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ABSTRACT 

COUPLED DYNAMICS OF LABOR AND FIRMS THROUGH COMPLEX 
NETWORKS 

Omar A. Guerrero, PhD 

George Mason University, 2013 

 Dissertation Director: Robert Axtell 

 

This dissertation bridges the gap between labor and firm dynamics through the study of 

complex networks in labor markets. With extensive use of large-scale employer-

employee matched micro-data and agent-based modeling, we tap into the effects that 

networked structures (between individuals or between firms) exert in labor outcomes and 

employment dynamics. Some of the contributions of this work are: (i) the first 

characterization of a network of firms (connected through labor flows, i.e. labor flow 

networks) for an entire economy; (ii) the study of the relationship between labor flow 

networks and employment dynamics; (iii) agent-based models that generate rich stylized 

facts about labor, firm, and social dynamics from microeconomic behavior; (iv) providing 

the microeconomic foundations of the formation process of labor flow networks by 

coupling job search models with models about the formation of complex networks. We 

show that the study of labor dynamics can be enriched by coupling firm dynamics. Using 
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agent-based modeling is a natural way to deal with the heterogeneous experiences of 

workers and firms while maintaining a simple representation of the labor market. Despite 

their simplicity these models are grounded on empirical evidence obtained from large-

scale micro-data and are capable of generating more stylized facts than equation-based 

models. This approach has great potential for the design and evaluation of labor policies. 

Therefore, countries and regulators would be greatly benefited from collecting large-scale 

labor micro-data, analyzing labor flow networks, and developing agent-based models of 

labor markets. 
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1. INTRODUCTION 

For decades, social scientists and policy makers have struggled understanding the 

inner workings of labor markets. As one of the fundamental factors of production, labor 

plays a crucial role in the growth and performance of economies. Its dynamics are 

intrinsically connected to the growth of companies and other economic processes of 

countries. Despite the significant advancements in understanding labor dynamics, there 

are still many challenges to overcome. For example, most models designed for labor 

policy do not take into account the interplay between realistic firm dynamics and labor 

markets. Another example is the limited understanding of the role of networks (social or 

economic) in labor markets, which remains as an extremely stylized illustration about 

spillover effects and referral hiring. 

Despite recent advancements in understanding real-world networks, and in the 

implementation of computational simulations, the study of labor markets is 

predominantly conducted through econometric and mathematical methods. In order to 

obtain clear results using these methods, the modeler has to oversimplify the 

decentralized and heterogeneous nature of the market, which often drives its dynamics. 

This dissertation contributes to advance the understanding of labor dynamics in four main 

ways: (i) by providing the first characterization of a network of firms (connected through 

labor flows, i.e. labor flow networks) for an entire economy; (ii) by finding evidence of 
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the relationship between labor flow networks and employment dynamics; (iii) by 

developing agent-based models that generate rich stylized facts about labor, firm, and 

social dynamics from microeconomic behavior; and (iv) by providing the microeconomic 

foundations of the formation process of labor flow networks through the coupling of job 

search models with models about the formation of complex networks. 

Chapter one presents a literature survey of models about labor and firm dynamics. 

First, we overview the dominant approach to model labor dynamics: search models and 

matching functions. Then, we review stochastic processes that generate stylized facts of 

firm dynamics. Next, we survey game-theoretic models that bridge the gap between 

networks and labor markets. Finally, we review every agent-based model that has been 

developed so far to analyze labor markets from an economic perspective. The literature 

review in this chapter has an emphasis in agent-based models because that is the chosen 

methodological tool for this dissertation. 

Chapter two introduces a new way to analyze labor and firm dynamics as 

networks of firms connected through flows of labor. The concept of a labor flow network 

(LFN) is developed and several stylized facts are documented for multiple large-scale 

employer-employee matched micro-datasets. We demonstrate that LFNs provide useful 

information to improve our understanding about employment growth. We argue that 

labor flow networks are neither the product of purely random processes, nor the intended 

consequence of strategic interactions between economic agents. Therefore, we advocate 

for the use to computational methods in order to understand how these robust structures 
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emerge as the side product of economic interactions in the labor market. This is an 

important aspect of labor dynamics because networks feed back into the market by 

reshaping the space through which agents find jobs. Hence, by understanding how the 

properties of labor flow networks affect labor and firm dynamics and vise versa, we can 

create models that provide us with a better understanding about labor markets and the 

impact of labor policies. 

Chapter three explores different ways to employ agent-based models in order to 

study endogenous labor and firm dynamics. First, we propose an agentized version of a 

popular microeconomic model that generates a Zipf distribution of firm sizes. Our agent-

based model recovers a heavy-tailed firm size distribution without the need of 

assumptions such as macroeconomic equilibrium and full information/rationality. We 

show that this model generates additional stylized facts of firm dynamics such as the 

growth rates distribution and the employer-size premium. Additionally, the model 

emerges some features of labor markets such as a skewed income distribution. However, 

the properties of the labor flow networks produced by this model are not as rich as the 

empirical ones, suggesting that their stylized facts are the product of more complex 

dynamics.  

In the same chapter we present a model about social network formation in the 

workplace. In this model, agents form networks of personal contacts by following their 

preferences over effective work and socialization, and their endowment of skills. 

Information asymmetries generate diversity in the types of contacts that an agent has. At 
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the same time, it emerges empirical properties of social networks such as homophily and 

a skewed degree distribution. Agents make use of the their personal contacts in order to 

get information about open vacancies when they are unemployed. The model requires 

few parameters in order to generate realistic labor and firm dynamics such as 

unemployment volatility, a skewed distribution of unemployment durations, income 

distribution, and correlation between skills and earnings. 

Finally, we develop a third model to study how small-world labor flow networks 

emerge from search behavior. This model bridges the gap between well-studied search 

models from economics and popular models from physics about the formation of 

complex networks. By conducting computational experiments, we demonstrate that 

unemployment insurance has significant effects on some topological properties of the 

labor flow network such as global connectivity and local structure. 
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2. A SURVEY ON LABOR DYNAMICS AND NETWORKS 

From all the markets in any country, the one of labor is the largest in size and 

extension. It reaches other markets and sectors in complex ways that have intrigued social 

scientists for centuries. The dynamics of labor markets have been the object of study in 

different fields and, still today, a topic that is difficult to understand. Labor market 

dynamics are typically studied from two perspectives: employees and employers. The 

former is conventionally termed as labor dynamics, and the latter is better known firm 

dynamics. Ironically, labor and firm dynamics have been treated as separate fields in 

economics for decades. Gaining insight about their connections and workings can 

improve our understanding about economies as a whole. Traditionally, economists and 

sociologists have studied labor and firm dynamics, leading to a variety of methodological 

approaches from highly abstract mathematical formalisms to state of the art large-scale 

computational simulations. In this chapter we provide an overview of the most popular 

methods to study labor and firm dynamics, with an emphasis in agent-based models of 

labor markets. 

One of the first formal approaches employed in the study of firm dynamics was 

the use of stochastic processes. They can reproduce important stylized facts about the 

grow process of companies (e.g. firm size and growth rates distributions). However, they 

provide little insight about how economic behavior generate them. During the last 
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decades, economists have tried to couple labor and firms under the framework of 

dynamic general equilibrium. Since the late 1970’s, this endeavor has flourished in the 

family of matching models. Unfortunately, the dynamics generated by these models are 

generated by exogenous stochastic processes. Therefore, they are useful for analyzing 

how economic behavior leads the market towards equilibrium in the presence of 

exogenous shocks. However, they are not well equipped to analyze dynamics under 

which labor and firms interact in a continuous disequilibrium and find jobs through 

personal contacts. Game theorists developed alternative models of labor dynamics 

through the strategic formation of social networks. These models can generate stationary 

dynamics by assuming agent-level strategic equilibria. The network topologies generated 

by these models tend to be unrealistic and static, which makes them difficult to use in 

order to analyze real labor markets. During the last two decades, agent-based models 

(ABMs) have taken important steps towards the construction of dynamical models, where 

heterogeneous firms and workers engage in realistic interactions that generate realistic 

dynamics. However, most of these models are still far from being usable with a real labor 

market. 

Here we provide an overview of the main types of models employed to analyze 

labor and firm dynamics. We focus more on ABMs of labor markets for two reasons: (i) 

agent-based modeling is the chosen modeling framework for this dissertation; and (ii) we 

believe that providing an extensive account of the existing ABMs of labor dynamics is an 

important task in order to advance the field. This chapter is structured in the following 

way: In Section 2.1 we describe the main idea behind the matching models. Section 2.2 
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presents popular stochastic processes that reproduce firm dynamics. Section 2.3 

summarizes the developments in the field of labor dynamics and social networks, studied 

under the lens of game theory. In Section 2.4 we present a detailed account of the most 

visible agent-based economic models of labor markets. Section 2.5 provides the 

conclusions. 

!"#" $%&'()*+&*,-)*./'0-&1')2'3.4)5'67*.8-9:'

The study of labor dynamics in economics originated from the need to overcome 

the limitations of a static understanding of labor markets. Overcoming this problem 

required a major change the way that markets were conceptualized by economic theory: 

understanding markets as decentralized processes/institutions (without a Walrassian 

auctioneer) that would produce equilibrium outcomes from the interaction of rational 

economic agents. 

!"#"#" ;&.59%'<)=&/:'

Search models were the first approach to understand markets as decentralized 

equilibrium entities. The first one (Stigler, 1962) originated from the study of information 

in markets. It established that people can only search in a limited number of companies 

for a job. Then, the optimal number of searches is determined by the expected marginal 

returns of one more search and its marginal cost. When those two elements equate, the 

agent has reached the optimal search level. Once the search has finished, the worker picks 

the best offer. 
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Although illustrative, multiple aspects of Stigler’s model did not reflect central 

features of job search. For example, most workers stop searching once they find a good 

enough offer instead collecting a fixed number of offers. Additionally, Stigler’s 

formulation is a one-shot search, lacking a truly dynamic nature. Sequential search 

models were created to address the shortcomings of the early matching models. In this 

framework, a job seeker sequentially requests offers from different potential employers. 

Each offer arrives with a proposed wage. If the offered wage meets the agent’s 

expectations, the agent takes the job and halts the search. In order to predict when the 

agent is going to take an offer, these models are centered around the formation of a 

reservation wage. The first models of this nature were developed by (Gronau, 1971; 

McCall, 1970; Mortensen, 1970; Phelps, 1970). In order to obtain analytically tractable 

predictions about the reservation wage1, these models employ tools from operations 

research in order to solve a dynamical optimization problem. The conventional approach 

consists of assuming an infinitely lived representative agent in order to obtain a time-

invariant reservation wage. Multiple extensions of this framework were develop to 

understand how economic factors affect search behavior and unemployment dynamics. 

For comprehensive surveys on these extensions see (Lippman & McCall, 1976; 

Mortensen & Pissarides, 1999a, 1999b; Mortensen, 1987; Rogerson, Shimer, & Wright, 

2005). 

                                                
1 Section 4.4 provides a detailed specification of this type of models. 
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Sequential search models argued that decentralized rational economic behavior 

could produce stable labor outcomes with clear implications about labor dynamics. The 

next challenge was to show that such outcomes could be coupled with macroeconomic 

equilibrium. The matching models (Diamond, 1982; Jovanovic, 1979; Mortensen, 1987; 

Pissarides, 1984) brought together both sides of the labor market in order to reconcile the 

ideas of decentralized matching and macroeconomic equilibria. Most of these models 

employ matching functions: aggregate functions that map unemployed agents and 

vacancies to a number of matches to take place between job seekers and available jobs 

(usually with a Cobb-Douglas form: M=UaVb, where M is the number of matches, U is 

number of unemployed, and V is number of vacancies). For a given number of matches, a 

matching function becomes the Beveridge curve (often assumed with a+b!1). Therefore, 

using matching functions is a convenient way to incorporate employment dynamics in 

macroeconomic models.  

Given that a representative agent can form a reservation wage and that a 

representative firm determines offers and vacancies, the matching function determines 

important aspects of employment dynamics (e.g. hiring probabilities, hazard rates, 

unemployment duration, etc.). Multiple empirical studies have estimated matching 

functions in order to validate them (see (Petrongolo & Pissarides, 2001) for a 

comprehensive survey). However, deriving a matching function from microeconomic 
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behavior remains a challenge that has been studied only recently (Burdett, Shi, & Wright, 

2001; Lagos, 2000; Shimer, 2007; Smith & Zenou, 2003). 

The state of the art models that incorporate labor dynamics are the so-called 

dynamic stochastic general equilibrium (DSGE) models. They are mainly used to 

understand the associations between labor dynamics and the real business cycle. Real 

business cycles are the product of exogenous “technological shocks”. Therefore, dynamic 

fluctuations in DSGE models are the product of exogenous shocks. DSGE models that 

concentrate on labor markets (Costain & Reiter, 2008; R. Hall, 2005; Shimer, 2005, 

2010) couple stochastic processes and dynamic equations (e.g. consumption, production, 

etc.). This adds a noise term to the “laws of motion” of the economy, which generate 

macroeconomic fluctuations. 

!"!" 3.4)5'67*.8-9:'25)8';,)9%.:,-9'A5)9&::&:'

Before the conventional view of labor dynamics was established, stochastic 

processes were used in economics to explain important features of labor and firm 

dynamics (e.g. firm size and growth rates distributions). These models originated from 

the study of skewed frequencies in biology (Kapteyn, 1903) and the distribution of  plant 

species (Yule, 1925). Here we focus on models that have been influential to understand 

firm dynamics. More detailed surveys about this type of models can be found in (Coad, 

2009; de Wit, 2005; Mitzenmacher, 2004; Sutton, 1997). 
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The first stochastic process applied to firm dynamics (Gibrat, 1931) explains the 

emergence of the heavy-tailed firm size distribution. It describes the growth in size x of a 

firm as a multiplicative process. Let !t be the proportional growth in time t. Then, the 

change in x is described by xt=(1+ !t) xt-1. Approximating !t"log(1+!t) and simplifying 

yields logxt"#!i. Then, for long enough t, the initial size becomes irrelevant. Therefore, if 

all firm sizes are i.i.d., logxt is normally distributed. This is a lognormal distribution (a 

heavy-tailed one since the decay is non-exponential). 

Gibrat named this process the law of proportional effects, since it describes the 

proportional growth that companies experience. Using data from French manufacturing 

establishments, he demonstrated that their sizes follow a lognormal distribution. 

Therefore, Gibrat’s theory about how the labor force is distributed across firms was a 

plausible explanation. This model assumes a fixed population of firms and generates an 

increasing variance of firm sizes as t becomes larger. This is a problem because the 

observed volatility of firm sizes from real data is stable. A modified version of Gibrat’s 

model was proposed by (Kalecki, 1945)  in order to address this issue. 

!"!"!" ;-8)*B:'<)=&/:'

Although Gibrat’s model was useful to generate a lognormal distribution, it 

lacked other aspects that are important about how companies grow. For example, Herbert 

Simon found that the largest firm sizes are Pareto distributed (H. Simon & Bonini, 1958). 

Additionally, Gibrat’s model lacked of realistic dynamics where firms enter and exit the 
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market. Based on the work of (Champernowne, 1953), Simon developed multiple models 

to address these issues. Here we focus on three of them (H. Simon, 1955, 1960), product 

of a discussion with (Mandelbrot, 1959).  

The first model assumes a continuously growing population of firms. Workers are 

initially assigned to different firms such that all firms have at least one worker. Each 

period, a new worker enters the market and joins a firm. Once employed, a worker 

remains in the same firm all the time. With a constant probability, the new worker creates 

a new firm instead of joining an existing one. The probability that the new worker joins 

firm i is proportional to the number of firms of size xi. In the second model, firms can 

enter and exit the economy. The probability that a firm exits is proportional to the number 

of firms of the same size. When a firm closes, all of its workers exit the market. For every 

worker that leaves, a new worker enters and is hired by a surviving firm in the same way 

as in the first model. Therefore, the population size is constant. Finally, the third model 

describes how firms gradually decrease in size. The probability that a worker exits the 

market is proportional to the number of firms of the same size as her employer. When a 

firm loses all of its workers, it closes down. All other rules are the same as in the second 

model.  

In the three models, initial size of firms becomes irrelevant for long enough t. 

Therefore, Gibrat’s law holds. They also generate a stable Yule distribution, which is a 

discrete analogue to the Pareto distribution. Other variants of these models (Y. Ijiri & 

Simon, 1964, 1977; Yuji Ijiri & Simon, 1967) deal with entry of firms with 
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heterogeneous sizes and exits independent of size. They also generate heavy-tailed 

distributions. This kind of model differs from the purely multiplicative process in that 

there exists a minimum size for every firm. This acts as a bouncing threshold that allows 

the system to generate larger firms than what is possible through a purely multiplicative 

process. That is why Gibrat’s model generates a lognormal distribution and Simon’s 

models produce power laws. A critique to Simon’s models is that it takes a really large t 

to achieve convergence to a stable distribution (Krugman, 1996). Gregory Kesten 

addressed this problem by combining a multiplicative process with an additive term. 

!"!"C" $%&'D&:,&*'A5)9&::'

A more general and simpler process was proposed by (Kesten, 1973; Levy & 

Solomon, 1996). It consists of a multiplicative process and an additive term x*. The 

former is the proportional growth of firms (Gibrat’s law) and the latter represents the 

minimum firm size. Therefore, the growth process takes the form xt=max{(1+!t) xt-1, x*}. 

Clearly, x*=0 takes us back to Gibrat’s model, and a large x* is suitable for the upper tail 

of a skewed distribution. This process quickly converges to a Pareto distribution. There is 

a crucial assumption in this model: !t is normally distributed. In the case of labor 

dynamics this is a problematic assumption since firm growth rates have peaked 

distributions. This issue was later addressed by econophysicists. 

!"!"E" @9)*)F%7:-9:'.*='?5)1,%'G.,&:'

The tent-shaped distribution of growth rates (Amaral et al., 1997; Ashton, 1926; 

Little, 1962; Stanley et al., 1996) is a stylized fact that has been modeled only recently. 
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Likewise, the negative relationship between growth volatility and firm size (B. Hall, 

1987; Hart & Prais, 1956; Hymer & Pashigian, 1962; Stanley et al., 1996) seems to be an 

important property that was not modeled before. The former has been formally described 

as a double exponential distribution and the latter as a power law relationship. 

A modified version of Gibrat’s model was proposed by (Buldyrev et al., 1997; 

Stanley et al., 1996). It consists of a modification to the term of proportional growth !t. If 

a firm size is bellow the minimum size x* then !t=k(1+zt), where k is larger than one and 

zt is an uncorrelated Gaussian random number, otherwise !t=(1+zt)/k. This modification 

generates a double exponential distribution of growth rates and supports Gibrat’s law. 

Another contribution came from (Bottazzi & Secchi, 2006). Here, firms are 

conceptualized as tuples of workers that grow proportionally by one unit each period. The 

probability of adding a new worker to a specific firm is proportional to its size. This 

combinatorial approach yields a Bose-Einstein firm size distribution. The distribution of 

the growth rates is tent-shaped and is well fitted by a Laplace law. Although 

econophysics has contributed to the refinement of stochastic models, all the stochastic 

processes previously discusses lack of microeconomic foundations. 
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A model proposed by (Gabaix, 1999) tried to bridge the gap between 

microeconomic behavior and the empirical regularity of the Pareto-distributed firm sizes 

with exponent equals 1: Zipf law. Although this model was originally developed to 
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understand the growth of cities, it has been used to study firms (Saichev, Malevergne, & 

Sornette, 2009).  

The model consists of utility-maximizing representative workers and firms. 

Workers receive utility from a combination of a wage and a benefit plan from their 

employers. Additionally, they lose their job at any moment with a constant probability. 

Firms offer wages and benefit plans. The marginal product of a new hire determines the 

wage offered by firms. Offers of benefit plans are randomly determined every period. 

When workers lose their job, they search for the best combination of wages and benefits 

across the economy. If the economy is in equilibrium, there exists an equation that 

describes the growth process of every firm in terms of utilities and layoff probabilities. 

This equation is identical for every firm and is independent from their initial size, 

preserving Gibrat's law. Through exogenous shocks to the system, this process converges 

to a Zipf distribution. 

This was the first model to make a direct connection between utility-maximizing 

behavior of economic agents and the aggregate stochastic process that was previously 

developed by in the literature of firm dynamics. However, the implications of the model 

are quite trivial because the dynamics of the model still depends on exogenous shocks. 

Labor economists and game theorists have dealt with this issue arguing that networked 

structures in labor markets might be responsible for a significant amount of the dynamics. 
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The study of labor dynamics and networks dates back to the work of (Boorman, 

1975; Corcoran, Datcher, & Duncan, 1980; Diamond, 1981; Granovetter, 1973; 

Montgomery, 1991; Myers & Shultz, 1976; Rees, 1966). These studies showed that labor 

dynamics are the product of information transmission and economic interactions through 

networks. For discussions about the importance of networks in labor markets see 

(Ioannides & Loury, 2004; Jackson, 2011). 

Some economic models attempted to explain how networks contribute to labor 

dynamics. Most of them stemmed from the recent development of models about network 

formation through games and games on networks. This approach allows the study of 

employment rates and unemployment duration as the outcome of information 

transmission through job contacts. If the sources of information about open vacancies are 

interconnected in specific patterns, the study of such structure could yield useful insights 

about how, when, and where do workers find new jobs. Furthermore, these models 

overcome the problems of lack of explicit interaction and reliance on exogenous shocks 

to generate dynamics. In general, the study of labor dynamics and networks can be 

divided in two types: dynamics on fixed (or exogenous) networks and dynamics with 

endogenous network formation. Here we provide an overview of analytic models from 

both classes. 
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Models with exogenous networks concentrate on the effects that a given network 

structure might have on labor outcomes. In general, these models study networks of 

contacts through which the information about vacancies flows. The contact network is 

assumed to be constant, which allows the modeler to compute the probability that a job 

seeker hears about a vacancy. Conventionally, a worker receives information about open 

vacancies with a fixed probability and decides to pass it on to her contacts in case she is 

currently employed. 

The first of these model was proposed by (Montgomery, 1991). It studies how the 

propensity to be connected to people with similar skills –inbreeding social bias– affects 

labor outcomes. It shows that inbreeding bias plays a crucial role in wage dispersion 

because it affects how firms set wage offers through formal and informal recruiting 

methods. In a later model (Montgomery, 1994) the author studies the effect of weak and 

strong ties in employment transitions. He finds that, as long as the inbreeding bias is low, 

weak ties have a positive effect on employment rates and equality. A more recent study 

(Finneran & Kelly, 2003) explores how referral networks favor groups of workers. The 

authors find that when the structure of the network is hierarchical, there is a critical 

density level that makes it practically impossible to receive any referral offer to those at 

the lower levels of the network. This is a structural problem of the market since there is 

no intended discrimination from firms or inbreeding bias from workers. Similar results 

about critical aspects of contact networks in employment were found by (Krauth, 2003, 



18 
 

2004). The author focuses in the interplay between human capital and the richness of 

social networks within groups. He finds that structural attributes of agents in the network 

(e.g. the proportion of weak ties) have nonlinear effects in employment rates. 

Although the previous studies enrich our understanding about the effect of social 

networks in labor outcomes, they lack in dynamics. The first model that provides a 

dynamical perspective of how network structures impact employment was developed by 

(Calvó-Armengol & Jackson, 2004, 2007). It shows that networks are responsible for a 

number of empirical regularities about labor markets: positive correlation between wages 

and employment status, higher unemployment probability associated to longer 

unemployment durations, higher drop-out rates among poorly connected individuals, and 

higher unemployment in groups with higher initial drop-out rates. All these results are the 

product of contagion effects through the network. Unemployed neighbors become 

competitors for vacancies when the information comes from a friend that they have in 

common. Therefore, the properties of the network have direct consequences in the 

dynamics of unemployment. Finally, a study by (Calvó-Armengol & Zenou, 2005) 

bridged the gap between the matching function and social networks. The authors found 

that, for dense networks, unemployment rates increase with the size of the network. 
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It is often the case that social networks are endogenously generated by economic 

agents who then use them as means of interaction. To address this issue, there are models 

where the structure of the network is the product of strategic interactions. The first of this 
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type of models was proposed by (Boorman, 1975). In this model, agents have to allocate 

an effort level in order to maintain their social relations, while confronted with an 

environment where they can lose their jobs. Unemployment equilibrium levels are 

dependent on the turbulence of the labor market (the separation rate). A spin-off of 

Boorman’s model was developed by (Calvó-Armengol, 2004). Here, workers decide to 

form social ties by computing the expected payoff. Expected payoffs take into account 

the current configuration of the network topology in order to compute the probability of 

getting job offers in the future. The analysis is focused on deriving the topologies that 

would result from a Nash equilibrium. The model shows the importance of direct and 

indirect edges. The former are beneficial because they increase the chances of getting a 

job. The latter are detrimental because second-degree neighbors are competitors for the 

jobs that are transmitted by a common acquaintance. 

Despite the contribution of game-theoretic models, the connection between the 

micro behavior and the macro effects is still not well understood. This is partly due to the 

difficulty of modeling labor dynamics and networks from a rational expectations point of 

view. The networks that emerge from this process have trivial topologies (e.g. stars, 

circles, complete graphs) that do not resemble real world structures. By using 

computation, it is possible to study richer and more realistic settings. Agent-based models 

of labor markets have been developed with this purpose.  
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The agent-based literature about labor markets is broad. Many agent-based 

macroeconomic models have a labor-market module embedded. Neugart and Richiardi 

(2012) provide an overview of different types of ABMs of labor markets according to 

their modularity and the nature of the interaction. Here we present an extensive review of 

models that focus exclusively on labor markets. Furthermore, we discuss only those that 

aim to understand economic labor dynamics. We exclude sociological, organizational, 

and general macroeconomic models. 
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This microsimulation model (Bergmann, 1990) resembles in spirit to ABMs, and 

is one of the earliest computational models of a labor market. It consists of a simple 

simulation with individual records instead of autonomous agents. It is a precursor of the 

ZI-traders model (Gode & Sunder, 1993). The author describes a simple yet compelling 

model of unemployment dynamics providing pseudo-code and steps of verification. The 

objective is to show how simulation models can be used to study the macroeconomic 

effect of unemployment insurance. 

The model consists of two types of agents: firms and workers. During each 

period, firms fire and hire workers. The amounts of hiring and firing are exogenous 

parameters provided as a turnover time series. Workers can be either employed or 

unemployed. Unemployed workers are randomly matched with firms that have vacancies. 

When a match takes place, the worker is hired. An additional component is the 
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unemployment insurance. When a worker loses her job, she receives income for a 

number of periods. This is coded in the following rule: as long as a worker is qualified for 

unemployment insurance, she does not take any job offer. It is evident that the model is 

extremely simple. However, the author shows that it can provide valuable insights about 

labor markets. 

The author calibrated the model with a turnover time series where there was a 

recession. During the recession period, firms have larger turnover rates, generating higher 

unemployment in the population. She tested two scenarios: with and without 

unemployment insurance. The results show that, during recession times, unemployment 

insurance did not increase the unemployment rate (as it is commonly believed by labor 

economists). The reason is because the rejection of job offers by insured agents opens a 

chance to an uninsured agent to become employed. Therefore, the effects that can be 

deduced form standard microeconomic analysis do not have a one-to-one correspondence 

to the macroeconomic outcomes. 
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This model has been re-used in several studies (Pingle & Tesfatsion, 2003; 

Tesfatsion, 1998a, 1998b, 2001). Originally, it is an early contribution from Leigh 

Tesfatsion, who designed one of the first ABMs of a labor market. Her objective is to 

endogenously generate some aspects of labor dynamics such as entry/exit rates. She 

provides an experimental design in order to test hypotheses about how market tightness 

affects entry/exit rates. It is also one of the first models to explicitly treat contractual 
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networks. It is evident from the language and the presentation that is was written in a 

context where agent-based models were still rare, and concepts from evolutionary 

computation were becoming popular in economics. Although it is not clear why the 

author uses an evolutionary approach, it provides a fresh perspective to a field that is 

dominated by the matching function paradigm, and a natural mechanism for contractual 

networks to emerge. 

The model has three types of agents: workers, employers, and workers/employers. 

Workers have a quota of how many offers they can receive, and employers have a quota 

of how many vacancies they can open. These quotas are used as a control for the market 

tightness. Worker/employer agents are versatile actors who can take either role. Their 

population is used to control for three different market structures: a two-sided market (no 

versatile agents), a semi-fluid market (some population of versatile agents), and an 

endogenous-type market (all are versatile agents). Workers and employers are matched 

through the Gale-Shapley algorithm and they play a prisoner’s dilemma game that 

provides the utility derived from their contract. Similarly, workers are randomly 

partnered with colleagues at the workplace to play a similar game. Agents have memory 

about their payoffs, which define their strategies. Tesfatsion uses genetic programming to 

evolve these strategies and generate dynamics. 

Despite its simplicity, the implementation of the model requires competent 

programming skills. It is a relatively large model, consisting of 19 parameters. It confirms 

some results from the standard matching literature. The author suggests that measures 
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employed to evaluate efficiency of static labor market models perform poor when it 

comes to evolutionary markets. She argues that contractual networks account for the poor 

performance of static indicators since they reinforce the persistence of certain behaviors 

(such as hiring and firing) depending on the market structure. Unfortunately, the lack of 

empirical data about these networks limits the analysis. Finally, she finds that job 

capacity is the main source of market power in aggregate terms. That is, the higher the 

quote of job offers (openings) the more power a labor supplier (consumer) can exert. 
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This model (Tassier & Menczer, 2001) investigates labor market dynamics as the 

product of an evolving job referral network. Similarly to Tesfatsione’s, this model 

employs evolutionary algorithms to generate dynamics. It provides a first step to 

understanding how endogenous social networks affect job search. 

The model has workers and jobs. Initially, agents are connected at random. Jobs 

are fixed objects that can be vacant or taken. Each job pays a constant wage that is 

randomly drawn from a given distribution. Agents that have a job are fired at an 

exogenous separation rate. Every period, agents have to decide how may friends to have, 

and how much to spend in searching for a job. Agents obtain information about vacant 

jobs through direct search (which involves effort) and direct neighbors. There are 

constant costs for the number of friends and for the search intensity. By the end of a 

period, if a worker’s accumulated wealth is greater than the total costs, she survives. In 

case of survival, the agent duplicates herself as long as her wealth is above a given 
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threshold. Therefore, the population size is endogenous to the model. Other sources of 

variation are introduced by adding random noise to the marginal costs and to the 

reproduction threshold. 

The main result is the emergence of a small-world social network. The model 

sheds some lights about the economic motivations that may cause these networks to 

emerge (physics models of network formations are poor in this respect). Additionally, the 

authors found that the social network allows agents to survive longer because some 

individuals have a larger margin to select job offers, and the rejection of an offer becomes 

an opportunity for an unemployed agent. Due to the high content of evolutionary 

computation, this is a relatively large model with 11 parameters to calibrate. 
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The purpose of this model (Sapienza & Fontana, 2002) is to explore labor 

outcomes, under different theoretical frameworks of job search. It compares labor 

dynamics under limit-size search against optimal stopping rule frameworks. This is more 

of an exploratory work, showing how agent-based modeling can be used to incorporate 

heterogeneity and networked structures in models of labor dynamics. 

The model has workers and firms. Workers have skills that can be improved by 

investing in education. If workers do not invest in education and remain unemployed, 

their skills decay. Workers that reach welfare levels below a given threshold have to 

leave the market. Firms offer wages equal to the marginal contribution of the worker to 
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the firm’s production. The productivity of a firm is determined by the average skills of its 

workers. Unemployed workers are randomly matched with firms, and if the firms’ offers 

meet the workers’ reservation wage, they form a contract. Additionally, the authors track 

the underlying networks of firms and workers. The benchmark case is where workers can 

be matched with any firm and both types of agents engage in contracts without 

restrictions. Other specifications include bounded search and skills mismatch. 

The results of the benchmark case show poor in dynamics. Unemployment rate, 

workers’ wealth, profits, and other variables converge to single values. When selection is 

removed, labor outcomes are more dynamic and with regular patterns. When bounded 

search and skill mismatch are introduced, the model generates richer dynamics. In the 

long run, the model seems to converge to a steady state. All the results are described 

qualitatively. The model has five parameters and depends on multiple laws of motions. 
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This model (Fagiolo, Dosi, & Gabriele, 2004) has the purpose of emerging three 

stylized facts of labor markets from microeconomic principles: (i) the Beveridge curve, 

(ii) the wage curve, and (iii) Okun’s law. It is a refined version of a model previously 

developed by (Gabriele, 2002). It uses an evolutionary framework in the sense that failing 

firms exit the market and are replaced by new entrants. This is one of the first ABMs that 

reproduced empirically valid regularities of the labor market. 
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The model consists of workers and firms. Although the authors specify multiple 

behavioral rules for firms and workers, here we will only review the general framework 

of the model. Firms have linear production functions where labor is the only input. 

Workers form reservation wages based on their experience, and firms propose wage 

offers based on profits and applications received. When workers and firms are matched 

job applications are queued. Once all contracts have been formed, production takes place 

and aggregate supply and demand are computed in order to provide firms with 

information for the next period. Firms with negative profits exit the market and are 

replaced by “average firms”. A key assumption is that all workers lose their jobs in every 

period. Despite its simple description, this model relies heavily in stochastic variations to 

generate dynamics. For example, firms and workers have exogenous noise when they 

update their expectations. The authors model technological change as a law of motion for 

the evolution of the productivity parameters of firms. The selection of behavioral rules 

seems ad-hoc. 

The results of the model are robust. Under different behavioral specifications and 

parameterizations it gives rise to the three stylized facts previously mentioned. The 

authors demonstrate that the aggregate output is sensible to behavioral parameters. 

Hence, it sheds some light on how this kind of models can be used to assess labor 

policies. The model uses seven parameters, but most of them are difficult to calibrate 

empirically since they describe the random noise. Albeit its ad-hoc specification at the 

micro level, this model represents an important contribution to understand how ABMs 

can be used to emerge empirical regularities form the bottom-up. 
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This study (Neugart, 2004) evaluates the accuracy of the concept of the matching 

function by modeling the matching process as a decentralized process where workers and 

firms engage in labor relationships. The objective is to emerge the Beveridge curve from 

bottom-up and assess if its returns to scale are close to the ones empirically estimated. 

The model consists of workers and firms. Firms have linear production functions 

where labor is the only input. There is a given quota of how many vacancies a firm can 

open. Firms decide how many vacancies to open at a constant marginal cost. Workers can 

submit up to a given number of job applications at a constant marginal cost. In an 

evolutionary spirit, firms and workers with negative payoffs exit the market and are 

replaced by agents with randomly copied strategies from the surviving population.  

Neugart’s model has only five parameters. It is able to emerge a negative 

relationship between the number of available vacancies and the unemployment rate. Its 

Beveridge curve is L-shaped, meaning that the model can reach full employment on one 

hand, and generate excess labor supply, on the other. These results are primarily induced 

by the market tightness specified by the upper limit of how many jobs each firm can 

open. The main result is that the emerging matching function has decreasing returns to 

scale, while those of the conventional matching function are assumed to be constant. The 

author also tests the sensibility of the matching function’s parameters to microeconomic 

parameters. 
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This paper (Richiardi, 2004) presents an analytic model and an ABM of labor 

dynamics. Its purpose is to provide a framework under which labor dynamics are closely 

related to firm dynamics. This model generates empirical regularities from both labor and 

firm dynamics. The analytic model is formulated as a Markov chain and the long-run 

probabilities of transitioning between employment and unemployment are characterized 

by the model’s parameters. Then, the author agentizes the analytic model in order to 

study disequilibrium dynamics and stylized facts of firm dynamics. An innovation of the 

model is that worker agents can open their own firms, generating birth and death 

processes in the population of firms. 

The model consists of workers and firms. Workers can be employed by firms, 

unemployed, or be entrepreneurs who start a new firm. There is an exogenous cost of 

opening a new firm, which increases with the amount of labor required. Every period, 

firms open a random number of vacancies (determined by an exogenous growth process) 

and close those that remain unfilled at the end. Wages change every period through 

idiosyncratic shocks on firms. This incentivizes workers to quit. Workers form rational 

expectations about the wages in all possible employment states. Matching takes place 

when workers submit applications to different vacancies. In the ABM, worker’s 

expectations are adaptive, and the idiosyncratic shocks are correlated across firms. 

The results are very rich for a model with 10 parameters. The model emerges the 

Beveridge curve and Okun’s law. It generates skewed firm size and age distributions. 
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Unemployment rates have realistic orders of magnitude. The dynamics of the artificial 

economy produce realistic fluctuations and are associated to the business cycle. The 

model relies on the exogenous shocks in order to generate its dynamical properties. Its 

implementation is clean and robust. Its characterization in the analytic version provides a 

good idea of the general workings of the system, while its agentized version provides 

realistic labor dynamics. This model is an important contribution since it provides a well-

grounded theory about labor dynamics, and realistic results that can be used for policy 

purposes. 
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This paper (Richiardi, 2006) presents an ABM similar in spirit to (Richiardi, 

2004), but more parsimonious and incorporating endogenous dynamics. The purpose of 

the paper is show that the matching function is a feature of systems in disequilibrium. 

Hence, it questions the assumption of aggregate matching functions in equilibrium 

models. The model innovates by incorporating of skills, risk, and on-the-job search. It 

also provides very intuitive and empirically grounded micro-foundations for each 

behavioral specification. 

The model consists of workers and firms. Workers have different levels of 

productivity that are visible to firms. They can be active (searching for a new job) or 

inactive.  Both employed and unemployed agents can be active or inactive. Hence, 

workers go through a two-step decision problem. Firms pay wages that are a constant 

share of the workers’ productivity. Workers submit applications to vacancies. Therefore, 
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workers can receive multiple offers and firms can receive multiple applications for each 

vacancy. Each firm determines how many vacancies to open according to an 

“entrepreneurial” parameter (the author refers to it as the heterogeneity of business 

ideas). Firms may close if they reach negative profits or if all their employers quit. 

The main result is that the desired properties of the matching function only exist 

when the system is out of equilibrium. The model generates the Beveridge, Okun, and 

wage curves. It also produces skewed firm size and income distributions. The author 

performs policy experiments where the system undergoes massive layoffs. He 

demonstrates that some of the statistical properties of stylized facts in labor markets are 

sensible to these shocks. This paper provides evidence of the potential problems of 

employment policies that assume market equilibria when they are aimed to remedy 

economic shocks. 
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The purpose of this study (Neugart, 2006) is to evaluate the effect of training 

subsidy programs using an ABM. This model innovates by introducing multiple sectors 

and sector-specific skills. The model is simple and allows the author to design a clean 

way to identify and measure intended and unintended effects of labor policies. 

The model has workers and firms. Firms belong to one of a finite number of 

sectors. Sectors are enumerated and sequentially arranged in a circle. The distance 

between sectors represents their similarity. Therefore skills between adjacent sectors are 
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more easily transferable. The aggregate labor supply and the demand are constant. There 

are no bargaining frictions, so workers take job offers and firms hire workers as long as 

their skills qualify. Unemployment is generated by exogenous sectorial shocks. When a 

shock takes place, all firms in the affected sector close. For each firm that closes, a new 

firm opens in a non-shocked sector, ready to hire job seekers. Workers can invest in their 

skills in order to make their skills compatible with another sector. The more they invest, 

the more sectors will be able to employ them. Agents decide their levels of investment 

through reinforcement learning. Experiments are performed by placing a subsidy to the 

cost of investing in human capital. 

  The main result of the model is that subsidies to investments in human capital 

reduce unemployment rates. However, there are crowding effects from these policies 

because those workers that were not treated by the subsidy are not able to get the jobs 

that the treated population takes. The model consists of 10 parameters. The 

implementation is straightforward and the experimental design allows the author to find 

clear evidence of the macroeconomic effects of training subsidy programs. This study is 

an important contribution for demonstrating how ABMs of labor markets can be 

employed in the design and evaluating of labor programs where micro-data studies 

cannot tell much about macroeconomic effects of labor policies. 
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The purpose of this model (Lewkovicz, Domingue, & Kant, 2009; Lewkovicz & 

Kant, 2007, 2008) is to provide a computational tool that can be used to generate specific 
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features of the French labor market. More specifically, it is used to evaluate the age 

discrimination in hiring by French firms, and the effects of introducing of a new type of 

contract. The new contract intends to promote higher employability of the French youth 

by allowing a temporal hire of two years without accumulation of seniority. This model 

builds on the French tradition of microsimulation models of labor markets, such as the 

evolutionary models of (Ballot & Abraham-Frois, 1980; Ballot, 2002) and ones about the 

academic job market by (Caillou & Sebag, 2008). This paper contributes by providing an 

ABM that can be used for empirical purposes. 

The model consists of workers, firms, and employers. Workers age with time, 

enter and exit the market, search for jobs, apply to vacancies, and work according to their 

productivity. Firms create vacancies according to their budget, hire through the employer 

agents (who rank applications), and fire underperforming employees. Employer agents 

are an important component of the centralized matching process that takes place in the 

French labor market. They play a crucial role in the publication of vacancies and the 

management of applications. Additionally, there is a government agent in charge of 

enforcing different types of contracts. When firms receive applications for a vacant 

position, they decide to provide an offer based on the ranking of the applications and the 

availability of types of contracts. There are two kinds of contracts: definite term contract 

and indefinite term contract. A third type of contract –unified contract– allows firms to 

hire employees for two years, without obligation to re-hire them, and without 

accumulation of seniority. When this contract ends, the firm has to re-hire the worker 
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with one of the other two types of contracts. Additionally, firms have a quota for the 

latter contract. 

The results show that the model is capable of reproducing the empirical levels of 

unemployment for the French youth (which are twice as much as the rest of the working 

force). The authors introduce the third type of contract in the simulation in order to 

evaluate its effects on unemployment rates. Their main finding is that, in the short run, 

youth unemployment drops 6%. In the long run, total unemployment rises 0.3% more 

than what it was before the introduction of the unified contract. However, youth 

unemployment drops 5%, and 14% for middle age workers. An unexpected result is that 

unemployment rates for workers 50 years or older increases more than 3%. This raises 

questions about possible displacement effects due to the new contract. 
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This work (Martin & Neugart, 2009) is based on Neugart’s sectorial model (see 

Section 2.4.9), with the innovation of endogenous labor regulations. This study is a 

unique contribution to the field since it takes into account the regulations of the labor 

market as the product of a political process where the agents vote for the type of 

regulation they want. Like in Neugart’s model, there are sectorial shocks. This generates 

interesting dynamics between the exogenous economic shocks and the transitions 

between two regulatory regimes. The paper also presents econometric analysis of the 

artificial data in order to identify different effects and draw inference about how different 

regulation schemes affect unemployment rates. 
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This model has workers, firms, and two political parties. The economic 

interactions follow the exact same protocol as in Neugart’s sectorial model. In this model, 

workers are also voters. One political party is in favor of imposing severance package 

requirements to firms, and the other is against it. Workers cast their votes every number 

of periods, based on their average earnings during the legislatures of each party, and 

based on their ideological level. When a party is elected, it comes into power and 

implements its corresponding regulation. The severance package regulation is modeled as 

a quota to the maximum number of vacancies that firms can hold. This feature tries to 

capture the response of firms to higher costs of job destruction. 

The main result of the model is that, on average, labor regulation has no 

statistically significant effect on unemployment rates. Perhaps the most interesting result 

is that the effect of economic shocks on the endogeneity of regulatory schemes depends 

in their duration. Longer shocks allow voters to relate their earnings to the party in 

power, producing votes against it. The model is significantly larger than Neugart’s 

version (15 parameters). However, it is of a unique kind and questions the way in which 

labor policies are evaluated when they are created in response to economic shocks. 
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This study (Tassier & Menczer, 2008) analyzes the effects of social network 

structures in group unemployment rates. Although it is close to the strand of ABMs that 

study segregation from a sociological perspective, it addresses the important and 

unexplored problem of the underlying structure of the matching process, which is critical 



35 
 

to understand labor dynamics. It innovates by bringing together the notion of referral 

hiring through social networks and information transmission about jobs through an 

underlying job network. It provides a framework to study how segregation and network 

randomness affect unemployment levels of different groups in a population. 

The model consists of workers and jobs. Jobs are connected in a directed circular 

lattice that remains constant throughout the simulations. Workers are connected to each 

other and organized in two groups. Each group is connected in a circular lattice with 

variable randomness. When a worker is employed, she knows about vacant jobs through 

the job network. When a worker is unemployed, she searches for a job through her social 

network. There is a rewiring process of the social network. Each group rewires with 

different probabilities. Additionally, there is an exogenous probability that a new 

rewiring will end up connecting workers from different groups. Hence, the authors are 

able to control for the segregation levels in the social network and its randomness. 

The results show that, in general, random networks induce higher employment 

levels than regular ones, except when there are high segregation levels. Another 

important finding is that employment levels of groups with non-random connections 

decrease when the population size decreases. The model has six parameters and sheds 

some light on how the underlying structure of the matching process affects group 

employment dynamics. 
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The EURACE project (Deissenberg, van der Hoog, & Dawid, 2008) is a 

collaboration from multiple European research groups to conform a large-scale ABM of 

the European economy. As part of the project, the group from the University of Bielefeld 

developed a labor market model. This model has been used to study multiple features of 

labor markets (Dawid et al., 2008; Dawid, Gemkow, Harting, & Neugart, 2009), 

providing interesting policy insights. Since EURACE is a complete macroeconomic 

model, it is too large to be described in a few lines. Therefore, we provide a simple 

overview of the main features regarding the agents and the dynamics of the labor market 

model. The main contribution of these studies is to understand how the spatial 

distribution of regional labor markets affect economic growth and the effectiveness of 

policies that aim to upgrade workers’ skills. 

The model has workers and firms. Workers produce when they are employed and 

consume what firms produce through regional markets. Firms produce consumable goods 

using capital goods and labor. Firms and labor are spatially distributed in two regions. 

When regional markets run out of stocks, they place orders to the supplying firms. Firms 

adjust their production according to the inventory dynamics. Adjustments in production 

generate unemployment and vacancies. Firms advertise vacancies. Job seekers apply to 

advertised vacancies and form their reservation wages using their discounted last wage. 

Job seekers can be unemployed agents or on-the-job searchers. Workers have different 

types of skills and different levels for each type. Firms rank the received applications 
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according to types and levels of skills. The bargaining between firms and applicants go 

on for two rounds. Employed workers incur in commuting costs depending on how far 

they are from their employers. 

The main results are that spatial distributions have a significant effect in economic 

growth and in the effectiveness of training policies. If the two regions are almost isolated 

from each other, a uniform distribution of the training policy yields better results (in 

terms of economic growth) than localized programs. When the interaction between 

regions is restricted by commuting costs, the results are the opposite, favoring a focalized 

targeting for an intensive skill upgrade in a single region rather than a medium-level 

general upgrade. The results also show significant effects between regions in terms of 

prices and income. The model consists of 16 parameters and is very complicated. It is a 

proof of concept of how ABMs can be used for policy testing. 

!"E"#E" @*=)>&*)L:';)9-./'M&,1)5N:'

The purpose of this model (Gemkow & Neugart, 2011) is to study the effects of 

social networks in unemployment dynamics and inequality. The social network in this 

model is endogenous. Workers use their contacts as a way to insure themselves against 

unemployment. The authors employ behavioral models to motivate how agents decide the 

number of friends they will have. It is one of the first ABMs that connect the strategic 

decision of increasing social capital with labor outcomes. 
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The model consists of workers and firms. Firms demand labor stochastically, 

from a given distribution. The higher the variance of this distribution, the more turbulent 

the market becomes. Workers receive wages and maintain friendships at a constant 

marginal cost. Determining how many friends to have is achieved through the expected-

weighted attraction algorithm. The matching between workers and firms follows the same 

protocol as EURACE, with the difference that firms prioritize workers that are referred 

by a current employee. There is a second matching process for those agents that have 

decided to make more social relations. Therefore, any agent can become acquainted with 

any other agent in the economy. 

The results confirm what previous studies have showed about the importance of 

social relation: in more turbulent markets, social networks become less important because 

many acquaintances are also competing for jobs. The authors perform an experiment in 

which they exogenously raise the number of social contacts in order to study its effect on 

inequality. The treated groups experience higher employment levels, suggesting that 

social networks reinforce employment inequality. The model is large (15 parameters), 

mostly due to the learning algorithms. It provides a first guide on how to incorporate 

endogenous social networks into labor market models. This model was combined with 

the EURACE framework in (Dawid & Gemkow, 2013) in order to study how social 

networks affect wages. The authors found that richer social networks increase wage 

inequality inside groups but not between groups. 
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The study of labor dynamics dates back to the beginnings of the 20th century. 

Here, we reviewed what we consider to be the main families of theoretical models, 

according to their methodology. We have focused on economic models where the labor 

market is the object of study. We have emphasized in ABMs of labor markets since they 

have experienced more active development in the last years. All models have advantages 

and limitations; we believe that ABMs have an edge. Our main reason to believe this is 

twofold. 

First, numerous studies have shown that networks have a significant effect in 

labor markets. Conventional models and stochastic processes that are not able to consider 

networks are ignoring a central component of labor markets. Game-theoretic models of 

networks are limited in the realism of the networks that they can analyze. For ABMs, 

networks and dynamics are natural components. This does not mean that they are always 

easy to model or that every ABM model is a good representation of real labor markets. 

Further developments of method and hardware are required to turn ABMs into useful 

scientific and policy tools. Second, computer technologies and large-scale micro-data are 

making it possible to develop more realistic and detailed models of the economy. The 

natural way to exploit them is through ABMs. In contrast with other types of models, 

agent-based modeling is evolving day by day, tagged to the latest development in 

hardware and programming paradigms. This opens a window of opportunities for future 
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ways of simulating and understanding real micro-empirically-grounded models of labor 

dynamics. 
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3. EMPLOYMENT GROWTH THROUGH LABOR FLOW NETWORKS 

C"#" Z*,5)=L9,-)*'

Employment dynamics are the product of complex interactions taking place inside 

and between firms. In labor markets, human resources are continuously reallocated across 

firms, industries, and regions. In labor economics it is conventional to aggregate job 

hirings and job separations (both voluntary and involuntary) across companies to get 

pools of job changers and the unemployed (S. J. Davis, Haltiwanger, & Schuh, 1998). 

The sizes of these pools are then conceived of as being determined by rate processes over 

these pools (Mortensen & Pissarides, 1994). In reality, hiring and separation occur at 

individual companies and important information about the varieties of firm behavior is 

lost in the process of aggregating labor data into pools, with otherwise comparable firms 

experiencing quite different labor turnover. For instance, understanding how micro-

dynamics affect aggregate variables (such as employment growth) from a disaggregate 

perspective is an ongoing challenge. We demonstrate that the science of complex 

networks can be helpful in tackling this problem. 

Over the past fifteen years the important role of networks in human society has 

become readily apparent, from the topology of the internet (Albert, Jeong, & Barabási, 

1999; Faloutsos, Faloutsos, & Faloutsos, 1999) to the rise of social media. In many areas 

of science the growing availability of micro-data has made possible the systematic study 
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of networks (e.g., citation networks (Redner, 1998)) while in other domains the growth of 

computing power has led naturally to network conceptions of social processes (e.g., 

epidemiology (Halloran, Longini, Nizam, & Yang, 2002; Longini et al., 2005)). In 

economics the study of networks has essentially revolved around strategic concerns and a 

game theoretic orientation has become the norm (Bala & Goyal, 2000; Galeotti & Goyal, 

2010; Jackson & Wolinsky, 1996). Fewer studies analyze economic networks that are the 

side product of other kind of interactions, instead of being the intended consequence of 

strategic behavior. Networks of companies are an example of such structures. The first 

studies of large-scale complex networks of firms were made for the Japanese economy, 

including ownership networks (Souma, Fujiwara, & Aoyama, 2006) and costumer-supply 

networks (Konno, 2009; Saito, Berger, & Iwamura, 2007). More recent studies have done 

similar analyses for the US (Atalay, Hortaçsu, Roberts, & Syverson, 2011). 

Here we blend these motivations for studying networks, using newly available 

micro-data and the ability to work with large-scale, complex networks computationally, 

to study labor dynamics. This study contributes to the field of labor economics by 

providing the first characterization of a labor flow network for an entire economy and by 

identifying the relationship between its topological properties and employment dynamics. 

It also contributes to the field network sciences by providing evidence of complex 

networks in labor markets and their relationship to their underlying social processes. Our 

findings are robust for different countries. With this study we introduce a new way to 

analyze labor markets by coupling data from labor and firm dynamics through the usage 

of complex networks analysis. 
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This chapter is structured in five main Sections. In Section 3.1 we introduce the 

reader to the current state of understanding labor dynamics and networks. Section 3.2 

presents all the materials and methods that we used for our analysis. In Section 3.3 we 

show all the results of our study. Finally, Section 3.4 presents a discussion on how LFN 

are relevant to understand labor dynamics. 

C"!" <.,&5-./:'.*='<&,%)=:'

In this Section we describe the data sources and main methods employed for this 

study. Sections 3.2.1 and 3.2.2 describe employer-employee matched micro-datasets form 

Finland and Mexico respectively. In Section 3.2.3 we describe a complementary dataset 

from the Mexican economic census. Section 3.2.4 discusses the differences in statistical 

units between our various datasets. In Section 3.2.5 we define the concept of a labor flow 

network and describe how we construct them. We introduce the concept of null models in 

Section 3.2.6, commonly used in statistics for complex networks. Section 3.2.7 

introduces a standard measure of employment growth for firms and presents conventional 

classifications of firms according to the intensity of their growth. Finally, Section 3.2.8 

presents the statistical distributions used to characterize multiple of our empirical 

findings. 

C"!"#" A5-8.57'6.,.:&,'

We used a comprehensive dataset about labor and companies in Finland. Most of 

our results derive from it. It contains the universe of employed individuals in Finland and 

their employers (both from the private and public sectors). FLEED’s employer units are 
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enterprises, defined as economic activity carried on by one or more persons for profit-

making purposes. Although this is a broader definition than the one conventionally used 

for firms, we will use it interchangeably since it does not change our ability to measure 

employment growth. Unless otherwise specified, all the analysis was conducted using 

this dataset. 

This dataset is called Finnish Longitudinal Employer-Employee Dynamics 

(FLEED) and is provided by Statistics Finland. FLEED contains annual registries of 

every permanent resident in Finland that is employed. These records are constructed from 

administrative registries by extracting the social security number of the employed 

individuals and the identification number of their respective employers. Individuals and 

firms are anonymized through unique identifiers. FLEED consists of annual Panels with 

pairs of identifiers: employee and employer. Each Panel is constructed using the record 

available for each employed individual on the last day of the year. Therefore, if an 

individual is unemployed during the last day of the year, she will not appear in 

corresponding Panel. FLEED only captures annual movements of individuals and does 

not distinguish between workers who underwent unemployment spells and those who 

were job-changers. For most of the analysis, we used FLEED’s Panels from 2005, 2006, 

2007, and 2008. On average, each Panel contains 230,000 employer identifiers. 

We merged FLEED with Statistics Finland’s Business Registries in order to 

obtain accurate information about the size and age of each employer. These registries 

consist of annual Panels of the universe of firms in Finland. They provide information 
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about number of employees, year of birth, and year of death. In order to prevent 

identification of individual firms through their size, this variable was treated with a log-

normally distributed random noise by Statistics Finland. We linked these records to 

FLEED’s employers’ identifiers. 

C"!"!" ;LFF)5,'6.,.:&,'

We used a sample dataset from Mexico that we obtained in order to evaluate the 

robustness of our results. Although it is similar in size to the primary set, it does not 

comprise the universe of Mexican firms and workers. Its nature and sampling method 

makes it prone to be biased in ways that the primary dataset is not. Nevertheless, it is a 

useful source of information to evaluate the robustness of our results. It was used 

exclusively to test the robustness of some of our results with the Finnish primary dataset. 

We obtained this micro-dataset from the Mexican Institute for Social Security 

(IMSS after its acronym in Spanish). Like in the Finnish registries, the IMSS data 

contains records with anonymized pairs of individuals and employers. This set only 

contains records from the formal private sector. Approximately half of the employees in 

the private sector are not registered with the IMSS. Thus, they are considered informal 

workers. Additionally, nearly 16% of all Mexican workers are state-employed, so they 

are not in the IMSS records either. 

The IMSS dataset has daily resolution. When an individual joins the formal 

private sector, a record is written in order to link her to the current employer and the 
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exact date she joined is recorded. If a worker joins a different employer, the new pair of 

identifiers is recorded with the date of the movement. The sample consists of 1% of all 

registered individuals in 2008. Once individuals have been sampled, their entire labor 

history was extracted from the database, i.e. for each individual, all the identifiers of her 

past employers are listed with the respective days in which she joined them. Therefore, an 

employer appears in the dataset as long it employs at least one individual from the 

sample. In total, our sample consists of 400,000 individuals, with an average of 10 

records each. Roughly speaking, this dataset contains 270,000 employer identifiers. 

C"!"C" (&*:L:'6.,.:&,'

We obtained data about the firm size distribution of the universe of companies 

from Mexico. This dataset comes from the National Economic Census, and was 

generated by the Mexican National Institute of Statistics, Geography, and Informatics 

(INEGI for its acronym in Spanish). It consists of a geographical counting of the number 

of employees per enterprise (not establishment) in 2004. We obtained multiple binning 

configurations from this set, which allowed us to construct the empirical cumulative 

distribution of the sizes of all companies. INEGI data cannot be merged with the one 

coming from IMSS. However, it was useful to have an idea of the bias of the IMSS 

sample when employed to estimate firm sizes. 

C"!"E" ;,.,-:,-9./'[*-,:'

Table 1 shows the main properties of FLEED and IMSS datasets. Each one uses 

different definitions of employers. In FLEED, employers are enterprises. Statistics 
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Finland defines enterprises as “any economic activity carried on by one or more persons 

for profit-making purposes”. They can be either public or private. In the IMSS records, 

an employer is defined by the Federal Labor Law as “the person or entity that makes use 

of the services provided by at least one individual”. For the purpose of this study, we will 

use different terminologies, such as firms, enterprises, establishments, and employers 

interchangeably. As we will show, the topological properties of the networks produced 

from both datasets are robust regardless of the nature of the statistical units. 

 

Table 1: Employer-employee matched datasets 
Property Finland FLEED Mexico IMSS 

Employees from the universe 100% 1% 
Total period 1988-2008 1980-2010 
Number of firms for total period* 860,384 270,317 
Study period 2005-2005 2005-2008 
Number of firms during study period* 408,164 144,656 
Frequency of records Annual Daily 

Biases None Only private sector; informal workers 
not registered 

* Firms that were registered at any moment during the corresponding period. This includes companies that disappeared 
before the end of the period. In the case of Finland, it also includes firms with zero employees. 
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Consider a network in which the firms are vertices and an edge is drawn between 

firms whenever a person has worked at one company and subsequently moved to another. 

For an economy as a whole we call this the labor flow network (LFN). We use FLEED 

data to construct the LFN of Finland. The motives and means of individuals to move 
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from one employer to another are diverse, ranging from economic incentives and 

unemployment spells to personal contacts and geographic relocation. This network 

implicitly captures most of these factors since it is constructed from the actual labor flows 

of the economy. We believe that studying its structure and its relation to other elements 

of firms’ dynamics can improve our understanding of labor dynamics and the role of 

firms in employment growth. 

The construction of a LFN is rather simple. For a selected period, we count the 

total flows of labor between every two firms in both directions. Although this is a 

directed network, we found that the most interesting insights come from studying its 

structural properties as an undirected graph. Therefore, our analysis uses algorithms for 

undirected networks (with exception of in-degree and out-degree centralities). 

C"!"T" ML//'<)=&/:'

When data is available for a particular network, it is the case that such a network 

is one realization of a social process. In our case, our main LFN is the reallocation of 

labor across Finnish firms between the last day of 2005 and 2008. If we were able to let 

the Finnish workers and companies to search again, assuming the same conditions of 

2005-2008, it is possible that some properties of our LFN would not be found in the new 

LFN. In that case these properties are not robust and we cannot draw correct inferences 

from them. However, labor and firm dynamics at that scale are not easy to replicate under 

an experimental setting. For these situations, null models are useful to draw better 

inferences. 
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Null models were introduced by (Maslov & Sneppen, 2002) and, examples of 

how they are used with economic data can be found in (Fagiolo, Squartini, & 

Garlaschelli, 2013; Hidalgo & Hausmann, 2009). The main idea is to take the network 

provided by the data and randomize its structure while fixing some of the properties of 

the nodes (usually the degree). We need to create a sample of these randomized networks 

in order to estimate the parameters of interest. In our case, we generated 50 randomized 

LFNs. We indicate when an estimate was drawn from this procedure. 

C"!"U" @8F/)78&*,'?5)1,%'.*='K-58:'

In order to analyze employment growth we employ metrics from the small-

business literature. Such measures typically extend for a defined period (3 or 4 years), 

and are based on changes in the sizes of companies. In this study, firms’ sizes are 

measured as the number of employees. Since we are analyzing data from a European 

country, we use the metric developed in the OECD/Eurostat methodology (European 

Communities & OECD, 2007). Call St the size of a firm at time t, and S0 its initial size. 

Then $S is the average annual growth of such a firm for the period between t=0 and t=T: 

 

Equation 1 

!S = ST
S0

3 "1,
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Growth is not defined for firms with zero employees initially, as is evident from 

Equation 1. We added one employee to all firms in order to compute Equation 1 for firms 

with zero employees. Another common problem is defining growth for companies that 

ceased to exist at t<T, and for those that were created at t>0. We resolved this issue by 

focusing our analysis on those firms that were born in 2005 or before and still existed in 

2008. We call them survivors. 

Following Equation 1, we measured growth of all survivors and classified them, 

according to three standard taxonomies employed in small-business research and added 

two more. 

• Positive growth firm (PGF): A survivor firm with positive growth. 

• Labor flow network firm (LFNF): A PGF with at least one connection to another 

firm in the LFN. 

• High-growth firm (HGF) (European Communities & OECD, 2007): A PGF with 

average annualized growth greater than 20% per year. 

• Gazelle firm (GF) (European Communities & OECD, 2007): A HGF that is at most 

5 years old. 

• High-impact firm (HIF) (Acs, 2011): A HGF with an employment growth quantifier 

(EGQ) of two or more. 
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The EGQ is defined by (Acs, 2011) as: the product of the absolute and percent 

change in employment, expressed as a decimal. The definition of a HIF has been slightly 

modified (by adding the age requirement) to use the OECD definition of a GF.  

C"!"W" 6-:,5-4L,-)*:'

This study makes use of different statistical distributions in order to characterize 

some of the most relevant empirical regularities in the data. Here we introduce them and 

the methods employed to estimate their parameters. 

!"#"$"%" &'()*+,-./*(.01*.+2,'23,&+4)(,5'4,

The Pareto distribution is a well known, but not so commonly used distribution in 

economics. It heavy-tailed and its CDF takes the form: 

 

Equation 2 

Pr[X ! xi ]=
x0
xi

"

#
$

%

&
'

!

,
 

 

where % is known as the scaling parameter, and x0 is the smallest unit in the data. We 

estimate the Pareto distribution using maximum likelihood.  
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Sometimes variable y decays with the growth of variable x at the same rate as in a 

Paretian function. In these cases, the relationship is commonly called a power law. We 

denote a power law with the following form: 

 

Equation 3 

y = !x !! ,  
 

where &, is a normalizing parameter homologous to (x0)% in Equation 2. For this 

relationship, we estimate the parameters using OLS regressions on the logarithmic 

transformation of x and y. 

!"#"$"#" 6100+*.2,-./*(.01*.+2,

This distribution is also known as power exponential or exponential power. More 

specifically, we use the skewed version of this distribution since some of the empirical 

regularities have an asymmetric nature. The PDF of the skewed Subbotin distribution 

takes the form (Ayebo & Kozubowski, 2003): 
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Equation 4 
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where #(·) is the standard gamma function, ' is the location parameter, ( generates the 

skewness, ) is the scale parameter, and % is the shape parameter. We estimate the four 

parameters of the distribution using the grid method used by (Perline, Axtell, & 

Teitelbaum, 2006). The estimated parameters are the ones that minimize the 

Kolmogorov-Smirnov statistic. 

C"C" G&:L/,:'

In this Section we present our main findings. In Section 3.3.1 we present a short 

comparison between Finland and Mexico in order to provide some background on the 

structural differences that might underlie our datasets. In Section 3.3.2, we confirm the 

heavy-tailed nature of firm dynamics in our datasets. We characterize the topology of the 

Finnish and the Mexican LFNs in Sections 3.3.3.1 and 3.3.3.2 respectively. Both 

networks have statistical properties of complex networks. Section 3.3.4 presents a 

correlation analysis of the relationship between economic properties of firms and their 

structural position in the LFN. We find that multiple of these patterns are well defined 

and highly non-linear, suggesting a multiplicity of regimes in different groups of firms. In 

Section 3.3.5 we employ community detection algorithms to let the Finnish LFN tell us 
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what are the most statistically robust communities of firms when it comes to labor 

reallocation. We find that the configuration of these communities does not match the one 

suggested by conventional ways of grouping firms (e.g. industries and municipalities). 

Section 3.3.6 presents a study of the firm growth and LFNs. We show that that the 

position of a firm in the LFN can provide strong indicators of future potential growth. In 

Section 3.3.7 we present a firm taxonomy using the network properties of companies. We 

are able to detect a few classes of firms with interesting features such as high shares in 

employment creation and destruction. Finally, in Section 3.3.8 we illustrate the 

dynamical process through which a LFN if formed. We show that it only takes a couple 

of months of labor flows to achieve a state in which the LFN shows the robust stylized 

facts documented in Sections 3.3.3.1 and 3.3.3.2. 

C"C"#" P5-&2'()8F.5-:)*'

As indicated in the Section 3.2, we used two datasets in order to test the 

robustness of our results. Lack of more comprehensive data for Mexico prevents us from 

doing any kind of comparative analysis. However, in order to provide some background 

regarding structural differences between Finland and Mexico, Table 2 presents 

macroeconomic information about Finland and Mexico during the period under study.  

Although Mexico is considerably larger than Finland (both in population and 

GDP), the Nordic economy produces nearly twice as much as Mexico in per capita terms. 

The Finnish government provides unemployment benefits while in Mexico this is a 

private service that only a fraction of the formal sector acquires. Therefore, a Finnish 
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worker has incentives to remain unemployed longer. This is reflected in some of 

Finland’s indicators, such as the persistent higher unemployment rates, lower self-

employment rates, and considerably higher long-term unemployment rates. One of the 

most noticeable structural differences is the role of technology and R&D. The share of 

ICT to value added from the Finnish business sector is higher than that of Mexico. 

Additionally, Finland is known to be one of the countries with the highest investment in 

R&D as a percentage of its GDP (more than 3%).  Finally, the structure of the 

manufacturing sector in terms of the firm size distribution seems to be the opposite 

between the countries. Given that both economies show remarkable differences, we 

expect that evidence of common features between both LFNs would be an indicator of 

robustness.  

 

Table 2: Comparison between Finland and Mexico 
 2005 2006 2007 2008 

 Finland Mexico Finland Mexico Finland Mexico Finland Mexico 
Population1 5,246.10 103,946.90 5,266.27 104,874.30 5,288.72 105,790.70 5,313.40 106,682.50 
GDP2 161.10 1,293.79 174.53 1,439.30 191.28 1,530.84 202.34 1,627.07 
GDP per capita3 30,707.92 12,460.54 33,140.17 13,740.55 36,167.38 14,485.97 38,080.46 15,267.18 
Employment rate4 68.52 59.65 69.58 60.95 70.46 61.06 71.25 61.31 
Self-employment rate5 12.67 35.54 12.90 34.46 12.65 34.34 12.85 33.94 
Part-time employment5 11.20 16.82 11.41 16.96 11.71 17.57 11.50 17.58 
Unemployment rate6 8.30 3.60 7.70 3.60 6.90 3.70 6.40 4.00 
Long-term unemployment7 24.88 2.33 24.82 2.55 22.97 2.72 18.17 1.65 
GDP per hour worked8 17.90 5.46 19.39 6.02 21.20 6.40 22.56 6.75 
GDP on R&D9 3.48 0.41 3.48 0.39 3.47 0.37 3.72 n/a 
Share of ICT in value added10 n/a n/a n/a n/a n/a n/a 13.88 4.99 
Firms in MFG, less than 1011 83.73 11.49 83.28 11.00 83.15 9.45 81.64 n/a 
Firms in MFG, 50 to 24911 3.65 42.55 3.75 42.40 3.75 42.74 3.90 n/a 
Firms MFG, more than 25011 1.01 27.67 1.03 28.83 0.99 30.01 1.06 n/a 
Total number of firms 246,149 3,001,610 291,560 n/a 322,108 n/a 332,586 4,724,892 
1 Thousands 
2 Billion US dollars, current prices and PPPs 
3 US dollars, current prices and PPPs 
4 Share of persons of working age in employment 
5 As a percentage of total employment 
6 As a percentage of labor force 
7 Persons unemployed for 12 months or more as a percentage of total unemployed 
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8 GDP per capita divided by the average of total hours worked annually by a person 
9 Percentage of GDP invested in research and development 
10 Percentage of the value added from the business sector that comes from the Information and Communication 
Technologies (ICT) 
11 Number of firms in the manufacturing sector (MFG) with size in number of employees 
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Some of the most robust evidence about the heavy-tailed character of firm 

dynamics is (i) the skewed firm size distribution, (ii) the tent-shaped growth rates 

distribution, and (iii) a power law relationship between the size of a firm and the 

volatility of its growth. These features have been documented for different countries and 

a wide variety of datasets. The oldest of these empirical regularities is the firm size 

distribution, first documented by French economist Robert Gibrat (1931). Using a sample 

of US firms, Ijiri & Simon (1977) showed that its tail followed a Pareto distribution. 

Using data from the universe of firms in the US, Axtell (2001) found that the entire 

distribution was a Zipf law . In fact, the last 20 years have seen nearly 50 different studies 

about the firm size distribution for more than 80 countries, using diverse data sources. In 

most cases they confirm the findings of the previously mentioned studies (see Appendix 

for a list of these studies). 

Another empirical finding that has been thoroughly documented is the distribution 

of the growth rates of companies. First discovered by Stanley et al. (1996), this empirical 

regularity has been found in different countries. Its shape tends to be tent-shaped when 

plotted on a log-log scale. Amaral et al. (1997) found similar results growth in sales from 
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publicly traded firms in the US manufacturing sector. These results have been confirmed 

for several other countries (Bottazzi, Cefis, & Dosi, 2002; Bottazzi & Secchi, 2005; 

Fabritiis, Pammolli, & Riccaboni, 2003; Fagiolo, Napoletano, & Roventini, 2008). Most 

of these results argue that the distribution of the growth rates is a Laplace. Using data of 

the universe of firms from the US, Perline et al. (2006) showed that this distribution is 

asymmetric and follows the skewed Subbotin in Equation 4. 

An additional result about firm dynamics is a power law relationship between the 

initial size of a company and the volatility of its growth rate. Measured as standard 

deviation, the volatility of growth of firms declines with their size. This was found by 

Stanley et al. (1996) for the US and has been documented for multiple datasets (Amaral 

et al., 1997; Matia et al., 2004). Other studies have showed similar results for firms and 

GDP in countries (Canning, Amaral, Lee, Meyer, & Stanley, 1998).  

We analyzed our datasets to evaluate if the dynamics of firms from Finland and 

Mexico resemble those documented in the studies previously mentioned. The plots in 

Figure 1 show that our data sets capture those empirical regularities. Panel A shows the 

firm size distribution of Finland and Mexico. Both follow Pareto distributions (Equation 

2) with scaling parameters %=2.698±0.005 and 4.429±0.014 respectively. Since the 

Mexican sample is biased, we estimated the firm size distribution for the universe of 

Mexican firms using the national economic census of 2004. The estimated scaling 

parameter is % =0.845±8.903e-05, quite close to a Zipf distribution. 
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Panel B in Figure 1 shows the distribution of the growth rates. Both countries 

present the tent-shaped pattern when the y-axis is plotted in logarithmic scale, being 

Mexico the one with a higher skewness for the Subbotin distribution in Equation 4 

((=0.87). Finland growth rates are more symmetric with a (=0.95 (considering that (=1 

yields the symmetric power exponential distribution). Both distributions are centered at 

zero, which conforms to earlier studies. 

 

 
Figure 1: Stylized facts of firm dynamics. 

The scattered plots in each Panel are stacked on top of the red (Mexican) data for clarity of the presentation. Volatility 
of growth rates in Panel C is measured as the standard deviation of the growth rates of firms of the corresponding size. 
The black solid fits in Panel C correspond to estimations using only data from firms with 50 or more employees. 

 

We tested the power law relationship between the size of firms and the volatility 

of their growth rates. Earlier studies of this stylized fact construct logarithmic bins of the 

sizes of firms and compute the volatility for each bin. This produces clean data points 

with a high R2 for the fitted model. We observed that for these studies, the slope between 
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the first and the second bins tend to be nearly horizontal. This implies that most of the 

decay in growth volatility takes place between medium and large firms. Additionally, 

most of the data used for earlier studies comes from publicly traded firms registered in 

COMPUSTAT, which biases the sample towards larger companies. We investigated the 

robustness of this pattern using our datasets and both cases confirmed our conjecture. As 

showed in Panel C of Figure 1, there is no decay of growth volatility for firms with 

approximately less than 50 employees. The power law relationship becomes clear for 

bigger companies. Fitting Equation 3 to the data we obtained a scaling parameter of 

%=0.353±0.044 (R2=0.2) and %=0.468±0.061 (R2=0.414) for Finland and Mexico 

respectively. These results are close to the ones found in earlier studies. However, they 

change considerably if we restrict the data to larger firms where the structure of the data 

shows a clear negative relationship. In this case, Finland has %=0.465±0.063 (R2=0.2) and 

Mexico has %=0.884±0.157 (R2=0.373). Our R2 is considerably lower than those of earlier 

studies because we did not bin the data otherwise we obtain similar results. 

C"C"C" 3.4)5'K/)1'M&,1)5N:'

Table 3 shows the first statistics from the LFNs of Finland and Mexico. Both of 

them are similar in size and density. The Finnish network is half as clustered as the 

Mexican one. The difference in the diameter is 12 firms, and the average shortest path 

length differs in almost one enterprise. This means that Finnish labor can be reallocated 

in far-away firms with fewer employee-employer matches than the Mexican one. The 

most central firm in Finland has a more preponderant role in labor flows and, on average; 
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each company sends and received workers to and from two other companies. We found 

that the most central company in Finland has a more preponderant role in labor flows 

than its Mexican homologous. This makes the process of labor flows more centralized. 

Nevertheless, most labor movements occur in a distributed way across the economy. This 

process is so extensive that in OECD countries, it accounts for more than 20% of total 

employment (Cahuc & Zylberberg, 2006). In relatively short periods, labor flows can 

connect most of the economy. Proof this is the existence of a gigantic component in both 

LFNs. Such a component connects about 80% of the employers that have at least one 

worker. 

!!

Table 3: LFN properties 

 

Number 
of firms 

(Number 
of edges) 

Clustering 
coefficient 
(Network 
density) 

Network 
diameter 

(Average path 
length) 

Centralization 
index inflow 

(outflow) 

Number of 
components 

(Firms in largest 
component) 

Average in-
degree 

(out-degree) 

Average 
flow size 

(Standard 
deviation) 

Finland 118,870 
(250,222) 

0.0340 
(1.77e-5) 

20.00 
(5.00) 

0.0130 
(0.0138) 

11,377 
(78.80%) 

3.08. 
(2.11) 

1.40 
(8.23) 

Mexico 163,666 
(298,238) 

0.0658 
(1.11e-5) 

32.00 
(5.84) 

0.0076 
(0.0082) 

8,870 
(87.79%) 

2.86 
(2.38) 

1.26 
(1.68) 

These measurements consider only firms with at least one connection in the LFN. 
 

!"!"!"%" 7.22./8,9+:+;+<=,

Labor flows are heavy-tailed. This means that extreme events involving large 

flows occur more often than would be expected if labor reallocations were normally 

distributed. The degree distribution follows Equation 2 with %=3.19±0.003 (Panel A in 

Figure 2). The size of the labor flows between pairs of firms (the LFN links) can be fitted 
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to the same distribution with %=11.58±0.02 (Panel B in Figure 2). An average Finnish 

firm in the LFN receives 2.95±0.07 workers from 3.08±0.03 firms and sends 2.95±0.08 

to 3.12±0.04 firms. 

 

 
Figure 2: Topology of the labor flow network from Finland 

Data from Panels A and B were fitted using maximum likelihood estimation. Due to the unusual magnitude of the 
scaling parameter estimated for Panel B, we do not think it is a power law. However, other skewed distributions do not 
produce better fits under the Kolmogorov-Smirnov criteria. We used kernel regression to identify critical regions in 
Panel C. Estimations in Panel D were made with OLS. Panel E shows the universe of firms in Finland. Only 1% of the 
edges are drawn. The size of the node represents the degree. The color identifies firms with the same k-core index. The 
image was produced with the visualization tool LaNet-vi and it shows the organization of the LFN into a core-
periphery structure. Groups of firms are less tightly connected as we move from the center to the outside rings. 
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As in other complex networks, the topology of the LFN encapsulates structural 

information about the labor market. This relates to the connectedness that nodes have in 

terms of their neighborhood. In labor dynamics, we interpret connectedness as the 

accessibility that an individual has to other firms, given the position of her last employer 

in the LFN. Accessibly to firms can have different connotations, e.g. geographical, social, 

educational, industrial, etc. What is important is the close relationship between access to 

firms and access to vacancies or job opportunities. We believe that this is the essence of 

the underlying mechanism that drives labor reallocation dynamics and employment 

growth. 

We analyzed the tendency of firms to be connected to firms with similar number 

of connections by looking at the average neighborhood degree. If the two variables are 

positively (negatively) correlated the network is said to be assortative (disassortative). 

Panel C in Figure 2 shows that when Finnish firms have 35 connections of more, the LFN 

becomes disassortative (Pearson r of -0.22 sampling null models). This is a peculiar 

property since evidence from several datasets shows that social networks tend to have an 

assortative character while technological networks are often disassortative (Newman, 

2002). 

A firm is structurally important in its neighborhood if it provides workers with 

means of mobility. Such means take the form of human capital, social capital, 

geographical proximity, or any other asset that is valued enough to reallocate the 

outgoing labor. A firm that facilitates such mobility is key in labor reallocation because it 



63 
 

becomes a middleman for its neighbors. Its absence restricts mobility to fewer firms, 

organized in smaller neighborhoods. We measured the clustering coefficients to estimate 

the structural importance of firms. Panel D in Figure 2 shows that clustering coefficients 

decrease with degree through a power law relationship. The estimated scaling parameter 

for the sampled null models is %=0.64±0.003 with an R2=0.6; it is evidence of a 

hierarchical structure in a complex network (Ravasz, Somera, Mongru, Oltvai, & 

Barabási, 2002). Individuals in a hierarchical LFN have access to more firms, and more 

communities of firms, if their employers are in a higher level of the hierarchy. Here, 

clusters of nodes of a given level tend to be connected to a common cluster at a higher 

level. A cluster at an upper level becomes the broker of different communities from lower 

levels. This gives rise to a core-periphery structure of the economy. 

We illustrate the core-periphery structure of the universe of Finnish firms in Panel 

E of Figure 2 through a k-core decomposition. The visual representation (Alvarez-

Hamelin, Dall’Asta, Barrat, & Vespignani, 2005) shows the organization of the LFN into 

different communities. The firms in the center are the ones at the top of the hierarchy. 

The further a firm is from the center, the lower its degree, its hierarchical level, and the 

tightness of its community. Job-search-wise, individuals in peripheral firms would have a 

harder time finding vacancies due to poor connectivity. Therefore, we are interested in 

investigating if there is any relationship between LFNs and employment. 



64 
 

!"!"!"#" >)?.@'2,9+:+;+<=,

Our results from the Finnish LFN represent the universe of firms and employed 

individuals in this country. A natural question is how robust are our findings regarding 

other countries? The purpose of this exercise is to show evidence that the topological 

characteristics of LFNs are robust across economies. We constructed a LFN using the 

support dataset from Mexico. Similarly to the Finnish data, we counted annual flows of 

labor at the end of each year of the sample period. This gave us a network with more than 

160,000 Mexican firms, with similar density to the Finnish one (see Table 3 for a 

comparison).  

Despite the differences between Finland and Mexico, and between the two 

datasets, it is remarkable that most of the statistical patterns describing the topology of 

the LFNs are robust across countries. Panel A in Figure 3 shows that the degree 

distribution of the Mexican LFN is (2), with %=3.17±0.005. The scaling parameter for the 

fitted labor flow size distribution (Panel B of Figure 3) is quite high for a heavy tail: 

%=9.44±0.015. Panel C shows that this network is degree-disassortative, which is 

different from the Finnish LFN for firms with less than 35 connections. Finally, Panel D 

provides evidence of a hierarchical structure in the Mexican network.  
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Figure 3: Topology of the labor flow network from Mexico 

Data from Panels A and B were fitted using maximum likelihood estimation. Due to the unusual magnitude of the 
scaling parameter estimated for Panel B, we do not think it is a power law. However, other skewed distributions do not 
produce better fits under the Kolmogorov-Smirnov criteria. We used kernel regression to identify critical regions in 
Panel C. Estimations in Panel D were made with OLS. Panel E shows the sample of firms from Mexico. Only 1% of 
the edges are drawn. The size of the node represents the degree. The color identifies firms with the same k-core index. 
The image was produced with the visualization tool LaNet-vi and it shows the organization of the LFN into a core-
periphery structure. Groups of firms are less tightly connected as we move from the center to the outside rings. 
 

In a contemporary but independent study, Gianelle (2011) constructed a LFN for 

the industrial region of Veneto, Italy. It consisted of all the workers and employers from 

the private sector of Veneto in the decade of the 1990’s. His network had approximately 

380,000 vertices. His results confirm the robustness of our findings regarding the Pareto 

distribution of the degree distribution of LFNs. A different network notion —bi-partite 
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graphs of workers and firms— has been used for a similar analysis, finding Pareto degree 

distributions (Schmutte, 2010). 

A different but related type of firms network is the supplier-customer ones. They 

have been studied comprehensively for Japan by (Konno, 2009; Saito et al., 2007), where 

it was found that a network of 800,000 Japanese firms connected through economic 

transactions has the scale-free and hierarchical properties that we have found in our 

LFNs. Although these networks are of a different nature, they share common features 

with LFNs, suggesting the important role of firms’ dynamics in economic systems. 

C"C"E" M&,1)5N:'.*=',%&'@9)*)87'

An advantage of the FLEED dataset is that it can be merged with the Finnish 

business registries. This allowed us to go beyond simply characterizing the LFN topology 

in order to explore its relationship to the economic attributes of firms. We measured 

network properties for the 2005-2008 period in order to study their relationship to initial 

firm size and age. This helps to identify groups of firms that have particular structural 

roles in the LFN, firms that could be important for labor reallocation. All the results 

presented throughout the rest of our study are only for Finland. 

We found that firm size and its degree are strongly correlated (Pearson r of 0.83), 

and that degree volatility increases as firms become larger (see Panel A in Figure 4). 

However, degree and firm age are more complicated. Panel B in Figure 4 shows that the 

correlation between age and the average degree of the group exists only for firms less 
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than 50 years of age (Pearson r of 0.79). This suggests that LFN formation is not 

determined by a pure Yule multiplicative process, a model commonly used to explain 

firms’ growth (Gibrat, 1931; H. Simon, 1955; Yule, 1925) and more recently applied to 

scale-free networks (Barabási & Albert, 1999). It means that if the workers would tend to 

flow towards older firms, the latter would be hubs. This is clearly not the case for the 

Finnish LFN. 

 

 
Figure 4: Correlations between network properties and economic variables 

Critical regions in Panels B and C were identified using kernel regressions. 
 

Firm size can tell us something about the structural importance of a firm in its 

neighborhood. Panel C in Figure 4 shows a positive correlation between size and average 

clustering coefficient for firms in groups with less than 28 employees (Pearson r of 0.67 

after null model estimation). This relationship is negative for bigger firms (Pearson r of -

0.72). Both small and large firms are middlemen in their communities. Large firms 

connect different groups of firms due to their higher position in the hierarchy. Small 
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firms connect other small and medium-sized individual firms that, otherwise, would not 

be part of the LFN. Finally, Panel D in Figure 4 suggests a positive relationship between 

degree and growth (Pearson r of 0.44). 

C"C"H" ;&9,)5:\'G&>-)*:\'.*='()88L*-,-&:'

Identifying the target population of an employment policy is crucial for its 

success. Conventionally, firms are classified into industries or geographical regions at 

some particular level of aggregation. It is natural to think that firms in the same class tend 

to interact more with each other. Labor-wise, we would expect that a worker employed 

by Chrysler in Detroit would more likely get a job in Michigan and/or in a firm that falls 

into a related industrial classification. This does not seem to be the general case in 

today’s labor market. Skill-based technical change of industrialized economies has 

increased the value of transferable and non-cognitive skills (Heckman, Stixrud, & Urzua, 

2006). Today, it is rare to make a career in a single firm. Therefore, job changes are 

becoming more common. In the U.S., job-to-job flows have increased nearly 60% during 

the last decades (Stewart, 2002). The magnitude of job-to-job flows is nearly twice the 

number of employment-unemployment transitions (Fallick & Fleischman, 2001; 

Nagypal, 2008) for this country. In the case of Finland, industries and regions are more 

connected than ever (Ilmakunnas & Maliranta, 2005; Maliranta & Nikulainen, 2008). 

Thus, defining communities of firms to be the target of employment policies becomes a 

major challenge. 
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Labor policies that use standard classifications can incur in two types of errors 

when defining their target population: (i) exclusion of important firms and (ii) inclusion 

of irrelevant firms. Imagine that the wood manufacturing industry requires specific skills 

to use a new technology, and that firms are not able to provide enough training to meet 

their demand for trained labor. On-the-job training programs are a common solution. 

Here, the government finances wood manufacturers to provide training that meets their 

needs. However, now imagine the LFN tells us that this sector receives a substantial 

amount of labor from the recycling industry. Government financing training programs for 

firms from the recycling sector could improve the program’s impact. Similarly, such a 

program could be more efficient by discarding wood manufacturers that do not show 

evidence of facilitating labor mobility. Hiring employees from neighboring firms (or 

sectors) can meet their demand for skills. 

Figure 5 presents the composition of the Finnish LFN by communities. Panel A 

and B illustrate how the conventional industrial classification do not match the 

arrangement generated by labor flows. The nodes in this chart represent entire industries 

at the three-digit classification level (larger nodes have more firms). The color gradient 

represents different industries at the two-digit classification level. If subsectors of a two-

digit sector would exchange labor between them with higher propensity than with other 

sectors, then by grouping the nodes according to the “attraction” represented by their 

edges should produce a layout where sectors of the same color are visually clustered. 

This is clearly not the case since the color gradient seems well mixed throughout the 

entire graph. Similar results occur for municipal classifications. In Panel B we provide 
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two and three-digit municipal aggregations, with the gradient representing the 

geographical position form north to south. In both industrial and geographical cases, non-

labor based classifications do not appear to be representative of the community structure 

that underlies labor dynamics. We provide more rigorous evidence of this claim by 

analyzing the structure of the LFN at the firm level employing community detection 

algorithms. 

 

 
Figure 5: Communities of firms 

Panels A and B provide a visual example of clusters in a reduced version of the LFN. The nodes represent 
industrial/geographical sectors as defined by the three-digit classifications from Statistics Finland. In Panel B we 
provide information about the population of the eight largest cities in the country in order to illustrate the high 
concentration in southern districts. For both Panel A and B, the color gradient corresponds to two-digit classifications. 
Their networks are laid out by the Force Atlas algorithm, which groups nodes according the strength of their ties. 
Panels C and D show the density matrices of the detected communities and the predefined industrial/geographical 
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sectors. Each column has been normalized to illustrate the diversity of sectors in each community as a heat map. Cells 
represent the share of firms that each industry/region has in its respective community. The normalized total number of 
firms in each community is plotted on top of the heat maps. An inverted series of the Herfindahl–Hirschman index is 
plotted in charts bellow the heat maps. 

 

Network community detection methods can complement other ways of 

characterizing the target population. There are many methods to detect such communities 

in networks (Fortunato, 2010). A popular approach is the maximization of a modularity 

score, defined as the difference between the number of edges inside a community and the 

expected quantity if such edges were placed at random (Porter, Onnela, & Mucha, 2009). 

There are many algorithms that try to discover communities by partitioning the network 

and evaluating the modularity score. If the score is maximized and the partitions are not 

trivial, then we have evidence of communities. 

In Panels C and D of Figure 5 we present the results of two community detection 

algorithms that perform especially well in large-scale complex networks (Blondel, 

Guillaume, Lambiotte, & Lefebvre, 2008; Newman, 2006). The approaches use different 

ways of maximizing modularity. Therefore, their results differ. Our purpose here is to 

show the disparity between the communities that are identified using the LFN and the 

ones that are defined by industrial and geographical classifications. The discussion of 

which algorithm is more suitable for labor policies is something that we will leave for 

future inquiries. Vertical patters indicate the presence of communities composed of firms 

from different sectors or regions (type i error). Horizontal patterns indicate that there are 

different communities inside the same sector or region (type ii error). If there were a 
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strong correspondence between detected communities and conventional categories, each 

community would show a high concentration index. We found that more than 70% of the 

communities detected via leading eigenvectors had a Herfindahl–Hirschman index (HHI) 

lower than 0.5, considered low. For communities detected using the multilevel algorithm, 

79% had a HHI<0.6 for industries and 62% for geographical regions. We should point 

out that we used two-digit industrial and geographical classifications, which are the most 

aggregate. When using less aggregate classifications, the HHI drops because members of 

a community that used to belong to the same industry or region now belong to different 

ones. 

C"C"T" @8F/)78&*,'?5)1,%'

A common policy approach to promote employment growth is the creation of 

programs that are targeted to firms that show signs of potential growth. Identifying these 

firms is often a challenge since understanding the underlying causes of a company’s 

growth remains difficult.  

Conventionally, the firm-dynamics literature employs the size and age of firms to 

identify their potential growth. For example, small-business advocates tend to argue that 

the size of a firm is negatively correlated with its growth. Since the work of David Birch 

(1994; 1981, 1987), this has been the dominant paradigm in the small businesses 

literature. Birch argued that small rapidly growing businesses, which he called gazelle 

firms (GFs), were responsible for most employment creation. Acs (2011) found that when 

we account not only for proportional grow, but also for the effect on employment, there is 



73 
 

a subclass of gazelles that growth significantly more intensively; he calls them high-

impact firms (HIFs). A posterior study (Haltiwanger, Jarmin, & Miranda, 2010) 

questioned the rationale behind such classifications by showing that the relationship 

between firm size and growth rate becomes irregular when controlling for age. 

We propose the use of LFNs to identify potential growth of firms. Since LFNs 

capture structural information about the dynamics of labor, measures of the structural 

importance of a firm in the network may contain useful information. We ran a logistic 

regression of the probability that a firm experiences positive growth between 2005 and 

2008, as a function of conventional predictors (initial size and age) and its LFN 

characteristics. The network covariates included measures of network centrality, 

clustering, and geographical assortativeness. In order to prevent spurious relationships, 

we computed the LFN metrics for the period 2002-2005. 

Table 4 shows the network properties of firms can be used to identify the 

likelihood that a firm will experience positive growth. Once we introduce the network 

covariates, the marginal effect of the initial size becomes significant and consistent with 

the literature: larger firms are less likely to experience positive growth. Firms with higher 

in-degree and higher closeness are more likely to grow. Companies that are part of 

numerous shortest paths between two other firms are less likely to increase employment. 
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Table 4: LFN and employment growth 

 
(1) (2) (3) (4) (5) (6) (7) 

 
Pr[!size>0] Pr[!size>0] Pr[!size>0] Pr[!size>0] Pr[!size>0] Pr[!size>0] Pr[!size>0] 

Size in 2005 1.92e-05 2.07e-06 -0.000413*** -0.000333*** -0.000392*** -0.000384*** -0.000374*** 
(2.33e-05) (2.41e-05) (1.00e-04) (9.25e-05) (9.96e-05) (9.87e-05) (9.83e-05) 

Age in 2005  
0.00140*** 0.00139*** 0.00117*** 0.00115*** 0.00114*** 0.00110*** 

 
(0.000118) (0.000118) (0.000119) (0.000119) (0.000119) (0.000119) 

In-degree   
0.00287*** 0.00152*** 0.0101*** 0.00983*** 0.00924*** 

  
(0.000454) (0.000387) (0.000804) (0.000799) (0.000798) 

Closeness    
0.00788*** 0.00698*** 0.00666*** 0.00591*** 

   
(0.000359) (0.000363) (0.000366) (0.000379) 

Betweenness     
-3.499*** -3.360*** -3.214*** 

    
(0.335) (0.331) (0.331) 

Clustering 
Coefficient      

0.000816*** 0.000846*** 

     
(0.000139) (0.000139) 

Neighbors Same 
Municipality       

-0.000297*** 

      
(4.12e-05) 

Observations 55,180 55,180 55,180 55,180 55,180 55,180 55,180 
Logistic regressions with marginal effects of covariates. The model was performed for the Finnish dataset. Non-
survivor firms were excluded. Closeness, betweenness, clustering coefficients, and neighbors in same municipality are 
in percentages. It must be noted that although closeness and betweenness are in percentage, their empirical range is 
quite restricted. For example, the firm with highest betweenness has a level of nearly 7%, thus the high marginal effect. 
Standard errors in parentheses. *** significant at 1%. 

 

Neighborhood metrics of firms also yield useful information. When firms have 

higher clustering coefficients, it means that they live in better-connected communities. 

These firms are more likely to produce positive employment growth. Additionally, if a 

firm has a higher percentage of neighbors from the same municipality, it is less likely to 

experience positive growth. 

Given the evidence that LFNs can be useful to identify employment growth, we 

proceed to study the contribution of firms to employment growth. We compare 

employment growth from different groups of firms according to Equation 1 and using 

standard classifications form the small-business literature and one that considers the LFN 

(see Section 3.2.7). Employment growth in a class of firms is measured as the sum of the 

net growth of all the companies of that group, in terms of the number of employees. This 

is a standard procedure in this type of exercise. Using net growth implies that the total 
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employment growth of an economy is measured exclusively through firms that 

experience positive growth. Therefore, the following results are focused on subgroups of 

such firms. We found that LFNFs contribute to 88.3% of employment growth in Finland 

while the second largest contributor –high-growth firms (HGFs)– produce 63.5%. LFNFs 

represent 7.1% of all firms in Finland. They are more common than HGFs by 0.9%. 

Employment-wise, LFNFs are more productive (see Table 5). 

 

Table 5: Employment by types of firms 

 
Labor Flow 

Network Firms 
High Growth 

Firms 
Gazelle 
Firms 

High Impact 
Firms 

Average firm size 6.0 1.7 1.7 1.8 
Average firm age 13.6 11.1 2.7 8.4 
Employment growth share 88.3% 63.5% 21.1% 32.1% 
Firms share 7.1% 6.2% 1.8% 3.1% 
Employment growth per firm 3.0 2.5 2.9 2.5 
Average incoming labor 4.3 2.3 3.0 2.4 
Average outgoing labor 2.2 0.7 0.9 0.7 
Average turnover 1.8 2.3 2.3 2.3 

Firms were classified using the taxonomy presented in the Section 3.2.7. Employment growth was measured only for 
survivor firms. Shares are in terms of the total employment growth of the Finnish economy. 

 

HGFs, GFs, and HIFs are predominantly composed of firms with initial size zero 

(about 80%), which explains part of their explosive growth. This proportion drops to 44% 

for LFNFs. GFs and HIFs are subsets of HGFs. Some LFNFs intersect each one of those 

groups and some do not belong to any of them (Panel A in Figure 6). This means that, on 

one hand, a subpopulation of HGFs, GFs, and HIFs is heavily composed of isolated 

companies that do not participate in any flow of workers with any other firm in the 
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economy. On the other, LFNFs might include firms that do not growth so intensively, but 

that take part in the labor reallocation process. As showed in Figure 6, an average LFNF 

has six employees and is 13.6 years old, which makes it larger and older than the average 

firm in one of the other classes. LFNFs receive more workers and also send more labor to 

other firms. The LFNF turnover rate is of 1.8 workers; 0.5 workers lower than other types 

of firms. A LFNF produces a net average of three jobs. 

 

 
Figure 6: Classification of firms and industrial participation 

The Venn diagram is approximately proportional to the number of firms in each category. The bar chart compares total 
employment of each group in each sector. Industries are classified using the two-digit European Union's classification 
of economic activities, NACE. 

 

From all firms with positive growth (PGFs), only LFNFs are present in all 

industrial sectors (Panel B in Figure 6). They are, consistently, the subclass with most 
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firms and employment across sectors. Therefore, classifications that are based exclusively 

on growth intensity have the problem of excluding industries that might by important to 

employment growth through the LFN. 

It is evident that firms embedded in the LFN have an important role in 

employment growth. Considering all the firms in a LFN (not only survivors), they 

represent 28% of all firms. They are responsible for 90% of employment growth and 91% 

of its destruction. This implies that the majority of the destroyed jobs are transformed 

into new ones, most of them filled with people who found their way through the LFN. 

We next demonstrate that agent-based models are able to generate these dynamics.  

C"C"U" O'$.I)*)87'2)5'3.4)5'K/)1'M&,1)5N'K-58:'

Davis et al. (2006) showed that US firms that experience shrinkage of their size 

have an important role in the hiring process. As showed in Figure 7, firms that experience 

positive growth have hiring shares (as a percentage of total employment) that are more 

than proportional to their growth rate. The same happens to separations for firms that 

experience negative growth. A surprising result is that companies with negative growth 

still have high hiring levels (about 2.5% of all employment), and positively growing 

firms have high separation levels. From a LFN perspective, this implies that shrinking 

firms are important because their participation in hiring and separation allows more 

mobility of labor, which facilitates a better allocation of human capital. 
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We have showed that LFNs provide information that facilitates filtering firms 

with potential growth. Our definition of LFNFs is one way to use such information. 

However, we can modify our classification to include negatively growing firms and study 

their role in labor dynamics. 

 

 
Figure 7: Growth, hires, and separations 

Source: (S. Davis et al., 2006) 
 

The principle of this taxonomy is to employ some of the structural indicators that 

we have computed for each firm in the Finnish LFN. Specifically, we will focus in the 

direction of the flows with respect to the firm, diversity of links, amount of flows, 
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closeness to other firms, and clustering. We restrict our sample to survivor firms since we 

are interested in measuring employment growth (positive and negative). The principle for 

of this classification is to group firms into two categories for each network metric. One 

group includes all firms with a metric above a predefined threshold and the other has all 

the remaining firms. The criterion to define a threshold depends on the purpose of the 

study. In this case, we set a somehow arbitrary threshold as the average metric plus one 

standard deviation. The purpose here is to measure the contribution to employment 

creation and destruction of those firms with extreme network properties. In the case of 

number of connections, defining extreme events in terms of one standard deviation from 

the mean is not a very meaningful measure since the distribution of this metric is Pareto 

(see Panel A in Figure 2 and Figure 3). However, we will employ this threshold since we 

do not have a concrete question that would help to define a more relevant threshold at this 

point. Figure 8 shows the nomenclature system for the firm taxonomy. This classification 

is different from the one illustrated in Figure 6 since it includes companies with degree 

zero and firms with negative growth. 
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Figure 8: Firm taxonomy 

We classify a firm by taking one cube from each stack, from left to right, and concatenating the names in that order. 
We join the first letters of each name in order to compose the name of the class. Similarly, we can construct an image 
representation of the class, as showed in the given examples. For each cube, thicker or more numerous elements 
adjacent to the nodes represent that the firms in that group have a metric above the given threshold. 

 

From Figure 8 it is clear that not all possible nomenclatures are possible. For 

example, isolates have undefined levels of closeness or clustering. For simplicity, this 
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kind of firms will be grouped with firms that have metrics below the threshold, giving us 

a single class named ILTAS. The total number of classes that were present in the Finnish 

dataset was 48. We computed the absolute amount of positive and negative employment 

growth of each group. Figure 9 presents the total change in employment produced by 

each one of the classes obtained from this taxonomy. 

 

 
Figure 9: Firm classes and change in employment 

Each bar in Panel A represents the net change in employment in a class of firms. The bars with names below zero 
represent negative change. The solid (dotted) lines indicate the 20% (5%) of the of the total positive and negative 
changes in employment among Finnish survivor firms. Blue bars are uniters, greens are eaters, reds are apporters, and 
grey are isolates. Panels B and C show average firm size and growth rate (in percentage) for classes of firms that 
contribute with more than 5% of employment creation and destruction respectively. Growth rates were computed using 
Equation 1 for each firm and then averaged for each class. 
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From Figure 9 it is clear that uniters are firms that have important roles both in 

employment destruction and creation. Panel A shows that the groups that contribute to 

the highest levels of employment creation are UDSIS and ETLAS. Although both create 

nearly the same amount of employment, their firms are quite different. In Panel B we can 

see that some of the largest firms are part of UDSIS while small firms dominate ETLAS. 

Firms from both classes experience a similar average growth rates. UDSIS is a 

particularly interesting class of firms because it receives and sends labor simultaneously, 

suggesting a relationship between the turnover process described in Figure 7, 

employment growth, and LFNs. 

When it comes to employment destruction, ALTAS firms contribute with more 

than 20%. However, they release labor flows below the threshold for both diversity of 

destinations and size of flow. It is clear that this is driven by the distribution of outgoing 

edges, which is dominated by firms with lower degree. Panel C shows an interesting 

feature: the average growth rate of firms that are shrinking in size tends to increase when 

companies are closer to all other firms in the LFN. This suggests that workers that are 

separated from rapidly shrinking firms tend to find new jobs more frequently and in more 

firms. 

C"C"W" M&,1)5N'K)58.,-)*'

Labor reallocation is dynamic in nature and seems to be an essential component 

of employment growth and its volatility. In OECD countries, reallocated labor accounts 
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for more than 20% of total employment (Cahuc & Zylberberg, 2006). Furthermore it 

reaches most of the economy in relatively short periods (evidence provided in Table 3).  

We explore the dynamic character of the formation of the gigantic component in 

LFNs by analyzing the data through smaller time frames. Unfortunately, the primary 

dataset is composed of annual Panels and any LFN constructed for that window already 

shows the topological features described in this chapter. However, we can take advantage 

of the daily resolution of our support dataset from Mexico in order to characterize how 

periodic labor flows connect firms. We used daily timestamps from the IMSS records in 

order to construct LFNs for different periods. We started in January 1st 2005 and added 

one day to the time frame in order to construct a LFN. We repeated this process by 

adding two days, thee days, and so on. Figure 10 illustrates the result of this exercise. 
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Figure 10: Formation of the Mexican LFN on a daily basis 

Panel A shows the size dynamics of the largest component as a proportion of the total number of firms in the network, 
the normalized growth rates of the largest component that are above the average growth, and the total number of 
components (brown). The shaded region is zoomed in Panel B. It represents the evolution of the size of the second, 
third, fourth, and fifth largest components. Shaded regions correspond to growth periods of the largest component that 
are above the mean + standard deviation. Panel C shows snapshots of the five largest components in the LFN at 
different points in 2005. 

 

Two major forces drive the growth process of the largest component: entry of new 

employers and unions of large components. Panel A in Figure 10 shows that the size of 

the giant component, as a proportion of the number of firms in the network, grows with 

decreasing marginal growth. Negative growth of the latter indicator is explained by the 
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entry of numerous employers as isolated nodes. The positive spikes are caused by the 

absorption of other large components. As we use longer periods for the network, the 

addition of new firms has a weaker effect, denoted by the concave shape of the series of 

total number of components in Panel A.  

One year with two months is the time that it takes to the Mexican LFN to reach its 

maximum number of components. After that point, the major driving force is the labor 

flows that connect previously disconnected components. This is evidenced by a 

continuous decrease in number of components and persistent growth of the gigantic 

component. Between January and April, the largest component experiences extremely 

high growth. This is explained by the eventual flow of labor between the firms of the 

largest component and companies from any of the other largest components. We illustrate 

this process in Panel B of Figure 10 by plotting the growth process of the second, third, 

fourth, and fifth largest components during that period. By construction, the only way for 

a size-ranked component to decrease in size is by being replaced by a smaller one. This 

can only happen when this component becomes part of another one (in this case a larger 

one). Through this process, all the components that were initially the largest become a 

single one. In approximately one year, the gigantic component contains more than 50% 

of the companies in the network. This reveals an important feature of the LFN formation 

process: if firms live long enough, their communities or sectors will eventually become 

available to previously inaccessible labor. Panel C provides a visualization of the growth 

of the network through this process. 
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The network character of labor flows between firms has been investigated and the 

usefulness of the labor flow network (LFN) concept for the study of firm and 

employment dynamics has been demonstrated. In many ways such networks have 

'extreme' properties, in the sense that 'heavy tails' characterize many of their empirical 

features. The dynamics of labor flows in such networks are very far from the 'smooth' 

flows one might expect to occur if any worker could migrate to any company. Clearly, 

from the structure of empirical LFNs, migration is constrained and the extent to which 

LFNs deviate from complete graphs is indicative of the magnitude of the 'lumpy' and 

clustered labor flows that can occur in them. Macroeconomic dynamics that are 

qualitatively similar –also known as ‘granular’– are produced by similar heavy-tailed 

distributions in firm size (Gabaix, 2011). Furthermore, many of the network properties of 

LFNs have explicit, underlying economic meaning. The regional structure of firm 

production, along with its demarcation into sectors, are both clearly embedded in LFNs. 

Perhaps most importantly, signs of employment growth are also present in LFNs and can 

be determined from network properties. Additionally, many of these properties are 

common to inter-sectorial networks, that lead to effects on aggregate production 

fluctuations of production (Acemoglu, Carvalho, Ozdaglar, & Tahbaz-Salehi, 2012). 

Finally, using the latest computational advances to model individual agents interactions 

and the emergence of LFNs, labor policies can be tested artificial laboratory. This new 

capability suggests that LFNs can be important analytical tools for an improved 

understanding of the performance and potential of modern economies. Countries would 
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be well-served to collect and make available the kinds of data that facilitate the 

construction of LFNs. 
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4. THREE MODELS OF LABOR AND FIRM DYNAMICS 

E"#" Z*,5)=L9,-)*'

As discussed in Section 2.4, several ABMs of labor markets have been developed 

in the last decades. Here we present three models that contribute to this literature by 

bridging the gap between labor, firm, and network dynamics. The three models were 

constructed under the principle of making them simpler than the ones previously 

reviewed. Nevertheless, they provide emergent results that are richer than most of the 

existing models of labor markets. We contribute by developing a framework to couple 

realistic labor and firm dynamics in a parsimonious way. Additionally, our models 

incorporate in a natural way the interaction of agents through networks (economic and 

social), which is a standing challenge in the field of labor economics. We provide 

evidence of the validity of our models by reproducing multiple stylized facts of firms and 

labor. Additionally, by conducting controlled experiments we find evidence of the 

relationship between microeconomic parameters and the topology of labor flow 

networks. 

This chapter is structured in the following way. Section 4.2 presents a model of 

firm dynamics. It is an agentized version of Gabaix’s (1999) model, which is able to 

generate labor market stylized facts that are not obtained by Gabaix’s formulation. In 

Section 4.3 we present a model of social network formation in the work place. This 
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model generates stylized facts of labor dynamics that are produced by the endogenous 

process of social network formation. Section 4.4 presents a model that provides 

microeconomic foundations to the formation of the small-world phenomenon in LFNs. It 

brings together well known models of job search behavior (Gronau, 1971; McCall, 1970; 

Mortensen, 1973) and small-world networks formation (Watts & Strogatz, 1998). 

E"!" K-58'67*.8-9:'

It is difficult to deny the close relationship between the dynamic nature of firms 

and labor. As exposed in Section 1, firm dynamics is a widely studied topic, where 

several attempts to model some stylized facts have been made in the last century. 

However, little has been done to understand the link between the heavy-tailed nature of 

firm dynamics and the dynamics of labor.  

We consider Gabaix’s model (see Section 2.2.5) to be a good starting point 

because it provides the microeconomic building blocks to connect labor to firms. 

Although this model was originally developed to understand the growth of cities, it has 

been used to study firms (Saichev, Malevergne, & Sornette, 2009). Here we employ it to 

merge firm dynamics with labor. In an agentized version of this model, Guerrero and 

Axtell (2011) showed that Gabaix’s microeconomic specification produces a degenerate 

firm size distribution when it is applied to realistic populations (discrete units and explicit 

interactions). Hence, the equilibrium mechanism through which agents maximize utility 

and firms maximize profits does not seem plausible. Here we present a simpler model 
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that recovers the heavy-tailed firm size distribution and allows us to explore the 

connections between firm dynamics and labor. 

E"!"#" <)=&/'6&:95-F,-)*'

In this model there is a fixed population of firms and workers. Workers receive 

utility from a combination of wage w and benefits plan b provided by their employers. 

The utility of worker i takes the form ui=biwi. Firms have production functions with 

constant returns. Their production is determined by the number of tenured workers T and 

the recently hired ones N. We assume a Cobb-Douglass technology f(T,N)=(T)%(N)1-%, 

where 0 ! % ! 1. Firm j determines the wage it will offer at period t by computing the 

marginal product of hiring a new employee: 

 

Equation 5 

wj,t =!
Tj,t +1
Ni,t +1

!
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Equation 5 is a neat outcome because it captures a couple empirical aspects about 

firm dynamics. First, it says that between firms with equal Nt, the largest are the ones that 

offer higher wages, which relates to the employer-size premium (Brown & Medoff, 
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1989). Second, among firms with the same size, those who offer higher wages are the 

ones that have hired less people during period t (decreasing marginal returns of labor). 

There are two sources of exogenous stochasticity in this model. The first is the 

benefits plan bj,t, which is randomly determined for each firm j at every period t. The 

second is the separation rate *. Every time that a worker loses her job, she has to find a 

new one (and she always gets hired in her best option). 

In Gabaix’s model it is assumed that, during a single period, job seekers and firms 

are repeatedly matched through a tatonement process until every firm reaches levels of N 

and Y where no more hires are made. Due to the impossibility of computing this 

equilibrium for discrete populations (Guerrero & Axtell, 2011), our implementation is a 

disequilibrium model where workers can only get hired once per period. With this 

adoption the model generates firm size distributions where one company tends to 

concentrate most workers. This is explained by the dynamics of Equation 5. When a 

request for a wage offer arrives to a firm in period t, this firm counts Y as the number of 

employees that it has hired so far during t. At the beginning of t+1, Y becomes zero. 

Then, the size difference between firms establish the initial conditions under which larger 

firms can offer higher wages and be more attractive to workers. The marginal decreasing 

returns of Y slow down this effect during each period. However, they do not prevent 

larger firms from being the first ones who hire each period. Therefore recovering a 

heavy-tailed distribution from this model is a challenge that we approach by studying two 

components that are mentioned but not treated in depth in Gabaix’s study. 
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First, we consider the issue of new hires versus incumbent employees. More 

specifically, what does it take to become an incumbent worker? The dynamics of Y in 

Equation 5 imply that production of cities scales with their size. However, the scaling 

process suffers delays where Y needs to become part of N. This can be interpreted as the 

time needed for a city to update infrastructure to provide better conditions for 

productivity. In a labor context, it can be interpreted as the training of new workers. This 

is an essential part of our model. Here, Y is not set to zero every period. Instead, each 

firm keeps a record of the period when each worker was hired. Then, a worker is 

considered part of N if she has completed the minimum training duration + required by 

the firm. This mechanism is enough to balance the dynamics of Equation 5 and facilitates 

the recovery of skewed distributions. 

Second, we reconsider the ability of workers to request offers from all firms. This 

is a key assumption in Gabaix’s model since it is necessary to achieve a global 

equilibrium. In our model, we do not have to maintain this assumption. In fact, limiting 

the search space of a worker can reduce the computing time of the model. Every time an 

agent is activated, she will randomly sample $ firms to request offers. 

E"!"!" Z8F/&8&*,.,-)*'.*='@I&9L,-)*'

The model was implemented in the Python programming language version 2.7 

(code provided in additional materials). It consists of three components: 
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• Worker: An object class of an agent that represents a worker. It contains 

the algorithms through which a worker searches for the best job offer. 

• Firm: An object class of an agent that represent a firm. It contains the 

algorithms through which a firm computes offers and hires workers. 

• Model: Contains the populations of workers and firms. It executes the 

model. 

The model execution is serial, meaning that when an agent is active, all other 

agents have to wait for her to finish. Activation is random, defined by the layoff 

probability *. In other words, a period is defined when a fraction * of the population has 

been laid off. The group of agents to be activated is picked at random. The execution is 

summarized in Pseudocode 1. 
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Pseudocode 1: Execution of firm dynamics model 
 
INITIALIZE workers and firms; 
FOR each worker, get hired by random firm; 
WHILE t<T DO: 
 FOR each worker, separate with probability *: 
  Sample $ firms; 
  FOR each firm in sample: 
   Count N and Y; 
   Compute w; 

IF first time called durint t: 
    Update b; 
   Return offer (w, b); 
  Get hired by firm with best offer; 
 Increment t; 
 

 

E"!"C" (./-45.,-)*'

We calibrated some parameters by combining empirical US data. Some 

parameters were calibrated with a single value and others as random variables coming 

from empirical distributions estimated from the data. Parameter heterogeneity is 

important for the system’s stability because it prevents the degeneration of the emerging 

distributions. 

A"#"!"%" B1C0)(,+D,E+(F)(/,

The number of workers is calibrated in relation to the number of firms. We use 

the average firm size of the US, estimated by Axtell (2001) as nearly 20 employees. 

Therefore, for experiments with different number of firms, the number of workers is 

always proportional.  
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  Since the model assumes no unemployment, a layoff is equivalent to a job 

search. Hence, the labor dynamics in these models are produced by on-the-job search. 

This motivates an empirical calibration for *. Fallick and Fleischman (2001) estimated 

that the percentage of employed individuals that search for a job  every month is 4%. 

Assuming that this number is evenly distributed per week, we calibrate our model to have 

a weekly basis. Therefore, one period is completed every time that 1% of the employed 

population has been laid off. 

A"#"!"%" -1('*.+2,+D,9('.2.2<,

Using the NLSY79, Frazis and Spletzer (2005) estimated that the average 

duration of on-the-job training is 5.7 weeks. This number is not representative of the 

diversity of training requirements that firms have, especially since there is a strong 

relationship between employer size and decisions in training investment (Holtmann & 

Idson, 1991). We estimated the empirical distribution of training duration from the 

NLSY79 using information about the length in weeks of the on-the-job training for the 

cross sections between 1988 and 2010. Panel A in Figure 11 shows that the training 

durations are well approximated by a gamma distribution. We used this empirical model 

to provide firms with a way to establish the training requirement + every time they hire a 

new employee. 
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An important parameter is the number of firms to which an agent applies for a 

job. We used the NLSY79 dataset, which includes information about how many 

employers were contacted by the job seeker before getting her last job. On average, 

workers reach out to 12 employers. We estimated the empirical distribution of this 

quantity using the supplementary information section from the 1982 cross section. This 

quantity follows a gamma distribution (see Panel B in Figure 11). Therefore, every time 

that an agent is activated, she uses the empirical distribution to determine the number of 

firms to sample. 

 

 
Figure 11: Training duration and search space 

Both Panels show empirical and estimated cumulative density functions. The estimated distribution is a gamma for 
both cases. Panel A presents the distribution of training durations in weeks. Panel B illustrates the distribution of 
number of firms contacted by job seekers during their job search. Source: own calculations from the NLSY79.   

 

data
fit

A B

data
fit



97 
 

Table 6 provides a description of the model’s parameters. The values that were 

experimentally calibrated correspond to the baseline case. They were also tested for other 

values in order to check the robustness of the results. 

 

Table 6: Parameters of firm dynamics model 
Parameter Value Calibration Change Homogeneity 

Number of firms 5,000 Experimental Static N/A 
Average firm size 20 Empirical Static N/A 
Number of periods, T 10,000 Experimental Static N/A 
Layoff probability, * 0.01 Empirical Static homogenous 
Labor output elasticity, % Uniform on (0,1) Experimental Static heterogeneous 
Firm benefits, b Uniform on (0,1) Experimental Dynamic heterogeneous 
Training duration requirement, + Gamma  Empirical Dynamic heterogeneous 
Number of firms to search, $ Gamma Empirical Dynamic heterogeneous 

This describes the nature of each parameter in terms of different characteristics expressed by the columns. The column 
Value denotes the values assigned to the parameters during the baseline simulations, or the probabilistic distributions 
from where the values are drawn. The Calibration column indicates if the source of the values is from empirical data or 
product of experimental procedures that are conventional in agent-based modeling. The Change column shows if the 
parameter is constant throughout a simulation or if it changes with each period. Finally, the Homogeneity column 
indicates if the value is the same for all agents. 

 

E"!"E" @IF&5-8&*,./'6&:->*'.*=']L,FL,'

We ran a sample of 36 simulations. The simulations were run independently from 

each other with initial seeds assigned by a unique time stamp. We employed the 

computational resources from the Department of Computational Social Science at George 

Mason University. The 36 simulations were distributed across four cores in a PC with 16 

cores and 256 GB of memory. 
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The duration of each simulation (10,000 steps) is motivated by the well-known 

transient effects from ABMs, where the system shifts form its initial state to its steady 

state. We saved records for the last 500 steps. Each record was collected on a monthly 

basis (every four steps). 

The records were stored as administrative micro-data. Each line of a record 

contains information about the state of an agent at a specific step of the simulation. Each 

row represents a variable of the agent. Records were organized in two tables: workers and 

firms. Both tables were stored in a hierarchical data file with format HDF5 and 

compressed with the library LZO. We employed the data management library PyTables 

to speed up the data recording process. It took approximately two weeks to perform all 

the simulations. 

E"!"H" G&:L/,:'

The graphical results in this section are taken form the last four years of a single 

simulation. They have been replicated in each of the 36 simulations They are robust 

across the sample of simulations, so we will focus on the exposition of a representative 

case Although we were able to fit most of our outputs to statistical models, we will not 

elaborate on the details of any particular estimator since we are more interested on the 

general structure of the data that emerges from the model. 

Our first results relate to firm dynamics. This model is able to recover the heavy-

tailed firm size distribution from the equilibrium model of Gabaix. However, the 
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distribution here is a Weibull with shape parameter smaller than one (see Panel A in 

Figure 12), instead of a Pareto distribution with exponent one. It would appear that the 

assumptions of complete information and equilibrium are instrumental in Gabaix’s model 

in order to arrive to a Zipf law, suggesting that the underlying microeconomic model by 

itself is not a plausible explanation about the emergence of this stylized fact. An 

alternative way to measure the size of a firm is by its output. In this case, firm sizes do 

follow a Pareto distribution with exponent between one and two (see Panel B in Figure 

12). 

This model is able to generate empirically valid growth rates of firms. Panel C in 

Figure 12 shows the tent-shaped distribution of the log-growth rates. We measured 

growth for one month, one year, and four years. From Panel C in Figure 12, it is clear that 

longer time frames yield wider distributions, which matches empirical studies. The 

distributions are symmetric, so they are well fitted by a Laplace law. Another stylized 

fact that we emerged is the scaling of growth volatility with company size. The standard 

deviation of the log-growth rates decays with firm size (in number of employees), 

following a power law (Panel D from Figure 12). The exponent of the relationship is 

around 0.35, which matches our empirical findings in Section 3. Notice that small firms 

experience weaker scaling effects just as shown in Section 3.3.2.  
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Figure 12: Output from firm dynamics 

In Panel A we fitted a Weibull distribution. In Panel B we fitted a Pareto distribution. Panel C does not show the fits for 
the Laplace distributions due to oversaturation of lines. In Panel D we fitted a power law. The theoretical models in 
Panels A, B, and C were fit using MLE, while the one of Panel D was estimated via OLS. 

 

This model allows us to investigate the role of technology in productivity. Here 

we refer to the production function of firms as technology. More specifically, we focus 

on the elasticity of tenured workers, which is captured by the parameter % from Equation 

5. In Panel A from Figure 13 we can observe that firms that put more weight on tenured 

workers tend to be smaller. From a static perspective this seems counter intuitive since 

firms with higher % are able to offer higher wages than their competitors of the same size. 

Hence, they should attract more workers and become larger. The answer to this problem 

lies in the dynamics of the system. Since firms with higher % are more attractive at the 

beginning, they over saturate with new workers quickly. This allows firms with lower % 

to higher more people. Since the number of new hires is larger than % by orders of 

magnitude, this effect remains for most of the matching process. Therefore, larger firms 

are those that are able to produce more with new workers. 

When we compute productivity of firms as output per capita, we find that 

technology has a nonlinear effect. Panel B in Figure 13 shows the U-shaped relationship 
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between % and output per capita. Companies with a well-balanced weight between 

tenured and new hires are the least productive. According to this model, small and large 

firms are the most productive. 

 

 
Figure 13: Technology and productivity 

Panel A shows a fitted logistic function via the Levenberg-Marquardt algorithm. The data from Panel B was fitted with 
a polynomial of order two using OLS. 

 

Due to the flexibility of agent-based modeling, we can turn and look at other 

micro-data that is generated by the model and that is relevant to labor markets. Panel A in 

Figure 14 shows the income distribution, which is highly skewe, but no heavy-tailed. It is 

best approximated by a beta distribution. In Panel B of Figure 14 we can observe the 

employer size premium. This stylized fact follows the super linear pattern documented by 

empirical studies. We approximate it with a concave function of the form xa, where 

0<a<1. 
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Figure 14: Income-related outputs 

We fitted a beta distribution in Panel A using MLE. Panel B shows the fit of a concave function estimated with OLS. 
 

Finally, we look at the patterns of labor flows generated by the model in the form 

of a LFN. Panel A in Figure 15 shows the heavy-tailed character of the LFN. Its degree 

distribution is a Weibull with shape parameter of less than one. The similarities between 

the firm size and the degree distributions suggest a connection between them. In Panel B 

from Figure 15 we show a high linear correlation (0.99 Pearson coefficient) between 

them, which matches our empirical findings from Section 3. 
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Figure 15: LFN outputs 

In Panel A we fitted a Weibull distribution via MLE. In Panel B we fitted a linear function using OLS. 
 

E"C" 3.4)5'67*.8-9:'$%5)L>%'@*=)>&*)L:';)9-./'M&,1)5N:'

Social capital is an important topic in the social sciences initially in sociology 

(Ben-Porath, 1980; Bourdieu, 1983; Burt, 1992; Coleman, 1988; Erickson, 1996; Flap & 

De Graaf, 1986; Lin, 1982; Loury, 1977; Portes, 1998; Putnam, 1993) and more recently 

in economics (Glaeser, Laibson, & Sacerdote, 2002; Guiso, Sapienza, & Zingales, 2004; 

Knack & Keefer, 1997; Narayan, 1999; Woolcock & Narayan, 2000). Although there is 

not a final consensus about its definition and measurement, it is generally agreed that the 

underlying principle is the idea that investment in social relations yield economic returns 

(Lin, 2001). While sociologists have focused on the structural aspects of social 

interactions that generate social capital (e.g. social networks), economists have paid 

closer attention to the social norms and institutions that promote social capital from a 

strategic perspective (e.g. trust games). 
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In the context of labor markets, social capital can be understood as the network of 

personal contacts that provides access to job opportunities. Pioneered by (Granovetter, 

1973), the study of social networks in labor markets has focused in understanding the 

implications of personal contacts in labor outcomes such as unemployment 

(Montgomery, 1991), earnings (Mortensen & Vishwanath, 1994), inequality (Calvó-

Armengol & Jackson, 2004, 2007; Ioannides & Loury, 2004), information transmission 

(Boorman, 1975; Calvó-Armengol & Zenou, 2005; Rees, 1966; C. Simon & Warner, 

1992), and labor mobility (Munshi, 2003; Wahba & Zenou, 2005). These and other works 

have contributed to demonstrate that social networks matter significantly in labor 

outcomes. Unfortunately, the unavailability of large-scale data and the equilibrium-

oriented approach to model network formation processes (Calvó-Armengol, 2004; 

Krauth, 2003, 2004) have been an obstacle to understand how the complex structure of 

social networks that arise form economic interaction affects macroeconomic variables.  

This model contributes to understanding the effects of social networks in labor 

dynamics by endogenizing the formation process of personal contacts and generating 

labor dynamics through job offers that are made available through the social network. A 

distinctive feature of this model is that the topology of the network is not the intended 

consequence of strategic interactions but a side product of economic behavior and social 

interaction. Nevertheless, incentives and preferences play a crucial role in shaping the 

social network, which in turn affects labor outcomes. 
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There is a fixed population of firms and workers. Firms hire unemployed workers 

and separate employees with a constant probability *. Workers are endowed with k skills. 

Agents have two possible states: employed and unemployed. Their behavior depends on 

their active state. 

A"!"%"%" 7.(C/,

We use the framework described in Section 4.2.1 to motivate how firms 

determine wage offers. We re-use Equation 5, with the adaptation that T and N are 

amounts of incumbent and newly hired skills respectively. Thus, any wage offer is per-

skill unit. When a firm hires a worker it pays the wage offer multiplied by the amount of 

skills that the worker brings to the firm. 

A"!"%"#" HDD+(*,.2,*8),E+(F:;'@),

Workers that are employed have to face a two-step problem. The first step 

corresponds to the allocation of efforts. At the workplace, a worker has preferences over 

the amount of effective effort e that she puts into working and the excedent effort x that 

she assigns to other activities such as socializing or browsing the internet. This worker 

solves a standard utility maximization problem: 
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Equation 6 

max
e,x{ }

U e, x( ) = e!x1!!

s.t. e+ x " k
 

 

Recall that k represents the endowment of skills of the agent. Then, it is clear that 

skillful agents are able to reach higher utility levels. The optimal effort e*=&k depends on 

the individual preference for working. Therefore, agents with higher & assign less 

excedent effort to socializing, relative to agents with the same skills. 

A"!"%"!" 6+@.';.I.2<,.2,*8),E+(F:;'@),

Once a worker has chosen e* and x* she has the possibility of increasing her 

utility beyond the limits that her skills allow her. This takes the form of an additive term , 

that comes from socializing with other workers. If ,>0 it means that socialization has 

positive effects. Similarly, ,<0 means negative effects. These effects determine if a 

worker receives utility above or bellow the optimal.  
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Figure 16: Effects of socialization in agent utility 

The figure illustrates how the additive term , affects the utility levels obtained by the worker. The superscript of the 
additive term indicates if it is positive or negative. The red line represents the skills constraint of the agent. 

 

The outcome of socializing with another colleague determines if an agent receives 

utility beyond her possibilities. This brings us to the second step in the agent’s behavior. 

Here, agent i has to decide if she will attempt to socialize with her colleague j. If so, i 

approaches j, then the latter decides to correspond or not. We can think of this process as 

a sequential game with agents: A={1,2}; strategies S={I, NI} (where I stands for interact 

and NI for not interact). Payoffs are specified in the extensive form shown in Figure 17. 
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Figure 17: Social tie formation game 

The diagram represents the sequential game that determines if a social tie is formed between two co-workers. Agent 1 
is the first mover, followed by agent 2. Strategies I and NI stand for interact and not interact respectively. The utility 
functions have the functional formed presented in Equation 6, and are indexed for each agent because they can have 
different parameterizations. The terms e* and x* correspond to the optimal levels of effective and excedent efforts 
respectively. Parameter - represents a fraction of excedent effort used by of agent 1 to unsuccessfully approach agent 2. 
It is equivalent to the negative additive term in Figure 16. Parameter w is the wage of each agent. 

 

The payoff structure is rather intuitive. If agent i decides not to approach j, they 

will spend their corresponding excedent efforts in individual activities like reading their 

favorite blogs. Let 0<-, then if the outcome is (I, NI) agent i receives less utility than in 

(NI, NI) because she spent - of her excedent effort in reaching out to her colleague. If the 

outcome is (I, I), they receive the utility that corresponds to the sum of their interaction. 

The intuition for [xi*+xj*]+[wj-wi] is simple. The first summand represents the 

combination of excedent efforts that both workers are dedicating to the interaction. The 

second summand corresponds to the expectations that agents have about the potential 

benefits that socializing with another agent might yield. Potential benefits are modeled as 

the similarity between i and j. In this model, similarity can be represented in terms of 

skills. However, workers cannot observe skills of other workers directly. 
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I

NI

NI

U1(e1*,x1*-!) U1(e1*,[x1*+x2*]+[w2-w1])
U2(e2*,[x2*+x1*]+[w1-w2])U2(e2*,x2*)

U1(e1*,x1*)
U2(e2*,x2*)
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We use the agents’ wages as a proxy of similarity since it is a natural way in 

which employees perceive the status of a colleague in the same firm. Furthermore, from 

Equation 5 we know that wages are correlated to skills and to the size of the firm at the 

moment that the agent is hired. This generates endogenous noise in the signaling of 

agents’ skills because an agent with low skills that was hired when the firm was small has 

a chance for becoming acquainted with a more skilled worker who was hired when the 

firm became large. It is a natural way to endogenously correlate skills in the social 

network while allowing some degree of heterogeneity. 

In the outcome (I, I), the interplay between [xi*+xj*] and [wj-wi] depends on the 

preferences of agents, the dynamics of their firm, and their endowment of skills. This 

provides the model with a variety of possible payoffs for outcome (I, I) that capture 

sociological aspects of human interaction such as homophily. 

A"!"%"A" >.@(+JHK1.;.0(.1C,'23,5.2F,7+(C'*.+2,

Figure 17 shows a simple game that represents the interaction between co-

workers. Finding the Nash equilibrium (NE) is straightforward via backwards induction. 

Since this mechanism leads to socialization, we would like to know under what 

circumstances such interaction would lead to the creation of social ties. If the outcome (I, 

I) is the only NE, then a link is formed between both workers. Hence, we only need to 

know the conditions under which none of them would have incentives to deviate. 
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Rearranging [xi*+xj*]+[wj-wi] we obtain the additive term ,i =xj*+wj-wi from 

Figure 16. This determines if outcome (I, I) is a NE. Therefore, the condition for forming 

a social tie between two agents is that ,>0 for both i and j. In terms of the model’s 

parameters this is: x1*>w2-w1 and x2*>w1-w2. The intuition is straightforward: an edge 

will be formed if the worse paid agent has strong enough preferences for excedent effort 

such that it compensates the dissimilarities between both workers. In other words, if the 

agent who would be most benefited from the social tie is socially skilled enough, she can 

convince her counterpart to engage in socialization. This is similarly to the way in which 

some employees try to build relations with their superiors in the organization. 

Figure 18 shows that the implementation of the link formation process is robust 

for different distributions of skills and wages. We ran Monte Carlo simulations for 

10,000 agents and 10,000 pairs of randomly matched agents. Then we to computed the 

frequency of edges that were formed for different levels of wage differences between the 

matched pairs. We tested different distributions of skills and wages: uniform (for integers 

between 1 and 30), binomial (with p=0.3), and geometric with (n=30 and p=0.5). Agents’ 

preference parameter was &~U(0,1). It is clear that, regardless of the configuration of 

skills and wages in a firm, the endogenous social networks tend to be homophilic. 

However, there are multiple ties between agents with large differences of wages. The 

largest effect comes from the distribution of wages. Therefore, if the system 

endogenously generates a skewed income distribution, it induces a higher density of the 

social network. 
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Figure 18: Frequencies of social ties by differences in wages 

Each Panel presents Monte Carlo simulations of the link formation process. The y-axis shows the average number of 
social ties from 1,000 simulations. Each Panel has used a single distribution of wages. Inside each Panel, each line 
represents the results for a specific distribution of skills in combination with the wage distribution of the corresponding 
Panel. 

 

A"!"%"L" 7.23.2<,',M+0,

Every period, a worker with a state of unemployment requests job offers from 

each one of her personal contacts (excluding the ones working for her last employer), and 

submits one formal application to a random firm in the economy. With an arrival 

probability ', the unemployed agent will receive a job offer from each of her requests. 

Conventional models endogenize this probability as a function of the intensity of the 

search (Jovanovic, 1979; McCall, 1970; Mortensen, 1973). For simplicity, we do not 

model the optimal search effort problem, as it involves incorporating costs and 

discounting parameters to the model. Instead, we construct the arrival probability as a 

function of the level of skills of the agent and her preferences for work effort &. 
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Figure 19: Arrival probability 

 

Figure 19 shows a surface plot of the arrival probability. The construction of ' is 

rather intuitive. We use the preference parameter & as the effort level that an agent would 

exert in searching for a job. If an agent has stronger preferences for effective effort, she is 

more likely to search with higher intensity. However, the success with which an agent 

finds a job is bounded by her skills. Skillful agents can achieve higher probabilities. This 

specification provides heterogeneous arrival probabilities across the population of job 

seekers.  

The social network plays a crucial role in successfully receiving job offers. The 

agent’s degree has a positive relationship with the expected number of job offers. More 

importantly, less skilled agents rely more on the social network in order to become 

employed, which has been empirically documented (Holzer, 1988; Topa, 2001; Wahba & 
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Zenou, 2005). An agent who receives multiple offers will choose the best one. In this 

way, agents with rich social networks induce firm dynamics similar to the ones described 

in Section 4.2. 

A"!"%"N" B)*4+(F,-)2/.*=,

A potential artifact that can be introduced by the network formation process from 

Section 4.3.1.3 is the eventual drop in unemployment rates due to a persistent increase of 

network density. A common practice is to introduce a decay rate for the edges and a 

threshold to remove them. This solution is computationally expensive, as it requires 

iterating through every edge periodically. Additionally, we would need to include 

parameters for the decay rate, the threshold, and the edge weights. We use a simpler 

approach by setting an upper bound to the density of the network. At the beginning of 

every period we check if the number of edges exceeds the upper bound. If this is positive, 

we remove the excedent edges by randomly sampling them. This provides a dynamically 

stable character to the social network. 

E"C"!" Z8F/&8&*,.,-)*'.*='@I&9L,-)*'

The model was implemented in the Python programming language version 2.7 

(code provided in additional materials). It consists of three components: 

• Worker: An object class of an agent that represents a worker. It contains 

the algorithms through which a worker searches for jobs in the social 

network. 
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• Firm: An object class of an agent that represents a firm. It contains the 

algorithms through which a firm computes offers and hires workers. It also 

contains the algorithm to match pairs of employees and determine if a 

social tie is formed. 

• Model: Contains the populations of workers and firms. Determines the 

separation and job search rates of the agents. It contains the graph that 

keeps track of the social network. It executes the model. 

The model execution is serial. Activation is uniform, meaning that all agents are 

active once per period. This is motivated by the calibration described in Section 4.3.3, 

where one period represents a month. During each activation, behaviors are executed 

depending on the state of the agent. Active employed agents always work and socialize. 

With probability * each one loses her job. Unemployed agents always search for jobs. 

A conventional norm in agent-based economic models is that agents in different 

states are activated in groups. For example, most agent-based models of labor markets 

group unemployed agents, employed workers, and firms into separate classes. Then all 

the agents are randomly activated in each group. However, agents with different states 

are not randomized.  

In the context of parallel execution of the spatial prisoner’s dilemma (Nowak & 

May, 1993), it has been shown that synchronized activations of agents can produce 

artifacts that generate misleading aggregate patterns (Huberman & Glance, 1993). 
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Although most agent-based models of labor markets are executed sequentially, in our 

experience, reserving separate activations for groups of agents also generates artifacts. To 

solve this problem, we implement mixed activations. In a mixed activation, all types of 

agents are pooled together and are called in random order.  This guarantees a truly 

randomized experimental design. The model execution is summarized in Pseudocode 2. 

 

Pseudocode 2: Execution of unemployment and endogenous social networks model 
 
INITIALIZE workers and firms; 
FOR each worker, get hired by random firm; 
WHILE t<T DO: 
 IF density of network > maximum density: 
  Remove excess edges at trandom; 
 FOR each worker: 

IF worker is employed: 
Compute e* and x*; 
Socialize with a random worker from the same firm; 
Separate with probability *; 

  ELSE: 
   Compute r and '; 
   Get job offer from random firm with probability '; 
   FOR each firm of each employed neighbor: 
    IF firm is different from last employer: 
     Get job offer with probability '; 
   IF number of offers > 0: 
    Get hired by firm with best offer; 
 Increment t; 
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We calibrated the model using US empirical data. Some parameters are calibrated 

with a single value and others as random variables from the estimated empirical 

distributions.  

A"!"!"%" B1C0)(,+D,E+(F)(/,

The number of workers is calibrated in relation to the number of firms. More 

specifically, we use the average firm size of the US, estimated by Axtell (2001) as nearly 

20 employees. Therefore, for experiments with different number of firms, the number of 

workers is always proportional.  

A"!"!"#" 5'=+DD,G'*),

  This is an unemployment model. Therefore, we calibrated the separation rate 

*=1.71% according to the estimation for the US (Hobijn & %ahin, 2009). This estimation 

is the monthly average for 2006. Hence one period in our model represents one month. 

A"!"!"!" -1('*.+2,+D,9('.2.2<,

Training duration is a random variable drawn every time a firm hires an agent. 

This variable follows the gamma distribution estimated in Section 4.2.3.1 for the US. The 

variable was adjusted to monthly values. 
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The representation of skills has been an active topic in the human capital and 

labor economics literature. The standard approach was pioneered by Mincer’s earnings 

equation (Mincer, 1974) where individual earnings are a function of the years of 

education and potential experience. Other studies have developed measures of skills 

using data on educational attainment from multiple countries (Barro & Lee, 1993, 1996). 

Here, we use some of these ideas to calibrate the skills of the workers as years of 

education attained. We used education data from the US population with 25 years or 

more of age in 2012. Figure 20 shows the bimodal character of different levels of 

education (Panel A). We estimated the distribution of years of education by assigning the 

approximate time that it takes for each level to be attained. We generated synthetic data 

using this information and estimated a kernel density with domain between zero and 22 

years of education (Panel B). We use this distribution to assign the endowment of skills 

to the agents. 
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Figure 20: Empirical distribution of skills 

Panel A shows the frequency of different educational attainment levels in the US population of 25 years old and over 
for 2012. Levels of educational attainment were translated into schooling years for Panel B. Panel B presents the 
Gaussian kernel density estimation for the schooling years of the US population. Source: own calculations using 
educational attainment data from the US Census. 

 

A"!"!"L" B)*4+(F,-)2/.*=,

Some studies have attempted to estimate the structure of social networks under 

certain labor market environments (Munshi, 2003; Wahba & Zenou, 2005). However, 

they are far from being able to provide specific numbers about the density of social 

networks in entire economies. Despite recent efforts to quantify the job contact networks 

using online data (Gee & Jones, 2013), it is still not clear what is an empirically relevant 

value for this parameter. We have found that the network density has an effect in the 

magnitude of the unemployment rate in our model. Therefore, this parameter will be 

calibrated experimentally in order to target realistic unemployment rates. 

Table 6 provides a description of the model’s parameters. The values that were 

experimentally calibrated correspond to the baseline case. They were also tested for other 

values in order to check the robustness of the results.  
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Table 7: Parameters of unemployment and endogenous social networks model 
Parameter Value Calibration Change Homogeneity 

Number of workers 10,000  Experimental Static N/A 
Average firm size 20 Empirical Static N/A 
Number of periods, T 10,000 Experimental Static N/A 
Separation rate, * 0.0171 Empirical Static homogenous 
Effort preference, & Uniform on (0,1) Experimental Static heterogeneous 
Training duration requirement, + Gamma  Empirical Dynamic heterogeneous 
Network density 0.001 Experimental Static N/A 

This table describes the nature of each parameter in terms of different characteristics expressed by the columns. The 
column Value denotes the values assigned to the parameters during the baseline simulations, or the probabilistic 
distributions from where the values are drawn. The Calibration column indicates if the source of the values is from 
empirical data or product of experimental procedures that are conventional in agent-based modeling. The Change 
column shows if the parameter is constant throughout a simulation or if it changes with each period. Finally, the 
Homogeneity column indicates if the value is the same for all agents. 

 

E"C"E" @IF&5-8&*,./'6&:->*'.*=']L,FL,'

We ran a sample of 36 simulations. The simulations were run independently from 

each other, with initial seeds assigned by a unique time stamp. We employed the 

computational resources from the Department of Computational Social Science at George 

Mason University. More specifically, the 36 simulations were distributed across four 

cores in a PC with 16 cores and 256 GB of memory. 

We saved records for the last 500 steps. Each record was collected on a monthly 

basis (every step). The records were stored as administrative micro-data. Each line of a 

record contains information about the state of an agent at a specific step of the simulation. 

Each row represents a variable of the agent. Records were organized into three tables: 

workers, firms, and social network. Each line in the social network table represents an 
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edge. They consist of the source node, target node, and period of collection. All tables 

were stored in a hierarchical data file, with format HDF5, and compressed with the 

library LZO. We used the data management library PyTables to speed up the data 

recording process. It took approximately two week to perform all the simulations. 

E"C"H" G&:L/,:'

The graphical results in this Section are taken form the last four years of a single 

simulation. They have been replicated in each of the 36 simulations They are robust 

across the sample of simulations, so we will focus on the exposition of a representative 

case Although we were able to fit most of our outputs to statistical models, we will not 

elaborate on the details of any particular estimator since we are more interested on the 

general structure of the data that emerges from this model. 

This model generates realistic firm dynamics. The firm size distribution is skewed 

but degenerated. The upper tail of the distribution does not decay smoothly. We suspect 

this is due to the smaller scale of the simulations (running significantly larger simulations 

becomes computationally unfishable in the current state of the model due to the network 

computations). However, the growth process of firms is replicated accurately. Panel A in 

Figure 21 shows the tent-shaped log-growth rates distributions for different time frames. 

In Panel B we confirm the power law relationship between firm size and the standard 

deviation of growth rates. Finally, Panel C shows the stylized fact of high correlation 

between firm size and firm degree in the LFN (0.97 Pearson coefficient).  
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Figure 21: Outputs from firm dynamics 

We fitted a power law to the data in Panel B using OLS. In Panel C we fitted a linear function using OLS. 
 

Regarding the role of technology in productivity, the results of this model are 

opposite to the previous model. The reason is the specification of the production function. 

In the previous model, there is a direct relationship between firm size and output. In this 

model, this relationship is obscured by its dependence on skills, the referral hiring, and 

the preferences for effective work. In Panel A from Figure 22 we can observe that % has 

no effect on firm size when it is bellow 0.4. The largest companies are those that are able 

to produce more with already-trained skills. When we compute firm productivity, we find 

that there is a positive effect of %, with the exception of extreme values (see Panel B). 

This effect seems linear and divided in two regimes: below and above %=0.5. The latter is 

ten times stronger than the former (the slopes are 2 and 20 respectively). 
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Figure 22: Technology and firms 

We fitted Sections of the data in Panels A and B to separate linear models using OLS. 
 

We investigate the scaling effects that firm size exerts on other characteristics. In 

Panel A from Figure 23 we can see that firm size has a positive effect in output per capita 

with diminishing marginal returns. As expected by construction, there is a high linear 

correlation between size and the amount of skills accumulated by a firm (Panel B). Panel 

C illustrates how the average skill level of an employee increases dramatically with firm 

size for employers that have between 0 and 20 workers. After that, the skill level per 

capita increases moderately with size. Finally, Panel D shows the employer size 

premium. 
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Figure 23: Scaling with firm size 

Panel A shows the fit of a concave function. In Panel B we fitted a linear function. Panel C presents the fit of a concave 
function. Panel D shows the fit of a linear function. All the models were fitted via OLS. 

 

The income distribution generated by the model is skewed. However, it does not 

fit conventional income distributions (lognormal, exponential, Pareto, etc.) (see Panel A 

in Figure 24). Panel B from Figure 24 shows the relationship between the endowment of 

skills and income. This is a realistic result for three reasons. The first is positive returns to 

education (which is coherent with the Mincerian earnings equation). Second, education 

has increasing marginal returns during the first years (consistent with evidence about the 

importance of early cognitive skills in labor prospects). Third, once a high educational 

level has been attained (e.g. a high school or college diploma), additional education has 

decreasing marginal returns (or even null). 

An additional question that we explore is if preferences have some effect on 

income. Recall that the parameter & from Equation 6 denotes the preference of agents 

towards effective work. Panel C from Figure 24 shows an inverted-U relationship 

between & and income level. It means that individuals with well-balanced preferences for 
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working and socializing have higher earnings. It shows the importance of social skills in 

a labor market where social networks are key to obtain access to better job opportunities.  

 

 
Figure 24: Income-related outputs 

Panels A and B show the fit of logistic functions using the Levenberg-Marquardt algorithm. In Panel C we fitted a 
polynomial of order two via OLS. 

 

Now we turn to labor outcomes that are important for macroeconomic policies. 

Our model is able to emerge two important stylized facts from the macroeconomic 

literature. The first if the Phillips curve (see Panel A from Figure 25), which exhibits a 

negative relationship between the change in real wages and the unemployment rate. The 

second is Okun’s law (Panel B from Figure 25), which shows a negative relationship 

between growth rates of the economy and changes in unemployment rates. We should 

point out that both of these macroeconomic empirical regularities have been generated 

without the need of aggregate assumptions about the workings of the market, providing 

evidence of the empirical validity of the model. 
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Additionally, we are able to endogenously produce dynamic unemployment rates 

(Panel C from Figure 25). The average unemployment rate for a period of four years is 

approximately 1.8% with a standard deviation of 0.13%. We can control the magnitude of 

the unemployment rate by setting the density of the social network. Therefore, the model 

can be easily calibrated to produce desired levels of unemployment. Panel D in Figure 25 

shows a time series of the average duration of unemployment spells. An unemployment 

spell lasts six months and varies by 12 weeks on average. We can induce higher duration 

levels by controlling the density of the social network. Once the transient has been 

passed, both time series are stable throughout the simulation. 
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Figure 25: Macroeconomic outputs 

Models in Panels A and B were fitted using linear functions via OLS. Panels C and D present time series for four years 
on a monthly basis. 

 

We take a look at the employment status of agents and how it is correlated to their 

skills. Panel A in Figure 26 shows a positive relationship between the skills of agents and 

their employment status. Employment status is a binary variable where 1 means 

employed and 0 unemployed. The data points represent the average of the employment 

status for each skill cohort. Skills and average employment are linearly correlated with a 

Pearson coefficient of 0.82. The distribution of the length of unemployment spells is 
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skewed. Here we approximate it with a Pareto distribution. However, more data points 

would allow us to refine the model selection. 

It is clear that the skill of an individual affects her chances to be employed. This is 

an emerging result since the model does not have explicit formulations where firms 

discriminate between workers. The explanation is in the access that agents have to job 

opportunities which is determined by the social network. Since skillful agents have more 

“resources” to socialize, they should be better equipped to confront situations of 

unemployment. Therefore, it is important to analyze the social network that emerged 

from the model and its implications in the labor market. 

 

 
Figure 26: Unemployment and duration 

The model in Panel A was fitted using a linear function using OLS. Panel B shows the fit of a Pareto distribution using 
MLE. 
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The model allows us to dissect the population and study how its social relations 

shape labor dynamics. Panel A from Figure 27 shows that the distribution of connections 

in the social network is skewed. Although it looks well approximated by a normal 

distribution, it does not pass a Chi-2 test, suggesting that the social network is not the 

result of a purely random process. The social network is assortative in degree, meaning 

that agents tend to be connected to other agents with similar number of connections. This 

conforms to empirical studies about social networks. 

Panel C shows that agents tent to socialize with similarly skilled agents. This 

correlation is not perfect because of the mechanism described in Section 4.3.1.3. 

Therefore, despite of the noise introduced by the matching process and heterogeneous 

skill endowments, the system emerges a homophilic social network. Interestingly, the 

opposite result occurs for preferences. Panel D shows that agents with stronger 

preferences for working tend to acquaint with pro-social agents. This is explained from 

the uniform distribution of &: the chances of meeting an agent with a higher & than myself 

decrease as my own & increases. However, the plot in Panel D is not an exact map to the 

cumulative distribution of & due to the matching restrictions induced by the localized 

interactions at the workplace.  
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Figure 27: Assortativity through social ties 

Panel A shows a fitted normal distribution via MLE. Panels B and C show fitted concave functions using OLS. Panel D 
presents a linear model fitted via OLS. 

 

The properties of the social network are of particular interest to sociologists who 

study labor markets. Here we study how this network relates to labor outcomes, which is 

of interest to labor economists. In Panel A of Figure 28 we can see that agents with more 

social ties tend to earn more until a critical level of 10 connections is reached. After that, 

more links are negatively correlated to lower income. Beyond 30 connections, the 

relationship between degree and wages becomes ambiguous. This result is not very 

intuitive, since the conventional view of social capital is that more connections mean 

more access to better opportunities. This is clarified if we employ the clustering 

coefficient as our proxy of social capital. Remember that a lower clustering coefficient 

implies poorer connectivity between an agent’s neighbors. Panel B shows that agents 

with higher clustering coefficients tend to earn lower wages. The reason is because 

second-degree neighbors can apply to the same companies. These firms are more likely to 

hire more of these individuals during the same period. Consequently, the offer received 

by an agent with high clustering coefficient will be lower when her second-degree 
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neighbors have been hired before her. Therefore, earnings depend strongly not on how 

many people an agent knows but on whom she knows. 

The social network also has important consequences on employment status. 

Higher degree means lower chances of being unemployed (Panel C in Figure 28), while 

higher clustering coefficients generate higher unemployment rates. The causal 

mechanisms are similar as the ones described before. However, in the case of 

employment status both how many and whom you know are important. 

 

 
Figure 28: Social networks and labor outcomes 

Panel A shows a polynomial of order five fitted by OLS. Panels B, C, and D present linear models fitted with OLS. 
 

Finally, we explore another aspect about the social network and employment. We 

are interested in looking at the social capital that certain employers facilitate. Panel A in 

Figure 29 shows two regimes of firms that employ individuals with different degree 

levels. Firms with higher elasticity of tenured skills tend to employ individuals with more 

social ties on average. In Panel B we can observe that workers at larger firms have more 
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connections. This relationship is particularly steep for firms with less than 20 employees. 

After 20 employees, the marginal scaling effect of firm size in social capital weakens. 

This is caused by the socializing dynamics because a worker can only build social ties 

with people similar (in some degree) to them. 

 

 
Figure 29: Social capital in firms 

Panels A and B show polynomials of orders three and five respectively, fitted via OLS. 
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Labor flows between companies generate endogenous changes to the way people 

find jobs. When individuals change jobs, they bring their personal contacts from previous 

jobs with them. This makes their new co-workers closer to those firms where their new 

colleague used to work. Structurally speaking, this is an endogenous process that 

continuously reshapes the search space of job opportunities. In some degree, the LFNs 
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captures this space. If workers search for jobs through the LFN, the firms that they can 

approach are determined by the structure of their connections. 

Besides the empirical regularities documented in Section 3, we found two 

characteristics of LFNs that coincide with many other types of social networks: local 

structure and global connectivity. Local structure refers to the “tightness” of groups of 

firms. For a network, this is measured by the average clustering coefficient of its nodes. If 

an economy has high clustering coefficient, it has strong local structure. Intuitively, local 

structure means that labor tends to move within a well-defined group of firms. Global 

connectivity refers to how distant two firms are from each other in the LFN. Normally, 

this is measured as the average shortest path between all pairs of firms. Shorter paths 

mean that there is higher global connectivity. Intuitively, it means that a worker can get 

to any firm in the economy by being employed by a few other firms previously. 

For our empirical LFNs, we found that they have strong local structure and high 

global connectivity. The average clustering coefficients for Finland and Mexico are 0.042 

and 0.075 respectively. Their average path lengths are 4.78 and 5.06 respectively. If these 

LFNs were created by a purely random process (as in Érdös-Renyï networks), they would 

have an average clustering coefficient of 0.009 and 0.01 respectively. Their average path 

length would be of 4.48 and 4.6 for Finland and Mexico respectively (these quantities 

were estimated via null models). Strong local structure and high global connectivity has 

been known for decades by sociologists as the small-world phenomenon (Milgram, 1967; 

Travers & Milgram, 1969).  
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On one hand, economic theory has informed us about the incentive-driven 

mechanisms that produce labor mobility. However, these theories have ignored the 

underlying structure of economies through which people search for jobs. In fact the 

popular matching models of job search (Gronau, 1971; Lippman & McCall, 1976; 

McCall, 1970; Mortensen, 1970) assume that any worker can be randomly matched to 

any firm (an underlying complete graph). On the other, physics models about small-world 

networks (Kleinberg, 2000; Newman & Watts, 1999; Watts & Strogatz, 1998) have 

improved our understanding about their “mechanics”, without deeper insight of the social 

principles that generate them. 

In this Section, we present an agent-based model that connects physics models of 

small-world networks and economic job search models. It provides a framework to 

understand how the process of job search gives rise to the small-world phenomenon of 

LFNs, which in turn affects the search space of the agents. We provide evidence that 

behavioral aspects such as impatience and discounting behavior; policy dimensions such 

as unemployment benefits and search costs; and macroeconomic variables such as 

separation rates induce different outcomes of the topology of the LFN through its local 

structure and global connectivity. 

E"E"#" <)=&/'6&:95-F,-)*'

There is a fixed population of firms and workers. Workers can be either employed 

by one of the firms or unemployed and searching for a new job. There is a labor flow 

network of all firms, reflecting the most recent flows of workers between every two 
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firms. Job search takes place through this network. Therefore, the network is the product 

of the decisions of agents of searching for jobs, but it also affects the way in which they 

search. 

A"A"%"%" M+0,6)'(@8,

Job search behavior is modeled after the standard framework in the job search 

literature (Gronau, 1971; Lippman & McCall, 1976; McCall, 1970; Mortensen, 1970). 

More specifically, we use the framework developed by (DellaVigna & Paserman, 2005; 

Paserman, 2008), which considers exponential and hyperbolic discounting, search costs, 

layoffs, and unemployment benefits. In period t, unemployed agents have to face the 

decision of increasing the probability st of receiving a job offer in t+1 while incurring in a 

cost C(st). At the end of t, they receive unemployment benefits b. On t+1, unemployed 

agents receive an offer with probability st, which they have to accept or decline. Offers 

are randomly drawn from a known distribution with cumulative form F(!). If an agent 

accepts an offer, she becomes employed with wage w and can become unemployed with 

probability q at any period after t+1. If the offer is declined, the agent remains 

unemployed for the next period, expecting to get a better offer. For infinitely long living 

agents, this problem is a life utility maximization one, with value function in the form: 

 

max
st![0,1]

bt "C(st )+!" st# max Vt+1
E (w),Vt+1

U( )$
%

&
'+ 1" st( )Vt+1U{ },  
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where E is the expectations operator, VU is the value function of being unemployed, and 

VE = w+ .[qVU + (1-q)VE(w)] is the value function of being employed. VU is assumed to 

be the same across time for analytical tractability2. Parameters & and . are the subjective 

discount factors for short and long run respectively. 

Under this specification, this problem has a solution in which agents set an 

optimal stopping rule by defining a reservation wage w* and an optimal probability of 

receiving a job offer s*. Both solutions are stationary and can be obtained from solving 

the following system of equations: 

  

Equation 7 

w*= b!C(s*)+ !s*
1!! 1! q( )

(u!w*)dF(u)
w*

w
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Solving this system provides constant w* and s*, which are the connecting pieces 

between agent behavior and LFNs. Notice that the previous model is very comprehensive 

                                                
2 Paserman (2008) argues that this assumption only introduces a small bias and would be 
equivalent to say that agents are eligible to unemployment insurance for just their first 
unemployment spell. This assumption, together with strictly convex costs, allows the 
author to derive a stationary reservation wage.  
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since earlier models of job search can be derived with the right calibration. For example, 

if C=0 and & =1, we have the classic job search model (Lippman & McCall, 1976). 

A"A"%"#" B)*4+(F,

The economy is structured as a LFN. We begin with a graph G where firms are 

nodes N={1,2,…,n} and a recent flow of labor between firms f and h constitutes an edge 

ef,h=1. An edge does not exist if ef,h=0, and it means that there have not been recent labor 

flows. G is a directed graph, although we will use it as an undirected graph to analyze 

some dynamics ahead. 

Initially, all firms have 2k in-degree and 2k out-degree, and we assume k&2 (a 

realistic degree obtained in our empirical findings in Table 3). In this setup, all the edges f 

are connected to the 2k neighbors, implying that eh,f=1 and ef,h=1. From its 2k neighbors, f 

is connected to two of them by structural edges. These edges constitute a circular lattice 

that connects all firms in the economy3. As in (Tassier & Menczer, 2001), we can justify 

this lattice as the geographical proximity of firms, which induces frequent labor flows. 

Hence, structural edges make every firm accessible from any other firm at any point in 

time.  

The remaining 2k-2 neighbors are connected through labor flow edges. A labor 

flow edge can be rewired while a structural edge cannot. Firms can only rewire their 

                                                
3 This assures that the network remains connected at all times. Notice that the Watts & 
Strogatz model assumes n>>k>>ln(n)>>1 in order to achieve permanent connectivity. 
Our empirical findings do not support k>>ln(n). 
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outgoing labor flow edges, since it indicates the most recent flows from them to the 

others. As in the construction of LFNs described in Section 3.2.5, we assume that a labor 

flow includes the possibility of unemployment spells between two jobs. Therefore, labor 

flow edges do not represent job-to-job changes exclusively. Figure 30 illustrates the 

network topology for k=2. For simplicity, we assume that edges are unweighted. 

 

 
Figure 30: Initial topology of the LFN 

The solid lines represent the structural edges that cannot be rewired. The dotted lines represent the labor flow edges 
that can be rewired to other firms. This figure illustrate the case of n=20 and k=2. However, it can be generalized for 
higher n and k. 
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Job search models in the economics literature assume that offers are i.i.d. draws 

from F, but does not assume any underlying structure of the origin of such offers. This is 
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where we incorporate the idea of the LFN as part of the job search process. As discussed 

in Section 3.2.5, LFNs implicitly capture the various motivations for agents to move 

between firms because they reflect the actual movements of workers. In a similar way, 

the LFN provides a reference of the space that restricts the job search of agents. 

Intuitively, an agent that left firm f starts her search in the firms that are closer to f in the 

LFN. Therefore, agents search for job opportunities in the order in which firms are 

accessible through the LFN. In other words, when an agent is laid off, she makes a list of 

all the firms, ordered by proximity in the LFN. Every time she receives an offer, this 

offer comes from the next firm in her list. 

Let d(f,h) be the shortest distance between firms f and h in number of edges. 

Agents search progressively through firms that are closer to their last employer. If there 

are multiple firms h with the same d(f,h), they are reached in random order. When an 

agent that was employed at firm f accepts an offer from h such that d(f,h)>1, a random 

labor flow edge from f is rewired4 to connect with h, indicating that the most recent labor 

flow from f was to h. This process generates network dynamics similar to those in 

(Kleinberg, 2000; Watts & Strogatz, 1998) but at different rewiring rates. 

                                                
4 Although in Section 3.2.5 we construct LFNs by adding edges to the network, here we 
prefer a rewiring approach because it allow us to have a better control over the network 
density in order to measure the effects job search behavior on the network topology. 
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The model was implemented in the Python programming language version 2.7 

(code provided in additional materials). It consists of two components: 

• Worker: An object class of an agent that represents a worker. It contains 

the algorithms through which a worker searches for jobs in the social 

network. 

• Model: Contains the populations of workers. Firms are simple nodes of the 

graph that represents the LFN. It executes the model. 

The model execution is partially parallel. Groups of agents are run in separate 

threads5. Whenever an agent generates a labor flow, it locks the LFN object to produce 

the rewiring of her last employer. Agents’ threads sleep at random intervals, providing 

the execution with asynchronous activations. Within a single thread, the order of 

execution is randomized. When awaken, an agent is activated by different rules, 

depending its state. If employed, an agent is laid off with probability q, which acts as the 

activation rate of this type of agents. Unemployed agents are activated by the endogenous 

probability s*, which provides them with job offers. We summarize this process in 

Pseudocode 3. 

                                                
5 The model can be fully parallelized if each worker is assigned to a single thread. 
However, this imposes a restriction to the size of the system since Python only allows a 
to execute a couple hundred threads. Parallel processes are another option, however it 
involves complications when sharing the network across all processes. 
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Pseudocode 3: Job search and network rewiring process 
 
INITIALIZE agents and network; 
WHILE t<T DO: 

FOR each worker in parallel: 
IF worker is employed: 

Separate from firm f with probability q; 
 IF separated: 
  List all firms h in ascending order by d(f,h); 

    Add b to wealth; 
    Substract C(s*) from wealth; 

 ELSE: 
  Add w to wealth; 
ELSE: 
 Receive offer with probability s*: 

  IF offer is received: 
IF offer ≥ w*: 

     Accept offer; 
     IF ef,h=0: 
      Pick a non-structural outgoing edge ef,g; 
      Set ef,g=0; 
      Set ef,h=1; 
    ELSE: 
     Decline offer; 
     Remove h from list; 
     Increment unemployment spell; 

ELSE: 
    Increment unemployment spell; 
   Add b to wealth; 
   Substract C(s*) from wealth; 
 Increment t; 
 
 

E"E"C" (./-45.,-)*'

We calibrated the model using US empirical data. Some parameters were 

calibrated with a single value and others as random variables from the estimated 

empirical distributions.  
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Ideally, we would like to calibrate the number of agents in terms of the average 

firm size. However, the number of firms has an important topological effect in the LFN. 

For smaller networks, it is easier to achieve higher global connectivity since firms are not 

so far away from each other. For large enough networks, the number of agents that would 

need to be activated is computationally unfeasible due to the locking process when there 

is a rewiring. Therefore, we will assume that each firm has a small number of workers. 

This allows us to instantiate a large number of firms to test the topological effects with 

more precision. 

Paserman (2008) calibrated his search model using NLSY data. He estimated the 

separation rate q for three different income groups. We calibrate q to be average across 

income groups: q=0.0101. 

A"A"!"#" B)*4+(F,-)2/.*=,

The number of firms and the number of edges determine the density of the 

network. As explained in Section 4.4.1.2, the number of edges is fixed. Constant edges 

allow for a better control when measuring the effect of economic parameters on the LFN 

topology. The number of outgoing edges (2k) is not far from the empirical findings 

reported in Table 3 and is close to the benchmark case of well-known models of small-

world networks dynamics. 
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Discount factors of agents are subjective parameters that are normally estimated 

form data. Econometric and experimental studies of similar settings to a job search show 

similar results for the values of & and . (Benhabib, Bisin, & Schotter, 2010; Benzion, 

Rapoport, & Yagil, 1989; DellaVigna & Paserman, 2005; Paserman, 2008). The values 

for . range in [0.80, 0.9989], while the ones for & are in [0.4021, 0.8937]. Therefore, we 

calibrate these parameters to be uniformly distributed in their respective ranges. 

A"A"!"A" ODD)(/P,Q+/*/,'23,R)2)D.*/,

We assume that wage offers are uniformly distributed in [0,1]. This is an 

unconventional distribution for offers but it facilitates our calibration due to the need of 

normalizing w* and s*. Since we are interested in the effect of parameters on LFNs, the 

nature of the distribution does not alter the direction of our results. 

Paserman (2008) specified the functional form C(s)=cs1+/ for the cost of search. 

He estimated /=0.4 and c=82.43 USD using NLSY data. He reports an average wage 

previous to unemployment spells of $320.00, and average unemployment benefits of 

$134.00. We use these quantities to normalize the search cost and the unemployment 

benefits. Therefore, we obtain c=0.256 and b=0.419. Notice that we have calibrated each 

period to be representative of one week. 
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Finally, the endogenous parameters w* and s* are obtained for each agent by 

solving the non-linear system in Equation 7. Due to the convexity assumption of the costs 

function, we cannot obtain an explicit solution for w* and s*. Therefore, they are 

approximated numerically. Table 6 provides a description of the model’s parameters. The 

values that were experimentally calibrated correspond to the baseline case. They were 

also tested for other values in order to check the robustness of the results.  

 

Table 8: Parameters of job search and LFNs model 
Parameter Value Calibration Change Homogeneity 

Number of workers 3,000  Experimental Static N/A 
Average firm size 3 Experimental Static N/A 
Number of groups 50 Experimental Static N/A 
Number of periods, T 10,000 Experimental Static N/A 
Out-degree, 2k 4 Experimental Static homogenous 
Wage offers, F Uniform on [0, 1] Experimental Static homogenous 
Separation rate, q 0.0171 Empirical Static homogenous 
Marginal search cost, c 0.256 Empirical Static homogenous 
Search cost convexity, / 0.4 Empirical Static homogenous 
Unemployment benefits, b 0.419 Empirical Static homogenous 
Short run impatience, & Uniform on [0.40, 0.8937] Empirical Static heterogeneous 
Long run impatience, . Uniform on [0.80, .09989] Empirical Static heterogeneous 

This table describes the nature of each parameter in terms of different characteristics expressed by the columns. The 
column Value denotes the values assigned to the parameters during the baseline simulations, or the probabilistic 
distributions from where the values are drawn. The Calibration column indicates if the source of the values is from 
empirical data or product of experimental procedures that are conventional in agent-based modeling. The Change 
column shows if the parameter is constant throughout a simulation or if it changes with each period. Finally, the 
Homogeneity column indicates if the value is the same for all agents or not. 
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We ran a sample of 36 simulations. The simulations were run independently from 

each other, with initial seeds assigned by a unique time stamp. We employed the 

computational resources from the Department of Computational Social Science at George 

Mason University. More specifically, the 36 simulations were distributed across four 

cores in a PC with 16 cores and 256 GB of memory. 

We saved records for the last 500 steps. Each record was collected on a monthly 

basis (every four steps). The records were stored as administrative micro-data. Each line 

of a record contains information about the state of an agent at a specific step of the 

simulation. Each row represents a variable of the agent. Records were organized into two 

tables: workers and LFN. Each line in the LFN table represents an edge. They consist of 

the source node, target node, and period of collection. All tables were stored in a 

hierarchical data file, with format HDF5, and compressed with the library LZO. More 

specifically, we used the data management library PyTables to speed up the data 

recording process. It took approximately two week to perform all the simulations. 

E"E"H" G&:L/,:'

First we look into some of the labor dynamics generated by the model. Panel A 

from Figure 31 shows that the degree of the LFN follows a skewed normal distribution. 

Panel B presents the distribution of the duration of unemployment spells, which is 

lognormal. The average unemployment spell lasts for 21 weeks, which is close to the 

previous model. However, unemployment rates in this model are significantly higher. 
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Panel C shows a typical time series of the unemployment rates. On average, the 

unemployment rate is 18%, with a standard deviation of nearly half a percent point. Panel 

D shows a typical time series of the average duration of unemployment spells. 

 

 
Figure 31: Labor dynamics from job search 

Panels A and B show normal and lognormal distributions respectively, fitted via OLS. Panels C and D present time 
series for four years on a monthly basis. 
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The most important results connect the economic behavior of job search with the 

topology of the LFN. For a period of four years, we took measures of the LFN that 

provide evidence about its small-world feature: average shortest path length and 

clustering coefficient. Panel A in Figure 32 shows that the average path length is 

considerably shorter for the job search model than the initial lattice. The former is nearly 

500 edges, while the latter is around 5.5. We generated a null model for the initial lattice, 

where we randomized all the labor flow edges. In this case, the average path length was 

approximately 4.7 edges. In Panel B we show that the clustering coefficients of the initial 

lattice and the model are of the same order of magnitude (0.5 and 0.13 respectively). In 

contrast, the randomized model has an average clustering coefficient two orders of 

magnitude lower: 0.0015. 

 

 
Figure 32: Small-world topology from job search 

All Panels show values of the corresponding network metrics, averaged from the last four years of a simulation. All the 
time series are very stable, as shown by the insignificant standard error term, only visible in some bars. Both panels 
correspond to the comparison between the initial lattice, the baseline model, and the null model. 
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We explore the connection between the model parameters and the topology of the 

network. We ran treatment simulations in which we removed the unemployment benefits. 

We compare the baseline and treatment groups in Panels A and B from Figure 33 for 

average path length and average clustering coefficient respectively. Although both cases 

seem similar in magnitude, the one-sided t-tests show that they are statistically different. 

When unemployment benefits are zero, agents are willing to accept lower offers. Then, 

firms that are closer to their last employer hire them, inducing a shorter rewiring of the 

LFM. This generates longer paths and higher clustering. It is clear from the same figure 

that the effect goes in the same direction when the separation rete and the marginal search 

cost are higher.  

 

 
Figure 33: Network effect of microeconomic parameters 

All Panels show values of the corresponding network metrics, averaged from the last four years of a simulation. All the 
time series are very stable, as shown by the insignificant standard error term, only visible in some bars. Both panels 
correspond to the comparison between the baseline model and the three treatments: null unemployment benefits, higher 
separation rates, and higher marginal search cost. Single-tailed t-tests reject the hypothesis that any of the treatments is 
equal to the baseline. 
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In this chapter we showed how ABMs are useful to connect labor and firm 

dynamics in order to deepen our understanding of labor markets. We presented three 

different models that are simpler than the average labor market ABM, and generate richer 

results than most models about labor markets. ABMs are a natural tool to incorporate 

networks and economic interactions. Therefore, we believe that it will be the way to go 

when it comes to construct comprehensive models for designing and evaluating labor 

policies. Further developments in this kind of models will increase our knowledge and 

expertise about modeling complex dynamics. Researchers and policymakers would be 

greatly benefited from engaging in an agenda that pursues this goal. 
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5. CONCLUSIONS 

This dissertation studied the role of networks as mediators between labor and firm 

dynamics through an extensive empirical analysis of large-scale employer-employee 

matched micro-datasets and state of the art agent-based models. We provided an 

overview of the literature of models of labor and firm dynamics, and a detailed account of 

agent-based models that have been developed to study labor markets. We introduced the 

concept of labor flow networks as a new way to understand labor and firm dynamics 

from a decentralized and distributed perspective. We showed that conceptualizing 

economies as networked structures provide important information about employment 

growth and the way in which labor is continuously reallocated throughout the economy. 

We employed agent-based models in order to study the endogenous formation of 

different types of networks and their effect on labor and firm dynamics. We found that 

this type of models is naturally suited to couple complex dynamics, decentralized 

processes, networks, and rich micro-data. 

This dissertation contributes to advance the understanding of labor dynamics in 

four main ways: (i) by providing the first characterization of a network of firms 

(connected through labor flows, i.e. labor flow networks) for an entire economy; (ii) by 

finding evidence of the relationship between labor flow networks and employment 

dynamics; (iii) by developing agent-based models that generate rich stylized facts about 
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labor, firm, and social dynamics from microeconomic behavior; and (iv) by providing the 

microeconomic foundations of the formation process of labor flow networks through the 

coupling of job search models with models about the formation of complex networks. 

Although they are quite general, these contributions embed other contributions in terms 

of methods and results that are important for the understanding of labor market dynamics. 

We argue that studying labor markets as networks through the lens of computational 

models offers an unparalleled opportunity to understand the complex ways in which labor 

dynamics affect multiple aspects of the economy. By employing state of the art 

computational tools and the everyday growing large-scale micro-data, social scientists 

and policy makers can view labor markets from a fundamentally different perspective: 

one where heterogeneous agents interact explicitly in decentralized forms, endogenously 

generating structures that limit their mobility and affect policy-relevant indicators such as 

unemployment rates, duration, and wages. We believe that the scientific and pragmatic 

sides of studying labor market can be significantly enriched with this approach. 

Governments, scientists, and regulators would be greatly benefited from performing this 

type of analysis and developing these kind models.
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2 
 

the relationship between labor flow networks and employment dynamics; (iii) by 

developing agent-based models that generate rich stylized facts about labor, firm, and 

social dynamics from microeconomic behavior; and (iv) by providing the microeconomic 

foundations of the formation process of labor flow networks through the coupling of job 

search models with models about the formation of complex networks. 

Chapter one presents a literature survey of models about labor and firm dynamics. 

First, we overview the dominant approach to model labor dynamics: search models and 

matching functions. Then, we review stochastic processes that generate stylized facts of 

firm dynamics. Next, we survey game-theoretic models that bridge the gap between 

networks and labor markets. Finally, we review every agent-based model that has been 

developed so far to analyze labor markets from an economic perspective. The literature 

review in this chapter has an emphasis in agent-based models because that is the chosen 

methodological tool for this dissertation. 

Chapter two introduces a new way to analyze labor and firm dynamics as 

networks of firms connected through flows of labor. The concept of a labor flow network 

(LFN) is developed and several stylized facts are documented for multiple large-scale 

employer-employee matched micro-datasets. We demonstrate that LFNs provide useful 

information to improve our understanding about employment growth. We argue that 

labor flow networks are neither the product of purely random processes, nor the intended 

consequence of strategic interactions between economic agents. Therefore, we advocate 

for the use to computational methods in order to understand how these robust structures 
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