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Abstract — Central Process Units (CPUs) are 

becoming the standard processors of current computing 

systems design. With the increasing performance 

requirements, the number of transistors on single chip 

unit cannot grow exponentially due to the limit area, 

power, and heat dissipation, etc. Therefore, multicore 

processor design has become a trend for current 

processor design. A multicore processor is an integrated 

computing component composed of several (two or 

more) CPU cores that can execute the program 

instructions. The individual cores can execute multiple 

instructions in parallel, thus significantly increasing the 

performance of programs which takes advantage of the 

unique architecture. In this survey, we introduce several 

aspects to demonstrate a thorough survey for multicore 

processor, including (1) The Need for Multicore CPU;  
(2) The Need for Performance Analysis; (3) The Ways of 

Evaluating multicore CPU Performance; (4) Factors that 

Affects the Performance; and (5) Multicore 

Benchmarking. Finally, we will discuss the existed 

problems, as well as future directions of multicore 

processor design and give the conclusions of our 

multicore performance analysis survey. 
 

Keywords—multicore processor, system design, 

performance analysis, power management, throughput 

analysis, benchmarks. 
 

I. INTRODUCTION 
 

According to Moore’s Law [1], the number of transistors 

in a dense integrated circuit doubles about every 18 months. 

In the past 50 years, Moore’s law has set the pace for the 

modern digital revolution, which is that computing would 

dramatically increase in power, and decrease in relative cost, 

at an exponential pace. However, due to many practical 

issues like power, hear dissipation, etc., such an exponential 

developing trend as Moore’s Law is showing slowed down 

and predicted to be ending soon [2].  
However, there are more and more data intensive as well 

as computationally intensive applications which demands 

high-performance processor design, e.g. Big Data, machine 

learning, and deep learning techniques and applications. As 

a result, current multi-core processor design has become the 

alternative to gain more computation resources at a lower 

 
 
design and implementation cost. Such multi-core design 

inevitably causes undesirably power consumption due to the 

many cores. Meanwhile, the design of multicore systems 

also changes the essential design of computer architectures 

since different designs can cause dramatic differences in the 

computation performance of multicore processors. For 

example, the design and utilization of cache and memory 

subsystems on the multi-core processor, the pipeline depth, 

etc. can all produce different performance bottleneck once 

they are improperly designed. Since the manufacturing 

multicore processors is expensive and takes long time, the 

careful performance evaluation and benchmarking of 

multicore processor become more and more essential [3-4]. 

Specifically, performance evaluation and analysis aim to 

provide criteria that define the performance and is required 

at every stage of the computer system lifecycle, to ensure 

high performance within a given cost.  
Meanwhile, it’s a common sense that general purpose 

multicore CPUs are designed for usage in a variety of 

applications, virtualization, programs and games, and even 

embedded systems [5]. Such various applications have great 

diversity and the distinct computation features and thus 

introduce different challenges to multicore design. Therefore, 

multicore CPU benchmarking also is a very important task to 

evaluate whether the designed system performs well under most 

or all targeted application benchmarks. What’s more, given the 

using scenarios or application types, utilizing benchmark tools 

can often result in better measurements that become more 

relevant and accurate by profiling [6-7].  
In summary, we explored and included several following 

aspects of multicore processor performance analysis:  
• The need for multicore CPU, e.g. the techniques and 

computation demand of current popular applications, 

the trend of current processor design, etc.;  
• The need for multicore CPU performance analysis, 

e.g. what different designs can cause performance 

boost or degradation;  
• Method for evaluating multicore CPU 

performance, e.g. system profiling, pipeline and 

throughput analysis, power analysis, etc.;  
• Factors that affects the multicore CPU performance, 

e.g. cache and memory subsystems, multicore 

communication, etc.; 
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• The necessity and types of multicore CPU 

benchmarking, e.g. popular CPU benchmarks and  
their included application specifications;  

Then we will discuss the current existed problems of 

multicore CPU design, in which we hope to shed some light 

on future research directions. And finally, we will give the 

conclusion of the multicore processor performance survey. 

The remaining parts of this survey follows such structure: In 

Sec. 2, we will include backgrounds that illustrates the 

practical demanding reasons of multicore CPU design, as 

well as the need for performance analysis. In Sec. 3, we will 

cover techniques for evaluating the multicore CPU 

performance and analyze the key factors which mostly 

affects the CPU performance. In Sec. 4, we will introduce 

the background and motivation of current popular multicore 

CPU benchmarks and identify different characteristic of 

different benchmark programs for CPU performance 

analysis. Finally, in Sec. 5 and Sec. 6, we will discuss 

currently existed problems & potential future research 

directions and then conclude our survey. 

 

II. BACKGROUND AND MOTIVATION FOR 

MUTLCORE PROCESSOR DESIGN 
 

In this section, we will introduce the backgrounds and 

motivations of multicore processor design. 
 
A. Backgrounds 
 

Before the era of multicore processor, computing 

processors mostly have one single computing unit, also 

called single core. However, the clock frequency of the 

single processor, which determines the speed of it, cannot 

exceed the limit due to the power consumption and heat 

dissipation within the very limited chip area [2]. 
 

Nevertheless, most increasingly popular applications like 

big data applications, machine learning and deep learning 

applications appeals for strong computation performance [8-

10]. Most of such applications involves large volume of data 

processing, matrix complication, great parallelism, etc. All 

of these factors greatly challenge the old-fashioned single- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.1 Single Core vs Multicore Processor 

 
core processor design. As a result, the leading manufacturer 

of computing processors like Intel came up with a new 

design of processor, called multicore processor. 
 

A multicore processor is a computer processor integrated 

circuit with several (two or more) separate processing units, 

also called cores, each of which can read and execute 

program instructions parallelly. The conceptual comparison 

of single core vs multicore processor is shown in Fig. 1. 

There are also many other popular designs of multicore 

processor with shared cache system, like shared L3 cache 
 
[11]. Currently, multicore processors are already widely 

used across many application domains, including general-

purpose multicore processors, embedded processors, digital 

signal processing (DSP), and graphics (GPUs). Compared to 

single-core high-frequency processor, multicore processors 

have the advantages to run on lower frequency and combine 

the computation capacity of multicores. Therefore, they 

could usually achieve higher performance compared to 

single-core processor, and with lower power dissipation or 

temperature. Meanwhile, multicore processor changes the 

way of concurrent program running into real parallel 

program execution, which also greatly enhance the multi-

task and parallelism capability of processors [12]. 
 

In next section, we will introduce several motivations in 

more details for the multicore design from the perspective of 

processor performance analysis. 
 
B. Motivation for Multicore Design 
 

For general-purpose processors, the performance gain 

from increasing the operating frequency of single processor 

is becoming very limited due to the power dissipation issue, 

as we have mentioned before. In more detail, this is due to 

several following factors: 
 

1) The memory wall [13]. The memory subsystems’ 

speed grows much slower than processor speed. Therefore, 

there is a quickly increasing gap of speed between processor 

and the memory systems. The cache system design is 

motivated by this to hide the latency of memory access, but 

cannot relieve to the one hundered percentage as long as the 

speed gap becomes increasingly larger. Therefore, 

increasing the operating frequency further cannot brings the 

corresponding gain due to the limit of memory speed.  
2) The ILP (Instruction Level Parallelism)  wall [14].  

In a normal application, it’s hard to find enough parallelable 

instructions in a single instruction stream to “feed” the high 

performance core, or in other words, to keep the high-

performance single core busy. In other words, higher 

frequency core in such situation will remain idle or under-

utilized. Therefore, increasing the frequency will further 

introduce more under-utilization. 



3) The power wall [15]. The price of increasing 

frequency of single cores is the exponentially increasing 

power usage, and thus the increasing dissipating heat. 

Currently, the core frequency has nearly reached the limit of 

maximum generated heat. And there are many new heat 

dissipation mechanisms that are currently explored to push 

the limit further. Before that, the single core frequency 

cannot exceed the heat dissipation limit, otherwise the chip 

will physically burned out. This also hinders the 

performance gain by increasing single-core frequency. 
 

Besides above main factors, there are also some other 

facotrs that demands the new architecture design in order to 

deliver regular performance improvement to match the 

computing requirements of the increasingly computationally 

intensive applications. As a result, the multicore designs are 

selected as a favorable alternative to keep increasing the 

computing performance. 
 

Compared to high-frequency single core architecture, 

each core in multicore processors usually runs in lower 

frequency. Therefore, the memory wall effect can be 

effectively handled by the multi-level cache system to hide 

the memory speed gap. Meanwhile, the ILP wall can also be 

relieved to certain extent since the core frequency is lowered 

down so the utilization rate will be higher. Lastly, the power 

wall problem, as each core of multicore processor run in 

lower frequency, the power consumption only gow linearly 

with number of cores, instead of increasing exponentially 

with frequency. Meanwhile, the number of cores in current 

multicore CPU design is still limited to 16 cores. Therefore, 

the power and heat dissipation can be well controlled. 
 

In summary, the aforementioned problems motivated the 

manufacturers to find better alternatives to increasing core 

frequency. As the result, due to its great advantages in the 

above problems, multicore processor design has now 

become the new trend of manufactures like Intel and AMD. 

 
III. EVALUTING MULTICORE PROCESSOR 

PERFORMANCE 

 

A. The Need for Performance Analysis 
 

Despite the popularity and effectiveness of multicore 

design, the performance gain of multicore design still needs 

to be carefully analyzed since one careless and impropoer 

design may cause catrophostic problems for the chip itself or 

the running applications. Meanwhile, different from 

software development, the manufacturing of hardware chips 

usually takes much longer time cycles and requires much 

higher investment. Once manufactured, the chips cannot be 

  
Table. 1 Overview of Performance Analysis Methods 

 

Criteria Modelling Simulation Measurement 

Stage Pre & Post Pre & Post Post 
    

Cost Small Medium Large 
    

Accuracy Low Moderate Accurate 
    

Trade-off Easy Medium Difficult 
    

Practical Yes Yes No 
    

 

easily modified like the software programs in which bugs or 

problems can be fixed in an online fashion. 
 

All these factors means that during the multicore 

processor deisgn, the detailed and thorough performance 

analysis is necessary in all stages, for all components, and 

with highly accurate analysis. 
 
B. Multicore Performance Analysis Methods 
 

According to [16], there are three main categories of 

methods for multicore processor performance analysis: (1) 

Analytical modelling; (2) Simulation tools; and (3) Post-

manufacturing Measurement. The overview of three 

categories is shown in Table. 1. 
 

From the perspective of analysis stage, the first two 

categories of analysis can be achieved before the chip 

manufacturing, while the last category of analysis can only 

be done after the real chip is manufactured. Even though 

such methods can get the most accurate performance 

analysis result, but it’s usually not practical to produce the 

real chips without carefully performance analysis at first. 

Therefore, the first two categories (i.e. the modeling and 

simulation methods) are more widely used in both research 

and industry society. Specifically, there are many industrial 

simulation tools provided by companies for the multicore 

performance simulation and analysis, e.g. the CoFluent 

simulation tool provided by Intel for architecture design 
 
[17]. Next, we introduce several performance analysis 

examples in analytic modelling and measurement tools. 
 

1) Performance Analytic Modelling: The techniques by 

anatic modelling usually generates predicted performance by 

formulating problems and solves the equations under certain 

assumptions. In this way, the created model can predict the 

processor performance as long as the assumption is satisfied. 

The predicted performance is then validated by the 

simulation or the measurements collected to evaluate the 

quality or accuracy of the modelling. 
 

A well-known multicore performance analysis example 

is Amdahl’s Law [18], which predicted the expected 

speedup by parallelly running an application: 



 

where S denotes the speedup, p is the parallelable propotion 

of execution time, and s can be regarded as the number of 

parallelable cores. This parallel speedup law is based on the 

assumption that the parallel propotion will be evenly runned 

by s parallel cores without any scheduling or switching 

overhead. And it’s upper bounded by 1/(1-p). In other 

words, the parallel speedup only exists in the parallel part of 

the application, and finally the bottleneck will be the serial 

part of the application. This analytic model is demonstrated 

to be quite close to real performance of multicore processor 

when running highly parallelable machine learning 

applications and is a popular parallel performance model. 
 

2) Measurement Tools for Performance Analsis: There 

are many measurement tools to measure the performance of 

multicore CPUs. Utilizing these tools effectively, one can 

obtain many insights into the processor’s performance 

bottleneck as well as its characteristics. Referred to [16], 

there are several common measurements for performance 

profiling to analyze the multicore CPU performance. 
 
• Elapsed Time. The first one is the elasped time or the 

execution time of running a specific application. In a 

Linux/Unix environment, the time library <time.h> 

provides several commands as a straight-forward way to 

measure the CPU time in a multicore context. Such 

information can provide an overall performance 

speedup. However, it cannot gives us much more 

insights like the time spent on each individual line of 

code, or even each function calls. Therefore, such high 

level information is usually used in the thread 

parallelism level to validate the parallelization 

performance. But the advantages of elapsed time 

measurement is that it’s simple, and doesn’t require any 

source code or compiling information for support. 
 
• GNU gprof. [19] Such a tool provides much detailed 

profiling information for performance analysis. The tool 

itself is also included within the open-sourced GCC 

package for programming languages, e.g. C, C++ and 

Java. Compared to the coarse-grained elapsed time, 

gprof could provide more detailed information, like the 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.2 Amdahl’s Law in Analytic Modelling [20]  
By Daniels220 at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia .org/w/index.php?curid=6678551 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3 Intel VTune can provide system-wide information 

to help identify the potential performance bottlenecks.  
 

time spent within individual function calls, and also the 

function call relationships. But one thing we need to 

mention is that the time statistics are sampled and thus 

is subjected to potential statistical inaccuracy. 

Meanwhile, it’s not suitable for multi-threading since it 

doesn’t collect per-thread information. 
 
• VTune Profiler. [21] Intel VTune is an advanced and 

powerful commerical performance profiler, which could 

help identify system configuration problems and find 

perforamnce bottlenecks. By VTune, we could easily 

get a lot of useful information about the potential 

performance bottlenecks including CPU and memory 

utilization, memory and socket interconnect bandwidth, 

cycles per instructions, cache miss rates, storage device 

access metrics, etc. As a result, these metrics provide 

system-wide data to help you identify if the system―or 

a specific platform component such as CPU, memory, 

storage, or network―is under- or over-utilized, and 

whether you need to upgrade or reconfigure any of 

these components to improve overall performance [21]. 
 

There are also many other tools provided by different 

libraries for performance analysis. For example, for the 

machine learning framework TensorFlow [22], Google also 

provide a detailed profiling mechanism called TF Profie in 

which users could easily observe the running status of each 

core, the memory access activities, etc. Due to the space 

limit, we will not talk into details. In next section, we will 

talk about the key factors that can siginificantly affect the 

multicore performance. 
 
C.  Factors that Affect the Multicore Performance 
 

There are many factors in multicore CPU design that 

could affect the multicore performance. In this section, we 

will give the basic introduction to these concepts and 

analyze how they can become the performance bottleneck. 
 
• Memory Subsystem [23]. As we have mentioned 

before, the memory wall exists for high-frequency 

processors since the speed gap of DRAM and CPU is so 

huge that memory access can become a significant 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.4 Cache Cohernecy problem may happen 
when many cores read and write simutaneously. 

 
bottleneck for application. Things become worse when 

it comes to current data-intensive or data-driven 

machine and deep learning applications. In summary, to 

repetitively access the memory, the existed memory 

bottleneck can affect the machine’s performance by 

slowing down the movement of data between the CPU 

and the RAM. Then the increased processing times lead 

to slow computer operations. In other cases, the 

memory subsystem can also become the performance 

bottleneck when there are insufficient RAM or not 

enough memory allocated for the current application, 

thus memory exchange can consume more time. 
 
• Inter-Core Communication [24]. Even though 

multicore system could to certain extent alleviate the 

memory wall, power wall problems, etc., it also brings 

new problems into the hardware design. The most 

significant design change is the multiple cores need to 

communicate with each other when running for the 

same application. This is not a problem in single high-

frequency core architecture. But in the multicore 

processor, inefficient inter-core communication can cost 

a lot of time and thus reduce the benefits of multicore 

parallelism. One alternative of inter-core 

communication is through the shared cache and 

memory system, which is the current popular design. 

But such design also has a critical problem to fix: the 

cache coherency problem [25]. As shown in Fig.4, since 

multiple cores can run the application simultaneously, 

they can also generate data to write or read from the 

same memory location. Such read/write or write/write 

can cause numerous conflicts which need to be taken 

care of. Currently, many design utilizes the OS critical 

session concept to enforce no such conflicts and thus 

 
cache coherency but with the price of idle waiting 

cycles for other cores.  
• Application Parallelism [26]. The application 

parallelism is also one key impact factor for the 

multicore performance. This is easy to understand since 

multicore processor mainly overperforms the single 

high-frequency process when the application can be 

extracted a large proportion of parallelized execution 

codes. Take a common machine learning model training 

application as an example, when we are training a 

model with 4 split of data on a Quad-Core processor, it 

can often easily parallelize all the computations and 

overperform a similar-frequency single-core system. On 

the contrary, when the application we run is mostly 

sequential with tons of data dependencies inside the 

instructions, multicore processor can suffer from such 

dense data dependencies and cannot brings actual 

speedup compared to single-core processor. 
 
• Operating System (OS). OS is the software-level 

manager for the physical multicore processor hardware. 

Therefore, OS’s scheduling mechanism also matters a 

lot for the real performance of a multicore processor. 
 
• Others. Other factors that can significantly affect the 

multicore processor performance include the frequency 

for each core, where higher frequency is usually better. 

I/O bandwidth can also affect the CPU performance 

dramatically. Other factors, like number of cores, type 

of cores (unified types or heterogeneous types of cores) 

can also influence the practical performance of 

multicore processor. 
 

IV. BNECHMARKS ANALYSIS 
 

In this section, we will focus on benchmarks analysis for 

multi-core processors. We first introduce the importance 

and motivation for using benchmarks for multi-core 

processor evaluation. Then we investigate a standard 

benchmark example. At the last, we introduce a case study 

for benchmark analysis. 
 
A. Motivation for Standard Benchmark 
 

When packing two or more CPU cores on a single 

processor, the processor’s peak performance is supposed to 

theoretically follow the common Moore’s prediction. 

However, since the same memory subsystem has to support 

multiple times as many instructions per second as 

previously, it will significantly influence the multi-core 

processor’s practical performance. In that case, we need to 

use benchmarks to evaluate the processor’s performance 

before applying a processor design into manufacturing. 



 
 
 
 
 
 
 

 

Fig.5 Four suites in SPEC benchmarks. 
 

Benchmarks are designed to allow designers to analyze, 

test, and improve multicore processors. More specifically, it 

can measure the efficiency of the different multi-core 

processors with their different architectures as well as 

compare their performance to traditional multi-processor 

systems. 
 
B. Standard Benchmark Example 
 

We will introduce one of the most popular benchmark 

sets in this part, which is SPEC CPU2017. SPEC CPU2017 

focuses on computing intensive performance, which means 

these benchmarks emphasize the performance in following 

three aspects: 
 

1. Processor - The CPU chip(s).  
2. Memory - The memory hierarchy, including caches 

and main memory. 
 

3. Compilers - C, C++, and Fortran compilers, including 

optimizers. 
 

SPEC CPU2017 intentionally depends on all three of the 

above - not just the processor. In SPEC CPU2017, there are 

four suits: SPECrate 2017 Integer, SPECspeed 2017 Integer, 

SPECrate 2017 Floating Point, SPECspeed 2017 Floating 

Point. Each of them is a set of benchmarks that are run as a 

group to generate one metric. The four suits are descripted 

in following figure. 
 

As above figure shows, four suits can be divided into 

two part according to the performance metrics. The suits 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.6 Detailed Applications in SPEC benchmark. 

 
named as “SPECspeed” are used to measure the Time: 

seconds to complete a workload. The suits name as 

“SPECrate” are used to measure the Throughout: work 

completed per unit of time. Moreover, SPEC CPU2017 

provides 43 benchmarks, which is shown in following 

figure. 
 

From Fig. 6 we can find that the above 43 benchmarks 

involve 24 application areas in total. Each benchmark is the 

algorithm testing process designed for a specific application 

area. We take 520.omnetapp_s as an example. The 

benchmark performs discrete event simulation of a large 10 

gigabit Ethernet network. The simulation is conducted on 

the OMNeT++ discrete event simulation system. OMNeT++ 

is a generic and open simulation framework which is 

basically used for the communication network simulation. 
 

V. Case Study for Benchmark Analysis 
 

In this part, we use a case study to explain how to 

leverage the benchmarks to evaluate our design. We provide 

synthetic kernel and natural benchmark results from an HPC 

system at the NASA Goddard Space Flight Center that 

illustrate the performance impacts of multi-core vs single 

core processor systems. 
 

Three platforms are used to running the benchmark, 

which are Intel 5150 (Woodcrest), Intel5420 (Harpertown), 

and Intel 7400 (Dunnington). The cores number in each of 

them are dual cores, quad cores, and quad cores, 

respectively. 
 

Fig.7 is the cache miss latency comparison results for 

three platforms. We can find that, with larger memory 

range, the latency will increase. Moreover, the Harpertown 

shows smallest latency compared to other two platforms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.7 Cache Miss Lantency Comparison for processors 

with different number of cores. 



VI. PORBLESM AND FUTURE WORK 
 
A. Existing problems 
 
Aforementioned the multicore processor has many 

advantages, which can increase the performance of a 

processor without increasing the clock frequency, by simply 

adding more cores. However, adding more cores also 

introduce certain problems or challenges that must be 

carefully addressed in order to get the benefit from the 

multicore technology. There are four main problems in 

current multicore CPU design: (1) power and temperature. 
 
(2) the memory hierarchy (3) the level of parallelism. (4) the 

interconnection. 
 
1) Power and Temperature As the number of cores placed 

on a single chip increases, the chip will consume more 

power resulting in the generation of large amount of heat, 

which can even cause the chip to become combust. To 

reduce the unnecessary power consumption, the multicore 

design also has to make use of a separate power 

management unit that can manage or control unnecessary 

wastage of power. The power management unit has to turn 

off or shut down the cores which don’t operate at times or 

the cores that are not required at times. Also, the cores run at 

a comparatively lower frequency than a single processor to 

reduce the power dissipation. 
 
2) Memory Hierarchy Another problem that is faced by 

multicore processors is its memory system. There are 

problems with memory latency and cache coherency. All 

these factors have an effect on the performance of a 

multicore CPU design. 
 

Memory latency does not fall as processors get faster, in 

fact memory latency tends to rise over time with increasing 

capacity. New types of memory, such as DDR3 or 

FBDIMMs, both increase latency compared to the previous 

memory types. Going multicore will increase memory 

latency further and significantly decrease memory 

bandwidth. 
 

Another problem is cache coherency because of 

distributed L1 and L2 cache. Since each core has its own 

cache, the copy of the data in that cache may not always be 

the most up-to-date version. For example, in a dual-core 

processor, one core needs to read from a certain address in 

memory. Another core could have written data to that 

address but the data may be stored in cache having not yet 

made it to RAM. The first core thus needs to access the 

caches of the other cores if they have data that it requied. As 

this will happen for every memory read this process will 

generate an enormous amount of inter-core traffic slowing 

down both memory and cache access. Since the shared and 

 
private caches exist at different levels in multi-core 

processors, this cache coherence problem becomes worse. 
 
3) Level of Parallelism. The level of parallelism of the 

process or application is another big factor that affect the 

performance of a multicore processor. In the mutilicore 

design, the parallelism can be achieve by the Instruction 

Level Parallelism (ILP) and Thread Level Parallelism 

(TLP). However, most of applications used today were 

written to run on only a single core processor, failing to use 

the capability of the multicore processor. Therefore, such 

parallelism requires the software developers rewrite the 

applicaitons to be multithreaded. 
 
4) Interconnection The last important problem which 

impacts multi-core performance is the interaction between 

on chip components, (e.g., cores, memory controllers) and 

shared components, (e.g., cache and memories). 

Interconnection networks on the muticore chip can have an 

effect on performance (speed and latency), area, and power 

consumption. 
 
B. Future of Multicore Processor 
 
1) Heterogeneous Multi-Core Architectures To to reduce 

processor power dissipation, researchers propose and 

evaluate a heterogeneous set of cores on a single multi-core 

die, sharing the same ISA. This architecture employ cores of 

different sizes, organizations, and capabilities, allowing an 

application to dynamically identify and migrate to the most 

efficient core, thereby maximizing both performance and 

energy efficiency. 
 
2) Network on a Chip (NoC) To solve the interconnection 

issue on the muticore processor, NoC is one of the most 

promising areas for the development of muticore processor. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.8 An Example of Basic Network on a Chip. 

 

Prior to NoCs, buses are widely used to provide on-chip 

interconnects for multicore processors. However, it is hard 

to provide scalability for modern manycore processors. In 

contrast, the NoC utilize the on-chip routers to provide 

multiple path and parallel communications, which can 

significantlu incresss the throughput of on-chip 



 
communications. As shown in the Figure 8, the processor 

cores are connected by the routers, the network interfaces 

and physical links. Routing is to transfer data from source to 

destination with a clearly defined strategy. In the literature, 

researchers have classified the routing algorithms according 

to different criteria. 

 

VII. CONCLUSION 
 

Central Process Units (CPUs) are becoming the 

standard processors of current computing systems design. 

With the increasing performance requirements, the number 

of transistors on single chip unit cannot grow exponentially 

due to the limit area, power, and heat dissipation, etc. 

Therefore, multicore processor design has become a trend 

for current processor design. 

 
Several works studied the performance of data intensive 

applications on modern processors [27, 28, 29, 30, 31, 32]. 

All these works use performance counters to the 

performance and behavior of applications. In [33, 34, 35, 36, 

37], authors perform experiments to study the impact of 

memory on the performance of big data applications. In [38, 

39], author uses compress sensing and hardware accelerators 

to improve IO after finding the performance bottleneck 

using performance counters. Performance counters can be 

utilized to monitor applications’ behavior to identify a 

malicious behavior [40, 41, 42, 43, 44, 49, 50, 51, 52, 53, 

54]. Moreover, there are new approaches to improve the 

performance of modern computing systems such as 

hardware accelerators [45, 46, 47, 48]. 

 
In this survey, we introduce many aspects to 

demonstrate a thorough survey for multicore processor, 

including (1) The need for multicore CPU; (2) The need for 

performance analysis; (3) The ways of evaluating multicore 

CPU performance; (4) Factors that affects the performance; 

and (5) Multicore benchmarking. Finally, we summarized 

several currently existed problems in the multicore 

processor design and identify several future directions in the 

architecture design. We hope this survey could demonstrate 

a basic overview of multicore processor performance 

analysis and hopefully identify some valuable problems and 

potential future directions for the multicore development. 
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