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ABSTRACT

The paper introduces the concept of a decision diagram and shows its
application to designing extended entry decision tables and converting
them to space or time optimal decision trees. A decision diagram is a
geometrical representation of a decision table by means of a planar model
of a multidimensional discrete space as described in [12],

Two algorithms for optimal (or suboptimal) sSpace or time conversion
are described using deéision diagrams. These algorithms are basically de-
composition algorithms, but by varying their degree (def. 5), one can
obtain a spectrum of algorithms, differing in the trade-off between the
computational efficiency and the degree of guarantee that the solution
is optimal. When the algorithms do not guarantee the optimality, they
give a measure of the maximum possible distance between the obtained and
the optimal trees.

Key words and phrases: Limited Entry Decision Tables, Extended Entry
Decision Tables, Decision Trees, Conversion Algorithms, Decision Diagram,
Logic Diagram.

CR Categories: 8.3




I. INTRODUCTION

There are many practical problems where certain actions or decisions depend
on the outcomes of a set of tests. A convenient way of specifying the cor-
respondence between test outcomes and the actions is by means of a decision
table. Decision tables have found a widespread application in computer pro-
gramming [7,5], data documentation [3], and in various other areas of data
processing. Recently, in a modified form, they have also found an application

to certain problems in artificial intelligence [13]. Fig. 1 gives an example

of a limited entry decision table, where.tests can have only three possible
outcomes: YES, NO or IRRELEVANT, denoted in Fig. 1, by 1, 0, -, respectively.

Fig. 2 gives an example of an extended entry decision table, where tests can

have an arbitrary number of outcomes. Techniques described in this paper are

applicable to both, limited and extended entry decision tables,.

Each column of a decision table specifies a decision rule which consists

of a condition part (a combination of test ocutcomes) and an action part (an

action or sequence of actions which should be taken when the condition part
is satisfied). If the order of actions is important, the entries in the
action part are integers indicating the order.

In any decision table, test outcomes can take only a finite number of
distinet values. Let Xys Xy sty xn denote tests and Dl’ DZ’ .8 ¥ o Dn’

corresponding sets of possible outcomes of these tests. The event space

=D D D 1
E 1 ¥*Pyx ... x D (1)

(where x denotes cartesian product), is the set of all possible sequénces
of test outcomes (events).

As was described in [12] the event space E can be represented geometrically

on a plane in the form of a diagram. For the lack of space, the description of

the diagram, and of the rule for recognizing cartesian complexes (see below)

in it, also given in [12] is omitted here.
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It is therefore recommended that the reader have a prior acquaintance
with paper [12].

A basic concept used here is that of an elementary cartesian complex

(2 special case of a 'cartesian complex'[]12]), defined as a set of events

or cells * of a diagram, which can be expressed as a single logical product

(a term) of conditions which check whether a test Ki has outcome ai. Such

conditions are written as [xi ai], and terms as products A[x. = ai]. If

: i
i€l
an outcome of a test is Irrelevant ('-'), them the condition involving this

test is omitted from the term.

Thus, each condition part of a rule in a decision table can be expressed
as a term, and be represented in a diagram as an elementary cartesian complex
(from now on, simply, a complex).

A decision diagram, for a given decision table, is constructed by locat-

ing in the diagram (representing the space E of test outcomes) the complexes
which correspond to the condition part of every rule, and marking them by
actions specified in the action part.

A complex (or a cell) marked by action A is called in the sequel a

complex (or cell) of class A. Fig. 3 and 4 present the decision diagrams

representing decision tables in Fig. 1 and 2, respectively. It may be a

useful exercise for the reader to check the correspondence between the rules

in the decision tables, and corresponding complexes in the decision diagrams.
In this paper, decision diagrams are used, both, as a conceptual geometri-

cal model for describing algorithms, and as a wvisual aid for solving problems.

A significant advantage of decision diagrams lies in the fact, that it is much

easier (for humans) to see differences and similarities between geometrical

configurations, than between strings of numbers or symbols.

* In the case of binary tests (i.e., when aiE [0,1]), a complex of Zk cells

k . . ;
corresponds to a k-cube (a subset of 2 vertices of an n-dimensional

hypercube).
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A description of algorithms in terms of geometrical constructs {which
can be visualized) has therefore a great appeal ~ both for scientifie

communication and education.

In the past, many authors used the concept of an n—dimensional hypercube
and its subsets, k-cubes, for representing an event space and logical products,
respectively. A hypercube, however, can be directly visualized only when there
are not more than 3 variables; when there are more than 3 variables, it rapidly
looses its value as a geometrical model. When the variables can take more than
2 values (as in our case) the concept of a hypercube is even less adequate.

Although a form of diagrams with binary tests (Karnaugh maps) has been
used in the past for solving problems related to limited entry decision tables,
this is the first paper, to the author's knowledge, which demonstrates use-
ulness of diagrams for extended entry decision tables, and uses them system—
atically as a conceptual model for presenting and analyzing algorithms. The
paper also demonstrates that decision diagrams are a useful practical tool
(when the use of a computer is not necessary) for directly solving various
problems related to decision tables, such as testing decision tables for re-
dundancy, consistency and completeness, optimizing decision tables, and quickly
converting them to optimal (or near-optimal) decision trees.

Chapter 2 describes the use of decision diagrams in designing and optimizing
decision tables, and Chapter 3 gives a theoretical analysis of the problem of
converting decision tables to (space or time) optimal decision trees, and
describes two first degree conversion algorithms. Chapter 3 also demonstrates

a need, in some cases, for conversion algorithms of higher degree than first,

and shows that such algorithms can be easily obtained from the first degree

algorithms.

II. USE OF DECISION DIAGRAMS IN DESIGNING DECISION TABLES

2.1 Testing decision tables for redundancy, comsistency and completeness.

A well designed decision table should be non~redundant, consistent and
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complete.* These properties can be easily tested once a decision diagram
haslbeen constructed for the given decision table. The redundancy occurs,
if the decision diagram contains complexes of the same action class, which
have a non-empty intersection. For example, in Fig. 3, complexes represent-
ing rule 1 and 2 of action class Al’ intersect, and therefore, the decision
table in Fig. 1 is redundant. If intersecting complexes are of different
action classes, then the decision table is inconsistent. The decision table
is complete, if every cell of the decision diagram belongs to {(is covered
by) some complex. We can see in Fig. 3 that the decision table from Fig. 1
is redundant, consistent and complete; and in Fig. 4, that the decision table
from Fig. 2, is irredundant, consistent and complete {the table would be

incomplete if there were no ELSE rule).

2.2 Optimization of a decision table

It is usually desirable that a decision table contains the minimum number
of rules, which is sufficient for specifying the given decision problem and
preserving the requirements of non-redundancy**, consistency and completeness.
In a decision diagram, a reduction in the number of rules occurs when two or
more complexes of the same action class are merged (or rearranged) into a

smaller number of complexes. The theoretical basis for merging complexes is

given by the simplification rule:

L[xi=0] Vv L[xi=1] V ...V'L[xi=di—l} = L (2)
where L is a term,
L{xi=a] is a logical product of L with condition [xl=aj,

{0,1,...,di*l} is the set of all possible outcomes of test X, i.e., D

* A decision table is

eredundant, if there is a combinarion of test outcomes which satisfied the
condition part of more than one rule with the same action part:

einconsistent, if there is a situation as above but when the action parts
are different;

acomplete, if it contains a rule for any sequence of test outcomes.

*% If one permits a redundancy, the number of rules can sometimes be further
reduced.




The rule (2) applied to a decision diagram says that if complexes of
the same action class differ in the outcome of only one test, and the test
takes on all possible values in these complexes, then the complexes can be
merged into one complex not involving this test at all, If certain
combinations of test outcomes can never occur (are 'DON'T CARE-s'), then
cells corresponding to them (empty cells in Fig. 4) can be included in any

complex if this can help to merge complexes.

Let {Ai}, i=1,2,...,m, denote the set of all action classes, and E; -
the set of all cells of action class Ai in a given decision diagram.

A cover C(Aj) of action class Aj is a set,{ck},of complexes, whose

union includes (covers) set Eﬁ and does not cover any cells of other

action classes:
m |
E,.C CEN U s
i€ R SEN & (3)
ik

If all complexes in C(Aj) are pairwise disjoint, then the cover is called

a disjoint cover of class Aj.
If covers C(Ai) of classes Ai’ i=1, 2, ..., m, have the property that
any two complexes from any two such covers, respectively, do not intersect,

then the union of such covers is called a cover of the decision table. If

in a cover of a decision table, the covers C(Ai) are disjoint, then the

cover is called z disjoint cover of the decision table.

It is easy to see that any decision table which satisfies conditions
of non-redundancy, consistency and completeness defines a disjoint cover of
the corresponding decision diagrém. The following concept is basic to the
contents of the paper:

Definition 1. An optimal disjoint cover of a decision diagram is defined

as a disjoint cover, which has the smallest number of complexes, and, in
case of tie, includes complexes of larger size (i.e., their union covers

more cells) among other disjoint covers of the diagram.
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The importance of the optimal disjoint cover (called, from now on,

the optimal cover) stems from the fact that it corresponds to a decision

table with the smallest number of rules. If there are two or more such

tables, the optimal cover corresponds to the table which has more dashes
("='") in the entries (i.e. the condition parts of the rules involve fewer
specified test outomes). The decision table corresponding to the optimal

cover .is called the optimal decision table.

Thus, determining the optimal decision table is equivalent to determining
the optimal cover of a decision diagram. Tt should be noted that there can
be, in general, more than one optimal cover, and, therefore, more than one
optimal decision table defining the same decision process. Fig. 5 and Fig. 7
present optimal covers for decision diagrams in Fig. 3 and 4, respectively.
Fig. 6 and 8 show the optimal decision tables corresponding tﬁ these covers.

Determining the optimal cover of a decision diagram is similar to the
process of minimizing a Boolean function in a Karnaugh map, although there
are differences:

1. all complexes must be pairwise disjoint,

2. the cover involves a family of covers, one cover for each action class
(unlike in Boolean minimization, when there is only one cover to be
constructed)

3. the process is done in non-binary event space (assuming extended entry

decision tables).

For commonly occuring decision tables (which rarely involve more than
6-7 binary or 'few-valued' tests (sée,e.g., [51) optimal covers of the cor-
responding decision diagrams can often be found just by visual inspection
of the diagram and the application of the rule for recognition of complexes
given in [1] (one can alsoc develop his/her own recognition rule, since

complexes have certain easily detectable regularities).
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14

” xl - 0 - 21
3' X 0 2 1 2 2
£~

> Al 1 1

15 A2 1 1

.:.:: AB 1

Optimal decision table corresponding to the cover in Fig. 7.

Fig. 8



15

When a decision table is very large (say, more than 8 'few-valued'
tests and 50 rules) it is necessary to use z computer program implementing
a systematic method of decision table optimization.

Since the optimization of a decision table is equivalent to solving a
special case of the general covering problem [9], any of the known covering
algorithms can be adopted here. An example of a systematic method for
optimizing limited entry decision tables is described in (19], which adopts
the Quine-McCluskey algorithm for generating prime implicants.

Another example of a systematic method is the quasi-optimal covering
algorithm Aq, described in [9] and [11]. This algorithm works differently
than usual covering algorithms which first generate all candidate complexes
and then select a cover: namely, it generates, at-each step, only a specially
chosen subset of candidate complexes, and then selects from it the 'best'
complex. Due to its efficiency and generality, the algorithm A% can be applied
to very complex covering problems, involving many (easily more than 15) binary
or many-valued variables. The algorithm is implemented in computer program
AQVAL/1 [8].

In the sequel, the generaticn of the optimal cover of a decision diagram (or
just a single action class) is assumed to be done by some adopted procedure.

Sometimes decision tables are constructed with an assumption that
individual rules are tested in order from the left to the right, and the first
rule satisfied evokes the corresponding action. This assumption usually leads
to a simpler decision tablé, because the condition part of a rule may intersect
with the condition part of any of the preceding rules. Decision diagrams can
be easily used to optimize such ordered decision tables. First, construct the.

optimal cover of the first action class (the same way as in the 'unordered’
table). Next, when constructing optimal covers of subsequent action classes,

the cells covered by the preceding covers are treated as "DON'T CARE-g whenever

it can simplify the cover.
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I1I.CONVERTING DECISION TABLES INTO OPTIMAL DECISION TREES

3.1 General remarks, previous work

It is an interesting aspect of human versus machine psychology, that
one prefers a decision table in order to formalize a decision process,
but when one wants to program it, a decision tree is preferable. 1In
such a tree, the nodes are labeled by individual tests, the branches by test
outcomes, and the leaves by action classes. Many methods (e.g., 6, 14, 17,
1, 16, 22, 21, 2, 14, 4, 19, 18) have been devised for converting a decision
table (in most cases only limited entry) to a decision tree which is optimal
(or near-optimal) according to some criterion. Usually, two criteria of
optimality are considered:

1. that the tree has the minimum number of nodes (such a tree corresponds to
the space optimal program, i.e., a program with the minimum memory require-
ment), or

2. that the tree corresponds to the time optimal program (i.e., program
whose average execution time is minimum).

After an early rule mark technique proposed by King [6], most sub-
sequently developed methods (e.g., 14, 1, 16, 22, 21, 14, 4) apply the principle
of decomposition. Tests to be assigned to the nodes of the tree are selected
one by one, according to some heuristic criterion. Decomposition methods
are computationally very efficient, but ﬁay fail to produce the strictly
optimal trees.

Other approaches include a branch-and-bound algorithm by Reinwald and
Soland [17], and dynamic programming methods by Bayes [2], and by Schumacher
and Sevcik [18]. These algorithms always guarantee the optimal solution, but
require exhaustive searches through large spaces of trees. For example, the
storage requirement and the execution time of the dynamic programming method
of Schumacher and Sevcik [18] both grow with the number of binary tests

in proportion to 3", Consequently, the method becomes practically unacceptable

when the number of binary tests exceeds 10-12. In the case of the branch-and-bound
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algorithm [17], the situation is even worse (as estimated in [18], the
algorithm may require several hours even when n=6). Since the computa-

tional cost of table conversion should be included in the total cost of tree
implementation, it can happen that a suboptimal tree (obtained by an efficient
decomposition method) is 'more optimal' than the theoretically optimal

tree.

Most of the developed methods are strictly computer oriented, and give
little insight to the nature of the difficulty of the conversion problem;
thus, they leave the practitioners coping with the variety of practical
conversion problems strongly dependent on the availability of computer programs
and forced to accept the assumptions underlying the programs.

In this paper we analyze the conversion problem of limited and extended
entry decision tables, and try to provide a clear graphical illustration of
the difficulties by using decision diagrams. Throughout the paper we con-
centrate on the simpler problem of space optimal conversion, and then show
how the results can be extended to time optimal conversion.

The conversion algorithms described here are basically decomposition
algorithms. We show, however, that by extending their degree (def. 5), one
can obtain a spectrum of algorithms which differ in the trade-off between the
computational efficiency and the degree of guarantee of optimality. When the

algorithms do not guarantee the optimum, they give a measure of the maximum

possible distance to the optimum.

3.2 Problem analysis

CASE 1l: Conversion of limited entry decision tables
to space optimal decision trees

First, we will describe a procedure for converting a decision table, by

means of a decision diagram, to an arbitrary decision tree equivalent to it.
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A test, say x,, is selected and assigned to the root of the tree under
i

construction. The left and the right branches of the rcot are assigned out-
comes of the test, 0 and 1, respectively. The branches are put into corres-
pondence with parts (subdiagrams) of the decision diagram, defined by conditions
[xi=0] and [xi=1], or, briefly*, with subdiagrams D(xi=0) and D(xi=l), re-—

spectively. Next, a test x is selected for the left, and a test X, for

JL’ 2

the right descendant of the root. The branches of the node le are put into

correspondence with subdiagrams D(xi=0, X =1). A similar

jl

correspondence is established for branches from node x

=0) and D(xi=0, le

52 It is clear now, that
selection of a test for a node always implies a partitioning of the corresponding
diagram into smaller parts. For the next test selection these parts can bé
considered as independent diagrams (although, they may consist of geometri-
cally separate cocllections of cells).

If at any step of assigning a test to a node, a subdiagram corresponding
to a branch of this node consists of cells of only one action class, say A,

(and possibly DON'T CAREs), then this branch ends with a leaf, which is assigned

class name A. The tree is completed when there are no subdiagrams with cells

of different action classes.

It is obvious that if we construct this way all possible trees equivalent
to the given decision diagram, then we can select from them the optimal tree.
Since the number of possible trees grows very rapidly#** with ﬁhe number of

avalilable tests, this method of finding the optimal tree is clearly unacceptable,

except for trivial cases.

- . . . ; = = N
A part of decision diagram defined by a term [Xil al][xiz az]...[}:ik a,

is denoted D(xil=a1, X gT8gs coey xik=ak). o 5 {
**For n k-ary tests, k=2,3,..., the maximum number of trees isl |(n—i)
(we have n choices for the root, n-1 choices.for i=0

k descendents of the root, n-2 choices for k“ descendants
of the descendants, etc.)
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How can we develop a criterion which guides the test selection at each
step in such a way that the resulting tree will be optimal {or at leést near
optimal)? This question is the subject of the remaining part of the section.

In a binary tree, the number of leaves, 1, 1s uniquely defined by the
number of nodes, V:

I=v+1 (4)

Consequently, minimizing the number of nodes is équivalent to minimizing
the number of leaves. In our decision trees, the leaves correspond to action
classes. Therefore, if a decision table has m different action classes and
an equivalent tree has m leaves, then the tree is, obviously, optimal. A
decision tree can be non-optimal only when the tree has more than one leaf
marked by the same action class.

Each leaf (branch) of a tree ié defined by a sequence of outcomes of
tests assigned to the nodes on the path from the root to the leaf (branch).

Suppose, that these outcomes for some leaf (branch) are a and

1332!"':ak1

the corresponding tests are KysKgye s s Xy o Then thelleaf (branch) defines a
term

[x1=al][xz=az .o [xk=ak (5)
(in a binary tree aiE{O,l}) and, also, a complex in a decision diagram.

Suppose, that in a given decision diagram, there are k cells of action
class A. If these cells are treated separately, then there will be k leaves
representing them in a decision tree. If, however, they can be put into one
complex, then all of them can (potentially)} be represented by one leaf.
Consequently, the problem of minimizing the number of nodes in the decision tree
is related to the problem of representing action classes by the minimum number of
complexes, i.e., the problem of constructing the optimal cover of a decision
diagram. The feollowing theorem gives a more precise meaning of this relation:

Theorem 1: If the optimal cover of a decision diagram has s complexes, then

the optimal decision tree equivalent to the diagram has at least s-1 nodes.
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Proof:
According to def. 1, the optimal cover has the smallest possible number
of complexes needed to cover all cells of every action class. Since leaves
correspond to complexes, then any tree equivalent to the decision diagram,
including the optimal one, can not have less than s leaves, and, because of
(4), less than s-1 nodes. L
Theorem 1 gives a better lower bound on the number of nodes in the
optimal decision tree than value m~1 (m-number of action classes), but requires
a construction of the optimal cover. It also implies that if a tree can be
constructed with s-1 nodes, then the tree is optimal. Theorem 1 alsco indicates,
that the optimal tree may have more leaves than the number of complexes in
the optimal cover. The reason for this is that each node in a binary tree
always has 2 branches, which correspond to 2 complexes. Therefore, the number
of nodes in a tree representing a cover depends not only on the number of
complexes in a cover, but also on the relationships existing among complexes.

Let R, called a reference set, denote (initially) the optimal cover of

a given decision diagram. As was mentioned before, selecting a test for a node
implies a partitioning of the diagram into 2 parts. Such a partitioning may
break one or more complexes in R into 2 (sub)complexes. If only 1 complex

is broken, then instead of 1 leaf (which could potentially represent this
complex in the tree), there will have to be at least 2 leaves representing this
complex in the final decision tree ('at least', because subsequent partitions
may break this complex again). Thus, by selecting the given test, 1 additional
leaf (and, therefore, 1 additional node) is added to the tree, above the necessary
minimum. If R complexes are broken, then R leaves (and R nodes) are added to
the tree. It is clear, that the number of complexes which are broken in the
reference set by selecting a test (or, generally, a relation between the re-
ference set and the test) is indicative of the number of nodes in the final tree.

Consequently, properties of this relation can be used for comstructing a test
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selection criterion.

Suppose text X, has been selected for a node, and some complexes have
been broken in R. The diagram is partioned into 2 subdiagrams, and there
are now 2 sets, R' and R", each being a cover of the corresponding-subdiagram.
The next selection of a test (for a node which ends the branch corresponding to
one of the subdiagrams), can now be based on the relation between the R'(R") and
each test.

If the initial R were a different optimal cover than the above, the
whole process could lead to a different tree. To make our considerations
general, let us then assume that R can stand for any cover (of the initial
diagram or subsequent subdiagrams), and that our goal is to determine the
"quality' of a test by measuring a certain property of the relation between
set R and the test. The following definition gives a more precise expression
of the above concept.

Definition 2. A first degree cost estimate &(Xi) for test X with regard to

reference set R, is a function which assigns to X, a positive integer depending

on the relation between R and xi.

The following is a definition of an important special case of first degree

cost estimate.

Definition 3. A firstdegree cost estimate for X, which assigns to X, the

number of complexes broken by X, in R, is called the éo or static cost estimate,

and denoted A (x.).
o i
A first degree cost estimate is insufficient to capture the full cost of
selecting a test Xss because once test X, is selected, the reference set R
is partitioned, and this partition may influence the choice of subsequent

tests. In order to apply a "look ahead" in test selection, higher degree cost

estimates are introduced.

Definition 4. The second degree cost estimate for text X:s &ECxi), is defined:

éz(ai) = A(x) + min {a(x)} + min {A(x)} (6)
xEN(x)  xENGx,)
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where N(xi) is the set of tests available for assignment to the descendants of
node assigned test x, (N(x,) is the set of all tests minus
tests assigned to nodes on the path from the root to node Xi’
inclusively),
X - @ test assigned to the left descendant of ncde Xss

Xp — a test assigned to the right descendant of node X,

Similarily, higher degree. cost estimates can be defined.

Definition 5. A kth, k = 1,2,..., degree conversion algorithm is defined as

an algorithm which assigns to each node of the tree the test, whose kth degree
cost estimate is minimum.

Let us dis;uss in more detail the estimate &0. This estimate is very
attractive due to its simplicity. If the reference set R is the optimal cover

of the diagram (subdiagram), ao(xi) specifies the minimum number of nodes which

are added to the final tree, above the lower bound defined by the cardinality

of R, if any of the parts of complexes broken by X; cannot be (or are not) merged
later into a larger complex. If, in addition, complexes broken by selecting

X, are not broken again in the consecutive steps of test selection, then

&(xo) gives the exact number of added nodes to the final tree.

If a complex has only 2 cells, it can be broken only once, and the proba-
bility that it will be broken again is 0. If it has 2P cells, it can be broken
at most Zp-l times (so many nodes in a tree are needed to break it into individ-
ual cells). Assuming that minimum AO is the criterion for test selection, the

probability that a complex of 2p cells is broken t times (t=0,1,..,2p—1)

decreases rapidly with t . This is so, because in order for a complex to be
broken t times, the reference set R has to include a special arrangement of
at least 2t complexes*. The larger is t, the less likely is the occurrence

of such an arrangement,

* In order that a test which breaks a given complex will be a "winner"
t times (assuming no tie), there will have to exist in R at least two

complexes each time, that are broken by all available tests. Thus, the
total number of complexes must be at least 2t.



23

Since the above probability depends on the particular configuration of complexes
in R, one can only say that, in general, the larger is the broken complex,
the somewhat higher is the chance that its parts may be broken again during
the tree construction. Note, however, that size alone will not cause a
complex to be repeatedly broken.

When the complex has Zn_l cells, i.e., half of the decision

diagram, it will not be broken even once, if minimum Ay is

the criterion of test selection. This is so, because such a

complex is defined by the value of only one test, and this

test is the only test which does not break any complexes

and therefore, it will be selected for the root of the tree.

In view of the above, a reasonable criterion for test selection is to

use AD as the primary criterion, and when there is a tie (when more than one test
has the same value of ﬁo), to select the test which breaks smaller complexes.

If there still is a tie, any test can be selected.

Definition 6. The ébove defined criterion for test selection is called the

criterion of minimizing added leaves (MAL).

MAL can be viewed as another form of the first order cost estimate.
Suppose a decision tree has been constructed using the MAL criterion. The sum

of AO for tests assigned to each node of the tree is called the total cost

estimate, and denoted ED. An important property of ED is given by:

Theorem 2: A decision tree obtained using MAL criterion has no more than

Eo nodes above the number of nodes in the optimal tree.

Proof:

The theorem is the direct consequence of theorem 1, definition 3, and
the previously discussed meaning of :}.0 estimate. -

Thus, if I is 0, the obtained tree is optimal.

If after any step of test selection, some, say t complexes and/or
parts of the broken complexes are merged into one complex, the value of ED
should be decreased by t-1. Therefore, in order to get a 'better' tree using
MAL criterion, one should check, after each test selection, whether parts of

the broken complexes (possibly together with other complexes) can be merged
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into larger complexes.

Another disadvantage of the MAL cost-estimate is that it assumes that in
computing ﬂu the reference set is the optimal cover of the diagram (subdiagram)
under consideration. If there are many optimal (or irredundant* covers), all
of them may have to be checked in order to find out which one leads to the
'best' cover (assuming that ED + 0 each time).

We will now develop another first order cost estimate which does not have
the above disadvantages.

Let E denote the set of all cells of action class A in a given diagram
(subdiagram). Selecting a test, saylxi, divides the diagram into 2 subdiagrams.
Suppose, that by doing so, set E is split into 2 subsets, Eo and El.
Let C(E), C(ED) and C(El) denote optimal covers of sets E, ED and El’ respeétively;

and c, ¢t ¢~ the corresponding cardinalities of these covers. Obviously,

and ¢ is computed:

c, ~ cl > c. The difference hetween co+t

1

= + -
&(xi,A) c te -c (7)

Let X denote all action classes whose cells are partitioned by selecting

test x.. &(xi,A) is determined for each A € X, and then their sum is computed:
i

ﬂl(xi) = I &(xi,A) (8)
AeX

Definition 7. ﬁl(xi) is called gi

To see that &l is a form of the first degree cost estimate, assume that

or dynamic cost estimate for X, .

the reference set R is the union of covers
R=c@ VY el veah) (9)
i o) 1
where i scans partitions of set E by all tests being considered for an assign-
ment to the given node. &l can then be viewed as a property of the relation
between R and X, - In using ﬁl for test selection one can ignore the value ¢

in (7), since it remains the same for each test. Only when a test is selected,

*A cover is irredundant if removing or decreasing any complex in it makes
the resulting set not a cover.
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one can compute the 'complete' wvalue of Al, which is needed for computing
the total cost estimate El, as defined later.
The al estimate does not have the previously mentioned disadvantages of

AO, and is clearly more precise in estimating the effect of a test selection

on the final decision tree. Its computation, however, is more complex because
at each step of test selection the optimal cover of (ever decreasing) sub-
diagrams has to be computed (note, however, that after selecting a test, the

cardinalities of c(ED) and c{El) can be used in computing &l for test selection

at the next level of the tree). A 'shortcut' in computing &l is also

possible., Namely, if AU = 0, then, obviously, A, = 0, and A, does not have

1 1
to be computed in such case (for details, see Example 3 and remarks after

algorithm D).
A question arises of which test to select when ﬁl is the same for more than

one test. In computing ﬁl, slzes of covers C(ED) and C(El) were not taken into
consideration.
If the cardinality of C1 = C(E;) ) C(E;) is the same for different wvalues of i

(see (9)), then &l for corresponding tests are also the same. The covers

c" may, however, consist of complexes of different sizes (because of the DON'T
CARE-s). The larger the complex, the smaller number of tests are involved

in its expression, and the corresponding complex can be potentially repre-
sented by a leaf at a higher level of the tree. This may reduce number of
nodes (see Example 3).

Consequently, a reasonable tie—breaking rule is to select the test for
which Ci consists of larger complexes (i.e., the total number of cells in
complexes of Ci is larger). When there is still a tie, any test can be
selected.

Definition 8. The above defined criterion for test selection is called the

criterion of dynamically minimizing added leaves (DMAL).
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The DMAL criterion is a form of first order cost estimate (as is MAL).

Assuming that L. denotes the sum of the estimate ﬁl for all nodes in a tree,

1

theorem 2 also holds for El.

Other first degree cost estimates

Pollack [14] describes a first order cost estimate in which complexes
broken by a test are assigned weights (called 'column-counts') equal to the
number of cells they consist of. The cost estimate ('dash-count') for a
test is the sum of weights of complexes broken By selecting the test. (An
assumption is ﬁade in {14] that each action class is represented by only one
complex. Thus, the issue of alternative covers is not considered there,
which strongly limits the applicability of the method).

According to the above estimate, breaking, e.g., 4 two-cell complexes
is equivalent to breaking 1 eight-cell complex. Breaking 4 two-cell complexes
adds 4 mbre nodes, while breaking 1 eight-cell complex adds only one node
(although,.if this complex is broken in the next test seiecticns, 7 more
nodes could potentially be added to the tree). It is assumed here, of course,
that no subsequent merging of complexes is done. In view of what was said
before about the fast decrease of the probability that a complex is broken
a few times, such an estimate does not seem to be sufficiently justified (in
fact, it is easy to find an example for which such an estimate will select

a wrong test, while the'simpler-MAL criterion will select a right one).
(The tie-breaking criterion used in [14]{called DELTA) favors an imbalance in
the number and sizes of complexes on both sides of axes of a test (i.e., in parts

of diagram defined by value 0 and 1 of a test). It is unclear how to justify
such a2 criterion, and there is a simple counter-example to it.)

Alster [1] describes a first degree cost estimate where the weight given to
broken complexes is Zk; where k 1 the total number of reduced varlables ('dashes')
in all (essential) complexes in a cover of an action class {(i.e., if there are,
for example, 3 two~cell complexes in an action class and any one is broken by

the test, then it will be given weight 23 = 8). Thus, if there is only one

complex in an action class, the estimate is equivalent to Pollack's dash-count
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estimate, but if there are few complexes in a class, and each complex has more
than one cell (i.e., has at least 1 dash), then any broken complex from this
group will be given a wvery large weight. Here again, for reasons discussed
before, such criterion seems to be not sufficiently justified, and it is easy
to find a counter-example to it (for which both the MAL and the DMAL criterion
select a correct test).

When there are alternative (non-essential) complexes, paper [l1] advocates
the creation of OR-groups. The weight of broken complexes in such a group
is divided by the cardinality of the group. The aim of the measure is to take into
account the fact, that the larger are OR-groups, the more likely it is that a cover
exists whose complexes willl not be broken by the test under consideration.

Note, that in computing A,, rather than attempting to estimate (by the above

1’
or any other measure) the probability that such a cover exists, one simply directly
searches.for the cover. This is computationally acceptable, and at the same time
the estimate is more precise.

CASE 2: Conversion of extended entry decision tables.

In an extended entry decision table, tests may have an arbitrary number
of outcomes. Consequently, the equivalent trees may have an arbitrary number
of branches. Let us assume first, that all tests have the same number of out-
comes equal to d, and the corresponding decision tree will be d-ary. In a d-ary
tree, the number of leaves is

L = (d-1)v+l (10)

where v is the number of nodes. Thus, as in the case of binary trees,
a d-ary tree with the minimum number of leaves has also the minimum number of
nodes. Both criteria of test selection, MAL and DMAL, can be adoped here with-
out modification, as it is shown below.

Selecting a test corresponds now to partitioning a diagram into d parts.
Consequently, if a test breaks a complex, it breaks it intoc d smaller complexes.

This adds d-1 leaves and 1 node to the tree. Therefore, decreasing the number
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of complexes which are broken by a test, decreases the number of nodes. Value
d makes no difference with regard to which test should be selected. Both principles,

MAL and DMAL, can be directly applied.

If, however, tests can have different numbers of outcomes, the trees with
the same number of leaves can have different number of nodes. For example,

Figure 9 shows a decision diagram which can be converted to 2 trees with the

same number of leaves but different number of nodes, as shown in Fig. 10.

If two trees have the same number of leaves, then the tree in which
tests with larger number of outcomes are assigned tc nodes closer to the root
will have a smaller number of nodes. Therefore, a reasonable generalization
of MAL and DMAL criterion is to accept as the primary tie-breaking rule (for
tests with the same value of &0 and Al, respectively) the preference for tests
with larger number of outcomes, and then, as the secondary tie~breaking rule,
the one referring to the size of complexes. Thus, we have:

Definition 9. The (modified) criterion MAL {DMAL} for test selection is defined:

1. Choose the test for which &0 {&1} is smaller,

2. 1In case of a tie, chose the one with larger number of outcomes.

3. If there is still a tie, chose the one which partitions the diagram into
parts with smaller complexes {into parts in which covers of the same class
have larger complexes]},

4. If there is still a tie, chose any test.

Note, that in the case when all tests have the same number of outcomes,
the above defined MAL and DMAL criteria are equivalent to their previously
defined form (def. 6 and 8).

Although using the MAL or DMAL criterion for test selection will often
lead to the optimal tree, in some cases the ohtained tree will be sub-optimal.
In such cases, a higher 9egree cost estimate may be needed for the "right"ltest

selection. An example of such a case is given in the section 3.3 (Example 4).
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3.3 Algorithms and examples

The previous section described 2 criteria, MAL and DMAL, for test selection,

but left unspecified the details of using them for constructing decision trees.

This section describes 2 conversion algorithms, S('static cover') and D('dynamic

cover') which employ the criteria MAL and DMAL, respectively. Although algorithms

are described in the context of using decision diagrams, they can be directly
adopted for computer implementation.

The algorithms permit someone, with practice in recognizing complexes
in a diagram, to quickly and directly convert a decision diagram into an op-
timal or near-optimal decision tree. In the latter case, the algorithms give
an estimate, EO or El, respectively, of the maximum difference (in the number
of nodes) between the obtained and optimal tree. The algorithms assume as

given, a procedure for constructing the optimal cover of a decision diagram.

Algorithm §

The algorithm uses MAL criterion for test selection and assumes that the
initial reference set R is the optimal cover of the decision diagram (or one
of the alternative optimal covers, if such exist). Since a different R can
produce different decision trees, in order to obtain the 'best' tree the
algorithm may have to be repeated for each alternative cover (unless for some

tree, the total cost estimate EO = 0).

The algorithm is recommended, when there exist only one or very few optimal

(or irredundant®*) covers.
Step 1: Determine the optimal cover of the decision diagram, and accept it
as the reference set R. Assign the set of all tests to T. Set a

printer P to indicate the root of the tree.

*An interesting and, to this author's knowledge, unsolved problem is whether

the optimal tree can be always derived from the optimal cover (assuming that

splitting complexes or joining previously split parts are the only permissible
operations on the cover).
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For each test from T compute estimate ﬁo (def. 3). If for some
test, X, s ﬁa(xi) = 0, po to step 3. If for every test 50 + 0,
select a test according to MAL criterion (def. 2). Let X, dencote
the selected test, and O,l,...,di—l be its outcomes.

Assign xi to node P, and outcomes of x,, values O,l,...,di—l, to
branches of node P {in order from the left to the right). Split
the diagram into di (sub)diagrams D(xi=D), D(xi=1),...,D(xi=di—1).
Check if any of these diagrams contain a complex (or complexes) of
the same action class. For each such diagram, assign the name of the
action class to the end (leaf) of the.branch. Put the remaining
diagrams on the list L. If I is empty, then STOP.

Apply algorithm S, stafting from step 2, to each of the diagrams on
the list L. Assume the following initialization for each diagram:
¢ P points to the node at the end of the branch corresponding

to the given diagram,

@ I =T\ {xi}, where \ 1is the set subtraction

Example 1

e Merge, if possible, any complexes or parts of the broken
complexes (which lie within the scope of the diagram), which
are of the same action class, into larger complexes. If k
complexes are merged into 1, subtract value k=1 from ﬁc(xi).
Accept the final set of complexes as the reference set R.
(The above merging is not a necessary operation; if used,.it
can sometimes improve the final tree.,) After completing the

tree, compute the total cost estimate EO (see theorem 2).

Conv

S (Fig. 3

ert the decision table in Fig. 1 to a decision tree using algorithm

shows the corresponding decision diagram).
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The otpimal cover of the decision diagram is determined (Fig. 5).

(Since only one complex is associated with each decision class;

complexes are identified.tnrsymbgls denoting classes)
S:=(A1,A2,(HI,AZ),A3,A4,A5), T:=(xl,x2,...,x6)

Compute AO for each xiET:

&o(xl) =

ﬁo(xz) = 4 (axes of x., cut Az,A3,A4,A5)

AD(XB) = 6 (axes of Xy Ccut all complexes)
A (’54) = 0

A (xs) = 3 (axes of X, cut A3’A4’A5}
ao(xs) = 6 (axes of X cut all complexes).

Since &O(KI) = 0, remaining values of &Q do not have to be computed
(unless one wants to derive alternative trees; they were computed
here for illustration). Test Xy is selected.

ﬁl is assigned to the root of the tree; left and right branches of
the root are assigned values 0 and 1, respectively. Split the
diagram to 2 diagrams, D{xl=0) and D(x1=l). Since both diagrams
contain complexes of different classes, L:={D(xl=0), D(xl=l)}.
Consider diagram D(xl=0) first. P points to the node which ends
the branch 0 from the root. T:=(x2,x3,x4,x5,x6). The reference
set R:=(A1,A2,(A1,A2),A4).

Step 2': Compute ﬁo for each xiET:

ﬁo(xz} = 2 (axes of x, cut A, and Aﬂ)

2 2
&D(xB) = 4 (axes of X4 cut Al(Al’aQ)’AE’Aﬁ)
QU(Xé) =
Select x,.
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Step 3': X, is assigned to P, the left and the right branches

are assigned 0 and 1, respectively. The diagram D(xl=0) is split
into 2 new diagrams, DCxl=U, x4=0) and D(x1=0., x4=1). Since
ﬁo(x4)=0, no merging is possible. Diagram D(x

=0,%,=1) consists

1 4

of one complex A,. Therefore, the end of branch 1 is marked by Aﬁ.
Ly = {D(xl=D, x4=0)}

Step 4': Apply algorithm S, starting from step 2, to diagram

D(x1=0, x,=0), assuming the initialization: P points to the node

A
ending branch 0 (of node Kd); t: = (xz,xB,xs,x6), R: =_(Al,(A1,A2),A2)

If one continues the algorithm, the end result will be the tree

presented in Fig. 11. It is easy to check that &0 for each selected list was
0, therefore, the total cost estimate ED=0, and the tree is optimal.

Example 2

Convert the extended entry decision table from Fig. 2 to a decision tree
using algorithm S (the corresponding decision diagram is shown in Fig. 7).

Step 1: The optimal cover of the diagram is determined (Fig. 7). R: = (Ll,

Lz’L3’L4 LS)’ T: = (xl,xz,x3,x4), P points to the root of the tree.

Step 2: Compute ADeStimate for each xfET:

ﬁo(xl) = 2 (axes of x. cut complexes L., and Lz)

1 1

ﬁD(XE) =0

ﬁO(KB) = 5 (axzes of x, cut all complexes)

3
&0(34) = 5

Test xz is selected.

Step 3: X, is assigned to P (the root of the tree); branches from P are
assigned values 0, 1, 2. The decision diagram is split into 3 (new)
diagrams D(x2=0),D(%a=l)and D(x2=2). Diagram D(x2=0) consists

of complex Ll of decision class Al, and diagram D(x2=1} of complex
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Jb‘l ‘xlr‘xa

A space optimal decision tree corresponding to
the decision table in Fig. 1 (Example 1).

Figure 11l.
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L2 of class AZ. Ends of branches 0 and 1 are marked Al and Az,
respectively. The list L: = {D(x2=2)}.
Step 4: Apply the algorithm, starting from step 2, to diagram D(xz=2).

Continuing this process produces the tree presented in Fig. 12
Since AD for each test was 0, the total cost estimare ED=O and the tree
is optimal.

Algorithm D

This algorithm uses DMAL criterion for test selection. It is particularly
recommended when there are quite a few choices of complexes for a cover, and,
therefore, there can be a large number of irredundant (and perhaps also optimal)
covers. The algorithm starts with a decision diagram in which cells of all
action classes are treated as separate* (i.e., not included in any complexes).
Step 1: Assign the set of all tests to T. Set P to indicate the root of the

tree.

Step 2: TFor each xiET, compute cost estimate al (def. 7). BSelect the best

test by applying DMAL criterion (def. 9).

Step 3: Assign X, to node P, and outcomes of X4 values 0,1,...,di;l, to
branches of P. Split the diagram into'di diagrams D(xi=0), D(xi=l),
TEL D(xi=di—l). Check if any of thediagrams contain cells of only
1 action class. For each such diagram assign the name of the action
class. For each such diagram assign the name of the action class to
the end of the branch corresponding to the diagram. Put the remaining

diagrams on the List L. If L is empty, then STCP.

*This condition is not necessary, if the adopted covering algorithm can find
optimal covers starting with complexes rather than individual cells.
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A space 0ptiﬁal decision tree corresponding
to the decision table in Fig. 2 (Example 2).

Figure 12.



Step 4: Apply algorithm D, starting from step 2, to each of the diagrams

on L. Assume the following initialization for each diagram:

e P points to the node at the end of the branch corresponding

to the diagram,
e T: = T\ {xi}-
After completing the tree, compute Zl, i.e., the sum of values

of &1 for tests assigned to each node of the tree. El is the

maximum possible difference (in the number of nodes) between the
obtained tree and the optimal tree.
A Tshortcut' in executing algorithm D is to mark (record) in the diagram

(considered at a given step), the optimal covers C(EO), C(El),...,C(E ¥,

d.-1
i

which are generated at this step for computing &l (def. 7). When A, is computed

1

in the framework of the subdiagrams (of the above diagram), ao is determined with

an C(Ei) as the reference set. If £O=O, then &1=0. (See Example 3, step 2,

for illustration.)

Example 3

Convert the decision diagram in Fig. 13a to a decision tree using algorithm

D.

Step 1: T:=(xl,xz,x3,x&). P points to the root of the tree.
: . cT:
Step 2: Compute &1 (def. 7) for each X, T

ﬁl(xl)=l

The axis of x, divides cells of action class 1 and 3. (Cells

of classes 2,4 and 5 are on one side of the axis. The optimal

cover of cells of class 1, in the original diagram, consists

of 3 complexes. The optimal cover of cells in class 1 in diagram
D(x,=0) consists of 1 complex, and in D(x,=1) of 2 complexes.

ThuS, A(x,, class 1) = (1 + 2) - 3 = 0. The optimal cover of

class 3 inh the original diagram consists of 2 complexes (Fig. 13b).
The optimal cover of class 3 in D(x,=0) has 1 complex (L1), and .
in D(x3=1) also 1 complex (Lp); see Fig. 13c. Thus, Aj(x4, class 3)=
(1+1) -2 =0, and, finally, 81(x1) = ﬁl(xl,claSS 1) + A1(x7,class3) = 0,
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Note that the cover of class 3 in Fig. 13b has larger complexes
than the cover of this class in Fig. 13c. This is the reason
for selecting later test X,, rather than x;, although for both
A1=0 (see criterion 3 for DMAL in def. 9).

ﬂl(xz) = 2 {(because of action classes 4 and 5)

&l(x =0

3)
ﬁl(xé) = Q

We have a tie for Kl;KB,Ké-Condition 3 of DMAL eliminates test Xy -

From remaining Xq and Xy 1% is chosen. To apply the 'shortcut',

the optimal cover of class 1 in diagrams D(x.=0) and D(x.=1) is

3 3

marked (Fig. 13d).

If the above cover is taken now as the reference set R, then
Ao(Kﬁ) = 0, in the framework of D(x3=0). This implies that ﬁl(x 5
class 1) = 0, and, therefore constructing optimal covers for class
1 in D(x3=0),x4=0) and D(x3=0,x4=l) is avoilded.

=0)

Step 3 X, is assigned to P. The diagram is split into 2 diagrams, D(x3

and D(33=l). T:=(xl,x2,x4).
Step 4: Algorithm D is now applied separately to diagrams D(x3=0) and D(x3=l).
For the left offspring of node %35 test %, is chosen. Fig. 13e shows

the optimal covers of classes 1 and 3 in subdiagrams D(x,=0,x,=0)

3 &4

and D(x3=0,x4=0)-

Continuing the algorithm leads to the decision tree in Fig. 1l4. The tree
corresponds to the (optimal) cover shown in Fig. 13f.

The total cost estimate I, =0, therefore the tree is optimal.

1
3.4 A comparison of algorithms S and D. Need for higher degree algorithms

in some cases.

Algorithm § starts with constructing the optimal cover of the given
decision diagram. The need for applying a covering algorithm arises again when

come complexes are broken and there is a possibility that their parts and
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possibly some other complexes of the same action class, could be merged into
larger complexes. In algorithm D, the covering algorithm is applied at every
step of test selection, although, for ever decreasing (sub)diagrams, and only for
classes which are divided by a test (and except when the 'shortcut' is possible).
In total, algorithm D requires more applications of the covering procedure,
and, as result, takes more computation time.

On the other hand, estimate Al is more precise than &D, and, therefore,
the algorithm D may produce a 'better' tree than algorithm S, when there are
many irredundant covers possible for a given decision.diagram,

Both glgorithms are first degree algorithms, and, as the following example

shows, may fail to construct the optimal decision tree.

Example 4

Fig. 15 gives an example of a decision diagram for which algorithms S and
D (or any other first degree algorithm) fail to produce the optimal decision tree.
(Example was constructed by Yasui [22]).

Let us compute estimates ﬂD and A, for all tests:

1
a(xy) =2 8, (x) =2
b (x,) =2 By(x,) = 2
&O(KB) = 3 8a(xy) = 2
A(x,) =1 A, (x,) =1

(The optimal cover shown in Fig. 16 was taken as the reference set for computing

ﬁo).

Both algorithms select test X, for the root, while this is the only test
which does not produce an optimal tree (Fig. 17 and 18). It is easy to see that
it is impossible to reject test X, by evaluating the effect of only one test
on the decision diagram. In this case, one has to take into consideration the
effect of a pair of tests, i.e., to apply a second degree algorithm.

Thus, to make algorithm S (or D) able to construct optimal decision tree

in this case, one should compute, instead of &o (ﬂl), the second degree cost
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A counterexample o any
first degree algorithm.

Figure 15,

Optimal cover for decision diagram
in Figure 15.

Figure 16.
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estimate Aj (or ﬁf). In Fig. 19, rectangular boxes include tests which can be
selected for a given node of the tree together with the value of ao. From this
figure we see that:
2 _ — s _
60(7&1) = &D(xl) + min {&o(xzz’xl),ﬂo(sz’xI),ﬁc(xﬁfxl)-}
+ min {ﬂﬂ(xzfxi),ﬁ0(33/xl),ﬁo(x4fxl)}

=2+0+0=2

fl

2
ﬂo(xﬁ) =1+1+1 3
where ﬁoixifﬁj)and'ﬂg(xiij) denote the estimates &ogxi) in the framework of
subdiagrams D(xj=0) and D(xj=1), respectively.

Thus, &g(xl) < ﬁi(xﬁ), and test x, will be rejected.

4
The author conjectures that for any algorithm of finite degree, there
exists a decision diagram for which the algorithm will fail to produce the
optimal tree.
The above example shows that by extending the order of algorithms, the
class of conversion problems for which the algorithms produce the optimal
tree is also extended.
Let km be the maximum order of the estimate ﬂl needed, that its computation

for a test, a candidate for the root, reaches the leaves of the tree under

construction. Obviously, k < n.

k
Theorem 3: If algorithm D employs the cost estimate &l, then the resulting
tree 1s guaranteed to be optimal.

Proof:

The estimate Al (unlike &0) does not assume that any specific optimal
{(or irredundant) cover has to be first computed, and, therefore, is not effected
by existence of more than one optimal (or irredundant cover). The value of ﬁi,
for a test X, is the minimum number of nodes, above the lower bound given by
theorem 1, which can be in any tree whose root is X, - The algorithm D selects
the test for which Af, is minimum. Therefore, the tree with so assigned root, and,

recursively, other nodes, will have minimum number of nodes, i.e., will be optimal.B

It is clear now, that by varying the degree k between 1 and km of the



O denotes nodes in the optimal tree in fig. 17

Computation of rhe second degree cost estimates f_\.g(xl) and &g(xa).

Figure 19,

By
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estimate Af, one obtains a spectrum of methods which differ in the trade-

off between the computational efficiency and the degree of guarantee that

the obtained tree is optimal.

3.5 Time optimal decision trees

In the case of converting a decision diagram to a tree corresponding to the
time optimal program (called, for short, time optimal tree. ) one assumes that
tests, X;, are assigned costs, indicating the time needed for test evaluation,
and that actions are assigned probabilities of their occurrence. The optimal
tree is the tree which has the minimum weighted path length, i.e., the minimum
value of

Z
¥ p.spath-cost, (11)
-1 J |
j=1
where
I - the number of leaves
pj ~ the probability of path j in the tree (suppose action A is assigned to path
js and the probability of action A is Py - If the number of cells of action

A in the decision diagram is C,» and the number of cells in the complex

e.5
corresponding to path j is cj, then it is assumed that pj=-~-5-1-pA
A

path—costj -~ the sum of costs of the tests assigned to nodes on the path j.

Let L be a complex of decision class A. The complex L can be assigned

the cost:
cost (L) = Py - test-cost (L) (12)
¢
where p, = L P
1. cA A
CL -~ the number of cells in L
test-cost(L) - the sum of the costs of tests in complex L.

Selecting test Xy for a node of the tree corresponds to partitioning a
diagram (subdiagram) D to di subdiagrams, D(xi=0), D(xi=1),...,D(xi=di-1). Let
us assume initially, that R is an optimal cover of the diagram D, and Rj’
j=0,1,...,di—l, are the parts of the cover lyirg within the diagrams D(xi=j),

j=0,1,...,d.-1 , respectively.
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Definition 10. The cost, cost(C), of a cover C is defined as the sum of the

costs of its complexes.
The 'incremental' cost of selecting test X, can be estimated as:

To(xi) = § cost(Rj) - cost (R) (13)

Observe now, that since the costs of tests and probabilities P, can have
arbitrary values, the costs of different optimal covers can also be dif-
ferent (the situation is then different than it was in the case of space
optimal trees). Consequently, in order to use To(xi) as a proper analogue
of Ao(xi) estimate, R in (13) should not be an optimal cover (def. 1), but a

cost optimal cover, defined as a cover of the diagram of minimum cost.

In using the TO estimate for test selection, it is computationaily ad-

vantageous to ignore the component 'cost(R)' in (13), until a test is selected,
and then to compute the 'complete' value of T, (similarly as in computing Al).
The 'complete' value of'TO is needed, because the sum of T0 estimates, denoted
ET@’ over all the nodes of the obtalned tree, specifies (analogously to Eo) the
maximum possible difference between the cost of the obtained tree and the
optimal one.

In order to obtain an analogue T, to the &l estimate, both R and Rj in (13)

1
should be the minimum cost covers of diagram D and diagrams D(xi=j), respectively.
The sum of’Tllestimates, denoted ZTl, over the nodes of the obtained tree plays
again the same role as El. The theorem 3 holds also for T% .

It is interesting to observe that the dynamic programming algorithm by
Schumacher and Sevcik [18] is equivalent, at the conceptual level, to computing
Tf (i.e., the nth order estimate Tl). Some differences are that instead of the
cost of a complex, they use an inversely related notion of the gain, defined as
the difference between the sum of thé costs of events in the complex and the
cost of the complex. (The gain can equivalently be computed as the probability

of the complex multiplied by the sum of the costs of tests which do mot occur

n
in the term expressing the complex.) Also, the order of computing T

1 in [18 ]
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is specified from the leaves of the tree up, while the definition of qusuggests
( but does not require } computing it from the root down. The way Tg
is computed is, of course, a matter of implementation. The way it is done in
[21] seems to be efficient, because it constructs the cost optimal cover (cor-
responding to the final tree) from the single cells up, step by step, building
upont the intermediate results. This avoids a repetition of certain operations,
which would occur, if one Iindependently constructs covers of subsequent sub-
diagrams, going from the whole diagram to the individual cells.

It is easy to see, however, that Schumacher and Sevcik algorithm
can be in certain cases very inefficient. This is because it always computes
the most costly estimate Tq:, even when a lower order estimate (much less costly)
could produce the optimal decision tree (or 'sufficiently optimal', as measured
by ETO or ZTl).

The following example (taken from [18]) illustrates this observation.

Example 5

Fig. 20 presents a decision diagram and its cost optimal cover. The large
size numbers in the cells indicate actions, and the small size numbers their
probabilities. The action -1 indicates the logically excludable events (DON'T
CARE-s), and the action 4 indicates ELSE events (assumed here as having 0 prob-
ability). The numbers in parentheses (at the axes) indicate costs of tests. We

briefly illustrate here an application of algorithms S and D, in which first

order estimates TD and T. are used, instead of A and A,.

1 0 1
1. Compute the cost, cost(R), of the optimal cover (see Fig. 20):

cost(R) = 0.2-30 + 0.5-30 + 0.3-25 = 28.5

2. Compute TD {and Tl) for each test:
3
)

T (x;) =T, (x,) =
o1 171 j=1

cost(Rj) — cost(R) =0

H

Tﬂ(xz) = Tl(xz) 0.20-30 + 0.5-30 + 0.3-35 - cost(R) = 3

To(x3) = Tl(x3) 0.2-35 + 0.25°35 + 0.25°25 + 0.3°25 — cost(R) =1

Test Xq is selected for the root.
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20 ) 25 .25
Al D| @
0 0 0 0.3
4o G :
(5) (5)
(10)

Decision diagram and the cost
cptimal cover for Example 5.

Fig. 20
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3. Compute TD (and Tl)-for the test-candidates for the left descendant

of the root.

0

f
1

TOCKZ) Tl(x2)
TO(X3) = Tl(xB) = 1
Test xo is selected.

4. Compute T0 {and Tl) for the test-candidates for the right descendant

of the root.

To(xz) = Tl(xz) = 3

To(x3) Tl(xs) 0

The wvalue ETO = ETl = 0, thus, the tree is optimal. In fact, the tree is
identical to the one obtained in [21], though'its derivation required much

less computation.

IV. SUMMARY

We have shown that the decision diagram introduced in the paper can be
useful, both, as a conceptual model for describing algorithms, and as a practical
tool for decision table design and conversion to space or time optimal decision
trees. The advantage of the decision diagram is that rules in a decision table
(or leaves of a tree) are represented as certain geometrical configurations, and
relationships between the rules are represented as spatial relations between
these configurations.

For this reason, the decision diagram can also be used as an educational

aid, for visually illustrating concepts and algorithms related to decision tables

and decision trees.

It may be of interest to the reader to mention here the results of an experiment
done by the author in comparing the time spent in solving the same problem,

using a conventional method and the decision diagram. The problem was to verify
(check consistency, completeness and non-redundancy), reduce and convert to space
optimal decision tree, the decision table shown in Fig. 1. The time spent on
various phases of the problem by: A - the person who used a conventional

method (a faculty member who teaches decision tables ) and B - the author using
the decision diagram,is given in Fig. 21. It should be mentioned that the decision
tree obtained by person A had 1 more node than the optimal tree obtained using the
decision diagram. Note, also, that the most of the time (10 minutes) in the
decision diagram method was spent just on determining the decision diagram (which
is rather a mechanical process, not requiring the knowledge of decision table
algorithms).
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Time (min)
Using a
conventional | Using decision
method diagram
Draw diagram = 1
Draw complexes in the diagram = 9
Reduce table {(determine cover) 13 1
Verify 2 o' 5"
Convert to tree 2' 30" 2
TOTAL 17" 30" 13'5"

Time spent on various phases of the problem using a
conventional method and the decision diagram.

Figure 21
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The concept of kth degree conversion algorithm, also introduced in the paper,
permits one to generate a spéctrum of conversion algorithms, differing in the
trade-off between the computational efficiency and the degree of guarantee of
the decision tree optimality. The algorithms S and D were shown to be applicable
for both space and time optimal conversion, and they can use cost estimates of a
different degree. When algorithms do not produce the optimal tree, they gave a
measure of the maximum possible difference between the obtained and the

optimal trees.
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