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KNOWLEDGE REPAIR MECHANISMS:
Evolution vs. Revolution

Ryszard S. Michalski
Massachussetts Institute of Technology*

ABSTRACT

When new facts contradict established knowledge, this knowledge can be
repaired by an evolutionary approach or by a revolutionary approach. The
evolutionary approach makes incremental modifications to the appropriate
segments of knowledge, while the revolutionary approach replaces old knowledge
with new knowledge, generated from scratch. Within the evolutionary approach
two methods are discussed: a premise-based method, and an exception-based method.
Assuming that knowledge is represented in the form of rules, the premise-based
method modifies the main conditions (premises) of the rules, while the exception-
based method accumulates exceptions to the rules and formulates preconditions for
rule application. In the context of machine learning (as opposed to human
learning) a full memory evolutionary approach is advocated, which incrementally
improves knowledge structures, but does not forget facts. An exception-based
learning method is discussed that represents knowledge in the form of censored
production rules. Such rules are created by augmenting ordinary rules by an unless
or provided condition.

INTRODUCTION

Almost all human knowledge is fluid. It changes because the world around of
us changes, or because new facts we learn about the world call for a modification
of what we know. When our knowledge of some subject is inconsistent with
newly observed facts, we may choose one of several options. We may ignore the
inconsistency, hoping that it is insignificant or accidental, and retain our
knowledge unaltered. Or we may make incremental modifications to the
appropriate part of our knowledge. This is an evolutionary approach. Another
option is to throw away this piece of knowledge altogether and develop another
one from scratch. This is a revolutionary approach.

The revolutionary approach may bring about new and significantly better
knowledge. The new knowledge so obtained may be radically different from the
old knowledge, or closely related (as Einstein’s reformulation is related to Newton’s
second law of dynamics). It is also relatively easy to implement such an approach
on a computer, because it does not require an intimate understanding of the
current body of knowledge, nor does it need sophisticated knowledge repair
mechanisms.
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On other hand, the revolutionary approach requires starting from first
principles and using original facts and observations. It may also involve adopting
new viewpoints, discovering unexpected relationships, formulating new ideas.
Therefore it is difficult, often inefficient and time consuming. This approach does
not take advantage of the parts of the old knowledge structures that are correct.
Its difficulty grows rapidly with the extent of knowledge to be developed anew.
The revolutionary approach to knowledge improvement seems thus to be most
advantageous for small bodies of knowledge.

Until now, our machine learning programs have been primarily oriented
toward acquiring only small amounts of knowledge, using relatively simple
inductive learning techniques. Consequently, it is not surprising that most
implemented up-to-date rule learning techniques wuse an non-incremental,
revolutionary approach.

As knowledge bases of our Al systems grow larger and larger, and the
problem of knowledge acquisition bottleneck worsens, machine learning research
needs to put greater emphasis on the development of efficient methods for
incremental learning and knowledge repair. This includes developing knowledge
representations that not only facilitate processes of inference derivation, but are
also amenable to easy modification and improvement.

The evolutionary approach to knowledge repair can be accomplished in two
basic ways: by incrementally refining the main body of knowledge (the premise-
based method), or by accumulating exceptions and formulating preconditions for
applying knowledge currently held (the exception-based method). The latter
method can be illustrated by a simple way in which Newton’s second law of
dynamics can be improved. Instead of replacing it with Einstein’s more precise (but
also more complicated) equation, one can formulate the area of applicability of
Newton’s equation, and use it within this area. And this is what we usually do for
simple physics problems on earth.

An important question is how to decide when to use the evolutionary
approach and when to use the revolutionary approach. The decision can be made
on the basis of estimates of costs and benefits of applying either approach in a
given situation. For the revolutionary approach, there is the cost of developing a
new body of knowledge from scratch. A potential benefit is that the new
knowledge may be simpler and/or better. For the evolutionary approach, there is
the cost of modifying already possesed knowledge. This cost depends on many
factors, such as the complexity of this body of knowledge, amount of repair
needed and the availability of appropriate skills and tools. A potential benefit is
that in some situations a modification can be made simply and quickly.

The rest of this paper is concerned with the evolutionary approach to
knowledge repair. It addresses both, the premise-based and the exception-based
method of incremental learning, assuming that knowledge is represented in the
form of rules. It describes a full memory rule refinement method, which modifies
premises of the rules using both, the newly observed facts and those previously
employed. An exception-based refinement method is also briefly described, which
uses censored production rules as a knowledge representation. Such rules are created
by augmenting ordinary rules by an unless or provided condition.

NEED FOR INCREMENTAL KNOWLEDGE REFINEMENT

Typically, in ordinary life matters and decision making, humans (as
individuals, not as a group) employ incremental learning methods. They tend to
use any newly obtained information to refine what they already know, rather than



to completely change or reformulate their knowledge. There seem to be several
reasons for such an incremental style of repairing knowledge.

One reason is that we live in a world which continuously changes, and we
must react to these changes as they occur. The information comes to us.
sequentially, and we have to process it and relate it to our other knowledge as we
receive it. Also, we cannot consciously erase what we know, as our memory does
not have an erase command. When some new information contradicts a part of our
knowledge, we may try to modify this part appropriately, but we cannot simply
remove it from memory, and replace it with a new better part.

Another important factor is the limitation of our memory. We cannot store
and have easy access to all the information we have ever been been exposed to. We
seem to store and have access to only the most prominent facts and generalizations.
One may also observe, that the personal knowledge base of an adult appears to be
quite large, and it would be difficult to make any radical modification of it.

The first factor, the sequential flow of information, reflects the intrinsic
nature of the world, and cannot be changed. Other factors, however, the lack of
erase instruction and the memory limitation, apply to people but not to modern
computers. For contemporary computers, storage, fast retrieval, and deletion of
vast amounts of information is not infeasible. It is therefore argued that when
implementing learning methods on a computer, it may be advantageous in certain
situations to employ a full memory method, which incrementally refines knowledge
structures, but does not forget facts (Reinke and Michalski, 1985). The strength of
such a method lies in its ability to use all the original facts for guiding the process
of modifying and generalizing knowledge stuctures, and selecting alternative
solutions. Also, such a learning method guarantees the completeness and
consistency of the modified knowledge with all the facts.

PREMISE-ORIENTED FULL MEMORY LEARNING:
Incremental AQ Algorithm

The basic top-level algorithm used in many of our learning programs is AQ
(the quasi-minimal algorithm), or some simplified version of it. It was originally
developed for solving the general covering problem very efficiently (Michalski,
1969), and subsequently adapted to problems of inductive learning. The algorithm
generates a cover, that is, a set of rules that generally describe all positive
learning events and none of the negative events. To do so, it employs the concept
of a star of one positive event against all negative events, i.c., the set of all most
general and consistent concepts or rules that explain a single positive event
(Michalski, 1983). One advantage of this algorithm is that elements of any star can
always be conjunctive concepts (and thus very simple concepts), and another that it
allows to estimate the difference between the generated cover and the minimum
cover.

In a simplified version, algorithm AQ generates a star of a randomly chosen
(positive) event, and selects the best concept from the star according to a flexible
criterion. If the selected concept does not cover (explain) all the positive events,
then a new star is generated for some so far uncovered learning event, and the
process repeats until all positive events are covered. In this form it is a non-
incremental learning algorithm.

There have been two incremental versions of this algorithm, one which does
not remember past learning events (Michalski and Larson, 1978), and one
employing full memory of past events (Reinke, 1985; Reinke and Michalski, 1985).
Here we will briefly describe only the version utilizing fuli memory.



The problem can be formulated as follows. Given is a set of rules, a set of
newly acquired facts (new learning events), and a set of previous facts from which
the rules were induced (old learning events). Suppose that some of the new
learning events contradict the rules. The goal is to transform the original set of
rules to a new set, such that the new rules are consistent and complete with regard
to all, new and old learning events. Moreover, the new set of rules should be the
most preferred one (according to some assumed criterion) among all alternative
such sets of rules.

We will assume that the premise of any rule is either a single conjunctive
concept, or a disjunction of such concepts. To make rules consistent and complete
with regard to all newly acquired events, som¢ rule premises may have to be
specialized (to uncover new negative events that are incorrectly covered), and some
premises may have to be generalized (to cover new positive events that are not
covered).

The incremental algorithm starts by determining a set of rule components
(conjunctive concepts in rule premises) that cover new negative events. These
components need to be specialized. Each such component covers some (old) positive
events and some (new) negative events. The specialization is accomplished by
applying the non-incremental AQ algorithm to such a "local” learning problem (to
determine one or more components that cover only positive events).

The next step generalizes all rule components (the newly specialized ones and
the original ones) to cover those new events that were not covered by the original
rules. This is done by reapplying the non-incremental version of the algorithm,
treating each rule component as a generalized learning event.

This incremental learning algorithm was tested on a series of problems in the
domains of insect classification, chess endgames and plant disease diagnosis
(Reinke, 1985; Reinke and Michalski, 1985). Experiments have shown that the
incremental learning method was between 5 to 100 times faster than the non-
incremental method. The complexity and the performance of rules learned
incrementally were on the avarage only slightly worse than that of the rules
learned in one step (i.., non-incrementally).

RULE REPAIR BY DETERMINING EXCEPTIONS AND PRECONDITIONS

Suppose that a given set of rules (or a theory) works well most of the time,
but occasionally misfires. We may collect cases when rules do not work, and apply
the above or other incremental learning method to develop correct rules. Or we
may develop new correct rules from scratch. In science and other areas where
standards for consistency and precision are very high, rules (or theories) that are
only partially correct are not acceptable. Efforts will be made to determine correct
rules through either an evolutionary or revolutionary approach. If the problem is
sufficiently important, these efforts will be extended regardless of cost.

In commonsense reasoning, or in solving complex practical problems, such as
the ones for which we are developing expert systems, it is not always possible to
have perfect rules. Due to the lack of precise knowledge of the domain, the cost
of obtaining all needed facts, or the time and other limitations, we often use
approximate rules and uncertain theories. In these situations, an exception-based
method can be especially useful.

In such a method, the cases for which a given rule does not work are
collected together and treated as exceptions. Various issues related to representing
and reasoning with exceptions are discussed by Etherington and Reiter (1983),
Winston (1981 and 1983) and Minsky (1985). In addition (or alternatively),
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situations in which the rule works well are characterized and generalized into a
precondition for the rule application.

In a recent work on variable precision logic, Michalski and Winston (1985)
developed a representation system for expressing and reasoning with exceptions
and preconditions (Michalski and Winston, 1985). The system employs censored
production rules, which are in the form:

If < premise>
then <decision>
unless <censor> )

The censor states conditions, which when satisfied reverse the decision. It is
assumed that the censored conditions occur rarely. It has been shown, that from a
logical viewpoint, the unless operator is equivalent to the exclusive-or operator.
From an expository viewpoint, the if-then part is assumed to carry the important
causal or other information, while the unless part acts as a switch that changes the
polarity of the the decision. A complementary form of a censored production rule
uses the provided operator, which states the preconditions for the rule. From the
logical viewpoint the rule (1) is equivalent to the following rule with the provided
operator:

If <decision>
then <decision>
provided <~censor>, 2

where ~ denotes the negation operator.

A preliminary method for learning using censored production rules is
described by Becker (1985). In one of the experiments, his program was given a
number of cases when after turning on the key the car started, and cases when it
did not start. The program learned the following rule (expressed here in a slightly
editted form):

If the ignition key turned on
then car starts
unless gas tank is empty or battery is dead. 3)

The rule seems to reflect well our commonsense reasoning about starting a
car.
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