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ABSTRACT

SIMULATION-BASED STOCHASTIC OPTIMIZATION ON DISCRETE DOMAINS:
INTEGRATING OPTIMAL COMPUTING AND RESPONSE SURFACES

Mark W. Brantley, PhD
George Mason University, 2011

Dissertation Director: Dr. Chun-Hung Chen, Professor

Simulation can be a very powerful tool to help decision making in many applications but
exploring multiple courses of actions can be time consuming. Numerous ranking &
selection (R&S) procedures have been developed to enhance the simulation efficiency of
finding the best design. This dissertation explores the potential of further enhancing R&S
efficiency by incorporating simulation information from across the domain into a
regression metamodel. Under some common conditions in most regression-based
approaches, our new method provides approximately optimal rules that determine the
design locations to conduct simulation runs and the number of samples allocated to each
design location for problems with only one partition. In addition to utilizing concepts
from the design of experiments (DOE) literature, it introduces the probability of correct
selection (PCS) optimality criterion that underpins our new R&S method to the DOE
literature. This dissertation then extends the method by incorporating simulation

information from across a partitioned domain into a regression based metamodel. Our



new method provides approximately optimal rules for between and within partitions that
determine the number of samples allocated to each design location. Numerical
experiments demonstrate that our new approaches for one partition domains and for
multiple partition domains can dramatically enhance efficiency over existing efficient

R&S methods.



CHAPTER 1 INTRODUCTION

Simulation is a popular tool for designing large, complex, stochastic engineering
systems, since closed form analytical solutions generally do not exist for such problems.
Simulation allows one to accurately specify a system through the use of logically
complex, and often non-algebraic, variables and constraints. Detailed dynamics of
complex, stochastic systems can therefore be modeled. This capability complements the
inherent limitation of traditional optimization. Semiconductor manufacturing system is a
good example which is characterized by complex and reentrant production processes over
many heterogeneous machine groups with stringent performance requirements.
Semiconductor manufacturing faces stringent challenges of volatile product demands,
very short time to market, complex but fast evolving process technology, sky-rocketing
capital investment and highly cost-sensitive competition (Hsieh et al. 2001, 2007). The
health care arena provides another example. Simulations provide the ability to analyze
the complex decisions associated with patient flow and ambulance planning (Henderson
and Mason 2005 and Zeto et al. 2005). As a final example, simulations can help
determine how to procure military equipment. These simulations can provide a means to
investigate the trade-offs of performance, cost, and reliability given environmental and

operating scenarios (Brantley et al 2002).



Although simulation can help design good systems for efficient operations for
such complex systems as the examples provided above, the added flexibility of
simulation often creates models that are computationally intractable. Simulation
optimization is a method to find a design consisting of a combination of input decision
variable values of a simulated system that optimizes a particular output performance
measure or multiple performance measures of the system. For instance, using the
ambulance planning example from above, a decision maker may want to determine the
optimal locations to station a fixed number of ambulances in order to minimize the
average emergency response time. Figure 1 below provides general steps involved in
conducting a simulation study (based upon Harrell et al (1995), Law and Kelton (2000),
and Banks et al. (2001) for steps in constructing simulation models in particular and
Giordano and Weir (1985) and Clemen (1996) for steps in constructing models in
general). Note that while this figure is presented in a sequential manner with only one
feedback loop, a simulation study may have feedback loops between all stages shown in
the figure (Law and Kelton 2000). Simulation optimization is associated with the steps

from determining the experimental design to selecting the best design.



Formulate Problem
and Determine

1

1

1

! Experimental
! Objectives

L

»
Design
_______ .l________l
i

N ! . .
Build Simulation | i i
Model and Gather i Conduct ! i
1 1 1
1 1 1

Simulation Runs

| .

1

i Documentand |

1

| | Analyze Simulation ! Implement :
Output H Decision !

1
1
]
]
]
! Input Data
[

Simulation Model

1
1
E Verify and Validate
i
1

Figure 1: General Simulation Study Steps

The level of complexity associated with a simulation optimization problem is
dependent upon the nature of the input decision variables, the nature of the underlying
function associated with the output performance measure of the system, and the resources
available to solve the problem. For example, the input decision variables may be discrete
or continuous; and one dimensional or multi-dimensional. The underlying function
associated with the output decision variables may be deterministic or stochastic; discrete
or continuous; and linear or nonlinear. The resource considerations may include the time
available or the size of the computing budget dedicated to solving the problem as well as
the number of computer platforms available. This dissertation investigates stochastic
problems on a discrete domain with a finite simulation budget consisting of runs
conducted sequentially on a single computer. To assess the performance at a single

design location on the domain, the uncertainty in the system performance measure
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requires multiple runs to obtain a good estimate of the performance measure. Thus, for a
simulation that may require hours or days to conduct a single iteration, the simulation
time required to conduct multiple runs for a large number of design locations may be cost
prohibitive.

The problem we consider is that of selecting the best design from among the finite
number of choices. Ranking and Selection (R&S) procedures are statistical methods
specifically developed to select the best design or a subset that contains the best design
from a relatively small set of k competing design alternatives (Goldsman and Nelson
1994). Dudewicz and Dalal (1975) and Rinott (1978) developed two-stage procedures for
selecting the best design or a design that is very close to the best system. Many
researchers have extended this idea to more general ranking-and-selection settings in
conjunction with new developments (e.g., Bechhofer, Santner, and Goldsman 1995).

To improve efficiency for R&S, several approaches have been explored for
problems of selecting a single best design. Intuitively, to ensure a high PCS, a larger
portion of the computing budget should be allocated to those designs that are critical in
the process of identifying the best design. A key consequence is the use of both the
means and the variances in the allocation procedures, rather than just the variances, as in
Dudewicz and Dalal (1975) and Rinott (1978). Among examples of such approaches, the
Optimal Computing Budget Allocation (OCBA) approach by Chen et al. (2000, 2008) is
the most relevant to this dissertation. OCBA maximizes a simple heuristic approximation
of the PCS. The approach by Chick and Inoue (2001ab) estimates the PCS with Bayesian

posterior distributions and allocates further samples using decision-theory tools to



maximize the expected value of information in those samples. In a similar myopic effort,
Frazier et al. (2008) develop the knowledge gradient approach that uses independent
multivariate normal priors to solve Bayesian R&S problems and then extend the method
for problems that assume a correlated variance structure between each design (Frazier et
al., 2009). The procedure by Kim and Nelson (2006) allocates samples in order to
provide a guaranteed lower bound for the frequentist PCS integrated with ideas of early
screening. Goldsman et al. (2005) and Fu et al. (2005) discuss the general concepts of
several more approaches while Branke et al. (2005, 2007) provide a nice overview and an
extensive comparison for some of the aforementioned selection procedures.

This dissertation takes a new approach to further improve the efficiency for R&S
by incorporating information from neighboring designs or information from estimates of
the underlying function generating the data. In that sense, it is related to the Bayesian
global optimization methods that sequentially search for design points in order to
efficiently find the optimal values of continuous functions. Some of these methods take
individual or a small number of samples at locations in order to build a metamodel across
the domain. For example, see Huang et al. (2006) and Villemonteix et al. (2009) for using
Kriging interpolation to solve general global optimization problems and van Beers and
Kleijnen (2003) for applying Kriging interpolation to a stochastic simulation setting.
Other methods assume varying degrees of structure to the problem such as correlated
variance terms. Similar to the previously mentioned R&S method by Frazier et al. (2009),
Calvin and Zilinskas (2005) extend the work of Kushner (1964) in order to use Wiener

process priors to address stochastic global optimization problems. Our approach is



developed for problems where we can assume an approximately quadratic form of the
underlying structure or portions of the underlying structure so that we can use DOE to
capture that information.

DOE is a commonly used approach for gathering information when variation is
present, and can be categorized into three branches (Melas 2006). The first DOE branch
is based upon combinatorial principles such as Latin squares. Sanchez (2005) provides an
overview of this method for simulation experiments and provides a list of types of
experimental designs. Chen and Cheng (2006ab) use this approach to minimize the
variance of estimated local stationary points in order to construct a ridge path across the
domain. The second DOE branch is the response surface methodology (RSM). This
method constructs a metamodel using a regression equation and finds the optimal value
using a local search method, typically based upon the gradient of the estimated function
(cf. Neddermeijer et al. 2000). We will primarily use concepts from the third DOE branch
called optimal experimental design that determines design locations and allocates
experimental samples according to specific optimality criteria. Federov and Muller
(1997), Cheng, Melas, and Pepelyshev (2001), and Melas, Pepelyshev, and Cheng (2003)
develop optimal designs for estimating the extreme point in quadratic regression. From a
simulation perspective, Barton (2005) in his discussion of forward-inverse metamodels
suggests that optimal experimental designs offer great opportunities for use in simulation
optimization but that past research has only focused upon leveraging the D-optimality
criterion. Cheng and Kleijnen (1999) introduce the concept of applying the concepts of

DOE to simulation optimization and develop a criterion that provides the best fitting



polynomial for queuing models. Lamb and Cheng (2002) extend this method for a
generalized regression metamodel and derive an optimal allocation for the goodness of fit
criterion.

The method proposed here, called optimal simulation design (OSD), takes an
approach that is different than most R&S methods by incorporating information from
across the domain into a regression equation. Unlike traditional R&S methods, this
regression based approach requires simulation of only a subset of the alternative design
locations and so the simulation efficiency can be dramatically enhanced. To efficiently
utilize the simulation budget, we want to determine i) which designs should be selected
for simulation; ii) the number of simulation runs for those selected designs. The goal is to
maximize the probability of correctly selecting the best design (PCS). To our best
knowledge, none of the DOE literature has addressed the first question directly for the
PCS criterion. While the second part is similar to some R&S methods such as OCBA, the
problem is much more complex because of the use of a regression metamodel. This
dissertation develops an OSD method to address both questions. Numerical testing shows
that the use of regression metamodel can indeed dramatically enhance simulation
efficiency, even compared with some existing efficient R&S methods such as OCBA. As
compared with the use of regression metamodels, the OSD methods offer a further
improvement over not only naive response surface methods (by 50~70% reduction) but
also the well known D-optimality approach in DOE literature (by another 22%~28%

reduction).



While the use of a regression metamodel can dramatically enhance efficiency, the
OSD also inherits some typical assumptions from most DOE approaches. It is assumed
that there is an underlying quadratic function for the means and the simulation noise is
homogeneous across the domain of interest. Such assumptions are common in some of
the DOE literature as well as when applying an iterative search method (e.g., Newton’s
method in nonlinear programming) and focusing on a small local area of the search space
in each iteration. After solving our problem for just one partition across the entire
domain, this dissertation then expands the use of OSD by determining approximately
optimal allocations and support points for a domain that has been partitioned such that the
underlying function for each partition is approximately quadratic.

While enhancing R&S efficiency by incorporating simulation information from
across the domain into a regression metamodel has been explored in previous literature,
the contributions of this dissertation are fourfold. First, we develop approximately
optimal rules that determine the design locations to conduct simulation runs and the
number of samples allocated to each design location for problems on a single partition.
Numerical examples reinforce the derived results. Secondly, we advance the DOE
literature by considering a new criterion -- PCS -- and offering an optimal sampling
strategy for this new criterion. This dissertation then extends the method by incorporating
simulation information from across a partitioned domain into a regression based
metamodel. In doing so, we thirdly develop a framework to integrate OSD with
partitioning methods for general simulation optimization problems where we can assume

the OSD assumptions hold for each partition. Given design locations on a partitioned



domain, we want to utilize the simulation budget in a most efficient way by determining
the number of simulation runs allocated between partitions and also for the design
locations within each partition. Finally, we provide a heuristic approximation of the PCS
that performs well in numerical testing. Our new method provides approximately optimal
rules for between and within partitions that determine the number of samples allocated to
each design location.

The rest of the dissertation is organized as follows. Chapter 2 introduces the
simulation optimization problem setting, the Bayesian regression framework, and then
shows we can reduce the number of comparisons in our problem based upon our problem
assumptions. Chapter 3 provides the development of the OSD method and provides the
results of numerical experiments comparing the new OSD method and other methods.
Chapter 4 extends the OSD method for applications on partitioned domains and then also
provides results from numerical experiments using the new partitioning OSD (POSD)
method and other methods. Finally, Chapter 5 provides the conclusions and suggestions

for future work using the concepts introduced here.



CHAPTER 2 PROBLEM SETTING

2.1.  Problem Statement

This dissertation explores a problem with the pri-ncipal goal of selecting the best
of k alternative design locations in a one-dimensional space. Without loss of generality,
we consider the minimization problem shown below where the “best” design location is

the one with the smallest expected performance measure.
miny(x) == E[f (x)]; X, €D, X, %,]. (1)

It is important to note that many simulation optimization papers refer to the alternatives
or configurations under consideration as “designs”. We adopt a slightly different
convention. We consider the case of simulation output that is produced by an unknown
function of one variable at k design locations where x;, <x,,,, i=1,...,k. Therefore, we
will refer to the alternatives under consideration as “design locations” to reflect that there
is a cardinal relationship between the alternatives.

In this chapter, we consider that the expectation of the unknown underlying

function is quadratic or approximately quadratic in nature on the prescribed domain, i.e.,

y(xi) = ;Bo +:81Xi + ﬁzxiz- (2)

10



However, the parameters g are unknown. We consider a common case where
y(x;) must be estimated via simulation with noise and that the simulation output f(x.)
is independent from replication to replication such that, for replication j,
f(x)=y(x)+¢&;; i=1....k, where &, ~N(0,0°). (3)

The parameters g are unknown so y(x;) are also unknown. However, we can

find an estimated expected performance measure at x., that we define as J(x;), by using

a least squares estimate of the form shown in (4) below where ﬁo, ,Bl, and ,32 are the

least squares parameter estimates for the corresponding parameters associated with the

constant, linear, and quadratic terms in (2).
9(Xi) = :Bo + ﬂlxi + :Bzxi2 (4)
For ease of notation, we will define S=[8, B, A,l.

In order to obtain the least squares parameter estimates, we take samples on any

choice of x; (on at least three design locations to avoid a singular solution). We assume

that these x; are given beforehand and we can only take samples from these points. We
use a matrix notation for linear regression consistent with those used Draper and Smith
(1998) and Neter, et al. (1996). Given a total of n samples, we define F asthe n
dimensional vector containing the replication output measures f(x,) and X asthe nx3
matrix composed of rows consisting of [1 X, x?] with each row corresponding to its
respective entry of f(x;) inF . Using the matrix notation and a superscript t to indicate
the transpose of a matrix and then following an approach commonly shown in regression

11



texts, we determine the least squares estimate for the parameters £ which minimize the

sum of the squares of the error terms @ = (F — XB3)' (F — XB).
Simplifying, we obtain the equation below.

w=F'F-28X'F - gX'XB

Differentiating we obtain

90 _ ' E_X'XB.
op

This leads to the normal equation of:
X'XB=X'F.
In the normal equation, the matrix X ‘X is called the information matrix for 3. Since we

are using a quadratic model,

N Dx DX
XX =1 x Doxt D%
S Y T

Solving the normal equations, we obtain the least squares estimate for the parameters as
shown below:

B=(X'X)X'F.

Since the assumptions associated with (2) and (3) satisfy the Gauss-Markov conditions,
these parameter estimates that minimize the sum of the squared residuals are unbiased

and have the minimum variance for all unbiased linear estimators (Draper and Smith,

1998).
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Given this model defined by (2) and (3), the type of optimality criteria used will
determine the way that we allocate the simulation runs. There are numerous optimality
criteria that can be imposed — typically identified by a particular letter or combination of
letters. The most basic criterion is that of D-optimality which minimizes the variance of

the regression parameters. Mathematically, this equates to an allocation scheme being D-

optimal if it maximizes the value of |X ‘X |. Other examples include the G-optimality

criterion that minimizes the maximum of the standardized variances over the domain, the
c-optimality criterion that minimizes a linear combination of the parameters c¢'f, and
DS-optimality that minimizes the variance of a subset of the regression parameters
(Atkinson and Donev, 1998). This framework is similar to the criteria used by the various
R&S methods described in Chapter 1.

Our problem is different from all existing DOE optimality criteria and R&S
methods. We aim to select the design location associated with the smallest mean
performance measure from among the k design locations within the constraint of a total
computing budget with only T simulation replications. Given the least squares estimates
for the parameters, we can use (4) to estimate the expected performance measure at each
design location. We designate the design location with the smallest least squares estimate

as x, sothat ¥(x,)=minJ(x;). Given the uncertainty of the estimate of the underlying

function, x, is a random variable that is dependent upon the size of the computing budget

and the allocations to each design location. We define Correct Selection as the event

where x, is indeed the best location and we define N, as the number of simulation

13



replications conducted at design location x. . Since the simulation is expensive and the
computing budget is restricted, we seek to develop an allocation rule for each N, in order
to provide as much information as possible for the identification of the best design
location. Our goal then is to determine the optimal allocations to the design locations that
maximize the probability that we correctly select the best design (PCS). This OSD
problem is reflected in (5) below.

max PCS =P{y(x,) < y(x,)Vi}
Np,...,Ng (5)
s.t. N, +N, +---+N, =T

The constraint N, + N, +---+ N, =T denotes the total computational cost and implicitly

assumes that the simulation execution times per sample are constant across the domain.
The nature of this problem makes it extremely difficult to solve. As per (3), to

understand the underlying function y(x.), we must conduct simulation runs to estimate
f(x;), which is a measure of the system performance. This is compounded by the fact
that f(x.) isa function of the random variable ¢. To even assess the performance at one

point on the domain, the uncertainty in the system performance measure requires multiple
runs to obtain good approximations of the performance measure. Since the optimal
allocation is dependent upon the uncertainty of the parameters and the random variable

X, , We can only estimate the PCS even after exhausting the total simulation budget T .
Incorporating the information from the underlying function adds an additional level of

complexity to the derivation of the optimal allocations; however, it is this concept that we
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aim to exploit in order to provide a significant improvement in the ability to maximize

PCS.

2.2. A Bayesian Regression Framework
In order to solve the problem in (5), we must obtain estimates for the parameters

S . Assuming that the conditional distribution of the simulation output vector F is a

multivariate normal distribution with mean X/ and a covariance matrix oI where | is

an identity matrix, we can express the conditional probability of the simulation run output
as shown in (6) below.

-1

20

p(F Iﬂ,62)=(2ﬁ02)‘”’zexp[ (F—Xﬁ)t(F—Xﬂ)}- (6)

For ease of derivation, we assume that o is known. Degroot (1970), Law and Kelton

(2000), and Chen and Lee (2010) discuss other approaches for when o is not known.
Without loss of generality, in Chapter 3, we find an approximate solution to our budget
allocation problem that does not depend upon the value of o and numerical experiments
for our method developed in Chapter 4 demonstrate that the method performs well even
when using an estimate of the variance.

Due to the ease of the derivation, we will proceed with a Bayesian regression
framework where the parameters £ are assumed to be unknown and are treated as

random variables. We aim to find the posterior distribution of £ as the simulation

replications are conducted and use this distribution to update the posterior distribution of
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the performance measures for each design location. We can then perform the
comparisons with the performance measure at design location x, as expressed in (5).

We begin by noting that the conditional probability expressed in (6) can be

decomposed as shown in (7) below.

2 p(ﬂ1F1o-2) 1 p(ﬂ’F!O-Z)
Flp.0%) = - . 7
EL ) = so) ~ piBloT) pe?) 0

In a similar manner, given a set of n initial simulation runs with the output contained in

vector F , the posterior distribution of £ can be expressed as below.

_P@B.FooY)_ 1 p(BF.0%)

F.o? =
O P IS e

(8)

Rearranging the terms from (7) and (8), we obtain Bayes’ law that expresses the posterior

distribution of £ as shown below.

_p(FIBoYR(Bl0?)

F, 2
p(BIF,c%) o(F | o?)

As noted by Gill (2002), the p(F | o) term in the denominator does not provide any
relevant information about the parameters g . This term acts a normalizing constant to

ensure the conditional probability sums to one. For convenience, we will omit this term

and work with a kernel as expressed in (9) below.

P(BIF,0%) o p(F|B,0*)p(B|c?). 9)
We assume the case presented by DeGroot (1970) where we have an improper prior

distribution with little prior knowledge about £ such that
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p(Blo?)oc = (10)
(el

Substituting the results of (6) and (10) into (9), we obtain

-1
20°

p(B|F,o?) o™ exp{ (F-xB)(F- X,B)}] (12)

Therefore, the mean and variance of the parameters g are
E(B|F,c?)=(X'X)*X'F

coM( B| F,0?) =c?(X ') " (12)
As noted by DeGroot (1970) and shown by Gill (2002), this same result can be obtained
by assuming a conjugate normal prior distribution and applying an asymptotic

assumption such that the number of simulation runs becomes very large.

For ease of notation, we will use ﬁ and y(x;) to denote the random variables
whose probability distributions are the posterior distribution of g and y(x;) conditional
on F given samples respectively. We can then use the posterior distribution of £ to

update the posterior distribution of the performance measures for each design location

such that

y(xi) = ﬂo + ﬂ1xi + :Bzxi2 :
Therefore, given a set of n initial simulation runs conducted at the design
locations described in X with the output contained in vector F and the design location

X, obtained from the least squares results derived in the previous section, we can
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redefine the probability of correct selection from (5) based on the Bayesian concept

(Chen et al. 2010 and He et al. 2007) as

PCS = P{¥(x,) < J(x )V i}. (13)
The posterior distribution of £ is given by

B~N[(X'X)EX'F, o?(X'X)7]. (14)

We define X, as the vector consisting of [L x, x’]. Since y(x;) is a linear

combination of the B elements, this means that y(x;) has a Gaussian distribution of the

form

YOOIX,F ~NIX (XX EXF, o2 XH(XEX) X (15)

We are interested in how the PCS in (13) changes if we conduct | additional simulation

runs before we actually conduct the simulation replications so that we can make

allocations that maximize the PCS in (5). Given the | additional simulation runs, we

define G as the (n+1) dimensional vector containing the replication output measures
f(x;) from the original set of simulations runs and the | additional simulation runs.
Likewise, we define W as the (n+1)x3 matrix composed of rows consisting of

[ x, x?] with each row corresponding to its respective entry of f(x,) in G . The

updated posterior distribution of the performance measures for each design location

becomes analogous to (15):

F)IW,G ~ N[X,WW) WG, 02X, (W'W)*X,].
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When | <<n, we assume that (X'X)™*X'F ~ (W'W)'W'G such that our predictive
posterior distribution is approximately

Yx) ~ N[X, (X' X)EXF, o2 X W'W) X, ]. (16)
The change in the variance after these additional runs is one of the key elements of our
derivation and will be explained in greater detail in Chapter 3. Suffice it to say that
additional runs will reduce the variance and we aim to select the locations of these

additional runs to maximize the PCS in (5).
We could estimate o from our least squares results and could calculate 5 using
(14) or y(x;) using (15). We could then use Monte Carlo simulation with (13) in order to

estimate the PCS (Law and Kelton 2000). However, estimating the PCS via Monte Carlo
simulation can be time consuming. The next subsection reduces the number of
comparisons required and Chapter 3 presents a way to approximate the PCS without

running Monte Carlo simulations.

2.3.  Reducing the Number of Comparisons

Subsections 2.1 and 2.2 demonstrated how we can utilize the quadratic structure
of the underlying function in order to provide estimates of the performance measure
across the entire domain. This subsection demonstrates that we can also use this quadratic
structure to reduce the number of comparisons required in the PCS Equation (5).
Specifically, given the discrete domain presented in our problem, we only need to

consider the three cases presented in Theorem 1 below.
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Theorem 1: Given x, estimated from the second order polynomial metamodel results,

the assumption that our underlying function is quadratic means that we can reduce the
required number of comparisons in our PCS equations from the k —1 comparisons

expressed in (5) to 2 comparisons. As such, we can restate the OSD problem in (5) as

shown in (17) below or in its equivalent form using the parameters E .

max  PCS =P{(J(x,) 2 ¥(x,))N(V(x,) 2 ¥(x,)) 3
Ni.--.Ni with (17)

s.t. N,+N,+--+N, =T

Case 1 (Interior Design Case): b=1,k; A=b-1,Z=b+1,

Case 2 (Left Boundary Design Case): b=1, A=2; Z=k, and
Case 3 (Right Boundary Design Case): b=k; A=1;Z=k -1.
Proof: Using the definition of conditional probability, we know that

P{T(x) > J(x,) Vi}=
P{Y() 2 (%) ;1= A Z}-PH(X) = V(%) Vi | V(%) 2 ¥(x,);i=AZ}

We aim to show that P{y(x,)>¥(x,) Vi | ¥(x)>¥(x,);i=A,Z}=1 and must

consider the three cases listed above.
Case 1 (Interior Design Case): b=1k; A=b-1,Z=b+1

For the interior design case, we will show that we know that we have correctly

selected if the design that we selected is better than both of its neighboring designs.
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In other words, if X, is an interior point (b =1,k ) with y(x, ) > y(x,) and

V(X,,,) = Y(X,), then y(x,)=Vy(x,)Vi.Giventhat y(x,,)>Yy(x,) and

Y(X,.1) = V(X,), we know that (x, , — X, )Lél + By (Xyy + X, )Jz 0 and

(xb+l — X, )[ﬁl + 5’2 (Xb+1 + Xy, )]2 0.

Using these equations it can be shown that ﬁz >0 when y(x,,)>Y(x,) and

Y (Xo.1) 2 (%)

For i>1, (X, —%, )= (X, —%, ) and (x,,, +X, )= (x,,, +X, ). Therefore, with 3, >0,
(ot = X N+ B (s +%,)]2 0 0 §(x,.0) = F(x,).

In the same manner, for i >1, (x,, —%, )< (x,, —%,) and (%, +%,)< (X, +X%, ).
Therefore, with 8, >0, (X, ; — X, )[ﬁl + By (X + %, )]2 0 or ¥(X,.;)>y(x,). These
results provide the fact that if x,is an interior point,

PT(x) = ¥(x,) Vi | §(x) 2 §(x,);i=b-1b+1f=1

Case 2 (Left Boundary Design Case): b=1 A=2;Z=k

For the left boundary design case, our objective function also simplifies to two
comparisons. We will show that we know that we have correctly selected if the design
that we selected is better than both the adjacent design and the opposite boundary design.

For the left boundary, if we are given that y(x,)> y(x,)and y(x,) > y(X,), then it can

be shown that y(x.) > y(x,) Vi. To start, we define g(x;) = [El +Bz (xi + X, )] Since
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(x, —x,)>0Vi=b and we are given that ¥(x,) > y(x,) and ¥(x,)> y(x,), we know
that g(x,)>0 and g(x,)=0. Since g(x;) is a linear function and the two extreme
points have values greater than or equal to zero, we can establish that

[,51 +B,(x + xb)Jz 0Vi=b. Using again that (x, —x,)>0V i =b, we know that

V(X)) =VY(x,) Vi=b. These results provide the fact that if x, = x, then

P{T(x) 2 (%) Vi | 7(x)2¥(x,);i=2k}=1.

Case 3 (Right Boundary Design Case): b=k; A=1,Z=k-1.

The proof for the right boundary design case where x, = x, is almost identical to
the approach presented for the left boundary design case except that (xi — X, ) <0 and
[ﬁl +ﬁ2(xi +xb)J£OV i#b.

Figure 2 below illustrates the results for the interior case and Figure 3 below

provides one depiction of a boundary case.
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. PCS = P(x, iIs better than its neighbors)

. PCS=P{J(x)>¥(x);i=b-1b+1}

o
..
~®.
~ e
e, ——
paa U Xy

Figure 2: Two Comparisons (Interior Case)
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PCS = P{y(x)> y(x,)>0:i=2,k}

PCS = P(x, isbetter than its neighbor
and other extreme design )

Figure 3: Two Comparisons (Boundary Case)
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CHAPTER 3 OPTIMAL SIMULATION DESIGN METHOD

In Chapter 2, we provided a derivation for our Bayesian regression model and
showed that we required only two comparisons by using the information from the
regression equation. These results were generally independent of how we allocated the
simulation budget to the design locations. In this section, we will develop the OSD
allocation method. We begin by deriving an approximation to our PCS equation. We then
establish that it is sufficient to allocate simulation runs to only three design locations to
estimate the parameters for the quadratic function. (For notation sake, we will refer to the
three design locations receiving simulation runs as support points.) We then derive an
optimal allocation of simulation runs to the three support points and an efficient
approximation for the optimal allocation. Finally, we determine the optimal locations for

the three support points.

3.1. A Lower Bound for PCS
Given the comparisons from the PCS equation in (17), we can use the

complementary conditions for probabilistic events to establish that
PL(T(x) 2 ¥(%,)) N (T(%,) 2 (%)) }=1- P{(T(x,) < F(x,)) 0 (F(x,) < §(%,))3-

In addition, we know from probability theory that
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PLY(x2) < ¥(%,)) W (T(%) < ¥(%,))} =
PLY(X4) < ¥(%) 1+ PLV(X,) < ¥(%,) 3= PL{(Y(x,) < T(%,)) N (V%) < ¥(x,))}

Substituting this result, we obtain

PCS =
1-P{y(x,) < ¥(x,) 3= P{¥(x,) < V(%) 3+ PL{(V(x,) < ¥(%,)) N (V(x,) < ¥(x,))}

Using the results from Chapter 2, the last term in the equation above determines the
probability that X, is actually the “worst” design in the domain such that it is the one with

the largest expected performance measure. This probability is typically small so that we
can establish a lower bound (or approximate PCS) for our PCS equation as shown in (18)

below.

PCS > APCS =1-P{y(x,) < V(% )}-P{¥(x,) < ¥(x,) }. (18)

3.2.  Sufficient Number of Support Points
In this section, we will establish a relationship between the information matrix
commonly used in the DOE literature and our PCS criterion in order to leverage results

previously established in the DOE literature. Define
d()=J06) = F(%) = B, =x0)+ B, (X —%,).
This result shows that a(xi) is a linear combination of the ﬁ elements so the J(xi)

terms are also normally distributed. Using the results of Section 2, J(Xi) ~N [a(xi) ,Gil

where
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d(x) = ()= 9(%)
and

0
S; :02(0, X —X,, X —xj)(X‘X)‘1 X =X, |. (19)
Xi2 —XE

Based upon the fact that d (x,) ~ N[d(x;) , ¢,] we know that

~[v=(=d (x )2

~ ~ T K 1 2c:

P{F(x)<§(x,)}=P{-d(x)20}= e ¥ dv.
" '([\/2779
. i v+&(x.)
Conducting a change of variables such that r = T‘ and dv = \/g_idr,
Si
P{-d(x)>=0}= T ieédr. (20)
a(xl) \/Z

Equation (20) shows that the comparisons in (18) are a function of d (x;) and ¢,. As we

take additional simulation runs, E[J(xi)]: a(xi) and (19) shows that ¢; is a function of
the information matrix (X‘X ) Therefore, the information obtained by additional
simulation runs will affect ¢, and thus our PCS criterion.

For a particular support point and allocation scheme y, denote (XtX)y as the

resulting information matrix. By definition, the information matrix (th)l dominates

the information matrix (X'X ), or (XX ), =(X'X), when (X'X), =(X'X), results in a
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non-negative definite matrix. A criterion C conforms with a Loewner ordering if

(th)l > (th)2 then C, >C, or, to simplify the notation,

(x'x),=(x'x), =, >C, (Liski, etal., 2001).

Lemma 1: The PCS criterion conforms with a Loewner ordering such that

(X'x), = (X*X), = APCS, > APCS,.

Proof: This proof is similar to one presented by Ehrenfeld (1955). It is well established in

the DOE literature that (XX ), > (XX ), = (¢;), <(c;), (see Atkinson and Donev,

1998). Using this result, we can establish that

(x'x), = (x'x), = [a(xi)l > [5(Xi)l_

Jai )y (s

Therefore, using (20) we can also establish that

(x'x), = (x'x), = (P{=d (%) = 0}), < (P{=d (x,) = 0}),.

or

(x*x), = (XX}, = (PET() = 50x,) D), < (PLT(X) = §(%,) 1),

Using these results with our APCS equation in (18), we obtain that

(x'x),=(x'x), = APCS, = APCS,.
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Note that establishing that the PCS criterion conforms to a Loewner ordering in
Lemma 1 does not imply that we can substitute the information matrix for our PCS
criterion. Instead, it allows us to reduce the set of possible allocation combinations. We

offer Lemma 2 as a simple example of this.

Lemma 2: Given a simulation budget of T , we will maximize the PCS by utilizing the
entire simulation budget.

Proof: Let information matrix (XtX)HU denote an information matrix using ¥ simulation

runs such that ¥ <T . Let (th )w denote the information matrix after allocating one
additional simulation run. Using the results from Section 2,
YooY x DX

(th)‘P: in inz ZX.S
S Sa T

2
1 X‘I’+l X‘-I—’+l

t t _ 2 3
(X X)\y+1_(x X)\y =1 Xgn Xpu Xya |-
2 3 4
X‘P+1 X‘P+l X‘P+l

Regardless of the location of the additional simulation run, it is shown that

(X‘X )m > (X‘X )q,, so it is better to allocate one additional simulation run, and by

extension better to allocate the entire simulation budget. We have therefore reduced the
possible allocation combinations to only the possible combinations that allocate the entire

simulation budget.
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However, the results in Lemma 2 do not determine where to allocate each
additional simulation run given the choice of k design locations. The following theorem
based upon the DOE literature will at least allow us to reduce the number of support

points required for our allocations.

Theorem 2: Given that we assume the expectation of our underlying function is

quadratic, we require only three support points to obtain all of the information in the

X X matrix. Two of these support points will be at the extreme design locations ( x, and

X, )-

Proof: de la Garza (1954) establishes that for a polynomial of degree m and a discrete
domain with more than m-+1 support points, the information obtained in the X'X
matrix by a spacing at more than m+1 support points can always be attained by spacing
the same information at only m+1 of the design locations. Kiefer (1959) extends this
result by proving that regardless of the optimality criteria, for a polynomial with m+1
support points, two of the support points are at the extremes.

Given the results of Theorem 2, we will refer to the support points as {x,, X, X, }
where X, < X, < X, . Using this notation and the APCS in (18), we can now restate the

OSD problem in (17) as the OSD problem in (21) below.

OSD Problem

max  APCS =1-P{y(x,) < ¥(%,)}—P{y(x,) < ¥(x,) }

N1,Ng, Ny
s.t. N, +N,+N, =T; with (21)
N, =0Vi=lsk
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Case 1 (Interior Design Case): b=1,k; A=b-1,Z=b+1,
Case 2 (Left Boundary Design Case): b=1, A=2;Z=k, and
Case 3 (Right Boundary Design Case): b=k; A=1,Z=k-1.

Having established the relationship between the information matrix commonly
used in the DOE literature and our PCS criterion, we were able to use the results from the
DOE literature (de la Garza, 1954 and Kiefer, 1959) to reduce the number of support
points. However, as noted by Liski, et al. (2001), establishing dominance within the class
of three point allocation schemes using only the information matrix is generally not
feasible. The optimality criterion will instead guide this determination. As a simple
example, for a quadratic underlying function, using the D-optimality criterion will always
result in allocating one third of the simulation budget to both extreme points of the
domain and the remaining third to a support point located at the center of the domain.
Using a DS-optimality criterion that is interested in only the g, and S, parameters will
result in allocating one half of the simulation budget to both extreme points of the

domain.

3.3.  Optimal Allocations
In this section we will first develop a method to optimally allocate simulation runs
to the three support points {xl, Xg s Xy } In the next two subsections, we will use the results

to determine an efficient approximation for the optimal allocation and the optimal design

location for the support point X, . Since our aim is to efficiently allocate the computing
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budget to the three support points, we will rewrite the variance term in (19) so that it is
expressed in terms of the percentage of the simulation budget allocated to each support

point. For notation sake, we define «; =N, /T, je{ls,k}.

We begin by examining the symmetric nature of the X'X matrix. Given the fact
that we are only taking simulation replications at the three support points, this matrix can

be rewritten in terms of the support points as

1 1 1Y, 0 0Y1 x X
X'X=T|x X X [0 a 0|1 x, xZ
XX XX xX N0 0 a )\l % X

Using a basic property for matrices where (ABC)™" =C'BA™ (Neter et al., 1996), we

obtain
11x1x121a10011111
(X'x)* == 1 x, X[ ]0 a 0] [x X X
1 x X0 0 o) (x x2 x
It can be shown that
XX, ~ (X + %) 1
1 1 1 N 4 =X ) = %) (= X)X =X ) (% =X )X, — %)
X, X X | = e ~0at ) L . (22)
X X2 X?_ (Xs - Xl)(xs - Xk) (Xs - Xl)(xs - Xk) (Xs - Xl)(xs - Xk)
1 s k X, X, — (X, +X%,) 1
(Xk - Xl)(xk - Xs) (Xk - Xl)(xk - Xs) (Xk - Xl)(xk - Xs)

Therefore, after computing the inverse in (22), we may write (19) in the simplified form:
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’ ’ ) ,
T

Si = —
a, as ay

where Di,l _ {(Xs _Xi)(xk - Xi)_(xs _Xb)(xk - Xb)}’

(Xl - Xs)(X1 - Xk)

D,, :{(xl — X )(X, — %)= (X, — %, ) (X, —xb)}’

(Xs B Xl)(xs B Xk)

Di,k _ {(Xl _Xi)(xs _Xi)_(Xl — Xb)(xs _Xb)}l (23)

(Xk - Xl)(xk - Xs)

Note that D;,, D,,, and D, are the Lagrange interpolating polynomial coefficients (see

de la Garza, 1954 and Burden and Faires, 1993) for estimating d(xi) at the three support
points {x,,x,, X, }. Defining y(x;) = f(x;)/N, , j e{Ls,k} as the mean of the

simulation runs conducted at the support point x; and noting the interpolating

polynomial property at the support points such that §(x;) = y(x;), we see that

a(xi) = Di,1y(X1) + Di,s y(xs)+ Di,k Y(Xk) = Di,ly(xl) + Di,sy(xs)+ Di,k 9(Xk) . (24)

Given the unbiased properties of our least squares parameters and estimators, we assume
that there will not be large changes in &(xi) as we take additional simulation runs. On the
other hand, we note from (23) that ¢, and thus the APCS expressed in (21) are dependent

upon T and the allocations to each of the three support points. Theorem 3 below

provides an optimal allocation rule for the OSD problem.
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Theorem 3: The OSD problem given in (21) can be maximized with the following

allocation rule:

Ja _
L= ,i=1s,k
RN R R e (25)

a; =0,1=15s,k

a(XA)Di,j a(xz) a(XZ)Dé,J and ¢(r): 1 e;:.

d(x,)
o T

Jeu

where q; = ¢(

)

5

Proof:

To solve the OSD problem given in (21), we define a Lagrangian function

Q = APCS —}L(Zk:ai —1) or using (20)

o0 o0 k
Q=1- [g(rydr— [4(r)dr—2(Y e -1) (26)
d(xa) d(xz) =1
Vea Vez
. . aQ . . .
so that we can investigate 6—to determine the allocation. We can use the chain rule to
-

J

establish that

0Q __Q dg, _Q 5, _

oo Og, Oa;  Og, O«

]

From (26) we obtain

d(x)
2(§i)3/2 .

@:(é(&(xi)

0g; \/g_.

) (27)
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From (23) we also obtain

. _52 D2
06 = Pii (28)
oa T «

J ]

Substituting these results we determine that the partial derivative of our objective

function with respect to the allocation at each of our support points is

oQ _ d(x,), d(x,) o?Di;  d(x,), d(x,) o°Di;
o0, N 2607 T @ L e,y T #9)
By setting s—on,weobtain
a;

1| d(x,),d0)D8; d(x,), d(x,)D;; | 24T
"o e T e T
This yields
Vo, Ve, Ve (30)
a, a, a,
with

_ 40, d0x)DL;  d(x,), d0)D7,
RN EN N S S

Using the fact that , + o, + ¢, =1 and (30), we can establish that

LA
ERCESCIESC

i=1sk.
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Theorem 4: The objective function (26) is concave. Therefore, the allocation rule given

in (25) will yield a global (although not necessarily unique) optimal solution to (26).
Proof: See Appendix A.

While the allocation rule given in (25) is nonlinear with respect to « , the solution
for each allocation as depicted in (25) or the alternate form represented by (30) shows
that the allocations are contained within a simplex generated by the constraint

a, +a, +a, =1. Since this simplex represents a compact subset of values for o , we

know there exists a fixed point solution for the system of equations in (25) (Burden and
Faires, 1993) and can use one of several root finding techniques to find a solution. For
guaranteed convergence, we can use the steepest descent method to find a solution to the
system of equations in (25) by finding a minimum to (31) below (Burden and Faires,

1993).

(31)

3.4.  Approximately Optimal Allocations
In the previous section we derived an optimal allocation rule for the OSD problem

in (21). However, our aim is to provide a simple means for efficiently allocating the
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budget instead of numerically computing the optimal values for « as expressed in (25).
In this section, we will derive an approximation for our optimal allocations and our

numerical results in Section 4 will demonstrate its efficiency.

Define design x,, such that M =arg max{ﬂm)} =arg min{%}- Reuvisiting the OSD

i=A,Z \/g_l i=A,Z S

problem in (21), we note the following lower and upper bounds for our APCS equation as
shown in (32) below:
1-2P{y(xy) < ¥(X,)}< APCS <1-P{¥(xy) < ¥(%,)} (32)

If we denote L and U as the lower and upper bounds respectively, we obtain:

oL d(x,), d(x 2 DZ |
=2¢( ( M)) ( Ma)/z_ M; —4=0
oa; Jou 2u)T T a;

ouU _¢(6(XM)
da, B \/E

Each of these bounds results in the approximately optimal allocation of

a(XM) O'_le\z/LJ'_

A=0
26)" T of

)

_ Dy .
a;, = ,i=15k
Dyi1|+ |y + Durc] : (33)
a; =0,i=15s,k

Using the concepts from the research area of large deviation theory, we know that our
lower and upper bounds will have the same asymptotic convergence rate since they are
based upon the same allocation rule (33). More importantly, since our APCS is bounded

by them, it will also converge at the same rate. For brevity, we omit a detailed discussion
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of the large deviation theory and reference Dembo and Zeitouni (1992) for a general

discussion and Glynn and Juneja (2004) for a simulation optimization application.

3.5.  Optimal Support Point Location

Given the approximately optimal allocations to {x X xk} from the previous

10 X s
section, we will determine the optimal design location for the support point x, among all
the given design points. Without loss of any generality but for clarity and ease in
notation, we present the following theorem assuming an odd number of designs evenly

spaced across the domain. We then address cases with uneven spacing or an even number

of designs.

Theorem 5: When presented with an odd number of design locations evenly spaced

: PO :
across the domain such that A= x,,, — X, = ﬁ Vi=1,...,k-1, the approximate PCS

expressed in (18) with allocations that satisfy (25) is maximized with the following

locations for x,:

3%, + X Xy, + X X, + X
1 k<M b<1 k

XM+b—l’ 4 - 2 2
X, + X Xy, + X X, +3X
Xs =1 Xmsb k> - 2 “< M2 s< 4 « (34)

Xz Otherwise

Proof: In Appendix B, we consider five cases and analyze S—Q for each case.
X

S
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The results of Theorem 5 demonstrate that when (x,, + x,)/2 is in the middle
half of the domain, x, is located such that it is the same distance from (x,, +X,)/2 as
the nearest boundary is from (x,, + X, )/ 2. This makes the design symmetric

about (X, + X, )/ 2. The first case is illustrated in Figure 4 below.

A A
4 AT Y
| : | |
[ : | |
xl 'tb +'tIu.'[ x: %{
2

Figure 4: Location of x; for the first case in Theorem 5

When (X,, +X,)/2 is in the outer half of the domain, x, is located at the center of the
domain making the design symmetric about x.

If the design locations are not evenly spaced or if we have an even number of
design locations, we can use a subgradient approach similar to the approach taken for
Theorem 5. The results of this type of approach provide that the approximate PCS
expressed in (18) with allocations that satisfy (25) is maximized by selecting the interior

design location closest to x, selected from Theorem 5.

3.6. OSD Procedure
The following is the algorithm that we used to implement the OSD method for the

experiments. The actual ProModel code used is in Appendix C.
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OSD Procedure (Maximizing PCS)

INPUT k (the number of design locations), T (the computing budget), x, (the
design locations), no (the number of initial runs), &, (the number runs allocated each
iteration j);
INITIALIZE j«0;

Perform ng simulation replications for three design locations; by

convention we use the D-opt support points such that N/ = N/,,,,, =N/} =no.

kK
LOOPWHILE > N/ <T DO

i=1
UPDATE - Estimate a quadratic regression equation using the information from all
prior simulation runs.
- Estimate the mean and variance of each design location using
9(Xi) = :Bo +ﬂ1Xi +182Xi2'

- Determine the observed best design so that x, =argmin 9(x;) .

- Based upon the location of x,, use (21) to determine x, and X, .

- Determine x,, such that v =arg max{qé(d(xi))}:arg min{d(xi)}.

i=A,Z \/g_l i=A,Z \/g_l

- Determine X, using (34).

ALLOCATE Increase the computing budget by @, and calculate the new budget

j+1

allocations for o}, o)™ and o™ according to (33).
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SIMULATE Perform round[ 6, ;"] simulations for design i, i = 1, s, k; j— j+ 1.

END OF LOOP

3.7.  Numerical Testing and Results

In this section, we describe how we compared the results from our new OSD
method against the results from four other allocation procedures. We start by providing a
description of the other methods chosen to provide a perspective of the efficiency gained
by using the approximately optimal allocations and also by using the information from a
regression equation. We then describe our testing framework. Finally, we end with the
results from six experiments.

The simplest allocation case is a haive method that equally allocates (EA) the runs

to each design location such that N, =T /k for each i. For this method, we designate the

design location with the smallest mean performance measure as X, so that

T/k
2. F(x)
X, =argmin———.

i T/k

Instead of equally allocating, we also tested the OCBA method, which is one of
efficient R&S performers (Branke et al. 2005, 2007). This method requires a set of
initialization runs and, based upon the findings of Chen et al. (2000), we used an initial
allocation of 5 runs for each design location. For the type of problem that we are

investigating with an assumed underlying quadratic function and homoscedastic variance,
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this method will allocate most of the simulation budget to the best design and its
immediate neighbors.

The next method in our progression equally allocates to each design location but
uses a response surface (EA-RS) to compare the results. As with the OSD method, we

designate x, so that x, :arg_min)“/(xi).

The final method that we will compare against leverages the results from de la
Garza (1954) in which we require only three support points to capture all of the
information in the response. A very popular way to do this in the DOE literature is to use
the D-optimality criterion (D-opt) that maximizes the determinant of the information
matrix resulting in minimizing the generalized variance of the parameter estimates. Liski
et al. (2001) provide an overview of the development of this popular method, its many
extensions, and its relationship with other common methods. Atkinson and Donev (1998)
provide a list of properties of this criterion and note that D-opt often performs well
compared to other criteria. For an underlying quadratic function, this criterion establishes
support points at the two extreme points and at the center of the domain and allocates one
third of the simulation budget to each of these support points. Using the notation from our

OSD derivation, this criterion will always allocate with {e,, @,y @ | = {1/3,1/3,1/3}.

For the OSD method, we initialize as per the algorithm described in the previous

section with N, =N, ;y,, = N, =ng =2.
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In order to compare the results of using OSD against these other methods, we
conducted the first five experiments using the following function to represent the

simulation output:
f(x)=(x,—a)* +N(0,).

We used a domain consisting of evenly spaced design locations where x e[-1,1].

For the sixth experiment, we used the following function to represent the

simulation output:
f(x)=(x-1)"+N(0,).
We used a domain consisting of evenly spaced design locations where x €[4, 4]. With

a slight modification to our OSD procedure, we are able to demonstrate using this last
experiment that OSD may be robust enough to handle problems that are not quadratic
across the entire domain if we can partition the domain such that each partition is
approximately quadratic. This concept will be explored in more detail in Chapter 4 and
demonstrated with more general underlying functions.

We conducted the first four experiments using a total computing budget of 1,000
runs, the fifth experiment with 45,000 runs, and the sixth experiment with 2,000 runs.
The results will show that these amounts are sufficient to compare the performance of the
methods. To mitigate the fact that the methods have varying fixed costs associated with
them and in order to compare the performance of the methods using various simulation

budgets, we calculate the PCS for each method during each iteration until the total
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simulation budget is exhausted. We repeat this whole procedure 10,000 times and then

estimate the PCS obtained for each method after these 10,000 independent applications.

Experiment 1 (a=1/3, 11 design locations)

The domain consists of 11 design locations where x [-1, —0.8,---1]. For OSD

and OCBA, we provided initial runs as described above and then allocated 8 runs for
OCBA and 14 runs for OSD during additional iterations. The other methods provided
allocations as described above. Figure 5 shows the simulation results. The methods using
a regression equation clearly perform the best. As a point of comparison, we obtain a
PCS of 40% after 77 runs with the methods using the regression equations, 551 runs with
OCBA, and 1,000 runs with EA. Since OSD initializes with the D-optimal method, there
is little initial difference between the two methods. However, after 1,000 runs, D-optimal
achieves an 88.8% PCS while OSD achieves the same PCS after only 734 runs. Both of

these methods perform significantly better than EA-RS.
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Figure 5: Results of Experiment 1

Table 1 below provides the resulting OSD allocations for several computing

budgets. Since a =1/3, the best design location will be x; =0.4, and so x, =X, =0.2
and x, = x, =0.6. Asymptotically, the OSD rule will pick x,, x,, and x,, as the support

points with the allocation ratios {o;,e,,a,,}=1{0,1/2,1/2}. The results in Table 1 show
that when T increases, the OSD procedure gradually approaches this allocation ratio.

On the other hand, the D-optimal will choose X, X,, and x;, as the support points
with allocation ratios {a;,c, @, } = {1/3,1/3,1/3}. Note that the allocation rules chosen

by D-optimal and OSD are very different and so the resulting PCS are very different.
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Table 1: OSD Allocations for Experiment 1

Total Runs Design 1 Design 2 Design 4 Design 6 Design 11
(x=-1) (x=-0.8) (x=-0.4) x=0) x=1)
160 0.05% 0.64% 38.52% 10.84% 49.95%
440 0.00% 0.20% 46.91% 2.89% 50.00%
720 0.00% 0.14% 49.09% 0.77% 50.00%
1000 0.00% 0.14% 49.63% 0.23% 50.00%

Experiment 2 (a=2/3, 11 design locations)

Figure 6 presents the simulation results for Experiment 2. The allocation methods
are the same as described for Experiment 1 and the results are similar to the results from
Experiment 1 with the exception that D-optimal is more competitive with OSD. After
1,000 runs, D-optimal achieves a 74.7% PCS while OSD achieves the same PCS after

only 832 runs.
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Figure 6: Results of Experiment 2

Table 2 below provides the resulting OSD allocations for several computing

budgets. For this experiment, the best design location will be x, =0.6, and so
X, =X =0.4 and x, = x,, =0.8. Asymptotically, the OSD rule will pick the same
support points with D-Optimal, i.e., X, X, and x;, but with
lay, o, .} = {1114,1/ 2,317} instead of one third allocated to each support point.

Just as in Experiment 1, the D-optimal method will choose x,, X,, and x;, as the
support points with allocation ratios {o,,a,,a,, } = {1/3,1/3,1/3}. Since the support

points are the same and the differences of the allocation rules between OSD and D-
optimal are not very big, it is not surprising that the PCS results of these two rules are

relatively close as compared with that in Experiment 1.
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Table 2: OSD Allocations for Experiment 2

Total Runs Design 1 Design 6 Design 11
(x=-1) (x=0) x=1)
160 7.03% 49.99% 42.97%
440 7.00% 50.00% 43.00%
720 7.10% 50.00% 42.90%
1000 7.09% 50.00% 42.91%

Experiment 3 (a=1.0, 11 design locations)

Figure 7 presents the simulation results for Experiment 3. The allocation methods
are the same as described for the previous two experiments and the results are similar.
After 1,000 runs, D-optimal achieves a 94.3% PCS while OSD achieves the same PCS

after only 804 runs.
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Figure 7: Results of Experiment 3

For this experiment, the best design location will be x;, =1.0, and so
X, =X =-1.0and x, =x,, =0.8. Asymptotically, the OSD rule will again pick the
same support points with D-optimal, i.e., x;, X¢, and x;, but with
{ay, o, .} = {119,1/2,7/18} instead of one third allocated to each support point. The

support points for OSD and D-optimal are the same and the allocations for these two

methods are again similar so the fact that the results are similar is consistent.

Experiment 4 (randomly generated optimal solution, 11 design locations)
In order to test the methods against a more diverse set of problems, the stationary
point for the underlying quadratic equation is randomly selected for each of the 10,000
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procedures from the distribution where a ~U(-1.1) . The optimal solutions are the design

locations closest to a. The allocation methods are the same as described for the previous
experiments and the results shown in Figure 8 are consistent with the results from the
first three experiments. After 1,000, runs D-optimal achieves an 84.2% PCS while OSD

achieves the same PCS after only 776 runs.
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Figure 8: Results of Experiment 4

The results of this experiment represent a blend of the results from the three cases
in (34). For the first two cases in (34), the support points and allocations for OSD will be
very different than those for the D-optimality criterion and the performance of the OSD

method will be comparatively better. For the “otherwise” case in (34), the support points
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are the same for OSD and D-optimality. The allocations become more similar as the best
design location gets closer to the boundary of the domain and consequently the results of

the D-optimal method become more competitive with the OSD method.

Experiment 5 (randomly generated optimal solution, 101 design locations)
For this experiment, we used a domain of 101 design locations where

x €[-1, —0.98,---1] with the stationary point for the underlying quadratic equation again

randomly selected for each of the 10,000 procedures from the distribution where

a~U(-11). For OSD and OCBA, we provided initial runs as described above and then

allocated 99 runs during additional iterations. The results are shown in Figure 9. With
more designs across the same sized domain, the differences between the responses at the
best design and its nearest competitors are smaller relative to the noise in the underlying
function. Therefore, the PCS for each method is lower for this experiment than the
experiments with only 11 design locations. However, the results are consistent with the
other four experiments. After 45,000, runs, D-optimal achieves a 76.3% PCS while OSD
achieves the same PCS after only 32,775 runs or about 73% of those required by D-
optimal. This suggests that as OSD may perform relatively better as the number of design

locations increases and is a potential area for future research.
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Figure 9: Results of Experiment 5

Experiment 6 (Non-quadratic Underlying Equation, 60 design locations)

For this last experiment, we partitioned the domain of 60 design locations into
partitions with an equal number of design locations. We conducted the experiment using
one, two, three, four, fix, six, ten, twelve, and fifteen partitions. The partitions are
disconnected such that, for example, the last design for the first partition when using six
partitions is x,, and the first design location for the second partition is x,,. After
constructing independent regression equations for each partition, we then allocate the
simulation budget equally between the partitions and allocate using OSD within the
partitions. Even with this inefficient allocation between the partitions, the results in Table

3 provide insight and demonstrate that OSD performs well if we can properly partition
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the domain. Using partitioning schemes with one, four, six, ten, twelve, and fifteen
partitions, the optimal design location is located in the middle half of its partition such
that OSD will use the first two cases of (34) and construct a design symmetric about

(Xy +X%,)/2 as shown in Figure 4. The results in Table 3 suggest that OSD will do well

if we can partition the domain so that the optimal design location is within the middle
half of a partition and as close to the center of the partition as possible. To highlight this
point, note the performance of OSD using twelve partitions and with the optimal design
location in the center of the partition compared to the performance of OSD using six or
ten partitions where the design location is not near the middle of the partition. Even with
fewer runs allocated to the best partition for the twelve partition experiment, OSD
provides a significantly higher PCS. Using partitioning schemes with two, three, and five
partitions, the optimal design location is not in the middle half of the domain such that
OSD uses the third case of (34) for the best partition. For these three schemes, OSD

obtained a biased solution and a PCS of approximately zero.
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Table 3: Results of Experiment 6

Number of Optimal Design Location | PCS after
Partitions on the Partition 2,000 runs
1 38 out of 60 100%
2 8 out of 30 0%
3 18 out of 20 0%
4 8 out of 15 98%
5 2 out of 12 0%
6 7 out of 10 18%
10 2 outof 6 5%
12 3outof5 34%
15 2outof4 13%

The next chapter will derive a means to efficiently allocate simulation runs on a
partitioned domain instead of using an equal allocation scheme as used in this
experiment. We will then revisit the impacts of the partitioning scheme on the
performance of the derived allocation method for the partitioned domain with another

numerical experiment.
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CHAPTER 4 OSD FOR PARTITIONED DOMAINS

Regression-based methods, including our OSD method developed in Chapter 3,
are constrained with some typical assumptions such as an underlining quadratic function
for the means and homogeneous simulation noise. For instances where the underlying
function does not have a constant variance error, the least squares estimate will still be
unbiased (Draper and Smith 1998). The OSD method will still asymptotically determine
the best design location but may provide less than optimal allocations to do so. More
problematic is if the underlying function is not quadratic to such an extent that we fail to
find the best design location. However, to address a non-constant variance as well as a
deviation from a quadratic nature, we can extend the OSD method by partitioning the
design space into smaller domains in which the underlying function can be well
approximated by a quadratic function and in which the variances are relatively the same.
In a worst case scenario, the domain can be partitioned using sets of three design
locations yielding an unbiased, piecewise quadratic estimate of the underlying function.

This chapter also explores a problem with the principal goal of selecting the best
of multiple alternative design locations but on a partitioned domain. Without loss of
generality, we assume that we have m adjacent partitions and that each partition has k
design locations. We aim to find the minimization problem shown below in (35) where

the “best” design location is the one with smallest expected performance measure
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mxhi_n y(Xy) = E[f(xhi)]; Xni € [Xu1s Xz Xyes Xa1s Xoz07 s Xopes Xy Xz yw++s Xyl - (35)

Given the problem in (35), we aim to determine how to allocate between the partitions,
how to allocate within the partitions, and which design locations to use as support points.
Addressing how the domain is partitioned is not within the scope of this chapter and we
assume this partitioning scheme is derived from knowledge of the domain, through
iterative refinement such as a heuristic based upon the results of Experiment 6 in Chapter
3, or through an optimal selection procedure such as multivariate adaptive regression

splines (MARS) (Friedman 1991).

4.1.  Problem Statement and Framework

We will use a notation and structure very similar to the one partition case
described in Chapter 2 and Chapter 3. We consider that the expectation of the unknown
underlying function for each partition is quadratic or approximately quadratic in nature

on the prescribed domain, i.e., for each partition h

Y(Xii) = Bro + BraXni + Bro X (36)
For ease of notation, we define 5, =[fB., Bu Pu.l- In (36), the parameters g, are
unknown and we consider a common case where y(x,;) must be estimated via simulation
with noise. The simulation output f(X,;) is independent from replication to replication
such that

f(Xn)=Y(Xp)+ &y 1=L....K, where &, ~ N(0,07). 37
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The parameters g, are unknown so y(x,,) are also unknown. However, we can find an
estimated expected performance measure at x,,, that we define as §(x,;), by using a

least squares estimate of the form shown in (38) below where /,,, 3,,, and 3,, are the

least squares parameter estimates for the corresponding parameters associated with the

constant, linear, and quadratic terms in (36).
J(Xni) = Iého +’ghlxhi +thxr?i- (38)
In a similar manner, we define ,Bh =[ﬁA’hO ,Bhl ,th].

In order to obtain the least squares parameter estimates for each partition, we take

n, samples on any choice of x,, (on at least three design locations for each partition to
avoid singular solutions). We assume that these x,. are given beforehand and we can
only take samples from these points. Given the n, samples, we define F, asthe n,
dimensional vector containing the replication output measures f(x,.) and X, asthe

n, x3 matrix composed of rows consisting of [L x,, X/ ] with each row corresponding
to its respective entry of f(x,,) in F, . Using the matrix notation and a superscript t to

indicate the transpose of a matrix, for each partition we determine the least squares

estimate for the parameters S, which minimize the sum of the squares of the error terms

(F, — X, B.) (F, — X, B,) - We obtain the least squares estimate for the parameters as
shown below:

;éh :(xhtxh)_lxhch'
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Our problem is to select the design location associated with the smallest mean
performance measure from among the mk design locations within the constraint of a
computing budget with only T simulation replications. Given the least squares estimates
for the parameters, we can use (38) to estimate the expected performance measure at each
design location. We designate the design location with the smallest estimated

performance measure in each partition as x, so that §(x,,)=miny(x,;)and designate

Xg, as the design location with the smallest estimated performance measure across the

entire domain so that §(xg,) = mhin Y(x,,)- Given the uncertainty of the estimate of the

underlying function, xg, is a random variable and we define Correct Selection as the
event where xg, is indeed the best location. We define N,; as the number of simulation
replications conducted at design location x,.. Since the simulation is expensive and the
computing budget is restricted, we seek to develop an allocation rule for each N,, that

maximizes the PCS as is reflected in (39) below.

max  PCS =P{y(Xg,) < y(x,))Vh=1...m,i=1...k}

Nllv'“Y Nmk

m k (39)
st. > > Ny =T
h=1 i=1

Elements of this problem are similar to the one partition case from the previous

m Kk

chapters. The constraint ZZ N,, =T denotes the total computational cost and
h=1 i=1

implicitly assumes that the simulation execution times for one sample are constant across

the domain. Since the optimal allocation is dependent upon the uncertainty of the
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parameters and the random variable xg, , we can only estimate the PCS even after

exhausting the total simulation budget T .
In order to solve the problem in (39), we must obtain estimates for the parameters

£, and we will again use a Bayesian regression framework where the parameters g, are

assumed to be unknown and are treated as random variables. We aim to find the posterior

distributions of £, as the simulation replications are conducted and use these

distributions to update the posterior distribution of the performance measures for each

design location. We can then perform the comparisons with the performance measure at
design location xg, as expressed in (39). We will use ﬁh and y(x,;) to denote the
random variables whose probability distributions are the posterior distribution of £, and
y(x,;) conditional on F, given samples respectively. Therefore, given a set of initial n,
simulation runs with the output contained in vector F, and the design location xg,

obtained from the least squares results, we can redefine the probability of correct
selection from (39) based on the Bayesian concept (Chen et al. 2010 and He et al. 2007)
as

PCS = P{§(Xs) < ¥(xy)Vh=1,...m,i=1..k} (40)

Using a non-informative prior distribution and assuming that the conditional

distribution of the simulation output vector F, is a multivariate normal distribution with
mean X, /3, and a covariance matrix o>l where | is an identity matrix, the results from

Chapter 2 show that the posterior distribution of g, is then given by
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By~ NI(X,'X, ) X, F L o2(X, X)) (41)
Since y(x,,) is a linear combination of the Bh elements, this means that y(x,;) hasa
Gaussian distribution of the form

V(%) ~ NIX i X X)) XGTR a2 XK X)) ™ X ] (42)
where X\ =[1 x,. xZ].

Given the results of Theorem 2 in Chapter 3, we will refer to the support points
for each partition as {X,,, X, X, } Where X, < X, <X, . (Note that since x,, may be at
different locations on each partition, then x,, may also be at different locations on each
partition). For notation sake, we define the number of runs allocated to partition has N,
and the percentage of N, that is allocated to each support point as
a, =N, /N, ,ie{lsk}. Using this notation and the PCS equation in (40), we can

now restate the OSD problem in (39) as the OSD problem in (43) below.

max P{y(xg)<V(X,,)Vh=1....m,i=1...k}

m (43)
s.t. z Nh-(ah1+ahs+ahk)=T
h=

1
As with the one partition case, we can estimate o/ from our least squares results and can
calculate y(x,;) using (42). We can then use Monte Carlo simulation with (43) in order

to estimate the PCS. The next section reduces the number of comparisons required and

presents a way to approximate the PCS without running Monte Carlo Simulations.
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4.2. A Lower Bound for PCS
Upon inspection, the PCS equation in (43) has two types of comparisons that are

delineated in (44). The first type consists of the k —1 comparisons between y(Xg,) and
each y(xg) for i=b in the best partition. The second type consists of the k(m—l)
comparisons between y(xg,) and each y(x,;) when h=B.

PCS = P{(V(Xe) < (%) Vi #b) N (T0xe) < Y04, ) VN £ Bii =1 K)} (4

Given xg, estimated from the second order polynomial metamodel results and Theorem 1

in Chapter 2, the assumption that our underlying function is quadratic within each
partition allows us to reduce the required number of comparisons within the best partition
from the k —1comparisons expressed in (44) to 2 comparisons. As such, (44) can be
rewritten as shown in (45) below subject to the three cases following (45).

PCS = P{(¥(Xg) < (X5 ) Vi= A, Z) " (V(Xg, ) < Y (X, )Vh = B,i=1...,k)}  (45)
Case 1 (Interior Design Case): b=1,k; A=b-1,Z=b+1,

Case 2 (Left Boundary Design Case): b=1, A=2; Z=k, and

Case 3 (Right Boundary Design Case): b=k; A=1,Z=k -1.

We have the same assumption of an underlying function that is quadratic in the non-best
partitions also. However, the comparisons in (44) for the non-best partitions are against

Y(Xg,) instead of the local best y(x,,). If we apply the Bonferroni inequality to the

comparisons with the global best for a non-best partition, we obtain
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P{T (%) £ T06). 1 =Lk 321 3 PLT () 2 ()} (46)

We can also establish a different lower bound for the comparisons from a non-best
partition by using the quadratic information within the partition as expressed in the

following lemma.

Lemma 3: Subject to the conditions expressed in Case 1 — Case 3 after (45), a lower
bound for the comparisons with the global best for a non-best partition can be expressed

by using the quadratic information within the partition as shown in (47).

P{Y (X)) S Y(Xyi) i =1,...,k } >
1-P{y(Xgp) = Y(Xip) }= PLY (Xpp) < Y (Xa) 3= PLY (Xip) < Y (Xi2) }

(47)
Proof: We aim to prove a lower bound for the comparisons associated with a non-best
partition that leverages the quadratic nature of the underlying function in the partition.

Subject to the conditions that follow (45), we will first show that

P{y(Xg) < Y(Xyi)i=1...k}>
P{(y(bi) = y(xhb))m (y(xhb) < y(th))m (V(th) <Y (X2 ))}

We begin by decomposing the comparisons into two parts: the comparison between the
global best and the local best and the comparisons between the local best and the other

designs.
PLY (Xay) < Y (Xt )s 1 =L, K 3= PYY (Xay ) — (%) ]+ [V (%) = Y(X)] < 01 =1,.. k }

Highlighting the intersection with the global best and the local best, we obtain
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P{Y (X ) < V(Xy), 1 =1,k }=
PLY (Xao ) = ¥ %) € 0N [T(Xg ) = § o) ]+ [T (%) = ¥ (%,)] < 0,1 2 b }

Using the definition of conditional probability, we obtain

PLY(Xe) < §0,), T =1, k 3= PY{T(xg,) — T (%)) < O} )
P{T (%) = Y u) ]+ [T 0x0) = TO4)] £ 0,1 2 b [F(xg,) - F(x,1,)] < 0}

Given [V(bi )— V(xhb)] < 0as expressed in the conditional in (48), we know that

PLY (Xa ) = (o) ]+ [T (X0p) = T(X0)] < 0,1 = b | [J(Xg) — F(X,p)] < 0} >
P{[y(xhb) - y(xhi)] <0,i=b] [y(XBb)_ y(xhb)] <0}

such that

P{Y (Xgy) < V(X), i =1, K 32
8 ' N N o _ (49)
PLT (Xep ) = T (Xip) ] < O3 PUT (%) = ¥ (X )] < 0, # b | [T (Xgp ) = T(X)] < O}

Using the results from Theorem 1 in Chapter 2, the k —1comparisons in expressed in (49)

can be reduced to 2 comparisons subject to the same conditions expressed after (45).

P{Y (Xgy) < V(X), i =1 k 3>
8 ' N _ . _ _ (50)
PV (Xgp ) = ¥ (Xup)] < 03 PUT (%) = Y (X )] 0,1 = A Z | [T (Xgy ) — ¥(Xp)] < O}

Using the definition of conditional probability, we can then rewrite (50) as an intersection

of the three comparisons as shown in (51) or (52) below.

PLT () < (%) i =1, K }>
- _ _ N - - (51)
P{[y(XBb )— Y(th)] <0n [y(xhb) - y(XhA)] <0n [y(xhb) - Y (X )] <0}

or

PLY (Xa ) < §(Xyi), i =1, k 3> 52)
PL(T (Xap) < T (X)) N (T (X)) < T (X)) N (F (%) < T (X2 )}

Applying the Bonferroni inequality to (52), we obtain
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P{Y(Xg) < Y(Xi)ii=1,...,k } >
1- P{Y (Xgy) = § (%)} = PLT (X4) < T (X0 )} = PLT (%) < F(%,2 )}

For ease of discussion, we will refer to comparisons involving design locations from
more than one partition as “between partition” comparisons and we will refer to
comparisons involving design locations from just one partition as “within partition”
comparisons.

In comparing the two different lower bounds expressed in (46) and (47), the lower
bound in (47) allows us to reduce the number of comparisons from the k between
partition comparisons in (46) to three comparisons: one between partition comparison
and two within comparisons. The comparison between the global best and local best is
common to both lower bound formulations. For each non-best partition, we would like to
use the tightest lower bound in order to provide the best approximation of our PCS.
Intuitively, when none of the between comparisons in (46) are competitive for a partition
but the two within comparisons as expressed in (47) are very competitive, the formulation
as expressed in (46) should provide a tighter lower bound. As an example of when we
would intuitively prefer the bound provided by (46), consider Partition B in Figure 10
with a relatively flat underlying function within the partition but the performance
measures for this partition are vastly removed from the performance measure of the
global best design location in Partition A. At the other extreme, consider comparisons
between Partition C and Partition A in Figure 10. The formulation in (47) intuitively

should provide a tighter lower bound when many of the between comparisons in (46) are
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competitive but the two within comparisons in (47) are not. We will explore the
conditions of when to use each type of formulation more in Section 4.4 as we discuss

implementation of the derived method.

Figure 10: Intuitive Lower Bound Scenarios

Given these two possible lower bounds for each non-best partition, applying the
Bonferroni inequality to (45) yields a lower bound for our PCS as shown in (53), which
we will consider our approximate PCS (APCS).

APCS =1-P{¥(Xg) 2 y(Xea) } = P{Y(Xgp) = V(X7 ) } -

Zmin Z:P{y(XBb)2 V(Xhi)};
8 P{T(Xg) = Y(Xes) 3+ PLY (%) = T(Xon) 3+ PLT(Xep) = V(X,y ) 3

(53)

To simplify the notation later in the paper, we will define the set of partitions y as those
partitions where we use the lower bound associated with (47) such that

65



(P{Y(Xgy) = T(Xu) 1+ PLT (X)) = T(Xua) 3+ PLY (X0p) = V(%) })

Using this definition of , we can write (53) in an alternate form as

APCS =1-P{¥(Xg) = ¥(Xga) } = P{Y(Xg) = V(X ) } - Z Z P{Y(Xe) 2 V(%) }

h#B,hegy i=1

- Z PLY(Xep) 2 Y (X)) 3+ PLY (Xip) = Y (X0) 3+ P{Y (X)) 2 V(%) }

h=B,hey

Using this alternate form of the APCS in (53), we can now restate the POSD problem in

(45) as the POSD problem in (54) below.

POSD Problem

max APCS =1- P{ y(XBb) 2 y(XBA) }_ P{ y(XBb) 2 y(XBZ ) }

Np1.Nps, Ny Vh=1,...,m

= 2 2 P{V(Xe) 2 V(X)) }

h=B,hey i=1

- Z P{Y (Xgp) = Y (X)) 1+ PLY () = Y(Xpa) 3+ PLY (Xi) = Y (Xi2) }

h#B,hey

s.t. Zm: Nh,(ah1+ahs+ahk)=T;
oh:, =0Vi=lsk
with
Case 1 (Interior Design Case): b=1,k; A=b-1,Z=b+1,
Case 2 (Left Boundary Design Case): b=1, A=2; Z=k, and

Case 3 (Right Boundary Design Case): b=k; A=1,Z=k-1.
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4.3. Lagrangian Formulation for APCS

Since our aim is to efficiently allocate the computing budget to the three support
points in each partition, {X,,, X.., X, |, we will rewrite the APCS equation in (54) so that
it is expressed in terms of the number of simulation runs allocated to each partition and

the percentage of these partition allocations that is allocated to each support point within

the partitions.

For the within partition comparisons, define

J(Xhi) = y(xhi) - V(th) = Ehz (lei - Xﬁb) + Ehl(xhi - th) '
Using the results of Section 3.3,

2

o0 —-r

- 1 =

P{-d(x,)>0}= ——e?2dr. (55)
&('[h.) \ 27
Jéni

and

c,. = O'r? lei,l n Dﬁi,s n thi,k 1

Nio | an Qs Ay
where

hil —

D - {(th — X ) Kk = X ) = (Kig = X ) Ko — th)} ,

(Xhl - th)(xhl - th)

Dhi,s _ {(Xm — Xhi)(xhk — Xhi)_ (Xm — th)(xhk — th)}’

(Xps = Xng ) (Xps = X))

Dhi,k _ {(Xhl — Xhi)(xhs — Xhi) - (Xhl — th)(xhs — th)}_ (56)

(X = X ) K = Xp)
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For the between partition comparisons, define g(xhb) = V(%) — Y(Xg, ). As with the
within partition comparisons, this result shows that g(xhb) is a linear combination of the
ﬁh elements so the g(xhb) terms are also normally distributed. Using the results of

Chapter 2, 5(th) ~N [S(th) » S ] Where éA‘(th) = J(Xu) — Y(Xg,) - Assuming

independence of the simulation runs between partitions,

1 1
G =0t (L Xy X5)OG X)) ey [+02 0 Xy X)X X)Xy |- (57)
Xt Xgo

Similar to the within partition comparison,

© 1 -2

P{-5(x,)>0}= [ —=—e2dt. (58)
Vs

As we take additional simulation runs, E[S(xhb)] = 5(xhb) and the information obtained
by additional simulation runs will affect &, and thus our PCS criterion. Likewise, we

may write (57) in the simplified form:

§hb _ O'E Er?b,l n Eﬁb,s + Er?b,k + Ué Eéb,l + Eéb,s n Eéb,k 1
Nio | Aps Ay Ng, | g s Ay
where Ehil _ (th B Xhi)(xhk B Xhi) , Ehi .= (Xhl B Xhi)(th B Xhi) ,
’ (Xhl - th)(xhl - th) ’ (th - Xhl)(xhs - th)
(Xpy = Xpi ) (Xps — X4i)
hik :{ hl h h h ) (59)
(th - Xhl)(xhk - th)
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By expressing both the within partition comparisons and the between partition
comparisons in terms of the number of simulation runs allocated to each partition and the

percentages of the simulation budget allocated to each support point, we can define a

Lagrangian function

M=

Q = APCS +J{T > N,.(a, +a, +ahk)}

=
Il

1

or, using (55) and (58), as

o0

j¢(r)dr+ j¢(r)dr - i [p(r)dr-

d(Xga) d(xez) h=B, “fv' =L 5 (xnr)

\/g SBZ Shi (60)
> j¢(r)dr+ j¢(r)dr+ I¢(r)dr+/1{T—i Nh,(ahl+ahs+ahk)}

h=B. h e v §(xyp) d (%) d(xz) h=1

Vb Sha Shz

Q

. - . : 0
to determine the within partition allocations and then Q to
he

We can investigate

Q

determine the between partition allocations. For example, by setting =0 and

Q
oN,,,

=0 for when h =B and h ey, we obtain

&<th)) d(x,,) Din; ¢(d<xhz)) d(x,,) Du;
\/_ ( hA)3/2 2 \/_ ( hZ)3/2 2
+¢(5(th)) 5(th) EhbJ _ Zﬂ(Nh')

\/eg_hb (fhb)al2 ﬁj O'hz

&

(61)
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and

o300y d06) | Dias  Diss | Di
( )3/2 a a a
VSha  Sha h1 hs hk
d(x,). d(x,,) | D%. Dj, D}
 480u), d0x,) [0, O, i )
\Shz (Shz) Ony s o
a a 2
+ (5(th)) S (Xyy) | Enb N Ers N Epo B Zﬁ(Nh-)
¢ \/_ 3/2 - 2
S (Sno) Oy s Ok o,

However, the equations obtained in (61) and (62) are nonlinear with respect to «; and
N, .. Our aim is to provide a simple means for efficiently allocating the budget instead of

attempting to use a root finding technigque to numerically compute the optimal values for

ay; and Ny, . In the next section, we will derive approximations for our optimal

allocations and our numerical results in Section 4.6 will demonstrate their efficiency.

4.4.  Approximately Optimal Allocations
The within partition allocations intuitively have three purposes to address the
problem as expressed in (54) or (60):
e to determine the best design location within the partition,
e to provide the most accurate estimate of the performance measure at the best
design location within the partition for use in the between partition comparisons,

e and to minimize the probability of the worst comparison in the partition.
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While these three purposes are related, their associated objective functions are different.
The results in Chapter 3 demonstrate that the OSD conditions in (33) and (34) provide
approximately optimal allocations to find the best design location in the partition. On the
other hand, as shown in Lemma 4 and Lemma 5 in Appendix D, providing all of the runs
to the best local design or design with the worst comparison in a partition provide
approximately optimal allocations to satisfy the second and third criteria. These
generalizations are captured more formally in Theorem 6 below.

In this section, we will derive an efficient heuristic based upon approximately
optimal allocations of simulation runs to the designated support points {xhl, xhs,xhk} by
analyzing allocations of lower and upper bounds of the APCS. We denote L and U as

the lower and upper bounds respectively.

To simplify the notation, we define probability P, = _max k[P{—g(xhi)ZO}]. This
#B;i=1,-,

probability is the most competitive comparison from among the (m-1)k between

partition comparisons.

We also define for the best partition probability P,, and, for h=B, we define

probability P,,, such that for h=B

M =argmax[ P{—d (xs,) =0}, P{—d(Xs,)>0}]

Pov =max[ P{—d (x5,) =0}, P{-d(xs,)>0}] (63a)
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and, for h= B

argmax[ P{~d (x,,) >0}, P{-d(x,)>0}, P{-5(x,,)20}], hey

- argvnl”lax[ P{—g (%) =011, otherwise
_ [ max[P{-d(x,,)=0}, P{-d(x,)=0}, P{-5(x,)20}], hey (630)
" max| P{—g (%,;)=01}], otherwise

Finally, we define R, as the associated signal to noise ratio for the best partition and R,

as the associated signal to noise ratio for h = B as shown below.

A 2
SN (™) 2 (642)
Og [|DBM,1|+|DBM,S +|DBM,k| ]
(d\(th))2 P = P{—&(XhA)ZO},
R — Ghz[‘DhM,1‘+‘DhM,s +‘DhM,k‘ ]2 P =P{-d(x,,)=0} (64b)
h — A 2
M, otherwise
O

Theorem 6: Using lower and upper bounds of the APCS, approximately optimal between
partition allocations and within partition allocations are as shown in (65a) and (65b) for
the best partition and (66a) and (66b) forh = B. For brevity, we use OSD to refer to
allocations in accordance with the OSD conditions in (33) and (34) as derived for the one

partition case in Chapter 3.
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For h=B,

T) PBM Z PQ
R;
No. =1 2N, Pa <Poihewy,M=AZ Vh (652)
m (N, ) m (N, ) .
GBZ\/Z ( “’2) + Y @ otherwise
hey Oy hey M=b Ofp
0sD, P, =P,
oy =408SD, P, <P,;hey,M=AZvh (65b)

ag, =1.0, otherwise

For h=B,
0 P, >P,
_JR.
Ni =151y . otherwise (662)
Rh
o = 0SD, Py =P{-d(x,,)=0}P, =P{-d(x,,)=>0} (66b)
" la,, =10, otherwise

Proof: We will examine the three cases that are delineated in (65a). The first case in (65a)

is a general case where P,, > P,. The second case is a special case that addresses where

P

. < P, but there are no between partition comparisons in the lower and upper bounds

of the APCS (such that hew Vh and M =A,Z Vh). The third case is a general case
where B, <P,, except for the special case addressed by the second case. As such, our

proof will establish the first and third cases and then address the special case.
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Case 1. P, > P,
When P, > P,, we will not use the quadratic bound formulation for any of the non-best
comparisons (such that h ¢ i for everyh = B). Therefore, our APCS from (14)

simplifies to

APCS >1- P{V(XBb ) = V(XBA) }_ P{V(XBb ) 2 V(XBZ )}_ ZZ P{y(xab ) 2 y(xhi) }

hey i=1

To establish the upper bound, we show that

1-max[P{y (Xg) = ¥(Xaa) 1 P{T (Xgy) = ¥(Xg, ) H2
1- P{T(Xg,) > T(Xgn) 1= PV (Xg) = T(Xer ) 1= DD P{T(Xgy) = §() }

hey i=1

For the lower bound, given P,, > P{-5(x, ) >03}Vh=B,i=1---,k, we know that

1= P{¥(Xep) 2 ¥(Xaa) 1= PLY (Xg) 2 Y%z ) 3= D D PV (X)) 2 V(%) 32

hey i=1
k
1- PBM - PBM - ZZPBM

hey i=1
Therefore, when P,, > P,, we can use the lower and upper bounds shown in (67).

1—{(m-1k +2}P,, <APCS<1-P,, (67)
Since L and U only contain within comparisons for the best partition, we obtain

Ng. =T and N, =0 for h=B. For the proof of the within allocation of «, in

accordance with the OSD conditions, see Chapter 3.
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Case 3: P,, < P, (except for the special case addressed by Case 2 below)
When P, <P,, the lower and upper bounds shown in (68) can be established using a
very similar approach as used for when P,, > P,.

BM —

1-2Py —3) Py & D Py SAPCS<1-> P, — > Py (68)

hey hey hey hey

For the within partition allocations, see the results from Chapter 3 for when

P,, =P{-d(x,,)>0} or when P, =P{-d(x,,)>0}. Lemma 4 in Appendix D addresses
when P, =P{-5(x,)>0} which occurs when hgy or when hey and

P = P{-5(x,,) = 0}. For the allocations within the best partition, except for the special

case, see Lemma 5 in Appendix D. The proof for the between partition allocations closely
follows those presented in Chen et al (2000) and Glynn and Juneja (2004). See Lemma 6

and Lemma 7 in Appendix E.

Case 2. P, <P,, hewy Vhand M=AZ V h
For the special case when P, < P, but there are no between partition comparisons in the
APCS (such that heyw ¥V h and M= A,Z V h), we also use the lower and upper bounds

presented in (68). However, the allocations for the best partition are obtained using the

same approach presented in Lemma 6 in Appendix E for the non-best partitions.

The results for the between partition allocations presented in (65a) and (66a) for

P,, <P, are very similar to those obtained by Chen et al (2000) and Glynn and Juneja
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(2004) for traditional OCBA. The rule for the best partition in (65a) has a “square root”

rule similar to the one obtained by the traditional OCBA method. The key difference is

that terms are not included for partitions associated when P, =P{-d(x,,)>0} or when

P, =P{-d(x,,)>0}. The comparisons associated with these partitions do not involve

the global best. The allocations for the non-best partitions in (66a) also have a “ratio” rule
that is similar to the one obtained by the traditional OCBA method. However, this ratio
rule uses a difference in the expected performance measure derived from the regression
equation instead of the mean of the samples at the design location. The variance terms are
also derived from the regression equation and influenced by the allocation methods
through the Lagrange polynomial coefficients.

Given the results from Theorem 6 expressed in (67a-b) for the non-best partitions,
we now revisit how to approximate the probabilities in (46) and (47) in order to choose
between the two different lower bounds expressed in the APCS in (54) or (60). As an
approximation, we use the Cantelli inequality (Spall 2003) such that for within partition
comparisons

1 .
. 2
1+(d<xhi>J

A similar expression can be made for between partition comparisons such that for each

P{-d(x,)>=0}<

partition h in (54) or (60), we seek
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k
min| >’ ! ! + ! + 1 : (69)

(5o L (S)) . (doed) . ()Y
1+ —= 1+ —— 1+ —= 1+ —=
) o) () )

While (69) is based upon the APCS formulation in Section 4.3, for an alternate approach

we can utilize the results of Section 4.4 and base our choice on only P,,,. Therefore, for

each non-best partition h in (54) or (60), we seek

min max; max 1 1 1 : (70)

o)) 30) ) . (w0 . (A0
1+ 1+ —| 1+ 1+ —=

For the numerical experiments presented in Section 4.6, we experimented with both of

the approximations presented in (69) and (70) to determine h ey and obtained nearly

identical results.

45. POSD Procedure

The following is the algorithm that we used to implement the POSD method for the

experiments in this dissertation. The actual ProModel code used is in Appendix G.
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POSD Procedure (Maximizing PCS)

INPUT

INITIALIZE

LOOP

UPDATE

k (the number of design locations), T (the computing budget), x,; (the
design locations with partitions already determined), no (the number of
initial runs), 6, (the number runs allocated each iteration j);

j<0;

Perform ng simulation replications for three design locations in each
partition; by convention we use the D-opt support points such that

| | _ 0
Ay = ah(k+l) =, =Ny /3.
2

k .
WHILE ) N/ <T DO

i=1
- Estimate a quadratic regression equation using the information from
all prior simulation runs for each partition.

- Estimate the mean and variance of each design location using
9(Xhi) = :Bho +:Bh1Xi +ﬁhzxi2 .

- Determine the observed global best design so that x,, =argminy(x;)
Bi
and the local best design in each partition so that x,, =argmin(x.).
hi

- Based upon the location of the best design in each partition, use (54) to

determine x,, and X, .
- Determine P,,, and P,,, using (64a-b) and corresponding R, and R,

using (65a-b).
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- Determine P, =arg max[P{—é:(xhi )=0 }].

h#B;i=1--k
- Determine h ey using (70).

ALLOCATE Increase the computing budget by ¢,,, and calculate the new between
budget allocations N/* using (65a) and (66a) (round as needed).
Using N/i* as well as (65b) and (66b), determine the within budget
allocations for ar);*, )" and a)* (round as needed).

SIMULATE Perform o/ simulations for partition h, h=1,...,m ; design i, i = 1, s,
k; j— j+ 1.

END OF LOOP

4.6.  Numerical Testing and Results

In this section, we describe how we compared the results from our new POSD
method against the results from five other allocation procedures. We start by providing a
description of the other methods chosen to provide a perspective of the efficiency gained
by our POSD method. We then describe our testing framework and provide our
experimental results.

The first two other allocation procedures are the equal allocation method (EA)
and the OCBA method. These methods were described in Section 3.7 and require no
modification for use with the partitioned domain. Both EA and OCBA rely upon

comparisons of the mean response at the global best design location and each individual
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design location and do not rely upon a response surface within each partition to aid in the
comparisons.

For our experiments, we will also compare against three methods that utilize a
response surface within partitions: equal allocation with a response surface (EA-RS), D-
opt, and OSD. The first two methods were described in Section 3.7 and OSD is the
method derived in Chapter 3. The three methods were adapted for the partitioned case by
utilizing the respective methods within the partitions but equally allocating between the
partitions.

For the POSD method, we initialize as per the algorithm described in the previous

section with Ny, =Ny 1)/, = Ny =no=20. We then used the algorithm described in

Section 4.5 to allocate an additional 84 runs between each partition and within each
partition.

The first experiment considers a function with three local minima on a domain
with 60 design locations and compares the results of using POSD against the other five
methods described above. The second experiment uses the same domain and underlying
function as the first experiment but the simulation noises are not normally distributed.
The third experiment also uses the same domain and underlying function as the first
experiment but analyzes the impact of our partitioning scheme similar to Experiment 6 in
Chapter 3. The fourth experiment also compares the results of using POSD against the
other five methods described above. This experiment, also with 60 design locations, has
only one global minimum but the function is not relatively symmetric about the optimum

location except in a local area. For the first, second, and fourth experiments, we used a
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heuristic based upon the results of Experiment 6 in Chapter 3 that exploits the adaptive
nature of the first two cases of (34) and partitioned the domains of 60 design locations of
the experiments into six disconnected partitions such that, for example, the last design
location for the first partition is x,, and the first design location for the second partition is
Xy; -

We conducted all four experiments using a total computing budget of 10,000 runs.
The results will show that these amounts are sufficient to compare the performance of the
methods and determine the sensitivity of the POSD to the assumption of normally
distributed noises. To mitigate the fact that the different allocation methods have varying
fixed costs associated with them and in order to compare the performance of the methods
using various simulation budgets, we calculate the PCS for each method during each
iteration until the total simulation budget is exhausted. We repeat this whole procedure
10,000 times and then estimate the PCS obtained for each method after these 10,000

independent applications.

Experiment 7 (three local minima, 60 design locations)

This experiment is taken from the global optimization literature (T6rn and

Zilinskas, 1989) and uses the following function:
f(x.)=sin(x;)+sin0x; /3) +In(x,) —0.84x, +3+ N(0,1) .

We used a domain consisting of 60 evenly spaced design locations where x €[3, 8] such

that the global minimum is x,, =5.20 and y(X,,) = —1.60. Figure 11 below shows that
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this function also has two local minima at x, = 3.42 with y(x,) =0.16 and Xx,, = 7.07

with y(x,,) =-1.27.

y(x;)
o

Figure 11: y(x;) = sin(x;) + sin(10xi/3) + In(x;) - 0.84x; + 3

As mentioned above, we partitioned the domain for the regression based methods into six
partitions and each of the local minimums are in a separate partition. Figure 12 shows the
simulation results. POSD clearly performs the best since it uses a regression equation to
capture the information and then efficiently allocates both between and within the
partitions. The OSD and D-opt methods are the next best methods. They are regression
based methods that at least allocate efficiently within the partitions. As a point of

comparison, OSD achieves a 95% PCS after about 2,200 runs and D-optimal achieves the
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same PCS after 3,300 runs. POSD achieves the same PCS after about 1,000 runs or about

45% of those required by OSD and 30% of those required by D-opt.

80% V oo6660670
o || f L e

N

50% - /@/%

s | M
30% 275 A/Erfrfrfrfrfrfrfrtr

20% MKKK

10%

Probability of Correct Selection, P{CS}

0%

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Total Number of Simulation Runs
--POSD -2 0SD ——D-opt -+-EA-RS -©-0OCBA +-EA

Figure 12: Results of Experiment 7

Experiment 8 (Different noise distributions)

This experiment uses the same underlying function and domain used in
Experiment 7 such that y(x;) =sin(x;) +sin@0x, / 3) + In(x,) —0.84x; + 3. We varied the
type of the distribution for the noise terms of the simulation output while ensuring that
each experiment used a distribution with a mean equal to zero and the variance equal to

one. In addition to &, ~ N(0,1), we also used:
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- &, ~Uniform(z, = —/3, T,= J3) where 7, and 7, are the lower and upper
limits of the distribution,

- &, ~ Exponential (x =1)—1 where x is the mean of the distribution, and

- &, ~ 2Binomial (p =0.5) -1 where p is the probability of success of one trial.

The results of the experiment demonstrate that, for this problem, POSD is robust and
performs relatively similar when assuming that the noise terms are normally distributed
even if the noise terms are actually from one of the other three distributions. Table 4

below provides a sample of the results.

Table 4: Results of Experiment 8

Total PCS PCS PCS PCS
Runs (Normal) | (Uniform) | (Exponential) | (Binomial)
528 69.84% 70.06% 71.14% 70.70%
1032 95.34% 95.11% 95.06% 95.40%
1536 99.14% 99.09% 98.97% 99.19%
2040 99.76% 99.80% 99.51% 99.79%
2544 99.89% 99.93% 99.72% 99.88%

Experiment 9 (Varied Number of Partitions)

This experiment also uses the same underlying function and domain used in
Experiment 7 such that y(x;) =sin(x;) +sin@0x; /3) +In(x,) — 0.84x; + 3. We used
POSD but varied the number of partitions used which also varied the location of the best
global design within its partition. We experimented using six partitions, ten partitions,

twelve partitions, fifteen partitions, and twenty partitions where the optimal design
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location on the partitions are 7 out of 10, 3 out of 6, 2 out of 5, 3 out of 4, and 3 out of 3
respectively. The results of the experiment are in Figure 13 below and are similar to those
from Experiment 6. POSD will do well if we can partition the domain so that the optimal
design location is within the middle half of a partition and as close to the center of the
partition as possible. Note the performance of POSD using ten partitions (POSD 10) and
with the optimal design location in the center of the partition is almost as good as the
performance of OSD using six partitions (POSD 6) where the design location is not near
the middle of the partition. At the other extreme, in worst case scenarios when we have
no good information to guide the partitioning or the underlying function is highly non-
quadratic, the domain can be partitioned using sets of three design locations yielding an
unbiased, piecewise quadratic estimate of the underlying function. Given partitions with
only three design locations and a response surface that is fitted through the mean values
at each design location across the entire domain, we expect that the performance will be
similar to OCBA. Figure 13 shows that POSD with twenty partitions (POSD 20) and 3
design locations per partition performs slightly worse than OCBA after a small number of
runs and gradually matches the performance of OCBA with a much larger computing

budget.
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Figure 13: Results of Experiment 9

Experiment 10 (one global minimum, asymmetric function, 60 design locations)
We conducted this last experiment using the following function to represent the
simulation output. Its skewed but convex nature is common among simple decision
problems such as minimizing the cost of inventory problems or problems for the
maximum concentration in the bloodstream for a single dose of a drug (Giordano and

Weir, 1985).
f(x;)=10x, +10/x, + N(0,1) .

We again used a domain consisting of 60 evenly spaced design locations where

x €[0.5, 2.5] such that, as shown in Figure 14 below, the global minimum is x,; =1.01
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and y(x,s) = 20. As with the Experiment 7, we partitioned the domain for the regression

based methods into six partitions.
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Figure 14: y(x;) = 10x; + 10/x;

The results are consistent with Experiment 7 and are shown in Figure 15. D-
optimal achieves an 89% PCS after about 10,000 and OSD achieves the same PCS after
only 7,448 runs. POSD achieves an 89% PCS after about 2,600 runs or about 35% of

those required by OSD and 26% of those required by D-opt.
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Figure 15: Results of Experiment 10
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CHAPTER 5 CONCLUSIONS AND FUTURE WORK

This dissertation explores the potential of enhancing R&S efficiency by
incorporating simulation information from across the domain into a regression
metamodel. We have developed an OSD method that can further enhance the efficiency
of the simulation run allocation for selecting the best design. The OSD method offers
approximately optimal rules that determine the design locations to conduct simulation
runs and the number of samples allocated to each design location. Numerical experiments
demonstrate that the use of a regression metamodel can indeed dramatically enhance
simulation efficiency, even compared with some existing efficient R&S methods such as
OCBA. As compared with methods using a regression metamodel, the OSD method
offers a significant improvement over not only naive response surface methods (by
50~70% reduction) but also the well known D-optimality criterion in DOE literature (by
another 17%-~27% reduction).

Though the use of a regression metamodel can dramatically enhance simulation
efficiency, the regression-based methods, including our OSD, are constrained with some
typical assumptions such as an underlining quadratic function for the means and
homogeneous simulation noise. These assumptions can be alleviated if we can efficiently
partition the domain so that we focus only on a small local area of the domain where the

assumptions will hold. With this aim in mind, we have developed a POSD method for
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selecting the best design on a partitioned domain. Our new method uses a heuristic based
upon approximately optimal rules for between and within partitions that determine the
number of samples allocated to each design location. Numerical experiments demonstrate
that our new approach can dramatically enhance efficiency over existing efficient R&S
methods.

There are certainly ways to expand this research and improve upon the OSD and
POSD methods. Probably the area with the most potential is the integration of the POSD
method with search or partitioning algorithms for general simulation optimization
problems. As mentioned in Chapter 4, the partitions may be derived from knowledge of
the domain, through iterative refinement such as a heuristic based upon the results of
Experiment 6 in Chapter 3, or through an optimal selection procedure such as
multivariate adaptive regression splines (MARS) (Friedman 1991). A heuristic based
upon the latter two methods may prove promising. The MARS technique conducts a
forward stepwise procedure to iteratively partition the domain into a piecewise
polynomial spline. It conducts a forward stepwise procedure to pick the next partition
boundary (knot location) that minimizes the error in fitting the model and then conducts a
backwards stepwise procedure to remove knot locations to minimize the generalized
cross validation (GCV). The forward stepwise procedure overfits the model and then the
backwards step brings it back to a “reasonably” fit model. As opposed to the MARS
technique, we are not necessarily interested in getting the best fit across the entire domain
for our current simulation information. In the spirit of OCBA and OSD, intuitively we

would like a good fit for portions of the domain that are critical in determining the best
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design location and may be willing to accept a poor fit for the model in areas that are not
critical to this decision.

Refining the allocation schemes or refining the implementation of the schemes of
the OSD and POSD methods are other areas for future research. We used approximations
and bounds to establish the allocation rules for both the OSD method and the POSD
method. Each method may benefit by the use of different bounds or approximations. A
way to improve the implementation of the methods would be the development of a
heuristic to dynamically determine the number of runs to allocate during each iteration in
order to mitigate the effects of the rounding rules. Brantley (2005, 2007) provides an
improvement for the OCBA method that allocates one run at a time to reduce the
numerical error in rounding the number of runs (Chen and Lee, 2010). While allocating
only a single run during each iteration of POSD may be inefficient due to the
symmetrical nature of the OSD within partition allocations, POSD may benefit from a
similar dynamic rule that reduces the rounding when allocation between partitions.

This dissertation used very general assumptions that the underlying function was
quadratic, that the noise terms are homoscedastic and normally distributed, and that the
simulation run costs were equal across the entire decision domain. While partitioning of
the domain may offset the impacts violating some of these assumptions, each of these
assumptions also provides an area for further research. Possible extensions include
incorporating the recent work of Yang (2010) that extends the de la Garza phenomenon
to other nonlinear forms such as exponential and log-linear models. Yang’s effort

provides the minimum number of support points and the optimal locations for some of
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the support points for these and other nonlinear forms. Dette and Melas (2010) extend the
work of Yang to include a broader class of problems such as rational regression models
(with polynomials for both the numerator and denominator).

Intuitively, since we are only sampling on three support points in each partition,
we should be able to expand this method to a continuous domain by assuming that the
number of design locations in each partition goes to infinity. However, we have to do
some different treatments on the definition of PCS because the current one will go to zero
as the number of design locations goes to infinity. In order to find the stationary point of
the quadratic equation presented in (3) for a continuous domain, Melas et al. (2003)
reformulate the linear (in the parameters) regression equation presented in (4) as a
nonlinear regression equation and then solve for the extreme point of the new equation.
Proposition 1 in Appendix F provides a connection between their work in the DOE
community and the results for the interior design cases from (34) obtained from our PCS
criterion. (In addition to the interior design cases, our method provides results for
instances when the optimal solution is a boundary point and not necessarily a stationary
point for the underlying equation.)

This dissertation focuses on one-dimensional problems and extending the method
to higher dimensions is another area for further research. Morrice et al. (2008, 2009)
extended the concepts from OSD to a method for selecting the best configuration (or
design) based on a transient mean performance measure. The procedure extends the
OCBA and OSD approaches to systems with means that are a function of some other

variable such as time. Morrice et al. analyze the linear case and this prediction problem
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can be viewed as a two dimensional POSD problem with each configuration representing
a partition. For true multi-dimensional problems that are not just easily partitioned into
one dimension segments, we propose that the OSD method can be combined with multi-
dimensional search methods such as the Stochastic Trust Region Gradient-free Method

(Chang, Hong, and Wan, 2007).
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APPENDIX A PROOF OF THEOREM 4

Proof: We can use the chain rule to establish that
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Using (23)
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Therefore, the Hessian matrix for the objective function can be written as:
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We see that the Hessian matrix is negative semi-definite and conclude that the objective

function (26) is concave. Therefore, the allocation rule given in (25) will yield a global

(although not necessarily unique) optimal solution to (26) (Bazarra, et al., 1993 and

Burden and Faires, 1993).
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APPENDIX B PROOF OF THEOREM 5

Proof: In order to simplify both the notation and derivation, we provide a derivation for a

continuous choice of x, and then apply the results to the discrete domain that is presented

in Theorem 5.

We can use the chain rule to establish that

Q _ Qg

OX, O0cy OX

Using the results from (27), we obtain

@__¢(&(XM)) d(xy) 95y,
X Jou 25)? ox,

Substituting the results of (33) into (23), we obtain

2
S =D [P+ O I
0 262 0Dy 0JDys| 0Dy
Z = 22Dy D] [P ‘ale‘+ ‘axM ¥ ‘aka‘ . (B1)

S S S S

Define the sign function as sgn(w) = % whenw = 0. This function is undefined
abs(w
when w = 0. Using this notation, we can rewrite (B1) as
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o 20°
;;(M = T HDM,l‘_'_‘DM,S +‘DM,k‘:|'
) (B2)
0Dy, 0Dy , 0Dy 5
sgn(DM,l)W"'sgn(DM,z) aXS +Sgn(DM'3)5—XS
where

aDM,l _ (XM B Xb)(XM + X, — X — Xk)

aXs (Xl _Xs)z(xl _Xk)

aDM,2 = (XM B Xb)(XM + X, — X = X )(sz — X — Xk)

X, (X = X,)2 (X, — %, )?

aDM,S _ (XM B Xb)(XM + X, — X — Xk)

aXs (Xk - Xl)(xk - Xs)2

To determine the optimal location for X, we must consider five cases which, as will be
shown, result from the combinations of sgn(x,, + %, —x, =%, )={-1, 0, 1} and
sgn(2x, —x, —x. ) =4{-1, 1}.

Xy + X, <3x1+xk

Case I: . For this case,

sgn(Dy;) =—sgn(xy — X;)
Sgn(DM,z) = Sgn(XM - Xb)
Sgn(DM,3) = Sgn(XM - Xb) : Sgn(XM +X, =X — Xs)-
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Substituting these results and the fact that sgn(x,, + X, — X, —X,) =1 when

X, < Xy + X, — X, We obtain

Xy £ X, — X, — X
(M b 1 k)<0

o Fo 1l e =

0 4o°
aLXI\: = %[|DM,1|+|DM,S

or

aQ

§>0 when X, < Xy, + X, — X,

S

In the same manner, sgn(x,, + X, — X, — X;) =—1 when x, > X,, + X, — X, . Substituting

into (B2)

05y
OX

(XM +Xb_xl_xk)(2Xs _Xl_Xk)

(X = %)* (% = %,)°

+|DM,k|]'|XM _Xb|

2
:4%[|DM,1|+|DM,S

S

Analyzing the above result, we see that S—Q >0 when x, < (X, +X,)/2; S—Q =0 when
X X

S S

X, =(X +x%,)/2;and S—Q <0 when x; > (x, +X,)/2. Therefore, when
X

S

Xy + Xy 3% + X,
<
2

0S

S

, we choose x, = (X, +X,)/2. Note that is not defined when

X, = Xy + X, — X, . However, ¢,, is continuous at this location and the results above

demonstrate that S_Q is positive as we approach the location from the positive and
X

S

negative directions.
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3X, + X, mtX XX

Case Il: <
2 2

We can use the results for Case I to show that S—Q >0 when X, <Xy +X, —X;.
X

S

When [(3x, + X, )/ 2 < Xy, +X, <X, + X, |N[x, > X, + X, =, |, we can establish that

2X. —X, — %, )>0 and @<O.Since @>owhen X, <X, +X — X, and @<0 when
S 1 k a a S M b 1 a
X, X

S S

. OSy - :
X, > Xy +X, — %, We choose X, =X, + X, —X,. As in Case I, %M s not defined when
OX

S

X, = Xy + X, — X, . However, ¢,, is continuous at this location and the results above

demonstrate that aa—Q is positive as we approach the location from the negative direction
X

S

and negative as we approach the location from the positive direction. Also, note that as

Xy + X X, + X
M b_)l k .
2 2

X\, + X X, + 3X
Case ll]: =M "5 5 ™1 k

. For this case, we know that

sgn(Dy; 1) =gN(Xy — X, ) - SGN(Xy + X, = Xg =X )
sgN(Dyy2) =—sgn(Xy, — X;)
Sgn(DM,S) = Sgn(XM - Xb)

The remainder of the proof for this case is similar to the proof for Case | and we omit the

details for brevity.
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Case IV: ;Xk < Xu ; % X +43Xk . The proof for this case is similar to the proof for

Case Il. We again omit the details for brevity.

X X, Xy +X T . . :
Case V: = 5 k=M 5 b . The derivative is not defined for this case. However, using

Xu T X,

X, + X
the results from Case Il and Case IV, we know that x;, — X, as — 5 « from

Xu T Xp

the negative side and x, — x, as 5

— il ; X, from the positive side. The extreme

points cover these two cases. Therefore, we can choose X, at any location on the domain

and will choose x, = (x, +Xx,)/2 for consistency with Case | and Case IlI.

The results from Cases | — V demonstrate that:

3X, + X, utX Xt X

Xy + Xp — Xy, 7 S 5 5
X, + X Xy + X, X, +3X,
Xy =9 Xy + Xy — X 5 < 5 < 2 (B3)

(X, +%,)/2, otherwise

Note that the solutions in (B3) are derived from an examination on a continuous domain
and the approximate PCS expressed in (18) with allocations that satisfy (33) is

maximized by selecting the interior design location closest to x, selected from (B3).
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When presented with design locations evenly spaced across the domain such that

X, — X,

A=Xy—X =
k-1

Vi=1...,k—-1, we can show for the first case in (B3) that

Xy X =X =X +(M-DA+X +(b-DA—-Xx, =X +[M+b-1) 1A =X, ;-

The second cases in (B3) can be proven in a similar manner. When presented with an odd
number of design locations evenly spaced across the domain, the third case in (B3) can

also be proven such that

3%, + X, < Xt % <x1+xk

XM+b—l’ 4 - 2 2
X, + X X\, + X X, +3X
Xs: XM+b—k’ 12 k < M2 bS 1 4 k

X120 Otherwise
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APPENDIX C PROMODEL CODE FOR OSD (ONE PARTITION CASE)

See www.promodel.com
*hkkhkkkkhkhkkhkhkkhkhkhkkhhkhhhkkhhkhkkihkhhhkkhhkhkkihkhhhkhikhihkhhhkkihkhihkhhhkkihkhihkhhhkihkhihkhhhiiikikx

* *

* Formatted Listing of Model: *
* C:\Users\Admin\Documents\GMU\Research\Dissertation prep info\Promodel
code\Discrete with Response Surface v10.1 contour map.MOD *

* *

*khhhhkhkhkkkhkhkhkhhrhhhkhkhkhkkhkhhrhrrhhhkhkhhhhihrrhhhhkhhrihrrrhhhhhhhirrrhidhhhiiiiiix

Time Units: Minutes

Distance Units: Feet
k,hkkhkkhkkkhkkhkkhkkhkkhkhkkhkkhkkhkhkkhkkhkhkkhkkhkhkhkkhkkhkhkkhkkhkhkhkkhkkhkhkkhkkhkhkhkkhkkhkkhkkhkkhkhkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkhkkhkkhkkkhkhkkkhkkhhkkikihkkikk
* Locations *
k,hkkhkkhkkkhkkhkkhkkhkkhkhkkhkkhkkhkhkkhkkhkhkkhkkhkhkhkkhkkhkhkkhkkhkhkhkkhkkhkhkkhkkhkhkhkkhkkhkkhkkhkkhkhkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkhkkhkkhkkkhkhkkkhkkhhkkikihkkikk

Name Cap  Units Stats  Rules  Cost

Experiment_loc 1 1 None Oldest, ,
Run_Queue Infinite1 None Oldest, ,
Run_Allocation 1 1 None Oldest, ,

*khhhhkhkhkkkhkhkhkhhhhhkhkhkhkkhkhhrhrrhhhhkhkhhhrrrhhkhhkhhhiirhhhhhhhhirrhhhihkhhiiiiiix

* Entities *

*khhhhkhkhkkkhkhkhkhhhhhkhkhkhkkhkhhirrhhhhkhkhhhrrrhhhhkhhhhrrrhhhhhhhiirrhhhkhkhhiiiiiix

Name  Speed (fpm) Stats  Cost
Experiment 150 None
Run 150 None

*hhkkkhkhkhkkhkhkhkkhhkhkkhkhhkkhhhkkhhhkhhhkkhhhkhhhkhkhkhkhkkhhkhkihkhkihhkkihhkkhhhkkhhhkkhhhkkhkihkkhhihkkhkihkhiikkiik

* Processing *

*hhkhkAhkhkhkhkhkhhkhkkhhhkhhhkhkhhkhhhkhhhkhhhkhkhkhkhkhhkhhhkhiihhhhhkhhhkkiihhkkihhkkhhhkkhhhkhkihhiikiik
Process Routing

Entity Location  Operation Blk Output Destination Rule Move Logic

Experiment Experiment_loc INC v_iteration

a_runtotal =0
v_designs = m_designs
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A_RESSTATS[1] =0
A_RESSTATS[2] =0
A RESSTATS[3] =0
A_RESSTATS[4] =0
A RESSTATS[5] =0
A_RESSTATS[6] =0
A_RESSTATS[7]=0
A_RESSTATS[8] =0
A RESSTATS[9] =0
A_RESSTATS[10]=0
A_RESSTATS[11] =0
A RESSTATS[12] =0
A_RESSTATS[13] =0
A RESSTATS[14] =0
A_RESSTATS[15] =0
A RESSTATS[16] =0
A_RESSTATS[17] =0
A RESSTATS[18] =0
A_RESSTATS[19] =0
A RESSTATS[20] = m_designs
A_RESSTATS[21] =0
A RESSTATS[22] =0

INT TEMPCOUNT

TEMPCOUNT =1

WHILE TEMPCOUNT < (m_designs+1) DO
BEGIN
a_RunCount[TEMPCOUNT,1] =0
a_RunCount[ TEMPCOUNT,2] =0

A_Design_STATS[TEMPCOUNT,1] = 0
A_Design_STATS[TEMPCOUNT,2] = 0
A_Design_STATS[TEMPCOUNT,3] = 0
A_Design_STATS[TEMPCOUNT,4] =0
A_Design_STATS[TEMPCOUNT,5] = 0
A_Design_STATS[TEMPCOUNT,6] = 0
A _Design_STATS[TEMPCOUNT,7] =0
A_Design_STATS[TEMPCOUNT,8] = 0
A _Design_STATS[TEMPCOUNT,9] =0
A_Design_STATS[TEMPCOUNT,10] = 0

a_error_factor[tempcount] = U(1,1)
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INC TEMPCOUNT
END

Interval = Real(m_Maxx-m_Minx)/Real(m_designs-1)
# This randomly generates optimal solution

H FFFFAFAIAXEXRXX for X2 and binomial experiment
#V_SOLUTION = U( (m_Maxx+m_Minx)/2 , (m_Maxx-m_Minx)/2 )
# This fixes the optimal solution
V_SOLUTION =3.0/3.0

# This block is for the Experiment with c0, c1, ¢2 ~ U(-10,10)
#v_c0=U(0,10)
#v_cl =U(0,10)
#v_c2 =U(0,10)
#V_SOLUTION = -0.5*v_c1/v_c2

# *hkkkhkhkkkihkhkiikikkiik for Xl\4

#V_SOLUTION = U( (m_Maxx+m_Minx)/2 , (m_Maxx-m_Minx)/4 )

# **+*+*+*x**Eor fixed solution
#V_SOLUTION = (m_Maxx+m_Minx)/2

# This block finds the design with the lowest mean.
INT bestloop
REAL distbest, tempint, disttemp

Vv _best=1
tempint =0

H FxFFIKAI AKX AR RRX for X2 and binomial experiment
distbest = (m_minx+tempint-v_solution)*(m_minx+tempint-v_solution)

bestloop = 2
WHILE bestloop < (v_designs+1) DO
BEGIN
tempint = tempint + interval

# xAFFFFFIAIARE** for X2 and binomial experiment
disttemp = (m_minx+tempint-v_solution)*(m_minx+tempint-v_solution)

IF disttemp < distbest Then
Begin
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distbest = disttemp
V_best = bestloop
End

INC bestloop

END

V_EXPERIMENTRUN =0
V_RUNPER =0

TEMPCOUNT =1

WHILE TEMPCOUNT < (m_increments+1) DO
BEGIN
INC a_runtotal
ORDER 1 RUN TO Run_Queue

Wait 0.4 sec
INC TEMPCOUNT
END
1 Experiment EXIT FIRST 1

Run Run_Queue  Wait 0.1 sec 1 Run Run_Allocation FIRST 1
Run Run_Allocation INT TEMPQUEUE, 1, J, 12, J2,I0UT

m_MAIN

Wait 1 sec 1 Run EXIT FIRST 1

*hhkkkhkhkhkkhkhkhkkhhkhkkhkhkhkkhhhkhkhhkkhhhkkhhhkkhhhkhkhhkhkkhhkhkihkhkkihhkkihhhkkhhhkkhhhkkhkihkkhkhhkkhhhkkhhihkhiikkiik

* Arrivals *

*hhkkkhkhkhkkhkhkhkkhhkhkkhkhhkkhhhkhhhkkhhhkkhhhkhhhkhhhkhkhhkhihkhkihhhkkihhhkkhhhkkhhhkkhhhkkhhhkkhkihkkhihkkhiikkiik

Entity Location  Qty Each First Time Occurrences Frequency Logic

Experiment Experiment_loc 1

Osec 10000 60 min

*hhkkkhkhkhkkhkhkhkkhhkhkkhkhhkkhhhkkhhhkhhhkkhhhkhhhkhkhkhkhkkhhkhkihkhkihhkkihhkkhhhkkhhhkkhhhkkhkihkkhhihkkhkihkhiikkiik

* Attributes *

*hkhkhkAhkhkhkkhkhkhkkhhkhkkhhhkhhhkhhhkhhhkhhhkhhhhhkhkhkhhkhkhhhkhhhkhhhkhhhrhhhhhhhhhhihhkihhiikiikx

a_runtotal Integer  Entity
KA A A A I I I I A A A A A A A A A A A A A A A A A A A A A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAA AR AAhdhdk*k
* Variables (global) *
109



*hhkkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhhkhkhhkhihhkhkihhkhkhhkhkhkhkhkkihhkhkkihkhkhhhkikihkhihhkkhihkkhihkkhkihhkkhkihhkkhihkikihkiik

ID Type Initial value Stats
ylowest Real 0 None
xlowest Real 0 None
v_designs Integer m_designs None
v_SOLUTION Real 0 None
v_locall Real 0 None
v_local2 Real 0 None
v_LOWMEAN Real 0 None
v_LowX Real 0 None
v_LOWEST Integer O None
v_RunPer Integer O None
v_ExperimentRun Integer 0 None
v_TotalRun Integer O None
V_STAND_ VAR Real 0 None
TempLoop Integer O None
TempRun Real 0 None
V_Next C Run Integer O None
interval Real 0 None
V_best Integer O None
V_iteration Integer O None
V_varbeta Real 0 None
V_XC Real 0 None
v_rhol Real 0 None
v_rho2 Real 0 None
v_z1 Real 0 None
v_z2 Real 0 None
v_z3 Real 0 None
v_del_bminus Real 0 None
v_del_bplus Real 0 None
v b Real 0 None
v_B2 Real 0 None
v_B2_ actual Integer O None
v_c0 Real 0 None
v_cl Real 0 None
v_c2 Real 0 None
V_support Integer O None

B R R R e e S R R R R R R e R S R R R R R R R S S R R R R R R R R R R R R R R R R R R R R R R R R R R R S T R R
*

Arrays

B R R R S e S e R R R R R e e R S R R R R R R R R S S R R R R R R R R R R R R R R R R R R R R R R R R R R T S S R R

ID Dimensions Type Import File Export File Disable Persist
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#COL 1: Location of X

#COL 2: Sum of X

#COL 3: Sum of X"2

#COL 4: Sum of X~3

#COL 5: Sum of X™4

#COL 6: Sum of y

#COL 7: Sum of yx

#COL 8: Sum of yx"2

#COL 9: Sum of y*2

#COL 10: Variance of runs for this design

#COL 11: Predicted response at each location

#COL 12: Delta b,i

#COL 13: Li,1

#COL 14: Li,2

#COL 15: Li,3

#COL 16: Sigma”2_b,i

#COL 17: phi_i

#COL 18: denominator for secant line
a_Design_stats 110,18 Real None
a_RunCount 110,2 Integer None

#

#COL 1: Mean of Left Design

#COL 2: Mean of Middle Design

#COL 3: Mean of Right Design

#COL 4: beta2 term

#COL 5: betal term

#COL 6: betaO term

#COL 7: x*

#COL 8: y*

#COL 9: lowest y

#COL 10: lowest x

#COL 11:

#COL 12: Sum of Runs

#COL 13: Variance of optimal response

#COL 14: OCBA Coefficient

#COL 15: OCBA Run Allocation

#COL 16: Delta term for OCBA

#COL 17: If x* is optimal, then this is set to 1 (used for v&v only)

#COL 18:

#COL 19:

#COL 20:Width of Partition (number of designs)
#COL 21: Xleft

#COL 22: Xright

#
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#COL 24: Al (for c-opt)

#COL 25: A2

#COL 26: A3

#COL 27: alpha 1

#COL 28: alpha 2

#COL 29: alpha 3

#

#COL 31: Inverse 1,1

#COL 32: Inverse 1,2

#COL 33: Inverse 1,3

#COL 34: Inverse 2,1

#COL 35: Inverse 2,2

#COL 36: Inverse 2,3

#COL 37: Inverse 3,1

#COL 38: Inverse 3,2

#COL 39: Inverse 3,3

#
a_ResStats 39 Real

#

#COL 1: P{CS}

#COL 2: Mean Distance from local

#COL 3: Squared Distance from local

#COL 4: Mean y_hat(x*)

#COL 5: Squared y_hat(x*)

#COL 6: Mean f(x*)

#COL 7: Squared f(x*)

#COL 8: rhol

#COL 9: rho2

#COL 10: Allocations to Design 1

#COL 20: Allocations to Design 11
a_Results 1501,110 Real

#

#COL 1: Coefficients

#COL 2: Temp Column
aB 3,3 Real
a_RHS 3 Real
a_INV 3,3 Real
FTF_MATRIX 3,3 Real
a_TEMP 6,6 Real
a_error_factor 110 Real

aF 3 Real
aE 3 Real
a_alpha 3 Real

None

No

a_Results.xls None
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*hhkkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhhkhkhhkhihhkhkihhkhkhhkhkhkhkhkkihhkhkkihkhkhhhkikihkhihhkkhihkkhihkkhkihhkkhkihhkkhihkikihkiik

* Macros *

*hhkkhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkhhhkhkihkhihhkhkkihhkhkkhhkhkkhkhkhkkihhkhkihkhkihirhhkikihhkkhihhkkhihkkhihkkhkihhkkhkihhkkhihkikihkiik

ID Text
m_nzero 2
m_initial_loops 2
m_delta 14
m_restricted 1
m_MAIN

# This block sets the number of runs for each partition to the value of nzero (initial
iterations)

IF A_ RUNTOTAL < m_initial_loops THEN
BEGIN
# M_INITIAL_RUNS
# Conducts 2 iterations of D-opt instead of runs to entire domain
m_D_opt
m_D_opt

m_MESH_CONSTRUCTION
END

# This block does the subsequent iterations.
ELSE
BEGIN
m_optimality_criteria
END
# This checks to see how many total runs a design has been allocated
# and how many it currently has. If it needs more, it calls the macro for
# allocating a new run based upon the simulated underlying distribution.
m_runs_discrete
#This block allows us to generate performance statistics for different computing budgets.
m_response_stats

m_pcs_calculation

m_optimality_criteria
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# Choose the optimality criteria
# Use for D-opt
#m_D_opt

# Use for Equal Allocation - Response Surface
# M_INITIAL_RUNS

# Use for OSD
transient_PCS_opt

m_response_stats
# Generates a response surface across the entire partition

REAL AMAX, SWITCH, TEMPCOEF, TEMPDIFF
INT NMAX, 11, 33, 111, IOUTLOOP

INT UKL,IMN

REAL TOL, TEMPTOL

m_Info_matrix

# Determines the total runs allocated for the entire partition and the response at each
discrete point
INT I11JJ
J=1
ylowest =
a_Resstats[6]+a_Resstats[5]*a_design_stats[11JJ,1]+a_Resstats[4]*a_design_stats[11JJ,1]
**2
v_lowest =1
WHILE 11JJ < (m_designs+1) DO
BEGIN
a_Resstats[12] = a_Resstats[12] + Real(a_RunCount[113J,2])
a_design_stats[11JJ,11]=
a_Resstats[6]+a_Resstats[5]*a_design_stats[11JJ,1]+a_Resstats[4]*a_design_stats[11JJ,1]
**2
IF a_design_stats[113J,11] < ylowest then
BEGIN
ylowest = a_design_stats[11JJ,11]
v_lowest = 11JJ
END
INC 11JJ
END

T
# Use this for OSD
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m_Diff_opt_response
HUHHHHHHHHH

m_d_opt_runs 1

EXpeI’I ment Paramete rs kkhkhkkhhrhkhkhhkhkhkhirrrrhkhhkhkhrrrririrhdhhhihiiiiiiixdx

m_minx -1

m_maxx 1

m_designs 11

m_increments 1+(1100 - m_designs * m_nzero)/m_delta

NDIM 3

One Pal’tltlon Code *hkhkhkAhkhkhkAhkhkAhAhkkhkhhikhhkhkhhhhkhhhkhhhkiiihiiiiiikh

m_initial_runs
# (Generic) This block sets the number of runs for each partition to the value of nzero
(initial iterations)
TEMPQUEUE =1
WHILE TEMPQUEUE < (v_designs+1) DO
BEGIN
INC a_RunCount[TEMPQUEUE,1], m_nzero
INC TEMPQUEUE
END
m_MESH_CONSTRUCTION
# This block checks to see how many total runs a design has been allocated
# and how many it currently has. If it needs more, it calls the macro for
# allocating a new run based upon the simulated underlying distribution.

INT Tempmesh
Tempmesh =1
While Tempmesh < (v_designs+1) DO
Begin
a_Design_stats[Tempmesh,1]= m_Minx + Real(Tempmesh-
1)*Real(m_Maxx-m_Minx)/Real(m_designs-1)
INC Tempmesh
End

m_runs_discrete
# This block checks to see how many total runs a design has been allocated
# and how many it currently has. If it needs more, it calls the macro for
# allocating a new run based upon the simulated underlying distribution.

Temploop =1
While Temploop < (v_designs+1) DO
Begin

While a_RunCount[Temploop,2] < a_RunCount[Temploop,1] DO
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Begin

m_run_generation
A_Design_STATS[Temploop,2] =

A Design_STATS[Temploop,2] + a_design_stats|[ Temploop,1]
A _Design_STATS[Temploop,3] =

A Design_STATS[Temploop,3] + a_design_stats|[ Temploop,1]**2
A_Design_STATS[Temploop,4] =

A Design_STATS[Temploop,4] + a_design_stats[Temploop,1]**3
A_Design_STATS[Temploop,5] =

A Design_STATS[Temploop,5] + a_design_stats[Temploop,1]**4
A _Design_STATS[Temploop,6] =

A _Design_STATS[Temploop,6] + RunValue
A_Design_STATS[Temploop,7] =

A _Design_STATS[Temploop,7] + RunValue*a_design_stats[ Temploop,1]
A _Design_STATS[Temploop,8] =

A _Design_STATS[Temploop,8] + RunValue*a_design_stats| Temploop,1]**2
A _Design_STATS[Temploop,9] =

A _Design_STATS[Temploop,9] + RunValue**2
INC a_RunCount[Temploop,2]

End

INC Temploop
End
m_run_generation
# This macro contains the specific formulae for each experiment
INC V_totalrun
INC v_ExperimentRun
INC a_results[a_runtotal, Temploop+9]

# This block allocates the run
REAL RunValue
HEHHHHEHHEHHHHHHAHEH T EXperiment 1

# used for homoscedastic
RunValue = (a_design_stats[ Temploop,1]-v_SOLUTION)**2 + N(0,1)

#********************* for _X/\2

#RunValue = -((a_design_stats|[Temploop,1]-v_SOLUTION)**2) + N(0,1)

# normal but heteroscedastic
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# RunValue = (a_design_stats|[ Temploop,1]-v_SOLUTION)**2 +
a_error_factor[temploop]*N(0,4)
xRk for new experiment 1

# RunValue = v_c2*(a_design_stats[ Temploop,1])**2 +
v_cl*(a_design_stats[Temploop,1]) + v_c0 + N(0,1)

# for binomial experiment

#RunValue = bi( 1, (0.25*(a_design_stats[ Temploop,1]-
v_SOLUTION)**2) )

# used for x4
# RunValue = (a_design_stats|[ Temploop,1]-v_SOLUTION)**4 +
N(0,1)

m_Info_matrix
# This block is used to build the XTX Info matrix
=1
While 11 < (NDIM+1) DO
Begin
J=1
a_RHS[I] =0
While JJ < (NDIM+1) DO
Begin
FTF_MATRIX[JJ, ] =0
INC JJ
END
INC II
END

=1
WHILE Il < (m_designs + 1) DO
BEGIN
FTF_MATRIX[1,1] = FTF_MATRIX[1,1] + a_RunCount[Il,2]
FTF_MATRIX[1,2] = FTF_MATRIX[1,2] +
A Design_STATSIII,2]
FTF_MATRIX[1,3] = FTF_MATRIX[1,3] +
A Design_STATSIII,3]
FTF_MATRIX[2,1] = FTF_MATRIX[2,1] +
A Design_STATSIII,2]
FTF_MATRIX[2,2] = FTF_MATRIX[2,2] +
A Design_STATSIII,3]
FTF_MATRIX[2,3] = FTF_MATRIX[2,3] +
A Design_STATSJI1,4]
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FTF_MATRIX[3,1] = FTF_MATRIX[3,1] +
A Design_STATSJ[I1,3]
FTF_MATRIX[3,2] = FTF_MATRIX[3,2] +
A Design_STATS[I1,4]
FTF_MATRIX[3,3] = FTF_MATRIX[3,3] +
A Design_STATSJ[II,5]
a_RHS[1] =a_RHS[1] + A_Design_STATS[II,6]
a_RHS[2] =a_RHS[2] + A_Design_STATS[II,7]
a_RHS[3] =a_RHS[3] + A_Design_STATSJ[I1,8]

INC 1l
END

# This block is used to invert the XTX info matrix

=1
While 11 < (NDIM+1) DO
Begin
J=1
While JJ < (NDIM+1) DO
Begin
A_TEMP[JJ,I1] = FTF_MATRIX[JJ,11]
INC JJ
END
INC 11
END

=1
While 11 < (NDIM+1) DO
Begin
JJ = (NDIM+1)
While JJ < (2*NDIM+1) DO
Begin
A_TEMP[I1,JJ]1 =0
INC JJ
END
A_TEMP[ILNDIM+I1] =1
INC 11
END

#  This loop row reduces the first N columns of the matrix
=1
While 11 < (NDIM+1) DO
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Begin

#  This loop does maximum element pivoting for each column and then
# divides the row by the first element in the row

AMAX = A_TEMP[II, 1]
NMAX = II

W=11+1
WHILE JJ < (NDIM+1) DO
BEGIN
IF SQRT(A_TEMP[JJ,1I]**2) > SQRT(AMAX**2) THEN
BEGIN
AMAX = A_TEMP[JJ,11]
NMAX = JJ
END
INC JJ
END

IF Il <> NMAX THEN
BEGIN
W=
WHILE JJ < (2*NDIM+1) DO
BEGIN
SWITCH = A_TEMP[II,3]]
A_TEMP[I1,1J] = A_TEMP[NMAX JIJ/AMAX
A_TEMP[NMAX,JJ] = SWITCH
INC JJ
END
END
ELSE
BEGIN
=1
WHILE JJ < (2*NDIM+1) DO
BEGIN
A_TEMP[11,3] = A_TEMP[I1,JJJJAMAX
INC JJ
END
END

# This loop reduces all other elements in the column to zero

N=1
WHILE JJ < (NDIM+1) DO
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BEGIN
IF JJ <> Il THEN
BEGIN
TEMPCOEF = -A_TEMP[JJ,11]
=1
WHILE 111 < (2*NDIM+1) DO
BEGIN
A_TEMP[JJ,1I] = A_TEMP[3J,Il1] +
TEMPCOEF*A_TEMPIII,I11]
INC 111
END
END
INC JJ
END

INC 11
END

#  This loop establishes the inverse matrix using the non-reduced rows

=1
WHILE 11 < (NDIM+1) DO
BEGIN
JJ = (NDIM+1)
WHILE JJ < (2*NDIM+1) DO
BEGIN
A_INV[I1,J3-NDIM] = A_TEMP[I1,3J]
INC JJ
END
INC II
END

#  This loop establishes the inverse matrix using the non-reduced rows

a_RESstats[6] =a_INV[1,1]*a_RHS[1] + a_INV[1,2]*a_RHS[2] +
a_INV[1,3]*a_RHS[3]

a_RESstats[5] =a_INV[2,1]*a_RHS[1] + a_INV[2,2]*a_RHS[2] +
a_INV[2,3]*a_RHS[3]

a_RESstats[4] =a_INV[3,1]*a_RHS[1] + a_INV[3,2]*a_RHS[2] +
a_INV[3,3]*a_RHSI[3]

a_RESstats[31] =a_INV[1,1]
a_RESstats[32] = a_INV[1,2]
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a_RESstats[33] =a_INV][1,3]
a_RESstats[34] =a_INV][2,1]
a_RESstats[35] =a_INV[2,2]
a_RESstats[36] =a_INV][2,3]
a_RESstats[37] =a_INV][3,1]
a_RESstats[38] =a_INV][3,2]
a_RESstats[39] =a_INV]3,3]

AI Iocati on Schemes *hhkAhErkhkrkrAhkhkrhkhkrhkhkihkhkrhkhkkihkhkkihkhkrhhkrhhkirihhiihkihiikiiikkx

m_Diff_opt_response

# Calculates F_i

a_F[1] = ((a_design_stats[1,1]-
a_design_stats[(m_designs+1)/2,1])*(a_design_stats[1,1]-
a_design_stats[m_designs,1]))**2

a_F[2] = ((a_design_stats[(m_designs+1)/2,1]-
a_design_stats[1,1])*(a_design_stats[(m_designs+1)/2,1]-
a_design_stats[m_designs,1]))**2

a_F[3] = ((a_design_stats[m_designs,1]-
a_design_stats[1,1])*(a_design_stats[m_designs,1]-
a_design_stats[(m_designs+1)/2,1]))**2

INT IRUNSLOOP, ICOUNTRUNS
IRUNSLOOP =1
ICOUNTRUNS =0
While IRUNSLOOP < (m_designs+1) DO
BEGIN

#  Calculates the delta term
a_design_stats[IRUNSLOOP,12] =
a_design_stats[IRUNSLOOP,11]-a_design_stats[v_lowest,11]

a_design_stats[IRUNSLOOP,18] =
sgrt((a_design_stats[IRUNSLOOP,1]-a_design_stats[v_lowest,1])**2)

If v_lowest =1 Then
Begin
a_design_stats[IRUNSLOOP,13] =1
End
Else
Begin
a_design_stats[IRUNSLOOP,13] =
(a_design_stats[(m_designs+1)/2,1]-
a_design_stats[IRUNSLOOP,1])*(a_design_stats[m_designs,1]-
a_design_stats[IRUNSLOOP,1])

121



a_design_stats[IRUNSLOOP,13] =
a_design_stats[IRUNSLOOP,13]-(a_design_stats[(m_designs+1)/2,1]-
a_design_stats[v_lowest,1])*(a_design_stats|[m_designs,1]-a_design_stats[v_lowest,1])
a_design_stats[IRUNSLOOP,13] =
(a_design_stats[IRUNSLOOP,13]**2)/a_F[1]
End

If v_lowest = (m_designs+1)/2 Then
Begin
a_design_stats[IRUNSLOOP,14] =1
End
Else
Begin
a_design_stats[IRUNSLOOP,14] = (a_design_stats[1,1]-
a_design_stats[IRUNSLOOP,1])*(a_design_stats[m_designs,1]-
a_design_stats[IRUNSLOOP,1])
a_design_stats[IRUNSLOOP,14] =
a_design_stats[IRUNSLOOP,14]-(a_design_stats[1,1]-
a_design_stats[v_lowest,1])*(a_design_stats|[m_designs,1]-a_design_stats[v_lowest,1])
a_design_stats[IRUNSLOOP,14] =
(a_design_stats[IRUNSLOOP,14]**2)/a_F[2]
End

If v_lowest = m_designs Then
Begin
a_design_stats[IRUNSLOOP,15] =1
End
Else
Begin
a_design_stats[IRUNSLOOP,15] = (a_design_stats[1,1]-
a_design_stats[IRUNSLOOP,1])*(a_design_stats[(m_designs+1)/2,1]-
a_design_stats[IRUNSLOOP,1])
a_design_stats[IRUNSLOOP,15] =
a_design_stats[IRUNSLOOP,15]-(a_design_stats[1,1]-
a_design_stats[v_lowest,1])*(a_design_stats[(m_designs+1)/2,1]-
a_design_stats[v_lowest,1])
a_design_stats[IRUNSLOOP,15] =
(a_design_stats[IRUNSLOOP,15]**2)/a_F[3]
End

ICOUNTRUNS = ICOUNTRUNS + a_RunCount[irunsloop,2]

INC IRUNSLOOP
END
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# Calculates current alpha_i
a_alpha[1] =a_RunCount[1,2] / Real ICOUNTRUNS)
a_alpha[2] = a_RunCount[(m_designs+1)/2,2]/ Real ICOUNTRUNYS)
a_alpha[3] = a_RunCount[m_designs,2]/ Real ICOUNTRUNS)

IRUNSLOOP =1
While IRUNSLOOP < (m_designs+1) DO
BEGIN

a_design_stats[IRUNSLOOP,16]=
(a_design_stats[IRUNSLOOP,13]/a_alpha[1]+a_design_stats[IRUNSLOOP,14]/a_alpha[
2]+a_design_stats[IRUNSLOOP,15]/a_alpha[3])/ICOUNTRUNS

INC IRUNSLOOP
END

#diff-opt code
# This block calculates sqrt(Al), sqrt(A2), and sqrt(A3) (without T and the variance
included) for the c-opt case

Real Second
Int v_second

If ((v_lowest > 1) and (v_lowest < m_designs)) Then
Begin
If (a_design_stats[(v_lowest-1),12]/sqrt(a_design_stats[(v_lowest-
1),16])) > (a_design_stats[(v_lowest+1),12]/sqrt(a_design_stats[(v_lowest+1),16])) Then
Begin
Second = a_design_stats[(v_lowest+1),1]
v_second = v_lowest+1
End
Else
Begin
Second = a_design_stats[(v_lowest-1),1]
v_second =v_lowest-1
End

End

If v_lowest = m_designs Then
Begin
If (a_design_stats[1,12]/sqrt(a_design_stats[1,16])) >
(a_design_stats[(m_designs-1),12]/sqrt(a_design_stats[(m_designs-1),16])) Then
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Begin
Second = a_design_stats[(m_designs-1),1]
v_second = m_designs-1

End

Else

Begin

Second = a_design_stats[1,1]

v_second =1

End

End

If v_lowest =1 Then
Begin
If
(a_design_stats[m_designs,12]/sqrt(a_design_stats[m_designs,16])) >
(a_design_stats[2,12]/sqrt(a_design_stats[2,16])) Then
Begin
Second = a_design_stats[2,1]
v_second =2
End
Else
Begin
Second = a_design_stats[m_designs,1]
v_second = m_designs
End
End

v_support = (m_designs+1)/2

If ((3*a_design_stats[1,1]+a_design_stats[m_designs,1])/4) <
((a_design_stats[v_lowest,1]+Second)/2) Then
Begin
If ((a_design_stats[1,1]+a_design_stats[m_designs,1])/2) >
((a_design_stats[v_lowest,1]+Second)/2) Then
Begin
v_support =v_lowest + v_second -1
End
End

If ((a_design_stats[1,1]+3*a_design_stats[m_designs,1])/4) >
((a_design_stats[v_lowest,1]+Second)/2) Then
Begin
If ((a_design_stats[1,1]+a_design_stats[m_designs,1])/2) <
((a_design_stats[v_lowest,1]+Second)/2) Then
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Begin
v_support =v_lowest + v_second - m_designs
End
End

# This line makes it opt alloc to d-opt support points
#v_support = (m_designs+1)/2

a_Resstats[24] = (a_design_stats[v_support,1]-
a_design_stats[v_lowest,1])*(a_design_stats|[m_designs,1]-a_design_stats[v_lowest,1])

a_Resstats[24] = a_Resstats[24]-(a_design_stats[v_support,1]-
Second)*(a_design_stats[m_designs,1]-Second)

a_Resstats[24] = a_Resstats[24]/((a_design_stats[1,1]-
a_design_stats[v_support,1])*(a_design_stats[1,1]-a_design_stats[m_designs,1]))

a_Resstats[25] = (a_design_stats[1,1]-
a_design_stats[v_lowest,1])*(a_design_stats|[m_designs,1]-a_design_stats[v_lowest,1])

a_Resstats[25] = a_Resstats[25]-(a_design_stats[1,1]-
Second)*(a_design_stats[m_designs,1]-Second)

a_Resstats[25] = a_Resstats[25]/((a_design_stats[v_support,1]-
a_design_stats[1,1])*(a_design_stats[v_support,1]-a_design_stats[m_designs,1]))

a_Resstats[26] = (a_design_stats[1,1]-
a_design_stats[v_lowest,1])*(a_design_stats[v_support,1]-a_design_stats[v_lowest,1])

a_Resstats[26] = a_Resstats[26]-(a_design_stats[1,1]-
Second)*(a_design_stats[v_support,1]-Second)

a_Resstats[26] = a_Resstats[26]/((a_design_stats[m_designs,1]-
a_design_stats[1,1])*(a_design_stats[m_designs,1]-a_design_stats[v_support,1]))

a_Resstats[24] = sqrt(a_Resstats[24]**2)
a_Resstats[25] = sqrt(a_Resstats[25]**2)
a_Resstats[26] = sqrt(a_Resstats[26]**2)

# This block calculates alpha 1, alpha 2, and alpha 3 for x-optimality3

#v_b =a Resstats[7]
#v_B2 = a_ResStats[4]

If ((a_Resstats[26]<a_Resstats[24]) and
(a_Resstats[26]<a_Resstats[25])) Then
Begin
a_Resstats[27] = Round ((m_delta) / (1+
a_Resstats[25]/a_Resstats[24] + a_Resstats[26]/a_Resstats[24]))
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If a_Resstats[27] <0 Then
Begin
a_Resstats[27] =0
End

If a_Resstats[27] > m_delta Then
Begin
a_Resstats[27] = m_delta
End

a_Resstats[28] = Round ((m_delta) / (1+
a_Resstats[24]/a_Resstats[25] + a_Resstats[26]/a_Resstats[25]))

If a_Resstats[28] < 0 Then
Begin
a_Resstats[28] =0
End

If (a_Resstats[27]+a_Resstats[28]) > m_delta Then
Begin
a_Resstats[28] = m_delta - a_Resstats[27]
End

If (a_Resstats[27]+a_Resstats[28]) < m_delta Then
Begin
a_Resstats[29] = m_delta - a_Resstats[27] - a_Resstats[28]
End
ELSE
Begin
a_Resstats[29] =0
End

End

If ((a_Resstats[24]<a_Resstats[25]) and
(a_Resstats[24]<a_Resstats[26])) Then
Begin
a_Resstats[29] = Round ((m_delta) / (1+
a_Resstats[25]/a_Resstats[26] + a_Resstats[24]/a_Resstats[26]))

If a_Resstats[29] < 0 Then
Begin
a_Resstats[29] =0
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End

If a_Resstats[29] > m_delta Then
Begin
a_Resstats[29] = m_delta
End

a_Resstats[28] = Round ((m_delta) / (1+
a_Resstats[24]/a_Resstats[25] + a_Resstats[26]/a_Resstats[25]))

If a_Resstats[28] < 0 Then
Begin
a_Resstats[28] =0
End

If (a_Resstats[29]+a_Resstats[28]) > m_delta Then
Begin
a_Resstats[28] = m_delta - a_Resstats[29]
End

If (a_Resstats[29]+a_Resstats[28]) < m_delta Then
Begin
a_Resstats[27] = m_delta - a_Resstats[29] - a_Resstats[28]
End
ELSE
Begin
a_Resstats[27] =0
End

End

If ((a_Resstats[25]<a_Resstats[24]) and
(a_Resstats[25]<a_Resstats[26])) Then
Begin
a_Resstats[27] = Round ((m_delta) / (1+
a_Resstats[25]/a_Resstats[24] + a_Resstats[26]/a_Resstats[24]))

If a_Resstats[27] <0 Then
Begin
a_Resstats[27] =0
End

If a_Resstats[27] > m_delta Then
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Begin
a_Resstats[27] = m_delta
End

a_Resstats[29] = Round ((m_delta) / (1+
a_Resstats[24]/a_Resstats[26] + a_Resstats[25]/a_Resstats[26]))

If a_Resstats[29] <0 Then
Begin
a_Resstats[29] =0
End

If (a_Resstats[27]+a_Resstats[29]) > m_delta Then
Begin
a_Resstats[29] = m_delta - a_Resstats[27]
End

If (a_Resstats[27]+a_Resstats[29]) < m_delta Then
Begin
a_Resstats[28] = m_delta - a_Resstats[27] - a_Resstats[29]
End
ELSE
Begin
a_Resstats[28] =0
End

End

m_pcs_calculation
# This block calculates how far off the center of the best partition is from
# the actual optimal solution

# Did we pick the right solution? (yes or no)
IFV_LOWEST =V_BEST THEN
BEGIN
a_results[a_runtotal,1] = a_results[a_runtotal,1] + 1
END

# x* criteria: How far off are we from the right solution? (difference between the best x
and what we think is the best x)
a_results[a_runtotal,2] = a_results[a_runtotal,2] + a_Resstats[10]
a_results[a_runtotal,3] = a_results[a_runtotal,3] +
a_Resstats[10]**2
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#y_hat criteria: How bad is our solution compared to the response at the actual solution?

(difference between y at the best x and y at what we think is the best x)
a_results[a_runtotal,4] = a_results[a_runtotal,4] + a_Resstats[9]
a_results[a_runtotal,5] = a_results[a_runtotal,5] + a_Resstats[9]**2

# f(x*) criteria: How bad is our solution against the true solution?
a_results[a_runtotal,6] = a_results[a_runtotal,6] + (a_Resstats[10]-
V_SOLUTION)**2
a_results[a_runtotal,7] = a_results[a_runtotal,7] + (a_Resstats[10]-
v_SOLUTION)**4
Allocation_Calculations
*hkhkhkhkhkhkhkhkhkkhkhkhhhkhhhkhhhkhkhhkhkhkhkhkhhkhhhhkhhhhhhkhhhkhrhkhhhkhhihiiikx
m_D_opt
# D-Opt

a_RunCount[1,1] =a_RunCount[1,1] + m_d_opt_runs

a_RunCount[(m_designs+1)/2,1] = a_RunCount[(m_designs+1)/2,1]
+m_d_opt_runs

a_RunCount[m_designs,1] =a_RunCount[m_designs,1] +
m_d_opt_runs

transient_ PCS_opt a_RunCount[1,1] =a_RunCount[1,1] + a_Resstats[27]
a_RunCount[v_support,1] = a_RunCount[v_support,1] +
a_Resstats[28]
a_RunCount[m_designs,1] =a_RunCount[m_designs,1] +
a_Resstats[29]

*hhkkkhkhkkkhkhkhkkhkhkhkkhkhhkkhhhkkhhhkkhhhkkhhhkkhhhkhhkhkhkhhkhkhhkhkkihkhkihhhkkhhhkkhhhkkhhhkkhkihkkhhhkkhkihkhkiikikik

* External Files *

*hhkkkhkhkkkhkhkhkkhkhkhkkikkhhkkhhhkkhhhkkhhhkkhhhkkhhhkhhhkhkhhkhkkhhkhkkihkhkhhhkkihhkkhhhkkhkihkkhkhhkkhkhhkkhihkkhkiikkiik

ID Type File Name  Prompt
(null) a_Results.xls
(null) a_scatter.xls
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APPENDIX D PROOFS OF LEMMA 4 AND LEMMA 5

Lemma 4: When P, =P{-5(x,;)=0} and h = B, the within partition comparisons are
determined by the c-optimality criterion where x,. is selected as one of the three support

pointsand «,; =1.0.

Proof: When P,, = P{-5(x,;)=0} and h = B,

U :¢($(Xhi)) é(xhi) O'hz EhZiJ
ooy, \/f—h, 2(‘§hi)3/2 Np. aﬁj

~N,.A

ou

oay,;

Setting =0, we obtain

g(xhi) Ghz Ehzi,j
2(§hi)3/2 (Nh.)2 aﬁj

5(%y)

Jén

Therefore,

# =4 (D1)

)

Ens _ Ene _ Eni _ 22(NL) (607

2 2 2 A
Ay Qg Ay (X))

o2 5 (%) H( i )

Given a property of the Lagrange polynomial coefficients where E,;, + E,;  +E,; =1

(Burden and Faires, 1993), we know that E,fi‘j # 0 for at least one of the support points.
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Using the fact that o, + a,,, + &, =1 and, assuming for example thatEZ,, =0, we
obtain the result that

‘Ehi,s
Oy +7——
|Evial

Mam =1

hi
=

By symmetry of solution, we obtain the general result that

Q. = ‘Ehivi‘
hj =
‘Ehi,l‘ + ‘Ehi,s

(D2)

+ ‘Ehi,k‘
The same results are obtained for the lower bound of the APCS also. For the optimal

support point location, we must consider three cases.

Case D-I: x,; = x,,. For this case, we obtain that E,;, =1, E;;; =0,and E;, =0.

Substituting these results into (D2), we obtain «,, =1.0.

Case D-II: x,; = x,, . For this case, we obtain that E,;, =0, E;;; =0,and E,;, =1

resulting in &, =1.0.

Case D-III: x,; # X, and Xx,; # X, . From (59), we know that

Eps = {(th = Xni ) (X — Xhi)}1 E,. = {(Xm = Xni ) (X — Xhi)} and

(Xhl - th)(xhl - th) (th - Xhl)(xhs - th)

_ { (Xhl - Xhi)(xhs B Xhi) }

hik —
I (th - Xhl)(xhk - th)
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When x,, =X, we obtain thatE,;, =0, E,;; =1,and E,;, =0. Substituting these

results into (D2), we obtain «,, =1.0. In order to show that X, = X

is an optimal

selection of X, , we can use the chain rule to establish that

U au 8¢,

ath aé:hi ath .

ouU

hi

Substituting , We obtain

S(Xhi) 6é:hi
2(‘):hi)3/2 ath .

aJ__ﬂéum
N, Jéu

Substituting (D2) into (59), we obtain

2 2 2 2
Og EBi,l + EBi,s + EBi,k
Ugy Qg Ay

)

2
Shi = Ii_:.[‘Ehi,l‘ +‘Ehi,s

+‘Ehi,k‘ ]2 +

(D3)

Be S

Using again the property where E, +E,, +E, =1 (Burden and Faires, 1993), we

OShi

hs

know that [E,|+|Ep >0 we obtain that

+|Epie |21 Thus, when x> X,

AN o, Similarly, when x,, < X, 95hi < we obtain that 2Y- > 0.

th th axhs

Lemma 5: When P, <P, , the within partition comparisons for the best partition are

determined by the c-optimality criterion where X, is selected as one of the three support
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points and g, =1.0(for future allocations after initial runs so that we do not have a

singular solution).

Proof: When B, <P,

ou _Os Bbj[z¢(5(XhM) 5(XhM) N Z ¢(5(th)) 5(th) ]_NBJ“

aOlBi NB hey \/ Z(é:hM 3/2 \lfh 2(§r1t))3/2
Setting U =0, we obtain

O
B _ (No. )4

2

o [Z LGN I ) ¢(5<xhb)) 5() j

hey \/_ 2(§hM 3/2 hey \/a z(éghb)m2

The rest of the proof follows the proof from Lemma 4.
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APPENDIX E PROOFS OF LEMMA 6 AND LEMMA 7

Lemma 6: When B,, <P, , the between partition allocations for i =B and j =B are

obtained by E_' - & .

T

Proof: We consider three cases.

Case E-I:
When P, =P{-d(x,,)=0} or when P,, =P{-d(x,)=0} and h=B for both

comparisons,

oU :¢(a(XhM)) a(XhM) O'h2 DrfM,l+ DﬁM,s 4 DhZM,k _2
ON,, \/ghM 2(Shm )3/2 (Nh.)2 Ay Qs Ay
Setting v =0, we obtain

he

¢(a(XhM)) a(XhM) O'h2 [D;—M,l N DﬁM,s N Dr?lvl,k}z/1
VShm 2(Shm )3/2 (Nh.)z Apy s (22

Such that

¢(a(XiM)) a(XiM) O'iz Difvl,l + Difvl,s N Dii/l,k _
Vem  2Sim )*? (Ni.)2 Oy s e

¢(d(XjM)) d(x) o Djzm,1+Dj2M,s +DJZM,k
VSm  2Sm ) (Nj-)2 Aj Xjs X ji
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Chen et al. (2000) provide using an asymptotic allocation rule for where T —o and

Glynn and Juneja (2004) provide using a large deviation approach that

{d’\(xim)}zz a(XiM) 2.
M Sim

Substituting the results from Chapter 3, we know that

_ Ghz [‘DhM,l‘_'_‘DhM,s +‘DhM,k‘ ]2
Shi = N,.
Therefore,
(o) f i (o) S
O'iz[|DiM,1|+|DiM,s +|DiM,k| ]2 O-jz[|DjM,1|+|DjM,s +|DjM,k| ]2
N. N

je

# P T (dex,) f
+|DjM,k| ]2 (a(XiM ) )2

N, Gi2[|DiM,1|+|DiM,s

Ni 2|0 s+ [Py

Note that these results are very similar to the OCBA results with the major difference
being that the Lagrange coefficients serve as an efficiency factor for the within partition

allocations.

Case E-l1I:

When P, = P{-5(x,, )=0} and h = B for both comparisons,

U, S0m)

N, m

Substituting the results from Lemma 4,

3 2 2 2 2
o(Xpm) O Eoma N Eom.s 4 Eomx B

)
2(Eow )*'? (Nh.)z On Oy o

A.
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Ny Ngo| am (22 22

2 2 2 2 2
o o: | E E E
éhb — h + B I: Bb,1 + Bb,s + Bb,k :|

Using the assumption that N, >>N,. (Chen et al. 2000 and Glynn and Juneja 2004),

2

The rest of the proof follows Case E-I such that

Nio

_Uiz (3(ij))2
N 0" (80x) f

Case E-ll1:

When P, =P{-d(x,)>0} or when P, =P{-d(x,)>0} and h=B for one

comparison and P,,, = P{-5(x,,) =03 and h = B for the other comparison,

This case follows from the results for Case E-l and Case E-Il such that

N;. :O-iz[|DiM,1|+|DiM,s +|DiM,k| ]2 (S(ij))z
2 A 2
N o, (dx))

Lemma 7: When P,, <P, , the between partition allocations for h=B are obtained by

Proof: This proof closely follows the one provided in Chen et al (2000).
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ou
ONg.

05’ |Baa , Eae  Eau LGN 5(Xm) S(%s)y O(Xyy)
|:0‘51 " X, }(%ﬂ \/_ 2(&m)*"? +hez " \/a )2(§hb)3/2]

Setting U =0, we obtain

Be

Eas  Eos  Edo St )y_O0u) S0tw)y 0(%w) |_ (o)
I:aBl ’ Ol g }{%¢( \/_ 2(&m)*"? " ez " \/a )2(§hb)3/2J ?

Op
Using the results from Lemma 4 and (D1), it can be shown that for h = B

S(XhM) S(XhM) _l(Nh.)zl

4 Ve )Z@th“ ot

E? E2 E2
Using the results from Lemma 5, we know that { Bbl , “Bbs | TBbK } =1.

Apgy (22 (222

Substituting these results, we obtain
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APPENDIX F PROOF OF PROPOSITION 1

Intuitively, since we are only sampling on three support points, we should be able to
expand the OSD method developed in Chapter 3 to a continuous domain by assuming
that the number of design locations goes to infinity. The following proposition establishes
a preliminary connection between our results and those from a derivation from the DOE
community. However, we have to do some different treatments on the definition of PCS

because the current one will go to zero as the number of design locations goes to infinity.

Proposition 1: Assuming that PCS > 0 as k — oo, for the Interior Design Case presented
in (17), using the allocations from (33) and the design locations from (34) results in the
same solution obtained by Melas et al. (2003) to find the stationary point of a quadratic

equation.

Proof: As the number of designs increases (k — o), the size of the partition between
designs gets smaller (A — 0). For the Interior Design Case, our asymptotic solution
compares the best design to an adjacent design. Rewriting (23), the terms assume the

form of:
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_— {(xk—[xb+A]>(xs—[xb+A]—<xk—xb)(xs—xo}

(Xl — X )(Xl - Xk)

DM _ {(Xl _[Xb + A])(Xk _[Xb "‘A]) _(Xl — Xb)(xk — Xb)}

(Xs - Xl)(xs - Xk)

(Xk - Xl)(xk - Xs)

D, ={ it A0 b 8D -G o))

This simplifies to
D,,, :A{be — X — X, +A}
(Xl — X )(Xl - Xk)

D, . :A{be—xl—xk+A}

(Xs o Xl)(xs o Xk)

] 22X =X =X A

sy
' (Xk _Xl)(xk _Xs)

By restricting the domain to [-1,1] as presented by Melas et al. (2003) and by substituting

for x, from the first case in (34), we obtain x, =2x, +1 and that

D, =A 2x, —1—[2x, +1]+A or Dy, =A —2+A | _A]-2+A
' (-1-[2x, +1)(-1-1) * 202x, +2)| 2 |2x,+2

D, . —A 2X, +A or Dy, . =A 2% +A | _A) 2% +A
' (2x, +1-1)(2x, +1+1) ’ 2%, (2%, +2)| 2 | %, (2%, +2)

D, ~A 2x, —[-1]-[2x, +1]+A or D, . A A | _Aala
" @-[-1ha-[x, +1) L@@k 2 2x,

Using these results,
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[Duis| +[Dus

A)a
2 | 2X,

A2| 2x,+A +A(2xb+2) A
22X, (2x, +2)

Al=2+Al] |A| 2x,+A
+‘DMK‘:_ =yt
‘ 2 | 2%, +2 2 | x,(2x, +2)

+|Dyye| = éﬁ{_2+A} +

[Duis| +[Dus

2 2%, | 2%, +2 2 (2x, +2) | 2%,
A
IDyia| +|Dyis] +[Puii| = D) {2, (2= A) +]4x, + 24 +]2x,A + 24}
Dya| + Dy | +[Duni| = o fax, —2x,A|+Jax, + 28] +[2x,A + 24

4%, (2x, +2)

Substituting these results into (33), we obtain

é -2+ A
2 |12%x, +2

{4x, —2x, A + |4x, + 24|+ [2x,A + 24}

A
4%, (2x, +2)

or

[ 4%, +2x,A|
o, = {J4 -
Xy — 2%, A| +[Ax, +24] +[2x,A + 24}

In a similar manner

[4x, + 24
s T Tax, — 2%, A+ [Ax, + 28 + 2%, A+ 24]]
b b b b

and

2%, A+ 24
a, = {14 -
X, — 2%, A| +[4x, +24] +[2x,A + 24|}

As the number of designs increases (k — o) and the size of the partition between

designs gets smaller (A — 0), this results in &, =1/2 and «, =1/2. These are the same
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support points and allocations as presented by Melas et al. (2003) for the corresponding

case. Similar results are obtained for the second case and third case in (34).
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APPENDIX G PROMODEL CODE FOR PARTITIONING OSD (POSD)

See www.promodel.com
*hkhkkkkhkkkhkkhkkhhkhkkhkhkhkkhhkkhhhkkhhkhkhhkhhhkhikhihkhhhkhhhkkihkhhhkhhkhihkhhhkihkhihkhihkihhiikikikx

* *

* Formatted Listing of Model: *

* C:\Users\Admin\Documents\GMU\Research\Partitioning\Actual POSD code\101127
POSD v14 (Actual code - Cantelli Bounds) x div x.MOD *

* *

*khhhhhkhkkkhkhkhkhrrhhhhkhkkkhkhkhhrrrhirhhkhhhhrrrhirhhhhhhirrrhhdhhhhhiirriiihhhiix

Time Units: Minutes

Distance Units: Feet
k,hkkkhkkhkkkhkkhkhkhkkhkkhkhkkhkkhkhkhkkhkhkhkkhkkhkhkhkkhkkhkhkkhkkhkhkhkkhkkhkhkkhkkhkhkhkkhkkhkhkkhkkhkhkhkkhkkhkhkkhkkhkhkhkkhkkhkhkkhkkhkhkhkkhkhkkkhkkhkhhkkikikkik
* Locations *
k,hkkhkkhkhkkhkkhkhkhkkhkkhkhkkhkkhkhkhkkhkkhkhkkhkkhkhkhkkhkkhkhkkhkkhkhkhkkhkkhkhkkhkkhkhkhkkhkkhkhkkhkkhkhkhkkhkkhkhkkhkkhkhkhkkhkkhkhkkhkkhkkhkhkkhkkhkhkkhkkhkhkkikihkkikk

Name Cap  Units Stats  Rules  Cost

Experiment_loc 1 1 None Oldest, ,

Run_Queue Infinite1 None Oldest, ,

Run_Allocation 1 1 None Oldest, ,
KA E A A I I I A A A A A A A A A A A A A A A A A A A A A A A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAhhhhhhk
* Entities *

*hhkkkhkhkhkkhkhkhkkhhkhkkhkhhkkhhhkkhhhkkhhhkkhhhkkhhhkhhhkhkhhkhkkhhkhkkihkhkhhhkkhhhkkhhhkkhkikkhhhkkhhhkkhkihkkhkiikiik

Name  Speed (fpm) Stats  Cost
Experiment 150 None
Run 150 None

*khhhhkhkhkkkhkhkhkhhhhhkhkhkhkkhkhhrhrrhhhhkhkhhhrrrhhkhhkhhhiirhhhhhhhhirrhhhihkhhiiiiiix

* Processing *
*hAAAkAAAkAAAAAAkAAhAAhAhhhhkhhhkhhhkhhhkhhhkhhhkhrdhkihdrdhihhhhkhhihhhikhhhkhhkhkhhiihhiiiik

Process Routing

Entity Location  Operation Blk Output Destination Rule Move Logic

Experiment Experiment_loc INT TEMPCOUNT

INC v_iteration
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a_runtotal =0
v_designs = m_designs

TEMPCOUNT =1

WHILE TEMPCOUNT < ( (m_partitions)+1) DO
BEGIN
A RESSTATS[TEMPCOUNT,1] =0
A_RESSTATS[TEMPCOUNT,2] =0
A RESSTATS[TEMPCOUNT,3] =0
A_RESSTATS[TEMPCOUNT,4] =0
A RESSTATS[TEMPCOUNT,5] =0
A _RESSTATS[TEMPCOUNT,6] =0
A RESSTATS[TEMPCOUNT,7]1 =0
A _RESSTATS[TEMPCOUNT,8] =0
A RESSTATS[TEMPCOUNT,9] =0
A _RESSTATS[TEMPCOUNT,10] =0
A RESSTATS[TEMPCOUNT,11] =0
A _RESSTATS[TEMPCOUNT,12] =0
A RESSTATS[TEMPCOUNT,13] =0
A _RESSTATS[TEMPCOUNT,14] =0
A RESSTATS[TEMPCOUNT,15] =0
A _RESSTATS[TEMPCOUNT,16] =0
A RESSTATS[TEMPCOUNT,17] =0
A _RESSTATS[TEMPCOUNT,18] =0
A _RESSTATS[TEMPCOUNT,19]1 =0
A _RESSTATS[TEMPCOUNT,20]1=0
A _RESSTATS[TEMPCOUNT,21]1 =0
A _RESSTATS[TEMPCOUNT,22] =0
a_Resstats TEMPCOUNT,23] = (TEMPCOUNT-

1)*m_designs_per+(m_designs_per+1)/2

INC TEMPCOUNT
END

TEMPCOUNT =1

WHILE TEMPCOUNT < (m_designs+1) DO
BEGIN
a_RunCount[TEMPCOUNT,1] =0
a_RunCount[ TEMPCOUNT,2] =0

A _Design_STATS[TEMPCOUNT,1] = 0
A_Design_STATS[TEMPCOUNT,2] = 0
A _Design_STATS[TEMPCOUNT,3] = 0
A_Design_STATS[TEMPCOUNT,4] = 0
A_Design_STATS[TEMPCOUNT,5] = 0
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A _Design_STATS[TEMPCOUNT,6] =0
A _Design STATS[TEMPCOUNT,7] =0
A _Design_STATS[TEMPCOUNT,8] =0
A _Design STATS[TEMPCOUNT,9] =0
A_Design_STATS[TEMPCOUNT,10] =0

INC TEMPCOUNT
END

Interval = Real(m_Maxx-m_Minx)/Real(m_designs-1)
# This randomly generates optimal solution

H FxFFAFAIAXEX*RX for X2 and binomial experiment
#V_SOLUTION = U( (m_Maxx+m_Minx)/2 , (m_Maxx-m_Minx)/2 )
# This fixes the optimal solution
#V_SOLUTION = 3.0/3.0
#V_SOLUTION = 5.20338983050847
# for x div x
V_SOLUTION =1.01

# This block finds the design with the lowest mean.
INT bestloop
REAL distbest, tempint, disttemp

V_best=1
tempint =0

#f FxFAFIASAAIAxR* for xA2 and binomial experiment
distbest = (m_minx+tempint-v_solution)*(m_minx+tempint-v_solution)

bestloop = 2
WHILE bestloop < (v_designs+1) DO
BEGIN
tempint = tempint + interval

#f FxFAFEAFAAIIAXX* for X2 and binomial experiment
disttemp = (m_minx+tempint-v_solution)*(m_minx+tempint-v_solution)

IF disttemp < distbest Then
Begin
distbest = disttemp
V_best = bestloop
End
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INC bestloop
END

V_EXPERIMENTRUN =0
v_RUNPER =0

TEMPCOUNT =1

WHILE TEMPCOUNT < (m_increments+1) DO
BEGIN
INC a_runtotal
ORDER 1 RUN TO Run_Queue

Wait 0.4 sec
INC TEMPCOUNT
END
1 Experiment EXIT FIRST 1

Run Run_Queue  Wait 0.1 sec 1 Run Run_Allocation FIRST 1
Run Run_Allocation INT TEMPQUEUE, I, J, 12, J2,I0UT

m_MAIN

Wait 1 sec 1 Run EXIT FIRST 1

*khhhhkhkhkkkhkhkhkhhhhhhkhkhkkhkhhrhrrhhhkhkhkhhhrrrhhhhkhhhhrrrhhhhkhhhihirrhhihkhhhiiiiix

* Arrivals *
EEAAAAAAIAAAIAAAAAAAAAAAAXAAAXAAAXAAAXAAAXAAIAXAAAAAAAkAkAhhkhkhkhkhkhkhkhkhkhkhkhkikhkikhiikhiiikk

Entity Location  Qty Each First Time Occurrences Frequency Logic

Experiment Experiment_loc 1 Osec 10000 60 min

*hhkkkhkhkkkhkhkhkkhhkhkkhkhhkhhhkkhhhkkhhhkkhhhkkhhhkhhkhkhkhhkhkhhkhkkhhkhkhhhkkihhkkhhhkkhhhkkhhhkkhkhhkkhhihkhkiikikik

* Attributes *

*hhkkkhkhkhkkhkhkhkkhkhkhkkhkhhkkhhhkhhhkhhhkkhhhkhhhkhkhkhkhkkhhkhkhhkhkkhhhkkihhkkihhkkhhhkkhkhkkhkhhkkhkhhkkhihkkhiikikik

ID Type Classification

a_runtotal Integer  Entity

*hhkhkAhkhkhkhkhkhkhhhkkhhhkhhhkhhhkhhhkhhhkhhhkhhkhkhkhhkhkhhhhhhkhhhhhhkhhhkihhkhhhkhhhhkihhkiikikik

* Variables (global) *

*hhkkAhkhkhkkhkhkhkkhhkhkkhhhkkhhhkhhhkhhhkhhhkhhhhhhkhhhkhkhhhkhhhkihhkhhhihhhhhhhhkhkihkhkihhiikikik
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ID Type Initial value Stats

ylowest Real 0 None
xlowest Real 0 None
v_designs Integer m_designs  None
v_SOLUTION Real 0 None
v_locall Real 0 None
v_local2 Real 0 None
v_LOWMEAN Real 0 None
v_LowX Real 0 None
v_LOWEST Integer O None
v_partition_local_min Integer O None
v_RunPer Integer O None
v_ExperimentRun Integer O None
v_TotalRun Integer O None
V_STAND VAR Real 0 None
TempLoop Integer O None
TempRun Real 0 None
v_Next C_Run Integer O None
interval Real 0 None
V_best Integer O None
V_iteration Integer 0O None
V_varbeta Real 0 None
V_XC Real 0 None
v_rhol Real 0 None
v_rho2 Real 0 None
v_z1 Real 0 None
v_z2 Real 0 None
v_z3 Real 0 None
v_del_bminus Real 0 None
v_del_bplus Real 0 None
v b Real 0 None
v_B2 Real 0 None
v_B2_ actual Integer O None
v_c0 Real 0 None
v_cl Real 0 None
vV_c2 Real 0 None
V_support Integer O None
V_best_partition Integer O None
v_min_signal_noise_value Real 0 Time Series
#

#Used for OCBA code (determines partition with lowest signal noise other
than best partition)
v_Second_Lowest Integer O Time Series
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#Used for OCBA code

v_CoefSum Real 0 Time Series
#
#Used for OCBA Code

v_CoefSqr Real 0 Time Series

*hhkkhkkhkhkhkkhkhkhkkhkhkhkhkhkhkhkkhhkhkhhkhihhkhkkihhkhkhhkhkhkhkhkihhkhkkhhhkhhhkkikhhkkhhhkkhhhkkhihkkhkihkkhkihkkhihkikiikiik

* Arrays *

*hhkkhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkhkhhkhkhhkhkihhkhkhhkhkhhkhkhkhkhkihhkhkkhkhhkhkhkhkkhhhkkhihhkkhkihhkkhihkkhkkihkkhkihkkhihkhiikiik

ID Dimensions Type Import File Export File Disable  Persist

#COL 1: Location of X

#COL 2: Sum of X

#COL 3: Sum of X"2

#COL 4: Sum of X~3

#COL 5: Sum of X"

#COL 6: Sum of y

#COL 7: Sum of yx

#COL 8: Sum of yx"2

#COL 9: Sum of y"2

#COL 10: Variance of runs for this design (Actually x_h*(info matrix)*x_h
- need to multiply by MSE for variance

#COL 11: Predicted response at each location

#COL 12: Delta b,i (the within partition comparison)

#COL 13: Li,1

#COL 14: Li,2

#COL 15: Li,3

#COL 16: Sigma”2_b,i (old - does not use all runs but only estimates using
three point asymptotic points)

#COL 17: Sigma”2_b,i (new - using all runs from info matrix)

#COL 18: delta b,B (the between partition comparison)

#COL 19: Sigma between global and all others (need to adjust this so it
is not calculated for the best partition within comparisons)

#COL 20: Signal to noise ratio for design to local best

#COL 21: Signal to noise ratio for design to global best

a_Design_stats 130,21 Real None No
a_RunCount  130,2 Integer None No
#
#Each Row is a partition
#
#COL 1:
#COL 2:
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#COL 3:

#COL 4: beta2 term

#COL 5: betal term

#COL 6: betaO term

#COL 7: Design location with lowest OSD signal to noise (only A and Z -
local best info captured in COL 18 and COL 11)

#COL 8: Value of lowest OSD signal to noise

#COL 9: Design location with lowest FULL signal to noise

#COL 10: Value of lowest FULL signal to noise

#COL 11: Value of local best signal to noise

#COL 12: Type if signal to noise ratio used (OSD=1, Full=2, or Local=3)

#COL 13: Value of signal to noise ratio used (min of OSD, Full, or Local)

#COL 14: Used for OCBA code (essentially (signal/noise)”*2 except for special
cases of the best partition)

#COL 15:

#COL 16: Cantelli sum for Quad Bound

#COL 17: Cantelli sum for Full Bound

#COL 18: Lowest design for the partition

#COL 19: Value of the Lowest design for the partition

#COL 20: Second

#COL 21: v_second

#COL 22: s"2 (MSE) = sum (y_i-y_ihat)"2

#COL 23: v_support for the partition

#COL 24: Al (for c-opt)

#COL 25: A2

#COL 26: A3

#COL 27: alpha 1

#COL 28: alpha 2

#COL 29: alpha 3

#COL 30: Runs count for the partition

#COL 31: Inverse 1,1

#COL 32: Inverse 1,2

#COL 33: Inverse 1,3

#COL 34: Inverse 2,1

#COL 35: Inverse 2,2

#COL 36: Inverse 2,3

#COL 37: Inverse 3,1

#COL 38: Inverse 3,2

#COL 39: Inverse 3,3

#
a_ResStats 61,39 Real None No

#

#COL 1: P{CS}

#COL 2: Mean Distance from local
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#COL 3: Squared Distance from local

#COL 4: Mean y_hat(x*)

#COL 5: Squared y_hat(x*)

#COL 6: Mean f(x*)

#COL 7: Squared f(x*)

#COL 8: rhol

#COL 9: rho2

#COL 10: Allocations to Design 1

#COL 20: Allocations to Design 11
a_Results  1501,130 Real a_Results.xls None No

#

#COL 1: Coefficients

#COL 2: Temp Column

aB 3,3 Real None No
a_RHS 3 Real None No
a_INV 3,3 Real None No
FTF_MATRIX 3,3 Real None
a_TEMP 6,6 Real None No
aF 3 Real None No
aE 3 Real None No
a_alpha 3 Real None No
a_function 60,1 Real f1 function values.xlsx None No
a_selected best 1501,60 Integer None No
AR AR A AR AR A AR AR AR AR AR AR A AR AR A AR A A AR AR A A A AR A A A A A A A AAAAAAAAAAAAAAAAAAAAAR XK
* Macros *
AR R AR A AR AR AR AR AR AR AR AR AR AR AR A A AR A AR A A A A A AR A A A A A A A AAAAAAAAAAAAAAAAAAAAAR* K
ID Text
m_nzero 2
m_initial _loops 2
m_delta 14
m_restricted 1
m_MAIN REAL RunValue

INT Tempmesh, INEXTRUNS

# STEP 1 RUN ALLOCATIONS: This block sets the number of runs for each partition to
the value of nzero (initial iterations) and generates the mesh.

IF A_ RUNTOTAL < m_initial_loops THEN
BEGIN

# Conducts 2 iterations of D-opt instead of runs to entire domain
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INEXTRUNS =1
WHILE INEXTRUNS < (m_partitions+1) DO
BEGIN
a_RunCount[(INEXTRUNS-1)*m_designs_per+1,1] =
a_RunCount[(INEXTRUNS-1)*m_designs_per+1,1] + 2*m_d_opt_runs
a_RunCount[(INEXTRUNS-
1)*m_designs_per+(m_designs_per+1)/2,1] = a_RunCount[(INEXTRUNS-
1)*m_designs_per+(m_designs_per+1)/2,1] + 2*m_d_opt_runs
a_RunCount[(INEXTRUNS-
1)*m_designs_per+m_designs_per,1] =a_RunCount[(INEXTRUNS-
1)*m_designs_per+m_designs_per,1] + 2*m_d_opt_runs
INC INEXTRUNS
END

# During initialization, this block generates the location of each design.
Tempmesh =1
While Tempmesh < (v_designs+1) DO
Begin
a_Design_stats[Tempmesh,1]= m_Minx + Real(Tempmesh-
1)*Real(m_Maxx-m_Minx)/Real(m_designs-1)
INC Tempmesh
End
END

# This block does the subsequent iterations.

ELSE
BEGIN

INEXTRUNS =1
WHILE INEXTRUNS < (m_partitions+1) DO
BEGIN

If (a_Resstats[v_best_partition,8] <v_min_signal_noise_value) Then
Begin
If INEXTRUNS =v_best_partition Then
Begin

##### Theorem: Only to Best with OSD
# Just a counter to see how many time we use this rule over time
INC a_results[a_runtotal,3]

v_support = a_Resstats[INEXTRUNS,23]
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a_RunCount[(INEXTRUNS-1)*m_designs_per+1,1] =
a_RunCount[(INEXTRUNS-1)*m_designs_per+1,1] + a_Resstats[INEXTRUNS,27]
a_RunCount[v_support,1] = a_RunCount[v_support,1] +
a_Resstats[INEXTRUNS,28]
a_RunCount[(INEXTRUNS-
1)*m_designs_per+m_designs_per,1] =a_RunCount[(INEXTRUNS-
1)*m_designs_per+m_designs_per,1] + a_Resstats[INEXTRUNS,29]
End
End
Else
Begin

###### Theorem: C-opt to best and rules for others
If INEXTRUNS =v_best_partition Then
Begin
# Just a counter to see how many time we use this rule over time
INC a_results[a_runtotal 4]
v_support = a_Resstats[INEXTRUNS, 18]
a_RunCount[v_support,1] =a_RunCount[v_support,1] +
a_Resstats[INEXTRUNS,1]
End
Else
Begin
# c-opt to local best
IF (a_Resstats[INEXTRUNS,11] < a_Resstats[INEXTRUNS,8])
THEN
Begin
# Just a counter to see how many time we use this rule over time
INC a_results[a_runtotal,5]
v_support = a_Resstats[INEXTRUNS, 18]
a_RunCount[v_support,1] =a_RunCount[v_support,1] +
a_Resstats[INEXTRUNS,1]

End
Else
Begin
# c-opt to full (see other set of code at the bottom *****x*xkkkkkkkkrk)
# IF ((a_Resstats[INEXTRUNS,10]) < a_Resstats[INEXTRUNS,8]) THEN
# IF ((m_designs_per/(1+a_Resstats[INEXTRUNS,10]**2)) <

(3/(1+a_Resstats[INEXTRUNS,8]**2))) THEN
IF ((a_Resstats[INEXTRUNS,17]) <
a_Resstats[INEXTRUNS, 16]) THEN

Begin
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# Just a counter to see how many time we use this rule over time
INC a_results[a_runtotal,6]
v_support = a_Resstats[INEXTRUNS,9]
a_RunCount[v_support,1] = a_RunCount[v_support,1] +
a_Resstats[INEXTRUNS,1]
End
#0OSD
Else
Begin
# Just a counter to see how many time we use this rule over time
INC a_results[a_runtotal,7]
v_support = a_Resstats[INEXTRUNS,23]
a_RunCount[(INEXTRUNS-1)*m_designs_per+1,1] =
a_RunCount[(INEXTRUNS-1)*m_designs_per+1,1] + a_Resstats[INEXTRUNS,27]
a_RunCount[v_support,1] =a_RunCount[v_support,1] +
a_Resstats[INEXTRUNS,28]
a_RunCount[(INEXTRUNS-
1)*m_designs_per+m_designs_per,1] =a_RunCount[(INEXTRUNS-
1)*m_designs_per+m_designs_per,1] + a_Resstats[INEXTRUNS,29]
End
End

End

End
INC INEXTRUNS
END

END

# STEP 2 RUN GENERATION: This block checks to see how many total runs a design
has been allocated and how many it currently has.

# If it needs more, it calls the macro for allocating a new run based upon the simulated
underlying distribution.

Temploop =1
While Temploop < (v_designs+1) DO
Begin
While a_RunCount[Temploop,2] < a_RunCount[Temploop,1] DO
Begin

INC V_totalrun
INC v_ExperimentRun
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INC a_results[a_runtotal, Temploop+9]
# RunValue = (a_design_stats[ Temploop,1]-
v_SOLUTION)**2 + N(0,1)
RunValue = 10*a_design_stats[ Temploop,1]+
10/a_design_stats[ Temploop,1] + N(0,1)

# RunValue = (a_design_stats[ Temploop,1]-
v_SOLUTION)**4 + N(0,1)
# RunValue = a_function[Temploop,1]+ N(0,1)

A _Design_STATS[Temploop,2] =
A _Design_STATS[Temploop,2] + a_design_stats[ Temploop,1]
A Design_STATS[Temploop,3] =
A _Design_STATS[Temploop,3] + a_design_stats[ Temploop,1]**2
A Design_STATS[Temploop,4] =
A _Design_STATS[Temploop,4] + a_design_stats[Temploop,1]**3
A Design_STATS[Temploop,5] =
A _Design_STATS[Temploop,5] + a_design_stats[ Temploop,1]**4
A Design_STATS[Temploop,6] =
A _Design_STATS[Temploop,6] + RunValue
A Design_STATS[Temploop,7] =
A_Design_STATS[Temploop,7] + RunValue*a_design_stats[ Temploop,1]
A Design_STATS[Temploop,8] =
A_Design_STATS[Temploop,8] + RunValue*a_design_stats[ Temploop,1]**2
A _Design_STATS[Temploop,9] =
A_Design_STATS[Temploop,9] + RunValue**2
INC a_RunCount[Temploop,2]
End

INC Temploop
End

# STEP 3 Generates a response surface for each partition (and also uses the loop to
initialize the MSE to zero)

REAL AMAX, SWITCH, TEMPCOEF, TEMPDIFF
INT NMAX, 11, 3, 1Tl, IOUTLOOP

INT UKL, IMN, KK, 13J

REAL TOL, TEMPTOL

KK =1
WHILE KK < (m_partitions+1) DO
BEGIN

m_Info_matrix
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a_Resstats[1IKK,30] =0
a_Resstats[1IKK,22] =0

INC KK
END

# STEP 4: Determines the total runs allocated for the entire partition and the response at
each discrete point

J=1

KK =1

ylowest =
a_Resstats[1IKK,6]+a_Resstats[IIKK,5]*a_design_stats[11JJ,1]+a_Resstats[IIKK,4]*a_de
sign_stats[113J,1]**2

v_lowest =1

WHILE KK < (m_partitions+1) DO
BEGIN

a_Resstats[1IKK,19] =
a_Resstats[1IKK,6]+a_Resstats[IIKK,5]*a_design_stats[11JJ,1]+a_Resstats[IIKK,4]*a_de
sign_stats[113J,1]**2

a_Resstats[1IKK,18] = 11JJ

Int 11JJCount
1JJCount =1
WHILE [1JJCount < ( (m_designs_per)+1) DO
BEGIN
# Calculates total runs allocated for the entire partition
a_Resstats[1IKK,30] = a_Resstats[IIKK,30] +
Real(a_RunCount[11J,2])

# Calculates the response of each design location

a_design_stats[113J,11]=
a_Resstats[1IKK,6]+a_Resstats[IIKK,5]*a_design_stats[11JJ,1]+a_Resstats[IIKK,4]*a_de
sign_stats[113J,1]**2

#Calculates info matrix portion of the variance of each design location (uses symmetry of
the matrix so it is (1,1)+2*(1,2)x+(2*(1,3)+(2,2))*x"2+2*(2,3)x"3+(3,3)*x"4
a_design_stats[11JJ,10]=
a_Resstats[IKK,31]+(2*a_Resstats[IIKK,32])*a_design_stats[11JJ,1]
a_design_stats[11JJ,10]= a_design_stats[113J,10] +
(2*a_Resstats[IIKK,33]+a_Resstats[IIKK,35])*a_design_stats[I1JJ,1]**2
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a_design_stats[11JJ,10]= a_design_stats[113J,10] +
(2*a_Resstats[I1KK,36])*a_design_stats[113J,1]**3

a_design_stats[113J,10]= a_design_stats[113J,10] +
(a_Resstats[I1KK,39])*a_design_stats[11JJ,1]**4

# Calculates the sums for MSE for the partition (each is initialized to zero using the loop
in Step 3 above and will be divided by (n-2) after each partitions loop)
a_Resstats[1IKK,22] = a_Resstats[IIKK,22] +
a_design_stats[11JJ,9] - 2*a_design_stats[11JJ,6]*a_design_stats[11JJ,11] +
Real(a_RunCount[113J,2])*(a_design_stats[11JJ,11]**2)

# checks if global min
IF a_design_stats[113J,11] < ylowest then

BEGIN
ylowest = a_design_stats[11JJ,11]
v_lowest = 11JJ
v_best_partition = IKK

END

# checks if min of partition
IF a_design_stats[113J,11] < a_Resstats[1IKK,19] then

BEGIN
a_Resstats[I1IKK,19] = a_design_stats[11JJ,11]
a_Resstats[11KK,18] = 11JJ

END

INC 11JJCount
INC 113J
END

# Divides the sum for the MSE by (n-2)
a_Resstats[11KK,22] = a_Resstats[l1IKK,22]/(a_Resstats[IIKK,30]-2)

INC KK
END

# STEP 4a: Determines the comparison terms for each design
13J=1
KK =1
v_min_signal_noise_value = 999999
v_second_lowest = 999999
Real second_lowest_value = 999999

WHILE KK < (m_partitions+1) DO
BEGIN
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11JJCount=1

# Initializes minimum signal to noise ratio terms
a_Resstats[1IKK,8] = 99999
a_Resstats[11KK,10] = 99999
a_Resstats[1IKK,16] = 0
a_Resstats[1IKK,17] = 0

WHILE [1JJCount < ( (m_designs_per)+1) DO
BEGIN

# Delta term with local best
a_design_stats[11JJ,12]= a_design_stats[113J,11]-
a_design_stats[a_Resstats[I1KK,18],11]

# Variance term with local best (uses symmetry of the matrix so it is (2,2))*(x_i-
X_b)"2+2*(2,3)(x_i-x_b)(x_i"2-x_b"2)+(3,3)*(x_i"2-x_b"2)"2

a_design_stats[113J,17]=
(a_Resstats[I1KK,35])*(a_design_stats[11JJ,1]-
a_design_stats[a_Resstats[1IKK,18],1])**2

a_design_stats[11JJ,17]= a_design_stats[113J,17] +
(2*a_Resstats[I1KK,36])*(a_design_stats[I1JJ,1]-
a_design_stats[a_Resstats[I1KK,18],1])*(a_design_stats[I1JJ,1]**2-
a_design_stats[a_Resstats[11KK,18],1]**2)

a_design_stats[11JJ,17]= a_design_stats[113J,17] +
(a_Resstats[I1KK,39])*((a_design_stats[11JJ,1]**2-
a_design_stats[a_Resstats[I1KK,18],1]**2)**2)

a_design_stats[113J,17]=
a_design_stats[11JJ,17]*a_Resstats[I1IKK,22]

# Signal to noise ratio for local comparison

If (a_design_stats[11JJ,12] > 0) Then
Begin
a_design_stats[113J,20]=
a_design_stats[11JJ,12]/(sqrt(a_design_stats[11JJ,17]))
End
Else
Begin
a_design_stats[113J,20]=0
End

# Delta term with global best
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a_design_stats[11JJ,18]= a_design_stats[113J,11]-
a_design_stats[v_lowest,11]

# Variance term with global best

a_design_stats[113J,19]=
a_design_stats[11JJ,10]*a_Resstats[IIKK,22]+a_design_stats[v_lowest,10]*a_Resstats[v_
best_partition,22]

# Signal to noise ratio for global (FULL) comparison

If (a_design_stats[11JJ,18] > 0) Then
Begin
a_design_stats[113J,21]=
a_design_stats[11JJ,18]/(sqrt(a_design_stats[11JJ,19]))

If (a_design_stats[113J,21] <
a_Resstats[1IKK,10]) Then
Begin
a_Resstats[11IKK,10] = a_design_stats[11JJ,21]
a_Resstats[I1KK,9] = 11JJ
End

If (a_design_stats[113J,21] <
v_min_signal_noise_value) Then

Begin
If IKK =v_best_partition Then
Begin
v_min_signal_noise_value = v_min_signal_noise_value
End
Else
Begin
v_min_signal_noise_value = a_design_stats[11JJ,21]
End
End
End
Else
Begin
a_design_stats[113J,21]=0
End

# For Cantelli Bound
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a_Resstats[1IKK,17] = a_Resstats[IIKK,17] +
1/(1+a_design_stats[113J,21]**2)

INC 11JJCount
INC 113J
END

# Signal to noise ratio value for local best
a_Resstats[1IKK,11] = a_design_stats[a_Resstats[1I1KK,18],21]

# Signal to noise ratio for OSD comparion (A and 2Z)
# Initializes for the middle test
a_Resstats[11KK,8] = 999999

# Local best is first design in partition
If (a_Resstats[IIKK,18]=(11JJ-m_designs_per)) Then
Begin
If (a_design_stats[I1JJ+1-
m_designs_per,20] < a_design_stats[11JJ-1,20]) Then
Begin
a_Resstats[1IKK,8] = a_design_stats[11JJ+1-
m_designs_per,20]
a_Resstats[IKK,7] = I1JJ+1-m_designs_per
End
Else
Begin
a_Resstats[I1IKK,8] = a_design_stats[113J-1,20]
a_Resstats[IIKK,7] = 11JJ-1
End

# for Cantelli Quad bound

a_Resstats[1IKK,16] =
1/(1+a_design_stats[113J,21]**2)+1/(1+a_design_stats[I1J-
1,20]**2)+1/(1+a_design_stats[11JJ+1-m_designs_per,20]**2)

End
# Local best is last design in partition
If (a_Resstats[IIKK,18]=(11JJ-1)) Then
Begin
If (a_design_stats[I1JJ-m_designs_per,20] <
a_design_stats[113J-2,20]) Then
Begin
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a_Resstats[1IKK,8] = a_design_stats[113J-
m_designs_per,20]
a_Resstats[IIKK,7] = 11JJ-m_designs_per
End
Else
Begin
a_Resstats[I1IKK,8] = a_design_stats[113J-2,20]
a_Resstats[IIKK,7] = 11JJ-2
End

# for Cantelli Quad bound

a_Resstats[1IKK,16] =
1/(1+a_design_stats[113J,21]**2)+1/(1+a_design_stats[I1JJ-
2,20]**2)+1/(1+a_design_stats[11JJ-m_designs_per,20]**2)

End

# Local best is in middle of partition (actually computes all and then the next two blocks
recompute if first or last in partition)
If a_Resstats[IKK,8] = 999999 Then
Begin
If (a_design_stats[a_Resstats[l1IKK,18]-
1,20] < a_design_stats[a_Resstats[I1KK,18]+1,20]) Then
Begin
a_Resstats[I1IKK,8] = a_design_stats[a_Resstats[IIKK,18]-

1,20]
a_Resstats[1IKK,7] = a_Resstats[I1KK,18]-1
End
Else
Begin

a_Resstats[1IKK,8] =
a_design_stats[a_Resstats[I1KK,18]+1,20]
a_Resstats[IIKK,7] = a_Resstats[IIKK,18]+1
End

# for Cantelli Quad bound

a_Resstats[1IKK,16] =
1/(1+a_design_stats[a_Resstats[IIKK,18],21]**2)+1/(1+a_design_stats[a_Resstats[IIKK,
18]-1,20]**2)+1/(1+a_design_stats[a_Resstats[1IKK,18]+1,20]**2)

End

# Determines support point within the partition for OSD
m_support_point
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# Determines which signal to noise ratio in each partition is the most dominating
# c-opt to local best
IF (a_Resstats[1IKK,11] < a_Resstats[IIKK,8]) THEN
Begin
a_Resstats[1IKK,12] = 3
a_Resstats[I11IKK,13] = a_Resstats[IIKK,11]
End
Else
Begin

# c-opt to full (see other set of code at the top *******xkkkdkkkkkrk)
# IF ((m_designs_per/(1+a_Resstats[IIKK,10]**2)) <
(3/(1+a_Resstats[1IKK,8]**2))) THEN
IF ((a_Resstats[l1IKK,17]) < a_Resstats[1IKK,16]) THEN
Begin
a_Resstats[1IKK,12] = 2
a_Resstats[11KK,13] = a_Resstats[I1IKK,10]
End
# OSD
Else
Begin
a_Resstats[1IKK,12] = 1
a_Resstats[I11KK,13] = a_Resstats[1I1KK,8]
End
End

# Determines the partition considered "second best" for the OCBA routine
IF IIKK <> v_best_partition Then

Begin
# If a_Resstats[1IKK,12] > 1 Then
# Begin
If a_Resstats[11IKK,13] < second_lowest_value Then
Begin
second_lowest_value = a_Resstats[1IKK,13]
v_second_lowest = IIKK
End
# End
End
INC IIKK

END

# Just put into the code in case none of the partitions are using full or local comparisons
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If v_second_lowest = 999999 Then
Begin
If v_best_partition = 1 Then
Begin
v_second_lowest =2
End
Else
Begin
v_second_lowest = v_best_partition - 1
End
End

If (a_Resstats[v_best_partition,8] < v_min_signal_noise_value) Then
Begin

a_Resstats[v_best_partition,1] = m_partitions*m_delta
End
Else
Begin
m_OCBA
End

# Deterimines the OSD allocations for each partition
Real Second
Int v_second
KK =1

WHILE KK < (m_partitions+1) DO
BEGIN

v_partition_local_min = a_Resstats[1IKK,18]
Second = a_Resstats[I1IKK,7]

v_support = a_Resstats[I1KK,23]
m_OSD

INC lIIKK
END

inc a_selected_best[a_runtotal,v_lowest]

# Did we pick the right solution? (yes or no)

IFV_LOWEST = V_BEST THEN
BEGIN

a_results[a_runtotal,1] = a_results[a_runtotal,1] + 1
END

m_Info_matrix # This block is used to build the FTF
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=1
While Il < (NDIM+1) DO
Begin
J=1
a_RHS[II]=0
While JJ < (NDIM+1) DO
Begin
FTF_MATRIX[JJ,1] =0
INC JJ
END
INC II
END

=1
WHILE Il < ( (m_designs_per)+1) DO
BEGIN
FTF_MATRIX[1,1] = FTF_MATRIX[1,1] + a_RunCount[(IIKK-
1)*m_designs_per+Il,2]
FTF_MATRIX[1,2] = FTF_MATRIX[1,2] + A_Design_STATS[(IIKK-
1)*m_designs_per+Il,2]
FTF_MATRIX[1,3] = FTF_MATRIX[1,3] + A_Design_STATS[(IIKK-
1)*m_designs_per+Il,3]
FTF_MATRIX[2,1] = FTF_MATRIX[2,1] + A_Design_STATS[(IIKK-
1)*m_designs_per+Il,2]
FTF_MATRIX[2,2] = FTF_MATRIX[2,2] + A_Design_STATS[(IIKK-
1)*m_designs_per+Il1,3]
FTF_MATRIX[2,3] = FTF_MATRIX[2,3] + A_Design_STATS[(IIKK-
1)*m_designs_per+I1,4]
FTF_MATRIX[3,1] = FTF_MATRIX[3,1] + A_Design_STATS[(IIKK-
1)*m_designs_per+Il1,3]
FTF_MATRIX[3,2] = FTF_MATRIX[3,2] + A_Design_STATS[(IIKK-
1)*m_designs_per+I1,4]
FTF_MATRIX[3,3] = FTF_MATRIX[3,3] + A_Design_STATS[(IIKK-
1)*m_designs_per+Il1,5]
a_RHS[1] = a_RHS[1] + A_Design_STATS[(IIKK-
1)*m_designs_per+I1,6]
a_RHS[2] = a_RHS[2] + A_Design_STATS[(IIKK-
1)*m_designs_per+I1,7]
a_RHS[3] = a_RHS[3] + A_Design_STATS[(IIKK-
1)*m_designs_per+I1,8]

INC 11
END
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# This block is used to invert the FTF matrix

=1
While Il < (NDIM+1) DO
Begin
J=1
While JJ < (NDIM+1) DO
Begin
A _TEMP[JJ, ] = FTF_MATRIX[JJ,11]
INC JJ
END
INC II
END

=1
While Il < (NDIM+1) DO
Begin
JJ = (NDIM+1)
While JJ < (2*NDIM+1) DO
Begin
A_TEMP[I1,JJ] =0
INC JJ
END
A_TEMP[II,NDIM+I1] =1
INC 11
END

#  This loop row reduces the first N columns of the matrix
=1
While 11 < (NDIM+1) DO
Begin

#  This loop does maximum element pivoting for each column and then
# divides the row by the first element in the row

AMAX = A_TEMPIILII]
NMAX =II

W=11+1
WHILE JJ < (NDIM+1) DO
BEGIN
IF SQRT(A_TEMP[IJ,I1**2) > SQRT(AMAX**2) THEN
BEGIN
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AMAX = A_TEMP[JJ ]
NMAX =JJ
END
INC JJ
END

IF 1l <> NMAX THEN
BEGIN
W=l
WHILE JJ < (2*NDIM+1) DO
BEGIN
SWITCH = A_TEMPII1,3]]
A_TEMP[11,J]] = A_TEMP[NMAX JI[/AMAX
A_TEMP[NMAX JJ] = SWITCH
INC JJ
END
END
ELSE
BEGIN
N=1
WHILE JJ < (2*NDIM+1) DO
BEGIN
A_TEMP[11,3] = A_TEMP[I1 JJJ/AMAX
INC JJ
END
END

#  This loop reduces all other elements in the column to zero

N=1
WHILE JJ < (NDIM+1) DO
BEGIN
IF JJ <> Il THEN
BEGIN
TEMPCOEF = -A_TEMP[JJ,11]
n =1
WHILE 111 < (2*NDIM+1) DO
BEGIN
A_TEMP[J,I11] = A_TEMP[JJ,111] +
TEMPCOEF*A_TEMPII1,11]
INC I
END
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END
INC JJ
END

INC 11
END

#  This loop establishes the inverse matrix using the non-reduced rows

=1
WHILE 1l < (NDIM+1) DO
BEGIN
3 = (NDIM+1)
WHILE JJ < (2*NDIM+1) DO
BEGIN
A_INV[I1,J3-NDIM] = A_TEMP[I1,3J]
INC JJ
END
INC Il
END

# This loop establishes the inverse matrix using the non-reduced rows

a_RESstats[1IKK,6] = a_INV[1,1]*a_RHS[1] + a_INV[1,2]*a_RHS[2]
+a_INV[1,3]*a_RHS[3]

a_RESstats[1IKK,5] = a_INV[2,1]*a_RHS[1] + a_INV[2,2]*a_RHS[2]
+a_INV[2,3]*a_RHS[3]

a_RESstats[1IKK,4] = a_INV[3,1]*a_RHS[1] + a_INV[3,2]*a_RHS[2]
+a_INV[3,3]*a_RHS[3]

a_RESstats[IIKK,31] = a_INV[1,1]
a_RESstats[1IKK,32] = a_INV[1,2]
a_RESstats[1IKK,33] = a_INV[1,3]
a_RESstats[1IKK,34] = a_INV[2,1]
a_RESstats[1IKK,35] = a_INV[2,2]
a_RESstats[1IKK,36] = a_INV[2,3]
a_RESstats[I1IKK,37] =a_INV[3,1]
a_RESstats[1IKK,38] = a_INV[3,2]
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a_RESstats[1IKK,39] = a_INV[3,3]
m_support_point  # Determines X_s

v_support = (IIKK-1)*m_designs_per+(m_designs_per+1)/2

If ((3*a_design_stats[(I1KK-
1)*m_designs_per+1,1]+a_design_stats[(I1KK-1)*m_designs_per+m_designs_per,1])/4)
< ((a_design_stats[a_Resstats[IIKK,18],1]+a_design_stats[a_Resstats[IIKK,7],1])/2)
Then

Begin
If ((a_design_stats[(I1KK-
1)*m_designs_per+1,1]+a_design_stats[(I1KK-1)*m_designs_per+m_designs_per,1])/2)
> ((a_design_stats[a_Resstats[I1KK,18],1]+a_design_stats[a_Resstats[IIKK,7],1])/2)
Then
Begin
v_support = (IIKK-1)*m_designs_per+(a_Resstats[I1KK,18]-(11KK-
1)*m_designs_per) + (a_Resstats[1KK,7]-(I1KK-1)*m_designs_per) -1
End
End

If ((a_design_stats[(I1KK-
1)*m_designs_per+1,1]+3*a_design_stats[(11KK-
1)*m_designs_per+m_designs_per,1])/4) >
((a_design_stats[a_Resstats[I1KK,18],1]+a_design_stats[a_Resstats[IIKK,7],1])/2) Then

Begin
If ((a_design_stats[(I1KK-
1)*m_designs_per+1,1]+a_design_stats[(I1KK-1)*m_designs_per+m_designs_per,1])/2)
< ((a_design_stats[a_Resstats[I1KK,18],1]+a_design_stats[a_Resstats[IIKK,7],1])/2)
Then
Begin
v_support = (IIKK-1)*m_designs_per+(a_Resstats[I1KK,18]-(11KK-
1)*m_designs_per) + (a_Resstats[1KK,7]-(I1KK-1)*m_designs_per) - m_designs_per
End
End

a_RESstats[1IKK,23] = v_support
m_0OSD # Calculates the Q terms

a_Resstats[1IKK,24] = (a_design_stats[v_support,1]-
a_design_stats[v_partition_local_min,1])*(a_design_stats[(IIKK-
1)*m_designs_per+m_designs_per,1]-a_design_stats[v_partition_local_min,1])

a_Resstats[1IKK,24] = a_Resstats[IIKK,24]-
(a_design_stats[v_support,1]-Second)*(a_design_stats[(IIKK-
1)*m_designs_per+m_designs_per,1]-Second)
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a_Resstats[1IKK,24] = a_Resstats[1IKK,24]/((a_design_stats[(I1KK-
1)*m_designs_per+1,1]-a_design_stats[v_support,1])*(a_design_stats[(IIKK-
1)*m_designs_per+1,1]-a_design_stats[(IIKK-1)*m_designs_per+m_designs_per,1]))

a_Resstats[1IKK,25] = (a_design_stats[(IIKK-1)*m_designs_per+1,1]-
a_design_stats[v_partition_local_min,1])*(a_design_stats[(IIKK-
1)*m_designs_per+m_designs_per,1]-a_design_stats[v_partition_local_min,1])

a_Resstats[1IKK,25] = a_Resstats[IIKK,25]-(a_design_stats[(IIKK-
1)*m_designs_per+1,1]-Second)*(a_design_stats[(I1KK-
1)*m_designs_per+m_designs_per,1]-Second)

a_Resstats[11IKK,25] =
a_Resstats[IKK,25]/((a_design_stats[v_support,1]-a_design_stats[(IIKK-
1)*m_designs_per+1,1])*(a_design_stats[v_support,1]-a_design_stats[(I1KK-
1)*m_designs_per+m_designs_per,1]))

a_Resstats[1IKK,26] = (a_design_stats[(IIKK-1)*m_designs_per+1,1]-
a_design_stats[v_partition_local_min,1])*(a_design_stats[v_support,1]-
a_design_stats[v_partition_local_min,1])

a_Resstats[11KK,26] = a_Resstats[1IKK,26]-(a_design_stats[(I1KK-
1)*m_designs_per+1,1]-Second)*(a_design_stats[v_support,1]-Second)

a_Resstats[11KK,26] = a_Resstats[11KK,26]/((a_design_stats[(I1KK-
1)*m_designs_per+m_designs_per,1]-a_design_stats[(I1KK-
1)*m_designs_per+1,1])*(a_design_stats[(IIKK-1)*m_designs_per+m_designs_per,1]-
a_design_stats[v_support,1]))

a_Resstats[1IKK,24] = sqrt(a_Resstats[IIKK,24]**2)
a_Resstats[1IKK,25] = sqrt(a_Resstats[IIKK,25]**2)
a_Resstats[1IKK,26] = sqrt(a_Resstats[IIKK,26]**2)

# Uses the ratios to determine the allocations

If ((a_Resstats[I1KK,26]<a_Resstats[IIKK,24]) and
(a_Resstats[I1KK,26]<a_Resstats[IIKK,25])) Then
Begin
a_Resstats[1IKK,27] = Round ((a_Resstats[I1KK,1]) / (1+
a_Resstats[11KK,25]/a_Resstats[I1KK,24] + a_Resstats[11KK,26]/a_Resstats[IIKK,24]))

If a_Resstats[1IKK,27] <0 Then
Begin
a_Resstats[1IKK,27] =0
End

If a_Resstats[11KK,27] > a_Resstats[IIKK,1] Then
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Begin
a_Resstats[1IKK,27] = a_Resstats[IIKK,1]
End

a_Resstats[1IKK,28] = Round ((a_Resstats[I1IKK,1]) / (1+
a_Resstats[1IKK,24]/a_Resstats[1IKK,25] + a_Resstats[IIKK,26]/a_Resstats[11KK,25]))

If a_Resstats[1IKK,28] < 0 Then
Begin
a_Resstats[1IKK,28] =0
End

If (a_Resstats[IIKK,27]+a_Resstats[I1IKK,28]) > a_Resstats[1IKK,1]
Then
Begin
a_Resstats[1IKK,28] = a_Resstats[IIKK,1] - a_Resstats[I1KK,27]
End

If (a_Resstats[IIKK,27]+a_Resstats[IIKK,28]) < a_Resstats[1IKK,1]
Then
Begin
a_Resstats[1IKK,29] = a_Resstats[IIKK,1] - a_Resstats[11KK,27] -
a_Resstats[1IKK,28]
End
ELSE
Begin
a_Resstats[11IKK,29] = 0
End

End

If ((a_Resstats[I1KK,24]<a_Resstats[IIKK,25]) and
(a_Resstats[I11KK,24]<a_Resstats[IIKK,26])) Then
Begin
a_Resstats[11KK,29] = Round ((a_Resstats[IIKK,1]) / (1+
a_Resstats[1IKK,25]/a_Resstats[1IKK,26] + a_Resstats[IIKK,24]/a_Resstats[1I1KK,26]))

If a_Resstats[1IKK,29] < 0 Then
Begin
a_Resstats[1IKK,29] =0
End

If a_Resstats[11KK,29] > a_Resstats[IIKK,1] Then
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Begin
a_Resstats[1IKK,29] = a_Resstats[IIKK,1]
End

a_Resstats[1IKK,28] = Round ((a_Resstats[I1IKK,1]) / (1+
a_Resstats[1IKK,24]/a_Resstats[1IKK,25] + a_Resstats[IIKK,26]/a_Resstats[l1IKK,25]))

If a_Resstats[1IKK,28] < 0 Then
Begin
a_Resstats[1IKK,28] =0
End

If (a_Resstats[IIKK,29]+a_Resstats[I1IKK,28]) > a_Resstats[l1IKK,1]
Then
Begin
a_Resstats[1IKK,28] = a_Resstats[IIKK,1] - a_Resstats[I1KK,29]
End

If (a_Resstats[IIKK,29]+a_Resstats[IIKK,28]) < a_Resstats[1IKK,1]
Then
Begin
a_Resstats[1IKK,27] = a_Resstats[IIKK,1] - a_Resstats[11KK,29] -
a_Resstats[1IKK,28]
End
ELSE
Begin
a_Resstats[1IKK,27] = 0
End

End

If ((a_Resstats[1IKK,25]<a_Resstats[IIKK,24]) and
(a_Resstats[I1KK,25]<a_Resstats[1I1KK,26])) Then
Begin
a_Resstats[1IKK,27] = Round ((a_Resstats[I1KK,1]) / (1+
a_Resstats[1IKK,25]/a_Resstats[I1IKK,24] + a_Resstats[I1KK,26]/a_Resstats[IIKK,24]))

If a_Resstats[1IKK,27] <0 Then
Begin
a_Resstats[1IKK,27] =0
End
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If a_Resstats[1IKK,27] > a_Resstats[IIKK,1] Then
Begin
a_Resstats[1IKK,27] = a_Resstats[1I1KK,1]
End

a_Resstats[11KK,29] = Round ((a_Resstats[I1IKK,1]) / (1+
a_Resstats[1IKK,24]/a_Resstats[1IKK,26] + a_Resstats[IIKK,25]/a_Resstats[1I1KK,26]))

If a_Resstats[1IKK,29] < 0 Then
Begin
a_Resstats[1IKK,29] =0
End

If (a_Resstats[IIKK,27]+a_Resstats[1IKK,29]) > a_Resstats[IKK,1]
Then
Begin
a_Resstats[1IKK,29] = a_Resstats[IIKK,1] - a_Resstats[IIKK,27]
End

If (a_Resstats[IIKK,27]+a_Resstats[IIKK,29]) < a_Resstats[1IKK,1]
Then
Begin
a_Resstats[1IKK,28] = a_Resstats[IIKK,1] - a_Resstats[IKK,27] -
a_Resstats[1IKK,29]
End
ELSE
Begin
a_Resstats[1IKK,28] =0
End

End
m_OCBA INT TEMPOCBA

# Initialized to zero to make sure all are assigned
a_Resstats[v_best_partition,1] =0

TEMPOCBA =1
WHILE TEMPOCBA < (m_partitions+1) DO
BEGIN
a_Resstats TEMPOCBA,1] =0
INC TEMPOCBA
END
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# This block determines the coefficients for each design using OCBA
v_CoefSum =0
v_CoefSqr=0

TEMPOCBA =1
WHILE TEMPOCBA < (m_partitions+1) DO
BEGIN
IF TEMPOCBA <> v_best_partition Then
Begin
a_Resstats TEMPOCBA,14] =
(a_Resstats[v_Second_Lowest,13]/a_Resstatsf TEMPOCBA,13])**2
# uses ratio rule for nonbest partitions
v_CoefSum =v_CoefSum + a_Resstatsf TEMPOCBA,14]
# checks to see if it is a "full™ or "local” comparison, if so, adds to the square root rule for
OCBA
If a_Resstats TEMPOCBA,12] > 1 Then
Begin
v_CoefSgr =v_CoefSqr +
(a_Resstatsl TEMPOCBA, 14]/a_Resstats| TEMPOCBA,22])**2
End
End
Else
Begin
a_Resstats TEMPOCBA,14] =0
End
INC TEMPOCBA
END

# Checks to see if none of the other partitions are using "full” or "local”. If so, then just
uses ratio rule for all.
If v_CoefSqr =0 Then
Begin
a_Resstats[v_best_partition,14] =
(a_Resstats[v_Second_Lowest,13]/a_Resstats[v_best_partition,8])**2
v_CoefSum =v_CoefSum + a_Resstats[v_best_partition,14]
End

# This block makes the allocations according to the OCBA coefficients
Int TempAvail
Int TempNew
Int TempSL
TempAvail = m_delta*m_partitions
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TempNew =
Round(Real(m_delta*m_partitions)/(a_Resstats[v_best_partition,22]*sqrt(v_CoefSqr)+v
_CoefSum))

If TempNew <1 Then
Begin
TempNew =1
End

If TempNew > TempAvail Then
Begin
TempNew = TempAvail
End

TempAvail = TempAvail - TempNew
TempSL = TempNew
a_Resstats[v_Second_Lowest,1] = TempNew

TEMPOCBA =1
WHILE TEMPOCBA < (m_partitions+1) DO
BEGIN
IF TEMPOCBA <>v_Second_Lowest Then
Begin
IF TempAuvail > 0 Then
Begin
TempNew =
Round(a_Resstats TEMPOCBA,14]*Real(TempSL))
If TempNew > TempAvail Then

Begin
TempNew = TempAuvail
End
TempAvail = TempAuvail - TempNew
End
Else
Begin
TempNew =0
End
a_Resstats TEMPOCBA, 1] = TempNew
End
INC TEMPOCBA
END

If TempAvail >0 Then
Begin
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a_Resstats[v_best_partition,1] = a_Resstats[v_best_partition,1] +

TempAvail
End
m_d_opt_runs 10
m_minx 3
m_maxx 8
m_designs 60
m_partitions 6
m_designs_per m_designs/m_partitions
m_increments 1+(2000 - m_designs * m_nzero)/m_delta
NDIM 3

*hhkkhkkhkhkhkkhkhkhkkhhkhkkhkhkhkkhhhkkhhhkkhhhkhkhhkhkhhkhkhhkhkkhhkhkkihkhkkihhkhkkihhhkkihhkkihhkkikhhkkihhkkhhhkkhiikiiikk

* External Files *

*hhkkkhkhkkkhkhkhkkhkhkhkkhhhkkhkhhkkhhhkhhhkhhhkhhhkhkhhkhkkhhkhkkhhkhkkihhkhkihhhkkihhkkikhhkkihhkkihihkkhihkkhiikiik

ID Type File Name Prompt
(null) a_Results.xls

(null) a_scatter.xls

(null) f1 function values.xlIsx
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