

Simulation-based Stochastic Optimization on Discrete Domains: Integrating Optimal

Computing and Response Surfaces

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at George Mason University

By

Mark W. Brantley

Master of Science

Rensselaer Polytechnic Institute, 1998

Bachelor of Science

United States Military Academy, 1988

Director: Chun-Hung Chen, Professor

Department of Systems Engineering and Operations Research

Spring Semester 2011

George Mason University

Fairfax, VA

ii

Copyright: 2011 Mark W. Brantley

All Rights Reserved

iii

DEDICATION

This is dedicated to my grandmother, Therese Anne Cedotal Abadie. She would have

been proud.

iv

ACKNOWLEDGEMENTS

I would like to thank the members of the committee for their time and guidance. In

particular, I would like to thank Professor Chen for his patience, understanding, and

insight. I would also like to acknowledge the assistance that Dr. RK Jana provided during

the formulation of the research effort as well as the assistance that Professor Loo Hay Lee

(National University of Singapore), Professor Argon Chen (National Taiwan University),

and Professor Douglas J. Morrice (The University of Texas at Austin) provided as co-

authors of conference and journal papers. I have also benefitted from the feedback

provided by area editor Professor Shane Henderson and the anonymous referees at

Operations Research as well as by department editor Professor Enver Yucesan and the

anonymous referees at IIE Transactions. I would also like to thank my fellow student

LTC John Ferguson for his friendship and assistance along this path. Lastly, I would like

to thank my wife, daughter, and parents for their patience, love, and encouragement.

Significant portions of this dissertation are derived from two journal papers, Brantley et

al. (2010) and Brantley et al. (2011), and use of this copyrighted material has been

permitted.

This dissertation also contains portions of material from the following papers with

copyright permissions: Brantley and Chen (2005), Brantley, Lee, Chen, and Chen (2008),

Morrice, Brantley, and Chen (2008), Morrice, Brantley, and Chen (2009).

v

TABLE OF CONTENTS

 Page

List of Tables .. vi

List of Figures .. vii

List of Abbreviations/Symbols ... viii

Abstract ... xi

Chapter 1 Introduction ... 1

Chapter 2 Problem Setting ... 10

 2.1 Problem Statement .. 10

 2.2 A Bayesian Regression Framework .. 15

 2.3 Reducing the Number of Comparisons ... 19

Chapter 3 Optimal Simulation Design Method ... 25

 3.1 A Lower Bound for PCS ... 25

 3.2 Sufficient Number of Support Points .. 26

 3.3 Optimal Allocations .. 31

 3.4 Approximately Optimal Allocations ... 36

 3.5 Optimal Support Point Location ... 38

 3.6 OSD Procedure ... 39

 3.7 Numerical Testing and Results ... 41

Chapter 4 OSD for Partitioned Domains ... 55

 4.1 Problem Statement and Framework .. 56

 4.2 A Lower Bound for PCS ... 61

 4.3 Lagrangian Formulation for APCS ... 67

 4.4 Approximately Optimal Allocations ... 70

 4.5 POSD Procedure ... 77

 4.6 Numerical Testing and Results ... 79

Chapter 5 Conclusions and Future Work ... 89

Appendices ... 94

 Appendix A Proof of Theorem 4 .. 95

 Appendix B Proof of Theorem 5 .. 100

 Appendix C ProModel Code for OSD (one partition case) 106

 Appendix D Proofs of Lemma 4 and Lemma 5 .. 130

 Appendix E Proofs of Lemma 6 and Lemma 7 .. 134

 Appendix F Proof of Proposition 1 ... 138

 Appendix G ProModel Code for Partitioning OSD (POSD) 142

List of References .. 174

vi

LIST OF TABLES

Table Page

Table 1: OSD Allocations for Experiment 1.. 46

Table 2: OSD Allocations for Experiment 2.. 48

Table 3: Results of Experiment 6... 54

Table 4: Results of Experiment 8... 84

vii

LIST OF FIGURES

Figure Page

Figure 1: General Simulation Study Steps ..3

Figure 2: Two Comparisons (Interior Case) ...23

Figure 3: Two Comparisons (Boundary Case) ...24

Figure 4: Location of xs for the first case in Theorem 5 ...39

Figure 5: Results of Experiment 1 ..45

Figure 6: Results of Experiment 2 ..47

Figure 7: Results of Experiment 3 ..49

Figure 8: Results of Experiment 4 ..50

Figure 9: Results of Experiment 5 ..52

Figure 10: Intuitive Lower Bound Scenarios ..65

Figure 11: y(xi) = sin(xi) + sin(10xi/3) + ln(xi) - 0.84xi + 3 ..82

Figure 12: Results of Experiment 7 ..83

Figure 13: Results of Experiment 9 ..86

Figure 14: y(xi) = 10xi + 10/xi ...87

Figure 15: Results of Experiment 10 ..88

viii

LIST OF ABBREVIATIONS/SYMBOLS

APCS Approximate Probability of Correct Selection

DOE Design of Experiments

D-opt D-optimality Criterion

EA Equal Allocation

EA-RS Equal Allocation – Response Surface

MARS Multivariate Adaptive Regression Splines

OCBA Optimal Computing Budget Allocation

OSD Optimal Simulation Design

PCS Probability of Correct Selection

POSD Partitioning Optimal Simulation Design

RSM Response Surface Methodology

RV Random Variable

R&S Ranking and Selection

For brevity, we present the notation for the one partition case. If not indicated otherwise,

the notation for the partitioned case follows by adding a subscript h to indicate the

partition number.

a Variable to indicate the stationary point of the unknown underlying equation

A Index for one of two comparisons (left comparison)

b Index to indicate the best design location

B Index to indicate the partition with the global best design location

c Vector of constants

C DOE criterion

)(ixd Difference between)(ixy and)(bxy (used for within partition comparisons)

)(ˆ ixd Difference between)(ˆ ixy and)(ˆ bxy

)(
~

ixd RV whose probability distribution is the posterior distribution of)(ixd

D Lagrange interpolating polynomial coefficient for within partition comparisons

E Lagrange interpolating polynomial coefficient for between partition comparisons

 E Expected value

)(ixf Simulation output with noise

F n dimensional vector containing the replication output measures)(ixf

)(ixg Linear function in Theorem 1 defined as   bii xxxg  21 
~~

)(

ix

G)(ln  dimensional vector containing the replication output measures)(ixf

h Partition number

I Identity matrix

j Index variable

k Number of designs in a partition

l Number of additional simulation runs

L Lower bound for the APCS

m Number of partitions

M Index variable for the most competitive comparison

n Number of simulation runs already conducted

iN Number of simulation runs allocated to ix (one partition problem)

hiN Number of simulation runs for partition h allocated to hix

hN Number of simulation runs allocated to partition h

)(p Probability (lower case used in Bayesian regression derivation)

}{P Probability (upper case used in OSD/POSD derivations)

hMP Probability of the most competitive comparison for partition h

P Probability of the most competitive between partition comparison

q Coefficients for the optimal allocations

Q Lagrangian function

r Used in a change of variables for integration

hR Signal to noise ratio of the most competitive comparison for partition h

T Total number of simulation runs in the simulation budget

t Superscript for the transpose of a matrix

U Upper bound for the APCS

v Used in integration

w Variable used for sign function

W 3)(ln matrix composed of rows consisting of][
21 ii xx

ix Design location i

1x Design location at the left boundary of the domain

kx Design location at the right boundary of the domain

sx Design location selected as the middle support point

bx Design location with the smallest least squares estimate

Bbx Design location with the smallest least squares estimate (globally)

hbx Design location with the smallest least squares estimate for partition h

X 3n matrix composed of rows consisting of][
21 ii xx

iX Vector consisting of][
21 ii xx

)(ixy Unknown underlying function of simulation output,  )(ixfE

)(ˆ ixy Least squares estimate for)(ixy

x

)(~
ixy RV whose probability distribution is the posterior distribution of)(ixy

Z Index for one of two comparisons (right comparison)

i Percentage of the simulation budget allocated to ix (one partition problem)

hi Percentage of the budget for partition h allocated to hix

 Vector of unknown parameters of the quadratic underlying equation

̂ Vector of least squares estimates for 

0 Constant term in the underlying equation

0̂ Least squares estimate for the constant term 0

1 Linear term in the underlying equation

1̂ Least squares estimate for the linear term 1

2 Quadratic term in the underlying equation

2̂ Least squares estimate for the quadratic term 2


~

 RV whose probability distribution is the posterior distribution of 

 Index for a particular support point and allocation scheme,

 Variable for the steepest descent sum

)(ˆ hbx Least squares estimate for)(
~

hbx

)(
~

hbx Difference between)(~
hbxy and)(~

Bbxy (between partition comparisons)

 Spacing between the design locations (assumed constant)

 Vector of simulation replication noise terms

j Noise of the underlying equation for simulation replication j

j The number runs allocated during iteration j in the implementing algorithm

 Lagrangian multiplier

 Mean of the exponential distribution

hb Variance of)(
~

hbx

 Probability of success of one trial in the binomial distribution
2 The variance of the simulation output

i Variance of)(
~

ixd

1 Lower limit of the uniform distribution

2 Upper limit of the uniform distribution

 Normal distribution cumulative distribution function

 Set of partitions with the lower bounds established using quadratic information

 Variable to indicate the number of simulation runs in Lemma 2

 Sum of the squares of the error terms for the least squares estimate

ABSTRACT

SIMULATION-BASED STOCHASTIC OPTIMIZATION ON DISCRETE DOMAINS:

INTEGRATING OPTIMAL COMPUTING AND RESPONSE SURFACES

Mark W. Brantley, PhD

George Mason University, 2011

Dissertation Director: Dr. Chun-Hung Chen, Professor

Simulation can be a very powerful tool to help decision making in many applications but

exploring multiple courses of actions can be time consuming. Numerous ranking &

selection (R&S) procedures have been developed to enhance the simulation efficiency of

finding the best design. This dissertation explores the potential of further enhancing R&S

efficiency by incorporating simulation information from across the domain into a

regression metamodel. Under some common conditions in most regression-based

approaches, our new method provides approximately optimal rules that determine the

design locations to conduct simulation runs and the number of samples allocated to each

design location for problems with only one partition. In addition to utilizing concepts

from the design of experiments (DOE) literature, it introduces the probability of correct

selection (PCS) optimality criterion that underpins our new R&S method to the DOE

literature. This dissertation then extends the method by incorporating simulation

information from across a partitioned domain into a regression based metamodel. Our

new method provides approximately optimal rules for between and within partitions that

determine the number of samples allocated to each design location. Numerical

experiments demonstrate that our new approaches for one partition domains and for

multiple partition domains can dramatically enhance efficiency over existing efficient

R&S methods.

1

CHAPTER 1 INTRODUCTION

Simulation is a popular tool for designing large, complex, stochastic engineering

systems, since closed form analytical solutions generally do not exist for such problems.

Simulation allows one to accurately specify a system through the use of logically

complex, and often non-algebraic, variables and constraints. Detailed dynamics of

complex, stochastic systems can therefore be modeled. This capability complements the

inherent limitation of traditional optimization. Semiconductor manufacturing system is a

good example which is characterized by complex and reentrant production processes over

many heterogeneous machine groups with stringent performance requirements.

Semiconductor manufacturing faces stringent challenges of volatile product demands,

very short time to market, complex but fast evolving process technology, sky-rocketing

capital investment and highly cost-sensitive competition (Hsieh et al. 2001, 2007). The

health care arena provides another example. Simulations provide the ability to analyze

the complex decisions associated with patient flow and ambulance planning (Henderson

and Mason 2005 and Zeto et al. 2005). As a final example, simulations can help

determine how to procure military equipment. These simulations can provide a means to

investigate the trade-offs of performance, cost, and reliability given environmental and

operating scenarios (Brantley et al 2002).

2

Although simulation can help design good systems for efficient operations for

such complex systems as the examples provided above, the added flexibility of

simulation often creates models that are computationally intractable. Simulation

optimization is a method to find a design consisting of a combination of input decision

variable values of a simulated system that optimizes a particular output performance

measure or multiple performance measures of the system. For instance, using the

ambulance planning example from above, a decision maker may want to determine the

optimal locations to station a fixed number of ambulances in order to minimize the

average emergency response time. Figure 1 below provides general steps involved in

conducting a simulation study (based upon Harrell et al (1995), Law and Kelton (2000),

and Banks et al. (2001) for steps in constructing simulation models in particular and

Giordano and Weir (1985) and Clemen (1996) for steps in constructing models in

general). Note that while this figure is presented in a sequential manner with only one

feedback loop, a simulation study may have feedback loops between all stages shown in

the figure (Law and Kelton 2000). Simulation optimization is associated with the steps

from determining the experimental design to selecting the best design.

3

Formulate Problem
and Determine

Objectives

Build Simulation
Model and Gather

Input Data

Verify and Validate
Simulation Model

Experimental
Design

Conduct
Simulation Runs

Analyze Simulation
Output

Sensitivity Analysis

Document and
Implement

Decision

Select
the
Best

Figure 1: General Simulation Study Steps

The level of complexity associated with a simulation optimization problem is

dependent upon the nature of the input decision variables, the nature of the underlying

function associated with the output performance measure of the system, and the resources

available to solve the problem. For example, the input decision variables may be discrete

or continuous; and one dimensional or multi-dimensional. The underlying function

associated with the output decision variables may be deterministic or stochastic; discrete

or continuous; and linear or nonlinear. The resource considerations may include the time

available or the size of the computing budget dedicated to solving the problem as well as

the number of computer platforms available. This dissertation investigates stochastic

problems on a discrete domain with a finite simulation budget consisting of runs

conducted sequentially on a single computer. To assess the performance at a single

design location on the domain, the uncertainty in the system performance measure

4

requires multiple runs to obtain a good estimate of the performance measure. Thus, for a

simulation that may require hours or days to conduct a single iteration, the simulation

time required to conduct multiple runs for a large number of design locations may be cost

prohibitive.

The problem we consider is that of selecting the best design from among the finite

number of choices. Ranking and Selection (R&S) procedures are statistical methods

specifically developed to select the best design or a subset that contains the best design

from a relatively small set of k competing design alternatives (Goldsman and Nelson

1994). Dudewicz and Dalal (1975) and Rinott (1978) developed two-stage procedures for

selecting the best design or a design that is very close to the best system. Many

researchers have extended this idea to more general ranking-and-selection settings in

conjunction with new developments (e.g., Bechhofer, Santner, and Goldsman 1995).

To improve efficiency for R&S, several approaches have been explored for

problems of selecting a single best design. Intuitively, to ensure a high PCS, a larger

portion of the computing budget should be allocated to those designs that are critical in

the process of identifying the best design. A key consequence is the use of both the

means and the variances in the allocation procedures, rather than just the variances, as in

Dudewicz and Dalal (1975) and Rinott (1978). Among examples of such approaches, the

Optimal Computing Budget Allocation (OCBA) approach by Chen et al. (2000, 2008) is

the most relevant to this dissertation. OCBA maximizes a simple heuristic approximation

of the PCS. The approach by Chick and Inoue (2001ab) estimates the PCS with Bayesian

posterior distributions and allocates further samples using decision-theory tools to

5

maximize the expected value of information in those samples. In a similar myopic effort,

Frazier et al. (2008) develop the knowledge gradient approach that uses independent

multivariate normal priors to solve Bayesian R&S problems and then extend the method

for problems that assume a correlated variance structure between each design (Frazier et

al., 2009). The procedure by Kim and Nelson (2006) allocates samples in order to

provide a guaranteed lower bound for the frequentist PCS integrated with ideas of early

screening. Goldsman et al. (2005) and Fu et al. (2005) discuss the general concepts of

several more approaches while Branke et al. (2005, 2007) provide a nice overview and an

extensive comparison for some of the aforementioned selection procedures.

This dissertation takes a new approach to further improve the efficiency for R&S

by incorporating information from neighboring designs or information from estimates of

the underlying function generating the data. In that sense, it is related to the Bayesian

global optimization methods that sequentially search for design points in order to

efficiently find the optimal values of continuous functions. Some of these methods take

individual or a small number of samples at locations in order to build a metamodel across

the domain. For example, see Huang et al. (2006) and Villemonteix et al. (2009) for using

Kriging interpolation to solve general global optimization problems and van Beers and

Kleijnen (2003) for applying Kriging interpolation to a stochastic simulation setting.

Other methods assume varying degrees of structure to the problem such as correlated

variance terms. Similar to the previously mentioned R&S method by Frazier et al. (2009),

Calvin and Žilinskas (2005) extend the work of Kushner (1964) in order to use Wiener

process priors to address stochastic global optimization problems. Our approach is

6

developed for problems where we can assume an approximately quadratic form of the

underlying structure or portions of the underlying structure so that we can use DOE to

capture that information.

DOE is a commonly used approach for gathering information when variation is

present, and can be categorized into three branches (Melas 2006). The first DOE branch

is based upon combinatorial principles such as Latin squares. Sanchez (2005) provides an

overview of this method for simulation experiments and provides a list of types of

experimental designs. Chen and Cheng (2006ab) use this approach to minimize the

variance of estimated local stationary points in order to construct a ridge path across the

domain. The second DOE branch is the response surface methodology (RSM). This

method constructs a metamodel using a regression equation and finds the optimal value

using a local search method, typically based upon the gradient of the estimated function

(cf. Neddermeijer et al. 2000). We will primarily use concepts from the third DOE branch

called optimal experimental design that determines design locations and allocates

experimental samples according to specific optimality criteria. Federov and Muller

(1997), Cheng, Melas, and Pepelyshev (2001), and Melas, Pepelyshev, and Cheng (2003)

develop optimal designs for estimating the extreme point in quadratic regression. From a

simulation perspective, Barton (2005) in his discussion of forward-inverse metamodels

suggests that optimal experimental designs offer great opportunities for use in simulation

optimization but that past research has only focused upon leveraging the D-optimality

criterion. Cheng and Kleijnen (1999) introduce the concept of applying the concepts of

DOE to simulation optimization and develop a criterion that provides the best fitting

7

polynomial for queuing models. Lamb and Cheng (2002) extend this method for a

generalized regression metamodel and derive an optimal allocation for the goodness of fit

criterion.

The method proposed here, called optimal simulation design (OSD), takes an

approach that is different than most R&S methods by incorporating information from

across the domain into a regression equation. Unlike traditional R&S methods, this

regression based approach requires simulation of only a subset of the alternative design

locations and so the simulation efficiency can be dramatically enhanced. To efficiently

utilize the simulation budget, we want to determine i) which designs should be selected

for simulation; ii) the number of simulation runs for those selected designs. The goal is to

maximize the probability of correctly selecting the best design (PCS). To our best

knowledge, none of the DOE literature has addressed the first question directly for the

PCS criterion. While the second part is similar to some R&S methods such as OCBA, the

problem is much more complex because of the use of a regression metamodel. This

dissertation develops an OSD method to address both questions. Numerical testing shows

that the use of regression metamodel can indeed dramatically enhance simulation

efficiency, even compared with some existing efficient R&S methods such as OCBA. As

compared with the use of regression metamodels, the OSD methods offer a further

improvement over not only naïve response surface methods (by 50~70% reduction) but

also the well known D-optimality approach in DOE literature (by another 22%~28%

reduction).

8

While the use of a regression metamodel can dramatically enhance efficiency, the

OSD also inherits some typical assumptions from most DOE approaches. It is assumed

that there is an underlying quadratic function for the means and the simulation noise is

homogeneous across the domain of interest. Such assumptions are common in some of

the DOE literature as well as when applying an iterative search method (e.g., Newton’s

method in nonlinear programming) and focusing on a small local area of the search space

in each iteration. After solving our problem for just one partition across the entire

domain, this dissertation then expands the use of OSD by determining approximately

optimal allocations and support points for a domain that has been partitioned such that the

underlying function for each partition is approximately quadratic.

While enhancing R&S efficiency by incorporating simulation information from

across the domain into a regression metamodel has been explored in previous literature,

the contributions of this dissertation are fourfold. First, we develop approximately

optimal rules that determine the design locations to conduct simulation runs and the

number of samples allocated to each design location for problems on a single partition.

Numerical examples reinforce the derived results. Secondly, we advance the DOE

literature by considering a new criterion -- PCS -- and offering an optimal sampling

strategy for this new criterion. This dissertation then extends the method by incorporating

simulation information from across a partitioned domain into a regression based

metamodel. In doing so, we thirdly develop a framework to integrate OSD with

partitioning methods for general simulation optimization problems where we can assume

the OSD assumptions hold for each partition. Given design locations on a partitioned

9

domain, we want to utilize the simulation budget in a most efficient way by determining

the number of simulation runs allocated between partitions and also for the design

locations within each partition. Finally, we provide a heuristic approximation of the PCS

that performs well in numerical testing. Our new method provides approximately optimal

rules for between and within partitions that determine the number of samples allocated to

each design location.

The rest of the dissertation is organized as follows. Chapter 2 introduces the

simulation optimization problem setting, the Bayesian regression framework, and then

shows we can reduce the number of comparisons in our problem based upon our problem

assumptions. Chapter 3 provides the development of the OSD method and provides the

results of numerical experiments comparing the new OSD method and other methods.

Chapter 4 extends the OSD method for applications on partitioned domains and then also

provides results from numerical experiments using the new partitioning OSD (POSD)

method and other methods. Finally, Chapter 5 provides the conclusions and suggestions

for future work using the concepts introduced here.

10

CHAPTER 2 PROBLEM SETTING

2.1. Problem Statement

This dissertation explores a problem with the pri`ncipal goal of selecting the best

of k alternative design locations in a one-dimensional space. Without loss of generality,

we consider the minimization problem shown below where the “best” design location is

the one with the smallest expected performance measure.

 ],,[;)()(min kiii
x

xxxxxfExy
i

21 . (1)

It is important to note that many simulation optimization papers refer to the alternatives

or configurations under consideration as “designs”. We adopt a slightly different

convention. We consider the case of simulation output that is produced by an unknown

function of one variable at k design locations where kixx ii ,,, 11   . Therefore, we

will refer to the alternatives under consideration as “design locations” to reflect that there

is a cardinal relationship between the alternatives.

In this chapter, we consider that the expectation of the unknown underlying

function is quadratic or approximately quadratic in nature on the prescribed domain, i.e.,

2

210 iii xxxy  )(. (2)

11

However, the parameters  are unknown. We consider a common case where

)(ixy must be estimated via simulation with noise and that the simulation output)(ixf

is independent from replication to replication such that, for replication j,

,,,;)()(kixyxf jii 1  where),(~
20  Nj . (3)

The parameters  are unknown so)(ixy are also unknown. However, we can

find an estimated expected performance measure at ix , that we define as)(ˆ ixy , by using

a least squares estimate of the form shown in (4) below where 0̂ , 1̂ , and 2̂ are the

least squares parameter estimates for the corresponding parameters associated with the

constant, linear, and quadratic terms in (2).

2

210 iii xxxy  ˆˆˆ)(ˆ  (4)

For ease of notation, we will define]ˆˆˆ[ˆ
210   .

In order to obtain the least squares parameter estimates, we take samples on any

choice of ix (on at least three design locations to avoid a singular solution). We assume

that these ix are given beforehand and we can only take samples from these points. We

use a matrix notation for linear regression consistent with those used Draper and Smith

(1998) and Neter, et al. (1996). Given a total of n samples, we define F as the n

dimensional vector containing the replication output measures)(ixf and X as the 3n

matrix composed of rows consisting of][
21 ii xx with each row corresponding to its

respective entry of)(ixf in F . Using the matrix notation and a superscript t to indicate

the transpose of a matrix and then following an approach commonly shown in regression

12

texts, we determine the least squares estimate for the parameters  which minimize the

sum of the squares of the error terms)()( XFXF t  .

Simplifying, we obtain the equation below.

 XXFXFF ttt  2

Differentiating we obtain





XXFX tt 




.

This leads to the normal equation of:

FXXX tt  .

In the normal equation, the matrix XX t is called the information matrix for  . Since we

are using a quadratic model,























432

32

2

iii

iii

ii

t

xxx

xxx

xxN

XX

Solving the normal equations, we obtain the least squares estimate for the parameters as

shown below:

FXXX tt 1)(̂ .

Since the assumptions associated with (2) and (3) satisfy the Gauss-Markov conditions,

these parameter estimates that minimize the sum of the squared residuals are unbiased

and have the minimum variance for all unbiased linear estimators (Draper and Smith,

1998).

13

Given this model defined by (2) and (3), the type of optimality criteria used will

determine the way that we allocate the simulation runs. There are numerous optimality

criteria that can be imposed – typically identified by a particular letter or combination of

letters. The most basic criterion is that of D-optimality which minimizes the variance of

the regression parameters. Mathematically, this equates to an allocation scheme being D-

optimal if it maximizes the value of XX t . Other examples include the G-optimality

criterion that minimizes the maximum of the standardized variances over the domain, the

c-optimality criterion that minimizes a linear combination of the parameters tc , and

DS-optimality that minimizes the variance of a subset of the regression parameters

(Atkinson and Donev, 1998). This framework is similar to the criteria used by the various

R&S methods described in Chapter 1.

Our problem is different from all existing DOE optimality criteria and R&S

methods. We aim to select the design location associated with the smallest mean

performance measure from among the k design locations within the constraint of a total

computing budget with only T simulation replications. Given the least squares estimates

for the parameters, we can use (4) to estimate the expected performance measure at each

design location. We designate the design location with the smallest least squares estimate

as bx so that)(ˆmin)(ˆ i
i

b xyxy  . Given the uncertainty of the estimate of the underlying

function, bx is a random variable that is dependent upon the size of the computing budget

and the allocations to each design location. We define Correct Selection as the event

where bx is indeed the best location and we define iN as the number of simulation

14

replications conducted at design location ix . Since the simulation is expensive and the

computing budget is restricted, we seek to develop an allocation rule for each iN in order

to provide as much information as possible for the identification of the best design

location. Our goal then is to determine the optimal allocations to the design locations that

maximize the probability that we correctly select the best design (PCS). This OSD

problem is reflected in (5) below.

TNNNts

ixyxyPPCS

k

ib
NN k









21

1

..

})()({max
,, (5)

The constraint TNNN k  21 denotes the total computational cost and implicitly

assumes that the simulation execution times per sample are constant across the domain.

The nature of this problem makes it extremely difficult to solve. As per (3), to

understand the underlying function)(ixy , we must conduct simulation runs to estimate

)(ixf , which is a measure of the system performance. This is compounded by the fact

that)(ixf is a function of the random variable  . To even assess the performance at one

point on the domain, the uncertainty in the system performance measure requires multiple

runs to obtain good approximations of the performance measure. Since the optimal

allocation is dependent upon the uncertainty of the parameters and the random variable

bx , we can only estimate the PCS even after exhausting the total simulation budget T .

Incorporating the information from the underlying function adds an additional level of

complexity to the derivation of the optimal allocations; however, it is this concept that we

15

aim to exploit in order to provide a significant improvement in the ability to maximize

PCS.

2.2. A Bayesian Regression Framework

In order to solve the problem in (5), we must obtain estimates for the parameters

 . Assuming that the conditional distribution of the simulation output vector F is a

multivariate normal distribution with mean X and a covariance matrix I2 where I is

an identity matrix, we can express the conditional probability of the simulation run output

as shown in (6) below.












 

)()(exp)(),|(
/ 


 XFXFFp tn

2

222

2

1
2 . (6)

For ease of derivation, we assume that 2 is known. Degroot (1970), Law and Kelton

(2000), and Chen and Lee (2010) discuss other approaches for when 2 is not known.

Without loss of generality, in Chapter 3, we find an approximate solution to our budget

allocation problem that does not depend upon the value of 2 and numerical experiments

for our method developed in Chapter 4 demonstrate that the method performs well even

when using an estimate of the variance.

Due to the ease of the derivation, we will proceed with a Bayesian regression

framework where the parameters  are assumed to be unknown and are treated as

random variables. We aim to find the posterior distribution of  as the simulation

replications are conducted and use this distribution to update the posterior distribution of

16

the performance measures for each design location. We can then perform the

comparisons with the performance measure at design location bx as expressed in (5).

We begin by noting that the conditional probability expressed in (6) can be

decomposed as shown in (7) below.

)(

),,(

)|(),(

),,(
),|(

2

2

22

2
2 1










p

Fp

pp

Fp
Fp  . (7)

In a similar manner, given a set of n initial simulation runs with the output contained in

vector F , the posterior distribution of  can be expressed as below.

)(

),,(

)|(),(

),,(
),|(

2

2

22

2
2 1










p

Fp

FpFp

Fp
Fp  . (8)

Rearranging the terms from (7) and (8), we obtain Bayes’ law that expresses the posterior

distribution of as shown below.

)|(

)|(),|(
),|(

2

22
2






Fp

pFp
Fp  .

As noted by Gill (2002), the)|(
2Fp term in the denominator does not provide any

relevant information about the parameters  . This term acts a normalizing constant to

ensure the conditional probability sums to one. For convenience, we will omit this term

and work with a kernel as expressed in (9) below.

)|(),|(),|(
222  pFpFp  . (9)

We assume the case presented by DeGroot (1970) where we have an improper prior

distribution with little prior knowledge about  such that

17

2

2 1


 )|(p . (10)

Substituting the results of (6) and (10) into (9), we obtain

 










 

)()(exp),|(


 XFXFFp tn

2

22

2

1
. (11)

Therefore, the mean and variance of the parameters  are

FXXXFE tt 12 )(),|(

  122 
 XXF t),|cov(. (12)

As noted by DeGroot (1970) and shown by Gill (2002), this same result can be obtained

by assuming a conjugate normal prior distribution and applying an asymptotic

assumption such that the number of simulation runs becomes very large.

For ease of notation, we will use 
~

 and)(~
ixy to denote the random variables

whose probability distributions are the posterior distribution of  and)(ixy conditional

on F given samples respectively. We can then use the posterior distribution of  to

update the posterior distribution of the performance measures for each design location

such that

2

210 iii xxxy 
~~~

)(~  .          

Therefore, given a set of n initial simulation runs conducted at the design 

locations described in X  with the output contained in vector F  and the design location 

bx  obtained from the least squares results derived in the previous section, we can 



18 

redefine the probability of correct selection from (5) based on the Bayesian concept 

(Chen et al. 2010 and He et al. 2007) as 

})(~)(~{ ixyxyPPCS ib  .        (13) 

The posterior distribution of   is given by  

])(,)[(~
~ 121  XXFXXXN ttt  .       (14) 

We define iX  as the vector consisting of ][
21 ii xx . Since )(~

ixy  is a linear 

combination of the 
~

 elements, this means that )(~
ixy  has a Gaussian distribution of the 

form 

])(,)([~,|)(~ 121

i

tt

i

tt

ii XXXXFXXXXNFXxy   .    (15) 

We are interested in how the PCS in (13) changes if we conduct l  additional simulation 

runs before we actually conduct the simulation replications so that we can make 

allocations that maximize the PCS in (5). Given the l  additional simulation runs, we 

define G  as the )( ln   dimensional vector containing the replication output measures 

)( ixf  from the original set of simulations runs and the l  additional simulation runs. 

Likewise, we define W  as the 3 )( ln  matrix composed of rows consisting of 

][
21 ii xx  with each row corresponding to its respective entry of )( ixf  in G . The 

updated posterior distribution of the performance measures for each design location 

becomes analogous to (15): 

])(,)([~,|)(~ 121

i

tt

i

tt

ii XWWXGWWWXNGWxy   . 



19 

When nl  , we assume that GWWWFXXX tttt 11 
)(~)(  such that our predictive 

posterior distribution is approximately 

])(,)([~)(~
i

tt

i

tt

ii XWWXFXXXXNxy 121   .     (16) 

The change in the variance after these additional runs is one of the key elements of our 

derivation and will be explained in greater detail in Chapter 3. Suffice it to say that 

additional runs will reduce the variance and we aim to select the locations of these 

additional runs to maximize the PCS in (5). 

We could estimate 2  from our least squares results and could calculate 
~

 using 

(14) or )(~
ixy  using (15). We could then use Monte Carlo simulation with (13) in order to 

estimate the PCS (Law and Kelton 2000). However, estimating the PCS via Monte Carlo 

simulation can be time consuming. The next subsection reduces the number of 

comparisons required and Chapter 3 presents a way to approximate the PCS without 

running Monte Carlo simulations. 

 

2.3. Reducing the Number of Comparisons 

Subsections 2.1 and 2.2 demonstrated how we can utilize the quadratic structure 

of the underlying function in order to provide estimates of the performance measure 

across the entire domain. This subsection demonstrates that we can also use this quadratic 

structure to reduce the number of comparisons required in the PCS Equation (5). 

Specifically, given the discrete domain presented in our problem, we only need to 

consider the three cases presented in Theorem 1 below. 

 



20 

Theorem 1: Given bx  estimated from the second order polynomial metamodel results, 

the assumption that our underlying function is quadratic means that we can reduce the 

required number of comparisons in our PCS equations from the 1k  comparisons 

expressed in (5) to 2 comparisons. As such, we can restate the OSD problem in (5) as 

shown in (17) below or in its equivalent form using the parameters 
~

.  

   

TNNNts

xyxyxyxyPPCS

k

bb
NN k



 





21

,,

..

})(~)(~)(~)(~{max
1  with   (17) 

Case 1 (Interior Design Case): 111  bbkb ;;, , 

Case 2 (Left Boundary Design Case): kb  ;; 21 , and 

Case 3 (Right Boundary Design Case): 11  kkb ;; . 

Proof: Using the definition of conditional probability, we know that 

 

   



,;)(~)(~|)(~)(~,;)(~)(~

)(~)(~

ixyxyixyxyPixyxyP

ixyxyP

bibibi

bi
 

 

We aim to show that   1 ,;)(~)(~|)(~)(~ ixyxyixyxyP bibi  and must 

consider the three cases listed above.  

 

Case 1 (Interior Design Case): 111  bbkb ;;,  

 For the interior design case, we will show that we know that we have correctly 

selected if the design that we selected is better than both of its neighboring designs.  



21 

In other words, if bx is an interior point ( kb ,1 ) with )(~)(~
bb xyxy 1  and 

)(~)(~
bb xyxy 1 , then ixyxy bi  )(~)(~ . Given that )(~)(~

bb xyxy 1  and 

)(~)(~
bb xyxy 1 , we know that      01211   bbbb xxxx 

~~
 and 

     01211   bbbb xxxx 
~~

. 

Using these equations it can be shown that 02 
~

 when )(~)(~
bb xyxy 1  and 

)(~)(~
bb xyxy 1 . 

For 1i ,    bbbib xxxx   1  and    bbbib xxxx   1 . Therefore, with 02 
~

,  

     021   bibbib xxxx 
~~

 or )(~)(~
bib xyxy  . 

In the same manner, for 1i ,    bbbib xxxx   1  and    bbbib xxxx   1 . 

Therefore, with 02 
~

,      021   bibbib xxxx 
~~

 or )(~)(~
bib xyxy  . These 

results provide the fact that if bx is an interior point, 

  111  bbixyxyixyxyP bibi ,;)(~)(~|)(~)(~  

 

Case 2 (Left Boundary Design Case): kb  ;; 21  

 For the left boundary design case, our objective function also simplifies to two 

comparisons. We will show that we know that we have correctly selected if the design 

that we selected is better than both the adjacent design and the opposite boundary design. 

For the left boundary, if we are given that )(~)(~
bxyxy 2 and )(~)(~

bk xyxy  , then it can 

be shown that ixyxy bi  )(~)(~ . To start, we define   bii xxxg  21 
~~

)( . Since 



22 

  bixx bi  0  and we are given that )(~)(~
bxyxy 2  and )(~)(~

bk xyxy  , we know 

that 02 )(xg  and 0)( kxg . Since )( ixg  is a linear function and the two extreme 

points have values greater than or equal to zero, we can establish that 

   bixx bi  021 
~~

. Using again that   bixx bi  0 , we know that 

bixyxy bi  )(~)(~ . These results provide the fact that if 1xxb   then 

  12  kixyxyixyxyP bibi ,;)(~)(~|)(~)(~ . 

 

Case 3 (Right Boundary Design Case): 11  kkb ;; . 

 The proof for the right boundary design case where kb xx   is almost identical to 

the approach presented for the left boundary design case except that   0 bi xx  and 

   bixx bi  021 
~~

. 

Figure 2 below illustrates the results for the interior case and Figure 3 below 

provides one depiction of a boundary case. 

 

 



23 

)( neighborsitsthanbetterisxPPCS b

},;)(~)(~{ 11  bbixyxyPPCS bi

 

Figure 2: Two Comparisons (Interior Case) 

 

 

 



24 

)

(

designextremeotherand

neighboritsthanbetterisxPPCS b

},;)(~)(~{ kixyxyPPCS bi 20 

 

Figure 3: Two Comparisons (Boundary Case) 



25 

 

 

CHAPTER 3 OPTIMAL SIMULATION DESIGN METHOD 

 

 

In Chapter 2, we provided a derivation for our Bayesian regression model and 

showed that we required only two comparisons by using the information from the 

regression equation. These results were generally independent of how we allocated the 

simulation budget to the design locations. In this section, we will develop the OSD 

allocation method. We begin by deriving an approximation to our PCS equation. We then 

establish that it is sufficient to allocate simulation runs to only three design locations to 

estimate the parameters for the quadratic function. (For notation sake, we will refer to the 

three design locations receiving simulation runs as support points.) We then derive an 

optimal allocation of simulation runs to the three support points and an efficient 

approximation for the optimal allocation. Finally, we determine the optimal locations for 

the three support points. 

 

3.1. A Lower Bound for PCS 

 Given the comparisons from the PCS equation in (17), we can use the 

complementary conditions for probabilistic events to establish that  

       })(~)(~)(~)(~{1})(~)(~)(~)(~{ bbbb xyxyxyxyPxyxyxyxyP   . 

In addition, we know from probability theory that 



26 

   

   })(~)(~)(~)(~{})(~)(~{})(~)(~{

})(~)(~)(~)(~{

bbbb

bb

xyxyxyxyPxyxyPxyxyP

xyxyxyxyP








 

Substituting this result, we obtain 

   })(~)(~)(~)(~{})(~)(~{})(~)(~{1 bbbb xyxyxyxyPxyxyPxyxyP

PCS







. 

Using the results from Chapter 2, the last term in the equation above determines the 

probability that bx  is actually the “worst” design in the domain such that it is the one with 

the largest expected performance measure. This probability is typically small so that we 

can establish a lower bound (or approximate PCS) for our PCS equation as shown in (18) 

below. 

})(~)(~{)}(~)(~{ bb xyxyPxyxyPAPCSPCS  1 .    (18) 

 

3.2. Sufficient Number of Support Points 

In this section, we will establish a relationship between the information matrix 

commonly used in the DOE literature and our PCS criterion in order to leverage results 

previously established in the DOE literature. Define  

)(
~

)(
~

)(~)(~)(
~

bibibii xxxxxyxyxd  1

22

2  .  

This result shows that )(
~

ixd  is a linear combination of the 
~

 elements so the )(
~

ixd  

terms are also normally distributed. Using the results of Section 2, ],)(ˆ[~)(
~

iii xdNxd   

where  



27 

)(ˆ)(ˆ)(ˆ bii xyxyxd   

and 

 


















 

22

1222

0

0

bi

bi

t

bibii

xx

xxXXxxxx )(,, .      (19) 

Based upon the fact that ],)(ˆ[~)(
~

iii xdNxd   we know that  

dvexdPxyxyP i

ixdv

i

ibi 
 


0

2

2

2

1
0





))](ˆ([

})(
~

{})(~)(~{ . 

Conducting a change of variables such that 

i

ixdv
r



)(ˆ
  and drdv i , 

drexdP

i

ixd

r

i 
 





)(ˆ

})(
~

{ 2

2

2

1
0 .       (20) 

Equation (20) shows that the comparisons in (18) are a function of )(ˆ ixd  and i . As we 

take additional simulation runs,   )(ˆ)(
~

ii xdxdE   and (19) shows that i  is a function of 

the information matrix  XX t . Therefore, the information obtained by additional 

simulation runs will affect i  and thus our PCS criterion. 

 For a particular support point and allocation scheme  , denote  XX t  as the 

resulting information matrix. By definition, the information matrix  
1XX t
 dominates 

the information matrix  
2XX t
 or    

21 XXXX tt   when    
21 XXXX tt   results in a 



28 

non-negative definite matrix. A criterion C conforms with a Loewner ordering if 

   
21 XXXX tt   then 21 CC   or, to simplify the notation, 

    2121 CCXXXX tt   (Liski, et al., 2001). 

 

Lemma 1: The PCS criterion conforms with a Loewner ordering such that 

    2121 APCSAPCSXXXX tt  . 

 

Proof: This proof is similar to one presented by Ehrenfeld (1955). It is well established in 

the DOE literature that        
2121 ii

tt XXXX    (see Atkinson and Donev, 

1998). Using this result, we can establish that 

   
21

21 





























i

i

i

itt xdxd
XXXX



)(ˆ)(ˆ
. 

Therefore, using (20) we can also establish that 

       
2121 00 })(

~
{})(

~
{  ii

tt xdPxdPXXXX . 

or 

       
2121 })(~)(~{})(~)(~{ bibi

tt xyxyPxyxyPXXXX  . 

Using these results with our APCS equation in (18), we obtain that 

    2121 APCSAPCSXXXX tt  . 



29 

 Note that establishing that the PCS criterion conforms to a Loewner ordering in 

Lemma 1 does not imply that we can substitute the information matrix for our PCS 

criterion. Instead, it allows us to reduce the set of possible allocation combinations. We 

offer Lemma 2 as a simple example of this.  

 

Lemma 2: Given a simulation budget of T , we will maximize the PCS by utilizing the 

entire simulation budget. 

Proof: Let information matrix  
XX t  denote an information matrix using   simulation 

runs such that T . Let  
1XX t  denote the information matrix after allocating one 

additional simulation run. Using the results from Section 2, 

 














 









432

32

2

iii

iii

ii

t

xxx

xxx

xx

XX  

   


























4

1

3

1

2

1

3

1

2

11

2

11

1

1

xxx

xxx

xx

XXXX tt . 

Regardless of the location of the additional simulation run, it is shown that 

   
  XXXX tt

1 , so it is better to allocate one additional simulation run, and by 

extension better to allocate the entire simulation budget. We have therefore reduced the 

possible allocation combinations to only the possible combinations that allocate the entire 

simulation budget. 



30 

 However, the results in Lemma 2 do not determine where to allocate each 

additional simulation run given the choice of k  design locations. The following theorem 

based upon the DOE literature will at least allow us to reduce the number of support 

points required for our allocations. 

 

Theorem 2: Given that we assume the expectation of our underlying function is 

quadratic, we require only three support points to obtain all of the information in the 

XX t  matrix. Two of these support points will be at the extreme design locations ( 1x  and 

kx ). 

Proof: de la Garza (1954) establishes that for a polynomial of degree m  and a discrete 

domain with more than 1m  support points, the information obtained in the XX t  

matrix by a spacing at more than 1m  support points can always be attained by spacing 

the same information at only 1m  of the design locations. Kiefer (1959) extends this 

result by proving that regardless of the optimality criteria, for a polynomial with 1m  

support points, two of the support points are at the extremes.  

 Given the results of Theorem 2, we will refer to the support points as  ks xxx ,,1  

where ks xxx 1 . Using this notation and the APCS in (18), we can now restate the 

OSD problem in (17) as the OSD problem in (21) below.  

OSD Problem 

ksiN

TNNNts

xyxyPxyxyPAPCS

i

ks

bb
NNN ks

,

;..

})(~)(~{)}(~)(~{max
,,

10

1

1

1





 

 with  (21) 



31 

Case 1 (Interior Design Case): 111  bbkb ;;, , 

Case 2 (Left Boundary Design Case): kb  ;; 21 , and 

Case 3 (Right Boundary Design Case): 11  kkb ;; . 

 Having established the relationship between the information matrix commonly 

used in the DOE literature and our PCS criterion, we were able to use the results from the 

DOE literature (de la Garza, 1954 and Kiefer, 1959) to reduce the number of support 

points. However, as noted by Liski, et al. (2001), establishing dominance within the class 

of three point allocation schemes using only the information matrix is generally not 

feasible. The optimality criterion will instead guide this determination. As a simple 

example, for a quadratic underlying function, using the D-optimality criterion will always 

result in allocating one third of the simulation budget to both extreme points of the 

domain and the remaining third to a support point located at the center of the domain. 

Using a DS-optimality criterion that is interested in only the 1  and 2  parameters will 

result in allocating one half of the simulation budget to both extreme points of the 

domain. 

 

3.3. Optimal Allocations 

In this section we will first develop a method to optimally allocate simulation runs 

to the three support points  ks xxx ,,1 . In the next two subsections, we will use the results 

to determine an efficient approximation for the optimal allocation and the optimal design 

location for the support point sx . Since our aim is to efficiently allocate the computing 



32 

budget to the three support points, we will rewrite the variance term in (19) so that it is 

expressed in terms of the percentage of the simulation budget allocated to each support 

point. For notation sake, we define },,{,/ ksjTN jj 1 .  

 We begin by examining the symmetric nature of the XX t  matrix. Given the fact 

that we are only taking simulation replications at the three support points, this matrix can 

be rewritten in terms of the support points as 


















































2

2

2

111

222

1

1

1

1

1

00

00

00111

kk

ss

k

s

ks

ks

t

xx

xx

xx

xxx

xxxTXX







. 

Using a basic property for matrices where 1111   ABCABC)(  (Neter et al., 1996), we 

obtain 

1

222

1

1

1

1

1

2

2

2

11

1

111

00

00

00

1

1

1
1























































ks

ks

k

s

kk

ss

t

xxx

xxx

xx

xx

xx

T
XX







)( .   

It can be shown that 





























































))(())((

)(

))((

))(())((

)(

))((

))(())((

)(

))((

skkskkskk

ksskss

k

kss

k

ksks

ks

ks

ks

ks

ks

xxxxxxxx

xx

xxxx

xx

xxxxxxxx

xx

xxxx

xx

xxxxxxxx

xx

xxxx

xx

xxx

xxx

11

21

1

21

11

1

1

1

111111
1

222

1

1

1

1

1

111

. (22) 

Therefore, after computing the inverse in (22), we may write (19) in the simplified form: 



33 














k

ki

s

sii

i

DDD

T 




22

1

2

1
2

,,,
, 

where   













))((

))(())((
,

ks

bkbsikis

i
xxxx

xxxxxxxx
D

11

1 , 














))((

))(())((
,

kss

bkbiki

si
xxxx

xxxxxxxx
D

1

11 , 

  













))((

))(())((
,

skk

bsbisi

ki
xxxx

xxxxxxxx
D

1

11 .   (23) 

Note that 1,iD , siD , , and kiD ,  are the Lagrange interpolating polynomial coefficients (see 

de la Garza, 1954 and Burden and Faires, 1993) for estimating )(ˆ ixd  at the three support 

points  ks xxx ,,1 . Defining },,{,/)()( ksjNxfxy jjj 1  as the mean of the 

simulation runs conducted at the support point jx  and noting the interpolating 

polynomial property at the support points such that )()(ˆ jj xyxy  , we see that 

 

)(ˆ)(ˆ)(ˆ)()()()(ˆ ,,,,,, kkissiikkissiii xyDxyDxyDxyDxyDxyDxd  1111 . (24) 

 

Given the unbiased properties of our least squares parameters and estimators, we assume 

that there will not be large changes in )(ˆ ixd  as we take additional simulation runs. On the 

other hand, we note from (23) that i  and thus the APCS expressed in (21) are dependent 

upon T  and the allocations to each of the three support points. Theorem 3 below 

provides an optimal allocation rule for the OSD problem. 



34 

Theorem 3: The OSD problem given in (21) can be maximized with the following 

allocation rule: 

ksi

ksi
qqq

q

i

ks

i

i

,,,

,,,

10

1

1











       (25) 

where 
23

2

23

2

/

,

/

,

)(

)(ˆ
)

)(ˆ
(

)(

)(ˆ
)

)(ˆ
(















 






jj

j

DxdxdDxdxd
q  and 2

2

2

1
r

er






 )( . 

Proof:  

To solve the OSD problem given in (21), we define a Lagrangian function 





k

i

iAPCSQ
1

1)(   or using (20) 
















k

i

i

xdxd

drrdrrQ
1

11 )()()(

)(ˆ)(ˆ





      (26) 

so that we can investigate 
j

Q




to determine the allocation. We can use the chain rule to 

establish that 

































 





 jjj

QQQ
. 

From (26) we obtain 

232 /
)(

)(ˆ
)

)(ˆ
(

i

i

i

i

i

xdxdQ










.        (27) 



35 

From (23) we also obtain 

2

22

j

ji

j

i
D

T 





 ,





.         (28) 

Substituting these results we determine that the partial derivative of our objective 

function with respect to the allocation at each of our support points is 





















 

















2

22

232

22

23 22 j

j

j

j

j

D

T

xdxdD

T

xdxdQ ,

/

,

/
)(

)(ˆ
)

)(ˆ
(

)(

)(ˆ
)

)(ˆ
( .  (29) 

By setting 0




j

Q


, we obtain 

223

2

23

2

2

21













TDxdxdDxdxd jj

j

































/

,

/

,

)(

)(ˆ
)

)(ˆ
(

)(

)(ˆ
)

)(ˆ
( .     

This yields 

k

k

s

s qqq




1

1
         (30) 

with 

23

2

23

2

/

,

/

,

)(

)(ˆ
)

)(ˆ
(

)(

)(ˆ
)

)(ˆ
(















 






jj

j

DxdxdDxdxd
q .  

Using the fact that 11  ks   and (30), we can establish that  

ksi
qqq

q

ks

i

i ,,, 1

1




 . 



36 

Theorem 4: The objective function (26) is concave. Therefore, the allocation rule given 

in (25) will yield a global (although not necessarily unique) optimal solution to (26). 

 

Proof: See Appendix A. 

 

While the allocation rule given in (25) is nonlinear with respect to  , the solution 

for each allocation as depicted in (25) or the alternate form represented by (30) shows 

that the allocations are contained within a simplex generated by the constraint 

11  ks  . Since this simplex represents a compact subset of values for  , we 

know there exists a fixed point solution for the system of equations in (25) (Burden and 

Faires, 1993) and can use one of several root finding techniques to find a solution. For 

guaranteed convergence, we can use the steepest descent method to find a solution to the 

system of equations in (25) by finding a minimum to (31) below (Burden and Faires, 

1993). 

2

1

2

1

2

1

1

1




















































ks

k

k

ks

s

s

ks

qqq

q

qqq

q

qqq

q





    (31) 

 

3.4. Approximately Optimal Allocations 

In the previous section we derived an optimal allocation rule for the OSD problem 

in (21). However, our aim is to provide a simple means for efficiently allocating the 



37 

budget instead of numerically computing the optimal values for   as expressed in (25). 

In this section, we will derive an approximation for our optimal allocations and our 

numerical results in Section 4 will demonstrate its efficiency.  

Define design x  such that 




























i

i

i
i

i

i

xdxd




)(ˆ
minarg)

)(ˆ
(maxarg

,,

. Revisiting the OSD 

problem in (21), we note the following lower and upper bounds for our APCS equation as 

shown in (32) below: 

)}(~)(~{)}(~)(~{ bb xyxyPAPCSxyxyP   121     (32) 

If we denote L  and U  as the lower and upper bounds respectively, we obtain:  

0
2

2
2

22

23




 







 








j

j

j

D

T

xdxdL ,

/
)(

)(ˆ
)

)(ˆ
(  

0
2 2

22

23




 







 








j

j

j

D

T

xdxdU ,

/
)(

)(ˆ
)

)(ˆ
(  

Each of these bounds results in the approximately optimal allocation of  

ksi

ksi
DDD

D

i

ks

i

i

,,,

,,,
,,,

,

10

1
1














.      (33) 

 

Using the concepts from the research area of large deviation theory, we know that our 

lower and upper bounds will have the same asymptotic convergence rate since they are 

based upon the same allocation rule (33). More importantly, since our APCS is bounded 

by them, it will also converge at the same rate. For brevity, we omit a detailed discussion 



38 

of the large deviation theory and reference Dembo and Zeitouni (1992) for a general 

discussion and Glynn and Juneja (2004) for a simulation optimization application. 

 

3.5. Optimal Support Point Location 

Given the approximately optimal allocations to  ks xxx ,,1  from the previous 

section, we will determine the optimal design location for the support point sx  among all 

the given design points. Without loss of any generality but for clarity and ease in 

notation, we present the following theorem assuming an odd number of designs evenly 

spaced across the domain. We then address cases with uneven spacing or an even number 

of designs. 

 

Theorem 5: When presented with an odd number of design locations evenly spaced 

across the domain such that 11
1

1

1 



  ki

k

xx
xx k

ii ,, , the approximate PCS 

expressed in (18) with allocations that satisfy (25) is maximized with the following 

locations for sx : 








































otherwisex

xxxxxx
x

xxxxxx
x

x

k

kbk
kb

kbk
b

s

,

4

3

22
,

224

3
,

2/)1(

11

11
1

     (34) 

Proof: In Appendix B, we consider five cases and analyze 
sx

Q




 for each case. 



39 

 The results of Theorem 5 demonstrate that when 2/)( bxx   is in the middle 

half of the domain, sx  is located such that it is the same distance from 2/)( bxx   as 

the nearest boundary is from 2/)( bxx  . This makes the design symmetric 

about 2/)( bxx  . The first case is illustrated in Figure 4 below. 

 

 

 
Figure 4: Location of xs for the first case in Theorem 5 

 

 

 

When 2/)( bxx   is in the outer half of the domain, sx  is located at the center of the 

domain making the design symmetric about sx . 

 If the design locations are not evenly spaced or if we have an even number of 

design locations, we can use a subgradient approach similar to the approach taken for 

Theorem 5. The results of this type of approach provide that the approximate PCS 

expressed in (18) with allocations that satisfy (25) is maximized by selecting the interior 

design location closest to sx  selected from Theorem 5. 

 

3.6. OSD Procedure 

The following is the algorithm that we used to implement the OSD method for the 

experiments. The actual ProModel code used is in Appendix C. 



40 

OSD Procedure (Maximizing PCS) 

INPUT k  (the number of design locations), T  (the computing budget),
ix  (the 

design locations), n0 (the number of initial runs), 
j  (the number runs allocated each 

iteration j); 

INITIALIZE j0; 

  Perform n0 simulation replications for three design locations; by 

convention we use the D-opt support points such that j

k

j

k

j NNN   211 /)(  = n0. 

LOOP WHILE 


k

i

j

iN
1

< T  DO 

  UPDATE  - Estimate a quadratic regression equation using the information from all 

prior simulation runs.  

  - Estimate the mean and variance of each design location using 

2

210 iii xxxy  ˆˆˆ)(ˆ  .  

  - Determine the observed best design so that )(ˆminarg i
i

b xyx  . 

  - Based upon the location of bx , use (21) to determine x  and x . 

  - Determine x  such that 




























i

i

i
i

i

i

xdxd




)(ˆ
minarg)

)(ˆ
(maxarg

,,

. 

  - Determine sx  using (34). 

  ALLOCATE   Increase the computing budget by 
1j  and calculate the new budget 

allocations for 1

1

j , 1j

s  and 1j

k  according to (33). 



41 

  SIMULATE   Perform round[ 1

1





j

ij  ] simulations for design i, i = 1, s, k; j← j+ 1. 

END OF LOOP 

 

3.7. Numerical Testing and Results 

In this section, we describe how we compared the results from our new OSD 

method against the results from four other allocation procedures. We start by providing a 

description of the other methods chosen to provide a perspective of the efficiency gained 

by using the approximately optimal allocations and also by using the information from a 

regression equation. We then describe our testing framework. Finally, we end with the 

results from six experiments. 

 The simplest allocation case is a naive method that equally allocates (EA) the runs 

to each design location such that kTN i /  for each i. For this method, we designate the 

design location with the smallest mean performance measure as bx  so that 

kT

xf

x

kT

j

i

i
b

/

)(

minarg

/





1

. 

 Instead of equally allocating, we also tested the OCBA method, which is one of 

efficient R&S performers (Branke et al. 2005, 2007). This method requires a set of 

initialization runs and, based upon the findings of Chen et al. (2000), we used an initial 

allocation of 5 runs for each design location. For the type of problem that we are 

investigating with an assumed underlying quadratic function and homoscedastic variance, 



42 

this method will allocate most of the simulation budget to the best design and its 

immediate neighbors. 

 The next method in our progression equally allocates to each design location but 

uses a response surface (EA-RS) to compare the results. As with the OSD method, we 

designate bx  so that )(ˆminarg i
i

b xyx  .  

 The final method that we will compare against leverages the results from de la 

Garza (1954) in which we require only three support points to capture all of the 

information in the response. A very popular way to do this in the DOE literature is to use 

the D-optimality criterion (D-opt) that maximizes the determinant of the information 

matrix resulting in minimizing the generalized variance of the parameter estimates. Liski 

et al. (2001) provide an overview of the development of this popular method, its many 

extensions, and its relationship with other common methods. Atkinson and Donev (1998) 

provide a list of properties of this criterion and note that D-opt often performs well 

compared to other criteria. For an underlying quadratic function, this criterion establishes 

support points at the two extreme points and at the center of the domain and allocates one 

third of the simulation budget to each of these support points. Using the notation from our 

OSD derivation, this criterion will always allocate with    313131211 /,/,/,, /)(  kk  . 

 For the OSD method, we initialize as per the algorithm described in the previous 

section with kk NNN   211 /)(  = n0 =2.  



43 

In order to compare the results of using OSD against these other methods, we 

conducted the first five experiments using the following function to represent the 

simulation output: 

),()()( 102 Naxxf ii  . 

We used a domain consisting of evenly spaced design locations where ],[ 11x .  

For the sixth experiment, we used the following function to represent the 

simulation output: 

),()()( 101 4 Nxxf ii  . 

We used a domain consisting of evenly spaced design locations where ],[ 44x . With 

a slight modification to our OSD procedure, we are able to demonstrate using this last 

experiment that OSD may be robust enough to handle problems that are not quadratic 

across the entire domain if we can partition the domain such that each partition is 

approximately quadratic. This concept will be explored in more detail in Chapter 4 and 

demonstrated with more general underlying functions. 

We conducted the first four experiments using a total computing budget of 1,000 

runs, the fifth experiment with 45,000 runs, and the sixth experiment with 2,000 runs. 

The results will show that these amounts are sufficient to compare the performance of the 

methods. To mitigate the fact that the methods have varying fixed costs associated with 

them and in order to compare the performance of the methods using various simulation 

budgets, we calculate the PCS for each method during each iteration until the total 



44 

simulation budget is exhausted. We repeat this whole procedure 10,000 times and then 

estimate the PCS obtained for each method after these 10,000 independent applications. 

 

Experiment 1 ( 31/a , 11 design locations)  

The domain consists of 11 design locations where ],.,[ 1801 x . For OSD 

and OCBA, we provided initial runs as described above and then allocated 8 runs for 

OCBA and 14 runs for OSD during additional iterations. The other methods provided 

allocations as described above. Figure 5 shows the simulation results. The methods using 

a regression equation clearly perform the best. As a point of comparison, we obtain a 

PCS of 40% after 77 runs with the methods using the regression equations, 551 runs with 

OCBA, and 1,000 runs with EA. Since OSD initializes with the D-optimal method, there 

is little initial difference between the two methods. However, after 1,000 runs, D-optimal 

achieves an 88.8% PCS while OSD achieves the same PCS after only 734 runs. Both of 

these methods perform significantly better than EA-RS. 

 



45 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 100 200 300 400 500 600 700 800 900 1000

Total Number of Simulation Runs

P
ro

b
a

b
il

it
y

 o
f 

C
o

rr
e

c
t 

S
e

le
c

ti
o

n
, 

P
{C

S
}

OSD D-opt EA-RS OCBA EA
 

Figure 5: Results of Experiment 1 

 

 

 

Table 1 below provides the resulting OSD allocations for several computing 

budgets. Since 31/a , the best design location will be 408 .x , and so 207 . xx  

and 609 . xx . Asymptotically, the OSD rule will pick 1x , 4x , and 11x  as the support 

points with the allocation ratios    212101141 /,/,,,  . The results in Table 1 show 

that when T increases, the OSD procedure gradually approaches this allocation ratio. 

On the other hand, the D-optimal will choose 1x , 6x , and 11x  as the support points 

with allocation ratios    3131311161 /,/,/,,  . Note that the allocation rules chosen 

by D-optimal and OSD are very different and so the resulting PCS are very different. 

 

 



46 

Table 1: OSD Allocations for Experiment 1 

Total Runs Design 1 

(x = -1) 

Design 2 

(x = -0.8) 

Design 4 

(x = -0.4) 

Design 6 

(x = 0) 

Design 11 

(x = 1) 

160 0.05% 0.64% 38.52% 10.84% 49.95% 

440 0.00% 0.20% 46.91% 2.89% 50.00% 

720 0.00% 0.14% 49.09% 0.77% 50.00% 

1000 0.00% 0.14% 49.63% 0.23% 50.00% 

 

 

 

Experiment 2 ( 32 /a , 11 design locations)  

Figure 6 presents the simulation results for Experiment 2. The allocation methods 

are the same as described for Experiment 1 and the results are similar to the results from 

Experiment 1 with the exception that D-optimal is more competitive with OSD. After 

1,000 runs, D-optimal achieves a 74.7% PCS while OSD achieves the same PCS after 

only 832 runs. 

 



47 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 100 200 300 400 500 600 700 800 900 1000

Total Number of Simulation Runs

P
ro

b
a
b

il
it

y
 o

f 
C

o
rr

e
c
t 

S
e

le
c
ti

o
n

, 
P

{C
S

}

OSD D-opt EA-RS OCBA EA
 

Figure 6: Results of Experiment 2 

 

 

 

Table 2 below provides the resulting OSD allocations for several computing 

budgets. For this experiment, the best design location will be 609 .x , and so 

408 . xx  and 8010 . xx . Asymptotically, the OSD rule will pick the same 

support points with D-Optimal, i.e., 1x , 6x , and 11x  but with 

   73211411161 /,/,/,,   instead of one third allocated to each support point. 

Just as in Experiment 1, the D-optimal method will choose 1x , 6x , and 11x  as the 

support points with allocation ratios    3131311161 /,/,/,,  . Since the support 

points are the same and the differences of the allocation rules between OSD and D-

optimal are not very big, it is not surprising that the PCS results of these two rules are 

relatively close as compared with that in Experiment 1. 



48 

Table 2: OSD Allocations for Experiment 2 

Total Runs Design 1 

(x = -1) 

Design 6 

(x = 0) 

Design 11 

(x = 1) 

160 7.03% 49.99% 42.97% 

440 7.00% 50.00% 43.00% 

720 7.10% 50.00% 42.90% 

1000 7.09% 50.00% 42.91% 

 

 

 

Experiment 3 ( 01.a , 11 design locations)  

Figure 7 presents the simulation results for Experiment 3. The allocation methods 

are the same as described for the previous two experiments and the results are similar. 

After 1,000 runs, D-optimal achieves a 94.3% PCS while OSD achieves the same PCS 

after only 804 runs. 

 



49 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 100 200 300 400 500 600 700 800 900 1000

Total Number of Simulation Runs

P
ro

b
a
b

il
it

y
 o

f 
C

o
rr

e
c
t 

S
e

le
c
ti

o
n

, 
P

{C
S

}

OSD D-opt EA-RS OCBA EA
 

Figure 7: Results of Experiment 3 

 

 

 

For this experiment, the best design location will be 0111 .x , and so 

011 . xx and 8010 . xx . Asymptotically, the OSD rule will again pick the 

same support points with D-optimal, i.e., 1x , 6x , and 11x  but with 

   18721911161 /,/,/,,   instead of one third allocated to each support point. The 

support points for OSD and D-optimal are the same and the allocations for these two 

methods are again similar so the fact that the results are similar is consistent. 

 

Experiment 4 (randomly generated optimal solution, 11 design locations)  

In order to test the methods against a more diverse set of problems, the stationary 

point for the underlying quadratic equation is randomly selected for each of the 10,000 



50 

procedures from the distribution where ),(~ 11Ua . The optimal solutions are the design 

locations closest to a . The allocation methods are the same as described for the previous 

experiments and the results shown in Figure 8 are consistent with the results from the 

first three experiments. After 1,000, runs D-optimal achieves an 84.2% PCS while OSD 

achieves the same PCS after only 776 runs. 

 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 100 200 300 400 500 600 700 800 900 1000

Total Number of Simulation Runs

P
ro

b
a
b

il
it

y
 o

f 
C

o
rr

e
c
t 

S
e

le
c
ti

o
n

, 
P

{C
S

}

OSD D-opt EA-RS OCBA EA
 

Figure 8: Results of Experiment 4 

 

 

 

The results of this experiment represent a blend of the results from the three cases 

in (34). For the first two cases in (34), the support points and allocations for OSD will be 

very different than those for the D-optimality criterion and the performance of the OSD 

method will be comparatively better. For the “otherwise” case in (34), the support points 



51 

are the same for OSD and D-optimality. The allocations become more similar as the best 

design location gets closer to the boundary of the domain and consequently the results of 

the D-optimal method become more competitive with the OSD method.  

 

Experiment 5 (randomly generated optimal solution, 101 design locations)  

 For this experiment, we used a domain of 101 design locations where 

],.,[ 19801 x  with the stationary point for the underlying quadratic equation again 

randomly selected for each of the 10,000 procedures from the distribution where 

),(~ 11Ua . For OSD and OCBA, we provided initial runs as described above and then 

allocated 99 runs during additional iterations. The results are shown in Figure 9. With 

more designs across the same sized domain, the differences between the responses at the 

best design and its nearest competitors are smaller relative to the noise in the underlying 

function. Therefore, the PCS for each method is lower for this experiment than the 

experiments with only 11 design locations. However, the results are consistent with the 

other four experiments. After 45,000, runs, D-optimal achieves a 76.3% PCS while OSD 

achieves the same PCS after only 32,775 runs or about 73% of those required by D-

optimal. This suggests that as OSD may perform relatively better as the number of design 

locations increases and is a potential area for future research. 



52 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Total Number of Simulation Runs

P
ro

b
a
b

il
it

y
 o

f 
C

o
rr

e
c
t 

S
e

le
c
ti

o
n

, 
P

{C
S

}

OSD D-opt EA-RS OCBA EA
 

Figure 9: Results of Experiment 5 

 

 

 

Experiment 6 (Non-quadratic Underlying Equation, 60 design locations)  

 For this last experiment, we partitioned the domain of 60 design locations into 

partitions with an equal number of design locations. We conducted the experiment using 

one, two, three, four, fix, six, ten, twelve, and fifteen partitions. The partitions are 

disconnected such that, for example, the last design for the first partition when using six 

partitions is 10x  and the first design location for the second partition is 11x . After 

constructing independent regression equations for each partition, we then allocate the 

simulation budget equally between the partitions and allocate using OSD within the 

partitions. Even with this inefficient allocation between the partitions, the results in Table 

3 provide insight and demonstrate that OSD performs well if we can properly partition 



53 

the domain. Using partitioning schemes with one, four, six, ten, twelve, and fifteen 

partitions, the optimal design location is located in the middle half of its partition such 

that OSD will use the first two cases of (34) and construct a design symmetric about 

2/)( bxx   as shown in Figure 4. The results in Table 3 suggest that OSD will do well 

if we can partition the domain so that the optimal design location is within the middle 

half of a partition and as close to the center of the partition as possible. To highlight this 

point, note the performance of OSD using twelve partitions and with the optimal design 

location in the center of the partition compared to the performance of OSD using six or 

ten partitions where the design location is not near the middle of the partition. Even with 

fewer runs allocated to the best partition for the twelve partition experiment, OSD 

provides a significantly higher PCS. Using partitioning schemes with two, three, and five 

partitions, the optimal design location is not in the middle half of the domain such that 

OSD uses the third case of (34) for the best partition. For these three schemes, OSD 

obtained a biased solution and a PCS of approximately zero. 

 

 

 

 

 

 

 

 

 

 

 



54 

Table 3: Results of Experiment 6 

Number of 

Partitions 

Optimal Design Location 

on the Partition 

PCS after 

2,000 runs 

1 38 out of 60 100% 

2 8 out of 30 0% 

3 18 out of 20 0% 

4 8 out of 15 98% 

5 2 out of 12 0% 

6 7 out of 10 18% 

10 2 out of 6 5% 

12 3 out of 5 34% 

15 2 out of 4 13% 

 

 

 

The next chapter will derive a means to efficiently allocate simulation runs on a 

partitioned domain instead of using an equal allocation scheme as used in this 

experiment. We will then revisit the impacts of the partitioning scheme on the 

performance of the derived allocation method for the partitioned domain with another 

numerical experiment. 



55 

 

 

CHAPTER 4 OSD FOR PARTITIONED DOMAINS 

 

Regression-based methods, including our OSD method developed in Chapter 3, 

are constrained with some typical assumptions such as an underlining quadratic function 

for the means and homogeneous simulation noise. For instances where the underlying 

function does not have a constant variance error, the least squares estimate will still be 

unbiased (Draper and Smith 1998). The OSD method will still asymptotically determine 

the best design location but may provide less than optimal allocations to do so. More 

problematic is if the underlying function is not quadratic to such an extent that we fail to 

find the best design location. However, to address a non-constant variance as well as a 

deviation from a quadratic nature, we can extend the OSD method by partitioning the 

design space into smaller domains in which the underlying function can be well 

approximated by a quadratic function and in which the variances are relatively the same. 

In a worst case scenario, the domain can be partitioned using sets of three design 

locations yielding an unbiased, piecewise quadratic estimate of the underlying function. 

This chapter also explores a problem with the principal goal of selecting the best 

of multiple alternative design locations but on a partitioned domain. Without loss of 

generality, we assume that we have m adjacent partitions and that each partition has k 

design locations. We aim to find the minimization problem shown below in (35) where 

the “best” design location is the one with smallest expected performance measure 



56 

  ],,,,,,,,,,[;)()(min mkmmkkhihihi
x

xxxxxxxxxxxfExy
hi

 212222111211  . (35) 

 

Given the problem in (35), we aim to determine how to allocate between the partitions, 

how to allocate within the partitions, and which design locations to use as support points. 

Addressing how the domain is partitioned is not within the scope of this chapter and we 

assume this partitioning scheme is derived from knowledge of the domain, through 

iterative refinement such as a heuristic based upon the results of Experiment 6 in Chapter 

3, or through an optimal selection procedure such as multivariate adaptive regression 

splines (MARS) (Friedman 1991). 

 

4.1. Problem Statement and Framework 

We will use a notation and structure very similar to the one partition case 

described in Chapter 2 and Chapter 3. We consider that the expectation of the unknown 

underlying function for each partition is quadratic or approximately quadratic in nature 

on the prescribed domain, i.e., for each partition h 

2

210 hihhihhhi xxxy  )( .       (36) 

For ease of notation, we define ][ 210 hhhh   . In (36), the parameters h  are 

unknown and we consider a common case where )( hixy  must be estimated via simulation 

with noise. The simulation output )( hixf  is independent from replication to replication 

such that 

,,,1;)()( kixyxf hjhihi    where ),0(~ 2

hhj N  .    (37) 



57 

The parameters h  are unknown so )( hixy  are also unknown. However, we can find an 

estimated expected performance measure at hix , that we define as )(ˆ hixy , by using a 

least squares estimate of the form shown in (38) below where 0h̂ , 1h̂ , and 2h̂  are the 

least squares parameter estimates for the corresponding parameters associated with the 

constant, linear, and quadratic terms in (36). 

2

210 hihhihhhi xxxy  ˆˆˆ)(ˆ  .        (38) 

In a similar manner, we define ]ˆˆˆ[ˆ
210 hhhh   . 

 In order to obtain the least squares parameter estimates for each partition, we take 

hn  samples on any choice of hix  (on at least three design locations for each partition to 

avoid singular solutions). We assume that these hix  are given beforehand and we can 

only take samples from these points. Given the hn samples, we define hF  as the hn  

dimensional vector containing the replication output measures )( hixf  and hX  as the 

3hn  matrix composed of rows consisting of ][
21 hihi xx  with each row corresponding 

to its respective entry of )( hixf  in hF . Using the matrix notation and a superscript t to 

indicate the transpose of a matrix, for each partition we determine the least squares 

estimate for the parameters h  which minimize the sum of the squares of the error terms 

)()( hhh

t

hhh XFXF   . We obtain the least squares estimate for the parameters as 

shown below: 

h

t

hh

t

hh FXXX 1 )(̂ . 



58 

Our problem is to select the design location associated with the smallest mean 

performance measure from among the mk design locations within the constraint of a 

computing budget with only T  simulation replications. Given the least squares estimates 

for the parameters, we can use (38) to estimate the expected performance measure at each 

design location. We designate the design location with the smallest estimated 

performance measure in each partition as hbx  so that )(ˆmin)(ˆ hi
i

hb xyxy  and designate 

Bbx  as the design location with the smallest estimated performance measure across the 

entire domain so that )(ˆmin)(ˆ hb
h

Bb xyxy  . Given the uncertainty of the estimate of the 

underlying function, Bbx  is a random variable and we define Correct Selection as the 

event where Bbx  is indeed the best location. We define hiN  as the number of simulation 

replications conducted at design location hix . Since the simulation is expensive and the 

computing budget is restricted, we seek to develop an allocation rule for each hiN  that 

maximizes the PCS as is reflected in (39) below.  

TNts

kimhxyxyPPCS

hi

m

h

k

i

hiBb
NN mk






 1 1

11
11

..

},,,,,)()({max
,,




   (39) 

Elements of this problem are similar to the one partition case from the previous 

chapters. The constraint TNhi

m

h

k

i


 1 1

 denotes the total computational cost and 

implicitly assumes that the simulation execution times for one sample are constant across 

the domain. Since the optimal allocation is dependent upon the uncertainty of the 



59 

parameters and the random variable Bbx , we can only estimate the PCS even after 

exhausting the total simulation budget T . 

In order to solve the problem in (39), we must obtain estimates for the parameters 

h  and we will again use a Bayesian regression framework where the parameters h  are 

assumed to be unknown and are treated as random variables. We aim to find the posterior 

distributions of h  as the simulation replications are conducted and use these 

distributions to update the posterior distribution of the performance measures for each 

design location. We can then perform the comparisons with the performance measure at 

design location Bbx  as expressed in (39). We will use h
~

 and )(~
hixy  to denote the 

random variables whose probability distributions are the posterior distribution of h   and 

)( hixy  conditional on hF  given samples respectively. Therefore, given a set of initial hn  

simulation runs with the output contained in vector hF  and the design location Bbx  

obtained from the least squares results, we can redefine the probability of correct 

selection from (39) based on the Bayesian concept (Chen et al. 2010 and He et al. 2007) 

as 

},,,,,)(~)(~{ kimhxyxyPPCS hiBb  11 
.    (40) 

Using a non-informative prior distribution and assuming that the conditional 

distribution of the simulation output vector hF  is a multivariate normal distribution with 

mean hhX   and a covariance matrix Ih

2  where I  is an identity matrix, the results from 

Chapter 2 show that the posterior distribution of h  is then given by 



60 

])(,)[(~
~ 121 

h

t

hhh

t

hh

t

hh XXFXXXN  .      (41) 

Since )(~
ihxy  is a linear combination of the h

~
 elements, this means that )(~

hixy  has a 

Gaussian distribution of the form 

])(,)([~)(~
hih

t

h

t

hihh

t

hh

t

hhihi XXXXFXXXXNxy 121       (42) 

where ][
21 hihi

t

hi xxX  . 

Given the results of Theorem 2 in Chapter 3, we will refer to the support points 

for each partition as  hkhsh xxx ,,1  where hkhsh xxx 1  . (Note that since hbx  may be at 

different locations on each partition, then hsx  may also be at different locations on each 

partition). For notation sake, we define the number of runs allocated to partition h as hN  

and the percentage of hN  that is allocated to each support point as 

},,{,/ ksiNN hhihi 1  . Using this notation and the PCS equation in (40), we can 

now restate the OSD problem in (39) as the OSD problem in (43) below. 

  TNts

kimhxyxyP

hkhshh

m

h

hiBb









  1

1

11

..

},,,,,)(~)(~{max 

     (43) 

As with the one partition case, we can estimate 2

h  from our least squares results and can 

calculate )(~
hixy  using (42). We can then use Monte Carlo simulation with (43) in order 

to estimate the PCS. The next section reduces the number of comparisons required and 

presents a way to approximate the PCS without running Monte Carlo Simulations. 

 

 



61 

4.2. A Lower Bound for PCS 

Upon inspection, the PCS equation in (43) has two types of comparisons that are 

delineated in (44). The first type consists of the 1k  comparisons between )(~
Bbxy  and 

each )(~
Bixy  for bi   in the best partition. The second type consists of the  1mk  

comparisons between )(~
Bbxy  and each )(~

hixy  when Bh  . 

    },,,)(~)(~)(~)(~{ kiBhxyxybixyxyPPCS hiBbBiBb 1
 (44) 

Given Bbx  estimated from the second order polynomial metamodel results and Theorem 1 

in Chapter 2, the assumption that our underlying function is quadratic within each 

partition allows us to reduce the required number of comparisons within the best partition 

from the 1k comparisons expressed in (44) to 2 comparisons. As such, (44) can be 

rewritten as shown in (45) below subject to the three cases following (45). 

    },,,)(~)(~,)(~)(~{ kiBhxyxyixyxyPPCS hiBbBiBb 1  (45) 

Case 1 (Interior Design Case): 111  bbkb ;;, , 

Case 2 (Left Boundary Design Case): kb  ;; 21 , and 

Case 3 (Right Boundary Design Case): 11  kkb ;; . 

 

We have the same assumption of an underlying function that is quadratic in the non-best 

partitions also. However, the comparisons in (44) for the non-best partitions are against 

)(~
Bbxy  instead of the local best )(~

hbxy . If we apply the Bonferroni inequality to the 

comparisons with the global best for a non-best partition, we obtain 



62 





k

i

hiBbhiBb xyxyPkixyxyP
1

11 })(~)(~{},,),(~)(~{      (46) 

We can also establish a different lower bound for the comparisons from a non-best 

partition by using the quadratic information within the partition as expressed in the 

following lemma.  

 

Lemma 3: Subject to the conditions expressed in Case 1 – Case 3 after (45), a lower 

bound for the comparisons with the global best for a non-best partition can be expressed 

by using the quadratic information within the partition as shown in (47). 

})(~)(~{})(~)(~{})(~)(~{

},,),(~)(~{

hZhbhAhbhbBb

hiBb

xyxyPxyxyPxyxyP

kixyxyP





1

1
   (47) 

 

Proof: We aim to prove a lower bound for the comparisons associated with a non-best 

partition that leverages the quadratic nature of the underlying function in the partition. 

Subject to the conditions that follow (45), we will first show that 

     })(~)(~)(~)(~)(~)(~{

},,),(~)(~{

hZhbhAhbhbBb

hiBb

xyxyxyxyxyxyP

kixyxyP



 1
 

We begin by decomposing the comparisons into two parts: the comparison between the 

global best and the local best and the comparisons between the local best and the other 

designs. 

    },,,)(~)(~)(~)(~{},,),(~)(~{ kixyxyxyxyPkixyxyP hihbhbBbhiBb  101   

Highlighting the intersection with the global best and the local best, we obtain 



63 

      },)(~)(~)(~)(~)(~)(~{

},,),(~)(~{

bixyxyxyxyxyxyP

kixyxyP

hihbhbBbhbBb

hiBb





00

1
 

Using the definition of conditional probability, we obtain 

 
      })(~)(~|,)(~)(~)(~)(~{

})(~)(~{},,),(~)(~{

00

01





hbBbhihbhbBb

hbBbhiBb

xyxybixyxyxyxyP

xyxyPkixyxyP 
  (48) 

Given   0 )(~)(~
hbBb xyxy as expressed in the conditional in (48), we know that  

     
    })(~)(~|,)(~)(~{

})(~)(~|,)(~)(~)(~)(~{

00

00





hbBbhihb

hbBbhihbhbBb

xyxybixyxyP

xyxybixyxyxyxyP
 

such that 

      })(~)(~|,)(~)(~{})(~)(~{

},,),(~)(~{

000

1





hbBbhihbhbBb

hiBb

xyxybixyxyPxyxyP

kixyxyP 
  (49) 

Using the results from Theorem 1 in Chapter 2, the 1k comparisons in expressed in (49) 

can be reduced to 2 comparisons subject to the same conditions expressed after (45). 

      })(~)(~|,,)(~)(~{})(~)(~{

},,),(~)(~{

000

1





hbBbhihbhbBb

hiBb

xyxyZAixyxyPxyxyP

kixyxyP 
 (50) 

Using the definition of conditional probability, we can then rewrite (50) as an intersection 

of the three comparisons as shown in (51) or (52) below. 

      })(~)(~)(~)(~)(~)(~{

},,),(~)(~{

000

1





hZhbhAhbhbBb

hiBb

xyxyxyxyxyxyP

kixyxyP 
  (51)  

or 

     })(~)(~)(~)(~)(~)(~{

},,),(~)(~{

hZhbhAhbhbBb

hiBb

xyxyxyxyxyxyP

kixyxyP



 1
    (52) 

Applying the Bonferroni inequality to (52), we obtain 



64 

)}(~)(~{)}(~)(~{)}(~)(~{

},,),(~)(~{

hZhbhAhbhbBb

hiBb

xyxyPxyxyPxyxyP

kixyxyP





1

1
. 

 

For ease of discussion, we will refer to comparisons involving design locations from 

more than one partition as “between partition” comparisons and we will refer to 

comparisons involving design locations from just one partition as “within partition” 

comparisons. 

In comparing the two different lower bounds expressed in (46) and (47), the lower 

bound in (47) allows us to reduce the number of comparisons from the k  between 

partition comparisons in (46) to three comparisons: one between partition comparison 

and two within comparisons. The comparison between the global best and local best is 

common to both lower bound formulations. For each non-best partition, we would like to 

use the tightest lower bound in order to provide the best approximation of our PCS. 

Intuitively, when none of the between comparisons in (46) are competitive for a partition 

but the two within comparisons as expressed in (47) are very competitive, the formulation 

as expressed in (46) should provide a tighter lower bound. As an example of when we 

would intuitively prefer the bound provided by (46), consider Partition B in Figure 10 

with a relatively flat underlying function within the partition but the performance 

measures for this partition are vastly removed from the performance measure of the 

global best design location in Partition A. At the other extreme, consider comparisons 

between Partition C and Partition A in Figure 10. The formulation in (47) intuitively 

should provide a tighter lower bound when many of the between comparisons in (46) are 



65 

competitive but the two within comparisons in (47) are not. We will explore the 

conditions of when to use each type of formulation more in Section 4.4 as we discuss 

implementation of the derived method. 

 

 

x

A B C

xBb
 

Figure 10: Intuitive Lower Bound Scenarios 

 

 

Given these two possible lower bounds for each non-best partition, applying the 

Bonferroni inequality to (45) yields a lower bound for our PCS as shown in (53), which 

we will consider our approximate PCS (APCS). 

 

























Bh
hZhbhAhbhbBb

k

i

hiBb

BZBbBABb

xyxyPxyxyPxyxyP

xyxyP

xyxyPxyxyPAPCS

})(~)(~{})(~)(~{})(~)(~{

,})(~)(~{
min

})(~)(~{})(~)(~{

1

1

  (53) 

To simplify the notation later in the paper, we will define the set of partitions   as those 

partitions where we use the lower bound associated with (47) such that  



66 

 






























})(~)(~{})(~)(~{})(~)(~{

})(~)(~{:

hZhbhAhbhbBb

k

i

hiBb

xyxyPxyxyPxyxyP

xyxyPh
1  

Using this definition of  , we can write (53) in an alternate form as 



 



 









hBh

hZhbhAhbhbBb

hBh

k

i

hiBbBZBbBABb

xyxyPxyxyPxyxyP

xyxyPxyxyPxyxyPAPCS

,

,

})(~)(~{})(~)(~{})(~)(~{

})(~)(~{})(~)(~{})(~)(~{
1

1
 

Using this alternate form of the APCS in (53), we can now restate the POSD problem in 

(45) as the POSD problem in (54) below.  

 

POSD Problem 

 

ksi

TNts

xyxyPxyxyPxyxyP

xyxyP

xyxyPxyxyPAPCS

hi

hkhshh

m

h

hBh

hZhbhAhbhbBb

hBh

k

i

hiBb

BZBbBABb
mhNNN hkhsh

,

;..

})(~)(~{})(~)(~{})(~)(~{

})(~)(~{

})(~)(~{})(~)(~{max

,

,

,,,,

10

1

1

1

1

11

















 







 











  

with            (54) 

Case 1 (Interior Design Case): 111  bbkb ;;, , 

Case 2 (Left Boundary Design Case): kb  ;; 21 , and 

Case 3 (Right Boundary Design Case): 11  kkb ;; . 

 

 



67 

4.3. Lagrangian Formulation for APCS 

Since our aim is to efficiently allocate the computing budget to the three support 

points in each partition,  hkhsh xxx ,,1 , we will rewrite the APCS equation in (54) so that 

it is expressed in terms of the number of simulation runs allocated to each partition and 

the percentage of these partition allocations that is allocated to each support point within 

the partitions.  

 

For the within partition comparisons, define  

)(
~

)(
~

)(~)(~)(
~

hbhihhbhihhbhihi xxxxxyxyxd  1

22

2  .  

Using the results of Section 3.3,  

drexdP

hi

hixd

r

hi 
 





)(ˆ

})(
~

{ 2

2

2

1
0 .       (55) 

and 














 hk

khi

hs

shi

h

hi

h

h

hi

DDD

N 




22

1

2

1
2

,,,
, 

where   













))((

))(())((
,

hkhhsh

hbhkhbhshihkhihs
hi

xxxx

xxxxxxxx
D

11

1 ,    

  













))((

))(())((
,

hkhshhs

hbhkhbhhihkhih
shi

xxxx

xxxxxxxx
D

1

11 , 














))((

))(())((
,

hshkhhk

hbhshbhhihshih
khi

xxxx

xxxxxxxx
D

1

11 .  (56) 



68 

For the between partition comparisons, define )(~)(~)(
~

Bbhbhb xyxyx  . As with the 

within partition comparisons, this result shows that )(
~

hbx is a linear combination of the 

h
~

 elements so the )(
~

hbx  terms are also normally distributed. Using the results of 

Chapter 2, ],)(ˆ[~)(ˆ hbhbhb xNx   where )(ˆ)(ˆ)(ˆ Bbhbhb xyxyx  . Assuming 

independence of the simulation runs between partitions, 

   

































 

2

122

2

122

1

1

1

1

Bb

BbB

t

BBbBbB

hb

hbh

t

hhbhbhhb

x

xXXxx

x

xXXxx )(,,)(,,  .  (57) 

Similar to the within partition comparison,  

dtexP

hb

hbx

t

hb 
 





 


)(ˆ

})(
~

{ 2

2

2

1
0 .       (58) 

As we take additional simulation runs, )(ˆ])(
~

[ hbhb xxE    and the information obtained 

by additional simulation runs will affect hb  and thus our PCS criterion. Likewise, we 

may write (57) in the simplified form: 



























 Bk

kBb

Bs

sBb

B

Bb

B

B

hk

khb

hs

shb

h

hb

h

h

hb

EEE

N

EEE

N 








22

1

2

1
222

1

2

1
2

,,,,,,
, 

where   













))((

))((
,

hkhhsh

hihkhihs
hi

xxxx

xxxx
E

11

1 ,  













))((

))((
,

hkhshhs

hihkhih
shi

xxxx

xxxx
E

1

1 , 














))((

))((
,

hshkhhk

hihshih
khi

xxxx

xxxx
E

1

1 .       (59) 



69 

By expressing both the within partition comparisons and the between partition 

comparisons in terms of the number of simulation runs allocated to each partition and the 

percentages of the simulation budget allocated to each support point, we can define a 

Lagrangian function  

 







 



 hkhshh

m

h

NTAPCSQ  1

1

  

or, using (55) and (58), as 

 





































 



 

  

















hkhshh

m

hhBh xdxdx

hBh

k

i xxdxd

NTdrrdrrdrr

drrdrrdrrQ

h

h

h

h

hb

hb

hi

hi

B

B

B

B



















1

1

1

1

, )(ˆ)(ˆ)(ˆ

, )(ˆ)(ˆ)(ˆ

)()()(

)()()(

 (60) 

We can investigate 
hj

Q




 to determine the within partition allocations and then 





hN

Q
 to 

determine the between partition allocations. For example, by setting 0




hj

Q


 and 

0




hN

Q
 for when Bh   and h , we obtain 

 

 
2

2

2

2

23

2

2

232

2

23

2

h

h

hj

jhb

hb

hb

hb

hb

hj

jh

h

h

h

h

hj

jh

h

h

h

h

NExx

DxdxdDxdxd












































,

/

,

/

,

/

)(

)(ˆ
)

)(ˆ
(

)(

)(ˆ
)

)(ˆ
(

)(

)(ˆ
)

)(ˆ
(

    (61) 



70 

and 

 
2

222

1

2

1

23

22

1

2

1

23

22

1

2

1

23

2

h

h

hk

khb

hs

shb

h

hb

hb

hb

hb

hb

hk

kh

hs

sh

h

h

h

h

h

h

hk

kh

hs

sh

h

h

h

h

h

h

NEEExx

DDDxdxd

DDDxdxd


















































































,,,

/

,,,

/

,,,

/

)(

)(ˆ
)

)(ˆ
(

)(

)(ˆ
)

)(ˆ
(

)(

)(ˆ
)

)(ˆ
(

    (62) 

However, the equations obtained in (61) and (62) are nonlinear with respect to hj  and 

hN . Our aim is to provide a simple means for efficiently allocating the budget instead of 

attempting to use a root finding technique to numerically compute the optimal values for 

hj  and hN . In the next section, we will derive approximations for our optimal 

allocations and our numerical results in Section 4.6 will demonstrate their efficiency. 

 

4.4. Approximately Optimal Allocations 

The within partition allocations intuitively have three purposes to address the 

problem as expressed in (54) or (60): 

 to determine the best design location within the partition, 

 to provide the most accurate estimate of the performance measure at the best 

design location within the partition for use in the between partition comparisons, 

 and to minimize the probability of the worst comparison in the partition. 

 



71 

While these three purposes are related, their associated objective functions are different. 

The results in Chapter 3 demonstrate that the OSD conditions in (33) and (34) provide 

approximately optimal allocations to find the best design location in the partition. On the 

other hand, as shown in Lemma 4 and Lemma 5 in Appendix D, providing all of the runs 

to the best local design or design with the worst comparison in a partition provide 

approximately optimal allocations to satisfy the second and third criteria. These 

generalizations are captured more formally in Theorem 6 below. 

In this section, we will derive an efficient heuristic based upon approximately 

optimal allocations of simulation runs to the designated support points  hkhsh xxx ,,1  by 

analyzing allocations of lower and upper bounds of the APCS. We denote L  and U  as 

the lower and upper bounds respectively.  

 

To simplify the notation, we define probability ]})(
~

{[max
,,;

0
1




 hi
kiBh

xPP 


. This 

probability is the most competitive comparison from among the  km 1  between 

partition comparisons. 

 

We also define for the best partition probability 
BP  and, for Bh  , we define 

probability 
hP  such that for Bh   

]})(
~

{},)(
~

{[maxarg
,

00  


BB xdPxdPM    

]})(
~

{},)(
~

{max[ 00   BBBM xdPxdPP      (63a) 

 



72 

and, for Bh   




















otherwisexP

hxPxdPxdP

M
hi

ki

hbhh
b

],})(
~

{[maxarg

,]})(
~

{},)(
~

{},)(
~

{[maxarg

,,

,,

0

000

1







  








 

otherwisexP

hxPxdPxdP
P

hi

hbhh
hM

,]})(
~

{max[

,]})(
~

{},)(
~

{},)(
~

{max[

0

000




(63b) 

 

Finally, we define 
BR  as the associated signal to noise ratio for the best partition and 

hR  

as the associated signal to noise ratio for Bh   as shown below. 

 
 21

2

2

kBMsBMBMB

BM
B

DDD

xd
R

,,,

)(ˆ





       (64a) 

 
 

 
























otherwise
x

xdPP

xdPP

DDD

xd

R

h

hb

hZh

hh

khMshMhMh

hM

h

,
)(ˆ

})(
~

{

},)(
~

{
,

)(ˆ

,,,

2

2

2

1

2

2

0

0






   (64b) 

 

Theorem 6: Using lower and upper bounds of the APCS, approximately optimal between 

partition allocations and within partition allocations are as shown in (65a) and (65b) for 

the best partition and (66a) and (66b) for Bh  . For brevity, we use OSD to refer to 

allocations in accordance with the OSD conditions in (33) and (34) as derived for the one 

partition case in Chapter 3. 

 

 



73 

For Bh  , 

   






































 otherwise
NN

hZAhPPN
R

R

PPT

N

h

h
m

bhh

h
m

h

B

j

i

j

B

,

,,;,

,

,
2

2

2

2

2








 (65a) 















 



otherwise

hZAhPPOSD

PPOSD

Bb

Bi

,.

,,;,

,

01

      (65b) 

 

For Bh  , 







 






 otherwiseN
R

R

PP

N
j

h

jh

0

        (66a) 








 

otherwise

xdPPxdPPOSD

hM

hZhhh
hi

,.

})(
~

{},)(
~

{,

01

00


    (66b) 

 

Proof: We will examine the three cases that are delineated in (65a). The first case in (65a) 

is a general case where 
  PP . The second case is a special case that addresses where 

  PP  but there are no between partition comparisons in the lower and upper bounds 

of the APCS (such that hh   and hZA  , ). The third case is a general case 

where 
  PP , except for the special case addressed by the second case. As such, our 

proof will establish the first and third cases and then address the special case. 



74 

Case 1: 
  PP  

When 
  PP , we will not use the quadratic bound formulation for any of the non-best 

comparisons (such that h  for every Bh  ). Therefore, our APCS from (14) 

simplifies to 


 


h

k

i

hiBbBZBbBABb xyxyPxyxyPxyxyPAPCS
1

1 })(~)(~{})(~)(~{})(~)(~{ . 

To establish the upper bound, we show that 

 


 







h

k

i

hiBbBZBbBABb

BBbBABb

xyxyPxyxyPxyxyP

xyxyPxyxyP

1

1

1

})(~)(~{})(~)(~{})(~)(~{

})(~)(~{},)(~)(~{max

 

For the lower bound, given kiBhxPP hi ,,,})(
~

{ 10   , we know that  





 



 









h

k

i

h

k

i

hiBbBZBbBABb

PPP

xyxyPxyxyPxyxyP

1

1

1

1 })(~)(~{})(~)(~{})(~)(~{

 

Therefore, when 
  PP , we can use the lower and upper bounds shown in (67). 

     PAPCSPkm 1211        (67) 

 

Since L  and U  only contain within comparisons for the best partition, we obtain 

TNB 
 and 0hN  for Bh  . For the proof of the within allocation of 

Bi  in 

accordance with the OSD conditions, see Chapter 3. 

 

 



75 

Case 3: 
  PP (except for the special case addressed by Case 2 below) 

When 
  PP , the lower and upper bounds shown in (68) can be established using a 

very similar approach as used for when 
  PP . 
















 
 h

h

h

h

h

h

h

h PPAPCSPkPP 1321     (68) 

 

For the within partition allocations, see the results from Chapter 3 for when 

})(
~

{ 0  hh xdPP  or when })(
~

{ 0  hh xdPP . Lemma 4 in Appendix D addresses 

when })(
~

{ 0 hih xPP   which occurs when h  or when h  and 

})(
~

{ 0 hbh xPP  . For the allocations within the best partition, except for the special 

case, see Lemma 5 in Appendix D. The proof for the between partition allocations closely 

follows those presented in Chen et al (2000) and Glynn and Juneja (2004). See Lemma 6 

and Lemma 7 in Appendix E. 

 

Case 2: 
  PP , hh   and hZA  ,  

For the special case when 
  PP  but there are no between partition comparisons in the 

APCS (such that hh   and hZA  , ), we also use the lower and upper bounds 

presented in (68). However, the allocations for the best partition are obtained using the 

same approach presented in Lemma 6 in Appendix E for the non-best partitions. 

 

The results for the between partition allocations presented in (65a) and (66a) for 

  PP  are very similar to those obtained by Chen et al (2000) and Glynn and Juneja 



76 

(2004) for traditional OCBA. The rule for the best partition in (65a) has a “square root” 

rule similar to the one obtained by the traditional OCBA method. The key difference is 

that terms are not included for partitions associated when })(
~

{ 0  hh xdPP  or when 

})(
~

{ 0  hh xdPP . The comparisons associated with these partitions do not involve 

the global best. The allocations for the non-best partitions in (66a) also have a “ratio” rule 

that is similar to the one obtained by the traditional OCBA method. However, this ratio 

rule uses a difference in the expected performance measure derived from the regression 

equation instead of the mean of the samples at the design location. The variance terms are 

also derived from the regression equation and influenced by the allocation methods 

through the Lagrange polynomial coefficients.  

Given the results from Theorem 6 expressed in (67a-b) for the non-best partitions, 

we now revisit how to approximate the probabilities in (46) and (47) in order to choose 

between the two different lower bounds expressed in the APCS in (54) or (60). As an 

approximation, we use the Cantelli inequality (Spall 2003) such that for within partition 

comparisons 

2

1

1
0


















hi

hi

hi

xd

xdP



)(ˆ
})(

~
{ . 

A similar expression can be made for between partition comparisons such that for each 

partition h in (54) or (60), we seek 



77 


























































































222
1

2

1

1

1

1

1

1

1

1

hZ

hZ

hA

hA

hb

hb

k

i

hi

hi xdxdxx







 )(ˆ)(ˆ)(ˆ
,

)(ˆ
min .  (69) 

 

While (69) is based upon the APCS formulation in Section 4.3, for an alternate approach 

we can utilize the results of Section 4.4 and base our choice on only 
hP . Therefore, for 

each non-best partition h in (54) or (60), we seek 









































































































 22221

1

1

1

1

1

1

1

1

hZ

hZ

hA

hA

hb

hb

hi

hi

ki

xdxdxx







 )(ˆ
,

)(ˆ
,

)(ˆ
max,

)(ˆ
maxmin



. (70) 

For the numerical experiments presented in Section 4.6, we experimented with both of 

the approximations presented in (69) and (70) to determine h  and obtained nearly 

identical results. 

 

4.5. POSD Procedure 

The following is the algorithm that we used to implement the POSD method for the 

experiments in this dissertation. The actual ProModel code used is in Appendix G. 

 

 

 

 



78 

POSD Procedure (Maximizing PCS) 

INPUT k  (the number of design locations), T  (the computing budget),
hix  (the 

design locations with partitions already determined) n0 (the number of 

initial runs), 
j (the number runs allocated each iteration j); 

INITIALIZE j0; 

 Perform n0 simulation replications for three design locations in each 

partition; by convention we use the D-opt support points such that 

30

2

11 /)( nj

hk

j

k
h

j

h    . 

LOOP WHILE 


k

i

j

iN
1

< T  DO 

 UPDATE - Estimate a quadratic regression equation using the information from 

all prior simulation runs for each partition.  

  - Estimate the mean and variance of each design location using 

2

210 ihihhhi xxxy  ˆˆˆ)(ˆ  .  

  - Determine the observed global best design so that )(ˆminarg i
Bi

Bb xyx   

and the local best design in each partition so that )(ˆminarg i
hi

hb xyx  . 

  - Based upon the location of the best design in each partition, use (54) to 

determine hx  and hx . 

  - Determine 
BP  and 

hP  using (64a-b) and corresponding 
BR  and 

hR  

using (65a-b). 



79 

  - Determine  })(
~

{maxarg
;

0
1




 hi
kiBh

xPP 


. 

  - Determine h  using (70). 

 ALLOCATE  Increase the computing budget by 
1j and calculate the new between 

budget allocations 1



j

hN  using (65a) and (66a) (round as needed). 

Using 1



j

hN  as well as (65b) and (66b), determine the within budget 

allocations for 1

1

j

h , 1j

hs  and 1j

hk  (round as needed). 

 SIMULATE Perform 1j

hi  simulations for partition h, h=1,…,m ; design i, i = 1, s, 

k; j← j+ 1. 

END OF LOOP 

 

4.6. Numerical Testing and Results 

In this section, we describe how we compared the results from our new POSD 

method against the results from five other allocation procedures. We start by providing a 

description of the other methods chosen to provide a perspective of the efficiency gained 

by our POSD method. We then describe our testing framework and provide our 

experimental results. 

The first two other allocation procedures are the equal allocation method (EA) 

and the OCBA method. These methods were described in Section 3.7 and require no 

modification for use with the partitioned domain. Both EA and OCBA rely upon 

comparisons of the mean response at the global best design location and each individual 



80 

design location and do not rely upon a response surface within each partition to aid in the 

comparisons.  

For our experiments, we will also compare against three methods that utilize a 

response surface within partitions: equal allocation with a response surface (EA-RS), D-

opt, and OSD. The first two methods were described in Section 3.7 and OSD is the 

method derived in Chapter 3. The three methods were adapted for the partitioned case by 

utilizing the respective methods within the partitions but equally allocating between the 

partitions. 

For the POSD method, we initialize as per the algorithm described in the previous 

section with hkkhh NNN   211 /)(,  = n0 = 20. We then used the algorithm described in 

Section 4.5 to allocate an additional 84 runs between each partition and within each 

partition. 

The first experiment considers a function with three local minima on a domain 

with 60 design locations and compares the results of using POSD against the other five 

methods described above. The second experiment uses the same domain and underlying 

function as the first experiment but the simulation noises are not normally distributed. 

The third experiment also uses the same domain and underlying function as the first 

experiment but analyzes the impact of our partitioning scheme similar to Experiment 6 in 

Chapter 3. The fourth experiment also compares the results of using POSD against the 

other five methods described above. This experiment, also with 60 design locations, has 

only one global minimum but the function is not relatively symmetric about the optimum 

location except in a local area. For the first, second, and fourth experiments, we used a 



81 

heuristic based upon the results of Experiment 6 in Chapter 3 that exploits the adaptive 

nature of the first two cases of (34) and partitioned the domains of 60 design locations of 

the experiments into six disconnected partitions such that, for example, the last design 

location for the first partition is 10x  and the first design location for the second partition is 

11x . 

We conducted all four experiments using a total computing budget of 10,000 runs. 

The results will show that these amounts are sufficient to compare the performance of the 

methods and determine the sensitivity of the POSD to the assumption of normally 

distributed noises. To mitigate the fact that the different allocation methods have varying 

fixed costs associated with them and in order to compare the performance of the methods 

using various simulation budgets, we calculate the PCS for each method during each 

iteration until the total simulation budget is exhausted. We repeat this whole procedure 

10,000 times and then estimate the PCS obtained for each method after these 10,000 

independent applications. 

 

Experiment 7 (three local minima, 60 design locations)  

This experiment is taken from the global optimization literature (Törn and 

Žilinskas, 1989) and uses the following function: 

),(.)ln()/sin()sin()( 103840310 Nxxxxxf iiiii  . 

We used a domain consisting of 60 evenly spaced design locations where ],[ 83x  such 

that the global minimum is 20527 .x  and 60127 .)( xy . Figure 11 below shows that 



82 

this function also has two local minima at 4236 .x  with 1606 .)( xy  and 07747 .x  

with 27147 .)( xy . 

 

 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

3 4 5 6 7 8

y(
x i
)

xi

 

Figure 11: y(xi) = sin(xi) + sin(10xi/3) + ln(xi) - 0.84xi + 3 

 

 

 

As mentioned above, we partitioned the domain for the regression based methods into six 

partitions and each of the local minimums are in a separate partition. Figure 12 shows the 

simulation results. POSD clearly performs the best since it uses a regression equation to 

capture the information and then efficiently allocates both between and within the 

partitions. The OSD and D-opt methods are the next best methods. They are regression 

based methods that at least allocate efficiently within the partitions. As a point of 

comparison, OSD achieves a 95% PCS after about 2,200 runs and D-optimal achieves the 



83 

same PCS after 3,300 runs. POSD achieves the same PCS after about 1,000 runs or about 

45% of those required by OSD and 30% of those required by D-opt. 

 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
ro

b
a
b

il
it

y
 o

f 
C

o
rr

e
c

t 
S

e
le

c
ti

o
n

, 
P

{C
S

}

Total Number of Simulation Runs

POSD OSD D-opt EA-RS OCBA EA
 

Figure 12: Results of Experiment 7 

 

 

 

Experiment 8 (Different noise distributions)  

This experiment uses the same underlying function and domain used in 

Experiment 7 such that 3840310  iiiii xxxxxy .)ln()/sin()sin()( . We varied the 

type of the distribution for the noise terms of the simulation output while ensuring that 

each experiment used a distribution with a mean equal to zero and the variance equal to 

one. In addition to ),(~ 10Nh , we also used: 



84 

- )3,3(~ 21   Uniformh  where 1  and 2  are the lower and upper 

limits of the distribution, 

- 11  )(~  lExponentiah  where   is the mean of the distribution, and 

- 1502  ).(~  Binomialh  where  is the probability of success of one trial. 

The results of the experiment demonstrate that, for this problem, POSD is robust and 

performs relatively similar when assuming that the noise terms are normally distributed 

even if the noise terms are actually from one of the other three distributions. Table 4 

below provides a sample of the results. 

 

 

Table 4: Results of Experiment 8 
Total 

Runs 

PCS 

(Normal) 

PCS 

(Uniform) 

PCS 

(Exponential) 

PCS 

(Binomial) 

528 69.84% 70.06% 71.14% 70.70% 

1032 95.34% 95.11% 95.06% 95.40% 

1536 99.14% 99.09% 98.97% 99.19% 

2040 99.76% 99.80% 99.51% 99.79% 

2544 99.89% 99.93% 99.72% 99.88% 

 

 

 

Experiment 9 (Varied Number of Partitions)  

This experiment also uses the same underlying function and domain used in 

Experiment 7 such that 3840310  iiiii xxxxxy .)ln()/sin()sin()( . We used 

POSD but varied the number of partitions used which also varied the location of the best 

global design within its partition. We experimented using six partitions, ten partitions, 

twelve partitions, fifteen partitions, and twenty partitions where the optimal design 



85 

location on the partitions are 7 out of 10, 3 out of 6, 2 out of 5, 3 out of 4, and 3 out of 3 

respectively. The results of the experiment are in Figure 13 below and are similar to those 

from Experiment 6. POSD will do well if we can partition the domain so that the optimal 

design location is within the middle half of a partition and as close to the center of the 

partition as possible. Note the performance of POSD using ten partitions (POSD 10) and 

with the optimal design location in the center of the partition is almost as good as the 

performance of OSD using six partitions (POSD 6) where the design location is not near 

the middle of the partition. At the other extreme, in worst case scenarios when we have 

no good information to guide the partitioning or the underlying function is highly non-

quadratic, the domain can be partitioned using sets of three design locations yielding an 

unbiased, piecewise quadratic estimate of the underlying function. Given partitions with 

only three design locations and a response surface that is fitted through the mean values 

at each design location across the entire domain, we expect that the performance will be 

similar to OCBA. Figure 13 shows that POSD with twenty partitions (POSD 20) and 3 

design locations per partition performs slightly worse than OCBA after a small number of 

runs and gradually matches the performance of OCBA with a much larger computing 

budget. 

 



86 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
ro

b
a
b

il
it

y
 o

f 
C

o
rr

e
c

t 
S

e
le

c
ti

o
n

, 
P

{C
S

}

Total Number of Simulation Runs
POSD 6 POSD 10 POSD 12 POSD 15 OCBA POSD 20 EA

 

Figure 13: Results of Experiment 9 

 

 

 

Experiment 10 (one global minimum, asymmetric function, 60 design locations)  

We conducted this last experiment using the following function to represent the 

simulation output. Its skewed but convex nature is common among simple decision 

problems such as minimizing the cost of inventory problems or problems for the 

maximum concentration in the bloodstream for a single dose of a drug (Giordano and 

Weir, 1985). 

),(/)( 101010 Nxxxf iii  . 

We again used a domain consisting of 60 evenly spaced design locations where 

].,.[ 5250x  such that, as shown in Figure 14 below, the global minimum is 01116 .x  



87 

and 2016 )(xy . As with the Experiment 7, we partitioned the domain for the regression 

based methods into six partitions. 

 

 

19

21

23

25

27

29

0.5 1 1.5 2 2.5

y(
x i
)

xi
 

Figure 14: y(xi) = 10xi + 10/xi 

 

 

 

The results are consistent with Experiment 7 and are shown in Figure 15. D-

optimal achieves an 89% PCS after about 10,000 and OSD achieves the same PCS after 

only 7,448 runs. POSD achieves an 89% PCS after about 2,600 runs or about 35% of 

those required by OSD and 26% of those required by D-opt.  



88 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
ro

b
a

b
il

it
y
 o

f 
C

o
rr

e
c
t 

S
e
le

c
ti

o
n

, 
P

{C
S

}

Total Number of Simulation Runs
POSD OSD D-opt EA-RS OCBA EA  

Figure 15: Results of Experiment 10 

 

 

 



89 

 

 

CHAPTER 5 CONCLUSIONS AND FUTURE WORK 

 

This dissertation explores the potential of enhancing R&S efficiency by 

incorporating simulation information from across the domain into a regression 

metamodel. We have developed an OSD method that can further enhance the efficiency 

of the simulation run allocation for selecting the best design. The OSD method offers 

approximately optimal rules that determine the design locations to conduct simulation 

runs and the number of samples allocated to each design location. Numerical experiments 

demonstrate that the use of a regression metamodel can indeed dramatically enhance 

simulation efficiency, even compared with some existing efficient R&S methods such as 

OCBA. As compared with methods using a regression metamodel, the OSD method 

offers a significant improvement over not only naïve response surface methods (by 

50~70% reduction) but also the well known D-optimality criterion in DOE literature (by 

another 17%~27% reduction). 

Though the use of a regression metamodel can dramatically enhance simulation 

efficiency, the regression-based methods, including our OSD, are constrained with some 

typical assumptions such as an underlining quadratic function for the means and 

homogeneous simulation noise. These assumptions can be alleviated if we can efficiently 

partition the domain so that we focus only on a small local area of the domain where the 

assumptions will hold. With this aim in mind, we have developed a POSD method for 



90 

selecting the best design on a partitioned domain. Our new method uses a heuristic based 

upon approximately optimal rules for between and within partitions that determine the 

number of samples allocated to each design location. Numerical experiments demonstrate 

that our new approach can dramatically enhance efficiency over existing efficient R&S 

methods. 

There are certainly ways to expand this research and improve upon the OSD and 

POSD methods. Probably the area with the most potential is the integration of the POSD 

method with search or partitioning algorithms for general simulation optimization 

problems. As mentioned in Chapter 4, the partitions may be derived from knowledge of 

the domain, through iterative refinement such as a heuristic based upon the results of 

Experiment 6 in Chapter 3, or through an optimal selection procedure such as 

multivariate adaptive regression splines (MARS) (Friedman 1991). A heuristic based 

upon the latter two methods may prove promising. The MARS technique conducts a 

forward stepwise procedure to iteratively partition the domain into a piecewise 

polynomial spline. It conducts a forward stepwise procedure to pick the next partition 

boundary (knot location) that minimizes the error in fitting the model and then conducts a 

backwards stepwise procedure to remove knot locations to minimize the generalized 

cross validation (GCV). The forward stepwise procedure overfits the model and then the 

backwards step brings it back to a “reasonably” fit model. As opposed to the MARS 

technique, we are not necessarily interested in getting the best fit across the entire domain 

for our current simulation information. In the spirit of OCBA and OSD, intuitively we 

would like a good fit for portions of the domain that are critical in determining the best 



91 

design location and may be willing to accept a poor fit for the model in areas that are not 

critical to this decision. 

Refining the allocation schemes or refining the implementation of the schemes of 

the OSD and POSD methods are other areas for future research. We used approximations 

and bounds to establish the allocation rules for both the OSD method and the POSD 

method. Each method may benefit by the use of different bounds or approximations. A 

way to improve the implementation of the methods would be the development of a 

heuristic to dynamically determine the number of runs to allocate during each iteration in 

order to mitigate the effects of the rounding rules. Brantley (2005, 2007) provides an 

improvement for the OCBA method that allocates one run at a time to reduce the 

numerical error in rounding the number of runs (Chen and Lee, 2010). While allocating 

only a single run during each iteration of POSD may be inefficient due to the 

symmetrical nature of the OSD within partition allocations, POSD may benefit from a 

similar dynamic rule that reduces the rounding when allocation between partitions. 

This dissertation used very general assumptions that the underlying function was 

quadratic, that the noise terms are homoscedastic and normally distributed, and that the 

simulation run costs were equal across the entire decision domain. While partitioning of 

the domain may offset the impacts violating some of these assumptions, each of these 

assumptions also provides an area for further research. Possible extensions include 

incorporating the recent work of Yang (2010) that extends the de la Garza phenomenon 

to other nonlinear forms such as exponential and log-linear models. Yang’s effort 

provides the minimum number of support points and the optimal locations for some of 



92 

the support points for these and other nonlinear forms. Dette and Melas (2010) extend the 

work of Yang to include a broader class of problems such as rational regression models 

(with polynomials for both the numerator and denominator). 

Intuitively, since we are only sampling on three support points in each partition, 

we should be able to expand this method to a continuous domain by assuming that the 

number of design locations in each partition goes to infinity. However, we have to do 

some different treatments on the definition of PCS because the current one will go to zero 

as the number of design locations goes to infinity. In order to find the stationary point of 

the quadratic equation presented in (3) for a continuous domain, Melas et al. (2003) 

reformulate the linear (in the parameters) regression equation presented in (4) as a 

nonlinear regression equation and then solve for the extreme point of the new equation. 

Proposition 1 in Appendix F provides a connection between their work in the DOE 

community and the results for the interior design cases from (34) obtained from our PCS 

criterion. (In addition to the interior design cases, our method provides results for 

instances when the optimal solution is a boundary point and not necessarily a stationary 

point for the underlying equation.) 

This dissertation focuses on one-dimensional problems and extending the method 

to higher dimensions is another area for further research. Morrice et al. (2008, 2009) 

extended the concepts from OSD to a method for selecting the best configuration (or 

design) based on a transient mean performance measure. The procedure extends the 

OCBA and OSD approaches to systems with means that are a function of some other 

variable such as time. Morrice et al. analyze the linear case and this prediction problem 



93 

can be viewed as a two dimensional POSD problem with each configuration representing 

a partition. For true multi-dimensional problems that are not just easily partitioned into 

one dimension segments, we propose that the OSD method can be combined with multi-

dimensional search methods such as the Stochastic Trust Region Gradient-free Method 

(Chang, Hong, and Wan, 2007). 

 

 



94 

 

 

APPENDICES 

 



95 

 

 

 
 

APPENDIX A PROOF OF THEOREM 4 

 

 

 

Proof: We can use the chain rule to establish that 

 











































































23

2

23

2

2

23

2

23

2

32

2

1

2

/

,

/

,

/

,

/

,

)(

)(ˆ
)

)(ˆ
(

)(

)(ˆ
)

)(ˆ
(

)(

)(ˆ
)

)(ˆ
(

)(

)(ˆ
)

)(ˆ
(

















jj

jj

jj

jj

DxdxdDxdxd

DxdxdDxdxdQ

     

Using (28)        

 





















































 
































 
































































23

2

2

22

23

2

2

22

2

23

2

23

2

32

2

1

2

/

,,

/

,,

/

,

/

,

)(

)(ˆ
)

)(ˆ
(

)(

)(ˆ
)

)(ˆ
(

)(

)(ˆ
)

)(ˆ
(

)(

)(ˆ
)

)(ˆ
(

























j

j

j

j

j

j

j

jj

jj

DxdxdD

T

DxdxdD

T

DxdxdDxdxdQ

 

 

 










































































































23

4

23

4

4

2

23

2

23

2

32

2

111

2

/,/,

/

,

/

,

)(
)

)(ˆ
()(ˆ

)(
)

)(ˆ
()(ˆ

)(

)(ˆ
)

)(ˆ
(

)(

)(ˆ
)

)(ˆ
(



















xd
Dxd

xd
Dxd

T

DxdxdDxdxdQ

jj

j

jj

jj

 

 



96 

 

 

 













































































































)
)(ˆ

(
)()(

)(ˆ)(ˆ

)
)(ˆ

(
)()(

)(ˆ)(ˆ

)(

)(ˆ
)

)(ˆ
(

)(

)(ˆ
)

)(ˆ
(

//

,

//

,

/

,

/

,























xdxdDxd

xdxdDxd

T

DxdxdDxdxdQ

j

j

j

jj

jj

2527

24

2527

24

4

2

23

2

23

2

32

2

3

2

3

2
1

2

. 

Combining terms 

 
 

 
)

)(ˆ
(

)()(

)(ˆ)(ˆ

)(

)(ˆ

)
)(ˆ

(
)()(

)(ˆ)(ˆ

)(

)(ˆ

//

,

/

,

//

,

/

,















































































































xdxdDxd

T

Dxd

xdxdDxd

T

DxdQ

j

j

j

j

j

j

j

jj

2527

24

4

2

23

2

3

2527

24

4

2

23

2

32

2

3

2

12

3

2

12

 

 

 
 

 
)

)(ˆ
(

)(

)(ˆ

)(

)(ˆ

)
)(ˆ

(
)(

)(ˆ

)(

)(ˆ

,

/

,

,

/

,















































































































xdxdD

T

Dxd

xdxdD

T

DxdQ

j

jj

j

j

jj

jj

3

4
1

2

3

4
1

2

2

222

23

2

3

2

222

23

2

32

2

 

 
 

 
)

)(ˆ
(

)(ˆ

)(

)(ˆ

)
)(ˆ

(
)(ˆ

)(

)(ˆ

,

/

,

,

/

,























































































































xdxdD

T

Dxd

xdxdD

T

DxdQ

j

jj

j

j

jj

jj

1
34

3
1

2

1
34

3
1

2

222

23

2

3

222

23

2

32

2

 



97 

Using (23) 

 
 

 
)

)(ˆ
(

)(ˆ

)(

)(ˆ

)
)(ˆ

(
)(ˆ

)(

)(ˆ

,,,

,

/

,

,,,

,

/

,




































































































































































xdxd

DDD

D

Dxd

xdxd

DDD

D

DxdQ

k

k

s

s

j

j

j

j

k

k

s

s

j

j

j

jj

1
34

3
1

2

1
34

3
1

2

2

22

1

2

1

2

23

2

3

2

22

1

2

1

2

23

2

32

2

. 

In the same manner 









































23

2

23

2

2

2 1
/

,

/

,

)(

)(ˆ
)

)(ˆ
(

)(

)(ˆ
)

)(ˆ
(









jj

ijij

DxdxdDxdxdQ
 



















































































23

22

23

22

22

2

2

1

1

1

/,,

/,,

)(
)

)(ˆ
()(ˆ

)(
)

)(ˆ
()(ˆ

















xd
DDxd

xd
DDxd

T

Q

ij

ij

ij

ij

   

 

 
















































































)
)(ˆ

(
)()(

)(ˆ
)(ˆ

)
)(ˆ

(
)()(

)(ˆ
)(ˆ

//,,

//,,

















xdxd
DDxd

xdxd
DDxd

T

Q

ij

ij

ij

ij

2527

2

22

2527

2

22

22

2

2

3

3

1

 



98 

 

 




















































































)
)(ˆ

(
)(ˆ

)(

)(ˆ

)
)(ˆ

(
)(ˆ

)(

)(ˆ

/

,,

/

,,

















xdxdDDxd

xdxdDDxd

T

Q

ij

ij

ij

ij

1
32

3

1
32

3

1

2

25

22

2

25

22

22

2

2

 

 

 

 
)

)(ˆ
(

)(ˆ

)(

)(ˆ

)
)(ˆ

(
)(ˆ

)(

)(ˆ

,,,

,,

/

,,,

,,

/






















































































































xdxd

DDD

DD

xd

xdxd

DDD

DD

xdQ

k

k

s

s

ij

ij

k

k

s

s

ij

ij

ij

1
32

3

1
32

3

2

22

1

2

1

22

22

23

2

22

1

2

1

22

22

23

2

 

 

Therefore, the Hessian matrix for the objective function can be written as: 



99 

)
)(ˆ

(
)(

)](ˆ[

)
)(ˆ

(
)(

)](ˆ[

,,,,,

,,,,,

,,,,,

,,,

/

,,,,,

,,,,,

,,,,,

,,,

/

















































































































































xd

DDDDD

DDDDD

DDDDD

DDD

xd

xd

DDDDD

DDDDD

DDDDD

DDD

xd

Q

k

k

ks

ks

k

k

ks

ks

s

s

s

s

k

k

s

s

k

k

s

s

k

k

ks

ks

k

k

ks

ks

s

s

s

s

k

k

s

s

k

k

s

s

4

4

22

22

22

1

22

1

22

22

4

4

22

1

22

1

22

1

22

1

22

1

22

1

4

1

4

1

22

1

2

1

25

3

4

4

22

22

22

1

22

1

22

22

4

4

22

1

22

1

22

1

22

1

22

1

22

1

4

1

4

1

22

1

2

1

25

3

2

2

2

. 

 

We see that the Hessian matrix is negative semi-definite and conclude that the objective 

function (26) is concave. Therefore, the allocation rule given in (25) will yield a global 

(although not necessarily unique) optimal solution to (26) (Bazarra, et al., 1993 and 

Burden and Faires, 1993). 



100 

 

 

 

 

APPENDIX B PROOF OF THEOREM 5 

 

 

 

Proof: In order to simplify both the notation and derivation, we provide a derivation for a 

continuous choice of sx  and then apply the results to the discrete domain that is presented 

in Theorem 5. 

We can use the chain rule to establish that 

ss x

Q

x

Q












 






. 

Using the results from (27), we obtain 

s

M

s x

xdxd

x

Q
















 




232 /
)(

)(ˆ
)

)(ˆ
( . 

Substituting the results of (33) into (23), we obtain 

  2

1

2

ks DDD
T

,,,  


  

 































 




s

k

s

s

s

ks

s x

D

x

D

x

D
DDD

Tx

,,,

,,,

1

1

22
.    (B1) 

Define the sign function as 
)(

)sgn(
wabs

w
w   when 0w . This function is undefined 

when 0w . Using this notation, we can rewrite (B1) as 



101 

 












































sss

ks

s

x

D
D

x

D
D

x

D
D

DDD
Tx

3

3

2

2

1

1

1

22

,

,

,

,

,

,

,,,

)sgn()sgn()sgn(



    (B2)  

where  

)()(

))((,

ks

kbb

s xxxx

xxxxxx

x

D











1

2

1

11
  

22

1

112 2

)()(

))()((,

kss

kskbb

s xxxx

xxxxxxxxx

x

D











  

2

1

13

))((

))((,

skk

kbb

s xxxx

xxxxxx

x

D











 . 

 

To determine the optimal location for sx , we must consider five cases which, as will be 

shown, result from the combinations of  1011 ,,)sgn(  kb xxxx  and 

 112 1 ,)sgn(  ks xxx . 

 

Case I: 
4

3

2

1 kb xxxx 


 . For this case,  

)sgn()sgn( , bxxD   1  

)sgn()sgn( , bxxD   2  

)sgn()sgn()sgn( , sbb xxxxxxD   13 . 



102 

Substituting these results and the fact that 11  )sgn( sb xxxx  when 

1xxxx bs   , we obtain 

  0
4

1

2

1

1

1

2









 




)()(

)(
,,,

xxxx

xxxx
xxDDD

Tx
ks

kb

bks

s


 

or 

0




sx

Q
 when 1xxxx bs   . 

In the same manner, 11  )sgn( sb xxxx  when 1xxxx bs   . Substituting 

into (B2) 

 
22

1

11

1

2 24

)()(

))((
,,,

sks

kskb

bks

s xxxx

xxxxxxx
xxDDD

Tx 






 


 

. 

Analyzing the above result, we see that 0




sx

Q
 when 21 /)( ks xxx  ; 0





sx

Q
 when 

21 /)( ks xxx  ; and 0




sx

Q
 when 21 /)( ks xxx  . Therefore, when 

4

3

2

1 kb xxxx 


 , we choose 21 /)( ks xxx  . Note that 
sx

   is not defined when 

1xxxx bs   . However,   is continuous at this location and the results above 

demonstrate that 
sx

Q




 is positive as we approach the location from the positive and 

negative directions. 

 



103 

Case II: 
224

3 11 kbk xxxxxx 





  .  

We can use the results for Case I to show that 0




sx

Q
 when 1xxxx bs   . 

When    111 23 xxxxxxxxxx bskbk  /)( , we can establish that 

02 1  )( ks xxx  and 0




sx

Q
. Since 0





sx

Q
 when 1xxxx bs    and 0





sx

Q
 when 

1xxxx bs  
, we choose 1xxxx bs   . As in Case I, 

sx

   is not defined when 

1xxxx bs   . However,   is continuous at this location and the results above 

demonstrate that 
sx

Q




 is positive as we approach the location from the negative direction 

and negative as we approach the location from the positive direction. Also, note that as 

22

1 kb xxxx 


 , ks xx  . 

 

Case III: 
4

3

2

1 kb xxxx 


 . For this case, we know that  

)sgn()sgn()sgn( , ksbb xxxxxxD   1  

)sgn()sgn( , bxxD   2  

)sgn()sgn( , bxxD   3  

The remainder of the proof for this case is similar to the proof for Case I and we omit the 

details for brevity. 



104 

Case IV: 
4

3

22

11 kbk xxxxxx 





  . The proof for this case is similar to the proof for 

Case II. We again omit the details for brevity. 

 

Case V: 
22

1 bk xxxx 


  . The derivative is not defined for this case. However, using 

the results from Case II and Case IV, we know that 1xxs   as 
22

1 kb xxxx 


  from 

the negative side and 1xxs   as 
22

1 kb xxxx 


  from the positive side. The extreme 

points cover these two cases. Therefore, we can choose sx  at any location on the domain 

and will choose 21 /)( ks xxx   for consistency with Case I and Case III. 

 

The results from Cases I – V demonstrate that: 



































 







otherwisexx

xxxxxx
xxx

xxxxxx
xxx

x

k

kbk

kb

kbk

b

s

,/)(

,

,

2

4

3

22

224

3

1

11

11

1

     (B3) 

Note that the solutions in (B3) are derived from an examination on a continuous domain 

and the approximate PCS expressed in (18) with allocations that satisfy (33) is 

maximized by selecting the interior design location closest to sx  selected from (B3). 



105 

When presented with design locations evenly spaced across the domain such that 

11
1

1

1 



  ki

k

xx
xx k

ii ,, , we can show for the first case in (B3) that 

111111 1111   bb xbxxbxxxxx ])[()()( . 

The second cases in (B3) can be proven in a similar manner. When presented with an odd 

number of design locations evenly spaced across the domain, the third case in (B3) can 

also be proven such that  









































otherwisex

xxxxxx
x

xxxxxx
x

x

k

kbk
kb

kbk
b

s

,

,

,

/)( 21

11

11
1

4

3

22

224

3

 

 



106 

 

 

 

 

APPENDIX C PROMODEL CODE FOR OSD (ONE PARTITION CASE) 

 

 

 

See www.promodel.com 

*********************************************************************** 

*                                                                              * 

*                         Formatted Listing of Model:                          * 

* C:\Users\Admin\Documents\GMU\Research\Dissertation prep info\Promodel 

code\Discrete with Response Surface v10.1 contour map.MOD  * 

*                                                                              * 

*********************************************************************** 

  Time Units:                        Minutes 

  Distance Units:                    Feet 

*********************************************************************** 

*                                  Locations                                   * 

*********************************************************************** 

  Name           Cap      Units Stats       Rules      Cost         

  -------------- -------- ----- ----------- ---------- ------------ 

  Experiment_loc 1        1     None        Oldest, ,               

  Run_Queue      Infinite 1     None        Oldest, ,               

  Run_Allocation 1        1     None        Oldest, ,               

 

*********************************************************************** 

*                                   Entities                                   * 

*********************************************************************** 

  Name       Speed (fpm)  Stats       Cost         

  ---------- ------------ ----------- ------------ 

  Experiment 150          None                     

  Run        150          None                     

*********************************************************************** 

*                                  Processing                                  * 

*********************************************************************** 

                                     Process                         Routing 

 Entity     Location       Operation            Blk  Output     Destination    Rule    Move Logic 

 ---------- -------------- ------------------   ---- ---------- -------------- -------  ------------ 

 Experiment Experiment_loc INC v_iteration 

                            

                           a_runtotal = 0 

                           v_designs = m_designs 



107 

                              A_RESSTATS[1] = 0 

                              A_RESSTATS[2] = 0 

                              A_RESSTATS[3] = 0 

                              A_RESSTATS[4] = 0 

                              A_RESSTATS[5] = 0 

                              A_RESSTATS[6] = 0 

                              A_RESSTATS[7] = 0 

                              A_RESSTATS[8] = 0 

                              A_RESSTATS[9] = 0 

                              A_RESSTATS[10] = 0 

                              A_RESSTATS[11] = 0 

                              A_RESSTATS[12] = 0 

                              A_RESSTATS[13] = 0 

                              A_RESSTATS[14] = 0 

                              A_RESSTATS[15] = 0 

                              A_RESSTATS[16] = 0 

                              A_RESSTATS[17] = 0 

                              A_RESSTATS[18] = 0 

                              A_RESSTATS[19] = 0 

                              A_RESSTATS[20] = m_designs 

                              A_RESSTATS[21] = 0 

                              A_RESSTATS[22] = 0 

                            

                            

                           INT TEMPCOUNT 

                           TEMPCOUNT = 1 

                           WHILE TEMPCOUNT < (m_designs+1) DO 

                             BEGIN 

                              a_RunCount[TEMPCOUNT,1] = 0 

                              a_RunCount[TEMPCOUNT,2] = 0 

                            

                              A_Design_STATS[TEMPCOUNT,1] = 0 

                              A_Design_STATS[TEMPCOUNT,2] = 0 

                              A_Design_STATS[TEMPCOUNT,3] = 0 

                              A_Design_STATS[TEMPCOUNT,4] = 0 

                              A_Design_STATS[TEMPCOUNT,5] = 0 

                              A_Design_STATS[TEMPCOUNT,6] = 0 

                              A_Design_STATS[TEMPCOUNT,7] = 0 

                              A_Design_STATS[TEMPCOUNT,8] = 0 

                              A_Design_STATS[TEMPCOUNT,9] = 0 

                              A_Design_STATS[TEMPCOUNT,10] = 0 

                            

                              a_error_factor[tempcount] = U(1,1) 

                            



108 

                              INC TEMPCOUNT 

                             END 

                            

                           Interval = Real(m_Maxx-m_Minx)/Real(m_designs-1) 

                            

# This randomly generates optimal solution 

                            

# *************** for x^2 and binomial experiment 

                       # V_SOLUTION = U(   (m_Maxx+m_Minx)/2   , (m_Maxx-m_Minx)/2  ) 

# This fixes the optimal solution 

                            V_SOLUTION = 3.0/3.0 

                            

# This block is for the Experiment with c0, c1, c2 ~ U(-10,10) 

                          #v_c0 = U(0,10) 

                          #v_c1 = U(0,10) 

                          #v_c2 = U(0,10) 

                          #V_SOLUTION = -0.5*v_c1/v_c2 

                            

# *************** for x^4 

                       # V_SOLUTION = U(   (m_Maxx+m_Minx)/2   , (m_Maxx-m_Minx)/4  ) 

                            

# *******For fixed solution 

                           # V_SOLUTION = (m_Maxx+m_Minx)/2 

                            

# This block finds the design with the lowest mean. 

                           INT bestloop 

                           REAL distbest, tempint, disttemp 

                            

                           v_best = 1 

                           tempint = 0 

                                        

# *************** for x^2 and binomial experiment 

                          distbest = (m_minx+tempint-v_solution)*(m_minx+tempint-v_solution) 

 

                               bestloop = 2 

                               WHILE bestloop < (v_designs+1) DO 

                                 BEGIN 

                                   tempint = tempint + interval 

                            

# *************** for x^2 and binomial experiment 

                       disttemp = (m_minx+tempint-v_solution)*(m_minx+tempint-v_solution)  

                            

                                   IF disttemp < distbest Then 

                                     Begin 



109 

                                      distbest = disttemp 

                                      v_best = bestloop 

                                     End       

                                  INC bestloop 

                                 END 

                            

                           V_EXPERIMENTRUN = 0 

                           v_RUNPER = 0 

                            

                           TEMPCOUNT = 1 

                            WHILE TEMPCOUNT < (m_increments+1) DO 

                             BEGIN 

                              INC a_runtotal 

                              ORDER 1 RUN TO Run_Queue 

                              Wait 0.4 sec 

                              INC TEMPCOUNT 

                             END 

                            

                                                1    Experiment EXIT           FIRST 1   

 Run        Run_Queue      Wait 0.1 sec         1    Run        Run_Allocation FIRST 1   

 Run        Run_Allocation INT TEMPQUEUE, I, J, I2, J2,IOUT 

                            

                           m_MAIN 

                            

                           Wait 1 sec           1    Run        EXIT           FIRST 1   

 

*********************************************************************** 

*                                   Arrivals                                   * 

*********************************************************************** 

 

  Entity     Location       Qty Each   First Time Occurrences Frequency  Logic 

  ---------- -------------- ---------- ---------- ----------- ---------- ------------ 

  Experiment Experiment_loc 1          0 sec      10000       60 min      

 

*********************************************************************** 

*                                  Attributes                                  * 

*********************************************************************** 

 

  ID         Type         Classification 

  ---------- ------------ -------------- 

  a_runtotal Integer      Entity         

 

*********************************************************************** 

*                              Variables (global)                              * 



110 

*********************************************************************** 

 

  ID              Type         Initial value Stats       

  ylowest                   Real         0             None        

  xlowest                   Real         0             None        

  v_designs               Integer      m_designs     None        

  v_SOLUTION       Real         0             None        

  v_local1                 Real         0             None        

  v_local2                 Real         0             None        

  v_LOWMEAN      Real         0             None        

  v_LowX                Real          0             None        

  v_LOWEST          Integer      0             None        

  v_RunPer              Integer      0             None        

  v_ExperimentRun Integer      0             None        

  v_TotalRun           Integer      0             None        

  V_STAND_VAR Real          0             None        

  TempLoop            Integer      0             None        

  TempRun             Real           0             None        

  v_Next_C_Run    Integer      0             None        

  interval                 Real          0             None        

  v_best                   Integer      0             None        

  v_iteration            Integer      0             None        

  v_varbeta             Real          0             None        

  v_xc                     Real          0             None        

  v_rho1                 Real          0             None        

  v_rho2                 Real          0             None        

  v_z1                    Real          0             None        

  v_z2                    Real          0             None        

  v_z3                    Real          0             None        

  v_del_bminus     Real          0             None        

  v_del_bplus        Real          0             None        

  v_b                     Real          0              None        

  v_B2                  Real          0              None        

  v_B2_actual       Integer      0             None        

  v_c0                   Real          0             None        

  v_c1                   Real          0             None        

  v_c2                   Real          0             None        

  v_support           Integer      0             None        

 

*********************************************************************** 

                                    Arrays                                    * 

*********************************************************************** 

 

  ID             Dimensions   Type         Import File Export File   Disable        Persist              



111 

#COL 1: Location of X 

#COL 2: Sum of X 

#COL 3: Sum of X^2 

#COL 4: Sum of X^3 

#COL 5: Sum of X^4 

#COL 6: Sum of y 

#COL 7: Sum of yx 

#COL 8: Sum of yx^2 

#COL 9: Sum of y^2 

#COL 10: Variance of runs for this design 

#COL 11: Predicted response at each location 

#COL 12: Delta b,i 

#COL 13: Li,1 

#COL 14: Li,2 

#COL 15: Li,3 

#COL 16: Sigma^2_b,i 

#COL 17: phi_i 

#COL 18: denominator for secant line 

  a_Design_stats 110,18       Real                                   None           No                              

  a_RunCount     110,2        Integer                                None           No                              

# 

#COL 1: Mean of Left Design 

#COL 2: Mean of Middle Design 

#COL 3: Mean of Right Design 

#COL 4: beta2 term 

#COL 5: beta1 term 

#COL 6: beta0 term 

#COL 7: x* 

#COL 8: y* 

#COL 9: lowest y 

#COL 10: lowest x 

#COL 11:  

#COL 12: Sum of Runs 

#COL 13: Variance of optimal response 

#COL 14: OCBA Coefficient 

#COL 15: OCBA Run Allocation 

#COL 16: Delta term for OCBA 

#COL 17: If x* is optimal, then this is set to 1 (used for v&v only) 

#COL 18: 

#COL 19: 

#COL 20:Width of Partition (number of designs) 

#COL 21: Xleft 

#COL 22: Xright 

# 



112 

#COL 24: A1 (for c-opt) 

#COL 25: A2  

#COL 26: A3 

#COL 27: alpha 1 

#COL 28: alpha 2 

#COL 29: alpha 3 

# 

#COL 31: Inverse 1,1 

#COL 32: Inverse 1,2 

#COL 33: Inverse 1,3 

#COL 34: Inverse 2,1 

#COL 35: Inverse 2,2 

#COL 36: Inverse 2,3 

#COL 37: Inverse 3,1 

#COL 38: Inverse 3,2 

#COL 39: Inverse 3,3 

# 

  a_ResStats     39           Real                                   None           No                              

# 

#COL 1: P{CS} 

#COL 2: Mean Distance from local 

#COL 3: Squared Distance from local 

#COL 4: Mean y_hat(x*) 

#COL 5: Squared y_hat(x*) 

#COL 6: Mean f(x*) 

#COL 7: Squared f(x*) 

#COL 8: rho1 

#COL 9: rho2 

#COL 10: Allocations to Design 1 

#COL 20: Allocations to Design 11 

  a_Results      1501,110     Real                     a_Results.xls None           No                         

# 

#COL 1: Coefficients 

#COL 2: Temp Column 

  a_B            3,3            Real                                   None           No                              

  a_RHS          3            Real                                   None           No                              

  a_INV          3,3          Real                                   None           No                              

  FTF_MATRIX     3,3 Real                                   None           No                              

  a_TEMP         6,6       Real                                   None           No                              

  a_error_factor 110     Real                                   None           No                              

  a_F            3               Real                                   None           No                              

  a_E            3              Real                                   None           No                              

  a_alpha        3            Real                                   None           No                              

 



113 

*********************************************************************** 

*                                    Macros                                    * 

*********************************************************************** 

 

  ID                           Text 

  ---------------------------- ------------ 

  m_nzero                      2 

  m_initial_loops              2 

  m_delta                      14 

  m_restricted                 1 

  m_MAIN                        

# This block sets the number of runs for each partition to the value of nzero (initial 

iterations) 

                                

                               IF A_RUNTOTAL < m_initial_loops THEN 

                                 BEGIN 

                               #    M_INITIAL_RUNS                                                                         

# Conducts 2 iterations of D-opt instead of runs to entire domain 

                                   m_D_opt 

                                   m_D_opt 

                                

                                   m_MESH_CONSTRUCTION                                                           

                                 END 

                                

# This block does the subsequent iterations. 

                                

                               ELSE 

                                 BEGIN 

                                   m_optimality_criteria 

                                 END 

                                

# This checks to see how many total runs a design has been allocated 

# and how many it currently has. If it needs more, it calls the macro for 

# allocating a new run based upon the simulated underlying distribution. 

                                

                                       m_runs_discrete                                                                

                                

#This block allows us to generate performance statistics for different computing budgets. 

                                

                                     m_response_stats                                                                

                                

                                      m_pcs_calculation                                                                          

                                

  m_optimality_criteria         



114 

# Choose the optimality criteria 

# Use for D-opt 

                               # m_D_opt 

                                

# Use for Equal Allocation - Response Surface 

                               # M_INITIAL_RUNS 

                                

# Use for OSD 

                                transient_PCS_opt 

                                

  m_response_stats              

# Generates a response surface across the entire partition 

                                

                               REAL AMAX, SWITCH, TEMPCOEF, TEMPDIFF 

                               INT NMAX, II, JJ, III, IOUTLOOP 

                               INT IJKL,IMN 

                               REAL TOL, TEMPTOL 

                                

                                    m_Info_matrix 

                                                               

# Determines the total runs allocated for the entire partition and the response at each 

discrete point 

                               INT IIJJ 

                               IIJJ = 1 

                               ylowest = 

a_Resstats[6]+a_Resstats[5]*a_design_stats[IIJJ,1]+a_Resstats[4]*a_design_stats[IIJJ,1]

**2 

                               v_lowest = 1 

                                WHILE IIJJ < (m_designs+1) DO 

                                  BEGIN 

                                     a_Resstats[12] = a_Resstats[12] + Real(a_RunCount[IIJJ,2])  

                                     a_design_stats[IIJJ,11]= 

a_Resstats[6]+a_Resstats[5]*a_design_stats[IIJJ,1]+a_Resstats[4]*a_design_stats[IIJJ,1]

**2 

                                     IF a_design_stats[IIJJ,11] < ylowest then 

                                       BEGIN 

                                         ylowest = a_design_stats[IIJJ,11] 

                                         v_lowest = IIJJ 

                                       END  

                                    INC IIJJ 

                                  END 

                                  

##################### 

# Use this for OSD 



115 

                                m_Diff_opt_response 

##################### 

                                

  m_d_opt_runs                 1 

 

  Experiment_Parameters  ****************************************** 

  m_minx                       -1 

  m_maxx                       1 

  m_designs                    11 

  m_increments                 1+(1100 - m_designs * m_nzero)/m_delta 

  NDIM                         3 

  One_Partition_Code           **************************************** 

  m_initial_runs                

# (Generic) This block sets the number of runs for each partition to the value of nzero 

(initial iterations) 

                               TEMPQUEUE = 1 

                               WHILE TEMPQUEUE < (v_designs+1) DO 

                                 BEGIN 

                                  INC a_RunCount[TEMPQUEUE,1], m_nzero  

                                  INC TEMPQUEUE 

                                 END 

  m_MESH_CONSTRUCTION     

# This block checks to see how many total runs a design has been allocated 

# and how many it currently has. If it needs more, it calls the macro for 

# allocating a new run based upon the simulated underlying distribution. 

                                

                               INT Tempmesh 

                               Tempmesh = 1 

                               While Tempmesh < (v_designs+1) DO 

                                 Begin 

                                   a_Design_stats[Tempmesh,1]= m_Minx + Real(Tempmesh-

1)*Real(m_Maxx-m_Minx)/Real(m_designs-1) 

                                   INC Tempmesh 

                                 End 

                                

  m_runs_discrete   

# This block checks to see how many total runs a design has been allocated 

# and how many it currently has. If it needs more, it calls the macro for 

# allocating a new run based upon the simulated underlying distribution. 

                                

                               Temploop = 1 

                               While Temploop < (v_designs+1) DO 

                                 Begin 

                                    While a_RunCount[Temploop,2] < a_RunCount[Temploop,1] DO 



116 

                                      Begin 

                                         m_run_generation 

                                         A_Design_STATS[Temploop,2] = 

A_Design_STATS[Temploop,2] + a_design_stats[Temploop,1] 

                                         A_Design_STATS[Temploop,3] = 

A_Design_STATS[Temploop,3] + a_design_stats[Temploop,1]**2 

                                         A_Design_STATS[Temploop,4] = 

A_Design_STATS[Temploop,4] + a_design_stats[Temploop,1]**3 

                                         A_Design_STATS[Temploop,5] = 

A_Design_STATS[Temploop,5] + a_design_stats[Temploop,1]**4 

                                         A_Design_STATS[Temploop,6] = 

A_Design_STATS[Temploop,6] + RunValue 

                                         A_Design_STATS[Temploop,7] = 

A_Design_STATS[Temploop,7] + RunValue*a_design_stats[Temploop,1] 

                                         A_Design_STATS[Temploop,8] = 

A_Design_STATS[Temploop,8] + RunValue*a_design_stats[Temploop,1]**2 

                                         A_Design_STATS[Temploop,9] = 

A_Design_STATS[Temploop,9] + RunValue**2 

                                         INC a_RunCount[Temploop,2] 

                                      End 

                                

                                  INC Temploop 

                                 End 

  m_run_generation         

# This macro contains the specific formulae for each experiment 

                               INC V_totalrun 

                               INC v_ExperimentRun 

                               INC a_results[a_runtotal,Temploop+9] 

                                

# This block allocates the run  

                                

                               REAL RunValue 

                                

###############################Experiment 1 

                                

# used for homoscedastic 

                            RunValue = (a_design_stats[Temploop,1]-v_SOLUTION)**2 + N(0,1) 

                                

                               #********************* for -x^2 

                      #RunValue = -((a_design_stats[Temploop,1]-v_SOLUTION)**2) + N(0,1) 

                                

                                

# normal but heteroscedastic 



117 

                               # RunValue = (a_design_stats[Temploop,1]-v_SOLUTION)**2 + 

a_error_factor[temploop]*N(0,4) 

#************** for new experiment 1 

                               # RunValue = v_c2*(a_design_stats[Temploop,1])**2 + 

v_c1*(a_design_stats[Temploop,1]) + v_c0 + N(0,1) 

                                

#  for binomial experiment 

                                

                               #RunValue = bi( 1 , ( 0.25*(a_design_stats[Temploop,1]-

v_SOLUTION)**2)   ) 

                                

# used for x^4 

                               # RunValue = (a_design_stats[Temploop,1]-v_SOLUTION)**4 + 

N(0,1) 

                                

  m_Info_matrix       

# This block is used to build the XTX Info matrix 

                               II = 1 

                               While II < (NDIM+1) DO 

                                Begin 

                                 JJ = 1 

                                 a_RHS[II] = 0 

                                 While JJ < (NDIM+1) DO 

                                  Begin 

                                    FTF_MATRIX[JJ,II] = 0 

                                    INC JJ 

                                  END 

                                  INC II 

                                END 

                                

                               II = 1 

                               WHILE II < (m_designs + 1) DO 

                                 BEGIN 

                                   FTF_MATRIX[1,1] = FTF_MATRIX[1,1] + a_RunCount[II,2] 

                                   FTF_MATRIX[1,2] = FTF_MATRIX[1,2] + 

A_Design_STATS[II,2] 

                                   FTF_MATRIX[1,3] = FTF_MATRIX[1,3] + 

A_Design_STATS[II,3] 

                                   FTF_MATRIX[2,1] = FTF_MATRIX[2,1] + 

A_Design_STATS[II,2] 

                                   FTF_MATRIX[2,2] = FTF_MATRIX[2,2] + 

A_Design_STATS[II,3] 

                                   FTF_MATRIX[2,3] = FTF_MATRIX[2,3] + 

A_Design_STATS[II,4] 



118 

                                   FTF_MATRIX[3,1] = FTF_MATRIX[3,1] + 

A_Design_STATS[II,3] 

                                   FTF_MATRIX[3,2] = FTF_MATRIX[3,2] + 

A_Design_STATS[II,4] 

                                   FTF_MATRIX[3,3] = FTF_MATRIX[3,3] + 

A_Design_STATS[II,5] 

                                   a_RHS[1] = a_RHS[1] + A_Design_STATS[II,6] 

                                   a_RHS[2] = a_RHS[2] + A_Design_STATS[II,7] 

                                   a_RHS[3] = a_RHS[3] + A_Design_STATS[II,8] 

                                

                                   INC II 

                                 END 

                                

# This block is used to invert the XTX info matrix 

                                

                               II = 1 

                               While II < (NDIM+1) DO 

                                Begin 

                                 JJ = 1 

                                 While JJ < (NDIM+1) DO 

                                  Begin 

                                    A_TEMP[JJ,II] = FTF_MATRIX[JJ,II] 

                                    INC JJ 

                                  END 

                                  INC II 

                                END 

                                

                               II = 1 

                               While II < (NDIM+1) DO 

                                Begin 

                                 JJ = (NDIM+1) 

                                 While JJ < (2*NDIM+1) DO 

                                  Begin 

                                    A_TEMP[II,JJ] = 0 

                                    INC JJ 

                                  END 

                                  A_TEMP[II,NDIM+II] = 1 

                                  INC II 

                                END 

                                

                                

#     This loop row reduces the first N columns of the matrix 

                               II = 1 

                               While II < (NDIM+1) DO 



119 

                                Begin 

                                

#     This loop does maximum element pivoting for each column and then 

#   divides the row by the first element in the row 

                                

                                       AMAX = A_TEMP[II,II] 

                                       NMAX = II 

                                

                                       JJ = II+1 

                                       WHILE JJ < (NDIM+1) DO 

                                        BEGIN 

                                         IF SQRT(A_TEMP[JJ,II]**2) > SQRT(AMAX**2) THEN 

                                           BEGIN 

                                            AMAX = A_TEMP[JJ,II] 

                                            NMAX = JJ 

                                           END 

                                           INC JJ 

                                        END 

                                

                                     IF II <> NMAX THEN 

                                       BEGIN 

                                        JJ = II 

                                         WHILE JJ < (2*NDIM+1) DO 

                                          BEGIN 

                                            SWITCH = A_TEMP[II,JJ] 

                                            A_TEMP[II,JJ] = A_TEMP[NMAX,JJ]/AMAX 

                                            A_TEMP[NMAX,JJ] = SWITCH 

                                            INC JJ 

                                          END 

                                      END 

                                     ELSE 

                                      BEGIN 

                                       JJ = 1 

                                       WHILE JJ < (2*NDIM+1) DO 

                                        BEGIN 

                                         A_TEMP[II,JJ] = A_TEMP[II,JJ]/AMAX 

                                        INC JJ 

                                        END 

                                      END 

                                

#     This loop reduces all other elements in the column to zero 

                                

                                       JJ = 1 

                                       WHILE JJ < (NDIM+1) DO 



120 

                                        BEGIN 

                                           IF JJ <> II THEN 

                                            BEGIN 

                                             TEMPCOEF = -A_TEMP[JJ,II] 

                                             III = II 

                                             WHILE III < (2*NDIM+1) DO 

                                              BEGIN 

                                                A_TEMP[JJ,III] = A_TEMP[JJ,III] + 

TEMPCOEF*A_TEMP[II,III]                  

                                                INC III 

                                              END 

                                            END 

                                          INC JJ 

                                        END 

                                   

                                

                                  INC II 

                                 END 

                                

#     This loop establishes the inverse matrix using the non-reduced rows 

                                

                                     II = 1 

                                     WHILE II < (NDIM+1) DO 

                                       BEGIN 

                                         JJ = (NDIM+1) 

                                         WHILE JJ < (2*NDIM+1) DO 

                                          BEGIN 

                                            A_INV[II,JJ-NDIM] = A_TEMP[II,JJ] 

                                            INC JJ 

                                          END 

                                        INC II 

                                     END 

                                

#     This loop establishes the inverse matrix using the non-reduced rows 

                                

                                   a_RESstats[6] = a_INV[1,1]*a_RHS[1] + a_INV[1,2]*a_RHS[2] + 

a_INV[1,3]*a_RHS[3] 

                                   a_RESstats[5] = a_INV[2,1]*a_RHS[1] + a_INV[2,2]*a_RHS[2] + 

a_INV[2,3]*a_RHS[3] 

                                   a_RESstats[4] = a_INV[3,1]*a_RHS[1] + a_INV[3,2]*a_RHS[2] + 

a_INV[3,3]*a_RHS[3] 

                                

                                   a_RESstats[31] = a_INV[1,1] 

                                   a_RESstats[32] = a_INV[1,2] 



121 

                                   a_RESstats[33] = a_INV[1,3] 

                                   a_RESstats[34] = a_INV[2,1] 

                                   a_RESstats[35] = a_INV[2,2] 

                                   a_RESstats[36] = a_INV[2,3] 

                                   a_RESstats[37] = a_INV[3,1] 

                                   a_RESstats[38] = a_INV[3,2] 

                                   a_RESstats[39] = a_INV[3,3] 

 

  Allocation_Schemes           *********************************************** 

  m_Diff_opt_response           

# Calculates F_i 

                               a_F[1] = ((a_design_stats[1,1]-

a_design_stats[(m_designs+1)/2,1])*(a_design_stats[1,1]-

a_design_stats[m_designs,1]))**2 

                               a_F[2] = ((a_design_stats[(m_designs+1)/2,1]-

a_design_stats[1,1])*(a_design_stats[(m_designs+1)/2,1]-

a_design_stats[m_designs,1]))**2 

                               a_F[3] = ((a_design_stats[m_designs,1]-

a_design_stats[1,1])*(a_design_stats[m_designs,1]-

a_design_stats[(m_designs+1)/2,1]))**2 

                                

                               INT IRUNSLOOP, ICOUNTRUNS 

                                   IRUNSLOOP = 1 

                                   ICOUNTRUNS = 0 

                                   While IRUNSLOOP < (m_designs+1) DO 

                                    BEGIN 

                                

#      Calculates the delta term 

                                      a_design_stats[IRUNSLOOP,12] = 

a_design_stats[IRUNSLOOP,11]-a_design_stats[v_lowest,11] 

                                

                                      a_design_stats[IRUNSLOOP,18] = 

sqrt((a_design_stats[IRUNSLOOP,1]-a_design_stats[v_lowest,1])**2) 

                                

                                      If v_lowest = 1 Then 

                                        Begin 

                                          a_design_stats[IRUNSLOOP,13] = 1 

                                        End 

                                      Else 

                                        Begin 

                                          a_design_stats[IRUNSLOOP,13] = 

(a_design_stats[(m_designs+1)/2,1]-

a_design_stats[IRUNSLOOP,1])*(a_design_stats[m_designs,1]-

a_design_stats[IRUNSLOOP,1]) 



122 

                                          a_design_stats[IRUNSLOOP,13] = 

a_design_stats[IRUNSLOOP,13]-(a_design_stats[(m_designs+1)/2,1]-

a_design_stats[v_lowest,1])*(a_design_stats[m_designs,1]-a_design_stats[v_lowest,1]) 

                                          a_design_stats[IRUNSLOOP,13] = 

(a_design_stats[IRUNSLOOP,13]**2)/a_F[1] 

                                        End 

                                

                                      If v_lowest = (m_designs+1)/2 Then 

                                        Begin 

                                          a_design_stats[IRUNSLOOP,14] = 1 

                                        End 

                                      Else 

                                        Begin 

                                          a_design_stats[IRUNSLOOP,14] = (a_design_stats[1,1]-

a_design_stats[IRUNSLOOP,1])*(a_design_stats[m_designs,1]-

a_design_stats[IRUNSLOOP,1]) 

                                          a_design_stats[IRUNSLOOP,14] = 

a_design_stats[IRUNSLOOP,14]-(a_design_stats[1,1]-

a_design_stats[v_lowest,1])*(a_design_stats[m_designs,1]-a_design_stats[v_lowest,1]) 

                                          a_design_stats[IRUNSLOOP,14] = 

(a_design_stats[IRUNSLOOP,14]**2)/a_F[2] 

                                        End 

                                

                                      If v_lowest = m_designs Then 

                                        Begin 

                                          a_design_stats[IRUNSLOOP,15] = 1 

                                        End 

                                      Else 

                                        Begin 

                                          a_design_stats[IRUNSLOOP,15] = (a_design_stats[1,1]-

a_design_stats[IRUNSLOOP,1])*(a_design_stats[(m_designs+1)/2,1]-

a_design_stats[IRUNSLOOP,1]) 

                                          a_design_stats[IRUNSLOOP,15] = 

a_design_stats[IRUNSLOOP,15]-(a_design_stats[1,1]-

a_design_stats[v_lowest,1])*(a_design_stats[(m_designs+1)/2,1]-

a_design_stats[v_lowest,1]) 

                                          a_design_stats[IRUNSLOOP,15] = 

(a_design_stats[IRUNSLOOP,15]**2)/a_F[3] 

                                        End 

                                

                                      ICOUNTRUNS = ICOUNTRUNS + a_RunCount[irunsloop,2] 

                                      INC IRUNSLOOP 

                                    END 

                                



123 

# Calculates current alpha_i 

                              a_alpha[1] = a_RunCount[1,2] / Real(ICOUNTRUNS) 

                              a_alpha[2] = a_RunCount[(m_designs+1)/2,2]/ Real(ICOUNTRUNS) 

                              a_alpha[3] = a_RunCount[m_designs,2]/ Real(ICOUNTRUNS) 

                                

                                   IRUNSLOOP = 1 

                                   While IRUNSLOOP < (m_designs+1) DO 

                                    BEGIN 

                                

                                      a_design_stats[IRUNSLOOP,16]= 

(a_design_stats[IRUNSLOOP,13]/a_alpha[1]+a_design_stats[IRUNSLOOP,14]/a_alpha[

2]+a_design_stats[IRUNSLOOP,15]/a_alpha[3])/ICOUNTRUNS 

                                

                                      INC IRUNSLOOP 

                                    END 

                                

                                

#diff-opt code  

# This block calculates sqrt(A1), sqrt(A2), and sqrt(A3) (without T and the variance 

included) for the c-opt case 

                                

                               Real Second 

                               Int v_second 

                                

                               If ((v_lowest > 1) and (v_lowest < m_designs)) Then 

                                 Begin 

                               If (a_design_stats[(v_lowest-1),12]/sqrt(a_design_stats[(v_lowest-

1),16])) > (a_design_stats[(v_lowest+1),12]/sqrt(a_design_stats[(v_lowest+1),16])) Then 

                                 Begin 

                                   Second = a_design_stats[(v_lowest+1),1] 

                                   v_second = v_lowest+1 

                                 End 

                               Else 

                                 Begin 

                                   Second = a_design_stats[(v_lowest-1),1] 

                                   v_second = v_lowest-1 

                                 End 

                                

                                 End 

                                

                               If v_lowest = m_designs Then 

                                 Begin 

                                   If (a_design_stats[1,12]/sqrt(a_design_stats[1,16])) > 

(a_design_stats[(m_designs-1),12]/sqrt(a_design_stats[(m_designs-1),16])) Then 



124 

                                     Begin 

                                       Second = a_design_stats[(m_designs-1),1] 

                                       v_second = m_designs-1 

                                     End 

                                   Else 

                                     Begin 

                                      Second = a_design_stats[1,1] 

                                      v_second = 1 

                                     End 

                                 End 

                                

                               If v_lowest = 1 Then 

                                 Begin 

                                   If 

(a_design_stats[m_designs,12]/sqrt(a_design_stats[m_designs,16])) > 

(a_design_stats[2,12]/sqrt(a_design_stats[2,16])) Then 

                                     Begin 

                                       Second = a_design_stats[2,1] 

                                      v_second = 2 

                                     End 

                                   Else 

                                     Begin 

                                      Second = a_design_stats[m_designs,1] 

                                       v_second = m_designs 

                                     End 

                                 End 

                                

                               v_support = (m_designs+1)/2 

                                

                               If ((3*a_design_stats[1,1]+a_design_stats[m_designs,1])/4) < 

((a_design_stats[v_lowest,1]+Second)/2) Then 

                                 Begin 

                                   If ((a_design_stats[1,1]+a_design_stats[m_designs,1])/2) > 

((a_design_stats[v_lowest,1]+Second)/2) Then 

                                     Begin 

                                         v_support = v_lowest + v_second -1 

                                     End 

                                 End 

                                

                               If ((a_design_stats[1,1]+3*a_design_stats[m_designs,1])/4) > 

((a_design_stats[v_lowest,1]+Second)/2) Then 

                                 Begin 

                                   If ((a_design_stats[1,1]+a_design_stats[m_designs,1])/2) < 

((a_design_stats[v_lowest,1]+Second)/2) Then 



125 

                                     Begin 

                                         v_support = v_lowest + v_second - m_designs 

                                     End 

                                 End 

                                

# This line makes it opt alloc to d-opt support points 

                               #v_support = (m_designs+1)/2 

                                

                                   a_Resstats[24] = (a_design_stats[v_support,1]-

a_design_stats[v_lowest,1])*(a_design_stats[m_designs,1]-a_design_stats[v_lowest,1]) 

                                   a_Resstats[24] = a_Resstats[24]-(a_design_stats[v_support,1]-

Second)*(a_design_stats[m_designs,1]-Second) 

                                   a_Resstats[24] = a_Resstats[24]/((a_design_stats[1,1]-

a_design_stats[v_support,1])*(a_design_stats[1,1]-a_design_stats[m_designs,1])) 

                                

                                   a_Resstats[25] = (a_design_stats[1,1]-

a_design_stats[v_lowest,1])*(a_design_stats[m_designs,1]-a_design_stats[v_lowest,1]) 

                                   a_Resstats[25] = a_Resstats[25]-(a_design_stats[1,1]-

Second)*(a_design_stats[m_designs,1]-Second) 

                                   a_Resstats[25] = a_Resstats[25]/((a_design_stats[v_support,1]-

a_design_stats[1,1])*(a_design_stats[v_support,1]-a_design_stats[m_designs,1])) 

                                

                                   a_Resstats[26] = (a_design_stats[1,1]-

a_design_stats[v_lowest,1])*(a_design_stats[v_support,1]-a_design_stats[v_lowest,1]) 

                                   a_Resstats[26] = a_Resstats[26]-(a_design_stats[1,1]-

Second)*(a_design_stats[v_support,1]-Second) 

                                   a_Resstats[26] = a_Resstats[26]/((a_design_stats[m_designs,1]-

a_design_stats[1,1])*(a_design_stats[m_designs,1]-a_design_stats[v_support,1])) 

                                

                                   a_Resstats[24] = sqrt(a_Resstats[24]**2) 

                                   a_Resstats[25] = sqrt(a_Resstats[25]**2) 

                                   a_Resstats[26] = sqrt(a_Resstats[26]**2) 

                                

# This block calculates alpha 1, alpha 2, and alpha 3 for x-optimality3 

                                

                               #v_b = a_Resstats[7] 

                               #v_B2 = a_ResStats[4] 

                                

                               If ((a_Resstats[26]<a_Resstats[24]) and 

(a_Resstats[26]<a_Resstats[25])) Then 

                                 Begin 

                                   a_Resstats[27] = Round ((m_delta) / (1+ 

a_Resstats[25]/a_Resstats[24] + a_Resstats[26]/a_Resstats[24])) 

                                    



126 

                                   If a_Resstats[27] < 0 Then 

                                     Begin 

                                      a_Resstats[27] = 0 

                                     End 

                                

                                   If a_Resstats[27] > m_delta Then 

                                     Begin 

                                      a_Resstats[27] = m_delta 

                                     End 

                                

                                   a_Resstats[28] = Round ((m_delta) / (1+ 

a_Resstats[24]/a_Resstats[25] + a_Resstats[26]/a_Resstats[25])) 

                                

                                   If a_Resstats[28] < 0 Then 

                                     Begin 

                                      a_Resstats[28] = 0 

                                     End 

                                

                                   If (a_Resstats[27]+a_Resstats[28]) > m_delta Then 

                                     Begin 

                                      a_Resstats[28] = m_delta - a_Resstats[27] 

                                     End 

                                

                                

                                   If (a_Resstats[27]+a_Resstats[28]) < m_delta Then 

                                     Begin 

                                      a_Resstats[29] = m_delta - a_Resstats[27] - a_Resstats[28] 

                                     End 

                                   ELSE 

                                      Begin 

                                       a_Resstats[29] = 0 

                                      End 

                                

                               End 

                                

                               If ((a_Resstats[24]<a_Resstats[25]) and 

(a_Resstats[24]<a_Resstats[26])) Then 

                                 Begin 

                                   a_Resstats[29] = Round ((m_delta) / (1+ 

a_Resstats[25]/a_Resstats[26] + a_Resstats[24]/a_Resstats[26])) 

                                   

                                   If a_Resstats[29] < 0 Then 

                                     Begin 

                                      a_Resstats[29] = 0 



127 

                                     End 

                                

                                   If a_Resstats[29] > m_delta Then 

                                     Begin 

                                      a_Resstats[29] = m_delta 

                                     End 

                                

                                   a_Resstats[28] = Round ((m_delta) / (1+ 

a_Resstats[24]/a_Resstats[25] + a_Resstats[26]/a_Resstats[25])) 

                                

                                   If a_Resstats[28] < 0 Then 

                                     Begin 

                                      a_Resstats[28] = 0 

                                     End 

                                

                                   If (a_Resstats[29]+a_Resstats[28]) > m_delta Then 

                                     Begin 

                                      a_Resstats[28] = m_delta - a_Resstats[29] 

                                     End 

                                

                                   If (a_Resstats[29]+a_Resstats[28]) < m_delta Then 

                                     Begin 

                                      a_Resstats[27] = m_delta - a_Resstats[29] - a_Resstats[28] 

                                     End 

                                   ELSE 

                                      Begin 

                                       a_Resstats[27] = 0 

                                      End 

                                

                               End 

                                

                               If ((a_Resstats[25]<a_Resstats[24]) and 

(a_Resstats[25]<a_Resstats[26])) Then 

                                 Begin 

                                   a_Resstats[27] = Round ((m_delta) / (1+ 

a_Resstats[25]/a_Resstats[24] + a_Resstats[26]/a_Resstats[24])) 

                                

                                    

                                   If a_Resstats[27] < 0 Then 

                                     Begin 

                                      a_Resstats[27] = 0 

                                     End 

                                

                                   If a_Resstats[27] > m_delta Then 



128 

                                     Begin 

                                      a_Resstats[27] = m_delta 

                                     End 

                                

                                   a_Resstats[29] = Round ((m_delta) / (1+ 

a_Resstats[24]/a_Resstats[26] + a_Resstats[25]/a_Resstats[26])) 

                                

                                   If a_Resstats[29] < 0 Then 

                                     Begin 

                                      a_Resstats[29] = 0 

                                     End 

                                

                                   If (a_Resstats[27]+a_Resstats[29]) > m_delta Then 

                                     Begin 

                                      a_Resstats[29] = m_delta - a_Resstats[27] 

                                     End 

                                

                                   If (a_Resstats[27]+a_Resstats[29]) < m_delta Then 

                                     Begin 

                                      a_Resstats[28] = m_delta - a_Resstats[27] - a_Resstats[29] 

                                     End 

                                   ELSE 

                                      Begin 

                                       a_Resstats[28] = 0 

                                      End 

                                

                               End 

                                

  m_pcs_calculation             

# This block calculates how far off the center of the best partition is from 

# the actual optimal solution 

                                

# Did we pick the right solution? (yes or no) 

                               IF V_LOWEST = V_BEST THEN 

                                 BEGIN 

                                  a_results[a_runtotal,1] = a_results[a_runtotal,1] + 1 

                                 END 

                                

# x* criteria: How far off are we from the right solution? (difference between the best x 

and what we think is the best x) 

                                  a_results[a_runtotal,2] = a_results[a_runtotal,2] + a_Resstats[10] 

                                  a_results[a_runtotal,3] = a_results[a_runtotal,3] + 

a_Resstats[10]**2 

                                



129 

# y_hat criteria: How bad is our solution compared to the response at the actual solution? 

(difference between y at the best x and y at what we think is the best x) 

                                  a_results[a_runtotal,4] = a_results[a_runtotal,4] + a_Resstats[9] 

                                  a_results[a_runtotal,5] = a_results[a_runtotal,5] + a_Resstats[9]**2 

                                

# f(x*) criteria: How bad is our solution against the true solution? 

                                  a_results[a_runtotal,6] = a_results[a_runtotal,6] + (a_Resstats[10]-

v_SOLUTION)**2 

                                  a_results[a_runtotal,7] = a_results[a_runtotal,7] + (a_Resstats[10]-

v_SOLUTION)**4 

  Allocation_Calculations      

********************************************************* 

  m_D_opt                       

# D-Opt 

                                

                                a_RunCount[1,1] = a_RunCount[1,1] + m_d_opt_runs 

                                a_RunCount[(m_designs+1)/2,1] = a_RunCount[(m_designs+1)/2,1] 

+ m_d_opt_runs 

                                a_RunCount[m_designs,1] = a_RunCount[m_designs,1] + 

m_d_opt_runs 

                                

  transient_PCS_opt            a_RunCount[1,1] = a_RunCount[1,1] + a_Resstats[27] 

                                   a_RunCount[v_support,1] = a_RunCount[v_support,1] + 

a_Resstats[28] 

                                   a_RunCount[m_designs,1] = a_RunCount[m_designs,1] + 

a_Resstats[29] 

                                

 

*********************************************************************** 

*                                External Files                                * 

*********************************************************************** 

 

  ID         Type              File Name      Prompt     

  ---------- ----------------- -------------- ---------- 

  (null)                       a_Results.xls             

  (null)                       a_scatter.xls             

 



130 

 

 

 

 

APPENDIX D PROOFS OF LEMMA 4 AND LEMMA 5 

 

 

 

Lemma 4: When })(
~

{ 0 hih xPP   and Bh  , the within partition comparisons are 

determined by the c-optimality criterion where hix  is selected as one of the three support 

points and 01.hi . 

 

Proof: When })(
~

{ 0 hih xPP   and Bh  , 
























h

hj

jhi

h

h

hi

hi

hi

hi

hj

N
E

N

xxU
2

22

232

,

/
)(

)(ˆ
)

)(ˆ
(  

Setting 0




hj

U


, we obtain 

 













 



2

2

2

2

232 hj

jhi

h

h

hi

hi

hi

hi
E

N

xx ,

/
)(

)(ˆ
)

)(ˆ
(        (D1) 

Therefore, 

 

)
)(ˆ

()(ˆ

)(
/

,,,

hi

hi
hih

hih

hk

khi

hs

shi

h

hi

x
x

NEEE








 2

232

2

2

2

2

2

1

2

1 2    

Given a property of the Lagrange polynomial coefficients where 11  khishihi EEE ,,,  

(Burden and Faires, 1993), we know that 02 jhiE ,  for at least one of the support points. 



131 

Using the fact that 11  hkhsh   and, assuming for example that 02

1 ,hiE , we 

obtain the result that  

11

1

1

1

1  h

hi

khi

h

hi

shi

h
E

E

E

E


,

,

,

,
 

By symmetry of solution, we obtain the general result that 

khishihi

jhi

hj
EEE

E

,,,

,




1

 .        (D2) 

The same results are obtained for the lower bound of the APCS also. For the optimal 

support point location, we must consider three cases. 

 

Case D-I: 1hhi xx  . For this case, we obtain that 11 ,hiE , 0shiE , , and 0khiE , . 

Substituting these results into (D2), we obtain 011 .h . 

 

Case D-II: hkhi xx  . For this case, we obtain that 01 ,hiE , 0shiE , , and 1khiE ,  

resulting in 01.hk .  

 

Case D-III: 1hhi xx   and hkhi xx  . From (59), we know that 














))((

))((
,

hkhhsh

hihkhihs

hi
xxxx

xxxx
E

11

1 ,  













))((

))((
,

hkhshhs

hihkhih

shi
xxxx

xxxx
E

1

1 , and 














))((

))((
,

hshkhhk

hihshih
khi

xxxx

xxxx
E

1

1 . 



132 

When hihs xx  , we obtain that 01 ,hiE , 1shiE , , and 0khiE , . Substituting these 

results into (D2), we obtain 01.hs . In order to show that hihs xx   is an optimal 

selection of hsx , we can use the chain rule to establish that 

hs

hi

hihs x

U

x

U












 


. 

Substituting 
hi

U




, we obtain 

hs

hi

hi

hi

hi

hi

hs x

xx

x

U








 










232 /
)(

)(ˆ
)

)(ˆ
( . 

Substituting (D2) into (59), we obtain 

 













 Bk

kBi

Bs

sBi

B

Bi

B

B
khishihi

h

h

hi

EEE

N
EEE

N 




22

1

2

1
2

2

1

2
,,,

,,,    (D3) 

Using again the property where 11  khishihi EEE ,,,  (Burden and Faires, 1993), we 

know that 11  khishihi EEE ,,, . Thus, when hihs xx  , 0




hs

hi

x


 we obtain that 

0




hsx

U
. Similarly, when hihs xx  , 0





hs

hi

x


 we obtain that 0





hsx

U
. 

 

Lemma 5: When 
  PP , the within partition comparisons for the best partition are 

determined by the c-optimality criterion where Bbx  is selected as one of the three support 



133 

points and 01.Bb (for future allocations after initial runs so that we do not have a 

singular solution). 

 

Proof: When 
  PP , 
























 
























 B

bh hb

hb

hb

hb

h hM

hM

hM

hM

Bj

jBb

B

B

Bj

N
xxxxE

N

U

,
//

,

)(

)(ˆ
)

)(ˆ
(

)(

)(ˆ
)

)(ˆ
(

23232

22

22
. 

Setting 0




Bj

U


, we obtain 

 























bh hb

hb

hb

hb

h hM

hM

hM

hM
B

B

Bj

jBb

xxxx

NE

,
//

,

)(

)(ˆ
)

)(ˆ
(

)(

)(ˆ
)

)(ˆ
(

 





















2323

2

2

2

2

22

 

The rest of the proof follows the proof from Lemma 4. 

 

 



134 

 

 

 

 

APPENDIX E PROOFS OF LEMMA 6 AND LEMMA 7 

 

 

 

Lemma 6: When 
  PP , the between partition allocations for Bi   and Bj   are 

obtained by 
i

j

j

i

R

R

N

N




 . 

 

Proof: We consider three cases. 

Case E-I:  

When })(
~

{ 0  hh xdPP  or when })(
~

{ 0  hh xdPP  and Bh   for both 

comparisons,  

 







 


















 hk

khM

hs

shM

h

hM

h

h

hM

hM

hM

hM

h

DDD

N

xdxd

N

U
22

1

2

1

2

2

232

,,,

/
)(

)(ˆ
)

)(ˆ
( . 

Setting 0




hN

U
, we obtain 

 







 














 hk

khM

hs

shM

h

hM

h

h

hM

hM

hM

hM
DDD

N

xdxd
22

1

2

1

2

2

232

,,,

/
)(

)(ˆ
)

)(ˆ
(  

Such that  

 

  






























jk

kjM

js

sjM

j

jM

j

j

jM

jM

jM

jM

ik

kiM

is

siM

i

iM

i

i

iM

iM

iM

iM

DDD

N

xdxd

DDD

N

xdxd















22

1

2

1

2

2

23

22

1

2

1

2

2

23

2

2

,,,

/

,,,

/

)(

)(ˆ
)

)(ˆ
(

)(

)(ˆ
)

)(ˆ
(

 



135 

Chen et al. (2000) provide using an asymptotic allocation rule for where T  and 

Glynn and Juneja (2004) provide using a large deviation approach that  

22






























jM

jM

iM

iM
xdxd



)(ˆ)(ˆ
. 

Substituting the results from Chapter 3, we know that 

 





h

khMshMhMh

hi
N

DDD
2

1

2

,,,
  

Therefore, 

 
 

 
 








j

kjMsjMjMj

jM

i

kiMsiMiMi

iM

N

DDD

xd

N

DDD

xd
2

1

2

2

2

1

2

2

,,,,,,

)(ˆ)(ˆ



 

 
 

 
 2

2

2

1

2

2

1

2

)(ˆ

)(ˆ

,,,

,,,

iM

jM

kjMsjMjMj

kiMsiMiMi

j

i

xd

xd

DDD

DDD

N

N













 

Note that these results are very similar to the OCBA results with the major difference 

being that the Lagrange coefficients serve as an efficiency factor for the within partition 

allocations. 

 

Case E-II:  

When })(
~

{ 0 hMh xPP   and Bh   for both comparisons,  

 













 


















 hk

khM

hs

shM

h

hM

h

h

hM

hM

hM

hM

h

EEE

N

xx

N

U
22

1

2

1

2

2

232

,,,

/
)(

)(ˆ
)

)(ˆ
( . 

Substituting the results from Lemma 4, 



136 














 Bk

kBb

Bs

sBb

B

Bb

B

B

h

h
hb

EEE

NN 




22

1

2

1
22

,,,
 

Using the assumption that   hB NN  (Chen et al. 2000 and Glynn and Juneja 2004),  




h

h
hb

N

2
  

The rest of the proof follows Case E-I such that  

 
 2

2

2

2

)(ˆ

)(ˆ

ib

jb

j

i

j

i

x

x

N

N












  

 

Case E-III: 

When })(
~

{ 0  hh xdPP  or when })(
~

{ 0  hh xdPP  and Bh   for one 

comparison and })(
~

{ 0 hMh xPP   and Bh   for the other comparison, 

 

This case follows from the results for Case E-I and Case E-II such that 

   
 2

2

2

2

1

2

)(ˆ

)(ˆ,,,

iM

jb

j

kiMsiMiMi

j

i

xd

xDDD

N

N 



 




  

 

Lemma 7: When 
  PP , the between partition allocations for Bh   are obtained by 

     
2

2

2

2

2

2

h

h
m

hh

h
m

bhB

B NNN

 









  
,

. 

 

Proof: This proof closely follows the one provided in Chen et al (2000). 



137 

 

































































bh hb

hb

hb

hb

h hM

hM

hM

hM

Bk

kBb

Bs

sBb

B

Bb

B

B

B

xxxxEEE

N

N

U

,
//

,,,

)(

)(ˆ
)

)(ˆ
(

)(

)(ˆ
)

)(ˆ
(

2323

22

1

2

1

2

2

22

 

Setting 0




BN

U
, we obtain 

 




















 
2

2

2323

22

1

2

1

22
B

B

bh hb

hb

hb

hb

h hM

hM

hM

hM

Bk

kBb

Bs

sBb

B

Bb NxxxxEEE































 

,
//

,,,

)(

)(ˆ
)

)(ˆ
(

)(

)(ˆ
)

)(ˆ
(  

Using the results from Lemma 4 and (D1), it can be shown that for Bh   

 
2

2

232 h

h

hM

hM

hM

hM Nxx











 

/
)(

)(ˆ
)

)(ˆ
( . 

 

Using the results from Lemma 5, we know that 1

22

1

2

1















Bk

kBb

Bs

sBb

B

Bb EEE



,,,
. 

Substituting these results, we obtain  

     
2

2

2

2

2

2

h

h
m

bhh

h
m

hB

B NNN

 









  
,

 

 



138 

 

 

 

 

APPENDIX F PROOF OF PROPOSITION 1 

 

 

 

Intuitively, since we are only sampling on three support points, we should be able to 

expand the OSD method developed in Chapter 3 to a continuous domain by assuming 

that the number of design locations goes to infinity. The following proposition establishes 

a preliminary connection between our results and those from a derivation from the DOE 

community. However, we have to do some different treatments on the definition of PCS 

because the current one will go to zero as the number of design locations goes to infinity. 

 

Proposition 1: Assuming that PCS > 0 as k , for the Interior Design Case presented 

in (17), using the allocations from (33) and the design locations from (34) results in the 

same solution obtained by Melas et al. (2003) to find the stationary point of a quadratic 

equation. 

 

Proof: As the number of designs increases ( k ), the size of the partition between 

designs gets smaller ( 0 ). For the Interior Design Case, our asymptotic solution 

compares the best design to an adjacent design. Rewriting (23), the terms assume the 

form of: 

 



139 














))((

))((][])([(
,

ks

bsbkbsbk

xxxx

xxxxxxxx
D

11

1

 














))((

))((])[])([(
,

kss

bkbbkb
sM

xxxx

xxxxxxxx
D

1

11  














))((

))((])[])([(
,

skk

bsbbsb
kM

xxxx

xxxxxxxx
D

1

11  

This simplifies to 














))((
,

ks

skb

xxxx

xxx
D

11

1

2

 














))((
,

kss

kb
sM

xxxx

xxx
D

1

12
 














))((
,

skk

sb
kM

xxxx

xxx
D

1

12
 

By restricting the domain to [-1,1] as presented by Melas et al. (2003) and by substituting 

for sx from the first case in (34), we obtain 12  bs xx  and that 

 
  













))((
,

11121

1212
1

b

bb

x

xx
D  or 



























22

2

2222

2
1

bb xx
D

)(
,

 














))((
,

112112

2

bb

b
sM

xx

x
D  or 



























)()(
,

22

2

2222

2

bb

b

bb

b
sM

xx

x

xx

x
D  

   
    













))((
,

12111

1212

b

bb
kM

x

xx
D  or 







 








 


bb

kM
xx

D
2222 ))((

,  

Using these results,  



140 







 


























 

bbb

b

b

ks
xxx

x

x
DDD

2222

2

222

2

2
1

)(
,,,

 







 






























 

bb

b

bb

b

bb

b

ks
xx

x

xx

x

xx

x
DDD

222

22

222

2

2

2

222

2

2

2

2
1

)(

)(

)(
,,,

 

  



  222422

224
1 bbb

bb

ks xxx
xx

DDD
)(

,,,
 

 



  222424

224
1 bbbb

bb

ks xxxx
xx

DDD
)(

,,,

 

Substituting these results into (33), we obtain 

 


















222424
224

22

2

2
1

bbbb

bb

b

xxxx
xx

x

)(

  

or 

 




222424

24
1

bbbb

bb

xxxx

xx
  

In a similar manner 

 




222424

24

bbbb

b

s
xxxx

x
  

and 

 




222424

22

bbbb

b

k
xxxx

x
  

As the number of designs increases ( k ) and the size of the partition between 

designs gets smaller ( 0 ), this results in 211 /  and 21/s . These are the same 



141 

support points and allocations as presented by Melas et al. (2003) for the corresponding 

case. Similar results are obtained for the second case and third case in (34). 



142 

 

 

 

 

APPENDIX G PROMODEL CODE FOR PARTITIONING OSD (POSD) 

 

 

 

See www.promodel.com 

********************************************************************* 

*                                                                              * 

*                         Formatted Listing of Model:                          * 

* C:\Users\Admin\Documents\GMU\Research\Partitioning\Actual POSD code\101127 

POSD v14 (Actual code - Cantelli Bounds) x div x.MOD  * 

*                                                                              * 

********************************************************************* 

  Time Units:                        Minutes 

  Distance Units:                    Feet 

*********************************************************************** 

*                                  Locations                                   * 

*********************************************************************** 

  Name           Cap      Units Stats       Rules      Cost         

  -------------- -------- ----- ----------- ---------- ------------ 

  Experiment_loc 1        1     None        Oldest, ,               

  Run_Queue      Infinite 1     None        Oldest, ,               

  Run_Allocation 1        1     None        Oldest, ,               

*********************************************************************** 

*                                   Entities                                   * 

*********************************************************************** 

  Name       Speed (fpm)  Stats       Cost         

  ---------- ------------ ----------- ------------ 

  Experiment 150          None                     

  Run        150          None                     

*********************************************************************** 

*                                  Processing                                  * 

*********************************************************************** 

 

                                     Process                         Routing 

 

 Entity     Location       Operation           Blk  Output     Destination    Rule     Move Logic 

 ---------- -------------- ------------------   ---- ---------- -------------- -------  ------------ 

 Experiment Experiment_loc INT TEMPCOUNT 

                            

                           INC v_iteration 



143 

                           a_runtotal = 0 

                           v_designs = m_designs 

                            

                           TEMPCOUNT = 1 

                           WHILE TEMPCOUNT < ( (m_partitions)+1) DO 

                             BEGIN 

                              A_RESSTATS[TEMPCOUNT,1] = 0 

                              A_RESSTATS[TEMPCOUNT,2] = 0 

                              A_RESSTATS[TEMPCOUNT,3] = 0 

                              A_RESSTATS[TEMPCOUNT,4] = 0 

                              A_RESSTATS[TEMPCOUNT,5] = 0 

                              A_RESSTATS[TEMPCOUNT,6] = 0 

                              A_RESSTATS[TEMPCOUNT,7] = 0 

                              A_RESSTATS[TEMPCOUNT,8] = 0 

                              A_RESSTATS[TEMPCOUNT,9] = 0 

                              A_RESSTATS[TEMPCOUNT,10] = 0 

                              A_RESSTATS[TEMPCOUNT,11] = 0 

                              A_RESSTATS[TEMPCOUNT,12] = 0 

                              A_RESSTATS[TEMPCOUNT,13] = 0 

                              A_RESSTATS[TEMPCOUNT,14] = 0 

                              A_RESSTATS[TEMPCOUNT,15] = 0 

                              A_RESSTATS[TEMPCOUNT,16] = 0 

                              A_RESSTATS[TEMPCOUNT,17] = 0 

                              A_RESSTATS[TEMPCOUNT,18] = 0 

                              A_RESSTATS[TEMPCOUNT,19] = 0 

                              A_RESSTATS[TEMPCOUNT,20] = 0 

                              A_RESSTATS[TEMPCOUNT,21] = 0 

                              A_RESSTATS[TEMPCOUNT,22] = 0 

                              a_Resstats[TEMPCOUNT,23] = (TEMPCOUNT-

1)*m_designs_per+(m_designs_per+1)/2 

                              INC TEMPCOUNT 

                             END 

                            

                           TEMPCOUNT = 1 

                           WHILE TEMPCOUNT < (m_designs+1) DO 

                             BEGIN 

                              a_RunCount[TEMPCOUNT,1] = 0 

                              a_RunCount[TEMPCOUNT,2] = 0 

                            

                              A_Design_STATS[TEMPCOUNT,1] = 0 

                              A_Design_STATS[TEMPCOUNT,2] = 0 

                              A_Design_STATS[TEMPCOUNT,3] = 0 

                              A_Design_STATS[TEMPCOUNT,4] = 0 

                              A_Design_STATS[TEMPCOUNT,5] = 0 



144 

                              A_Design_STATS[TEMPCOUNT,6] = 0 

                              A_Design_STATS[TEMPCOUNT,7] = 0 

                              A_Design_STATS[TEMPCOUNT,8] = 0 

                              A_Design_STATS[TEMPCOUNT,9] = 0 

                              A_Design_STATS[TEMPCOUNT,10] = 0 

                            

                              INC TEMPCOUNT 

                             END 

                            

                           Interval = Real(m_Maxx-m_Minx)/Real(m_designs-1) 

                            

# This randomly generates optimal solution 

                            

# *************** for x^2 and binomial experiment 

                       # V_SOLUTION = U(   (m_Maxx+m_Minx)/2   , (m_Maxx-m_Minx)/2  ) 

# This fixes the optimal solution 

                           # V_SOLUTION = 3.0/3.0 

                           # V_SOLUTION = 5.20338983050847 

# for x div x 

                            V_SOLUTION = 1.01 

                            

# This block finds the design with the lowest mean. 

                           INT bestloop 

                           REAL distbest, tempint, disttemp 

                            

                           v_best = 1 

                           tempint = 0 

                            

# *************** for x^2 and binomial experiment 

                          distbest = (m_minx+tempint-v_solution)*(m_minx+tempint-v_solution) 

                            

                               bestloop = 2 

                               WHILE bestloop < (v_designs+1) DO 

                                 BEGIN 

                                   tempint = tempint + interval 

                            

# *************** for x^2 and binomial experiment 

                        disttemp = (m_minx+tempint-v_solution)*(m_minx+tempint-v_solution) 

                            

                                   IF disttemp < distbest Then 

                                     Begin 

                                      distbest = disttemp 

                                      v_best = bestloop 

                                     End       



145 

                                  INC bestloop 

                                 END 

                            

                           V_EXPERIMENTRUN = 0 

                           v_RUNPER = 0 

                            

                           TEMPCOUNT = 1 

                            WHILE TEMPCOUNT < (m_increments+1) DO 

                             BEGIN 

                              INC a_runtotal 

                              ORDER 1 RUN TO Run_Queue 

                              Wait 0.4 sec 

                              INC TEMPCOUNT 

                             END 

                            

                                                1    Experiment EXIT           FIRST 1   

 Run        Run_Queue      Wait 0.1 sec         1    Run        Run_Allocation FIRST 1   

 Run        Run_Allocation INT TEMPQUEUE, I, J, I2, J2,IOUT 

                            

                           m_MAIN 

                            

                           Wait 1 sec           1    Run        EXIT           FIRST 1   

 

*********************************************************************** 

*                                   Arrivals                                   * 

*********************************************************************** 

 

  Entity     Location       Qty Each   First Time Occurrences Frequency  Logic 

  ---------- -------------- ---------- ---------- ----------- ---------- ------------ 

  Experiment Experiment_loc 1          0 sec      10000       60 min      

 

 

*********************************************************************** 

*                                  Attributes                                  * 

*********************************************************************** 

 

  ID         Type         Classification 

  ---------- ------------ -------------- 

  a_runtotal Integer      Entity         

 

*********************************************************************** 

*                              Variables (global)                              * 

*********************************************************************** 

 



146 

  ID                       Type         Initial value Stats       

  ------------------------ ------------ ------------- ----------- 

  ylowest                  Real         0             None        

  xlowest                  Real         0             None        

  v_designs                         Integer      m_designs     None        

  v_SOLUTION                  Real          0             None        

  v_local1                             Real         0             None        

  v_local2                             Real         0             None        

  v_LOWMEAN                  Real         0             None        

  v_LowX                             Real         0             None        

  v_LOWEST                       Integer     0             None        

  v_partition_local_min        Integer     0             None        

  v_RunPer                            Integer     0             None        

  v_ExperimentRun              Integer     0             None        

  v_TotalRun                        Integer     0             None        

  V_STAND_VAR              Real          0             None        

  TempLoop                         Integer      0             None        

  TempRun                          Real           0             None        

  v_Next_C_Run                 Integer       0             None        

  interval                              Real           0             None        

  v_best                                Integer       0             None        

  v_iteration                         Integer       0             None        

  v_varbeta                           Real          0             None        

  v_xc                                   Real          0             None        

  v_rho1                                Real          0             None        

  v_rho2                                Real         0             None        

  v_z1                                    Real         0             None        

  v_z2                                    Real         0             None        

  v_z3                                    Real         0             None        

  v_del_bminus                     Real         0             None        

  v_del_bplus                        Real         0             None        

  v_b                                      Real         0             None        

  v_B2                                   Real         0             None        

  v_B2_actual                        Integer     0             None        

  v_c0                                    Real         0             None        

  v_c1                                    Real         0             None        

  v_c2                                    Real         0             None        

  v_support                            Integer     0             None        

  v_best_partition                  Integer     0             None        

  v_min_signal_noise_value Real         0             Time Series 

# 

#Used for OCBA code (determines partition with lowest signal noise other 

 than best partition) 

  v_Second_Lowest          Integer      0             Time Series 



147 

#Used for OCBA code 

  v_CoefSum                Real         0             Time Series 

# 

#Used for OCBA Code 

  v_CoefSqr                Real         0             Time Series 

 

*********************************************************************** 

*                                    Arrays                                    * 

*********************************************************************** 

 

  ID              Dimensions   Type         Import File             Export File   Disable       Persist 

  --------------- ------------ ------------ ----------------------- ------------- -------------- ----------- 

# 

#COL 1: Location of X 

#COL 2: Sum of X 

#COL 3: Sum of X^2 

#COL 4: Sum of X^3 

#COL 5: Sum of X^4 

#COL 6: Sum of y 

#COL 7: Sum of yx 

#COL 8: Sum of yx^2 

#COL 9: Sum of y^2 

#COL 10: Variance of runs for this design (Actually x_h*(info matrix)*x_h 

 - need to multiply by MSE for variance 

#COL 11: Predicted response at each location 

#COL 12: Delta b,i (the within partition comparison) 

#COL 13: Li,1 

#COL 14: Li,2 

#COL 15: Li,3 

#COL 16: Sigma^2_b,i (old - does not use all runs but only estimates using 

 three point asymptotic points) 

#COL 17: Sigma^2_b,i (new - using all runs from info matrix) 

#COL 18: delta b,B (the between partition comparison) 

#COL 19: Sigma between global and all others (need to adjust this so it 

 is not calculated for the best partition within comparisons) 

#COL 20: Signal to noise ratio for design to local best 

#COL 21: Signal to noise ratio for design to global best 

  a_Design_stats  130,21       Real                                               None           No             

  a_RunCount      130,2        Integer                                            None           No         

# 

#Each Row is a partition 

# 

#COL 1:  

#COL 2:  



148 

#COL 3:  

#COL 4: beta2 term 

#COL 5: beta1 term 

#COL 6: beta0 term 

#COL 7: Design location with lowest OSD signal to noise (only A and Z - 

 local best info captured in COL 18 and COL 11) 

#COL 8: Value of lowest OSD signal to noise 

#COL 9: Design location with lowest FULL signal to noise 

#COL 10: Value of lowest FULL signal to noise 

#COL 11: Value of local best signal to noise 

#COL 12: Type if signal to noise ratio used (OSD=1, Full=2, or Local=3) 

#COL 13: Value of signal to noise ratio used (min of OSD, Full, or Local) 

#COL 14: Used for OCBA code (essentially (signal/noise)^2 except for special 

 cases of the best partition) 

#COL 15:  

#COL 16: Cantelli sum for Quad Bound 

#COL 17: Cantelli sum for Full Bound 

#COL 18: Lowest design for the partition 

#COL 19: Value of the Lowest design for the partition 

#COL 20: Second 

#COL 21: v_second 

#COL 22: s^2 (MSE) = sum (y_i-y_ihat)^2 

#COL 23: v_support for the partition 

#COL 24: A1 (for c-opt) 

#COL 25: A2  

#COL 26: A3 

#COL 27: alpha 1 

#COL 28: alpha 2 

#COL 29: alpha 3 

#COL 30: Runs count for the partition 

#COL 31: Inverse 1,1 

#COL 32: Inverse 1,2 

#COL 33: Inverse 1,3 

#COL 34: Inverse 2,1 

#COL 35: Inverse 2,2 

#COL 36: Inverse 2,3 

#COL 37: Inverse 3,1 

#COL 38: Inverse 3,2 

#COL 39: Inverse 3,3 

# 

  a_ResStats      61,39        Real                                               None           No                

# 

#COL 1: P{CS} 

#COL 2: Mean Distance from local 



149 

#COL 3: Squared Distance from local 

#COL 4: Mean y_hat(x*) 

#COL 5: Squared y_hat(x*) 

#COL 6: Mean f(x*) 

#COL 7: Squared f(x*) 

#COL 8: rho1 

#COL 9: rho2 

#COL 10: Allocations to Design 1 

#COL 20: Allocations to Design 11 

  a_Results       1501,130     Real                                 a_Results.xls None           No           

# 

#COL 1: Coefficients 

#COL 2: Temp Column 

  a_B             3,3          Real                                               None           No                            

  a_RHS           3            Real                                               None           No                         

  a_INV           3,3          Real                                               None           No                        

  FTF_MATRIX      3,3          Real                                               None                          

  a_TEMP          6,6          Real                                               None           No                     

  a_F             3            Real                                               None           No                              

  a_E             3            Real                                               None           No                              

  a_alpha         3            Real                                               None           No                        

  a_function      60,1         Real         f1 function values.xlsx               None           No         

  a_selected_best 1501,60      Integer                                            None           No          

 

************************************************************************ 

*                                    Macros                                    * 

************************************************************************ 

 

  ID                   Text 

  -------------------- ------------ 

  m_nzero              2 

  m_initial_loops      2 

  m_delta              14 

  m_restricted         1 

  m_MAIN               REAL RunValue 

                       INT Tempmesh, INEXTRUNS 

                        

# STEP 1 RUN ALLOCATIONS: This block sets the number of runs for each partition to 

the value of nzero (initial iterations) and generates the mesh. 

                        

                       IF A_RUNTOTAL < m_initial_loops THEN 

                         BEGIN 

                             

# Conducts 2 iterations of D-opt instead of runs to entire domain 



150 

                                     INEXTRUNS = 1 

                                     WHILE INEXTRUNS < (m_partitions+1) DO 

                                       BEGIN 

                                          a_RunCount[(INEXTRUNS-1)*m_designs_per+1,1] = 

a_RunCount[(INEXTRUNS-1)*m_designs_per+1,1] + 2*m_d_opt_runs 

                                          a_RunCount[(INEXTRUNS-

1)*m_designs_per+(m_designs_per+1)/2,1] = a_RunCount[(INEXTRUNS-

1)*m_designs_per+(m_designs_per+1)/2,1] + 2*m_d_opt_runs 

                                          a_RunCount[(INEXTRUNS-

1)*m_designs_per+m_designs_per,1] = a_RunCount[(INEXTRUNS-

1)*m_designs_per+m_designs_per,1] + 2*m_d_opt_runs 

                                        INC INEXTRUNS 

                                       END 

                        

# During initialization, this block generates the location of each design. 

                                       Tempmesh = 1 

                                       While Tempmesh < (v_designs+1) DO 

                                         Begin 

                                           a_Design_stats[Tempmesh,1]= m_Minx + Real(Tempmesh-

1)*Real(m_Maxx-m_Minx)/Real(m_designs-1) 

                                           INC Tempmesh 

                                         End                            

                          END 

                        

# This block does the subsequent iterations. 

                        

                       ELSE 

                         BEGIN 

                        

                       INEXTRUNS = 1 

                       WHILE INEXTRUNS < (m_partitions+1) DO 

                          BEGIN 

                        

                           If (a_Resstats[v_best_partition,8] < v_min_signal_noise_value) Then 

                             Begin 

                                If INEXTRUNS = v_best_partition Then 

                                    Begin 

                        

#### Theorem: Only to Best with OSD 

# Just a counter to see how many time we use this rule over time 

                                       INC a_results[a_runtotal,3] 

                        

                                       v_support = a_Resstats[INEXTRUNS,23] 



151 

                                       a_RunCount[(INEXTRUNS-1)*m_designs_per+1,1] = 

a_RunCount[(INEXTRUNS-1)*m_designs_per+1,1] + a_Resstats[INEXTRUNS,27] 

                                       a_RunCount[v_support,1] = a_RunCount[v_support,1] + 

a_Resstats[INEXTRUNS,28] 

                                       a_RunCount[(INEXTRUNS-

1)*m_designs_per+m_designs_per,1] = a_RunCount[(INEXTRUNS-

1)*m_designs_per+m_designs_per,1] + a_Resstats[INEXTRUNS,29] 

                                    End 

                             End 

                           Else 

                             Begin 

                        

##### Theorem: C-opt to best and rules for others     

                                If INEXTRUNS = v_best_partition Then 

                                    Begin 

# Just a counter to see how many time we use this rule over time 

                                       INC a_results[a_runtotal,4] 

                                             v_support = a_Resstats[INEXTRUNS,18] 

                                             a_RunCount[v_support,1] = a_RunCount[v_support,1] +  

a_Resstats[INEXTRUNS,1] 

                                    End 

                                Else 

                                    Begin 

# c-opt to local best 

                                       IF (a_Resstats[INEXTRUNS,11] < a_Resstats[INEXTRUNS,8])  

THEN 

                                         Begin 

# Just a counter to see how many time we use this rule over time 

                                       INC a_results[a_runtotal,5] 

                                             v_support = a_Resstats[INEXTRUNS,18] 

                                             a_RunCount[v_support,1] = a_RunCount[v_support,1] +  

a_Resstats[INEXTRUNS,1] 

                                         End 

                                       Else 

                                         Begin 

                                          

# c-opt to full (see other set of code at the bottom ******************) 

#                    IF ((a_Resstats[INEXTRUNS,10]) < a_Resstats[INEXTRUNS,8]) THEN 

                       #                    IF ((m_designs_per/(1+a_Resstats[INEXTRUNS,10]**2)) < 

(3/(1+a_Resstats[INEXTRUNS,8]**2))) THEN 

                                            IF ((a_Resstats[INEXTRUNS,17]) < 

a_Resstats[INEXTRUNS,16]) THEN 

                        

                                             Begin 



152 

# Just a counter to see how many time we use this rule over time 

                                       INC a_results[a_runtotal,6] 

                                                v_support = a_Resstats[INEXTRUNS,9] 

                                                a_RunCount[v_support,1] = a_RunCount[v_support,1] +  

a_Resstats[INEXTRUNS,1] 

                                             End 

# OSD 

                                           Else 

                                            Begin 

# Just a counter to see how many time we use this rule over time 

                                       INC a_results[a_runtotal,7] 

                                               v_support = a_Resstats[INEXTRUNS,23] 

                                               a_RunCount[(INEXTRUNS-1)*m_designs_per+1,1] = 

a_RunCount[(INEXTRUNS-1)*m_designs_per+1,1] + a_Resstats[INEXTRUNS,27] 

                                               a_RunCount[v_support,1] = a_RunCount[v_support,1] + 

a_Resstats[INEXTRUNS,28] 

                                               a_RunCount[(INEXTRUNS-

1)*m_designs_per+m_designs_per,1] = a_RunCount[(INEXTRUNS-

1)*m_designs_per+m_designs_per,1] + a_Resstats[INEXTRUNS,29] 

                                            End 

                                         End 

                        

                                    End 

                        

                                End 

                            INC INEXTRUNS 

                          END 

                        

                        

                         END 

                        

# STEP 2 RUN GENERATION: This block checks to see how many total runs a design 

has been allocated and how many it currently has.  

# If it needs more, it calls the macro for allocating a new run based upon the simulated 

underlying distribution. 

                        

                           Temploop = 1 

                           While Temploop < (v_designs+1) DO 

                                Begin 

                                   While a_RunCount[Temploop,2] < a_RunCount[Temploop,1] DO 

                                         Begin 

                        

                                             INC V_totalrun 

                                             INC v_ExperimentRun 



153 

                                             INC a_results[a_runtotal,Temploop+9] 

                       #                      RunValue = (a_design_stats[Temploop,1]-

v_SOLUTION)**2 + N(0,1) 

                                             RunValue = 10*a_design_stats[Temploop,1]+ 

10/a_design_stats[Temploop,1] + N(0,1) 

                       #                      RunValue = (a_design_stats[Temploop,1]-

v_SOLUTION)**4 + N(0,1) 

                       #                       RunValue = a_function[Temploop,1]+ N(0,1) 

                        

                                           A_Design_STATS[Temploop,2] = 

A_Design_STATS[Temploop,2] + a_design_stats[Temploop,1] 

                                           A_Design_STATS[Temploop,3] = 

A_Design_STATS[Temploop,3] + a_design_stats[Temploop,1]**2 

                                           A_Design_STATS[Temploop,4] = 

A_Design_STATS[Temploop,4] + a_design_stats[Temploop,1]**3 

                                           A_Design_STATS[Temploop,5] = 

A_Design_STATS[Temploop,5] + a_design_stats[Temploop,1]**4 

                                           A_Design_STATS[Temploop,6] = 

A_Design_STATS[Temploop,6] + RunValue 

                                           A_Design_STATS[Temploop,7] = 

A_Design_STATS[Temploop,7] + RunValue*a_design_stats[Temploop,1] 

                                           A_Design_STATS[Temploop,8] = 

A_Design_STATS[Temploop,8] + RunValue*a_design_stats[Temploop,1]**2 

                                           A_Design_STATS[Temploop,9] = 

A_Design_STATS[Temploop,9] + RunValue**2 

                                           INC a_RunCount[Temploop,2] 

                                         End 

                        

                                     INC Temploop 

                                 End 

                        

# STEP 3 Generates a response surface for each partition (and also uses the loop to 

initialize the MSE to zero) 

                        

                       REAL AMAX, SWITCH, TEMPCOEF, TEMPDIFF 

                       INT NMAX, II, JJ, III, IOUTLOOP 

                       INT IJKL,IMN, IIKK, IIJJ 

                       REAL TOL, TEMPTOL 

                        

                       IIKK = 1 

                       WHILE IIKK < (m_partitions+1) DO 

                          BEGIN 

                        

                            m_Info_matrix 



154 

                            a_Resstats[IIKK,30] = 0 

                            a_Resstats[IIKK,22] = 0 

                        

                            INC IIKK 

                          END 

                        

                        

                        

# STEP 4: Determines the total runs allocated for the entire partition and the response at 

each discrete point 

                       IIJJ = 1 

                       IIKK = 1 

                       ylowest = 

a_Resstats[IIKK,6]+a_Resstats[IIKK,5]*a_design_stats[IIJJ,1]+a_Resstats[IIKK,4]*a_de

sign_stats[IIJJ,1]**2 

                       v_lowest = 1 

                        

                        WHILE IIKK < (m_partitions+1) DO 

                          BEGIN 

                        

                             a_Resstats[IIKK,19] = 

a_Resstats[IIKK,6]+a_Resstats[IIKK,5]*a_design_stats[IIJJ,1]+a_Resstats[IIKK,4]*a_de

sign_stats[IIJJ,1]**2 

                             a_Resstats[IIKK,18] = IIJJ 

                        

                            Int IIJJCount 

                            IIJJCount = 1 

                            WHILE IIJJCount < ( (m_designs_per)+1) DO 

                                BEGIN 

# Calculates total runs allocated for the entire partition 

                                   a_Resstats[IIKK,30] = a_Resstats[IIKK,30] + 

Real(a_RunCount[IIJJ,2])  

                        

# Calculates the response of each design location 

                                   a_design_stats[IIJJ,11]= 

a_Resstats[IIKK,6]+a_Resstats[IIKK,5]*a_design_stats[IIJJ,1]+a_Resstats[IIKK,4]*a_de

sign_stats[IIJJ,1]**2 

                        

#Calculates info matrix portion of the variance of each design location (uses symmetry of 

the matrix so it is (1,1)+2*(1,2)x+(2*(1,3)+(2,2))*x^2+2*(2,3)x^3+(3,3)*x^4 

                                   a_design_stats[IIJJ,10]= 

a_Resstats[IIKK,31]+(2*a_Resstats[IIKK,32])*a_design_stats[IIJJ,1] 

                                   a_design_stats[IIJJ,10]= a_design_stats[IIJJ,10] + 

(2*a_Resstats[IIKK,33]+a_Resstats[IIKK,35])*a_design_stats[IIJJ,1]**2 



155 

                                   a_design_stats[IIJJ,10]= a_design_stats[IIJJ,10] + 

(2*a_Resstats[IIKK,36])*a_design_stats[IIJJ,1]**3 

                                   a_design_stats[IIJJ,10]= a_design_stats[IIJJ,10] + 

(a_Resstats[IIKK,39])*a_design_stats[IIJJ,1]**4 

                        

# Calculates the sums for MSE for the partition (each is initialized to zero using the loop 

in Step 3 above and will be divided by (n-2) after each partitions loop)          

                                   a_Resstats[IIKK,22] = a_Resstats[IIKK,22] + 

a_design_stats[IIJJ,9] - 2*a_design_stats[IIJJ,6]*a_design_stats[IIJJ,11] + 

Real(a_RunCount[IIJJ,2])*(a_design_stats[IIJJ,11]**2) 

                        

# checks if global min 

                                   IF a_design_stats[IIJJ,11] < ylowest then 

                                      BEGIN 

                                         ylowest = a_design_stats[IIJJ,11] 

                                         v_lowest = IIJJ 

                                         v_best_partition = IIKK 

                                      END 

# checks if min of partition 

                                   IF a_design_stats[IIJJ,11] < a_Resstats[IIKK,19] then 

                                      BEGIN 

                                         a_Resstats[IIKK,19] = a_design_stats[IIJJ,11] 

                                         a_Resstats[IIKK,18] = IIJJ 

                                      END 

                        

                                   INC IIJJCount 

                                   INC IIJJ 

                                 END 

# Divides the sum for the MSE by (n-2) 

                               a_Resstats[IIKK,22] = a_Resstats[IIKK,22]/(a_Resstats[IIKK,30]-2) 

                        

                            INC IIKK 

                          END 

                        

                        

# STEP 4a: Determines the comparison terms for each design 

                       IIJJ = 1 

                       IIKK = 1 

                       v_min_signal_noise_value = 999999 

                       v_second_lowest = 999999 

                       Real second_lowest_value = 999999 

                        

                        WHILE IIKK < (m_partitions+1) DO 

                          BEGIN 



156 

                            IIJJCount = 1 

                        

                       # Initializes minimum signal to noise ratio terms 

                               a_Resstats[IIKK,8] = 99999 

                               a_Resstats[IIKK,10] = 99999 

                               a_Resstats[IIKK,16] = 0 

                               a_Resstats[IIKK,17] = 0 

                        

                            WHILE IIJJCount < ( (m_designs_per)+1) DO 

                                BEGIN 

                        

# Delta term with local best 

                                   a_design_stats[IIJJ,12]= a_design_stats[IIJJ,11]-

a_design_stats[a_Resstats[IIKK,18],11] 

                        

                        

# Variance term with local best (uses symmetry of the matrix so it is (2,2))*(x_i-

x_b)^2+2*(2,3)(x_i-x_b)(x_i^2-x_b^2)+(3,3)*(x_i^2-x_b^2)^2 

                                   a_design_stats[IIJJ,17]= 

(a_Resstats[IIKK,35])*(a_design_stats[IIJJ,1]-

a_design_stats[a_Resstats[IIKK,18],1])**2 

                                   a_design_stats[IIJJ,17]= a_design_stats[IIJJ,17] + 

(2*a_Resstats[IIKK,36])*(a_design_stats[IIJJ,1]-

a_design_stats[a_Resstats[IIKK,18],1])*(a_design_stats[IIJJ,1]**2-

a_design_stats[a_Resstats[IIKK,18],1]**2) 

                                   a_design_stats[IIJJ,17]= a_design_stats[IIJJ,17] + 

(a_Resstats[IIKK,39])*((a_design_stats[IIJJ,1]**2-

a_design_stats[a_Resstats[IIKK,18],1]**2)**2) 

                                   a_design_stats[IIJJ,17]= 

a_design_stats[IIJJ,17]*a_Resstats[IIKK,22] 

                        

# Signal to noise ratio for local comparison 

                        

                                 If (a_design_stats[IIJJ,12] > 0) Then 

                                    Begin 

                                       a_design_stats[IIJJ,20]= 

a_design_stats[IIJJ,12]/(sqrt(a_design_stats[IIJJ,17])) 

                                    End 

                                 Else 

                                    Begin 

                                       a_design_stats[IIJJ,20]= 0 

                                    End 

                        

# Delta term with global best 



157 

                                   a_design_stats[IIJJ,18]= a_design_stats[IIJJ,11]-

a_design_stats[v_lowest,11] 

                        

# Variance term with global best 

                                   a_design_stats[IIJJ,19]= 

a_design_stats[IIJJ,10]*a_Resstats[IIKK,22]+a_design_stats[v_lowest,10]*a_Resstats[v_

best_partition,22] 

                        

# Signal to noise ratio for global (FULL) comparison 

                        

                                 If (a_design_stats[IIJJ,18] > 0) Then 

                                    Begin 

                                       a_design_stats[IIJJ,21]= 

a_design_stats[IIJJ,18]/(sqrt(a_design_stats[IIJJ,19])) 

                                          

                             If (a_design_stats[IIJJ,21] < 

a_Resstats[IIKK,10]) Then 

                                          Begin 

                                               a_Resstats[IIKK,10] = a_design_stats[IIJJ,21] 

                                               a_Resstats[IIKK,9] = IIJJ 

                                          End 

                        

                             If (a_design_stats[IIJJ,21] < 

v_min_signal_noise_value) Then 

                                          Begin 

                                             If IIKK = v_best_partition Then 

                                                Begin 

                                                    v_min_signal_noise_value = v_min_signal_noise_value 

                                                End 

                                              Else 

                                                Begin 

                                                    v_min_signal_noise_value = a_design_stats[IIJJ,21] 

                                                 End 

                        

                                          End 

                        

                                    End 

                                 Else 

                                    Begin 

                                       a_design_stats[IIJJ,21]= 0 

                                    End 

                        

# For Cantelli Bound 



158 

                                                   a_Resstats[IIKK,17] = a_Resstats[IIKK,17] + 

1/(1+a_design_stats[IIJJ,21]**2) 

                        

                                   INC IIJJCount 

                                   INC IIJJ 

                                 END 

                        

# Signal to noise ratio value for local best 

                                      a_Resstats[IIKK,11] = a_design_stats[a_Resstats[IIKK,18],21] 

                        

# Signal to noise ratio for OSD comparion (A and Z) 

# Initializes for the middle test 

                       a_Resstats[IIKK,8] = 999999 

                        

# Local best is first design in partition 

                                  If (a_Resstats[IIKK,18]=(IIJJ-m_designs_per)) Then 

                                     Begin 

                             If (a_design_stats[IIJJ+1-

m_designs_per,20] < a_design_stats[IIJJ-1,20]) Then 

                                          Begin 

                                               a_Resstats[IIKK,8] = a_design_stats[IIJJ+1-

m_designs_per,20] 

                                               a_Resstats[IIKK,7] = IIJJ+1-m_designs_per 

                                          End 

                             Else 

                                          Begin 

                                               a_Resstats[IIKK,8] = a_design_stats[IIJJ-1,20] 

                                               a_Resstats[IIKK,7] = IIJJ-1 

                                          End 

                        

# for Cantelli Quad bound 

                                         a_Resstats[IIKK,16] = 

1/(1+a_design_stats[IIJJ,21]**2)+1/(1+a_design_stats[IIJJ-

1,20]**2)+1/(1+a_design_stats[IIJJ+1-m_designs_per,20]**2) 

                        

                        

                                     End 

# Local best is last design in partition 

                                  If (a_Resstats[IIKK,18]=(IIJJ-1)) Then 

                                     Begin 

                       If (a_design_stats[IIJJ-m_designs_per,20] < 

a_design_stats[IIJJ-2,20]) Then 

                                          Begin 



159 

                                               a_Resstats[IIKK,8] = a_design_stats[IIJJ-

m_designs_per,20] 

                                               a_Resstats[IIKK,7] = IIJJ-m_designs_per 

                                          End 

                             Else 

                                          Begin 

                                               a_Resstats[IIKK,8] = a_design_stats[IIJJ-2,20] 

                                               a_Resstats[IIKK,7] = IIJJ-2 

                                          End 

                        

# for Cantelli Quad bound 

                                         a_Resstats[IIKK,16] = 

1/(1+a_design_stats[IIJJ,21]**2)+1/(1+a_design_stats[IIJJ-

2,20]**2)+1/(1+a_design_stats[IIJJ-m_designs_per,20]**2) 

                        

                                     End 

                        

# Local best is in middle of partition (actually computes all and then the next two blocks 

recompute if first or last in partition) 

                                   If a_Resstats[IIKK,8] = 999999 Then 

                                     Begin 

                             If (a_design_stats[a_Resstats[IIKK,18]-

1,20] < a_design_stats[a_Resstats[IIKK,18]+1,20]) Then 

                                          Begin 

                                               a_Resstats[IIKK,8] = a_design_stats[a_Resstats[IIKK,18]-

1,20] 

                                               a_Resstats[IIKK,7] = a_Resstats[IIKK,18]-1 

                                          End 

                             Else 

                                          Begin 

                                               a_Resstats[IIKK,8] = 

a_design_stats[a_Resstats[IIKK,18]+1,20] 

                                               a_Resstats[IIKK,7] = a_Resstats[IIKK,18]+1 

                                          End 

                        

# for Cantelli Quad bound 

                                         a_Resstats[IIKK,16] = 

1/(1+a_design_stats[a_Resstats[IIKK,18],21]**2)+1/(1+a_design_stats[a_Resstats[IIKK,

18]-1,20]**2)+1/(1+a_design_stats[a_Resstats[IIKK,18]+1,20]**2) 

                        

                                     End 

                        

# Determines support point within the partition for OSD 

                           m_support_point 



160 

# Determines which signal to noise ratio in each partition is the most dominating 

# c-opt to local best 

                                       IF (a_Resstats[IIKK,11] < a_Resstats[IIKK,8])  THEN 

                                         Begin 

                                               a_Resstats[IIKK,12] = 3 

                                               a_Resstats[IIKK,13] = a_Resstats[IIKK,11] 

                                         End 

                                       Else 

                                         Begin 

                                          

# c-opt to full (see other set of code at the top ******************) 

#                    IF ((m_designs_per/(1+a_Resstats[IIKK,10]**2)) < 

(3/(1+a_Resstats[IIKK,8]**2))) THEN 

                                            IF ((a_Resstats[IIKK,17]) < a_Resstats[IIKK,16]) THEN 

                                             Begin 

                                               a_Resstats[IIKK,12] = 2 

                                               a_Resstats[IIKK,13] = a_Resstats[IIKK,10] 

                                             End 

# OSD 

                                           Else 

                                            Begin 

                                               a_Resstats[IIKK,12] = 1 

                                               a_Resstats[IIKK,13] = a_Resstats[IIKK,8] 

                                            End 

                                         End 

                        

# Determines the partition considered "second best" for the OCBA routine 

                                  IF IIKK <> v_best_partition Then 

                                     Begin 

                       #                 If a_Resstats[IIKK,12] > 1 Then 

                       #                    Begin 

                                               If a_Resstats[IIKK,13] < second_lowest_value Then 

                                                   Begin 

                                                      second_lowest_value = a_Resstats[IIKK,13] 

                                                      v_second_lowest = IIKK 

                                                   End 

                       #                    End 

                                     End    

                        

                        

                            INC IIKK 

                          END 

                        

# Just put into the code in case none of the partitions are using full or local comparisons 



161 

                       If v_second_lowest = 999999 Then 

                         Begin 

                           If v_best_partition = 1 Then 

                             Begin 

                               v_second_lowest = 2 

                             End 

                           Else 

                             Begin 

                               v_second_lowest = v_best_partition - 1 

                             End 

                         End 

                        

                           If (a_Resstats[v_best_partition,8] < v_min_signal_noise_value) Then 

                             Begin 

                               a_Resstats[v_best_partition,1] = m_partitions*m_delta 

                             End 

                           Else 

                             Begin 

                               m_OCBA 

                             End 

                        

                        

# Deterimines the OSD allocations for each partition 

                       Real Second 

                       Int v_second 

                       IIKK = 1   

                        WHILE IIKK < (m_partitions+1) DO 

                          BEGIN 

                           v_partition_local_min = a_Resstats[IIKK,18] 

                           Second = a_Resstats[IIKK,7] 

                           v_support = a_Resstats[IIKK,23] 

                           m_OSD 

                            INC IIKK 

                          END 

                        

                        

                       inc a_selected_best[a_runtotal,v_lowest]                                     

                        

# Did we pick the right solution? (yes or no) 

                       IF V_LOWEST = V_BEST THEN 

                         BEGIN 

                          a_results[a_runtotal,1] = a_results[a_runtotal,1] + 1 

                         END 

  m_Info_matrix        # This block is used to build the FTF 



162 

                       II = 1 

                       While II < (NDIM+1) DO 

                        Begin 

                         JJ = 1 

                         a_RHS[II] = 0 

                         While JJ < (NDIM+1) DO 

                          Begin 

                            FTF_MATRIX[JJ,II] = 0 

                            INC JJ 

                          END 

                          INC II 

                        END 

                        

                       II = 1 

                       WHILE II < ( (m_designs_per)+1) DO 

                         BEGIN 

                           FTF_MATRIX[1,1] = FTF_MATRIX[1,1] + a_RunCount[(IIKK-

1)*m_designs_per+II,2] 

                           FTF_MATRIX[1,2] = FTF_MATRIX[1,2] + A_Design_STATS[(IIKK-

1)*m_designs_per+II,2] 

                           FTF_MATRIX[1,3] = FTF_MATRIX[1,3] + A_Design_STATS[(IIKK-

1)*m_designs_per+II,3] 

                           FTF_MATRIX[2,1] = FTF_MATRIX[2,1] + A_Design_STATS[(IIKK-

1)*m_designs_per+II,2] 

                           FTF_MATRIX[2,2] = FTF_MATRIX[2,2] + A_Design_STATS[(IIKK-

1)*m_designs_per+II,3] 

                           FTF_MATRIX[2,3] = FTF_MATRIX[2,3] + A_Design_STATS[(IIKK-

1)*m_designs_per+II,4] 

                           FTF_MATRIX[3,1] = FTF_MATRIX[3,1] + A_Design_STATS[(IIKK-

1)*m_designs_per+II,3] 

                           FTF_MATRIX[3,2] = FTF_MATRIX[3,2] + A_Design_STATS[(IIKK-

1)*m_designs_per+II,4] 

                           FTF_MATRIX[3,3] = FTF_MATRIX[3,3] + A_Design_STATS[(IIKK-

1)*m_designs_per+II,5] 

                           a_RHS[1] = a_RHS[1] + A_Design_STATS[(IIKK-

1)*m_designs_per+II,6] 

                           a_RHS[2] = a_RHS[2] + A_Design_STATS[(IIKK-

1)*m_designs_per+II,7] 

                           a_RHS[3] = a_RHS[3] + A_Design_STATS[(IIKK-

1)*m_designs_per+II,8] 

                        

                           INC II 

                         END 

                        



163 

# This block is used to invert the FTF matrix 

                        

                       II = 1 

                       While II < (NDIM+1) DO 

                        Begin 

                         JJ = 1 

                         While JJ < (NDIM+1) DO 

                          Begin 

                            A_TEMP[JJ,II] = FTF_MATRIX[JJ,II] 

                            INC JJ 

                          END 

                          INC II 

                        END 

                        

                       II = 1 

                       While II < (NDIM+1) DO 

                        Begin 

                         JJ = (NDIM+1) 

                         While JJ < (2*NDIM+1) DO 

                          Begin 

                            A_TEMP[II,JJ] = 0 

                            INC JJ 

                          END 

                          A_TEMP[II,NDIM+II] = 1 

                          INC II 

                        END 

                        

                        

#     This loop row reduces the first N columns of the matrix 

                       II = 1 

                       While II < (NDIM+1) DO 

                        Begin 

                        

#     This loop does maximum element pivoting for each column and then 

#     divides the row by the first element in the row 

                        

                               AMAX = A_TEMP[II,II] 

                               NMAX = II 

                        

                               JJ = II+1 

                               WHILE JJ < (NDIM+1) DO 

                                BEGIN 

                                 IF SQRT(A_TEMP[JJ,II]**2) > SQRT(AMAX**2) THEN 

                                   BEGIN 



164 

                                    AMAX = A_TEMP[JJ,II] 

                                    NMAX = JJ 

                                   END 

                                   INC JJ 

                                END 

                        

                             IF II <> NMAX THEN 

                               BEGIN 

                                JJ = II 

                                 WHILE JJ < (2*NDIM+1) DO 

                                  BEGIN 

                                    SWITCH = A_TEMP[II,JJ] 

                                    A_TEMP[II,JJ] = A_TEMP[NMAX,JJ]/AMAX 

                                    A_TEMP[NMAX,JJ] = SWITCH 

                                    INC JJ 

                                  END 

                              END 

                             ELSE 

                              BEGIN 

                               JJ = 1 

                               WHILE JJ < (2*NDIM+1) DO 

                                BEGIN 

                                 A_TEMP[II,JJ] = A_TEMP[II,JJ]/AMAX 

                                INC JJ 

                                END 

                              END 

                        

                        

                        

#     This loop reduces all other elements in the column to zero 

                        

                               JJ = 1 

                               WHILE JJ < (NDIM+1) DO 

                                BEGIN 

                                   IF JJ <> II THEN 

                                    BEGIN 

                                     TEMPCOEF = -A_TEMP[JJ,II] 

                                     III = II 

                                     WHILE III < (2*NDIM+1) DO 

                                      BEGIN 

                                        A_TEMP[JJ,III] = A_TEMP[JJ,III] + 

TEMPCOEF*A_TEMP[II,III]                  

                                        INC III 

                                      END 



165 

                                    END 

                                  INC JJ 

                                END 

                           

                        

                          INC II 

                         END 

                        

                        

#     This loop establishes the inverse matrix using the non-reduced rows 

                        

                        

                             II = 1 

                             WHILE II < (NDIM+1) DO 

                               BEGIN 

                                 JJ = (NDIM+1) 

                                 WHILE JJ < (2*NDIM+1) DO 

                                  BEGIN 

                                    A_INV[II,JJ-NDIM] = A_TEMP[II,JJ] 

                                    INC JJ 

                                  END 

                                INC II 

                             END 

                        

                        

                        

#     This loop establishes the inverse matrix using the non-reduced rows 

                        

                           a_RESstats[IIKK,6] = a_INV[1,1]*a_RHS[1] + a_INV[1,2]*a_RHS[2] 

+ a_INV[1,3]*a_RHS[3] 

                           a_RESstats[IIKK,5] = a_INV[2,1]*a_RHS[1] + a_INV[2,2]*a_RHS[2] 

+ a_INV[2,3]*a_RHS[3] 

                           a_RESstats[IIKK,4] = a_INV[3,1]*a_RHS[1] + a_INV[3,2]*a_RHS[2] 

+ a_INV[3,3]*a_RHS[3] 

                        

                        

                           a_RESstats[IIKK,31] = a_INV[1,1] 

                           a_RESstats[IIKK,32] = a_INV[1,2] 

                           a_RESstats[IIKK,33] = a_INV[1,3] 

                           a_RESstats[IIKK,34] = a_INV[2,1] 

                           a_RESstats[IIKK,35] = a_INV[2,2] 

                           a_RESstats[IIKK,36] = a_INV[2,3] 

                           a_RESstats[IIKK,37] = a_INV[3,1] 

                           a_RESstats[IIKK,38] = a_INV[3,2] 



166 

                           a_RESstats[IIKK,39] = a_INV[3,3] 

  m_support_point      # Determines x_s 

                        

                       v_support = (IIKK-1)*m_designs_per+(m_designs_per+1)/2 

                        

                        

                       If ((3*a_design_stats[(IIKK-

1)*m_designs_per+1,1]+a_design_stats[(IIKK-1)*m_designs_per+m_designs_per,1])/4) 

< ((a_design_stats[a_Resstats[IIKK,18],1]+a_design_stats[a_Resstats[IIKK,7],1])/2) 

Then 

                         Begin 

                           If ((a_design_stats[(IIKK-

1)*m_designs_per+1,1]+a_design_stats[(IIKK-1)*m_designs_per+m_designs_per,1])/2) 

> ((a_design_stats[a_Resstats[IIKK,18],1]+a_design_stats[a_Resstats[IIKK,7],1])/2) 

Then 

                             Begin 

                                 v_support = (IIKK-1)*m_designs_per+(a_Resstats[IIKK,18]-(IIKK-

1)*m_designs_per) + (a_Resstats[IIKK,7]-(IIKK-1)*m_designs_per) -1 

                             End 

                         End 

                        

                       If ((a_design_stats[(IIKK-

1)*m_designs_per+1,1]+3*a_design_stats[(IIKK-

1)*m_designs_per+m_designs_per,1])/4) > 

((a_design_stats[a_Resstats[IIKK,18],1]+a_design_stats[a_Resstats[IIKK,7],1])/2) Then 

                         Begin 

                           If ((a_design_stats[(IIKK-

1)*m_designs_per+1,1]+a_design_stats[(IIKK-1)*m_designs_per+m_designs_per,1])/2) 

< ((a_design_stats[a_Resstats[IIKK,18],1]+a_design_stats[a_Resstats[IIKK,7],1])/2) 

Then 

                             Begin 

                                 v_support = (IIKK-1)*m_designs_per+(a_Resstats[IIKK,18]-(IIKK-

1)*m_designs_per) + (a_Resstats[IIKK,7]-(IIKK-1)*m_designs_per) - m_designs_per 

                             End 

                         End 

                        

                       a_RESstats[IIKK,23] = v_support 

  m_OSD                # Calculates the Q terms 

                           a_Resstats[IIKK,24] = (a_design_stats[v_support,1]-

a_design_stats[v_partition_local_min,1])*(a_design_stats[(IIKK-

1)*m_designs_per+m_designs_per,1]-a_design_stats[v_partition_local_min,1]) 

                           a_Resstats[IIKK,24] = a_Resstats[IIKK,24]-

(a_design_stats[v_support,1]-Second)*(a_design_stats[(IIKK-

1)*m_designs_per+m_designs_per,1]-Second) 



167 

                           a_Resstats[IIKK,24] = a_Resstats[IIKK,24]/((a_design_stats[(IIKK-

1)*m_designs_per+1,1]-a_design_stats[v_support,1])*(a_design_stats[(IIKK-

1)*m_designs_per+1,1]-a_design_stats[(IIKK-1)*m_designs_per+m_designs_per,1])) 

                        

                           a_Resstats[IIKK,25] = (a_design_stats[(IIKK-1)*m_designs_per+1,1]-

a_design_stats[v_partition_local_min,1])*(a_design_stats[(IIKK-

1)*m_designs_per+m_designs_per,1]-a_design_stats[v_partition_local_min,1]) 

                           a_Resstats[IIKK,25] = a_Resstats[IIKK,25]-(a_design_stats[(IIKK-

1)*m_designs_per+1,1]-Second)*(a_design_stats[(IIKK-

1)*m_designs_per+m_designs_per,1]-Second) 

                           a_Resstats[IIKK,25] = 

a_Resstats[IIKK,25]/((a_design_stats[v_support,1]-a_design_stats[(IIKK-

1)*m_designs_per+1,1])*(a_design_stats[v_support,1]-a_design_stats[(IIKK-

1)*m_designs_per+m_designs_per,1])) 

                        

                           a_Resstats[IIKK,26] = (a_design_stats[(IIKK-1)*m_designs_per+1,1]-

a_design_stats[v_partition_local_min,1])*(a_design_stats[v_support,1]-

a_design_stats[v_partition_local_min,1]) 

                           a_Resstats[IIKK,26] = a_Resstats[IIKK,26]-(a_design_stats[(IIKK-

1)*m_designs_per+1,1]-Second)*(a_design_stats[v_support,1]-Second) 

                           a_Resstats[IIKK,26] = a_Resstats[IIKK,26]/((a_design_stats[(IIKK-

1)*m_designs_per+m_designs_per,1]-a_design_stats[(IIKK-

1)*m_designs_per+1,1])*(a_design_stats[(IIKK-1)*m_designs_per+m_designs_per,1]-

a_design_stats[v_support,1]))  

                        

                        

                           a_Resstats[IIKK,24] = sqrt(a_Resstats[IIKK,24]**2) 

                           a_Resstats[IIKK,25] = sqrt(a_Resstats[IIKK,25]**2) 

                           a_Resstats[IIKK,26] = sqrt(a_Resstats[IIKK,26]**2) 

                        

# Uses the ratios to determine the allocations 

                        

                       If ((a_Resstats[IIKK,26]<a_Resstats[IIKK,24]) and 

(a_Resstats[IIKK,26]<a_Resstats[IIKK,25])) Then 

                         Begin 

                           a_Resstats[IIKK,27] = Round ((a_Resstats[IIKK,1]) / (1+ 

a_Resstats[IIKK,25]/a_Resstats[IIKK,24] + a_Resstats[IIKK,26]/a_Resstats[IIKK,24])) 

                            

                           If a_Resstats[IIKK,27] < 0 Then 

                             Begin 

                              a_Resstats[IIKK,27] = 0 

                             End 

                        

                           If a_Resstats[IIKK,27] > a_Resstats[IIKK,1] Then 



168 

                             Begin 

                              a_Resstats[IIKK,27] = a_Resstats[IIKK,1] 

                             End 

                        

                           a_Resstats[IIKK,28] = Round ((a_Resstats[IIKK,1]) / (1+ 

a_Resstats[IIKK,24]/a_Resstats[IIKK,25] + a_Resstats[IIKK,26]/a_Resstats[IIKK,25])) 

                        

                           If a_Resstats[IIKK,28] < 0 Then 

                             Begin 

                              a_Resstats[IIKK,28] = 0 

                             End 

                        

                           If (a_Resstats[IIKK,27]+a_Resstats[IIKK,28]) > a_Resstats[IIKK,1] 

Then 

                             Begin 

                              a_Resstats[IIKK,28] = a_Resstats[IIKK,1] - a_Resstats[IIKK,27] 

                             End 

                        

                        

                           If (a_Resstats[IIKK,27]+a_Resstats[IIKK,28]) < a_Resstats[IIKK,1] 

Then 

                             Begin 

                              a_Resstats[IIKK,29] = a_Resstats[IIKK,1] - a_Resstats[IIKK,27] - 

a_Resstats[IIKK,28] 

                             End 

                           ELSE 

                              Begin 

                               a_Resstats[IIKK,29] = 0 

                              End 

                        

                       End 

                        

                       If ((a_Resstats[IIKK,24]<a_Resstats[IIKK,25]) and 

(a_Resstats[IIKK,24]<a_Resstats[IIKK,26])) Then 

                         Begin 

                           a_Resstats[IIKK,29] = Round ((a_Resstats[IIKK,1]) / (1+ 

a_Resstats[IIKK,25]/a_Resstats[IIKK,26] + a_Resstats[IIKK,24]/a_Resstats[IIKK,26])) 

                           

                           If a_Resstats[IIKK,29] < 0 Then 

                             Begin 

                              a_Resstats[IIKK,29] = 0 

                             End 

                        

                           If a_Resstats[IIKK,29] > a_Resstats[IIKK,1] Then 



169 

                             Begin 

                              a_Resstats[IIKK,29] = a_Resstats[IIKK,1] 

                             End 

                        

                           a_Resstats[IIKK,28] = Round ((a_Resstats[IIKK,1]) / (1+ 

a_Resstats[IIKK,24]/a_Resstats[IIKK,25] + a_Resstats[IIKK,26]/a_Resstats[IIKK,25])) 

                        

                           If a_Resstats[IIKK,28] < 0 Then 

                             Begin 

                              a_Resstats[IIKK,28] = 0 

                             End 

                        

                           If (a_Resstats[IIKK,29]+a_Resstats[IIKK,28]) > a_Resstats[IIKK,1] 

Then 

                             Begin 

                              a_Resstats[IIKK,28] = a_Resstats[IIKK,1] - a_Resstats[IIKK,29] 

                             End 

                        

                        

                           If (a_Resstats[IIKK,29]+a_Resstats[IIKK,28]) < a_Resstats[IIKK,1] 

Then 

                             Begin 

                              a_Resstats[IIKK,27] = a_Resstats[IIKK,1] - a_Resstats[IIKK,29] - 

a_Resstats[IIKK,28] 

                             End 

                           ELSE 

                              Begin 

                               a_Resstats[IIKK,27] = 0 

                              End 

                        

                       End 

                        

                        

                       If ((a_Resstats[IIKK,25]<a_Resstats[IIKK,24]) and 

(a_Resstats[IIKK,25]<a_Resstats[IIKK,26])) Then 

                         Begin 

                           a_Resstats[IIKK,27] = Round ((a_Resstats[IIKK,1]) / (1+ 

a_Resstats[IIKK,25]/a_Resstats[IIKK,24] + a_Resstats[IIKK,26]/a_Resstats[IIKK,24])) 

                        

                            

                           If a_Resstats[IIKK,27] < 0 Then 

                             Begin 

                              a_Resstats[IIKK,27] = 0 

                             End 



170 

                           If a_Resstats[IIKK,27] > a_Resstats[IIKK,1] Then 

                             Begin 

                              a_Resstats[IIKK,27] = a_Resstats[IIKK,1] 

                             End 

                        

                           a_Resstats[IIKK,29] = Round ((a_Resstats[IIKK,1]) / (1+ 

a_Resstats[IIKK,24]/a_Resstats[IIKK,26] + a_Resstats[IIKK,25]/a_Resstats[IIKK,26])) 

                        

                           If a_Resstats[IIKK,29] < 0 Then 

                             Begin 

                              a_Resstats[IIKK,29] = 0 

                             End 

                        

                           If (a_Resstats[IIKK,27]+a_Resstats[IIKK,29]) > a_Resstats[IIKK,1] 

Then 

                             Begin 

                              a_Resstats[IIKK,29] = a_Resstats[IIKK,1] - a_Resstats[IIKK,27] 

                             End 

                        

                        

                           If (a_Resstats[IIKK,27]+a_Resstats[IIKK,29]) < a_Resstats[IIKK,1] 

Then 

                             Begin 

                              a_Resstats[IIKK,28] = a_Resstats[IIKK,1] - a_Resstats[IIKK,27] - 

a_Resstats[IIKK,29] 

                             End 

                           ELSE 

                              Begin 

                               a_Resstats[IIKK,28] = 0 

                              End 

                        

                       End 

                        

  m_OCBA               INT TEMPOCBA 

                        

# Initialized to zero to make sure all are assigned 

                       a_Resstats[v_best_partition,1] = 0 

                        

                              TEMPOCBA = 1 

                              WHILE TEMPOCBA < (m_partitions+1) DO 

                                 BEGIN 

                                     a_Resstats[TEMPOCBA,1] = 0 

                                    INC TEMPOCBA 

                                   END 



171 

# This block determines the coefficients for each design using OCBA 

                          v_CoefSum = 0 

                          v_CoefSqr = 0 

                                                            

                           TEMPOCBA = 1 

                           WHILE TEMPOCBA < (m_partitions+1) DO 

                               BEGIN 

                                  IF TEMPOCBA <> v_best_partition Then 

                                     Begin 

                                        a_Resstats[TEMPOCBA,14] = 

(a_Resstats[v_Second_Lowest,13]/a_Resstats[TEMPOCBA,13])**2 

# uses ratio rule for nonbest partitions 

                                        v_CoefSum = v_CoefSum + a_Resstats[TEMPOCBA,14] 

# checks to see if it is a "full" or "local" comparison, if so, adds to the square root rule for 

OCBA 

                                        If a_Resstats[TEMPOCBA,12] > 1 Then 

                                           Begin 

                                              v_CoefSqr = v_CoefSqr + 

(a_Resstats[TEMPOCBA,14]/a_Resstats[TEMPOCBA,22])**2 

                                           End 

                                     End    

                                   Else 

                                     Begin 

                                        a_Resstats[TEMPOCBA,14] = 0 

                                     End 

                                INC TEMPOCBA 

                              END 

                        

# Checks to see if none of the other partitions are using "full" or "local". If so, then just 

uses ratio rule for all. 

                         If v_CoefSqr = 0 Then 

                           Begin 

                             a_Resstats[v_best_partition,14] = 

(a_Resstats[v_Second_Lowest,13]/a_Resstats[v_best_partition,8])**2 

                             v_CoefSum = v_CoefSum + a_Resstats[v_best_partition,14] 

                           End 

                                                            

# This block makes the allocations according to the OCBA coefficients 

                           Int TempAvail 

                           Int TempNew 

                           Int TempSL 

                           TempAvail = m_delta*m_partitions 



172 

                           TempNew = 

Round(Real(m_delta*m_partitions)/(a_Resstats[v_best_partition,22]*sqrt(v_CoefSqr)+v

_CoefSum)) 

                                                            

                              If TempNew < 1 Then  

                                Begin 

                                  TempNew = 1 

                                End 

                        

                              If TempNew > TempAvail Then  

                                Begin 

                                  TempNew = TempAvail 

                                End 

                                                            

                              TempAvail = TempAvail - TempNew 

                              TempSL = TempNew 

                              a_Resstats[v_Second_Lowest,1] =  TempNew 

                                                            

                              TEMPOCBA = 1 

                              WHILE TEMPOCBA < (m_partitions+1) DO 

                                 BEGIN 

                                    IF TEMPOCBA <> v_Second_Lowest Then 

                                       Begin 

                                          IF TempAvail > 0 Then 

                                             Begin 

                                                TempNew = 

Round(a_Resstats[TEMPOCBA,14]*Real(TempSL)) 

                                                If TempNew > TempAvail Then 

                                                    Begin 

                                                       TempNew = TempAvail 

                                                    End 

                                                TempAvail = TempAvail - TempNew 

                                             End 

                                          Else 

                                             Begin 

                                                TempNew = 0 

                                             End 

                                         a_Resstats[TEMPOCBA,1] = TempNew 

                                        End       

                                    INC TEMPOCBA 

                                   END 

                                                            

                        If TempAvail > 0 Then 

                          Begin 



173 

                             a_Resstats[v_best_partition,1] = a_Resstats[v_best_partition,1] + 

TempAvail 

                          End 

  m_d_opt_runs         10 

  m_minx               3 

  m_maxx               8 

  m_designs            60 

  m_partitions         6 

  m_designs_per        m_designs/m_partitions 

  m_increments         1+(2000 - m_designs * m_nzero)/m_delta 

  NDIM                 3 

 

********************************************************************* 

*                                External Files                                * 

******************************************************************** 

 

  ID         Type              File Name               Prompt     

  ---------- ----------------- ----------------------- ---------- 

  (null)                       a_Results.xls                      

  (null)                       a_scatter.xls                      

  (null)                       f1 function values.xlsx            

 

 



174 

 

 

 

 

REFERENCES 

 

 



175 

 

 

 

 

REFERENCES 

 

 

 

Atkinson, A.C., A. N. Donev. 1998. Optimum Experimental Designs. Oxford Science 

Publications, Oxford. 

 

Banks, J., J.S. Carson, B.L. Nelson, D.M. Nicol. 2001. Discrete –Event System 

Simulation, Prentice Hall, Upper Saddle River, New Jersey. 

 

Barton, R. R. 2005. Issues in Development of Simultaneous Forward-Inverse 

Metamodels. M. E. Kuhl, N. M. Steiger, F. B. Armstrong, J. A. Joines, eds. Proceedings 

of the 2005 Winter Simulation Conference. IEEE, Piscataway, New Jersey 209-217. 

 

Bazarra, M.S., H.D. Sherali, C.M. Shetty. 1993. Nonlinear Programming, Theory and 

Algorithms, 2
nd

 Edition, John Wiley & Sons, New York, New York. 

 

Bechhofer, R.E., T. J. Santner, D. M. Goldsman. 1995. Design and Analysis of 

Experiments for Statistical Selection, Screening, and Multiple Comparisons. John Wiley 

& Sons, New York. 

 

Branke, J., S. Chick, C. Schmidt. 2005. New Developments in Ranking and Selection: An 

Empirical Comparison of Three Main Approaches. Presentation Slides from the 2005 

Winter Simulation Conference. 

 

Branke, J., S. Chick, C. Schmidt. 2007. Selecting a Selection Procedure. Management 

Science 53(12) 1916-1932. 

 

Brantley, M. W., J. McFadden, M. J. Davis. 2002. Expanding the Trade Space: An 

Analysis of Requirements Tradeoffs Affecting System Design, Acquisition Review 

Quarterly 9(1) 1-16. 

 

Brantley, M. W. 2005. The Special Case OCBA Method, working paper, Department of 

Systems Engineering and Operations Research, George Mason University. 

 

Brantley, M. W., C. H. Chen. 2005. A Moving Mesh Approach for Simulation Budget 

Allocation on Continuous Domains. M. E. Kuhl, N. M. Steiger, F. B. Armstrong, J. A. 

Joines, eds. Proceedings of the 2005 Winter Simulation Conference. IEEE, Piscataway, 

New Jersey 699-707. 

 



176 

Brantley, M. W. 2007. Simulation Budget Allocation for Stochastic Problems on 

Continuous Domains: Integrating Optimal Computing, Response Surfaces, and Domain 

Partitioning, working paper, Department of Systems Engineering and Operations 

Research, George Mason University. 

 

Brantley, M. W., L. H. Lee, C. H. Chen, A. Chen. 2008. Optimal Sampling in Design of 

Experiment for Simulation-based Stochastic Optimization, Proceedings of 2008 IEEE 

Conference on Automation Science and Engineering, Washington, DC, 388-393. 

 

Brantley, M. W. L. H. Lee, C. H. Chen, A. Chen. 2010. Efficient Simulation Budget 

Allocation with Regression, submitted to IIE Transactions. 

 

Brantley, M. W. L. H. Lee, C. H. Chen. 2011. An Efficient Simulation Budget Allocation 

Method Incorporating Regression for Partitioned Domains, preparing for submission to 

Operations Research. 

 

Burden, F., J. Faires. 1993. Numerical Analysis, Fifth Edition. PWS Publishers, Boston, 

Massachusetts. 

 

Calvin, J.M.., A Žilinskas. 2005. One-Dimensional Global Optimization for Observations 

with Noise. Computers & Mathematics with Applications, 50(1-2) 157-169. 

 

Chang, K., L. Hong, H. Wan. 2007. Stochastic Trust Region Gradient-free Method 

(STRONG)- A New Response-Surface-Based Algorithm in Simulation Optimization. S. 

G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds. 

Proceedings of the 2007 Winter Simulation Conference. IEEE, Piscataway, NJ 346-354. 

 

Chen, A., J. Cheng. 2006a. Experimental Design for Process Improvement: R-optimum 

Sequential Design. Unpublished dissertation, National Taiwan University, Taipei, 

Taiwan. 

 

Chen, A., J. Cheng. 2006b. An Efficient Estimate of Response Surface Confidence 

Interval and Its Applications to Sequential Semiconductor Yield Improvement. Working 

paper, National Taiwan University, Taipei, Taiwan. 

 

Chen, C. H., J. Lin, E.Yücesan, S. E. Chick. 2000. Simulation Budget Allocation for 

Further Enhancing the Efficiency of Ordinal Optimization. Journal of Discrete Event 

Dynamic Systems: Theory and Applications 10 251-270. 

 

Chen, C. H., D. He, M. Fu, L. H. Lee. 2008. Efficient Simulation Budget Allocation for 

Selecting an Optimal Subset. Informs Journal on Computing 20(4) 579-595. 

 



177 

Chen, C. H., E. Yücesan, L. Dai, H. C. Chen. 2010. Efficient Computation of Optimal 

Budget Allocation for Discrete Event Simulation Experiment. IIE Transactions 42(1) 60-

70. 

 

Chen, C. H., L. H. Lee. 2010. Stochastic Simulation Optimization, An Optimal 

Computing Budget Allocation. World Scientific Co. Inc, Hackensack, New Jersey. 

 

Cheng, R. C. H., J. P. C. Kleijnen. 1999. Improved design of queueing simulation 

experiments with highly heteroscedastic responses. Operations Research 47(5) 762-777. 

 

Cheng, R. C. H, V. B. Melas, A. N. Pepelyshev. 2001. Optimal Designs for the 

Evaluation of an Extreme Point. A. Atkinson, B. Bogacka, A. Zhigljavsky, eds. Optimum 

Design 2000. Kluwer Academic Publishers, The Netherlands 1-12. 

 

Chick, S., K. Inoue. 2001a. New Two-Stage and Sequential Procedures for Selecting the 

Best Simulated System. Operations Research 49 1609–1624. 

 

Chick, S., K. Inoue. 2001b. New Procedures to Select the Best Simulated System Using 

Common Random Numbers. Management Science 47(8) 1133-1149. 

 

Clemen, Robert T. 1996. Making Hard Decisions: An Introduction to Decision Analysis, 

2
nd

 Edition. Duxbury Press, Pacific Grove, California. 

 

DeGroot, M. H. 1970. Optimal Statistical Decisions. McGraw Hill, New York. 

 

Dembo, A., O. Zeitouni. 1998. Large Deviations Techniques and Applications. Springer, 

New York. 

 

Dette, H., V. B. Melas. 2010. A Note on the de la Garza Phenomenon for Locally 

Optimal Designs.Sonderforschungsbereich (SFB) 823 Discussion Paper. 

 

De la Garza, A. 1954. Spacing of Information in Polynomial Regression. The Annals of 

Mathematical Statistics 25(1) 123-130. 

 

Draper, N. R., H. Smith. 1998. Applied Regression Analysis: 3rd Edition. Wiley Series in 

Probability and Statistics. John Wiley & Sons, New York. 

 

Dudewicz, E. J., S. R. Dalal, 1975. Allocation of Observations in Ranking and Selection 

with Unequal Variances. Sankhya B37 28-78. 

 

Ehrenfeld, S. 1955. Complete Class Theorems in Experimental Design. Proceedings 

Third Berkley Symposium 1 University of California Press 57-67. 

 



178 

Fedorov, V. V., W. C. Muller. 1997. A reparametrization view of optimal design for the 

extremal point in polynomial regression. Metrika 46 147-157. 

 

Frazier, P., W. B. Powell, S. Dayanik. 2008. A Knowledge-gradient policy for Sequential 

Information Collection, SIAM Journal on Control and Optimization 47(5) 2410-2439. 

 

Frazier, P., W. B. Powell, S. Dayanik. 2009. The Knowledge Gradient Policy for 

Correlated Normal Beliefs, INFORMS Journal on Computing 21(4) 599-613. 

 

Friedman, J. H. 1991. Multivariate Adaptive Regression Splines, The Annals of Statistics 

19(1) 1-67. 

 

Fu, M.C., F. Glover, J. April. 2005. Simulation Optimization: A Review, New 

Developments, and Applications. M. E. Kuhl, N. M. Steiger, F. B. Armstrong, J. A. 

Joines, eds. Proceedings of the 2005 Winter Simulation Conference. IEEE, Piscataway, 

New Jersey 584-590. 

 

Gill, J. 2002. Bayesian Methods: A Social and Behavioral Sciences Approach. Chapman 

& Hall, Boca Raton, Florida. 

 

Giordana, F. R., M.D. Weir. 1985. A First Course in Mathematical Modeling. 

Brooks/Cole Publishing Company, Monterey, California. 

 

Glynn, P.W., S. Juneja. 2004. A Large Deviations Perspective on Ordinal Optimization. 

R. G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds. Proceedings of the 2004 

Winter Simulation Conference. IEEE, Piscataway, NJ 577-585. 

 

Goldsman, D., B. L. Nelson. 1994. Ranking, Selection, and Multiple Comparison in 

Computer Simulation. J. Tew, M. S. Manivannan, D. A. Sadowski, A. F. Seila, eds. 

Proceedings of the 1994 Winter Simulation Conference. IEEE, Piscataway, New Jersey 

192-199. 

 

Goldsman, D., S.-H. Kim, B. L. Nelson. 2005. Statistical Selection of the Best System. 

M. E. Kuhl, N. M. Steiger, F. B. Armstrong, J. A. Joines, eds. Proceedings of the 2005 

Winter Simulation Conference. IEEE, Piscataway, New Jersey 178-187. 

 

Harrell, C.R., R.E. Bateman, T.J. Gogg, J.R.A. Mott. 1995. System Improvement Using 

Simulation, 3
rd

 Edition. ProModel Corporation, Orem, Utah. 

 

He, D., S. E. Chick, C. H. Chen. 2007. The Opportunity Cost and OCBA Selection 

Procedures in Ordinal Optimization. IEEE Transactions on Systems, Man, and 

Cybernetics--Part C 37(5) 951-961. 

 



179 

Henderson, S. G., A.J. Mason. 2005. Ambulance Service Planning: Simulation and Data 

Visualization, International Series in Operations Research & Management Science 70(2) 

77-102. 

 

Hsieh, B.W., C. H. Chen, S. C. Chang. 2001. Scheduling Semiconductor Wafer 

Fabrication by Using Ordinal Optimization-Based Simulation, IEEE Trans. Robotics and 

Automation 17(5) 599-608. 

 

Hsieh, B. W., C. H. Chen, S. C. Chang. 2007. Efficient Simulation-based Composition of 

Dispatching Policies by Integrating Ordinal Optimization with Design of Experiment, 

IEEE Trans. Automation Science and Engineering 4(4) 553-568. 

 

Huang, D., T. T. Allen, W. I. Notz, R. A. Miller. 2006. Sequential Kriging Optimization 

Using Multiple-fidelity Evaluations. Structural and Multidisciplinary Optimization 32(5) 

369-382. 

 

Kiefer, J. 1959. Optimum Experimental Designs. Journal of the Royal Statistical Society, 

Series B (Methodological) 21(2) 272-319. 

 

Kim, S.-H., B. L. Nelson. 2006. Selecting the best system.  S.G. Henderson, B.L. Nelson, 

eds. Chapter 18 in Handbooks in Operations Research and Management Science: 

Simulation. Elsevier, Amsterdam, The Netherlands. 

 

Kushner, H. J. 1964. A New Method of Locating the Maximum of an Arbitrary Multi-

peak Curve in the Presence of Noise. Journal of Basic Engineering 86 97-106. 

 

Lamb, J. D., R. C. H. Cheng. 2002. Optimal allocation of runs in a simulation metamodel 

with several independent variables. Operations Research Letters 30 189-194. 

 

Law, A. M., W. D. Kelton. 2000. Simulation Modeling and Analysis, McGraw-Hill, Inc. 

 

Liski, E. P., N. Mandal, K. Shah, B. Sinha. 2001. Lecture Notes in Statistics: Topics in 

Optimal Design, Springer, New York. 

 

Melas, V. B., A. Pepelyshev, R. C. H. Cheng. 2003. Designs for estimating an extremal 

point of quadratic regression models in a hyperball. Metrika 58 193-208. 

 

Melas, V. B. 2006. Functional Approach to Optimal Experimental Design. Lecture Notes 

in Statistics 184. Springer, New York. 

 

Morrice, D. J., M. W. Brantley, C. H. Chen. 2008. An Efficient Ranking and Selection 

Procedure for a Linear Transient Mean Performance Measure. S. J. Mason, R. R. Hill, L. 

Mönch, O. Rose, T. Jefferson, J. W. Fowler, eds. Proceedings of the 2008 Winter 

Simulation Conference. IEEE, Piscataway, NJ 290-296. 



180 

Morrice, D. J., M. W. Brantley, C. H. Chen. 2009. A Transient Means Ranking and 

Selection Procedure with Sequential Sampling Constraints. M. D. Rossetti, R. R. Hill, B. 

Johansson, A. Dunkin and R. G. Ingalls, eds. Proceedings of the 2009 Winter Simulation 

Conference. IEEE, Piscataway, NJ 590-600. 

 

Neddermeijer, H., G.J. van Oortmarssen, N. Piersma. 2000. A Framework for Response 

Surface Methodology for Simulation Optimization. J.A. Joines, R.R. Barton, K. Kang, 

P.A. Fishwick, eds. Proceedings of the 2000 Winter Simulation Conference. IEEE, 

Piscataway, New Jersey 129-136. 

 

Neter, J., M. Kutner, C. Nachtsheim, W. Wasserman. 1996. Applied Linear Regression 

Models, 3rd Edition. Times Mirror Higher Education Group. 

 

Rinott, Y. 1978. On Two-stage Selection Procedures and Related Probability Inequalities. 

Communications in Statistics A7 799-811. 

 

Sanchez, S. M. 2005. Work Smarter, Not Harder: Guidelines for Designing Simulation 

Experiments. M. E. Kuhl, N. M. Steiger, F. B. Armstrong, J. A. Joines, eds. Proceedings 

of the 2005 Winter Simulation Conference. IEEE, Piscataway, New Jersey 69-82. 

 

Spall, J. C. 2003. Introduction to Stochastic Search and Optimization: Estimation, 

Simulation, and Control, John Wiley and Sons, Hoboken, New Jersey, 215. 

 

Törn, A., A Žilinskas. 1989. Global optimization. G. Goos, J. Hartmanis, eds. Lecture 

Notes in Computer Science 350 Springer-Verlag, Berlin. 

 

van Beers, W. C. M., J. P. C. Kleijnen. 2003. Kriging for Interpolation in Random 

Simulation. Journal of the Operational Research Society 54 255-262. 

 

Villemonteix, J., E. Vazquez, E. Walter. 2009. An Informational Approach to the Global 

Optimization of Expensive-to evaluate Functions. Journal of Global Optimization 44(4) 

509-534. 

 

Yang, M. 2010. On the de la Garza Phenomenon. Annals of Statistics. Institute of 

Mathematical Sciences, 38(4) 2499-2524. 

 

Zeto, J., M. W. Brantley, G. Collins, et al. 2005. “Air Ambulance Analysis-Iraq”, 

presented at the 2005 Military Operations Research Symposium, West Point, New York. 

 

 



181 

 

 

CURRICULUM VITAE 

 

Mark W. Brantley a received a BS in Mathematics from the United States Military 

Academy in 1988, an MS in Applied Mathematics from Rensselaer Polytechnic Institute 

in 1998, and an MS in Operations Research and Statistics also from Rensselaer 

Polytechnic Institute in 1998. 

 

Mark retired from the US Army after completing a 20 year career which included 

deployments to Kuwait in support of Operation Enduring Freedom and Operation Iraqi 

Freedom; to Haiti in support of Operation Uphold Democracy; and to Honduras for 

service with Joint Task Force - Bravo. Mark's career also included service as an 

Operations Research analyst in the Operations Research Center of Excellence at the 

United States Military Academy, at the Center for Army Analysis, and in the Army 

National Guard Directorate. 

 

Mark is the co-recipient of the 2005 and 2006 Military Operations Research Society Rist 

Prizes for "Air Ambulance Analysis-Iraq" and "Army Force Generation Model 

Simulation" respectively. These prizes are awarded to the best implemented DoD military 

operations research study from those submitted in response to a call for papers. He is also 

the co-recipient of the 2004 Army Operations Research Symposium Payne Award also 

for "Air Ambulance Analysis-Iraq." 

 

After retiring from the US Army, Mark worked for two years as a senior defense forecast 

analyst for Documental Solutions and Jane’s Information Group. He has formed his own 

company called Goose Point Analysis LLC specializing in modeling and simulation, data 

analysis, and forecasting and will begin to build a client base in the summer of 2011. 

 

In the course of study at George Mason University, Mark contributed to three sections in 

Chen and Lee (2010), co-authored two journal papers that have been submitted (Brantley 

et al 2010 and Brantley et al. 2011), and co-authored four conference papers (Brantley 

and Chen 2005, Brantley, Lee, Chen, and Chen 2008, Morrice, Brantley, and Chen 2008, 

Morrice, Brantley, and Chen 2009). In addition to these publications, Mark is the co-

author of one refereed journal article, eight US Army technical reports, and four 

magazine articles. He has provided presentations at the Army Simulation and Modeling 

for Acquisition, Requirements, and Training (SMART) conference, the Army Operations 

Research Symposium (AORS), the INFORMS annual meeting, and the Winter 

Simulation Conference.  


