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Abstract

ON THE EFFECTS OF COLLISION AVOIDANCE ON EMERGENT SWARM BEHAV-
IOR

Christopher Arieh Taylor

George Mason University, 2020

Thesis Director: Dr. Cameron Nowzari

Swarms of autonomous agents, through their decentralized and robust nature, show

great promise as a future solution to the myriad missions of business, military, and human-

itarian relief. Swarms can be useful purely as a theoretical abstraction or in simulation, but

in many applications the swarm needs to be deployed on actual hardware platforms. The

diverse nature of mission sets creates the need for a variety of hardware platforms, each

with their own capabilities and limitations, for instance with sensing, actuation, communi-

cations, environmental disturbances, and structural robustness. In particular, the structural

robustness of the platform, or lack thereof, seems to have a great effect on the viability of

swarming behaviors where collisions might be an issue. Certain swarm behaviors have been

demonstrated on platforms where collisions between agents are harmless, but on many plat-

forms collisions are prohibited since they would damage the agents involved. The available

literature typically assumes that collisions can be avoided by adding a collision avoidance

algorithm on top of an existing swarm behavior. Through an illustrative example in our

experience replicating a particular behavior, we show that this can be difficult to achieve

since the swarm behavior can be disrupted by the collision avoidance.



Furthermore, if collisions cause irreparable damage to the agents involved, we show

that weakening the collision avoidance can also disrupt the intended swarm behavior, since

destroyed agents are no longer able to interact with the rest of the swarm and their sudden

disappearance dramatically alters the behavior of nearby agents. We introduce metrics

quantifying the level of disruption in our swarm behavior and propose a technique that

is able to assist in tuning the collision avoidance algorithm such that the goal behavior is

achieved as best as possible while collisions are avoided. We validate our results through

simulation.



Chapter 1: Introduction

1.1 Background

Swarms have been extensively studied and are an attractive choice for many applications

due to their decentralized nature and robustness against individual failures [1–3]. A common

goal with decentralized control in swarms is to achieve an emergent behavior [1, 4], where

the collective behavior of the swarm has properties that the behaviors of individual agents

lack. This is desirable when agents lack global awareness of the higher level goal or other

agents, often due to limited sensing or computation capabilities. A common goal is to be

able to replicate these emergent behaviors on physical platforms in the real world.

In applications such as computer graphics [1, 5] or optimization algorithms [6], swarms

are purely an abstraction and we are not concerned with the physical platforms they run

upon. Yet, for other new-age swarming applications, we would like to leverage these existing

behaviors validated in simulation and bring them into the real world. However, physical

platforms come with many new limitations, among them actuation constraints and their

use of physical space. For instance, in a dense swarm of ground robots, agents need to

coordinate their actions to avoid overcrowding or deadlocks [7]. With aerial platforms,

special care needs to be taken in the agents’ construction to ensure they can collide without

damage [8].

Unless overcrowding becomes a problem, these platforms not as affected by physical

space constraints because they are relatively small and slow and can collide harmlessly.

With larger, faster platforms such as the quadrotors used in DARPA’s OFFSET program [9],

this is not the case and collisions would likely severely damage the agents involved. Yet,

regardless of whether the platforms collide harmlessly or catastrophically, in many existing

works these physical limitations are ignored and agents are allowed to simply pass right
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through one another. We suspect many existing works created in simulation could have

serious issues if we attempt to replicate them on such platforms. In particular, it seems very

few works have paid any attention to simulating platforms where collisions are catastrophic.

Literature review: One might think this problem could be ignored by deploying a

collision-avoidance algorithm. Some simple approaches to collision avoidance include using

artificial potential fields where agents “repel” each other [10] or “gyroscopic” forces where

agents steer around each other and do not change their speed [11]. Later works take a more

rigorous approach and introduce more theoretically sound minimally invasive controllers

such as optimal reciprocal collision avoidance (ORCA) [12] and control barrier certificates

[13]. In both cases, agents have a primary goal in mind and select a ‘minimally invasive’

control input that will avoid collisions in a way that stays as true as possible to the intended

behavior. To validate their techniques, most works use specially constructed test scenarios

[11–13], usually involving a group of agents starting on a circle and heading to the point

directly opposite on the circle. Unfortunately, most of these works do not investigate the

effect of the collision avoidance algorithms on the original intended behavior of the swarm.

A few works combine the study of emergent swarm behavior with collision avoidance,

such as in search and coverage control problems [14,15], flocking [16], or formation control

[17]. However, in these examples, the intended behaviors already keep agents away from

each other so adding collision avoidance does not seem prohibitive.

Instead, in this work we consider a behavior where the intended behavior of the swarm

is less aligned with avoiding collisions. Examples of such behaviors include milling [18],

where agents orbit a common point in a dense group, and double milling [4, 10], where

agents rotate in opposing directions, frequently encountering each other at high relative

speeds. We believe more work is needed to understand how behaviors like these interact

with collision avoidance.

Statement of contributions: In this work we rigorously study the effects of different

collision avoidance strategies on a particular swarming algorithm proposed by Szwaykowska

et al. [10]. Under a particular set of parameters, the double-milling behavior is shown to
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emerge among the swarm of agents when collisions among agents are not modeled. We then

impose two physical constraints on the system (no collisions and limited acceleration) and

study how we can still achieve the desired behavior.

Specifically, we first introduce a metric that captures how well the agents perform the

desired milling behavior. Using this metric, we explore two different collision avoidance

techniques (potential fields and gyroscopic forces) under a very large set of parameters to

quantitatively understand how active collision avoidance disrupts the intended behavior of

the swarm. We also explore two more sophisticated collision avoidance strategies, ORCA

[12] and control barrier certificates [13], which can be found in a followup paper [19] due

to space constraints. Finally, given a particular choice of a collision avoidance strategy, we

show how to tune the parameters of the algorithm to ensure collisions among agents are

avoided while preserving the intended behavior as much as possible. Our results suggest

that a successful algorithm that can guarantee the emergence of the desired behavior and

no collisions simultaneously should be co-designed rather than combining existing swarming

algorithms with existing collision avoidance strategies.

1.2 Problem Formulation

This paper is concerned with the deployment of physical swarm systems in which collisions

between agents are catastrophic. In such scenarios, we are interested in understanding

the effect that this added constraint has on the ability of the swarm to reach an intended

globally emergent behavior. More specifically, we aim to understand the effects that various

collision avoidance algorithms have when combined with a particular swarming algorithm.

1.2.1 Individual Agent Model

We want to deploy swarms on physical swarm systems, so we focus on simple agent models

that capture the physical aspects we are most concerned with. Letting ri ∈ R2 be the

position of agent i ∈ {1, . . . , N} in a swarm of N agents, we consider double-integrator

dynamics r̈i(t) = ui(t) with the following two constraints at all times t ∈ R≥0.
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C1. Limited acceleration. Since we cannot guarantee that our desired dynamics obeys

an acceleration limit, we “clip” the acceleration based on a limit amax as

r̈i = clip (ui, amax) , (1.1)

where clip (·) caps the acceleration in the direction of u∗i ,

clip (x, a) =


x ‖x‖ < a,

a x
‖x‖ otherwise.

(1.2)

C2. No collisions. Letting r > 0 represent the our radius of each agent, agents must

obey

‖ri(t)− rj(t)‖ > 2r, (1.3)

for all i, j ∈ {1, . . . , N}. Without constraint C1, agents can increase their acceleration

arbitrarily large which is impractical for swarms operating with physical limitations in the

real world. If C2 is violated, we consider the agents “destroyed” and respawn them in a

safe location in order to keep the number of agents N fixed; see [19] for more details.

1.2.2 Desired Global Behavior: Ring State

Given the model above, we now introduce our specific desired behavior for the swarm

system. The dynamics formulation in [10] is capable of producing a few behaviors, but

we want the “ring state”, also known as double-milling, where agents self-organize to orbit

around a common point. Given the model in Eq. (1.1), the controller we replicate from [10]
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is

ui = β(v20 − ‖ṙi‖
2)ṙi + fc(ri, ṙi,Ni)

+
α

N − 1

∑
j 6=i

(rj(t− td)− ri(t)) ,
(1.4)

where u∗i is comprised of three terms (in order): keep the agent’s speed at approximately

v0 > 0 with gain β > 0, avoid nearby agents using a collision avoidance term fc, and attract

toward the delayed position of other agents td seconds in the past, where the strength of the

attraction is weighted by α. The original formation in [10] uses a fixed communication graph

for the delayed channel and assumes agents can only sense a subset of their neighbors, but

in this work we assume all-to-all communication is available to help the ring state emerge

as easily as possible, as our goal is to understand the effects that collision avoidance has on

the ideal behavior.

The neighbor set Ni is agent i’s local neighbors and is based on a circular sensing area

with radius `r defined by

Ni = {(rj , ṙj) | j ∈ {1, . . . , N}}\{i},

‖ri − rj‖ ≤ `r}.
(1.5)

It is important to note how these are used in Eq. (1.4): if an agent needs the state of one of

its local neighbors in Ni it is received with no delay, but sensing far-away neighbors incurs

a delay of td seconds. This simulates a situation where agents can see their immediate

neighbors and receive information on far-away agents through a separate channel.

If we select suitable parameters for td, v0, β, α and ignore the collision avoidance term fc

and constraint C2, a rotating ring emerges as shown in figure Fig. 1.1a. By ignoring C2, the

agents simply move through one another and the desired swarm behavior emerges without

problems.
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λ ≈ 0.8

(a) Collisions and col-
lision avoidance dis-
abled.

λ = 0

(b) Collisions and colli-
sion avoidance enabled
and cr = 0.15 is too
low.

λ ≈ 0.6

(c) Collisions and colli-
sion avoidance enabled
and cr = 0.3 is suffi-
cient.

λ = 0

(d) Collisions and colli-
sion avoidance enabled
but cr = 4 is too
strong.

Figure 1.1: Positions and velocities of 12 agents for different parameters of fc. The other
parameters are held constant at α = 0.001, td = 2.5, β = 1, v0 = 0.12, `r = 1, amax = 0.6, r =
0.4. Also shown for each is the orderliness metric λ.

However, since we are interested in ensuring collisions do not occur, we must consider

various collision avoidance strategies fc and their effect on the intended behavior.
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Chapter 2: Methodology

With our problem defined, we must first choose different types of collision avoidance strate-

gies fc for the agents to employ. In trying to understand the effects these have on the

desired emergent behavior, we note that we are essentially attempting to capture a qualita-

tive property. Figure 1.1 clearly shows that the question of whether the intended behavior

successfully emerged has a non-binary answer. Thus, after discussing different collision

avoidance mechanisms in Section 2.1, we propose a quantifiable metric in Section 2.2 to

enable comparison between various states to determine which produces the desired emer-

gent behavior ‘better’. Finally, we utilize these tools in Section 2.3 to investigate how well

collision avoidance strategies can be tuned to achieve the desired emergent behavior while

satisfying physical constraints C1 and C2.

2.1 Collision Avoidance

We compare two collision avoidance schemes to be used for the anti-crash force fc in

Eq. (1.4). The first choice is a potential-fields scheme presented with [10], based on the

gradient of the potential function

fp(ri, ṙi,Ni) = ∇ri

∑
(rj ,ṙj)∈Ni

cr exp

(
−2
‖ri − rj‖

`r

)
. (2.1)

The second is a “gyroscopic” force presented in [11]. This produces a force orthogonal

to the agents velocity that “steers” the agent without changing its speed. It can be written
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in closed-form as

fg(ri, ṙi,Ni) =

R90◦
ṙi
‖ṙi‖

sgnz
(
(r∗j − ri)× ṙi

)
U(
∥∥ri − r∗j

∥∥),

(2.2)

where the cross product is the 2D analog, i.e. u× v = uxvy − uyvx, R90◦ is a 90◦ rotation

matrix, (r∗j , ṙ
∗
j ) = arg min(rj ,ṙj)∈Ni

‖ri − rj‖ is the nearest agent’s state, and

sgnz(x) =


1 x = 0

sgn(x) otherwise

(2.3)

is the sign function modified such that the agent is forced to steer left during a perfect head-

on collision to prevent a situation where fg = 0. The function U(d) represents a potential

controlling the magnitude of the steering force. As [11] specifies, the magnitude U(d) is

arbitrary so we choose

U(d) = 2
cr
`r

exp

(
−2

d

`r

)
(2.4)

such that the force magnitude is exactly the same as the method of potential fields Eq. (2.1)

with one other agent.

Fig. 1.1 explores what happens with the potential-fields collision avoidance approach fc =

fp as we change just the strength parameter cr while leaving all others parameters fixed. We

are interested in swarming algorithms that are able to guarantee both the emergence of the

desired behavior while actively avoiding collisions. Unfortunately, Fig. 1.1 also demonstrates

that we are interested in understanding a qualitative property of the entire swarm. This

motivates the need to define a more precise metric.
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2.2 Measuring Emergent Behavior Quality

We measure the quality of the emergent behavior both through the amount of collisions and

through specialized metrics to quantify how closely the behavior matches the desired ring

formation. Many other works define metrics to quantify emergent behavior, for instance

[20] uses polarity and normalized angular momentum, to quantify a rotating mill similar to

our ring state, [21] uses group polarization to quantify alignment in fish schooling, and [22]

uses a correlation function to quantify alignment in starling flocks. Similar to those in [20],

we introduce two metrics to quantify the quality of the emerged behavior: the “fatness” Φ,

which characterizes how thick the ring is relative to its inner diameter, and “tangentness”

τ , the degree to which agents’ velocities are aligned tangentially to the ring.

Formally, letting µ be the average position of all agents, i.e. µ = 1
N

∑N
i=1 ri and rmin

and rmax be the minimum and maximum distance of the formation to µ, respectively,

rmin = min
i∈{1,...,N}

‖ri − µ‖ , rmax = max
i∈{1,...,N}

‖ri − µ‖ ,

fatness and tangentness are defined as

Φ(t) = 1− r2min(t)

r2max(t)
, τ(t) =

1

N

N∑
i=1

∣∣∣∣ ri − µ
‖ri − µ‖

· ṙi
‖ṙi‖

∣∣∣∣. (2.5)

In other words, the fatness Φ is the proportion of empty space available in the center of the

formation, where Φ = 0 implies a perfectly thin ring and Φ = 1 implies an entirely filled-

in disc. The tangentness τ measures the average cosine of the angle between an agent’s

velocity vector and the normal vector to the circle centered at µ, where τ = 0 represents

perfect alignment and τ = 1 represents maximum disorder. The tangentness is similar

to the normalized angular momentum measure in [20] except that it ignores each agent’s

absolute speed and only considers alignment.

The fatness Φ and tangentness τ metrics are defined for one instant in time. Since it is
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more useful to consider the behavior of the swarm in steady-state, we define

Φ(t) =
1

T

∫ t

t−T
Φ(u)du, τ(t) =

1

T

∫ t

t−T
τ(u)du, (2.6)

where T is the interval over which an average is recorded. We choose T = 20, 000 in our

tests.

We additionally define a single orderliness metric λ ∈ [0, 1] that combines the steady-

state fatness Φ and steady-state tangentness τ of the system into one number as λ = 1 −

max(Φ, τ), where λ = 1 represents a perfect ring and λ = 0 represents maximum disorder.

Fig. 1.1 shows the approximate values of λ under each formation.

To quantify crashes, we consider the crash rate in collisions per second since we are

interested in the steady-state behavior of the swarm independently of how long the swarm

has been operational. Since we consider collisions to be catastrophic, it does not makes sense

to simply count how many times agents violate constraint C2 with no further consequences,

which makes more sense for ‘soft’ agents like fish [21]. To capture this, we remove any agents

that violate constraint C2 from their current location and ‘respawn’ them at a safe distance

away from the rest of the swarm. This is necessary since we are interested in steady-state

behavior of the swarm for a specific number of agents N and allowing N to decrease will

lead to unfairly biased analysis.

Equipped with our orderliness metric λ and crash rate metric, we can now study our

problem in a more quantitative way. Figs. 3.2 and 3.3 explore the results as we vary the

sizes of the agents r, the collision avoidance gain cr, and the sensing range `r. The white

curves are explained in Section 2.3.

Figs. 3.2 and 3.3 seem to suggest that there exists a hard boundary in the parameter

space separating a successfully emerged behavior and one that fails due to too many col-

lisions. The edge of this boundary just before agents begin colliding seems to provide the

best behavior quality λ. This suggests that if our goal is to utilize swarming algorithms

with various collision avoidance strategies, we would like to operate right at this boundary.
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We want to find this boundary in a more methodical way than sampling the parameter

space.

2.3 Finding Safe Collision Avoidance Parameters

Here we want to find the boundary in parameter space that we identify in Section 2.2.

Specifically, given all the parameters except one, we wish to find the value of the missing

parameter that maximizes the behavior quality λ, which as a side effect minimizes crashes.

We conjecture based on Figs. 3.2 and 3.3 that the best parameters are those which are

on the edge of safety : just barely strong enough to avoid a crash but not too strong to

interfere in the behavior. Rather than analyze the entire swarm, we take the myopic view

of one agent and identify conditions under which it can guarantee no collisions with a fixed

number of other agents.

We consider our test scenario to be a fixed number of agents avoiding each other while

in each other’s sensing radii. We find that while agents are closer avoiding each other the

anti-crash term fc tends to be much stronger than the other terms in Eq. (1.4). Thus, as

an approximation we represent the agent dynamics as

r̈i = clip (fc(ri, ṙi,Ni), amax) . (2.7)

Let p be the set of parameters used to define fc, p = (cr, `r, amax, v0, r). We consider a

selection of parameters p to be on the edge of safety if the closest distance agents can get

under our test scenario is exactly 2r.

Safety with two agents

For this case, our starting point is any state where two agents have just entered each

other’s sensing radii (at a distance `r away from each other) traveling at a speed up to v0.

For analysis purposes and with a slight abuse of notation, we redefine the states to be in

coordinates relative to agent 1 rather than a fixed frame. We introduce the reachable set
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S2(p), the set of all possible relative positions two agents can be in while avoiding a crash

using the dynamics of Eq. (2.7) with parameters p, which is

S2(p) = {(r1(t), ṙ1(t), r2(t), ṙ2(t)) ∈ R8 |

r1(0) = 0, r2(0) = (`r, 0),

‖ṙ2(0)‖ ≤ v0, ‖ṙ1(0)‖ ≤ v0,

Eq. (2.7) holds, t ≥ 0},

(2.8)

where `r, v0 come from the parameters p. Note that this is the set of positions relative

to the starting state of agent 1, but a rigid transformation applied to all coordinates can

transform this scenario into anything where ‖r1 − r2‖ = `r, r1, r2 ∈ R2. We define the

“headroom” h2(p) as the available space agents have in the worst case

h2(p) = min
r1,ṙ1,r2,ṙ2∈S2(p)

‖r2 − r1‖ − 2r. (2.9)

Thus, the parameters on the edge of safety that guarantee no collisions with two agents

are p = arg minp h2(p) s.t. h2(p) > 0. We conjecture that the solution for h2(p) is a

head-on collision at full speed, that is, we consider only the subset of the reachable set S2

where ṙ1(0) = (v0, 0) and ṙ2(0) = (−v0, 0). This simplifies finding the solution to Eq. (2.9)

without running any optimization routines.

Safety with three agents

Clearly there will be more than two agents coming in contact with each other so we extend

the logic of the previous discussion to three agents. Similar to before, we consider the

reachable set for three agents who are avoiding each other using the dynamics of Eq. (2.7).

This scenario, specifically, consists of:

1. Two agents come within `r of one another and begin avoiding each other, i.e., their
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states are in S2.

2. A third agent enters at the edge of either of the first two agents’ sensing radius.

Using this setup we define S3 as

S3(p) =

{(r1(t),ṙ1(t), . . . , r3(t), ṙ3(t) ∈ R12 |

r1(0), ṙ1(0), r2(0), ṙ2(0) ∈ S2(p),

min(‖r3(0)− r1(0)‖ , ‖r3(0)− r2(0)‖) = `r,

‖ṙ3(0)‖ ≤ v0, ‖ri − rj‖ ≤ `r ∀i, j ∈ {1, 2, 3},

Eq. (2.7) holds, t ≥ 0}.

(2.10)

The headroom h3 for three agents is defined similar to h2,

h3(p) = min
i 6=j
‖ri − rj‖ − 2r

subj. to r1, ṙ1, . . . , r3, ṙ3 ∈ S3(p).

(2.11)

We find the solution to the three agent case h3 using two algorithms: simulated annealing

[23] and differential evolution [24] included with the Scipy package [25], and verify that they

both arrive at the same answer. For all choices of p that avoid a crash, the solution we find

for the three agent worst case h3 can be described as

1. Agent 1 “boosts” the speed of agent 2 past v0

2. Agent 2 undergoes a head-on collision with agent 3.
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Thus, to calculate h3, we first calculate vboost, the maximum speed achieved by agent 2

after it comes in contact with agent 1. vboost can be found by solving

vboost = max
∠ṙ2(0)∈[0,2π),t≥0

‖r2(t)‖

subj. to r1(0) = 0, ṙ1(0) = (v0, 0),

r2(0) = (`r, 0), ‖ṙ2(0)‖ = v0,

‖r1(t)− r2(t)‖ ≤ `r, Eq. (2.7) holds.

(2.12)

We find ∠ṙ2(0) is around 90◦ which allows r1 to ‘push’ r2 and increase its speed. After

finding vboost, the headroom h3 is similar to h2, where the worst case is a head-on collision

with ‖ṙ2‖ = vboost and ‖ṙ3‖ = v0, thus

h3(p) = min
t≥0
‖r3(t)− r2(t)‖ − 2r

subj. to r2(0) = 0, ṙ2(0) = (vboost, 0),

r3(0) = (`r, 0), ṙ3(0) = (−v0, 0),

Eq. (2.7) holds.

(2.13)

Having defined the headroom h2, h3 for 2 and 3 agents respectively, we can now use them

to ‘tune’ the collision avoidance and find parameters which are on the edge of safety, that

is h2 = 0 or h3 = 0. To do this, we assume that all of the collision avoidance parameters

p are given except one and solve hn(p) = 0 as a numerical root-finding problem, assuming

n = 2, 3. Based on our observations from Figs. 3.2 and 3.3 we believe this will give us the

optimum point between emergence and safety. While our headroom approach hn works

empirically when considering just n = 2, 3, the complexity of this approach for n > 3

motivates the need to co-design a highly specialized collision avoidance algorithm for this
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behavior instead of tuning a generic algorithm. Additionally, guaranteeing safety is difficult

due to our simplifying assumptions made in formulating Eq. (2.7). We leave guarantees of

safety as well as consideration of hn for n > 3 to future work.
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Chapter 3: Results

To validate our theory, we explore many different combinations of the parameters and the

choice of collision avoidance to see how the convergence quality λ is affected. For each

particular choice of parameters we initialize all agents on a grid formation with a spacing of

max(0.1, `r, 5r), set their initial speeds to v0, and set their headings randomly. As mentioned

in Section 2.2, we respawn agents that collide in order to ensure that collisions are actually

catastrophic and that the number of agents N remains fixed.

3.1 Comparing Collision Avoidance Algorithms

Through our convergence metric λ, the potential-fields method [10] and the gyroscopic

method [11] are compared. To keep the comparison unbiased, we allow each collision avoid-

ance method to take on a range of repulsion strength cr between 0 and 4. We then select

the value of cr that gives the best convergence quality λ. Fig. 3.1 shows λ and the crash rate

for both collision avoidance methods as a function of the number of agents, where the other

parameters are fixed at α = 0.0005, td = 2.5, β = 1, v0 = 0.12, `r = 0.6, amax = 0.6, r = 0.1.

It is clear that the potential fields strategy is better for this set of parameters.

3.2 Choosing Collision Avoidance Parameters

We show in Section 2.3 how to choose parameters for the potential fields strategy which are

on the ‘edge of safety’, that is just barely strong enough to avoid collisions. Fig. 3.2 shows

a plot of the quality λ and crash rate as a function of two parameters: the agent size r and

force multiplier cr, with the other parameters held fixed at N = 20, α = 0.001, td = 2.5, β =

1, `r = 0.5, amax = 0.6, v0 = 0.12. Additionally, Fig. 3.2 shows two curves defined by the
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Figure 3.1: A comparison how each collision avoidance strategy scales with the number of
agents N . Left: the convergence quality λ. Right: the crash rate.
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Figure 3.2: Left: The convergence quality λ. Right: the crash rate as a function of r and
cr. The white lines show safe values of cr as a function of r, where safety is defined by
h2(p) = 0 and h3(p) = 0.
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Figure 3.3: A similar plot to Fig. 3.2 except cr = 0.2 and `r is varied.

value of cr as a function of r where the headroom h2 = 0 and h3 = 0. Our procedure is

able to predict the boundary between λ = 0 and λ > 0 quite well, with h3 = 0 giving more

conservative parameters that are almost entirely crash-free except for extreme values of r.

Fig. 3.3 shows similar results if we predict the boundary value of `r instead of cr.

It is clear from our results that there is a strong inter-dependency between the choice of

collision avoidance and the emergent behavior. Parameters which are ‘below’ the boundary

line approximately defined by h2 = 0 seem to produce no useful behavior due to too

many collisions, as can be seen by the crash rate plot on the right side of Figs. 3.2 and 3.3.

Parameters which are just ‘above’ the boundary line seem to produce the best results,

i.e., the best quality λ, but as we increase the aggressiveness of the avoidance the quality

gradually drops away to λ = 0 and there is no meaningful emerged behavior as well.

3.3 Conclusion

Although research on swarming algorithms and collision avoidance have received significant

amounts of attention independently from one another, this paper shows why further research
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is necessary in applications where collisions cannot occur. We support our claim through an

illustrative example of a particular behavior that is disrupted by different collision avoid-

ance strategies unless great care is taken to tune the collision avoidance parameters. We

extend our results in a followup work [19] where we explore two more sophisticated colli-

sion avoidance strategies: ORCA [26] and control barrier certificates [13]. This paper thus

identifies the need for novel controllers that are co-designed to account for both collision

avoidance and the globally emergent behavior simultaneously.

We also show that there is a methodical technique in choosing design parameters which

maximimize convergence quality yet also avoid collisions and we demonstrate its efficacy

empirically. We propose that the best parameters are those which are on the edge of safety,

or intuitively as weak as possible while being strong enough to avoid collisions.

For the future, we intend to develop novel controllers that can achieve the behavior men-

tioned here while simultaneously ensuring collision avoidance. We intend to have agents

sense each other locally as opposed to the infinite range communication assumption de-

scribed earlier. Finally, we plan to test additional swarm behaviors to explore how our

results generalize, including to three dimensional cases.
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