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Abstract—Inference Enterprise Modeling (IEM) is a 

methodology developed to address test and evaluation limitations 

that insider threat detection enterprises face due to a lack of 

ground truth and/or missing data. IEM uses a collection of 

statistical, data processing, analysis, and machine learning 

techniques to estimate and forecast the performance of these 

enterprises. As part of developing the IEM method, models 

satisfying various detection system evaluation requirements were 

created. In this work, we extend IEM as a digital twin generation 

technique by representing modeled processes as UML Activity 

Diagrams and tracing solution processes to problem requirements 

using ontologies. Using the proposed framework, we can rapidly 

prototype a digital twin of a detection system that can also be 

imported and executed in systems engineering simulation software 

tools such as No Magic Cameo Enterprise Architecture Simulation 

Toolkit. Cyber security and threat detection is a continuous 

process that requires regular maintenance and testing throughout 

its lifecycle, but there often exists access issues for sensitive and 

private data and proprietary detection model details to perform 

adequate test and evaluation activities in the live production 

environment. To solve this issue, organizations can use a digital 

twin technique to create a real-time virtual counterpart of the 

physical system. We describe a method for creating digital twins 

of live and/or hypothetical insider threat detection enterprises for 

the purpose of performing test and evaluation activities on 

continuous monitoring systems that are sensitive to disruptions. In 

this work, we use UML Activity Diagrams to leverage the 

integrated simulation capabilities of Model-Based Systems 

Engineering (MBSE). 

Keywords—Digital Twin, MBSE, Insider Threat, System 

Engineering 

I. INTRODUCTION 

With the increasing concern about threats from adversaries 
trying to exploit both human and machine related 
vulnerabilities, organizations are actively seeking to implement 
methods to help mitigate this risk. Cyber security and threat 
detection is a continuous process that requires regular 
maintenance and testing throughout its lifecycle. However, data 
availability issues related to privacy, lack of ground truth, and 
limited visibility into the parameters used by the commercial 
off-the-shelf (COTS) products pose a challenge in evaluating 
these detection systems sensitive to disruption. 

An insider threat is a malicious threat that comes from 
actors within an organization. It includes incidents such as a 
former employee of a vendor stealing customer data and a 
former employee stealing intellectual property. While these 
incidents are infrequent and hard to detect, a realized threat has 
significant security and financial consequences. To mitigate 
this risk, the government has mandated that all contractors must 
have an insider threat program in place, and there has been a 
growing interest in developing insider threat detection systems. 
However, due to lack of ground truth and limited understanding 
of detection accuracy and performance, there have been an 
overwhelming number of false alarms and challenges with 
reducing the population to manageable subpopulations for more 
detailed analysis. To address these challenges, a group of 
researchers developed a best-in-class Inference Enterprise 
Modeling (IEM) methodology, a modeling and simulation 
methodology to better evaluate the performance of insider 
threat detection enterprises [1], [2].  

The technology of Digital Twins opens a new level of 
efficiency in system development. But the creation of virtual 
systems becomes more challenging as an exact digital 
representation is needed [3]. The work in [4] and [5] has 
described Digital Twin as a dynamic digital representation of a 
physical system and recommends integrating digital twin 
technology within the Model-Based System Engineering 
(MBSE) methodology. Moreover, MBSE can be used in 
conjunction with digital twin to improve operational models, 
predict and analyze faults and perform system-wide analysis. 

In this work, we re-introduce IEM as a technique to create 
digital twins for insider threat detection enterprises. There is a 
breadth of IEM knowledge in academic papers, technical 
reports, and repositories for future IEM researchers to refer to. 
However, like any software development project, searching, 
selecting candidates, and confirming whether the potential 
solution is a feasible option is often a time-consuming activity. 
We develop a framework to document, formalize, and scale 
IEM modeling knowledge by employing systems engineering 
techniques. 

Systems engineering is an interdisciplinary field of 
engineering and engineering management that focuses on 
designing, integrating, and managing complex systems over 
their life cycles [6]. As the engineering community transitions 



from document-based to model-based design, there is an 
increasing need for applications capable of supporting the 
digitization of the design and modeling process. This transition 
can be made possible by adopting Model-Based Systems 
Engineering (MBSE), which is a formalized application of 
modeling to analyze and document key aspects of the systems 
engineering life cycle [7], [8]. MBSE provides a way to 
coordinate system design activities and satisfy stakeholder 
requirements through improved communications, rigorous 
requirements traceability, and continuous requirements 
validation and design verification [9]. There are many available 
MBSE tools in the market, providing system engineers with 
resources, repositories, and tools to support the collaboration 
between teams and the required analysis for their system [10]. 
These modeling tools enable the development of digital 
engineering models to integrate the modeling and analysis into 
a single environment.  

The paper is organized as follows. In section 2, we review 
the Inference Enterprise Modeling methodology and discuss the 
research opportunities. In section 3, we review the relevant 
technologies used in the solution method. In section 4, we 
describe the solution method and demonstrate it using a small 
example. In section 5, we conclude and outline the future 
direction for this work. 

II. INFERENCE ENTERPRISE MODELING 

An Inference Enterprise (IE) is an organizational entity that 
uses data, tools, and people to make mission-focused 
inferences. In this work, we focus on enterprises that seek to 
detect and identify a small proportion of the population that are 
potential insider threats. An IE makes predictions about events 
which lack ground truth, and without the knowledge of the 
ground truth, it is challenging to evaluate the accuracies of these 
predictions and adjust the system.  

IEM uses available data and information about the 
organization to design and develop models that will be used to 
forecast the performance of a system. Through IEM, modelers 
can gain an understanding of how various factors impact the 
performance and analyze these results to suggest changes to, or 
tune, the model before deploying it in a live operational 
environment to make predictions about future events. The 
typical activities involved in the IEM process are shown in Fig. 
1.  

The IEM process starts with a problem statement that 
outlines the purpose of the modeling task. For example, we may 
be asked to predict the future performance of an insider threat 
detection enterprise given historical data and information about 
the classifier it is using. Along with the problem objective, 
historical data and information about the classifier or anomaly 
detector is provided to the modelers. The historical data can be 
provided in the form of complete user-level records or 
aggregated data. Aggregated (or redacted) data is usually 
delivered in the form of a set of data summaries such as 
histograms and correlations to protect personal identifiable 
information. Modelers use the provided data to create models 
that generate simulated populations, including simulated target 
labels. Statistical variations are applied to simulated 
populations to account for uncertainty, especially for future or 
unknown scenarios. Different simulation methods are used 
depending on the characteristics of the data. This describes the 
Population Modeling phase which results in many versions of 
the historical and potential future CULRs the summary 
statistics were based on. 

In the second phase, the modeler designs and develops 
algorithms that make predictions of a target behavior. We call 
these Down-Select (DS) algorithms because they seek to 
identify a subset of the target population. Examples include 
classification algorithms such as Support Vector Machine and 

Figure 1. Inference Enterprise Modeling 



Neural Networks. The specific algorithms are often given as 
part of the problem specification, but sometimes the IEM team 
is asked to identify and evaluate suitable algorithms to be 
considered for a future IE implementation. The problem 
description specifies the data to be used to train the algorithms 
make predictions on. Since the premise of this problem is that 
the user behavior and ground truth of the future are unknown, 
the predictions are compared to the simulated labels created in 
the population modeling phase to evaluate performance metrics 
such as precision, recall, and false-positive rates. Since there 
are multiple populations to represent the possibilities of the 
unknown, there will also be multiple predictions and 
performance metrics to match the number of populations 
generated.  

In the final Fusion and Evaluation step, modelers fuse the 
predictions from different population models to calculate 
central tendencies for the performance metrics which represent 
the uncertainty in the estimates. These estimations are based on 
the stochastic simulation described in the population modeling 
step. In the model evaluation phase, the estimates are reviewed 
by the modelers and may reassign the weights used to fuse the 
results together for each model. Modelers may also go back and 
adjust the assumptions and parameters defined in the software 
assets for Population Modeling and Down-Select algorithms. 
After model validation, the modelers can identify ways to 
improve future performance and apply those changes to the live 
operational environment. 

A. IEM Knowledge Management Opportunities 

As part of developing the best-in-class IEM method, a 
collection of quality IE models were built, and the modelers 
gained expert knowledge in modeling insider threat detection 
systems. Currently, this expert knowledge can be accessed 
through academic papers, technical reports, and repositories, 
which makes creating a new IEM solution for new researchers 
a heavily manual process where either a new solution is created 
from scratch or potential previous solutions are searched for 
and modified for the new problem. The process of searching, 
selecting candidates, and evaluating whether it is a feasible 
solution is often a time-consuming activity. There is an 
opportunity to manage IEM knowledge using systems 
engineering methods for better knowledge scaling. 
Formalization of this knowledge in a computable representation 
enables partial automation and rapid prototyping, which can 
shorten the time to prototype new potential solutions allowing 
for more time to refine the models. 

III. RELEVANT METHODS 

As mentioned in the previous chapter, there are 
opportunities for utilizing knowledge management techniques 
to better preserve and scale IEM knowledge. With the 
opportunities in mind, the high-level objectives are to facilitate 
preservation and sharing of IEM knowledge, enable the ability 
to combine modules from previous solutions to solve new 
problems, and define the relationship between problem 
requirements (or characteristics) to specific solutions so that 
they can be queried. More specifically, my research objectives 
are to develop a comprehensive knowledge base for the IEM 
method to provide a reuse formalization for discovery of new 
potential solutions which are also executable through systems 

modeling simulation software. To meet these objectives, I 
would need the following capabilities: 

• Knowledge Representation: to document processes, 
skills, artifacts used in previous projects 

• Instance storage: store new knowledge 

• Reasoning capabilities: make recommendations based 
on new requirements 

This makes the use of ontologies and process modeling 
languages as an ideal solution candidate for this work. 

A. Ontologies 

Ontologies are a formal description of knowledge as a set of 
concepts within a domain and the relationships between those 
concepts. The benefits of ontologies are that they provide a 
coherent and easy navigation between one concept to another. 
As formal and explicit specifications of representing 
knowledge about a domain, ontologies are helpful in making 
information more shareable across people and computer models 
to support knowledge-based reasoning. The Web Ontology 
Language (OWL) provides a formal representation of an 
ontology that describes classes, properties, and individuals in 
semantic web documents or datasets [11], [12]. The OWL 
semantic web technology has been used to develop ontologies 
for a variety of disciplines, including biology, medicine, 
enterprise architecture, and web services, to better manage 
knowledge and information within these domains [13]–[15]. In 
this work, we use Protégé as an ontology development tool. 

Ontologies are enablers of good modeling in that it focuses 
on establishing well defined domain concepts in terms of the 
terminology, definitions, and relationships to model real world 
applications [16]. For these reasons, ontologies have been used 
to model system specifications, enterprise architectures [17], 
and groups such as the Object Management Group (OMG) have 
been leading initiatives to leverage ontology practices to 
improve MBSE. Ontologies representing requirements and 
software assets [18], [19]. 

B. Process Modeling 

Process modeling is the graphical representation of business 
processes, which are a collection of tasks an organization 
performs to create products, reach specific goals, and provide 
value to stakeholders. These tasks may include manual and 
automated activities, such as developing or automating 
execution of software assets. Traditional process modeling 
methods focused on increasing production efficiency and 
quality of goods in the industrial sector, but there is an 
increasing need for process modeling and improving business 
processes in the rapidly advancing information technology and 
software-intensive system domain [20].  

There are several process modeling languages such as 
Business Process Modeling Notation (BPMN), Event-Driven 
Process Chain (EPC), and Petri nets. In this work, I use UML 
(Unified Modeling Language) activity diagrams, which are 
particularly good at modeling processes [21], that are not only 
equally suitable for human and machine processing but also 
widely used in the software development community [22]. 
Activity diagrams help designers express the behaviors and 
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event occurrence over time and gain the advantage of 
readability over other behavioral diagrams [23]. For that reason, 
modelers use activity diagrams as an analysis tool to capture the 
system behaviors and their actors. In this work, we use No 
Magic Cameo Enterprise Architecture (Cameo EA) to model 
and execute the processes using Cameo Simulation Toolkit. 
Simulation Toolkit allows designers to execute designed 
systems to endorse the validation and verification. It also 
supports built-in scripting engines to customize different 
actions and allows designers to better understand the system 
without manipulating the actual system [9].  

IV. SOLUTION METHODOLOGY 

The solution is an extension of the work described in [24], 
[25], in which a solution is instantiated using a pre-defined 
template based on the output from querying the ontology 
knowledge base. In this approach, the IEM Process Ontology 
represents the expert knowledge of the IEM methodology 
described in section 2. We used UML Activity Diagrams as the 
representation for the Process Template. Since there was no 
official Activity Diagram ontology available for reuse, we 
reverse-engineered a version of an Activity Diagram ontology 
by inspecting an activity diagram XML and identifying the 
necessary XML. We also designed a Model Generator that 
produces an Activity Diagram of a suggest solution workflow 
that can be executed in simulation tools such as Cameo.  

A. IEM Process Ontology 

The proposed knowledge management framework, which 
utilizes systems engineering tools, process modeling, and 
ontologies, follows the three-step process of:  

1. using formal process modeling to document the 
generalized solution workflows,  

2. generalizing solution methods by creating a process 
template and categorizing each part of the solution as a 
section of the template, and  

3. defining the connection between problem requirements 
to each solution method.  

This enables instantiation of new solutions of the 
generalized workflow that covers the new problem instances 
and use of simulation plug-ins to execute the solution instance. 

The IEM Process Ontology is comprised of IEM Problem 
Requirements, IEM Solutions, and IEM Process Template. The 
problem requirements component formalizes the characteristics 
that define each problem, and the solution component 
documents the software assets and manual activities that fulfill 
the requirements. The process template is used to organize the 
solution modules into one of the steps of IEM: A. Population 
Modeling, B. Down-Select, and C. Fusion and Evaluate. The 
relationship between the ontology components are described in 
Fig. 2.  

 

Figure 2. IEM Process Ontology Architecture 

The structure creates a connection from the IEM problem 
requirements to a sequence of solution modules which 
represents the process that satisfies the requirements. As a 
whole, the IEM Process Ontology serves as an IEM knowledge 
base with links to the IEM assets repository. We can see how 
certain problem requirements are implementedBy specific 
solutions, and how each solution is partOf a step of the process 
template.  

Considering a new problem with requirements to correlate 
data from different data sources, use decision trees to make 
predictions, and ask for precision, recall, and false-positive rate. 
We can see connect each requirement to a corresponding 
solution, and as a result, end up with a suggested solution 
process template that can use Sol2A, Sol1B, Sol1C in order. 

1) Process Modeling  

For this step, we started documenting previous solutions as 
Activity Diagrams. An example of a solution workflow is 
shown in Fig. 3.  

 

Figure 3. Solution Workflow Example 

After creating activity diagrams for the previous solution 
workflows, we identified the minimum set of common UML 
Activity Diagram elements, including the Initial Node, Activity 
Final Node, Fork and Join Nodes, Call Behavior Action, 
Opaque Action, Accept Event Action, and Control Flows. This 
list of activity diagram elements is later translated to classes in 
the process template ontology, which is described in the next 
subsection. 

The Call Behavior Actions represent manual tasks that 
modelers performed where Opaque Actions correspond to 
software tasks. Each of these action types will contain the path 
from which the documentation related to the task can be found. 
Each software script takes a certain amount of time to complete 
execution. The scripts are executed through Opaque Actions, 
and each Opaque Action is followed by an Accept Event Action 
that is triggered by a time event that indicates the time it takes 
to execute a script. Since the execution time for manual tasks 
can vary from modeler to modeler, the Accept Event Action is 
triggered by a signal representing task completion. We 



specified the location of the script and software executable in 
the Body and Language field of the specifications. Using 
BeanShell as the language, we input the following: 

 
String[] cmd = {"path to software executable", "path to file"};  

Runtime.getRuntime().exec(cmd) 

 
This BeanShell script executes the specified file, using the 

specified executable in command line. The different software 
options we use in this work include Python, R, Excel, and 
Notepad.  

2) Process Tamplate 
From the documented solutions in the form of Activity 

Diagrams, we identified the distinct steps of the IEM process 
and created the process template as in Fig. 4, where each of the 
fork/join pairs represents each step. This structure ensures that 
the model is syntactically correct even when there is no instance 
for a specific step of the process. 

 

Figure 4. Process Template 

The resulting class structure of process template ontology is 
shown in Fig. 5(a). Each of the subclasses for process template 
corresponds to the common activity diagram elements that were 
identified in the previous section. For the Workflow class, we 
have 3 subclasses for each of the IEM Process Steps outlined in 
the previous section. The object properties shown in Fig. 5(b) 
are used to describe the binary relationship between two 
instances. hasElement is used to indicate which UML Activity 
Diagram elements a specific part of the workflow has, 
hasSource and hasTarget define the source and target nodes (or 
elements) for each Control Flow. 

 

Figure 5. Process Template Ontology Properties 

3) Problem and Solution Modeling 

a) IEM Problem Requirements Ontology 

Modeling the connection between problem requirements (or 
characteristics) to each solution module started with identifying 
all the possible problem requirements of the previous challenge 
problems that were solved by the modeling teams. 
Characteristics of an IEM problem can be broken down to 

categories such as the type of data provided, type of down-
select algorithm to be used, and types of performance 
evaluation questions to be answered. Each of these categories 
would have a unique choice that would be specific to a problem. 
By creating an object property for each of the categories and 
instances for each choice within the categories, we defined 
problem requirements for each problem. An example of an IEM 
problem (instance “IRCP3”) described using IEM problem 
requirements instances is shown in Fig.6.  

 

Figure 6. IEM Problem Requirements Example 

b) IEM Solution Ontology 

Once the problem requirements were defined, we cataloged 
the solution modules, both software, and manual, including 
information such as the time it takes to execute the software as 
well as the file path of the artifacts. By importing the IEM 
Process Template ontology, we can re-use the two classes 
opaque_action and accept_event_action to create instances and 
the imported object properties for assertions. By importing the 
IEM Problem Requirements ontology, we can connect the 
requirements and solutions using an object property 
implementedBy. In addition, the following properties presented 
in Fig. 7 were defined to specify the time it takes to execute a 
software module (hasDuration), which Opaque Action the 
Accept Event Action represents (representsDurationFor), how 
the Accept Event Action is triggered (triggers), and the 
command that executes the software script (hasBody) and the 
scripting language of which the command was written in 
Cameo (hasLanguage). 

 

Figure 7. IEM Solution Ontology Properties 

Finally, we define the rules that connect a set of problem 
requirements to modules that are part of the solution process. 
Considering a module “WF_rcp17_downselect” that satisfies a 
requirement to use linear regression as a down-select algorithm, 
the rule can be modeled in Protégé as seen in Fig. 8. 

 



 

Figure 8. Requirement Implementation Rules 

Each rule is created as a class where the Equivalent To field 
is used as the IF statement and SubClass Of is used as the THEN 
statement. The rule “linreg” can be interpreted as “the 
requirement for linear regression being implemented by the 
WF_rcp17_downselect module.” 

B. Ontology Instantiation and Demonstration 

Given there is a problem that requires running a linear 
regression classifier for its prediction model, this is a small 
example solution workflow that contains a single task where a 
linear regression script is executed. Since this example only 
contains a down-select step (step B), the ontology instances that 
need to be added will look like Fig. 9. The fork and join nodes, 
in this case are the same fork and join nodes for step B in the 
process template.  

 

Figure 9. Small Example for Demonstration 

First, all the necessary activity diagram elements are created 
as instances in the process template ontology depicted in Fig. 
10(a). Next, the instances that correspond to the activity 
diagram elements are linked to part of the workflow using 
object property assertion hasElement as shown in Fig. 10(b). 
Since the process template already contain the forks and joins, 
they are not added in the step above. Each control flow is given 
a source and target node as in Fig. 10(c), and the scripting 
language that’s calling the script from within Cameo EA and 
the location/path of the script to execute are defined as data 
properties of the instance that represents the Opaque Action 
(Fig. 10(e)). Finally, we define the time event that triggers the 
Accept Event Action that indicates the duration of the script that 
Opaque Action represents (Fig. 10(d)). 

 

 

Figure 10. Small Example Ontology Implementation 

Once the ontology is set up, we can run a query for the 
activity diagram elements that satisfy the linear regression 
requirement as seen in Fig. 11. 

 

Figure 11. Small Example Ontology Query 

Taking the activity diagram elements from the query, we 
use the activity diagram model generator that extracts the 
information in the object and data properties from the owl file 
and generates an XML (Fig. 12).  



 

Figure 12. Small Example XML Output 

When importing this XML into Cameo, we get the 
following Activity Diagram (Fig. 13), which can be executed 
using the Cameo Simulation Toolkit. 

 

Figure 13. Small Example Suggested Workflow 

V. CONCLUSION AND FUTURE WORKS  

In this paper, we re-introduce Inference Enterprise 
Modeling (IEM) as a technique to create digital twins for 
insider threat detection enterprises. We identify an opportunity 
to scale IEM knowledge by employing systems engineering 
techniques. We develop a framework to document and 
formalize IEM modeling knowledge that can be used to rapidly 
prototype digital twin solutions for insider threat detection 
enterprise modeling problems. Finally, we demonstrate that this 
can be done by modeling activity diagrams and executing these 
processes in Cameo EA using Cameo Simulation Toolkit. This 
method can also be extended as a knowledge management 
system that can capture the knowledge for various engineering 
projects involving a process-oriented workflow that involves 
manual and software-related tasks. 

There are some limitations to this work. The quality of the 
suggested solution depends on the assumption that the future 
user of this solution understands the new modeling problem 
correctly. If the future modeler does not use the correct problem 
requirements query, there is no guarantee that the output will be 
of good quality. This challenge could be resolved by employing 
a natural language processer and data pre-processing script to 
automatically extract the problem requirements of a new 
potential problem. Also, the template used in this approach is 
based on IEM activities, so it follows a linear process where 
one activity follows the other. This may not work in other 
domains where the problem-solving process looks different. 
Supporting additional templates works as a short-term solution, 
but a more flexible approach to generalizing various workflows 
or processes is an interesting research direction. Other future 
work includes extending this work to integrate with parametric 

diagrams to take advantage of the full simulation capabilities of 
the systems modeling software. 
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