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Abstract

PULSED SPIN LOCKING IN SPIN-1 NQR: BROADENING MECHANISMS

Michael W. Malone, PhD

George Mason University, 2013

Dissertation Director: Dr. Karen L. Sauer

Nuclear Quadrupole Resonance (NQR) is a branch of magnetic resonance physics

that allows for the detection of spin I > 1/2 nuclei in crystalline and semi-crystalline

materials. Through the application of a resonant radio frequency (rf) pulse, the

nuclei’s response is to create an oscillating magnetic moment at a frequency unique

to the target substance. This creates the NQR signal, which is typically weak and

rapidly decaying. The decay is due to the various line broadening mechanisms, the

relative strengths of which are functions of the specific material, in addition to thermal

relaxation processes. Through the application of a series of rf pulses the broadening

mechanisms can be refocused, narrowing the linewidth and extending the signal in

time.

Three line broadening mechanisms are investigated to explain the NQR signal’s

linewidth and behavior. The first, electric field gradient (EFG) inhomogeneity, is due

to variations in the local electric environment among the target nuclei, for instance

from crystal imperfections. While EFG inhomogeneity can vary between samples of

the same chemical composition and structure, the other broadening mechanisms of



homonuclear and heteronuclear dipolar coupling are specific to this composition and

structure. Simple analytical models are developed that explain the NQR signal re-

sponse to pulse sequences by accounting for the behavior of each broadening mech-

anism. After a general theoretical introduction, a model of pairs of spin-1 nuclei is

investigated, and the refocusing behaviors of EFG and homonuclear dipolar coupling

are analyzed. This reveals the conditions where EFG is refocused but homonuclear

dipolar coupling is not. In this case the resulting signal shows a rapid decay, the rate

of which becomes a measure of interatomic distances. This occurs even in the more

complex case of a powder sample with its many randomly oriented crystallites, under

particular pulsing conditions.

Many target NQR compounds are rich in hydrogen, and therefore might have a

significant heteronuclear dipolar coupling component. To incorporate this, a second

model is developed composed of two different nuclear species, one spin 1 the other

spin 1/2, although the work can be extended to additional spin species. This model

reveals that heteronuclear dipolar coupling for this system behaves just like EFG

broadening under spin locking, and that the strong homonuclear response is still

observable. The experimental results closely match theoretical predictions, and the

conclusions greatly expand the number of target substances that are suitable for this

measurement technique of homonuclear dipolar coupling.

The combined results explain why certain pulse sequences perform better than

others for substance detection: it is because of the relative strengths of the line broad-

ening mechanisms. Therefore the ability to measure homonuclear dipolar coupling’s

contribution to the linewidth is useful not only for material characterization, but also

for substance detection. By explaining the conditions that reveal homonuclear cou-

pling, we make it possible to measure the relative broadening strengths, increasing

the efficiency of NQR in these roles.



Chapter 1: Introduction

Nuclear Quadrupole Resonance (NQR) is a magnetic resonance technique with many

similarities to Nuclear Magnetic Resonance (NMR). As shown in Fig. 1.1, in NMR

the interaction of a spin 1/2 nuclei’s magnetic moment with a static field B0 produces

an energy level splitting. Using a radio frequency (rf) pulse, an alternating magnetic

field related to the splitting is detected with a magnetometer. Similarly, NQR exploits

the energy splitting governed by a nuclei’s electric quadrupole moment with its local

electric field gradient (EFG) to produce an alternating magnetic field that can be

detected with a magnetometer.[1,2] However, for NQR no static field and associated

cooling is required since the energy levels of NQR are intrinsic to the substance being

investigated. Consequently, the frequency of the NQR signal is a characteristic of the

substance, which makes NQR a promising tool for substance detection.[3,4] However,

there are many problems hindering the adoption of NQR as a tool. As discussed

below, the target nuclei must be spin > 1/2, and the target substance must be a

solid, preferably crystalline. The typical NQR frequency is on the order of MHz, and

can not be increased with stronger fields as in NMR. The signals are weak, decay

rapidly, fall of with distance as 1/r3, and T1 can be long. There is a dependency of

the signal strength with the alignment of the rf perturbation, which reduces the signal

for powders to 43 % of the value from a crystal,[3] and makes optimal excitation for

single crystals difficult.

With such a large number of challenges to overcome, the history of NQR has pro-

gressed relatively slowly compared to NMR. In 1950, Pound argued that theoretical

1



Figure 1.1: In a common NMR system a splitting in energy levels is achieved by
placing a spin 1/2 nucleus into a static field B0. Resonant perturbations are then
applied at a frequency ωNMR related to the difference in the spin-up and spin-down
energy states to produce a signal. In spin 1 NQR there are three energy levels, not
necessarily distinct, and three corresponding resonant frequencies ωNQR that can be
used to create NQR signals.

results meant that the electrical quadrupole moment could dominate the nuclear reso-

nance spectrum of crystals.[5] The same year, the first pure NQR signal was acquired

by Dehmelt and Kruger. [6] Pulsed spin locking was applied in 1977 by Marino and

Klainer[7] using the canonical spin-lock spin-echo (SLSE) sequence previously used

in NMR in 1966.[8] As shown in Fig. 1.2, such a sequence makes NQR much more

practical because it can greatly increase the amount of signal that can be acquired

compared to that from a free induction decay (FID), the signal due to just a single

pulse.

The theoretical work of Vega[9,10] and Cantor and Waugh[11] opened the possibil-

ity of using the NQR signal as a tool to analyze materials, and provided much of the

operator formalism used in this thesis. Meanwhile, because of the NQR frequency’s

sensitivity to the molecular electrical environment, NQR has been investigated for

many other practical uses including as a thermometer[12–14], a strain gauge,[15] and

2
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Figure 1.2: A comparison of the NQR signals acquired from an FID and a SLSE
shows a considerable increase in the amount of signal that can be acquired with the
SLSE. Zooming into the first 10 ms of data (a) shows more detail of the FID’s rapid
delay, which has an exponential decay constant T ∗2 of about 2 ms. In contrast, the
decay of the SLSE echo train is governed by an exponential decay constant T2e near
88 ms. The signal is due to the 14N nuclei of the narrow sample of sodium nitrite
discussed in Chapter 2. The FID signal is due to a single pulse, and the 90-90 SLSE
data is from a series of 60 refocusing pulses spaced 2 · τ ′ = 2 · 1.012 ms apart. Both
sequences were resonant to ωx. Data has been normalize for both experiments to the
projected FID signal at t=0, as discussed in Appendix B.
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as a probe of the electrical environment in superconductors.[16–18] But it has been

most actively pursued for substance detection, where it is investigated for identifying

counterfeit medicines,[19,20] narcotics,[21–23] and especially explosives[3, 24–27].

Unfortunately, NQR’s utility is hindered by its typically low signal to noise ratio

(SNR). In a highly cited paper Garroway et al. derived an expected SNR for TNT

detection on the order of unity or below.[3] Because of this, much of the work in NQR

has been in how to increase SNR. On the detection side, this has led to research in

designing better antennas,[23, 28, 29] work with ultra-sensitive atomic magnetome-

ters,[30] and advanced signal processing algorithms.[31–34] On the signal creation

side, work has been done to excite the sample with multiple frequencies,[35–38] which

can increase the amount of time that signal can be acquired. Continuous rf excitation

has been suggested,[39, 40] since it allows for signal to be acquired without concern

for T1. Single pulse echoes have been investigated because of their low power re-

quirements.[41] Additionally, a large amount of work has been performed in double

resonance experiments, where the nuclei of some other spin species, typically protons,

interacts with the NQR target nuclei through combinations of static and rf fields. This

can increase SNR and also allow the NQR target species to relax faster, decreasing

T1 and increasing the repeat rate of experiments.[42–45] Double resonance can also

be used to efficiently find NQR frequencies, which is a very useful tool.[46, 47]

As shown in Fig. 1.2, another common way to increase SNR is through multi-

pulse sequences. [48–52] Besides the SLSE, the Carr-Purcell Meiboom-Gill (CPMG)

sequence has also been adapted from NMR for NQR.[53] Both have the same general

form. First an excitation pulse θ0 of duration t0 creates the initial signal. This is

followed by a series of refocusing pulses θ1, of duration tp, shifted in phase by 90◦

from the excitation pulse. These SLSE sequences are written, for N repeat units, as

4



θ0y − (τ − θ1x − τ)N , where 2τ is the time of the free evolution between the refocus-

ing pulses; y and x refer to the phase of the pulses; and τ ′ = τ + tp/2 will also be

used to describe the pulse spacing. The signal is acquired stroboscopically at time τ

after each refocusing pulse to create the echo train. The strength of the refocusing

pulse varies depending on the desired signal response. Since they are so similar, both

the SLSE and CPMG will be referred to as SLSEs: a 90-90 for the true SLSE and a

90-180 for the CPMG.

Previous researches have focused on the long time exponential decay of the echo

train.[7,54,55] However, in a powder sample of sodium nitrite we unexpectedly found

that certain experimental conditions with a 90-180 SLSE sequence provoked a strong,

fast, Gaussian decay. The conditions under which this decay appears, as well as

its initial intensity, are well explained with the theoretical argument presented in

Chapter 4. It is the result of the homonuclear dipolar coupling not being refocused by

the sequence while EFG inhomogeneity is refocused. This causes the envelope of the

echo train to behave as though the signal decay was due primarily to the unrefocused

dipolar coupling, an observation similar to that observed in NMR.[56–58] Therefore

the width of this Gaussian component is a measurement of the homonuclear dipolar

coupling within the sample.

The ability to measure the homonuclear dipolar coupling is very valuable for

substance detection since its relative contribution to the linewidth determines the

off-resonant behavior of the signal, as discussed in Chapter 4. Due to temperature

variations of the target substance, the NQR resonance frequencies may only be known

to within a certain range. This can result in off-resonant excitation, where the differ-

ence between the NQR frequency and the rf frequency,

ωrf − ωNQR ≡ ∆ω ≡ 2π∆f, (1.1)

5



can cause undesired signals. For an example of the sensitivity of the frequency to

temperature, a transition frequency for TNT can change 200 Hz per degree Celsius.[59]

Therefore, knowing the behavior of the signal as a function of ∆f allows for the

optimization of the detection sequence to ensure working in a region of strong signal

for the target substance and temperature range.

The work in Chapter 4 was performed on a sample that was not expected to have

a large linewidth contribution from heteronuclear dipolar coupling. However, het-

eronuclear dipolar coupling should be present in a large class of samples important

to NQR for substance detection,[9] consequently in Chapter 6 the theory is extended

to a model that incorporates heteronuclear dipolar coupling. It is found that het-

eronuclear dipolar coupling behaves like EFG broadening under spin locking, and the

experimental results show that the homonuclear response can still be observed for the

same conditions as Chapter 4. Additional analysis of the lineshapes creates a possible

procedure for isolating the three broadening mechanisms’ contributions to the NQR

lineshape.

The net results of the research described in this thesis are therefore relevant for a

large set of problems in NQR. By being able to isolate the broadening mechanisms,

the ability to fingerprint samples becomes possible. This could be useful to track a

sample back to the manufacturer.[60] In particular, the ability to isolate EFG’s contri-

bution could make NQR a more useful tool in stress and strain detection. The ability

to measure homonuclear dipolar coupling makes NQR a useful tool for analyzing

new substances, such as designer narcotics.[61] Knowing how the various broadening

mechanisms respond to multipulse sequences is critical for efficient substance detec-

tion.
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Chapter 2: A Theoretical Background of NQR

2.1 The Quadrupole Hamiltonian

Exploiting the symmetry of the problem, no work is required to reorient a spherical

charge distribution in an electric field gradient. But this is not true for a non-spherical

charge distribution. Nuclear quadrupole resonance is a result of the work required to

reorient non-spherical nuclei in the local electric field gradient of crystalline materials

to produce an oscillating magnetic field that can be detected with a magnetometer.

In order to introduce the theory of how an NQR signal is created and detected, we

closely follow the derivation of the quadrupole Hamiltonian presented by Slichter.[62]

The interaction energy E of a charge distribution ρc(r) in an electric potential

V (r), where r = rr̂ is the position vector from the origin, is given by

E =

∫
ρc(r)V (r)dv. (2.1)

Expanding V (r) in a Taylor series about the origin

V (r) = V (0) +
∑
α

αVα +
1

2

∑
α, β

αβVαβ + ..., (2.2)

where α and β can be x, y, or z; Vα ≡ ∂V
∂α

and Vαβ ≡ ∂2V
∂α∂β

. This allows equation

Eq. (2.1) to be rewritten as
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E = V (0)

∫
ρc(r)dv +

∑
α

Vα

∫
αρc(r)dv +

1

2

∑
α, β

Vαβ

∫
αβρc(r)dv + ... (2.3)

The first term V (0)
∫
ρc(r)dv is just the energy of the nucleus as a point charge. If

ρc(r) is centered on the origin, the second, or electric dipole, term
∑

α Vα
∫
αρc(r)dv

is expected to vanish for nuclei, although this is an area of active research.[63] The

third term

E(2) =
1

2

∑
α, β

Vαβ

∫
αβρc(r)dv (2.4)

is the quadrupole term and can be simplified by working in a coordinate system x̂, ŷ, ẑ

where Vαβ = 0 for α 6= β. This defines the principal axis frame (PAF) of the EFG

tensor, with the additional requirement |Vzz| ≥ |Vyy| ≥ |Vxx|.[64]

In order to remove the spherically symmetric component of the quadrupole term,

the Qαα are introduced

Qαα =

∫
(3α2 − r2)ρc(r)dv. (2.5)

These terms deserve closer analysis. For a purely spherical charge distribution with

radius R, Qαα = 0 for all α. This establishes that the Qαα are a measure of how

the charge distribution varies compared to a sphere, since a spherical part of ρc(r),

centered on the origin, could be removed without changing the value of Qαα. For

a one dimensional line charge along the x axis between x = ±l, 4
3
l3 ∝ Qxx and

Qxx = −2Qyy = −2Qzz. This suggests that the largest Qαα corresponds to the axis
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of symmetry of a charge distribution.

The Qαα allow Eq. (2.4) to be rewritten as

E(2) =
1

6

∑
α

(
VααQαα − Vαα

∫
r2ρc(r)dv

)
. (2.6)

Because the sum of the Vαα is zero by Laplace’s equation, and since
∫
r2ρc(r)dv in

Eq. (2.6) is independent of Vαα, E(2) can be expressed as

E(2) =
1

6

∑
α

VααQαα, (2.7)

which provides the quadrupole energy for a classical system.

In order to analyze this system quantum mechanically, the Qαα need to be con-

verted into operators Q
(op)
αα . The charge distribution is given by the location of the

nuclei’s protons at location rp with charge e

ρ(op)
c (r) = e

∑
protons

δ(r− rp), (2.8)

which allows Q
(op)
αα to be expressed as

Q(op)
αα = e

∑
protons

(3α2 − r2)δ(r− rp). (2.9)

Through application of the Wigner-Eckart theorem, the position operators of Eq. (2.9)

can be rewritten in terms of the angular momentum I of the nucleus, with operators

I · î = Ii, for i = x, y, z. The Q
(op)
αα become
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Q(op)
αα = C(3I2

α − I2),

where C = eQ
I(2I−1)

, and the quadrupole moment Q is determined experimentally for

each nucleus. Using the operator Q
(op)
αα , E(2) can be written as an operator to define

the quadrupole Hamiltonian HQ

HQ =
1

6

∑
α

VααQ
(op)
αα (2.10)

=
eQ

6I(2I − 1)
[Vxx(3I

2
x − I2) + Vyy(3I

2
y − I2) + Vzz(3I

2
z − I2)]. (2.11)

For spin 0 and spin 1/2, 〈Q(op)
αα 〉 = 0 for any wavefunction, revealing such nuclei have

spherical symmetry and making HQ = 0. In addition to the case where all Vαα = 0,

which occurs in fluids where the average EFG is zero, and in certain crystalline solids

where the symmetry of the structure leads to the same, the constraint on the spin

of the nucleus further limits the target population for NQR to crystalline solids, and

some plastics, containing nuclei with spin I > 1/2.

The focus in this thesis will be on spin 1, in particular the nuclei of 14N, where

there are three eigenvectors of HQ, listed below in terms of the eigenstates of Iz:

|y〉 =
|+ 1〉+ | − 1〉√

2
(2.12)

|x〉 =
|+ 1〉 − | − 1〉√

2
(2.13)

|z〉 = |0〉. (2.14)
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The corresponding eigenenergies Ey, Ex, Ez lead to three transition frequencies ωNQR,

such as ωx = (Ey − Ez)/~, with cyclic permutation of x, y, z providing the others.

The degenerate cases of Fig. 1.1 are not considered in this thesis. Since the transition

frequencies are determined by the EFG, which are specific to the local electrical

environment, the ωNQR’s are nearly unique between substances. This makes NQR

a useful tool for substance detection and studying the local electric environment of

nuclei.

The eigenstates of HQ permit simple expressions for certain operators in terms of

back to back operators:

HQ = Ex|x〉〈x|+ Ey|y〉〈y|+ Ez|z〉〈z| (2.15)

Ix = |y〉〈z|+ |z〉〈y| (2.16)

Iy = i|z〉〈x| − i|x〉〈z| (2.17)

Iz = |x〉〈y|+ |y〉〈x|. (2.18)

The labeling of HQ’s eigenstates with geometrical terms is not accidental; these eigen-

states correspond to the axis of symmetry of the nuclei with regard to the PAF

coordinate frame. For instance

〈x|Q(op)
xx |x〉 = −2〈x|Q(op)

yy |x〉 = −2〈x|Q(op)
yy |x〉, (2.19)

which, using the example above for a classical charge distribution along x̂, suggests

that the axis of symmetry of the charge distribution in the |x〉 eigenstate is along the

x̂ axis of the PAF.
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While NQR is a product of electrical interactions, it is observed through measure-

ment of the nuclei’s magnetic field

~Bd(r) =
µ0

4π

γI~
r3

[I− 3r̂(I · r̂)], (2.20)

where µ0 is the permeability of free space, γI is the gyromagnetic ratio of the nucleus,

and r = rr̂ is the distance from the nucleus to the observation point. Therefore,

modeling the signal requires calculating the expectation values 〈Ix〉, 〈Iy〉, 〈Iz〉 as

functions of time, which is done by following the evolution of the corresponding

density matrix %(t), where 〈Ii(t)〉 = Tr[Ii%(t)].

The evolution of %(t) is governed by the Hamiltonian H of the system through

the Liouville equation

%̇(t) =
i

~
[%, H]. (2.21)

For time independent Hamiltonians, the solution to Eq. (2.21) is

%(t) = e−
i
~Ht%0h.c. (2.22)

where %0 is the initial density matrix at t = 0, and h.c. is the Hermitian conjugate of

the evolution operators to the left of the density matrix. For a statistical sample of

isolated nuclei, the initial density matrix is given by the Boltzmann distribution

%0 =
1

Z

[
e−Ex/kT |x〉〈x|+ e−Ey/kT |y〉〈y|+ e−Ez/kT |z〉〈z|

]
(2.23)

where Z =
∑

i e
−Ei/kT , T is the temperature and k is Boltzmann’s constant. In the

high temperature limit this simplifies to
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%0 =
1

3

[
1−

(
Ex
kT
|x〉〈x|+ Ey

kT
|y〉〈y|+ Ez

kT
|z〉〈z|

)]
, (2.24)

or just

%0 =
1

3
[1−HQ/kT ], (2.25)

where 1 is an identity operator.

In the absence of any other interactions, the Hamiltonian is just HQ, which clearly

commutes with the initial density matrix, making %(t) = %0. Similarly the 〈Ii(t)〉must

be constant, and all can easily be shown to be

〈Ii(t)〉 = Tr[Ii%0] = 0. (2.26)

Therefore, there is no observable magnetic field, like one would observe from an or-

dinary iron magnet, for such a sample of quadrupolar nuclei in thermal equilibrium.

In order to extract useful information from a sample, a perturbation is required.

However, in order to explain that behavior, some mathematical theory must be in-

troduced.

2.2 Fictitious Spin 1/2 Operators and the Rotat-

ing Frame

As shown below, an rf perturbation with strength B, direction B̂, frequency ωrf ,

and phase φ, ~Brf (t) = BB̂ cos(ωrf t+ φ), can remove the target sample from thermal

equilibrium to produce an observable signal. Adding the rf Hamiltonian Hrf to HQ,
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the total Hamiltonian becomes

H = HQ − γI~(BxIx +ByIy +BzIz) cos(ωrf t+ φ), (2.27)

where Bx = BB̂ · x̂, etc. For ωrf near ωx, the focus of this chapter, the evolution

of %(t) is easily solved in the interaction representation of the dominant Hamiltonian

H0 =
ωrf
ωx
HQ. Such an analysis reveals only the Ix term of Hrf will lead to any

evolution of the system. Therefore only transitions between |y〉 and |z〉 are considered

for ωrf near ωx. This transforms the problem from a three level one between the

|x〉, |y〉, |z〉 eigenstates, into a two level problem between the |y〉, |z〉 eigenstates.

Temporarily ignoring the |x〉 eigenstate, Eq. (2.27) can be represented as an ef-

fective two level Hamiltonian H∗ in matrix notation as

H∗ =


|y〉 |z〉

〈y| Ey 0

〈z| 0 Ex

− γI~Bx cos(ωrf t+ φ)


|y〉 |z〉

〈y| 0 1

〈z| 1 0

. (2.28)

This has the same form as the canonical Hamiltonian for a spin 1/2 nuclei with

gyromagnetic ratio γI in a static field ~B0 = B0ẑ and rf field ~B1 = B1x̂ cos(ωrf t +

φ).[65, 66]
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H = −γI
~
2




| ↑〉 | ↓〉

〈↑ | B0 0

〈↓ | 0 −B0

+B1 cos(ωrf t+ φ)


| ↑〉 | ↓〉

〈↑ | 0 1

〈↓ | 1 0




. (2.29)

Eq. (2.28) can be rewritten in the form of the NMR problem, Eq. (2.29),

H∗ = −γI
~
2




|y〉 |z〉

〈y| ωx/γI 0

〈z| 0 −ωx/γI

+ 2Bx cos(ωrf t+ φ)


|y〉 |z〉

〈y| 0 1

〈z| 1 0




(2.30)

where the zero point of energy has been set to (Ez + Ey)/2. Therefore, for the

experimentalist, there is no difference in the observables between the NQR system

and the system of the fictitious spin 1/2 with angular momentum Ix. This is referred

to as the NMR system and it has the visual simplicity the fictitious spin Ix being

rotated in a 3-d space according to

dIx
dt
∝ Ix × ~Btot, (2.31)

where ~Btot = ~B0 + ~B1.

To facilitate analysis, a set of fictitious spin 1/2 operators are defined. The first
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three,

Ix1 =
1

2
Ix =

1

2


|y〉 |z〉

〈y| 0 1

〈z| 1 0

 (2.32)

Ix2 =
1

2
(IyIz + IzIy) =

1

2


|y〉 |z〉

〈y| 0 i

〈z| −i 0

 (2.33)

Ix3 =
1

2
(I2
z − I2

y ) =
1

2


|y〉 |z〉

〈y| 1 0

〈z| 0 −1

, (2.34)

recreate the Pauli spin matrices from the operators of Eqs. (2.16)-(2.18). These

operators are defined by the fictitious space x̂1, x̂2, x̂3 with Ix1 = Ix · x̂1, etc. For

the fictitious spin, x̂3 corresponds to the direction of the fictitious static field about

which it precesses. The operator

Ix4 = Iy3 − Iz3 =
1

2
(1− 3|x〉〈x|) (2.35)

is required to reproduce HQ

HQ = ~(ωxIx3 + ω′xIx4), (2.36)
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where ω′x = 1
3
(−1+η)ωQ, η = (Vxx−Vyy)/Vzz, and ωQ = 3eVzzQ/(4~). The operators

Iyi and Izi can be found for transitions involving ωy and ωz, respectively, through the

cyclic permutation of x, y, z in Eqs. (2.32)-(2.35), and setting ω′y = −1
3
(1 + η)ωQ and

ω′z = 2
3
ωQ. Ix4 clearly commutes with Ix1, Ix2, Ix3, which themselves commute like

angular momentum operators when multiplied by ~, as would be expected from their

origin in the Pauli spin matrices.

By breaking the fictitious ~B1 into two counter-rotating fields

~BR = Bx cos(ωrf t+ φ)x̂1 +Bx sin(ωrf t+ φ)x̂2, (2.37)

~BL = Bx cos(−ωrf t+ φ)x̂1 +Bx sin(−ωrf t+ φ)x̂2, (2.38)

depending on the sign of γI , it is natural to work in a reference frame rotating about x̂3

with frequency ±ωrf . In such a frame either ~BR or ~BL will be static, while the other

will be oscillating so quickly that it can be ignored, using the secular approximation.

This rotating frame will be useful for providing simple intuitions into the system

because it removes high frequency oscillations.

2.3 Signal Creation

To create a signal, the initial population is perturbed from thermal equilibrium with

a brief rf pulse. During the pulse H = HQ + Hrf (t). Since H is not static, the

evolution of the density matrix is not given by Eq. (2.22). By defining the dominant

Hamiltonian H0 =
ωrf
ωx
HQ and the perturbing Hamiltonian H1 = −∆HQ + Hrf (t),

where ∆HQ = ∆ω
ωx
HQ, the problem can be simplified by entering the interaction
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representation of H0, where %̃(t) = e
i
~H0t%(t)e−

i
~H0t and H̃a = e

i
~H0tHae

− i
~H0t. In the

interaction representation, the Liouville equation becomes

˙̃%(t) =
i

~
[%̃, H̃1]. (2.39)

If the secular terms of H̃1 are time independent, the solution to Eq. (2.39) is given by

%̃(t) = e−
i
~ H̃1t%̃0e

i
~ H̃1t, (2.40)

where %̃0 ≡ %̃(t = 0) = %(t = 0) ≡ %0.

An explicit calculation of H̃1 means finding ∆H̃Q = ∆HQ and H̃rf (t). ∆HQ is

clearly time independent. Using the fictitious spin operators, the expression for H̃rf

is

H̃rf = −2γI~e
i
~H0t(BxIx1 +ByIy1 +BzIz1)e−

i
~H0t cos(ωrf t+ φ). (2.41)

We start by focusing on the Ĩx1 term:

Ĩx1 = e
i
~H0tIx1e

− i
~H0t cos(ωrf t+ φ) (2.42)

= ei
ωrf
ωx

(ωxIx3+ω′
xIx4)tIx1e

−i
ωrf
ωx

(ωxIx3+ω′
xIx4)t cos(ωrf t+ φ). (2.43)

The Ix4 term commutes with Ix1 and Ix3, therefore

Ĩx1 = eiωrf Ix3tIx1e
−iωrf Ix3t cos(ωrf t+ φ). (2.44)
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The angular momentum terms

eiωrf Ix3tIx1e
−iωrf Ix3t (2.45)

can be expressed more generally as

eiθIx·b̂(Ix · â)e−iθIx·b̂ = Ix · â′, (2.46)

where â′ is found by rotating â clockwise about b̂ through an angle θ, as shown in

Appendix A, making

â′ = cos θâ+ (1− cos θ)b̂(b̂ · â) + sin θ(â× b̂). (2.47)

For Eq. (2.45) this has the effect of rotating x̂1 by the angle ωrf t about x̂3. Returning

the cosine term and continuing the derivation

Ĩx1 = (Ix1 cosωrf t− Ix2 sinωrf t) cos(ωrf t+ φ) (2.48)

=
1

4
[Ix1(eiωrf t + e−iωrf t) + iIx2(eiωrf t − e−iωrf t)](ei(ωrf t+φ) + e−i(ωrf t+φ)) (2.49)

=
1

4
[Ix1(e−iφ + eiφ) + iIx2(e−iφ − eiφ)] (2.50)

=
1

2
[Ix1 cosφ− Ix2 sinφ] (2.51)

which is static. The same derivation performed for the Ĩy1 and Ĩz1 terms, however,

does not yield any secular behavior. Setting cos Ψ = B̂ · x̂, the surviving expression

for H̃1 is
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H̃1 = −ω1~(Ix1 cosφ− Ix2 sinφ)−∆HQ, (2.52)

where ω1 = γIB cos Ψ. The density matrix at time t0 in the interaction representation

of H0 becomes

%̃(t0) = ei[ω1(Ix1 cosφ−Ix2 sinφ)+∆HQ]t0
1

3
[1−HQ/kT ]h.c., (2.53)

which seems quite involved. Fortunately, many of the terms simplify. The identity

matrix will not contribute to the expectation value of Eq. (2.20) since the trace of

all Ii = 0. Additionally, the Ix4 terms in HQ will not contribute to the expectation

value because they commute with all the remaining terms, and their trace with the

Ixi = 0. Introducing the reduced density %(t), with initial value %0 = A0Ix3, where

A0 = ~ωx/3kT , the evolution due to the excitation pulse is easily expressed as

%̃(t0) = A0[eiθ
′
0Ix·n̂0(Ix · x̂3)e−iθ

′
0Ix·n̂0 ] = A0Ix · x̂′3 (2.54)

where θ′0n̂0 = θ0(cosφx̂1 − sinφx̂2) + ∆ωt0x̂3, with θ0 = ω1t0. Taking an excita-

tion pulse with φ = π/2, making θ′0n̂0 = −θ0x̂2 + ∆ωt0x̂3, the evolution operators

effectively rotate x̂3 in Eq. (2.54) to x̂′3 as

x̂′3 =

[
cos θ′0x̂3 + sin θ′0

θ0

θ′0
x̂1 +

∆ωt0
θ′0

(1− cos θ′0)

(
−θ0x̂2 + ∆ωt0x̂3

θ′0

)]
. (2.55)

The signal will be a function of 〈Ix1〉, 〈Ix2〉 and 〈Ix3〉 in the frame rotating at ωrf

about x̂3. For Ix1 this is simply
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〈Ĩx1(t)〉 = Tr[%̃(t)Ix1], (2.56)

when % is solved in the interaction representation of H0 =
ωrf
ωx
HQ. Similarly, the

rotating frame components of Ix2 and Ix3 are

〈Ĩx2(t)〉 = Tr[%̃(t)Ix2] (2.57)

〈Ĩx3(t)〉 = Tr[%̃(t)Ix3]. (2.58)

After the pulse, using Eq. (2.55) the expectation value of 〈Ĩx1〉 is given by

〈Ĩx1(t0)〉 = Tr[Ix1%̃(t0)] (2.59)

= A0Tr
[
cos θ′0Ix1Ix3 + sin θ′0

θ0
θ′0
I2
x1 + ∆ωt0

θ′0
(1− cos θ′0)

(
−θ0Ix1Ix2+∆ωt0Ix1Ix3

θ′0

)]
.

(2.60)

This contains three terms Tr[I2
x1], Tr[Ix1Ix2], Tr[Ix1Ix3], but only the Tr[I2

x1] = 0.5

term is non-zero. With the density matrix expressed in terms of Ixi it is easy to see

that 〈Iy〉 and 〈Iz〉 will also be zero for this transition, since their trace with the Ixi

terms are also zero. This means that for transitions near ωi only the Ii term survives.

The value of Ix out of the rotating frame will be

〈Ix(t0 + t)〉 = 2[〈Ĩx1(t0)〉 cosωxt+ 〈Ĩx2(t0)〉 sinωxt]. (2.61)

Therefore the rf pulse has created an oscillating magnetic field with frequency ωx that

can be detected with a magnetometer. We stop to point out that back in the rotating
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frame, the three components of Ix after the excitation pulse are

〈Ĩ0
x1〉 =

~ωx
6kT

sin θ′0
θ0

θ′0
(2.62)

〈Ĩ0
x2〉 = − ~ωx

6kT

∆ωt0θ0

(θ′0)2
(1− cos θ′0) (2.63)

〈Ĩ0
x3〉 =

~ωx
6kT

(
cos θ′0 + (

∆ωt0
θ′0

)2(1− cos θ′0)

)
. (2.64)

This is interpreted as though Ix has gone from being aligned entirely along x̂3 to having

some component in the x1x2-plane. These values will be useful for later derivations

of the system’s evolution.

2.4 The Basics of Signal Detection

For the system described here, the detector consists of the same coil of wire used to

excite the sample. Through Faraday induction a voltage is created in the coil due to

the oscillating ~Bd of Eq. (2.20) that is observed through a spectrometer. Taking the

B̂ axes as the axes of the coil, the signal S is proportional to Bx〈Î · x̂〉. But this will

be proportional to the sum of the 〈Ix1〉 and 〈Ix2〉 components of the fictitious spin

rotating with frequency ωx:

S(t) = 〈Ix(t)〉 (2.65)

= 2[〈Ĩ0
x1〉 cosωxt+ 〈Ĩ0

x2〉 sinωxt] cos Ψ. (2.66)

The detector, however, only sees the combined signal
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S(t) = M cos(ωxt+ φ′), (2.67)

where M = cos Ψ
√
〈Ĩ0
x1〉2 + 〈Ĩ0

x2〉2, with phase φ′ resulting from the electronics. Us-

ing quadrature detection,[67] Eq. (2.67) is decomposed into “real” and “imaginary”

components where

real(φ′) = M cosφ′ cosωxt (2.68)

imaginary(φ′) = M sinφ′ sinωxt. (2.69)

Recognizing that 〈Ĩ0
x2〉 = 0 when ∆f = 0, for most sequences, it is possible to find φ′

and decompose the acquired signal into the predicted components.

A real NQR system will be composed of a very large number of nuclei. These nuclei

will experience a distribution in their Vαα due to inhomogeneity in the local EFG.

This leads to a distribution in the resonance frequency about some center frequency,

which is taken as ωNQR. Additionally, for the common powder samples of NQR there

will be a distribution in the angle of x̂ with respect to B̂. By operating at ∆f = 0,

the signal S due to an individual nuclei will be given by Eq. (2.62)

S = A0 sin θ′0
θ0

θ′0
cos Ψ. (2.70)

In the limit of delta function linewidths, where θ0 = θ′0 = γIBt0 cos Ψ, S is propor-

tional to

S ∝ sin(θ cos Ψ) cos Ψ, (2.71)
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Figure 2.1: A representative FID signal (a), with the origin of time being the end of
the rf pulse, decays primarily due to the distribution in ωx among the various nuclei.
A large voltage due to the pulse and acquisition artifacts dominate the first 0.2 ms
of data, so those points are typically dropped before further analysis, as discussed in
Appendix B. The magnitude of the observed signal S (blue) is processed as though it
was acquired in a rotating frame, so the real (red) and imaginary (green) components
oscillate due the non-zero ∆f . The ∆f of the signal is found through the Fourier
transform of the FID signal (b), which has its peak magnitude at ∆f = −402 Hz.
Defining the FID signal intensity as the peak of the signal in frequency space, a series
of FIDs (c), taken at ∆f = 0 using a consistent B and various lengths for t0, shows
that the signal intensity follows the Bessel function of Eq. (2.72) (red line). Similarly
the imaginary component stays close to zero, as expected for FID signals at ∆f = 0.
The negative values of the real signal are understood as the signal being 180◦ out of
phase with the positive signal. Data is from a powder sample of p-chloroaniline, and
performed at ωx.

24



where θ = γIBt0. For a single crystal, the signal varies like a sine function, unless

B̂ · x̂ = 0 when no signal at all is observed. This is impossible for a powder, where

the random orientation of x̂ with B̂ will ensure a finite θ for some fraction of nuclei.

Integrating over the entire solid angle, the dependency of the powder’s signal with

respect to θ is given by a 3/2 Bessel Function,[68] which has the features of a damped

sinusoid, as shown in Fig. 2.1(c):

Spow ∝
sin θ − θ cos θ

θ2
. (2.72)

This pattern in the signal behavior is useful for calibrating the system. As shown in

Fig. 2.1(c) the Bessel function fits very well to the signals observed from various FIDs

where θ has been altered by varying the pulse lengths. This can be used to determine

the strength of B, or to measure γI , depending on the experimental unknowns. The

calibration curves also allow for the definition of 90◦ or π/2 pulses. These are the

smallest values of θ that produces a maximum signal, a definition true for both the

powder and the single crystal. For an optimally aligned crystal, where Ψ = 0, this

corresponds to a pulse that rotates Ix from x̂3 to the x1x2-plane, a rotation θ = 90◦.

For the more complex case of a powder, such an optimal pulse corresponds to θ = 119◦,

however it is still referred to as a 90◦ or π/2 pulse. Additionally, we can define 180◦

or π pulses as θ = 2 · 119◦ = 238◦. For the 90-90 sequences, both the excitation and

refocusing pulses will be θ = 119◦ pulses; for the 90-180s, the excitation pulse will be

a θ = 119◦ pulse, with θ = 2 · 119◦ for the refocusing pulses.

In practice some time must elapse after the excitation pulse and before the signal

acquisition, as shown in Fig. 2.1(a), since the pulse energy must be removed from the

coil for the NQR signal to be detected. During this “dead time” the signal evolves,

causing a phase shift which should be accounted for during the signal decomposition.
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Figure 2.2: The predicted off-resonant signal (solid lines) calculated using Eqs. (2.62)-
(2.63) are compared to the observed signals (dots) for θ = 90◦ using excitation pulse
lengths of 165 and 52 µs. The blue data corresponds to the magnitude of the sig-

nal, red to the real component 〈Ĩx1〉, and blue to the imaginary component 〈Ĩx2〉.
The model agrees very well with the data, and confirms that longer pulses produce
a weaker signal in general. Data is from the S1 powder sample of p-chloroaniline
described in Chapter 6, and taken at ωx with both halves normalized to the same
value at ∆f = 0. The dead time was 100 µs.
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As shown in Fig. 2.2 by accounting for this phase adjustment the fictitious spin 1/2

model of the excitation captures the behavior of the signal due to ∆f very well for

a sample of p-chloroaniline, even though the model ignores the contributions to the

NQR signal due to all other interactions.

2.5 Pulsed Spin Locking

The evolution due to a single pulse is well understood as a function of ∆f , but this

parameter alone will be insufficient to analyze the signal due to a SLSE. For the

series of pulses in pulsed spin locking, the increased signal is due to some component

of the signal being constant, or locked, over the series of echoes. The goal becomes

finding that component. For certain cases, the evolution U due to the repeat unit,

the (τ − θ1x− τ) portion of the SLSE, can be expressed with the form U = eiθtotIx·n̂tot

for a single repeat unit, or U = einθtotIx·n̂tot for the nth echo. With the signal properly

phased, the expected signal for each echo will be a function of

〈Ĩx1(2nτ ′)〉 = Tr[Ix1UρbU
†] (2.73)

= Tr[e−inθtotIx·n̂tot(Ix · x̂1)einθtotIx·n̂totρb], (2.74)

where ρb is the density matrix immediately before the application of the repeat unit,

and U † is the Hermitian conjugate of U . In order to focus on the evolution of Ix · x̂1, a

new coordinate system n̂1, n̂2, n̂3, with corresponding operators Ix · n̂i = Ini is defined

that is related to the original x̂1, x̂2, x̂3 system such that n̂tot = n̂1 and x̂1 · n̂3 = 0.

This set of operators allows the evolution of Ix · x̂1 to be expressed as
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Table 2.1: The sums for the general values of θ are on the order of unity,[69] unless
θ is small and no evolution takes place between echoes.

Sum of N

cosnθ terms
∑n=N

n=1 cosnθ = cos Nθ
2

sin N+1
2
θ csc θ

2
− 1

sinnθ terms
∑n=N

n=1 sinnθ = sin Nθ
2

sin N+1
2
θ csc θ

2

e−inθtotIx·n̂tot [(x̂1 · n̂tot)In1 + (x̂1 · n̂2)In2]h.c., (2.75)

which has the known solution, through Appendix A, of

(x̂1 · n̂tot)In1 + (x̂1 · n̂2)(In2 cosnθtot + In3 sinnθtot). (2.76)

This shows that the In1 term is unaltered by the evolution. Table 2.1 shows that

sums of the remaining, orthogonal terms, In2, In3, over the N echoes will remain on

the order of unity for all but the smallest θtot, i.e. when no evolution takes place: a

physically unreasonable situation for our class of problems. Therefore, while the sum

of the In1 term grows as (x̂1 · n̂tot)N the contribution from the orthogonal terms is

insignificant, and we can ignore them from further analysis. While only the In1 term

is locked by a series of pulses, it should be expressed in terms of the original space:

In1 = (x̂1 · n̂tot)Ix1 + (x̂2 · n̂tot)Ix2 + (x̂3 · n̂tot)Ix3. (2.77)

Using Eq. (2.74), the locked signal is given by

〈Ĩx1(2nτ ′)〉 = (x̂1 · n̂tot)2〈Ibx1〉+ (x̂1 · n̂tot)[(x̂2 · n̂tot)〈Ibx2〉+ (x̂3 · n̂tot)〈Ibx3〉] (2.78)
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where 〈Ibxi〉 = Tr[Ixiρb] is the expectation value of Ixi before application of the repeat

unit. As discussed in Chapters 4 and 6, n̂tot will not have a component along x̂2,

removing any 〈Ibx2〉 contribution from the signal. Additionally, phase cycling will

remove the contribution of 〈Ibx3〉, as discussed in Chapter 4. As a result of these

simplifications, the locked signal for each echo is given by what we call the projection

model

〈Ĩx1(2nτ ′)〉 = (x̂1 · n̂tot)2〈Ibx1〉, (2.79)

due to its relationship between the projection of n̂tot along x̂1. While this is true

for SLSEs where one can determine θtotn̂tot, finding such an expression is not always

feasible. For example, the projection model was used to predict the signal response

from the two SLSE sequences. As shown in Fig. 2.3, it did a very good job predicting

the off-resonance response for a 90-90, but this was not true for a nearly identical

90-180 sequence. Implicit in the discussion of signal evolution so far is the idea that

the evolution is governed solely by ∆f . The failure of the projection model for the

90-180 shows that other behaviors must be accounted for in order to understand the

SLSE signal behavior. These additional effects will become the focus of the remainder

of this thesis.
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Figure 2.3: A projection model, Eq. (2.79) that only includes off-resonance effects
(thick light lines) does a very good predicting the real signal behavior (dots and thin
lines) of the 90-90 sequence on the left. However, for the 90-180 on the right, and for
the weakest signals of the 90-90, this is not the case. Additional effects must be added
to the evolution in order to account for the 90-180 response. Data is from the narrow
sample of sodium nitrite described in Chapter 4, with τ ′ = 0.877 ms and tp = 100 µs
for both the 90-90 and 90-180. Data is averaged over 125 ms, and is symmetrical
about ∆f = 0.
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Chapter 3: Experimental

3.1 Experimental Equipment

The experiments in this thesis, whether the sodium nitrite of Chapter 4 or the p-

chloroaniline of Chapter 6, used mostly the same procedure and experimental equip-

ment, such as shown in Fig. 3.1. The only exceptions are the imidazole experiments

using a custom low power NQR system described in detail in Appendix D. The typi-

cal electronics, matched to 50 Ωs, used a Tecmag Apollo spectrometer to generate the

rf pulses and analyze the NQR signal. The output of the Tecmag went into an AMT

rf amplifier which could amplify the signal to powers of 1 kW. The output of the rf

amplifier went though a set of crossed diodes before going into the probe circuitry.

This was to ensure that only the high voltage of the rf pulses came into the probe

circuitry from the amplifier.

The probe circuits for each compound were only slightly different, both being

resonant circuits matched to 50 Ωs and tuned using variable capacitors. For reasons

discussed in Chapter 5, the quality factor Q of the probe was kept low. As shown in

Table 3.1: The coil parameters for the experiments using sodium nitrite and p-
chloroaniline. Both coils snugly held their respective sample containers.

Sodium Nitrite P-Chloroaniline

Coil length 10.5 cm 20.0 cm
Inner Coil diameter 4.1 cm 7.8 cm

Wire Diameter 2.2 mm 2.1 mm
Coil inductance 27 µH 202 µH

Typical operating Q ∼20 ∼35
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Figure 3.1: The circuit diagram generalized for the experiments described in this
thesis. In addition to the resistive elements in the main coil, resistors were added in
series to decrease the Q.
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Figure 3.2: A picture of the actual configuration of the probe circuitry for sodium
nitrite experiments shows the experimental simplicity possible with NQR. The main
coil (a) is elevated with wooden boards to keep it from coupling to the metal box.
The tuning capacitors (b) are accessible from outside the box. To lower the Q of the
probe, 45 Ω have been added (c) in series with the main coil. The sniffer coil (d) is
small and located some distance from the main coil to prevent interference.
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Table 3.1 the configurations mainly differed in the size of the main coil which held the

sample and detected the signal. An actual configuration for sodium nitrite is shown

in Fig. 3.2. To remove external rf noise, the probes were kept in an aluminum box

40.5 cm long by 40.5 cm wide by 26 cm tall, with walls 1.8 mm thick, and the lid of

the box screwed on during experiments. In addition to a signal line to the probe, and

access to the tuning capacitors, another input on the box was left for a sniffer coil, a

tool also discussed in Chapter 5 and Appendix D. The sniffer coil consisted of three

2 cm diameter loops of wire. Through Faraday induction, the magnetic field of the

pulses in the main coil produced a proportional sniffer voltage. A switch triggered by

the Tecmag’s TTL line allowed the Tecmag to receive either the NQR signal, or the

sniffer signal. This sniffer signal could easily saturate the Tecmag, and was typically

reduced by 30 dB in order to produce a safe input for the Tecmag.

The output of the main coil then passed though a π-filter, to remove noise, and

a set of crossed diodes. The diodes were grounded to prevent the large voltages

from the rf pulses from overpowering the receiver circuitry. In particular the pair

of pre-amplifiers were frequently damaged during experiments if the system was not

configured properly and they were exposed to a high voltage. These had a nominal

gain of 30 dB and were necessary to increase the signal to a value large enough for

the Tecmag spectrometer. The Tecmag itself contained a built in pre-amplifier with

the specific gain determined experimentally to ensure working in a linear region for

the expected frequencies.

Tuning the system to a particular frequency was only a function of varying the

resonance frequency of the probe circuit. One method to tune was with a function

generator and a bidirectional coupler connected to the probe circuit. The function

generator would generate a constant output voltage as it swept through a frequency

range, and the bidirectional coupler could then sample the absorption spectrum of the
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probe with the result displayed on an oscilloscope. The peak absorption frequency

corresponded to the resonance frequency of the probe, and the width of the absorption

spectrum was the only method used to determine Q. An easier, and more desirable

way to set the resonance frequency was to adjust the tuning capacitors to maximize

the output of the sniffer coil during an actual rf pulse of known frequency. This

ensured that the entire system was tuned, instead of just the probe circuit. This was

found to produce a noticeable difference in the speed of the tuning, since nothing

needed to be disconnected.

As discussed in Chapter 2, there are advantages to using harder pulses with the

largest possible B field. For the p-chloroaniline configuration in particular, the area

and number of loops created a large voltage across the main coil. This would lead to

arcing, which would reduce the pulse strength considerably. By running experiments

with the roof of the box open and the lights off, it was possible to visually identify

which areas were arcing. Resoldering the connections frequently helped reduce arcing,

but the most useful solution was to simply wrap the arcing section of the probe in

Teflon R© tape. This made it possible to regularly operate at the maximum power of

the power amplifier, and achieve harder pulses.

3.2 Experimental Procedure

The experiments consisted of performing pulse sequences on each sample at various

off-resonances. A typical trial consisted of 8 − 80 scans, a single execution of the

entire pulse sequence, at a given off-resonance in order to provide a useful SNR. In

order to efficiently perform SLSE experiments at the correct ∆f , it was necessary to

know fNQR as precisely as possible, preferably before taking the SLSE. One possible

technique was to use the SLSE signal to determine ∆f after the experiment, although
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Figure 3.3: The NQR frequency found using the two FIDs (black line) compared to
the NQR frequency determined by processing a SLSE signal (red line). Data for this
comparison was taken from p-chloroaniline at ωx. The SLSE data comes from a 90-90
sequence, with τ = 335µs and tp = 55µs. Compared to the FID result, the SLSE
data is not good enough to reliably determine the resonance frequency. Since the
SLSEs were taken up to 5.5 kHz off resonance for this data, this is not surprising.
But this shows how inaccurate the SLSE can be when determining ∆f .
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Figure 3.4: Plots of the data obtained from 204 resonant FIDs taken over 28 consec-
utive hours. (a) The daily cycle in fNQR related to the daily temperature fluctuation
in the lab is useful to show how much fNQR can drift during signal acquisition. The
peak dfNQR/dt observed in this run is ±3 Hz per minute. Despite this variation in
frequency there are still very consistent measurements of the FID’s (b) phase and (c)
FWHM. Additionally, while (d) shows a considerable scatter in the back projected
intercept of the FID, which is used for normalization, the average is consistent over
the 28 hours. The consistency of these results shows that no unexpected behavior
occurs in the sample or the electronics over the course of the experiments. Data is
from S1 of Chapter 6, and was taken at ωx. The processing procedure for obtaining
these values is given in Appendix B.
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as shown in Fig. 3.3 this was not very accurate. Instead, fNQR was determined

using a series of FIDs. The first FID was taken with ωrf at a value expected to

be close to the NQR frequency. By determining the ∆f of the first FID, a process

described in Appendix B, a revised value for fNQR was calculated. This was then

used as ωrf for what we call the “resonant FID.” The resonant FID’s signal was also

processed to obtain ∆f , further improving the estimate of fNQR used for the SLSE

experiments. The advantages of using the two FIDs were that it provided fNQR

with an accuracy of 12 Hz, and it provided a large amount of diagnostic information

about the evolution of the system, such as shown in Fig. 3.4, since the resonant FIDs

were saved. Unfortunately, this method is only possible for samples with a T ∗2 long

enough to produce a useable FID signal, and a T1 short enough to make such data

collection feasible. This was true for both sodium nitrite and p-chloroaniline, but

such a procedure is not as practical for ammonium nitrate.[42]

In order to verify that the experimental system did not drastically change during

the course of a typical set of experiments, the first and last trials would be performed

at ∆f = 0. This way, if the data for these trials disagreed significantly, it was an

indicator that something may have gone wrong with the experiment, in addition to the

information from the resonant FIDs. While establishing the experimental procedure

described in this thesis, it was found that the SLSE sequences were heating the

sample when the experiments were performed too rapidly. For the shortest values

of τ , the sample could experience 162 π pulses in 0.13 s for each scan. Since there

could be dozens of scans, the relatively large average power in the probe would cause

the linewidth to change. For sodium nitrite, the linewidth was observed to double

when experiments were performed too rapidly. In order to control the linewidth

behavior, a delay was introduced between each SLSE’s scan, which greatly increased

the experimental time, but led to consistent linewidths between each trial. Typical
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delays were on the order to 10 s, and after each trial the system was left alone for

5 minutes to cool. Unfortunately, the increased length of the trial meant that the

resonance frequency would change somewhat while taking scans, adding to the error

of the measurement. For p-chloroaniline the frequency could drift only as much as 30

Hz over the course of the typical six minute trial.

3.3 Automation

The Tecmag system has a Visual Basic Scripting Edition interface which allowed for

the creation of scripts (VBS) to help automate the data acquisition. Large numbers

of experiments were performed using a single VBS, an excerpt of which is given in

Appendix E. For reasons described in Sec. 3.2, each trial began with a measurement

of fNQR, which began by taking a single FID near the expected resonance frequency.

That spectrum was then saved to a temporary Tecmag .tnt file. The VBS then

invoked a Java program that determined the off resonance of the temporary FID and

saved the updated estimate for fNQR to a text file. The VBS then read the text

file, and updated the Tecmag rf frequency with that number. This involved process

of interfacing Java and VBS was found to be faster and more reliable than using

VBS alone to do the data processing. With the updated rf frequency, the resonant

FID was then acquired, the resulting spectra saved to a permanent file, and the

resonance frequency updated using the Java program. If too much drift was observed

in the NQR frequency, the FID series was repeated until it was reasonable. With

fNQR known to within 12 Hz, it was then possible to perform the particular trial at

the desired off-resonance. After each SLSE trial, the sample was left alone for five

minutes to cool before the next trial was taken. With the automation, experiments

could regularly be left alone for days while acquiring data.
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This automation of the data collection made it possible to take a lot of granular

data rapidly, and precisely. But such a large amount of data could not be realistically

processed using the traditional point and click interface of the spectrometer software.

In order to process the data efficiently, a large set of Java software was written called

TecmagReader. This was itself based on two very useful free Java libraries. The

first, Michael Thomas Flanagan’s Java Scientific Library,[70] was used to perform the

Fourier transforms and to fit the data. Sadly it is no longer publicly available. The

second, JFreeChart,[71] was used to generate simple plots and helped to visualize the

data. In addition to these libraries, TecmagReader could read the binary .tnt data

files of the Tecmag system, and perform the standard data processing commands, such

as removing baselines, truncation, phasing, and outputting the results into text files.

The increased flexibility in data processing sped up the task by orders of magnitude.

For instance the 204 spectra in Fig. 3.4 were processed in 4.4 s.

Naturally for Java, the software takes an object oriented approach to processing

the data. The main class is the TNT class, which is built around the data available

in the Tecmag .tnt file. However, the software does not require a .tnt file to be

useful, in fact the data from the custom spectrometer described in Appendix D was

easily incorporated. A TNT object contains the array of real and imaginary data,

observation frequencies, dwell time, and other .tnt field parameters. Unfortunately,

there was not enough time to extract the full pulse sequence parameters. While the

TNT class is the root of the software, it is through the Set class, which is just an array

of TNT files, that data processing is most often performed. The entire Java code used

to extract the data from the .tnt file data is given in Appendix G. An excerpt from

a sample Java program that uses the full TecmagReader suite is in Appendix F.
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Chapter 4: Homonuclear Dipolar Coupling

Revealed

4.1 Introduction

The theory introduced in Chapter 2 was suitable to explain the behavior of some

NQR experiments, but not all. In this chapter, we demonstrate the significance of

homonuclear dipolar coupling to the NQR signal under pulsed spin locking by model-

ing a system composed of just two coupled nuclei. The theoretical and experimental

analysis is performed at the ωy transition, with some exceptions, because the rel-

ative strength of the homonuclear contribution was the strongest at this frequency

for our sample of choice. The theory, however, can easily be extended to the other

transitions. Additionally, while the previous work was with the 2×2 matrices of the

fictitious spin 1/2, for this system it was found that a similar family of 4×4 matrices

could describe the evolution. This chapter is based on work previously published in

two papers.[72,73]

As mentioned in Chapter 1, previous analyses of the NQR signal’s decay during

multipulse sequences focus on its exponential behavior.[7, 54, 55] However, we unex-

pectedly found that under certain off-resonant conditions the signal detected with

a 90-180 SLSE sequence for a powder of spin-1 nuclei begins with a strong, fast,

Gaussian decay. The conditions under which this decay appears, as well as its initial

intensity, are well explained with the theoretical argument presented in Section 4.2.

The decay is due to the homonuclear dipolar coupling not being rephased by the
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refocusing pulses, while EFG inhomogeneity is rephased. This causes the envelope

of the echo train to behave as though the signal decay was due entirely to the un-

refocused dipolar coupling, an observation similar to that observed in NMR.[56–58]

Therefore, the width of this Gaussian component in time is a measurement of the

dipolar coupling of the sample.

To observe the homonuclear dipolar coupling in NMR requires pulses that give a

nutation angle of θ = π, or complicated excitation sequences to simulate the same.

In NQR, however, the effective nutation angle of a pulse depends on the orientation

of an individual crystallite with respect to the direction of the applied rf pulse, and

is therefore not at all homogeneous across the powder sample. It is not surprising,

therefore, that while the NMR experiments revealing homonuclear dipolar coupling

are done with resonant pulses, the same resonant experiment in NQR does not reveal

a similar result. However, we find for certain off-resonant pulses that the combined

nutation angle of the pulse and off-resonance evolution does give an effective π pulse

over the sample. These conditions allow a robust and direct measurement of homonu-

clear dipolar coupling in a powder sample at zero field, demonstrated in this chapter

on a sample not expected to have any additional broadening mechanisms.

4.2 Theory

Building upon a previous framework,[11, 74] a theoretical derivation of the signal

detected from spin-1 nuclei due to the time varying SLSE Hamiltonian is given by

examining the evolution of the density matrix for a system composed of two such

nuclei: spin-a and spin-b. For the two spin model there are nine permutations of the

system’s eigenstate |ab〉, shown in Fig. 4.1, where a is the quadrupole eigenstate of
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Figure 4.1: The eigenenergies are shown for spin-a and spin-b where |x〉, |y〉, |z〉 cor-
respond to the eigenstates of the quadrupole Hamiltonian. The allowed transitions
due to the rf Hamiltonian under the secular approximation in the interaction rep-
resentation are given for ωrf = ωy. Similarly the transitions allowed by the dipolar
coupling are highlighted by separating the degenerate states. No transitions between
the sets of gray and black levels, the V and W -levels respectively, are possible under
these assumptions. Additionally, no transitions involving the single green level are
possible.

spin-a and likewise for b. The quadrupole Hamiltonian can be expressed as

HQ = 2Ez|1〉〈1|+ (Ez + Ex)(|2〉〈2|+ |3〉〈3|) + 2Ex|4〉〈4|

+(Ez + Ey)(|5〉〈5|+ |6〉〈6|) + (Ex + Ey)(|7〉〈7|

+|8〉〈8|) + 2Ey|9〉〈9|. (4.1)

For simplicity, we assume the PAFs of the two spins are aligned with each other.

Perturbations from the homonuclear dipolar coupling HI and rf Hamiltonians Hrf

during the SLSE sequence will govern the transitions between levels. HI is expressed

as

HI =
µ0

4π

γ2
I~2

r3
[Ia · Ib − 3(Ia · r̂)(Ib · r̂)], (4.2)
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Table 4.1: The relationship between Hrf and HQ suggests the definition of two fic-

titious spin-1/2 angular momentum operators, IW = (IW1 î, IW2 ĵ, IW3 k̂) and IV =

(IV1 î, I
V
2 ĵ, I

V
3 k̂) which are expressed in terms of the Dirac matrices.[75] The super-

scripts indicate the set of levels the operator acts on, e.g.

IW1 =
∑4

p=1

∑4
q=1[ρ1(p, q) + σ1(p, q)]|p〉〈q|

IV1 =
∑8

p=5

∑8
q=5[ρ1(p− 4, q − 4) + σ1(p− 4, q − 4)]|p〉〈q|.
I i1 I i2 I i3

IW ≡ (ρ1 + σ1)/2 (ρ2 + σ2)/2 (ρ3 + σ3)/2
IV ≡ ρ1/2 ρ2/2 ρ3/2

where r = rr̂ is the displacement vector of the two nuclei, Ia is the angular momentum

operator for spin-a, and similarly for spin-b. Hrf is given by

Hrf = −γI~[B̂ · (Ia + Ib)] cos(ωrf t− φ), (4.3)

where we assume ωrf is close to ωy for this derivation.

The time evolution of the density matrix is governed by the Liouville equation,

Eq. (2.21), with the Hamiltonian for this system being

H = H0 −∆HQ +Hrf +HI . (4.4)

Note that the quadrupole Hamiltonian has again been split into two components

HQ = H0 −∆HQ, with H0 ≡ ωrf
ωy
HQ, ∆HQ ≡ ∆ω

ωy
HQ.

Entering the interaction representation of H0, Eq. (2.21) becomes

˙̃% =
i

~
[%̃, −∆HQ + H̃rf + H̃I ]. (4.5)

As shown in Fig. 4.1, transitions are only possible within two sets of four levels, the

W and V -levels, under the secular approximation. Since the set of W -levels does not

interact with the set of V -levels, only 4×4 matrices are needed to represent the action
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of an operator on each set of levels. Working in the space (̂i, ĵ, k̂), Dirac matrices

are used to rewrite Hrf and HQ, shown in Table 4.1, because of their convenient

commutation relationships. With this notation HQ becomes

HQ = ~ωy(IW3 + IV3 ) +
ε+
2

(4|9〉〈9|+ 1W + 1V ), (4.6)

with a similar expression for ∆H̃Q = ∆HQ. Recognizing Iy = Iay + Iby = 2(IV2 + IW2 ),

it can be shown under the secular approximation that H̃rf is time independent:[74]

H̃rf = −γI~B cos Ψ(cosφ[IW2 + IV2 ] + sinφ[IW1 + IV1 ]), (4.7)

where cos Ψ = B̂ · ŷ for this transition.

H̃I under the secular approximation can be expressed as

H̃I ≈ αy(|2〉〈3|+ |3〉〈2|) + αx(|5〉〈6|+ |6〉〈5|)

+αz(|7〉〈8|+ |8〉〈7|), (4.8)

with the coefficients given as αy = µ0
4π

γ2I ~
2

r3
[1 − 3(ŷ · r̂)2], and similarly for αx, αz.

While H̃I can also be written in terms of Dirac matrices it is not illuminating to the

discussion. In its present form, however, it is easy to see both the flip-flop terms that

drive the interaction and that H̃I commutes with HQ and ∆HQ.

The SLSE excitation pulse is assumed for simplicity here to be a delta function

pulse. During the delays of duration τ between pulses, H̃ consists of just H̃I and

∆HQ. During a pulse it is assumed that H̃rf is so much greater than H̃I that the

dipolar coupling’s contribution can be dropped and H̃ ≈ H̃rf−∆HQ. As confirmation

of the validity of this approximation for our experiments, we also numerically solved
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for the evolution of the signal incorporating the dipolar coupling during the pulse and

found that the two results were indistinguishable within computational error. Rec-

ognizing that H̃rf and H̃I are independent of time under the secular approximation,

the evolution of %̃, after N refocusing pulses of length tp, is

%̃(2Nτ ′) = (DPD)N%(t = 0+)(DPD)†N . (4.9)

Here we distinguish evolution due to the dipolar coupling

D ≡ e−
i
~ H̃Iτ , (4.10)

from evolution due to the pulse and the free evolution

P ≡ e
i
~∆HQτe−

i
~ (H̃rf−∆HQ)tpe

i
~∆HQτ , (4.11)

and define %(t = 0+) as the density matrix after the excitation pulse.

The initial density matrix is found using the equipartition theorem in the high

temperature limit: %0 = 1
9
(1W + 1V + |9〉〈9| − HQ

kT
). The behavior of the magnetic

moments in the lab frame produces the signal, given by

〈Iy〉 = Tr[%Iy] = Tr[%̃Ĩy], with (4.12)

Ĩy = 2(IV2 + IW2 ) cosωrf t+ 2(IV1 + IW1 ) sinωrf t. (4.13)

Since the identity matrices and the |9〉〈9| term commute with P and D, and since

their trace with IV and IW is zero, those terms can be ignored in %0. By a similar

argument, they can also be dropped from ∆HQ. This allows %0 to be reduced to
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%0 = − ~ωy
9kT

(IW3 + IV3 ). (4.14)

After the initial pulse of duration t0 and phase φ0, the density matrix becomes[74]

%(t = 0+) =
~ωy
9kT

sin θ′0(IW + IV ) · î, (4.15)

The components of IW and IV in the k̂ direction are dropped from %(t = 0+) through

phase cycling. This is performed by subtracting subsequent experiments with φ0 = 0

and φ0 = π to eliminate any signals that might arise from either the k̂ component or

probe ringing due to the refocusing pulses.

While Eqs. (4.9) and (4.14) give the complete solution to the evolution of the

signal, it is instructive to look for symmetries in the solution, particularly with regard

to the frequency and strength of the refocusing pulse. We therefore turn to examining

the operator P of Eq. (4.11) more closely and note that the relevant operators within

it consist exclusively of the operators given in Table 4.1. This allows P to be treated as

the sum of three rotations, where the first and the third rotation are determined by off-

resonance alone, and the second rotation by the effects of the refocusing pulse and the

off-resonance condition. We can write the three rotations as: θan̂a = θcn̂c = 2π∆fτ k̂

for the delays of duration τ ; and θbn̂b = θ1î + θa
tp
τ
k̂ during the pulse. For a given

crystallite orientation the net rotation θtotn̂tot is the same for both the W and V -levels

and can be found using quaternions.[76] P becomes

P = eiθtotI
W ·n̂toteiθtotI

V ·n̂tot , (4.16)

where
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cos
θtot
2

= cos θa cos
θb
2
− sin θa sin

θb
2
n̂a · n̂b, and (4.17)

sin
θtot
2
n̂tot = sin

θb
2
n̂b + sin θa cos

θb
2
n̂a

+ (cos θa − 1) sin
θb
2
n̂a(n̂a · n̂b). (4.18)

The operator P is clearly periodic in θa and θb
2

, so the signal will be periodic in

these as well. In the limit of delta function pulses, where n̂a · n̂b = 0 and n̂b = î, θtot

is insensitive to the sign of the off-resonance, while the k̂ component of n̂tot flips sign.

Due to both the phase cycling of the pulse sequence and the idealized pulse shape, this

flip will not impact the signal, which will be symmetrical as a function of off-resonance.

In the same delta function limit, an increase in θa by π should produce the same signal,

so the signal repeats off resonance with a period of 1
2τ

, which is a periodicity seen for

various sequences.[54, 55, 74, 77] Within this periodicity we observe extremes in the

signal behavior at ∆f = m
2τ

, for integer m, corresponding to θtotn̂tot = θbî; and at

∆f = 1
4τ

+ m
2τ

, corresponding to θtotn̂tot = π(sin θb
2
î + cos θb

2
k̂). Note that if θb = π

then n̂tot = î regardless of ∆f . This means %̃, starting from Eq. (4.15), is essentially

locked along î, making the evolution due to EFG inhomogeneity refocus under this

condition. However, for θb = π
2
, θtotn̂tot varies from π

2
î for ∆f = m

2τ
to π( î√

2
+ k̂√

2
)

for ∆f = 1
4τ

+ m
2τ

. The latter results in %̃ experiencing anti-resonant kicking as it

alternates between the ij-plane and the k-axis between echoes. This can produce a

rapidly oscillating initial signal, like that shown in Fig. 4.2, since Tr[IW,V3 IW,V1,2 ] = 0.

The evolution of the signal under D and P for a given net rotation is performed

numerically, but under certain conditions, namely n̂tot = î, an analytical solution is
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Figure 4.2: The signal from a 90-90 SLSE sequence is shown for both on-resonance
(∆f = 0) and off-resonance (∆f = 1/[4τ ′]) conditions. The heavy oscillations in the

off-resonance signal are due to the large k̂ component of n̂tot causing the magnetization
to oscillate between the ij-plane and the k-axis. Data was taken at ωy with τ = 335µs
and tp = 100µs with the narrow sample described in Section 4.3. Data here, and
elsewhere, has been normalized to the amplitude of the ∆f = 0 signal at t = 0.

49



readily available.[11] We briefly review this solution here and characterize the average

echo response for a large number of echoes.

The signal for the nth echo, detected by the same coil that provided the excitation

pulses, is given by

〈I〉 · B̂ = ŷ · B̂〈Iy〉

=
2~ωy
3kT

cosψ sinωrf t sin θ0[
2

3
gW +

1

3
gV ], where (4.19)

gi = 1− 2F i sin2 nxi, (4.20)

xi = cos−1[cos θi cos di], F i = cos2 θi sin2 di

1−cos2 θi cos2 di
, and θi, for the W and V -levels, is θW =

θtot and θV = θtot
2

. Likewise di, the angle of the rotation due to dipolar coupling

evolution, varies between the W and V -levels: dW = αyτ and dV = (αz − αx)τ .

Focusing on the W -levels that provide 2
3
rds of the signal, we drop the superscripts.

Using the standard sum for sin2 nx,[69] the average signal over a number of echoes N

is proportional to the average value of g,

ḡ = 1− (1− cos[(N + 1)x] sinNx

N sinx
)F, (4.21)

which reduces to

ḡ ≈ 1− F, (4.22)

for large N and d� 1. The restriction on the size of d follows from the need to keep τ

small enough for the signal to be well refocused. For θtot = mπ, F = 1 and the average

signal will disappear. However, for θtot = (2m + 1)π
2

the average signal will go to a
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maximum as ḡ = 1. This corresponds to the full refocusing of the dipolar coupling

evolution. We note that for the V -levels the signal will disappear for θtot = 2mπ, and

go to a maximum for θtot = (2m + 1)π. Therefore, for θtot = π the signal from the

V -levels will be refocused, while the signal from the W -levels will decay.

The sensitivity of the loss of signal to θtot = π is found by expanding θtot as π+∆θ,

where ∆θ is considered a perturbation. This allows F to be approximated as

F ≈ d2

∆θ2 + d2
, (4.23)

which provides a simple relationship relating the expected size of the signal due to

the dipolar coupling decay to ∆θ and the size of d:

∆θ2 = (
ḡ

1− ḡ
)d2. (4.24)

This says that for the signal to be half the maximum, ∆θ and d should be equal.

We conclude that the dipolar coupling decay in the W -levels should be clearly

observable in 2
3
rds of the signal when

θtot = π ± d and n̂tot = î. (4.25)

These requirements define the 180◦ condition. While this is impossible to achieve for

all crystallites in the powder, under certain conditions, namely ∆f = 1
4τ
± m

2τ
, the

constraint on θtot can be met. We previously found for this off-resonant condition with

delta-function pulses that θtotn̂tot = π(sin θb
2
î + cos θb

2
k̂). Therefore the net rotation

will be π for the entire powder sample. The direction of n̂tot can be brought close to î
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by choosing the pulse strength such that a large portion of the signal producing spins

experiences a θb close to π. This corresponds to θ = 2 · 119◦. Under these conditions

we can expect to see a large decay. For those crystallites experiencing θb 6= π, so that

n̂tot 6= î, the effect is to reduce the decay rate by sin2( θb
2

) as determined by numerical

simulations. This effect is understood by looking at θb = π
2

where the signal is only

apparent every other echo because of the anti-resonant kicking, as demonstrated in

Fig. 4.2. Since there is no evolution of the signal absent an echo, the decay rate

is decreased by a factor of 1/2. Looking at a powder, the apparent decay rate is

predicted to be 86% of the value for the single crystal result.

For nuclei a the contribution to the second moment of its NQR signal due to each

neighbor b comes from Vega,[9]

〈∆ω2〉 =
∑
b

1

3

(dVab)
2

τ 2
+

2

3

(dWab )
2

τ 2
. (4.26)

Since our sequence will refocus the signal from the V -levels, the observed decay in

time is determined by the contribution of the W -levels to the second moment:

〈∆ω2〉W =
∑
b

2

3

(dWab )
2

τ 2
, where (4.27)

∑
b

(dWab )
2

τ 2
=
∑
b

α2
yab
≡ α2

yeff
. (4.28)

The last line defines an effective dipolar coupling frequency αyeff that takes into

account the multi-spin nature of the system.

Using calculations performed by Sauer and Klug for sodium nitrite,[74] the pre-

dicted width of the Gaussian component of the echo train Td follows, with the results
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Table 4.2: The predicted value of ∆ω, from Eq. (4.27), and also Td = 1√
〈∆ω2〉W

for

both a single crystal and a powder under a 90-180 sequence. In calculating the second
moment, all nitrogen within a sphere with a radius four times the largest length of
the unit cell were considered.[74]√

〈∆ω2〉W
2π

(Hz) Predicted values of Td (ms)
fNQR (MHz) Single crystal Powder
ωx
2π

= 4.64 21 7.5 8.7
ωy
2π

= 3.60 35 4.5 5.2
ωz
2π

= 1.04 21 7.5 8.7

shown in Table 4.2 for both a single crystal and a powder.

4.3 Experimental procedure

Using the procedure of Chapter 3, experiments were performed on two powder samples

of sodium nitrite NaNO2 encased in wax to reduce piezoelectric effects: a 32 g sample

(97.1% purity) manufactured by Fisher Scientific in 1979, and a 27 g sample (99.5%

purity, super free-flowing), manufactured by Sigma-Aldrich in 2005. Despite having

a lower purity, the quarter century older sample had a narrower linewidth, measured

with an FID, due to a smaller EFG inhomogeneity. This was because of the consid-

erably larger crystallites of the sample, as was demonstrated by grinding the narrow

sample with a mortar and pestle and finding the linewidth was now comparable to the

broader linewidth of the Sigma-Aldrich sample. We therefore call the Fisher Scien-

tific sample the “narrow sample” and the Sigma Aldrich sample the “broad sample”,

with their linewidths given in Table 4.3. This variation in linewidth due to crystallite

size explains, at least in part, the variation in linewidths reported in the literature

for sodium nitrite at room temperature.[78–81] Another group has demonstrated a

similar dependency of NQR linewidth on crystal size for other substances.[60]

Both 90-90 SLSEs and 90-180 SLSEs were compared. Both the excitation and

53



Table 4.3: The observed full width at half maximum (FWHM) linewidths for both
samples at the three NQR transition frequencies show that the broad sample has a
larger linewidth for all three frequencies. The EFG component is found by decom-
posing the linewidth’s Voigt profile into the predicted Gaussian (dipolar coupling)
and Lorentzian (EFG) components. Measurements for all linewidths are accurate to
within 20 Hz.

Narrow sample Broad sample
fNQR Total width (Hz) EFG (Hz) Total width (Hz) EFG (Hz)

ωx 185 125 390 361
ωy 154 97 309 280
ωz 143 67 215 163

refocusing pulses for all 90-90 sequences used pulse lengths of 100 µs, with the same

rf-amplitude. For the 90-180 sequences a fixed rf-amplitude was used for each pulse,

but the refocusing pulse was twice as long as the excitation pulse. For ωx and ωy

the excitation pulse was 50 µs long, while the ωz experiments used 100 µs pulses due

to limitations in the amplifier that required weaker pulses at the lower frequency.

For delta function pulses, the signal’s off-resonance behavior is predicted to have a

period of 1
2τ

, as discussed above. For finite pulses, we observe experimentally that this

periodicity is close to 1/(2τ ′), particularly for the 90-90 sequences. For this reason,

our experimental graphs where the rf frequency is varied are expressed in terms of

∆f · τ ′. For the ωx and ωy transitions, data was taken between ±2/τ ′. Due to the

low SNR and electronics limitations, data for ωz was only taken on-resonance and at

∆f = ± 1
4τ ′

.

4.4 Experimentally achieving the 180◦ condition for

finite pulses

The acquired SLSE data was processed as described in Appendix C to provide an

average echo, and an echo train. All observed echo trains were fit to the function
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S(t) = A

(
pgexp

[
−1

2

(
t

Td

τ

τ ′

)2
]

+ [1− pg]exp

[
− t

T2e

])
, (4.29)

where A is amplitude at t = 0, T2e is the long term decay constant, pg is the percent

of the signal due to the Gaussian decay, and Td is the width of the Gaussian decay

associated with the strength of the dipolar coupling. The addition of the τ
τ ′

term to

the Gaussian component is because there is no evolution due to the dipolar coupling

during the finite pulse lengths.

The experimental conditions, with finite pulses, that lead to a strong Gaussian

component were found using Eq. (4.17) and the limit θtot = π±d of the 180◦ condition.

This led to the constraint that

| cos θa cos
θb
2
− sin θa sin

θb
2
n̂b · k̂| ≤

d

2
. (4.30)

This equation must be satisfied for a large portion of the sample in order to see the

rapid decay in the signal due to the dipolar coupling. But θa, θb, and n̂b · k̂ = θa
θb

tp
τ

all vary among nuclei due to the EFG inhomogeneity, while θb and n̂b · k̂ also vary

with the random alignment of the rf with respect to the crystallite’s orientation. In

order to satisfy the inequality, it is necessary to keep both the cosine (cos θa cos θb
2

)

and sine (sin θa sin θb
2
n̂b · k̂) terms small. The conditions which make this possible for a

large portion of the sample determine the pulse and sample characteristics necessary

to observe the decay due to dipolar coupling.

The sine term is small for all crystallites when
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|n̂b · k̂| ≤
d

2
, (4.31)

which is easily met when the value of tp
τ
� 1. The cosine term is small for all

crystallites when | cos θa| ≤ d
2
. If ∆f represents the average off-resonance then

θa = 2π(∆f + δfEFG)τ , where δfEFG is a nuclei’s additional off-resonance due to

EFG inhomogeneity. The cosine inequality is fully satisfied when ∆f = 1
4τ

+ m
2τ

and

2πδfEFG ≤
αyeff

2
. This shows that the 180◦ condition is met for a majority of the

sample when the linewidth broadening due to EFG inhomogeneity is less than or

equal to that due to W -level dipolar coupling. This condition is unnecessarily strict

for pulse strengths where θb ≈ π, corresponding to a 90-180 sequence, as will be shown

experimentally with a sample where the linewidth broadening is clearly dominated

by EFG inhomogeneity.

In addition to the requirement that θtot be close to π, the direction of the net

rotation must be close to î in order to both avoid heavy oscillations and to accurately

measure the dipolar coupling. Examining Eq. (4.18) under the assumption θtot = π

reveals that n̂tot ≈ î when θb ≈ π and n̂b ≈ î. The latter condition can only be met

when the rotation due to off-resonance during the pulse is kept small. This requires

∆f = ± 1
4τ ′

, when τ ′ is small, but allows ∆f = 1
4τ ′

+ m
2τ ′

as τ ′ increases. Together these

constraints define the experimental conditions under which the strongest decay due

to the dipolar coupling should appear: a 90-180 sequence and ∆f = ± 1
4τ ′

. In addition

to the frequency and strength of the pulse, the timing of the pulses must be chosen

with respect to the duration in time of the pulses. Since the finite pulse lengths can

inhibit the decay, the minimum τ to operate at is derived from the requirement that
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|n̂b · k̂| ≤ d
2
. This leads to the relation τ 2

min ≥
|θa|
θb

2tp
αyeff

≈ tp
αyeff

, for the 90-180, which

is in good agreement with the experimental results shown in Section 4.5.

4.5 Experimental Results

Examples of theoretical and actual signal behavior for various experimental param-

eters are shown in Fig. 4.3 for the narrow sample at frequencies close to ωy. Since

the model does not include the long term T2e effects, its accuracy is limited in the

long term behavior for both sequences. For this reason we compare the initial signal

to theoretical calculations which have been scaled to match the data. However, the

rapidly alternating initial signal near ∆f = 1
4τ ′

+ m
2τ ′

for the 90-90s due to the anti-

resonant kicking is captured by the model. Additionally the conditions where dipolar

coupling is not refocused for a large portion of the sample are seen in the undulating

signal of the 90-180s near the ∆f = 1
4τ ′

+ m
2τ ′

locations. The period of the undulations

depends on the second moment in Table 4.2, and is given as 2π
αyeff

τ ′

τ
. For small τ

these undulations are weak as the finite pulses prevent a large portion of the sample

from experiencing the 180◦ condition. For larger τ , as the ratio of tp to τ makes the

pulses appear more like delta functions, the oscillations become more apparent, as

expected. These undulations are not observed in the corresponding actual signals

since they manifest themselves as a Gaussian decay in the signal due the variations in

the phasing of the signals from the interaction of a large number of nuclei, as opposed

to just a pair, as is modeled.

While not shown in Fig. 4.3, the experimental data was symmetrical as a function

of off-resonance for the low Q probe configuration. The 90-90 signals were periodic

as a function of off-resonance, in excellent agreement with the model. The peaks

correspond to ∆f = m
2τ ′

, where the magnetization is locked along the î direction, and
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Figure 4.3: The theoretical (a)-(c) and experimental data (d)-(f) are compared with
off-resonance for both 90-90 and 90-180 sequences, the left and right halves of each
image respectively, for three values of τ . The model for a powder with finite pulses is
from Section 4.2. The fit parameters A (green squares) and pg (blue triangles) of the

observed signal, the average echo (red circles) over the 2π
αyeff

τ ′

τ
period of the dipolar

coupling for ωy, and the predicted average echo (red line) are given in (g)-(i). The fit
parameters T2e (grey diamonds) and Td (blue circles) are given in (j)-(l).
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the troughs to ∆f = 1
4τ ′

+ m
2τ ′

, where signal is lost due to the anti-resonant kicking.

By increasing τ the sharpness of the oscillations is reduced since the linewidth of

the sample begins to approach 1
4τ ′

. As this condition is met, the signal is no longer

dominated by either the on or off-resonance effects, but by a mixture of the two. Sim-

ilarly, the larger EFG component of the broad sample reduces the variation in signal

behavior with frequency compared to the narrow sample, for the same experiments.

The 90-180 data, again agreeing well with the model, shows a similar periodicity

as the 90-90 data in off-resonant behavior, but with notable differences. For instance,

while having roughly the same period, the local maxima and minima are not all

at the ∆f = m
4τ ′

conditions. This is because strong dips in the average signal are

not primarily due to signal lost to anti-resonant kicking, but to achieving the 180◦

condition. For low τ and small ∆f the dips are fairly small because the 180◦ condition

is hard to achieve at low τ with finite pulses. But as τ is increased a strong decay

is observed first at the ∆f = ± 1
4τ ′

condition and then later at ∆f = 1
4τ ′

+ m
2τ ′

, as

expected.

Fitting the data to Eq. (4.29), it was found that A roughly tracked the average

signal for all 90-90s. This was because there was no rapid decay in the echo train

due to nuclei achieving the 180◦ condition. For the 90-180s, however, A tracked the

average signal well for short τ , but diverged for larger τ as the Gaussian component

of the decay rapidly drove the average signal down. This is apparent at ∆f = ± 1
4τ ′

for τ = 827µs. As τ increased the separation between A and the average echo

became noticeable across all off-resonances, as more of the signal experienced the

180◦ condition. This same explanation is used for the behavior of pg for 90-180s. For

low τ , pg is close to zero since the 180◦ condition is met for only a small subset of

spins. Then, near the predicted value of τmin at ∆f = ± 1
4τ ′

, pg becomes substantial as

the 180◦ condition is met for a larger percentage of the sample, approaching the 2
3
rds
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value predicted by Eq. (4.19). As pg plateaus for large τ , it becomes significant across

the entire range of off-resonances as the EFG inhomogeneity ensures a significant

fraction of the spins experience the 180◦ condition, regardless of the off-resonance of

the pulses.

While Fig. 4.3 focuses on the narrow sample at ωy, in Fig. 4.4 it is shown that

similar behaviors for 90-180 sequences at |∆f | = 1
4τ ′

appear across all three NQR

frequencies, even for a sample with a much larger EFG contribution to its linewidth.

In particular, the values of pg for |∆f | = 1
4τ ′

are consistently higher than for ∆f = 0,

since more of the sample experiences the 180◦ condition. This also explains why the

narrow sample consistently has a larger pg for |∆f | = 1
4τ ′

than the broad sample, but

a smaller value for ∆f = 0. Additionally, regardless of the contribution of linewidth

due to EFG inhomogeneity, pg approaches a constant value for |∆f | = 1
4τ ′

as τ

increases. The value of τmin where this plateau is expected to arise comes from the

argument in Sec. 4.4, and is marked by a vertical black line in Fig. 4.4. Beyond τmin

the measurements of Td converged, as shown in Figs. 4.3 and 4.4, regardless of the

sample or the off-resonance of the pulses. For ωx and ωy the converged values agree

well with the theoretical values, after accounting for the effects of a powder sample.

However, for both ωy and ωz the converged value was slightly higher than expected. It

is known that the NO2 ion in sodium nitrite exhibits rapid torsional oscillation about

the x-axis of the PAF.[82] This would result in a reduction in the dipolar coupling

strength for the ωy and ωz transitions.

As shown in Fig. 4.3, for the 90-90s there were very few off-resonance conditions

at low τ that led to a significant Gaussian contribution to the echo train, since only

a small portion of the nuclei experience the 180◦ condition. As τ increased, and

the behavior of the signal became more uniform with frequency, Td converged to

a fixed value that was three times longer than the single crystal’s value. A naive
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Figure 4.4: The percent of the decay in the echo train due to the Gaussian component
pg (a)-(c) and width of the Gaussian contribution Td (d)-(f) as a function of τ for
90-180 sequences applied at the three transition frequencies. Values were obtained by
fitting the echo trains of 90-180 sequences with Eq. (4.29). Measurements were made

for both the narrow (black triangles) and broad (red squares) samples for |∆f | = 1
4τ ′

(solid lines, symbols) and ∆f = 0 (dashed lines, hollow symbols). The vertical line
marks τmin the theoretical minimum τ to observe a strong decay due to the dipolar
coupling at |∆f | = 1

4τ ′
. This prediction does not depend on EFG inhomogeneity, as is

experimentally validated since the plateau for the narrow sample matches that of the
broad sample. Additionally, the predicted value accurately accounts for the impact
of doubling the refocusing pulse length needed to perform the ωz experiments. The
measurements of Td converge, regardless of the EFG inhomogeneity of the sample,
close to the predicted values (grey lines). The average Td, for τ > τmin and ∆f =

0, ± 1
4τ ′

, is given at the top of figures (d)-(f).
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Figure 4.5: The value of T2e for 90-180 (black squares) and 90-90 (red triangles)
sequences is consistently greater when ∆f = 0 (solid line and symbols) than for

|∆f | = 1
4τ ′

(dashed line and hollow symbols). 90-90s consistently produce longer T2es

than 90-180s at the same off-resonance condition. For long τ , both sequences’ on and
off-resonance measurements converge, as the distinction between on and off-resonance
signals disappears due to the EFG inhomogeneity. This also explains why the data
for the broad sample shows less variation between ∆f = 0 and |∆f | = 1

4τ ′
. Data is

from the ωy transition.

theoretical adjustment that ignores both EFG inhomogeneity and the powder average

also predicts a lengthening of Td, but only by a factor of two.

For a given τ , the measurements of T2e varied by a factor of three within the range

of off-resonances tested, a result comparable to the variations observed by Gregorovic

et al. using PNT.[55] However, we observed longer values for T2e for ∆f = m
2τ ′

than for

∆f = 1
4τ ′

+ m
2τ ′
, in contrast to Gregorovic, perhaps due to their focus on the long time

echo data. Our general trend in T2e as a function of τ was the same for all transition

frequencies, and is shown for ωy in Fig. 4.5. While our simple model does not predict

the long time behavior, T2e does seem correlated with the short time behavior caused

by the 180◦ condition and anti-resonant kicking. For example, the 90-90 sequence

at ∆f = 0 predominantly produced a longer T2e than the other sequences, for the
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Table 4.4: The τ dependency of T2e was found by fitting the observed values of T2e

at each τ value to Eq. (4.32) for ∆f = 0 for both 90-180 and 90-90 SLSEs with the
narrow sample.

Narrow sample 90-180 Narrow sample 90-90
T2e(τ = 400µs) ms x T2e(τ = 400µs) ms x

ωx 83.3± 1.9 −0.19± 0.03 96.5± 2.3 −0.18± 0.03
ωy 121.4± 9.4 −0.61± 0.11 128.8± 8.3 −0.37± 0.08
ωz 206.5± 9.1 −0.30± 0.07 218.1± 8.4 −0.33± 0.05

same τ , in correspondence with the refocusing the W -levels. This is in contrast to

the 90-180 sequence, where the W -levels are not refocused and there is less signal due

to achieving the 180◦ condition, particularly for |∆f | = 1
4τ ′

and the narrow sample.

Additionally, for the 90-90 at |∆f | = 1
4τ ′

the anti-resonant kicking causes a reduction

in the initial signal.

The dependency of T2e on τ was found by fitting the T2e values for each sequence

to the equation

T2e(τ) = T2e(τ = 400µs)

(
τ

400µs

)x
. (4.32)

The fit parameters of Table 4.4 show that T2e ∝ τ−x with 0.18 ≤ x ≤ 0.61. This is

in contrast to the τ−5 dependency observed by Marino and Klainer,[7] who operated

at 77◦K, however a weaker dependency has also been observed by Mikhaltsevitch

and Rudakov at room temperature.[54] Additional work with sodium nitrite at 77◦K

suggests a more complex dependency between T2e and τ .[49] Interestingly, it was found

that the values of T2e(τ = 400µs) decreased linearly with fNQR for the on-resonant

sequences.

For the real-world detection of illicit substances using NQR, the exact resonance

frequency of the sample may only be known to within a certain range. This is due to

the variation of the NQR frequencies with temperature, which can be several hundred
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Figure 4.6: The optimal SNR calculated by integrating Eq. (4.29) for both 90-90
(red) and 90-180 (black) sequences with the experimentally derived fit parameters at
ωy for both the narrow (top row) and broad (bottom row) sample. The integration
was performed from t = 0 to the time that maximized the SNR. While finite pulses
would reduce the amount of time that signal that could be acquired, this adjustment
is small and not included. SNRs are normalized to the 90-90, ∆f = 0, τ = 335µs,
tp = 100 µs signal for each sample. The increased EFG inhomogeneity of the broad
sample averages the variation between the maxima and minima.
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Hz per degree for a substance like RDX.[83] To prevent false negatives a detector

operator would want to know that a useful signal can be detected at all frequencies

within that range. To compare the sequences as functions of off-resonance, an optimal

SNR was calculated by integrating Eq. (4.29) over the time found to maximize the

SNR, with the results shown in Fig. 4.6. This allows us to define a useful signal as one

achieving some minimum SNR. For short τ , the minimum possible SNR for the 90-90

sequence, over the given off-resonance domain, is considerably less than the minimum

possible SNR of the 90-180 sequence, for both the narrow and broad samples. This is

because the 90-90 sequence triggers a larger loss of signal due to anti-resonant kicking

compared to that lost due to the 180◦ condition, which is inhibited at low τ due to

finite pulses, for the 90-180. For the intermediate τ , the two sequences share the

same minimum SNR for the narrow sample, as the signal lost to the 180◦ condition

and the anti-resonant kicking become comparable between sequences. However, the

90-90 sequence is now slightly preferable for the broad sample at this intermediate

τ . This shows that the optimal detection sequence for a given τ is a function of the

relative strengths of the two dominant line broadening mechanisms. Finally, we note

that at high τ the 90-90 sequence is stronger for both samples, with considerably less

variation in amplitude with frequency for the broad sample, due to its larger EFG

inhomogeneity.

4.6 Conclusion

Despite the naive simplicity of the two-spin model, we have shown that it still qual-

itatively predicts the short-time behavior of the spin-locked signal as a function of

off-resonance. Furthermore, the model permits us to identify the conditions under

which we would expect a significant fraction of the signal to exhibit decay due to
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dipolar coupling alone. Namely, when the 180◦ condition is met for a large portion

of the sample, the NQR signal experiences a rapid initial decay. To achieve this for

a powder sample, one should operate with a 90-180 sequence, with an off-resonance

∆f = ± 1
4τ ′

, and with pulse spacing governed by τ ≥
√

tp
αyeff

. We have shown that

operating with these conditions produces an initially Gaussian decay whose width

measures the dipolar coupling between the nitrogen nuclei, as shown in NaNO2. Our

measurements agree within 15% of the theoretical prediction after accounting for the

powder nature of the sodium nitrite samples, and we believe that motion may account

for part of the deviations of the experimental values from the theoretical values. Suc-

cessfully performed for the three transition frequencies, this is a robust measurement

that does not vary with the EFG inhomogeneity of our samples, nor does it require

an exact π pulse across the sample, as required in NMR.

For the purposes of substance detection, achieving the 180◦ condition for a large

portion of the sample is to be avoided since it reduces the observed signal. However,

the same conditions that can trigger the Gaussian decay can also trigger a loss of signal

due to the anti-resonant kicking with a 90-90 sequence. By knowing the strength

of the dipolar coupling relative to the measured linewidth it is possible to choose

between these sequences to minimize the losses from their off-resonance effects. For

substances where the dipolar coupling is unknown, this is not a problem. By simply

running 90-180 sequences at ∆f = ± 1
4τ ′

with ever increasing τ the dipolar coupling

should eventually reveal itself, allowing an accurate measurement to be made.

For short τ , the 180◦ condition is suppressed for 90-180 sequences at ∆f = ± 1
4τ ′

due to the large value of the ratio of the pulse length to τ . This is beneficial for

substance detection because it preserves the signal size. However, as discussed in the

next chapter, relatively small deviations of the pulse from square can trigger the 180◦
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condition, and corresponding decay, even with short pulse spacing.
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Chapter 5: The Role of Imperfect Pulses

A practical implementation of NQR for substance detection would aim to maintain

the highest SNR possible. For our configuration, this is achieved by using an antenna

with a highQ to excite the sample and detect the signal. The pulse sequence would be

designed to prevent the 180◦ condition from being met, since it could cause the average

signal to be smaller than possible. While the previous chapter would suggest that the

parameters under which the 180◦ condition is met for a large portion of a sample are

well understood, some preliminary experimental work with sodium nitrite suggested a

more complex picture. When performing 90-180 sequences with a high Q (180) probe,

which would be desired for substance detection, we obtained asymmetric average

signals, like those shown in Fig. 5.1, most noticeably at the ∆f = ± 1
4τ ′

conditions,

and for short values of τ . This asymmetry was never observed for any 90-90 sequence.

Since achieving the 180◦ condition leads to a rapid decay in signal strength for the

echo train, the asymmetric data implied that the percentage of signal from spins

experiencing the 180◦ condition was varying with the sign of the off-resonance.

To understand the asymmetry’s source, the shapes of the actual refocusing pulses

were used to model the behavior of a powder during a SLSE sequence. The pulse

shapes were obtained by measuring the strength of the magnetic field in the main coil

with the voltage induced in a sniffer coil described in Chapter 3. Using the model of

Section 4.2, the percent of the initial signal due to the spins experiencing an effective

180◦ rotation pth was calculated, with examples shown in Figs. 5.2 and 5.3. We found

pth perfectly rank ordered the normalized average signal size at the ∆f = ± 1
4τ ′

condi-

tion across multiple configurations of the probe, as shown in Fig. 5.4(a). Additionally,

68



-1.0 -0.5 0.0 0.5 1.0
0.00

0.25

0.50

Q = 180

Q = 8

 

 

A
vg

. s
ig

na
l (

no
rm

al
iz

ed
) 

f  '
Figure 5.1: A plot of the average signal over 125 ms vs ∆f · τ ′ for fixed τ (335 µs)

shows that the asymmetry between ∆f = ± 1
4τ ′

was reduced by lowering the Q of the

probe. Data was taken with a 90-180 sequence at ωy, tp = 100 µs, using the broad
linewidth sample described in Chapter 4.
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Figure 5.2: For ∆f = 0 the echo trains (a) with high Q (QH , hollow red squares)
and low Q (QL, black circles) are similar, despite their respective pulse shapes, (b)
and (c), having very different real (dashed) and imaginary (green solid) components.
This is understandable in view of the similarities of the calculated distributions of
the initial signal as a function of θtot given in (d) and (e) for the pulse shapes to their
left. The dashed black vertical lines correspond to the boundaries for θtot = π ± d
that determine the percentage pth of the echo train due to a Gaussian component.
This and the following data in this section are from a 90-180 sequence applied to the
narrow sample at ωy, τ = 335 µs, tp = 100 µs.
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Figure 5.3: (Left) The echo trains (a) show that for a high Q (QH) probe a strong

Gaussian component appeared at ∆f = + 1
4τ ′

(blue squares) whose width is somewhat

below the prediction from Table 4.2. This requires further investigation. This compo-
nent was absent for ∆f = − 1

4τ ′
(hollow red squares) and for both low Q (QL) trains

at ∆f = + 1
4τ ′

(solid black circles) and ∆f = − 1
4τ ′

(hollow black circles). (Middle)

Comparing pulse shapes, the QL configuration (c) has a different real (dashed) com-

ponent compared to the QH configurations for both ∆f = − 1
4τ ′

(b) and ∆f = + 1
4τ ′

(d). Additionally, its small imaginary component (green solid) is less pronounced

than both the QH ∆f = − 1
4τ ′

pulse and the QH ∆f = + 1
4τ ′

pulse, which has a large

imaginary component. (Right) Corresponding to each pulse the distribution of the
initial signal as a function of θtot was calculated. For the QL pulses, the distribution

does not depend on the sign of ∆f , which is why the echo trains for ∆f = − 1
4τ ′

and ∆f = + 1
4τ ′

are very similar. In comparison, for the QH pulses the combination

of off-resonance and non-zero imaginary component works to reduce the distribution
near θtot = 180◦ for ∆f = − 1

4τ ′
, while substantially increasing it for the ∆f = + 1

4τ ′

pulse distribution. For the former, the result is to reduce the strength of the observed
Gaussian component compared to the QL trains. In the latter, the combination leads
to the very strong decay.
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Figure 5.4: Average signal (a) and strength of the Gaussian contribution of the
echo train (b) versus pth, the calculated percent of the initial signal due to spins
experiencing a 180◦ net rotation. For both values pth does an excellent job rank
ordering, validating the significance of the 180◦ condition to the behavior of the echo
train. The data comes from several probe configurations. With a high Q (180) the

probe was tuned to fNQR (red), fNQR+ 1
4τ ′

(green), and fNQR− 1
4τ ′

(blue). The hollow

black data is at low Q (8) with the probe tuned to fNQR. Data taken at ∆f = 1
4τ ′

is

indicated by the upward triangles; ∆f = − 1
4τ ′

, downward triangles. Data was taken
over 125 ms.
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fitting the echo train revealed pth roughly predicted the Gaussian contribution associ-

ated with the percentage of spins experiencing a 180◦ rotation, as shown in Fig. 5.4(b).

These results confirmed that the asymmetry of the average signal was due to varia-

tions in the distribution of spins experiencing the 180◦ rotation as a function of the

pulse shapes.

By setting the imaginary component of the actual pulses to zero, the model pro-

duced symmetrical distributions of θtot for the high Q pulses at ∆f = ± 1
4τ ′

; these

also conformed to the distributions from the low Q pulses at ∆f = ± 1
4τ ′

. To see

how the presence of a non-zero imaginary component could produce the asymmetric

distributions, a fake pulse, shown in Fig. 5.5, was created that roughly mimicked the

real pulse.

The net rotation due to this fake pulse at ∆f = ± 1
4τ ′

, i.e. the point of the major

asymmetry in the data, was found by breaking the pulse into two nearly identical

rotations, θb1n̂b1 and θb2n̂b2 differing only in the sign of their imaginary components:

n̂b1 =
Rî− Iĵ +Wk̂

θb1
, n̂b2 =

Rî+ Iĵ +Wk̂

θb1
; (5.1)

θb1 = θb2 =
√
R2 + I2 +W 2, (5.2)

where W = θa
tp
τ

. Using quaternions to combine θb1n̂b1 and θb2n̂b2 as a single rotation

θ2n̂2[76, 84] reveals n̂2 · k̂ = 0, making θtot = π via Eq. (4.17), when

cos
θb1
2
W = sin

θb1
2

RI

θb1
. (5.3)

With a non-zero imaginary component, Eq. (5.3) can only be satisfied for one sign
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and simplified (solid) refocusing pulse shape. The latter is useful for understanding
the significance of the imaginary component to achieving the 180◦ condition.
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of the off-resonance. This explains many observed phenomena. It explains the origin

of the asymmetry, because the 180◦ condition now depends on the sign of the off-

resonance. It explains why dropping the Q reduced the asymmetry, because it forced

the imaginary component to zero. And finally, it explains why the asymmetry was

reduced with τ : as τ increases, W approaches 0 and Eq. (5.3) is no longer satisfied

for either sign of off-resonance.

This is an important observation for substance detection work. Operating with a

high Q probe is desirable because of the higher SNR and lower power requirements for

the rf pulsing. However, it can unintentionally cause the signal to decay, decreasing

the efficiency of the search. As shown in Chapter 4, the 90-180 sequence can be

preferred over the 90-90 for substance detection work, depending on the relative

strengths of the broadening mechanisms, so avoiding the 90-180 sequence may not be

advisable. Care must be taken in the design of the NQR detection configuration to

balance the need for SNR and efficient sample detection, as determined by the shape

of the pulses.
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Chapter 6: Heteronuclear Dipolar Coupling

6.1 Introduction

In this thesis, we focus on three broadening mechanisms to explain the linewidth of

the NQR signal. The first, EFG inhomogeneity, is an inhomogeneous broadening

mechanism caused by variations in the local electric field of the nuclei in the sample.

Its size is a function of the sample’s history, from it’s manufacturing process to its

handling.[60] The second, homonuclear dipolar coupling, is a homogenous broaden-

ing mechanism that should be constant across samples of the same substance. The

previous chapters revealed the experimental conditions under which a SLSE triggered

a strong response due to homonuclear coupling. This chapter addresses the role of

the third broadening mechanism to a SLSE sequence: heteronuclear dipolar coupling,

another homogenous broadening mechanism. Heteronuclear coupling here is the cou-

pling between the NQR target nuclei and all other types of nuclei. While we focus

on spin 1/2 nuclei in Sec. 6.2, one should be able to make similar arguments for

other spin nuclei, as long as their transition frequencies are not close to the NQR

frequencies. By finding the conditions where heteronuclear broadening is refocused,

we show that the strong homonuclear response can still be observed for substances

with heteronuclear broadening.
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6.2 Theory

To understand heteronuclear coupling’s response to a multipulse sequence, the pro-

gression of a system modeled as a single spin-I (spin-1) nucleus, with angular momen-

tum I, coupled to a set of NK spin-K (spin-1/2) nuclei, each with angular momentum

K(k), is examined through the evolution of the corresponding density matrix %(t). As

before, the quadrupole Hamiltonian is

HQ =
eQ

6I(2I − 1)
[Vxx(3I

2
x − I2) + Vyy(3I

2
y − I2) + Vzz(3I

2
z − I2)].

The second derivatives of the electric potential V are found using the x̂, ŷ, ẑ coordi-

nate axes of the PAF. However, unlike sodium nitrite, for the sample of interest in

this chapter, p-chloroaniline, there are two different PAFs within each unit cell, but

with the x̂ axes still parallel.[85] For this reason we will focus on the ωx transition, al-

though the results should apply to any transition frequency where the corresponding

axes are aligned.

During the refocusing pulses for this model, Hrf is

Hrf (t) = −~BB̂ ·

(
γII + γK

NK∑
k=1

K(k)

)
cosωrf t. (6.1)

For our sample, K corresponds to hydrogen with gyromagnetic ratio γK .

The heteronuclear dipolar Hamiltonian between the spin-1 nucleus and the Nk

spin-1/2 nuclei is HIK , where

HIK =

NK∑
k

K(k) ·Dk · I, (6.2)
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and

Dk ≡
µ0

4π
γIγK~2 1

r3
k

× (1− 3r̂k ⊗ r̂k) , (6.3)

and rk = rkr̂k is the displacement vector between the spin 1 and kth spin 1/2 nuclei.

For convenience, the operator I is expressed as

I = (|y〉〈z|+ |z〉〈y|)x̂+ (−i|x〉〈z|+ i|z〉〈x|)ŷ + (|y〉〈x|+ |x〉〈y|)ẑ, (6.4)

so that it is clear that HIK only connects states of different quadrupole eigenenergies.

The homonuclear dipolar Hamiltonian between the spin 1/2 nuclei HK is similarly

defined, as is homonuclear dipolar Hamiltonian between the spin 1 nuclei HI . In order

to focus on the effects of heteronuclear coupling, HI is dropped from this model, hav-

ing already been treated in detail in Chapter 4. However, we discuss its contribution

to the signal in Sec. 6.4.

6.2.1 Evolution

As in Chapter 4, to find the evolution of %(t) due a series of repeat units (τ−θ1x−τ)N ,

we begin with the Liouville equation, Eq. (2.21), where the total Hamiltonian H is

given by

H = HQ +HK +HIK +Hrf (t). (6.5)

When the rf is off, such as between pulses, the Hamiltonian is static and the evolution

of the density matrix is

%(t) = e−
i
~H(t−t0)%(t0)e

i
~H(t−t0), (6.6)
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where H = HQ +HK +HIK and %(t0) is the density matrix before the free evolution.

In principle H can be diagonalized to a basis |ψn〉 with eigenvalues εn, allowing the

free evolution operator to be written as

e−
i
~H(t−t0) = e−

i
~
∑
n εn|ψn〉〈ψn|(t−t0) (6.7)

=
∑
n

|ψn〉〈ψn|e−
i
~ εn(t−t0). (6.8)

It is not computationally viable, however, to diagonalize H because of the large

number of particles involved. Using perturbation theory, approximate expressions for

|ψn〉 and εn are found by taking H0 = HQ + HK as the unperturbed Hamiltonian

and HIK as the perturbation. This a reasonable assumption when γK � γI , as in

our sample where the ratio of γK/γI ≈ 14.[86] Because HIK only joins states with

different quadrupole energies, non-degenerate perturbation theory can be used. Given

the eigenstates of H0, H0|αβ〉 = εαβ|αβ〉, where α to corresponds to an eigenstate of

HQ and β to an eigenstate of HK , the surviving lowest order correction to the energy

will come from

εn ≈ εαβ + ∆εαβ, where (6.9)

∆εαβ =
∑
j 6=α

∑
l

|〈jl|HIK |αβ〉|2

εαβ − εjl
, (6.10)

while for the wavefunction it is

|ψn〉 ≈ |αβ〉+
∑
j 6=α

∑
l

|jl〉〈jl|HIK |αβ〉
εαβ − εjl

. (6.11)
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As discussed below, the experimental NQR linewidth is on the order of 100 Hz, while

the NQR frequency is on the order of 1 MHz. Therefore, the ratio R = 〈jl|HIK |αβ〉
εαβ−εjl

is on

the order 10−4, making |ψn〉 ≈ |αβ〉. This approximation permits the free evolution

operator e−
i
~Hτ to be approximated in terms of |αβ〉:

e−
i
~H(t−t0) ≈

∑
m

|αβ〉〈αβ|e−
i
~ (εαβ+∆εαβ)(t−t0). (6.12)

To solve for the evolution due to the rest of the repeat unit it will be beneficial to

use the interaction representation of H̄0, where

H̄0 ≡ H̄Q +HK , (6.13)

and H̄Q is the reduced quadrupole Hamiltonian

HQ = H̄Q −∆HQ (6.14)

H̄Q =
ωrf
ωNQR

HQ, (6.15)

where ∆HQ is the same as in Eq. (4.4). While H̄0 and H0 have the same eigenstates,

|αβ〉, they will have different eigenvalues: εαβ for H0 and ε̄αβ for H̄0. After a period

τ of free evolution, the density matrix in the interaction representation becomes

%̃(t = t0 + τ) = e
i
~ H̄0te−

i
~Hτe−

i
~ H̄0t0 %̃(t0)h.c. (6.16)

=

(∑
α, β

|αβ〉〈αβ|e−
i
~∆εαβτ

)
e−

i
~∆HQτ %̃(t0)h.c., (6.17)
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where the last expression uses Eq. (6.12), H̄0 = H0 − ∆HQ. The dipole operator

D ≡
∑

α,β |αβ〉〈αβ|e−
i
~∆εαβτ simplifies:

D =
∑
β

∑
α=x,y,x

|αβ〉〈αβ|e−
i
~∆εαβτ (6.18)

=
∑
β

exp

{
− i
~
τ [|xβ〉〈xβ|∆εxβ + |yβ〉〈yβ|∆εyβ + |zβ〉〈zβ|∆εzβ]

}
, (6.19)

and becomes

D =
∑
β

exp

{
− i
~
τ |xβ〉〈xβ|∆εxβ

}
(6.20a)

exp

{
− i
~
τ

3
(1 + Ix4)(∆εyβ + ∆εzβ)|β〉〈β|

}
(6.20b)

exp

{
− i
~
τIx3(∆εyβ −∆εzβ)|β〉〈β|

}
, (6.20c)

where |β〉〈β| shows that the state of theK spins is preserved. The terms in Eqs. (6.20a)

and (6.20b) can be dropped because they will not contribute to the evolution of the

signal, reducing D to

D =
∑
β

e−
i
~ τIx3(∆εyβ−∆εzβ)|β〉〈β|. (6.21)

In contrast, during the pulse, the contribution of HIK is ignored since Hrf is much

stronger for the nuclei that will produce the signal. This assumption was found to be
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valid for HI in Chapter 4. The perturbing Hamiltonian H1 is then given by

H1 = −∆HQ +Hrf (t), (6.22)

where

∆HQ = ~(∆ωIx3 + ∆ω′Ix4), (6.23)

with ∆ω = ωrf − ωx, ∆ω′ = 1
3

(ωy−ωz)(ωx−ωrf )

ωx
, Hrf = −ω1~Ix cos(ωrf t). In the inter-

action representation of H̄0, the perturbation is given by

H̃1 = −∆HQ + e
i
~ H̄0tHrf (t)e−

i
~ H̄0t

= −∆HQ − ~ω1Ix1, (6.24)

where in the last line we have used the secular approximation. The evolution of the

density matrix during the pulse is

%̃(t+ tp) = e−
i
~ H̃1tp %̃(t)e

i
~ H̃1tp , (6.25)

where

e−
i
~ H̃1tp = ei(∆ωIx3+ω1Ix1)tpei∆ω

′tpIx4 . (6.26)

Using Eqs. (6.17) and (6.21) the complete evolution due to a repeat unit can now be
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written as

%̃(t+ 2τ + tp) =
∑
β

e−
i
~ (∆εyβ−∆εzβ)τIx3|β〉〈β| (6.27a)

ei∆ωτIx3ei(∆ωtpIx3+ω1tpIx1)ei∆ωIx3τ (6.27b)

ei∆ω
′τ ′Ix4 (6.27c)

∑
β′

e−
i
~ (∆εyβ−∆εzβ)τIx3|β′〉〈β′| (6.27d)

%̃(t)h.c. (6.27e)

The exponential operator containing Ix4 will not contribute to the evolution of the sig-

nal, and is dropped: it only includes the identity operator and the states not addressed

by the rf pulse. As a result the only remaining operators are the fictitious angular

momentum operators, the product of which can be represented as a single rotation

operator of angle θβ and direction n̂β found through Eqs. (4.17) and (4.18), where

θa = [∆ω − (∆εyβ −∆εzβ)] τ , n̂a = x̂3, θb ≡ tp
√
ω2

1 + ∆ω2, and n̂b = tp
ω1x̂1+∆ωx̂3

θb
.

This means that n̂β lies in the x1x3-plane. The final expression is

%̃(t+ 2τ ′) =
∑
β

eiθβIx·n̂β |β〉〈β|%̃(t)h.c., (6.28)

with the evolution over N pulses being

%̃(t0 + 2Nτ ′) =
∑
β

eiNθβIx·n̂β |β〉〈β|%̃(t0)h.c. (6.29)
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As will be discussed in Sec. 6.2.3, before the application of a repeat unit, the

components of %̃(t0) that produce signal can be expressed as

%̃(t0) =
∑
β

3∑
j=1

cjIx · x̂j|β〉〈β| (6.30)

=
∑
β

Ix · {n̂β [(c1x̂1 + c3x̂3) · n̂β] + n̂β⊥ [(c1x̂1 + c3x̂3) · n̂β⊥] + c2x̂2} |β〉〈β|,

(6.31)

where n̂β⊥ ≡ n̂β × x̂2, and the coefficients cj for a SLSE are given in Sec. 6.2.3.

Recognizing that[74]

eiθIx·n̂(Ix · n̂0)e−iθI·n̂ = Ix · [cos θn̂0 + (1− cos θ)n̂(n̂ · n̂0) + sin θ(n̂0 × n̂)] (6.32)

it is possible to see that after N repeat units with finite θ, as in Eq. (6.29), that the

only terms of the density matrix that contribute to the signal are

%̃(t) =
∑
β

(Ix · n̂β)(c1x̂1 + c3x̂3) · n̂β|β〉〈β|. (6.33)

The Ix3 term makes no contribution to the observed signal, and, as explained later,

phase cycling results in c3 = 0.[74] Therefore the effective density matrix reduces to

%̃(t) =
∑
β

c1Ix1|β〉〈β|(x̂1 · n̂β)2, (6.34)

which is the projection model of Chapter 2.

The above is for a single spin-1 nucleus. Expanding the density matrix to include
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all NI nuclei with similar directions for x̂

%̃(t) =

NI∑
i=1

∑
β

c1I
(i)
x1 |β〉〈β|(x̂1 · n̂(i)

β )2. (6.35)

Values of n̂
(i)
β are given by n̂tot of Eq. (4.18), replacing ∆ω with ∆ω̄ + δω(i), where

∆ω̄ = ω̄x − ωrf , (6.36)

ω̄x is the average NQR frequency, and δω(i) is the deviation from this average by

a particular nucleus i. For hard pulses, i.e. ω1 � δω(i), the rotation axis n̂
(i)
β is a

function of

θbn̂b = tp (ω1x̂1 + ∆ω̄x̂3) (6.37)

θ(i)
a n̂

(i)
a = τ

[
∆ω̄ + δω(i) + (∆εyβ −∆εzβ)

]
x̂3. (6.38)

Significantly, the broadening mechanisms δω(i) and (∆εyβ − ∆εzβ) do not appear

separately in the above rotation, but are summed together.

6.2.2 The observable

The sample is excited by the same coil used to detect the signal. In this case the

signal is proportional to

〈I · B̂〉 = Tr{I · B̂%}, (6.39)
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and the average ωx signal from the spin-1 nuclei with the same x̂ of their PAFs is

〈I · B̂〉 =
x̂ · B̂
NI

NI∑
i=1

Tr{I(i)
x %} (6.40)

=
x̂ · B̂
NI

NI∑
i=1

Tr{Ĩ(i)
x %̃} (6.41)

=
x̂ · B̂
NI

NI∑
i=1

2
[
Tr{I(i)

x1 %̃} cosωrf t− Tr{I(i)
x2 %̃} sinωrf t

]
, (6.42)

when solved in the interaction representation of H̄0. From the projection model,

the locked signal only contains the I
(i)
x1 term, allowing the I

(i)
x2 term to be dropped.

Further, the double summation in Eq. (6.35) can be replaced by a double integral over

two normalized distribution functions, f(δω) for the electric field gradient distribution

and g(∆εy −∆εz) for the distribution in heteronuclear dipolar coupling:

〈I·B̂〉 = c1 cosωrf t(x̂·B̂)

∫
d(δω)f(δω)

∫
d(∆εy−∆εz)g(∆εy−∆εz)(x̂1 ·n̂β)2. (6.43)

This double integral is equivalent to

〈I · B̂〉 = c1 cosωrf t(x̂ · B̂)

∫
d(δ$)h($)(x̂1 · n̂β [θa(∆ω̄, δ$), θb(∆ω̄, ω1)])2 (6.44)

where δ$ = δω + ∆εy −∆εz, and the linewidth function h = f ∗ g is the convolution

of f with g. In the above we emphasize the functional dependency of n̂β, θa, and

θb on the broadening δω̄ and the pulse parameters ∆ω̄ and ω1. The broadening

from the two different mechanisms contribute in the same way to the final signal.
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In Chapter 4 we showed how the 90-180 SLSE should refocus broadening due EFG

inhomogeneity.[73] That EFG and heteronuclear dipolar coupling contribute in the

same way to the signal allows us to extend that conclusion to broadening due to

heteronuclear coupling. The above solution, Eq. (6.44), is for a single crystal. To

obtain the powder averaged signal the integration on the direction cosine x̂ · B̂ would

be made, again with ω1 = γBx̂ · B̂.

6.2.3 Initial density matrix

As shown in Fig. 6.1, subtle differences in the timing of the sequence before the

application of the repeat unit can have big impacts on the SLSE signal behavior. To

derive an expression for the density matrix before the repeat units as they occur in

our experiments, it is assumed that the sample is in thermal equilibrium and at the

high-temperature limit. In this case the initial density matrix %(0) is taken as the

reduced density matrix of HQ[11]

%(t < 0) = ~ωxIx · x̂3|β〉〈β|. (6.45)

The rf pulse during excitation is B =BB̂ cos(ωrf t + π/2), which differs in phase by

π/2 compared to the refocusing pulse. Similar to the derivation in Eq. (6.24), in the

interaction representation of H̄0, the perturbing Hamiltonian of the excitation pulse

is given by

H̃1 = −∆HQ + e
i
~ H̄0tHrf (t)e−

i
~ H̄0t (6.46)

= −∆HQ + ω1~Ix2, (6.47)
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Figure 6.1: The 90-90 SLSE signal on the left (red dots) due a standard sequence
has a stronger response as a function of ∆f than a nearly identical sequence on the
right (black dots). The only difference is that the first free evolution of the left
sequence has been adjusted to τR = τ − t0/2. As discussed below, this reduced free
evolution ensures that the density matrix is suitable for pulse spin locking at large off
resonances. The thick lines are the predicted signal strengths of the projection model
Eq. (6.34), and agree quite well with the data. The thicker shaded lines correspond
to the density matrix before application of the repeat unit, given in Eq. (6.50). Data
is from the S1 sample of p-chloroaniline, taken at ωx with τ ′ = 390µs, tp = 110µs,
and averaged over 63 ms. Both signals are normalized to the same value, and both
sequences are symmetrical about ∆f = 0.
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where the secular approximation is used in the last line. The evolution of the density

matrix from the excitation pulse with length t0 is given by Eq. (6.32), with n̂0 = x̂3,

and θn̂ = (−ω1x̂2 + ∆ωx̂3)t0. The product ω1t0 is chosen in order to be close to 90◦

for the majority of the crystallites contributing to the signal.[68] In order to isolate

the echo train and reduce transient pulse effects, successive experiments in which B

is inverted are subtracted.[74] Therefore %̃(t0) is effectively

%̃(t0) = ωxIx ·
ω1t0
θ

[
sin θx̂1 −

∆ωt0
θ

(1− cos θ)x̂2

]
, (6.48)

which means that for certain values of θ which occur at large off-resonances the Ix · x̂1

component of the effective density matrix that produces the locked signal is small,

while the Ix · x̂2 component that does not produce signal is large.

The time between pulses in the echo train is 2τ , or if measured from the center

of the pulses 2τ ′. However, there is some ambiguity in how far the excitation pulse

should be separated from the first refocusing pulse. In practice, the midpoint of

the excitation pulse to the midpoint of the first refocusing pulse is also set to τ ′.

This means that the time between the excitation pulse and the refocusing pulse must

be reduced to τR = τ − t0/2. For delta function pulses, or for long values of τ ,

the difference between τ and τR is inconsequential. For short enough values of τ ,

however, this adjustment provides advantages for large ∆f , as shown in Fig. 6.1.

To incorporate this τR into the theory above only requires a small adjustment to

the initial density matrix. This is done by performing a negative rotation after the

excitation pulse using the operator

%̃(t0) ≡ e−i∆ωt0Ix3/2%̃(t0)ei∆ωt0Ix3/2 (6.49)
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Using again Eq. (6.32), with the rotation in the exponent given by −∆ωt0
2
x̂3, and

recognizing that only the Ix1 component gets locked by series of repeat units, the

relevant expression for the density matrix before the first repeat unit is

%̃(t0) = ωx
ω1t0
θ

[
sin θ cos Θ +

∆ωt0
θ

(1− cos θ) sin Θ

]
Ix1, (6.50)

where Θ = ∆ωt0/2. The coefficient in front of Ix1 is the c1 of Eq. (6.44). The

excitation pulse is such that for ∆f = 0, Θ = 0, while for increasing values of |∆f |, Θ

increases. In the limit as |Θ| approaches π/2 the second term in the square brackets

compensates for what would be a loss of signal. This explains why the adjusted

sequence produces the stronger signal in those cases since it creates a larger initial

signal that can be spin-locked.

6.3 Experimental procedure

The general experimental procedure is given in Chapter 3. Particular to the data in

this chapter, experiments were performed on three 100 g powder samples of 98% purity

p-chloroaniline ClC6H4NH2 from Sigma-Aldrich. These samples were never removed

from their glass jars. Initially all three samples had the same FWHM linewidth as the

first sample, S1. In order to create samples with a range in broadening due to EFG

inhomogeneity the second and third samples, S2 and S3, were melted by submerging

their jars in water warmed above 74 C. Once the samples had entirely melted they were

allowed to recrystallize. For S2, the heat source of the water was simply turned off

and sample and water were allowed to cool slowly. This only increased the linewidth

slightly from 117 Hz to 124 Hz, as shown in Table 6.1. After melting S3, its jar

was placed in a bath of room temperature water and gently rocked as the sample
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recrystallized. Interestingly, an audible cracking noise was observed as the sample

solidified. This process greatly increased the linewidth of the sample to from 117 Hz

to 190Hz, however, over the course of two weeks the linewidth then fell to 160Hz,

where it remained for the duration of data collection. For this reason we distinguish

between S3, the sample immediately after recrystallization, and S3*, the sample after

the linewidth stopped dropping.

6.4 Results

While our previous work used sodium nitrite NaNO2, this project used p-chloroaniline

because its nitrogen to hydrogen dipolar coupling was expected to contribute much

more to the linewidth than the nitrogen to sodium dipolar coupling of sodium nitrite.

This is because the second order broadening 〈∆ω2〉NK of heteronuclear coupling is

proportional to γ4
K and falls off faster than the distance separating the nitrogen and

the other nuclei raised to the sixth power.[9] Since hydrogen has a gyromagnetic

ratio approximately four times the value of sodium,[86] and the nitrogen-sodium

bond length in sodium nitrite[87] is approximately 2.5 times the nitrogen-hydrogen

bond lengths in the NH2 group in p-chloroaniline,[85] p-chloroaniline should have

much stronger heteronuclear coupling. Also, theoretical calculations had already

been made for the second moments of both the homonuclear[73,74] and heteronuclear

broadening.[9] And, as previously mentioned, the x̂ axes of the PAFs of neighboring

nitrogen nuclei are aligned,[9] which simplifies the theoretical work for that transition.

If broadening due to heteronuclear coupling behaves like EFG inhomogeneity, as

argued above, then the experimental parameters under which homonuclear dipolar

coupling appear for a substance with heteronuclear dipolar coupling should be the

same as found in Chapter 4: perform a 90-180 SLSE at |∆f | = 1
4τ ′

, and for τ greater
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Figure 6.2: The fit parameters obtained from the 90-180 SLSE echo trains using
Eq. (4.29) for various τs at ∆f = −1/(4τ ′) for both S1 (thin black line, squares) and
S3 (thick red lines, circles). In (a) the strength of the Gaussian contribution pg is low
for values of τ below the minimum τ where the homonuclear response is predicted to
be inhibited, and is consistently higher above that value. In (b) both samples show
Td approach the expected value for a powder 18.8 ms, while also remaining distinct
from T2e.

than a minimum τ , τmin =
√
tp/ηeff , with the procedure for calculating the dipolar

parameter ηeff given in Ref. [74]. For p-chloroaniline, ηeff/(2πτ) = 12 Hz,[74] so the

expected time constant due to homonuclear coupling Td = 1.16 ·
√

3/2τ/ηeff = 18.8

ms for the powder sample,[73]. This was less than the observed T1 of 57 ± 10 ms. To

see if a homonuclear response in p-chloroaniline could be obtained, a series of 90-180

SLSEs were run both at ∆f = 0 and ∆f = ± 1
4τ ′

for various values of τ , and the echo

trains then fit to Eq. (4.29). The results shown in Fig. 6.2 are consistent with the

previous observations for sodium nitrite. As τ ′ increases the Gaussian contribution

gets stronger and the value of Td converges to the expected value of 18.8 ms, regardless

of the EFG component of the sample. This is shown for both S1 and S3, with the

values for both samples converging to within 10% of the expected value. The values of

pg are somewhat smaller than that observed for sodium nitrite.[73] This is attributed
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to the smaller ηeff , which is less than half the value for sodium nitrite. In addition,

for p-chloroaniline the homonuclear dipolar coupling represents a smaller fraction of

the total line broadening, particularly for S3, as shown in Table 6.1.

The expected second moment due to heteronuclear coupling for p-chloroaniline

was predicted to be approximately 1kHz by Vega, but the linewidths of the samples

were as low as 117 Hz, far less than could be expected from Vega’s prediction. This

had been noted before for p-chloroaniline.[88] Vega’s expected broadening was then

re-derived assuming the protons were free to move rapidly within a sphere about

their location,[85] since the original prediction was based on a purely static model.

This motional averaging was found to decrease the expected broadening by orders of

magnitude as the sphere of uncertainty increased in size. This suggests that motion is

responsible for the narrower than expected line, but since the calculations were only

qualitative no prediction of the second moment was made.

The inability to confirm the presence of the heteronuclear coupling from the

linewidth alone resulted in uncertainty in declaring that the substance had heteronu-

clear broadening. However, in principle, one could measure the heteronuclear dipolar

coupling after isolating the homonuclear and EFG contributions. In order to do that,

the FID lineshapes from all of the samples were independently fit to a Voigt function

V (ν) ∝
∫ ∞
−∞

exp[−1
2
( x
σG

)2] · 1
(ν−x)2+γ2L

dx, (6.51)

where σG is the second moment of the Gaussian component and γL is the width

associated with the Lorentzian profile. The results of the fits, shown in Table. 6.1,

showed that the Gaussian component remained consistent between samples, within 10

Hz, while the Lorentzian components fluctuated on the scale of the observed changes

in the linewidth. This suggests that EFG broadening has a Lorentzian behavior,
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Table 6.1: The NQR signals from numerous resonant FIDs were averaged together
and fit to a Voigt function, Eq. (6.51). This was done on two samples of sodium
nitrite (Narrow and Broad) and three samples of p-chloroaniline (S1, S2, S3, and
S3*) that varied in only in their broadening due to EFG inhomogeneity. Individ-
ually fitting the lineshapes revealed the Gaussian width’s agreed within 10 Hz for
the same substance and transition frequency. The Lorentzian components, however,
varied with the full-width at half maximum linewidths, showing that EFG inhomo-
geneity manifests itself as a Lorentzian line shape, while the homogenous broadening
mechanisms are well represented by a Gaussian lineshape. The results in this table
are from fitting corresponding lineshapes simultaneously to the same Gaussian width,
with the expected σG calculated from the expected broadening due to homogenous
dipolar coupling only. The results show p-chloroaniline has an additional source of
Gaussian broadening, seemingly due to heteronuclear coupling.

Sodium Nitrite P-Chloroaniline
ωx ωy ωz ωx

N. B. N. B. N. B. S1 S2 S3 S3*

FWHM ± 2 Hz 178 364 154 289 122 173 117 124 187 161
γL±5 Hz 51 163 37 123 25 61 27 32 73 57

Observed σG ± 5 Hz 48 46 39 36
Expected 44 39 44 17

Homonuclear σG Hz
Observed/Homonuclear 109% 118% 89% 212%
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since neither of the dipolar coupling broadening mechanisms should vary from sample

to sample. As further confirmation, the two samples of sodium nitrite from our

previous work were similarly examined. The results from all of the experiments are

shown in Table 6.1 and are consistent with the conclusion that EFG broadening has a

Lorentzian contribution while the homogenous broadening mechanisms are primarily

Gaussian. Since the Gaussian contribution for p-chloroaniline was so much greater

than expected from homonuclear dipolar coupling alone, which was not observed

for sodium nitrite, we attribute this additional broadening to heteronuclear dipolar

coupling.

For a 90-90 SLSE the dominant response should be due to off-resonance behavior.

Using the projection model of Eq. (6.34) the 90-90 was modeled for various values of τ ′.

This produced an expected signal that is independent of broadening mechanisms. To

account for the expected broadening due to EFG and heteronuclear dipolar coupling,

the known homonuclear response was subtracted in quadrature from the Gaussian

component of the observed lineshape for S2. This new distribution, h($) of Eq. (6.44),

was then convolved with the projection model. Using the lineshape data obtained

with standard FIDs, however, did not produce a model consistent with the data.

Surprisingly it was found that by taking an FID during the SLSE sequence, i.e.

performing an FID acquisition immediately after a repeat unit, that the linewidth

was narrower from that observed from a single excitation pulse. While this effect

is relatively small, it is still significant. This was observed on both S2 and S3* but

only after the second repeat unit; the linewidth after the first repeat unit was the

same as a normal FID’s. Using the lineshape from this SLSE-FID, the projection

model predicted the observed signal quite well, as shown in Fig. 6.3, confirming the

projection model for the 90-90 SLSE.
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Figure 6.3: The average 90-90 SLSE signals (black squares) obtained from the first
63 ms of echoes, to maximize SNR, from S2 for various values of τ ′ and for various
off-resonances (∆f ·τ ′). Signals were normalized to their respective values at ∆f = 0.
The expected contribution to the lineshape due to EFG and heteronuclear broadening
is shown by the distribution centered around ∆f = 1/(4τ ′) along the bottom axis. For
low values of τ ′ this distribution in ∆f ·τ ′ approaches a delta function, and the model
that ignores line broadening behavior (red line) closely tracks the data. At longer
τ ′, a model incorporating the lineshape, black line, does a better job tracking the
data. The linewidth data used here came from FIDs taken during a SLSE sequence,
as discussed in the text. For S2 the linewidth narrowed from 124 Hz to 117 Hz; for
S3*, from 161 Hz to 136 Hz.
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6.5 Conclusion

We have theoretically demonstrated that broadening due to heteronuclear coupling

and EFG inhomogeneity have the same response to a pulse sequence. In particular

they are both refocused under a 90-180 SLSE sequence. By examining p-chloroaniline

we see that the homonuclear response, which was previously addressed in Chapter 4,

can still be observed, and at the same conditions observed in the simpler case: use

a 90-180 SLSE, |∆f | = 1
4τ ′

, and τ ≥
√
tp/ηeff . In order to verify that heteronuclear

coupling is present we found that the inhomogeneous broadening of the NQR line due

to EFG has a Lorentzian shape, while the homogenous broadening has a Gaussian

shape. Since the width of the Gaussian contribution can not be accounted for solely

in terms of the homonuclear broadening that we observed, heteronuclear coupling

should be the remainder. We note that heteronuclear coupling is much narrower than

expected, and we argue that this may be due to the motion of the light hydrogen nuclei

in the crystalline environment. The ability to separately determine the contribution

of these broadening mechanisms can be used to fingerprint samples, to track their

manufacturing origin, and help optimize detection sequences depending on the relative

size of these broadening mechanisms.
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Chapter 7: Conclusions

The results in this thesis explain the behavior of the NQR signal due to pulsed spin

locking as a function of three broadening mechanisms: electric field gradient inhomo-

geneity, and homonuclear and heteronuclear dipolar coupling. Using simple models,

the refocusing behavior of each component is described. Additionally, using a model

based on the behavior of just two spins, the experimental conditions to isolate the

strength of the homonuclear component were found. This occurs using a 90-180 SLSE

sequence, at ∆f = 1/(4τ ′), with the ideal pulse spacing determined partly by the

strength of the homonuclear dipolar coupling. All of this is described theoretically

and demonstrated experimentally on a number of samples. The conditions which

trigger the homonuclear response are to be avoided in substance detection, since the

result is a rapidly decaying Gaussian signal. Fortunately the model accurately pre-

dicts the conditions where this decay appears, even accounting for subtle differences

in the shapes of the rf pulses.

While this homonuclear response is to be avoided in substance detection, due to

the correspondingly weak signal, the width of the Gaussian decay was shown to be a

measurement of the homonuclear dipolar coupling. This was also verified on several

powder samples that varied in the relative strengths of their broadening mechanisms.

With the ability to measure homonuclear dipolar coupling, NQR becomes a tool to

analyze unknown substances.

Measuring homonuclear dipolar coupling also permits the strengths of the remain-

ing broadening mechanisms to be estimated. With this, NQR is a much more useful

tool for substance detection, since the most efficient detection sequence depends on
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their relative strengths, as we show. Additionally, the ability to find the contribution

of EFG inhomogeneity is important to fingerprint the manufacturing process, which

could help trace contraband material back to its supplier.
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Appendix A: The solution to U = eiθI·b̂(I · â)e−iθI·b̂

Given some three dimensional space x̂, ŷ, ẑ, an angular momentum operator I, and

the general problem of simplifying U = eiθI·b̂(I · â)eiθI·b̂, it is useful to start with three

simple cases:

U = eiθI·x̂(I · x̂)e−iθI·x̂ (A.1)

U = eiθI·ŷ(I · x̂)e−iθI·ŷ (A.2)

U = eiθI·ẑ(I · x̂)e−iθI·ẑ (A.3)

The solution to Eq. A.1, U = eiθI·x̂(I · x̂)e−iθI·x̂, is obviously just U = I · x̂. The

solution to Eq. A.2 is found by first expressing eiθIy as a series

eiθIy = 1 + iθIy +
1

2
(iθIy)

2 +
1

6
(iθIy)

3 + ... (A.4)

where 1 is an identity operator. The derivative of eiθIy with respect to θ is

deiθIy/dθ = 0 + iIy1 + iθIy +
1

2
iIy(iθIy)

2 + ... (A.5)

= iIye
iθIy . (A.6)

This allows Eq. A.2 to be expressed as
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dU/dθ = ieiθIy [IyIx − IxIy]e−iθIy (A.7)

= eiθIyIze
−iθIy . (A.8)

Repeating the process

d2U/dθ2 = ieiθIy [IyIz − IzIy]e−iθIy (A.9)

= −eiθIyIxe−iθIy (A.10)

= −U. (A.11)

But the expression d2U/dθ2 = −U is a familiar second order differential equation

with solution

U = A cos θ +B sin θ. (A.12)

Since U(θ = 0) = Ix, A = Ix. Similarly, since dU(θ = 0)/dθ = Iz, B = Iz and

U = eiθIyIxe
−iθIy (A.13)

= Ix cos θ + Iz sin θ (A.14)

Similarly Eq. A.3 can be shown to be
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U = eiθIzIxe
−iθIz (A.15)

= Ix cos θ − Iy sin θ (A.16)

with cyclic permutations of x, y, z providing all the other cases.

For the general case U = eiθI·b̂(I · â)e−iθI·b̂ we define a new, primed, orthogo-

nal coordinate system x̂′, ŷ′, ẑ′, related to the original frame by some rotation such

that x̂′ = b̂. This coordinate system defines a new set of operators I = [I ′x, I
′
y, I

′
z],

which must commute like angular momentum operators. The new operators allow

the equation to be rewritten:

eiθI·x̂
′
(I · â)e−iθI·x̂

′
= eiθI·x̂

′
[â · x̂′I ′x + â · ŷ′I ′y + â · ẑ′I ′z]e−iθÎ·x̂

′
(A.17)

From above, this has the known solution

â · x̂′I ′x + â · ŷ′(I ′y cos θ − I ′z sin θ) + â · ẑ′(I ′z cos θ + I ′y sin θ), (A.18)

which is the same as

I · [cos θâ+ (1− cos θ)b̂(b̂ · â) + sin θ(â× b̂)]. (A.19)

The result is the same as dotting I with â′, which is â after being rotated by an angle

θ about b̂ with a clockwise rotation.[89] This is clearly consistent with the particular

solutions for Eqs. A.14-A.16.
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Appendix B: The FID processing procedure

For samples with a long enough T ∗2 the single pulse FID sequence provides an easily

obtained NQR signal that is useful both for basic analysis and as a diagnostic tool for

the system. For the research described in this thesis, four variables were commonly

generated from FID sequences: ωNQR, the phase of the FID, linewidth, and the back

projected intercept.

A visual representation of how ωNQR and the FID’s phase are found is presented in

Fig. B.1. It starts with the spectrometer’s output which is a set of complex numbers

x[n]. These are the quadrature detection representation of the voltage from the

detector coil, sampled discretely with a dwell time Tdwell. For electronics reasons

there may be a baseline offset to x[n] that artificially and uniformly increases each

value. To remove any potential baseline from the FID the average values of the real

and imaginary components of the last 1/8th of the data are subtracted from each x[n].

Since the typical FID was 1024 points of data, with Tdwell = 10 µs, and because the

typical FID decay constant T ∗2 could be on the order of 2 ms or less, the signal has

decayed to about 1% of the initial value by 7/8ths of 10.24 ms. Therefore removing

the baseline offset shouldn’t have removed any of the desired signal.

The sequence is then shifted to the left by the number of points necessary to re-

move any ringing or data collection artifacts. This removed the early data from all

further analysis. The undesirable points were typically obvious from visual analysis

of the signal, given a sufficiently high SNR. Match filtering is then applied by mul-

tiplying each data point by an exponential function with a decay constant given by

the linewidth FWHM of the sample measured previously:

x[n] = e−π·FWHM ·n·Tdwell (B.1)
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Figure B.1: A visualization of the typical FID processing necessary to calculate the off-
resonance and the phase of the signal, where red corresponds to the real component
of the signal, green to the imaginary, and blue to the magnitude. The raw FID
data (a) has some acquisition artifacts, perhaps due to probe ringing. The baseline
offset calculated from the last 1/8th of data, however, must be removed (b) from each
component before addressing this early data. For this example, removing the baseline
offset decreased the peak magnitude by almost 3%. Once the baseline is removed,
the early data is then removed (c) by a left-shift; in this case it is the first 20 points.
The signal is then match filtered (d) using a linewidth of 120 Hz. The fast Fourier
transform of the remaining signal (e) has a peak magnitude at ∆f = 0, which means
the signal was acquired on resonance. The change in phase necessary to make the
peaks of the real component and magnitude occur at the same ∆f (f) determines the
phase of the signal. Data is from sample S1 of p-chloroaniline and obtained at ωx.
The excitation pulse width was 110 µs.
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Figure B.2: Calculations of ∆f and the FID’s phase made using match filtering (thick
black lines) show less variation than the same calculations performed without match
filtering (thin red lines). This is quantified by comparing the standard deviations in
each measurement. For ∆f it is 35 vs 44 Hz, in favor of match filtering; for phase it
is 15 vs 26 degrees, again favoring match filtering. The data used here was from a
series of identical FID sequences performed on the broad sample of sodium nitrite at
ωz since this was the most difficult data to process.

105



This effectively weights each data point by the expected signal response, and leads

to a higher SNR and more consistent measurements of the desired values, as shown

in Fig. B.2. A large number of data points are then appended to x[n] that consist

of zeros. This zero-filling artificially increases the acquisition time of the experiment,

permitting finer measurements of ωNQR. Typically x[n] was zero-filled to a length of

16384 points. Zero-filling is justified because the signal should be effectively zero by

the 1024th data point, as already argued above. The data is then Fourier transformed

with a discrete fast Fourier transform FFT to create X[ν]. The peak of the signal

in the frequency domain corresponds to the off-resonance of the signal. This is then

added to the observation frequency of the sequence to determine the NQR frequency,

with an accuracy around ±12 Hz or better. The phase adjustment necessary to make

peak of the real part of X[ν] equal to the peak of the magnitude of X[ν], is called

the phase of the signal. These are typically compared to the phase of the signal when

∆f = 0, which acts as a reference phase.

As shown in Fig. B.3, the procedure to obtain the FID linewidth is similar: remove

baseline, left shift data, zero fill, Fourier transform and phase to the previously deter-

mined value. The resulting real component provides the lineshape of the signal and

is used to calculate the full-width at the half-maximum FWHM. As an intermediate

step in this process, the first 40-80 points of clean data are plotted against time with

t=0 corresponding to the end of the pulse. These point are then fit to a straight line

in order to calculate the value at t = 0. This is the back projected intercept, which

is useful for calculating normalization coefficients of the signal. Additionally, changes

in the back projected intercept would be proof of a dramatic change in the strength

of the pulses, so this also helps track the consistency of the electronics.
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Figure B.3: A visualization of the FID processing used to obtain the back projected
intercept and lineshape, where red corresponds to the real component of the signal,
green to the imaginary, and blue to the magnitude. As in Fig. B.1, in (a) the raw
FID signal still contains artifacts. However, baseline correcting must be performed
(b) before the early time data can be dropped (c). After phasing to the previously
calculated value, the first ∼80 points of clean data are then plotted against the time
from the end of the pulse (d). These points are then fit with a straight line to find
the back projected intercept, useful for normalizing signals and tracking the strength
of the pulses. After zero-filling the data from (c) the signal is Fourier transformed
(e). The real component of the Fourier transform provides the lineshape of the signal
(f), which can be processed to find the full-width at the half-maximum FWHM.
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Figure C.1: A representative view of the first 10 echoes acquired during a SLSE
sequence. Only the 16 clean data points are shown for each echo which are separated
in time by 2 ·τ ′. Data is from the Narrow sample with a 90-90 SLSE with τ ′ = 1.04ms
at ωx

Appendix C: The SLSE processing procedure

To make the signal processing consistent for the many values of τ , the SLSE sequences

were built around the data acquisition. For processing reasons, 22 data points, each

of duration Tdwell, were collected for each echo. The first and the last five data points

were dropped, because they were questionable. This left 16 clean data points for each

echo, such as those shown in Fig. C.1. The rest of the SLSE timing was built around

ensuring that time τ after the refocusing pulse was also the midpoint of the first clean

data point in the echo acquisition. With this configuration a larger τ was obtained by

increasing Tdwell, and then adjusting the rest of the sequence parameters as needed.
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Values of Tdwell used in this thesis varied from 16 µs to 180 µs.

The number of echoes acquired was always enough to ensure that at least 1.25

times the maximum expected T2e of data was acquired in time. This would present

the largest SNR for the average echo signals for an exponential signal.

A marked baseline was found in some of the SLSE data. Because of this a second

set of noise only data was accumulated after the signal. This was used to identify

any potential baseline which would then be subtracted from the SLSE signal.

The SLSE’s were processed for two different signals: the average echo signal and

the echo train. The average echo was the sum of the first N clean echoes, where

N was the number of echoes acquired in 1.25 · T2e, to maximize SNR. The summed

signal was then zero-filled out to 256 points, Fourier transformed, and phased to a

reference phase. The reference phase was the phase necessary to make the peak of

the real signal match the peak of the magnitude of the signal when ∆f = 0. Also, a

note was made of the location in the frequency domain where the peak average echo

signal occurred. This was necessary for the echo train analysis.

To analyze the echo trains, each individual echo of clean data was zero-filled to

256 points, Fourier transformed, and then phased to the same reference phase used

to process the average echo signals. The real component from each echo was then

sampled at the location in the frequency domain obtained by processing the average

echo signal. Using the expected off-resonance from the FID would have been more

accurate, but computationally it was easier to exploit the average echo signal. Each

echo signal could then be plotted against time, separated by 2 · τ ′, and processed as

desired.
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Appendix D: A Low Power NQR System

D.1 Overview

Over November and December of 2012 I was invited to work as a guest researcher with

a group at Osaka University led by Dr. Hideo Itozaki. While my research is in the

physics of NQR signal creation, Dr. Itozaki’s lab focused on the electronics of NQR

signal detection. While at his lab I assembled the components of a custom NQR

system, from the signal generator to the spectrometer. This system had very low

power requirements and cost compared to the equipment in use at Dr. Sauer’s lab at

George Mason University. All of the other experiments described in this thesis could

easily have been performed using such a simple and cheap system as we developed at

Osaka University. The following report summarizes my work in Dr. Itozaki’s lab.

D.2 Abstract

We describe a complete, portable, low power, low cost NQR system. While a typical

NQR system is impedance matched to 50 Ω, our system is based around an efficient,

low power, class-D amplifier with an output impedance in the single Ω region. We

demonstrate the ability to use this system to perform basic NQR experiments and

measure the peak instantaneous power requirements to be a little over 10 W.

D.3 Introduction

As shown in Fig. D.1, a typical NQR system consists of a five parts: there is the

signal generator to create the rf excitation pulse; an amplifier (1 kW common) to
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Figure D.1: An overview of a typical NQR system.

give the pulses enough power; a resonant LCR circuit tuned near ωNQR, with the

inductor serving to both create the initial magnetic field and collect the resulting

signal; and preamplifiers to make the signal large enough for the spectrometer. Typi-

cally, components of an NQR system in a laboratory are impedance matched to 50 Ω.

Impedance matching makes the transfer of power from the amplifier to the main coil

more efficient.[90] However, the power requirements of the amplifier are proportional

to its output impedance, for a given I. By reducing the output impedance of the

amplifier to a few Ω, and matching the rest of the system to that lower value, the

power requirements of the amplifier, and therefore the entire system, can be reduced

significantly.

D.4 The system in detail

The heart of our system was a field programmable gate array (FPGA) from the

Altera Corporation: the DE0-Nano development board. The FPGA generated the rf

pulse, sequenced the MOSFETs in the probe, controlled the analog to digital (A2D)

converter, and performed the signal analysis. Unlike the sinusoidal rf signal generated

by the more common Tecmag spectrometer, the signal from the FPGA was simply a

series of step functions. This signal was fed into a class-D amplifier designed around

a Texas Instrument LM5101A high voltage gate driver. A class-D amplifier was used
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Figure D.2: The image on the left shows the shielded processing box holding the A2D,
the class-D amplifier, and the FPGA located directly under the amplifier. Room has
been left for a battery source on the left side of the box. The various BNC connections
are for connecting this processing box to the probe box, shown on the right. The main
coil of the probe box, which holds the sample, has been wrapped in Teflon tape to
eliminate arcing. On the right of the probe box the output terminals of the sniffer
probe are seen connected to a pair of alligator clips.
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specifically because of its efficiency and low output impedance. The amplifier used

a voltage source of 12 to 24 V, typically provided by low noise batteries, to increase

the rf signal’s peak to peak voltage to that of the voltage source.

The entire circuitry, shown in Fig. D.3A, was designed to isolate the probe portion

during excitation, as shown in Fig. D.3B. This ensured power went into generating

the field and not into damaging the preamplifiers. The isolation was made possible

because the transmit receive (T/R) switches and the MOSFETs acted as open circuits

when exposed to the high voltage of the pulse. Another benefit of isolation was to

obtain a high Q during the pulse, since no purely resistive elements were left in the

circuit, which kept the power requirements of the amplifier low.

Two methods were used to determine the Q of the probe during excitation. The

first was to find the voltage amplification of the probe. When a resonant pulse with

an amplitude of 12 V was applied to the probe, the amplitude of the voltage across the

inductor was approximately 1 kV, which was measured directly. This amplification

factor of 83 is one estimate of the Q.

A second estimate of Q was found by analyzing the rise and fall times of the

excitation pulse. These were obtained by measuring the actual pulse shapes using a

single loop of wire, with terminals outside the probe box, placed adjacent to the main

coil. Due to inductive coupling, a voltage was induced on this sniffer coil that was

proportional to the magnetic field strength of the main coil. The observed rise and

fall times provide an estimate of Q through the equation

Q = π · f · tc (D.1)

where f is the frequency of the pulse, and tc is pulse’s rise or fall time constant. The

time constants were found by fitting the pulse shapes to the functions Pulse(t) =
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Figure D.3: A schematic of the main components of the circuitry is shown in A. The
effective circuit of the high Q excitation configuration is shown in B. Here the high
resistance of the T/R switch and MOSFETs isolates and protects parts of the full
circuit by removing the path to ground. The effective circuit of the low Q recovery
configuration, when the remaining pulse energy is quickly removed from the system,
is shown in C. This is facilitated by the T/R switches providing a finite resistance to
ground. Finally, the effective circuit of the high Q reception configuration is shown in
D. The MOSFETs are triggered to provide a low resistance path to ground, increasing
the Q substantially.
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Figure D.4: The excitation pulse of the class-D amplifier observed using the sniffer
coil reveals a difference in the rise (10.6±1.1 µs) and fall (6.3±0.1 µs) times. The
different time constants show that the Q changes when the pulse stops, which helps
to rapidly remove the energy from the coil and increase signal acquisition time. The
complex analysis of the pulse shape reveals a more complete picture than looking at
the magnitude alone, since the presence of the non-zero imaginary component during
excitation is responsible for certain signal behaviors observed in other systems.[73]
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A(1− e−t/trise) for the rise, and Pulse(t) = Ae−t/tfall for the fall, where A is the pulse

amplitude. Analyzing the excitation pulse shape in Fig. D.4 reveals a change in Q

from 45 for the rise to 25 for the fall. This change in Q occurred passively and by

design. Remaining in a high Q configuration after the pulse would create ringing as

the system slowly removed the pulse energy. This ringing signal, with its initially

high voltage, would obscure the NQR signal, and reduce the observation time of the

already weak and decaying signal. Designing the circuit to enter the configuration

shown in Fig. D.3C lowers the Q and reduces the ringing signal after the pulse. We

note that the Q based on rise time disagrees with the value based on amplification.

This is probably due to the non-linearity of the MOSFETs and the T/R switches

making Q change as the pulse is applied. So while the Q observed through the time

constants is less accurate, its calculation is useful to show that Q decreased after the

pulse.

Once the ringing has fallen below a safe threshold, the MOSFETs are switched into

a low resistance state by the FPGA. This puts the probe into the high Q configuration

shown in Fig. D.3D. In this state, there are no significantly resistive elements left

in the circuit. This is achieved with the virtual short from the probe to the first

preamplifier, shown in Fig. D.6, which results from grounding the non-inverting pin

of the preamplifier, via a 1 µF capacitor, and connecting the inverting pin to the probe.

The virtual short results in a very low input impedance between the coil and the first

amplifier, at 1.37 MHz, and an efficient transfer of power. The difference in the Q

between the recovery and reception configurations is found in Fig. D.5 by comparing

signals observed by the probe, due to a known input, in the two configurations.

While the gain of the first preamplifier was measured to be approximately 40 dB,

a second preamplifier was used to increase the signal even further before measurement

by the A2D. Several different configurations were tested for the second preamplifier.
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Figure D.5: Signals obtained by toggling the MOSFETs into the low Q (dashed) and
high Q (solid) configuration, as described in Fig. D.3, demonstrate the Q switching
is working. The signals were created by applying a square pulse to the sniffer coil
which induced a voltage in the main coil that was detected with the NQR system.
The results show a nearly 3.5 times increase in the observed signal strength for the
same input in the high Q configuration. The fall times of the two signals estimate
the Q to be approximately 100 for the high Q configuration, and 25 for the low Q
configuration: consistent with the Q observed during the fall of the excitation pulse.
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Figure D.6: The circuit diagram of the first preamplifier, showing the virtual short
for the input terminal.
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Figure D.7: Three representative signals obtained with the system obtained after a
single excitation pulse. In A the initial ringing from the probe is much larger than
any other feature observed in the signal, showing that acquisition has been started
too soon. In B the data acquisition has been started after the ringing has finished,
and reveals the exponential decay associated with the NQR signal. Finally, C shows
the same data as B, expect neighboring points have been averaged to remove high
frequency noise. The real and imaginary lines cross, since the sequence was not taken
exactly at ∆f = 0.

The best performance was found with it designed around the same integrated circuit

as the first, but with an input impedance of 50 Ω and a low output impedance. The

output of the second preamplifier was connected to the A2D, which had an input

impedance of 50 Ω. The output of the A2D was analyzed using quadrature detection

by the FPGA with the results sent to a laptop for further processing.

D.5 Experimental details and observations

A 40 g powder sample of imidazole, C3H4N2, was used to obtain NQR signals, such as

shown in Fig. D.7, to verify the systems functionality. Imidazole was chosen because

its 1.37 MHz line is a good substitute for the 1.22 MHz line of the real target substance:

methamphetamine hydrochloride, C10H15N. The signal for various θs should form a

characteristic signal response if the signal is a real NQR signal.[68] The set of signals

shown in Fig. D.8 was obtained by holding the intensity of the pulses constant and

varying tpw. For the imidazole sample, the resulting curve shows the gross features

of the expected curve, with the difference attributed to the large filling factor of the
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Figure D.8: A comparison of calibration curves for two different filling factors: the
ratio of sample volume to main coil volume. Filling factor provides a qualitative
measure of the inhomogeneity of the applied field strength over the sample, i.e. a
smaller filling factor results in a more homogenous field over the sample than for a
large filling factor. Because of the larger field homogeneity, the experiment with the
smaller filling factor fits the expected functional form better than the experiment
with the larger filling factor. However, the general behavior of the NQR calibration
curve is still observed with the larger filling factor. Data from the small filling factor
sample were obtained from a 100 g sample of p-chloroaniline in a conventional NQR
system. Data from the large filling factor sample came from the sample of imidazole
and NQR system described in this appendix.
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sample resulting in an inhomogeneity in B across the sample. Therefore, instead of

a single calibration curve, the net response is the sum of several calibration curves.

The result suggests that an inhomogeneous field may be better for a detection, since

not all of the substance can produce a minimum signal, but more work must be done

on this topic. The data is the summation of 50 repetitions for a given pulse length,

with no phase cycling between scans to remove noise, as is usually done. We note

one surprising way to increase the SNR of this system was to ensure that the laptop

powering the USB connection to the FPGA was under battery power. It was clearly

seen in the output of the preamplifiers that the signal was much noisier with the

laptop under AC power than under battery power.

Finally, we measured the power requirements of the system by observing the

voltage drop across a 0.1 Ω resistor temporarily put in series with the output of the

amplifier during pulsing. The voltage drop observed was 0.370 mV peak to peak,

corresponding to a peak instantaneous current across the resistor of 1.85 A. Since the

amplitude of the corresponding pulse was 6 V, the peak instantaneous power of the

system was 11.1 W. Knowing the peak power, we can estimate the resistance of the

NQR system during pulsing. Starting with P = V 2/R, we get R = 36 V 2/11.1 W =

3.2 Ω. This is consistent with another approximation to measure R, R = ωrfL/Q,

where L is the inductance of the main coil. Using the measured value of L = 31 µH,

and Q = 83, this method also gives a value for R = 3.2 Ω for the excitation pulse.

D.6 Conclusion

We have demonstrated the creation of a complete NQR system optimized for low

power requirements. We have shown that its results are comparable to that performed

with a high power NQR system, for single shot experiments. The results suggest that
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an inhomogeneous field might be advantageous for substance detection, since the

signal behavior is not dominated by a single response. The power requirements are

achieved using the low output impedance of a class-D amplifier, which resonantly

drives an LCR circuit with an input impedance around 3 Ω. The power requirements

are quite low, on the order of 10 W, compared to the kW power requirements of some

NQR systems. The system is small, occupying less than 2 liters, and quite affordable.

Additional electronics work is to demonstrate multipulse experiments and improve

the software control of the system.
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Appendix E: Example Visual Basic Script for

Tecmag Automation

E.1 Overview

Automating the Tecmag with Visual Basic Script (VBS) required numerous tricks to

make it work nicely. To aid others hoping to use this time saver, the following example

script is provided. This particular code was used to run a series of FID sequences

with the various pulse lengths specified in the “pws” array. The code begins with

the required VBScript-NMRScript Header for the script to interface with the Tecmag

unit. Note that an open .tnt file is required for all VBS scripts to run. After the

header, a set of user defined variables is created. A set of template .tnt files are

then created, which are updated with the user defined variables and saved in the

experimental folder.

With the templates defined, the resonance frequency of the sample is found. The

FID processing necessary to find the resonance frequency is found by invoking a Java

program. The java program is designed to output the resonance frequency to a text

file, which is then read by the script. The call to Java and the reading of the text

file are contained in the function “getFIDresFreq()” at the bottom of the code. It is

a convoluted method, but it worked very well.

Each program that is run is limited to the name “current.tnt”. This kept the

number of files open at any time to a minimum, something the Tecmag software

seemed to appreciate. By carefully opening and closing files, any problems with the

number of files open was kept to a minimum.

Also, there are many “WScript.Sleep wait” or “WScript.Sleep 100” commands.

These are to intentionally slow down the program to ensure the previous command
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is executed before the next command is processed.

1

2 ’##############################’

3 ’ * VBScript-NMRScript Header, v2-020716’

4 ’ *’

5 ’ * use "App.CommandName" to communicate’

6 ’ *’ with the Application Object

7 ’ * use ’Data.CommandName’ to communicate’

8 ’ * with the topmost data file (Document Object)’

9

10 Dim App, Data, pathToDoc

11 Set App = GetObject(, "NTNMR.Application")

12 pathToDoc = App.GetActiveDocPath

13 If pathToDoc="" Then

14 MsgBox "Script requires an open data file !",_

15 vbOKOnly + vbCritical, "NMRScript"

16 WScript.Quit() ’exit immediately’

17 End If

18 Set Data = GetObject(pathToDoc)

19 ’##############################’

20

21 amp90 = 11.3

22 pw90 = "110u"

23 amp180 = 27

24 freqGuess = 2.768

25 fidRD = "50u"

26 fidAD = "50u"

27 scans1D = 64

28 points2D = 3

29 recGain = 100

30 tDw = "10u"

31 FIDpts = 1024

32 delay = "500m"

33

34 Running = 1

35 wait = 200

36
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37 tmpPath = "C:\malone\paper2\templates\"

38 fidPath = "C:\malone\javaOnly\data\"

39 expPath = "C:\malone\paper2\tuningY\timeCal\"

40 pws = Array("50u","20u","60u","100u","140u","180u","50u")

41 exps = Ubound(pws)

42

43 ’##############################’

44 ’##############################’

45

46 ’**---Create templates---**’

47 Data.OpenFile tmpPath &"FID_template.tnt"

48 Data.SaveAs expPath &"FID_temp.tnt"

49 App.CloseFile tmpPath &"FID_template.tnt"

50

51 Set Data = GetObject(App.GetActiveDocPath)

52

53 Data.SetNMRParameter "f1_amplitude" ,amp180

54 Data.SetNMRParameter "pulseWidth" ,pw90

55 Data.SetNMRParameter "Observe Freq." ,freqGuess

56 Data.SetNMRParameter "Scans 1D" ,scans1d

57 Data.SetNMRParameter "Points 2D" ,points2D

58 Data.SetNMRParameter "RD" ,fidRD

59 Data.SetNMRParameter "AD" ,fidAD

60 Data.SetNMRParameter "Receiver Gain" ,recGain

61 Data.SetNMRParameter "Dwell Time" ,tDw

62 Data.SetNMRParameter "Acq. Points" ,FIDpts

63 Data.SetNMRParameter "delay" ,delay

64 App.Save

65

66

67 ’##############################’

68 ’##############################’

69

70 ’**---Run FID to find resonance frequency---**’

71 Data.OpenFile expPath &"FID_temp.tnt": WScript.Sleep wait

72 Data.SaveAs expPath &"current.tnt": WScript.Sleep wait

73 App.CloseFile expPath &"FID_temp.tnt": WScript.Sleep wait

74 Set Data = GetObject(App.GetActiveDocPath): WScript.Sleep wait
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75

76 Data.SetNMRParameter "f1_amplitude" ,amp90

77 Data.SetNMRParameter "Observe Freq." ,freqGuess

78 Data.SetNMRParameter "Points 2D" ,1

79

80 runAndSave()

81

82 ’**---Calculate resonace frequency using java---**’

83 deleteFiles()

84 Data.SaveAs fidPath &"FID.tnt": WScript.Sleep wait

85 App.CloseFile fidPath &"FID.tnt": WScript.Sleep wait

86 ResFreq = getFIDresFreq() : WScript.Sleep wait: deleteFiles()

87

88 ’##############################’

89 ’##############################’

90 ’**---Perform experiment---**’

91

92 i = 0

93 Do While (i<=exps)

94

95 IF i < 10 THEN

96 expInd = "_0" &i

97 ELSE

98 expInd = "_" &i

99 END IF

100

101

102 Data.OpenFile expPath &"FID_temp.tnt": WScript.Sleep wait

103 Data.SaveAs expPath &"current.tnt"

104 App.CloseFile expPath &"FID_temp.tnt": WScript.Sleep wait

105 Set Data = GetObject(App.GetActiveDocPath)

106

107 Data.SetNMRParameter "Observe Freq." ,ResFreq

108 Data.SetNMRParameter "pulseWidth" ,pws(i)

109

110 runAndSave()

111

112 Data.SaveAs expPath &"timeCal" &expInd &".tnt"
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113 App.CloseFile expPath &"timeCal" &expInd &".tnt"

114

115 i = i + 1

116 Loop

117

118

119 ’##############################’

120 ’##############################’

121

122 ’**---Funtions---**’

123 Function getFIDresFreq() ’**---V1.2

124 set WshShell = WScript.CreateObject("WScript.Shell")

125 WshShell.Run "cmd": WScript.Sleep 100

126 WshShell.AppActivate "C:\Windows\system32\cmd.exe": WScript.Sleep 100

127 WshShell.SendKeys "cd C:\malone\javaOnly\{enter}": WScript.Sleep 100

128 WshShell.SendKeys "java -jar processFID1.jar {ENTER}": WScript.Sleep

100

129 WshShell.SendKeys "exit{ENTER}": WScript.Sleep 100

130

131 WScript.Sleep 2000

132

133 Dim objFSO, strTextFile, strData, strLine, arrLines

134

135 strTextFile = "C:\malone\javaOnly\result\resFreq.txt" ’name of the

text file

136 Set objFSO = CreateObject("Scripting.FileSystemObject") ’Create a

File System Object

137 strData = objFSO.OpenTextFile(strTextFile,1).ReadAll ’Open the

text file - strData now contains the whole file

138 arrLines = Split(strData,vbCrLf) ’Split the text file into lines

139 getFIDresFreq = arrLines(0)

140 Set objFSO = nothing

141 End Function

142

143 Function deleteFiles()

144 dim filesys

145

146 Set filesys = CreateObject("Scripting.FileSystemObject")
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147 If filesys.FileExists("C:\malone\javaOnly\data\FID.tnt") Then

148 filesys.DeleteFile "C:\malone\javaOnly\data\FID.tnt"

149 End If

150

151 If filesys.FileExists("C:\malone\javaOnly\result\resFreq.txt") Then

152 filesys.DeleteFile "C:\malone\javaOnly\result\resFreq.txt"

153 End If

154 End Function

155

156

157 Function runAndSave()

158 IF (Running = 2) THEN

159 msgBox("advance?")

160 END IF

161

162 IF(Running=1) THEN

163 App.ZG

164 Do While Not Data.CheckAcquisition

165 Loop

166

167 App.Save

168 END IF

169 END Function
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Appendix F: Java processing code: TecmagReader

F.1 Overview

A large Java code library called TecmagReader was written to process the volume of

data that was collected. The idea behind TecmagReader was to create a scripting lan-

guage that could process a collection of spectra. This was implemented by processing

an object of the class Set, which was simply an array of TNT objects described in

Appendix G.

An example of the TecmagReader code is given below. This particular program

is designed to process the collection of FIDs, and their corresponding pulse shapes

from the sniffer coil, to create a Result object: a simple text spreadsheet that could

easily be read by Excel, OriginLab or other more specialized tools.

The goal of showing this snippet of code is to reveal the natural language nature of

the TecmagReader code, should someone wish to implement it for their own project.

However, no additional documentation is available, except for the particular code

used to read the .tnt files given in Appendix G

The source code will be made available online at a later date through

http://physics.gmu.edu/~ksauer/mrl_index.htm

although no effort has been made to make it useable, and no guarantees are made

regarding its functionality or utility. Additionally, certain functions (FFT, fitting)

will be unavailable due to licensing issues.

F.2 Example Code

1 public class calibrationExampleCode

2 {
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3 public static void main(String args[])

4 {

5 int files = 7;

6 int lineWidth = 160;

7 int leftShift = 20;

8

9 String path = "Y:\\paper2\\tuningX\\";

10

11 Set fids = Set.readNumberedFiles(path + "ampCal_" , files);

12 Set snif = Set.readNumberedFiles(path + "sniffV_" , files);

13

14 Result data = new Result();

15

16 snif.leftShift(0);

17 snif.plot(1);

18 snif.fourierTransform(1);

19 snif.calcPhase();

20 double[] phases = snif.getPhase();

21 snif.phaseData(phases);

22 int[] peaks = snif.getPeakLocation(100);

23

24 data.add(new Result(snif.getTypeAt(peaks, "R"),"sniff_Real",1));

25

26 fids.reportFID(4,leftShift, lineWidth, 16384, 40,

100e-6).print(0,0);

27 fids.removeOffset(fids.getOffset(8));

28 fids.leftShift(leftShift);

29 fids.zerofill(16384);

30 fids.exponentialMultiply(lineWidth);

31 fids.fourierTransform(1);

32 fids.calcPhase();

33 phases = fids.getPhase();

34 fids.phaseData(phases[0]);

35 peaks = fids.getPeakLocation(1);

36

37 data.add(new Result(fids.getTypeAt(peaks,"R"), "fid_Real", 1));

38 data.add(new Result(fids.getFFTnoise("R"), "error",1));

39 data.add(new Result(fids.getTypeAt(peaks,"I"), "fid_Imag", 1));
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40 data.add(new Result(fids.getFFTnoise("I"), "error",1));

41 data.print(0,0);

42 }

43 }
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Appendix G: A .tnt reader

G.1 Overview

Below is a Java program that reads a set of variables from the *.tnt Tecmag file

format and places them into a TNT object. This program has been heavily updated

from the original code written by Martin Anderson.

G.1.1 TNT Class

A section of the TNT class that holds the data.

1 public class TNT

2 {

3 private double[] real; //real component of the .tnt file

4 private double[] imag; //imaginary component of the .tnt file

5 private double freq; //observation frequency of the .tnt file

6 private double fileTime; //operating system’s file creation time

7 private double phase; //tracks phase adjustments to signal

8 private double tDwell; //the dwell time

9 private boolean fft; //tracks if data in time or freq domain

10 private int[] scans; //array of points[1d, 2d, 3d, 4d]

11 private String date; //time and date of the .tnt data

12 }

G.1.2 TNTreader Class

The TNTreader class that actually reads the .tnt file.

1 import java.io.DataInputStream;

2 import java.io.File;

3 import java.io.FileInputStream;

4 import java.io.FileNotFoundException;

5 import java.io.IOException;
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6 import java.nio.ByteBuffer;

7 import java.nio.ByteOrder;

8

9 /*

10 * @author Martin Anderson / updated by Michael Malone

11 */

12 public class TNTreader

13 {

14 public static void main(String[] args)

15 {

16 TNTreader reader = new TNTreader();

17

18 TNT tnt = reader.readFile("C:/example.tnt");

19 tnt.report();

20 System.out.println(tnt.getDateD());

21 }

22 /*

23 * Given a fully qualified file path, return a TNT data object.

24 */

25 public TNT readFile(String filePath)

26 {

27 TNT tnt = new TNT();

28

29 if (filePath.indexOf(".tnt" )==-1) filePath+=".tnt";

30

31 try

32 {

33 // Create data input stream

34 DataInputStream dis = new DataInputStream(new

FileInputStream(filePath));

35

36 // skip bool

37 dis.skipBytes(16);

38

39 // Determine tecmag structure length

40 int structureLength = getLEInt(dis);

41

42 // Skip techmag structure
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43 //System.out.println("Skipping: " +

dis.skipBytes(ntnmr.getTecmagStructLen()));

44 dis.skipBytes(structureLength + 4 + 4);

45

46 // Grab data length

47 int dataLength = getLEInt(dis);

48

49 // Yank all the RI pairs

50 double[][] data = new double[dataLength/8][2];

51 for(int i=0; i<(dataLength / 8); i++)

52 {

53 data [i][0] = getLEFloat(dis);

54 data [i][1] = getLEFloat(dis);

55 }

56 tnt.setData(data);

57

58 // Shut down the input stream

59 dis.close();

60

61 //Get last Modified Date from the file information

62 File f1 = new File(filePath);

63 tnt.setFileTime(f1.lastModified());

64

65 DataInputStream disT = new DataInputStream(new

FileInputStream(filePath));

66 disT.skipBytes(20);

67 int[] scans = new int[4];

68 scans[0] = getLELong(disT);//20+4

69 scans[1] = getLELong(disT);//20+8

70 scans[2] = getLELong(disT);//20+12

71 scans[3] = getLELong(disT);//20+16

72 tnt.setScans(scans);

73

74 disT.skipBytes(36);//20+16+36 = 52

75 int scans1d = getLELong(disT);//20+16+36+4 = 20+56

76

77 disT.skipBytes(28);//20+56+28 = 20+76+8

78 tnt.setFreq(Math.round(getLEDouble(disT)*1000000));//20+76+40
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79 disT.skipBytes(156);//20+76+164+32

80 tnt.setTDwell(getLEDouble(disT));//20+76+164+64 = 324

81

82 disT.skipBytes(66);//20+76+164+128+2

83 int recGain = getLEShort(disT);//20+76+164+128+4 = 392

84

85 disT.skipBytes(492);

86 byte[] b = new byte[19];

87 disT.read(b);

88 String date = new String(b);

89 date = date.substring(0,date.lastIndexOf(’:’)+3);

90 tnt.setDate(date);

91

92 String report = " ";

93 report += "Freq: " + tnt.getFreq() + "; ";

94 report += "tD: " + tnt.getTDwell() + "; ";

95 report += "Rec Gain: " + recGain + "; ";

96 report += "Scans: " + scans1d + " x ";

97 report +=

"["+scans[0]+","+scans[1]+","+scans[2]+","+scans[3]+"]; ";

98 report += "Date: " + date + "; ";

99 report += filePath + "; ";

100 report += "File Time: " + tnt.getFileTime();

101

102 System.out.println(report);

103 }

104 catch (FileNotFoundException e)

105 {

106 e.printStackTrace();

107 System.out.println("Invalid file: " + e.getMessage());

108 }

109 catch (IOException e)

110 {

111 e.printStackTrace();

112 System.out.println("Problem reading file: " + e.getMessage());

113 }

114 return tnt;

115 }
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116

117 private int getLEInt(DataInputStream dis) throws IOException

118 {

119 return getLittleEndian(dis,4).getInt();

120 }

121 private float getLEFloat(DataInputStream dis) throws IOException

122 {

123 return getLittleEndian(dis,4).getFloat();

124 }

125 private double getLEDouble(DataInputStream dis) throws IOException

126 {

127 return getLittleEndian(dis,32).getDouble();

128 }

129 private int getLELong(DataInputStream dis) throws IOException

130 {

131 return getLittleEndian(dis,4).getInt();

132 }

133 private int getLEShort(DataInputStream dis) throws IOException

134 {

135 return getLittleEndian(dis,2).getShort();

136 }

137 private ByteBuffer getLittleEndian(DataInputStream dis, int length)

throws IOException

138 {

139 byte[] value = new byte[length];

140 dis.read(value, 0, length);

141 ByteBuffer bb = ByteBuffer.wrap(value);

142 bb.order(ByteOrder.LITTLE_ENDIAN);

143 return bb;

144 }

145 }
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