with small odd derivatives of order 3 and higher

(as for semi-classical WKB approximation), the initial momentum term −p′τ ′ dominates

the motion integral. This is significant, since we know the paths that contribute most to

the path integral B = DqDτ exp{− i
~∆S[q(t), τ(t)]} as in (2.24) are those near the

stationary path. So when V is smooth, B ∼ e−
i
~p
′τ ′ .

Our final classical application is to modify the discrete version of the motion integral

(2.30), by using classical path segments between the discrete steps of the Blue path integral

[1, p.34]. This is to account for the potential’s acting on the particle as it goes from

qn−1 → qn as it follows any path (now not just the classical path). The discrete motion

(2.31) corresponds to straight-line (free) motion between steps.

What are the force and initial momentum for the classical short path segment? For

fixed τ , the Newtonian equation (2.36) tells us to replace our second difference for mq̈ in
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(2.30) by −∇qV̄ given in (2.38), where we write ∇q ≡ ∂/∂q. For small τ , we note that

V̄ ≈ V (q)

−τ∇qV̄ ≈ −τ∇qV (q)

∆V (q, τ) ≈ τ∇qV (q). (2.39)

Integrating (2.36) twice over a short time ε = tn − tn−1 for time step n, we also get

mqn = mqn−1 + pn−1ε− 1
2

(
∇qV̄

)
ε2.

We solve this for the initial classical momentum pn−1 within each interval:

pn−1 = m(qn−qn−1)
ε + ε

2∇qV̄ . (2.40)

For small displacements τn, using (2.36) and (2.40) for classical motion between steps,

with approximations (2.39), the discrete path sum (2.31) for the motion integral becomes:

∆S(x′′τ ′′t′′;x′τ ′t′) = m
(qN−qN−1)

ε · τ ′′ − ε
2∆V (qN , τ

′′)

−
[
m (q1−q0)

ε · τ ′ + ε
2∆V (q0, τ

′)
]

+ε ·
∑N−1

n=1

[
∇qn V̄ −∆V (qn, τn)

]
≈ p′′cl · τ ′′ − p′cl · τ ′ + ε · 0, (2.41)

where the path endpoints are qN = x′′ and q0 = x′. The classically interpolated discrete

functional for the motion along any path q(t) with a small variation τ(t) reduces approxi-

mately to a function of the endpoints.
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2.6 Four-fold path-pair symmetry

Consider the definition of displaced probability (2.2). For any given pair of points x′ ± τ ′

2 ,

there are four ways to occupy one or both locations at once. The associated probability

P(x′ ± τ ′

2 , t
′) is given by

P(x′ ± τ ′

2 , t
′) = 1

4

[
P(x′t′, τ ′) + P(x′t′,−τ ′) + P(x′ + τ ′

2 , t
′, 0) + P(x′ − τ ′

2 , t
′, 0)

]
=

∣∣∣12 [ψ(x′ + τ ′

2 ) + ψ(x′ − τ ′

2 )
]∣∣∣2 ≥ 0. (2.42)

The first two probabilities in the sum represent wavelike, bilocal presence of the object. As

a conjugate pair, their sum may be negative; but in absolute value this never exceeds the

sum of the last two probabilities for the usual particle-like, unilocal presence of the object

at one of the two locations (and no other). Note that for τ ′ = 0, the complete probability

reduces to the usual probability of location at a single position x′. This is why we normalize

it by a factor of 1/4.

Similarly, the path pairs x(t) ± τ
2 (t) being integrated in the path integral (2.24) for

the Blue function also contain a fourfold symmetry. First, clearly there is a spatial mirror

symmetry for the displacement τ(t): the path pair remains the same under the substitution

at each point in time

τ(t) 7→ −τ(t). (2.43)

The two paths are exchanged, keeping the same path pair, but conjugating the motion in

the path integral (2.24) for the Blue kernel. The path endpoints are fixed and do not get

reflected, so τ ′′ = 0 at the final endpoint. When we integrate the Blue function over the

initial endpoint’s spatial values τ ′ at time t′ to propagate as in (2.11), both values ±τ ′ are

included, and the entire displaced path and its reflection under (2.43) are present inside the

two instances of the Blue kernel. The conjugate displaced probabilities are likewise present
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with them: P(x′, τ ′, t′) = ψ∗(x′− τ ′

2 )ψ(x′+ τ ′

2 ), P∗(x′,−τ ′, t′) = ψ∗(x′+ τ ′

2 )ψ(x′− τ ′

2 ). (If at

the final endpoint τ ′′ 6= 0, to have full symmetry we must include all four final endpoints that

comprise the complete probability P(x′′ ± τ ′′

2 , t
′′).) Let us label these two path orientations

or parametrizations as cases (i) and (ii), respectively. The paths are exchanged under the

displacement parity operation (2.43).

Second, each path alone can be obtained as a doubled path or doubly-covered path-pair

by the substitution

τ ′(t) 7→ τ̃(t) = 0

x′(t) 7→ x̃(t) = x′(t)± τ ′

2 (t) (2.44)

for the + path, or for the - path, respectively. (Again the endpoints are fixed for all paths

in one instance of the Blue kernel, but are found mapped this way outside the kernel.)

For integration over the initial endpoint, these two path coverings have the associated

probabilities P(x′ − τ ′

2 , 0, t
′) = |ψ∗(x′ − τ ′

2 )|2, and P(x′ + τ ′

2 , 0, t
′) = |ψ∗(x′ + τ ′

2 )|2. For any

path with τ̃(t) = 0, the motion (2.26) is 0 in the path integral (2.24). Let us call these two

path orientations cases (iii) and (iv), respectively. Thus for every physical path pair, four

different orientations of the path pair are integrated in the path integral.

Therefore, we may write the propagation formula (2.11) for the four parts of the complete

or total probability as a path integral

P(x′′ ± τ ′′

2 , t
′′) = 1

4

∫∫
dx′dτ ′ Dq(t)Dτ(t)

∣∣∣ψ(x′ + τ ′

2 )e
i
2~∆S[q(t),τ(t)] + ψ(x′ − τ ′

2 )e−
i
2~∆S[q(t),τ(t)]

∣∣∣2 . (2.45)

The four-way symmetry is apparent in a familiar and fundamental example:

Example 3. The double slit interference experiment is depicted in figure 2.2. The vertical
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Figure 2.2: Double slit experiment. (a) Single-endpoint probability of arrival (τ ′′ = 0): There are two

wave-like, and two particle-like events. In events (i) and (ii), the particle passes through both slits. In either
event, the displaced path-pair probability is complex, showing interference. The two are complex conjugates.
In events (iii) and (iv), the particle path passes through one slit or the other, and either path probability is

non-negative. (b) Two-endpoint (displaced) probability of arrival (τ ′′ 6= 0): for the two endpoints, we also
have four distinct events or outcomes: two single arrivals, two simultaneous arrivals.

screen in the middle has ∞ potential except at two slits. As drawn, the particle moves free

of interactions in the two regions on either side of the screen, propagated by the free Blue

kernel (2.13). It departs from a point source at (x′, y) at time 0 on the left-hand side, passes

through the two small openings in the screen at (x′ ± τ ′

2 , y
′) at time t′, and then arrives

at point (x′′y′′) at time t′′. We want to calculate the probability of arrival as a function of

vertical position x′′, using the Blue propagator. From using other methods, we know that

the resulting probability or intensity is an interference pattern [1][24]. Moreover, it is natural

here to calculate total probabilities of co-arrival at displaced positions x′′ ± τ ′′

2 . Perhaps

twin detectors could detect second or fourth-order correlations based on these co-arrival

probabilities.

As we just noted, the x, τ parameters for the Blue integral actually specify four alter-

native pairs of paths the particle can take through the two slits, modeled here simply as

point apertures. For our two-leg paths, the permitted path pairs are represented in terms
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of delta functions for the screen in the middle:

α(x̂, τ̂) = δ(x̂− x′)
[
δ(τ̂ − τ ′) + δ(τ̂ + τ ′)

]
+δ(τ̂ − 0)

[
δ(x̂− [x′ − τ ′

2 ]) + δ(x̂− [x′ + τ ′

2 ])
]
. (2.46)

Let us call α(x̂, τ̂) the aperture function. The first two terms correspond to the double-slit

paths for τ̂ = ±τ ′. The second two terms are for single-slit paths for τ̂ = ±0, for which

both paths in a pair are the same. (Now the τ ′

2 value appears directly, added or subtracted,

with x′.) The first leg enroute to the screen begins at the source. Because of the symmetric

source-slit configuration we chose, the exponent of the Blue kernel (2.13) is zero, and the

four (displaced) probabilities for passage through the slits are all equal to
(

m
2π~t′

)3
. For the

second leg, the paths can be sifted out of the Blue propagation integral:

P(x′′t′′, τ ′′) =

∫∫
dx̂ dτ̂ α(x̂, τ̂)B0(x′′t′′τ ′′; x̂t′τ̂)P(x̂t′, τ̂). (2.47)

The free Blue propagator (2.13) is, for three dimensions (see appendix B),

B0(x′′t′′τ ′′;x′t′τ ′) =
( m

2π~T

)3
exp

{
i

~

[
m
x′′ − x′

T

]
·
[
τ ′′ − τ ′

]}
.

Here only the x-component of τ ′ is non-zero. To simplify, we treat the single-endpoint

case τ ′′ = 0 (figure 2.2a). Then the four parts of the aperture function α result in four

displaced probabilities to reach (x′′, y′′, 0), conditional on each path-pair orientation (x̂, τ̂) =
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(x′, τ ′), (x′,−τ ′), (x′ + τ ′

2 , 0), (x′ − τ ′

2 , 0) for cases (i), (ii), (iii), (iv), respectively:

P(x′′t′′0; x̂t′τ̂) = B0(x′′t′′0; x̂t′τ̂) · 1

=
( m

2π~T

)3
·



exp
{
− im(x′′−x′)τ ′

~T

}
(i)

exp
{

+ im(x′′−x′)τ ′
~T

}
(ii)

1 (iii)

1 (iv).

(2.48)

The total probability of arrival at point (x′′, y′′, 0) in any of the four ways is their sum

P(x′′t′′0) = 2 + 2 cos

[
m(x′′ − x′)τ ′

~T

]
= 2 + 2 cos

[
p̄′xτ
′
x

~

]
(2.49)

= 4 cos2

[
m(x′′ − x′)τ ′

2~T

]
. (2.50)

An easy calculation has led us to the nonnormalizable toy interference pattern, omitting

the factor
(

m
2π~t′

)3 ( m
2π~T

)3
[24]. Based on the Blue function, the phase angles for cases

(i) and (ii) of (2.48) have physical meaning as ±m(x′′−x′)τ ′
~T = ±p′xτ

′
x

~ = ±kxτ ′x, for vertical

wavenumber kx.

Suppose that at time t′ we turn on a linear potential −fx in the region to the right of

the slits. This could be done for a charged particle, by placing oppositely charged parallel

capacitor plates horizontally (parallel to the yz-plane), one plate above and one plate below

the slits. Then we propagate through the region between the plates using the Blue function
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B1 (2.17) from example 1. This modifies the results (2.48) for a free particle as:

P(x′′t′′τ ′′; x̂t′τ̂) = B1(x′′t′′0; x̂t′τ̂) · 1

=
( m

2π~T

)3
·



exp
{
− i

~

[
m(x′′−x′)

T − fT
]
τ ′
}

(i)

exp
{

+ i
~

[
m(x′′−x′)τ ′

T − fT
]
τ ′
}

(ii)

1 (iii)

1 (iv).

(2.51)

The total probability of arrival at point (x′′, y′′, 0) now has a phase shift, still consistent

with the average initial momentum component p̄′x departing from the two slits:

P(x′′t′′0) = 2 + 2 cos

[
1

~

(
m(x′′ − x′)

T
− fT

)
τ ′
]

= 2 + 2 cos

[
p̄′xτ
′
x

~

]
. (2.52)

For simplicity, from now on we let x and related quantities be vectors for one particle

in Cartesian space of dimension d = 3. In only a few cases, for emphasis and clarity, will

we use bold type for Cartesian 3-vectors. The generalizations to more degrees of freedom

will be evident.

2.7 Equivalence to the continuity equation for the displaced

quantum probability current

Just as the Schrödinger equation derives from the path integral for the Green propagator G

[1], so also the path integral form of the Blue propagator B implies the corresponding con-

tinuity equation for the quantum probability density P(x, t) = |ψ(x, t)|2 and its probability
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current density j = ~
2mi (ψ∗∇ψ − ψ∇ψ∗):

∂P

∂t
= −∇ · j. (2.53)

This familiar equation expresses the local conservation of probability flow as time goes

on. In fact, the Blue path integral propagator implies a more general equation, expressing

bilocal conservation of the displaced probability flow.

To show this, let us apply the Blue function (2.24) to propagate the displaced probability

over a short time step ε = t′′ − t′:

ψ∗(x′′− τ ′′

2 , t
′′)ψ(x′′+ τ ′′

2 , t
′′) =

∫∫
ψ∗(x′ − τ ′

2 , t
′)B(x′′t′′τ ′′;x′t′τ ′)ψ(x′ + τ ′

2 , t
′)dτ ′dx′

=
1

|C(ε)|2

∫ ∞
−∞

∫ ∞
−∞
ψ∗(x′ − τ ′

2 , t
′)ψ(x′ + τ ′

2 , t
′)

× exp

{
im

~
(x′′ − x′)

ε
· (τ ′′ − τ ′)

}

× exp

{
iε
~

[
V

(
x′′+x′− τ

′

2 −
τ ′′

2
2

)

−V

(
x′′+x′+

τ ′

2 +
τ ′′

2
2

)]}
dτ ′dx′. (2.54)

Denote the corresponding space steps by η = x′′ − x′ and β = τ ′′ − τ ′. The phase of the

first exponential above oscillates rapidly, tending to cancel itself unless mη · β/~ε < π, or

η · β < π~ε/m. To first order in the time step ε, and therefore to second order in products
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of η and β, we have for ∇ = ∇x′′ ,

ψ(x′ ± τ ′

2 , t
′)= ψ(x′′ − η ± ( τ

′′

2 −
β
2 ), t′)

= ψ(x′′ ± τ ′′

2 , t
′)−

(
η ± β

2

)
∇ψ(x′′ ± τ ′′

2 , t
′)

+ 1
2!

(
η ± β

2

)2
∇2ψ(x′′ ± τ ′′

2 , t
′).

So to first order in ε, the displaced probability inside the integral in equation (2.54) is

ψ∗(x′ − τ ′

2 , t
′)ψ(x′ + τ ′

2 , t
′) = ψ∗(x′′ − τ ′′

2 , t
′)ψ(x′′ + τ ′′

2 , t
′)

−
(
η + β

2

)
ψ∗(x′′ − τ ′′

2 , t
′)∇ψ(x′′ + τ ′′

2 , t
′)

−
(
η − β

2

)
ψ(x′′ + τ ′′

2 , t
′)∇ψ∗(x′′ − τ ′′

2 , t
′)

+
(
η2 − (β2 )2

)(
∇ψ∗(x′′ − τ ′′

2 , t
′) · ∇ψ(x′′ + τ ′′

2 , t
′)
)

+1
2

(
η + β

2

)2
ψ∗(x′′ − τ ′′

2 , t
′)∇2ψ(x′′ + τ ′′

2 , t
′)

+1
2

(
η − β

2

)2
ψ(x′′ + τ ′′

2 , t
′)∇2ψ∗(x′′ − τ ′′

2 , t
′). (2.55)

To first order in ε, the exponential of the potential difference is

exp
{
iε
~

[
V
(
x′′ − τ ′′

2 −
1
2

(
η − β

2

))
− V

(
x′′ + τ ′′

2 −
1
2

(
η + β

2

))]}
= 1 + iε

~

[
V
(
x′′ − τ ′′

2

)
− V

(
x′′ + τ ′′

2

)]
≡ 1− iε

~
∆V (x′′, τ ′′), (2.56)

since we neglect terms of order εη and εβ. Note that ε∆V = 0 to first order if τ ′′ = 0. The
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left hand side of equation (2.54) can be expressed in terms of the time step ε as

ψ∗(x′′ − τ ′′

2 , t
′′)ψ(x′′ + τ ′′

2 , t
′′) = ψ∗(x′′ − τ ′′

2 , t
′)ψ(x′′ + τ ′′

2 , t
′)

+ε
∂

∂t′

(
ψ∗(x′′ − τ ′′

2 , t
′)ψ(x′′ + τ ′′

2 , t
′)
)
.

With these approximations, equation (2.54) becomes

ψ∗(x′′ − τ ′′

2 , t
′)ψ(x′′ + τ ′′

2 , t
′) + ε

∂

∂t′

[
ψ∗(x′′ − τ ′′

2 , t
′)ψ(x′′ + τ ′′

2 , t
′)
]

=
1

|C(ε)|2

∫ ∞
−∞

∫ ∞
−∞

exp

(
i

~
mη · β
ε

)

×
[
1− iε

~
∆V (x′′, τ ′′)

] [
ψ∗(x′′ − τ ′′

2 , t
′)ψ(x′′ + τ ′′

2 , t
′)

+1
2ηβ

(
ψ∗(x′′ − τ ′′

2 , t
′)∇2ψ(x′′ + τ ′′

2 , t
′)

− ψ(x′′ + τ ′′

2 , t
′)∇2ψ∗(x′′ − τ ′′

2 , t
′)
)]

dβdη

=

[
1− iε

~
∆V (x′′, τ ′′)

]
ψ∗(x′′ − τ ′′

2 , t
′)ψ(x′′ + τ ′′

2 , t
′)

− i~ε
2m
∇ ·
[
ψ∗(x′′ − τ ′′

2 , t
′)∇ψ(x′′ + τ ′′

2 , t
′)

− ψ(x′′ + τ ′′

2 , t
′)∇ψ∗(x′′ − τ ′′

2 , t
′)
]
. (2.57)

The leading term ψ∗(x′′ − τ ′′

2 , t
′)ψ(x′′ + τ ′′

2 , t
′) on the right hand side must have coefficient

1 to agree with the left side . Therefore, the integral of the exponential must equal |C|2,

so |C|2 =
(

2π~ε
m

)d
for d Cartesian dimensions. We have used these double integrals for one
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dimension:

1
2π

∫∫
e−iηβdηdβ =

∫
δ(β − 0)dβ = 1 (2.58)

1
2π

∫∫
βke−iηβdηdβ =

∫
βkδ(β − 0)dβ = 0, for k = 1, 2 (2.59)

1
2π

∫∫
ηβe−iηβdηdβ = −i. (2.60)

(The last integral can be expressed in terms of imaginary gaussian integrals, since

iηβ = i
2

[
(η + β/2)2 − (η − β/2)2

]
.) Keeping terms of order ε, we use the definition (2.2)

of the displaced probability to rewrite (2.57) as the bicontinuity equation that generalizes

(2.53): for any displacement τ ′′ about the location x′′, at any given time t′ → t′′,

[
∂

∂t′′
− 1

i~
∆V (x′′τ ′′)

]
P(x′′τ ′′t′′) = −∇x′′ · j(x′′τ ′′t′′), (2.61)

where the displaced current density is defined as

j(x′′τ ′′t′′) =
~

2mi

(
ψ∗(x′′ − τ ′′

2 , t
′′)∇ψ(x′′ + τ ′′

2 , t
′′)

−ψ(x′′ + τ ′′

2 , t
′′)∇ψ∗(x′′ − τ ′′

2 , t
′′)
)
. (2.62)

For the special case τ ′′ = 0, ∆V = 0 and j is the usual, real-valued probability current.

We note that P and j, as well as 1
i~∆V (x′′τ ′′), are conjugate even functions of τ ′′; that

is, P(x′′,−τ ′′, t′′) = +P∗(x′′, τ ′′, t′′) and j(x′′,−τ ′′, t′′) = j∗(x′′, τ ′′, t′′). The bicontinuity

equation (2.61) can also be derived easily from the Schrödinger equation and its conju-

gate. However, note that from the displaced probability P(x′′, τ ′′, t′′) we can recover the

wavefunction ψ up to a phase factor. (For x′′ = τ ′′

2 , we have P(x′′, τ ′′, t′′) = ψ∗(0)ψ(τ ′′).
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Also P(0, 0, t′′) = |ψ(0)|2.) Therefore the bicontinuity equation is fully equivalent to the

Schrödinger equation.

2.8 Wigner density from Blue propagator

There is another thing for us to learn from the short-time path integral (2.54). For simplicity

we take the case τ ′′ = 0, so that ∆V = 0 to first order, as in (2.56). We may interpret

p′ = mη
ε = m(x′′−x′)

ε as the unique momentum at time t′ for the particle at position x′.

Again this defines a line through phase space, ε
mp
′ + x′ = x′′. To first order, the Blue

function to propagate over the short time step ε = t′′ − t′ is just

B =
( m

2π~ε

)d
exp

(
− i

~p
′ · τ ′

)
. (2.63)

Then we may rewrite (2.54) as

|ψ(x′′, t′′)|2 =
( m

2π~ε

)d ∫∫
ψ∗(x′ − τ ′

2 , t
′)ψ(x′ + τ ′

2 , t
′) exp

(
− i

~p
′ · τ ′

)
dτ ′dη

=

(
1

2π~

)d ∫∫
ψ∗(x′ − τ ′

2 , t
′)ψ(x′ + τ ′

2 , t
′) exp

(
i
~p
′ · τ ′

)
dτ ′dp′

=

∫
`
w(x′, p′)dp′. (2.64)

Here the Wigner function results naturally as an expression for short-time propagation. As

explained in example 0 in section 2.2, we change variables from x′ to p′, using the line slope

∂p′a/∂x
′
a = −m/ε. Taking the limit as ε → 0, this becomes a vertical line ` in phase space

that passes through the constant x′ = x′′ on the position axis.

From the Blue function path integral (2.24), we can generalize the Wigner density to

a “sum over histories” in phase space, which will propagate the wavefunction probability
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over a finite time. The basic idea is to consider the initial momentum p′(x′ = x0, x1, ε) for

each path x(t), inside the path integral for the Blue kernel when we propagate the displaced

probability. Beginning with (2.11) and (3.85), we have

P(x′′t′′τ ′′) =

∫∫
dx′dτ ′P(x′t′τ ′)B(x′′t′′τ ′′;x′t′τ ′)

=

∫∫
dx′dτ ′P(x′t′τ ′) Dx(t)Dτ(t) exp{− i

~∆S[x(t), τ(t)]}

= Dx(t)

∫
dx′
[ ∫

Dτ(t)dτ ′P(x′t′τ ′) exp
{
− i

~∆S
}]
. (2.65)

In the last path integral above, it may be helpful to consider each initial point as appended

to its path given in discrete form. That is, x′ = x0 is appended to the path x(t) given as

x1, . . . , xN = x′′. Similarly τ ′ = τ0 is appended to τ(t).

Each path departs from x′ and shortly passes through its specified choice of x1. Then

(2.40) uniquely determines the value p′ of the initial momentum, for the classical path

segment. The local gradient tensor of the curve ` in phase space is

∂p′/∂x′ = −m/ε− ε

2
∇x′

[
∆V (x′, τ ′)

]
≈ −m/ε− ε

2
∇2
x′V (x′), (2.66)

for small τ ′ by (2.39). Let its associated Jacobian be J ′(x′, t′) = det |∂p′/∂x′|. Changing
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the integration variables in (2.65) from x′ to p′, we have the expression

P(x′′t′′τ ′′) = Dx(t)

∫
`
dp′

[
J ′

∫
Dτ(t)dτ ′P(x′t′τ ′) exp

{
− i

~∆S
}]

= Dx(t)

∫
`
dp′w(x′p′, [x(t)]). (2.67)

To recover the wavefunction probability, above we take the line integral of the Wigner

density w along the contour line ` through a snapshot of phase space at time t′. The

Wigner density is now a functional integral, defined for each path x(t) as

w(x′p′, [x(t)]) =

[
J ′

∫
Dτ(t)dτ ′P(x′t′τ ′)e−

i
~∆S

]
. (2.68)

The displacement paths τ(t) are being integrated away. Since the integral is again un-

changed by reversing the sign of τ(t), and then equals its own complex conjugate, w(x′p′, [x(t)])

is real-valued at each point x′, p′ in (initial) phase space.

To get a much simpler but approximate expression for (2.68), consider small displace-

ments τ(t). We expect most of the coherent integration to result from small τ . Using (2.41)

in (2.68), we find

w(x′p′, [x(t)]) ≈
[
AJ ′

∫
dτ ′P(x′t′τ ′) exp

{
− i

~p
′′
clτ
′′ + p′clτ

′} ] . (2.69)

Refer to (2.41) for details of the classical initial and final momenta p′ and p′′ along the path

x(t). A fine point to note is that again we have reversed the signs of the momenta. This

is done after changing variables from x′ to p′. Then when we integrate
∫
` dp

′, p′ can go
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in its usual sense from p′ = −∞ to ∞. We have also assumed that normalization makes

Dτ(t) = A, a scalar constant. The total integral of (2.67) with (2.69) must be nearly 1.

2.9 What is a Blue function?

The propagator G is the Green function for the Schrödinger equation. It has the property

that (
i~

∂

∂t′′
−H

)
G(x′′t′′;x′t′) = −i~δ(t′′ − t′)δ(x′′ − x′). (2.70)

What property characterizes the Blue function B, and what equation is it associated with?

Let us write out the property (2.70) for both G and its complex conjugate G∗, including

the initial and final translations by ± τ ′

2 and ± τ ′′

2 , respectively. As a shorthand, put G± =

G(x′′ ± τ ′′

2 , t
′′;x′ ± τ ′

2 , t
′). Then

∂G+

∂t′′
+

~
2im
∇2
x′′G+ −

1

i~
V (x′′ + τ ′′

2 )G+ = −δ(t′′ − t′)δ(x′′ − x′ + τ ′′

2 −
τ ′

2 )

∂G∗−
∂t′′

− ~
2im
∇2
x′′G

∗
− +

1

i~
V (x′′ − τ ′′

2 )G∗− = −δ(t′′ − t′)δ(x′′ − x′ − τ ′′

2 + τ ′

2 )

Multiply the two equations by G∗− and G+, respectively,

G∗−
∂G+

∂t′′
+

~
2im

G∗−∇2
x′′G+ −

1

i~
V (x′′ + τ ′′

2 )G∗−G+ = −δ(x′′ − x′ − τ ′′

2 + τ ′

2 )δ(t′′ − t′)

×δ(x′′ − x′ + τ ′′

2 −
τ ′

2 )

G+
∂G∗−
∂t′′

− ~
2im

G+∇2
x′′G

∗
− +

1

i~
V (x′′ − τ ′′

2 )G∗−G+ = −δ(x′′ − x′ + τ ′′

2 −
τ ′

2 )δ(t′′ − t′)

×δ(x′′ − x′ − τ ′′

2 + τ ′

2 ),
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using the fact that as t′′ → t′, G(x′′t′′, x′t′)→ δ(x′′ − x′). Then add the two equations:

(
∂

∂t′′
− 1

i~
∆V

)
G∗−G+ +

~
2im

(
G∗−∇2

x′′G+ −G+∇2
x′′G

∗
−
)

= −2δ(x′′ − x′ + τ ′′

2 −
τ ′

2 )δ(t′′ − t′)

×δ(x′′ − x′ − τ ′′

2 + τ ′

2 ),

where ∆V is as defined in equation (2.56). We may write this as

(
∂

∂t′′
− 1

i~
∆V

)
B(τ ′) +∇x′′ ·B(τ ′) = −2δ(t′′ − t′)δ(x′′ − x′ + τ ′′

2 −
τ ′

2 )

×δ(x′′ − x′ − τ ′′

2 + τ ′

2 ), (2.71)

where we define the Blue current density propagator

B(τ ′) =
~

2im

[
G∗−∇x′′G+ −G+∇x′′G∗−

]
. (2.72)

Equation (2.71) characterizes the Blue matter probability density kernel and its associated

Blue current density kernel for each value of τ ′.

We can integrate (2.71) over τ ′, putting b(x′′t′′τ ′′;x′t′) =
∫
B(x′′t′′τ ′′;x′t′τ ′)dτ ′ and

b(x′′t′′τ ′′;x′t′) =
∫

B(x′′t′′τ ′′;x′t′τ ′)dτ ′. Both integrals are real-valued, because they do not

change under the spatial-displacement reversal path substitution τ(t) 7→ −τ(t), thus equal

their own complex conjugates. Since
∫
δ(a − y)δ(y − b)dy = δ(a − b), the right hand side

of (2.71) integrates to
∫
δ(x′′ − x′ +

[
τ ′′

2 −
τ ′

2

]
) · δ(x′′ − x′ −

[
τ ′′

2 −
τ ′

2

]
)d[τ ′ − τ ′′]/2 · 2 =

2δ(2(x′′ − x′)) = δ(x′′ − x′). The result is that

(
∂

∂t′′
− 1

i~
∆V

)
b+∇x′′ · b = −δ(t′′ − t′)δ(x′′ − x′). (2.73)
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The integrated probability and current density kernels are real-valued Green functions for

the operator of the generalized continuity equation (2.61).

The kernel B, in effect, propagates the current density to (x′′t′′):

∫∫
dx′dτ ′ψ∗(x′ − τ ′

2 )B(x′′t′′τ ′′;x′t′τ ′)ψ(x′ + τ ′

2 )

=
~

2im

∫∫
dx′dτ ′ ψ∗(x′− τ ′

2 )
[
G∗−∇x′′G+ −G+∇x′′G∗−

]
ψ(x′+ τ ′

2 )

=
~

2im

∫∫
dr′ds′ψ∗(r′)

[
G∗(x′′− τ ′′

2 , r
′)∇x′′G(x′′+ τ ′′

2 , s
′)

−G(x′′+ τ ′′

2 , s
′)∇x′′G∗(x′′− τ ′′

2 , r
′)
]
ψ(s′)

=
~

2im

[
ψ∗(x′′− τ ′′

2 , t
′′)∇x′′ψ(x′′+ τ ′′

2 , t
′′)− ψ(x′′+ τ ′′

2 , t
′′)∇x′′ψ∗(x′′− τ ′′

2 , t
′′)
]

≡ j(x′′t′′τ ′′),(2.74)

where we change variables as we did in (2.11), to r′ = x′ − τ ′

2 , s′ = x′ + τ ′

2 .

Like B, the kernel function B actually operates on the displaced probability density

P(x′t′, τ ′) = ψ∗(x′ − τ ′

2 )ψ(x′ + τ ′

2 ) to produce the current at the spacetime point x′′t′′; it

does not operate on the current itself. Therefore we can express both the Blue function

and probability density as non-Lorentzian 4-vectors Bµ = (B,B) and jµ = (P, j), and in

compact notation the complete probability propagation update is

jµ(x′′t′′τ ′′) =

∫∫
Bµ(x′′t′′τ ′′;x′t′τ ′) · P(x′t′, τ ′) dτ ′ dx′. (2.75)

We can also develop the path integral for the Blue current density propagator, much as

we did for the Blue probability density propagator. We return to its definition (2.72) above.

Consider the product (2.23) of two path integrals for B, before changing variables. Now we

must apply ∇x′′ to G+ and then to −G∗−. This merely multiplies the path integrand for
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G∗−G+ in (2.23) by the sum

im

~ε
(x̃N − x̃N−1)− imε

~
∇x′′V (1

2 [x̃N + x̃N−1])

+
im

~ε
(xN − xN−1)− imε

~
∇x′′V (1

2 [xN + xN−1]). (2.76)

After changing variables as in (2.24), and multiplying by the current coefficient ~
2im , this

sum becomes

(qN − qN−1)

ε
− ε∇x′′ V̄ (q̄N , τ̄N ), (2.77)

using the average potential V̄ defined in (2.38). But in the limit as the time increment

ε → 0, the term with the potential gradient on the right hand side of (2.77) will vanish.

Then the current kernel is just the B path integrand times (qN − qN−1) /ε, or formally

q̇′′ = p′′/m. So the formal expression for the current kernel path integral is

B(τ ′) =
1

m
p′′ei∆S/~Dq(t)Dτ (t). (2.78)

This result, for any discrete path, agrees with the fact that, for the continuous action along

the classical (stationary) path, ∂Scl/∂x
′′ = p′′, the final momentum [1][16]. This path

integral (3.53) for B, with the probability density kernel B (3.85) and the displaced action

(2.26), gives us all four components of the complete Blue propagator kernel.

Having a way to propagate current, suggests that there may be a Wigner current density,

which we could find along the lines of section 2.8.

40



2.10 Conclusion

In this chapter, we have adopted a displacement concept of Weyl and Wigner to take a

fresh look at probability propagation in its own right. We found that, in this context, Blue

propagators replace Green propagators. They are given by path integrals where the action

is replaced by a simpler line integral we called the motion, or displaced action. The complete

set of four Blue functions acts on the displaced probability density, to propagate not only

the probability density, but also the current density vector.

We found that the displaced current density is bi-locally conserved via a generalized

continuity equation. A four-way symmetry was noted for the path pairs over which the the

Blue kernel is integrated. This symmetry was illustrated by the double slit experiment. We

showed that the Wigner density occurs naturally as an expression for physical probability

propagation. Looking ahead, we hope to use a space-time four-vector displacement τ to

extend Blue propagators to relativistic, many-particle field theories.
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Chapter 3: A Bilocal Picture of Quantum Mechanics

A new, bilocal picture of quantum mechanics is developed. We show that Born’s

rule supports a virtual probability for a particle to arrive, as a wave, at any

two locations (but no more). We discuss two ways to implement twin detec-

tors suitable for detecting bilocal arrivals. The bilocal picture sheds light on

currents in quantum mechanics. We find there are two types of bilocal current

density, whose polar form and related mean velocities are given. In the bilocal

context, the definitions of both current types simplify. In the unilocal case, the

two types become the usual current and a fluctuation current. Their respective

mean velocity fields are the usual de Broglie-Madelung-Bohm velocity and the

imaginary (osmotic) velocity. We obtain a new, probabilistic Schrödinger equa-

tion for the bilocal probability by itself, solve the example of a free particle,

develop the dyadic stationary states, and find that the von Neumann equation

for time-varying density of states follows directly from the new equation. We

also show how to include the electromagnetic potentials in this probabilistic

Schrödinger equation.

3.1 Introduction

The right transformation of variables or operators can interact with an equation of physics

in a striking way, bringing insights that we would not have expected from the simplicity

of the transformation itself. Examining an equation or theory, we may see that it contains

a symmetry or an implicit invariant form which enables us to simplify the equation and

perhaps solve it in some circumstances.
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The transformation we take up in this chapter concerns how events at two locations

q1, q2 and at one time are related. In [25] and chapter 2, we saw that this simple change of

the two variables is important for propagating probability:

q1 = x− τ
2

q2 = x+ τ
2 . (3.1)

The goal of this chapter is to extend the theory of probability and current density propa-

gators in chapter 2 [25], to develop a bilocal picture of quantum mechanics.

This change of variables (3.1) was introduced in the quantum density matrix transform

of Weyl and Wigner [4][5][25]. Since x = 1
2 (q1 + q2), and τ = (q2 − q1), x is the centroid

and τ is the separating distance. This change of variables (for space-time coordinates) is

also used in quantum nonequilibrium dynamics, where it is known as the Keldysh rotation

[26, below eq.(61)][27] [28, Ch.5] [29].

The bilocal transformation (3.1) is very close to the familiar change of variables used in

classical mechanics to find the motion of two attracting or repelling bodies, whose interaction

potential depends only on their separating distance. We transform their position vectors

into their center of mass and a separation vector. This transformation reduces the problem

of two bodies to that of one body with reduced mass in a central force field [30]. Bilocal

field theories of Yukawa and others, prior to string theory, proposed similar two-location

systems to model a particle as a body that occupies a finite spacetime region [31][32]. The

subject of this chapter, however, is unrelated to these relativistic theories.

Changing a Lagrangian into a Hamiltonian, by means of Legendre transformations,

is a very general transformation that is also familiar to us. This doubles the number of

independent variables, changing from configuration space to phase space, and reduces each

second-order equation of motion into two first-order equations. We found in [25] that

including the change of variables (3.1), to form the probability propagator, produced the

difference of displaced Lagrangians.
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In this chapter, our aim is to develop a picture of quantum mechanics that emphasizes

its inherently bilocal aspects. We show that, given several possible events, Born’s rule

(if it is exactly true) implies that they can interfere at most in pairs. For example, the

amplitudes for a particle to arrive at two locations at once can interfere. But for three or

more locations, the amplitudes can only interfere in pairs. We also study bilocal currents,

leading us to two types of current. We find an analog of the Schrödinger equation, for the

bilocal probabilities instead of amplitudes. At this early stage, it appears that the value of

this bilocal picture may rest in the theoretical insights that a new perspective on standard

quantum mechanics offers. Occasionally, it may provide simpler formulas to work with.

3.1.1 Chapter overview

An outline of the bilocal picture of quantum mechanics initiated in [25] is presented in

section 3.2. The rest of the chapter unfolds basic principles of the bilocal picture. Section

3.3 gives a careful analysis of bilocal probability, based on Born’s rule. In section 3.4, the

usual polar form of de Broglie-Bohm velocity and associated current is generalized to the

bilocal case. Section 3.5 introduces a new, bilocal fluctuation-current density. In particular,

this leads to the well-known osmotic velocity field, and a simple new expression for the

usual current density in quantum mechanics. Section 3.6 presents a bilocal probabilistic

Schrödinger equation for the bilocal probability density, and also develops that equation for

an external electromagnetic field. We conclude in section 3.7.

3.2 A bilocal picture of quantum mechanics

To propagate the probability and current densities of a quantum particle, we can use a

bilocal equivalent of the Schrödinger picture, introduced in [25] and in chapter 2. We

briefly review its basic elements, as follows.

Consider a quantum-mechanical particle whose state is spatially represented by a wave-

function ψ(x). We begin with the displaced (bilocal) probability density for the simultaneous
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arrival of the particle at time t at two places q1, q2 = x± τ
2 ,

P(xt, τ) = ψ∗(x− τ
2 , t)ψ(x+ τ

2 , t). (3.2)

It is complex-valued and thus is only a quasi-probability density; but for spacing τ = 0 it

reduces to the real-valued probability of arrival |ψ(x, t)|2. It has an associated displaced

(bilocal) current density

j(xt, τ) =
~

2im

[
ψ∗(x− τ

2 , t)∇xψ(x+ τ
2 , t)

−ψ(x+ τ
2 , t)∇xψ

∗(x− τ
2 , t)

]
. (3.3)

The bilocal probability and current densities in equations (3.2) and (3.3) together satisfy a

continuity equation,

[
i~
∂

∂t
−∆V (xt, τ)

]
P(xt, τ) = −i~∇x · j(xt, τ), (3.4)

where we define

∆V (xt, τ) = V
(
x+ τ

2 , t
)
− V

(
x− τ

2 , t
)

(3.5)

and V is the possibly time-dependent potential. For a particle of charge e in an electro-

magnetic field with scalar electric potential φ and vector magnetic potential A, we replace

the momentum gradients −i~∇x in the first and second terms of the current (3.3) by

−i~∇x − e
cA
(
x± τ

2 , t
)
, respectively, and we replace V by φ in (3.5) [1].

This equation (3.4) was shown in [25] and in chapter 2 to be equivalent to the Schrödinger

equation.1 Both equations employ the energy and momentum operators, but equation (3.4)

1 Errata in [25]: (i) formula (55): ∆V should match its definition in (26) and here; (ii) equations (67),

(69): add the term − 1
i~∆V ·B(τ) (respectively − 1

i~∆V · b) to the left hand side.
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is a first order equation instead of second order. Equation (3.4) is bilocal, but simpler

than the two Madelung equations for quantum mechanics. For τ = 0, (3.4) reduces to

the usual single-location continuity equation, which is the first Madelung equation. But as

is characteristic of hydrodynamical equations, the second Madelung equation has several

terms [33][58, problem 4.2].

3.2.1 Probability and current density propagators

The solution of the Schrödinger equation at time t′ ≥ t is

ψ(x′t′) =

∫
dx G(x′t′;xt)ψ(xt), (3.6)

for a Green kernel function G, given as a path integral in [1]. The solution of the bilocal

continuity equation (3.4) at time t′ ≥ t is

P(x′t′, τ ′) =

∫∫
dx dτ B(x′t′τ ′;xtτ)P(xt, τ) (3.7)

j(x′t′, τ ′) =

∫∫
dx dτ B(x′t′τ ′;xtτ)P(xt, τ), (3.8)

for Blue kernel functions B,B, given as path integrals in [25] and chapter 2. The Green

kernel propagates the wavefunction. The Blue kernels propagate the displaced probability

density, as well as the current density.

If there is no potential field (V = 0), the free Green propagator is [1]

G0(x′t′;xt) = 〈x′t′ |xt〉

=
(

m
2πi~T

) 3
2 exp

{
im
2~T |x

′ − x|2
}
. (3.9)
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where T = t′ − t is the elapsed time. The free Blue probability propagator is [25]

B0(x′t′τ ′;xtτ) =
(

m
2π~T

)3
exp

{
im
~T (x′ − x) · (τ ′ − τ)

}
, (3.10)

and the free current propagator is B0 = vB0
0 , where vk = (x′−x)k

T for k = 1, 2, 3 (see

appendix B). Green and Blue propagators for quadratic and other potentials are given in

[1], and in [25] and chapter 2, respectively.

3.2.2 Completeness properties for the propagators

We can propagate the bilocal probability and current density in two path legs or stages in

succession. For example, this is useful for a particle that propagates through a slit. We

split the time interval [t, t′′] at the time t′ (such that t ≤ t′ ≤ t′′) when the particle arrives

at the slits, and likewise split the path integral kernel into two parts, using the property

that

B(x′′t′′τ ′′;xtτ) =

∫∫
dx′ dτ ′ B(x′′t′′τ ′′;x′t′τ ′)B(x′t′τ ′;xtτ). (3.11)

This property follows from the path integral for the Blue function, given by equation (24)

in [25]. This property allows us, for example, to insert an aperture or window function to

represent two slits at the time t′, to restrict the possible paths from source to detector to

those passing through the twin slits.

The current blue function B satisfies a similar, but mixed, completeness property that

follows from its path integral, as expressed by equation (74) in [25] and (3.53) in chapter 2:

B(x′′t′′τ ′′;xtτ) =

∫∫
dx′ dτ ′ B(x′′t′′τ ′′;x′t′τ ′)B(x′t′τ ′;xtτ). (3.12)

For the potential-free case, with B0 = v′′B0, the key difference in splitting this current
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propagator (versus splitting the probability propagator (3.11)) is that the final endpoint

velocity factor v′′ only occurs in the later path segment.

3.3 Elementary probability theory for the wavefunction of a

particle

We have just seen that, to propagate the wavefunction’s real-valued probability density

into the future, it is necessary and sufficient to operate upon the complex-valued probability

density (3.2) given at the present time t [25]. The integral operator with its four-component

Blue kernel acts on (3.2), to give the future probability and current density. In this sense,

the displaced probability density (3.2) provides operational closure. Its central role in

probability propagation suggests that it should have physical meaning. We will see that its

real part (times two) may be interpreted as a signed, virtual probability of self-interference,

which occurs during the wavefunction’s collapse to produce the observed probability of

detection.

For any two locations 1 and 2, given by coordinates q1, q2 = x± τ
2 , there are four ways for

the particle to arrive in one or both locations at once, as shown in figure 3.1. It may behave

like a particle, arriving at either place (left side and center of figure 3.1), with probability

elements P1 ≡ P(x+ τ
2 , t)d

3x and P2 ≡ P(x− τ
2 , t)d

3x to arrive (and be detected) at one of

the two locations. The quantum-mechanical particle may also behave like a wave, arriving

at both places simultaneously (right side of figure 3.1). This arrival may be considered to

occur in two ways, oriented in an up (1,2) or down (2,1) sense, with respective probability

elements denoted by P12 ≡ P(xt, τ)d3x and P21 ≡ P(xt,−τ)d3x. From (3.2), these two

quasi-probabilities or interference terms are complex conjugates: P21 = P∗12.

Suppose that we place a detector at each of the two locations. For two single (indepen-

dent) detectors, as shown in figure 3.2, the associated total probability element P(x± τ
2 , t)d

3x

for the particle to arrive (and be detected) at one of the two locations (not both), each with
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P1 P2 P12 + P21  

Figure 3.1: Bilocal events, for locations 1 and 2 at time t, and a particle depicted as a wavefront: (left)

particle arrives at 1 with probability P1; (center) particle arrives at 2 with probability P2; (right) particle

arrives at both 1 and 2 (wavelike arrival) with virtual probability P12 + P21. The combined event of arrival

at 1 or 2 or both has probability given by the sum P̄1,2 = P1 +P2 + (P12 + P21), equation (3.15). The event

of wavelike arrival at both locations (right) is considered to be a virtual event, which occurs only with the
single-location events. If, by some means, we can determine which location the particle passed through, the
virtual probability vanishes (i.e., (P12 + P21) = 0, resulting in equation (3.13)). In this chapter, we consider
these probability densities, as well as the current densities j and mean velocities v associated with these
events.

volume element d3x, is given by

P(x± τ
2 , t) d3x = P(x+ τ

2 , t, 0)d3x+ P(x− τ
2 , t, 0)d3x (3.13)

=
∣∣ψ(x+ τ

2 )
∣∣2 d3x+

∣∣ψ(x− τ
2 )
∣∣2 d3x. (3.14)

We can also conjoin the two detectors to make a double detector, as shown in figure

3.2 on the right, so that the particles arriving at either location are counted together.The

associated total probability P(x± τ
2 , t)d

3x to arrive and be detected at one or both locations

is given by

P(x± τ
2 , t)d

3x = P(x+ τ
2 , t, 0)d3x+ P(x− τ

2 , t, 0)d3x

+ P(xt, τ)d3x+ P(xt,−τ)d3x (3.15)

=
∣∣ψ(x+ τ

2 ) + ψ(x− τ
2 )
∣∣2 d3x ≥ 0. (3.16)
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P1 P2 P12 + P21 

D1

D2

D12

+ P1 + P2 

Figure 3.2: Single and double detector configurations: (left and center) A separate single detector counts
particle-like arrivals at either port, 1 or 2, but not both. Thus we can distinguish by which of the two
ports the particle arrived. But the single detectors are, by default, unresponsive to the particle’s arrival
via both ports at once, a third though virtual event. (right) A pair of conjoined detectors, i.e., a two-port
or twin detector, is compliant with wave-like arrivals of the particle. It counts an arrival through either
or both ports. Thus the twin detector supports the particle’s virtual arrival via both ports at once. But
the twin detector can only sense the occurrence of one of the three mutually exclusive events (the detection

probability is a sum, as annotated above). It cannot distinguish which port or ports the particle passes
through, 1 or 2 or both.

Of the four probabilities summed above, we of course recognize the first two from equation

(3.13), as those of arriving at a single location. The last two probabilities in the sum (3.15)

represent wavelike, bilocal presence of the object. As a conjugate pair, their sum may be

negative; but in absolute value this never exceeds the sum of the first two probabilities for

the usual particle-like, unilocal presence of the object at one of the two locations.

The total bicurrent j(x± τ
2 , t) passing into the twin detectors is a new quantity, defined

by

j(x± τ
2 , t) = ~

2mi

{[
ψ(x+ τ

2 ) + ψ(x− τ
2 )
]∗∇x [ψ(x+ τ

2 ) + ψ(x− τ
2 )
]

−
[
ψ(x+ τ

2 ) + ψ(x− τ
2 )
]
∇x
[
ψ(x+ τ

2 ) + ψ(x− τ
2 )
]∗}

(3.17)

= j(x+ τ
2 , t, 0) + j(x− τ

2 , t, 0) + j(xt, τ) + j(xt,−τ). (3.18)
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The expression for total bicurrent splits into a sum of two usual currents (one at each

location) and two conjugate displaced currents of form (3.3) for simultaneous, wavelike

arrival at both locations. This sum (3.18) of four currents is analogous to the sum (3.16)

for total probability for arrival at one or both detectors.2

3.3.1 Implementing the twin detector

There are doubtlessly various ways to implement the twin detector. For example, for pho-

tons, the two small ports could be coupled by means of two optic fiber couplers which feed

into the input ports of an in-fiber beamsplitter. Its combined output from one port is then

fed into a single detector. (Half of the photons are lost through the unused beamsplitter

out-port.) This scheme is depicted in figure 3.2 on the right, without the beamsplitter.

A second way to implement the twin detector is essentially to combine the two paths

by a lens, instead of a beamsplitter. This configuration is the same as that of a Michelson

stellar interferometer (which, by rough analogy, inspired Ramsey to design his twin-pulse

molecular beam apparatus [35][24]).

A third way to implement the twin detector is to modify a cooled two-dimensional CCD

focal plane array of small square pixels of side ∆s. The N×N CCD array would be replaced

by a one-dimensional 1×N array of long rectangular pixels, occupying the same area as the

two-dimensional array. Every column of distinct pixels in the two-dimensional array is fused

in effect, to respond as though it were one pixel with the same width ∆s as the original,

but with length equal to the length N∆s of the entire CCD array. A mask or reticle is

placed over the new CCD photosensor array, having two square slits, both of the size ∆s of

the original square pixels. Both slits expose the same column pixel, and are separated by a

distance τ in the vertical dimension. To collect a spatial probability density, this mask could

be moved by steps of size ∆s down a given column. Thus the one-dimensional columnar

2 The total bicurrent easily extends to a total multicurrent, impinging on an array of many detector

pairs located about their center x. We replace the wavefunction sum
[
ψ(x+ τ

2
) + ψ(x− τ

2
)
]

by the sum∑K
k=1 [ψ(x+ τk/2) + ψ(x− τk/2)] everywhere inside the total current expression defined above.
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CCD array with double slit mask implements a twin detector in the selected column pixel

that receives the photon.

3.3.2 Virtual probability of interference

Next we present an argument to justify calling the real part of (3.2) (times two) a virtual

probability. Let A be the event that the particle arrives at location 1, given by q1 = x+ τ
2 ,

and let B be the event that the particle arrives at location 2, given by q2 = x − τ
2 , at the

same time t. We regard these events or outcomes as sets, that belong to a suitable algebra

of measurable events. In Born’s interpretation of quantum mechanics, an event may be

observed if and only if it has a state with a complex probability amplitude, unique up to a

global phase shift of all base states. The associated probability of observing the event is the

squared magnitude of the amplitude. Moreover, there is a well-known “which-way” rule. If

we cannot physically distinguish the several sources or precursors of an event, we add their

amplitudes before squaring the sum. Otherwise, if we can determine the sources, we square

their amplitudes first, and then add the probabilities [36, vol. III].

In general, events A and B have a non-empty intersection, A ∩ B. But we can express

their union as a union of disjoint events:

A ∪B = (A ∩B) ∪ (A ∩Bc) ∪ (Ac ∩B), (3.19)

where Ac is the complement of A. One may think of Ac as the non-event that event A does

not occur, A ∪ B as the event that A or B or both occur, and A ∩ B as the event that

events A and B both occur. Often A ∩ Bc, the event that A occurs but B does not, is

written as A − B. We assume that the probability P is an additive measure: for any two

disjoint sets C and D, we have P(C ∪ D) = P(C) + P(D).3 But here we do not assume

that the probability P is nonnegative, only that it is real-valued. Thus the measure P is not

monotone or subadditive; e.g., if B ⊆ A, we may not have P(B) ≤ P(A), as we will see.

3 Since (A ∩ Bc) ∪ (A ∩ B) = A, identity (3.19) immediately implies the familiar inclusion-exclusion
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Table 3.1: Particle arrival events in equation (3.19). Event A is arrival at location 1, given
by its point coordinates q1 = x+ τ

2 . Event B is arrival at location 2, given by q2 = x− τ
2 .

The events in the first three rows of this table are real or actual events, i.e. those that have
unique amplitudes and can be observed. The event A ∩ B is considered virtual because it
is not observed directly, but is expressible as a residue of real events. Its virtual probability
density (3.20) represents self-interference of the particle. The detector, single or double
(conjoined), is the one appropriate to the arrival event type.

Arrival Event Event set Observed Ampl. Prob. Type Detector

at 1 or 2 or both A ∪B yes ψ1 + ψ2 P1,2 real double

at 1 and not at 2 A ∩Bc yes ψ1 P1 real single
at 2 and not at 1 B ∩Ac yes ψ2 P2 real single
at both 1 and 2 A ∩B no - 2<P12 virtual none

The attributes of these events are summarized in table 3.1. Since the total event on the

left-hand side of equation (3.19) and the first two events of single-location arrival on the

right hand side are observable, the remaining term represents a virtual event. This virtual

event A ∩B of arrival at both locations is observed only indirectly, when it interferes with

the other events. For two separate, single detectors, there is no arrival interference; that is,

formula (3.13) follows when we substitute P(A ∩B) = 0 in equation (3.19).

For the conjoined detector pair, formula (3.15) follows from equation (3.19), when we

substitute for P(A ∩B) the quantum mechanical virtual probability, a signed number that

represents a kind of self-interference of the particle, as its wavefront breaks over the two

detectors:

P(A ∩B)qm = P(xt, τ) + P(xt,−τ)

= ψ∗(x+ τ
2 ) · ψ(x− τ

2 ) + c.c. (3.20)

This expression, twice the real part of (3.2), has a form analogous to the standard definition

for independent events, P(A∩B) = P(A) ·P(B). Since a virtual probability is always just a

cross-product that comes from squaring a sum of indistinguishable amplitudes, probabilities

formula for two events, P(A or B) = P(A) + P(B)− P(A and B) [37].
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of joint events necessarily take this form of independence. This can be viewed as a quantum-

mechanical constraint on probabilities of joint events, which is not found in standard, non-

negative probability theory without underlying complex amplitudes. Negative (virtual)

probabilities have also been noted in, for example, [38][39][40].

3.3.3 Experimental three-slit test of Born’s rule

Born’s rule has passed all experimental tests up to now, including a recent three-slit ex-

periment using single photons [41]. This experiment opens and closes the slits, to test this

identity for any three complex numbers (probability amplitudes):

|a+ b+ c|2 = |a+ b|2 + |a+ c|2 + |b+ c|2 − (|a|2 + |b|2 + |c|2). (3.21)

This identity (3.21) contains no residual third-order term P(a ∩ b ∩ c) for the interference

of all three slit sources, as we can verify. Interpreted with Born’s rule, for corresponding

events also labeled a, b, c, the identity (3.21) reads:

P(a ∪ b ∪ c) = P((a ∪ b) ∩ cc) + P((c ∪ a) ∩ bc) + P((b ∪ c) ∩ ac)

− (P(a ∩ (b ∪ c)c) + P(c ∩ (a ∪ b)c) + P(b ∩ (c ∪ a)c)) . (3.22)

This identity is missing a term, P(a ∩ b ∩ c). For we can partition a ∪ b ∪ c as

a ∪ b ∪ c = (a ∩ b ∩ c) ∪ (a ∩ bc) ∪ (b ∩ cc) ∪ (c ∩ ac), (3.23)

so that, using the set identities b∩ cc = [(a ∪ b) ∩ cc]− [a ∩ (b ∪ c)c], etc., in general we have

P(a ∪ b ∪ c) = P(a ∩ b ∩ c)

+ P((a ∪ b) ∩ cc) + P((c ∪ a) ∩ bc) + P((b ∪ c) ∩ ac)

− (P(a ∩ (b ∪ c)c) + P(c ∩ (a ∪ b)c) + P(b ∩ (c ∪ a)c)) . (3.24)
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Therefore, the third-order term in (3.22) must be

P(a ∩ b ∩ c) = 0. (3.25)

For example, the simultaneous wavelike arrival of a particle at three locations is an event

that has zero probability. (This property is not what we would naively consider to be

wavelike.) Only a bilocal arrival has a non-zero virtual probability (3.20).

3.3.4 Born’s rule implies that only pairs of events interfere

We can extend these results to events involving more than three states. More generally,

consider a particle with n base states, A1, A2, . . . , An, having the corresponding amplitudes

a1, a2, . . . , an. The only events that concern us in our probability calculus are of two kinds,

actual and virtual events. The actual or observable events belong to one of these families,

defined for each m = 1, 2, ..., n:

Anm =


m⋃
k=1

Aπ(k) ∩

(
m′⋃
k=1

Aπ′(k)

)c
: all π, π′

 (3.26)

with m′ such that m+m′ = n. The basic idea here is that in an actual, observable event,

every state must be specified as either belonging or not to that event. (For a continuous

example, the event of arrival at location q1 has state A1 = |q1〉 with amplitude given by the

Dirac delta distribution: ψ(q) = 〈q |q1 〉 = δ(q − q1), nonzero at at q1, but zero everywhere

else.) We partition the states into two subsets, states to include in the actual event, and

states to exclude. Thus π indexes a combination of any m of the n states, and π′ indexes

the complement of the m′ states that remain. (For a countably infinite set of states, n =∞

and we would let m′ = ∞.) Actual events (3.26) each have nonnegative probability, and

their total probability is 1.

Similarly, the virtual or interference events belong to one of these families, defined for
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each m = 2, 3, ..., n:

Vnm =


m⋂
k=1

Aπ(k) ∩

(
m′⋃
k=1

Aπ′(k)

)c
: all π, π′

 (3.27)

By DeMorgan’s formulae, we have
(⋃m′

k=1Aπ′(k)

)c
=
⋂m′

k=1A
c
π′(k). We will show next that

virtual events for m = 2 interfering states have a signed probability, but zero probability

for m > 2 interfering states.

The parallel alternating identities (3.21) and (3.22) with its missing term, one for com-

plex numbers and one for probabilities, are both true in general, for any number n ≥ 2 of

states. Quantum mechanics again connects the two identities by means of Born’s rule, as

follows.

First, the squared amplitudes must satisfy this identity, valid for any n ≥ 3 complex

numbers a1, a2, a3, ... :

∣∣∣∣∣
n∑
k=1

ak

∣∣∣∣∣
2

=
∑
j

∣∣∣∣∣∣
∑
k 6=j

ak

∣∣∣∣∣∣
2

−
∑
j1<j2

∣∣∣∣∣∣
∑

k 6=j1,j2

ak

∣∣∣∣∣∣
2

+ · · ·+ (−1)n
∑
j′

∣∣aj′∣∣2 . (3.28)

The right-hand side has n − 1 terms with alternating signs. The indices run from 1 to n,

except as prevented.
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Second, the event probabilities must satisfy this (new) identity for n ≥ 2 sets:

P

(
n⋃
k=1

Ak

)
= P

(
n⋂
k=1

Ak

)

+
∑
j

P

⋃
k 6=j

Ak ∩Acj

− ∑
j1<j2

P

 ⋃
k 6=j1,j2

Ak ∩Acj1 ∩A
c
j2



+ · · ·+ (−1)n
∑
j′

P

Aj′ ∩ ⋂
j 6=j′

Acj

 . (3.29)

All events above are actual, except for one virtual event. When we interpret the squared

amplitudes in (3.28) as probabilities by Born’s rule, we get this identity (3.29), but missing

its initial term on the righthand side. Therefore, the virtual probability P (
⋂n
k=1Ak) = 0

for n > 2.

We can immediately apply this result for any m such that 3 ≤ m ≤ n, to get

P
(⋂m

k=1Aπ(k) ∩
(⋃m′

k=1Aπ′(k)

)c)
= 0, for any two-subset partition π, π′ of the set of indices

{1, ...n}. This follows from the identities (3.28) and (3.29) of order m, by merely appending

the fixed set intersection ∩
(⋃m′

k=1Aπ′(k)

)c
to restrict every set on the left and right hand

sides.

We conclude that in quantum mechanics with Born’s rule, for any number n of base

states, the probability of the virtual event of m ≥ 2 base events occurring at one time (the

rest not occurring) obeys this rule (for an arbitrary ordering of the states):

P

(
m⋂
k=1

Ak ∩
n⋂

k=m+1

Ack

)
=

 ψ∗A1−A2
ψA2−A1 + c.c., m = 2

0, m = 3, 4, . . . .
(3.30)

Born’s rule and probability theory thus imply that states only interfere in pairs. We also
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note that when two states interfere, as in a bilocal arrival, this rule (3.30) gives such twin

events a place of special significance in quantum mechanics.

3.4 Polar form of the bilocal velocity

It is well known that if we put the wavefunction into polar form as ψ =
√
Peiθ, the formula

for current density reduces to j = Pv, where v = ~
m∇xθ is interpreted as mean velocity

(see e.g. [36, section 21-5]). This result is a special case of an expression for the displaced

current densities j(xt,±τ) (3.3), which we consider to be due to wavelike interference at

locations 1 and 2 given by q1 = x− τ
2 , q2 = x+ τ

2 . They are the final two terms of the total

bicurrent density (3.18). Substituting into them the polar form of the wavefunction at the

two locations, i.e., ψ1 =
√
P1e

iθ1 and ψ2 =
√
P2e

iθ2 , we find after a little calculus:

j12 ≡ j(xt, τ) = ~
mP12

(
1
2 [∇xθ1 +∇xθ2] + 1

2

[
∇x ln

√
P2
P1

])
= P12v12, (3.31)

where P12 = ψ∗1ψ2 ≡ P(xt, τ) as defined by (3.2), and we define the wavelike velocity

v12 ≡ v(xt, τ) = 1
2 [v1 + v2] + 1

2
~
m

[
∇x ln

√
P2
P1

]
. (3.32)

For a single location (τ = 0), the second term on the right hand side of (3.31) vanishes and

j12 = j1 = j2. Similarly, by exchanging locations 1 and 2, we also have

j21 ≡ j(xt,−τ) = ~
mP21

(
1
2 [∇xθ1 +∇xθ2] + 1

2

[
∇x ln

√
P1
P2

])
= P21v21 (3.33)

v21 ≡ v(xt,−τ) = 1
2 [v1 + v2] + 1

2
~
m

[
∇x ln

√
P1
P2

]
. (3.34)
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The sum of the the displaced current densities is a real-valued, virtual current:

j(xt, τ) + j(xt,−τ) =
~
m

(
[∇xθ1 +∇xθ2]<P12 +

[
∇x ln

√
P2

P1

]
=P12

)
(3.35)

where <z = x and =z = y denote the real and imaginary parts of any complex number

z = x + iy. Note that in case θ2 − θ1 = π
2 , or any odd multiple of π

2 , P12 = ±i
√
P1P2,

so that <P12 = 0, and the first term on the right hand side of (3.35) vanishes. The total

bicurrent density (3.18) is given by

j(xt, τ) = ~
m

{
P1∇xθ1 + P2∇xθ2 + <P12 · [∇xθ1 +∇xθ2] + =P12 · ∇x ln

√
P2

P1

}

=

(
P1v1 + P2v2

+
√

P1P2

{
cos (θ2 − θ1) [v1 + v2] + sin (θ2 − θ1)

[
~
m
∇x ln

√
P2

P1

]})

(3.36)

Formulas (3.35) and (3.36) for the virtual and total bi-current density are true in general.

They represent, respectively, the particle current density passing through both locations,

and through one or both locations.

3.5 Path-fluctuation current density

Besides the bilocal current density j defined in (3.3), a second kind of bilocal current density

k can be defined in this context:

k(xt, τ) = ~
2mi

[
ψ∗(x− τ

2 , t)∇ τ
2
ψ(x+ τ

2 , t)− ψ(x+ τ
2 , t)∇ τ

2
ψ∗(x− τ

2 , t)
]
.(3.37)
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We name this the path-fluctuation current density. The gradients are now partial derivatives

with respect to τ
2 instead of x. Thus, in case τ = 0, the fluctuation current k(xt, 0) is

an imaginary-valued vector. This follows because the right hand side of equation (3.37)

reverses sign when conjugated and evaluated at τ = 0, since
(
∇ τ

2
ψ∗(x− τ

2 , t)
)∗∣∣∣

τ=0
=

−
(
∇ τ

2
ψ(x+ τ

2 , t)
)∣∣∣
τ=0

. Also, since ∇ τ
2
ψ(x± τ

2 , t) = ±∇xψ(x± τ
2 , t), we have an equivalent

expression

k(xt, τ) = ~
2mi

[
ψ∗(x− τ

2 , t)∇xψ(x+ τ
2 , t) + ψ(x+ τ

2 , t)∇xψ
∗(x− τ

2 , t)
]

= ~
2mi∇xψ

∗(x− τ
2 , t)ψ(x+ τ

2 , t)

= ~
2mi∇xP(xt, τ), (3.38)

by the product rule for gradients. The path-fluctuation bicurrent density is proportional to

the gradient (with respect to x) of the bilocal probability (3.2). Evaluated at τ = 0, the

right hand sides of equations (3.38) reverse sign when conjugated, so the bicurrent density

of the second kind is again seen to be imaginary-valued in that case.

The bicurrent density j (3.3) of the first kind is real-valued at τ = 0, where it reduces

to the usual quantum-mechanical current. We have:

j(xt, τ) = ~
2im

[
ψ∗(x− τ

2 , t)∇xψ(x+ τ
2 , t)− ψ(x+ τ

2 , t)∇xψ
∗(x− τ

2 , t)
]

= ~
2im

[
ψ∗(x− τ

2 , t)∇ τ
2
ψ(x+ τ

2 , t) + ψ(x+ τ
2 , t)∇ τ

2
ψ∗(x− τ

2 , t)
]

= ~
2im∇ τ

2
P(xt, τ). (3.39)

We see that, up to an imaginary constant coefficient, the bicurrent density j (3.3) is the

gradient with respect to τ
2 of the bilocal probability (3.2). The usual quantum-mechanical

current is this gradient evaluated at τ = 0, multiplied by the constant. When conjugated
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and evaluated at τ = 0, for the same reasons given in the previous paragraph, the first two

expressions for j on the right hand side of (3.39) remain the same, and are thus real.

3.5.1 Polar form of the fluctuation current

Changing signs in the steps taken in section 3.4, to agree with formula (3.38), we find that

the polar form of the fluctuation bicurrent density is

k12 ≡ k(xt, τ) = ~
2miP12

(
i [∇xθ2 −∇xθ1] +

[
∇x ln

√
P2P1

])
= P12w12 (3.40)

= ~
2miP12∇x

(
ln
√
P2P1 + i [θ2 − θ1]

)
= ~

2miP12∇x lnP12

= ~
2mi∇xP12, (3.41)

again, since we can write

P12 = exp
{

ln
√
P2P1 + i [θ2 − θ1]

}
, (3.42)

and we define the wavelike velocity

w12 ≡ w(xt, τ) = 1
2 [v2 − v1] + 1

2
~
mi

[
∇x ln

√
P2P1

]
. (3.43)

For a single location (τ = 0), the first term on the right hand side of (3.40) and of (3.43)

vanishes, and this bicurrent k12 = k1 = k2, reducing to

k1 ≡ k(xt, 0) = P1 · 1
2

~
mi∇x lnP1 = 1

2
~
mi∇xP1. (3.44)
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Here we recognize the so-called osmotic velocity field [42]

w1 ≡ w(xt, 0) = 1
2

~
mi∇x lnP1 (3.45)

of the particle at any single location. Now we can write the single current as k1 = P1w1.

By exchanging locations 1 and 2, we similarly have

k21 ≡ k(xt,−τ) = ~
miP21

(
i1

2 [∇xθ1 −∇xθ2] + 1
2

[
∇x ln

√
P1P2

])
= P21w21 (3.46)

w21 ≡ v(xt,−τ) = 1
2 [v1 − v2] + 1

2
~
mi

[
∇x ln

√
P1P2

]
. (3.47)

The sum of the displaced current densities is imaginary-valued for any τ :

k(xt, τ) + k(xt,−τ) = ~
mi

(
[∇xθ1 −∇xθ2]=P12 +

[
∇x ln

√
P2P1

]
<P12

)
(3.48)

From formula (3.41), the total fluctuation bicurrent density is given by the sum of four

parts

k(xt, τ) = (k1 + k2 + k12 + k21)

= ~
2mi∇x (P1 + P2 + P12 + P21)

= ~
2mi∇xP(xt, τ). (3.49)

Formulas (3.40) and (3.49) for the displaced and total bi-current density (and the formulas

in between) are true in general. They represent, respectively, the particle fluctuation current

density passing through both locations, and through one or both locations.
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3.5.2 Fluctuation current propagator

Since ∇2
τ ′′

2

ψ(x′′± τ ′′

2 , t
′′) = ∇2

x′′ψ(x′′± τ ′′

2 , t
′′), we can rewrite the characterizing equation of

the Blue function in [25, section 8, equation (67)] (including the ∆V term that was omitted

there) as

(
∂

∂t′′
− 1

i~
∆V

)
B(τ ′′) +∇ τ ′′

2

· B̃(τ ′′) = −2δ(t′′ − t′)δ(x′′ − x′ + τ ′′

2 −
τ ′

2 )

×δ(x′′ − x′ − τ ′′

2 + τ ′

2 ), (3.50)

where we define the second Blue current density propagator

B̃(x′′t′′τ ′′;x′t′τ ′) =
~

2mi

[
G∗1∇ τ ′′

2

G2 −G2∇ τ ′′

2

G∗1

]
. (3.51)

The propagator G is the Green function for the Schrödinger equation, and we put G1, G2 =

G(x′′ ± τ ′′

2 , t
′′;x′ ± τ ′

2 , t
′).

Likewise, the bilocal conservation equation (3.4) for the fluctuation current k has the

same form again as in [25],

[
i~

∂

∂t′′
−∆V (x′′τ ′′t′′)

]
P(x′′τ ′′t′′) = −i~∇ τ ′′

2

· k(x′′τ ′′t′′). (3.52)

The right-hand sides of equations (3.4) and (3.52) must be equal, because the left-hand

sides are identical. This fact also follows from expressions (3.39) and (3.38) for the usual

and fluctuation currents, since ∇x′′ · ∇ τ ′′

2

ψ(x′′± τ ′′

2 , t
′′) = ∇ τ ′′

2

· ∇x′′ψ(x′′± τ ′′

2 , t
′′).

Then, in a manner similar to that in [25, section 8], we obtain the formal expression for
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the fluctuation current kernel path integral,

B̃(x′′t′′τ ′′;x′t′τ ′) = τ̇ ′′ei∆S/~Dx(t)Dτ (t), (3.53)

where τ̇ ′′ = (τ ′′ − τN−1) /ε, and the displaced action or motion is again the line integral

∆S[x(t), τ(t)] =

∫ t′′

t′

(
mẋτ̇ −

[
V (x+ τ

2 )− V (x− τ
2 )
])
dt, (3.54)

as defined in [25, equation (26)]. Lastly, modifying appendix B, we find the free-space

propagator for the fluctuation current density,

B̃µ
0 (x′′t′′τ ′′;x′τ ′t′) =

(
m

2π~T
)d (τ ′′−τ ′)µ

T exp
{
im
~T (x′′ − x′) · (τ ′′ − τ ′)

}
(3.55)

= τ̄B0, (3.56)

where T = t′′ − t′ and τ̄ = (τ ′′ − τ ′)µ /T is the mean fluctuation, for components µ =

1, 2, . . . , d.

3.6 Probabilistic Schrödinger equation

The bilocal probability and current densities together satisfy the bicontinuity equation (3.4),

as we have seen. Since we found that j(xτt) = ~
2im∇ τ

2
·P(xτt), in section 3.5, equation (3.39),

we can rewrite equation (3.4) in a probabilistic Schrödinger form

i~
∂

∂t
P(xτt) =

[
− ~2

2m
∇x∇ τ

2
+ ∆V (xτt)

]
P(xτt). (3.57)
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for the bilocal probability density P. Here the familiar kinetic energy operator − ~2
2m∇

2
x

is replaced by − ~2
2m∇x∇ τ

2
= − ~2

2m∇ τ
2
∇x. This operator is the product of two distinct

momentum operators, p̂x = −i~∇x, for the central momentum, and p̂τ = −i~∇ τ
2

, for the

relative bilocal displacement momentum or, for short, the separating momentum.

This equation decouples into two conjugate Schrödinger equations:

i~
∂

∂t
ψ∗aψb(xτt) =

[
− ~2

2m
∇x∇ τ

2
+ ∆V (xτt)

]
· ψ∗aψb

i~
(
ψb
∂ψ∗a
∂t

+ ψ∗a
∂ψb
∂t

)
= − ~2

2m

[
ψ∗a∇x∇ τ

2
ψb + ψb∇x∇ τ

2
ψ∗a

+ ∇xψ∗a · ∇ τ
2
ψb +∇ τ

2
ψ∗a · ∇xψb

]
+ [Vb − Va]ψ∗aψb.

−ψb ·
(
i~
∂ψa
∂t

)∗
+ ψ∗a · i~

∂ψb
∂t

= −ψb
(
− ~2

2m
∇2
xψ
∗
a + Vaψ

∗
a

)

+ψ∗a

(
− ~2

2m
∇2
xψb + Vbψb

)
, (3.58)

since ∇ τ ′

2

ψ(x′± τ ′

2 , t
′) = ±∇x′ψ(x′± τ ′

2 , t
′). Thus a displaced product of two wavefunctions,

ρ(xτt) = A
[
ψ∗a(x− τ

2 , t) · ψb(x+ τ
2 , t)

]
, (3.59)

and its complex conjugate, are solutions of (3.57). We conjecture that the solutions of this

form (3.59) constitute a basis for the physical Hilbert space of all solutions ρ(xτt) of (3.57).
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3.6.1 Stationary solutions for fixed energy level differences

To solve equation (3.57) for time-independent ∆V by separation of variables, we put P =

ρ(x, τ)T(t). Substituting this and dividing both sides by P, we have

i~
Ṫ(t)

T(t)
= ∆E = − ~2

2m

∇x∇ τ
2
ρ(x, τ)

ρ(x, τ)
+ ∆V (x, τ) (3.60)

where the left and right hand sides must be a constant ∆E, because they are functions of

different variables yet equal. The constant ∆E must also be real-valued, possibly negative,

since the operators on either side are Hermitean (self-adjoint). Integrating the left-hand

side over time, we have

T(t) = T0e
−i∆Et/~. (3.61)

The right-hand side presents an eigenproblem,

[
− ~2

2m
∇x∇ τ

2
+ ∆V (x, τ)

]
ρ(x, τ) = ∆Eρ(x, τ). (3.62)

For a uniform potential, ∆V = 0 and the eigensolutions of (3.62) include the product

of two different planewaves

ρ(x, τ) = Aeika·(x−
τ
2 )e−ikb·(x+

τ
2 ), (3.63)

and its complex conjugate, for eigenvalue

∆E = −~2
(
|ka|2 − |kb|2

)
/2m, (3.64)

and for wavenumber vectors ka, kb. Each eigenvalue is independent of τ . (We must discard

66



as unphysical, the corresponding solutions for real exponents, since in that case ρ→∞ as

±x,±τ → ∞.) The solution ρ = ψ∗−ψ+ = eik(x−
τ
2 )e−ik(x+

τ
2 ) = e−ikτ requires ∆E = 0,

ka = kb.

3.6.2 Inner product space

To construct an abstract basis of functions of form (3.59), let |a〉, |b〉, . . . be stationary

states of the usual kind, a complete set of eigenstates of the time-independent Schrödinger

equation. In the position representation, the wavefunctions are ψa(x) = 〈x |a〉, ψb(x) =

〈x |b〉, . . . We introduce dyadic kets defined by

|a∓b±〉 = |b±〉〈a∓|

∼ 〈a |x〉D†(± τ
2 )D(∓ τ

2 )〈x |b〉

= ψ∗a(x∓ τ
2 ) · ψb(x± τ

2 ). (3.65)

The dyadic bras dual to these kets are the complex conjugates of the kets, defined by

〈b±a∓| = |a∓〉〈b±|

∼ 〈b |x〉D†(∓ τ
2 )D(± τ

2 )〈x |a〉

= ψ∗b (x± τ
2 ) · ψa(x∓ τ

2 ). (3.66)

The sign subscripts here signify that, in the position representation, the original states

are translated by ± τ
2 ; i.e., |a±〉 ∼ ψa(x ± τ

2 ). Here the spatial translation operator

D, which uses Taylor series to translate the real-valued argument x of a complex-valued

function (with no singular points on the real line) by a distance vector τ
2 , is given by

D( τ2 ) = exp
{
−ip̂x · τ2/~

}
= exp

{
−∇x · τ2

}
.
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We define the inner product of two dyads by

〈b±a∓ |c∓d± 〉 =

∫∫
ψ∗b (x± τ

2 )ψa(x∓ τ
2 )ψ∗c (x∓ τ

2 )ψd(x± τ
2 ) dx dτ

=

∫
ψa(r)ψ

∗
c (r)dr ·

∫
ψ∗b (s)ψd(s)ds

= 〈a |c〉∗〈b |d〉 (3.67)

where the integrals run from −∞ to +∞. It follows that this inner product is linear

(lefthand scalars are conjugated) and has conjugate symmetry:

(〈b±a∓ |c∓d± 〉)∗ = 〈d±c∓ |a∓b± 〉. (3.68)

Since the substitution τ ← −τ does not change the inner product integral (3.67), we have

another symmetric property,

〈b±a∓ |c∓d± 〉 = 〈c±d∓ |b∓a± 〉. (3.69)

The norm induced by the inner product is given by

||a∓b±〉|2 = 〈b±a∓ |a∓b± 〉 = |a|2|b|2 = 1, (3.70)

assuming that the original wavefunctions are normalized to begin with. Provided that

〈a |c〉 = 0 or 〈b |d〉 = 0 (i.e., a ⊥ c or b ⊥ d), then we also have orthonormal dyads:

〈b±a∓ |c∓d± 〉 = 〈a |c〉∗〈b |d〉 = 0. (3.71)

An operator ∆O that acts on the dyadic states has matrix elements given by the expectation
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value

〈b±a∓ |∆O| c∓d±〉 =

∫∫
ψ∗b (x± τ

2 )ψa(x∓ τ
2 ) ·

∆Oψ∗c (x∓ τ
2 ) · ψd(x± τ

2 ) dx dτ. (3.72)

In the case that the operator ∆O has the form ∆O = O(x+ τ
2 ) − O(x− τ

2 ), changing the

sign of τ also changes that of ∆O, so we have

〈b∓a± |∆O| c±d∓〉 = −〈b±a∓ |∆O| c∓d±〉 . (3.73)

When we reverse the sign of τ , this of course reverses the label signs of the dyadic kets

(3.65) and bras (3.66), but each represents the same physical dyadic state that it did before

reversing the sign of τ . For this reason, we identify |a+b−〉 with |a−b+〉, and we identify

〈b−a+| with 〈b+a−|. By convention, from now on we will always use the representative kets

|a−b+〉 and their corresponding dual bras 〈b+a−|.

3.6.3 Multi-level time-dependent systems

Consider a multi-level system with a basis of discrete orthonormal states |a〉, |b〉, |c〉, . . . Let

their respective energy levels be, in increasing order, Ea, Eb, Ec, . . . For the time-independent

probabilistic Hamiltonian ∆H0, we have dyadic eigenstates:

∆H0|i−j+〉 = ∆Eij |i−j+〉, for i, j ∈ {a, b, ...} (3.74)

where ∆Eij = ~2(k2
j −k2

i )/(2m). By equation (3.61), the dyadic stationary states propagate

over time t as |i−j+〉 exp {−i∆Eijt/~}.
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Now to ∆H0 let us add a time-dependent perturbation ∆HI(t), and solve the proba-

bilistic Schrödinger equation (3.57):

(∆H0 + ∆HI(t))P(t) = i~
∂P

∂t
. (3.75)

The method we use is similar to that normally used to solve the time-dependent Schrödinger

equation for states that combine two or more energy levels, e.g., as given in [43, Ch. 9]. We

solve for the time-dependent coefficients pji(t) of the linear combination of dyadic states

P(t) = Σi,j∈A pji(t) · |i−j+〉e−iω
0
jit, (3.76)

where the index set is A = {a, b, c, ...}, and we put ω0
ji = ∆Eji/~. Substituting this expres-

sion into (3.75), using (3.74), we obtain

∆HIP(t) = i~ Σi,j∈A ṗji(t) · |i−j+〉e−iω
0
jit. (3.77)

Note that, since each coefficient pji is only a function of time t, and of no other variables

that change with time, we have ṗji(t) ≡ dpji(t)/dt = ∂pji(t)/∂t + 0. Premultiplying both

sides by 〈j′+i′−|, taking inner products and using orthonormality, we find

Σi,j∈A pji(t) ·
〈
j′+i
′
−
∣∣∆HI

∣∣ i−j+〉 e−i[ω0
ji−ω0

j′i′

]
t

= i~ṗj′i′(t) (3.78)

where ∆HI = HI(x + τ
2 , t) − HI(x − τ

2 , t), for a typical interaction potential operator

HI having the form of a scalar multiplier. Then ∆HI has matrix elements given by the
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expectation values

〈b+a− |∆H| c−d+〉 =

∫∫
ψ∗b (x+ τ

2 )ψa(x− τ
2 ) ·

∆Hψ∗c (x− τ
2 ) · ψd(x+ τ

2 ) dx dτ

=

∫
ψ∗c (r)ψa(r)dr

∫
ψ∗b (s)H

I(s, t)ψd(s) ds

−
∫
ψ∗c (r)H

I(r, t)ψa(r)dr

∫
ψ∗b (s)ψd(s) ds

= δcaH
I
bd − δbdHI

ca. (3.79)

Then (3.78) reduces to

Σi,j∈A
[
δii′H

I
j′j − δj′jHI

ii′
]
pji(t) · e

−i
[
ω0
ji−ω0

j′i′

]
t

= i~ṗj′i′(t) (3.80)

or with some reindexing,

Σk∈A

[
HI
jke
−iω0

jktpki − pjkH
I
kie
−iω0

kit
]

= i~ṗji (3.81)

In operator form, this is the von Neumann equation for the density-of-states operator p:

[H, p] = i~
∂p

∂t
(3.82)

after we replace the matrix elements HI
ji(t)e

−iω0
jit by Hji. Usually this equation is derived

ad hoc from the Schrödinger equation, using the product rule for derivatives as in e.g., [44];

but here it follows directly from the probabilistic Schrödinger equation (3.57).

For two levels (A = {a, b}), assuming HI
aa = HI

bb = 0, equation (3.80) comprises the
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usual equations of motion for the elements of the density-of-states matrix [45, section 2.7],

ṗab(t) = ṗ∗ba(t) = −i
~H

I
ab [pbb(t)− paa(t)] · e−iω

0
abt

ṗbb(t) = −ṗaa(t) = −i
~

[
HI
bapab(t) · eiω

0
abt −HI

abpba(t) · e−iω
0
abt
]

(3.83)

A well-known two-level example is the electric dipole interaction potential HI for an atomic

electron in an oscillating electric field. Using the rotating-wave approximation of Rabi, the

two-level equations (3.83) become the optical Bloch equations [45, ch. 2].

We have introduced the probabilistic Schrödinger equation, a new equation of motion

(3.57) for the bilocal probability density. It is a second-order partial differential equation

that is equivalent to the Schrödinger equation for the wavefunction. Next we show how to

include the electromagnetic potential in the new bilocal equation.

3.6.4 Charged Particle in an External Electromagnetic Field

Our final step is to incorporate the electromagnetic potentials into equation (3.57). A

Lagrangian for a particle of charge e in an electromagnetic field with scalar electric potential

φ and vector magnetic potential A is [1]:

L(q, q̇) = 1
2mq̇

2 + e
c q̇ ·A(q, t)− eφ(q, t). (3.84)

As introduced in [25] and in chapter 2, the Blue function (probability propagator) can

be represented as the double path integral

B(x′′t′′τ ′′;x′t′τ ′) = ei∆S[q(t),τ(t)]/~ Dq(t)Dτ(t), (3.85)
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where the displaced action or motion ∆S is given by the line integral

∆S[q(t), τ(t)] =

∫ t′′

t′
∆L(q, q̇, τ, τ̇) dt, (3.86)

and given any function f , we denote its displaced difference by ∆f = ∆f(q, τ) = f(q+ τ
2 )−

f(q − τ
2 ), and its displaced sum by f̄ = f̄(q, τ) = f(q + τ

2 ) + f(q − τ
2 ). The difference of

displaced Lagrangians now is

∆L(q, q̇, τ, τ̇) = L(q + τ
2 , q̇ + τ̇

2 )− L(q − τ
2 , q̇ −

τ̇
2 )

= mq̇ · τ̇ +
e

c
q̇ ·∆A(q, τ, t)

+
e

c
τ̇/2 · Ā(q, τ, t)− e∆φ(q, τ, t). (3.87)

A pair of Legendre transformations, replacing variables τ̇
2 and q̇ by canonical momenta

p ≡ ∂∆L[q(t)]
∂τ̇/2 = 2mq̇ + e

c Ā(q, τ, t) and σ ≡ ∂∆L[q(t)]
∂q̇ = 2m τ̇

2 + e
c∆A(q, τ, t)), produces a

Hamiltonian as a function of the new variables,

∆H(q, p, τ, σ) ≡ p · τ̇2 + σ · q̇ −∆L

= mq̇ · τ̇ + e∆φ

=
1

2m

(
p− e

c
Ā
)
·
(
σ − e

c
∆A

)
+ e∆φ (3.88)

Now the probabilistic Schrödinger equation (3.57) becomes:

i~
∂

∂t
P(q, τ, t) =

[
− ~2

2m

(
∇q −

ie

~c
Ā

)(
∇ τ

2
− ie

~c
∆A

)
+ e∆φ

]
P(q, τ, t), (3.89)
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for the bilocal probability density P of the charged particle, as defined in (3.2).

3.7 Conclusion

The bilocal picture of quantum mechanics that was initiated in [25] was expanded upon here.

We used Born’s probability rule to justify the bilocal interference term (3.2) as a virtual

probability. We defined families of actual and virtual events, and proved that Born’s rule

implies that, while two states may interfere, three or more states do not mutually interfere.

We found that the bilocal picture sheds light on currents in quantum mechanics. There

are two types of bilocal current density, j and k, whose polar form and related mean velocities

were given. In the bilocal context, the definitions of both current types simplify. In the

unilocal case, the two types become the usual current and a fluctuation current. Their

respective mean velocity fields are the usual Bohm velocity and the imaginary (osmotic)

velocity. Future work might address the ties that the bilocal quantum densities and currents

may have with angular momentum and vortices [46].

From the bi-continuity equation, we obtained a new, probabilistic Schrödinger equation

for the bilocal probability. For this bilocal equation, we constructed dyadic stationary

states. From this equation, the von Neumann equation for the time-dependent density of

multi-level states followed directly. Finally, we showed how to include the electromagnetic

potentials in this bilocal equation.
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Chapter 4: Bilocal current densities and mean trajectories in

a Young interferometer with two Gaussian slits and two

detectors

The recent single-photon double-slit experiment of Steinberg et al. [47], based

on a weak measurement method proposed by Wiseman, showed that, by en-

coding the photon’s transverse momentum behind the slits into its polarization

state, the momentum profile can subsequently be measured on average, from

a difference of the separated fringe intensities for the two circular polariza-

tion components. They then integrated the measured average velocity field, to

obtain the average trajectories of the photons enroute to the detector array.

In this chapter, we propose a modification of their experiment, to demon-

strate that the average particle velocities and trajectories change when the

mode of detection changes. The proposed experiment replaces a single detector

by a pair of detectors with a given spacing between them. The pair of detectors

is configured so that it is impossible to distinguish which detector received the

particle. The pair of detectors is then analogous to the simple pair of slits, in

that it is impossible to distinguish which slit the particle passed through.

To establish the paradoxical outcome of the modified experiment, the theory

and explicit three-dimensional formulas are developed for the bilocal probability

and current densities, and for the average velocity field and trajectories as the

particle wavefunction propagates in the volume of space behind the Gaussian

slits. Examples of these predicted results are plotted. Implementation details

of the proposed experiment are discussed.
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4.1 Introduction

Young’s double-slit experiment for photons or matter particles such as electrons or neutrons

produces wave-like interference fringes on a screen behind the slits [45,48–53]. The photon

is free to behave as a wave passing through both slits or apertures. But paradoxically, if we

treat the photon as a particle, it behaves as a particle. If by some means we identify which

slit location the photon went through, the photon wave collapses into a particle that passes

through at most one slit. The interference vanishes and only two intensity bumps remain

behind the two slits on the screen. Refinements of this experiment, such as the quantum

eraser and Wheeler’s delayed choice experiment [51, 54–57], demonstrate this paradox in

depth.

The recent double-slit interferometer experiment designed by Steinberg and carried out

in the laboratory by his team using single photons may have been the first to demonstrate

weak measurements of momenta (preselection) made for single photons enroute to strong

measurements of location (postselection) for the photons detected as particles impinging on

the separate pixels of a CCD screen [47, 58–60]. Having measured the momentum field of

the photons behind the slits in this way, then they could compute the average trajectories

of the photons. Since this experiment, Matzkin has proposed weak path measurements [61].

These paths are the semi-classical paths for which the action is near-stationary. They can

differ from the mean paths inferred in the Steinberg experiment. Bliokh et al. showed that

the quantum momentum density field in the experiment can be identified with the classical

Poynting momentum density field [42]. Davidović et al. proposed varying the Steinberg

experiment, by measuring the average momenta with the two slits covered by orthogonal

polarizers. In this case, the photon carries an imprint of which slit it passed through (as

well as of its transverse momentum) and the interference fringe disappears [62].

Chapter 3 [63] showed that quantum mechanics offers two ways to detect a particle,

when we allow it to arrive as a wave at two locations as well as a particle at one loca-

tion on the detecting screen. As a consequence, the particle trajectories inferred from the
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Figure 4.1: Double-slit, double-detector experiment configurations: (left) A pair of conjoined detectors,
i.e., a two-port detector, allows wave-like arrivals of the particle. Just as which slits were passed through is
ambiguous, so also is which detector port was entered. (right) For direct comparison, the two detectors are
separated to count particle-like arrivals at each port. In this case, which port was entered is known.

weak momenta measurements of Steinberg et al. should be different for different detection

modes. We are confronted with a new paradox of quantum mechanics: the average particle

trajectories depend on how we configure the particle detectors.

4.1.1 Detecting wave-like arrivals in the double-slit interferometer exper-

iment

A modified double-slit interferometer experiment is proposed in this chapter, to demonstrate

that the average particle paths vary with the mode of detection. The experiment design

employs a double or twin detector, which consists of two separated detectors that are

conjoined to have a single output port, so that they sense the particle’s impinging wavefront

at two places at once (figure 4.1, left side). We will discuss possible implementations of this

double detector in section 4.7. The interference fringes change as we vary only the detector

spacing. As for any interferometer, an ambiguity always produces an interference term in

the intensity distribution. In the proposed case, the ambiguity is not only that of “which

slit?” did the particle pass through, but also that of “which detector?” did the particle

impinge upon.

For comparison, the detectors placed at the two locations may be configured as indepen-

dent, distinct units (figure 4.1, right side). In this case, which detector received the particle
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is known. The detector alternatives are distinguishable, or unambiguous, and there is no

wavefront interference. Accordingly, we have a different probability of arrival and detection

for each arrangement of two detectors.

We assume throughout this chapter that the detectors have perfect efficiency, so that

every particle that arrives at a detector is detected and counted. It is worth noting (even if

almost self-evident) that the appropriate detector for a particle arrival event must conform

spatially to the kind of event we want it to detect. The detector must not filter out or get in

the way of the arriving particle. If the particle arrives at a single location, the usual single

detector placed at the location receives it as a particle, and faithfully counts the number

of arrivals of this particle-like kind. If the particle arrives at one or both of two places,

the bilocal twin detector receives it as a wave, and likewise faithfully counts the number of

arrivals of this wavelike kind.

4.1.2 Bilocal picture of quantum mechanics

To propagate the probability and current densities for the double slits and double detectors

in closed form, it is convenient to use a bilocal equivalent of the Schrödinger picture, which

was introduced in chapter 3 and in [25][63]. To make this chapter self-contained, we briefly

review its basic elements here, as follows.

Consider a quantum-mechanical particle whose state is spatially represented by a wave-

function ψ(x). We begin with the displaced (bilocal) probability density of simultaneous

arrival at time t′ at two places q′1, q
′
2 = x′ ± τ ′

2 ,

P(x′t′, τ ′) = ψ∗(x′ − τ ′

2 , t
′)ψ(x′ + τ ′

2 , t
′). (4.1)

It is complex-valued and thus is only a quasi-probability density; but for spacing τ ′ = 0 it

reduces to the real-valued probability of arrival |ψ(x′, t′)|2. It has an associated displaced
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(bilocal) current density

j(x′t′, τ ′) =
~

2im

[
ψ∗(x′− τ ′

2 , t
′)∇x′ψ(x′+ τ ′

2 , t
′)

−ψ(x′+ τ ′

2 , t
′)∇x′ψ∗(x′− τ ′

2 , t
′)
]
. (4.2)

The bilocal probability and current densities in equations (4.1) and (4.2) together satisfy a

continuity equation,

[
i~

∂

∂t′
−∆V (x′τ ′t′)

]
P(x′τ ′t′) = −i~∇x′ · j(x′τ ′t′), (4.3)

where we define

∆V (x′, τ ′, t′) = V
(
x′ + τ ′

2 , t
′
)
− V

(
x′ − τ ′

2 , t
′
)

(4.4)

and V is the possibly time-dependent potential. This equation (4.3) was shown in [25] to be

equivalent to the Schrödinger equation. Both equations employ the energy and momentum

operators, but equation (4.3) is a first order equation instead of second order.

The solution of the Schrödinger equation at time t′ ≥ t is

ψ(x′t′) =

∫
dx G(x′t′;xt)ψ(xt), (4.5)

for a Green function G, given as a path integral in [1]. The solution of the bilocal continuity
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equation (4.3) at time t′ ≥ t is

P(x′t′, τ ′) =

∫∫
dx dτ B(x′t′τ ′;xtτ)P(xt, τ) (4.6)

j(x′t′, τ ′) =

∫∫
dx dτ B(x′t′τ ′;xtτ)P(xt, τ), (4.7)

for Blue functions B,B, given as path integrals in [25].

If there is no potential field (V = 0), the free Green propagator is [1]

G0(x′t′;xt) = 〈x′t′ |xt〉

=
(

m
2πi~T

) 3
2 exp

{
im
2~T |x

′ − x|2
}
. (4.8)

where T = t′ − t is the elapsed time. The free Blue probability propagator is [25]

B0(x′t′τ ′;xtτ) =
(

m
2π~T

)3
exp

{
im
~T (x′ − x) · (τ ′ − τ)

}
, (4.9)

and the free current propagator is B0 = vB0
0 , where vk =

(x′−x)k
T for k = 1, 2, 3 [63]. In

this paper, we will need only the free Blue propagators.

4.1.3 Probability theory for the wavefunction of a particle

We have just seen that, to propagate the wavefunction’s real-valued probability density

into the future, it is necessary and sufficient to operate upon the complex-valued probability

density (4.1) given at the present time t [25]. The integral operator with its four-component

Blue kernel acts on (4.1), to give the future probability and current density. In this sense,

the displaced probability density (4.1) provides operational closure. Its central role in

probability propagation suggests that it should have physical meaning. Its real part (times

two) may be interpreted as a signed, virtual probability of self-interference, which occurs

80



1 

2 

1 

2 

1 

2 

P1 P2 P12 + P21  

Figure 4.2: Bilocal events, for locations 1 and 2 at time t, and a particle depicted as a wavefront: (left)

particle arrives at 1 with probability P1; (center) particle arrives at 2 with probability P2; (right) particle

arrives at both 1 and 2 (wavelike arrival) with virtual probability P12 + P21. The combined event of arrival

at 1 or 2 or both has probability given by the sum P̄1,2 = P1 +P2 + (P12 + P21), equation (3.15). The event

of wavelike arrival at both locations (right) is considered to be a virtual event, which occurs only with the
single-location events. If, by some means, we can determine which location the particle passed through,
the virtual probability vanishes (i.e., (P12 + P21) = 0, resulting in equation (3.13)). In this paper, we solve
for these probability densities, as well as the current densities j and mean velocities v associated with these
events.

during the wavefunction’s collapse to produce the observed probability of detection.

For any two locations 1 and 2, given by coordinates q1, q2 = x± τ
2 , there are four ways for

the particle to arrive in one or both locations at once, as shown in figure 2. It may behave

like a particle, arriving at either place (left side and center of figure 2). The quantum-

mechanical particle may also behave like a wave, arriving at both places simultaneously

(right side of figure 2). This arrival may occur in two ways, oriented in a (1,2) or (2,1)

sense.

For two single (independent) detectors, the associated total probability element P(x ±

τ
2 , t)d

3x to arrive (and be detected) at either (not both) of the two locations, each with

volume element d3x, is given by

P(x± τ
2 , t) d3x = P(x+ τ

2 , t, 0)d3x + P(x− τ
2 , t, 0)d3x (4.10)

=
∣∣ψ(x+ τ

2 )
∣∣2 d3x +

∣∣ψ(x− τ
2 )
∣∣2 d3x. (4.11)
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From now on, we denote a two-detector probability density with an overline. For a double

detector, the associated total probability P(x± τ
2 , t)d

3x to arrive and be detected at one or

both locations is given by

P(x± τ
2 , t)d

3x = P(x+ τ
2 , t, 0)d3x + P(x− τ

2 , t, 0)d3x

+ P(xt, τ)d3x + P(xt,−τ)d3x (4.12)

=
∣∣ψ(x+ τ

2 ) + ψ(x− τ
2 )
∣∣2 d3x ≥ 0. (4.13)

Of the four probabilities summed above, we of course recognize the first two from equation

(4.10), as those of arriving at a single location. The last two probabilities in the sum (4.12)

represent wavelike, bilocal presence of the object. As a conjugate pair, their sum is the real

part of (4.1) (times two) and may be negative. But in absolute value this quantity never

exceeds the sum of the first two probabilities for the usual particle-like, unilocal presence

of the object at one of the two locations. An argument is made in chapter 3 [63] to justify

calling this quantity a virtual probability.

Given an array of multiple detectors, there are of course many possible ways to arrange

them so that subsets of them are conjoined detectors, and others are kept as single detector

units. For example, multiple detectors may all be conjoined. For a single particle detected

in any of K locations xk = x̄+ τk, for k = 1, 2, 3, . . . ,K, about their mean location x̄, when

all detectors are conjoined, the total probability of detection at any one of these locations

(particle-like detection), or at multiple co-locations (wavelike detection) at time t is given

by:

P(x1, . . . , xK , t)d
3x =

∣∣∣ 1√
K

[ψ(x1) + ψ(x2) + · · ·+ ψ(xK)]
∣∣∣2 ·Kd3x. (4.14)

This formula also applies to one detector, whose aperture is considered to be divided into

K equal parts, each of volume d3x.
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4.1.4 Chapter overview

In this chapter, we develop complete closed-form formulas for the three-dimensional prob-

ability and current density, and the mean velocity field in the recent two-slit experiment of

Steinberg et al. [47]. Formulas provide flexibility, and physical insight that we may miss

when we begin with numerical computing. These formulas enable us to predict the results

of modifying the detectors in this experiment.

The outline of the rest of this chapter is as follows: The integrals that propagate the

bilocal probability and current densities for both particle-like and wave-like detection are

set up in section 4.2, including the aperture function for the two Gaussian slits. These

integrals are then evaluated in sections 4.3 and 4.4. Mean velocities and trajectories are

computed in sections 4.5 and 4.6. Details of the proposed experiment are covered in section

4.7. We conclude in section 4.8.

4.2 Propagation path integrals and the Gaussian slit model

4.2.1 Two path legs in succession

To propagate through the slits, and find the final probability and current density arriving at

the double detector, we will use a two-kernel integral, as we explain now. We can propagate

in two path legs or stages in succession. We split the time interval [0, t′′] at the time t′ when

the particle arrives at the slits, and likewise split the path integral kernel into two parts,

using the property that

B(x′′t′′τ ′′;x0τ) =

∫∫
dx′ dτ ′ B(x′′t′′τ ′′;x′t′τ ′)B(x′t′τ ′;xtτ). (4.15)

This property follows from the path integral for the Blue function, given by equation (24)

in [25]. This property will allow us to insert an aperture or window function to represent

the two slits at the time t′, to restrict the possible paths from source to detector to those
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passing through the twin slits.

The current blue function B satisfies a similar, but mixed, completeness property that

follows from its path integral expressed by equation (74) in [25]:

B(x′′t′′τ ′′;x0τ) =

∫∫
dx′ dτ ′ B(x′′t′′τ ′′;x′t′τ ′)B(x′t′τ ′;xtτ). (4.16)

For the potential-free case, with B = v′′B0, the key difference in splitting this current

propagator (versus splitting the probability propagator (4.15)) is that the final endpoint

velocity factor v′′ only occurs in the later path segment.

4.2.2 Gaussian slits

For a realistic model, we use two circular gaussian slits. This model was implemented in the

double-slit experiment of Steinberg et al. by two fiber-launched gaussian beams. In their

experiment, the twin beams were produced by passing a gaussian beam of single photons

through an in-fiber beamsplitter [47].

To obtain the aperture function for the two gaussian slits, consider any pair of points

q, q̃ of passage through the middle screen of either side of figure 4.1. The two-variable

transformation q, q̃ = x ± τ
2 has unity Jacobian. We saw in section 4.1 that the x, τ

parameters for the Blue integral specify four alternative path pairs that the particle may

thread through one or both passage points.

For our two-leg paths, the particle entering one of the slits in the screen will pass through

the slit with a gaussian probability-of-passage amplitude, gq(q0, b
2) = 1√

2πb
exp

{
−1

2

( q−q0
b

)2}
,

specified by its mean q0 and variance b2.(This amplitude is an approximation of unity [21],

whose limit as b→ 0 is the delta function δ (q − q0). The passage-probability variance after

squaring is b2/2, for an effective r.m.s. half-width parameter of 0.707b.)

To model the experiment of [47], we assume a circular slit aperture, so that the passage

probability for the x and y components of q independently has this distribution with variance
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b2/2 along both dimensions. Since the slit is 2-dimensional, it does not affect passage along

the z direction. We model the z component of passage probability as uniformly 1 along

the qz axis. This may be regarded as as an unnormalized gaussian probability density with

infinite variance, i.e. its exponent is always 0.

It follows that the passage probabilities for x and τ also have gaussian distributions in

the plane of the slit. The variance of x = 1
2(q+ q̃) and of τ2 = 1

2(q− q̃) are both b2/2 (in each

direction, x and y). Let s = 2 be the number of finite dimensions defining the slits. Now

we replace each delta function in the point-slit aperture formula of example 3 of [25] by its

corresponding gaussian. That is, we replace each one-dimensional delta of form δ(x − x0)

by a gaussian of form 1√
2
gx(x0). This yields the aperture function for a pair of gaussian

circular slits:

α(x, τ) = gx(x′) ·
(
g τ

2
( τ
′

2 ) + g τ
2

(− τ ′

2 )
)

+ g τ
2

(0) ·
(
gx([x′ − τ ′

2 ]) + gx([x′ + τ ′

2 ])
)

=

(
1

2πb2

)s
e−

1
b2

(x−x′)2
[
e
− 1
b2

(
τ−τ ′

2

)2
+ e
− 1
b2

(
τ+τ ′

2

)2]

+

(
1

2πb2

)s
e−

1
b2

( τ2 )
2

e− 1
b2

(
x−
[
x′− τ

′

2

])2

+ e
− 1
b2

(
x−
[
x′+

τ ′

2

])2
 . (4.17)

Another way to derive this aperture formula (4.17) is to begin with the sum of the two

gaussians gq(x
′ ± τ ′

2 , b
2). This sum is the relative probability amplitude of passage through

either or both slits, given arrival at the slits. We insert this sum, as the Green aperture

amplitude factor, inside both the left and right copies of the Green integral in equation

(10) of [25]. We multiply both sums and get four pairs of exponential products. After

substituting r, s = x ± τ
2 into the exponents there, we can add the exponents in pairs.

Then the Blue aperture function equation (4.17) follows from squaring and rearranging the

exponents.
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4.3 The interference pattern

We take the general double-endpoint case of arbitrary detector spacing τ ′′, as shown on

the left side of figure 4.1. The Blue propagation integral (4.6) takes the particle over

its first leg to any double destination x′, τ ′ at time t′: P(x′t′, τ ′) = B0(x′t′τ ;x′00) =(
m

2π~t′
)3

exp
{
i
~

[
mx′−x0

t′

]
· [τ ′ − 0]

}
. Then after the second leg, by the completeness re-

lation (4.15, the interference fringe pattern or final probability density is given by the Blue

propagation integral

P(x′′t′′, τ ′′) =

∫∫
dx̂ dτ̂ B0(x′′t′′τ ′′; x̂t′τ̂)α(x̂, τ̂)P(x̂t′, τ̂). (4.18)

The aperture function α given by (4.17) has four terms, so the propagation integral

(4.18) breaks into four, which we will integrate in this section. Each of the four Gaussian

integrals results in a probability density over the final screen with its own unique meaning.

The first integral is:

P(12) =

(
1

2πb2

)s ( m

2π~t′
)d ( m

2π~T

)d
×
∫∫

dx̂ dτ̂ exp

{
− 1

b2
(
x̂− x′

)2} · exp

{
− 1

b2
[

1
2 (τ̂ − τ ′)

]2}

× exp

{
i2m

~T
(
x̂− x′ + (x′ − x′′)

)
· 1

2 (τ̂ − τ ′ + (τ ′ − τ ′′))
}

× exp

{
i2m

~t′
(
x̂− x′ + (x′ − x0)

)
· 1

2

(
τ̂ − τ ′ + (τ ′ − τ0)

)}
(4.19)

The last two exponents above have been prepared for a change of variables. Substituting x
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for x̂− x′ and τ for τ̂ − τ ′, then τ
2 for τ , and using x0 = τ0 = (0, 0, 0), we find

P(12) = 2d
(

1

2πb2

)s ( m

2π~t′
)d ( m

2π~T

)d ∫∫
dx d τ2 exp

{
− 1

b2
x2

}
· exp

{
− 1

b2
(
τ
2

)2}

× exp

{
i2m

~T
[
x− (x′′ − x′)

]
· 1

2 [τ − (τ ′′ − τ ′)]
}

× exp

{
i2m

~t′
[
x+ x′

]
· 1

2 [τ + τ ′]

}
(4.20)

The factor 1/b2 in the gaussian exponents in the first line of equation (4.20) above applies

only to their x and y exponents, for the circular slit. In their z gaussian exponents, this

factor is replaced by 0, making the z-component exponentials 1. (To model a slit which has

x-width b, but which is open along the entire y-axis, we would similarly just replace the

y-gaussian density by 1.)

We can convert equation (4.20) into a gaussian integral in 2d dimensions. The exponent

of the integrand separates into a sum of d = 3 two-dimensional quadratic forms:

−1
2vk ·Ak · vk + i

(
u

(12)
k + w

(12)
k

)
· vk + i1

2u
(12)
k ·B · u(12)

k + i1
2w

(12)
k ·B′ · w(12)

k , (4.21)

where we use the Einstein summation convention to sum the forms for k = 1, 2, 3 (for

d = 3 dimensions of space). Each two-dimensional form may be integrated separately, by

the Fubini theorem. Here vk = (x, τ2 )k, Ak is a 2 × 2 matrix, B = ~T
2mσ1 = ~T

2m

 0 1

1 0

,

B′ = ~t′
2mσ1, and u

(12)
k and w

(12)
k are constant vectors. In our case the quadratic form is
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specified by

Ak = 2 ·

 1
b2

− im
~T γ

− im
~T γ

1
b2

 = 2 ·

 1
b2

− iγm
~T

− iγm
~T

1
b2



u
(12)
k = −2m

~T
·

 1
2(τ ′′ − τ ′)

(x′′ − x′)


k

w
(12)
k =

2m

~t′
·

 1
2(τ ′ − τ0)

(x′ − x0)


k

. (4.22)

For k = 3, we must take the limit of Ak as b→∞, as we explain soon. As a shorthand, we

define the ubiquitous constant

γ ≡
(

1 +
T

t′

)
=
t′′

t′
. (4.23)

Since the last two terms i1
2u

(12)
k ·Bu(12)

k and i1
2w

(12)
k ·B′w(12)

k of this form (4.21) are constant,

we can take them outside the integral. Put J
(12)
k = u

(12)
k +w

(12)
k . The gaussian integral that

remains has the closed form [17,66,67]

∫∫
dx̂ d τ̂2 exp

{
−1

2vk ·Akvk + iJ
(12)
k vk

}
=

(
2π√

detAk

)d
exp

{
−1

2J
(12)
k ·A−1

k J
(12)
k

}
.(4.24)
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For our application,

A−1
k =

2

detAk

 1
b2

im
~T γ

im
~T γ

1
b2



detAk = 4 ·
(

1

b4
+
[ m
~T

γ
]2
)

=

(
2m

~Tb

)2
[(

~T
mb

)2

+ b2γ2

]

J
(12)
k = u

(12)
k + w

(12)
k = −2m

~T
·

 1
2 (τ ′′ − τ ′γ)

(x′′ − x′γ)

 . (4.25)

Therefore, applying the coefficient of J
(12)
k twice to A−1

k cancels part of detAk:

(
2m

~T

)2

A−1
k =

2

(∆x)2

 1 imb
2

~T γ

imb
2

~T γ 1



(∆x)2 =

(
~T
mb

)2

+ b2γ2,
√

detAk =
2m∆x

~Tb
. (4.26)

This is the formula for A−1
k for both the x and y-components of the form. For the z-

component, we need the limit of A−1
k as b−2 → 0 in equation (4.25):

(
2m

~T

)2

A−1
z =

2

γ2

 0 i m~T γ

i m~T γ 0


√

detAz =
2mγ

~T
. (4.27)

Since this limit exists, we can apply the integral formula (4.24) even for the z-component

(k = 3), for which the gaussian slit function leaves the diagonal of Az empty (0’s).
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Collecting the terms, we get the first probability of four:

P(12) = C exp
{
−1

2J
(12)
k ·A−1

k J
(12)
k + i1

2

(
u

(12)
k ·Bu(12)

k + w
(12)
k ·B′w(12)

k

)}
(4.28)

where the Einstein convention is used, and the normalizing constant is

C = 2d · 2π

γ

~T
2m

(
2π

∆x

~Tb
2m

1

2πb2

)s ( m

2π~t′
m

2π~T

)d

=
2π

γ

(
~T
m

)s+1( 1

b∆x

)s ( m

2π~t′
m

2π~T

)d
. (4.29)

The second integral of the four is like the first, but the mean value −τ ′ replaces τ ′ in

the aperture gaussian. Since τ ′

2 enters the integral in the second piece only to define the slit

center displacement τ ′

2 , we immediately have for the slit center at x′ + τ ′

2 the similar result

P(21) = C exp
{
−1

2J
(21)
k ·A−1

k J
(21)
k + i1

2

(
u

(21)
k ·Bu(21)

k + w
(21)
k ·B′w(21)

k

)}
(4.30)

by replacing τ ′

2 ← −
τ ′

2 in formulas (4.22) to define u
(21)
k , w

(21)
k , J

(21)
k .

The third integral is

P(1) =

(
1

2πb2

)s ( m

2π~t′
)d ( m

2π~T

)d ∫∫
dx̂ dτ̂

exp

{
− 1

b2

(
x̂−

[
x′ − τ ′

2

])2
}
· exp

{
− 1

b2

(
τ̂
2 − 0

)2
}

× exp

{
im

~T

(
x̂−

[
x′ − τ ′

2

]
+ (
[
x′ − τ ′

2

]
− x′′)

)
·
(
τ̂ − τ ′′)

)}

× exp

{
im

~t′
(
x̂−

[
x′ − τ ′

2

]
−
(
x0 −

[
x′ − τ ′

2

]))
·
(
τ̂ − τ0

)}
(4.31)
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Substituting x for x̂−
[
x′ − τ ′

2

]
, then τ

2 for τ̂ , we have

P(1) = 2d
(

1

2πb2

)s( m2

4π2~2t′T

)d ∫∫
dx d τ2 exp

{
− 1

b2
x2

}
· exp

{
− 1

b2
(
τ
2

)2}

× exp

{
i2m

~T

(
x−

(
x′′ −

[
x′ − τ ′

2

]))
· 1

2 (τ − τ ′′))
}

× exp

{
i2m

~t′
(
x−

(
x0 −

[
x′ − τ ′

2

]))
· τ2

}
(4.32)

The exponent of this third integrand is again the quadratic form

−1
2vk ·Ak · vk + i

(
u

(1)
k + w

(1)
k

)
· vk + i1

2

(
u

(1)
k ·B · u

(1)
k + w

(1)
k ·B

′ · w(1)
k

)
, (4.33)

with the same Ak, B, B′ and ∆x. But now u
(1)
k , w

(1)
k , J

(1)
k are given by

u
(1)
k = −2m

~T
·

 τ ′′

2

x′′ −
[
x′ − τ ′

2

]

k

w
(1)
k = −2m

~t′
·

 τ
2

0

x0 −
[
x′ − τ ′

2

]

k

J
(1)
k = u

(1)
k + w

(1)
k

= −2m

~T
·

 τ ′′

2

x′′ −
[
x′ − τ ′

2

]
γ


k

. (4.34)
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Collecting the terms once more, we have the third probability (1)

P(1) = C exp
{
−1

2J
(1)
k ·A

−1
k J

(1)
k + i1

2

(
u

(1)
k ·B · u

(1)
k + w

(1)
k ·B

′ · w(1)
k

)}
= C exp

{
−1

2J
(1)
k ·A

−1
k J

(1)
k + i1

2u
(1)
k ·B · u

(1)
k

}
(4.35)

Because τ0 = (0, 0, 0), we have w
(1)
k ·B

′ · w(1)
k = 0.

Since τ ′

2 enters the integral in equation (4.31) only to define the slit center x′ − τ ′

2 , we

immediately have for the slit center at x′ + τ ′

2 the similar and fourth result

P(2) = C exp
{
−1

2J
(2)
k ·A

−1
k J

(2)
k + i1

2u
(2)
k ·Bu

(2)
k

}
, (4.36)

by replacing τ ′

2 ← −
τ ′

2 in formulas (4.34) to define u
(2)
k , w

(2)
k , J

(2)
k .

The four parts of equation (4.18) have been evaluated as formulas (4.28), (4.30), (4.35)

and (4.36). Their sum is the actual interference pattern

P(x′′t′′, τ ′′) =

∫∫
dx̂ dτ̂ α(x̂, τ̂)B0(x′′t′′τ ′′; x̂t′τ̂)P(x̂t′, τ̂)

= P(12) + P(21) + P(1) + P(2). (4.37)

Each part has a meaning as a probability: one for each slit by itself, and a conjugate pair

of interference probabilities. For a single slit, the aperture function has only one term, the

third term of equation (4.17) for the lower slit, or the fourth term for the upper slit. Thus

the propagation integrals P(1) and P(2) each represent the diffraction pattern for a single

gaussian slit, the lower and upper slits, respectively.

What are the first two aperture terms in equation (4.17), and the two densities that result

from them, P(12) and P(21)? These aperture terms signify wavelike passage through both
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slits. In turn, the corresponding densities are complex conjugates, whose sum P(12) + P(21)

is a real, though possibly negative, virtual probability of wavelike passage through both

slits and subsequent interference. However, as we have seen, the total sum (4.37) gives

us the nonnegative probability of arrival at the screen, whose statistics accumulate as an

interference fringe. Figure 4.4 below displays the entire probability density surface over the

x-z plane with y = 0 for the double slit, single detector Steinberg experiment reported in

[47].

4.3.1 Example: single detector in one dimension

As an example, we examine these four probabilities for twin Gaussian slits in the usual case

of a single detector, i.e. for τ ′′ = 0. Consider the single slit patterns P(1) and P(2) first. In

this case, the imaginary term iu
(1)
k ·Bu

(1)
k in equation (4.35) vanishes. The imaginary parts

in J
(1)
k ·A

−1
k J

(1)
k also vanish, since we can write it in the simple form

J
(1)
k ·A

−1
k J

(1)
k =

 0

X

 ·
 1 ib2β

ib2β 1


 0

X

 = X2.

Here we label the second component of J (1) in equation (4.34) as X =
(
x′′ −

[
x′ − τ ′

2

]
γ
)

,

where γ = 1 + T/t′. The same result occurs for J (2), but for −τ ′ instead of +τ ′. Using

these algebraic facts, for τ ′′ = 0 and one dimension d = 1, s = 1 we have

P(1,2)(x′′) =
1

πb2
mb

2π~∆xt′
exp

{
− 1

(∆x)2

(
x′′ −

[
x′ ± τ ′

2

]
γ
)2
}
. (4.38)

This is in agreement with the formula for the single-slit gaussian diffraction pattern for

d = 1 given in [1] (The formula there in [1] excludes the normalizing factor 1
πb2

, and here it
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is translated into our notation) :

P(1)(X ′′) =
mb

2π~∆xt′
exp

{
− 1

(∆x)2

(
x′′ −

[
x′ ± τ ′

2

]
− V T

)2
}
, (4.39)

where V =
(
x′ ± τ ′

2

)
1
/t′ = ±τ1/2t

′ is the mean tranverse first-leg velocity to the upper or

lower slit, respectively. So V T is the projected mean transverse second-leg distance, based

on first-leg velocity. We may also interpret X ′′ =
(
x′′ −

[
x′ ± τ ′

2

])
1

as the gaussian distance

the particle traveled away from the respective slit center during the second leg of its trip.

For reference in the next section, we also obtain the current for this example in the

usual way. Formula (4.39) is derived in [1, pp.50-51] from the wavefunction amplitude for

one gaussian slit (1D case):

ψ(1)(X ′′) =

√
m

2πi~

(
t′ + T + it′T

~
mb2

)− 1
2

× exp

{
im

2~

(
X ′′2

T
+ V 2t′

)
+

m2

2~2T 2

(X ′′ − V T )2

(im/~) (1/t′ + 1/T )− 1/b2

}

=

√
mb

2πi~t′

(
bγ + i

~T
mb

)− 1
2

× exp

{
im

2~T
(
X ′′2 + V 2t′T

)
−
(

1 + i
mb2

~T
γ

)
(X ′′ − V T )2

2(∆x)2

}
(4.40)
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From this, we obtain the one-dimensional transverse current density from one slit:

j(1)(X ′′) =
~

2mi

(
ψ∗(X ′′)∂X′′ψ(X ′′)− ψ(X ′′)∂X′′ψ

∗(X ′′)
)

=
1

T

(
X ′′ − b2γ

(∆x)2

(
X ′′ − V T

))

× mb

2π(∆x)~t′
exp

{
−1

2

(
X′′−V T

∆x

)2
}

=
1

T

(
x′′
(

1− b2γ

(∆x)2

)
−
[
x′ − τ ′

2

](
1− b2γ2

(∆x)2

))

× mb

2π(∆x)~t′
exp

{
−1

2

(
X′′−V T

∆x

)2
}
. (4.41)

Feynman showed that (∆x)2, the mean-squared width of the single-slit diffraction pat-

tern P(x′′), contains a quantum correction to the classical width[1] . We can rewrite

formula (4.26) as the variance of a sum of two independent random variables, (∆x)2 =

(∆x1)2 + (∆x2)2. The extra term is (∆x2)2 =
( ~T
mb

)2
. The width ∆x1 = bγ that we see

in the other term in formula (4.26) represents our uncertainty in position at the slit. Ini-

tially, at the slit at time t′, the uncertainty is b. After a time interval T seconds after the

time t′ of passage through the slit, the width b has spread classically (by rectilinear motion

projected using the first leg speed V ) by the factor γ =
(
1 + T

t′

)
= t′′

t′ . The extra quantum

correction is a random variable that represents a momentum uncertainty ∆p = m∆v, where

∆v is given by ∆x2 = ~T
mb = ∆v · T . So the quantum correction approximately obeys the

Heisenberg uncertainty relation ∆x1 ·∆p = ~ [1].

Next we examine the interference probability of wavelike travel out of both Gaussian

slits followed by arrival at a single detector; that is, the case of detector separation τ ′′ = 0.
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Consider P(12). Expanding equation (4.28) for τ ′′ = 0, d = 1, s = 1, we get

P(12)(x′′) =
1

πb2
· mb

2π~∆xt′

× exp

{
− 1

(∆x)2

(
[x′′ − x′γ]2 +

[
τ ′

2 γ
]2
− i2m

~T [x′′ − x′γ]
[
τ ′

2

] [
b2γ − (∆x)2

])}
(4.42)

and P(21)(x′′) is the complex conjugate of this. Now we add all four parts (given by equa-

tions (4.42) and (4.38)) for the single detector case with d = 1, s = 1, to obtain the total

interference fringe formula for two slits,

P̄(x′′) =
m

π2~b∆xt′
× exp

{
− 1

(∆x)2

(
[x′′ − x′γ]2 +

[
τ ′

2 γ
]2
)}

×
(

cosh
{

2
(∆x)2

[x′′ − x′γ]
[
τ ′

2 γ
]}

+ cos
{

2m
~T [x′′ − x′γ]

[
τ ′

2

] [
1−

(
b

∆x

)2
γ
]})

. (4.43)

Here we recognize the exponential as the centered gaussian envelope shaping the cosine

fringe pattern, raised by a cosh ≥ 1. The fringe pattern for two slits and a single detector

with parameters consistent with the Steinberg experiment [47] is shown in figure 4.3. As

indicated, the one-dimensional pattern is plotted twice, as computed from formula (4.43)

and computed as a slice of the three-dimensional formula (4.37) with detector separation

τ ′′ = 0. The plots are in good agreement with the experimental fringe pattern observed in

[47].

For small slit width b, we have
[
1−

(
b

∆x

)2
γ
]
≈ 1, so that the cosine argument becomes

approximately 2m
~T [x′′ − x′]

[
τ ′

2

]
, which matches that of the cosine in the double point-slit,

single detector formula (48) of [25]. At the same time, as b → 0, the variance (∆x)2/2 of
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Figure 4.3: Interference pattern at distance z = 8.2m behind the slits for the Steinberg double gaussian
slit experiment with single-pixel CCD detector. The photon wavelength was λ = 943nm, slit spacing

τ ′ = 4.69mm, gaussian beam waist e−2 radius 0.608mm. Single photons were used, showing photon self-
interference.

the gaussian envelope here becomes infinitely wide. This makes the cosh ↓ 1, which also

agrees with formula (48) of [25], which has no single-slit diffraction envelope, i.e. it is a

constant, flat envelope [24].

4.4 The current density field from two gaussian slits

To get the current density for the double gaussian slit, we operate upon the probability

density departing from the slits with the free current propagator vB0 as the kernel. As

in equation (4.37), there are four aperture terms to integrate. The mean velocity vector

v = (x′′−x)
T now appears in the integral:

j(x′′t′′, τ ′′) =

∫∫
dx̂ dτ̂ α(x̂, τ̂) (x′′−x̂)

T B0(x′′t′′τ ′′; x̂t′τ̂)P(x̂t′, τ̂)

= j(12) + j(21) + j(1) + j(2). (4.44)
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Figure 4.4: Complete interference surface (probability density) for the Steinberg double gaussian slit

experiment with single-pixel CCD detector (τ ′′ = 0), for λ = 943nm, slit spacing τ ′ = 4.69mm, slits

positioned at z′ = 80m, gaussian beam waist e−2 radius 0.608mm. Single photons were used, showing photon
self-interference. This plot is in close agreement with the measured probability density in [47, Fig.4].
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To evaluate the integral (4.44), the standard trick is to differentiate both sides of equa-

tion (4.24) by Jk [17,66,67]. We differentiate each of the four probabilities. We begin with

the first one. First we multiply both sides of equation (4.24) by the factor

C exp
{
i1

2

(
u

(12)
k ·Bu(12)

k + w
(12)
k ·B′w(12)

k

)}
, to restore the whole probability P(12). On

the left side, differentiating pulls down the factor ivk = i(x, τ2 )t inside the integral (4.24).

(However, this actually corresponds to the factor i(x−x′, 1
2(τ−τ ′))t inside the original Blue

integral for P(12), after we substituted x for x−x′ and τ for τ −τ ′ to bring the integral into

the form (4.20). The latter form was repackaged into the standard quadratic form (4.24)

which we are differentiating. So we will need to adjust in some way to get (x′′ − x) inside

the integral (4.44). But it turns out that this adjustment happens automatically, as we

will see shortly.) On the right side of equation (4.24), differentiating by J
(12)
k gives us the

answer:

∂P(12)/∂J
(12)
k =

T
i J

(12) = C
(
−A−1

k J
(12)
k + iBu

(12)
k

)
× exp

{
−1

2J
(12)
k ·A−1

k J
(12)
k + i1

2

(
u

(12)
k ·Bu(12)

k + w
(12)
k ·B′w(12)

k

)}
=

(
−A−1

k J
(12)
k + iBu

(12)
k

)
P(12), (4.45)

where for each k = 1, 2, 3 we define Jk = (jk, kk)
t.We have not used the τ -current density

kk that appears here:

k(x′′t′′, τ ′′) =

∫∫
dx̂ dτ̂ α(x̂, τ̂)

(
1
2(τ ′′ − τ ′)

)
T B0(x′′t′′τ ′′; x̂t′τ̂)P(x̂t′, τ̂)

= k(12) + k(21) + k(1) + k(2).
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This osmotic current density is defined and developed in section 3.5 and in section 5 of [63].

Since uk = Jk − wk, we remember that uk depends on Jk. We choose Jk and wk as

the two independent variables. Suppressing the space index k for a moment, we have used

∂uj/∂Jj′ = δjj′ for both components of J , i.e. for j, j′ = 1, 2.

Differentiating by Jk also “pulls down” the term iBu
(12)
k P(12) on both sides above. This

term adjusts the differentiated integral on the left-hand side above so that we get the

x-current jk of Jk. This is how it happens: As we noted, the top (x-current) component

actually corresponds to “bringing down” the factor x−x′ by differentiating inside the original

integral for P(12). To change this into the factor −(x′′− x) = (x− x′)− (x′′− x′) inside the

integral, we simply subtract the constant multiple (x′′−x′)P(12). But this is exactly what the

additive term iBu
(12)
k does for us on the left-hand side, since iBu

(12)
k = −i

 (x′′ − x′)
1
2(τ ′′ − τ ′)


k

.

Clearly a similar adjustment also happens in the bottom (τ -current) component on the left

hand side.

Therefore, multiplying both sides of equation (4.45) by i
T , we have

J (12)
k = 1

T


 (x′′ − x′)

1
2(τ ′′ − τ ′)


k

+ 1
(∆x)2

 i~T
m

1
2(τ ′′ − τ ′γ)− b2γ(x′′ − x′γ)

−b2 1
2(τ ′′ − τ ′γ) + i~T

m γ(x′′ − x′γ)


k

P(12),

for k = 1, 2;

= 1
T


 (x′′ − x′)

1
2(τ ′′ − τ ′)


k

− 1
γ

 (x′′ − x′γ)

1
2(τ ′′ − τ ′γ)


k

P(12), for k = 3. (4.46)
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We can rewrite the x-current (the upper component) as

j
(12)
k =


(
x′′k
T

(
1− b2γ

(∆x)2

)
− x′′k

T

(
1− b2γ2

(∆x)2

)
+ i~

m(∆x)2
1
2(τ ′′ − τ ′γ)k

)
P(12), k = 1, 2(

x′′k
T

(
1− 1

γ

))
P(12), k = 3

=


(
x′′k
t′′

(
1 + ~2t′T

(mb∆x)2

)
− x′k

T

(
~2T 2

(mb∆x)2

)
+ i~

m(∆x)2
1
2(τ ′′ − τ ′γ)k

)
P(12), k = 1, 2(

x′′k
t′′

)
P(12), k = 3

=


(
x′′k
t′′ + ~2t′T

(mb∆x)2

(
x′′k
t′′ −

x′k
t′

)
+ i~

m(∆x)2
1
2(τ ′′ − τ ′γ)k

)
P(12), k = 1, 2(

x′′k
t′′

)
P(12), k = 3.

(4.47)

Note that for the y-component above (k = 2), there is no slit displacement, i.e. τ ′′2 = τ ′2 = 0,

so the imaginary part vanishes. The last two steps above involve some algebra (the identity

1 − 1
γ(a+1) =

[
1 + 1

γ(a+1)−1

]−1
, for γ 6= 0 and any number a 6= −1, may be of use). The

result for j(21)(x′′t′′, τ ′′) is similar, with the sign of τ ′1 reversed to −τ ′1. So, for a single

detector (τ ′′ = 0), the two interference currents j(12) and j(21) sum to a real number (±).

We compute the third part of the current in a similar way. The gradient of the third

probability (4.35) is

∂P(1)/∂J
(1)
k =

T
i J

(1) = C
(
−A−1

k J
(1)
k + iBu

(1)
k

)
× exp

{
−1

2J
(1)
k ·A

−1
k J

(1)
k + i1

2u
(1)
k ·Bu

(1)
k

}
=

(
−A−1

k J
(1)
k + iBu

(1)
k

)
P(1) (4.48)
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In this case, we have iBu
(1)
k = −i

 (x′′ −
[
x′ − τ ′

2

]
)

1
2(τ ′′)


k

. The absorbed term iBu
(1)
k P(1)

again adjusts the differentiated integral on the left-hand side above to give the x-current

jk of Jk. The top (x) component in equation (4.48) now corresponds to “bringing down”

x −
[
x′ − τ ′

2

]
by differentiating inside the original integral for P(1) after we substituted x

for x −
[
x′ − τ ′

2

]
. To get the factor x − x′′ = x −

[
x′ − τ ′

2

]
− (x′′ −

[
x′ − τ ′

2

]
), we would

simply add the constant multiple (x′′−
[
x′ − τ ′

2

]
)P(1) to the above. But the term iBu

(1)
k P(1)

is there to accomplish this for us.

Therefore, multiplying both sides of equation (4.48) by i
T , we have

J (1)
k =

 j
(1)
k

k
(1)
k



= 1
T


 x′′ −

[
x′ − τ ′

2

]
1
2τ
′′


k

+ 1
(∆x)2

 i~T
m

1
2τ
′′ − b2γ(x′′ −

[
x′ − τ ′

2

]
γ)

−b2γ 1
2τ
′′ + i~T

m (x′′ −
[
x′ − τ ′

2

]
γ)


k

P(1)

for k = 1, 2;

= 1
T


 x′′ −

[
x′ − τ ′

2

]
1
2τ
′′


k

− 1
γ

 x′′ −
[
x′ − τ ′

2

]
γ

1
2τ
′′


k

P(1), k = 3. (4.49)
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We can rewrite the x-current vector (the upper component above) as

j
(1)
k =



x′′k
T

(
1− b2γ

(∆x)2

)
−

[
x′k−

τ ′

2

]
k

T

(
1− b2γ2

(∆x)2

)
+ i~

m(∆x)2
1
2τ
′′
k

P(1),

for k = 1, 2;(
x′′k
T

(
1− 1

γ

))
P(1), k = 3

=


x′′k

t′′ + ~2t′T
(mb∆x)2

x′′k
t′′ −

[
(x′− τ

′

2 )k

]
t′

+ i~
m(∆x)2

1
2τ
′′
k

P(1), k = 1, 2(
x′′k
t′′

)
P(1), k = 3.

(4.50)

Note we can check that the first expression above with τ ′′ = 0 equals the current formula

(4.41) that we derived from the one-dimensional single-slit wavefunction. We have continuity

at the slits: as T = t′′ − t′ → 0, t′′ → t′, and ∆x → b, so at time t′ the current exiting

the slits is
x′k
t′ . This equals the current entering the slits, as an easy calculation shows.

Again, for the y-component of the current above (k = 2), there is no slit displacement, i.e.

τ ′′2 = τ ′2 = 0, so only the first term remains. (In fact, in the central x-z plane through

y′′ = y′ = 0, the y-components of the current terms are all 0.) The result for j(2)(x′′t′′, τ ′′) is

similar, with the sign of τ ′ reversed to −τ ′. For a single detector (τ ′′ = 0), the two single-slit

currents j(1) and j(2) are both real numbers (±).

4.4.1 Twin detector fringe patterns and current densities

We now have, in closed-form, all four pieces of the probability and current densities departing

from one or both of the two slits, propagated out to two locations at time t′′. Their respective
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sums give the displaced probability of arrival density and the associated current density:

P(x′′t′′, τ ′′) = P(12) + P(21) + P(1) + P(2) (4.51)

j(x′′t′′, τ ′′) = j(12) + j(21) + j(1) + j(2). (4.52)

However, once more, there are four ways to arrive at one or both of the two locations

x′′ ± τ ′′

2 . To complete the recipe, we evaluate the total probability and current densities

arriving at the twin detectors. Then we can obtain the mean bilocal velocity from the

current-to-probability density ratio. The total probability P(x′′ ± τ ′′

2 , t
′′) to arrive and be

detected at one or both locations is given by the relation (3.15):

P(x′′ ± τ ′′

2 , t
′′) = P(x′′ + τ ′′

2 , t
′′, 0) + P(x′′ − τ ′′

2 , t
′′, 0)

+ P(x′′t′′, τ ′′) + P(x′′t′′,−τ ′′)

=
∣∣∣[ψ(x′′ + τ ′′

2 ) + ψ(x′′ − τ ′′

2 )
]∣∣∣2 ≥ 0. (4.53)

The total bicurrent j(x′′ ± τ ′′

2 , t
′′) is a new quantity, defined by

j(x′′ ± τ ′′

2 , t
′′)

= ~
2mi

{[
ψ(x′′ + τ ′′

2 ) + ψ(x′′ − τ ′′

2 )
]∗
∇x′′

[
ψ(x′′ + τ ′′

2 ) + ψ(x′′ − τ ′′

2 )
]

−
[
ψ(x′′ + τ ′′

2 ) + ψ(x′′ − τ ′′

2 )
]
∇x′′

[
ψ(x′′ + τ ′′

2 ) + ψ(x′′ − τ ′′

2 )
]∗}

(4.54)

= j(x′′ + τ ′′

2 , t
′′, 0) + j(x′′ − τ ′′

2 , t
′′, 0) + j(x′′t′′, τ ′′) + j(x′′t′′,−τ ′′). (4.55)

The expression for total bicurrent splits into a sum of two usual currents (one at each

location) and two conjugate displaced currents of form (4.2) for simultaneous, wavelike

arrival at both locations. This sum (4.55) of four currents is analogous to the sum (4.53)

104



for total probability for arrival at one or both detectors. (The total bicurrent easily

extends to a total multicurrent, impinging on an array of many detector pairs located about

their center x′′. We replace the wavefunction sum
[
ψ(x′′ + τ ′′

2 ) + ψ(x′′ − τ ′′

2 )
]

by the sum

∑K
k=1 [ψ(x′′ + τ ′′k /2) + ψ(x′′ − τ ′′k /2)] everywhere inside the total current expression defined

above.) Computationally, we merely evaluate the formulas (4.51) and (4.52) at the four

(x′′, τ ′′) values, and take the two sums.

Figure 4.5 below displays the double slit, double detector probability densities for con-

stant slit spacing, and three detector spacings. For direct comparison at each detector

spacing, we include the double detector with both distinguishable and indistinguishable

detectors. The former just consists of two separate detector units, so we consider the prob-

ability that the particle arrives at one or the other detector. The latter is the ambiguous

twin detector, with the same spacing as the unambiguous detector pair. In this situation,

we consider the total probability (4.53) that the particle arrives at one or the other detector,

or both. These probability densities are clearly different for unambiguous and ambiguous

detector pairs. (As we discuss below, these densities have been renormalized to 1 for every

z-section, to model the photon.)
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Figure 4.5: Probability density surface for the modified Steinberg double gaussian slit experiment, having

a twin detector, for wavelength λ = 943nm, slit spacing τ ′ = 4.69mm, gaussian beam waist e−2 radius
0.608mm. The probability densities for arrival at one of two locations (left side) and at one or both locations

(right side) are somewhat different. The plots are shown for three twin detector spacings, given as a multiple

of the slit spacing τ ′: τ ′′ = 1
2
τ ′ (top row), τ ′′ = τ ′ (middle row), and τ ′′ = 2τ ′ (bottom row).
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4.5 Mean velocity field

The mean velocity field for the double-slit, double-detector experiment is given by the ratio

of the total “one-or-both detector, one-or-both slit” current to probability density:

v(x′′t′′, τ ′′) = j(x′′t′′, τ ′′)/P(x′′t′′, τ ′′) (4.56)

=
[
P(x′′ + τ ′′

2 , t
′′, 0) · v(x′′ + τ ′′

2 , t
′′, 0) + P(x′′ − τ ′′

2 , t
′′, 0) · v(x′′ − τ ′′

2 , t
′′, 0)

+ P(x′′t′′, τ ′′) · v(x′′t′′, τ ′′) + P(x′′t′′,−τ ′′) · v(x′′t′′,−τ ′′)
]

/
[
P(x′′ + τ ′′

2 , t
′′, 0) + P(x′′ − τ ′′

2 , t
′′, 0)

+ P(x′′t′′, τ ′′) + P(x′′t′′,−τ ′′)
]

(4.57)

from the total equations (4.53) and (4.55). The second, expanded expression (4.57) above

shows that the velocity v is an average velocity for arrival at one or both of the two detectors.

Note that the common normalizing constant C of P(x′′t′′, τ ′′) cancels in this ratio (4.56).

The z-component (k = 3) of the velocity field reduces to

v3(x′′t′′, τ ′′) = j3(x′′t′′, τ ′′)/P(x′′t′′, τ ′′)

=
x′′3
t′′
. (4.58)

It is appropriate to contrast this mean velocity field (4.56) for two conjoined detectors

with that for two separate detectors having the same spacing τ ′′ but distinguishable particle
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arrivals:

v(x′′t′′, τ ′′) =
j(x′′ + τ ′′

2 , t
′′, 0) + j(x′′ − τ ′′

2 , t
′′, 0)

P(x′′ + τ ′′

2 , t
′′, 0) + P(x′′ − τ ′′

2 , t
′′, 0)

(4.59)

=
[
P(x′′ + τ ′′

2 , t
′′, 0)v(x′′ + τ ′′

2 , t
′′, 0)

+P(x′′ − τ ′′

2 , t
′′, 0)v(x′′ − τ ′′

2 , t
′′, 0)

]
/
[
P(x′′ + τ ′′

2 , t
′′, 0) + P(x′′ − τ ′′

2 , t
′′, 0)

]
. (4.60)

In this case, the detector that sensed the particle is known, and the interference terms in

formula (4.57) vanish. In the experiment of Steinberg et al., we can construct this velocity

field (4.60) from the measured single-detector values P(x′′ ± τ ′′

2 , t
′′, 0) and v(x′′ ± τ ′′

2 , t
′′, 0).

The current density and mean velocity formulas we have developed for the double gaus-

sian slit and double detector are easy to compute. Examples of mean transverse (x) velocity

profiles for cases with and without distinguishable detectors are contrasted in figure 4.6.

4.6 Mean trajectories for single and double detector

Next we will integrate the equation of motion ẋ = v for the double gaussian slit. Our

geometry as in figure 4.1 places the source before the slits at a finite distance, with free-

space propagation into the slit. Published trajectories do not include this pre-slit source

geometry, e.g. those in [47, 62, 64, 65]. The experiment of Steinberg et al. employed what

we may regard as “parallel gaussian headlamps,” twin parallel beams that issue from an

in-fiber beamsplitter and then spread. Thus our trajectories are somewhat different. But

when the source is a long distance in front of the slits, e.g. 80m, the beams from the slits

align so that they are almost parallel. The parameter γ = 1 + T/t′ determines the twin

beam alignment. As t′ →∞, γ → 1 and the beams become parallel.
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Figure 4.6: Normalized transverse (x) momentum profiles for the Steinberg double gaussian slit experiment

measured across the single-pixel CCD detector (top row), and across a twin-pixel detector (bottom row), for

wavelength λ = 943nm, slit spacing τ ′ = 4.69mm, gaussian beam waist e−2 radius 0.608mm. The detection

plane for the momentum profiles is fixed at a distance z′′− z′ = 8.2m behind the slits in the z′ =80m plane.
The top left plot is in close agreement with the transverse momentum profile measured in Fig.2D of [47].
The top right “quiver” plot depicts the entire corresponding velocity field behind the slits for the single

detector experiment, of which the top left profile is a slice (taken at z′′=88.2m). The bottom row shows the
transverse momentum profiles for the same experiment, only modified with double detectors spaced apart by

a distance equal to half the slit spacing (τ ′′ = 1
2
τ ′, lower left), and to the slit spacing (τ ′′ = τ ′, lower right).

On each side, for a given detector spacing, the momentum profiles for two arrival modes are compared. The
blue profile is that measured for particle-like arrival at one of two locations (single detectors, distinguishable

detection mode) and the black profile is that for wavelike arrival at one or both locations (twin detector,

indistinguishable detection mode).
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4.6.1 Converting from massive particle to photon

To adapt the formulas from the previous sections to an experiment with photons, we convert

from a massive particle with arbitrary momentum to a spin-0 photon. The photon has zero

rest mass. The photonic particle is now constrained to move on the light cone, with speed

c and some definite momentum p = ~k = ~ω/c and energy E = pc = ~ω. The photon thus

has an effective kinetic mass m given by

m = p/c = ~k/c. (4.61)

Therefore, we replace an expression such as m/(~T ) by k/(cT ) = k/R, where R = cT

is the distance the photon travels in time T . Our spatial geometry is given as in figure

4.1, with parameters selected to match the Steinberg experiment configuration. The new

parameter τ ′′ defines the double-detector spacing. We now fix the passage time t′ when

the photon passes through any point x′ ± τ ′

2 in the transverse slit, and the arrival time t′′

when the photon arrives at any point x′′ ± τ ′′

2 on the transverse screen. Doing this, we

are actually scanning the wavefunction at light speed from left to right, viewing it as a

wavefront f (t′′ − z′′/c), ignoring all values except those at light-like coordinates.

Since the geometric center-to-center distance R̂ = |x′′ − x′| varies transversely across

the screen, fixing the times this way imposes an approximation. This approximation will

be good when the double experiment design is very narrow and long (e.g., 16mm × 8m in

[47]).

The probability and current density formulas for a particle with mass are functions

of space and time. In particular, time always appears in the normalizing coefficients. A

lightlike particle (confined to move on a spacetime light cone) is certain to arrive at a time

T somewhere on a spherical shell of radius R = cT . So we must numerically renormalize

the particle probability density over each shell, to get a density snapshot at a fixed moment

in time that sums to 1.
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4.6.2 Example trajectories

Figures 4.7 and 4.8 below show the computed mean trajectories for the 2 × 1 (double slit,

single detector) case configured as in the Steinberg experiment [47], and for corresponding

2×2 (double slit, double detector) cases, respectively. The 2×1 mean trajectories agree well

with those computed from measured tranverse momentum slices by the experiment team

in [47, figure 3]. For the 2 × 2 cases in figure 4.8 the slit spacing is again kept constant,

and three detector spacings are selected. For direct comparison at each detector spacing,

we include results for the double detector with both distinguishable and indistinguishable

detectors, displayed on the left and right hand sides of figure 4.8, respectively. (We could

compare the trajectories for twin detectors on the right side of figure 4.8 with those for

a single detector in figure 4.7. (We could ignore the plots on the left side of figure 4.8.)

But this comparison would not provide a direct contrast between trajectories for the same

two detectors, conjoined as a twin detector vs. separated as two single detectors; that is,

between trajectories integrated over the velocity fields with and without interference terms,

as in (4.57) and (4.60), respectively.) The distinguishable case consists of two separate

detector units, so we consider the probability that the particle arrives at one or the other

detector. There is no chance of wavelike arrival at both locations. The indistinguishable

case is that of the ambiguous twin detector with the same spacing as the unambiguous

detector pair. In this situation, we consider the probability that the particle arrives at one

or the other detector, or both. Wavelike arrival at both locations is permitted.

As shown in figure 4.8, the trajectories of the ambiguous twin detector are noticeably

different from those of the unambiguous double detector. This presents a paradox: installing

a twin detector changes the mean trajectories! In a classical view, we would expect the

trajectory enroute to the detectors to remain unaltered by a change in how the two detectors

are connected together.

111



propagation distance z
′′ (m)

tr
an

sv
er
se

d
is
ta
n
ce

x

′′

(m
m
)

 

 

80 82 84 86 88

−8

−6

−4

−2

0

2

4

6

8

0

0.1

0.2

0.3

0.4

0.5

Figure 4.7: Mean trajectories (white plots) issuing from the double gaussian slit for the Steinberg-Wiseman

experiment with single-pixel CCD detector (τ ′′ = 0), for λ = 943nm, slit spacing τ ′ = 4.69mm, gaussian

beam waist e−2 radius 0.608mm. The trajectories are overlaid upon the color contour plot of the probability
density. Single photons were used, showing photon self-interference. These plots agree well with those
inferred from weak momentum measurements in [47].
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Figure 4.8: Mean trajectories (white plots) issuing from the double gaussian slit in the Steinberg-Wiseman

experiment modified with a twin detector, for λ = 943nm, slit spacing τ ′ = 4.69mm, gaussian beam waist e−2

radius 0.608mm. Each row of plots is for a different detector spacing (from top to bottom, τ ′′ = 1
2
τ ′, τ ′, 2τ ′).

The left and right plots in each row are for particle-like and wavelike arrival modes, respectively. The mean
trajectories for arrival at one of two locations (left column) and at one or both locations (right column) are
somewhat different, a counterintuitive result of merely modifying the detector mode. This is the main finding
of this paper. The trajectories are overlaid upon the color contour plot of the respective probability density

for the distinguishable (left) and indistinguishable (right) detector pair at each spacing τ ′′.
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4.7 Modified Young-Steinberg experiment using twin detec-

tors - a proposal

The two-point mean velocity field, as plotted in figure 4.6, can be measured weakly and

post-selected, in much the same way that Steinberg et al. did in their experiment [47].

The only modification required is to replace the single detector by a twin detector. The

twin detector has two collection ports at separate locations, connected to give the same

detection response to a particle that enters through one or both of the ports. The twin

detector is designed so that, even in principle, it is impossible to distinguish through which

of the two ports (one or both of them) the particle entered. In section 3.3.1, we considered

different ways to implement the twin detector. Thus we would implement a double detector

in each of the two columns which receive the polarized beam displacer RHC and LHC beam

components. The rest of the experiment would be unchanged. The velocity field could then

be integrated (as is also done here) to produce the mean trajectories for the twin-detector

version of the experiment.

4.7.1 The modified experiment

To show that the double slit experiment of Steinberg et al.[47] can be carried out with a twin

detector, let us briefly review the experiment setup. In [47], the two slits 4.67mm apart (x)

are located at the front of a runway 8.2m long (z). The photon is finally detected by a cooled

CCD array oriented parallel with the x-y plane and placed at various z positions along the

runway. Near the slits, a calcite crystal first takes a weak measurement of the photon as it

passes through with a variable transverse momentum component ~kx. The crystal is aligned

with its optic axis in the x-z plane such that it imparts a wavenumber-dependent phase

change ϕk = ζkx/k to the photon, where ζ = 373.5 ± 3.4. That is, it rotates the photon’s

prepared polarization state from ψp0 = 1√
2

(|H〉+ |V 〉) to ψp = 1√
2

(
e−iϕk/2|H〉+ eiϕk/2|V 〉

)
.

(Here horizontal (H) is in the x-direction, vertical (V) is in the y-direction. We express
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the right-hand circular (RHC) and left-hand circular (LHC) polarization states as |R〉 =

1√
2

(|H〉+ i|V 〉) = eiπ/4 1√
2

(
e−iπ/4|H〉+ eiπ/4|V 〉

)
, and |L〉 = 1√

2
(|H〉 − i|V 〉).) Before the

photon reaches the CCD detector array at the other end of the runway, a beam displacer

passes its right-hand circular component without change, but deflects its left-hand circular

component in the y-direction. The displaced components of the wavefunction modulate

(multiply) it by the respective factors

〈ψp|R〉 = eiπ/4 cos (ϕk(x)/2− π/4) = eiπ/4√
2

(
cosϕk(x)/2 + sinϕk(x)/2

)
〈ψp|L〉 = eiπ/4i sin (ϕk(x)/2− π/4) = e−iπ/4√

2

(
cosϕk(x)/2− sinϕk(x)/2

)
.(4.62)

The squared amplitudes or intensities

IR = |〈ψp|R〉|2|ψ|2 = PR(x′′, t′′) = 1
2

(
1 + sinϕk(x)

)
P(x′′, t′′)

IL = |〈ψp|L〉|2|ψ|2 = PL(x′′, t′′) = 1
2

(
1− sinϕk(x)

)
P(x′′, t′′) (4.63)

are proportional to the photon count received by the CCD detector array along the x-axis

for separate pixel columns at y = 0 and y = y0, respectively. Their sum is 1·P(x′′, t′′); their

difference is sinϕk(x)P(x′′, t′′). The ratio gives us the mean transverse momentum for the

particle if it arrives at horizontal coordinate x in the CCD plane [47]:

kx
k

=
1

ζ
ϕk(x) =

1

ζ
sin−1

(
IR − IL
IR + IL

)
. (4.64)

For the modified experiment with twin detectors at locations 1 and 2 given by x1, x2 =

x′′ ± τ ′′

2 , formula (4.64) estimates the average value kx′′ defined by (4.57). It is based

on the proportional polarization phase shifts (weak measurements) ϕkx . That is, ~kx′′ is

the average transverse momentum of a large number of photons that will be received and
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detected (post-selected) about the transverse position coordinate x′′, the midpoint or center

of the twin detectors (in both y-columns). Classically, of course, for y = ky = 0, the photon

travels a distance r =
√
x2 + z2, so x = x0 + r · kx/k ≈ x0 + z · kx/k is nearly a linear

function of kx for x � z. The transverse wavenumber profile plots, easily converted to

velocity profiles, will be different with the twin detector, as predicted in figure 4.6. But the

method of the modified experiment would remain the same as that of the original.

To contrast the measured twin-detector velocity field (4.56) with the closest equivalent

single-detector velocity field, we chose formula (4.59). It is the mean velocity field we would

obtain for no interference between the twin detectors. As noted earlier, we can recover this

velocity field by means of formula (4.60), from the measured single-detector intensity and

velocity values, as in the original experiment, for the pair of detector locations.

4.8 Conclusion

The bilocal picture of quantum mechanics [25][63] was used here to carry out closed-form

calculations for both the experiment of Steinberg et al. [47], and its twin-detector version.

Formulas were developed for bilocal probability and current densities, and bilocal mean

velocities.

The point of the modified Steinberg experiment proposed here is that, when we measure

the average path of a photon, that path depends on the kind of detector used. Is it a pair

of single (particle-like) detectors, or a conjoined double (wave-like) detector, that counts

each photon? The path depends on the detector configuration, as we have shown in some

detail. What happens is that the conjoined detector admits the interference terms in both

the spatial and current densities. These terms alter the average velocity field as seen by the

pair of separate detectors. The changed local velocities, in turn, deflect the average path of

the particle issuing from any initial point in the plane of the slits.

The conjoined double detector itself is quite different from the single detectors used

in other quantum experiments such as those of Brown-Twiss and Hong-Ou-Mandel, which
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correlate or count photon coincidences from the outputs of two single (distinguishable)

detectors [48,50,51]. Therefore, interesting effects could result from modifying other exper-

iments to use a conjoined double detector.

In summary, we have shown from closed-form formulas that the proposed, modified

Steinberg experiment should verify that the mean velocity field and resulting particle paths

are not unique, but are relative to the frame of detection that is chosen [69].
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Chapter 5: Light-pulse atom interferometry

In this chapter, we consider light-pulse atom interferometry, an example of mat-

ter wave interferometry. In chapter 3 we derived the density-of-states equations

of motion from the probabilistic Schrödinger equation. Here we apply these to

model Raman transitions stimulated by a pair of laser beams. To do this, we

reduce the density-of-states equations for a three-level atom to the density-of-

states equations for an effective two-level system. The two-level system enables

us to model the effect on the atom of short pulses from the pair of lasers tuned

close to atomic state transition frequencies.

It is well-known that a timed sequence of π/2, π, π/2 laser pulses creates an

atomic analogy to a Mach-Zehnder interferometer, shown in figure 5.1. The

interference pattern is measured in momentum space, for various detunings

of the laser wavenumber differences. For each detuning, the atomic cloud is

prepared in the ground state and the light pulses are applied. A final tuned light

pulse reads out the number of atoms that Raman-transitioned to the excited

state.

5.1 Density-of-states equations for stimulated three-level atom

transitions

Consider a three-level atom, whose energy levels are shown in figure 5.2. The atom is placed

in two laser beams that counter-propagate along the z direction. The lasers can be turned

on for a short pulse duration τ , then off again. Suppose the atom initially has momentum

component p−~k1L in the direction of the laser beams. After it absorbs a photon of energy
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π/2
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| 2 ›| 1 ›

| 1 ›

Figure 5.1: Schematic of a light-pulse atom interferometer. The atom (one of a cloud of alkali metal

atoms) moves as a superposition of two internal energy states |1〉 and |2〉 in a Raman field of two coun-
terpropagating laser beams at frequencies ω1L and ω2L. The two internal states are also associated with
different external center-of-mass momenta, as shown by the solid or dashed path followed in state |1〉 or |2〉,
respectively. Three pulses from both lasers together are applied in sequence to the atom, for time durations
τ/2, τ, τ/2. The pulses produce internal amplitude phase changes of π/2, π, π/2 radians, respectively. The
π pulse exchanges the two states, including their momenta! During each pulse, the atom is stimulated to
absorb a photon and emit a photon horizontally, and it recoils to conserve external momentum during the
Raman transition. Thus the atomic center-of-mass of one of the states receives two impulse quanta ±~k1L
and ±~k2L, one from each laser beam. (The atom separates into two distinct centers of mass, whose paths

are drawn here.) The three Raman pulses respectively have effects analogous to a beamsplitter, twin mirrors,

and a beamcombiner in an optical Mach-Zehnder interferometer. [After Moler et al. [70].]

~ω1L, the atom goes from state |1, p− ~k1L〉 to state |3, p〉. Then after the excited atom

is stimulated by a photon of energy ~ω2L, it emits another photon of the same energy

and direction, going down one quantum to state |2, p+ ~k2L〉. For any initial momentum

parameter p, these three states can be thought of as a closed momentum family.

5.1.1 Raman transitions become Rabi transitions

A three-level Raman transition reduces to a two-level model, by means of an adiabatic

approximation to eliminate the intermediate high level |3〉. The amplitude c3 becomes a

function of the other two, when we set ċ3 ≈ 0. This applies for a perturbing field de-

tuned from the atom’s transition frequency, in which case there is no spontaneous emission.

Then the two-level Schrödinger equation has an exact solution for the Rabi rotating-wave

approximation to a sinusoidal perturbing field which oscillates at frequency ω. For given

momentum p, and effective electric or magnetic dipole approximation for the two-level
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ω1L

|2, p + ħk2L ›

|1, p – ħk1L ›

|3, p ›

Figure 5.2: Three energy level Raman transition for two counterpropagating laser beams at radian
frequencies ω1L and ω2L. Laser detuning parameters are shown as offsets ∆ and δ. [After Moler et al. [70].]

interaction energy, the wavefunction is

|Ψp(t)〉 = c1(p, t) |1, p− ~k1L 〉+ c2(p, t) |2, p+ ~k2L 〉+ c3(p, t) |3, p〉. (5.1)

The Hamiltonian for this three-level atom of mass M is [70]

H =
p2

2M
+ ~ω31|3〉〈3|+ ~ω21|2〉〈2|+Hint, (5.2)

where the interaction energy for an atomic electric dipole with mean separating moment d

is

Hint = −d ·E(x, t), (5.3)

and the (Raman) electric field is

E(x, t) =
1

2
E1e

ik1Lx−iω1Lt +
1

2
E2e

−ik2Lx−iω2Lt + c.c., (5.4)

for counterpropagating laser beams’ electric fields E1 and E2.

We assume that E1 only couples |1〉 and |3〉, and that E2 only couples |2〉 and |3〉 [70].
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The one-photon Rabi frequencies Ω1 and Ω2 are given by the matrix elements:

Ωk = −〈k|d ·Ek|3〉/2~, k = 1, 2 (5.5)

so the interaction energy becomes

Hint = ~Ω∗1e
ik1Lx−iω1Lt|3〉〈1|+ ~Ω∗2e

−ik2Lx−iω2Lt|3〉〈2|+ c.c.. (5.6)

The Hamiltonian matrix for this closed family of three momenta is then given by [70]

H =


(p−~k1L)2

2M 0 ~Ω1e
iω1Lt

0 (p+~k2L)2

2M + ~ω21 ~Ω2e
iω2Lt

~Ω∗1e
−iω1Lt ~Ω∗2e

−iω2Lt p2

2M + ~ω31

 . (5.7)

Note that the stationary Hamiltonian is given here by the diagonal elements, and the

time-varying perturbation is given by the off-diagonal electronic dipole-laser (L) interaction

elements. Using notation similar to that of (3.74), we replace ω0
ji by ∆Eji/~ =

(p−~kjL)2

2M~ −

(p−~kiL)2

2M~ + ω0
ji, to propagate the atom’s stationary states, given by both its center-of-mass

kinetic energy for momentum eigenvalues and its internal energy level eigenvalues. Here we

take k3L = 0, and ω0
ij = −ω0

ji for levels i < j. Then writing out the von Neumann equation

(3.82) for three levels, we have six equations for the density-of-states pij (usually denoted
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in textbooks as ρij)

ṗ11 = −iΩ1e
iω1Lte−i∆E31t/~p31 + c.c. (5.8a)

ṗ12 = −iΩ1e
iω1Lte−i∆E31t/~p32 + iΩ∗2e

−iω2Lte−i∆E23t/~p13 (5.8b)

ṗ13 = −iΩ1e
iω1Lte−i∆E31t/~ [p33 − p11] + iΩ2e

iω2Lte−i∆E32t/~p12 (5.8c)

ṗ22 = −iΩ2e
iω2Lte−i∆E32t/~p32 + c.c. (5.8d)

ṗ23 = −iΩ2e
iω2Lte−i∆E32t/~ [p33 − p22] + iΩ1e

iω1Lte−i∆E31t/~p21 (5.8e)

ṗ33 = −iΩ∗1e−iω1Ltei∆E31t/~p13 − iΩ∗2e−iω2Ltei∆E32t/~p23 + c.c. (5.8f)

We can define the laser detunings off-transition by ∆ = ∆E31/~−ω1L for the transition

|1, p− ~k1L〉 → |3, p〉, and δ = ∆E12/~ − (ω2L − ω1L) for the transition |1, p− ~k1L〉 →

|2, p− ~k2L〉. Note that

∆ = ω31 − ω1L + p · k1L/m− ~k2
1L/2m (5.9a)

δ = (ω1L − ω2L)−
[
ω12 + p · (k1L − k2L)/m+ ~(k2

1L − k2
2L)/2m

]
. (5.9b)

The three phase terms in square brackets above represent hyperfine (spin-spin) splitting

ω12 (for example), Doppler shift of the laser field due to atomic motion, and recoil energy,

respectively. The atomic recoils are due to momentum transfers from absorption and emis-

sion of atomic photons stimulated by the laser pulses. Between pulses, the c.m. velocity

for each state does not change, unless another external field is also present then. These

detunings are shown in figure 5.2.

In terms of these detunings, ∆ + δ = ∆E32/~ − ω2L is the detuning for the transition
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|2, p− ~k2L〉 → |3, p〉. Then we rewrite these equations (5.8a)-(5.8f) as

ṗ11 = −iΩ1e
−i∆tp31 + c.c. (5.10a)

ṗ12 = −iΩ1e
−i∆tp32 + iΩ∗2e

i(∆+δ)tp13 (5.10b)

ṗ13 = −iΩ1e
−i∆t [p33 − p11] + iΩ2e

−i(∆+δ)tp12 (5.10c)

ṗ22 = −iΩ2e
−i(∆+δ)tp32 + c.c. (5.10d)

ṗ23 = −iΩ2e
−i(∆+δ)t [p33 − p22] + iΩ1e

−i∆tp21 (5.10e)

ṗ33 = −iΩ∗1ei∆tp31 − iΩ∗2ei(∆+δ)tp32 + c.c. (5.10f)

For ∆ � Ω1,Ω2, δ, we can use an adiabatic approximation to eliminate the densities p3k

that involve state |3, p〉. We assume the density elements change at a slow rate compared

to ∆. Then we can easily integrate equations (5.10c,5.10e,5.10f) over time to get

p13 =
Ω1

∆
e−i∆t [p33 − p11]− Ω2

∆
e−i(∆+δ)tp12 (5.11a)

p23 =
Ω2

∆
e−i(∆+δ)t [p33 − p22]− Ω1

∆
e−i∆tp21 (5.11b)

p33 = −Ω∗1
∆
ei∆tp13 −

Ω∗2
∆
ei(∆+δ)tp23 + c.c. (5.11c)

Substituting (5.11a) and (5.11b) into (5.10b) gives

ṗ12 = −iΩ1e
−i∆t

[
Ω∗2
∆
ei(∆+δ)t [p33 − p22]− Ω∗1

∆
ei∆tp12

]

+iΩ∗2e
i(∆+δ)t

[
Ω1

∆
e−i∆t [p33 − p11]− Ω2

∆
e−i(∆+δ)tp12

]
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or

ṗ12 = i
Ω1Ω∗2

∆
eiδt [p22 − p11] + i

[
|Ω1|2

∆
− |Ω2|2

∆

]
p12. (5.12)

Substituting (5.11a) into (5.10a), and (5.11b) into (5.10d), we find that

ṗ11 = i
Ω1Ω∗2

∆
eiδtp21 + c.c. (5.13a)

ṗ22 = i
Ω∗1Ω2

∆
e−iδtp12 + c.c. = − ṗ11 (5.13b)

Thus, we have obtained effective two-level density-of-states equations (5.12), (5.13a) and

(5.13b). Normally this reduction from three to two levels is done using the corresponding

amplitude equations [70][71].

For stimulated Raman transitions from state |1〉 to |2〉 via state |3〉, the population

density of state 3 should be empty. We can show that the density of state 3 is nearly zero,

still assuming a large detuning ∆. Substituting (5.11a) and (5.11b) into (5.11c), we have

p33 = −|Ω1|2

∆2
[p33 − p11] +

Ω∗1Ω2

∆2
e−iδtp12 −

|Ω2|2

∆2
[p33 − p22] +

Ω∗2Ω1

∆2
eiδtp21 + c.c.

= 2

{
−|Ω1|2

∆2
[p33 − p11] +

Ω∗1Ω2

∆2
e−iδtp12 −

|Ω2|2

∆2
[p33 − p22] +

Ω∗2Ω1

∆2
eiδtp21

}
,(5.14a)

which we solve for p33:

p33 =

[
|Ω1|2

∆
p11 +

|Ω2|2

∆
p22 +

(
Ω∗2Ω1

∆
eiδtp21 + c.c.

)]
/

[
∆

2
+
|Ω1|2

∆
+
|Ω2|2

∆

]
≈ 0. (5.15)
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We have eliminated state 3 by adiabatic approximation, reducing the three-level density-

of-states equations to a set of effective two-level equations for the densities involving only the

first two states. For the atoms initially prepared in state |1, p− ~k1L〉, i.e., p11(0) = 1, these

equations (5.12), (5.13a) and (5.13b) have solutions at time τ as a function of momentum

p [70]

p11(p, τ) = cos2
(ωτ

2

)
+

1

ω2

[
|Ω1|2

∆
− |Ω2|2

∆
− δ
]2

sin2
(ωτ

2

)
(5.16a)

p22(p, τ) =

(
2|Ω∗1Ω2|
ω∆

)2

sin2
(ωτ

2

)
(5.16b)

p12(p, τ) =

{
cos
(ωτ

2

)
− i

ω

[
|Ω1|2

∆
− |Ω2|2

∆
− δ
]

sin
(ωτ

2

)}

× i
ω

2|Ω∗1Ω2|
∆

sin
(ωτ

2

)
e−iδτ , (5.16c)

where

ω2 =

[
Ω2

1

∆
− Ω2

2

∆
− δ
]2

+

(
2|Ω∗1Ω2|

∆

)2

(5.17)

Here δ (5.9b), ∆ (5.9a), and thus everything else, is a function of initial momentum p.

The more general two-level solutions for arbitrary initial density-of-states are similar but

lengthier, so we do not record them here.

To construct a wavepacket that models the atom cloud as an ensemble, suppose the

initial momenta of the atoms are Gaussian distributed, with amplitude density g(p) =

π−1/4σ
−1/2
p exp

{
− (p−p0)2

2σ2
p

}
, normalized so that

∫
|g(p)|2dp = 1. Here σp =

√
2MkBT , as

for a shifted Maxwell-Boltzmann distribution. Then the population densities for atomic

states |1, p− ~k1L〉 and |2, p+ |~k2L〉 are given by |g(p)|2p11 and |g(p)|2p22, respectively,

with (5.16a) and (5.16b). Plots of these two population probability densities, as a function
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Figure 5.3: Probability densities p11 and p22 (upper plots) for atomic states |1, p− ~k1L〉 and |2, p+ ~k2L〉
after a π pulse, for initial state |1〉 momentum density width σp = 3.6mvR/

√
2, Raman field wavenumbers

k1L ≈ k2L = k = mvR, Raman pulse duration τ = 10/kvR, and effective two-photon Rabi frequency

|Ω∗1Ω2|/∆ = 0.16kvR. Note that the atoms in state |2〉 have been selected from a narrow velocity range after

the pulse. They have also been boosted by 2~k, about twice the one-photon recoil momentum. [After Moler

et al. [70].] The lower plots show the two-state coherence p12.

of atomic c.m. velocity, scaled in units of the Raman one-photon recoil velocity vR, are

shown for the atoms initially in state |1〉 after a π-pulse in the top plots of figure 5.3. In the
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lab, the |1〉 → |2〉 transition detuning δ (5.9b) can be varied. The plots of the population

densities as a function of total detuning δ are almost the same as those in the figure, without

the initial Gaussian momentum envelope.

The lower plots of figure 5.3 show twice the real and imaginary plots of the coherence

p12 between the two states.

5.2 The atomic Mach-Zehnder interferometer

To see the analogy with the Mach-Zehnder interferometer, as depicted in figure 5.1, we now

use the amplitude formulas, as given in [70], to propagate the atomic states. We approximate

these formulas by assuming |Ω1|2
∆ ≈ |Ω2|2

∆ , and ω ≈ 2|Ω∗1Ω2|
∆ . Then the amplitude propagation

formulas simplify to linear combinations involving phasors, as follows [72]:

After a π/2 pulse of τ/2 seconds, for fixed effective Rabi frequency ω, we have

c1,p(t+ τ/2) =
1√
2

(
c1,p(t)− ieiφ(t)c2,p+2~k(t)

)

c2,p+2~k(t+ τ/2) =
1√
2

(
−ie−iφ(t)c1,p(t) + c2,p+2~k(t)

)
. (5.18)

Here we have attached the atom’s associated c.m. momentum horizontal component, e.g.

an initial horizontal momentum p, as a subscript to the atom’s internal electronic state

amplitudes c1 and c2. After a π pulse of τ seconds,

c1,p(t+ τ) = −ieiφ(t)c2,p+2~k(t)

c2,p+2~k(t+ τ) = −ie−iφ(t)c1,p(t). (5.19)

Between pulses, the amplitude coefficients do not change with time. The two superposed

laser fields are at frequencies ω1L, ω2L, respectively. For approximate electric dipole inter-

action potentials, the phase function φ(t) for both of the states is given with respect to an
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arbitrary start time t0 by φ(t) =
∫ t
t0
δ(t′)dt′.

Now we can model the effect of a sequence of pulses applied in succession. Suppose

the atom is prepared in the ground state at the initial time t = 0, with c1,p = 1 and

c2,p = 0. We apply a sequence of π/2, π, and π/2 pulses, at times 0, T + τ/2 and 2T + 3τ/2,

respectively. We apply the first pulse at time t1 = 0, producing a superposition of states,

given by relations (5.18) as:

c1,p(τ/2) =
1√
2

c2,p+2~k(τ/2) = −i 1√
2
e−iφ(t1). (5.20)

This pulse thus has an effect analogous to that of a 50:50 beamsplitter.

Next, the π pulse is applied at t2 = T + τ/2. By relations (5.19), this pulse exchanges

the amplitude coefficients of the states, and the corresponding linear momenta:

c1,p+2~k(t2 + τ) = −ieiφ(t2)c2,p+2~k(τ/2) =
1√
2
ei(φ(t2)−φ(t1))

c2,p(t2 + τ) = −ie−iφ(t2)c1,p(τ/2) = −i 1√
2
e−iφ(t2). (5.21)

This effect is analogous to that of a pair of mirrors.

After another delay of T seconds, at time t3 = 2T + 3τ/2, the last π/2 pulse is applied.
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After this pulse, the coefficients become:

c1,p(t3 + τ/2) =
1√
2

(
c1,p(t3)− ieiφ(t3)c2,p+2~k(t3)

)

=
1

2
e+i(φ(t2)−φ(t1)) − 1

2
ei(φ(t3)−φ(t2))

=
1

2
e+i(φ(t2)−φ(t1)) ·

(
1− ei(φ(t3)−2φ(t2)+φ(t1))

)
(5.22a)

c2,p+2~k(t3 + τ/2) =
1√
2

(
−ie−iφ(t3)c1,p(t3) + c2,p+2~k(t3)

)

= −i1
2
e−i(φ(t3)−φ(t2)+φ(t1)) − i1

2
e−iφ(t2)

= −i1
2
e−iφ(t2) ·

(
1 + e−i(φ(t3)−2φ(t2)+φ(t1))

)
. (5.22b)

The factors in parentheses on the right hand sides of (5.22a) and (5.22b) clearly contain a

sine and cosine of the accumulated phase, respectively. They represent interference between

the atomic states recombined by the final π/2 pulse.

The interference pattern is a function of detuning frequency δ, as well as any phase

shifts caused by interaction with an external gravity field or magnetic field gradient, or by

platform rotation. For example, in a vertical gravity field with local acceleration g, the

additional phase due to the field accumulates over time t as ∆φ = −(k1L − k2L) · gt2 [72].

To measure an external magnetic field gradient ∂B/∂x (e.g., due to local mineral de-

posits in the earth), the atomic interferometer configuration in figure 5.1 can be modified to

use copropagating instead of counterpropagating Raman lasers [73]. The magnetic number

m splitting states of the alkali metal atom (e.g., 85Rb) are now present in a superposed am-

bient magnetic field, and we have magnetic dipole interaction with the laser beams. Then

our formulas in this section apply as before, when we reverse the sign of wavenumber k2L

to agree with that of k1L.
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The two Raman frequencies ω1L, ω2L, for either direction of propagation, can be pro-

duced from one source laser frequency by using a polarizing beamsplitter and passing one

or both resulting beams through an electro-optic modulator to shift their respective fre-

quencies by e.g., ∼ ±1 GHz, as needed. Using one source laser keeps the Raman beams

coherent and reduces sensitivity to the source beam frequency stability.

A final readout pulse projects the wavefunction onto one state, such as the upper state

|2〉. This pulse is tuned on-resonance, and results in fluorescent decay as spontaneously

emitted photons scatter uniformly in all directions. The latter can be detected to the side

of the laser beams, and recorded for various detunings to measure the interference pattern.

5.3 Conclusion

In this chapter, we have applied the probabilistic Schrödinger equation from chapter 3 to

develop the density-of-states equations for a three-level atom interacting with oscillating

electromagnetic fields of two counter- or co-propagating lasers that stimulate two-photon

Raman transitions in the atom, as in a light-pulse atom interferometer. By adiabatic ap-

proximation, we reduced these equations to effective two-level equations for the Raman

transitions, which can be solved. By detuning the lasers from the resonant transition

frequencies of the atom’s excited intermediate state, the Raman transitions avoid the spon-

taneous decay present in a two-level atom interferometer. We also described the phasor

approximation for how the two state amplitudes propagate, to demonstrate the well-known

analogy between this and a Mach-Zehnder interferometer.

130



Chapter 6: Conclusions

A bilocal picture of standard quantum mechanics has been presented in this dissertation.

This picture brings out the inherently bilocal aspects of quantum mechanics that appear

when we try to propagate probability densities rather than amplitudes. Contemporary

experiments have been analyzed using the new bilocal picture. It has been applied to recent

three-slit tests of the Born rule, to propose a modified version of the Steinberg experiment

using a twin detector, and to light-pulse atom interferometry.

In greater retrospective detail, we may enumerate the highlights of this dissertation:

• A new path integral for probability-current propagation was introduced, a “sum over

all [twin] path histories”. (The twin paths in this integral are expressed symmetrically,

in terms of a central path with equal plus and minus displacements for each time.) It is

shown that the propagator kernel reduces approximately to the simple form e−ip·τ/~,

which is exact for a particle moving in a quadratic potential. Here p is the initial

(central) momentum of the particle for a given pair of paths, and τ is their arbitrary

initial path displacement or separation.

• Four Blue propagator examples were given, including that for the quantum harmonic

oscillator, and calculations for double-slit interferometer experiments that become

simple using natural symmetry of propagation paths.

• The quantum bicontinuity equation was derived from the new path integral, showing

its equivalence to the Schrödinger equation.

• For the first time, how to obtain the Weyl-Wigner theory for expectation values from

ordinary quantum mechanics was shown, by demonstrating that the Wigner quasi-

density is an expression of wavefunction probability propagation.
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• The Wigner density was generalized naturally in terms of these path integrals, which

is a physically meaningful way to extend it beyond the quadratic Lagrangian of the

quantum harmonic oscillator.

• The Blue function property like that of a Green function [1] was derived, and path-

integral expressions for a complete probability-and-current four-vector propagator in

configuration and in phase space were obtained.

• A perturbation theory for the new propagators was initiated, including a closed-form

first-order perturbation integral.

• A new symbol for path integrals, having the form Dx(t), was introduced to avoid

confusion with other integrals.

• A probability theory to include signed values for interference events was introduced. A

new probability identity was introduced to show that at most two events can interfere

together at once in quantum mechanics.

• A twin detector concept was introduced to permit interfering wavelike bilocal arrivals

of a particle to be detected. Three ways to implement the twin detector were discussed,

including the Michelson stellar interferometer. (This inspired Ramsey’s molecular

beam method with separated oscillating fields, which is related to light-pulse atom

interferometry.)

• Bilocal forms of the usual current density and the path-fluctuation (osmotic) current

density, were identified. Simple formulas were found for them, in terms of the bilocal

probability density.

• A probabilistic Schrödinger equation was found for the bilocal probability density.

• The energy-difference eigenvalues and dyadic eigenstates for solving this equation were

derived.
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• The von Neumann density-of-states equation was shown to follow directly from the

probabilistic Schrödinger equation.

• The bilocal probability framework was applied to recent three-slit experimental tests

of the Born rule.

• The bilocal probability and current densities were computed in closed form formulas

to obtain average paths for a proposed modified version of the Steinberg experiment

that would use a twin detector.

• The von Neumann density-of-states equations for a three-level atom were adiabatically

reduced to effective two-level equations, and applied to light-pulse atom interferome-

try.

These are the principal results of this dissertation.
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Appendix A: Blue functions as path integrals in phase space

For a path integral involving a more general Lagrangian, we consider paths in phase (x, p)

space. Let any path of the particle(s) from x′p′ at time t′ to x′′p′′ at time t′′ be given at N

time increments ε = T/N , as x0 = x′, x1, x2, . . . , xN = x′′. Here xn = x(nε), n = 1, 2, 3, . . . ,

and T = t′′ − t′. The path integral expression in phase space for the Green function

propagator is given by [16] [17]:

G(x′′t′′;x′t′) = Dx(t)Dp(t) ei
∫

(p·ẋ−H(p,x))/~

=
∫ dp0

2π~
∫
dx1

dp1
2π~
∫
dx2

dp2
2π~ · · ·

∫
dxN−1

dpN−1

2π~

× exp
{
iε
~
∑N

n=1

[
pn · xn−xn−1

ε − 1
2mp

2
n −

(
xn+xn−1

2

)]}
, (A.1)

where no normalizing factor, as a function of the time increment ε, is needed. The La-

grangian L = (pẋ−H(p, x)) may come from a Hamiltonian H in which the momenta p

enter other than quadratically.

To obtain the path integral for the Blue function B(x′′t′′, x′t′τ ′) =

G∗(x′′t′′;x′ − τ ′

2 t
′)G(x′′t′′;x′ + τ ′

2 ), we take two copies of the path integral for G, much as

we did in section 2.3 for the configuration space path integral. Let the two sampled paths

through phase space be specified as

x̃0 =
(
x′ − τ ′

2

)
, x̃1, . . . , x̃N−1, x̃N =

(
x′′ − τ ′′

2

)
p̃0, p̃1, . . . , p̃N−1, p̃N

x0 =
(
x′ + τ ′

2

)
, x1, . . . , xN−1, xN =

(
x′′ + τ ′′

2

)
p0, p1, . . . , pN−1, pN ,
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with displaced spatial endpoints for G∗ and G, respectively. Both paths are sampled at

regular time instants t = tn ≡ nε, for n = 0, . . . , N . Introduce the change of variables

xn = qn + τn/2 x̃n = qn − τn/2

pn = πn + σn/2 p̃n = πn − σn/2,

to entangle the integrand for two paths at each time n. Then after canceling terms, the

Blue kernel becomes

B(x′′t′′τ ′′;x′t′τ ′) =

∫
dπN dσN/(4π

2~2) ·
N−1∏
n=1

dqn dτn dπn dσn/(4π
2~2)

exp
{
iε
~
∑N

n=1

[
πn · (τn−τn−1)

ε + σn · (qn−qn−1)
ε

+H (q̄n − τ̄n/2 + π̄n − σ̄n/2)

− H (q̄n + τ̄n/2 + π̄n + σ̄n/2)
]}

. (A.2)

For brevity, we denote the average values by q̄n = 1
2 (qn + qn−1), etc. Note that at the path

endpoints we have q0 = x′, τ0 = τ ′, and since xN = x̃N = x′′, τN = τ ′′ and qN = x′′.

The initial momentum value p0, and the corresponding π0, are not used. As N → ∞ and

ε → 0, keeping Nε = T , the Blue function can be represented formally as the continuous

path integral

B(x′′t′′τ ′′, x′t′τ ′) = Dq(t)Dτ(t)Dπ(t)Dσ(t) ei∆S/~, (A.3)

where the displaced action or motion for each possible path is now given by the line integral

∆S[q(t), τ(t), π(t), σ(t)]

=

∫ t′′

t′

(
π · τ̇ + σ · q̇ −

[
H(q + τ

2 )−H(q − τ
2 )
])
dt. (A.4)
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This expression agrees with the displaced action (2.29) we got in section 2.3 from two

Legendre transformations.

Appendix B: Evaluation of the Blue function path integral

propagator for a free particle

For a free particle in d Cartesian dimensions,

B0(x′′t′′τ ′′;x′t′τ ′) = 1
|C(ε)|2

∫∫ dxN−1dτN−1

|C(ε)|2 · · ·
∫∫

dx2dτ2
|C(ε)|2

∫∫
dx1dτ1
|C(ε)|2

exp
{
i
~
∑N

n=1m
(xn−xn−1)·(τn−τn−1)

ε

}
, (B.1)

where as shown in section 2.7, |C|−2 =
(
m

2π~ε
)d
. We put α = m

~ε , and begin by integrating

the two terms that involve x1 and τ1:

I1 =

∫∫
dx1dτ1
|C(ε)|2 exp

{
im
~ε [(x2 − x1) · (τ2 − τ1)

+(x1 − x0) · (τ1 − τ0)]}

=

∫∫
dx1dτ1

(
α
2π

)d
exp

{
iα
[
2
(
x1 −

(
x2+x0

2

))
·
(
τ1 −

(
τ2+τ0

2

))
+1

2(x2 − x0) · (τ2 − τ0)
]}
. (B.2)

To evaluate this, consider the double integral for one dimension (d = 1)

1

2π

∫∫
ei(x−a)(y−b)dx dy =

∫
e−ia(y−b)δ(y − b) dy = 1, (B.3)
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where we regard this as a Fourier integral. (We are accustomed to Gaussian integrals in this

context. The exponent can also be expressed as a 0-trace quadratic form: eixy = e
i
2
ztσ1z,

for σ1 =

 0 1

1 0

 and zt = (x, y).) Applying (B.3) to (B.2), we get

I1 = 1
2d

exp
{
iα
2 (x2 − x0) · (τ2 − τ0)

}
. (B.4)

We continue recursively, using the general identity for n = 1, 2, 3, ...

(xn+1 − xn) · (τn+1 − τn) + 1
n(xn − x0) · (τn − τ0)

= n+1
n

[
xn −

(
nxn+1+x0

n+1

)]
·
[
τn −

(
nτn+1+τ0
n+1

)]
+ 1
n+1(xn+1 − x0) · (τn+1 − τ0). (B.5)

Bringing in the next term involving x2 and τ2, we obtain

I2 =

∫∫
dx2dτ2

(
1
2
α
2π

)d
exp {iα [(x3 − x2) · (τ3 − τ2)

+1
2(x2 − x0) · (τ2 − τ0)

]}
= 1

3d
exp

{
iα
3 (x3 − x0) · (τ3 − τ0)

}
. (B.6)

By induction, we continue to integrate this way until we arrive at the answer,

B0(x′′t′′τ ′′;x′τ ′t′) =
[

m
2π~Nε

]d
exp

{
im
N~ε(xN − x0) · (τN − τ0)

}
.

=
[

m
2π~T

]d
exp

{
im
~T (x′′ − x′) · (τ ′′ − τ ′)

}
. (B.7)

This result agrees with equation (4.9), which was obtained from the free-particle Green

function.
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The propagator (3.53) for the current density of a free particle can be computed in

almost the same way. For each path, the integral is the same as (B.1), up to the final leg of

the path. But now the integrand for the final stage N−1 is multiplied by the d-dimensional

velocity vector 1
ε (xN − xN−1), where xN = x′′ is the path endpoint. Using the identity

(B.5) to take the final step, we find the last integral for the current density propagator is:

Bµ
0(x′′t′′τ ′′;x′τ ′t′) = IcurrN−1

=

∫∫
dxN−1dτN−1

(
α

2π(N−1)ε

)d (xN − xN−1)

ε
·

exp
{
iα
[

N
N−1

(
xN−1 −

(
(N−1)xN+x0

N

))
·
(
τN−1 −

(
(N−1)τN+τ0

N

))
+ 1
N (xN − x0) · (τN − τ0)

]}
=

∫∫
dxN−1dτN−1

(
α

2π(N−1)ε

)d
1
ε

[(
xN−x0
N

)
−
(
xN−1 −

(
(N−1)xN+x0

N

))]
·

exp
{
iα
[

N
N−1

(
xN−1 −

(
(N−1)xN+x0

N

))
·
(
τN−1 −

(
(N−1)τN+τ0

N

))
+ 1
N (xN − x0) · (τN − τ0)

]}
=

(
m

2π~Nε
)d (xN−x0)

Nε exp
{
iα
[

1
N (xN − x0) · (τN − τ0)

]}
≡

(
m

2π~T
)d (x′′−x′)

T exp
{
im
~T (x′′ − x′) · (τ ′′ − τ ′)

}
(B.8)

= vB0, (B.9)

for components µ = 1, 2, . . . , d. We have integrated by applying the double integrals (2.58)

and (2.59) to each dimension of the vectors. Note that the vector factor v = (x′′−x′)
T can

be interpreted as the mean velocity between the start and end points. Since T = t′′ − t′,

we can include time as the d + 1 coordinate in v as the case µ = 0 given by (B.7), in this
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formula as well. That is, v0 = 1. We do not modify the exponent, a spatial dot product.

Appendix C: Perturbation integral

To integrate B(1), we use these identities, whose proofs are left to the reader:

p̆ · τ̆ = m
2αβT

[
|r − r̃|2 − |s− s̃|2

]
. (C.1)

1
αβ |r − r̃|

2 = 1
α |r − r

′|2 + 1
β |r − r

′′|2 − |r′ − r′′|2

1
αβ |s− s̃|

2 = 1
α |s− s

′|2 + 1
β |s− s

′′|2 − |s′ − s′′|2 (C.2)

p′′ = p0 − αp̆

p′ = p0 + βp̆ (C.3)

1
αβ = 1

α + 1
β (C.4)

Here p̆ = p′−p′′ is the momentum transfer, and the momenta all have the form p(xbtbxata) =

m(xb−xa)/(tb−ta), deriving from the formula for B0 in appendix B. In particular, we define

p0 = m(x′′− x′)/(t′′− t′), p′ = m(x− x′)/(t− t′), p′′ = m(x′′− x)/(t′′− t). To separate ∆V

below, we will change variables to r = x+ τ
2 , s = x− τ

2 . For brevity we put T = t′′ − t′ as

usual, and α = (t− t′)/T, β = (t′′− t)/T . Also put r̃ = αr′′+βr′, τ̃ = ατ ′′+βτ ′, τ̆ = τ − τ̃ .
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Then

B(1) = − i
~
∫∫∫

B0(x′′t′′τ ′′;xtτ)∆V (xtτ)B0(xtτ ;x′t′τ ′) dxdτdt

= − i
~
∫ t′′
t′

[
m

2π~(t′′−t)

]d[
m

2π~(t−t′)

]d
×
∫∫

∆V (x, τ) exp
{
i
~ [p′′ · (τ ′′ − τ) + p′ · (τ − τ ′)]

}
dxdτdt

= − i
~
∫ t′′
t′

[
m

2π~(t′′−t)

]d[
m

2π~(t−t′)

]d
exp

{
i
~p0 · [τ ′′ − τ ′]

}
×
∫∫

∆V (x, τ) exp
{
i
~ p̆ · τ̆

}
dxdτdt

= − i
~
∫ t′′
t′

[
m

2π~βT

]d[
m

2π~αT
]d

exp
{
im
2~T

[
|r′′ − r′|2 − |s′′ − s′|2

]}
×
∫∫

[V (r)− V (s)] exp
{

im
2~αβT

[
|r − r̃|2 − |s− s̃|2

]}
drdsdt

= − i
~
∫ t′′
t′

[
i2π~αβT

m

]d/2 [
m

2π~βT

]d[
m

2π~αT
]d

exp
{
im
2~T

[
|r′′ − r′|2 − |s′′ − s′|2

]}
×
[∫
V (r) exp

{
im

2~αβT |r − r̃|
2
}
dr −

∫
V (s) exp

{
− im

2~αβT |s− s̃|
2
}
ds
]
dt

= − i
~
[
m

2π~
] 3d

2
[
i
T

] d
2

×
[∫

V (r)
∫ t′′
t′

1√
(t′′−t)(t−t′)

d exp
{
im
2~

[
|r−r′|2
t−t′ + |r−r′′|2

t′′−t

]}
dtdr

−
∫
V (s)

∫ t′′
t′

1√
(t′′−t)(t−t′)

d exp
{
− im

2~

[
|s−s′|2
t−t′ + |s−s′′|2

t′′−t

]}
dtds

]

= − i
~T 3

[
m

2π~
]4

×
[∫

V (r)
[

1
|r−r′| + 1

|r−r′′|

]
exp

{
im
2~T [|r − r′|+ |r − r′′|]2

}
dr

−
∫
V (s)

[
1

|s−s′| + 1
|s−s′′|

]
exp

{
− im

2~T [|s− s′|+ |s− s′′|]2
}
ds
]

(C.5)
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To carry out the time integration in the last step, we assume V is a time-independent

potential. We have specialized to d = 3 and employed the integral formula (A.5) in [1].

Here r′, s′ = x′ ± τ ′

2 , and r′′, s′′ = x′′ ± τ ′′

2 .

Appendix D: Calculating with Green vs. Blue propagators

Using the bilocal picture of quantum mechanics, with Blue kernels, we have calculated

closed-form expressions in three-dimensions for (4.53) and (4.54), the total probability and

current densities arriving at one or both detectors. It is instructive to compare how we

would calculate these new, inherently bilocal quantities in closed form using standard wave

mechanics, with Green kernels. (We do not address numerical computing here.)

Consider the total probability density first. We propagate the wavefunction from the

point source through each gaussian slit at time t′ to each detector at time t′′, using the

quadratic Green kernel in formula (4.8) [1]) four times (cf. the bilinear Blue kernel in

formula (4.9)). The sum of the four amplitudes results in the wavefunction for the twin-

detector twin-slit experiment,

ψ(x′′ ± τ ′′

2 , t
′′) = ψ(x′′ + τ ′′

2 ;x′ + τ ′

2 ) + ψ(x′′ − τ ′′

2 ;x′ + τ ′

2 )

+ψ(x′′ + τ ′′

2 ;x′ − τ ′

2 ) + ψ(x′′ − τ ′′

2 ;x′ − τ ′

2 ) (D.1)

Then the total probability density is

P(x′′ ± τ ′′

2 , t
′′) =

∣∣∣ψ(x′′ + τ ′′

2 ;x′ + τ ′

2 ) + ψ(x′′ − τ ′′

2 ;x′ + τ ′

2 )

+ ψ(x′′ + τ ′′

2 ;x′ − τ ′

2 ) + ψ(x′′ − τ ′′

2 ;x′ − τ ′

2 )
∣∣∣2 (D.2)

Expanding the square, we have 16 displaced probability terms. (Compare the formula (4.40)
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for the one-dimensional one-gaussian-slit wavefunction to the simpler one for the probability

(4.38).) These are the same terms we obtain in four evaluations of equation (4.55), each

with four terms as given by equation (4.51).

The current density (single or twin) has no Green propagator. We would use the four

wavefunctions again, after propagating them to time t′′. The single-detector current for each

term could be calculated in the usual way, first taking gradients of each term in ψ(x′′± τ ′′

2 , t
′′)

in equation (D.1). The single-detector velocity for each term can be obtained from the

gradients of the phase. The twin (bilocal) current defined by (4.54) could be calculated

using the polar formula (32) in [63], not a trivial exercise in algebra. The corresponding

bilocal mean velocity would then follow from (4.56).

These closed-form calculations have not been carried out with Green kernels, but they

may turn out to be more complex than those done with Blue kernels in chapter 3. The two

methods, Green and Blue, are equivalent. Some might prefer to minimize algebra and let

the computer do all of the work numerically. Using either kind of propagator, and taking

any jumping-off point to stop algebra and begin stable numerical computing, we will, of

course, obtain the same results, to within small numerical errors.

The Blue propagator theory provides its own bilocal structure and insight. The Blue

propagator formulas are often simpler than the Green. The Blue formulas, being bilocal,

are more general than the Green, but for that reason, they also entail integrating over

two spatial paths instead of one. The Blue propagators carry the current, as well as the

probability. They organize the computing steps in an intuitive way, and give us fairly

simple, physically meaningful, real-valued, algebraic answers for the twin gaussian slit,

twin-detector experiment. The Blue kernel propagator originated as a way to propagate

twin (bilocal) probabilities and currents. In turn, this theory has borne fruit such as the

bicontinuity equation (4.3), and the total current density entering one or both detectors

j(x′′ ± τ ′′

2 , t
′′) of equation (4.55). These considerations suggest that Blue propagators, as

well as Green, will be useful things to have at hand in our quantum-mechanical toolkit.
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