
Multicore Processor Performance Analysis

Gaurav S Kolhe

George Mason University
Fairfax, Vriginia, 22030

gkolhe@gmu.edu

Abstract — Central Process Units (CPUs) are

becoming the standard processors of current computing

systems design. With the increasing performance

requirements, the number of transistors on single chip

unit cannot grow exponentially due to the limit area,

power, and heat dissipation, etc. Therefore, multicore

processor design has become a trend for current

processor design. A multicore processor is an integrated

computing component composed of several (two or

more) CPU cores that can execute the program

instructions. The individual cores can execute multiple

instructions in parallel, thus significantly increasing the

performance of programs which takes advantage of the

unique architecture. In this survey, we introduce several

aspects to demonstrate a thorough survey for multicore

processor, including (1) The Need for Multicore CPU;
(2) The Need for Performance Analysis; (3) The Ways of

Evaluating multicore CPU Performance; (4) Factors that

Affects the Performance; and (5) Multicore

Benchmarking. Finally, we will discuss the existed

problems, as well as future directions of multicore

processor design and give the conclusions of our

multicore performance analysis survey.

Keywords—multicore processor, system design,

performance analysis, power management, throughput

analysis, benchmarks.

I. INTRODUCTION

According to Moore’s Law [1], the number of transistors

in a dense integrated circuit doubles about every 18 months.

In the past 50 years, Moore’s law has set the pace for the

modern digital revolution, which is that computing would

dramatically increase in power, and decrease in relative cost,

at an exponential pace. However, due to many practical

issues like power, hear dissipation, etc., such an exponential

developing trend as Moore’s Law is showing slowed down

and predicted to be ending soon [2].
However, there are more and more data intensive as well

as computationally intensive applications which demands

high-performance processor design, e.g. Big Data, machine

learning, and deep learning techniques and applications. As

a result, current multi-core processor design has become the

alternative to gain more computation resources at a lower

design and implementation cost. Such multi-core design

inevitably causes undesirably power consumption due to the

many cores. Meanwhile, the design of multicore systems

also changes the essential design of computer architectures

since different designs can cause dramatic differences in the

computation performance of multicore processors. For

example, the design and utilization of cache and memory

subsystems on the multi-core processor, the pipeline depth,

etc. can all produce different performance bottleneck once

they are improperly designed. Since the manufacturing

multicore processors is expensive and takes long time, the

careful performance evaluation and benchmarking of

multicore processor become more and more essential [3-4].

Specifically, performance evaluation and analysis aim to

provide criteria that define the performance and is required

at every stage of the computer system lifecycle, to ensure

high performance within a given cost.
Meanwhile, it’s a common sense that general purpose

multicore CPUs are designed for usage in a variety of

applications, virtualization, programs and games, and even

embedded systems [5]. Such various applications have great

diversity and the distinct computation features and thus

introduce different challenges to multicore design. Therefore,

multicore CPU benchmarking also is a very important task to

evaluate whether the designed system performs well under most

or all targeted application benchmarks. What’s more, given the

using scenarios or application types, utilizing benchmark tools

can often result in better measurements that become more

relevant and accurate by profiling [6-7].
In summary, we explored and included several following

aspects of multicore processor performance analysis:
• The need for multicore CPU, e.g. the techniques and

computation demand of current popular applications,

the trend of current processor design, etc.;
• The need for multicore CPU performance analysis,

e.g. what different designs can cause performance

boost or degradation;
• Method for evaluating multicore CPU

performance, e.g. system profiling, pipeline and

throughput analysis, power analysis, etc.;
• Factors that affects the multicore CPU performance,

e.g. cache and memory subsystems, multicore

communication, etc.;

mailto:fyu@gmu.edu

• The necessity and types of multicore CPU

benchmarking, e.g. popular CPU benchmarks and
their included application specifications;

Then we will discuss the current existed problems of

multicore CPU design, in which we hope to shed some light

on future research directions. And finally, we will give the

conclusion of the multicore processor performance survey.

The remaining parts of this survey follows such structure: In

Sec. 2, we will include backgrounds that illustrates the

practical demanding reasons of multicore CPU design, as

well as the need for performance analysis. In Sec. 3, we will

cover techniques for evaluating the multicore CPU

performance and analyze the key factors which mostly

affects the CPU performance. In Sec. 4, we will introduce

the background and motivation of current popular multicore

CPU benchmarks and identify different characteristic of

different benchmark programs for CPU performance

analysis. Finally, in Sec. 5 and Sec. 6, we will discuss

currently existed problems & potential future research

directions and then conclude our survey.

II. BACKGROUND AND MOTIVATION FOR

MUTLCORE PROCESSOR DESIGN

In this section, we will introduce the backgrounds and

motivations of multicore processor design.

A. Backgrounds

Before the era of multicore processor, computing

processors mostly have one single computing unit, also

called single core. However, the clock frequency of the

single processor, which determines the speed of it, cannot

exceed the limit due to the power consumption and heat

dissipation within the very limited chip area [2].

Nevertheless, most increasingly popular applications like

big data applications, machine learning and deep learning

applications appeals for strong computation performance [8-

10]. Most of such applications involves large volume of data

processing, matrix complication, great parallelism, etc. All

of these factors greatly challenge the old-fashioned single-

Fig.1 Single Core vs Multicore Processor

core processor design. As a result, the leading manufacturer

of computing processors like Intel came up with a new

design of processor, called multicore processor.

A multicore processor is a computer processor integrated

circuit with several (two or more) separate processing units,

also called cores, each of which can read and execute

program instructions parallelly. The conceptual comparison

of single core vs multicore processor is shown in Fig. 1.

There are also many other popular designs of multicore

processor with shared cache system, like shared L3 cache

[11]. Currently, multicore processors are already widely

used across many application domains, including general-

purpose multicore processors, embedded processors, digital

signal processing (DSP), and graphics (GPUs). Compared to

single-core high-frequency processor, multicore processors

have the advantages to run on lower frequency and combine

the computation capacity of multicores. Therefore, they

could usually achieve higher performance compared to

single-core processor, and with lower power dissipation or

temperature. Meanwhile, multicore processor changes the

way of concurrent program running into real parallel

program execution, which also greatly enhance the multi-

task and parallelism capability of processors [12].

In next section, we will introduce several motivations in

more details for the multicore design from the perspective of

processor performance analysis.

B. Motivation for Multicore Design

For general-purpose processors, the performance gain

from increasing the operating frequency of single processor

is becoming very limited due to the power dissipation issue,

as we have mentioned before. In more detail, this is due to

several following factors:

1) The memory wall [13]. The memory subsystems’

speed grows much slower than processor speed. Therefore,

there is a quickly increasing gap of speed between processor

and the memory systems. The cache system design is

motivated by this to hide the latency of memory access, but

cannot relieve to the one hundered percentage as long as the

speed gap becomes increasingly larger. Therefore,

increasing the operating frequency further cannot brings the

corresponding gain due to the limit of memory speed.
2) The ILP (Instruction Level Parallelism) wall [14].

In a normal application, it’s hard to find enough parallelable

instructions in a single instruction stream to “feed” the high

performance core, or in other words, to keep the high-

performance single core busy. In other words, higher

frequency core in such situation will remain idle or under-

utilized. Therefore, increasing the frequency will further

introduce more under-utilization.

3) The power wall [15]. The price of increasing

frequency of single cores is the exponentially increasing

power usage, and thus the increasing dissipating heat.

Currently, the core frequency has nearly reached the limit of

maximum generated heat. And there are many new heat

dissipation mechanisms that are currently explored to push

the limit further. Before that, the single core frequency

cannot exceed the heat dissipation limit, otherwise the chip

will physically burned out. This also hinders the

performance gain by increasing single-core frequency.

Besides above main factors, there are also some other

facotrs that demands the new architecture design in order to

deliver regular performance improvement to match the

computing requirements of the increasingly computationally

intensive applications. As a result, the multicore designs are

selected as a favorable alternative to keep increasing the

computing performance.

Compared to high-frequency single core architecture,

each core in multicore processors usually runs in lower

frequency. Therefore, the memory wall effect can be

effectively handled by the multi-level cache system to hide

the memory speed gap. Meanwhile, the ILP wall can also be

relieved to certain extent since the core frequency is lowered

down so the utilization rate will be higher. Lastly, the power

wall problem, as each core of multicore processor run in

lower frequency, the power consumption only gow linearly

with number of cores, instead of increasing exponentially

with frequency. Meanwhile, the number of cores in current

multicore CPU design is still limited to 16 cores. Therefore,

the power and heat dissipation can be well controlled.

In summary, the aforementioned problems motivated the

manufacturers to find better alternatives to increasing core

frequency. As the result, due to its great advantages in the

above problems, multicore processor design has now

become the new trend of manufactures like Intel and AMD.

III. EVALUTING MULTICORE PROCESSOR

PERFORMANCE

A. The Need for Performance Analysis

Despite the popularity and effectiveness of multicore

design, the performance gain of multicore design still needs

to be carefully analyzed since one careless and impropoer

design may cause catrophostic problems for the chip itself or

the running applications. Meanwhile, different from

software development, the manufacturing of hardware chips

usually takes much longer time cycles and requires much

higher investment. Once manufactured, the chips cannot be

Table. 1 Overview of Performance Analysis Methods

Criteria Modelling Simulation Measurement

Stage Pre & Post Pre & Post Post

Cost Small Medium Large

Accuracy Low Moderate Accurate

Trade-off Easy Medium Difficult

Practical Yes Yes No

easily modified like the software programs in which bugs or

problems can be fixed in an online fashion.

All these factors means that during the multicore

processor deisgn, the detailed and thorough performance

analysis is necessary in all stages, for all components, and

with highly accurate analysis.

B. Multicore Performance Analysis Methods

According to [16], there are three main categories of

methods for multicore processor performance analysis: (1)

Analytical modelling; (2) Simulation tools; and (3) Post-

manufacturing Measurement. The overview of three

categories is shown in Table. 1.

From the perspective of analysis stage, the first two

categories of analysis can be achieved before the chip

manufacturing, while the last category of analysis can only

be done after the real chip is manufactured. Even though

such methods can get the most accurate performance

analysis result, but it’s usually not practical to produce the

real chips without carefully performance analysis at first.

Therefore, the first two categories (i.e. the modeling and

simulation methods) are more widely used in both research

and industry society. Specifically, there are many industrial

simulation tools provided by companies for the multicore

performance simulation and analysis, e.g. the CoFluent

simulation tool provided by Intel for architecture design

[17]. Next, we introduce several performance analysis

examples in analytic modelling and measurement tools.

1) Performance Analytic Modelling: The techniques by

anatic modelling usually generates predicted performance by

formulating problems and solves the equations under certain

assumptions. In this way, the created model can predict the

processor performance as long as the assumption is satisfied.

The predicted performance is then validated by the

simulation or the measurements collected to evaluate the

quality or accuracy of the modelling.

A well-known multicore performance analysis example

is Amdahl’s Law [18], which predicted the expected

speedup by parallelly running an application:

where S denotes the speedup, p is the parallelable propotion

of execution time, and s can be regarded as the number of

parallelable cores. This parallel speedup law is based on the

assumption that the parallel propotion will be evenly runned

by s parallel cores without any scheduling or switching

overhead. And it’s upper bounded by 1/(1-p). In other

words, the parallel speedup only exists in the parallel part of

the application, and finally the bottleneck will be the serial

part of the application. This analytic model is demonstrated

to be quite close to real performance of multicore processor

when running highly parallelable machine learning

applications and is a popular parallel performance model.

2) Measurement Tools for Performance Analsis: There

are many measurement tools to measure the performance of

multicore CPUs. Utilizing these tools effectively, one can

obtain many insights into the processor’s performance

bottleneck as well as its characteristics. Referred to [16],

there are several common measurements for performance

profiling to analyze the multicore CPU performance.

• Elapsed Time. The first one is the elasped time or the

execution time of running a specific application. In a

Linux/Unix environment, the time library <time.h>

provides several commands as a straight-forward way to

measure the CPU time in a multicore context. Such

information can provide an overall performance

speedup. However, it cannot gives us much more

insights like the time spent on each individual line of

code, or even each function calls. Therefore, such high

level information is usually used in the thread

parallelism level to validate the parallelization

performance. But the advantages of elapsed time

measurement is that it’s simple, and doesn’t require any

source code or compiling information for support.

• GNU gprof. [19] Such a tool provides much detailed

profiling information for performance analysis. The tool

itself is also included within the open-sourced GCC

package for programming languages, e.g. C, C++ and

Java. Compared to the coarse-grained elapsed time,

gprof could provide more detailed information, like the

Fig.2 Amdahl’s Law in Analytic Modelling [20]
By Daniels220 at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia .org/w/index.php?curid=6678551

Fig.3 Intel VTune can provide system-wide information

to help identify the potential performance bottlenecks.

time spent within individual function calls, and also the

function call relationships. But one thing we need to

mention is that the time statistics are sampled and thus

is subjected to potential statistical inaccuracy.

Meanwhile, it’s not suitable for multi-threading since it

doesn’t collect per-thread information.

• VTune Profiler. [21] Intel VTune is an advanced and

powerful commerical performance profiler, which could

help identify system configuration problems and find

perforamnce bottlenecks. By VTune, we could easily

get a lot of useful information about the potential

performance bottlenecks including CPU and memory

utilization, memory and socket interconnect bandwidth,

cycles per instructions, cache miss rates, storage device

access metrics, etc. As a result, these metrics provide

system-wide data to help you identify if the system―or

a specific platform component such as CPU, memory,

storage, or network―is under- or over-utilized, and

whether you need to upgrade or reconfigure any of

these components to improve overall performance [21].

There are also many other tools provided by different

libraries for performance analysis. For example, for the

machine learning framework TensorFlow [22], Google also

provide a detailed profiling mechanism called TF Profie in

which users could easily observe the running status of each

core, the memory access activities, etc. Due to the space

limit, we will not talk into details. In next section, we will

talk about the key factors that can siginificantly affect the

multicore performance.

C. Factors that Affect the Multicore Performance

There are many factors in multicore CPU design that

could affect the multicore performance. In this section, we

will give the basic introduction to these concepts and

analyze how they can become the performance bottleneck.

• Memory Subsystem [23]. As we have mentioned

before, the memory wall exists for high-frequency

processors since the speed gap of DRAM and CPU is so

huge that memory access can become a significant

Fig.4 Cache Cohernecy problem may happen
when many cores read and write simutaneously.

bottleneck for application. Things become worse when

it comes to current data-intensive or data-driven

machine and deep learning applications. In summary, to

repetitively access the memory, the existed memory

bottleneck can affect the machine’s performance by

slowing down the movement of data between the CPU

and the RAM. Then the increased processing times lead

to slow computer operations. In other cases, the

memory subsystem can also become the performance

bottleneck when there are insufficient RAM or not

enough memory allocated for the current application,

thus memory exchange can consume more time.

• Inter-Core Communication [24]. Even though

multicore system could to certain extent alleviate the

memory wall, power wall problems, etc., it also brings

new problems into the hardware design. The most

significant design change is the multiple cores need to

communicate with each other when running for the

same application. This is not a problem in single high-

frequency core architecture. But in the multicore

processor, inefficient inter-core communication can cost

a lot of time and thus reduce the benefits of multicore

parallelism. One alternative of inter-core

communication is through the shared cache and

memory system, which is the current popular design.

But such design also has a critical problem to fix: the

cache coherency problem [25]. As shown in Fig.4, since

multiple cores can run the application simultaneously,

they can also generate data to write or read from the

same memory location. Such read/write or write/write

can cause numerous conflicts which need to be taken

care of. Currently, many design utilizes the OS critical

session concept to enforce no such conflicts and thus

cache coherency but with the price of idle waiting

cycles for other cores.
• Application Parallelism [26]. The application

parallelism is also one key impact factor for the

multicore performance. This is easy to understand since

multicore processor mainly overperforms the single

high-frequency process when the application can be

extracted a large proportion of parallelized execution

codes. Take a common machine learning model training

application as an example, when we are training a

model with 4 split of data on a Quad-Core processor, it

can often easily parallelize all the computations and

overperform a similar-frequency single-core system. On

the contrary, when the application we run is mostly

sequential with tons of data dependencies inside the

instructions, multicore processor can suffer from such

dense data dependencies and cannot brings actual

speedup compared to single-core processor.

• Operating System (OS). OS is the software-level

manager for the physical multicore processor hardware.

Therefore, OS’s scheduling mechanism also matters a

lot for the real performance of a multicore processor.

• Others. Other factors that can significantly affect the

multicore processor performance include the frequency

for each core, where higher frequency is usually better.

I/O bandwidth can also affect the CPU performance

dramatically. Other factors, like number of cores, type

of cores (unified types or heterogeneous types of cores)

can also influence the practical performance of

multicore processor.

IV. BNECHMARKS ANALYSIS

In this section, we will focus on benchmarks analysis for

multi-core processors. We first introduce the importance

and motivation for using benchmarks for multi-core

processor evaluation. Then we investigate a standard

benchmark example. At the last, we introduce a case study

for benchmark analysis.

A. Motivation for Standard Benchmark

When packing two or more CPU cores on a single

processor, the processor’s peak performance is supposed to

theoretically follow the common Moore’s prediction.

However, since the same memory subsystem has to support

multiple times as many instructions per second as

previously, it will significantly influence the multi-core

processor’s practical performance. In that case, we need to

use benchmarks to evaluate the processor’s performance

before applying a processor design into manufacturing.

Fig.5 Four suites in SPEC benchmarks.

Benchmarks are designed to allow designers to analyze,

test, and improve multicore processors. More specifically, it

can measure the efficiency of the different multi-core

processors with their different architectures as well as

compare their performance to traditional multi-processor

systems.

B. Standard Benchmark Example

We will introduce one of the most popular benchmark

sets in this part, which is SPEC CPU2017. SPEC CPU2017

focuses on computing intensive performance, which means

these benchmarks emphasize the performance in following

three aspects:

1. Processor - The CPU chip(s).
2. Memory - The memory hierarchy, including caches

and main memory.

3. Compilers - C, C++, and Fortran compilers, including

optimizers.

SPEC CPU2017 intentionally depends on all three of the

above - not just the processor. In SPEC CPU2017, there are

four suits: SPECrate 2017 Integer, SPECspeed 2017 Integer,

SPECrate 2017 Floating Point, SPECspeed 2017 Floating

Point. Each of them is a set of benchmarks that are run as a

group to generate one metric. The four suits are descripted

in following figure.

As above figure shows, four suits can be divided into

two part according to the performance metrics. The suits

Fig.6 Detailed Applications in SPEC benchmark.

named as “SPECspeed” are used to measure the Time:

seconds to complete a workload. The suits name as

“SPECrate” are used to measure the Throughout: work

completed per unit of time. Moreover, SPEC CPU2017

provides 43 benchmarks, which is shown in following

figure.

From Fig. 6 we can find that the above 43 benchmarks

involve 24 application areas in total. Each benchmark is the

algorithm testing process designed for a specific application

area. We take 520.omnetapp_s as an example. The

benchmark performs discrete event simulation of a large 10

gigabit Ethernet network. The simulation is conducted on

the OMNeT++ discrete event simulation system. OMNeT++

is a generic and open simulation framework which is

basically used for the communication network simulation.

V. Case Study for Benchmark Analysis

In this part, we use a case study to explain how to

leverage the benchmarks to evaluate our design. We provide

synthetic kernel and natural benchmark results from an HPC

system at the NASA Goddard Space Flight Center that

illustrate the performance impacts of multi-core vs single

core processor systems.

Three platforms are used to running the benchmark,

which are Intel 5150 (Woodcrest), Intel5420 (Harpertown),

and Intel 7400 (Dunnington). The cores number in each of

them are dual cores, quad cores, and quad cores,

respectively.

Fig.7 is the cache miss latency comparison results for

three platforms. We can find that, with larger memory

range, the latency will increase. Moreover, the Harpertown

shows smallest latency compared to other two platforms.

Fig.7 Cache Miss Lantency Comparison for processors

with different number of cores.

VI. PORBLESM AND FUTURE WORK

A. Existing problems

Aforementioned the multicore processor has many

advantages, which can increase the performance of a

processor without increasing the clock frequency, by simply

adding more cores. However, adding more cores also

introduce certain problems or challenges that must be

carefully addressed in order to get the benefit from the

multicore technology. There are four main problems in

current multicore CPU design: (1) power and temperature.

(2) the memory hierarchy (3) the level of parallelism. (4) the

interconnection.

1) Power and Temperature As the number of cores placed

on a single chip increases, the chip will consume more

power resulting in the generation of large amount of heat,

which can even cause the chip to become combust. To

reduce the unnecessary power consumption, the multicore

design also has to make use of a separate power

management unit that can manage or control unnecessary

wastage of power. The power management unit has to turn

off or shut down the cores which don’t operate at times or

the cores that are not required at times. Also, the cores run at

a comparatively lower frequency than a single processor to

reduce the power dissipation.

2) Memory Hierarchy Another problem that is faced by

multicore processors is its memory system. There are

problems with memory latency and cache coherency. All

these factors have an effect on the performance of a

multicore CPU design.

Memory latency does not fall as processors get faster, in

fact memory latency tends to rise over time with increasing

capacity. New types of memory, such as DDR3 or

FBDIMMs, both increase latency compared to the previous

memory types. Going multicore will increase memory

latency further and significantly decrease memory

bandwidth.

Another problem is cache coherency because of

distributed L1 and L2 cache. Since each core has its own

cache, the copy of the data in that cache may not always be

the most up-to-date version. For example, in a dual-core

processor, one core needs to read from a certain address in

memory. Another core could have written data to that

address but the data may be stored in cache having not yet

made it to RAM. The first core thus needs to access the

caches of the other cores if they have data that it requied. As

this will happen for every memory read this process will

generate an enormous amount of inter-core traffic slowing

down both memory and cache access. Since the shared and

private caches exist at different levels in multi-core

processors, this cache coherence problem becomes worse.

3) Level of Parallelism. The level of parallelism of the

process or application is another big factor that affect the

performance of a multicore processor. In the mutilicore

design, the parallelism can be achieve by the Instruction

Level Parallelism (ILP) and Thread Level Parallelism

(TLP). However, most of applications used today were

written to run on only a single core processor, failing to use

the capability of the multicore processor. Therefore, such

parallelism requires the software developers rewrite the

applicaitons to be multithreaded.

4) Interconnection The last important problem which

impacts multi-core performance is the interaction between

on chip components, (e.g., cores, memory controllers) and

shared components, (e.g., cache and memories).

Interconnection networks on the muticore chip can have an

effect on performance (speed and latency), area, and power

consumption.

B. Future of Multicore Processor

1) Heterogeneous Multi-Core Architectures To to reduce

processor power dissipation, researchers propose and

evaluate a heterogeneous set of cores on a single multi-core

die, sharing the same ISA. This architecture employ cores of

different sizes, organizations, and capabilities, allowing an

application to dynamically identify and migrate to the most

efficient core, thereby maximizing both performance and

energy efficiency.

2) Network on a Chip (NoC) To solve the interconnection

issue on the muticore processor, NoC is one of the most

promising areas for the development of muticore processor.

Fig.8 An Example of Basic Network on a Chip.

Prior to NoCs, buses are widely used to provide on-chip

interconnects for multicore processors. However, it is hard

to provide scalability for modern manycore processors. In

contrast, the NoC utilize the on-chip routers to provide

multiple path and parallel communications, which can

significantlu incresss the throughput of on-chip

communications. As shown in the Figure 8, the processor

cores are connected by the routers, the network interfaces

and physical links. Routing is to transfer data from source to

destination with a clearly defined strategy. In the literature,

researchers have classified the routing algorithms according

to different criteria.

VII. CONCLUSION

Central Process Units (CPUs) are becoming the

standard processors of current computing systems design.

With the increasing performance requirements, the number

of transistors on single chip unit cannot grow exponentially

due to the limit area, power, and heat dissipation, etc.

Therefore, multicore processor design has become a trend

for current processor design.

Several works studied the performance of data intensive

applications on modern processors [27, 28, 29, 30, 31, 32].

All these works use performance counters to the

performance and behavior of applications. In [33, 34, 35, 36,

37], authors perform experiments to study the impact of

memory on the performance of big data applications. In [38,

39], author uses compress sensing and hardware accelerators

to improve IO after finding the performance bottleneck

using performance counters. Performance counters can be

utilized to monitor applications’ behavior to identify a

malicious behavior [40, 41, 42, 43, 44, 49, 50, 51, 52, 53,

54]. Moreover, there are new approaches to improve the

performance of modern computing systems such as

hardware accelerators [45, 46, 47, 48].

In this survey, we introduce many aspects to

demonstrate a thorough survey for multicore processor,

including (1) The need for multicore CPU; (2) The need for

performance analysis; (3) The ways of evaluating multicore

CPU performance; (4) Factors that affects the performance;

and (5) Multicore benchmarking. Finally, we summarized

several currently existed problems in the multicore

processor design and identify several future directions in the

architecture design. We hope this survey could demonstrate

a basic overview of multicore processor performance

analysis and hopefully identify some valuable problems and

potential future directions for the multicore development.

Reference

[1] Moore’s Law, Moore, G. E. (1965). Cramming more

components onto integrated circuits.

[2] Esmaeilzadeh, H., Blem, E., Amant, R. S., Sankaralingam, K.,

& Burger, D. (2011, June). Dark silicon and the end of

multicore scaling. In 2011 38th Annual international

symposium on computer architecture (ISCA) (pp. 365-376).

IEEE.

[3] Chandramowlishwaran, Aparna, Kathleen Knobe, and Richard

Vuduc. "Performance evaluation of concurrent collections on

high-performance multicore computing systems." 2010 IEEE

International Symposium on Parallel & Distributed Processing

(IPDPS). IEEE, 2010.

[4] Gal-On, Shay, and Markus Levy. "Measuring multicore

performance." Computer 41.11 (2008): 99-102.

[5] Dixit, K. M. (1991). The SPEC benchmarks. Parallel

computing, 17(10-11), 1195-1209.

[6] Guthaus, Matthew R., et al. "MiBench: A free, commercially

representative embedded benchmark suite." Proceedings of the

fourth annual IEEE international workshop on workload

characterization. WWC-4 (Cat. No. 01EX538). IEEE, 2001.

[7] Poovey, Jason A., et al. "A benchmark characterization of the

EEMBC benchmark suite." IEEE micro 29.5 (2009): 18-29.

[8] Bengio, Yoshua. "Learning deep architectures for AI."

Foundations and trends® in Machine Learning 2.1 (2009): 1-

127.

[9] Wu, Xindong, et al. "Data mining with big data." IEEE

transactions on knowledge and data engineering 26.1 (2013):

97-107.

[10] Chu, Cheng-Tao, et al. "Map-reduce for machine learning on

multicore." Advances in neural information processing

systems. 2007.

[11] Chang, Jonathan, et al. "The 65-nm 16-MB shared on-die L3

cache for the dual-core Intel Xeon processor 7100 series."

IEEE Journal of Solid-State Circuits 42.4 (2007): 846-852.

[12] Sodan, Angela C., et al. "Parallelism via multithreaded and

multicore CPUs." Computer 43.3 (2010): 24-32.

[13] Wulf, Wm A., and Sally A. McKee. "Hitting the memory wall:

implications of the obvious." ACM SIGARCH computer

architecture news 23.1 (1995): 20-24.

[14] Jouppi, Norman P., and David W. Wall. Available instruction-

level parallelism for superscalar and superpipelined machines.

Vol. 17. No. 2. ACM, 1989.

[15] Villa, Oreste, et al. "Scaling the power wall: a path to

exascale." Proceedings of the International Conference for

High Performance Computing, Networking, Storage and

Analysis. IEEE Press, 2014.

[16] Ismail, Dali. "Multicore Processor Performance Analysis-A

Survey."

[17] Barreteau, Anthony. "System-Level Modeling and Simulation

with Intel® CoFluent™ Studio." Complex Systems Design &

Management. Springer, Cham, 2016. 305-306.

[18] Hill, Mark D., and Michael R. Marty. "Amdahl's law in the

multicore era." Computer 41.7 (2008): 33-38.

[19] Fenlason, Jay, and Richard Stallman. "GNU gprof." GNU

Binutils. Available online: http://www. gnu.
org/software/binutils (accessed on 21 April 2018) (1988).

[20] https://en.wikipedia.org/wiki/Amdahl%27s_law

[21] Reinders, James. "VTune performance analyzer essentials."

Intel Press (2005).

[22] Abadi, Martín, et al. "Tensorflow: A system for large -scale

machine learning." 12th {USENIX} Symposium on Operating

Systems Design and Implementation ({OSDI} 16). 2016.

[23] McCalpin, John D. "Memory bandwidth and machine balance

in current high performance computers." IEEE computer

society technical committee on computer architecture (TCCA)

newsletter 2.19–25 (1995).

[24] Baumann, Andrew, et al. "The multikernel: a new OS

architecture for scalable multicore systems." Proceedings of

the ACM SIGOPS 22nd symposium on Operating systems

principles. ACM, 2009.

[25] Kurian, George, et al. "ATAC: a 1000-core cache-coherent

processor with on-chip optical network." Proceedings of the

19th international conference on Parallel architectures and

compilation techniques. ACM, 2010.

[26] Jeffers, Jim, and James Reinders. High performance

parallelism pearls volume two: multicore and many-core

programming approaches. Morgan Kaufmann, 2015.

[27] Makrani, Hosein Mohammadi, et al. "Evaluation of software-

based fault-tolerant techniques on embedded OS’s

components." Proceedings of the International Conference on

Dependability (DEPEND’14). 2014.

[28] Makrani, Hosein Mohammadi, et al. "Energy-aware and

Machine Learning-based Resource Provisioning of In-

Memory Analytics on Cloud." SoCC. 2018.

[29] Sayadi, Hossein, et al. "Machine learning-based approaches

for energy-efficiency prediction and scheduling in composite

cores architectures." 2017 IEEE International Conference on

Computer Design (ICCD). IEEE, 2017.

[30] Malik, Maria, Dean M. Tullsen, and Houman Homayoun.

"Co-Locating and concurrent fine-tuning MapReduce

applications on microservers for energy efficiency." 2017

IEEE International Symposium on Workload Characterization

(IISWC). IEEE, 2017.

[31] Malik, Maria, et al. "ECoST: Energy-Efficient Co-Locating

and Self-Tuning MapReduce Applications." Proceedings of

the 48th International Conference on Parallel Processing.

ACM, 2019.

[32] Sayadi, Hossein, et al. "Power conversion efficiency-aware

mapping of multithreaded applications on heterogeneous

architectures: A comprehensive parameter tuning." 2018 23rd

Asia and South Pacific Design Automation Conference (ASP-

DAC). IEEE, 2018.

[33] Makrani, Hosein Mohammadi, et al. "Understanding the role

of memory subsystem on performance and energy-efficiency

of Hadoop applications." 2017 Eighth International Green and

Sustainable Computing Conference (IGSC). IEEE, 2017.

[34] Makrani, Hosein Mohammadi, and Houman Homayoun.

"MeNa: A memory navigator for modern hardware in a scale-

out environment." 2017 IEEE International Symposium on

Workload Characterization (IISWC). IEEE, 2017.

[35] Makrani, Hosein Mohammadi, and Houman Homayoun.

"Memory requirements of hadoop, spark, and MPI based big

data applications on commodity server class architectures."

2017 IEEE International Symposium on Workload

Characterization (IISWC). IEEE, 2017.

[36] Makrani, Hosein Mohammadi, et al. "A comprehensive

memory analysis of data intensive workloads on server class

architecture." Proceedings of the International Symposium on

Memory Systems. ACM, 2018.

[37] Makrani, Hosein Mohammadi, et al. "Main-memory

requirements of big data applications on commodity server

platform." 2018 18th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing (CCGRID). IEEE, 2018.

[38] Namazi, Mahmoud, et al. "Mitigating the Performance and

Quality of Parallelized Compressive Sensing Reconstruction

Using Image Stitching." Proceedings of the 2019 on Great

Lakes Symposium on VLSI. ACM, 2019.

[39] Makrani, Hosein Mohammadi, et al. "Compressive Sensing on

Storage Data: An Effective Solution to Alleviate I/0 Bottleneck

in Data-Intensive Workloads." 2018 IEEE 29th International

Conference on Application-specific Systems, Architectures and

Processors (ASAP). IEEE, 2018.

[40] Sayadi, Hossein, et al. "Ensemble learning for effective run-

time hardware-based malware detection: A comprehensive

analysis and classification." 2018 55th ACM/ESDA/IEEE

Design Automation Conference (DAC). IEEE, 2018.

[41] Sayadi, Hossein, et al. "Customized machine learning-based

hardware-assisted malware detection in embedded devices."

2018 17th IEEE International Conference On Trust, Security

And Privacy In Computing And Communications/12th IEEE

International Conference On Big Data Science And

Engineering (TrustCom/BigDataSE). IEEE, 2018.

[42] Sayadi, Hossein, et al. "Comprehensive assessment of run-time

hardware-supported malware detection using general and

ensemble learning." Proceedings of the 15th ACM

International Conference on Computing Frontiers. ACM, 2018.

[43] Dinakarrao, Sai Manoj Pudukotai, et al. "Lightweight Node-

level Malware Detection and Network-level Malware

Confinement in IoT Networks." 2019 Design, Automation &

Test in Europe Conference & Exhibition (DATE). IEEE, 2019.

[44] Sayadi, Hossein, et al. "2SMaRT: A Two-Stage Machine

Learning-Based Approach for Run-Time Specialized

Hardware-Assisted Malware Detection." 2019 Design,

Automation & Test in Europe Conference & Exhibition

(DATE). IEEE, 2019.

[45] Neshatpour, Katayoun, et al. "Design Space Exploration for

Hardware Acceleration of Machine Learning Applications in

MapReduce." 2018 IEEE 26th Annual International

Symposium on Field-Programmable Custom Computing

Machines (FCCM). IEEE, 2018.

[46] Makrani, Hosein Mohammadi, et al. "XPPE: cross-platform

performance estimation of hardware accelerators using

machine learning." Proceedings of the 24th Asia and South

Pacific Design Automation Conference. ACM, 2019.

[47] Neshatpour, Katayoun, et al. "Architectural considerations for

FPGA acceleration of Machine Learning Applications in

MapReduce." Proceedings of the 18th International Conference

on Embedded Computer Systems: Architectures, Modeling,

and Simulation. ACM, 2018.

[48] Makrani, Hosein Mohammadi, et al. "Pyramid: Machine

Learning Framework to Estimate the Optimal Timing and

Resource Usage of a High-Level Synthesis Design." arXiv

preprint arXiv:1907.12952 (2019).

[49] G. Kolhe, H. M. Kamali, M. Naicker, T. D. Sheaves, H.

Mahmoodi, S. M. PD, H. Homayoun, S. Rafatirad, and A. Sasan.

Security and Complexity Analysis of LUT-based Obfuscation:

From Blueprint to Reality. In IEEE/ACM Int’l Conference on

Computer-Aided Design (ICCAD), pages 1–8, 2019.

[50] G. Kolhe, S. M. PD, S. Rafatirad, H. Mahmoodi, A. Sasan, and H.

Homayoun. On custom lut-based obfuscation. In Proceedings of

the Great Lakes Symposium on VLSI (GLSVLSI), pages 477–

482, 2019.

[51] V. Venugopalan, G. Kolhe, A. Schmidt, Y. Hu, P. Beerel, P.

Nuzzo, J. Monson, M. French on Quantifying Security and

Overheads for Obfuscation of Integrated Circuits in Government

Microcircuit Applications and Critical Technology Conference,

2019.

[52] Sanket Shukla, Gaurav Kolhe, Sai Manoj P.D., Setareh Rafatirad

on RNN-based Classifier to Detect Stealthy Malware using

Localized Features and Complex Symbolic Sequence,

International Conference on Machine Learning and

Applications. ICMLA 2019.

[53] Sanket Shukla, Gaurav Kolhe, Sai Manoj P.D., Setareh

Rafatirad on Stealthy Malware Detection using RNN-based

Automated Localized Feature Extraction and Classifier, in

International Conference on Tools and Artificial Intelligence.

ICTAI 2019.

[54] Sanket Shukla, Gaurav Kolhe, Sai Manoj P.D., Setareh Rafatirad

on Micro-architectural Events and Image Processing-based

Hybrid Approach for Robust Malware Detection" in

International Conference on Compilers, Architecture,and

Synthesis for Embedded Systems. CASES 2019.

