
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Creating a Digital Twin of an Insider Threat

Detection Enterprise Using Model-Based Systems

Engineering
James Lee

Dept. of System Engineering and Operations

Research

George Mason University

Fairfax, USA

jlee194@gmu.edu

Ahmad Alghamdi

Dept. of System Engineering and Operations

Research

George Mason University

Fairfax, USA

aalgham8@gmu.edu

Abbas K. Zaidi

Dept. of System Engineering and Operations

Research

George Mason University

Fairfax, USA

szaidi@gmu.edu

Abstract—Inference Enterprise Modeling (IEM) is a

methodology developed to address test and evaluation limitations

that insider threat detection enterprises face due to a lack of

ground truth and/or missing data. IEM uses a collection of

statistical, data processing, analysis, and machine learning

techniques to estimate and forecast the performance of these

enterprises. As part of developing the IEM method, models

satisfying various detection system evaluation requirements were

created. In this work, we extend IEM as a digital twin generation

technique by representing modeled processes as UML Activity

Diagrams and tracing solution processes to problem requirements

using ontologies. Using the proposed framework, we can rapidly

prototype a digital twin of a detection system that can also be

imported and executed in systems engineering simulation software

tools such as No Magic Cameo Enterprise Architecture Simulation

Toolkit. Cyber security and threat detection is a continuous

process that requires regular maintenance and testing throughout

its lifecycle, but there often exists access issues for sensitive and

private data and proprietary detection model details to perform

adequate test and evaluation activities in the live production

environment. To solve this issue, organizations can use a digital

twin technique to create a real-time virtual counterpart of the

physical system. We describe a method for creating digital twins

of live and/or hypothetical insider threat detection enterprises for

the purpose of performing test and evaluation activities on

continuous monitoring systems that are sensitive to disruptions. In

this work, we use UML Activity Diagrams to leverage the

integrated simulation capabilities of Model-Based Systems

Engineering (MBSE).

Keywords—Digital Twin, MBSE, Insider Threat, System

Engineering

I. INTRODUCTION

With the increasing concern about threats from adversaries
trying to exploit both human and machine related
vulnerabilities, organizations are actively seeking to implement
methods to help mitigate this risk. Cyber security and threat
detection is a continuous process that requires regular
maintenance and testing throughout its lifecycle. However, data
availability issues related to privacy, lack of ground truth, and
limited visibility into the parameters used by the commercial
off-the-shelf (COTS) products pose a challenge in evaluating
these detection systems sensitive to disruption.

An insider threat is a malicious threat that comes from
actors within an organization. It includes incidents such as a
former employee of a vendor stealing customer data and a
former employee stealing intellectual property. While these
incidents are infrequent and hard to detect, a realized threat has
significant security and financial consequences. To mitigate
this risk, the government has mandated that all contractors must
have an insider threat program in place, and there has been a
growing interest in developing insider threat detection systems.
However, due to lack of ground truth and limited understanding
of detection accuracy and performance, there have been an
overwhelming number of false alarms and challenges with
reducing the population to manageable subpopulations for more
detailed analysis. To address these challenges, a group of
researchers developed a best-in-class Inference Enterprise
Modeling (IEM) methodology, a modeling and simulation
methodology to better evaluate the performance of insider
threat detection enterprises [1], [2].

The technology of Digital Twins opens a new level of
efficiency in system development. But the creation of virtual
systems becomes more challenging as an exact digital
representation is needed [3]. The work in [4] and [5] has
described Digital Twin as a dynamic digital representation of a
physical system and recommends integrating digital twin
technology within the Model-Based System Engineering
(MBSE) methodology. Moreover, MBSE can be used in
conjunction with digital twin to improve operational models,
predict and analyze faults and perform system-wide analysis.

In this work, we re-introduce IEM as a technique to create
digital twins for insider threat detection enterprises. There is a
breadth of IEM knowledge in academic papers, technical
reports, and repositories for future IEM researchers to refer to.
However, like any software development project, searching,
selecting candidates, and confirming whether the potential
solution is a feasible option is often a time-consuming activity.
We develop a framework to document, formalize, and scale
IEM modeling knowledge by employing systems engineering
techniques.

Systems engineering is an interdisciplinary field of
engineering and engineering management that focuses on
designing, integrating, and managing complex systems over
their life cycles [6]. As the engineering community transitions

from document-based to model-based design, there is an
increasing need for applications capable of supporting the
digitization of the design and modeling process. This transition
can be made possible by adopting Model-Based Systems
Engineering (MBSE), which is a formalized application of
modeling to analyze and document key aspects of the systems
engineering life cycle [7], [8]. MBSE provides a way to
coordinate system design activities and satisfy stakeholder
requirements through improved communications, rigorous
requirements traceability, and continuous requirements
validation and design verification [9]. There are many available
MBSE tools in the market, providing system engineers with
resources, repositories, and tools to support the collaboration
between teams and the required analysis for their system [10].
These modeling tools enable the development of digital
engineering models to integrate the modeling and analysis into
a single environment.

The paper is organized as follows. In section 2, we review
the Inference Enterprise Modeling methodology and discuss the
research opportunities. In section 3, we review the relevant
technologies used in the solution method. In section 4, we
describe the solution method and demonstrate it using a small
example. In section 5, we conclude and outline the future
direction for this work.

II. INFERENCE ENTERPRISE MODELING

An Inference Enterprise (IE) is an organizational entity that
uses data, tools, and people to make mission-focused
inferences. In this work, we focus on enterprises that seek to
detect and identify a small proportion of the population that are
potential insider threats. An IE makes predictions about events
which lack ground truth, and without the knowledge of the
ground truth, it is challenging to evaluate the accuracies of these
predictions and adjust the system.

IEM uses available data and information about the
organization to design and develop models that will be used to
forecast the performance of a system. Through IEM, modelers
can gain an understanding of how various factors impact the
performance and analyze these results to suggest changes to, or
tune, the model before deploying it in a live operational
environment to make predictions about future events. The
typical activities involved in the IEM process are shown in Fig.
1.

The IEM process starts with a problem statement that
outlines the purpose of the modeling task. For example, we may
be asked to predict the future performance of an insider threat
detection enterprise given historical data and information about
the classifier it is using. Along with the problem objective,
historical data and information about the classifier or anomaly
detector is provided to the modelers. The historical data can be
provided in the form of complete user-level records or
aggregated data. Aggregated (or redacted) data is usually
delivered in the form of a set of data summaries such as
histograms and correlations to protect personal identifiable
information. Modelers use the provided data to create models
that generate simulated populations, including simulated target
labels. Statistical variations are applied to simulated
populations to account for uncertainty, especially for future or
unknown scenarios. Different simulation methods are used
depending on the characteristics of the data. This describes the
Population Modeling phase which results in many versions of
the historical and potential future CULRs the summary
statistics were based on.

In the second phase, the modeler designs and develops
algorithms that make predictions of a target behavior. We call
these Down-Select (DS) algorithms because they seek to
identify a subset of the target population. Examples include
classification algorithms such as Support Vector Machine and

Figure 1. Inference Enterprise Modeling

Neural Networks. The specific algorithms are often given as
part of the problem specification, but sometimes the IEM team
is asked to identify and evaluate suitable algorithms to be
considered for a future IE implementation. The problem
description specifies the data to be used to train the algorithms
make predictions on. Since the premise of this problem is that
the user behavior and ground truth of the future are unknown,
the predictions are compared to the simulated labels created in
the population modeling phase to evaluate performance metrics
such as precision, recall, and false-positive rates. Since there
are multiple populations to represent the possibilities of the
unknown, there will also be multiple predictions and
performance metrics to match the number of populations
generated.

In the final Fusion and Evaluation step, modelers fuse the
predictions from different population models to calculate
central tendencies for the performance metrics which represent
the uncertainty in the estimates. These estimations are based on
the stochastic simulation described in the population modeling
step. In the model evaluation phase, the estimates are reviewed
by the modelers and may reassign the weights used to fuse the
results together for each model. Modelers may also go back and
adjust the assumptions and parameters defined in the software
assets for Population Modeling and Down-Select algorithms.
After model validation, the modelers can identify ways to
improve future performance and apply those changes to the live
operational environment.

A. IEM Knowledge Management Opportunities

As part of developing the best-in-class IEM method, a
collection of quality IE models were built, and the modelers
gained expert knowledge in modeling insider threat detection
systems. Currently, this expert knowledge can be accessed
through academic papers, technical reports, and repositories,
which makes creating a new IEM solution for new researchers
a heavily manual process where either a new solution is created
from scratch or potential previous solutions are searched for
and modified for the new problem. The process of searching,
selecting candidates, and evaluating whether it is a feasible
solution is often a time-consuming activity. There is an
opportunity to manage IEM knowledge using systems
engineering methods for better knowledge scaling.
Formalization of this knowledge in a computable representation
enables partial automation and rapid prototyping, which can
shorten the time to prototype new potential solutions allowing
for more time to refine the models.

III. RELEVANT METHODS

As mentioned in the previous chapter, there are
opportunities for utilizing knowledge management techniques
to better preserve and scale IEM knowledge. With the
opportunities in mind, the high-level objectives are to facilitate
preservation and sharing of IEM knowledge, enable the ability
to combine modules from previous solutions to solve new
problems, and define the relationship between problem
requirements (or characteristics) to specific solutions so that
they can be queried. More specifically, my research objectives
are to develop a comprehensive knowledge base for the IEM
method to provide a reuse formalization for discovery of new
potential solutions which are also executable through systems

modeling simulation software. To meet these objectives, I
would need the following capabilities:

• Knowledge Representation: to document processes,
skills, artifacts used in previous projects

• Instance storage: store new knowledge

• Reasoning capabilities: make recommendations based
on new requirements

This makes the use of ontologies and process modeling
languages as an ideal solution candidate for this work.

A. Ontologies

Ontologies are a formal description of knowledge as a set of
concepts within a domain and the relationships between those
concepts. The benefits of ontologies are that they provide a
coherent and easy navigation between one concept to another.
As formal and explicit specifications of representing
knowledge about a domain, ontologies are helpful in making
information more shareable across people and computer models
to support knowledge-based reasoning. The Web Ontology
Language (OWL) provides a formal representation of an
ontology that describes classes, properties, and individuals in
semantic web documents or datasets [11], [12]. The OWL
semantic web technology has been used to develop ontologies
for a variety of disciplines, including biology, medicine,
enterprise architecture, and web services, to better manage
knowledge and information within these domains [13]–[15]. In
this work, we use Protégé as an ontology development tool.

Ontologies are enablers of good modeling in that it focuses
on establishing well defined domain concepts in terms of the
terminology, definitions, and relationships to model real world
applications [16]. For these reasons, ontologies have been used
to model system specifications, enterprise architectures [17],
and groups such as the Object Management Group (OMG) have
been leading initiatives to leverage ontology practices to
improve MBSE. Ontologies representing requirements and
software assets [18], [19].

B. Process Modeling

Process modeling is the graphical representation of business
processes, which are a collection of tasks an organization
performs to create products, reach specific goals, and provide
value to stakeholders. These tasks may include manual and
automated activities, such as developing or automating
execution of software assets. Traditional process modeling
methods focused on increasing production efficiency and
quality of goods in the industrial sector, but there is an
increasing need for process modeling and improving business
processes in the rapidly advancing information technology and
software-intensive system domain [20].

There are several process modeling languages such as
Business Process Modeling Notation (BPMN), Event-Driven
Process Chain (EPC), and Petri nets. In this work, I use UML
(Unified Modeling Language) activity diagrams, which are
particularly good at modeling processes [21], that are not only
equally suitable for human and machine processing but also
widely used in the software development community [22].
Activity diagrams help designers express the behaviors and

This work has been funded by

event occurrence over time and gain the advantage of
readability over other behavioral diagrams [23]. For that reason,
modelers use activity diagrams as an analysis tool to capture the
system behaviors and their actors. In this work, we use No
Magic Cameo Enterprise Architecture (Cameo EA) to model
and execute the processes using Cameo Simulation Toolkit.
Simulation Toolkit allows designers to execute designed
systems to endorse the validation and verification. It also
supports built-in scripting engines to customize different
actions and allows designers to better understand the system
without manipulating the actual system [9].

IV. SOLUTION METHODOLOGY

The solution is an extension of the work described in [24],
[25], in which a solution is instantiated using a pre-defined
template based on the output from querying the ontology
knowledge base. In this approach, the IEM Process Ontology
represents the expert knowledge of the IEM methodology
described in section 2. We used UML Activity Diagrams as the
representation for the Process Template. Since there was no
official Activity Diagram ontology available for reuse, we
reverse-engineered a version of an Activity Diagram ontology
by inspecting an activity diagram XML and identifying the
necessary XML. We also designed a Model Generator that
produces an Activity Diagram of a suggest solution workflow
that can be executed in simulation tools such as Cameo.

A. IEM Process Ontology

The proposed knowledge management framework, which
utilizes systems engineering tools, process modeling, and
ontologies, follows the three-step process of:

1. using formal process modeling to document the
generalized solution workflows,

2. generalizing solution methods by creating a process
template and categorizing each part of the solution as a
section of the template, and

3. defining the connection between problem requirements
to each solution method.

This enables instantiation of new solutions of the
generalized workflow that covers the new problem instances
and use of simulation plug-ins to execute the solution instance.

The IEM Process Ontology is comprised of IEM Problem
Requirements, IEM Solutions, and IEM Process Template. The
problem requirements component formalizes the characteristics
that define each problem, and the solution component
documents the software assets and manual activities that fulfill
the requirements. The process template is used to organize the
solution modules into one of the steps of IEM: A. Population
Modeling, B. Down-Select, and C. Fusion and Evaluate. The
relationship between the ontology components are described in
Fig. 2.

Figure 2. IEM Process Ontology Architecture

The structure creates a connection from the IEM problem
requirements to a sequence of solution modules which
represents the process that satisfies the requirements. As a
whole, the IEM Process Ontology serves as an IEM knowledge
base with links to the IEM assets repository. We can see how
certain problem requirements are implementedBy specific
solutions, and how each solution is partOf a step of the process
template.

Considering a new problem with requirements to correlate
data from different data sources, use decision trees to make
predictions, and ask for precision, recall, and false-positive rate.
We can see connect each requirement to a corresponding
solution, and as a result, end up with a suggested solution
process template that can use Sol2A, Sol1B, Sol1C in order.

1) Process Modeling

For this step, we started documenting previous solutions as
Activity Diagrams. An example of a solution workflow is
shown in Fig. 3.

Figure 3. Solution Workflow Example

After creating activity diagrams for the previous solution
workflows, we identified the minimum set of common UML
Activity Diagram elements, including the Initial Node, Activity
Final Node, Fork and Join Nodes, Call Behavior Action,
Opaque Action, Accept Event Action, and Control Flows. This
list of activity diagram elements is later translated to classes in
the process template ontology, which is described in the next
subsection.

The Call Behavior Actions represent manual tasks that
modelers performed where Opaque Actions correspond to
software tasks. Each of these action types will contain the path
from which the documentation related to the task can be found.
Each software script takes a certain amount of time to complete
execution. The scripts are executed through Opaque Actions,
and each Opaque Action is followed by an Accept Event Action
that is triggered by a time event that indicates the time it takes
to execute a script. Since the execution time for manual tasks
can vary from modeler to modeler, the Accept Event Action is
triggered by a signal representing task completion. We

specified the location of the script and software executable in
the Body and Language field of the specifications. Using
BeanShell as the language, we input the following:

String[] cmd = {"path to software executable", "path to file"};

Runtime.getRuntime().exec(cmd)

This BeanShell script executes the specified file, using the

specified executable in command line. The different software
options we use in this work include Python, R, Excel, and
Notepad.

2) Process Tamplate
From the documented solutions in the form of Activity

Diagrams, we identified the distinct steps of the IEM process
and created the process template as in Fig. 4, where each of the
fork/join pairs represents each step. This structure ensures that
the model is syntactically correct even when there is no instance
for a specific step of the process.

Figure 4. Process Template

The resulting class structure of process template ontology is
shown in Fig. 5(a). Each of the subclasses for process template
corresponds to the common activity diagram elements that were
identified in the previous section. For the Workflow class, we
have 3 subclasses for each of the IEM Process Steps outlined in
the previous section. The object properties shown in Fig. 5(b)
are used to describe the binary relationship between two
instances. hasElement is used to indicate which UML Activity
Diagram elements a specific part of the workflow has,
hasSource and hasTarget define the source and target nodes (or
elements) for each Control Flow.

Figure 5. Process Template Ontology Properties

3) Problem and Solution Modeling

a) IEM Problem Requirements Ontology

Modeling the connection between problem requirements (or
characteristics) to each solution module started with identifying
all the possible problem requirements of the previous challenge
problems that were solved by the modeling teams.
Characteristics of an IEM problem can be broken down to

categories such as the type of data provided, type of down-
select algorithm to be used, and types of performance
evaluation questions to be answered. Each of these categories
would have a unique choice that would be specific to a problem.
By creating an object property for each of the categories and
instances for each choice within the categories, we defined
problem requirements for each problem. An example of an IEM
problem (instance “IRCP3”) described using IEM problem
requirements instances is shown in Fig.6.

Figure 6. IEM Problem Requirements Example

b) IEM Solution Ontology

Once the problem requirements were defined, we cataloged
the solution modules, both software, and manual, including
information such as the time it takes to execute the software as
well as the file path of the artifacts. By importing the IEM
Process Template ontology, we can re-use the two classes
opaque_action and accept_event_action to create instances and
the imported object properties for assertions. By importing the
IEM Problem Requirements ontology, we can connect the
requirements and solutions using an object property
implementedBy. In addition, the following properties presented
in Fig. 7 were defined to specify the time it takes to execute a
software module (hasDuration), which Opaque Action the
Accept Event Action represents (representsDurationFor), how
the Accept Event Action is triggered (triggers), and the
command that executes the software script (hasBody) and the
scripting language of which the command was written in
Cameo (hasLanguage).

Figure 7. IEM Solution Ontology Properties

Finally, we define the rules that connect a set of problem
requirements to modules that are part of the solution process.
Considering a module “WF_rcp17_downselect” that satisfies a
requirement to use linear regression as a down-select algorithm,
the rule can be modeled in Protégé as seen in Fig. 8.

Figure 8. Requirement Implementation Rules

Each rule is created as a class where the Equivalent To field
is used as the IF statement and SubClass Of is used as the THEN
statement. The rule “linreg” can be interpreted as “the
requirement for linear regression being implemented by the
WF_rcp17_downselect module.”

B. Ontology Instantiation and Demonstration

Given there is a problem that requires running a linear
regression classifier for its prediction model, this is a small
example solution workflow that contains a single task where a
linear regression script is executed. Since this example only
contains a down-select step (step B), the ontology instances that
need to be added will look like Fig. 9. The fork and join nodes,
in this case are the same fork and join nodes for step B in the
process template.

Figure 9. Small Example for Demonstration

First, all the necessary activity diagram elements are created
as instances in the process template ontology depicted in Fig.
10(a). Next, the instances that correspond to the activity
diagram elements are linked to part of the workflow using
object property assertion hasElement as shown in Fig. 10(b).
Since the process template already contain the forks and joins,
they are not added in the step above. Each control flow is given
a source and target node as in Fig. 10(c), and the scripting
language that’s calling the script from within Cameo EA and
the location/path of the script to execute are defined as data
properties of the instance that represents the Opaque Action
(Fig. 10(e)). Finally, we define the time event that triggers the
Accept Event Action that indicates the duration of the script that
Opaque Action represents (Fig. 10(d)).

Figure 10. Small Example Ontology Implementation

Once the ontology is set up, we can run a query for the
activity diagram elements that satisfy the linear regression
requirement as seen in Fig. 11.

Figure 11. Small Example Ontology Query

Taking the activity diagram elements from the query, we
use the activity diagram model generator that extracts the
information in the object and data properties from the owl file
and generates an XML (Fig. 12).

Figure 12. Small Example XML Output

When importing this XML into Cameo, we get the
following Activity Diagram (Fig. 13), which can be executed
using the Cameo Simulation Toolkit.

Figure 13. Small Example Suggested Workflow

V. CONCLUSION AND FUTURE WORKS

In this paper, we re-introduce Inference Enterprise
Modeling (IEM) as a technique to create digital twins for
insider threat detection enterprises. We identify an opportunity
to scale IEM knowledge by employing systems engineering
techniques. We develop a framework to document and
formalize IEM modeling knowledge that can be used to rapidly
prototype digital twin solutions for insider threat detection
enterprise modeling problems. Finally, we demonstrate that this
can be done by modeling activity diagrams and executing these
processes in Cameo EA using Cameo Simulation Toolkit. This
method can also be extended as a knowledge management
system that can capture the knowledge for various engineering
projects involving a process-oriented workflow that involves
manual and software-related tasks.

There are some limitations to this work. The quality of the
suggested solution depends on the assumption that the future
user of this solution understands the new modeling problem
correctly. If the future modeler does not use the correct problem
requirements query, there is no guarantee that the output will be
of good quality. This challenge could be resolved by employing
a natural language processer and data pre-processing script to
automatically extract the problem requirements of a new
potential problem. Also, the template used in this approach is
based on IEM activities, so it follows a linear process where
one activity follows the other. This may not work in other
domains where the problem-solving process looks different.
Supporting additional templates works as a short-term solution,
but a more flexible approach to generalizing various workflows
or processes is an interesting research direction. Other future
work includes extending this work to integrate with parametric

diagrams to take advantage of the full simulation capabilities of
the systems modeling software.

ACKNOLWEDGEMENT

The Research reported here was supported under IARPA
contract 2016 16031400006. The content is solely the
responsibility of the authors and does not necessarily represent
the official views of the U.S. Government.

REFERENCES

[1] D. M. Buede et al., “Inference enterprise models: An approach to
organizational performance improvement,” Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, vol. 8, no. 6, p.
e1277, 2018.

[2] K. B. Laskey et al., “Modeling inference enterprises using multiple
interoperating models,” in INCOSE International Symposium, 2018, vol.
28, no. 1, pp. 1764–1777.

[3] Y. Wang, T. Steinbach, J. Klein, and R. Anderl, “Integration of model
based system engineering into the digital twin concept,” Procedia CIRP,
vol. 100, pp. 19–24, 2021.

[4] A. M. Madni, C. C. Madni, and S. D. Lucero, “Leveraging digital twin
technology in model-based systems engineering,” Systems, vol. 7, no. 1,
p. 7, 2019.

[5] M. Hause, “The Digital Twin Throughout the SE Lifecycle,” in INCOSE
International Symposium, 2019, vol. 29, no. 1, pp. 203–217.

[6] Wikipedia contributors, “Systems engineering,” Wikipedia. Wikipedia,
The Free Encyclopedia, Oct. 09, 2021. Accessed: Nov. 12, 2021.
[Online]. Available:
https://en.wikipedia.org/w/index.php?title=Systems_engineering&oldid
=1049109928

[7] “Transitioning Systems Engineering to a Model-based Discipline -
SEBoK,” SEBoK GUIDE TO THE SYSTEMS ENGINEERING BODY
OF KNOWLEDGE, Oct. 14, 2020.
https://www.sebokwiki.org/w/index.php?title=Transitioning_Systems_E
ngineering_to_a_Model-based_Discipline&oldid=60100 (accessed Mar.
25, 2021).

[8] A. L. Ramos, J. V. Ferreira, and J. Barceló, “Model-based systems
engineering: An emerging approach for modern systems,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), vol. 42, no. 1, pp. 101–111, 2011.

[9] A. Morkevicius, “Making the Most of an Enterprise Architecture
Modeling Tool.” No Magic, Inc., 2011. Accessed: Sep. 06, 2021.
[Online]. Available:
https://www.nomagic.com/mbse/images/whitepapers/Making_the_Most
_of_EA_Modeling_Tool.pdf

[10] N. M. Inc, “Cameo Enterprise Architecture.”
https://www.nomagic.com/products/cameo-enterprise-architecture
(accessed Mar. 24, 2021).

[11] J. Carroll, I. Herman, and P. F. Patel-Schneider, “OWL 2 Web Ontology
Language Document Overview (Second Edition).” W3C OWL Working
Group, Dec. 11, 2012. Accessed: May 31, 2018. [Online]. Available:
https://www.w3.org/TR/2012/REC-owl2-overview-20121211/

[12] A. Doan, J. Madhavan, P. Domingos, and A. Halevy, “Learning to map
between ontologies on the semantic web,” in Proceedings of the 11th
international conference on World Wide Web, 2002, pp. 662–673.

[13] G. O. Consortium, “The Gene Ontology (GO) database and informatics
resource,” Nucleic acids research, vol. 32, no. suppl_1, pp. D258–D261,
2004.

[14] Z. Rajabi, B. Minaei, and M. A. Seyyedi, “Enterprise architecture
development based on enterprise ontology,” Journal of theoretical and
applied electronic commerce research, vol. 8, no. 2, pp. 85–95, 2013.

[15] J. de Bruijn, D. Fensel, U. Keller, and R. Lara, “Using the web service
modeling ontology to enable semantic e-business,” Communications of
the ACM, vol. 48, no. 12, pp. 43–47, 2005.

[16] H. Graves, “mbse:ontology [MBSE Wiki],” Jun. 11, 2013.
https://www.omgwiki.org/MBSE/doku.php?id=mbse:ontology (accessed
Nov. 12, 2021).

[17] Henson Graves and Matthew West, “Current State of ontology in
engineering systems,” 2012.
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:oat:gra
ves-current-state-ontology_.pdf (accessed Nov. 12, 2021).

[18] D. Gašević, N. Kaviani, and M. Milanović, “Ontologies and software
engineering,” in Handbook on Ontologies, Springer, 2009, pp. 593–615.

[19] H.-J. Happel and S. Seedorf, “Applications of ontologies in software
engineering,” in Proc. of Workshop on Sematic Web Enabled Software
Engineering"(SWESE) on the ISWC, 2006, pp. 5–9.

[20] R. Seethamraju and O. Marjanovic, “Role of process knowledge in
business process improvement methodology: a case study,” Business
Process Management Journal, 2009.

[21] R. Miles and K. Hamilton, Learning UML 2.0, 1st ed. Beijing ;
Sebastopol, CA: O’Reilly, 2006.

[22] Z. D. Kelemen, R. Kusters, J. Trienekens, and K. Balla, “Selecting a
process modeling language for process based unification of multiple
standards and models,” Budapest, Technical Report TR201304, 2013.

[23] L. Delligatti, SysML distilled: a brief guide to the systems modeling
language. Upper Saddle River, NJ: Addison-Wesley, 2014.

[24] J. D. Lee, A. K. Zaidi, and K. B. Laskey, “Rapid Prototyping Insider
Threat Inference Enterprise Model Workflows Using Ontology-
Template Approach,” in Systems Engineering in Context, Springer,
2019, pp. 643–652.

[25] J. D. Lee, S. Matsumoto, A. K. Zaidi, and K. B. Laskey, “Towards
Automating Design and Development of Inference Enterprise Models,”
in 2019 IEEE International Systems Conference (SysCon), Orlando, FL,
USA, Apr. 2019, pp. 1–6. doi: 10.1109/SYSCON.2019.8836882.

	I. Introduction
	II. Inference Enterprise Modeling
	A. IEM Knowledge Management Opportunities

	III. relevant methods
	A. Ontologies
	B. Process Modeling

	IV. solution methodology
	A. IEM Process Ontology
	1. using formal process modeling to document the generalized solution workflows,
	2. generalizing solution methods by creating a process template and categorizing each part of the solution as a section of the template, and
	3. defining the connection between problem requirements to each solution method.
	1) Process Modeling
	2) Process Tamplate
	3) Problem and Solution Modeling
	a) IEM Problem Requirements Ontology
	b) IEM Solution Ontology

	B. Ontology Instantiation and Demonstration

	V. Conclusion and future works
	Acknolwedgement
	References

