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- Pattern Recognition as Rule-Guided
Inductive Inference

RYSZARD S, MICHALSKI

Abspract—Thte determination of pattern recognition rules is viewed ag
g problem of'ind uctive inference, guided by generalization risles, which
conteal the generlization process, and probfem krawledge miles, which
,cﬁzesent the underlying semantics relevant 1o Lhe recognition problem
under considerstion, The paper formulated the theoreticad framework
and a method for inferring general and optimal (according to certain
criteria) descriptions of object elasses from examples of classification ar
partial descriptions. The language for expressing the class descriptions
aivd the guidance rulesis an extension of the figst-ordér predicate ealeu-
fus, called varigble-valuad logic ealeulus ¥ly. Vi involves typed
varjsbles and contains several new operators especially suited for can-
ducting inductive inference. such as selector, internial disjuricrion,
internal conjuriction, éxceprion, and generalizarion.

Important aspects af the theory include:

1) a formulation of several kinds of geneealization rules;

2) an sbilily to uniformiy and adequately handle descriptars (i.e..
variables, functions, and ‘predicates) of different type (nominal, linear,
and structured) and of different arity (i, diffesent number of
arguments);

3} an ability to gencrate new deseriptors, which are degived from the
initial ‘Jescripfors thiough'a rule-based system (ie.,an ability to con-
ducy the so called constrietive inductiond:

4) an ability to use the semantics underying the problem under
consideration. '

An experimental computer implementation of the method is brielly
described and lusirated by an example,

Index Terms—Computer consulting systems, generalization methods,
indictive inference, knowledge acquisitian. learning from examples,
many-valued lggic, pattern récognition technigques, plausible inference,
theory formation. '

I, INTRODUCTION
A PATTERN recognition rule can bea viewed as a rule
¥

(1)

which assisns @ situarion (an object, a process, etc.) to the
RECOGNITION cLASS, when the situation satisfies the DE-
scripTioN. In the décision theoretic approach the DESCRIP-
TION is an analytical expression involving @ set of nuimerical
variables selected a priori. Variables spanning the decision
space are treated uniformly, are usually assumed to be mea-
sured on at least an interval scale, and are desired to be rele:
vant and independent characteristies of the objects. When the
variables are strongly intercomnected and:or the relevant
vbject charactenstics are fiol numerical yariables but various
relations among wiber vasiables, or among parts or subparts of

DESCRIPTION > RECOGNITION CTLASS
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objeets, then the decision theoretic approach betomes jnade-

dquate.
useful,

In the structural {of syntactic) approach. the DESCRIPTION
is a formal grammar (ustally a phasestructure grammar) in
which terminals are certain elementary parts of objects, called
primitives, The types of relationships which can be 2x-
pressed nasurally in terms of a formal grammar ae. how-
ever, quite limited, If the relevant charaeteristics include, for
example, some numerical measurements in xddinon to rela-
tions and symbalic concepts, then grammars invelving them
are very cumbersome or inadequare. This is a strong limita-
tion, bscause in many problems an adequate class deseription |
requires both numerical charagterizatigns of objects and 2
specification of wvarious relationships among properties of
objects andfor of object parts, ie., involve descriptors of
mixed arity! and measured on differant scales. To partially
gvercome this lmitation attributed gramimars were pro-
pased [1].

Both the decision theoretic approach and the synractic ap-
proach make a little use of the underlying semantics of the

fn such situations the structural approach can be

problem unidar consideration, and therefore the scope-of pat.

tzrns they are able to discover is limited. Also they tend to
produce “mathematical type™ descriptions which are npol
easily: comprehensible by humans. réther thidn “uunedptual
type” descriptions which human experts would develop 6b-
serving the same data, and would prefer 1o use. Altheugh in
many applications human comprehensibility may not be im-
portant. in Gther apolications (2.2.. In expert computer consult-
ing systems) it is crucial. )

This paper presents results, still early and limited, of dn
attempt to develop a uniform conceptual framewsrk and an
implementation method witich appraprately lundles deserip-
tors of different type, is obie to use the semantics o the prob:
lem mnd satisfies the requirement of human comprehensibiiity.
Another aspect of thie method is that the final descriptions
which it produces may involve new descriplers {vuriabies o1
relations) which were nat included In the inital claraviznge-
lion of objects. This is aehicvad throuzh the application of
“metarules™ which represent the underlying knowledge of the
problem at hand and of the propefties of wdescriptors usad in
formulating the descriptions ol exemplary data. The presented
theory uses a5 a language for expressing the cluss descriptions

Prearieyth=The number of arzuments of 2 Juescriptar.. Unury diseri-
tors are ealled arteibutes, ot geavally, vasables: Twoor plare argu:
ment descriptors. with the value set [TWUE, FALSE} are willed
predicates.
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and rules an extension of the fisstorder predicate caleulus,
called varisble-valued logic system VL, , and is most closely
refated to the body of work termed eomputer induction. The
ability to develop new descriptors (variables, prchL.JtCS
functions) in addition to those given @ priori, places this work
m the category of what we call construcrive induction,* as
opposed 1o nonconstrudtive duction. in which the final
descriptions relate only descriptors intially provided.

[l. RELAYED RESEARCH

It would be a very duficult task, requirng more space than
provided, to characterize adequately various impartant con-
tributions to compuler induction. Therefore, we will make
here only a very limited and certainly not adequate review of
some more recent works.

A dissatisfaction with the early work on general methods of
induction in' the early sixties led some workers to concen-
trate on inductive tasks within a specific problem domain.
For example, programs collectively called METADENDRAL
[2] use a model-directed heuristic search to determine rules
that describe the molecular structure of an unknown chemilceal
compeund from ‘mass spectrometry data,  Winston [3]
describes a method for detenmining a graph description of
simple block structures from examples. A program developed
by Lenat [4] generates concepts (represented as collections of
a priori defined properties) of elementacy mathematics, under
the guidance of a large body of heuristic rules. Soloway and
Riseman [5] describe a method for ereating multilevel descnp-
tions of a part of a baseball game. starting with “snapsho1s™
of the game, and using rules representing general knowledge of
the game.

The programs such as those mentioned above usually in-
corporate a large body of lask-specific knowledge and tend 10
perform quite well on tusks they wers designed for. Thiey
demanstrate zgain that high perfarmanee requires specialized
solutions. On the other hand. it i usually not easy to dater-
mine the peneral ideas they contribute to the understanding
of inductive processes.
methods disectly to other problem areas.

A significant part of research has been concerned with de-
termining patterns in sequences of symbols (e.g., Simon [6]
and Waterman [7]). Simen [6] found thar descriptions of
such patterns consistently incorporate only a few basic rela-
tions: “‘some™ and “next’ between svmbols ilerations be-
twween subparterns, and hieracchic phrase structure, Gaines
[8] developed a methed for generating finite=stale zutemata,
which appreximate a given symbal stripg, dnd represent dif-
ferent tradeolfs between the complexity ind poorness-of-fit.
Shaw. Swartout. and Green [9] develuped a progriny for
inferring Lisp code [rom a set of examples of Lisp statements.
Also, Jouannaud, Guiho, and Treuil [10] have developed an
mteractive system which can inler & ¢lags of wise lInear recur-
sive turctons from a ser ol exgmples,

The above works are relited to the gendral subject vf gram-
malic2] inferende, 6. infarence of a grammar which may have

2The auwthor thanks Lo Teavis of the
SIELLRS I LN TeTIT

Also, it is dilficult to apply such.

Anders copsideration,
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produced a given sel of strings. Eacly work in
conecined with the inference of s phrase struet.
(e, Feldinan eral. [L1]Y. More recent work mo
ferring “multidimensional” grummars (e, work |
and Fu [12]).

In recent years there has been a new trend toward
velopment of general methods of induction.

In previous papers the author and his collaborators ¢
[13]-[15]) have described a methodalogy and COmpUtEr p
grams far learning optimal discriminant descriptions of obje.
classes [rom examples (in the framework of an extendec
prepositional caleulus with piany-valued variables called VL)
Examples are presented as sequenices of auribute-value pairs.
Fach attribute has an associated value set and type. Work in a
similar spirit, although more limited inscope, was reported by
Stoffel [16] ((he elementary statements used there are re-
stricted Lo the “variablesvalue™ forms, ie., 1o elementary selec-
rors asdescribed in Section V),

An early work which recognizes the need for logic stvle
descriptions for pattern recognition was done by Banerji [17].
A more recent continuation of this work is in Banerit [18] and
Cohen [19], who developed a logic-based deseript’ -
cobE uilizing Lisr-like notation,

An important aspect of induction, that of empirt..
dicelon, was studied by Zagoruiko [25], who developeu a
general method of “strengthening hypotheses™ by narrowing
the uncertainty ranges of values of output variables, Hendrick
[26] developed a method of learning of production systems
describing symbaol series using a semantic net of predefined
concepls.

Many authors use a restricted form (usually quantifier-free)
of the first-order predicate calculus (FOPC) ur some equivalent
nhotdtion as the formal framework for expressing descripuions
and hypotheses. Morgan [20] deseribes a formal method of
hypothesis generation, called fresolution, which' stems frong
deductive resclution principles.  Virious theoretical issues of
indugtion in FOFC were considered by Plotkin [21]. Fikes.
Hart. and Nilsson [22] describe an algorithm for generalizing
robot pluns,  Hayes-Roth and McDermott (eg., |23}), and
also Vere [24], describe methods and computer programs for
generaling conjunctive descriptions of least generality (which
they call "maximal abstractions™), of a set of objects repre-
sented by products of n-ary predicates. The rules of general-
ization which they use can be characterized as “dropping a
cundition™ and "turning constants into varbles™ (see See-
tien V-C). .

This paper presents a theoretical framewark for generalizing
and optimizing descriptions ol object classes in fhe fanny of
decision rules. The decision rules can involve descriptors of
tlired different types: nominal. linear, and structured employ
fome new syntactic formsy and use protlem: knowledze ror
guiding induction and generating new descriptors.  The
formul notation is @ modification and extension for FOPE,
culled variable-valued logic system VL.. This fopmalistn
is morg ddequate than the traditional FOPC as a4 con-
ceprual framewirk for describing the inductive processes
The paper 13 an extension and maditen-

Han ol the report [27], std stiesses the conceptual plineie2s
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of the induction method, ralher l'han_ specific algorithms and
jinplementation details. Most of the latter are described in

[28]-[30]
L[I. PROBLEM STATEMENT
A VL transformation rufe is defined-as & rule
(N
where DESCRIFTION, and OESCRIPTION, are expressions in
Vi, system (Section 1V} and —= stands for various trars-
formalinn Operaters which define the meaning of the rule.
A DESCRIFTION may look like
3p,,ps(lon-top(p, .pa)} [size(p )=3..5]
A {colar(p, )=blue.yellow red]
A [length(py ) length(py)=small])

DESCRIPTION| ——, DESCRIPTION,

where

Lthe range operator
. (after the aquality sign) denates the internal disjuncrion.
and
« denotes the nternal conjuncrion.
(For explanation of notation see Section IV.)

We will consider here the following transformation operatars..

{) 12> The operator defines a decision rule. DESCRIPTION?
specifies 2 decision (or a sequence of decisions) which is as-
signed to @ siluation which satisfies DESCRIPTION; . [n lhe
application to pattern recoghition, DESCRIPTION, delines the
recognition class. 1 a situation does not satisfy the DESCRIP-
TION , the rule assigns to it a NULL decision.

i) = The operator defines an inference rule. If a situation
satisfies DESCRIFTION,, the rule assigns the truth-status
YTRUE™ to DESCRIFTION .. otherwise truth-status of DE-
SCRIPTION, is “?”. In an infeérence rule DESCRIPTION, is
called the econdition and DESCRIPTION; is called the cons
sequenice,

iil) 1< The operator denotes a generalization ruie, which
states that the DESCRIPTION, is tHore geseral (an, DESCRIP-
TION |, i.¢;, the set of situations which salisfy DESCRIPTION
is a superser of the set of situations satisfying DESCRIPTION .

iv) = The operator denotes an equitalence preserving rule,
Le.. when the above mentioned sets are equal, The ruleis a
special case of a generalization rule.

The problerm considered in this paper is defined as follows:

e Givenare the followina.

a) A set of VL decision rules, called data rules, which
specify initial knowledge, {C"",-}, about some situations (o0-
jects, processes, . . .) and the recognition class, K. sssociated
with them:

Gy 2Ky,
Cy > Ky, Ca

Cia i Ky oGy, 2Ky
DKy vy, UK
Cot > Ky Cin 2Ky " Coneyy > K (3)

b)Y The problent knowledge rides which represait the bick-
erognd kauwiledee about Ahe reeagnrtion prablem under con-
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sideration. This knowledge includes the type of each deserip-
tor used intle data rules, its value set, the problem constraints,
the relationship among descriptors that reflect the semantics
of the problem and various constryctive gencralizarion rules
{see Section V-C),

¢) A preference eriterion, which for any two “comparable”
sets of detision rulés specifies which one is moye preferable, or
states that they ure equally preferable.

® The problem is to determine, through an application ol

generalization rules and problem knoveledge rufes, a new set of

declsion rules called output rides or Aypetheses:

v Ky, Gy Ky e G, K

Cly S Ky, Ch > Ky, oo Copy 2K

Coy > Ky Cima 222 Ky LY S o )
which is most preferable among all sets of rules that with
regard Lo the input rules are consistent and complere.

The output rules are consistent with regard to input rules. if
for any situation to which the input rules assign 5 non-NULL
class, the output rules assign to it the same class, or the NULL
class,

The output rules are complete with regiard to input rules,
i for any situalion to which the input rules assign a non-NULL
class, the outpul rules also assign to ita non-NULL vlass.

It is easy to see that il the output rules are consistent and
complete with regard to the input rules then they are semanti-
cally equivalent (i.e., assign the stme devisivn tu the same
situation) or mare general than the input rules (ie.. they way
assign a nen-NULL class o situations (o which the input rules
agsign a NULL class).

From & given set of data rules it 18 usually possible 1o derive
mary different sets of autput rules which are eonsistent and
complete and which satisfy the problem constrainty, Uhe rofke '
of the preference criterion i5 1o select one{ory lew alternative
sets of rules) whicl is most deésirable in the given prablem
domaln. The prefecence criterion may reter1o.e2..

e the computational simplicity (or complexity) of the rules.

e the cost of measuring the information needed for tule
evalualion,

e tle degree-af-fit 1o the dala.

In this paper we accept the restriction that the DESCRIP
TioNs, €y and Cjy, are disjunciive simple Vg expressions
(Section V). Such expressions Have a vary simple linguistic
interpretation, and seem (o be of interest to many spplicanons.

IV, VL Expressions as DESCRIPIIONS

A Definitionof VL4

Data rules, hypothéses, problem Kpuwledse rules, and Len-
eralization. rules are all expréssed using the seme (wemalisi.
that of varigblewvalued logic caleulus Vi, & VL is anoeX-
terision of predicate caleulus designed 1o faciiitdte a cenipuct
and uniform expression of deseriptions of ditferent dearces
and different types of generalizamon. The formalism also
provides a simple linguistic Interpretation of Zeseriptions with-
out losing the prectsivn of the conventivnul rredicate calenlis.

AN Ly ks s G TOTE womple e byt VL gl st
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To make the paper self-contained, we will provide here a bricf
description of VLy, .

There are three major differences between VL,; and ihe
first order predicate caleulus (FOPC).

1) In place of predicates, it uses selecrors (or relarional
statements) as basic operands. A selector, in the most general
farm, speeifies 2 relationship between one or more atomic
functions and other atomic functions or constants, A common
form of a selector is a test to ascerlain whether the value of an
atomic function is-a specific constant or ls a member of 4 set
of constants,

The selectors represent compactly céttain types of logical
relationships which cannot be directly represented in FOPC
but which are common in human descriptions. They are
particularly usefu! for representing changes in the degree of
generality of descriptions and for syntactically unifarim treat-
ment of descriptors of different types.

2) Each atomic function {a variable, 4 predicate, a function)
is assigned 3 value set (domain), from which it draws values,
and its tvpe, which defines the structure of the value set (see
Section V-B).

This feature facilitates a represeniation of the semantics of
the problem and the application of generalization fbles ap-
propriate to the type of descriptors.

IELE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VL, PANM L2 ND 4. WLY i9gq

Definition 20 A seloctor is a Torm
L, called referee. i3 an atomic function, or a sequence of
atomic functions separated by ", (The operator **" is galled

the internal conjurction.)
#is one of the lollowing relational operatars:

where

=#F2 £ >,

R. called reference, is a constant or atomic function, gr 3
sequence of constants vr atemic functions separated by opera
tor " or ... (The sperators *," and *..7 are called the
internal dishenction. and Whe range operatar, respectively ).

A selector in which the referee L isa simple atomic funetion
and the reference R isasingle constant is called an elementary
sefector. The selector has truth-status TRUE {or FALSE} with
regard toa situation if the siLuation satisfies {does 1ot satisyy}
the selector, f2., if the referee Lis {is not} related by £ ta the
teference R, The selectar has the fruthistatus 2" (and is
interpreted as being a quesrion), if there is not sufficient ih-
formation about the values of deseriptors in L for the given
situation. Instead of giving a definitlon of what it means that
“L is related by # to R," we wall simply explain this by ex-
amples, {See Section VA for mose details.)

Linguistic description

i} [coler(box1) = white]
it) [length(box1) = 2]
i) [weight(box1)=2..5]
iv) [blood-type (P1)= 0,A.B|
v) [on-top(box1, box2) = T]
or simply
[on-top(box1, box2)]
vi) [above(box1,box2) = 3"]
vil) [weight(bax1) > weight (box3)}
viil). {lengthi(box1) - fength (box2) = 3]
iX) [type(p,) - type (P,) = A.B]

3) An expression in VL, can have @ truth status: TRuE,
FALSE, or 7 (UNKNOWN).

The truthstatus “?™ provides an interpretation of a YLy,
description in the situation, when, e.g., culcomes of some
measurements are not known,

Dej-?nirim: 1 An atomic function is.a variable, or a {unction
svmbol fellowed by a pair of parentheses which enclose 2 se-
auence of datomic functions andfor consfants. Atomic funé-
tions which have a defined interpretation in the problem
under considerasion are called descriptors.

A constant differs from a variable or a function symbol in
that its value set is empty. I confusion is possible, 2 constant
is typed in quotes,

Examples:

Consgints: 1 & red

Aromie forms: %, calor{box)

on-top(pl, p2)

Exemplary value sals:

Dix Y= {0.1,---, 10}
Dicolor) = fred, blue, < -}
Dlonstop) = Ttrue, false}
[vy= 001,200

F{xy,alx2))

eolor of box ! is white

length of box| is greater than or equal to 2
weight of box| is between 2 and 3,
blood-type of PlisOor Aor B

box1 is on top of bax2

box 1 is 3" above box?2

the weight of box1'is preater than the weight of box3
the length of box1 and hox? is 3

the type of P, and the typeof P, iseither A or B.

Noteg the direct correspondence ef the selecrors to linenisti¢
descriprions,  Note also that some selectors can not be ex-
pressed tn FOPC in 2 pragmatically equivalent form [e.s., iv),
ix), x}].

A VL espeession (6f, here, simply VL expression)is de-
lined by the following rules.

i} Aconstanl TRUE, FALSE, or “?" isa VL expression.

ii) A selectorisa VL expression.

iliy IfV, ¥, and V, are VL expressions then so are

(V) formula in parentheses

v inverse

Vi AV, or V|V, conjunetion

V, V'V, disjunetion ,

Vi v, exception (V, excepr when V;)

V== V, metaimplication

where = € [~ !> = |<, E}
(implication, equivalence. decision assign-
ment, inference, generalization . semdntica
Civileniee)

FTs N Pressien i el el S et hos Fy =2 e = 2023
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Fig. 1.

3 %p.%2, " Xk (V) existentially quantifizd expressien
¥ Xy5Xa, -7 X (V) universally quantified expression.

A VL formula can have truth-status TRUE (T), FarLse (F), or
unknown(?). The interpretation given to connectives 1, A,
-+_is defined in Fig. 1. {This interpretation is consistent with.
Kleeu-Komer 3-valued logic). An expression with the opera-
tor =, <, or F= is assumed to always have the fruth-status
1RuE and with operator 13>, TRUE, or 1. Operators \and =
are interpreted:

Y, NV, s equivalept (TTV,

— V)V V)
Vy+ V, isequivalent (V,

W) (Vi—Y,).

The interprelation of the VL formulas is done in the contex of

sach situation, This means, that each situation is treated asa

domain over which the Tormulas are evalualed: the value sets

of the quantified varizbles and the inteepretation of the func-

tions and predicatés is done individually [or gach situation.
Thus the truth-status of:

(rrue {raLse} if there exists {does not exist }
a value of x in the given situa-
tion, Tor which the truth-status

3 x(V)is< of Vis TRUE

2 if il is not known whether
g there exists , . ..

if for every wvalue ol x in the
situation the truth-status of V
is {isnot} TRUE

~ TRUE {FALSE]}

Y xiVYis
if it is not known whether for
7 BVEry .. .. '

A constant # (Mirrelevant”}is introduced to substitute for R,
in a selector [L=R|. when R is the sequence of all possible
values the L can take.

A VL expression in the form

QF .QF., ~+(P, vP; v+ vP)) (7

where QF; 45 a quantifier form 3 x,.%.. - or VX%, 0
and ‘P; is a2 conjunction of selectors (4 rerm is called a disfune-
tive siniple YL expression (1 DVL expression).

V. INFERENCE AND GENERALIZATION RULES
A Diterpretation of Dferense Rules

Aninference tule
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is used by applying it to sintions. A sifuation is,in general, a
source af jnformmation about values of variabley and atomic
functions in BESCRIOTION, (the condirion part ol the rule), A
situation can, e.g.. be a dutabase storing values of variables and
pracedures for evaluating atomic functions. or it can be an
object on which various tests are performed to obtain these
values.

A desision tule is viewed as a special case of an inference
rule, when DESCRIPTION . (the consequence ordecision part of
the rule) is 4 constant, an elementary selector, or a product of
elementary selectors involving decisivir variables (ie., the DE
SCRIPTION, uniquely defines a decision or o sequence of
decisions), The teuth statusof the condition and deciston part
of a rule, before applying it to a situation, is assumed 1o be
UNKNOWN.

Let Q denote the set of all possible situations under con-
sideration. To charsclerize situations in Q, one determines a
set 8, called the descripror ser. which consists of variables,
predicates and atomie functions (called, generally, deseripptors),
whose specific values can adequately characterize lar e
prablem at hand) any specific situation, We will assuime here
that the arguments of atomic funclions are single variables,
rather than ather atomuc Tunctions. A sitwdtion is charac-
terized by an evenr which is a sequence ol assignments (1. =v),
where L is a vartable bran ateme functivn with specific values
of arguments, and v is a value of the variable or atomic (unc-
tion which characterizes the situation. [t is asswmed that gach
descriptor has defined a value set (domain) which contains all
possible values the descriptors can take for any situation in Q.
Certain descriptors may not be applicable to some situations
and therefore it is assumed thar a descriptor in such cases takes
value NA. which stands lor nor applicable. Thus, thedonsins
of all descriptors always include by default the value NA. The
set of all possible events for the given descriptor set 8 is culled
the vvenr space, and denoted &(8). The domain of quantified
variahles are assumed to be determined by a given situdtion or
object. For example, i the quantified variable is a part - then
its values dte assumed o he individual parts of the abject, In
an event describing such an wbjeet, there will be a sequence of
pairs (L:=Vy), i= 1.2, -1 where L s a quantified variable,
and Vj stands for different values this variable takes i the
object.

An event e € &(8) issaid to-sarisil a selectar

(&

i the value of favction I for valges of x5, 0= 1.2, -0 kL ag
specified in the evenl eis related to R by =. Foc example. the
evenl

i

X)) #R]

O T RSB P TR P e T
satisfies the selectlor
[f:p{xs '."6 ] = l. 3-5‘

A satisfied selector s assioned trath-states yVide. W an
event does not satisfy a selector them the selector is asslizncd
teuthsstatus FaLsE. Lo eveat does mot have wnosh fntiemy-
s i order toestablish o whether aselector s satmtiadior not
then thie wdlector lus roeniows rrfbestimes wirl) eaned iy
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Let us assume first that the condition part of an inference
rule is a quantifier-free formula, Interpreting the connectives
7, ALV, as described In Fig. |, one can determine from the
truth status of selectors the truth-status of the whole formula.
An event is said Lo sarisfy a rule, [ffan application of the con-
ditien part of the rule to the event gives the formula truth-
status TRUE. Olherwise, the event is said to not satisfy the
rule.

Suppose now thal the condition [urmula is in the forin

Ix (V).

An application of this formula to an event assigns status TRUE
to the formuls iff there exists in 2 a value assighed to x such
that V achieves status TRUE, For example, the formula

3 part [celor (part) = red)
is satisfied by the event

e=(...part:=Pl, calor (P1) :=hlue, part:=P2,
color (P2) :=yellow, part :=P3, color (P3):=red. ..).

If the condition part is a (orm
Vx(VY,

thea it is assigned status TRUE if every value of x in the event
applied to it satisfies V.

If the condition part assumes truth-status TRUE, ther the
decision part is assigned status TRYE. When the decision part
reaches status TRUE then variables and functions which occur
in it are assumed to have values which make this formuta
TRUE. These values may not, in general, be unique.

For example, suppose that V is a decision part with status
TRUE:

Ve [plxy%y) = 2] (x5 =2 .. 5] [x=T1.

V is interpreted as a description of a situation in which p has
value 2 (if a specification of p(x, \%3) is known, then from it
we can Infer what values of x, and x, might be), x; hasa
value between 2 and 3, inclusively, and xs hasvalue 7. (Note
that the formula does not give precise information about the
value of x;.} After applying a formula to an event, the trith
status of the condition and decision part refurns to UNKNOWN.
The role of an inference rile can then be described as follows:
the rule is applied to an event, and if the eyent satisfies the
condition part, then an assignment of values 1o variables and
functions is made as defined by the decision part.. This assign-
ment defines a new event (or a set of events which satisfy the
decision part). Another inference rule can now be applied to
this event (or set of events), and if satisfied by it {or by all of
them), a new assignment of values to some variables and func-
tions ¢an beé made,
Examples of VL inference rules are

[pCxrax2) = 3] [q(xa) = 2:5] [x5 #0] = [d(y, )= 7]
Alpty, v, = 2]
3% ([pxyx3) = 23] [q(xo,x5) = 2DV [rix, )= 1]
== [d(y,)=17]

TRUE = [plxq.x4)= 2] [x, = 2.3.5].
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B. Spectfication of the Problem Enviromment
i the Form of inference Rules

Tvpes of Deseriptors: The process of generalizing a descrip-
tion depends on the type of descriptors used in the deseription.
The type of a descriptor depends on the structure of the value
set of the descriptor, We distinguish here among threg ditler-
entstructures of'a value set,

1} Unordered: Elements of the domain are considered th he
independent entities, no structure is assumed o relate thent.
A wvariable or function symbaol with (his domain is called
numnal (e.g., blood-type).

2} Linearly Ordered: The domiain is a linearly ardered set.
A variable or function symbol with this domam is called Lnegr
(2.2, military rank, temperature, weight),

3} Tree Ordered: Elements of the domain dre ordered into
a (ree struciure, A supedor node in the tree represents a con:

cept which Is more general than the concepts represented by

the subordinate nodes (e.g., the supenor of nodes *“'triangle,”
rectangle, pentagon, ete. may be a “polygon”). A vatiable or
funetion symbol with such a domain is called seructiired.

Each descripter (a variable or function symbol} is assigned
its type in the specification of the prablem. In the case of
structured deseriptors, the structure of the value set is defined
by inference rules [e.g.. see (13), (14), (15)].

In addition Lo assigning ta each variable and function symbol
a doimain, one defines properties of varinbles and atomic fune-
tions characteristic for the given problem. They are répre-
sented in the form of inference rules, Here are a fow examples
of such properties,

1} Restrictions on Varigbles: Suppose that we wanl to
tepresent a restriction on the event space saving that il a value
af variable x; i5 0 (“a person does not smoke™), then the
variable xy is “notapplicable” (x,—kind of cigarettes the persun

smokes). This is represented by a rule,

NA = ot applicable.

2) Relationships Berween Atomic Funétions: Ear example.
suppose that for any situation in a given problem, the atome
function f(x,.X,) is always greater than (he atumie funclion
g(Xy.%1). We represent this by

T==Yx.% [f(x;.%)> glxy . x3)]-

3} Properties of Predicare Functions: For exam ple. suppuse
that a predicate function is transitive. We represent this by

T == ¥, g%, [left(x,%,)] [left{x4.x5)]
— [left{x,,x3)]).

Other types of relutionships characteristic for the problem
envirenment can be represented similarly.

C. Generaltzation Rules

The transformation of data rules (3) into hypotfieses (4) can
be viewed as & process of applying certain gengralization priles
o duta rules. A generalization rule transforms vne or MO
docising fules associated with the suse geniralization cliass
twhich, in our case. 18 the same s recygnition classh. iate 3
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pew decision rule, which is equivalent to or more general than
the initial rules,
A decision rule

vi>K (9)
is equivalent \o a sel of decision rules
> ist 20 (10)

if any event which satisfies at least one ol the Vi, i=1,2,- -,
Wlcolor (wall) = blue] 11> K|
Wlcolor (wall) =red ] i3> K

satisfies also ¥, and conversely. [f the converse is not required,
the rule (9) is said to be more general than (10).

The generalization rules are applicd to data rules under the
condition of preserving congsistency and completeness, and
achieving optimality aceording to the preference cateripn. A
basic property of a genecalization transformation is that the
resulting rule has UNKNOWN truth-status (is a fiypothesis); its
truth+status has to be tested on new data.

Below is a list of a few basic generalization rules (K denotes
a generalization class),

Nonconstitctive Rules:

i) Dropping Condition Rule! 1f a description is a logical
product of conditions which must be satisfied, then one way
to generalize (t is to drop one or mere of these conditions.
For example,

[size (box)=small] [colot (box)=blue] I1>K
|< [size (box)}=small] 1> K.

This reads: the description “small dnd blue box” can bhe
generalized to “small box." {({<is the generalization operator.)
In general this rule can be expressed

W[L=R] 5> K | < WIS K

where W is an arbitrary description. This rule is generally ap-
plicable (the type of L does not matter),

ii) Turning Consmants to Variables Rule: When we have
Iwo or more descriplions, ach referring to a single objectina
class, and the descriptions differ in havi'ng different constants
in the same predicate, then they can be generzlized into one
description with an existentially quantilied variable [n the
place of the constants,

Wip(a.Y)] > K
One OF | Wip(bY]) > K
more .

rules

< 3 xWpxk Y} >K

Wip(i,Y)] => &K |

where p is a predicate and Y stands for one or more argu-
ments of the predicate p. For example.
[INSIDE (ball, box)] > K
{INSIDE (cup, box)] > &
The generalization (on the right of |<) states that if un object
5.8 Box which has somerhing inside, thenit belengsto eluss A

This rule together with thie dropping condition rule are two
basie Feresilizytion raiey wsed iy ol TIESTEUETE OF creLtdT

< A x [INSIDE (x,box)] !> K.

induction: Both these nifes can, haowever, be viewed 48 special
cases of the following rule.

it} Generalization by Internal Disjunétion { The Extending
Reference Rule): A description can be generalized by extend-
ing the set ol values that a description (3 variable, predicate, or
a funetion) is allowed to take onin order than an object satis-
fies the description. This extension is expressed by the inrer-
nal disfunction (Definition 2), 1.e., logical or involving values
of the same vatiable. Forexample,

}< Wlcolar(wall)= blue red green, . ] 11> K

(The *." denotes internal disjunction.) In general, we have
WIL=R;} > K |<KW[L=R,} > K

where L is an atomic functien and R, ; Rs are references(ie,,
subsets of values from the domain of L expressed as internal
disjunction) and R; CR,.

Although the internal dhsju_.netion seemis at fiest glance to be
just a notational abbreviation, this operation is cne of funda.
mental operations people use in generalizing descriptions. In
addition to the previous (wo rules, there are two more ims
portant special cases of this rule. First, when the descriptor
involved takes on values which are linearly ordered (a linear
descriptor) and the second when the deseriptor takes on values
which are natural language concepts representing different
levels of generalily (a structured descriptor).

[n the case of 2 linear descriptor we have the following.

vl Closing Interval Ruler For example, suppose two
objects of the same class have all the same chidgructeristics
except that they have different sizes, g and b, Then. it is
plausible to hypothesize that all objects which share these
characteristics but which have sizes between a and b are also
in this class,

Wlsize(x1)=a] = >K

_ \( Wsize(x) =a..b] > K.
W(size(x1)=b] ©:>K

In general.
W[L=a] u>XK
<W[L=2..b] 1> A,
W[L=0] =>K

This rule is applicable only when L is a linear descripior. In
the ease of structured descriptors we have the fullowing.

v] Climbing Generalization Tree Rule: 'Suppbse the value
sel of (he shape descriptor is the tree (in general it could bz Q
partially-ordered sel):

plane geomerric figure

polygon oval fiaure
A
Lriafigle rectangle pentason dllipse eirvle,

Witly this tree stoucture, values sach ds smungle and roctanale
van e eeneralized (by “climbing the werzaralizaton tee 1 o
3 a0l g,
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shape(x) = rectangle
Leapei) ek i([shﬂpc(x)— polygon] >R
[shape(x) = trangle ] U>K

A general rule Is

W[L=a] i>X
WL=b) i>K

: < [L=s] u>K
WiL=ij:>K

where Lis a structured descriptor and s represents the superior
node (3 concept at the nexi level of generality) of nodes
ab, ,..and 1, in the tree domainof L,

The tule is applicable only teo selectors involymg structured
descriptors. This rule has been used, e.g.,in [3], [4]. ["6]

W} Extension Against Rule: This rule applies when a de-
seription is being gencralized in the presence of another de-
scription, representing the “negative examples™ of the given
recognition class. The latter description provides an obvious
limit for the generalization of the given description, since these
two descriptions should not interséct in order to avoid in-
consistency. For example,

3 py,pal[on-top(py,ps )} [color(p; J=red]) > K

3 Py pa([left-of(p,.p, )] [color(p, )=green]) :>TIK

dp, [colo(p, ) #green] > X
The description produced by the rule: “there exists p, whese
color is not green” is the most general statement which satis.

fies both premiseson the left of <,
in general, the rule is

W, [L=R,]: ]([ Lk R, K
>

W, [L=Ry]

where Ry MR, =P and W, and W, are arbitrary descrptivns.
This rule Is very useful in generating the discriminanr deseris-

dons of object ¢lisses (sce next section). It is one of the busic

rules used in the inductive program AQVAL/1 [14], whose

version is used as a basic procedure in program INDUCE 7.1

described in Section VI-B. '

Construcrive Rules
Constructive rules generate generalized deseriplions o ihe

data rules in terms of certain new descriptors (metadeseriv s rs
or derived deseriptors). There can be very many such 23
We will restrict ourselves here to two examples. Some o7
structive rules are encoded as specialized procedures.

vit) The Counting Rule

W]attribute, (P, )= A} -+ - [attribute| \P,) = A)

A lattribiute, (P, ) # AL - - - [attribute, (P = A]

S KK W(=P_auribute, _A=k] > K

where

S R N i are ¢onstants depoting, e.2., ©iis
of an object

attrifpute, stands fer 4 certdin attribaie o7

Py- 5.2 colorosize, textibey, 0o

21C.
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denctes a ‘new destriptor inter-
presed as the “number of Py
(e.g., parts) with artribuire, equal
Al

2P _atribue, — A

Lxample:
W[color (P1) = RED] [color (P2).= RED)]

A [eolor (P3) = BLUE] 1> K
[ HW[#P_color_red = 2] 1> K

(The abave isa generalization rule, because a set of objects with
any two red parts is 2 supérset of a set of abjecis with two parts
which are red and one part which is hlue).

viii) The Generating Chain Properties Rule: If the argu-
ments of different occurrences of the same relstion inan évent
are linéarly ordered by the relation (e.g.. are objects ordered
linearly by a relation ABOVE, LEFT-OF, NEXT-TO, CONTAINS,
etc.), that is form a chain, the rule generates descriptors which
characterize various objects in the ¢hain; for example,

LST-objsct: the “least object,” ie., the object at the
beginning of the chain (e.g., the botiom
object in the case of relation ABOVE)
MST-object: the “most object,”
of the chain
the “middle’" object

the ith object in the chain

i.e., the object at the end

MDL-object:
Ith-aobject:
or characterize the chain itself, for example the chain-fength,

. The Preference Criterion

The preference criterion defines whal is the desired solution
to the probiem,i.e., what kind of hypotheses are being sought.
The question of what should be the preference criterion isa
broad subject beyond ihe scope of the paper. We will, there-
fore, discuss here enly the underlying ideas behind the pre-
sented approach. Firsl, we disagree with many authors who
seem to be searching for one universal criterion which should
guide induction. Qur position is that there are many dimen-
sions, independent and interdependent, on which a hypothesis
can be evaluated. The weight given to each dimension depends
on the uitimate use of the hypothesis, Among these dimensions
are various forms of simplicity of @ hypothesis (2.g.. the num-
ber of operators in it, the quantity of information required to
encede a4 hypothesis using operators from an ¢ prion defined
set [31], ete.), the scope of the hypathesis. which relates the
#vents predicted by a hypothesis to the eventsuciually obssrvad
(2.g., the “degree of generalization™ [14], the “precision”™
[31]), the cost of measuring the descriptors in the hypothssis,
Therefore, instead of defining a specific criterion, we
specify only ageneral form of the criterion. The Form permits

4 user to define various specific crileria to the inductive pro-
gram. which are appropriate. to the application. The form,

called a “lexicographic functional™ consists of an ordered st
of eriteria (of dimensions of hypothesis qualily) and a list of
“tolerances™ for these eriteria [13], [14].

An important and somewhat surprising property of such
an approach is that by properly defining the preference
criterion, the same -computer progrart can pioduce either the
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cliaracteristic or discriminant desceiptions of object classes,
The characteristic description specifies the common properties
shared by the objects of the same class (most work on inductiol
comsiders only. this type of deseriptions. eig., [3]. [6], [22],
[23]). while the discriminant deseriprion specifies only the

properties necessary for distinguishiing Uhe given class franyall
the other classes {Michalski [13], [32] and Larson ["Sl}

E. Arithmetic Descriptors

In zddition to initial linear descriptors used in the data rules,
new linear desciptors can be formulated as arithmetic fune-
tions of the original ones, These descriptorsare formulated by
a human expert as suggestions to the program.

V1, OUTLINE QF ALGORITHM AND OF
CoMPUTER [MPLEMENTATION

In this section we outline the top level algorithm for rulg
induction and its unplermentation in the computer program
INDUCE-1.1 [28], [29}, [30]. The algorithm is illustrated
by an example.

INDUCE-1 .1 is considereéd 1o be only an.aid to rule indug-
tion. Its successful application to practical problems requires
a copperation between the program and an expert, whose role
is to ‘determing the initial set of descriptors, (o formulate data
rules and the problem knowledge rules, to define the prefer-
ence criterion and other parameters, evaluate the obitained
rules, repeat the process if desired, eic:

A. Computer Representaiion of VL Decision Rules

Decision rules ‘are represented as graphs with labeled nodes
and labeled directed ares. A label on a nede can be:

) d selector with a descriptor without the argument list,

b) 2 logical operation,

¢) a.quantifier form 3 x or V¥ x.

Arcs link arguments with selectors or descriptors, and are
tabeled by 0, 1, 2, -+ - to specify the positicn of an argument
in the descriptor indicated at the head of the arc (0 indicates
that the order of arguments is not imporiant).

Several different types of relations may be represented by an
arc. The type of relation is determined by the label on the
node at each end of the are. The types of relations are 1) func-
tional dependence, 2) logical dependence, 3) implicit variable
dependence, and 4) scope of variables,

Fig. 2 gives a graph representing a VL,, expression, The two
arcs connected to the logical operation (/) represent the logical
dependence of the value of the formula on the values of the
two selectors. The other arcs in the figure represent the func-
tional dependence of f on x, and X4, and g on X,.

8. .Outline of the Top Level Algorithm

Thf; implementation of the inductive progess in the program
INDUCE-1.1 was based on ideas and algorithms adopted from
the earlier research on the generalization of VL, expressions
(Michalski [13], [32], and some new ideas and algorithms
deyeloped by Larson [28], [29].

The top level algorithm (in somewhat simplified form) can
be deseribed as follows;

1) At the first step, the data rules (whose condition parts
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FxXy

Fig. 2. VL Graphstructure: 3 < xo{T(x, %20 = [ = 2]).

ate in the disjunctive simple [orms} are transformed to a new
set of rules, in which condition parts are in the form of o
expressions. A c-expression (a confuncrive expression) 1S 2
product of selectors accompanied by ane or more guantifier
farms, 1.., forms QFx,, xz, -+ -,where QF denotesa quantifier.
(Nate, that due to the use of the internal disjunction and
quanlifiers, a c-expression represents a more general concept
than a conjunction of predicates (used, eg., in [23], [24]1).

2) A decision class is selected. say Kj, and all c-expressions
agsociated with thisclass are put into a:set Fl,and all remaining
c-expressions are put intoaset FO (the set F1 represents evenls
to be covered, and set FO represents constraints, ie., gvents
not to be covéred),

3) By application of inference rules (describing the problem
environment), constructive generalization rules, and rules
generating arithmetic descriptors (Section V-E) new selectors
ate generated, The “most promising™ selectors (according to a
chosén criterion) are added to Lhe cexpressions in F1 and FO.

4) A c-expression is selected from F, and a set of consistent -
generalizations (a restricted star) of this expression is obtained,
This is done by starting with single selectors (called “seeds™),
selected from this c-expression as the “most promising” ones
(according to the preference criterion). [In each subsequént
next step, & new selector is added to the ¢-expression obtained
in the previous step (initially the seeds), until a specified num-
ber (parameter NCONSIST) of consistent generslizations is

determined. Consistency is achieved when a c- ewpresswn has

NULL intersectionwith the set FO. This “rule growmg Process
is illustrated in Fig, 3.

5) The obtained c-éxpressions, and c-expressions in FO,
are translormed to two sets E1 and EQ, respectively, of VL,
events (i.e., sequences of values of certain discrete variables).

A procedure for generalizing VL., descriptionsis then applied
to obtain the “best cover” (according to a user defined crite-
rion) of set El against EQ (the procedure j5 2 version of
AQVAL/1 program [13]).

During this process, the exrension ageinst, the closing the
{nterval,and the climbing generalizarion free rules are applied.

The tesult is transformed to a new set of c-expressions (a
restricted star) in which selectors have now appropriately
generalized references.

6) The “best™ c-expression is selected from the restricied
star.

7) If the c-expression completely covers F1, then the process
repeats for another decision class. Otherwise, the set F1is re-
duced to contain only the uncovered c-expressions, and Sieps
4)-7) are repeated,

The implementation of the inductive process in INDUCE-I.1
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Tule grcutng pracess) la specliled by paraméter 2AxSTAR,  The nutber of
terminal nodes (tonshstent peneralizarions) which progeam aftempes 'o
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consists of a large collection of specialized algorithms, each
accomplishing & certain task. Among the most important
tasks are the following.

1) The implementation of the “rule growing process.”

2) Testing whether one c-expression is a generalization of
(“covers') another c-expression. This is done by testing for
subgraph isomorphism.

3) Generalization of a c-expression by extending the selector
references and forming irredundant c-expressions (includes
application of AQVAL/1 procedure).

4) Generation of new descriptors and new seleclors.

Program INDUCE 1.1 has been impléemented in pascas (for
Cyber 175 and DEC 10); its complete description is given in
[30].

C. Example

We will present now an example illustrating some of the
features of INDUCE-1.1l. Suppose given are two sets of
trains, Eastbound and Westbound, as shown in Fig. 4. The
problem is to determine a concise (logically sufficient) descrip-
tion of each set of trains, which dlstihg_uishes one set from the
other (2., a discriminant description which contains oniy
necessary conditions for distinguishing between the two sets),

As the first step, an initial set of descriptors is determined
(by a user) for describing the trains. Eleven descriptors are
selected in total, Among them are:

e infront(car;,car;) car; is in front of car;
(a nominal des¢riptor)
the length of car;

(a linear descriptor)

@ length(car;)

the shape of car;
[a structured descriptor with 12
nodes in the generalization tree;

NITE T NI s B

@ car-shape(car)
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® cont-load(car;,load;)  carj contains Joad,

{2 nominal descriptor)
the shape of load;

(& structured descriptor)
The value sét:

& circle~,

. hexngN
® triangle \o polygon
® regtangle

e toad.shape(load;)

\

® nrpts-load(ear) the number of parts in the load
of eary (alinear descriptor)
aumber of wheels in car;®

(a linear descriptor).

® nrwheels(car))

The data niles consist of deseriptionsiof the individual trains
in terms of the selected descriptors, together with the specifica- .
tion of the train set they belong to. For example, the data
rule deseribing the second eastbound train is

3 ¢ar, ,0ar,,cary,cary,Jead, Joada, . .
[infroni(cary,car,)] [infront (car;,cars)] ...
[length(car)=long] [car-shape(car)=engine]
[caz-shape(car,)=U-shaped] [cont-load(car,, load, )] A
[load-shape(load, )=triangle]. .
1> [class=Eastbound]

Snrwheels(cars =21, ..
(I2)

Rules describing the problem enviremment in this case are
only rules defining structures of structured descriptars (argy-
ments ol descriptors are omitted):

% At this moment, before piroceeding further, the cmcr is-advised 19

e ot thon mdpeneas ] be tmw frosnlveehiie e aklam ~= Wi ek oWRL
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[carshape=open relngl,open trapezoid U-shaped,

= [car_shupe =open 1op] (13)
[c:ﬂ-shapc=eilipse.ciosed ectngl.jagged top,sloping lop]
= [car_shape=closed top] (14)
[!u::nd-shapr:=hc'xa'gon.tri‘aamg]e.rectmglc]
= [Ioad-shape:puly_g-._m]. (13)

Thie criterivn of preference was 1o minimize the number of
rules (c-expressions) in describing each class. and, with sec-
andary fwierity, te minimize the number of selectors in each
ruie,

Rules of constructive generalization included in the program
are able 1o construct, among other descriptors, stiich descriplors
as the length ©f a chain, properties of elements of a chain,
numbér of objects satisfying a certain relation, efe. For ex-
ample., from the data rule (12), the constructive generaliza-
tion rules can produce new selectors such as

the number of cars in the train is4
(the length of chain defined by re-
lation infront)

[nrears=4]

the number of long cars is 1 (the
engine)

[nrears-lengthJong=1])
[nr-pts-load (last-car)=2] the number of parts in the load of
the Jast car is 2

[position(ear; )=i) the position of car; is i.

Suppose Lhat eastbound trains aré considered first. The set
Fl contains then all c-expressions desciibing gastbound trains,
and FO, all c-axpressions describing westhound trains. The de-
seription ‘¢ is selected from F1 (suppose it is the above descrip-
tion of the second eastbound train), and supplemented by
“most promising” metadescriptors generated by problem en-
vironment rules and constructive generalization sules, In this
case, the metaselector [shape(last_—c:ﬂ]==rec_t_angle] s added to .
Next, a set G (a restricted star) of certain numiber (KCONSIST)
of consistent generalizations of e is determinad.

This is done by forming a sequence of parrial stars (a parrial
star may include inconsistent generalizations of €). If an ale-
ment of a partial star is consistent, it is placed into the set G.
The initiat partial star (P;) contains the set of all selectors
of &;. This partial star and each subsequent partial star is re-
duced according to a user specified preference criterion to the
“yest™ subset, before a new partial star is formed. The size of
the subset is controlled by @ paramerer called MAXSTAR. A
new partial star P;,, is formed from an existing partial star
P: in the following way: for each c-expression in Py, a set of
c-expressions is placed into Py, q, each new ¢-expression con-
tainiag the selectors of the original c-expression plus one new
selector from e, which is not in the original c-expression. Once
a sufficient numbes of consistent generalizations have been
formied, 1 version of the AQVAL/1 program (Michalski [14])
is applied 1o extend the references of all selectors in each con-
sistent generalization, As the result, same selectars may be
removed and some may have mare general references,

In thie example; the best subset of selectors of e (1e., the
roduced martial star (Py ) was
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3 cary [cor-shape(car; )=U-shaped] (16)
3 car, [car-shape(car, }=open-trapezoid) (17)
3 car, [carshape(ear, )=rectangle] (1%)
[car-shape(last-car)=rectangle] . (1%)

The last c-expression is consistent (has emply mtersection
willh c-expressions in FO)and, thecefare, is placed in G. From
e remaining, @ new partial stac is determined. This new
partial star contains a consistent generalization:

3 car, [carsshape(car, J=rectangle] [lengthi(car, J=shart]
(20)

which is added to G. Suppose G is testricted to have only two
elements (NconsIsT=1), Now, the program AQVAL/I isap-
plied to generalize references of the selectors in c-expressions
of G. if it leads to an improvement (according ta the prefer-
gnce criterion).

In this case, a generalization of (20) produces a consistent
and complete generalization:

3 car, [car-shape(car  J=closed top] [length(car, )=short] .
(2D

(The generalization of (19), [ca'r-shapeﬂ.as_t-car)=po]-ygo-n] RS
not complete; it does not cover all F1.)
In this example, ooly two partial stars were farmed, and w0

consistent generalizations were created. [n general, a set of

consistent generalizations is created through the formation of
several partial stars. The size of each partial star and the num-
ber of alternative generalizations are controlled by user supplied
parameters.

Assuming a farger value of NCONSIST, and apolving theabove
procedure ta both decision classes, the program {NDUCE-1.1
produced the following alternative descriptions of each set of
1rains.

(The selectors or references underlined by a dotted line were
generated by application of constructive generalization rules or
problem environment rufes.)

Eastbownd Trains:

4 ¢ar, [length{car;)=short] [car-shape{ear, )=closed top]
:> [elass=Eastbound] (22

[the sameas (21)] . It can be interpreted as follows.
If g train conmains a car which is short and hus g closed top,
then it is an easthound train. Alternatively.

3 car, 04y, load load; [infront{car, scars¥]
[cont-load(cary,load )]
A [cont_load(car,,load,)]
A [load_shape(load, Y=tnangie]
A [load_shape(load;)=polygon] :> [class= Eastbound
(23)

1t can be interpreted as follows.
If & train contains a car whose load is a mangle, and the loed
of the car befiind is poiygon, then the train is castbound.
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Westbound Trains:

[nrears=3] V 3 car, [car_shapefear; )=japped 1op)

21> [class=Westbound] (24)
3 car, [arcars_length _long=2] [position(ear, )=3}

[shape(car, y=open_top,jagsed _1op|

1> [elass=Westbound]. (25)

It is interesting to note that the example was construcled
with rules (23) and (24) in mind. The rule {22) found by the
program as an’ gliernative was rather surprising because it
seems Lo be conceplually simpler than rule (23).

This example shows that the combinatorial partof an induc-
tion process can bé successfully handled by a computer pro-
gram. Therefore, programs like the sbove have a potential 10
serve as an aid to induction processesin variaus applied sciences.

Vil SuMMARY
We have presented an outliné of a theory'and an implementa:
tion method which views pattern recognition as a rule-guided
inductive inferance. The initial data rules (examples) are trans-
formed to general recognition rules by an application of
generalization rules-ang problem knowledge rulegs, under the

control of a preference eriterion. The implemented method

{in the form of computer program INDUCE 1.1):

® applies different generalization rules according to the type
of descriptors in the data (nominal, linear structured);

® takes into consideration the properties of the intesrela-
tionships of descriptors characteristic to the recoghition
problem;

® permits the specification by a user of a preference crite-
ricn, which evaluates the usefulness of the rules from the view.
point of the given application;

© can generate certain new descriptars (“meladescnptors”)
and blend them with the initial ones to provide a basis from
which the final description chooses its most appropriafe
descriptors;

® uses the same representation language (VL ) to describe
the learning events as well 2s problem knowledge rules, which
simplifies for a user the task cf the data preparation for the
program;

® permits a user to suggest to the program various srithmetic
transformations of the original (linear) variables which seem
promising as relevant characterization of abject classes,

The implemented method has many limitations. Among
major limitations Is a restricted form in which program can
express the recognition rules (i.e., in the form of a disjunctive
simple VL, expression with limited use of quantifiers), and
a restricted number of operators and mechanisms which the
program uses in consfrugting a generalized description, Also,
the method does not take into cansideration any probabilistic
information.

Among the advantages is the significant generality of the ap-
proach and an ability to use the semantics underlying the re-
cognition problem. An important property of the method is
the simplicity of conceptual interpreiation ‘of the patiern
recognition rules. The strength of the method was illustrated
by a testing example where program was able to discover a
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pattesn unknown to the authors. On the practical side, an
earlier program (AQ) 1) was able ta determine from examples
the rules fur diagnosis of soybean diseases which gave better
performance than the rules obtained by representing an ex-
pert’s knowledge [33}. '
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