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Abstract

STRUCTURAL BREAK DETECTION FOR GEOSTATISTICAL DATA

Weiyu Zhou, PhD

George Mason University, 2022

Dissertation Director: Dr. Pramita Bagchi

This thesis proposes a method for investigating structural breaks in a non-stationary

spatial random field and provide a piecewise stationary approximation that best describes

the process.

Suppose a random field is observed only once over a regular grid. We study the covari-

ance structure of this field in the frequency domain. In the first part the thesis, we define

a spectral difference statistic, a spatially varying quantity showing the difference between

local spatial spectral density integrated over a range of frequencies. This spectral difference

process is expected to be uniformly close to zero if and only if the underlying field is station-

ary. This intuitive behavior is justified by a rigorous derivation of the asymptotic behavior

of this process under an increasing domain asymptotic scheme. This result is then utilized

to construct a consistent and asymptotic level alpha test for the hypothesis of stationarity

using the maximum of the spectral difference process over locations and range of frequen-

cies. A field plot of this spectral difference process, called discrepancy map, further provides

insight to the nature of nonstationarity presents in the observed field. Next, we propose a

method to construct a piece-wise approximation of the observed random field, where the

pieces are spatial regions with linear boundaries by an iterative search. A hierarchical clus-

tering algorithm is used to appropriately merge the initial partition to produce the final



approximation. A computationally efficient implementation of this methodology has been

outlined. The accuracy and performance of the proposed methods are demonstrated via

extensive simulations and two case studies on real data. The later part of the thesis outlines

strategies of extending this methodology for a random field observed at irregularly spaced

locations. The efficiency of this extension is investigated by some numerical experiments.

rectangular regions is constructed by an iterative search. A hierarchical clustering algorithm

is then used to determine the optimal number of clusters and appropriately merge the initial

partition to produce the final approximation. A computationally efficient implementation

of this methodology has been outlined. The accuracy and performance of the proposed

methods are demonstrated via extensive simulations and two case studies on real data.



Chapter 1: Introduction

In this thesis, we propose a pipeline for investigating, understanding, and modeling the

nonstationarity of a spatial random field.

Geo-referenced or spatial data are prevalent in many fields, for example geology, ecology

and econometrics (see, e.g., Anselin, 2001; Magnussen, 1993; Mets et al., 2017; Rollinson

et al., 2021). These data usually exhibit spatial correlation, prohibiting the use of many

traditional statistical methods as they assume independent observations. Understanding

the spatial correlation in the data is necessary to develop statistical models, inference, and

prediction methods for spatial data. In this thesis, we focus on the geostatistical process,

a spatial process defined on a continuous geographical region and usually modeled as a

random field. In most practical situations, our data constitute one partial observation of a

single random field instead of multiple copies of the underlying object of interest.

Modeling dependence in spatial data is often challenging and differs significantly from

other classical dependence models, such as clustered observations or time-series data. Mod-

eling the dependence between the observed spatial data using a general covariance matrix

is practically impossible due to the curse of dimension and difficulty of implementation due

to high memory and computational cost. However, a geostatistical process often exhibits a

more systematic correlation structure, with observations close-by exhibiting higher depen-

dence than observations further apart. Although this dependence structure is similar to

time series data, the time has a clear definition of direction, which spatial data lacks. Due

to this, it is often tricky to mathematically define a valid and realistic covariance structure

for such data.

The most common strategy to deal with such inconvenience is to impose simplifying

assumptions on the second-order structure. Stationarity is one of the most popular simpli-

fying assumptions for modeling spatial data, which assumes the joint second-order behavior
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only depends on the relative position of two locations. The assumption of stationarity al-

lows us to define an auto-covariance function, a function of the spatial lag, instead of a full

covariance between every pair of locations. However, stationarity is not a realistic assump-

tion in many practical situations, and there has been a growing recognition of the need

for nonstationary spatial covariance functions in various disciplines. The atmospheric and

environmental sciences are two prominent areas of application; for example, Holland et al.

(2003) reviews the use of nonstationary spatial covariance functions for the statistical anal-

ysis of air quality data. C. Paciorek and Schervish (2003) discusses the use of nonstationary

models for Gaussian process regression in machine learning applications.

In practice, validation of stationarity is essential in choosing the appropriate model for

spatial data. If the underlying model is, in fact, stationary, models and inference methods

designed explicitly for a stationary process are computationally efficient and often more

powerful. On the other hand, a misspecified stationarity assumption can lead to loss of

power and wrong inference. There are two effective ways to check stationarity: visualization

and statistical testing. Early tests for spatial stationarity are developed in the context of

linear array data, such as Bose and Steinhardt (1996) and Ephraty et al. (1996). For data

observed on a regular grid, Fuentes, 2005 proposes a test that partitions the space into

multiple separate regions and compares the spectral density in each region. For irregular

spaced data, two special tests are Jun and Genton, 2012, and Bandyopadhyay and Rao,

2017. The former compares the estimated covariance of two separate regions at various

lags, while the latter works in the frequency domain.

In Chapter 3 of this thesis, we propose a statistical test for stationarity of a spatial

random field. We use a frequency domain approach and define statistics that can be regarded

as the gradient of the spectral density. We use the maximum of these statistics over space

and frequency range as our test statistic. We derive a rigorous asymptotic distribution

of this proposed statistic under an increasing domain set-up. We used that distribution

to propose a consistent test that asymptotically preserves the specified level and develop a

computationally efficient algorithm to implement this test. The performance of the proposed

2



test has been investigated with extensive numerical simulations and two case studies with

actual data.

When the assumption of stationarity is likely violated, one could fit the data with non-

stationary models, and there is a need for interpretability and computationally tractabil-

ity. C. Paciorek and Schervish (2003) describes a method for producing explicit expres-

sions for mathematically valid spatial covariance functions with locally varying geometric

anisotropies. However, this approach does not allow the other aspects of the covariance to

vary spatially. Higdon (1998) and Fuentes (2002) described methods for generating nonsta-

tionary covariance functions as integrals. Nychka et al. (2002) proposed a wavelet approach

for producing nonstationary spatial covariance functions. Sampson and Guttorp (1992) pro-

posed explicit covariance functions with locally varying geometric anisotropies using spatial

deformations. Stein (1995) extended this idea to produce covariance functions that allow

both the local geometric anisotropy and the degree of differentiability to vary spatially.

The nature of nonstationarity guides the choice of the nonstationary covariance model

and inference method in the data. It is thus essential to investigate the dynamic nature

of the second-order structure. We propose a visualization of the gradient of spectral den-

sity statistic over the space, called a disparity map. The disparity map shows the spatial

dynamics of the spectral density of the process and provides insight into the nature of non-

stationarity in the data. This visualization can be an essential tool in guiding the choice of

covariance model and subsequent spatial data analysis.

Further, we develop an algorithm to partition a spatial random field into rectangular

regions. This partitioning algorithm provides the best piecewise stationary approximation

for the given random field. The work in Fuglstad et al., 2015 can justify the usefulness

of our partition method, which shows that a piecewise stationary model consisting of two

stationary regions may perform as well as nonstationary models while being less computa-

tionally demanding. Although piecewise stationary approximation has been studied in time

series, such as Adak, 1998, it is still an open problem under active research for the spatial

random field. Moreover, while a field can be roughly stationary over some regions, it may

3



contain some more suitable regions to be modeled as nonstationary.

Existing partition methods include those based on trees (e.g., Gramacy and Lee, 2008),

Voronoi tessellation (e.g., Kim et al., 2005), clustering (e.g., Morris, 2021), or closed curves

(e.g., Masotti et al., 2021). All the existing methods use a parametric and Bayesian ap-

proach, which is sensitive to the choice of model and prior distribution. Among the existing

methods, the tree-based methods usually generate partition boundaries parallel to coordi-

nate axes, which can be too restrictive sometimes but are computationally efficient. Voronoi

tessellation is more flexible by partitioning a field into convex polygons, but it may over-

partition if some underlying regions are non-convex. To this end, Pope et al., 2021 suggests

merging the regions from the initial partition so that the final partition can include non-

convex stationary regions, therefore this is more flexible than the Voronoi tessellation. In

Chapter 4, we introduce the spatial partition procedure, which makes use of the spectral

difference statistics defined in in Chapter 3 to create the initial partition. After the field is

partitioned, we then check if there are any connected sub-fields that are similar in spectral

density and can be merged together. To decide the number of partitions to retain, we define

the dendrogram, the scree plot, and the gap statistics for our case. We then try to expand

our methods to irregular spaced data in Chapter 5. Finally, we present two case studies in

Chapter 6 to show how to apply our methods in practice.
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Chapter 2: Spectral Analyses of Spatial Random Fields

A spatial random field is a stochastic process Z(s) indexed by s ∈ S, where S ⊂ Rd is a

continuous spatial region. In this thesis we focus on the case where d = 2, but the discussion

and the methodology described can be extended to d > 2 in a straightforward manner.

A spatial random field is usually characterized using the mean

m(s) = E(Z(s)), s ∈ S

and the covariance function

C(s1, s2) = Cov(Z(s1), Z(s2)), s1, s2 ∈ S.

where the covariance function satisfies

1. Non-negative definiteness: ∀m ≥ 1, a ∈ Rm and {s1, ..., sm} ⊆ S,

m∑
i=1

m∑
j=1

aiajC(si, sj) ≥ 0.

2. Symmetry: C(s1, s2) = C(s2, s1), ∀s1, s2 ∈ S.

The usual statistical problems related to spatial random fields involve estimating these

infinite dimensional quantities based on a single sample of partial observation of the random

field. Therefore it is important to impose additional structure to the underlying process in

order to do any meaningful inference.
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2.1 Stationarity

Stationarity is the most popular simplifying structural assumption for stochastic processes.

Stationarity is a property of self-replication of a stochastic process. It implies the lack of

importance of absolute coordinates. There are three types of stationarity:

• Strong stationarity: A random field is strict stationary if the spatial distribution

only depends on the relative position of the locations, i.e., it is invariant under arbi-

trary translations of the locations by a vector h, that is,

P(Z(s1) ≤ z1, · · · , Z(sk) ≤ zk) = P(Z(s1 + h) ≤ z1, · · · , Z(sk + h) ≤ zk)

for all integers k and all s1, . . . , sk ∈ S .

• Weak stationarity: Z is a second-order or weak stationary random field on S if

it has constant mean and covariance between two sites C(s1, s2) depends on their

relative position s1 − s2. Mathematically, we can write

m(s) = m and C(s1, s2) = C(s1 − s2) = C(h), ∀s1, s2 ∈ S

where C : S → R is the stationary auto-covariance function of Z. The autocorrelation

function ρ(h) = C(h)/C(0) of Z is a function of h.

Note that the assumption m(s) = m is too strong, but it can be weakened relatively

easily. For example, we can model the mean as a function of the location and consider

a weak stationary covariance structure of the demeaned spatial process.

If Z is strictly stationary and if Z ∈ L2, i.e., the random functions Z(s)’s are square-

integrable (this means that the variance and covariance function exist as finite quan-

tities) then Z is second-order stationary. The converse is generally not true but both

notions represent the same thing if Z is a Gaussian process.

• Intrinsic stationary: Z is an intrinsically stationary process (or intrinsic process)

if the increments of the process are weak stationary, i.e., for each h ∈ S, the process

6



∆Z(h) = {∆Z(h)(s) = Z(s+h)−Z(s) : s ∈ S} is weak stationary. It is charecterized

by its linear drift

m(s1 − s2) = E [Z(s1)− Z(s2)]

and its variogram

2γ(s1 − s2) = Var(Z(s1)− Z(s2)).

The function γ : S → R is called the semivariogram. In fact one can show, for such a

process m(h) is linear in h, i.e., m(h) = aTh for some vector a ∈ Rd.

For weak stationary process, γ(h) = C(0)−C(h).

2.2 Spectral Density of Stationary Spatial Random Fields

Harmonic analysis of a spatial process is a decomposition of the process into sinusoidal

components (sines and cosines waves). The coefficients of these sinusoidal components are

the Fourier transform of the process.

Consider a weak stationary random field Z(s), s ∈ S with zero mean and autocovariance

function C0. Following Fuentes (2002), the spectral density of a stationary random field is

defined as:

f0(λ) =
1

(2π)2

∫
R2

C0(h) exp(−ihTλ)dh, λ ∈ R2. (2.1)

The spectral density {f0(λ), λ ∈ R2} provides a complete characterization of the second-

order structure of the spatial random field and gives the decomposition of the total variation

of the process across different frequencies.

We additionally assume that the random field satisfies the following weak-dependence

assumption, ∫
R2

∣∣∣∣ C0(h)

∣∣∣∣ dh < ∞. (2.2)

Under the weak dependence assumption (2.2), the integral in (2.1) can be shown to be

absolutely convergent and hence the quantity f0(λ) is well defined. Moreover the spectral

7



density f0(λ) = f0(λ1, λ2), where λ1, λ2 ∈ R, is uniformly continuous with respect to both

λ1 and λ2 (Fuentes (2002)). Furthermore the following inversion formula holds:

∫
R2

f0(λ) exp(ih
Tλ)dλ = C0(h), ∀h ∈ R2. (2.3)

2.3 Random Field Observed on Regular Grid

The decomposition of the autocovariance function into harmonic oscillations cannot be

uniquely determined if the random field is partially observed. For example suppose we

observe the random field over a regular grid with spacing ∆, it is not possible to distinguish

an oscillation with a spatial frequency λ from all the oscillations with frequencies λ+2πz/∆,

where z ∈ Z2. The impossibility of distinguishing the harmonic components with frequencies

differing by an integer multiple of 2π/∆ by observations in the 2-dimensional integer lattice

with spacing ∆ is called the aliasing effect.

Then, if observation of a continuous process Z is carried out only at uniformly spaced

spatial locations ∆ units apart, the spectrum is concentrated within the finite frequency 2-

dimensional interval [−π/∆1, π/∆1]× [−π/∆2, π/∆2], where ∆ = (∆1,∆2) with ∆1 and ∆2

being the horizontal and vertical distance of the grid points respectively. Every frequency

not in this interval has an alias in the interval, which is termed its principal alias. Then,

the power distribution within each of the intervals distinct from the principal interval is

superimposed on the power distribution within the principal interval. Thus, if we wish that

the spectral characteristics of the process Z to be determined accurately enough from the

observed sample, then the Nyquist frequency (π/∆1, π/∆2) must necessarily be so high that

still higher frequencies make only a negligible contribution to the total power of the process.

This means that we need to observe a dense sample of Z (small ∆). Thus when a second-

order stationary random field Z is observed on a regular grid such that the observations

are ∆ units apart, the spectral density f∆ of the discrete process can be written in terms

8



of the spectral density f0 of the continuous process as:

f∆(λ1, λ2) =
∑
p∈Z

∑
q∈Z

f0

(
λ1 +

2πp

∆1
, λ2 +

2πq

∆2

)
, (2.4)

for (λ1, λ2) ∈ [−π/∆1, π/∆1]× [−π/∆2, π/∆2].

2.4 Random Field Observed at Irregularly Spaced Locations

When a random field is observed over irregularly spaced locations, the inference becomes

much more challenging. One major obstacle is the increasing computational cost in this

setting. Although Matsuda and Yajima (2009) argues that using a spectral domain approach

can reduce computational cost for analysis of irregularly spaced spatial data, even the

spectral analysis is computationally costly as we cannot use fast Fourier transformation.

Foundational work for studying spectral density for such random field has been developed

by Matsuda and Yajima (2009) and Rao (2018). Both these works assume that the irregular

locations are independent, identically distributed random variables which allows it to be

extremely irregular.

2.5 Estimation of Spectral Density

The basic estimator of spatial spectral density is the periodogram, a nonparametric estimate

of the spectral density. Use and properties of spatial periodograms for stationary processes

have been investigated by Whittle (1954), Ripley (2005), Guyon (1982, 1995), Rosenblatt

(2012), Stein (1995, 2015) and Fuentes (2002, 2005, 2007), among others.

2.5.1 Regular Grid

Consider a spatial weak stationary process Z with an auto-covariance function C. We

observe the process at m × n equally spaced locations in a two-dimensional regular grid

G. For notational convenience, without loss of generality, assume that the vector distance

9



between neighboring observations is (∆,∆), i.e., the horizontal and vertical distance are

the same. In addition, we assume the origin of the grid is (0, 0). The periodogram is

a nonparametric estimate of the spectral density, which is the Fourier transform of the

covariance function. We define the discrete Fourier transformation of the data is defined as:

Z̃m,n,∆(λ1, λ2) =
∆

2π
√
mn

m−1∑
p=0

n−1∑
q=0

Z(∆p,∆q) exp(−i∆(pλ1 + qλ2)) (2.5)

The periodogram is then defined as:

Im,n,∆(λ1, λ2) =

∣∣∣∣ Z̃m,n,∆(λ1, λ2)

∣∣∣∣2

=
∆2

(2π)2mn

∣∣∣∣ m−1∑
p=0

n−1∑
q=0

Z(∆p,∆q) exp(−i∆(pλ1 + qλ2))

∣∣∣∣2, (2.6)

where (λ1, λ2) ∈ Λm,n,∆. Λm,n,∆ =
{(

2πf1
∆m , 2πf2∆n

)}
is the set of frequencies we choose to

examine, where:

(f1, f2) =

{
⌊−m− 1

2
⌋, . . . ,m− ⌊m

2
⌋
}
×
{
⌊−n− 1

2
⌋, . . . , n− ⌊n

2
⌋
}
. (2.7)

Theoretical Properties of Periodogram

The expected value of the periodogram at frequency λ = (λ1, λ2) is given by (see Fuentes

(2002))

E (Im,n,∆(λ)) =
1

mn(2π)2

∫
[−π/∆,π/∆]2

f∆(ω)W∆(ω − λ)dω,

where

W∆(ω) = W∆(ω1, ω2) =
sin2 (mω1/2)

sin2(ω1/2)
× sin2 (nω2/2)

sin2(ω2/2)
.

Due to the nature of the functionW∆ periodogram can have substantial bias in small sample,

however for Gaussian random field, the bias is asymptotically negligible. In fact, Brillinger
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(1981) showed that under increasing domain asymptotics, the periodogram is an asymp-

totically unbiased but inconsistent estimator of f∆ process. Fuentes (2002) established the

following similar but stronger result under a mixed asymptotic set-up.

Theorem 2.5.1. Fuentes (2002) Consider a Gaussian stationary process Z with spectral

density f(λ) on a lattice G. We assume Z is observed at m×n equally spaced locations in G

and the spacing between observations is ∆. We define the periodogram function, Im,n,∆(λ),

as in (2.6). Assume that

(a) The rate of decay of f(λ) at high frequencies is proportional to ∥λ∥−τ for τ > 2.

(b) The autocovariance function satisfies
∫
∥h∥c(h)dh < ∞.

(c) ∆ → 0, m,n → ∞,m/n → c, for a constant c > 0, ∆m → ∞ and ∆n → ∞.

Then, we have

(1) The expected value of the periodogram, Im,n,∆(λ), is asymptotically f(λ)

(2) The asymptotic variance of the periodogram, Im,n,∆(λ), is f2(λ).

(3) The periodogram values Im,n,∆(λ1) and Im,n,∆(λ2), for λ1 ̸= λ2, are asymptotically

independent.

2.5.2 Irregular Grid

When the random field Z in Section 2.5.1 is observed at J irregular-spaced locations sj =

(s1j , s
2
j ) ∈ [0, L1]× [0, L2], following Rao (2018) we define the Fourier transform of the data

as:

Z̃J,L1,L2(λ1, λ2) =

√
L1L2

2πJ

J∑
j=1

Z(s1j , s
2
j ) exp(−i(s1jλ1 + s2jλ2)). (2.8)

The periodogram is then defined as:

IJ,L1,L2(λ1, λ2) =

∣∣∣∣ Z̃J,L1,L2(λ1, λ2)

∣∣∣∣2
11



=
L1L2

(2π)2J2

∣∣∣∣ J∑
j=1

Z(s1j , s
2
j ) exp(−i(s1jλ1 + s2jλ2))

∣∣∣∣2, (2.9)

where (λ1, λ2) ∈ ΛL1,L2 . ΛL1,L2 =
{(

2πf
L1

, 2πfL2

)}
, f ∈ Z is the set of frequencies we choose

to examine. As argued in Rao (2018) the choice of these frequencies are optimal, and

under suitable regularity condition the periodograms at these frequencies are asymptotically

unbiased and uncorrelated among themselves. In fact their joint asymptotic behavior is very

similar to the regular grid case given in Theorem 2.5.1

2.6 Non-stationary Spatial Random Field

If the random field is non-stationary, we can no longer define an auto-covariance function,

and the second-order structure is described by a covariance kernel C(s1, s2) for s1, s2 ∈ S. In

this situation we cannot define a spectral density that does not depend on the location, and

summarizes the second-order dynamics over the whole space. Second-order non-stationarity

of random field is difficult to theoretically characterize and causes significant increase in com-

putational complexity for inference purposes. Fuentes (2002) define the spectral density over

R4 of a general non-stationary random field as the Fourier transformation of the covariance

kernel. However a more interpretable quantity is a spatially varying spectral density, which

provides a decomposition of the local variability across different spatial frequencies at each

location. The spatially varying spectral density depends on the nature of non-stationarity

in the underlying random field. There are two popular ways of characterizing covariance

non-stationarity in spatial random field.

• Piecewise Stationary: The process can be partitioned into K stationary pieces.

EZ(s) = µi, VarZ(s) < ∞,

Cov(Z(s), Z(s+ h)) = Cij(h), if s ∈ Ωi, s+ h ∈ Ωj , i, j = 1, . . . ,K, (2.10)

where {Ω1,Ω2, . . . ,ΩK} is a disjoint partition of S, the spatial region under study.

12



Sometimes uncorrelatedness across the different regions is imposed, i.e., Cij(h) =

Ci(h)1ij .

Under this piecewise stationary set-up it is meaningful to talk about spectral density

within each region, and cross-spectral density for each pair of regions. These quantities

can be individually defined and estimated similar to the stationary speactral density.

• Locally Stationary: Following Kurisu (2022), the process {ZSn(s1, s2) : (s1, s2) ∈

R2} is locally stationary if for each rescaled space point (u1, u2) ∈ [0, 1]2 there exists an

associated random field {Zu1,u2(s1, s2) : (s1, s2) ∈ R2} with the following properties:

(i) {Zu1,u2(s1, s2) : (s1, s2) ∈ R2} is strictly stationary for each (u1, u2) ∈ [0, 1]2.

(ii) It holds that

∣∣∣∣ ZSn(s1, s2)− Z(u1,u2)(s1, s2)

∣∣∣∣≤ k1

∥∥∥∥(s1, s2)|Sn|
− (u1, u2)

∥∥∥∥
2

+ k2
1

|Sn|

for some positive constants k1 and k2. This is appropriate for modelling random field

continuously evolving over the space.

Under this set-up the spatially varying spectral density can be defined in terms of the

spectral density of the approximating process Z(u1,u2). In particular, let f(u1,u2) be

the spectral density of the stationary process Z(u1,u2), then the spectral density of the

original spatial random field is defined as

f(s1,s2)(λ1, λ2) = f(s1,s2)/|Sn|(λ1, λ2).

13



Chapter 3: Test for Stationarity

In this chapter we consider a spatial random field Z observed over aM×N grid G originated

at (0, 0), where the horizontal and the vertical spacing between the adjacent observations

is ∆. We want to test if the underlying random field Z is stationary, in particular we are

interested in testing the following hypothesis:

H0: The random field Z is second-order stationary; vs.

H1: The random field Z is not second-order stationary.

Note that in this case, the nonstationarity in mean and covariance are not separable.

We assume the random field has a zero mean, so the field is not stationary if the covariance

structure of Z varies in space. This assumption is appropriate, for example, when we are

dealing with the residual field from a spatial regression model. We will construct a test

based on the maximal variation in spectral density, when comparing all adjacent half open

half closed rectangular region of size m∆× n∆ in different directions.

In the sequel, we introduce the notation ZW as the random field Z restricted in the

region W and fZW
as the spectral density of the random field ZW . Moreover we expand

the notations introduced in Section 2.5.1. Let W ∩ G be a m × n grid with origin (o1, o2)

and spacing ∆. We write the periodogram (2.6) calculated using the observations from W

as Io1,o2,m,n,∆(λ1, λ2):

Io1,o2,m,n,∆(λ1, λ2) =
∆2

(2π)2mn

∣∣∣∣∣∣
m−1∑
p=0

n−1∑
q=0

Z(o1 +∆p, o2 +∆q)exp(−i∆(pλ1 + qλ2))

∣∣∣∣∣∣
2

.

(3.1)
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Let Λm,n,∆,ω1,ω2 to be the set of frequencies
(
2πf1
∆m , 2πf2∆n

)
, where

(f1, f2) = {⌊ω1⌊−
m− 1

2
⌋⌋, . . . , ⌊ω1(m− ⌊m

2
⌋)⌋} × {⌊ω2⌊−

n− 1

2
⌋⌋, . . . , ⌊ω2(n− ⌊n

2
⌋)⌋}.

Then the periodogram Im,n,∆ defined in (2.6) can be written as I0,0,m,n,∆ and the set

of frequencies Λm,n,∆ in Section 2.5.1 can be written as Λm,n,∆,1,1 under this expanded

notations.

3.1 The Spectral Difference Statistics

Let the function Dd
m,n,∆,ω1,ω2

(s1, s2) : R2 7→ R be the integrated difference between the

spectral density of the two adjacent regionsW d1
(s1,s2),m,n,∆ andW d2

(s1,s2),m,n,∆, where d denotes

the direction of the comparison, (s1, s2) denotes the location of the comparison, ∆ denotes

the spacing so that m∆ and n∆ are the side length of the regions:

Dd
m,n,∆,ω1,ω2

(s1, s2)

=

∫ ω1π

−ω1π

∫ ω2π

−ω2π

(
fZ

W
d1
(s1,s2),m,n,∆

(λ1, λ2)− fZ
W

d2
(s1,s2),m,n,∆

(λ1, λ2)

)
dλ1 dλ2. (3.2)

The frequency window for the integration is [−ω1π, ω1π] × [−ω2π, ω2π], ω1, ω2 ∈ [0, 1]. If

ω1, ω2 = 1, Dd
m,n,∆,1,1 can be used to study the spatial variation within the variance struc-

ture. To study the spatial variation of the covariance structure, we calculate Dd
m,n,∆,ω1,ω2

based on the comparisons along two orthogonal directions. For convenience, we let the two

orthogonal directions to be parallel to the two axes of the grid G, and call them horizontal

direction and vertical direction. Then, the regions for the horizontal comparison are defined

as:

W h1

(s1,s2),m,n,∆ = [s1 −m∆, s1)× [s2, s2 + n∆)

W h2

(s1,s2),m,n,∆ = [s1, s1 +m∆)× [s2, s2 + n∆), (3.3)
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for (s1, s2) ∈ [m∆, (M −m)∆] × [0, (N − n)∆]. The windows for the vertical comparison

are defined as

W v1
(s1,s2),m,n,∆ = [s1, s1 +m∆)× [s2 − n∆, s2)

W v2
(s1,s2),m,n,∆ = [s1, s1 +m∆)× [s2, s2 + n∆), (3.4)

for (s1, s2) ∈ [0, (M −m)∆]× [n∆, (N − n)∆]. Therefore, the spectral difference statistics

can be defined as:

Dh
m,n,∆,ω1,ω2

(s1, s2)

=

∫ ω1π

−ω1π

∫ ω2π

−ω2π

(
fZ

W
h1
(s1,s2),m,n,∆

(λ1, λ2)− fZ
W

h2
(s1,s2),m,n,∆

(λ1, λ2)

)
dλ1 dλ2 (3.5)

Dv
m,n,∆,ω1,ω2

(s1, s2)

=

∫ ω1π

−ω1π

∫ ω2π

−ω2π

(
fZ

W
v1
(s1,s2),m,n,∆

(λ1, λ2)− fZ
W

v2
(s1,s2),m,n,∆

(λ1, λ2)

)
dλ1 dλ2. (3.6)

Note that if the spatial process is stationary, then these differences should be zero as a func-

tion of (s1, s2) for any choice of (ω1, ω2) ∈ [0, 1]2. Therefore we will use these Dd
m,n,∆,ω1,ω2

for d ∈ {h, v} to understand the spatial differences in covariance structure.

In practice we consider a sample version D̂d
m,n,∆,ω1,ω2

, where the spectral densities in

(3.2) are replaced by the periodograms calculated with the observations from the corre-

sponding regions, and the integration is replaced by appropriate averages. We define the

horizontal spectral difference statistic to be:

D̂h
m,n,∆,ω1,ω2

(s1, s2)

=D̂h
m,n,∆,ω1,ω2

(g1, g2)

=
1

mn∆2

∑
(λ1,λ2)∈Λm,n,∆,ω1,ω2

[Ig1−m∆,g2,m,n,∆(λ1, λ2)− Ig1,g2,m,n,∆(λ1, λ2)] , (3.7)
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where (g1, g2) = (⌈s1⌉, ⌈s2⌉), therefore (g1, g2) ∈ {m∆, . . . , (M−m)∆}×{0, . . . , (N−n)∆}.

Similarly the vertical spectral difference statistic is defined as:

D̂v
m,n,∆,ω1,ω2

(s1, s2)

=D̂v
m,n,∆,ω1,ω2

(g1, g2)

=
1

mn∆2

∑
(λ1,λ2)∈Λm,n,∆,ω1,ω2

[Ig1,g2−n∆,m,n,∆(λ1, λ2)− Ig1,g2,m,n,∆(λ1, λ2)] , (3.8)

with (g1, g2) = (⌈s1⌉, ⌈s2⌉) ∈ {0, . . . , (M −m)∆} × {n∆, . . . , (N − n)∆}.

If the underlying random field is second-order stationary we should expect these statistics

to be small across the grid for all choices of direction d and frequency ranges determined

by ω1 and ω2, and should capture the spatial dynamics of the second-order structure if the

stationarity assumption is violated.

3.2 Asymptotic Properties of The Spectral Difference Statis-

tics

To develop statistical inference based on this spectral differences, we investigate the asymp-

totic properties of this process in this section.

Theorem 3.2.1. Let Z(s) be a Gaussian random field indexed by s ∈ S where S is a

compact subset of R2 and we observe Z on a a regular M ×N grid G with neighboring grid

points separated by ∆ units in both horizontal and vertical directions. Assume that Z is

weak stationary with zero mean and auto-covariance function C. Under the assumptions

(i) The auto-covariance function satisfies
∫
∥h∥|c(h)| dh < ∞.

(ii) The fourth moment of the random field is uniformly bounded by an integrable function,

i.e., E(Z4(s1, s2)) ≤ K(s1, s2) for all (s1, s2) ∈ G such that
∫ ∫

K(s1, s2)ds1ds2 < ∞

(iii) m,n → ∞, and m
M → c1,

n
N → c2 for c1, c2 > 0.
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we have{√
mn∆

[
D̂h

m,n,∆,ω1,ω2
(s1, s2), D̂

v
m,n,∆,ω1,ω2

(s1, s2)
]}

d→
{
D1
ω1,ω2

(s1, s2),D2
ω1,ω2

(s1, s2)
}
,

uniformly over (ω1, ω2, s1, s2) ∈ [0, 1]2 × S, where
{
D1
ω1,ω2

(s1, s2),D2
ω1,ω2

(s1, s2)
}
(ω1,ω2,s1,s2)

is a bivariate centered Gaussian process defined on [0, 1]2 × S with covariance kernel given

by equations A.7.

Proof: To prove this result it is sufficient to show the following two claims (see Theorem

1.5.4 and 1.5.7 in Vaart and Wellner (1996)):

1. For every k ∈ N, and any ω
(1)
1 , ω

(1)
2 , . . . , ω

(k)
1 , ω

(k)
2 ∈ [0, 1] and s1, s2, . . . , sk ∈ S,

√
mn∆



D̂h

m,n,∆,ω
(1)
1 ,ω

(1)
2

(s(1))

D̂v

m,n,∆,ω
(1)
1 ,ω

(1)
2

(s(1))

...

D̂h

m,n,∆,ω
(k)
1 ,ω

(k)
2

(s(k))

D̂v

m,n,∆,ω
(k)
1 ,ω

(k)
2

(s(k))


d−→



D1

ω
(1)
1 ,ω

(1)
2

(s(1))

D2

ω
(1)
1 ,ω

(1)
2

(s(1))

...

D1

ω
(k)
1 ,ω

(k)
2

(s(k))

D2

ω
(k)
1 ,ω

(k)
2

(s(k))


. (3.9)

2. For every ϵ, η > 0, there exists δ > 0 such that for large m,n,M,N the probability

P

 sup
dβ

(
(ω

(1)
1 ,ω

(1)
2 ,s1),(ω

(2)
1 ,ω

(2)
2 ,s2)

)
<δ

√
mn∆

∥∥∥∥∥∥∥
 D̂h

m,n,∆,ω
(1)
1 ,ω

(1)
2

(s(1))− D̂h

m,n,∆,ω
(2)
1 ,ω

(2)
2

(s(2))

D̂v

m,n,∆,ω
(1)
1 ,ω

(1)
2

(s(1))− D̂v

m,n,∆,ω
(2)
1 ,ω

(2)
2

(s(2))


∥∥∥∥∥∥∥ > η

 < ϵ

(3.10)

where the norm dβ is defined as in Theorem 1.5.4 in Vaart and Wellner (1996).

To show (3.9) it is enough to show that all cumulants of the random vector in the

left hand side of (3.9) converge to the corresponding cumulants of the vector in the right

hand side of the equation. Thus we have to show that for any ω1, ω2, ω
(j)
1 , ω

(j)
2 ∈ [0, 1] and
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s, s(j) ∈ S for j = 1, 2, . . . , l

E
(
D̂d

m,n,∆,ω1,ω2
(s)
)
= o(1), for d = h, v. (3.11)

cov

(
D̂d

m,n,∆,ω
(1)
1 ,ω

(1)
2

(s)(1), D̂d

m,n,∆,ω
(2)
1 ,ω

(2)
2

(s)(2)
)

= Cd

ω
(1)
1 ,ω

(1)
2 ,ω

(2)
1 ,ω

(2)
2

(s(1), s(2)), (3.12)

where Cd

ω
(1)
1 ,ω

(1)
2 ,ω

(2)
1 ,ω

(2)
2

is as defined in equation A.7, and

cum

(
D̂d

m,n,∆,ω
(1)
1 ,ω

(1)
2

(s(1)), . . . , D̂d

m,n,∆,ω
(l)
1 ,ω

(l)
2

(s(l))

)
= o(1) (3.13)

for l ≥ 3. A detailed derivation of (3.11),(3.12) and (3.13) are presented in the Appendix

A.1.

To show (3.10) we note that it is sufficient to show the stochastic equicontinuity of each

component
√
mn∆D̂h and

√
mn∆D̂v separately. Moreover, we can write

√
mn∆D̂d

m,n,∆,ω1,ω2
(s) =

1√
mn∆

∑
(λ1,λ2)∈Λm,n,∆,ω1,ω2

Is1−m∆,s2,m,n,∆(λ1, λ2)

− 1√
mn∆

∑
(λ1,λ2)∈Λm,n,∆,ω1,ω2

Is1,s2,m,n,∆(λ1, λ2)

=Am,n,∆(ω1, ω2, s1, s2)−Bm,n,∆(ω1, ω2, s1, s2). (3.14)

Therefore it is sufficient to show the stochastic equicontinuity of the processes

{Am,n,∆(ω1, ω2, s1, s2)} and {Bm,n,∆(ω1, ω2, s1, s2)}. We only present the proof for the first

summand in (3.14). The proof for the second term can be shown analogously. Let

P ={0, 1
m
, . . . , 1− 1

m
} × {0, 1

n
, . . . , 1− 1

n
}×

{m∆, 2m∆, . . . , (M −m)∆} × {n∆, 2n∆, . . . , (N − n)∆}.

Note that with the choice of our frequency grid Λm,n,∆,ω1,ω2 and spatial grid, it is again
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sufficient to show that

P

(
sup
Bβ(δ)

∣∣∣Am,n,∆(ω
(1)
1 , ω

(1)
2 , s

(1)
1 , s

(1)
2 )−Am,n,∆(ω

(2)
1 , ω

(2)
2 , s

(2)
1 , s

(2)
2 )
∣∣∣) (3.15)

is small for large M,N where

Bβ(δ) = {xj := (ω
(j)
1 , ω

(j)
2 , s

(j)
1 , s

(j)
2 ) ∈ P, j = 1, 2 | dβ(x1, x2) < δ}.

For this purpose let C(u, dβ,P) denote the covering number of P with respect to the semi-

metric dβ and define the corresponding covering integral of P by

JM,N (κ) :=

∫ κ

0

[
log

(
C2(u, dβ,P)

u

)]2
du.

In subsection A.1.4 we show that

lim
κ→0

lim
M,N→∞

JM,N (κ) = 0 (3.16)

E

(
mk/2nk/2∆k

(
Am,n,∆(ω

(1)
1 , ω

(1)
2 , s

(1)
1 , s

(1)
2 )−Am,n,∆(ω

(2)
1 , ω

(2)
2 , s

(2)
1 , s

(2)
2 )
)k)

≤ (4k!)Ck
[
dβ

(
(ω

(1)
1 , ω

(1)
2 , s

(1)
1 , s

(1)
2 ), (ω

(2)
1 , ω

(2)
2 , s

(2)
1 , s

(2)
2 )
)]k

, (3.17)

for a constant C > 0 and even integers k. It then follows by similar arguments as given

in Dahlhaus (1988) that the probability in (3.15) can be made smaller than every ϵ >

0 by choosing δ > 0 sufficiently small and M,N large enough, which proves stochastic

equicontinuity.

Remark 3.2.1. Note that the assumption of Gaussianity is strong, but wide used in mod-

elling geostatistical data. Our proofs and proposed methodology are also valid under a weaker
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assumption that for all l ∈ N and all s1, s2, . . . , sl ∈ S,

∑
s1,...,sl

|cum(Z(s1), . . . , Z(sl))| < ∞

3.3 Test Statistic

To test the second-order stationarity of the observed random field we consider this spectral

difference process. The main idea behind our proposed test is that this process is uniformly

small if and only if the covariance structure is stationary. If there is non-stationarity present,

then this process should be high at some spatial region and over some frequency range.

To this end we define the directional maximal difference statistics T h
M,N,m,n,∆ and

T v
M,N,m,n,∆ as:

T h
M,N,m,n,∆ = sup

(s1,s2),ω1,ω2

∣∣∣D̂h
m,n,∆,ω1,ω2

(s1, s2)
∣∣∣ , (3.18)

T v
M,N,m,n,∆ = sup

(s1,s2),ω1,ω2

∣∣∣D̂v
m,n,∆,ω1,ω2

(s1, s2)
∣∣∣ . (3.19)

In practice, M,N,∆ are usually given by the data, and we need to choose the window

size m∆ × n∆. If we select m << M , n << N , then we are searching for the structural

breaks in a high resolution. While a smaller window can capture more local variation, there

will be less observations in a window and the estimation bias could be large. In addition, a

smaller window size leads to more comparisons, which could be computationally expensive.

To balance the estimation accuracy, computational cost and the detection sensitivity, we

define an overall maximal difference test statistics as:

T = max
{√

mN∆T h
M,N,m,N,∆,

√
Mn∆T v

M,N,M,n,∆

}
. (3.20)

The motivation of this definition is to reject the null hypothesis when there exists a

break in covariance along any one of the comparison direction. When searching for breaks
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in the horizontal (vertical) direction, we set n = N (m = M) to include more observations,

averaging the dynamics across the orthogonal direction of our search direction. Therefore,

when conducting the horizontal (vertical) comparison, we only need to choose the value of

m(n), which depends on the actual covariance structure of the underlying field.

More insight about these choices are revealed observing a plot of D̂d
m,n,∆,ω1,ω2

(g1, g2)

with different m,n. This plot is termed disparity map, where higher values correspond to

more abrupt change in the local spectral density estimated by m × n observations. When

setting a small value for m,n, we can have some comparison results close to the boarders

of the field. If there exist clear hot spots or hot band, we can have some ideas about the

locations of potential boundaries and choose m,n accordingly.

3.4 Critical Value

To construct a statistical test based on the statistic (3.20) we state the following Corollary

of Theorem 3.2.1

Corollary 3.4.1. Under the assumptions of Theorem 3.2.1 we have

T = max
{√

mN∆T h
M,N,m,N,∆,

√
Mn∆T v

M,N,M,n,∆

}
d→ D : = max

{
max

s
sup
ω1,ω2

∣∣∣∣ D1
ω1,ω2

(s)

∣∣∣∣,max
s

sup
ω1,ω2

∣∣∣∣ D2
ω1,ω2

(s)

∣∣∣∣} ,

where D1
ω1,ω2

and D2
ω1,ω2

are as defined in Theorem 3.2.1.

Proof. First note that the assumptions of Theorem 3.2.1 remains valid with the choice of

m = M or n = N . Thus arguments similar to the proof of Theorem 3.2.1 and argmax

continuous mapping Theorem then guarantees the stated convergence.

Remark 3.4.1. A closed form expression for the covariance kernel of (D1
ω1,ω2

,D2
ω1,ω2

) is

derived in the Appendix A.1.2.
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Corollary 3.4.1 and Remark 3.4.1 provides us a way to construct an asymptotic level

α test for stationarity. The following result ensures the consistency of a test based on our

proposed statistic.

Theorem 3.4.1. Suppose the underlying random field is Gaussian and piece-wise stationary

with zero mean and covariance structure as in (2.10). Additionally assume (ii) and (iii)

from Theorem 3.2.1 and

∫
[0,∞)2

∥h∥Cij(h)dh < ∞, i, j = 1, 2, . . . ,K. (3.21)

. Then we have T p→ ∞.

Proof. The proof follows directly from Lemma A.2.1

To obtain the rejection region of the test of stationarity we simulate the quantiles

of D by simulating zero mean Gaussian processes D1 and D2 repeatedly. The steps of

implementation of our method are described in Algorithm 1.

Algorithm 1: Obtain the reject region

Result: Reject region [Uh,∞], [Uv,∞], [Umax,∞]

Simulate D1
ω1,ω2

(g1, g2) for

g1 ∈ {o1 +m∆, . . . , o1 + (M −m)∆}, g2 = o2, ω1, ω2 ∈ {0.1, . . . , 1} 10,000 times;

Compute the 95% percentile Uh of maxg1,g2 maxω1,ω2

∣∣D1
ω1,ω2

(g1, g2)
∣∣ based on the

simulated data;

Simulate D2
ω1,ω2

(g1, g2) for

g1 = o1, g2 ∈ {o2 + n∆, . . . , o2 + (N − n)∆}, ω1, ω2 ∈ {0.1, . . . , 1} 10,000 times;

Compute the 95% percentile Uv of maxg1,g2 maxω1,ω2

∣∣D2
ω1,ω2

(g1, g2)
∣∣ based on the

simulated data;

Let Umax = max{Uh, Uv};
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We then reject the null hypothesis if the test statistics T is above the simulate crit-

ical value Umax, and accept it otherwise. Additionally if
√
mNT h

M,N,m,N,∆ > Uh ( or

√
MnT v

M,N,M,n,∆ > Uv), that indicates there exists breaks in the horizontal (or vertical)

direction.

3.5 Simulation

We evaluate the performance of the proposed test under different settings. Let Exp(σ2, l)

stands for the exponential covariance: C(h1, h2) = σ2 exp(−
√

h2
1+h2

2

l ), and Gauss(σ2, l)

stands for the Gauss covariance: C(h1, h2) = σ2 exp(−h2
1+h2

2
l ). A visualization of the

stationary covariance models used in the simulation can be found in Figure 3.1.

Figure 3.1: Stationary covariance models for the simulation.
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For evaluating type I error, we generate equi-spaced data with ∆ = 1 from a sta-

tionary zero-mean Gaussian random field with covariance Exp(σ2, l) with M = N =

20, 40, 80, 160, 320. For each scenario, m and n, the side lengths of the windows are 1/10,

1/5, 2/5 of the corresponding M and N .

We consider two types of nonstationarity in the power evaluation: (1) piecewise sta-

tionary with abrupt change and (2) gradual change in covariance structure. For (1), we

assume the simulated random field consists of two stationary sub-fields that are mutually

exclusive and independent. For (2), we consider the covariance function developed in C. J.

Paciorek and Schervish (2006), and the exact form we use is the same as the model NS1 in

the Bandyopadhyay et al. (2016), which is:

CPS(s1, s2) =

∣∣∣∣ Σ(s1ρ )

∣∣∣∣1/4∣∣∣∣ Σ(s2ρ )

∣∣∣∣1/4∣∣∣∣ 12[Σ(s1ρ ) + Σ(
s2
ρ
)]

∣∣∣∣−1/2

exp{−
√

qρ(s1, s2)}, (3.22)

where | · | denotes the determinant of a matrix, s = (s1, s2) ∈ R2,

qρ(s1) = 2(s1 − s2)
T [Σ(

s1
ρ
) + Σ(

s2
ρ
)]−1(s1 − s2), (3.23)

Σ(
s

ρ
) = Γ(

s

ρ
)ΛΓ(

s

ρ
)T , (3.24)

Γ(
s

ρ
) =

γ1(s/ρ) −γ2(s/ρ)

γ2(s/ρ) γ1(s/ρ)

 , (3.25)

Λ =

1 0

0 1/2

 , (3.26)

γ1(s/ρ) = log(s1/ρ+ 0.75), (3.27)

γ2(s/ρ) = (s1/ρ)
2 + (s2/ρ)

2. (3.28)
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Figure 3.2: Visualizations of γ1 and γ2 in the definition of CPS , which result in a covariance
structure that vary smoothly in the horizontal and anti-diagonal direction

The data are generated from the models below with M,N = 20, 40, 80, 160 on a regular

grid:

• (NS1) The two sub-fields are separated by a horizontal boundary in the middle. Both

sub-fields are zero-mean Gaussian random fields, with different covariance C1 and C2.

• (NS2) The two sub-fields are separated by a diagonal boundary. Both sub-fields are

zero-mean Gaussian random fields, with different covariance C1 and C2.

• (NS3) The field is a zero-mean Gaussian random field with the nonstationary covari-

ance CPS , with ρ = M = N . The covariance structure has a gradual change in the

horizontal and anti-diagonal directions.

The simulation settings and the results are summarized in Table 3.1 - 3.3, where Re-

jection Rate (RR) H, Rejection Rate (RR) V, and Rejection Rate (RR) Max stand for

the frequency of rejecting the null hypothesis based on the horizontal comparison, vertical

comparison, and the test statistics T in each scenario. We set the critical value to be the
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maximum of the Uh and Uv as defined in Algorithm 1.

In Table 3.1, the rejection rate reflects the type I error of the test. The model S1, S2

and S3 differ in the range parameter, and they are visualized in Figure 3.1. For fixed values

of M and N , the rejection rates from the horizontal comparison and vertical comparison

get closer to 0.05 , and the rejection rates for T get closer to 0.0975 as m and n increase.

In Table 3.2 and Table 3.3, the rejection rate reflects the power of the test. For fixed

values of M and N , all the rejection rates increase to 1 as m and n increase, though the

power is quite low in scenario 37-48. The reason for the low power may be that Exp(1, 1)

and Gauss(1, 1) are similar in shape, as can be seen in Figure 3.1. The fields generated in

scenario 25-36 are the same as those in scenario 37-48, except the covariance of the subfields

are changed. Exp(3, 1) and Exp(1, 1) are quite different in shape, and the rejection rates are

much higher that those in scenario 37-48. In scenario 1-24, the two sub-fields are separated

by a vertical boundary, therefore the rejection rate based on the horizontal comparison is

much higher than the rate based on the vertical comparison. When the covariance changes

smoothly in space rather than having breaks as in Table 3.3, the power is lower, but still

goes to 1 as the window size increases.

27



Table 3.1: Stationary scenarios for type I error evaluation

Scenario Model Covariance Model M, N m, n RR H RR V RR Max

1 S1 Exp(1, 1) 20 2 0.06 0.06 0.11
2 S1 Exp(1, 1) 20 4 0.04 0.04 0.07
3 S1 Exp(1, 1) 20 8 0.06 0.06 0.10
4 S1 Exp(1, 1) 40 4 0.04 0.04 0.07
5 S1 Exp(1, 1) 40 8 0.07 0.07 0.11
6 S1 Exp(1, 1) 40 16 0.07 0.07 0.12
7 S1 Exp(1, 1) 80 8 0.06 0.06 0.11
8 S1 Exp(1, 1) 80 16 0.07 0.06 0.13
9 S1 Exp(1, 1) 80 32 0.08 0.06 0.13
10 S1 Exp(1, 1) 160 16 0.07 0.06 0.12
11 S1 Exp(1, 1) 160 32 0.06 0.08 0.13
12 S1 Exp(1, 1) 160 64 0.07 0.07 0.14
13 S1 Exp(1, 1) 320 32 0.08 0.07 0.14
14 S1 Exp(1, 1) 320 64 0.07 0.06 0.13
15 S1 Exp(1, 1) 320 128 0.07 0.07 0.13

16 S2 Exp(1, 3) 20 2 0.13 0.14 0.22
17 S2 Exp(1, 3) 20 4 0.11 0.12 0.18
18 S2 Exp(1, 3) 20 8 0.09 0.09 0.14
19 S2 Exp(1, 3) 40 4 0.13 0.13 0.22
20 S2 Exp(1, 3) 40 8 0.11 0.11 0.18
21 S2 Exp(1, 3) 40 16 0.09 0.08 0.14
22 S2 Exp(1, 3) 80 8 0.11 0.11 0.18
23 S2 Exp(1, 3) 80 16 0.09 0.09 0.15
24 S2 Exp(1, 3) 80 32 0.08 0.08 0.14
25 S2 Exp(1, 3) 160 16 0.09 0.09 0.17
26 S2 Exp(1, 3) 160 32 0.08 0.07 0.14
27 S2 Exp(1, 3) 160 64 0.07 0.07 0.13
28 S2 Exp(1, 3) 320 32 0.08 0.08 0.15
29 S2 Exp(1, 3) 320 64 0.07 0.07 0.13
30 S2 Exp(1, 3) 320 128 0.06 0.06 0.12

31 S3 Exp(1, 1/3) 20 2 0.00 0.00 0.01
32 S3 Exp(1, 1/3) 20 4 0.00 0.00 0.00
33 S3 Exp(1, 1/3) 20 8 0.01 0.01 0.03
34 S3 Exp(1, 1/3) 40 4 0.00 0.00 0.00
35 S3 Exp(1, 1/3) 40 8 0.01 0.01 0.02
36 S3 Exp(1, 1/3) 40 16 0.03 0.04 0.06
37 S3 Exp(1, 1/3) 80 8 0.00 0.01 0.01
38 S3 Exp(1, 1/3) 80 16 0.03 0.03 0.05
39 S3 Exp(1, 1/3) 80 32 0.05 0.05 0.09
40 S3 Exp(1, 1/3) 160 16 0.03 0.02 0.05
41 S3 Exp(1, 1/3) 160 32 0.04 0.04 0.09
42 S3 Exp(1, 1/3) 160 64 0.06 0.05 0.10
43 S3 Exp(1, 1/3) 320 32 0.04 0.04 0.07
44 S3 Exp(1, 1/3) 320 64 0.05 0.05 0.09
45 S3 Exp(1, 1/3) 320 128 0.06 0.06 0.11
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Table 3.2: Nonstationary scenarios: sharp change in covariance

Scenario Model Covariance Model M, N m, n RR H RR V RR Max

1 NS1 C1 = Exp(1, 1), C2 = Exp(3, 1) 20 2 0.51 0.02 0.51
2 NS1 C1 = Exp(1, 1), C2 = Exp(3, 1) 20 4 0.63 0.05 0.64
3 NS1 C1 = Exp(1, 1), C2 = Exp(3, 1) 20 8 1.00 0.17 1.00
4 NS1 C1 = Exp(1, 1), C2 = Exp(3, 1) 40 4 0.94 0.11 0.94
5 NS1 C1 = Exp(1, 1), C2 = Exp(3, 1) 40 8 1.00 0.24 1.00
6 NS1 C1 = Exp(1, 1), C2 = Exp(3, 1) 40 16 1.00 0.27 1.00
7 NS1 C1 = Exp(1, 1), C2 = Exp(3, 1) 80 8 1.00 0.14 1.00
8 NS1 C1 = Exp(1, 1), C2 = Exp(3, 1) 80 16 1.00 0.18 1.00
9 NS1 C1 = Exp(1, 1), C2 = Exp(3, 1) 80 32 1.00 0.18 1.00
10 NS1 C1 = Exp(1, 1), C2 = Exp(3, 1) 160 16 0.99 0.02 0.99
11 NS1 C1 = Exp(1, 1), C2 = Exp(3, 1) 160 32 1.00 0.02 1.00
12 NS1 C1 = Exp(1, 1), C2 = Exp(3, 1) 160 64 1.00 0.03 1.00

13 NS1 C1 = Exp(1, 1), C2 = Gauss(1, 1) 20 2 0.12 0.03 0.15
14 NS1 C1 = Exp(1, 1), C2 = Gauss(1, 1) 20 4 0.08 0.02 0.09
15 NS1 C1 = Exp(1, 1), C2 = Gauss(1, 1) 20 8 0.34 0.09 0.39
16 NS1 C1 = Exp(1, 1), C2 = Gauss(1, 1) 40 4 0.11 0.01 0.11
17 NS1 C1 = Exp(1, 1), C2 = Gauss(1, 1) 40 8 0.54 0.11 0.58
18 NS1 C1 = Exp(1, 1), C2 = Gauss(1, 1) 40 16 0.98 0.15 0.98
19 NS1 C1 = Exp(1, 1), C2 = Gauss(1, 1) 80 8 0.55 0.05 0.55
20 NS1 C1 = Exp(1, 1), C2 = Gauss(1, 1) 80 16 1.00 0.08 1.00
21 NS1 C1 = Exp(1, 1), C2 = Gauss(1, 1) 80 32 1.00 0.10 1.00
22 NS1 C1 = Exp(1, 1), C2 = Gauss(1, 1) 160 16 0.99 0.02 0.99
23 NS1 C1 = Exp(1, 1), C2 = Gauss(1, 1) 160 32 1.00 0.02 1.00
24 NS1 C1 = Exp(1, 1), C2 = Gauss(1, 1) 160 64 1.00 0.04 1.00

25 NS2 C1 = Exp(1, 1), C2 = Exp(3, 1) 20 2 0.31 0.08 0.36
26 NS2 C1 = Exp(1, 1), C2 = Exp(3, 1) 20 4 0.25 0.05 0.28
27 NS2 C1 = Exp(1, 1), C2 = Exp(3, 1) 20 8 0.67 0.54 0.84
28 NS2 C1 = Exp(1, 1), C2 = Exp(3, 1) 40 4 0.37 0.06 0.39
29 NS2 C1 = Exp(1, 1), C2 = Exp(3, 1) 40 8 0.80 0.57 0.90
30 NS2 C1 = Exp(1, 1), C2 = Exp(3, 1) 40 16 0.99 0.96 1.00
31 NS2 C1 = Exp(1, 1), C2 = Exp(3, 1) 80 8 0.58 0.28 0.68
32 NS2 C1 = Exp(1, 1), C2 = Exp(3, 1) 80 16 1.00 0.99 1.00
33 NS2 C1 = Exp(1, 1), C2 = Exp(3, 1) 80 32 1.00 1.00 1.00
34 NS2 C1 = Exp(1, 1), C2 = Exp(3, 1) 160 16 0.56 0.40 0.71
35 NS2 C1 = Exp(1, 1), C2 = Exp(3, 1) 160 32 1.00 1.00 1.00
36 NS2 C1 = Exp(1, 1), C2 = Exp(3, 1) 160 64 1.00 1.00 1.00

37 NS2 C1 = Exp(1, 1), C2 = Gauss(1, 1) 20 2 0.12 0.03 0.13
38 NS2 C1 = Exp(1, 1), C2 = Gauss(1, 1) 20 4 0.08 0.01 0.08
39 NS2 C1 = Exp(1, 1), C2 = Gauss(1, 1) 20 8 0.14 0.06 0.19
40 NS2 C1 = Exp(1, 1), C2 = Gauss(1, 1) 40 4 0.09 0.01 0.09
41 NS2 C1 = Exp(1, 1), C2 = Gauss(1, 1) 40 8 0.16 0.06 0.21
42 NS2 C1 = Exp(1, 1), C2 = Gauss(1, 1) 40 16 0.19 0.12 0.28
43 NS2 C1 = Exp(1, 1), C2 = Gauss(1, 1) 80 8 0.10 0.02 0.11
44 NS2 C1 = Exp(1, 1), C2 = Gauss(1, 1) 80 16 0.11 0.05 0.15
45 NS2 C1 = Exp(1, 1), C2 = Gauss(1, 1) 80 32 0.15 0.09 0.22
46 NS2 C1 = Exp(1, 1), C2 = Gauss(1, 1) 160 16 0.02 0.01 0.03
47 NS2 C1 = Exp(1, 1), C2 = Gauss(1, 1) 160 32 0.03 0.02 0.04
48 NS2 C1 = Exp(1, 1), C2 = Gauss(1, 1) 160 64 0.10 0.04 0.12
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Table 3.3: Nonstationary scenarios: graduate change in covariance

Scenario Model Covariance Model M, N m, n RR H RR V RR Max

1 NS3 CPS 20 2 0.04 0.05 0.11
2 NS3 CPS 20 4 0.05 0.05 0.09
3 NS3 CPS 20 8 0.14 0.12 0.23
4 NS3 CPS 40 4 0.05 0.05 0.09
5 NS3 CPS 40 8 0.14 0.12 0.24
6 NS3 CPS 40 16 0.50 0.35 0.65
7 NS3 CPS 80 8 0.07 0.07 0.13
8 NS3 CPS 80 16 0.31 0.21 0.44
9 NS3 CPS 80 32 0.97 0.84 1.00
10 NS3 CPS 160 16 0.07 0.05 0.10
11 NS3 CPS 160 32 0.57 0.37 0.68
12 NS3 CPS 160 64 1.00 1.00 1.00
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Chapter 4: Spatial Partition

When the test in Chapter 3 suggests the data are from a nonstationary random field, the

spectral difference statistics defined in Section 3.1 may be used to locate the potential breaks

and partition the nonstationary random field into several stationary sub-fields.

Suppose there is a piecewise stationary zero-mean random field ZS consists of K

non-overlapping second-order stationary sub-fields ZS1 , . . . , ZSK
. The boundaries between

S1, . . . , SK defines the partition and the covariance structure is given by (2.10). We assume

that K is minimal in this representation in the sense that ZS cannot be partitioned into

fewer stationary sub-fields. In this chapter, we still assume the field ZS is observed over a

regular grid G with spacing ∆. We also assume that S1, S2, . . . , SK have linear boundaries.

The partition procedure consists of two steps. In the first step, we create an initial

partition by an iterative search. In the second step, we reduce the number of regions in the

initial partition by combining the connected regions with similar spectral densities. This

two steps procedure is motivated by Pope et al. (2021) and image segmentation algorithms

based on clustering the super-pixels (see a review in Cong et al. (2018)). The proposed

spatial partition procedures are summarised in Algorithm 2 and Algorithm 3.

4.1 Initial Partition

The first step of the algorithm is to find all possible boundaries within the random fields,

creating an initial partition of K0 non-overlapping rectangular sub-fields, such that each the

sub-field is second-order stationary. The boundaries between the sub-fields are selected by

the spectral difference statistics in Section 3.1. We use a tree-like iterative search procedure

where we conduct the horizontal comparison and vertical comparisons alternatively in each

of the sub-regions created in the previous iteration, and declare new potential boundaries at
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coordinates where the value of spectral difference statistics exceeds a data-driven threshold.

In order to pick up a single boundary we use a max-suppression procedure commonly used

in time-series change point detection literature such as Preuss et al. (2015). This picks

up a boundary where the spectral difference statistics is largest first, and set value of the

statistics at near-by locations to be 0 in order to prevent over-identifying boundaries. In

each iteration, we create a finer partition, and we will stop when we cannot further partition

the field based on the rules defined in Algorithm 2.

In algorithm 2, given a rectangular region Sk let Mk and Nk respectively be the numbers

of horizontal and vertical coordinates in Sk ∩ G , Ok = (o1k, o
2
k) be the origin (bottom-left

corner) of Sk, m (n) be the parameter that controls the horizontal (vertical) side length of

the windows for comparison as in equation 3.2.

During an iteration in Algorithm 2, adding Jk elements in Bh
2 = {bh1 , . . . , bhJk} means

partitioning Sk into Jk+1 sub-rectangles separated by the vertical boundaries defined by Bh
2 .

Similarly, when Jk elements are added to Bv
2 = {bv1, . . . , bvJk} it corresponds to partitioning

Sk into Jk + 1 sub-regions separated by the horizontal boundaries defined by Bv
2 .

The consistency of this partitioning algorithm has been investigated in section A.3.

In particular, Theorem A.3.1 guarantees that for appropriate choice of the threshold, the

probability of picking all the coordinates along which there is a boundary converges to 1,

and picking any wrong partition converges to 0. Although in practice it will in fact give us

the coordinates of the partition along each direction, rather than the actual partition lines.

So we are expected to do a over-partitioning using this algorithm, which is later rectified

by the merging algorithm.
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Algorithm 2: Create the initial partition

Result: P = {Sk}, k = 1, . . . ,K0

Set the initial partition to be P = {S1}, where S1 = S, K0 = 0 and Kh = 1;

while mink Mk >= m, mink Nk >= n, Kh > K0 do

Set K0 = Kh and Bh
1 = Bh

2 = ∅;

for k = 1 . . . ,Kh do

for g1 = o1k +m∆, . . . , o1k + (Mk −m)∆ do

Let g1 ∈ Bh
1 if (mNk∆

2)γ supω1,ω2
D̂h

m,Nk,∆,ω1,ω2
(g1, o

2
k) > ϵhm,Nk,∆

(g1, o
2
k);

end

while Bh
1 ̸= ∅ do

Include bh = argmaxg1∈Bh
1
supω1,ω2

D̂h
m,Nk,∆,ω1,ω2

(g1, o
2
k) into Bh

2 and

eliminate {bh −m+ 1, bh +m− 1} from Bh
1 ;

end

end

Set Kv =
∑Kh

k=1(Jk + 1) and Bv
1 = Bv

2 = ∅# current P = {S1, . . . , SKv};

for k = 1, . . . ,Kv do

for g2 = o2k + n∆, . . . , o2k + (Mk − n)∆ do

Let g2 ∈ Bv
1 if (Mkn∆

2)γ supω1,ω2
D̂v

Mk,n,∆,ω1,ω2
(o1k, g2) > ϵvMk,n,∆

(o1k, g2);

end

while Bv
1 ̸= ∅ do

Include bv = argmaxg2∈Bv
1
supω1,ω2

D̂v
Mk,n,∆,ω1,ω2

(o1k, g2) into Bv
2 and

eliminate {bv − n+ 1, bv + n− 1} from Bv
1

end

end

Set Kh =
∑Kv

k=1(Jk + 1)# current P = {S1, . . . , SKh
};

end
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4.1.1 Choice of parameters

• The algorithm requires choosing a tuning parameter γ ∈ (0, 0.5], which controls de-

tection sensitivity. A smaller value of γ suppresses partitioning, while a larger value

promotes partitioning. γ = 0.4 is recommended in Preuss et al. (2015) in a time series

context. We use γ = 0.5 in all simulations to be a little more aggressive when picking

up potential boundaries, and we rely on the additional merging step to guard against

over-partition. In practice, this parameter can be set on a case by case basis based

on the data.

• The algorithm also requires specification of the comparison window size, namely m

and n. A large value of m,n prevents the generation of small sub-fields, but may

miss the breaks that are close to the boarders. We can use the proposed test and the

disparity map to help selecting these values. If the test rejects the null hypothesis

when m = m0, n = n0, that not only indicates the second-order characteristics of the

field may vary across space, but also tell us the potential boundaries may be picked up

when m = m0, n = n0, hence we could use them as the parameters for partition. We

can also plot the disparity map with m = m0, n = n0 to see if the partition generated

by Algorithm 2 makes sense.

• We use a data driven threshold for comparing the spectral difference statistic to pick

potential partition location. The horizontal comparison threshold ϵhm,n,∆(g1, g2) is

defined as:

ϵhm,n,∆(g1, g2) =

√
2Vg1,g2,m,n,∆ log

(
Mk

m

)
, (4.1)

where Vg1,g2,m,n,∆ = 1
2mn

∆4

(2π)4m2n2

∑
λ1,λ2

[IWh1
g1,g2,m,n,∆∪Wh2

g1,g2,m,n,∆
(λ1, λ2)]

2. For the

vertical comparison threshold ϵvm,n,∆(g1, g2) we define:

ϵvm,n,∆(g1, g2) =

√
2Vg1,g2,m,n,∆ log

(
Nk

n

)
, (4.2)
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where Vg1,g2,m,n,∆ = 1
2mn

∆4

(2π)4m2n2

∑
λ1,λ2

[IW v1
g1,g2,m,n,∆∪W v2

g1,g2,m,n,∆
(λ1, λ2)]

2. The form

of the thresholds is motivated by Preuss et al. (2015) and Fan (1996).

4.2 Merging Regions with Similar Spectral Density

The initial partition gives us rectangular region, some of which may still have same co-

variance structure. Now these K0 sub-regions created in the initial partition can be

treated as the data for clustering, where each cluster contains some connected sub-

regions and the procedure can be thought of as merging the sub-regions one by one in

K0 − 1 steps as in an agglomerative hierarchical clustering. In Algorithm 3, the input

at step r is P r = {P r
k , k = 1, . . . ,K0}, where each element P r

k is a set of some sub-

regions from Sk, k ∈ 1, . . . ,K0. In particular, at step 1, the set of elements to cluster

is P 1 = {P 1
k = {Sk}, k = 1, . . . ,K0}, where Sk ∈ P is defined in Algorithm 2.
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Algorithm 3: Hierarchical clustering

Result: The cluster assignment at step r: P r = {P r
k }, k = 1, . . . ,K0,

r = 1, . . . ,K0 − 1

Calculate the set of largest pairwise integrated periodogram difference

PD = {δj,k}, where

δj,k =
1

MN∆2
sup

ω1,ω2∈[0,1]

∑
ΛM,N,∆,ω1,ω2

IGj (λ1, λ2)− IGk
(λ1, λ2)

for j, k = 1, . . . ,K0, where M = maxMj , N = maxNj for j = 1, . . . ,K0;

Create a set E = {ej,k, j, k = 1, . . . ,K0}. ej,k is 1 if Sj and Sk are connected, and is

0 if not;

Create a set d = ∅;

for r = 1, . . . ,K0 − 1 do

Find a pair of j, k such that ej,k = 1, and δj,k is the smallest value in PD, let

P r+1
j = P r+1

k = P r
j ∪ P r

k , P
r+1
l = P r

l for l ̸= j, k;

Eliminate δj,k and δk,j from PD;

Add dr = δj,k to d;

For all P r
i containing regions connected to some regions in Pj or Pk, set ei′,j′ ,

ej′,i′ , ei′,k′ , ek′,i′ to be 1 for all i′, j′, k′ such that Si′ ∈ P r
i , Sj′ ∈ P r

j , Sk′ ∈ P r
k ;

end

Create a dendrogram to visualize the clustering results, where each leaf node is a

region in the initial partition, and the merge at step r happens when the height

axis takes the value dr;

Create a scree plot by plotting dr against r;
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In this algorithm, the connected regions are merged based on a similarity measure-

ment determined by the average difference in spectral density. This merging can be

visualized by a dendogram. The appropriate number of cluster is chosen using the knee of

a scree plot.

Another more objective way of choosing the number of clusters is using the gap statistic

as defined in Tibshirani et al. (2001). However we need to modify the original definition

proposed by Tibshirani et al. (2001) where we treat the sub-regions from the initial

partition as observations. Other forms of the gap statistics such as Mohajer et al. (2010)

can also be used. Once we have the cluster dendogram we use the following algorithm to

choose the number of clusters. The dendogram is then cut accordingly to produce the final

partition.
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Algorithm 4: Gap statistics

Result: K clusters to retain

Let U r = {U r
l , l = 1, . . . , r} be the set of unique elements in PK0−r+1;

for r = 1, . . . ,K0 do

Calculate Wr =
∑r

l=1
1

2|Ur
l |
Dl, where Dl =

∑
j,k s.t. Sj ,Sk∈Ur

l
δj,k;

Calculate the gap statistics:

Gap(r) = E∗
B

(
log(W b

r )
)
− log(Wr) =

1

B

∑
b=1,...,B

log(W b
r )− log(Wr),

where E∗
B

(
log(W b

r )
)
is the average of B copies log(W b

r ), each of which is

computed from a Monte Carlo sample I1, . . . , IK0 drawn from the reference

distribution;

Calculate sdr =
[
1
B

∑
b=1,...,B[log(W

b
r )− E∗

B

(
log(W b

r )
)
]2
]1/2

and define

sr = sdr

√
1 + 1

B ;

end

Choose the number of clusters K to be

K = smallest r s.t. GD(r) = Gap(r)−Gap(r + 1) + sr+1 ≥ 0;

To generate I1, . . . , IK0 , we follow the following steps. Let X to be a K0 × J ma-

trix, where J = MN . The entries Xk,j has the value IGk
(λj), where λj is the jth element

in ΛM,N,∆,ω1,ω2 . Let Y be the normalized X by subtracting the column mean X̄ from each

column. Then we compute the singular value decomposition Y = UDV T . Let Y ′ = Y V ,

and then draw I ′ uniformly over the ranges of the columns of Y ′. Finally, we compute

I = I ′V T + X̄, and the sample Ik, k = 1, . . . ,K0 in Algorithm 4 is the kth row of I.

38



4.3 Simulation

We investigate the performance of spatial partitioin algorithms in Section 5 in the above

nonstationary scenarios NS1, NS2, NS3, and also

• (NS4) The two sub-fields are separated by a square-shaped boundary in the middle,

and the side length of the boundary is the half of the side length of the whole field.

Both sub-fields are zero-mean Gaussian random fields, with different covariance C1

and C2.

We set M = N = 150, m = n = 32 in all the scenarios.

4.3.1 Rand Index

We generate 100 sets of observations from the non-stationary models NS1, NS2 and NS4

to see how well our method performs on average. We assume we know the correct number

of sub-regions and cut the dendrogram accordingly. To evaluate the performance, we use

the Rand index, which is a measure of the similarity between two cluster assignments. It

takes value in [0, 1], and a value greater than 0.65 means moderate agreement and a value

of 1 means perfect agreement. In each repetition, we compute the rand index between the

true cluster assignment and the cluster assignment given by our algorithm. The averaged

rand index in each scenario is presented in Table 4.1. We can see that when the linear

boundaries are orthogonal to the searching directions, the method picks up the correct

boundaries most of the time. However, in NS2, where the boundary is not orthogonal to

the searching directions, the method can only approximate the true boundary.
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Table 4.1: Rand Index

Scenario M,N m,n Averaged Rand Index

NS1 150 8 0.50
NS2 150 8 0.51
NS4 150 8 0.79
NS1 150 16 0.88
NS2 150 16 0.54
NS4 150 16 0.83
NS1 150 32 1.00
NS2 150 32 0.66
NS4 150 32 0.96

4.3.2 Visualization of Results with One Repitition

In this subsection, we generate one set of observations from each scenarios and visualize

the partition results in Figure 4.1-4.5. The number of sub-regions in the final partitions are

picked manually based on checking the dendrograms. We can see that in the case of abrupt

change, the boundary selected by the proposed method is closed to the correct one. While

in the case of graduate change, our method provides a piecewise stationary approximation

to the original field and the location of the boundaries seems to have the clearest change in

covariance.
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Figure 4.1: S1: Stationary random field with Exp(1, 1) covariance. M = N = 150, m =
n = 32. Critical value U = 0.28. Test statistics T = 0.24. The proposed test fails to reject
H0.
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Figure 4.2: NS1: Nonstationary random field with a boundary in the middle. C1 =
Exp(1, 1), C2 = Exp(3, 1), M = N = 150, m = n = 32. Critical value U = 0.55. Test
statistics T = 3.55. The proposed test rejects H0.
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Figure 4.3: NS2: Nonstationary random field with a boundary in the anti-diagonal direction.
C1 = Exp(1, 1), C2 = Exp(3, 1), M = N = 150, m = n = 32. Critical value U = 0.61. Test
statistics T = 1.28. The proposed test rejects H0.
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Figure 4.4: NS3: Nonstationary random field with a gradually changing covariance CPS .
ρ = M = N = 150, m = n = 32. Critical value U = 0.25. Test statistics T = 0.27. The
proposed test rejects H0.
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Figure 4.5: NS4: Nonstationary random field with a squared shape boundary. C1 =
Exp(1, 1), C2 = Exp(3, 1), M = N = 150, m = n = 32. M = N = 150, m = n = 32.
Critical value U = 0.81. Test statistics T = 1.60. The proposed test rejects H0.
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Chapter 5: Irregular Spaced Data

In the previous chapters, we assume the field Z is observed on a grid. However, regular

spaced data are not always available. Following Section 2.5.2, we assume Z is observed at

I = {sj = (s1j , s
2
j ) ∈ [0, L1]× [0, L2], j = 1, 2, . . . , J}. In this chapter we extend the methods

developed in the previous chapters to handle such irregular spaced data.

5.1 Test for Stationarity

Recall that for observations on a regular grid, our proposed test in Chapter 3 requires

comparing of spectral densities using a moving window method, such that the regions in

comparison (W d1
(s1,s2),m,n,∆ and W d2

(s1,s2),m,n,∆) are the regions covered by a moving m∆×n∆

window placed at one step away from (s1, s2) and just at (s1, s2). The window moves ∆

along direction d each time and it always has an observation at its origin.

For a random field observed over a general set of locations, we analogously define ∆ as

the step size of the moving window. Let M = ⌈L1⌉
∆ , N = ⌈L2⌉

∆ , and we still use a half open

half close window of size m∆ × n∆ as defined in (3.3) and (3.4). A general version of the

periodogram as defined in Section 2.5.2 is given by:

Is1,s2,m,n,∆(λ1, λ2) =
mn∆

(2π)2J2

∣∣∣∣ J∑
j=1

Z(s1j , s
2
j ) exp(−i(s1jλ1 + s2jλ2))

∣∣∣∣2, (5.1)

where J is the number of observations in the region covered by the window. Notice that

when the observations are indeed on a regular grid with spacing ∆, (5.1) is exactly same

as (2.6). With this extended notation, the quantities needed in the rest of the testing

procedures can be written in the same form as in Chapter 3.
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In particular, the horizontal spectral difference statistics for irregular spaced data is

defined as:

D̂h
m,n,∆,ω1,ω2

(s1, s2) =D̂h
m,n,∆,ω1,ω2

(g1, g2)

=
1

mn∆2

∑
(λ1,λ2)∈Λm,n,∆,ω1,ω2

[Ig1−m∆,g2,m,n,∆(λ1, λ2)− Ig1,g2,m,n,∆(λ1, λ2)] ,

(5.2)

where (g1, g2) = (⌈s1⌉, ⌈s2⌉) ∈ {m∆, . . . , (M − m)∆} × {0, . . . , (N − n)∆}. The vertical

spectral difference statistic is similarly defined as:

D̂v
m,n,∆,ω1,ω2

(s1, s2) =D̂v
m,n,∆,ω1,ω2

(g1, g2)

=
1

mn∆2

∑
(λ1,λ2)∈Λm,n,∆,ω1,ω2

[Ig1,g2−n∆,m,n,∆(λ1, λ2)− Ig1,g2,m,n,∆(λ1, λ2)] ,

(5.3)

where (g1, g2) = (⌈s1⌉, ⌈s2⌉) ∈ {0, . . . , (M −m)∆} × {n∆, . . . , (N − n)∆}. The directional

maximal difference statistics T h
M,N,m,n,∆ and T v

M,N,m,n,∆ are:

T h
M,N,m,n,∆ = sup

(s1,s2),ω1,ω2

∣∣∣D̂h
m,n,∆,ω1,ω2

(s1, s2)
∣∣∣ , (5.4)

T v
M,N,m,n,∆ = sup

(s1,s2),ω1,ω2

∣∣∣D̂v
m,n,∆,ω1,ω2

(s1, s2)
∣∣∣ . (5.5)

And the overall maximal difference test statistics is:

T = max
{√

mN∆T h
M,N,m,N,∆,

√
Mn∆T v

M,N,M,n,∆

}
. (5.6)

To conduct the test, we also need the distribution of T . However the asymptotic distri-

bution of this quantity is dependent on the distribution of the points on which the random

field is observed.

In practice, the number of observations J is known, and we need to choose ∆ and m,n.
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The choice of ∆ is difficult, because it controls the window size and the step size. A smaller

value of ∆ leads to a smaller window, so less observations will be available for estimating the

local spectral density and there may exist empty cells. There will also be more comparisons,

which may be computationally expensive. A bigger window, however, may miss the local

variation and the variation around the boarders. The choice of m,n faces a similar trade-off.

In addition, the computation is much slower in this case, because we cannot make use of

the fast Fourier transformation to calculate the periodogram.

We investigate the performance of the test by two simulations. In both scenarios, the

locations are i.i.d from a two dimensional uniform distribution Uniform[0, 20)× [0, 20). The

step size ∆ is chosen to be 1. The testing procedure follows Algorithm 1. Since we have

not derived the asymptotic distribution yet, we generate the critical values Uh, Uv, Umax by

assuming the observations are on a regular grid with spacing ∆.

In S1 (see Table 5.1), the underlying field is stationary, so the rejection rates reflect the

size of the test. We observe that as observations get denser (increasing J), or the window

gets larger (increasing m,n), the rejection rates reduce. However, comparing the results

with the regular spaced data case (S1 in Table 3.1), the type I error seems to be much higher

in this case. This is not surprising due to the wrong specification of the null distribution.

The scenario NS1 here is similar to NS1 in Chapter 3. The power of the test is reflected

by the rejection rate in Table 5.2, which indicates the test has a high power in this case

as the null hypothesis is rejected in all the 1,000 repetitions using level α = 0.05. The

decreasing type I error and high power indicates a similar rate of convergence as the regular

grid case, however the results suggest the asymptotic distribution is probably different than

the one derived in Theorem 3.2.1.
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Table 5.1: Stationary scenarios

Scenario Model Covariance Model M, N J m, n RR H RR V RR Max

1 S1 Exp(1, 1) 20 400 2 0.97 0.97 0.99
2 S1 Exp(1, 1) 20 1600 2 0.44 0.42 0.64
3 S1 Exp(1, 1) 20 6400 2 0.16 0.15 0.28
4 S1 Exp(1, 1) 20 400 4 0.93 0.93 0.98
5 S1 Exp(1, 1) 20 1600 4 0.34 0.38 0.54
6 S1 Exp(1, 1) 20 6400 4 0.13 0.14 0.24
7 S1 Exp(1, 1) 20 400 8 0.82 0.80 0.95
8 S1 Exp(1, 1) 20 1600 8 0.29 0.29 0.44
9 S1 Exp(1, 1) 20 6400 8 0.11 0.12 0.20

Table 5.2: Nonstationary scenarios

Scenario Model Covariance Model M, N J m, n RR H RR V RR Max

1 NS1 C1 = Exp(1, 1), C2 = Exp(3, 1) 20 400 2 1.00 1.00 1.00
2 NS1 C1 = Exp(1, 1), C2 = Exp(3, 1) 20 1600 2 1.00 1.00 1.00
3 NS1 C1 = Exp(1, 1), C2 = Exp(3, 1) 20 6400 2 1.00 1.00 1.00
4 NS1 C1 = Exp(1, 1), C2 = Exp(3, 1) 20 400 4 1.00 1.00 1.00
5 NS1 C1 = Exp(1, 1), C2 = Exp(3, 1) 20 1600 4 1.00 1.00 1.00
6 NS1 C1 = Exp(1, 1), C2 = Exp(3, 1) 20 6400 4 1.00 1.00 1.00
7 NS1 C1 = Exp(1, 1), C2 = Exp(3, 1) 20 400 8 1.00 1.00 1.00
8 NS1 C1 = Exp(1, 1), C2 = Exp(3, 1) 20 1600 8 1.00 1.00 1.00
9 NS1 C1 = Exp(1, 1), C2 = Exp(3, 1) 20 6400 8 1.00 1.00 1.00
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Chapter 6: Applications

To illustrate our methods, we apply them to two datasets. Both datasets consist of regular-

spaced data, and are publicly available online.

6.1 ERA5 Wind Data

The first dataset is from the ERA5 climate dataset (Hersbach et al. (2018)). In specific, we

consider the hourly data of the V-component of the wind (horizontal speed of air moving

towards the north, in metres per second) at the pressure level 300 hPa in December 2019

from the geographical region over 150◦W-180◦W in longitude, 60◦N-30◦S in latitude. The V-

component of the wind, also known as the meridional flow is associated with more amplified

troughs and ridges than the zonal flow (air moving towards east), and is indicative of the

pole-ward transport of heat and the equator-ward transport of cold air. The more amplified

the troughs and ridges are (i.e., the more meridional the flow is), the more extreme the

associated weather tends to be. For example, heat waves and droughts typically occur under

amplified upper-tropospheric ridges, while cold air outbreaks, clouds, and precipitation are

frequently associated with various sectors of strong troughs. Understanding the meridional

wind on this region help predict the occurrence and strength of El-Nino over Pacific coast.

In this analysis we retain the observations on each day at 12:00 PM and take the average,

so at each location we only have up to one averaged value. There are 121×361 observations,

and the adjacent observations are 0.25 degree away in longitude or latitude. We estimate

the mean of the data using two linear models. Model 1 only has an intercept term, so

the residuals are the demeaned averaged hourly wind data. In model 2, the longitude and

latitude are included as independent variables. The residuals from the models are visualized

in Figure 6.1.
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The mean structure of the field for the demeaned data seems to be nonstationary. The

value is higher in the region close to Alaska, and there is a region around Hawaii where

the value is lower. The inclusion of longitude and latitude in model 2 does not remove the

trend. The covariance structure also seems to be nonstationary, as the values appear to be

more homogeneous in the regions close to Alaska and Hawaii. We use our proposed method

to test for stationarity over the entire region, with m = n = 16 and m = 16, n = 32. The

null hypothesis is rejected in both cases. When m = n = 16, T = 10.51, Umax = 7.01,

p-value is 0.00. When m = 16, n = 32, T = 25.97, Umax = 7.15, p-value is 0.00.

We then plot the disparity map of the residual process from the model 1, using

m = n = 8 and m = n = 16. The disparity map indicates a difference between the land

and ocean regions. The disparity maps and the initial partition using m = n = 16 and

m = 16, n = 32 are presented in Figure 6.2.
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Figure 6.1: ERA5 Wind Data
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The final partition results are presented in Figure 6.3 and Figure 6.4. The gap statistics

and the scree plot suggest there are 8 sub-fields when m = n = 16 and 4 sub-fields when

m = 16, n = 32. In the 4 region partition, two of these regions correspond to areas around

Alaska (partition 4) and Hawaii (partition 2). The other two regions (1 and 3) are over the

Pacific ocean. While region 1 covers the largest ares, region 3 corresponds to the middle-left

of the region showing a distinct behavior in our disparity map.

6.2 UCAR US Precipitation Data

As another example, we use the precipitation data from https://www.image.ucar.edu/Data/

US.monthly.met/ as in Fuglstad et al. (2015). More specifically, we use the annual precip-

itation data measured in millimeters over a regular grid, such that adjacent observations

are 0.25 degree away in longitude or latitude. The region we study is defined over 91.75◦W-

120◦W in longitude, and 35◦N-48◦N in latitude. This area stretches across the mid-west

to west part of the USA. The data contains 113× 53 observations in total. Fuglstad et al.

(2015) showed that a piecewise stationary field (STAT2 in the paper) such that the two

stationary sub-fields are separated by a boundary at 100◦W could be a good alternative to

more flexible but complicated nonstationary models. This boundary is selected because it

is roughly the boundary between the mountainous area in the west and the plain area in

the east. We are interested in whether our method supports this partition.

We estimate the mean using two linear models. Model 1 only has an intercept term, so

the residuals are the demeaned annual precipitation data. Model 2 includes elevation as an

independent variable. The original data and the residuals from the models are visualized

in Figure 6.5.

A visual inspection of the plot of the residual process indicates a smooth variation of the

random field across the eastern region, and a more abrupt variation over the mountainous

area in the west. This strongly suggests the need of a non-stationary covariance. We

test the hypothesis of stationarity for both the residual fields using m = n = 16 and the

null hypothesis is rejected in both cases. For the residuals from model 1, T = 145.51,

52

https://www.image.ucar.edu/Data/US.monthly.met/
https://www.image.ucar.edu/Data/US.monthly.met/


Umax = 19.76, p-value is 0.00. For the residuals from model 2, T = 106.57, Umax = 17.43,

p-value is 0.00. These results support our observation from the field plot of the residual

processes.

Next we plot the disparity map for the residuals from model 1. We use m = n = 8

and m = n = 16 to construct these plots. These plots show a possible break in the north-

west and another in south-east region. The disparity maps and the initial partition of the

residual fields from both models are presented in Figure 6.6.

The final partition of the two residual fields whenm = n = 16 are presented in Figure 6.7

and 6.8. The numbers of sub-regions are chosen to be 4 as suggested by the gap statistics

or the scree plot. We note that the our method not only suggests a boundary around

96◦W, which supports the choice for STAT2 in Fuglstad et al. (2015), but also suggests two

additional stationary sub-fields in the residual fields.
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Figure 6.2: Disparity maps and the initial partitions

54



38
36

214303

34 37 2422272632292325 28 3531 33 1012 13 181158166917 7 151920 21

1 4

0.
0

0.
1

0.
2

0.
3

0.
4

Cluster Dendrogram

H
ei

gh
t

(a) Dendrogram

0.0

0.3

0.6

0.9

1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930313233343536
Numer of clusters r

G
D

(r
)

(b) Gap statistics difference curve

0.0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 910111213141516171819202122232425262728293031323334353637
Numer of clusters r

d

(c) Scree plot

−20

0

20

40

60

−180 −170 −160 −150
lon

la
t

1

2

3

4

5

6

7

8

(d) Final partition

Figure 6.3: Partition results for the demeaned data when m = n = 16

55



11

15

4

1412

65

10 13 2

3 9

1

7 80.
00

0.
05

0.
10

0.
15

0.
20

Cluster Dendrogram

H
ei

gh
t

(a) Dendrogram

−0.5

0.0

0.5

1 2 3 4 5 6 7 8 9 10 11 12 13
Numer of clusters r

G
D

(r
)

(b) Gap statistics difference curve

0.00

0.05

0.10

0.15

0.20

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Numer of clusters r

d

(c) Scree plot

−20

0

20

40

60

−180 −170 −160 −150
lon

la
t

1

2

3

4

(d) Final partition

Figure 6.4: Partition results for the demeaned data when m = 16, n = 32

56



35.0

37.5

40.0

42.5

45.0

47.5

−120 −110 −100
lon

la
t

1

2

3

4

(a) Precipitation

35.0

37.5

40.0

42.5

45.0

47.5

−120 −110 −100
lon

la
t

0

2500

5000

7500

10000

12500

(b) Elevation

35.0

37.5

40.0

42.5

45.0

47.5

−120 −110 −100
lon

la
t

0

25

50

(c) Residuals from model 1

35.0

37.5

40.0

42.5

45.0

47.5

−120 −110 −100
lon

la
t

0

25

50

(d) Residuals from model 2

Figure 6.5: UCAR US precipitation data

57



35.0

37.5

40.0

42.5

45.0

47.5

−120 −110 −100
lon

la
t

2.5

5.0

7.5

10.0

12.5

(a) Disparity map when m = n = 8

35.0

37.5

40.0

42.5

45.0

47.5

−120 −110 −100
lon

la
t

2.5

5.0

7.5

(b) Disparity map when m = n = 16

35.0

37.5

40.0

42.5

45.0

47.5

−120 −110 −100
lon

la
t

1

2

3

4

5

6

7

(c) Initial partition of the demeaned field
when m = n = 16

35.0

37.5

40.0

42.5

45.0

47.5

−120 −110 −100
lon

la
t

1

2

3

4

5

6

7

8

9

10

11

12

13

(d) Initial partition of the residual field from
model 2 when m = n = 16

Figure 6.6: Disparity maps and the initial partitions

58



731

6

52 4

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Cluster Dendrogram

H
ei

gh
t

(a) Dendrogram

−0.2

0.0

0.2

1 2 3 4 5
Numer of clusters r

G
D

(r
)

(b) Gap statistics difference curve

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6
Numer of clusters r

d

(c) Scree plot

35.0

37.5

40.0

42.5

45.0

47.5

−120 −110 −100
lon

la
t

1

2

3

4

(d) Final partition

Figure 6.7: Partition results for the demeaned data when m = n = 16

59



12

31

87

2 4 5 6 910

11 13

0
2

4
6

Cluster Dendrogram

H
ei

gh
t

(a) Dendrogram

−0.8

−0.6

−0.4

−0.2

0.0

1 2 3 4 5 6 7 8 9 10 11
Numer of clusters r

G
D

(r
)

(b) Gap statistics difference curve

0

2

4

6

1 2 3 4 5 6 7 8 9 10 11 12
Numer of clusters r

d

(c) Scree plot

35.0

37.5

40.0

42.5

45.0

47.5

−120 −110 −100
lon

la
t

1

2

3

4

(d) Final partition
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Chapter 7: Conclusion and Future Work

In this work, we have proposed a method for testing stationarity and understanding the

nature of non-stationarity present in spatial data observed over a grid. We further provide a

method to find a piece-wise stationary approximation using linear boundaries. Our proposed

partition methodology is the first in the literature that does not require a prior selection.

We adopt some structural break ideas from time series literature, but adopt it in a 2-

dimensional spatial field, and provide a computationally efficient implementation of the

proposed methodology.

As an extension of this work, we plan to use this disparity map and spectral difference

process to construct more general partition using Voronoi tessellation method. This requires

deciding the number of centers and a distance measure within every location. We can use

the disparity map to choose the center locations and use a modified version of this spectral

difference measure to assess the distance. This will provide us with a non-linear boundary

for the homogeneous regions.

We also explored the same questions from spatial data observed on a general set of

irregularly spaced point. Our simulations indicate the usefulness of the spectral difference

statistic and a strong possibility of extending this methodology in this set-up possibly with a

different asymptotic distribution. We plan to derive rigorous characterization of the spectral

density process to properly extend the test for stationarity and partitioning methodology.
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Appendix A: Appendix

A.1 Properties of The Spectral Difference Statistics

A.1.1 Expectation

Under H0, the expectation of the spectral difference statistics at location (g1, g2) is

E
(
D̂h

m,n,∆,ω1,ω2
(g1, g2)

)
=

1

mn∆2
E
( ∑

(λ1,λ2)∈Λm,n,∆,ω1,ω2

Ig1−m∆,g2,m,n,∆(λ1, λ2)− Ig1,g2,m,n∆(λ1, λ2)
)

=
1

mn∆2

∆2

(2π)2mn
E
( ∑

(λ1,λ2)∈Λm,n,∆,ω1,ω2

∣∣∣m−1∑
p=0

n−1∑
q=0

Z(g1 +∆(p−m), g2 +∆q)exp(−i∆(pλ1 + qλ2))
∣∣∣2

−
∣∣∣m−1∑
p=0

n−1∑
q=0

Z(g1 +∆p, g2 +∆q)exp(−i∆(pλ1 + qλ2))
∣∣∣2)

=
1

mn∆2

∆2

(2π)2mn

∑
(λ1,λ2)∈Λm,n,∆,ω1,ω2

E
(∣∣∣m−1∑

p=0

n−1∑
q=0

Z(g1 +∆(p−m), g2 +∆q)exp(−i∆(pλ1 + qλ2))
∣∣∣2

−
∣∣∣m−1∑
p=0

n−1∑
q=0

Z(g1 +∆p, g2 +∆q)exp(−i∆(pλ1 + qλ2))
∣∣∣2)

=
1

mn∆2

∆2

(2π)2mn

∑
(λ1,λ2)∈Λm,n,∆,ω1,ω2

E
(
A−B

)
,

where

A =
∣∣∣m−1∑
p=0

n−1∑
q=0

Z(g1 +∆(p−m), g2 +∆q)exp(−i∆(pλ1 + qλ2))
∣∣∣2

=

m−1∑
p=0

n−1∑
q=0

m−1∑
p′=0

n−1∑
q′=0

Z(g1 +∆(p−m), g2 +∆q)Z(g1 +∆(p′ −m), g2 +∆q′)
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exp(−i∆[(p− p′)λ1 + (q − q′)λ2]),

and

B =
∣∣∣m−1∑
p=0

n−1∑
q=0

Z(g1 +∆p, g2 +∆q)exp(−i∆(pλ1 + qλ2))
∣∣∣2

=

m−1∑
p=0

n−1∑
q=0

m−1∑
p′=0

n−1∑
q′=0

Z(g1 +∆p, g2 +∆q)Z(g1 +∆p′, g2 +∆q′)

exp(−i∆[(p− p′)λ1 + (q − q′)λ2]).

Then we have

E
(
A
)

=E
(m−1∑

p=0

n−1∑
q=0

m−1∑
p′=0

n−1∑
q′=0

Z(g1 +∆(p−m), g2 +∆q)Z(g1 +∆(p′ −m), g2 +∆q′)

exp(−i∆[(p− p′)λ1 + (q − q′)λ2])
)

=
m−1∑
p=0

n−1∑
q=0

m−1∑
p′=0

n−1∑
q′=0

exp(−i∆[(p− p′)λ1 + (q − q′)λ2])

E
(
Z(g1 +∆(p−m), g2 +∆q)Z(g1 +∆(p′ −m), g2 +∆q′)

)
,

where

E
(
Z(g1 +∆(p−m), g2 +∆q)Z(g1 +∆(p′ −m), g2 +∆q′)

)

=


V ar(Z(g1, g2)), if p = p′, q = q′,

C(h1, h2), if p− p′ = h1, q − q′ = h2.

We also have

E
(
B
)
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=E
(∣∣∣m−1∑

p=0

n−1∑
q=0

Z(g1 +∆p, g2 +∆q)exp(−i∆(pλ1 + qλ2))
∣∣∣2)

=E
(m−1∑

p=0

n−1∑
q=0

m−1∑
p′=0

n−1∑
q′=0

Z(g1 +∆p, g2 +∆q)Z(g1 +∆p′, g2 +∆q′)

exp(−i∆[(p− p′)λ1 + (q − q′)λ2])
)

=
m−1∑
p=0

n−1∑
q=0

m−1∑
p′=0

n−1∑
q′=0

exp(−i∆[(p− p′)λ1 + (q − q′)λ2])

E
(
Z(g1 +∆p, g2 +∆q)Z(g1 +∆p′, g2 +∆q′)

)
,

where

E
(
Z(g1 +∆p, g2 +∆q)Z(g1 +∆p′, g2 +∆q′)

)

=


V ar(Z(g1, g2)), if p = p′, q = q′,

C(h1, h2), if p− p′ = h1, q − q′ = h2.

Therefore

E
(
D̂h

m,n,∆,ω1,ω2
(g1, g2)

)
= 0. (A.1)

Similarly we have

E
(
D̂v

m,n,∆,ω1,ω2
(g1, g2)

)
= 0. (A.2)

A.1.2 Asymptotic Covariance

Cov
(
D̂h

m,n,∆,ω1,ω2
(g1, g2), D̂

h
m,n,∆,ω′

1,ω
′
2
(g′1, g

′
2)
)

=
1

m2n2∆4
Cov

( ∑
(λ1,λ2)∈Λm,n,∆,ω1,ω2

Ig1−m∆,g2,m,n,∆(λ1, λ2)− Ig1,g2,m,n,∆(λ1, λ2),
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∑
(λ1,λ2)∈Λm,n,∆,ω′

1,ω
′
2

Ig′1−m∆,g′2,m,n,∆(λ1, λ2)− Ig′1,g′2,m,n,∆(λ1, λ2)
)

=
1

m2n2∆4
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′
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− Cov
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1

m2n2∆4
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(λ1,λ2)∈Λm,n,∆,ω1,ω2

∑
(λ1,λ2)∈Λm,n,∆,ω′

1,ω
′
2

A−B − C +D

=∗,

Using the expression of the spatially varying periodogram in (3.1) and using linearity of

covariance, along with the formula

Cov(AB,CD) = Cov(A,C)Cov(B,D) + Cov(A,D)Cov(B,C)

from Theorem 2.3.2 from Brillinger, 1981 we have

A =Cov
(
Ig1−m∆,g2,m,n,∆(λ1, λ2), Ig′1−m∆,g′2,m,n,∆(λ

′
1, λ

′
2)
)

=
∆4

(2π)4m2n2

[m−1∑
p=0

n−1∑
q=0

m−1∑
p′=0

n−1∑
q′=0

C(g1 − g′1 +∆(p− p′), g2 − g′2 +∆(q − q′))

exp(−i∆[(p+ p′)λ1 + (q + q′)λ2])×
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n−1∑
q′=0
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and D = A. C(h1, h2) := Cov(Z(s1, s2), Z(s1 + h1, s2 + h2)) Note that we assume λ1 = λ′
1

and λ2 = λ′
2 because the periodogram at different frequencies are asymptotically uncorre-

lated. The fourth order cumulants cum4 are asymptotically negligible. Then for large m,n,

we have
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1),min(ω2,ω

′
2)

[

2
∣∣∣ ∑
p,q,p′,q′

C(g1 − g′1 +∆(p− p′), g2 − g′2 +∆(q − q′))exp(−i∆[(p+ p′)λ1 + (q + q′)λ2])
∣∣∣2

+2
∣∣∣ ∑
p,q,p′,q′

C(g1 − g′1 +∆(p− p′), g2 − g′2 +∆(q − q′))exp(−i∆[(p− p′)λ1 + (q − q′)λ2])
∣∣∣2
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−
∣∣∣ ∑
p,q,p′,q′

C(g1 − g′1 +∆(p− p′ −m), g2 − g′2 +∆(q − q′))exp(−i∆[(p+ p′)λ1 + (q + q′)λ2])
∣∣∣2

−
∣∣∣ ∑
p,q,p′,q′

C(g1 − g′1 +∆(p− p′ −m), g2 − g′2 +∆(q − q′))exp(−i∆[(p− p′)λ1 + (q − q′)λ2])
∣∣∣2

−
∣∣∣ ∑
p,q,p′,q′

C(g1 − g′1 +∆(p− p′ +m), g2 − g′2 +∆(q − q′))exp(−i∆[(p+ p′)λ1 + (q + q′)λ2])
∣∣∣2

−
∣∣∣ ∑
p,q,p′,q′

C(g1 − g′1 +∆(p− p′ +m), g2 − g′2 +∆(q − q′))exp(−i∆[(p− p′)λ1 + (q − q′)λ2])
∣∣∣2]

(A.3)

Note that each |.|2 terms can be further decomposed. For example

∣∣∣ ∑
p,q,p′,q′

C(g1 − g′1 +∆(p− p′), g2 − g′2 +∆(q − q′))exp(−i∆[(p+ p′)λ1 + (q + q′)λ2])
∣∣∣2

=
∑

p,q,p′,q′

C2(g1 − g′1 +∆(p− p′), g2 − g′2 +∆(q − q′)) +
∑

(p,q,p′,q′ )̸=(r,s,r′s′)

C(g1 − g′1 +∆(p− p′), g2 − g′2 +∆(q − q′))C(g1 − g′1 +∆(r − r′), g2 − g′2 +∆(s− s′))

exp(−i∆(p+ p′ − r′ − r)λ1) exp(−i∆(q + q′ − s′ − s)λ2)

In the second sum we must have either p+ p′ ̸= r + r′ or q + q′ ̸= s+ s′. Consider the

set of terms where p+ p′ ̸= r + r′ and s+ s′ ̸= q + q′. For those terms we have∑
p,q,h1,h2,r,s,h3,h4

C(g1 − g′1 +∆h1, g2 − g′2 +∆h2)C(g1 − g′1 +∆h3, g2 − g′2 +∆h4)

× exp(−i∆(2p− h1 − 2r + h3)λ1) exp(−i∆(2q − h2 − 2s+ h4)λ2)

Note that with our choice of λ1 and λ2 we have

∑
p,r

exp(−i∆(2p− 2r)λ1) =

∣∣∣∣∣∑
k

exp(−i2∆kλ1)

∣∣∣∣∣
2

= 0.
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Thus this term does not have any contribution. Similarly, the terms where only one of

p+ p′ ̸= r + r′ and s+ s′ ̸= q + q′ holds will also be zero.

All other terms can be simplified similarly. Further using our weak dependence condition

we can argue that the last 4 terms will be asymptotically negligible as m,n → ∞. Thus we

get the final covariance expression

Ch,h
ω1,ω2,ω′

1,ω
′
2

(
(g1, g2), (g

′
1, g

′
2)
)
=8min(ω1, ω

′
1),min(ω2, ω

′
2)

×
∫ ∞

0

∫ ∞

0
C2(g1 − g′2 + h1, g2 − g′2 + h2)dh1dh2 (A.4)

Similarly we have,

Cov
(
D̂v

m,n,∆,ω1,ω2
(g1, g2), D̂

v
m,n,∆,ω′

1,ω
′
2
(g′1, g

′
2)
)

=
∆4

(2π)4m4n4

∑
(λ1,λ2)∈Λm,n,∆,min(ω1,ω

′
1),min(ω2,ω

′
2)

[

2
∣∣∣ ∑
p,q,p′,q′

C(g1 − g′1 +∆(p− p′), g2 − g′2 +∆(q − q′))exp(−i∆[(p+ p′)λ1 + (q + q′)λ2])
∣∣∣2

+2
∣∣∣ ∑
p,q,p′,q′

C(g1 − g′1 +∆(p− p′), g2 − g′2 +∆(q − q′))exp(−i∆[(p− p′)λ1 + (q − q′)λ2])
∣∣∣2

−
∣∣∣ ∑
p,q,p′,q′

C(g1 − g′1 +∆(p− p′), g2 − g′2 +∆(q − q′ − n))exp(−i∆[(p+ p′)λ1 + (q + q′)λ2])
∣∣∣2

−
∣∣∣ ∑
p,q,p′,q′

C(g1 − g′1 +∆(p− p′), g2 − g′2 +∆(q − q′ − n))exp(−i∆[(p− p′)λ1 + (q − q′)λ2])
∣∣∣2

−
∣∣∣ ∑
p,q,p′,q′

C(g1 − g′1 +∆(p− p′), g2 − g′2 +∆(q − q′ + n))exp(−i∆[(p+ p′)λ1 + (q + q′)λ2])
∣∣∣2
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−
∣∣∣ ∑
p,q,p′,q′

C(g1 − g′1 +∆(p− p′), g2 − g′2 +∆(q − q′ + n))exp(−i∆[(p− p′)λ1 + (q − q′)λ2])
∣∣∣2]

(A.5)

and

Cov
(
D̂h

m,n,∆,ω1,ω2
(g1, g2), D̂

v
m,n,∆,ω′

1,ω
′
2
(g′1, g

′
2)
)

=
∆4

(2π)4m4n4

∑
(λ1,λ2)∈Λm,n,∆,min(ω1,ω

′
1),min(ω2,ω

′
2)

[

2
∣∣∣ ∑
p,q,p′,q′

C(g1 − g′1 +∆(p− p′), g2 − g′2 +∆(q − q′))exp(−i∆[(p+ p′)λ1 + (q + q′)λ2])
∣∣∣2

+2
∣∣∣ ∑
p,q,p′,q′

C(g1 − g′1 +∆(p− p′), g2 − g′2 +∆(q − q′))exp(−i∆[(p− p′)λ1 + (q − q′)λ2])
∣∣∣2

−
∣∣∣ ∑
p,q,p′,q′

C(g1 − g′1 +∆(p− p′ +m), g2 − g′2 +∆(q − q′ − n))exp(−i∆[(p+ p′)λ1 + (q + q′)λ2])
∣∣∣2

−
∣∣∣ ∑
p,q,p′,q′

C(g1 − g′1 +∆(p− p′ −m), g2 − g′2 +∆(q − q′ − n))exp(−i∆[(p− p′)λ1 + (q − q′)λ2])
∣∣∣2

−
∣∣∣ ∑
p,q,p′,q′

C(g1 − g′1 +∆(p− p′), g2 − g′2 +∆(q − q′ + n))exp(−i∆[(p+ p′ −m)λ1 + (q + q′)λ2])
∣∣∣2

−
∣∣∣ ∑
p,q,p′,q′

C(g1 − g′1 +∆(p− p′ +m), g2 − g′2 +∆(q − q′ + n))exp(−i∆[(p− p′)λ1 + (q − q′)λ2])
∣∣∣2]

(A.6)

Thus we have for h1, h2 ∈ {h, v}, ω1, ω
′
1, ω2, ω

′
2 ∈ [0, 1] and (s1, s2), (s

′
1, s

′
2) ∈ S, we have

Cd1,d2
ω1,ω2,ω′

1,ω
′
2

(
(s1, s2), (s

′
1, s

′
2)
)
=8min(ω1, ω

′
1),min(ω2, ω

′
2)

×
∫ ∞

0

∫ ∞

0
C2(s1 − s′2 + h1, s2 − s′2 + h2)dh1dh2 (A.7)
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Remark A.1.1. We note that

• In finite sample the two difference components are positively correlated, and as m,n →

∞ this correlation converges to 1. This is only valid, when the underlying random field

is stationary.

• The correlation structure is separable in ω1,ω2and (s1, s2).

• The correlation between the statistics at different locations decreases as the locations

gets further apart, i.e., as g1 − g′1 or g2 − g′2 increases.

• The correlation has a marginal Brownian Motion like structure in both ω1 and ω2.

71



A.1.3 Higher Order Cumulants

First note that

Z̃g1,g2,m,n,∆(λ1, λ2) =
∆

2π
√
mn

m−1∑
p=0

n−1∑
q=0

Z(g1 +∆p, g2 +∆q) exp(−i∆(pλ1 + qλ2)).

Then the joint cumulant is

cum(Z̃g1,g2,m,n,∆(λ
1
1, λ

2
1), . . . , Z̃g1,g2,m,n,∆(λ

1
l , λ

2
l ))

=

(
∆

2π
√
mn

)l

cum

m−1∑
p1=0

n−1∑
q1=0

Z(g11 +∆p1, g
2
1 +∆q1) exp(−i∆(λ1

1p1 + λ2
1q1)), . . . ,

m−1∑
pl=0

n−1∑
ql=0

Z(g1l +∆pl, g
2
l +∆ql) exp(−i∆(λ1

l pl + λ2
l ql))



=

(
∆

2π
√
mn

)l m−1∑
p1=0

n−1∑
q1=0

· · ·
m−1∑
pl=0

n−1∑
ql=0

cum(Z(g11 +∆p1, g
2
1 +∆q1) exp(−i∆(λ1

1p1 + λ2
1q1)), . . . ,

Z(g1l +∆pl, g
2
l +∆ql) exp(−i∆(λ1

l pl + λ2
l ql)))

=

(
∆

2π
√
mn

)l m−1∑
p1=0

n−1∑
q1=0

· · ·
m−1∑
pl=0

n−1∑
ql=0

cum(Z(g1 +∆p1, g2 +∆q1), . . . , Z(g1 +∆pl, g2 +∆ql))×

exp(−i∆[λ1
1p1 + · · ·+ λ1

l pl + λ2
1q1 + · · ·+ λ2

l ql])

let pm = pl + um, qm = ql + vm for m = 1, . . . , l − 1

=

(
∆

2π
√
mn

)l n−1∑
u1=−n+1

n−1∑
v1=−n+1

· · ·
n−1∑

ul−1=−n+1

n−1∑
vl−1=−n+1

∑
pl

∑
ql

cum(Z(g1 +∆(pl + u1), g2 +∆(ql + v1)), . . . ,

Z(g1 +∆(pl + ul−1), g2 +∆(ql + vl−1)), Z(g1 +∆pl, g2 +∆ql))×
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exp(−i∆[λ1
1u1 + · · ·+ λ1

l−1ul−1 + λ2
1v1 + · · ·+ λ2

l−1vl−1]) exp

(
−i∆

[
pl

l∑
m=1

λ1
m + ql

l∑
m=1

λ2
m

])

=

(
∆

2π
√
mn

)l n−1∑
u1=−n+1

n−1∑
v1=−n+1

· · ·
n−1∑

ul−1=−n+1

n−1∑
vl−1=−n+1

cum(Z(g1 +∆(pl + u1), g2 +∆(ql + v1)), . . . , Z(g1 +∆(pl + ul−1), g2 +∆(ql + vl−1)),

Z(g1 +∆pl, g2 +∆ql)) exp(−i∆[λ1
1u1 + · · ·+ λ1

l−1ul−1 + λ2
1v1 + · · ·+ λ2

l vl−1])×

∑
pl

∑
ql

exp

(
−i∆

[
pl

l∑
m=1

λ1
m + ql

l∑
m=1

λ2
m

])

=
∆

2π
√
mn

fg1,g2(λ
1
1, λ

2
1, . . . , λ

1
l−1, λ

2
l−1)

∑
pl

∑
ql

exp

(
−i∆

[
pl

l∑
m=1

λ1
m + ql

l∑
m=1

λ2
m

])

The last expression can be simplified as

∆

2π
√
mn

fg1,g2(λ
1
1, λ

2
1, . . . , λ

1
l−1, λ

2
l−1)∆

(
l∑

m=1

λ1
m

)
∆

(
l∑

m=1

λ2
m

)
(A.8)

where ∆(ω) =
∑n

k=1 exp(−iω∆k). Note that ∆(ω) is 0 unless ω = 0 mod 2π. If ω is of

the form 2πk then ∆(ω) = n.

We then want to show for d1, . . . , dl ∈ {h, v}

cum

(√
mn∆D̂d1

m,n,∆,ω
(1)
1 ,ω

(1)
2

(g1), . . . ,
√
mn∆D̂dl

m,n,∆,ω
(l)
1 ,ω

(l)
2

(gl

)
= o(1).

Without loss of generality assume d1 = d2 = · · · = dl = h. We write

cum

(√
mn∆D̂h

m,n,∆,ω
(1)
1 ,ω

(1)
2

(g1), . . . ,
√
mn∆D̂h

m,n,∆,ω
(l)
1 ,ω

(l)
2

(gl)

)

=
( 1

mn∆2

)l/2
cum(

∑
(λ

(1)
1 ,λ

(1)
2 )∈Λ

m,n,∆,ω
(1)
1 ,ω

(1)
2

I
g
(1)
1 −m∆,g

(1)
2 ,m,n,∆

(λ
(1)
1 , λ

(1)
2 )− I

g
(1)
1 ,g

(1)
2 ,m,n,∆

(λ
(1)
1 , λ

(1)
2 ),
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. . . ,
∑

(λ
(l)
1 ,λ

(l)
2 )∈Λ

m,n,∆,ω
(l)
1 ,ω

(l)
2

I
g
(l)
1 −m∆,g

(l)
2 ,m,n,∆

(λ
(l)
1 , λ

(l)
2 )− I

g
(l)
1 ,g

(l)
2 ,m,n,∆

(λ
(l)
1 , λ

(l)
2 )
)

=

(
1

mn∆2

)l/2 ∑
(λ

(1)
1 ,λ

(1)
2 )∈Λ

m,n,∆,ω
(1)
1 ,ω

(1)
2

· · ·
∑

(λ
(l)
1 ,λ

(l)
2 )∈Λ

m,n,∆,ω
(l)
1 ,ω

(l)
2

cum
(
I
g
(1)
1 −∆m,g

(1)
2 ,m,n,∆

(λ
(1)
1 , λ

(1)
2 )− I

g
(1)
1 ,g

(1)
2 ,m,n,∆

(λ
(1)
1 , λ

(1)
2 ), . . . , I

g
(l)
1 ,g

(l)
1

(λ
(l)
1 , λ

(l)
2 )− Iw

s1
l
,s2
l
,n
(λ

(l)
1 , λ

(l)
2 )
)

=

(
1

mn∆2

)l/2 ∑
(λ

(1)
1 ,λ

(1)
2 )∈Λ

m,n,∆,ω
(1)
1 ,ω

(1)
2

· · ·
∑

(λ
(l)
1 ,λ

(l)
2 )∈Λ

m,n,∆,ω
(l)
1 ,ω

(l)
2

2l∑
i=1

cum(Bi
1, . . . , B

i
l )

where Bi
j is either I

g
(j)
1 −∆m,g

(j)
2 ,m,n,∆

(λ
(j)
1 , λ

(j)
2 ) or −I

g
(j)
1 ,g

(j)
2 ,m,n,∆

(λ
(j)
1 , λ

(j)
2 ).

Since 2l is a finite number, we only need to show(
1

mn∆2

)l/2 ∑
(λ

(1)
1 ,λ

(1)
2 )∈Λ

m,n,∆,ω
(1)
1 ,ω

(1)
2

· · ·
∑

(λ
(l)
1 ,λ

(l)
2 )∈Λ

m,n,∆,ω
(l)
1 ,ω

(l)
2

cum(B1, . . . , Bl) = o(1),

where Bj is either I
g
(j)
1 −∆m,g

(j)
2 ,m,n,∆

(λ
(j)
1 , λ

(j)
2 ) or −I

g
(j)
1 ,g

(j)
2 ,m,n,∆

(λ
(j)
1 , λ

(j)
2 ).

Without loss of generality, we will show(
1

mn∆2

)l/2 ∑
(λ

(1)
1 ,λ

(1)
2 )∈Λ

m,n,∆,ω
(1)
1 ,ω

(1)
2

· · ·
∑

(λ
(l)
1 ,λ

(l)
2 )∈Λ

m,n,∆,ω
(l)
1 ,ω

(l)
2

cum(I
g
(1)
1 −∆m,g

(1)
2

(λ
(1)
1 , λ

(1)
2 ), . . . , I

g
(l)
1 −∆m,g

(l)
2

(λ
(l)
1 , λ

(l)
2 )) = o(1).

Recall that

I
g
(j)
1 −∆m,g

(j)
2 ,m,n,∆

(λ
(j)
1 , λ

(j)
2 ) = Z̃

g
(j)
1 −∆m,g

(j)
2 ,m,n,∆

(λ
(j)
1 , λ

(j)
2 )Z̃

g
(j)
1 −∆m,g

(j)
2 ,m,n,∆

(−λ
(j)
1 ,−λ

(j)
2 ).

Using Theorem 2.3.2 in Brillinger (1981), we have

cum(I
g
(1)
1 −∆m,g

(1)
2

(λ
(1)
1 , λ

(1)
2 ), . . . , I

g
(l)
1 −∆m,g

(l)
2

(λ
(l)
1 , λ

(l)
2 ))
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=
∑
ν

cum(Yαβ : αβ ∈ ν1) · · · cum(Yαβ : αβ ∈ νp),

where Yα1 = Z̃
g
(j)
1 −∆m,g

(j)
2 ,m,n,∆

(λ
(j)
1 , λ

(j)
2 ), Yα2 = Z̃

g
(j)
1 −∆m,g

(j)
2 ,m,n,∆

(−λ
(j)
1 ,−λ

(j)
2 ), and the

sum is over all indecomposable partitions v = v1 ∪ v2 ∪ · · · ∪ vp of

(1, 1) (1, 2)

(2, 1) (2, 2)

...
...

(l, 1) (l, 2)

Then (
1

mn∆2

)l/2 ∑
(λ

(1)
1 ,λ

(1)
2 )∈Λ

m,n,∆,ω
(1)
1 ,ω

(1)
2

· · ·
∑

(λ
(l)
1 ,λ

(l)
2 )∈Λ

m,n,∆,ω
(l)
1 ,ω

(l)
2

cum(I
g
(1)
1 −∆m,g

(1)
2

(λ
(1)
1 , λ

(1)
2 ), . . . , I

g
(l)
1 −∆m,g

(l)
2

(λ
(l)
1 , λ

(l)
2 ))

=

(
1

mn∆2

)l/2 ∑
(λ

(1)
1 ,λ

(1)
2 )∈Λ

m,n,∆,ω
(1)
1 ,ω

(1)
2

· · ·
∑

(λ
(l)
1 ,λ

(l)
2 )∈Λ

m,n,∆,ω
(l)
1 ,ω

(l)
2

∑
ν

cum(Yαβ : αβ ∈ ν1) · · · cum(Yαβ : αβ ∈ νp)

As the underlying random field is Gaussian, all the cumulants of order 3 or higher is zero.

So the only term that have a positive contribution is where all ν1, ν2, . . . , νp contains two

elements, which are mutual conjugate (i.e., (λ1, λ2) has to appear with (−λ1,−λ2). Given

we are only considering indecomposable partition, this can only happen if λ
(1)
1 = λ

(2)
1 =

· · · = λ
(l)
1 and λ

(1)
2 = λ

(2)
2 = · · · = λ

(l)
2 , thus we can ignore the later l − 1 summations

over λ
(k)
j ’s. Using (A.8), each such partition will contribute fg1,g2(λ

(1)
1 , λ

(1)
2 )(mn). Thus last
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expression boils down to

(2l)!(mn)1−l/2f l
g1,g2(λ

(1)
1 , λ

(1)
2 ).

This gives us

cum

(√
mn∆D̂d1

m,n,∆,ω
(1)
1 ,ω

(1)
2

(g1), . . . ,
√
mn∆D̂dl

m,n,∆,ω
(l)
1 ,ω

(l)
2

(gl

)
= (2l)!2l(mn)1−l/2C l,

(A.9)

for some constant C and this proves our assertion.

A.1.4 Proof of (3.10)

To show (3.10), it is enough to show (3.16) and (3.17). The proof of (3.16) is elementary.

To show (3.17) note that by Theorem 2.4 in Dahlhaus, 1988 it is enough to show that∣∣∣cuml

(√
mn∆

(
Am,n,∆(ω

(1)
1 , ω

(1)
2 , s

(1)
1 , s

(1)
2 ), Am,n,∆(ω

(2)
1 , ω

(2)
2 , s

(2)
1 , s

(2)
2 )
))∣∣∣

≤ (2l)!C ldlβ((ω
(1)
1 , ω

(1)
2 , s

(1)
1 , s

(1)
2 ), (ω

(2)
1 , ω

(2)
2 , s

(2)
1 , s

(2)
2 ))

Arguments similar to the cumulant calculations can be reproduced to show that∣∣∣cuml

(√
mn∆

(
Am,n,∆(ω

(1)
1 , ω

(1)
2 , s

(1)
1 , s

(1)
2 ), Am,n,∆(ω

(2)
1 , ω

(2)
2 , s

(2)
1 , s

(2)
2 )
))∣∣∣

≤ (2l)!2lC l(log(mn))l−1(mn)1−l/2

≤ (2l)!2lC l(mn)−l(1/2−1/3−ϵ

for any ϵ > 0. Choose ϵ = 1/6 − β/2. Now the proof is done observing that 1
mn ≤

C∥(ω(1)
1 , ω

(1)
2 , s

(1)
1 , s

(1)
2 )− (ω

(2)
1 , ω

(2)
2 , s

(2)
1 , s

(2)
2 )∥ as long as (ω

(j)
1 , ω

(j)
2 , s

(j)
1 , s

(j)
2 ) for j = 1, 2 are

distict points in P.
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A.2 Behavior of the Spectral Difference Process under Non-

stationarity

When the underlying field is not-stationary we assume a piece-wise stationary structure as

in (2.10) with ∫
[0,∞)2

∥h∥Cij(h)dh < ∞, i, j = 1, 2, . . . ,K. (A.10)

Under this assumption a calculation similar to subsection A.1.1 gives us

E
(
D̂h

m,n,∆,ω1,ω2

)
= Dh

m,n,∆,ω1,ω2

E
(
D̂v

m,n,∆,ω1,ω2

)
= Dv

m,n,∆,ω1,ω2

To this end we state the following result showing consistency of the spectral difference

process.

Lemma A.2.1. Under the assumptions of Theorem 3.4.1 we have

sup
(ω1,ω2)∈[0,1]2,s∈S

√
mn∆

∥∥∥∥∥∥∥
D̂h

m,n,∆,ω1,ω2
−Dh

m,n,∆,ω1,ω2

D̂v
m,n,∆,ω1,ω2

−Dv
m,n,∆,ω1,ω2

∥∥∥∥∥∥∥ = Op(1)

The proof of this result is similar to the proof of Theorem 3.2.1 with some additional

notation.
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A.3 Consistency of the Partition Selection

Let G be the grid on which we observe the field, i.e., G = {0,∆, . . . ,M∆}×{0,∆, . . . , N∆}.

Furthermore define Xh := {x1, x2, . . . , xH} be the set of all X-coordinates of horizontal

boundaries and Yv := {y1, y2, . . . , yV } be the set of all Y -coordinates of vertical boundaries.

Theorem A.3.1. Assume that the assumptions of Theorem 3.2.1 holds. Furthermore, for

all ω1, ω2 ∈ (0, 1) and γ ∈ (0, 0.5] let ϵm,n,ω1,ω2 be a sequence such that ϵm,n,ω1,ω2 = o(Nγ)

and lim infm,n→∞ infω1,ω2∈[0,1] ϵm,n,ω1,ω2 = C > 0 for some constant C. Then the detection

rule describes in Algorithm 2 is accurate in the following sense:

(i) Let Ĩh = G−Xh × {0,∆, . . . , N∆}. Then the probability

P

⋃
s∈Ĩh

(mn)γ sup
(ω1,ω2)

|D̂h
m,n,∆,ω1,ω2

(s)| > ϵm,n,ω1,ω2

→ 0

as m,n,M,N → ∞.

(ii) Let Ĩv = G− {0,∆, . . . ,M∆} × Yh. Then the probability

P

⋃
s∈Ĩv

(mn)γ sup
(ω1,ω2)

|D̂v
m,n,∆,ω1,ω2

(s)| > ϵm,n,ω1,ω2

→ 0

as m,n,M,N → ∞

(iii) The probability that the procedure detects all coordinates breaks converges to one, that

is,

P

 ⋂
Xh×{0,∆,...,N∆}

(mn)γ sup
(ω1,ω2)

|D̂h
m,n,∆,ω1,ω2

(s)| > ϵm,n,ω1,ω2

→ 1

and

P

 ⋂
{0,∆,...,M∆}×Yv

(mn)γ sup
(ω1,ω2)

|D̂v
m,n,∆,ω1,ω2

(s)| > ϵm,n,ω1,ω2

→ 1
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as m,n,M,N → ∞.

Proof. For proof of (i) note that sup(ω1,ω2)∈[0,1]2 |D
h
m,n,∆,ω1,ω2

(s)| = 0 on Ĩh, where

Dh
m,n,∆,ω1,ω2

is as defined in (3.5). By consistency of the estimator we have

sup
(ω1,ω2)

sup
s∈S

(mn)γ |D̂h
m,n,∆,ω1,ω2

(s)−Dh
m,n,∆,ω1,ω2

(s)| = o(1).

Thus we have

P

⋃
s∈Ĩh

(mn)γ sup
(ω1,ω2)

|D̂h
m,n,∆,ω1,ω2

(s)| > ϵm,n,ω1,ω2



≤P

(
(mn)γ sup

(ω1,ω2)
sup
s∈S

|D̂h
m,n,∆,ω1,ω2

(s)−Dh
m,n,∆,ω1,ω2

(s)| > C/2

)
→ 0.

The proof of (ii) is analogous. Part (iii) follows from A.2.1.
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