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ABSTRACT 

STRUCTURE AND ENERGY-BASED ANALYSES OF FGFR2 KINASE 

MUTATIONS REVEALING DIFFERENCES IN CANCER AND SYNDROME 

MUTATIONS AND INCONCLUSIVE NATURE OF ENERGY ANALYSIS FOR THE 

MUTANTS 

Snehal Vilas Sambare, M.S. 

George Mason University, 2019 

Thesis Director: Dr. Amarda Shehu 

 

Fibroblast growth factor receptor 2 (FGFR2) is a protein in humans encoded by gene 

FGFR2. It plays an important role in the regulation of cell proliferation, differentiation, 

migration and apoptosis, and in the regulation of embryonic development. Mutations in 

FGFR2 gene are associated with numerous medical conditions that include 

craniosynostosis syndromes (abnormal bone development) and various cancers. In fact, 

FGFR2 is shown to be activated in many cancers through the mechanisms of gene 

amplification, translocations, and point mutations. There remains many FGFR2 mutations 

whose effects are unknown. In this work we have investigated point mutations in FGFR2 

kinase. We have performed region-based analysis wherein we mapped mutations to 

various domains of protein and performed Shannon entropy analysis on the mutant 

positions. BLOSUM matrix values were also obtained for the mutations to get insights 
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about differences in amino acids substitution for cancer and syndromes. Structure energy-

based analysis was performed using FoldX, a protein design algorithm. Statistical 

analysis like Normality tests, T-tests, Mann-Whitney-Wilcoxon Tests were performed on 

the energy values obtained from FoldX, and histograms were generated. This analysis 

makes the following contributions. The region-based analysis shows that cancer causing 

mutations are distributed across all regions, whereas syndrome causing mutations are not 

uniformly distributed across all domains. The BLOSUM analysis reveals that in cancer 

causing mutations substitution takes place between amino acids with similar 

physicochemical properties, whereas in syndrome causing mutations all types of amino 

acids can be substituted. The structure-energy based, and statistical analysis shows that 

cancer causing and syndrome causing mutations have identical energy distributions, 

indicating that energy cannot be used as predictor for differentiating cancer causing and 

syndromes causing mutants in FGFR2. The results of histogram analysis are 

inconclusive. In summary, this study has provided interesting insights that can be helpful 

for further research of FGFR2 kinase mutations. 
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INTRODUCTION 

Fibroblast growth factor 2 (FGFR2) is a protein in humans encoded by gene FGFR2 [1]. 

The amino acid sequence for this protein is highly conserved between members and 

throughout evolution [2]. The entire protein consists of three immunoglobulin domains, a 

single hydrophobic membrane spanning segment and cytoplasmic tyrosine kinase domain 

(FIGURE 1) [2]. The extracellular portion of this protein interacts with fibroblast growth 

factors resulting in dimerization and cascade of downstream signals which influence 

mitogenesis and differentiation [2]. Tyrosine kinases occupy a central role in cellular 

regulation, acting as intermediaries in relaying signals from extracellular ligands to major 

signaling pathways in the cell [3]. FGFR2 has two natural isoforms which are created by 

splicing of third immunoglobulin domain. FGFR2lllb is found in skin and internal organs, 

whereas FGFR2lllc is found in mesenchyme which includes craniofacial bone [2]. These 

two isoforms differ in their bindings to the ligand [4]. FGFR2 plays an important role in 

the regulation of cell proliferation, differentiation, migration and apoptosis, and in the 

regulation of embryonic development. It is required for normal embryonic patterning, 

trophoblast function, limb bud development, lung morphogenesis, osteogenesis, skin 

development and normal skeletal development [5]. 
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Figure 1. Structure of FGFR2.Three extracellular immunoglobulin domains Ig1, Ig2, Ig3; transmembrane and 

cytoplasmic tyrosine kinase domain. (https://www.youtube.com/watch?v=1Y1el3_vQ3Y) 

 

 

Mutations in FGFR2 are associated with numerous medical conditions that includes 

Craniosynostosis syndromes and cancer. Craniosynostosis syndromes are skull 

malformations which are caused by premature fusion of cranial structures and other 

features which are dependent on the mutation. The syndromes are Apert syndrome, 

Jackson-Weiss syndrome, Beare-Stevenson cutis gyrata syndrome, Saethre-Chotzen 

syndrome, and syndromic craniosynostosis. Gain of function mutations in FGFR2 kinase 

cause diseases like Familial scaphocephaly syndrome (FSCP), Crouzon Syndrome (CS), 

Pfeiffer Syndrome (PS) [6][7]. Lacrimo-auriculo-dento-digital syndrome (LADDS) is 

cause by reduced tyrosine kinase activity in FGFR2 mutants [8]. Missense mutations of 

FGFR2 have been found in endometrial cancers [9], cervical cancer [10] breast cancer 

[11] and melanoma [12] resulting in loss of function in some cases. 

There are different types of mutations. Missense mutations result in change of an amino 

acid, nonsense mutations result in change of an amino acid to STOP codon which cause 

https://www.youtube.com/watch?v=1Y1el3_vQ3Y
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premature termination of translation, silent mutations have no effect and frameshift 

mutations are caused by deletion or insertion of multiple bases resulting in lots of amino 

acid changes. Missense mutations can result in loss of function or gain of function in 

proteins. Mapping of various mutations onto different areas of protein structures has led 

to valuable insights into molecular mechanism underlying a disorder [13]. Potential 

energy of a protein molecule is the sum of many different components which are related 

to the internal structure and its interaction with other molecules. Backbone configuration, 

side chain interactions, Van der Waals clashes, electrostatics interactions, bond length, 

bond angles, torsion angles contribute to determine the potential energy of a protein 

molecule [14]. Mutations in protein can lead to changes in any of these, resulting in 

energy changes. Studying these energy changes can give us new insights about the 

mutants. Analyzing the energy changes of the protein mutants has shown that there could 

be differences between the cancer causing mutants and syndrome causing mutants [15]. 

There remains many FGFR2 mutations whose effects are unknown. In this study we are 

specifically interested in studying mutations in tyrosine kinase domain of the protein 

which is involved in regulation of catalytic activity (Figure 1). FGFR2 kinase activation 

loop toggles between two states, active and inactive, so the mutations in this region can 

perturb the balance between these states, resulting in various medical conditions like 

syndromes and cancers [3]. Performing structure-energy based analyses of these 

structures can help us in determining the effect mutations have on the structures and can 

help in determining the relationship between the structure and disorder type (cancer or 

syndrome), if any. In this study we are mapping the mutations to all domains of the 
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protein, calculating the Shannon entropy values, BLOSUM matrix values and the 

changes in the potential energies of mutants. With the help of FoldX, which is a protein 

design algorithm, we wish to understand the effect of mutations on the protein. This 

research can give us new insights about the differences in the cancer causing and 

syndrome causing mutants. 
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SPECIFIC AIMS 

1. Region based analysis 

1.1 Mapping mutations to domains of protein 

Proteins are composed of one or more functional regions called as domains. 

Different combination of these domains produces diverse range of proteins. Mapping 

various disease missense mutations can shed light on molecular mechanism of the disease 

[17]. Previously, differences in distribution of missense mutations in various domains 

were observed in different diseases after such mapping [18]. So, in this study we decided 

to map mutations onto the domains of FGFR2 protein to understand whether cancer 

causing and syndrome causing mutants fall into distinct groups. 

1.2 To perform Shannon Entropy Analysis 

Shannon entropy gives a measure for sequence conservation [19]. It is observed 

that mutated amino acid positions are highly conserved across species. Here we studied 

evolutionary sequence conservation of the positions where the mutation has taken place. 

2. Substitution diverseness analysis of mutations 

BLOSUM matrix values give information about substitution diverseness of amino 

acids [20]. BLOSUM matrix values for the mutants were obtained to understand the 

substitution diverseness for cancer causing and syndrome causing mutants. 
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3. Structure and energy-based analysis 

3.1 FoldX Analysis 

FoldX is a protein design algorithm that uses an empirical force field. It predicts 

the effect of point mutations or human SNPs on protein stability or protein complexes 

[16]. The mutations were performed in FoldX and the energies of the mutant structures 

were obtained. The values were plotted to find any differences in the cancer causing and 

syndrome causing mutants. 

3.2 Statistical analysis of the energy values obtained from FoldX 

Statistical analysis can give us new insights about the differences in cancer 

causing and syndrome causing mutants. In this research we have performed T-tests, 

Mann-Whitney-Wilcoxon Test and Histogram analysis on the energy values obtained 

from FoldX to understand the differences in cancer causing and syndrome causing 

mutants. 
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MATERIALS AND METHODS 

This section summarizes databases and scripts used in this study. Then we 

describe the techniques employed to conduct the region-based analysis, substitution 

diverseness analysis and structure energy-based analysis.  

1.Databases & Scripts 

UniProt (Universal Protein Resource) is a database of proteins which contains 

information about the sequences and functions (https://www.uniprot.org/). It also has 

information about the mutations, structures, expression and diseases associated with the 

proteins [21]. 

RCSB-PDB (Protein data bank) is database of structures of large biological 

molecules like proteins and nucleic acid [22] (https://www.rcsb.org/). 

COSMIC (Catalogue of Somatic Mutations in Cancer) is largest manually created 

database consisting of information about human cancers. It catalogues information about 

the type of cancers, mutations and cell lines [23]. (https://cancer.sanger.ac.uk/cosmic) 

NCBI (National Center for Biotechnology Information) consists of different 

databases related to biotechnology and biomedicine which are very useful in 

bioinformatics analyses. (https://www.ncbi.nlm.nih.gov/) In this study NCBI 

HomoloGene was used to obtain sequences. It is tool which gives homologs among genes 

of various eukaryotic genomes [24]. (https://www.ncbi.nlm.nih.gov/homologene) 

https://www.uniprot.org/
https://www.rcsb.org/
https://cancer.sanger.ac.uk/cosmic
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/homologene
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Clustal Omega is a tool is which is used for multiple sequence alignment of three 

or more sequences. It uses seeded guide trees and HMM (Hidden Markov Model) profile-

profile technique for sequence alignment [25]. 

(https://www.ebi.ac.uk/Tools/msa/clustalo/) 

Protein Variability Server (PVS) is a web server which is used for studying 

protein sequence variability. It uses several variability metrics to compute the absolute 

site variability in multiple protein-sequence alignments [26]. 

(http://imed.med.ucm.es/PVS/) 

The scripts were written in R language [27] (Appendix III). Bio3D package in R 

has utilities for performing analysis on protein structures and sequences [28]. The protein 

chains were separated using methods from this package. Ggplot2 [29], reshape2 [30], 

plotrix[31] and xlsx were the packages used for getting histograms and plots. Shapiro-

Wilk Normality Test, T-test and Mann-Whitney-Wilcoxon Test were performed in R on 

the datasets. 

 

In this study we use Isoform 1 of FGFR2 human gene (Appendix I) consisting of 

821 amino acids from UniProt database (P21802) as the reference. Specifically, our focus 

is on tyrosine kinase domain which ranges from 399 to 821 amino acids of the sequence. 

All the driver mutations in this region and their types were obtained from UniProt, 

RCSB-PDB and COSMIC. 

https://www.ebi.ac.uk/Tools/msa/clustalo/
http://imed.med.ucm.es/PVS/
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2.Region based analysis 

2.1 Mapping mutations to protein domains 

For domains analysis the domains mentioned in Family & Domains section of 

UniProt database were used for mapping. The Pathology & Biotech section gives 

information about the mutations. From this section, number of mutations in each domain 

of the gene for the syndromes were obtained. COSMIC database has mapping of cancer 

causing mutations on the gene sequence. From this data, number of mutations in each 

domain were calculated. 

2.2 Shannon Entropy Analysis 

For a multiple protein sequence alignment, the Shannon entropy (H) for every 

position is as follow: 

 

 

Equation 1. Shannon Entropy Formula 

 

Where Pi is the fraction of residues of amino acid type i, and M is the number of 

amino acid types (20). H ranges from 0 (only one residue in present at that position) to 

4.322 (all 20 residues are equally represented in that position). Typically, positions with 

H >2.0 are considered variable, whereas those with H < 2 are considered as conserved. 

Highly conserved positions are those with H <1.0. A minimum number of sequences is 

however required (~100) for H to describe the diversity of a protein family. 
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For calculation of Shannon entropy, protein sequences were obtained from 

UniProt and NCBI. The list of organisms with FGFR2 gene were obtained from NCBI-

HomoloGene. The sequences for these organisms were obtained from UniProt. For every 

organisms UniProt gives a list of sequences. Only those sequences were considered 

whose length was close to 821. If there were multiple sequences with length close to 821, 

the sequence length mentioned in results obtained from NCBI- HomoloGene was 

considered. Organisms whose sequences were not in UniProt were obtained from NCBI- 

HomoloGene. Considering this, the sequences considered were as follows: 

HomoSapiens: P21802, Pan troglodytes: H2Q2P3, Canis lupus familiaris: F1PPD8, Bos 

Taurus: F1MNW2, Mus musculus: E9QK53, Rattus norvegicus: F1LNW0, Gallus gallus: 

F1NEE9, Danio rerio: Q8JG38, Xenopus tropicalis: A4IHW8. These sequences were 

aligned using Clustal Omega with alignment to be outputted according to the input 

sequences. Protein Variability Server PVS was used to calculate the Shannon Entropy for 

the aligned sequences. In sequence variability options, reference sequence was set to first 

sequence in alignment file. First sequence is human FGFR2 with 821 amino acid 

sequences. Shannon entropy values for the mutant positions were listed. 

3. Substitution diverseness analysis 

BLOcks SUbstitution Matrix (BLOSUM) is a substitution matrix based on local 

alignments which is used for sequence alignment of proteins. BLOCKS databases are 

scanned for very conserved region of protein families and then relative frequencies of 

amino acids and their substitution probabilities are calculated. BLOSUM matrix has log-

odds score for each of the 201 possible substitution pairs of the 20 amino acids. In this 
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study, BLOSUM62 matrix was used [20]. A score of zero indicates that the frequency 

with which given two amino acids were found aligned in the database was as expected by 

chance, while a positive score indicates that the alignment was found more often than by 

chance, and negative score indicates that the alignment was found less often than by 

chance. For each mutation, by considering original amino acid as row entry and 

substituted amino acid pair as column entry, BLOSUM62 score was obtained. 

4. Structure and energy-based analysis 

4.1 FoldX Analysis 

FoldX is protein design algorithm empirical force field. It is used to predict the 

effect of point mutations on the stability of proteins. The energy function includes terms 

that have been found to be very important for protein stability, where the energy of 

unfolding (∆G) of a target protein is given by equation: 

 

 

Equation 2. Stability of Protein given by FoldX in kcal/mol. 

 

with: 

• ΔGvdw as the sum of the van der Waals contributions of all atoms with 

respect to the same interactions with the solvent. 
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• ΔGsolvH and ΔGsolvP as the differences in solvation energy for apolar 

and polar groups, respectively, when these change from the unfolded to 

the folded state. 

• ΔGhbond as the free energy difference between the formation of an intra‐

molecular hydrogen bond and intermolecular hydrogen bond. 

• ΔGwb as the extra stabilizing free energy provided by a water molecule 

making more than one hydrogen bond to the protein (water bridges) that 

cannot be considered with non‐explicit solvent approximations. 

• ΔGel as the electrostatic contribution of charged groups, including the 

helix dipole. 

• T * ΔSsc as the entropy cost of fixing the backbone in the folded state. 

• ΔSsc as the entropic cost of fixing a side chain in a conformation. 

ΔΔG is the energy difference between the stability of the mutant and the stability 

of original structure. 

For studying mutations in FoldX, wild type structures of FGFR2 kinase domain 

were obtained from RCSB-PDB. Structure 2PSQ is inactive form of FGFR2 kinase with 

amino acids from 468-765. It has two chain A and B. The pdb files for two chains was 

separated using Bio3D package in R. Mutation on both chains were studied. Structure 

2PVF is active from of FGR2 kinase with amino acids from 458-778. It has two chains 

Chain A and Chain B; Chain B has 15 residues. So, mutations were studied only on 

Chain A. 
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Yet Another Scientific Artificial Reality Application (YASARA) is a computer 

program for molecular visualizing, modelling, and dynamics. FoldX plugin is available 

for YASARA which gives all the functionalities of FoldX. So, all the mutations were 

studied in YASARA. The original structures were repaired in FoldX using 

“RepairObject”. “RepairObject” identifies those residues which have bad torsion angles, 

or Van Der Waals' clashes, or total energy, and repairs them. It self-mutates residues with 

high energy to low energy. FoldX command “Stability” gives the stability of protein in 

kcal/mol. FoldX “Mutate Residue” option, mutates a single residue on the main chain of 

the wild type protein structure. This outputs the energy difference (ΔΔG) between mutant 

structure and Wild Type structure, called as FoldX energy. A total of 28 mutations were 

performed on each of the Wild Type structures. For every mutation, ΔG (stability of the 

mutant), ΔΔG (FoldX energy) and manually calculated ΔΔG (stability of mutant-stability 

of Wild Type referred as mutant-WT) were noted. 

4.2 Statistical analysis 

Gold Sets are subsets of the entire datasets which are created based on different 

conditions for statistical analysis. Considering the standard deviations of 0.8 [13] and 

0.46 [14] in the ΔΔG of the mutants, the Gold Sets were created. For every structure, four 

Gold sets were created, mutants having absolute values of mutant-WT (stability of 

mutant-stability of Wild Type) greater than 0.8 and other set with absolute values of 

mutant-WT greater than 0.46; mutants having absolute values of FoldX energy greater 

than 0.8 and other set with absolute values of FoldX energy greater than 0.46. Each set 

has two categories, syndromes and cancers. Normality Tests were performed on stability, 
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mutant-WT, FoldX energy of cancer causing and syndrome causing mutants of each set. 

Based on the results, T-tests and Mann-Whitney-Wilcoxon Tests were performed on 

cancer causing and syndrome causing mutants of each dataset. Histograms were 

generated for plotting the number of mutations based on energy values. 
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RESULTS AND DISCUSSION 

In this section, the results of the region-based analysis, substitution diverseness 

analysis and structure energy-based analysis are discussed in detail. 

1.Region based analysis 

FGFR2 protein has three immunoglobulin domains; Ig C2 type 1, Ig C2 type 2 

and Ig C2 type 3, along with single protein kinase domain. On mapping the number on 

mutation to these domains following results were obtained, see Figure 2. 
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Figure 2. Mapping of mutations to protein domains. N and C are terminal regions, I1, I2, I3 are inter structural 

regions, Ig is Immunoglobulin domain. Cancer mutations are present in all regions except N terminal unlike 

syndrome mutations. 

  
 

In the plot, N and C are N terminal and C terminal regions and I1, I2, I3 are inter 

structural regions. Cancer mutations include driver as well as passenger mutations in the 

protein. All the regions have cancer mutations except the N-terminal regions with highest 

number of mutations in protein kinase region. Syndrome mutations are concentrated from 

Immunoglobulin domain 3 and kinase domain as compared to the remaining part of the 

protein. 

The Shannon entropy values for 399 to 821 amino acids are listed in Table 1. 
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Table 1. Shannon Entropy values for mutants. Shannon Entropy values < 1, so all mutant positions are highly 

conserved. 

Position 
Mutation 

Shannon Entropy 

value Phenotype 

474 W474X 0 Cancer 

475 E475K 0 Cancer 

526 K526E 0 Syndrome 

530 D530N 0 Cancer 

547 I547V 0 Cancer 

549 N549H 0 Syndrome 

549 N549T 0 Syndrome 

549 N549K 0 Cancer 

565 E565G 0 Syndrome 

565 E565A 0 Syndrome 

574 E574K 0.53 Cancer 

628 A628T 0 Syndrome 

636 E636K 0 Cancer 

640 M640I 0 Cancer 

641 K641R 0 Syndrome 

642 I642V 0 Cancer 

648 A648T 0 Cancer,Syndrome 

649 RD649-650S 0 Syndrome 

650 D650V 0 Syndrome 

659 K659Q 0 Syndrome 

659 K659T 0 Syndrome 

659 K659E 0 Cancer 

659 K659M 0 Cancer 

659 K659N 0 Cancer,Syndrome 

663 G663E 0 Syndrome 

678 R678G 0 Syndrome 

688 S688F 0 Cancer 

701 G701S 0 Cancer 

708 P708S 0 Cancer 

759 R759X 0 Cancer 

759 R759Q 0 Cancer 

770 L770V 0 Cancer 
 

 



18 

 

Table 1 provides documentation for cancer causing as well as syndrome causing 

mutations. In the table X represents a translation termination codon. Positions that have 

values < 1.0 are considered as highly conserved. From Table 1 it is evident that all the 

positions where the mutations are present are highly conserved across species for cancer 

causing as well as syndrome causing mutants. 

2.Substitution diverseness analysis 

BLOSUM62 matrix that was used is shown in Figure 3. 

 

 
Figure 3. BLOSUM62 matrix. 

 

BLOSUM matrix values can be obtained for point amino acid mutation where the 

new amino acid is known. Considering this, the BLOSUM matrix values for the mutants 

are in Table 2. 
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Table 2. BLOSUM matrix values for the mutants. 

Mutant BLOSUM matrix value Phenotype 

K526E 1 Syndrome 

N549H 1 Syndrome 

N549T 0 Syndrome 

E565G -2 Syndrome 

E565A -1 Syndrome 

A628T 0 Syndrome 

K641R 2 Syndrome 

D650V -3 Syndrome 

K659Q 1 Syndrome 

K659T -1 Syndrome 

G663E -2 Syndrome 

R678G -2 Syndrome 

E475K 1 Cancer 

D530N 1 Cancer 

I547V 3 Cancer 

N549K 0 Cancer 

E574K 1 Cancer 

E636K 1 Cancer 

M640I 1 Cancer 

I642V 3 Cancer 

K659E 1 Cancer 

K659M -1 Cancer 

S688F -2 Cancer 

G701S 0 Cancer 

P708S -1 Cancer 

R759Q 1 Cancer 

L770V 1 Cancer 
 

 

On plotting the frequency distribution of cancer and syndrome mutations across 

the BLOSUM matrix values results obtained are shown in Figure 4. 
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Figure 4. Number of mutations VS BLOSUM matrix values. More number of cancer causing mutants have 

positive values, indicating that substitution takes place between amino acids of similar physicochemical 

properties, whereas syndrome mutants have amino acid substitutions between any amino acid. 

 

Higher values indicate substitution with higher similar physicochemical properties 

of amino acids. There are a greater number of cancer causing mutants with higher values 

indicating that in cancer, mutations take place between amino acids of similar 

physicochemical properties as compared to syndromes causing mutants which have even 

distribution of amino acid substitutions based on physicochemical properties. 

3. Structure and energy-based analysis 

3.1 FoldX Analysis 

The results of FoldX analysis on all structures are mentioned in Appendix II. 
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Original energy of the 2PSQ Chain A structure was 116.97 kcal/mol and after 

repairing the energy of the structure was -11.53 kcal/mol. The stabilities of the mutant 

structures were plotted. 

 

 
Figure 5. Stabilities (kcal/mol) of mutants for 2PSQ Chain A. C-Cancer, S-Syndrome, CS-Cancer&Syndrome. 
No differences between cancer causing and syndrome causing mutants with respect to stability of structures. 

The line in the graph represents the stability of the Wild Type with value of -11.53 kcal/mol. 

  

 

The line in the graph represents the stability of the WT with value of -11.53 

kcal/mol. It can be seen from the graph that cancer causing and syndrome causing 

mutants are randomly distributed, and all the mutants have stabilities within -8 kcal/mol 
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and -14 kcal/mol. R678G syndrome causing mutant has very high stability close to 16 

kcal/mol and S688F cancer causing mutant is highly stable with stability of close to -1 

kcal/mol. 

On plotting the mutant-WT and FoldX energy values of the mutants we get the 

plot as shown in Figure 6. Orange lines in the plot represent standard deviation values of 

-0.46 and 0.46 and black lines represent standard deviation values of -0.8 and 0.8. 

 

 
Figure 6. Mutant-WT (kcal/mol) energies of mutants for 2PSQ Chain A. C-Cancer, S-Syndrome, CS-

Cancer&Syndrome. Orange lines in the plot represent standard deviation values of -0.46 and 0.46 and black 

lines represent standard deviation values of -0.8 and 0.8. No differences between cancer causing and syndrome 

causing mutants with respect to mutant-WT of structures. 
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In this Figure 6, among all the mutations having values greater than 0.46 and less 

than -0.46, there is only one cancer causing mutant K659E which is stable rest all cancer 

causing mutants are unstable. 

 

 
Figure 7.  FoldX energies (kcal/mol) of mutants for 2PSQ Chain A. C-Cancer, S-Syndrome, CS-

Cancer&Syndrome. Orange lines in the plot represent standard deviation values of -0.46 and 0.46 and black 

lines represent standard deviation values of -0.8 and 0.8. No differences between cancer causing and syndrome 

causing mutants with respect to FoldX energy of structures. 

  

 

According to Figure 7, cancer causing and syndrome causing mutants are 

randomly distributed having positive as well as negative energy changes for both cancer 

and syndrome. 
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Similar analysis was performed on 2PSQ Chain B. The energy of the structure 

before repairing was 103.08 kcal/mol and after repairing it was -6.04 kcal/mol. Stability, 

mutant-WT and FoldX energy values were plotted. 

 

 
Figure 8. Stabilities (kcal/mol) of mutants for 2PSQ Chain B. C-Cancer, S-Syndrome, CS-Cancer&Syndrome. 

No differences between cancer causing and syndrome causing mutants with respect to stability of structures. 

The line in the graph represents the stability of the Wild Type with value of -6.04 kcal/mol. 

  

 

Cancer causing and causing syndrome mutants are randomly distributed within 

range of -4 kcal/mol and -8 kcal/mol which is close to the stability of the original 
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structure. N549K cancer causing mutation is highly stable and N549H syndrome causing 

mutation and S688F cancer causing mutation are highly unstable. 

 

 
Figure 9. Mutant-WT (kcal/mol) energies of mutants for 2PSQ Chain B. C-Cancer, S-Syndrome, CS-

Cancer&Syndrome. Orange lines in the plot represent standard deviation values of -0.46 and 0.46 and black 

lines represent standard deviation values of -0.8 and 0.8. No differences between cancer causing and syndrome 

causing mutants with respect to mutant-WT of structures. 
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Figure 10. FoldX energies (kcal/mol) of mutants for 2PSQ Chain B. C-Cancer, S-Syndrome, CS-

Cancer&Syndrome. Orange lines in the plot represent standard deviation values of -0.46 and 0.46 and black 

lines represent standard deviation values of -0.8 and 0.8. No differences between cancer causing and syndrome 

causing mutants with respect to FoldX energy of structures. 

  

 

Maximum mutations have absolute energy difference values greater than 0.46 

indicating they all are significant with respect to FoldX standard deviation of 0.46. 

FoldX energy plots have maximum mutations with positive energy differences 

indicating their instability with respect to the original structure. 

Similar FoldX analysis was done on 2PVF Chain A. The energy of the structure 

before repairing was 107.02 kcal/mol and after repairing it was -4.85 kcal/mol. 
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Figure 11. Stabilities (kcal/mol) of mutants for 2PVF Chain A. C-Cancer, S-Syndrome, CS-Cancer&Syndrome. 

No differences between cancer causing and syndrome causing mutants with respect to stability of structures. 

The line in the graph represents the stability of the Wild Type with value of -4.85 kcal/mol. 

  

 

For 2PVF Chain A the stabilities of the mutants have random distribution with all 

mutations having stabilities within range of -3.5 kcal/mol to -6.5 kcal/mol. There are no 

significant outliers for this distribution. 
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Figure 12. Mutant-WT (kcal/mol) energies of mutants for 2PVF Chain A. C-Cancer, S-Syndrome, CS-

Cancer&Syndrome. Orange lines in the plot represent standard deviation values of -0.46 and 0.46 and black 

lines represent standard deviation values of -0.8 and 0.8. No differences between cancer causing and syndrome 

causing mutants with respect to mutant-WT of structures. 
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Figure 13. FoldX energies (kcal/mol) of mutants for 2PVF Chain A. C-Cancer, S-Syndrome, CS-

Cancer&Syndrome. Orange lines in the plot represent standard deviation values of -0.46 and 0.46 and black 

lines represent standard deviation values of -0.8 and 0.8. No differences between cancer causing and syndrome 

causing mutants with respect to FoldX energy of structures. 

  

 

FoldX energy values shows maximum mutations with positive values which are 

not seen in mutant-WT plot of 2PVF Chain A structure.  

3.2 Statistical analysis 

In order to understand the differences in cancer causing and syndrome causing 

mutants based on potential energies, statistical analyses were performed. Mutants which 

cause both cancer and syndrome were not taken into consideration for performing tests. 
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Based on the Normal distribution of the data, T-tests and Mann-Whitney-

Wilcoxon Tests were performed. For each structure, there were four Gold Sets; mutants 

having absolute mutant-WT values and FoldX values greater than 0.46 (Gold Set - 0.46) 

and other set with values greater than 0.8 (Gold Set - 0.8). Statistical tests were 

performed on entire dataset and Gold Set. 

a) 2PSQ Chain A 

Entire dataset 

Entire dataset used for statistical analysis consisted of 26 mutations:  

Syndrome: K526E, N549H, N549T, E565G, E565A, A628T, K641R, D650V, 

K659Q, K659T, G663E, R678G 

Cancer: E475K, D530N, I547V, N549K, E574K, E636K, M640I, I642V, K659E, 

K659M, S688F, G701S, P708S, R759Q 

 

Table 3. Results of statistical analysis on 2PSQ Chain A entire dataset. The values are p-values. 

 Stability Mutant-WT FoldX 

 Syndrome Cancer Syndrome Cancer Syndrome Cancer 

Normality 0.1554 0.0002261 0.1554 0.0002261 0.2372 0.0001207 

Wilcoxon 0.1108 0.1108 0.252 
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Table 3 shows that for Stability, Mutant-WT and FoldX values, the p-value results 

of Normality Test indicate that cancer dataset does not follow Normal distributions (p-

value < 0.05). So, for these sets, Wilcoxon Test results were considered. Based on p-

values, the two datasets are identical (p-value > 0.05). 

The plots for number of mutations based on mutant-WT and FoldX energy values 

are shown in Figure 14. 
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Figure 14. Frequency histograms of mutations based on Mutant-WT and FoldX energies (kcal/mol) for 2PSQ 

Chain A entire dataset. 

  

 

In histograms of Figure 14, there are a greater number of cancer causing 

mutations than syndrome causing mutations that have absolute values less than 0.8. 

Gold Set (0.8) 

Based on mutant-WT values following mutations were considered: 

Syndrome: N549H, E565G, E565A, D650V, G663E, R678G 

Cancer: M640I, I642V, K659E, S688F, G701S, P708S 
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Table 4. Results of statistical analyses on 2PSQ Chain A Gold Set (0.8) based on Mutant-WT energy (kcal/mol). 

The values are p-values. 

 Stability Mutant-WT 

 Syndrome Cancer Syndrome Cancer 

Normality 0.1819 0.09194 0.1819 0.09194 

T-Test 0.1721 0.1721 

 

 

From Table 4 as all p-values are greater than 0.05, the cancer and syndrome 

dataset follow Normal distribution both datasets are identical. 

Based on FoldX values following mutations were considered: 

Syndrome: N549H, N549T, E565G, E565A, D650V, R678G 

Cancer: N549K, M640I, I642V, S688F, G701S, P708S 

 

Table 5. Results of statistical analyses on 2PSQ Chain A Gold Set (0.8) based on FoldX energy (kcal/mol). The 

values are p-values. 

 Stability FoldX 

 Syndrome Cancer Syndrome Cancer 

Normality 0.04292 0.00425 0.04415 0.002812 

Wilcoxon 0.09307 0.5887 
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Table 5 shows that both syndrome dataset and cancer dataset do not follow 

normal distribution (p-value < 0.05). So, Wilcoxon Test was considered for 

understanding the distribution. From the results (p-value > 0.05), the distribution is 

identical. 

The plots for number of mutations based on mutant-WT and FoldX values are 

shown in Figure 15. 

 

 
Figure 15. Frequency histograms of mutations based on Mutant-WT and FoldX energies (kcal/mol) for 2PSQ 

Chain A Gold Set (0.8). 

  

 

Figure 15 shows that only cancer mutants have absolute energy values greater 

than 5. 

Gold Set (0.46) 

Based on mutant-WT values following mutations were considered: 
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Syndrome: K526E, N549H, N549T, E565G, E565A, A628T, K641R, D650V, 

K659Q, G663E, R678G 

Cancer: E475K, I547V, M640I, I642V, K659E, S688F, G701S, P708S 

 

Table 6. Results of statistical analyses on 2PSQ Chain A Gold Set (0.46) based on Mutant - WT energy 

(kcal/mol). The values are p-values. 

 Stability Mutant-WT 

 Syndrome Cancer Syndrome Cancer 

Normality 0.1528 0.02277 0.1528 0.02277 

Wilcoxon 0.06916 0.06916 

 

 

Table 6 shows that the cancer dataset does not follow Normal distribution (p-

value < 0.05), so Wilcoxon Test results were considered. Since p-value is greater than 

0.05, the data distribution is identical for cancer and syndrome dataset. 

Based on FoldX values following mutations were considered: 

Syndrome: K526E, N549H, N549T, E565G, E565A, D650V, R678G 

Cancer: I547V, N549K, M640I, I642V, K659E, S688F, G701S, P708S 
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Table 7. Results of statistical analyses on 2PSQ Chain A Gold Set (0.46) based on FoldX energy (kcal/mol). The 

values are p-values. 

 Stability FoldX 

 Syndrome Cancer Syndrome Cancer 

Normality 0.08788 0.01401 0.1118 0.005688 

Wilcoxon 0.2026 0.6126 

 

 

Table 7 shows that for this dataset, cancer dataset does not have Normal 

distribution (p-value < 0.05). So based on Wilcoxon Test results, it can be concluded that 

both cancer and syndrome dataset have no differences based on distribution (p-value > 

0.05). 

The plots for number of mutations based on mutant-WT and FoldX values are 

shown in Figure 16. 
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Figure 16. Frequency histograms of mutations based on Mutant-WT and FoldX energies (kcal/mol) for 2PSQ 

Chain A Gold Set (0.46). 

   

 

Figure 16 shows that, for this dataset, the number of mutants having absolute 

values greater than 0.92 are identical. 

b) 2PSQ Chain B 

Entire Dataset 

Entire dataset used for statistical analysis consisted on 26 mutations:  

Syndrome mutants: K526E, N549H, N549T, E565G, E565A, A628T, K641R, 

D650V, K659Q, K659T, G663E, R678G 

Cancer mutants: E475K, D530N, I547V, N549K, E574K, E636K, M640I, I642V, 

K659E, K659M, S688F, G701S, P708S, R759Q 
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Table 8.Results of statistical analyses on 2PSQ Chain B entire dataset. The values are p-values. 

 Stability Mutant-WT FoldX 

 Syndrome Cancer Syndrome Cancer Syndrome Cancer 

Normality 0.0001275 0.03553 0.0001275 0.004293 0.0007004 0.0003248 

Wilcoxon 0.3275 0.1228 0.8201 

 

 

According to Table 8, for the Stability, Mutant-WT and FoldX, the p-value results 

of Normality Test (p-value < 0.05) indicate that syndrome and cancer dataset do not 

follow Normal distributions. So, for these datasets, Wilcoxon Test p-value results were 

considered. Based on p-values (p-value > 0.05), the population distribution looks 

identical. 

The plots for number of mutations based on mutant-WT and FoldX energy values 

are shown in Figure 17. 
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Figure 17. Frequency histograms of mutations based on Mutant-WT and FoldX energies (kcal/mol) for 2PSQ 

Chain B entire dataset. 

 

  

According to Figure 17, the distribution of cancer causing and syndrome causing 

mutants is random. 

Gold Set (0.8) 

Based on mutant-WT values following mutations were considered: 

Syndrome: N549H, N549T, E565A, K641R, G663E, R678G 

Cancer: N549K, M640I, I642V, K659E, S688F, G701S, P708S 
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Table 9. Results of statistical analyses on 2PSQ Chain B Gold Set (0.8) based on Mutant-WT energy (kcal/mol). 

The values are p-values. 

 Stability Mutant-WT 

 Syndrome Cancer Syndrome Cancer 

Normality 0.0003248 0.2336 0.0003248 0.2336 

Wilcoxon 0.366 0.366 

 

 

Table 9 shows that, for this dataset, syndrome dataset does not follow Normal 

distribution (p-value < 0.05). So, based on Wilcoxon Test p-value results, the two 

datasets are identical (p-value > 0.05). 

Based on FoldX values following mutations were considered: 

Syndrome: N549H, N549T, E565G, E565A, K641R, R678G 

Cancer: I547V, N549K, M640I, I642V, K659E, S688F, G701S, P708S 

 

Table 10. Results of statistical analyses on 2PSQ Chain B Gold Set (0.8) based on FoldX energy (kcal/mol). The 

values are p-values. 

 Stability FoldX 

 Syndrome Cancer Syndrome Cancer 

Normality 0.001262 0.1681 0.07421 0.01515 

Wilcoxon 0.345 0.7546 
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Table 10 shows that, for this dataset, the stability of syndrome and FoldX values 

of cancer do not follow Normal distribution (p-value < 0.05). So, by considering p-value 

results of Wilcoxon Test (p-value > 0.05), it can be said that the two datasets are identical 

The plots for number of mutations based on mutant-WT and FoldX values are 

shown in Figure 18. 

 

 
Figure 18. Frequency histograms of mutations based on Mutant-WT and FoldX energies (kcal/mol) for 2PSQ 

Chain B Gold Set (0.8). 

  

 

Histograms in Figure 18 show same number of mutations having absolute values 

greater than 5 kcal/mol. 

Gold Set (0.46) 

Based on mutant-WT values following mutations were considered: 
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Syndrome: K526E, N549H, N549T, E565A, A628T, K641R, D650V, K659Q, 

K659T, G663E, R678G 

Cancer: E475K, N549K, E574K, E636K, M640I, I642V, K659E, K659M, S688F, 

G701S, P708S 

 

Table 11. Results of statistical analysis on 2PSQ Chain B Gold Set (0.46) based on Mutant - WT energy 

(kcal/mol). The values are p-values. 

 Stability Mutant-WT 

 Syndrome Cancer Syndrome Cancer 

Normality 4.036e-05 0.02179 4.036e-05 0.02179 

Wilcoxon 0.1227 0.1227 

 

 

Table 11 shows that the cancer and syndrome dataset do not follow normal 

distribution (p-value < 0.05), so Wilcoxon p-value results were considered. Since p-value 

is greater than 0.05, the data distribution is identical for cancer and syndrome. 

Based on FoldX values following mutations were considered: 

Syndrome: K526E, N549H, N549T, E565G, E565A, K641R, D650V, K659Q, 

K659T, R678G 

Cancer: I547V, N549K, E574K, E636K, M640I, I642V, K659E, K659M, S688F, 

G701S, P708S 
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Table 12. Results of statistical analyses on 2PSQ Chain B Gold Set (0.46) based on FoldX energy (kcal/mol). The 

values are p-values. 

 Stability FoldX 

 Syndrome Cancer Syndrome Cancer 

Normality 0.0001938 0.01905 0.00182 0.0007262 

Wilcoxon 0.1391 0.7564 

 

 

Table 12 shows that, both datasets do not follow normal distribution (p-value < 

0.05). So based on Wilcoxon test results (p-value > 0.05), it can be concluded that both 

cancer and syndrome dataset are identical based on distribution. The plots for number of 

mutations based on mutant-WT and FoldX values are shown in Figure 19. 
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Figure 19. Frequency histograms of mutations based on Mutant-WT and FoldX energies (kcal/mol) for 2PSQ 

Chain B Gold Set (0.46). 

  

 

According to Figure 19, most of mutations have absolute values less than 5 

kcal/mol. 

c) 2PVF Chain A 

Entire dataset 

Entire dataset used for statistical analysis consisted on 26 mutations:  

Syndrome: K526E, N549H, N549T, E565G, E565A, A628T, K641R, D650V, 

K659Q, K659T, G663E, R678G 

Cancer: E475K, D530N, I547V, N549K, E574K, E636K, M640I, I642V, K659E, 

K659M, S688F, G701S, P708S, R759Q 

 

 



45 

 

Table 13. Results of statistical analyses on 2PVF Chain A entire dataset. The values are p-values. 

 Stability Mutant-WT FoldX 

 Syndrome Cancer Syndrome Cancer Syndrome Cancer 

Normality 0.7969 0.5513 0.7969 0.5513 0.7287 0.08996 

T-Test 0.729 0.729 0.6088 

 

 

Table 13 shows that, based on p-values of Normality Test cancer and syndrome 

dataset (p-value > 0.05) are Normally distributed, so based on T-Test values we can 

conclude that the distribution is identical for cancer and syndrome (p-value > 0.05). 

The plots for number of mutations based on mutant-WT and FoldX energy values 

are shown in Figure 20. 
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Figure 20. Frequency histograms of mutations based on Mutant-WT and FoldX energies (kcal/mol) for 2PVF 

Chain A entire dataset. 

  

 

According to Figure 20 histograms, there are a greater number of cancer 

mutations with values greater than 0.92 whereas syndrome mutations are evenly 

distributed. 

Gold Set (0.8) 

Based on mutant-WT values following mutations were considered: 

Syndrome: K526E, E565G, E565A, A628T, D650V, R678G 
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Cancer: N549K, M640I, I642V, K659E, K659M, S688F, G701S, P708S 

 

Table 14. Results of statistical analyses on 2PVF Chain A Gold Set (0.8) based on Mutant-WT energy (kcal/mol). 

The values are p-values. 

 Stability Mutant-WT 

 Syndrome Cancer Syndrome Cancer 

Normality 0.3918 0.3454 0.3918 0.3454 

T-Test 0.7333 0.7333 

 

  

The results of Normality Test in Table 14 show that the two datasets have normal 

distribution (p-value > 0.05). Based on T-test p-values, we can conclude that the two 

datasets are identical (p-value > 0.05). 

Based on FoldX values following mutations were considered: 

Syndrome: E565G, E565A, A628T, D650V, G663E, R678G 

Cancer: I547V, N549K, E574K, M640I, I642V, K659M, S688F, G701S, P708S 
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Table 15.. Results of statistical analyses on 2PVF Chain A Gold Set (0.8) based on FoldX energy (kcal/mol). The 

values are p-values. 

 Stability FoldX 

 Syndrome Cancer Syndrome Cancer 

Normality 0.8073 0.5506 0.1741 0.419 

T-Test 0.8857 0.8587 

 

 

The results for this set as seen in Table 15 also indicate that the two datasets are 

identical (p-value > 0.05). 

The plots for number of mutations based on mutant-WT and FoldX values are 

shown in Figure 21. 

 

 
Figure 21. Frequency histograms of mutations based on Mutant-WT and FoldX energies (kcal/mol) for 2PVF 

Chain A Gold Set (0.8) 
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Histograms in Figure 21 show that, for this dataset, most of the cancer causing 

mutants have values within range 0.8-1.6 kcal/mol. 

Gold Set (0.46) 

Based on mutant-WT values following mutations were considered: 

Syndrome: K526E, E565G, E565A, A628T, D650V, K659Q, K659T, R678G 

Cancer: E475K, I547V, N549K, E574K, E636K, M640I, I642V, K659E, K659M, 

S688F, G701S, P708S 

 

Table 16. Results of statistical analyses on 2PVF Chain A Gold Set (0.46) based on Mutant - WT energy 

(kcal/mol). The values are p-values. 

 Stability Mutant-WT 

 Syndrome Cancer Syndrome Cancer 

Normality 0.7135 0.58 0.7135 0.5408 

T-Test 0.8116 0.7516 

 

 

Since both cancer and syndrome dataset have normal distribution (p-value > 0.05) 

as seen from Table 16, T-Test p-value results are valid. Based on p-value of T-tests (p-

value > 0.05), we can say that both the datasets are identical. 

Based on FoldX values following mutations were considered: 

Syndrome: K526E, E565G, E565A, A628T, D650V, K659Q, K659T, G663E, 

R678G 
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Cancer: I547V, N549K, E574K, M640I, I642V, K659M, S688F, G701S, P708S 

 

Table 17. Results of statistical analyses on 2PVF Chain A Gold Set (0.46) based on FoldX energy (kcal/mol). The 

values are p-values. 

 Stability FoldX 

 Syndrome Cancer Syndrome Cancer 

Normality 0.7613 0.5506 0.3584 0.419 

T-Test 0.3704 0.4689 

 

 

Based on T-test p-value results in Table 17, the two datasets considered here are 

identical (p-value > 0.05). 

The plots for number of mutations based on mutant-WT and FoldX values are 

shown in Figure 22. 
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Figure 22. Frequency histograms of mutations based on Mutant-WT and FoldX energies (kcal/mol) for 2PVF 

Chain A Gold Set (0.46). 

  

 

In the above analysis, for 2PSQ the mutations on two chains give different results 

which based on energies cannot be distinguished for correctness. Also, the data used for 

statistical analysis, did not follow Normal distribution in almost all the cases. Based on 

Mann-Whitney-Wilcoxon Test results, the cancer and syndrome datasets show identical 

distribution in all the cases. The histograms do not reveal significant differences in cancer 

causing and syndrome causing mutants’ distribution across different energy values. 

For 2PVF, the cancer and syndrome datasets follow normal distribution for all the 

Gold Sets. So, results of T-tests show that the both the datasets are identical in 

distribution which can be seen from the histograms. 
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CONCLUSION 

In this work, we investigated FGFR2 cancer and syndrome point mutations in 

cytoplasmic tyrosine kinase domain by performing region-based analysis, substitution 

diverseness and structure energy-based analysis. Our analysis shows that cancer 

mutations are present in all the regions of the protein unlike syndrome mutations. The 

mutant positions are highly conserved across various species based on Shannon Entropy 

Analysis. There are differences in substitution diverseness of cancer and syndrome 

mutants. Cancer mutations have substitutions with amino acids having similar 

physicochemical properties, whereas in syndromes all types of amino acids can be 

substituted. Structure and energy-based analysis has revealed that based on energy of the 

mutants cancer and syndrome cannot be distinguished. Statistical and histogram analysis 

showed that the two classes of disorder, namely cancer and syndrome, have identical 

distribution based on energy. Thus, this analysis is inconclusive, and energy cannot be 

used as predictor for cancer and syndrome mutations in FGFR2 kinase domain. Such 

analysis also has reliance on the specific energy model used. Here FoldX energy field 

was used for analysis. Instead other detailed minimization techniques and molecular 

dynamics simulations could be useful, but they also include great computational costs 

and cannot currently be practical for screening mutations. However, this thesis has 
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revealed interesting characteristics about FGFR2 cancer and syndrome mutations that 

open the way for further investigation of these mutations. 
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APPENDIX I 

All the sequences that were used for Shannon Entropy Analysis are mentioned 

here  

>sp|P21802|FGFR2_HUMAN Fibroblast growth factor receptor 2 OS=Homo sapiens 

OX=9606 GN=FGFR2 PE=1 SV=1 

MVSWGRFICLVVVTMATLSLARPSFSLVEDTTLEPEEPPTKYQISQPEVYVAAPG

ESLEVRCLLKDAAVISWTKDGVHLGPNNRTVLIGEYLQIKGATPRDSGLYACTAS

RTVDSETWYFMVNVTDAISSGDDEDDTDGAEDFVSENSNNKRAPYWTNTEKME

KRLHAVPAANTVKFRCPAGGNPMPTMRWLKNGKEFKQEHRIGGYKVRNQHWS

LIMESVVPSDKGNYTCVVENEYGSINHTYHLDVVERSPHRPILQAGLPANASTVV

GGDVEFVCKVYSDAQPHIQWIKHVEKNGSKYGPDGLPYLKVLKAAGVNTTDKE

IEVLYIRNVTFEDAGEYTCLAGNSIGISFHSAWLTVLPAPGREKEITASPDYLEIAI

YCIGVFLIACMVVTVILCRMKNTTKKPDFSSQPAVHKLTKRIPLRRQVTVSAESSS

SMNSNTPLVRITTRLSSTADTPMLAGVSEYELPEDPKWEFPRDKLTLGKPLGEGC

FGQVVMAEAVGIDKDKPKEAVTVAVKMLKDDATEKDLSDLVSEMEMMKMIGK

HKNIINLLGACTQDGPLYVIVEYASKGNLREYLRARRPPGMEYSYDINRVPEEQM

TFKDLVSCTYQLARGMEYLASQKCIHRDLAARNVLVTENNVMKIADFGLARDIN

NIDYYKKTTNGRLPVKWMAPEALFDRVYTHQSDVWSFGVLMWEIFTLGGSPYP

GIPVEELFKLLKEGHRMDKPANCTNELYMMMRDCWHAVPSQRPTFKQLVEDLD

RILTLTTNEEYLDLSQPLEQYSPSYPDTRSSCSSGDDSVFSPDPMPYEPCLPQYPHI

NGSVKT 

>tr|H2Q2P3|H2Q2P3_PANTR Fibroblast growth factor receptor OS=Pan troglodytes 

OX=9598 GN=FGFR2 PE=3 SV=2 

MGLTSTWRYGRGPGIGTVTMVSWGRFICLVVVTMATLSLARPSFSLVEDTTLEP

EEPPTKYQISQPEVYVAAPGESLEVRCLLKDAAVISWTKDGVHLGPNNRTVLIGE

YLQIKGATPRDSGLYACTASRTVDSETWYFMVNVTDAISSGDDEDDTDGAEDFV

SENSNNKRAPYWTNTEKMEKRLHAVPAANTVKFRCPAGGNPTPTMRWLKNGK

EFKQEHRIGGYKVRNQHWSLIMESVVPSDKGNYTCVVENEYGSINHTYHLDVVE

RSPHRPILQAGLPANASTVVGGDVEFVCKVYSDAQPHIQWIKHVEKNGSKYGPD

GLPYLKVLKHSGINSSNAEVLALFNVTEADAGEYICKVSNYIGQANQSAWLTVL

PKQQAPGREKEITASPDYLEIAIYCIGVFLIACMVVTVILCRMKNTTKKPDFSSQP

AVHKLTKRIPLRRQVTVSAESSSSMNSNTPLVRITTRLSSTADTPMLAGVSEYELP

EDPKWEFPRDKLTLGKPLGEGCFGQVVMAEAVGIDKDKPKEAVTVAVKMLKD

DATEKDLSDLVSEMEMMKMIGKHKNIINLLGACTQDGPLYVIVEYASKGNLREY

LRARRPPGMEYSYDINRVPEEQMTFKDLVSCTYQLARGMEYLASQKCIHRDLAA
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RNVLVTENNVMKIADFGLARDINNIDYYKKTTNGRLPVKWMAPEALFDRVYTH

QSDVWSFGVLMWEIFTLGGSPYPGIPVEELFKLLKEGHRMDKPANCTNELYMM

MRDCWHAVPSQRPTFKQLVEDLDRILTLTTNEEYLDLSQPLEQYSPSYPDTRSSC

SSGDDSVFSPDPMPYEPCLPQYPHINGSVKT 

>tr|F1PPD8|F1PPD8_CANLF Fibroblast growth factor receptor OS=Canis lupus 

familiaris OX=9615 GN=FGFR2 PE=3 

SV=2MVSWARFVCLAAVTMATLSLARPSFNLVEDTTLEPEEPPTKYQISQPEVYV

AAPGESLELRCLLRDAATIIWTKDGVHLGPNNRTVLIGEYLQIKGATPRDSGLYA

CTAARPVDSEAVYFMVNVTDAISSGDDEDDTDGSEDFVSENSNNKRAPYWTNT

EKMEKRLHAVPAANTVKFRCPAGGNPTPTMRWLKNGKEFKQEHRIGGYKVRN

QHWSLIMESVVPSDKGNYTCVVENEYGSINHTYHLDVVERSPHRPILQAGLPAN

ASTVVGGDVEFVCKVYSDAQPHIQWIKHVEKNGSKYGPDGLPYLKVLKHSGINS

SNAEVLALFNVTEEDAGEYICKVSNYIGQANQSAWLTVLPKQQAPVREKEITASP

DYLEIAIYCIGVFLIACMVVTVILCRMKTTTKKPDFSSQPAVHKLTKRIPLRRQVT

VSAESSSSMNSNTPLVRITTRLSSTADTPMLAGVSEYELPEDPKWEFPRDKLTLG

KPLGEGCFGQVVMAEAVGIDKEKPKEAVTVAVKMLKDDATEKDLSDLVSEME

MMKMIGKHKNIINLLGACTQDGPLYVIVEYASKGNLREYLRARRPPGMEYSYDI

NRVPEEQMTFKDLVSCTYQLARGMEYLASQKCIHRDLAARNVLVTENNVMKIA

DFGLARDINNIDYYKKTTNGRLPVKWMAPEALFDRVYTHQSDVWSFGVLMWEI

FTLGGSPYPGIPVEELFKLLKEGHRMDKPANCTNELYMMMRDCWHAVPSQRPT

FKQLVEDLDRILTLTTNEEYLDLSQPLEQYSPSYPDTRSSCSSGDDSVFSPDPMPY

EPCLPQYPHVNGSVKT 

>tr|F1MNW2|F1MNW2_BOVIN Fibroblast growth factor receptor OS=Bos taurus 

OX=9913 GN=FGFR2 PE=3 SV=2 

MGLTSTWRYGRGQGIGTVTMVSWGRFLCLVVVTMATLSLARPSFNLVDDTTVE

PEEPPTKYQISQPEVYVAAPRESLELRCLLRDAAMISWTKDGVHLGPNNRTVLIG

EYLQIKGATPRDSGLYACTAARNVDSETVYFMVNVTDAISSGDDEDDADGSEDF

VSENSNSKRAPYWTNTEKMEKRLHAVPAANTVKFRCPAGGNPTPTMRWLKNG

KEFKQEHRIGGYKVRNQHWSLIMESVVPSDKGNYTCVVENDYGSINHTYHLDV

VERSPHRPILQAGLPANASTVVGGDVEFVCKVYSDAQPHIQWIKHVEKNGSKYG

PDGLPYLKVLKAAGVNTTDKEIEVLYIRNVTFEDAGEYTCLAGNSIGISFHSAWL

TVLPAPVREKEIPASPDYLEIAIYCIGVFFIACMVVTVILCRMRNTTKKPDFSSQPA

VHKLTKRIPLRRQVSAESSSSMNSNTPLVRITTRLSSTADTPMLAGVSEYELPEDP

KWEFPRDKLTLGKPLGEGCFGQVVMAEAVGIDKEKPKEAVTVAVKMLKDDAT

EKDLSDLVSEMEMMKMIGKHKNIINLLGACTQDATGPLYVIVEYASKGNLREYL

RARRPPGMEYSYDINRVPEEQMAFKDLVSCTYQLARGMEYLASQKCIHRDLAA

RNVLVTENNVMKIADFGLARDINNIDYYKKTTNGRLPVKWMAPEALFDRVYTH

QSDVWSFGVLMWEIFTLGGSPYPGIPVEELFKLLKEGHRMDKPANCTNELYMM

MRDCWHAVPSQRPTFKQLVEDLDRILTLTTNEEYLDLSQLLEQYSPSYPDTRSSC

SSGDDSVFSPDPMPYEPCLPQYPHRNGSVKT 

>tr|E9QK53|E9QK53_MOUSE Fibroblast growth factor receptor OS=Mus musculus 

OX=10090 GN=Fgfr2 PE=1 SV=1 

MGLPSTWRYGRGPGIGTVTMVSWGRFICLVLVTMATLSLARPSFSLVEDTTLEPE

EPPTKYQISQPEAYVVAPGESLELQCMLKDAAVISWTKDGVHLGPNNRTVLIGE
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YLQIKGATPRDSGLYACTAARTVDSETWYFMVNVTDAISSGDDEDDTDSSEDVV

SENRSNQRAPYWTNTEKMEKRLHAVPAANTVKFRCPAGGNPTPTMRWLKNGK

EFKQEHRIGGYKVRNQHWSLIMESVVPSDKGNYTCLVENEYGSINHTYHLDVVE

RSPHRPILQAGLPANASTVVGGDVEFVCKVYSDAQPHIQWIKHVEKNGSKYGPD

GLPYLKVLKAAGVNTTDKEIEVLYIRNVTFEDAGEYTCLAGNSIGISFHSAWLTV

LPAPVREKEITASPDYLEIAIYCIGVFLIACMVVTVIFCRMKTTTKKPDFSSQPAVH

KLTKRIPLRRQVTVSAESSSSMNSNTPLVRITTRLSSTADTPMLAGVSEYELPEDP

KWEFPRDKLTLGKPLGEGCFGQVVMAEAVGIDKDKPKEAVTVAVKMLKDDAT

EKDLSDLVSEMEMMKMIGKHKNIINLLGACTQDGPLYVIVEYASKGNLREYLRA

RRPPGMEYSYDINRVPEEQMTFKDLVSCTYQLARGMEYLASQKCIHRDLAARN

VLVTENNVMKIADFGLARDINNIDYYKKTTNGRLPVKWMAPEALFDRVYTHQS

DVWSFGVLMWEIFTLGGSPYPGIPVEELFKLLKEGHRMDKPTNCTNELYMMMR

DCWHAVPSQRPTFKQLVEDLDRILTLTTNEEYLDLTQPLEQYSPSYPDTRSSCSSG

DDSVFSPDPMPYEPCLPQYPHINGSVKT 

>tr|F1LNW0|F1LNW0_RAT Fibroblast growth factor receptor OS=Rattus norvegicus 

OX=10116 GN=Fgfr2 PE=3 SV=1 

MGLPSTWRYGTGPGIGTVTMVSWGRFICLVLVTMATLSLARPSFSLVEDTTLEPE

EPPTKYQISQPEACVVAPGESLELRCMLKDAAVISWTKDGVHLGPNNRTVLIGEY

LQIKGATPRDSGLYACAAARTVDSETLYFMVNVTDAISSGDDEDDTDSSEDFVSE

NRSNQRAPYWTNTEKMEKRLHAVPAANTVKFRCPAGGNPTPTMRWLKNGKEF

KQEHRIGGYKVRNQHWSLIMESVVPSDKGNYTCLVENEYGSINHTYHLDVVERS

PHRPILQAGLPANASTVVGGDVEFVCKVYSDAQPHIQWIKHVEKNGSKYGPDGL

PYLKVLKAAGVNTTDKEIEVLYIRNVTFEDAGEYTCLAGNSIGISFHSAWLTVLP

APVREKEITASPDYLEIAIYCIGVFLIACMVVTVIFCRMKTTTKKPDFSSQPAVHK

LTKRIPLRRQVTVSAESSSSMNSNTPLVRITTRLSSTADTPMLAGVSEYELPEDPK

WEFPRDKLTLGKPLGEGCFGQVVMAEAVGIDKDRPKEAVTVAVKMLKDDATE

KDLSDLVSEMEMMKMIGKHKNIINLLGACTQDGPLYVIVEYASKGNLREYLRAR

RPPGMEYSYDINRVPEEQMTFKDLVSCTYQLARGMEYLASQKCIHRDLAARNVL

VTENNVMKIADFGLARDINNIDYYKKTTNGRLPVKWMAPEALFDRVYTHQSDV

WSFGVLMWEIFTLGGSPYPGIPVEELFKLLKEGHRMDKPTNCTNELYMMMRDC

WHAVPSQRPTFKQLVEDLDRILTLTTNEEYLDLTQPLEQYSPSYPDTRSSCSSGD

DSVFSPDPMPYDPCLPQYPHINGSVKT 

>tr|F1NEE9|F1NEE9_CHICK Fibroblast growth factor receptor OS=Gallus gallus 

OX=9031 GN=FGFR2 PE=3 SV=3 

MVSWDSGCLICLVVVTMAGLSLARPSFNLVVEDATLEPEEPPTKYQISQPDVHSA

LPGEPLELRCQLKDAVMISWTKDGVPLGPDNRTVIIGEYLQIKDASPRDSGLYAC

TAIRTLDSDTLYFIVNVTDALSSGDDEDDNDGSEDFVNDSNQMRAPYWTHTDK

MEKRLHAVPAANTVKFRCPAMGNPTPTMRWLKNGKEFKQEHRIGGYKVRNQH

WSLIMESVVPSDKGNYTCIVENQYGSINHTYHLDVVERSPHRPILQAGLPANASA

VVGGDVEFVCKVYSDAQPHIQWIKHVERNGSKYGPDGLPYLQVLKAAGVNTTD

KEIEVLYIRNVTFEDAGEYTCLAGNSIGISFHTAWLTVLPAPEKEKEFPTSPDYLEI

AIYCIGVFLIACMVLTVILCRMKNTTKKPDFSSQPAVHKLTKRIPLRRQVTVSADS

SSSMNSNTPLVRITTRLSSTADAPMLAGVSEYELPEDPKWEFPRDKLTLGKPLGE

GCFGQVVMAEAVGIDKDRPKEAVTVAVKMLKDDATEKDLSDLVSEMEMMKMI
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GKHKNIINLLGACTQDGPLYVIVEYASKGNLREYLRARRPPGMEYSFDINRVPEE

QMTFKDLVSCTYQLARGMEYLASQKCIHRDLAARNVLVTENNVMKIADFGLAR

DINNIDYYKKTTNGRLPVKWMAPEALFDRVYTHQSDVWSFGVLMWEIFTLGGS

PYPGIPVEELFKLLKEGHRMDKPANCTNELYMMMRDCWQAVPSQRPTFKQLVE

DLDRILTLTTNEEYLDLSGPLEQYSPSYPDTRSSCSSGDDSVFSPDPMPYEPCLPK

YQHMNGSVKT 

>sp|Q8JG38|FGFR2_DANRE Fibroblast growth factor receptor 2 OS=Danio rerio 

OX=7955 GN=fgfr2 PE=1 SV=1 

MFARGWLLGALLLMTLATVSVARPSLKIDLVNTSAPEEPPTKNQNCVPVLFSVH

PGELLKLKCPLSGADDVVWTKDSSSLRPDNRTLVARDWLQISDATPKDSGLYSC

SATGLRDCDVFSFIVNVTDAISSGDDEDDTERSDDVGADGEQMRLPYWTFPEKM

EKKLHAVPAANTVKFRCAAAGNPKPKMRWLKNAKPFRQEDRMGGYKVRLQH

WTLIMESVVPSDKGNYTCLVENQYGSIDHTYTLDVVERSPHRPILQAGLPANVTV

QVGQDAKFVCKVYSDAQPHIQWLQHYTKNGSCCGPDGLPYVRVLKTAGVNTT

DKEIEVLYLPNVTFEDAGEYTCLAGNSIGISYHTAWLTVHPAETNPIETDYPPDYV

EIAIYCIGVFLIACMVVIVVVCRMRTSAKKPDFSSQPAVHKLTKQIPLRRQVTVSS

DSSSSMSSSTPLVRITTRRSSAHDDPIPEYDLPEDPRWEFSRDKLTLGKPLGEGCF

GQVVMAEALGIDKDKPKEAVTVAVKMLKDDATEKDLSDLVSEMEMMKMIGRH

KNIINLLGACTQDGPLYVIVEYASKGNLREYLRARRPPGMEYSYDIARVSDEPLT

FKDLVSCTYQVARGMEYLASQKCIHRDLAARNVLVTESNVMKIADFGLARDVH

NIDYYKKTTNGRLPVKWMAPEALFDRVYTHQSDVWSFGVLMWEIFTLGGSPYP

GIPVEELFKLLKEGHRMDKPANCTNELYMMMKDCWHAISSHRPTFKQLVEDLD

RILTLATNEEYLDLCAPVEQYSPSFPDTRSSCPSGDDSVFSHDPLADEPCLPKYQH

INGGIKT 

>tr|A4IHW8|A4IHW8_XENTR Fibroblast growth factor receptor OS=Xenopus tropicalis 

OX=8364 GN=fgfr2 PE=2 SV=1 

MGMSLVWRSGKAGGGGHADRMLVLVLLGLLLVSRTIARPSYHMAEDTTSEPEE

PPAKYQISKADVFPVLPGEPLDLRCPLADGPPVTWNKDGAKLEVNNRTLIVRNY

LQIKETTPRDSGLYSCSVLKNSHFFHVNVTEASSSGDDEDDNDGSEDFTNDNNNI

RAPYWTNTEKMEKKLHAVPAANTVKLRCPAGGNPTPRMRWLKNGKEFKQEHR

IGGYKVRNQHWSLIMESVVPSDKGIYTCIVENEHGSINHTYHLDVIERSSHRPILQ

AGLPANTTAMVGGDAEFVCKVYSDAQPHIRWVRYIEKNGSRFGVDGLPYIKVL

KAAGVNVTDEEIEVLYVRNVSFEDAGEYTCIAGNSIGISQHSAWLTVHPATVSPG

EDNPVPYYMEIGIYSAGIFIIFCMVVICVVCRMRQGAKKKKNFTGPPVHKLTKRIP

LHRQVSADSSSSMNSTTPLVRITTRLLSSTDAMPLPNVSEYELPHDPLWEFSRDKL

TLGKPLGEGCFGQVVMAEALGIDKDRPKESVTVAVKMLKDDATEKDLADLVSE

MEMMKIIGKHKNIINLLGACTQGGTLYVIVEYAAKGNLRQYLRARRPLEMEYSF

DVTRVPDEQMTFKDLVSCTYQIARGMEYLASQKCIHRDLAARNVLVTENNVMK

IADFGLARDVNNIDYYKKTTNGRLPVKWMAPEALFDRVYTHQSDVWSFGVLM

WEIFTLGGSPYPGIPVEELFKLLKEGHRMDKPGNCTNELYMMMRDCWHAIPSHR

PTFKQLVEDLDRILTLTTNEEYLDLSAPLEQYSPSFPDSSCSASSSSGDDSVFSPDP

MPHDPCLPKFPHVNGVVKT 
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APPENDIX II 

The results of FoldX Modeling on the mutants are mentioned here. The Tables 

have energy values for all the mutants on every structure used in modeling. Stability is 

the potential energy of the mutant. Mutant-WT is stability of mutant structure – stability 

of Wild Type structure and FoldX energy is the value given by FoldX. All the values are 

in kacl/mol. 

 

Sr 

No 

Mutation Stability Mutant-WT FoldX Type 

1 E475K -12.02 -0.49 -0.0176213 Cancer 

2 K526E -12.17 -0.64 -0.644175 Syndrome 

3 D530N -11.83 -0.3 -0.27725 Cancer 

4 I547V -10.74 0.79 0.79778 Cancer 

5 N549K -11.18 0.35 1.53597 Cancer 

6 N549H -9.83 1.7 2.88411 Syndrome 

7 N549T -10.74 0.79 2.31738 Syndrome 

8 E565G -9.86 1.67 2.72189 Syndrome 

9 E565A -10.1 1.43 2.20475 Syndrome 

10 E574K -11.53 0 0.428975 Cancer 

11 A628T -12.14 -0.61 -0.0423916 Syndrome 

12 E636K -11.85 -0.32 0.142083 Cancer 

13 M640I -9.69 1.84 2.90628 Cancer 

14 K641R -12.11 -0.58 -0.166695 Syndrome 

15 I642V -10.55 0.98 1.12599 Cancer 

16 A648T -10.72 0.81 0.812361 Cancer,Syndrome 

17 D650V -12.63 -1.1 -1.09612 Syndrome 

18 K659E -13.63 -2.1 -0.648642 Cancer 

19 K659M -11.73 -0.2 -0.0665327 Cancer 

20 K659N -11.18 0.35 0.375055 Cancer,Syndrome 
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21 K659Q -12.01 -0.48 -0.29223 Syndrome 

22 K659T -11.23 0.3 0.328151 Syndrome 

23 G663E -13.19 -1.66 -0.200961 Syndrome 

24 R678G -15.83 -4.3 -2.77075 Syndrome 

25 S688F -1.21 10.32 10.3186 Cancer 

26 G701S -9.18 2.35 2.35022 Cancer 

27 P708S -9.6 1.93 1.93416 Cancer 

28 R759Q -11.5 0.03 0.034757 Cancer 
2PSQ Chain A FoldX modeling results. 

 

 

Sr 

No 

Mutation Stability Mutant-WT FoldX Type 

1 E475K -6.81 -0.77 0.374304 Cancer 

2 K526E -6.7 -0.66 -0.599949 Syndrome 

3 D530N -5.91 0.13 0.215462 Cancer 

4 I547V -6.42 -0.38 0.882638 Cancer 

5 N549K -9 -2.96 1.35076 Cancer 

6 N549H 3.94 9.98 10.9037 Syndrome 

7 N549T -8.09 -2.05 2.11862 Syndrome 

8 E565G -6.07 -0.03 2.56068 Syndrome 

9 E565A -6.99 -0.95 1.63468 Syndrome 

10 E574K -5.55 0.49 0.487605 Cancer 

11 A628T -6.64 -0.6 0.276559 Syndrome 

12 E636K -5.29 0.75 0.750145 Cancer 

13 M640I -4.35 1.69 2.60144 Cancer 

14 K641R -7.59 -1.55 1.0828 Syndrome 

15 I642V -5.03 1.01 1.0058 Cancer 

16 A648T -4.91 1.13 1.13074 Cancer,Syndrome 

17 D650V -5.57 0.47 0.487702 Syndrome 

18 K659E -7.25 -1.21 -1.02156 Cancer 

19 K659M -5.48 0.56 0.555619 Cancer 

20 K659N -5.38 0.66 0.656886 Cancer,Syndrome 

21 K659Q -5.53 0.51 0.509913 Syndrome 

22 K659T -5.29 0.75 0.749185 Syndrome 

23 G663E -7.03 -0.99 -0.125286 Syndrome 

24 R678G -8.05 -2.01 -1.78792 Syndrome 

25 S688F 2.68 8.72 8.82344 Cancer 

26 G701S -3.99 2.05 2.04672 Cancer 

27 P708S -4.06 1.98 2.03928 Cancer 
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28 R759Q -6.38 -0.34 -0.276328 Cancer 
2PSQ Chain B FoldX modeling results. 

 

 

Sr 

No 

Mutation Stability Mutant-WT FoldX Type 

1 E475K -5.4 -0.55 0.413131 Cancer 

2 K526E -7.25 -2.4 -0.522624 Syndrome 

3 D530N -5 -0.15 -0.140033 Cancer 

4 I547V -4.11 0.74 1.0452 Cancer 

5 N549K -6.17 -1.32 -1.20724 Cancer 

6 N549H -4.75 0.1 0.209906 Syndrome 

7 N549T -4.73 0.12 0.220434 Syndrome 

8 E565G -2.74 2.11 2.22817 Syndrome 

9 E565A -3.95 0.9 1.0186 Syndrome 

10 E574K -4.12 0.73 0.800792 Cancer 

11 A628T -3.98 0.87 1.14309 Syndrome 

12 E636K -5.5 -0.65 0.322243 Cancer 

13 M640I -2.73 2.12 2.98507 Cancer 

14 K641R -4.99 -0.14 0.450132 Syndrome 

15 I642V -3.86 0.99 1.17217 Cancer 

16 A648T -3.28 1.57 1.56564 Cancer,Syndrome 

17 D650V -3.12 1.73 1.72913 Syndrome 

18 K659E -6.02 -1.17 0.457548 Cancer 

19 K659M -6.42 -1.57 -1.5022 Cancer 

20 K659N -4.76 0.09 0.156327 Cancer,Syndrome 

21 K659Q -5.4 -0.55 -0.496762 Syndrome 

22 K659T -4.38 0.47 0.536941 Syndrome 

23 G663E -4.56 0.29 1.90395 Syndrome 

24 R678G -5.7 -0.85 -0.853792 Syndrome 

25 S688F -1.24 3.61 5.64689 Cancer 

26 G701S -2.82 2.03 2.02666 Cancer 

27 P708S -3.69 1.16 1.16715 Cancer 

28 R759Q -5.14 -0.29 -0.289966 Cancer 
2PVF Chain A FoldX modeling results. 
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APPENDIX III 

The R scripts that were used in the study are mentioned here. 

Following is the script to separate the two chains of protein in different PDB files 

library(bio3d) 

pdb = read.pdb(PDB filename) 

inds = atom.select(pdb,chain=”Chain name”) 

newpdb = trim.pdb(pdb,inds) 

write.pdb(newpdb,file="Output PDB filename") 

 

Following is the script for normality test, T-test and Mann Whitney Wilcoxon test. 

shapiro.test(dataset) 

t.test(dataset1, dataset2) 

wilcox.test(dataset1, dataset2) 
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