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ABSTRACT 

ANALYZING ACCIDENTS AMONG SPECIALTY CONTRACTORS: A DATA 

MINING APPROACH 

Pouya Gholizadeh, Ph.D. 

George Mason University, 2022 

Dissertation Director: Dr. Behzad Esmaeili 

Despite technological and regulatory improvements and plentiful research in 

occupational safety, construction has remained one of the most dangerous industries in 

the U.S. and around the world. This is mainly due to many relatively small employers 

with limited safety personnel and budget, multi-employer worksites, the presence of 

numerous hazards, and a highly mobile workforce. The uncertainty behind these 

conditions, combined with the limited personal experience of safety practitioners, can 

lead to poor safety decisions. Together, such factors ultimately contribute to the high 

number of fatal and non-fatal injuries in the industry, and the loss of millions of dollars 

each year. Analyzing historical incidents to understand the causes and consequences of 

them has been one of the main ideas in safety research to reduce the quantity and severity 

of occupational injuries. Indeed, the significant amount of safety data being collected on 

construction sites—e.g., as accident reports—provides a valuable source of information 



for researchers seeking to better understand construction accidents. Recent developments 

in advanced analytical methods and computational tools can further improve previous 

efforts and provide a more data-driven objective approach toward construction safety. To 

test this approach, three objectives are defined in this research. The first objective is to 

evaluate the cost of the injuries (a main consequence of accidents) among various 

scenarios to quantify and compare their financial impact on companies and society. This 

objective can help contractors better quantify the risks of a construction project/task by 

estimating the severity of potential accidents in monetary values. Furthermore, the 

proposed methods contribute to the current body of safety knowledge by assessing 

alternative hypothesis testing practices that do not require specific assumptions. The 

second objective is to utilize statistical tests and models to identify the most influential 

factors contributing to construction accidents. The proposed analysis/modeling approach 

can be applied among all specialty contracting companies to identify and prioritize more 

hazardous situations within specific trades. The proposed model development process 

also provides a framework for codifying data from accident reports and analyzing them 

through a multivariate logistic regression model. The last objective is to investigate the 

potential correlations among accident outcomes and propose a novel way to incorporate 

such correlations through building multi-label machine learning models. The results 

indicate that knowing the value of one accident outcome can significantly increase the 

probability of a correct prediction for another outcome. The results further show that a 

particular multi-label method (i.e., classifier chains) can capture these latent relationships 

among accident outcomes during model training and significantly improve the 



performance of the predictive models. This research employs robust data and analytical 

models to predict the outcomes of accident scenarios, reliably, using variables available 

on construction sites. It is expected that the findings of this study will provide valuable 

insight into accident patterns and consequences to safety practitioners and transform the 

way machine learning models are being utilized in safety studies. 



1 

CHAPTER ONE: INTRODUCTION 

1.1 Motivation and Research Objectives 

Construction is one of the most hazardous industries in the US and it continues to 

be responsible for a disproportionate number of work-related illnesses, injuries, and 

fatalities in the United States. Based on the North American Industry Classification 

System (NAICS), the construction industry can be divided into three main categories: 

construction of buildings; heavy and civil engineering construction; and specialty trade 

contractors. Among these categories, specialty trade contractors suffer the highest 

number of fatal injuries. According to the Census of Fatal Occupational Injuries (CFOI) 

from the U.S. Bureau of Labor Statistics (BLS) database, 7,501 fatalities occurred from 

2012 to 2019 in the construction industry, of which approximately 60% (4,661) were 

related to specialty contractors (BLS, 2019). NAICS has further divided specialty 

contractors into 18 subcategories. Notably, between 2012 and 2019, 43% of all fatal 

injuries among specialty contractors occurred in only three of these subcategories: 

roofing, site preparation, and electrical trades. It is essential to recognize the most crucial 

procedures that support the health and welfare of workers in these three trades given the 

influence they have on the business and the high rate of injuries among them.  

A myriad of research has been done on construction safety as a result of this 

alarmingly poor performance. However, the majority of safety studies rely on subjective, 



2 

 

secondary, or compiled data (Prades Villanova 2014). On the other hand, over the past 

few decades, large construction companies and federal agencies such as Occupational 

Health and Safety Administration (OSHA) have amassed extensive databases of digital 

injury-related incidents, which offer a wealth of empirical data (Tixier 2015). By 

leveraging abundant historical accident data along with statistical and machine learning 

techniques, the goal of this study is to increase safety performance among specialty 

contractors in the construction industry. 

To achieve this goal, the following objectives are defined: 

Objective 1: quantify the impact of individual accident factors (e.g., accident type, 

project end-use) by statistically comparing the monetary cost of injuries associated to 

them. Despite the fact that several studies have estimated the cost of injuries across 

various trades, demographics, event types, injury sources, and injury natures, the majority 

of these studies only provided descriptive statistics without analyzing any inferential 

statistics regarding differences between various groups. 

Objective 2: employ methodologies of descriptive and quantitative statistics (i.e., 

chi-square test of independence and Cramer’s V test) to identify the contributing factors 

most affecting occupational accident outcomes among specialty trades and propose a 

multi-variate logistic regression model to determine the more severe accident scenarios. 

Objective 3: investigate the potential impact that accident outcomes have on one 

another in a machine learning context and implement multi-label algorithms to determine 

if this impact can improve the prediction performance of models in construction accident 

studies.  
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There are various connections between these three objectives. First, the required 

analyses to accomplish these objectives are carried out using the same data and variables. 

The ability to use the results of one objective as inputs to another objective can be 

facilitated by the existence of this shared database. Second, the links between accident 

attributes and the outcomes of construction accidents serve as the foundation upon which 

all objectives are established. In order to more accurately characterize the consequences 

of construction accidents, objective 1 incorporates a financial component to quantify the 

impact of accident attributes. Utilizing this enhanced understanding of accident 

outcomes, objective 2 looks into the substantial correlations between accident attributes 

and outcomes. The impact of the combinations of such significant accident factors on an 

accident outcome is then investigated using logistic regression and decision tree models. 

The statistical tests and models, developed for the second objective, shape the framework 

for the final objective. By exploiting the correlations between accident outcomes that 

were discovered in objective 2, the final objective can more specifically address the 

drawbacks of binary models in safety studies. 

To meet these objectives, the research was divided into four complimentary 

segments. Each segment is discussed briefly in this chapter and in details is the next 

chapters of this dissertation. 

1.2 Dissertation Organization 

This project investigates historical accident reports through statistical tests and 

machine learning models to find patterns among construction accidents to improve 

decision-making among safety practitioners and ultimately reduce the risk of injuries in 
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the construction industry. The following is an outline of how this dissertation is 

structured.  

 

Chapter 1 gives an overview of construction safety and background to the study. 

The motivation and research objectives derived from the current safety practices and need 

for an objective and data-driven approach to investigate occupational accident factors and 

consequences among specialty contractors are also presented. 

 

The financial impact of various accident types on construction enterprises and 

society is examined in Chapter 2. This chapter also provides robust methods of 

hypothesis testing on data available from construction sites. 

 

Chapter 3 analyzes the relationship between several accident attributes and the 

degree of injury as the main outcome of occupational accidents. Furthermore, data 

mining methods such as decision trees are tested to predict the nature of injuries. 

Chapter 4 investigates the application of logistic regression modeling in 

describing various accident scenarios. 

 

Chapter 5 studies the correlations among accident outcomes and proposes a multi-

label machine learning method to benefit from such correlations. Several ways to train 

machine learning methods and evaluate their performance are also discussed. 
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Chapter 6 summarizes the research findings and concludes the dissertation. It also 

discusses future research extensions and opportunities, as well as the limitations of the 

research. 
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CHAPTER TWO: COST OF OCCUPATIONAL INCIDENTS FOR 

ELECTRICAL CONTRACTORS: A COMPARISON USING ROBUST 

FACTORIAL ANALYSIS OF VARIANCE 

2.1 Introduction 

Occupational incidents are costly (Leigh et al., 1997; Leigh et al., 2000). 

According to a report published by Liberty Mutual, workplace injuries that caused 

workers to miss six or more days of work cost U.S. employers around $59.9 billion in 

2014 (Liberty Mutual, 2018). Within the construction industry, even less-severe 

occupational incidents typically require medical treatment, disrupt business operations, 

and negatively affect productivity, morale, and value-added activities related to long-term 

coordination and planning. These factors often combine to lower profit margins and 

decrease firms’ competitiveness (Goetsch 2013; Argilés-Bosch et al., 2014; Feng et al., 

2015). In fact, previous studies have consistently estimated the cost of occupational 

incidents in the construction industry to amount to more than 5% of total project costs, 

which is a great burden not only for contractors but also for owners, users, and society as 

a whole (Everett and Frank, 1996).  

Quantifying the cost of an occupational injury in construction is a major step 

toward understanding the impact of an incident on project performance (Hinze and 

Applegate, 1991). Numerous studies have investigated the cost of occupational injuries 

and illnesses by statistically estimating the cost of injuries for different construction 

trades or demographics (Hinze and Applegate, 1991; Miller and Galbraith, 1995; Leigh et 

al., 1997; National Safety Council, 1999; Tang et al., 2004; Hinze et al., 2006; Leigh et 
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al., 2006; Feng et al., 2015). While such studies yield valuable insights, their implications 

for contractors within trades are limited, since these studies do not provide statistical 

comparisons of the cost of injuries according to the type of accident (e.g., fall, struck-by) 

or project (e.g., building or non-building). As safety training can influence the potential 

for and outcomes of different accidents, understanding the costs associated with different 

types of accidents better prepares decision makers to allocate limited training and safety 

resources to those activities that might result in severe incidents. Such information would 

especially strengthen safety and financial outcomes among small contractors, whose 

narrower profit margins drive them to hire temporary workers with inadequate training or 

supervisors with poor safety-management skills (Cheng et al., 2010). Thus, a statistical 

cost analysis by accident type that can disaggregate risk factors into meaningful 

categories would foreseeably improve both project and safety performance by delivering 

decision-point data that can shape company policies. 

In spite of the obvious benefits of such a statistical analysis, one reason there have 

been so few statistical comparisons of the cost of injuries according to accident type is 

that data about accident costs do not always disaggregate enough to meet traditional 

statistical assumptions. For example, common methods for comparing the mean of 

various samples often assume the normality of the samples’ distributions and an equal 

variance among samples. Consequently, when these assumptions are violated, the 

analysis may be negatively affected (Keselman et al., 2002; Wilcox, 2012). Within the 

arena of construction safety, the non-normal distributions and the variability within and 

across construction project-samples often mean that these data do not satisfy statistical 
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assumptions, making traditional statistical approaches to risk analysis ineffective at 

delivering sufficiently robust information to derive meaningful conclusions.  

Beneficially, outside of the construction sector, statisticians have devised different 

procedures to manage non-normal populations and/or heteroscedastic variances in order 

to address such structural limitations within samples (White, 1980; Brunner et al., 1997; 

Long and Ervin, 2000; Wilcox and Keselman, 2003; Cribbie et al., 2007). These solutions 

range from transforming data and handling the outliers manually (Berry, 1987; Osborne, 

2010) to considering more robust measures of location and scale to compare samples and 

better control for Type-I errors (Keselman et al., 1998; Luh and Guo, 2001). None of 

these techniques have ever been applied to analyze the cost of occupational injuries in the 

construction industry.  

Accordingly, this study used more robust statistical methods (e.g., extensions to 

Welch and Yuen methods, and percentile bootstrapping) to disaggregate and compare the 

individual factors influencing the cost of different injury events within a single 

construction trade. To select a trade for analysis, this study has considered such primary 

criteria as the trade’s safety performance and its portion of the construction industry. To 

measure safety performance, the authors evaluated the specialty trade contractors’ 

classifications within the North American Industry Classification System or NAICS 

(Office of Management and Budget, 2017). Among the 19 categories of specialty 

contractors in this classification, roofing, site preparation, and electrical contractors 

accounted for more than 61% of all fatalities from 2011 to 2015 (Bureau of Labor 

Statistics, 2019). However, electrical contractors faced the largest increase in the number 
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of fatalities in four years—from 44 in 2011 to 83 in 2015. Moreover, based on the 

Statistics of U.S. Businesses (SUBS), more than 144,000 establishments and firms were 

registered as electrical contractors in 2016, which is the second highest number of 

businesses among all specialty contractors (U.S. Census Bureau, 2016); comparatively, 

roofing and site preparation contractors were 37,108 and 68,651, respectively. Given the 

scope of the contractor pool as well as its large number of employees (i.e., more than 

800,000 in 2016), the research team deemed this population a prime candidate for 

analysis. Furthermore, after reviewing OSHA’s accident reports from 2007 to 2013, the 

research team noted that electrical contractors face a wide range of accident types such as 

electrocution, fall, struck-by, and caught in/between. Having a fair share of different 

accident types that can represent multiple accident scenarios in the data is crucial in 

quantifying the impact of each type. Thus, for all these reasons, this study selected 

electrical contractors as a case study for its robust statistical analysis of the costs of 

nonfatal injuries. Fatal injuries are excluded from this analysis for two reasons. First, as 

mentioned by Waehrer et al. (2007a), a fatality is estimated to cost $4 million whereas a 

non-fatal accident resulting in days away from work is estimated to cost only $42 

thousand on average (almost 100 times less). Having one or two more fatalities in one 

category than the others would significantly shift average costs and thereby mislead 

conclusions about the severity level of each category. In statistical words, in a cost 

analysis, fatalities can act as outliers within the data set, impeding an ANOVA-type cost 

analysis, since these events happen much less frequently than non-fatal accidents and cost 

much more than any other injuries. This statistical concern in no way means that we 



10 

 

should not consider fatal accidents when planning for safety; only, this consideration 

indicates why, in comparing cost of injuries among accident types, it is more reasonable 

to exclude the outlier-effect that fatalities might bring to the analysis. Second, the cost 

estimates used in this study were based on lost-time workers' compensation insurance 

claims, which are estimated based on non-fatal injuries (more on this in section 02.3.2 

Estimating the cost of injuries). 

The main objective of this study is to investigate the impact of common event 

types on the cost of an occupational accident among electrical contractors. In other 

words, the study aims to answer these questions: does the type of an accident play a role 

in determining the cost of the subsequent injury? More importantly, if there is a 

significant difference, does it exist among all event types or only among some specific 

pairs? Beyond event types, the authors were interested in analyzing two other factors—

project end-use and project budget—because these two variables have been mentioned in 

similar studies and were found to have significant impacts on the outcome of construction 

accidents. For instance, when investigating the occupational injuries at small enterprises 

in Taiwan, Cheng et al. (2010) found that the type of project (e.g., building, road, bridge) 

is highly correlated with the type of accident. Furthermore, the authors determined that 

the number of occupational accidents is significantly higher in building projects than civil 

engineering projects in both low-budget (i.e., less than 5 million New Taiwan dollar) and 

high-budget (i.e., 5 to 50 million New Taiwan dollar) projects. As for the project budget, 

Feng et al. (2015) discussed that project characteristics (e.g., project size, contractor size, 

involvement of sub-contractors) can influence the indirect costs of accidents in 
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construction building projects. Furthermore, they concluded that project size (i.e., the 

contract sum of a project) have a significant positive impact on indirect costs of 

accidents. Thus, these two factors have been shown to influence accident types and costs, 

though the interactions among all of these factors remains unknown. The factors and 

levels that have been used for the analysis are shown in Figure 2.1. Historical data about 

electrical contractor injuries were collected from the Occupational Safety and Health 

Administration (OSHA) Integrated Management Information System (IMIS) database, 

and the events were cross-referenced with cost-estimates of the average cost of lost-time 

workers' compensation insurance claims, which stood in for accident-cost data. These 

data were then coded during a content analysis. Subsequently, the research team applied 

three statistical approaches—Welch-type procedure, an extension of Yuen’s method, and 

percentile bootstrapping—to disaggregate and compare the factors associated with the 

different accident types. These results yielded insights both in terms of the effectiveness 

of the analytical framework and the costs associated with different accident factors. 

 

 

 

 

 Figure 2.1. Factors and their levels 
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The success of this study provides three-fold benefits: The results of the analytical 

framework proposed in this study demonstrate the effectiveness of statistical 

methodologies for analyzing the cost of injuries within trades; such insights will aid 

researchers seeking to better address project performance within construction. 

Additionally, this study supports practitioners since the cost of injuries can be used as an 

indicator of potential risk associated with different activities. Trades, safety managers, 

project managers, or policy makers can use such statistically-derived cost knowledge to 

allocate limited safety resources more efficiently. Lastly, employers may use the 

outcomes of this study to better understand the financial implications of occupational 

accidents to make decisions that keep workers safe and companies profitable. 

2.2 Background 

2.2.1 Costs of Injuries 

The costs of injuries are higher in construction than in other industries (Silverstein 

et al., 1998; CPWR, 2002). Because such costs are not value-added to businesses, 

construction companies are interested in measuring or predicting the cost of injuries for 

their projects (LaBelle, 2000; Rikhardsson and Impgaard, 2004; Sun et al., 2006). 

Understanding the costs of injuries helps these companies make better-informed 

decisions about their investments in occupational safety programs and/or in planning 

contingencies for projects based on certain characteristics (type, size, and complexity).  

To efficiently allocate limited resources to various safety practices, construction 

companies need reliable information about the true cost of construction accidents. As a 

result, a number of studies have focused on the cost of injuries (Durbin, 1993; Miller and 
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Galbraith, 1995; Miller, 1997; Sun et al., 2006; Jallon et al., 2011a, b). A comprehensive 

literature review was conducted by the research team to identify the existing knowledge 

gap. The salient results of the relevant studies are provided here.  

2.2.2 Direct versus indirect costs of injuries  

Before one can analyze the costs of injuries, one must first understand the nature 

and relationship of injuries’ direct and indirect costs. Direct costs, also known as 

insurable costs, refer to costs related to treatment of the injury and any compensation paid 

to workers as a result of being injured (Everett and Frank, 1996; Hinze, 1997; Feng et al., 

2015). However, not all costs incurred as a result of an injury are insurable. Such costs 

include regular wages paid to an injured worker while his/her productivity is reduced; 

transportation costs to medical centers; loss of productivity due to activity disruption or 

distractions to other crew members; administrative efforts related to investigating and 

reporting the incident, hiring and training a replacement worker; and damage to materials 

or machinery (Hinze, 1997; Paez et al., 2006). All of these uninsurable costs due to an 

injury are called indirect costs, and while it is possible to calculate direct costs with 

reasonable accuracy, indirect costs are much more difficult to quantify.  

In one of the earliest attempts to find a ratio between direct and indirect costs, 

Heinrich (1931) claimed that indirect costs can be approximately four times higher than 

direct costs. Since then, several large studies have been conducted to further examine the 

relationship between direct and indirect costs (e.g., Paez et al., 2006; Manuele, 2011). 

One such study in Great Britain surveyed 1,858 companies to create a database of 

injuries’ costs to quantify the burden of injuries on contractors; this study found that the 
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insured costs (total annual employers’ liability premiums of £83.1M) can be much higher 

than uninsured costs (£7.3M). Even for companies that had experienced an accident, the 

premium costs on average were still more than four times greater than all the other costs 

incurred due to the accident (Leopold and Leonard, 1987). Such an outcome 

demonstrates that a straight ratio between direct and indirect costs may not be universal. 

Other studies sought to determine the ratio between direct and indirect costs based 

on the severity level of the injuries. In their study, Hinze and Appelgate (1991) collected 

573 surveys from construction companies and separated events according to those 

demanding medical/doctor cases and those demanding restrictive activity/lost workday 

cases. Using unweighted averages, they found that the ratio of indirect to direct costs was 

4.2 in medical cases and 20.3 in restrictive activity/lost workday cases. Their observation 

emphasized the necessary distinction between injuries based on their severity: the ratio in 

medical cases was in accordance with Heinrich’s 4-to-1 rule (Heinrich, 1931), but 

indirect costs were much higher in cases with more severe injuries. Notably, these ratios 

included claim costs as indirect costs, which had a great impact on the magnitude of the 

results; without claim costs, the ratios would be 2.94 and 2.53 for medical and restrictive 

activity cases, respectively. In another study that considered workers’ compensation 

insurance (WCI) and experience modification ratings (EMR), Everett and Frank (1996) 

found that indirect costs can be 1.65 times greater than direct costs. These results 

underscore the interaction between the type of cost (direct and indirect) and the severity 

of an injury: while more severe injuries would lead to higher direct and indirect costs, the 

effect is stronger for indirect costs.  
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Some researchers went a step further and tried to quantify the indirect costs of 

additional resources that society would bear due to a construction accident (e.g., 

government subsidies paid during hospitalization, solicitor fees, idle machinery and 

equipment, and costs incurred by government organizations such as fire service and 

police). Specifically, by investigating 119 construction projects with 1,414 accidents (6 

fatal and 426 resulting in permanent disability), Tang et al. (2004) quantified the social 

costs of accidents and examined the relationship between these types of costs and social 

safety investments. They found that for each dollar invested in social safety, social costs 

due to construction accidents could be reduced by $2.27. 

As evidenced by these outcomes, calculating indirect costs involves making 

several assumptions, and to date, there is a lack of consensus among researchers about the 

exact ratio between direct and indirect costs (Health and Safety Executive, 1993; 

Monnery, 1998). Accordingly, for the analysis executed within this study, the research 

team decided to focus on medical costs and lost wages from each incident (i.e., WCI), 

which combine to represent the direct costs associated with an injury. 

2.2.3 Cost of injuries among different event types, sources, and injury 

characteristics  

To determine the cost of treating occupational injuries, researchers have 

historically examined workers’ compensation claims (Durbin, 1993; Dement and 

Lipscomb, 1999; Silverstein et al., 1998; Islam et al., 2001). Dement and Lipscomb 

(1999) studied workers’ compensation claims among North Carolina Homebuilders 

Association (NCHA) members and their subcontractors between 1986 to 1994; their 
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study found that injuries resulting from ‘struck by an object,’ ‘lifting/movement,’ and 

‘falls from a different level’ accounted for the highest rates for incidents that involved 

medical costs or paid lost time. When Dement and Lipscomb (1999) subsequently 

examined body parts, they determined that ‘back/shoulders,’ ‘fingers,’ and ‘leg/knee’ 

were the most frequent parts that resulted in medical costs or lost–work time cases.  

In another study, Hinze et al. (2006) investigated medical injury records of non-

significant injuries (i.e., those that would not result in days away from work) to explore 

the effects of these incidents on the construction industry in terms of medical costs and 

frequency. After collecting data from more than 135,000 construction accidents from 

2001 to 2003, their analysis showed that laceration, lumbar spine, upper extremity, and 

eye injuries were together responsible for about 59% of all injuries. The results also 

showed that lacerations, eye injuries, and fractures occurred more often, on average, in 

the construction industry than in all other industries combined. The average cost of these 

small injuries was $565 (equivalent of $800 in 2019), with shoulders/humerus ($933; 

equivalent of $1,321 in 2019), lumbar spine ($887; equivalent of $1,256 in 2019), 

cervical spine ($866; equivalent of $1,225 in 2019), and knee ($818; equivalent of $1,157 

in 2019) having the highest costs per patient. Such higher costs of shoulder injuries were 

attributable to the fact that many of these injuries were followed by surgeries and 

physical therapy services. One should note that these numbers are much lower than the 

averages provided by the National Council on Compensation Insurance (NCCI). An 

explanation for this difference is that the study by Hinze et al. (2006) investigated only 

small accidents.  
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Other studies compared classes of injuries. According to Leigh et al. (2006), 

while ‘back sprains and strains,’ ‘other sprains and strains,’ and ‘fractures, crushing, and 

dislocations (except head and neck)’ are the top three injuries in total costs (together 

accounting for more than $31.5 billion), the share of fatalities in these costs is close to 

zero. Lipscomb et al. (2006) investigated occupational injuries occurring during the 

construction of the Denver International Airport and found that while only 18% of all 

construction injuries were preceded by a slip or trip, these injuries comprised 25% of 

workers’ compensation payments. At the same time, insulation work had the lowest 

payment rates per $100 of payroll and roofing had the highest (Lipscomb et al., 2006).   

Waehrer et al. (2007b) analyzed cost injuries for different event types and sources 

of injuries. In terms of event types, the highest total costs for days-away-from-work 

injuries were associated with ‘falls to a lower level’ and ‘overexertion.’ For per-days-

away-from-work cases, those with the highest costs were ‘unspecified bodily conditions’ 

($136,222), ‘contact with electrical current’ ($86,829), ‘repetitive motion’ ($75,254), and 

‘caught in or compressed by equipment or objects’ ($69,041) (the study excluded 

pedestrian, non-passenger struck-by vehicle incidents, mobile equipment cases, and 

assaults and violent acts by person). Similar investigations of sources of injuries revealed 

that injuries due to floor surfaces (1 in every 5 sources) and building materials resulted in 

the highest total-days-away-from-work costs—together, these sources were responsible 

for 35% of injures and 39% of costs—while ‘unspecified machinery,’ ‘unspecified other 

sources,’ and ‘unspecified structures’ had the highest per-days-away-from-work costs.  
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One major limitation of the previous studies was that they simply reported 

descriptive statistics without analyzing any inferential statistics to determine whether 

there are statistical differences between average costs. The current study aims to address 

this limitation. Besides, none of the previous studies have examined project 

characteristics (e.g., type and budget) that can influence the direct cost of construction 

injuries.  

2.2.4 Construction trades  

Understanding differences between cost of injuries among different trades is 

important for policy makers and insurance companies because it helps them determine 

insurance premiums. Safety managers also can benefit from these data to conduct more 

accurate risk assessments of construction sites.  

In response to this important need, Lipscomb et al. (2003) evaluated workers’ 

compensation records for residential contractors to compare costs of injuries among 

union carpenters between 1995 and 2000. They found that the costs of injuries resulting 

from falls, raising framed walls, setting steel I-beams, and pneumatic nail guns is higher 

than other incidents. In another study, Waehrer et al. (2007a) analyzed Bureau of Labor 

Statistics (BLS) and Current Population Survey data from 2000 to 2002 to estimate the 

cost of fatal injuries and those nonfatal incidents that resulted in days-away-from-work 

based on worker occupation. On average, injuries in the construction industry accounted 

for a $12.7 billion loss, with $4 million for each fatality and $42,000 for each nonfatal 

injury resulting in days-away-from-work. The occupation-specific costs revealed that 

construction laborers, followed by carpenters, roofers, and electricians, have the highest 
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costs due to fatalities. Among these groups, electrician apprentices have the highest cost 

per fatality, at $5.3 million. In the nonfatal category, mining machine operators and earth 

drillers account for the highest cost per days-away-from-work. Occupations experiencing 

the highest total cost of injuries—with a combined share of more than 50% of costs—are, 

in order: construction laborers; carpenters; electricians; plumbers, pipefitters, and 

steamfitters; and roofers. 

In a similar study, Waehrer et al. (2007b) used the standard industrial 

classification (SIC) system to compare injury costs among different trades within the 

construction industry. The results showed that in 2002, the construction industry 

accounted for 15% of injury costs while representing only about 5% of the workforce of 

the U.S. The construction industry’s share of fatal costs was around 40%, virtually double 

the 21% found by Leigh et al. (2006) for all industries. More than half of the injury costs 

in the construction industry were found to occur to only five trades: miscellaneous special 

trade contractors (SIC 179); plumbing, heating, and air-conditioning (SIC 171); electrical 

work (SIC 173); heavy construction except highway (SIC 162); and residential building 

construction (SIC 152). In construction, on average, per-case costs of fatalities, nonfatal 

days away injuries, lifetime wage losses, restricted-work cases, and no-lost-work cases 

were estimated at $4 million, $42,000, $21,600, $618, and $777, respectively. The 

roofing, siding, and sheet metal work industry (SIC 176) was on top in terms of the rate 

of accidents, with 9.5 cases per 100 full-time equivalent employees.  

As one can see, previous studies have examined overall cost of injuries among 

different trades; however, little is known about the cost of injuries in a specific trade 
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(e.g., electrical contractors). Each trade faces specific accident scenarios that might result 

in considerably different combinations of injuries. Even similar events can lead to varied 

levels of severity in contrasting trades—for instance, struck-by accidents can yield more 

severe injuries for on-site preparation contractors than for electrical contractors as the 

injuries among on-site preparation contractors result from heavy machinery and vehicles. 

Thus, the current study addresses this limitation by investigating several event 

characteristics within a single trade.  

2.2.5 Analytical framework: Factorial Analysis of Variance (ANOVA) 

While statistical analyses help researchers and practitioners interpret vast amounts 

of data, generally, such analyses assume sufficiently large samples to enable isolating 

variables of interest and thereby make relational statements about the isolated variables. 

However, not all data support such analyses: in the context of estimating the costs of 

construction injuries by accident type, assorted factors such as project size/budget, 

project end-use, and/or the nature of the injury can all inhibit isolating and comparing a 

single parameter to determine risk. Accordingly, alternative statistical tools must be 

applied to make comparisons across accident types meaningful for decision makers.  

One approach to such comparisons is Analysis of Variance (ANOVA). When the 

response variable is continuous but all predictor variables (e.g., accident factors such as 

project budget or accident type) are categorical and manifest two or more levels (e.g., a 

budget of >$50k vs. a budget of <$50k), one can use ANOVA to compare multiple group 

means (Lee and Ahn, 2003; Fox and Weisberg, 2011; Field et al., 2012). In its simplest 

form—one-way ANOVA—this approach can compare multiple factors with only one 
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level. In cases with more than one level, a factorial (or multiway) ANOVA design should 

be implemented (Fox and Weisberg, 2011). Factorial design helps one consider the 

interactions between the conditions at play in the dynamic—for instance, whether the 

effect of one categorical level on the response variable changes according to the level of 

the second factor. In this way, factorial ANOVA reveals opportunities for deriving 

meaning across multi-dimensional data sets. 

Factorial ANOVA enables testing the main effects of one variable even within 

unbalanced samples. Consider a situation in which factors F1 and F2 each has two levels 

(e.g., ‘a’ and ‘b’ for F1 and ‘c’ and ‘d’ for F2) and the number of observations (for a, b, c, 

and d) are not equal. When the hypothesis demands comparing the main effect of F1’s 

levels ‘a’ vs. ‘b,’ the choice between one-way ANOVA and factorial ANVOA becomes 

important. Within a factorial framework, one can use unweighted means in which the 

mean of each level of a factor would be the average of two means without considering the 

sample sizes; this characteristic is especially beneficial when one level may be rare but 

the impact of its occurrence is very large—so the analyst would not want a weighted 

value to wash out the variable’s importance and hence they consider the hypothesis to be 

independent of the sample size (Quinn and Keough, 2002). In our example of ‘a’ vs. ‘b,’ 

to obtain the mean value of ‘a,’ one would calculate the average for ‘a’ under two 

conditions, ‘c’ and ‘d’—and, thus, having the information from F2 for the values of ‘c’ 

and ‘d’ would provide important data. Within a one-way ANOVA framework, to 

compare ‘a’ and ‘b,’ one would use the overall means of ‘a’ and ‘b’ without considering 

the second variable, F2. When the samples are unbalanced, the unweighted means for ‘a’ 
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and ‘b’ would be different than the weighted ones, as would be their difference and the 

main effects’ sizes. While one-way ANOVA would only compare the weighted means, 

factorial ANOVA can compare the unweighted means, which leads to more reliable 

results when testing the main effect of each factor on the dependent variable (Dien and 

Santuzzi, 2004). Thus, factorial ANOVA can execute more accurate comparisons for 

unbalanced designs (i.e. unequal sample sizes).  

Both one-way and factorial ANOVA have been successfully applied to various 

situations. In their review study, Keselman et al. (1998) mentioned ANOVA as the most 

common method of analysis in educational research. Dien and Santuzzi (2004) 

investigated the application of the repeated measures ANOVA on event-related potential 

data and concluded that multivariate (i.e., factorial) ANOVA can provide higher 

statistical power to discussions. While the literature supports applications of this type of 

analysis—especially in experimental contexts, where researchers have more control on 

the data-collection process—caution must be exercised when using this approach in the 

context of observational data, such as those found in the context of this study. 

Though ANOVA is a popular method in many research fields (Keselman et al., 

1998; Kenny et al., 1998), the conventional ANOVA F-test requires many assumptions 

that may be challenging to satisfy—such as independence of sample distributions, 

normality, and homogeneity of variances (i.e., constant variance) among sample groups. 

Failing to meet these assumptions results in higher Type-I error rates—those wherein one 

rejects the null hypothesis when it is true—and lower statistical power (Keselman et al., 

1998; Keselman et al., 2002; Cribbie et al., 2012; Wilcox, 2012). Having a group of 
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unbalanced samples can further complicate the analysis process (Montgomery, 2001, p. 

600) and worsen the inflated Type-I error-rates problem. Thus, Lix and Keselman (1998) 

concluded that the use of conventional estimators (i.e., group means and variances) is not 

recommended in these situations. For instance, Wilcox (2012) reported that in the case of 

unequal variances, the actual Type-I errors could rise to 0.09 at the 0.05 level when 

testing on data with four groups with equal observations. With unequal sample sizes and 

under non-normality, however, controlling Type-I errors can be even harder. Moreover, 

Wilcox (1995) concluded that the effects of violating assumptions and/or the presence of 

outliers are also significant for Type-II errors (i.e., not rejecting null hypothesis when in 

fact it is false). Problematically, having equal sample sizes and meeting the assumptions 

are unlikely in observational studies such as cost-of-injury investigations.  

In response, some classical statistical textbooks have suggested transforming data 

and subjectively removing outliers. However, studies have identified the limitations of 

these approaches. For instance, Wilcox (2012) reported that beyond the problems caused 

by interpreting the results of transformed data, transformation cannot always lead to less 

skewed distributions. Removing outliers and then using conventional methods is also not 

recommended, as the remaining observations are not independent anymore and can result 

in the wrong standard errors (Wu, 2002).  

To this end, some studies have introduced a different idea: using more robust 

measures of location and scale—such as trimmed means and Winsorized variances—

instead of means and variances to improve the control over Type-I errors (Keselman et 

al., 1998; Luh and Guo, 2001). To adopt these measures, previous studies have tested 
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several heteroscedastic (i.e., those with no constant variance assumption) methods to 

determine the method that produces the best performance based on the data 

characteristics and the test design. For example, to compare the Type-I error and power-

rates of the F-test among several robust methods (i.e., Welch’s heteroscedastic F-test with 

and without trimmed means, James’s second-order test, parametric bootstrap procedure, 

and trimmed parametric bootstrap procedure), Cribbie et al. (2012) conducted Monte 

Carlo simulations using multiple ANOVA designs. They suggested that using Welch test 

or parametric bootstrapping methods with trimmed means and Winsorized variances 

could control Type-I errors and provide power better than conventional F-tests using 

means and variances. In another study, Luh and Guo (2001) suggested a combination of 

Johnson’s transformation and trimmed mean when ANOVA assumptions are violated, 

especially in cases with highly skewed distributions. Their proposal, however, was only 

tested on a specific design (i.e., two-way fixed-effect ANOVA). Lix and Keselman 

(1998) also compared six well-known methods to test the equality of location among 

different groups in the presence of heterogeneous variances. They reported that, although 

none of these methods were able to control the Type-I errors in all simulated conditions, 

the methods introduced by Alexander and Govern (1994), Box (1954), James (1951), 

and, to some extent, Welch (1951) could provide satisfactory results when using trimmed 

means and Winsorized variances. Wilcox (2012, p. 301) has referred to the work of Lix 

and Keselman (1998) and argued that while their results are valid in most situations, they 

still have limitations when the sample sizes are small; thus, Wilcox (2012) described a 

bootstrap method that could deal with this problem. Bootstrap methods have been 
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recommended by some studies as approaches that could be used in conjunction with test 

statistics; such bootstrapping would be based on trimmed means and would consequently 

produce more reliable results under non-normality and heterogeneity of variance (Wilcox 

et al., 1998; Wilcox, 2012). Methods that are deemed most appropriate to analyze injury 

costs are discussed in more detail later in this section.  

2.2.6 Robust measures of location and scale  

A measure of location (e.g., mean, median) and/or scale (e.g., range, variance) is 

considered robust whenever “slight changes in a distribution have a relatively small effect 

on the values of measures” (Wilcox, 2012, p. 23). Since the sample mean and variance 

are not robust and could be affected significantly by outliers in skewed distributions 

(especially heavy-tailed ones), replacing these parameters with robust measures such as 

trimmed means and Winsorized variance could help one to control Type-I errors and 

achieve higher power even when the assumptions of the F-test are violated (Huber, 1981; 

Wilcox, 2005; Cribbie et al., 2012; Wilcox, 2012). Since these two measures and how 

they are calculated are critical for understanding the results of this study, a brief 

description is provided here. 

Trimmed Mean: Let λ = [κn], where [κn] is the largest integer less than or equal 

to ‘κn’. ‘κ’ represents the proportion of observations trimmed from each tail of the 

distribution and ‘n’ is the sample size. Then, h = n – 2λ represents the effective sample 

size (i.e., the sample size after trimming). The sample trimmed mean for 𝑥𝑖 , (𝑖 =  𝜆 +

1,… , 𝑛 −  𝜆), then could be measured as: 𝑋𝑡̄ =
1

ℎ
∑ Xi
𝑛− 𝜆
𝑖= 𝜆+1  
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Winsorized variance: Subsequently, sample Winsorized variance will be 

calculated using the following equation: 𝑠𝑤𝑖𝑛
2 =

∑ (Yi− 𝑋̄𝑤𝑖𝑛)
2

𝑖

𝑛−1 
 

Where 𝑋̄𝑤𝑖𝑛 is the sample Winsorized mean, which represents the sample mean 

after replacing the trimmed observations in the lower and upper tails with the lowest and 

highest untrimmed observations respectively:  𝑋̄𝑤𝑖𝑛 =
1

𝑛
∑ Yi𝑖  ; where 

𝑌𝑖 = {

𝑋(λ+1)
𝑋𝑖 

𝑋(𝑛−λ)

 

𝑖𝑓 𝑋𝑖 ≤ 𝑋(λ+1) 

𝑖𝑓 𝑋(λ+1) < 𝑋𝑖 < 𝑋(𝑛−λ)
𝑖𝑓 𝑋𝑖 ≥ 𝑋(𝑛−λ) 

 

As mentioned before, several methods have been developed to adopt these robust 

measures. Based on the fact that some groups with relatively small sizes were presented 

in this study, the authors have decided to adopt a combination of robust methods to test 

the hypotheses. These methods are as follows. 

A Welch-type procedure  

To address the violation of ‘constant variance’ assumption when testing 𝐻0: 𝜇1 =

⋯ = 𝜇𝑗; (𝑓𝑜𝑟 𝑗 = 1,… , 𝐽), Welch (1951) suggested an alternative test statistic (W) as:  

𝑊 =  (𝐽 +  1) 𝛴[𝑤𝑗(𝐴𝑥̅𝑗 − ∑𝑤𝑗𝑥̅𝑗)
2
]/[𝐴2(𝐽2 −  1)  +  2(𝐽 −  2)𝐵], 

Where J is the number of groups. To calculate 𝑤𝑗, A, and B, the user lets 𝑠𝑗 equate to the estimated 

standard deviation of group j, and calculate the values as below:  

𝑤𝑗  =
𝑛𝑗

𝑠𝑗
2 ;                   𝐴 = ∑𝑤𝑗;                         𝐵 =  ∑ [

(𝐴 − 𝑤𝑗)
2

𝑛𝑗  −  1
] 

These choices enable users to compare the values of W with critical F values and 

reject the hypothesis whenever W is larger than critical values of F. In this approach, the 

degrees of freedom are (J-1) and 𝐴2 × (𝐽2 − 1)/3𝐵. However, one may notice that this 

method can only address the one-way designs. To extend this test to two-way and three-
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way designs, Algina and Olejnik (1984) proposed a generalization to the work of 

Johansen (1980) wherein a matrix formula is proposed to calculate the critical values. 

While Welch test (and its extensions to factorial designs) can address the 

violations of equal variances, studies have shown that when the sample distributions are 

not normal (e.g., heavy-tailed samples), the power of the test can be low (Wilcox, 2012). 

Consequently, replacing 𝑥̅𝑗 with trimmed means (𝑥̅𝑡𝑗) and 𝑠𝑗
2with sample Winsorized 

variance (𝑠𝑤𝑖𝑛𝑗
2 ) can lead to more powerful tests that can better control Type-I errors.  

Though this method can test the global main effects and interactions within a 

factorial design, it cannot perform the post-hoc hypothesis testing. Therefore, the next 

two methods have been proposed to test the pairwise comparisons. 

An extension of Yuen’s method to trimmed means 

A very important effect of using trimmed samples is that the remaining 

observations are no longer independent from each other. Therefore, the variance of the 

trimmed sample cannot be used to obtain the standard errors that are needed for the t-test. 

To address this problem, when comparing only two groups, Yuen (1974) suggested that 

one can use Winsorized variances to calculate the standard error for the trimmed means 

as: 

𝑑𝑗 = 
(𝑛𝑗 − 1)𝑠𝑤𝑖𝑛𝑗

2

ℎ𝑗(ℎ𝑗 − 1)
, (𝑓𝑜𝑟 𝑗 = 1, 2) 

Therefore, to perform the pairwise comparisons between two groups with 

trimmed means (i.e., 𝜇𝑡1 − 𝜇𝑡2) at the significance level α, the confidence intervals can 

be calculated as: (𝑋̅𝑡1 − 𝑋̅𝑡2) ± 𝑡 √𝑑1 + 𝑑2 , 
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where t is the 1 – α/2 quantile of the Student’s t-distribution with 𝑣̂ =

[(𝑑1 + 𝑑2)
2]/ [

𝑑1
2

ℎ1−1
+ 

𝑑2
2

ℎ2−1
] degrees of freedom. If, instead of one test, the goal was to 

use linear contrast codes to investigate multiple pairwise tests, one can update the 

hypothesis as: 𝐻0: 𝜓 =  ∑ cj𝜇𝑡𝑗 = 0
𝐽

𝑗=1
,   The estimate for the squared standard error can 

then be rewritten as: 𝑑𝑗 = 
𝑐𝑗
2(𝑛𝑗−1)𝑠𝑤𝑖𝑛𝑗

2

ℎ𝑗(ℎ𝑗−1)
, and when we let 𝐷 = ∑𝑑𝑗 , an estimate of the 

confidence intervals for 𝜓 would be: 𝜓̂ ± 𝑡 √𝐷. 

One last note is that, here, with C contrast codes, t is the 1 − α percentage point 

of the C-variate Studentized maximum modulus distribution (Dunnet, 1980). This 

extension would allow multiple pairwise tests when using a trimmed mean as the 

measure of location. 

Percentile bootstrapping  

Efron and Tibshirani (1994) defined the bootstrap method as “a computer-based 

method for assigning measures of accuracy to statistical estimates” (p. 10).  All bootstrap 

methods are based on a simple idea that instead of assuming an underlying distribution 

for our samples, one can use the data itself and generate estimates solely based on the 

data. Krishnamoorthy et al. (2007) have applied a parametric bootstrap method on a data 

set using 5,000 simulations and concluded that this approach could result in better control 

over Type-I error rates and greater power than the Welch test, especially when there are 

many groups and the sample sizes are small. Among different bootstrapping methods, 

percentile bootstrapping, with a trimming amount of 20%, generally yields better results 

(Wilcox, 2012, p. 304).  
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By assuming that X1, …, Xn are the n observations in the sample, a percentile 

bootstrapping would begin by randomly resampling n observation with replacement from 

the original sample, yielding X1*, …, Xn*. In order to estimate the trimmed mean of the 

original sample (𝑋𝑡̄ ), one can calculate the trimmed mean of the bootstrap sample (𝑋𝑡̄ *). 

The process of obtaining bootstrap samples could continue for T times, leading to T 

estimates as 𝑋̅𝑡1
∗ , …, 𝑋̅𝑡𝑇

∗ . A final step toward finding 1 −  𝛼 confidence intervals includes 

ordering these estimates in an ascending format such as: 𝑋̅𝑡(1)
∗ , , …, 𝑋̅𝑡(𝑇)

∗ , and finding the 

right quantiles wherein L = αT/2 (rounded to the nearest integer) and u = T-L. Thus, the 

bootstrap confidence interval for the trimmed mean would be (𝑋̅𝑡(𝐿+1)
∗ , 𝑋̅𝑡(𝑢)

∗ ).  

In the case of using the linear contrast codes, one can find the estimate of psihat 

(𝜓̂ =∑ cj𝑋̅𝑡𝑗
𝐽

𝑗=1
) in which 𝑋̅𝑡𝑗 is calculated from the true trimmed means of J 

independent groups and 𝑐𝑗s are constants with the sum of zero—and subsequently 

compute the p-values associated with each test. An example could clarify this process: 

suppose there are 5 groups, and the hypothesis is to compare groups 2 and 3. One could 

code c2 as +1, c3 as -1 and the rest as 0 and test whether 𝐻0: 𝜓 =  𝜇𝑡2 – 𝜇𝑡3 =  0 . To test 

this hypothesis, one could obtain a T bootstrap sample as explained previously for each 

group (second and third groups in this example), find the estimate of 𝜓̂, order them, and 

find the right quantiles. The hypothesis could be rejected whenever the confidence 

interval of 𝜓̂ does not include zero and when the p-values are less than the significance 

level (α). Percentile bootstrapping could be considered as an alternative method to 

perform multiple pairwise tests while using robust measures of location and scale. 
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Controlling Type-I error rates in multiple pairwise comparisons 

Testing multiple hypotheses can result in a multiplicity problem that causes false 

positive-rates (i.e., Type-I errors) to increase excessively (Benjamini and Hochberg, 

1995). Different methods have been suggested to address this issue. The simplest 

adjustment, known as the Bonferroni method, posits that to test m hypotheses in such a 

way as to enable the probability of one or more Type-I errors to remain at most at the 

significance level (α), one can execute each test at α/m significance level. However, 

some studies have raised concerns about the reliability of this approach. Perneger (1998, 

page 1), for instance, claims that the Bonferroni correction could “create more problems 

than it solves” because it focuses on a condition in which all null hypotheses are true, 

which is not valid in all cases. Perneger also suggests that using very conservative 

adjustments for Type-I errors—such as the Bonferroni method—can lead to losing more 

power, which is not desirable. Therefore, several improvements have been suggested in 

previous studies to overcome these challenges (Hochberg, 1988; Rom, 1990; Benjamini 

and Hochberg, 1995; Wilcox, 2001).  

This study has adopted the false discovery rate (FDR) method introduced by 

Benjamini and Hochberg (1995) as FDR (and its extensions) has been widely used in 

several studies to avoid inflated Type-I error rates (Weisberg et al., 2003; Storey and 

Tibshirani, 2003; and Anders and Huber, 2010). Specifically, by assuming that R is the 

number of hypotheses that are rejected from the total of m hypotheses, and Q is the 

proportion of R that are true but rejected in error (i.e., Q is the proportion of Type-I 

error), FDR is defined as the expected value of Q. Benjamini and Hochberg (1995) 
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illustrate that the conventional familywise error rate (FWER)—the probability of having 

at least one erroneous rejection—can be replaced with FDR, which is “less stringent” and 

can therefore produce more powerful results.  

The Benjamini-Hochberg procedure starts with listing all p-values in an 

increasing order such that P(1) ≤ P(2) ≤ … ≤ P(m). Users let k equal the largest value of i 

for which P(i) ≤ (𝑖 ×  𝛼 𝑚)⁄ . One can then reject all hypotheses for i = 1, 2, …, k. For 

instance, suppose five hypothesis tests’ p-values, at significance level of 0.05, are: 0.005, 

0.011, 0.015, 0.05, and 0.080. Bonferroni correction would suggest rejecting only tests 

with p-values less than 0.05/5 = 0.010. Only one test (0.005) would be rejected in this 

scenario. With the Benjamini-Hochberg method, however, the largest i that can pass the 

test is 3, and therefore three of five hypotheses could be rejected at α = 0.05. This 

example shows how Benjamini-Hochberg method could provide a less-conservative 

metric while controlling Type-I error rates in multiple tests. 

2.3 Research Methods 

Based on the past studies and the established statistical methodologies discussed 

in the background section, the research team implemented three main activities to 

determine the cost of injuries across different event types within a single construction 

trade. First, a comprehensive content analysis was conducted on accident reports to 

collect potential factors and to develop a data set for analyzing the costs of injuries. 

Second, the costs of injuries were estimated based on the nature of injuries (e.g., fracture, 

burn). Third, the research hypotheses were developed and tested using robust methods 

(i.e., adopting trimmed mean and Winsorized variance in Welch, Yuen, and 
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bootstrapping methods) to compare the cost of injuries among various event types, 

project end-uses, and project budgets and to investigate the possible interaction effects 

among these accident factors. The last activity also included examining the cost 

distributions of independent categories to gain more insights into accident data and—

more importantly—to find appropriate methods of analysis. The detailed description of 

each activity is provided here.  

2.3.1 Content analysis 

Content analysis has been successfully used to detect accident causes and to 

predict the severity of accidents (Esmaeili et al., 2015a, b, Gholizadeh and Esmaeili, 

2016). The research team built upon the success of these previous studies to develop a 

reliable safety database for further statistical analysis. First, the research team collected 

708 accidents reports from the electrical contractors’ category (North American Industry 

Classification System (NAICS) number: 238210) in the OSHA IMIS database; these 

reports were dated between 2007 and 2013. After downloading the accident reports, the 

research team screened the data and removed repeated reports of a single accident, 

reported accidents with no injuries, reported injuries whose causes were unrelated to 

work (e.g., heart attack, embolism), reports without enough information (e.g., unspecified 

source and nature of injury, unknown event type), and reported accidents that happened 

in a trade other than electrical contractors. This process reduced the number of accidents 

reports to 633. However, after excluding the fatal accidents from the reports, a total of 

388 cases were left for cost analysis. 
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The content analysis then coded and documented the following variables: event 

(i.e., accident) type, project end-use and project budget. When using inspection/accident 

summaries to investigate construction incidents, it is common to encounter errors or 

inconsistencies in reporting various factors. Previous studies have acknowledged this 

limitation in different contexts. For instance, Seixas et al. (1998) designed an experiment 

and asked three trained inspectors to measure the hazard levels of a construction site; they 

concluded that, even in very simple situations, there would be high “interobserver” 

variations in rating hazards.  To avoid such errors and subjective judgments, researchers 

often code the narratives manually based on some frameworks such as Haddon’s matrix 

(Haddon 1968, 1972), which was originally developed to classify factors contributing to 

motor vehicle injuries (Bondy et al. 2005). In this study, the content analysis was 

conducted manually and over multiple rounds by applying a common standard 

(Occupational Injury and Illness Classification Manual or OIICM), which was developed 

by the U.S. Department of Labor’s Bureau of Labor Statistics (Bureau of Labor Statistics, 

2012). An example of the subjective reporting errors was seen when the authors were 

reviewing struck-by accidents. In 16 cases, when working with electrical parts, the 

worker was “struck-by an arc flash”; all these cases were reported as struck-by accidents 

by OSHA inspectors. However, the ‘event or exposure’ section of the OIICM clearly has 

classified such accidents as ‘exposure to electricity’ under code 51. Such standardization 

across the subjective reports enabled the team to derive quantitative data from the 

qualitative reports.  
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Fourteen event types had been reported initially in accident reports, including two 

large categories of ‘other’ (7%) and ‘missing’ (16%) and seven categories (i.e., 

absorption, fall on same level, repetitive motion, rubbed/abraded, 

cardiovascular/respiratory failure, ingestion, and inhalation) that only accounted for 6% 

of the data overall. All instances with ‘other’ and ‘missing’ values were reviewed and 

whether reclassified to a new category (e.g., fall or struck by) using OIICM standard or 

removed from further analysis (in case of missing values). The seven small categories 

were combined to form a new ‘other’ category, which is now more meaningful as its 

components are known. ‘Struck by’ and ‘struck against’ accidents were combined into 

one category. These modifications formed the final five categories of event types in 

Figure 2.1. This new classification allows the research team to compare the cost of 

injuries among common event types that are representative of the accidents that often 

occur to electrical workers. 

 In original OSHA reports, project budgets and project end-uses were reported in 

seven and seventeen categories, respectively. Such numerous categories would result in 

groups of accidents with only a few observations, which would degrade the comparisons 

into categories that are not meaningful and/or representative—for instance, end-uses such 

as ‘excavation, landfill,’ ‘bridge,’ and ‘pipeline’ had only two, one, and one cases, 

respectively, in the original dataset. The effect of having factors with too many levels 

would be even more noticeable in multiple ANOVA, where the number of combinations 

between levels can grow quickly and result in many groups with no observations. To 

avoid this problem, the authors decided to consider only two categories for each of these 
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two factors. For the end-use, a logical choice was, first, to divide the projects into 

building (i.e, 298 accidents or 67%) and non-building (i.e., 90 accidents or 23%). The 

relatively low number of non-building projects suggests that dividing this factor into 

more categories would make very small, non-representative groups, which is not ideal for 

analysis.  

For the project budget, the original categories (and their frequencies) were as 

follows: under $50k (181), $50k to $250k (67), $250k to $500k (37), $500k to $1m (28), 

$1m to $5m (38), $5m to $20m (13), and more than $20m (24). These groupings clearly 

show that accidents are not distributed evenly among different project sizes and that most 

of the accidents have occurred among the smallest projects. To reduce the number of 

categories, the authors decided to consider $50k as the cut-off point to re-classify project 

budgets. Combining all projects with budgets more than $50k would create two relatively 

equal final categories: projects with a budget under $50k—which represents 47% of the 

data—and projects with more than $50k—which include 53% of accidents. More 

importantly, selecting this cut-off point allows the research team to compare the cost of 

injuries among the smallest projects in the data to those with much higher budgets. One 

may note that these budgets indicate only the amount that was given to the electrical 

contractors and are not representing the total budget of projects. 

2.3.2 Estimating the cost of injuries 

Unfortunately, OSHA’s accident summaries do not directly report the cost of 

injury. Therefore, to determine the costs for each accident, the research team used 

OSHA’s safety pay program in which the cost of injuries is determined based on the 
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nature or type of injuries. These estimates are derived from a dataset of the NCCI and 

represent the average cost of lost-time workers’ compensation claims for policy years 

2011 through 2013. Using this database, the research team could calculate the costs of 

injuries for each accident. For instance, if the nature of an injury was a fracture, its 

corresponding direct cost from the NCCI report would be $50,778. The research team 

decided to use only the direct cost of injuries for two main reasons. First, there are several 

assumptions involved in calculating the indirect cost, and as described in the background 

section of this paper, there is no consensus among researchers regarding the exact ratio 

between direct and indirect costs. Second, according to OSHA’s safety pays program, 

when the cost of an injury is higher than $10,000, the ratio of indirect to direct costs will 

be the same (i.e., 1.1) regardless of the type of injury. In this study, all the costs were 

more than $10,000, which is reasonable as only catastrophic accidents are involved in 

OSHA’s dataset. Since multiplying all the direct costs to the same constant (i.e., the ratio 

of indirect to direct costs) would not change our analysis, the research team decided to 

use only the direct costs. The cost of injuries for each nature of injury are presented in 

Table 2.1. 

Using the information in Table 2.1, now each accident in the data would have an 

estimated cost. Furthermore, the average cost of injuries among different levels of the 

three factors in the study can be calculated for future comparisons. For instance, from the 

388 non-fatal accidents, 47 included a struck-by event. Adding the cost of all different 

injuries in these 47 cases would add up to around $1,953,000, which results to an average 

of $41,553 for each struck by accident. 
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Table 2.1. Aggregated cost of different natures of injuries (all costs are in dollars) 

Nature of injury Cost ($) 

Laceration 19,713 

Hernia 22,313 

Heat Prostration 23,495 

Puncture 25,523 

Contusion 27,511 

Strain/sprain 31,565* 

Burn 40,188 

Fracture 50,778 

Concussion 59,372 

Multiple physical injuries 73,749 

Amputation 77,995 

Electric shock 93,858 
* This cost is the average of strains ($33,140) and sprains ($29,989) 

 

 

 

2.3.3 Design of the analysis 

As mentioned earlier, many studies have used statistics to estimate costs and have 

reported costs according to such factors as demographics (race, age, and occupation of 

the workers), professional trades, and type and source of injury. However, no study has 

compared these factors by means of inferential statistical tools such as hypothesis testing. 

Without such analysis, the differences between the costs cannot be fully investigated.  

To determine the effects of different event types, project end-uses, and project 

budgets on the costs of injuries, this study implemented two types of statistical tests: i) 

main effect tests and ii) post hoc tests. The list of null hypotheses that were tested in this 

study are presented here: 

Main effects: Cost of injuries are equal among different event types/project end-

uses/budgets. 
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Interactions: The effect of event types/end-uses on costs does not depend on the 

project budget and vice versa. 

Pairwise comparisons among main effects: (applied only on event type as this 

category is the only factor with more than two levels): Cost of injuries is equal among 

two different event types (e.g., fall vs. exposure to electricity). 

Pairwise comparisons among interactions (should be tested only if the overall 

interaction test is significant): The effect of two event types/end-uses on costs does not 

depend on the project budget and vice versa. 

These hypotheses provided the testable questions that drove our statistical 

analysis. 

ANOVA design  

A main effect test examines whether measures of location (e.g., statistical means) 

vary among different levels of the variable. If the factor had only two levels (e.g., end-use 

and budget), a significant main effect test is sufficient to reject the null hypothesis and 

conclude that one level, on average, has higher values of a dependent variable than the 

other level. However, when there are more than two categorical levels influencing the 

null hypothesis (e.g., as occurs under the event-type factor), rejecting the null only 

implies that two or more means are different at a significance level (α), and it is not 

possible to exactly identify which categorical levels are significantly different. To address 

this limitation, one can perform multiple post hoc pairwise comparisons to test which 

categorical level under a factor caused the observed effect (Schumacker, 2014).  
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To check the assumptions of ANOVA, the research team assessed the distribution 

of costs across the various factors and levels (e.g., event type). Then, the sample sizes and 

variances were checked to determine whether a conventional F-test would be appropriate 

to check the main effect and pairwise hypothesis tests. When any of the necessary 

assumptions were not met, the research team applied robust methods. Beyond the main 

effects of the factors ‘event type,’ ‘project end-use,’ and ‘project budget’ on the cost of 

injuries, the interactions among these variables have also been of interest. Particularly, 

the authors were interested in testing whether the effects of “event type” on cost depend 

on projects’ end-uses (i.e., building, and non-building) and projects’ budgets (i.e., less 

than $50,000 or more than $50,000). One-way ANOVA could not answer these types of 

comparisons about the interactions between the levels underneath the high-level factors. 

Therefore, the team needed to design a factorial ANOVA framework to test the main 

effects, interaction effects, and post-hoc pairwise comparisons of the factors presented in 

Figure 2.1.  

Since there were three factors — ‘project end-use,’ ‘project budget,’ and ‘event 

type’—the authors proposed a three-way factorial ANOVA design in which the levels 

under the factors determined the dimensions of the analytical matrices (5 event types x 2 

end-uses x 2 budget levels). This framework is appropriate to test the interactions 

between factors and also can provide more accurate main effect tests by using 

unweighted means.  



40 

 

Hypotheses testing  

After selecting the design framework, one needs to find an appropriate test 

statistic to conduct the hypotheses testing within the proposed design. When the 

variances were not constant among levels and the distributions of the dependent variable 

were not normal, the research team applied a robust measure of location (i.e., 20% 

trimmed means) and scale (i.e., Winsorized variance) along with a combination of robust 

methods, as described in the background section. The Welch-type procedure is used to 

test the main hypotheses. For pairwise tests, the Yuen’s extension was used as it accounts 

for non-independent issue of trimmed samples. Bootstrap methods also can be used in 

this situation. Several R functions (e.g., t3wayv2, mcp3atm, bbbmcppb) from the WRS 

package can perform this three-way analysis and tested all pairwise comparisons and 

their interactions. To control for Type-I error rates, the Benjamini-Hochberg method was 

selected by putting the value of bhop =TRUE in the R function. The significance level of 

α = 0.05 was used in this study and 2,000 samples were generated to build the 

confidence intervals for the bootstrapping process. 

One common practice is to test multiple hypotheses using linear contrasts to 

compare combinations (Davis, 2010). However, as there was no ‘control’ group among 

the variables in this study (i.e., no levels were of more interest than others), the authors 

decided to test all hypotheses pairwise since any type of event could cause serious 

injuries to workers. For a variable with J levels, the number of pairwise comparisons can 

be calculated as: J(J-1)/2. Thus, based on the ‘event types’ factor, ten pairwise tests (= 5 

× 4 / 2) needed be generated, as shown in Table 2.2, and the con3way( ) function from the 
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WRS package assigned these comparisons contrast codes. (The abbreviations from Table 

2.3 can help to represent each group for the explanation here.) For instance, in order to 

test whether the cost of injuries for exposure to electricity and fall accidents are 

significantly different (i.e., μE – μF), four exposure groups (EBL, ENL, EBM, and ENM) 

were coded as +1, four groups of fall accidents (FBL, FNL, FBM, and FNM) were coded 

as -1, and the other twelve groups were coded as 0. Since ‘project end-use’ and ‘project 

budget’ each only have two levels, one contrast code would be enough for their analysis. 

For instance, in the case of project end-uses, all ten “building” projects could be coded as 

+1, and all “non-building” projects as -1. The null hypotheses then would be: H0: μB – μN 

= 0. 
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Table 2.2. Contrast codes for pairwise comparisons among levels of event type 

 Less than $50,000 (L)  More than $50,000 (M)  

 Building (B) Non-building (N) Building (B) Non-building (N) 
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μC – μE +1 -1 0 0 0 +1 -1 0 0 0 +1 -1 0 0 0 +1 -1 0 0 0 

μC – μF +1 0 -1 0 0 +1 0 -1 0 0 +1 0 -1 0 0 +1 0 -1 0 0 

μC – μO +1 0 0 -1 0 +1 0 0 -1 0 +1 0 0 -1 0 +1 0 0 -1 0 

μC – μS +1 0 0 0 -1 +1 0 0 0 -1 +1 0 0 0 -1 +1 0 0 0 -1 

μE – μF 0 +1 -1 0 0 0 +1 -1 0 0 0 +1 -1 0 0 0 +1 -1 0 0 

μE – μO 0 +1 0 -1 0 0 +1 0 -1 0 0 +1 0 -1 0 0 +1 0 -1 0 

μE – μS 0 +1 0 0 -1 0 +1 0 0 -1 0 +1 0 0 -1 0 +1 0 0 -1 

μF – μO 0 0 +1 -1 0 0 0 +1 -1 0 0 0 +1 -1 0 0 0 +1 -1 0 

μF – μS 0 0 +1 0 -1 0 0 +1 0 -1 0 0 +1 0 -1 0 0 +1 0 -1 

μO – μS 0 0 0 +1 -1 0 0 0 +1 -1 0 0 0 +1 -1 0 0 0 +1 -1 
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Since the research team also wanted to study interactions between factors, 

relevant contrast codes were developed for each comparison using the con3way function. 

For instance, to test whether ‘project end-use’ had any effect on the difference between 

the cost of injuries caused by ‘exposure to electricity’ and ‘fall’ accidents, the following 

null hypothesis was tested: H0: μEB – μFB – μEN + μFN = 0.  

2.4 Results 

To determine the need to disaggregate the injury costs down to the levels under 

each factor—and thereby to determine whether the research design demanded one-way or 

factorial ANOVA—the research team examined the effect of event types. Table 2.3 

shows the summary of costs of injuries among the five event types. Before testing the 

main-effect hypothesis (i.e., comparing the mean of the cost for each level), the research 

team observed that both the standard deviation (and hence the variance) and the number 

of observations differed among the groups. Such an observation signified, for instance, 

that ‘exposure to electricity’ leads to injuries with a more diverse range of costs 

compared to ‘fall’ accidents. While this observation may be offset by having more 

observations in the sample, the fact that these standard deviations diverged indicated that 

a simple one-way ANOVA design was not appropriate for this study.  

 

 

 
Table 2.3. Cost of injuries among five event types (in thousand dollars) 

 Fall to lower 

level (F) 

Struck-by 

(S) 

Electricity 

(E) 

Caught 

in/between (C) 

Other 

(O) 

Frequency 146 47 141 24 30 

Mean $47.89 $41.55 $61.49 $68.67 $45.63 

Standard Deviation $10.64 $17.29 $26.32 $12.81 $13.28 
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The results of a Levene’s test (test statistic = 132.98, p-value < 2.2e-16) further 

illustrated that the variances were not equal, and checking the estimated distribution of 

the residuals showed that the normality assumption was also violated. Figure 2.2 

visualizes these violations and their effects on the confidence intervals of the estimated 

means. Instead of just showing the pointwise estimates (i.e., means), Figure 2.2 (left) 

displays the 95% confidence intervals for each mean. If the sample size and variance 

were equal, the length of these intervals would be the same, thereby providing a fair 

context for using a conventional F-test to test the hypothesis: categories with no overlap 

in confidence intervals would be considered significantly different. Furthermore, the 

estimated distribution of residuals in Figure 2.2 (right) indicates that the normality cannot 

be assumed for these five categories. Therefore, the one-way ANOVA assumptions could 

not be met, which would conceivably inflate the Type-I error rates of the F-test beyond 

the 0.05 level and thereby weaken the findings, as discussed in the background section. 

 

 

 

 

Figure 2.2. (a) Mean estimates and confidence intervals of injury costs (in thousand dollars) among five event 

types; and (b) estimated distribution of the residuals 
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To provide more clarity, the research team applied both the conventional F-test 

and the robust methods with trimmed means to show how selecting a wrong method can 

produce misleading results. Both omnibus tests indicated that the cost of injuries differed 

among event types and therefore that the null hypothesis can be rejected (F-test statistic 

was 19.53, with a p-value of 1.23e-14; Welch-type test statistic with 20% trimmed means 

was 10.11, with a p-value of 5.67e-06). However, the pairwise comparisons revealed the 

differences between the two methods. Concretely, while the F-test found that the cost of 

‘exposure to electricity’ is significantly higher than ‘falls’ (confidence interval for the 

difference: [7.51, 19.77]), the confidence interval of the Yuen’s method (i.e., [-0.45, 

18.04]) indicated that this difference is not significant. In another test based on a 

bootstrap version of the Yuen’s method, there is enough evidence to believe that ‘fall’ 

and ‘struck-by’ accidents would result in significantly different costs (confidence interval 

for the difference: [0.18, 18.10]) even when the F-test cannot reject the hypothesis that 

these two categories are equal (confidence interval for the difference: [-2.52, 14.89]).  

Based on the discussions in the background section, given these data, the research 

team found the results of the more robust tests more reliable. Therefore, for the rest of 

this study, the findings were made using the robust methods. As a reminder, a Welch-

type method with trimmed means was used to test the main effects, and two methods 

(i.e., an extension to Yuen’s method and percentile bootstrapping) were selected for the 

pairwise comparisons because of the non-normal population, heteroscedastic variances, 

and un-equal sample sizes. Using two different techniques to test pairwise comparisons 

enabled the research team to confirm the reliability of the findings.  
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2.4.1 Three-way design: main effects and interactions 

As mentioned before, to study the potential main effects of event types, end-use, 

and project budget as well as their interactions, a three-way design with 20 distinct 

groups was proposed. Table 2.4 lists the average cost of injury for all 20 possible event–

end-use–budget combinations as well as the number of accidents in each sample and their 

standard deviations—all costs are in $1,000 to simplify the representation of data. For 

instance, in building projects with budgets less than $50,000, 62 accidents happened due 

to exposure to electricity, which cost, on average, $54,780. One may note that the “other” 

factor consists of seven event types, including “falls on the same level”; “exposure to 

temperature extremes”; “struck-against object or equipment”; “explosions”; “fires”; 

“crushed in collapsing structure, equipment, and material”; and “exposure to harmful 

substances.” 
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Table 2.4. Descriptive statistics of twenty distinct groups 

   Fall 

(F) 

Struck-

by (S) 

Electricity 

(E) 

Caught 

in/between 

(C) 

Other 

(O) 

Building 

Projects 

(B) 

Less 

than 

$50,000 

(L) 

Mean 
45.81 

50 

11.82 

42.69 

12 

18.10 

54.78 

62 

24.43 

75.02 

8 

10.16 

45.03 

Size 9 

SD 6.02 

More 

than 

$50,000 

(M) 

Mean 
47.98 

70 

11.00 

38.33 

23 

17.35 

61.82 

52 

26.30 

60.45 

5 

13.93 

52.04 

Size 7 

SD 21.18 

Non-

building 

Projects 

(N) 

Less 

than 

$50,000 

(L) 

Mean 
50.06 

11 

8.21 

41.98 

6 

16.36 

72.04 

15 

26.97 

64.52 

4 

15.75 

50.41 

Size 4 

SD 7.26 

More 

than 

$50,000 

(M) 

Mean 
51.57 

15 

2.56 

51.42 

6 

17.10 

80.57 

12 

24.89 

70.90 

7 

13.39 

39.04 

Size 10 

SD 12.54 

 

 

 

To better illustrate how end-use and project budget can affect the injury costs 

among different event types, Figure 2.3 shows the estimated means (and their confidence 

intervals) for the five event types under the four different project contexts. In general, 

‘caught in/between’ and ‘exposure to electricity’ led to higher injury costs than the other 

three accident types under all four contexts. In these two event types, building projects 

with low budgets were the only context in which ‘caught in/between’ accidents resulted 

in higher costs than ‘exposure to electricity’. On the other hand, among the other three 

categories, ‘struck-by’ only exceeded ‘other’ accidents in non-building projects with 

higher budgets. The significance of these interaction effects will be tested in the 

following sections. 
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Figure 2.3. Cost of injuries among event types partitioned by end-use and project budget 

PB = project budget; M = more than $50,000; L = less than $50,000; EU = end-use; B = building; N = 

nonbuilding; ET = event type; C = caught in/between; E = electricity; F = fall to lower levels; O = other; and 

S = struck-by. 

 

 

 

To employ robust methods, one can apply a 20% trimming on each group. Table 

2.5 shows the sample statistics, after 20% trimming, of a 5 (event types) × 2 (end-use) × 

2 (project budget) factorial ANOVA design on cost of injuries among electrical 

contractors.  

 

 

 

 

 

 

 

 



49 

 

Table 2.5. Descriptive statistics of twenty distinct groups after trimming 

   Fall to 

lower level 

(F) 

Struck-

by (S) 

Electricity 

(E) 

Caught 

in/between 

(C) 

Other (O) 

Building 

Projects 

(B) 

Less than 

$50,000 (L) 

Mean 49.64 

30 

8.26 

45.05 

7 

5.87 

47.35 

38 

23.87 

78.35 

6 

1.65 

41.69 

8 

12.08 

Size 

SD* 

More than 

$50,000 (M) 

Mean 50.79 

42 

1.14 

51.59 

5 

20.70 

58.61 

32 

25.99 

58.67 

3 

13.63 

37.66 

15 

14.63 

Size 

SD* 

Non-

building 

Projects 

(N) 

Less than 

$50,000 (L) 

Mean 50.77 

7 

1.51 

50.41 

4 

7.26 

75.49 

9 

26.49 

64.52 

4 

15.75 

44.54 

4 

16.29 

Size 

SD* 

More than 

$50,000 (M) 

Mean 51.03 

9 

0.62 

40.59 

6 

12.11 

87.20 

8 

24.53 

73.21 

5 

13.05 

51.49 

4 

0.58 

Size 

SD* 

* All the SDs are Winsorized standard deviations 

 

 

 

2.4.2 Testing the hypotheses 

First, a Welch-type procedure was applied to test the main effects and 

interactions, and the results appear in Table 2.6. Among the three factors, only the main 

effects of “event type” and “end-use” were found to be significant. Consequently, one 

can conclude (1) that different event types can cause different injury costs and (2) that the 

cost of injuries is not equal between buildings and non-building projects. However, this 

study did not find a significant difference among the cost of injuries that occur in projects 

with budgets ‘less than $50,000’ versus those with budgets ‘more than $50,000.’ In terms 

of interactions between the factors, no significant effect was detected. However, the 

interaction between event types and end-use had a relatively small p-value and therefore 

was investigated in more detail during the pairwise comparisons. 
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Table 2.6. The main effects and interactions among the three factors 

  Test 

Statistic 

Critical 

Value 

p-value Effect size 

Main effects Event Type (ET) 41.43 12.76 2e-04 0.56 

 End-Use (EU) 5.36 4.10 0.026 0.26 

 Project Budget (PB) 0.19 4.10 0.67 0.09 

Interactions ET:EU 11.24 12.76 0.07 0.63 

 ET:PB 2.26 12.76 0.74 0.56 

 EU:PB 0.56 4.10 0.46 0.22 

 ET:EU:PB 5.67 12.76 0.32 0.64 

 

 

 

While end-use has only two levels and, based on the previous results, one can 

conclude that non-building projects lead to higher injury costs than building projects, the 

specific level differences among event types were not apparent within the previous 

findings. Therefore, two robust methods based on the 20% trimmed means were used to 

investigate all pairwise comparisons among the five event types, and the findings appear 

in Table 2.7. One may note that all the values for psihat are positive, meaning that 

‘category1’ has higher values than ‘category2’ in all tests. While the bootstrapping 

method generally generated smaller confidence intervals, both methods found the exact 

same tests to be significant: 

• There was a significant difference in the cost of injuries between ‘caught 

in/between’ accidents and ‘fall’ accidents; the cost of injuries from ‘caught 

in/between’ accidents were significantly higher than ‘fall’ accidents. 

• The same results occurred when comparing injury costs between ‘caught 

in/between’ and ‘other’ (𝜓̂=87.10), and between ‘caught in/between’ and ‘struck-

by’ accidents (𝜓̂=99.38), demonstrating the higher costs of the ‘caught 

in/between’ event-type level than both ‘other’ and ‘struck-by’ events. 
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• Similar conclusions can be drawn for accidents caused by ‘exposure to 

electricity.’ Post-hoc tests indicate that ‘exposure to electricity’ can cause higher 

injury costs than ‘falls,’ ‘other,’ and ‘struck-by’ levels. 

 

 

 
Table 2.7. The pairwise comparison of the main effects of event types 

    Extension of Yuen’s 

method to trimmed 

means 

Percentile bootstrap 

Category1 Categoriy2 Effect 

size 

psihat CI lower CI upper CI 

lower 

CI upper 

Caught 

in/between 

Fall 0.73 72.52 10.52 134.53 38.65 104.06 

Caught 

in/between 

Other 0.76 87.10 18.67 155.53 38.74 130.71 

Caught 

in/between 

Struck-by  0.76 99.38 31.98 166.77 51.13 144.71 

Caught 

in/between 

Electricity   0.24 6.10 -66.37 78.58 -47.79 61.17 

Electrical Fall 0.25 66.42 11.64 121.20 14.15 101.34 

Electrical Other 0.34 81.00 13.04 148.95 27.22 129.50 

Electrical Struck-by 0.37 93.27 27.00 159.55 31.03 146.74 

Fall Other  0.39 14.58 -36.04 65.19 -16.68 43.95 

Fall Struck-by 0.36 26.85 -23.27 77.00 -5.22 64.16 

Other Struck-by 0.17 12.28 -48.90 73.46 -33.54 60.57 

 

 

 

As mentioned before, only one interaction between event types and end-use was 

marginally significant. Hence, a set of ten pairwise comparisons were tested regarding 

this interaction. The results in Table 2.8 indicate two significant interactions when using 

the percentile bootstrap method. Based on these findings, one can conclude that nonfatal 

‘exposure to electricity’ causes higher injury costs than nonfatal ‘falls,’ and this effect is 

even stronger in ‘non-building’ projects than ‘building’ projects. In the same manner, the 

effect of end-use on injury costs is even more significant when the accident has been 

caused by ‘exposure to electricity’ than the ‘other’ level. One may note that the second 
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interaction was not found to be significant in Yuen’s method and should be interpreted 

with more caution.  

 

 

 
Table 2.8. The pairwise interactions between event type and project end-use 

  Extension of Yuen’s 

method to trimmed means 

Percentile bootstrap 

Interactions psihat CI lower CI upper CI lower CI upper 

CB-CN-EB+EN 56.01 -16.46 128.49 -5.02 106.29 

CB-CN-FB+FN 0.65 -61.35 62.66 -31.15 35.26 

CB-CN-OB+ON -6.35 -74.79 62.08 -51.47 39.13 

CB-CN-SB+SN 15.97 -51.43 83.36 -33.37 62.84 

EB-EN-FB+FN -55.36 -110.13 -0.58 -91.20 -7.23 

EB-EN-OB+ON -62.37 -130.32 5.59 -113.12 -8.06 

EB-EN-SB+SN -40.05 -106.32 26.23 -92.45 15.16 

FB-FN-OB+ON -7.01 -57.62 43.61 -39.31 21.28 

FB-FN-SB+SN 15.31 -34.84 65.46 -24.62 48.97 

OB-ON-SB+SN 22.32 -38.86 83.50 -31.42 68.14 

 

 
 

2.5 Discussion 

2.5.1 Injury costs across accident type, project end-use, and project budget  

The effects of distinct event types, project end-uses, and project budgets on the 

costs of occupational injuries have been analyzed to determine which accident types/end-

uses/budget levels are costlier. One should note that, as mentioned in the introduction 

section, the analysis has only included the nonfatal injuries and therefore the 

interpretations should be limited to nonfatal cases. The main effect tests determined that 

the cost of injuries can vary significantly among different event types and project end-

uses. 

Regarding event types, while ‘exposure to electricity’ and ‘fall’ were the most 

common accident types among electrical contractors—and hence accumulated the most 
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cost—one must focus on the average cost of each type of event to compare events. The 

exploratory results suggest that ‘caught in/between’ and ‘exposure to electricity,’ on 

average, can cause higher costs than ‘fall,’ ‘struck-by,’ or ‘other’ accidents. The robust 

hypothesis tests further confirmed the significance of these differences. After the 

omnibus test revealed that the costs of different event types are not equal, pairwise tests 

were conducted to indicate where the difference comes from. The pairwise comparisons 

revealed that ‘caught-in/between’ accidents, on average, cost significantly more than 

accidents caused by either a ‘fall to a lower level,’ ‘struck-by objects,’ or ‘other.’ These 

findings are consistent with the results of Waehrer et al. (2007b), who reported that 

caught-in accidents ranked higher (rank 6) than those caused by falls (rank 9) or struck-

by objects (not among the first 10) when ranking events based on the average cost of days 

away from work. Such an outcome could be explained by the nature of injuries caused by 

different events. One reason for this could be that ‘caught-in/between’ accidents, would 

result in more severe and often permanent injuries (e.g., amputation, concussion) than 

‘fall’ and ‘struck-by.’ For instance, 56% of ‘caught-in/between’ accidents have resulted 

in an amputation/concussion; this number is only 11% for ‘fall’ and ‘struck-by’ 

accidents.  In one case, for instance, during a lifting operation, a worker’s hand was 

caught between a transformer and the sling, causing the index finger of the worker to be 

amputated. In comparison, fractures were the most common outcome of a nonfatal fall 

(74%) or struck-by (50%) accidents. MacKenzie et al. (2007) reported that the total direct 

cost (including hospitalizations, doctor visits, etc.) of lower extremity amputations could 

reach $91,000 (in 2002 dollars), which is substantially higher than the $39,000 cost for 
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multiple fractures reported by Bonafede et al. (2013). ‘Exposure to electricity’ yielded 

similar results as ‘caught in/between’ when compared to ‘struck-by,’ ‘fall,’ and ‘other’ 

accidents. Almost all nonfatal ‘exposure to electricity’ accidents (98%) resulted in either 

an electrical burn or an electrocution. Electrocutions resulted in the highest injury costs 

reported by NCCI, which can explain the fact that exposure accidents had higher costs 

than ‘struck-by,’ ‘fall,’ and ‘other’ accidents. Waehrer et al. (2007b) ranked “contact with 

electricity” as the second costliest (on average) event. Fordyce et al. (2007) also 

acknowledged the high average cost of electrical injuries, especially when the whole-

body system is injured ($228,830). To summarize the initial findings, one can conclude 

that for electrical contractors, ‘exposure to electricity’ and ‘caught-in/between’ events 

have higher injury costs than ‘fall to a lower level,’ ‘struck-by,’ and ‘other’ accidents.  

For the test on end-uses, this study found that, while around 77% of the nonfatal 

accidents among electrical workers occur on building worksites, these accidents, on 

average, cost significantly less than injuries that occur on non-building projects. This 

result can be attributed to the fact that while electric shocks, amputations, and 

concussions (i.e., the costliest types of injury) account for only 21% of injuries in 

building projects, their share in non-building projects is 33%. Higher injury costs in non-

building projects indicate that these projects expose workers to higher levels of hazard 

(e.g., working in open spaces with more machinery in workers’ vicinity), which could 

result in more severe accidents. Moreover, unlike building projects—which are all, to 

some extent, similar in nature—non-building projects include a diverse set of end-uses 

ranging from powerlines and refineries to streets and bridges. This variety in project 
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characteristics can lead to more uncertainties and make it harder for small contractors to 

recognize all the hidden safety-risk factors on a construction site. Previous studies have 

investigated potential factors that can influence the rate of accidents among construction 

companies. For instance, Hinze and Gambatese (2003) pointed out that factors such as 

implementing employee drug testing, safety training, and minimizing worker turnover 

can positively affect the safety performance of specialty contractors. However, the effect 

of project end-use on cost of injuries has not been studied enough among safety 

researchers. Therefore, the authors believe that the findings of this study could encourage 

researchers and practitioners to consider end-use in future studies as an important factor 

in determining the hazard levels and risks that are involved in specific construction 

projects/tasks. Consequently, the outcomes of our study’s analysis resonate with both the 

literature and anecdotal analysis. 

The significant effect of project end-use on the cost of nonfatal injuries was found 

to be stronger among some event types. The findings show that when compared to ‘fall’ 

and ‘other’ accidents, ‘exposure to electricity’ caused much more severe injuries in non-

building projects than in building projects. In other words, non-building projects are far 

more dangerous if a worker’s task involves the possibility of an ‘exposure to electricity’ 

rather than a ‘fall’ or ‘other’ accident. Further investigation reveals that two-thirds of 

‘exposure to electricity’ cases that occurred in non-building projects resulted in an 

electrocution. This quantity is almost two times the rate of electrocutions in building 

projects when electricity is involved: most of exposure to electricity in building projects 

resulted in much less severe burn injuries. The research team have reviewed the 
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electrocution cases and found two main reasons behind their prevalence in non-building 

projects. First, in non-building contexts (e.g., powerlines, transmission lines, excavation, 

highways), electrical parts/components are usually energized to much higher voltages. 

The reports show several cases in which the employee, or part of the vehicle he/she was 

working on, was contacted with massive voltages of 1200, 7200, 13800, 69000, and in 

one case, 115000 volts. Such large voltages, which are not common in building 

environments, can explain the more severe and costlier injuries in non-building projects. 

Another factor that played a significant role in nonfatal electrocutions in non-building 

projects was the deenergizing process. For instance, in a roadway project, the electrical 

contractor was responsible for moving the base of a traffic light pole while another crew 

was responsible for deenergizing the wirings. A lack of communication between these 

crews resulted in an electric shock while an employee was using a jackhammer to break 

the concrete of the base. The authors would like to remind readers that these findings are 

based on only nonfatal incidents. The conclusions might be quite different in the context 

of fatal accidents. 

2.5.2 Practical implications 

As mentioned by Hallowell and Gambatese (2009), risk mitigation may be 

achieved in three ways: reducing exposure to hazards, reducing the frequency of 

accidents, and reducing the severity of accidents. Because estimating the amount of 

exposure can be very project-oriented, most studies examining safety programs have 

focused on estimating the frequency and severity of construction accidents. While the 

frequency of various accident types (e.g., falls, electrocutions) can be derived rather 
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readily from historical data, estimating severity is not as straightforward, particularly 

among non-fatal injuries. One way to infer the severities of non-fatal injuries is by 

considering the cost they impose on workers, companies, and society (Tang et al. 2004). 

Therefore, this study has estimated the cost of non-fatal injuries for five categories of 

accident types, two categories of project end-uses, and two categories of project costs.  

The average costs of injuries for each category, however, cannot be used to 

differentiate among categories until a formal statistical test confirms the difference 

between categories. For this reason, robust hypothesis tests have been conducted on cost 

estimates to reach statistically significant conclusions. The results indicate which 

accident type/project end-use have caused more costs among electrical contractors. 

Considering costlier (i.e., more severe) accidents along with more frequent event types 

can draw a more realistic picture of safety priorities among electrical contractors. For 

instance, looking only at the frequency of an accident type would suggest that ‘caught 

in/between’ events do not expose electrical workers to high risks and therefore can be 

neglected or at least not prioritized when assigning safety resources and/or designing 

safety interventions. However, considering the findings of this study, managers may want 

to emphasize ‘caught in/between’ cases, as such events demonstrate higher risks to both 

employees and companies, given the severity of their consequences. The findings also 

suggest that safety managers need to consider non-building projects as high-impact risk 

environments, particularly when the workers are exposed to sources of electricity. Safety 

practitioners could consider specialized training sessions for workers in non-building 

projects and educate them about unique sources of injuries in such environments.  
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Another potential beneficiary of the results of this study are insurance companies. 

The findings can help insurers in adjusting their premium rates not only based on a 

contractor’s safety performance history but also based on the type of projects and 

activities that they have been involved in. For instance, knowing that an electrical 

contractor is mostly involved in building projects could result in some sort of reduction in 

their premiums.  

2.5.3 Methodological advancement for construction-safety risk analysis 

Beyond the value of our findings for practitioners trying to make cost-benefit 

decisions about different types of accident-prevention measures, a main contribution of 

this study is the demonstration of a more robust hypothesis-testing methodology for 

analysts within the construction-safety arena. The robust and nuanced approach here will 

help users disaggregate data in such a way to better derive meaningful insights in their 

risk analysis. 

The authors wish to underscore that while many methods have been introduced, 

studied, and reviewed in statistics literature on the topic of the methods used in this 

paper, the fact that no single best method is agreed upon by the majority of statistical 

scholars shows that methods should be chosen carefully according to the sample data at 

hand. Therefore, this study introduced an approach in which one needs to investigate the 

samples before using a conventional method, such as an F-test, to examine the 

hypothesis. Visualizing the distribution of samples and the residuals alongside some 

statistical tests (e.g., Levene’s test) could help researchers to understand the data and 

decide upon which common hypothesis-testing methods are appropriate.  
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The study also applied more robust measures of location and scale along with 

applicable test statistics that can be used especially when the underlying assumptions of 

other test statistics are not satisfied. As shown here, these tests can be done through 

available statistical packages and produce more reliable results when comparing the costs 

of two or more categories. Whenever a single method cannot be proved to be the best, the 

approach described in this study would serve as a good practice to yield several 

robustness checks and to enable researchers to compare their results and then interpret 

them. Such a best practice can determine the stronger main effects, as more tests would 

confirm any effects first found within the data.  

When applying any statistical tests, the authors encourage researchers to examine 

confidence intervals very closely: When confidence intervals are very close to zero, one 

needs to interpret these tests more carefully as another test with higher significance level 

may fail to reject the hypothesis. On the other hand, a test may fail to reject the 

hypothesis when its confidence interval barely contains zero. One needs to be aware that 

the two categories might be still considered different at a slightly lower significance 

level, and therefore must consider confidence intervals alongside significance levels to 

derive meaningful conclusions.  

2.6 Conclusions 

One common way to measure the burden of an accident on a construction project 

is to estimate the consequences in monetary terms. Advancing our knowledge about the 

cost of injuries provides several benefits. In particular, the cost of injuries can be used as 

an indicator of potential risks associated with different activities and trades. This 
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knowledge can help decision makers more effectively assign limited available safety 

resources (Kane, 1996) and focus on costlier accident types to prevent more severe injury 

types.  

A large number of studies have investigated the cost of injuries; however, few 

studies have examined the cost of injuries among specialty trades such as electrical 

contractors. Consequently, this study analyzed occupational accidents among electrical 

contractors between 2007 and 2013. The variables that were considered in the cost 

analysis were accident types—and the corresponding nature of injuries—project end-

uses, and project budgets. After scrutinizing the distribution of samples and reviewing the 

assumptions of conventional methods of analysis of variance, the authors applied robust 

methods of hypothesis testing to account for assumption violations. Different robust 

methods were tested on the data to gain the most reliable results. Ultimately, a Welch-

type procedure (for main effects and interactions), an extension of Yuen’s method, and a 

percentile bootstrap method with trimmed means and Winsorized variances (for pairwise 

comparisons) were selected to analyze the cost data. The results of pair-wise comparison 

indicated which event types and project end-uses could result in injuries with higher 

costs. 

Some limitations related to this study are worth mentioning. First, the data 

analyzed in this study is biased toward more severe—though nonfatal—accidents, which 

may be perceived as a limitation because some small accidents with lower costs may be 

excluded from OSHA’s database. Unfortunately, minor injuries are not usually reported 

accurately and therefore are not included in most public databases. However, the authors 
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believe that the findings of this paper can still offer a reliable comparison among some of 

the more common accident types and their impact on the safety performance of electrical 

contractors. Second, the data did not provide the unique costs of each accident, and 

therefore, the average costs were assigned based on injury types (i.e., nature of injury 

such as fracture, burn, etc.). The authors recognize the sampling error that using the 

average cost data might bring to the analysis. However, considering the large quantity 

and the high quality of NCCI’s database for injury costs, the sampling error is deemed to 

be marginal. Third, the authors acknowledge that incorporating other variables such as 

‘injured part of body’ and the ‘severity of injury’ (e.g., the degree of a burn) would lead 

to more precise cost estimations and possibly stronger statistical results; we encourage 

future studies to incorporate these factors. Lastly, considering more predictor factors—

such as safety budgets, experience and education levels of the workers, protection 

measures, and environmental and human factors—could have provided insightful 

information about the effects of such factors on the cost of injuries. Unfortunately, these 

factors were not available on OSHA’s database and could not be examined in this study.  

 In future studies, researchers may benefit from considering other variables, such 

as the injured part of body, to make better cost estimations. Future studies also need to 

examine in more detail the effects of project context (e.g., project end-use) on severity 

and cost of occupational injuries, a topic which has not received much attention in 

construction. The authors recommend such pursuits to better aid decision makers and to 

better protect workers in the field. 
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CHAPTER THREE: TRENDS IN CATASTROPHIC OCCUPATIONAL 

INCIDENTS AMONG ELECTRICAL CONTRACTORS 

3.1 Introduction 

Preventing occupational incidents in the construction industry is challenging, 

since this industry involves a large number of relatively small employers, multi-employer 

worksites, numerous hazards, and a highly mobile workforce (Abudayyeh et al. 2003; 

Esmaeili and Hallowell 2012; Sousa et al. 2014). The risk of injury for construction 

workers especially escalates when these workers frequently interact with electricity, as is 

the case for electrical contractors: An examination of the National Traumatic 

Occupational Fatalities (NTOF) database revealed that, although construction laborers 

have the highest number of fatalities among the 38 different occupations included in the 

database, electrical power installers and repairers have the highest rate of fatalities 

among all occupations (Chen and Fosbroke 1998).  

Many of these risks manifest in the nature of the work—electrical contractors’ job 

entails installing and maintaining electrical systems as well as using a variety of hand 

tools (e.g., screwdrivers, pliers, knives, and hacksaws), power tools, and testing 

equipment (Abudayyeh et al. 2003). Complicating the occupational safety of this entire 

population is the fact that, because of the degree of skill required, electricians often spend 

most of their career in one of two categories (Robinson et al. 1999; Abudayyeh et al. 

2003): indoor contractors, who install conduits, connect wires, test circuits, and install 

and maintain lighting systems; and outdoor contractors, who work with high voltage 

wiring in settings ranging from the community to the consumer. Problematically, unlike 



63 

 

other specialty trades, who have experienced a decreasing number of injuries and 

fatalities in recent years, the number of fatal injuries across electrical contractors has 

increased rapidly between 2011 to 2016 (Bureau of Labor Statistics 2019).  

To better understand the nature of these occupational incidents among electrical 

contractors—and therefore to discover effective safety interventions to prevent injuries 

(Xu and Xu 2021), especially fatalities—this study analyzed a large national database of 

occupational accidents to detect which statistically significant influential factors 

contribute to injuries and deaths among electrical contractors. This study has collected 

data from the Occupational Safety and Health Administration’s (OSHA’s) Integrated 

Management Information System (IMIS) accidents database from 2007 to 2013. Hence, 

the outcomes of this research work apply to the construction industry of the United States 

of America. Due to the categorical nature of accident factors (e.g., sources of injuries, 

event type), determining the correct values for these factors remains one of the main 

challenges of using historical accident data. Therefore, this study adopted a rigorous 

content-analysis method to ensure the reliability of final variables. The effects of 

influential accident factors on the fatality rates were then analyzed using the chi-square 

test of independence, Cramer’s V tests, and Classification and Regression Trees (CART) 

analysis using decision trees (Elassad et al. 2020). Given the statistical significance of the 

variables identified during this study, these results will help practitioners to better 

understand nature of accidents, design specialized training programs, consider safety 

during design, choose alternative means and methods of construction, identify high-risk 
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periods of a project, help small contractors better allocate their resources, and more 

strategically select injury-prevention practices. 

The research team conducted an in-depth literature review related to occupational 

incidents among electrical contractors. Since electrical contractors are extensively 

exposed to electrical hazards, the research team also reviewed existing studies to better 

understand how workers get involved in electrical accidents. Salient results of the 

literature review are provided here. 

3.2 Background 

3.2.1 Occupational Incidents Among Electrical Contractors 

There are limited number of studies that have investigated the nature of accidents 

among electrical contractors. In a 2003 study, Abudayyeh et al. (2003) developed a 

survey based on the Bureau of Labor Statistics (BLS) safety and health statistics database 

to identify tasks associated with injury, illness, and fatality trends in electrical 

contracting. Their study revealed information on important factors contributing to 

(mostly non-fatal) injuries—such as sources of injuries, event types, and nature of 

injuries—that occurred to electrical workers between 1992 to 1998. While the results 

were of interest to the current study, their study faced several limitations: (1) results were 

based on perceptions of contractors who responded to survey and not their actual incident 

history; (2) geographical distribution of respondents was limited to Michigan; and (3) 

sample size was very small—only ten contractors responded to the survey. However, 

comparing the magnitude of attributing factors in their study to more recent accident data 

could provide perceptive discussion on accident mechanisms among electrical workers. 
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To investigate nature and impact of burn-related injuries on electrical utility 

workers, Fordyce et al. (2007) reviewed 872 reports from the Electric Power Research 

Institute database between 1995 and 2004. The results indicated that while the numbers 

of burn-related accidents (including thermal, electrical, and chemical burns) were not 

high, such injuries resulted in a higher number of work days lost and more serious 

injuries compared to other injury types. Although burn-related injuries accounted for just 

3.7% of all injuries, they seemed to be costlier, representing about 13% of all medical 

costs. 

Some studies supported by the Electric Power Research Institute (EPRI) focused 

on the safety and health of electric utility and power industry workers. For example, 

Fordyce et al. (2010) analyzed neck injuries among electric utility workers from 1995 to 

2007 and found higher rates of neck injuries in young males who had trade/craft worker 

experience. In another study, Fordyce et al. (2016) investigated fatal and non-fatal 

injuries and injury-severity factors among electric power industry workers between 1995 

and 2013 and found that fatal injuries were most commonly associated with vehicle 

collisions and contact with electric current. They also found risk of fatalities to be higher 

among line workers and that line workers experienced the second highest risk for non-

fatal severe injuries, after meter readers. More recently, Volberg et al. (2017) analyzed 

the EPRI occupational health and safety database to study injuries among electric power 

industry workers from 1995 to 2013. They found that while injury rates among electric 

power industry workers tended to decrease over the study period, rate of injuries 

remained high among certain high-risk workers: line workers, mechanics, young males, 
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older welders and machinists, and female meter readers. Though each of these studies 

contributed to the overall body of knowledge, one limitation these studies shared was that 

their database only included EPRI member companies (i.e., 18 large electric power 

companies) and only covered a few occupations, both of which indicate that there may be 

selection bias in results.  

Outside of the United States, Marhavilas et al. (2011) proposed a new hybrid risk 

assessment process for analyzing Greek public electrical power providers and identified 

high risk activities in this sector. Building on this initial success, Marhavilas and 

Koulouriotis (2012) combined stochastic and quantitative risk assessment methods to 

build a more realistic forecasting framework for the electric power provider industry. 

More recently, Castillo-Rosa et al. (2017) evaluated the impact of personal factors and 

consequences of electrical occupational accidents in the primary, secondary and tertiary 

sectors in Spain. They found that electrical accidents in all three sectors caused more 

severe consequences. Regarding personal factors, they found that workers’ sex, age, 

experience, nationality and occupation significantly impacted type of accident. While 

contributions of these studies are significant, the data sources used in these studies are 

from outside of the United States, and there is a need to investigate accident reports 

among American electrical contractors. 

3.2.2 Electrical Incidents on the Whole 

Contact with electric current is a major cause of injury and death among 

construction workers (Ore and Casini 1996; Kisner and Casini 1998; Loomis et al. 1999; 

Taylor et al. 2002; McCann et al. 2003; Janicak 2008; Homce et al. 2008). Between 
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1994-2000, Census of Fatal Occupational Injuries (CFOI) data indicated that “contact 

with electric current” was the fourth leading cause of work-related deaths—after “falls,” 

“transportation incidents,” and “contact with objects and equipment” (McCann et al. 

2003). Finding innovative ways to identify, assess, and mitigate electrocution hazards in 

the early stages of a project would save lives and prevent injuries.  

Most studies investigating electrocution accidents have relied on reviews of 

accident reports. Jenkins et al. (1993) investigated all fatal occupational injuries in the 

U.S. from 1980 to 1989. Electrocution was reported to be the fifth most frequent cause of 

occupational deaths in all industries in the U.S. (responsible for 7% of all deaths); 

however, in the construction industry, electrocution accounted for more than 15% of 

fatalities, making electrocution the industry’s second most frequent cause of death after 

falling. Furthermore, the construction industry was the only industry for which 

electrocution was one of the top three causes of fatalities, and about 39% of all fatal 

electrocutions happened in the construction industry. According to Cawley and Homce 

(2008), electricians and their apprentices, followed by construction laborers and electrical 

power installers, were the most vulnerable groups to electrical fatal injuries. 

McCann et al. (2003) studied construction fatalities between 1992 and 1998 using 

the CFOI database and injury reports. Categorizing workers into electrical and non-

electrical trades, they conducted several statistical analyses to find significant differences 

between these groups. The results revealed that working on or near “live” electric current 

is a major cause of injury and death among electrical accidents. To reduce the risk of 

these kinds of accidents, they suggested a permission process for people working on live 
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circuits, along with use of personal locks and training sessions. The 61 non-fatal 

electrical injuries detailed in this study were limited to one hospital and therefore might 

not reveal common sources of injuries for electrical contractor’s trade.  

In another study, Janicak (2008) analyzed CFOI data from 2003 to 2006 to 

identify influential variables involving electric current. He found that contact with 

overhead power lines was the most common injury event in both the construction 

industry (47.2%) and all other industries (43.2%). Other frequent electrocution events in 

the construction industry that caused fatalities included contact with wiring, transformers, 

or other electrical components (34.3%); and contact with the electric current of machines, 

tools, appliances, or light fixtures (12.4%). These were followed by some minor causes, 

including contact with electric current, unspecified (2.6%); struck by lightning (2.4%); 

and contact with underground, buried power lines (1.0%). Janicak (2008) also calculated 

proportionate mortality ratios (PMRs) and found that the construction industry had 20% 

more fatalities due to contact with wiring, transformers, or other electrical components 

than was expected statistically. The study concluded that contact with wiring, 

transformers, and other electrical components contributed to a higher proportion of 

fatalities in the construction industry compared to other industries. Notably, Janicak’s 

study focused on fatal injuries and did not consider non-fatal scenarios, which are more 

prevalent among electrical workers. 

In an attempt to develop a coding system that would facilitate the categorization 

of fatal electrocutions and selection of prevention strategies, Chi et al. (2009) examined 

255 occupational electrical deaths from 1996 to 2002. They considered variables such as 
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the cause of electrocution, performing task, source of injury, individual factors, and 

company size, and identified five main accident patterns for electrocution accidents: 

direct worker contact with an energized power line; boomed vehicle contact with an 

energized power line; conductive equipment contact with an energized power line; direct 

worker contact with energized equipment; and improperly installed or damaged 

equipment. The results of this study could help practitioners determine electrocution 

protection strategies according to specific characteristics related to accident patterns and 

variables that impact potential risk factors.  

To create a safer environment near dangerous zones of power lines, Hesla (2009) 

analyzed the underlying reasons for accidents near energized power lines and found the 

main contributors to be distraction of crane operators and observers, unclear working 

zones, and inability of workers to indicate the location of power lines. To mitigate risk of 

such accidents, he suggested providing appropriate equipment, such as line guards, ball 

markers, cone shaped markers, and line conductor coils. Other researchers developed 

wearable electric field sensors to notify workers or their supervisors when a worker 

comes in proximity to, or in contact with, a live power circuit (Neitzel et al. 2001). In 

addition, anti-current devices that prevent transmission of electrical current from 

energized power lines to vehicle components (Neitzel et al. 2001) can be used to reduce 

risk of contact between a boomed vehicle and overhead power line. Alternatively, 

proximity and current warning devices can notify at-risk workers or operators to avoid 

potential contact instead of interrupting the transmission of electricity.  
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As mentioned earlier, these studies focus only on electrical hazards and do not 

study other types of incidents (e.g., falls) in which electrical contractors may also be 

involved. Moreover, the data for these studies were usually collected from all trades 

within the construction industry (e.g., large building construction and heavy civil 

companies), and therefore their findings might not be pertinent to small specialty (i.e., 

electrical) contractors. While results of these studies can help to reduce electrocution, to 

be effective, safety programs need to be designed and implemented for specific trades 

and based on characteristics of certain tasks and sequences. Therefore, there is a need to 

study accident patterns among electrical contractors. 

3.3 Point of Departure 

The results of the literature review indicated four limitations in previous studies 

related to the occupational health and safety of electrical contractors: (1) some studies 

focused only on fatalities and ignored other incident outcomes; (2) most of the studies 

investigated electrical incidents, with only a limited number of studies examining via a 

large database documented incidents among electrical contractors industry-wide; (3) most 

of these previous studies only reported descriptive data without using any inferential 

statistics or machine learning algorithms; and (4) not all of accident types that can happen 

to electrical workers have been investigated in previous studies.   

 

To address these limitations, researchers need to analyze more recent incident 

report databases and employ more sophisticated statistical techniques to make inferences 

that can help practitioners better understand the nature of incidents among electrical 
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contractors and mitigate the risk of injuries and fatalities (Gholizadeh and Esmaeili 

2015). Therefore, this study has collected data from the Occupational Safety and Health 

Administration’s (OSHA’s) Integrated Management Information System (IMIS) 

accidents database to analyze accidents related to electrical contractors using a chi-square 

independence test. One advantage of using OSHA reports in this study is that the reported 

values for accident factors have been checked and modified based on available 

summaries, which serves as a major step in understanding the true mechanisms of 

electrical accidents. We will detail our approach in the methodology section that follows. 

3.4 Methodology 

To attain this study’s research objectives, the analysis first requires reliable 

national data of incidents among electrical contractors. Consequently, the authors 

acquired data from OSHA and then conducted a thorough content analysis to (1) ensure 

the consistency of variables across the data, (2) reduce the ambiguity of reported values, 

and (3) prepare the data for statistical analysis. Previous studies have successfully used 

this approach to analyze construction accident databases (Esmaeili et al. 2015 a, b; 

Gholizadeh and Esmaeili 2015, 2016; Gholizadeh et al. 2018). To investigate and explain 

the relationship between contributing factors to accidents and the degree of accident 

injuries, chi-square, Cramer’s V tests, and the data mining method known as 

Classification and Regression Trees (CART) were applied. The rest of this section has 

been devoted to explaining each of these steps. 
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3.4.1 Incident Database  

Using the OSHA IMIS online database, the authors collected 621 accident reports 

about injuries involving electrical contractors between 2007 to 2013. While most of these 

accidents only involved one worker, some cases included multiple injuries; thus, in total, 

689 electrical workers’ occupational injuries were entered into the database during the 

seven-year period of this study. One should note that OSHA only requires documentation 

of ‘catastrophic’ accidents, wherein a work-related accident caused a fatality, in-patient 

hospitalization, amputation, or loss of an eye. Therefore, most of the reported accidents 

had serious outcomes, and only a small fraction of reports included non-hospitalized 

injuries. Other than non-hospitalized amputations/loss of an eye (which still need 

reporting), two reasons for the presence of non-hospitalized cases in data include: i) 

accident affected multiple employees and therefore was reported because some injuries 

were fatal or needed hospitalization, and ii) employer reported incident even without 

being required by law. It is also important to note that inclusion in OSHA’s database 

inherently means an accident occurred. Thus, studying this database enables researchers 

to assess accidents that occurred historically rather assess or predict rates of accidents, 

which would require data outside the scope of this study. 

Within each entry in the large database appears a summary of each accident, as 

reported by OSHA inspectors, and a limited number of variables used to describe the 

accident (e.g., event type, source, and cause of injury), its context (e.g., project end-use, 

type, cost), and its consequences (e.g., nature and degree of injuries, injured part of 

body). To process data, this study adopted categories found in the Occupational Injury 
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and Illness Classification Manual (OIICM), developed by the U.S. Department of Labor 

Bureau of Labor Statistics (Bureau of Labor Statistics 2012). In total, 64 cases were 

omitted from further investigation due to insufficient or missing information, leaving 619 

incidents for analysis.  

3.4.2 Analysis Methodologies 

Pearson Chi-Square Test of Independence and Cramer’s V 

When variables of the study are nominal, chi-square test can be used to determine 

significant associations among any pair of variables by calculating a test statistic (i.e., 

χ2), which approaches a chi-square distribution (McHugh 2013). Researchers have used 

this test for more than 100 years (Sharpe 2015): in psychology studies that were 

published in six journals in 2008 alone, the results of the chi-square test were reported 

more than 600 times (Bakker and Wicherts, 2011). In construction research, Mustapha 

and Naoum (1998) have utilized this test to show that the effectiveness of construction 

managers is related to their age, university degree, membership in professional institutes, 

overseas experience, and management style. Zuppa et al. (2009) have performed chi-

square tests on survey data and found that building information modeling have strong 

positive impact on projects’ success measures such as quality, cost, and schedule. Similar 

to these efforts, this study has adopted chi-square test of independence to identify 

accident factors with significant effect on the degree of an injury. Consider a contingency 

table with R rows, C columns and c cells, the test statistic is: 

χ2 =  ∑
(𝑂𝑟 − 𝐸𝑟)

2

𝐸𝑟

𝑐

𝑟=1
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Where Or is the number of observations in cell r and Er is the expected count in 

cell r: 

𝐸𝑟 = 
𝑀𝑅 ×𝑀𝐶

𝑁
 

Where N is the total number of observations, MR is the row marginal for cell r, 

and MC is the column marginal for that cell.  Once the test statistic is known, it can be 

compared to a chi-square distribution with (R-1) × (C-1) degrees of freedom to acquire 

the p-value. A small p-value can reject the null hypothesis that the variables are 

independent.  

To evaluate the strength of significant associations, chi-square tests usually are 

accompanied by the simple and widely used Cramer’s V (Fan et al. 2006; McHugh 2013) 

test introduced by Cramer (1946): 

𝑉 =  √
χ2

𝑁[min(𝑅, 𝐶) − 1]
 

Higher values of V indicate a stronger association among two variables. Using Phi 

coefficient (i.e., Cramer’s V with the sign of the effect), one can also measure the effects 

at each level of significant factors (Walker and Lev 1953). The effects of several 

contributing accident factors on the degree of injury would be tested through these three 

test statistics. 

Decision tree learning 

A decision tree is a supervised data mining methodology widely used to uncover 

hidden patterns in categorical data (Ripley 1996; Steinberg 2009; Mistikoglu et al. 2015; 

Shirali et al. 2018; Choi et al. 2020; Zhu et al. 2021) that can be visually represented by 
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an inverted tree-like structure or diagram. The goal of most decision tree algorithms is to 

split data by minimizing the impurity of the final categories. Impurity is a general term to 

define how well a data set is classified in a node, and it is smallest when the node 

includes just one class of independent data (Breiman et al. 1984). The splitting of the new 

class is intended to group the data further into more similar sub-classes and hence 

improves the similarities between the variables within each successive class. The 

successive split process continues until stop condition is reached (Rivas et al. 2011). By 

traversing from a root node to a leaf node and fulfilling the split conditions along the 

way, one can form decision rules (Rivas et al. 2011) which reveal existing associations 

between predictor variables (Ospina-Mateus et al. 2021) and how they combine to predict 

the response variable. Since decision trees are easy to use and interpret (Kassambara 

2018; Zhu et al. 2021), especially when studying the association between variables or 

factors (Mistikoglu et al. 2015), they have been applied in similar studies to analyze 

occupational accidents (Rivas et al. 2011; Cheng et al. 2012; Gholizadeh and Esmaeili 

2016; Amiri et al. 2016; Gholizadeh et al. 2018; Shirali et al. 2018; Ospina-Mateus et al. 

2021). Common decision tree algorithms include C4.5, classification and regression tree 

(CART), and Chi-square automatic interaction detection (CHAID). In this study, a CART 

technique (decision trees) was used because most of the variables considered here are 

categorical (Cheng et al. 2012). 

 

Classification and regression trees (CART) algorithm  

The CART algorithm seeks traits in predictor variables and splits the data (at the 

root node) into exactly two groups by means of recursive partitioning. These two classes 
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called child nodes are formed through the algorithm’s binary process. The split condition 

is satisfied when the observations in a class are as homogenous as possible in terms of the 

dependent variable (Berk 2008). In the process of splitting a categorical variable (such as 

all the variables in the research work), there are (2k−1 -1) possible splits when there are k 

categories. The CART algorithm chooses the best split and continues the process by 

splitting the two current classes each into two other new classes until a certain set 

threshold is reached or until no more useful splits can be achieved. At these points where 

the splits terminate, these nodes that cannot be split further are referred to as terminal 

nodes. The sum of all the observations in all the terminal nodes add up to the total 

number of data points in the root node and data set. At each iteration, the best split 

chosen by the algorithm is the split that achieves the minimum impurity of the node and 

is defined as:  

I(A) = Φ[p(y = 1|A)] 

where ϕ represents the measure of impurity, A represents any node of the tree, y is 

the independent/predictor variable with 2 classes, p represents the probability of the 

independent variable of class 1 in node A, and I(A) is impurity of node A. ϕ is non-

negative and symmetrical and reaches its minimum value when all cases in node A are 

ones or zeros. When there are an equal number of ones and zeros in the node, ϕ has its 

maximum value. However, Φ can be defined in multiple ways including entropy and the 

Gini index. As defined below, the CART algorithm calculates the Gini index to find the 

impurity:  

Φ(p) = p(1 – p) 
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Various tree forms could be the outcome applying various measures of impurity 

to classify the same data. However, with just a number of cases, the Gini index tends to 

yield a relatively homogeneous node with low impurity since most of the data points 

would have similar values for the independent variable. On the other hand, with more 

cases, a relatively heterogenous node would yield higher impurity since different classes 

of the independent variables would be somewhat evenly mixed together. This outcome is 

preferable for data classification instead of the outcomes resulting from algorithms that 

apply entropy. This is because, in the latter case, nodes are closely alike in size and 

homogeneity (Berk 2008). After all the nodes have been formed, the algorithm would 

then assign classes to the terminal nodes by calculating the proportion of classes of 

independent variables. Hence, the node will be labelled with the class of which it has the 

highest proportion. For example, if the amount of 0s (in this study, non-electrical injuries) 

is greater than half of the total number of data points in that node, then the node will be 

labelled as 0 (non-electrical). 

In this study, in the development of the CART, the nature of injury was the target 

(response) variable and has two categories: electrical and non-electrical. The electrical 

category is about 40% of the data and the remaining 60% represents the non-electrical 

category. On the other hand, the predictor (explanatory) variables include the end-use, 

project type, project cost, source of injury, environmental factor, human factor, and 

cause of injury. The data set was split into training and testing (validation) data set in the 

process of applying CART to the raw data set. Out of the 619 accident reports used in this 

analysis, a random selection of 496 (i.e. 80%) of the accident reports was used as the 
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training data set and was trained with the CART algorithm in R (R Core Team 2013). 

The remaining 123 (i.e., 20%) was used for validation/testing. The classification and 

regression training (CARET) package (Kuhn 2015) and the recursive partitioning and 

regression trees (RPART) package (Therneau and Atkinson 2019) in R (Kuhn 2015) were 

used to develop the decision tree for: (1) forecasting the nature of injuries due to an 

accident during an electrical project; (2) identifying the factors that are most important in 

forecasting the nature of electrical project injuries. 

Prediction Accuracy 

In a decision tree analysis, we measure predictive accuracy by instances correctly 

classified. The Kappa statistic is a measure of a model’s accuracy that estimates how well 

the predictions of the model and the actual classifications match or agree. It estimates the 

extent of the model’s ability to predict better than any random classifier (e.g., predicting 

expected accuracy). Hence, the model’s ability to observe and predict correctly yields the 

Kappa statistic. It uses the observed and predicted values for each class of independent 

variables to estimate the model’s Kappa value which range from -1 to 1 (McHugh 2012). 

Values less than zero indicate no agreement, 0.01-0.20 indicate none to slight agreement, 

0.21-0.40 indicate fair agreement, 0.41-0.60 indicate moderate agreement, 0.61-0.81 

indicate substantial agreement, and 0.81-1.0 indicate perfect agreement (Sim and Wright 

2005).  

Precision 
Precision is a measure of the proportion of the time you were right when you 

declared an instance (a positive). In relation to this study, the precision of the proposed 

decision tree model is the proportion of correct prediction of electrical injuries (true 
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positives) to all accident reports that are predicted as electrical injuries. In other words, 

the precision of the model is the ratio of true positives (TP) to total number of cases 

predicted as positives (i.e., TP + FP).  

Sensitivity 
Sensitivity or recall measures the proportion of actual positives that you declared 

were positives. With respect to this study, the sensitivity or recall of the proposed 

decision tree model is the proportion of correct prediction of electrical injuries (true 

positives) to accident reports that are actual electrical injuries. In other words, the 

sensitivity or recall of the model is the ratio of true positives (TP) to total number of 

cases that are actual positives (i.e., TP + FN).  

Specificity 
The specificity of the proposed decision tree model is the proportion of correct 

prediction of non-electrical injuries (true negatives) to accident reports that are actual 

non-electrical injuries. In other words, the specificity of the model is the ratio of true 

negatives (TP) to total number of cases predicted as negatives (i.e., TN + FP). 

Cross Validation Analysis 

Cross validation is a technic that tests how well the results of a model will 

generalize to new data. It involves splitting the data set into a training set and a testing 

set. The model is given the training set on which the training is carried out. After the 

training, the set-aside independent testing data set that was unseen by the model is used to 

evaluate the results of the training. Cross validation is carried out to reduce bias and 

variance in the training data set in the development of the proposed model. A k-fold cross 

validation involves splitting the data into k folds, and then using 1 fold as the testing set 
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and the remaining k-1 folds together as the training data set. Folds 1 through k 

individually gets used 1 time as the testing set and k-1 times as part of the training set in 

the k different fittings of the model. In this study, the accident reports making up the 

training data set were split into ten folds for cross validation. This is to improve the 

predictive capability of the model especially on new cases (Rivas et al. 2011). The 

training data set contained 496 accident reports and was randomly split into ten (k) folds. 

One of the ten folds was in turn set aside as the sub-testing set (for validation purpose) 

while the remaining nine (k-1) formed the sub-training set. In an iterative process, every 

one of the ten folds in turn had a chance of being the sub-testing set in only one fitting of 

the model and part of the sub-training set in the others. The ten-fold cross validation 

resulted in ten iterations/fittings/resamples, ten Kappa values, and ten (sub-testing) 

prediction accuracies as outlined in the results section. The average accuracy of these ten 

resamples was computed and used in the development of the decision tree model. 

3.5 Results 

The results are presented in two separate sections. First, the explanatory statistics 

of catastrophic accidents that have affected electrical contractors from 2007 to 2013 are 

presented. The emphasis is on the degree of injury as the most evident outcome of these 

incidents. Then, the associations between degree of injury and several variables—such as 

type of projects (i.e., project end-use, type, and cost), worker’s task (i.e., source and 

cause of injuries), and other outcomes of an accident (i.e., nature of injury, injured part of 

body, and event type)—are tested.  
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3.5.1 Exploratory Analysis 

Within the accident reports in the database, in total, 226 (37%) of accidents 

resulted in a fatality. The remaining (non-fatal) injuries were filed into two categories:  

343 (55%) hospitalized injuries and 50 (8%) non-hospitalized injuries. As mentioned in 

the research methods, eight variables were coded in the content analysis to better 

understand the nature of accidents. The salient results and the rates of ‘degree of injury’ 

for each category are presented in Table 3.1. One should note that a fatality rate in this 

study represents a specific quantity given the occurrence of a catastrophic accident. 

Hence, this fatality rate is the share of fatal injuries from the total number of catastrophic 

injuries in the dataset and should not be confused by estimated rates that are calculated 

using full-time equivalent workers. In other words, a fatality rate of 37% simply means 

that 37% of all injury events in the data led to a death; not that 37% of electrical workers 

would die on the job. 

As far as end-use is concerned, electrical accidents occurred mostly in building 

projects (77%), with commercial buildings being the dominant end-use. In non-building 

projects, utility systems (particularly power and communication lines) were the primary 

environments. The results indicate that different environments have quite similar fatality 

rates.  

Another variable that can describe the project condition is the project type. Project 

type, as opposed to end-use, implies the purpose of construction projects and not their 

context. The project types with the most accidents were new project or new addition 

(36%), alteration or rehabilitation (28%), and maintenance or repair (25%). Conditional 
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on an accident occurring within these project types, the fatality rates for these accidents 

were 40%, 40%, and 35%, respectively, which are all close to the total fatality rate 

among electrical contractors (i.e., 37%). However, while demolitions represent only 2% 

of projects, their accidents’ fatality rate (58%) is much higher than other types of 

projects. 

Regarding project costs, a large proportion of accidents occurred during relatively 

small-budget projects: around 74% of projects in have budgets less than $500,000. While 

most of cost categories present fatality-rates close to the average, two categories with the 

highest budgets show different values: projects with budgets between $5 to $20 million 

have significantly higher fatality-rates (i.e., 52%) while projects with more than $20 

million budgets have fatality rates of 24%, which is much less than the average. 

As far as the sources of injuries were concerned, the largest category is parts and 

materials, as it involves all the electrical parts. Regarding the degree, though, vehicles 

and machinery caused higher fatality rates, with 58% and 44% of accidents being fatal, 

respectively. 

With regards to causes, installing equipment (HVAC and other), interior 

plumbing, ducting, electrical work, and installing plumbing, lighting fixtures were three 

individual causes with the most frequency. However, in terms of the severity, the fencing, 

installing lights, signs, etc. cases represent the highest fatality rate.  

To explain the circumstances of an accident, OSHA reports the event type. While 

having high proportions of exposure to electricity with high fatality rates was expected, 

the findings also show that fall accidents are quite prevalent among electrical contractors. 
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For the nature of injuries consideration, only 3 categories represent 72% of all 

injuries: fractures, electrocutions, and burns. However, in terms of the degree of the 

injuries, electrocutions and concussions have given rise to the most severe injuries. 

Regarding, different body parts that were injured in this data set, upper 

extremities, head, and body system were the parts with the most injuries, respectively. 

Injuries to the body system resulted in the highest fatality rate (64%), indicating how 

electricity can critically affect the whole body. 
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Table 3.1. Accident characteristics among electrical contractors 

 Variables Frequency (%1) Degree of Injury (%) 

Fatality1 Hospitalized  Non-Hospitalized 

End-use Highway, street, and bridge 28 (5) 39 57 4 

Nonresidential building 406 (66) 36 55 9 

Other heavy and civil engineering 28 (5) 39 57 4 

Residential building 67 (11) 34 54 12 

Utility system 90 (15) 38 58 4 

Project 

Type 

Alteration or rehabilitation 173 (28) 40 52 8 

Demolition 12 (2) 58 42 0 

Maintenance or repair 155 (25) 35 57 8 

New project or new addition 222 (36) 40 50 10 

Other 57 (9) 14 83 4 

Project 

cost 

$50,000 and less 276 (45) 34 58 8 

$50,000–$250,000 115 (19) 39 56 5 

$250,000–$500,000 60 (10) 38 43 18 

$500,000–$1,000,000 45 (7) 38 56 7 

$1,000,000–$5,000,000 63 (10) 40 54 6 

$5,000,000–$20,000,000 27 (4) 52 37 11 

$20,000,000 and more 33 (5) 24 70 6 

Source of 

injury 

Machinery 45 (7) 44 56 0 

Parts and materials 286 (46) 39 52 9 

Structures and surfaces 97 (16) 31 62 7 

Tools, instruments, and equipment 118 (19) 24 66 10 

Vehicles 50 (8) 58 40 2 

Other sources 23 (4) 35 52 13 

Causes Fencing, installing lights, signs, etc. 30 (5) 53 43 3 

Installing equipment (HVAC and 

other) 

121 (20) 40 55 6 

Installing plumbing, lighting fixtures 90 (15) 44 51 4 
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Interior plumbing, ducting, electrical 

work 

102 (17) 28 64 8 

Temporary work (building, facilities) 35 (6) 43 43 14 

Other 111 (18) 32 55 13 

Not reported 130 (21) 32 59 9 

Event 

type 

Caught in/between 38 (6) 34 58 8 

Exposure to electricity 253 (41) 44 47 8 

Fall 210 (34) 30 67 3 

Struck-by 78 (13) 37 46 17 

Other 40 (6) 23 63 15 

Nature of 

injury 

Amputations, avulsions, enucleations 21 (3) 0 71 29 

Bruises, contusions 19 (3) 16 37 47 

Concussions 44 (7) 59 41 0 

Cuts, lacerations 24 (4) 13 62 25 

Electrical burns 84 (14) 1 83 16 

Electrocutions, electric shocks 166 (27) 67 28 5 

Fractures 193 (31) 20 78 2 

Non-specified injuries and disorders 35 (6) 86 14 0 

Other 33 (5) 39 49 12 

Injured 

part of 

body 

Body system 110 (18) 64 32 4 

Head 141 (23) 45 48 7 

Lower extremities 60 (10) 0 93 7 

Multiple body parts 78 (13) 19 78 3 

Trunk 74 (12) 39 56 5 

Upper extremities 156 (25) 31 53 17 
1 The percentages were rounded to the closest integer and some cases might not add up to 100%. 
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Other variables such as human and environmental factors were also reported by 

OSHA inspectors. Table 3.2 reports some of the more common factors (i.e., each factor 

represents at least 5% of the frequency after excluding the missing cases) for each 

variable. The findings show that while misjudgment is by far the main human factor, 

problems with lockout/tagout procedures, inappropriate position for task, and neglecting 

necessary safety devices were more dangerous. For environmental factors, work surface 

and facility layout condition is the most common factor among electrical workers that 

leads to accidents. However, material-handling equipment or method, overhead moving- 

or falling-object action, and squeeze-point action caused higher fatality rates. The 

variables in Table 3.2, though, were excluded from the following statistical analyses due 

to the high number of missing values. 

 

 

 
Table 3.2. Frequency and fatality rate for human and environmental factors 

Main 

category  

Subcategory  Frequency  Fatality 

rate (%) 

Human 

factors 

Misjudgment in hazardous situation 207 37 

Malfunction in lockout/tagout procedure 61 53 

Safety devices removed or used inappropriately 39 39 

Insufficient or lack of personal protective equipment 35 34 

Inappropriate equipment for operation 34 35 

Inappropriate position for task 26 42 

 Malfunction in securing or warning operation 26 31 

Environ

mental 

factors 

Work surface or facility layout condition 125 30 

Material-handling equipment or method 39 51 

Overhead moving- or falling-object action 39 49 

Temperature tolerance 18 11 

Squeeze-point action 17 47 

 Flying-object action 16 25 
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3.5.2 Chi-Square Independence Test and Cramer’s V 

As mentioned earlier, the second objective of the study was to test whether the 

degree of injuries (i.e., fatality, hospitalized injury, and non-hospitalized injury) was 

associated with the type of projects, the worker’s task, or other outcomes of an accident. 

Table 3.3 shows the results of the Chi-square test for eight variables.  

 

 

 

Table 3.3. Associations between degree of injury (i.e., fatality, hospitalized injury, and non-hospitalized injury) 

and eight accident factors 

Variables against 

degree of injury 

Chi-square 

statistic 

Degree of 

freedom (d.f.) 

p-value Cramer’s 

V 

Project end-use 4.86 8 0.77 - 

Project type 23.48 8 0.00 0.14 

Project cost 18.78 12 0.09 - 

Sources of injury 27.69 10 0.00 0.15 

Causes of injury 17.42 10 0.07 - 

Event type 33.51 8 0.00 0.17 

Nature of injury 273.41 16 0.00 0.47 

Injured part of body 111.96 10 0.00 0.30 

 

 

 

Non-hospitalized and hospitalized injuries can be combined into one “Non-fatal” 

category—as opposed to the “Fatal” injuries—to test the effect of accident factors on 

degree of injury more directly. Table 3.4 presents the results of this test for eight 

variables. 
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Table 3.4. Associations between degree of injury (i.e., fatality and non-fatal injury) and eight accident factors 

Variables against 

degree of injury 

Chi-square 

statistic 

Degree of 

freedom (d.f.) 

p-value Cramer’s 

V 

Project end-use 0.40 4 0.98 - 

Project type 16.86 4 0.00 0.17 

Project cost 6.33 6 0.39 - 

Sources of injury 21.49 5 0.00 0.19 

Causes of injury 11.89 5 0.04 0.14 

Event type 13.90 4 0.01 0.15 

Nature of injury 201.18 8 0.00 0.57 

Injured part of body 87.82 5 0.00 0.38 
 

 

 

The p-values in Table 3.3 and Table 3.4 indicate that, at the significance level of 

0.05, the degree of injury is significantly affected by the type of project, sources of 

injury, type of accident, nature of injury, and injured part of body. Cause of injury can be 

considered significant only when hospitalized and non-hospitalized injuries are combined 

(Table 3.4). This suggests that for this variable the result should be interpreted more 

carefully. For the rest of variables, it is safe to continue with ‘fatal’ versus ‘non-fatal’ 

scenario as they are significant in both cases. The results of both tables, however, show a 

lack of evidence to claim an association between degree of injuries and end-use, nor 

between degree of injuries and cost of projects. The Cramer’s V values show the amount 

of association between the significant factors and the degree of injuries. Nature of injuries 

and part of body have the highest association with the degree of injury. To locate the 

effects among these two significant factors, the values of Phi coefficients are calculated 

for each level of nature and body parts (Table 3.5). 
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Table 3.5. The effect of different natures of injury and parts of body on degree of injury 

Variable Level Phi Coefficient 

Nature of injury Amputations, avulsions, enucleations -0.14 

 Bruises, contusions -0.08 

 Concussions 0.13 

 Cuts, lacerations -0.10 

 Electrical burns -0.29 

 Electrocutions, electric shocks 0.38 

 Fractures -0.23 

Part of body Body system 0.27 

 Head 0.10 

 Lower extremities -0.25 

 Multiple body parts -0.14 

 Trunk 0.02 

 Upper extremities -0.07 

 

 

 

3.5.3 Decision Tree Analysis 

Model Interpretation 

The proposed decision tree model in Figure 3.1 displays the classification of the 

nature of injury of electrical contractors as observed in the accident reports analyzed in 

this experiment. This tree was generated from 496 accidents reports that make up the 

training data set and seven project information/features/attributes namely: end-use, 

project type, project cost, source of injury, environmental factor, human factor, and cause 

of injury. The decision tree model was built for predicting the target variable which is the 

nature of injury. In this experiment, the nature of injury has two categories: electrical and 

non-electrical. The nature of injuries involving electrical burns and Electrocution 

(electrical shocks) are regarded as electrical and the rest (such as amputations, avulsions, 

enucleations, bruises, contusions, concussions, etc.) are labelled non-electrical as shown 

in Table 3.1. The tree was pruned with R tuning parameters to avoid overfitting (Zhu et 
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al. 2021) and the optimal model with the best accuracy was selected. It can been be seen 

from Figure 3.1 that the decision tree model has a total of thirteen nodes of which seven 

nodes are leaf nodes. Figure 3.2 provides some explanatory notes on the decision tree 

model.  

By looking at Figure 3.1, it can be observed that out of the 496 accident reports in 

the training data set, a total of 463 reports (which accounts for 93.35%) were correctly 

classified and 33 reports (which accounts for 6.65%) were incorrectly classified. It can be 

seen that the target attribute in the root node is the nature of injury; the first level attribute 

is the source of injury as parts and material; the environmental factor labelled overhead 

moving- or falling-object action  is the second level attribute; this is followed by the other 

environmental factor as the third level attribute; work surface or facility layout condition 

as an environmental factor is the fourth level attribute;  the other cause of injury is the 

fifth level attribute; and lastly project type as new project or new addition is the fifth level 

attribute. The variable importance section below outlined the list of essential variables 

according to their order of importance in the development of this proposed decision tree 

model. 
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Figure 3.1. Decision tree for the prediction of Nature of Injury 

 

 

 

 

Figure 3.2. Explanatory notes on decision tree representations 

 

 

 

In Figure 3.2 above, the nodes represent split points where the observations within 

that node are split into the two classes: non-electrical (NE) or electrical (E). The number 
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of observations in each node classified as NE and E are listed under the number of 

observations (n) for NE and E respectively. These two numbers for these two classes add 

up to the total number of observations in that node. In the same way, the percentage of 

observations in each node classified as NE and E are listed under the percentage of 

observations (%) for NE and E respectively. These two percentages for these two classes 

add up to 100% of the total number of observations in that node. However, the 

percentage total in each node represents the percentage of 496 accident reports in the 

training data set that is present in that node. For instance, from start, node 1 in Figure 3.2 

has 296 NE and 200 E data points which adds up to 496 accident reports which is a 100% 

of the total observations or accident reports in the training data set. Hence, node 1 is 

labelled non-electrical (NE*) since the NE class has a higher proportion of the 

observations in this node. Leaf node 11 in Figure 3.2 has 4 NE and 22 E data points 

which adds up to 26 observations which is about 5.2% of the total accident reports in the 

training data set (i.e. 5.2% of 496 = 26). Hence, Node 11 is labelled electrical (E*) since 

the E class has a higher proportion of the accident reports in this node. In Figure 3.2 

above, source of injury: parts and materials = 0 could be read as “if source of injury is not 

parts and materials”. Hence if this statement is true (Yes), you go left and if this 

statement is false (No) you go right. A left branch of the above tree in Figure 3.1 and 

Figure 3.2 is always a Yes-turn while a right branch is a No-turn. In this study, nodes 

were counted from top to bottom, left to right, from 1 to 13. On the other hand, as seen in 

Figure 3.1, environmental factor: overhead moving- or falling-object action = 1 can be 

read as “if environmental factor is overhead moving- or falling-object action”. If this 
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statement is true, you take a Yes-turn, and if this statement if false, you take No-turn. 

These terminologies were used in the development of the decision rules below. 

Decision Rules 

Decision rules are usually formed with each leaf node of the decision tree model. 

Table 3.6 shows list of unique decision rules developed for every leaf node of the 

decision tree in Figure 3.1. The proposed decision rules are discussed further in the 

discussion session. 

 

 

 
Table 3.6. Decision rules derived from the proposed decision tree model 

S/N Node Decision rules 

1 7 If the source of injury is not parts and materials, then the nature of the injury is non-

electrical 

2 8 If the source of injury is parts and materials, and the environmental factor leading to 

accident is overhead moving- or falling-object action, then the nature of the injury is 

non-electrical 

3 9 If the source of injury is parts and materials, the environmental factor leading to accident 

is neither overhead moving- or falling-object action, nor unknown, nor work surface or 

facility layout condition, and the cause of injury is unknown, then the nature of the 

injury is non-electrical 

4 10 If the source of injury is parts and materials, the environmental factor leading to accident 

is neither overhead moving- or falling-object action, nor unknown, nor work surface or 

facility layout condition, the cause of injury is not unknown, and the project type is new 

project or new addition, then the nature of the injury is non-electrical 

5 11 If the source of injury is parts and materials, the environmental factor leading to accident 

is neither overhead moving- or falling-object action, nor unknown, nor work surface or 

facility layout condition, the cause of injury is not unknown, and the project type is not 

new project nor new addition, then the nature of the injury is electrical 

6 12 If the source of injury is parts and materials, the environmental factor leading to accident 

is neither overhead moving- or falling-object action, nor unknown, but work surface or 

facility layout condition, then the nature of the injury is electrical 

7 13 If the source of injury is parts and materials, the environmental factor leading to accident 

is not overhead moving- or falling-object action, but unknown, then the nature of the 

injury is electrical 
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Decision Tree Model Accuracy 

The evaluation of the proposed decision tree model involved applying the model 

to the testing data set which contains 123 accidents reports that were set aside for 

validation. The results of this test are presented in the confusion matrix in Table 3.7. The 

confusion matrix compares the model predictions of the nature of injuries versus the 

actual classifications of the nature of injuries of the accident reports. The shaded diagonal 

in Table 3.7 shows that one hundred and sixteen accident reports are correctly classified. 

Hence, the accuracy of the proposed decision model in predicting the nature of injury of 

the accidents reports in the testing data set is 94.3%. On the other hand, there are seven 

misclassified accident reports resulting in an error rate or misclassification rate of 5.7%.  

 

 

 
Table 3.7. Confusion matrix of the testing data set 

 Actual/Reference 

Prediction Electrical Non-

electrical 

Electrical 45 2 

Non- electrical 5 71 
 

 

 

Table 3.8. Evaluation of the confusion matrix and decision tree accuracy. 

Evaluation Statistics Results 

Precision 0.957 

Sensitivity/Recall 0.900 

Specificity 0.973 

Accuracy 0.9431 

95% Confidence Interval (0.886, 

0.977) 

No Information Rate 0.594 

P-Value [Acc > NIR] <2e-16 

Kappa 0.881 
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In the confusion matrix in Table 3.7, one can see that true positives (i.e. accident 

reports involving actual electrical injuries and that are predicted to involve electrical 

injuries) are 45, true negatives (i.e. accident reports involving actual non-electrical 

injuries and that are predicted to involve non-electrical injuries) are 71, false positives 

(i.e. accident reports involving actual non-electrical injuries but were predicted to involve 

electrical injuries) are 2, and false negatives (accident reports involving actual electrical 

injuries but were predicted to involve non-electrical injuries) are 5. Using these values, 

one can calculate the precision, sensitivity (recall), and specificity resulting from 

applying the proposed decision tree model on the testing set as presented in Table 3.8. 

According to the evaluation results reported in Table 3.8, it can be seen that the proposed 

decision tree model in this study is dependable as it is at per with similar studies (Rivas et 

al., 2011; Mistikoglu et al., 2015) and as seen by an accuracy of 94.31% on new data, 

Kappa value of 0.881, and a P-Value (Acc > NIR) of 2e-16. Hence, with 94.31% 

accuracy (Table 3.8), it successfully predicted the nature of injuries of electrical 

contractors into electrical injuries and non-electrical injuries using the accident reports in 

the testing data set. 

The value obtained for the no-information rate is 0.594 and it gives an idea of the 

proportion of accident reports (0.596) that involve non-electrical injuries in the training 

data set. This means that without the proposed decision tree model and prediction is done 

by guessing each accident report in the testing data set to be, say, non-electrical injuries, 

the accuracy of prediction would be the no-information rate of 0.594 (i.e., approximately 

equal to the probability (0.596) of occurrence of non-electrical injuries within the training 
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set). Also, this no-information rate of 0.594 is less than the accuracy of the proposed 

decision tree model presented in this study 95% of the time (i.e., 95% confidence interval 

of 0.886, 0.977). This means that there is a 95% chance that the true accuracy of this 

proposed decision tree model lies between 88.63% and 97.68%. Hence, the 94.31% 

accuracy of the proposed decision tree model in this study is greater and better than the 

non-information rate of 59.4%. The model also has a significantly better performance 

than chance (i.e., accuracy > no information rate) as suggested by a p-value less than 2e-

16. Hence it can be said that there is sufficient evidence that the accuracy of this model is 

greater than the no information rate with a p-value of < 2e-16. The kappa value of 0.88 

obtained in this study indicates a perfect agreement between the classification predictions 

made from the proposed decision tree model and the actual classifications. 

 

Evaluation of Variable Importance 

Unlike linear regression, all important variables may not show up on the decision 

tree model as a node splitter. In CART, the contribution made by a predictor variable is 

determined by primary splits and surrogate splits. In the development of a tree, the 

variable that appears in the tree structure is the primary splitter, but CART also keeps 

track of surrogate splits and uses them as an alternative whenever the variable is missing. 

With the RPART package and the summary function in R, the evaluation of variable 

importance could be assessed as shown in Table 3.9. The rounded variable importance 

scores presented in Table 3.9 are scaled up to 100% as reported by the summary printout 

in R. Variables with an importance score less than 1 are omitted. In assigning importance 

to variables, the loss function (e.g., mean squared error) that can be attributed to each 
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variable at each split is tabulated and summed. Hence, in evaluating variable importance, 

the goodness of split measure is summed up for each split where it is a primary variable 

and where it is a surrogate. Therefore, a variable that doesn’t show up in a tree may be 

assigned a high variable importance depending on the measures obtained where it is a 

surrogate and primary splitter. Using this approach, variable masking and nonlinear 

correlation among variables could be revealed in the ranking of variable importance 

(Steinberg, 2009) Some variables in Table 3.9 such as “Source of injury: Structures and 

surfaces;” “Human factor: Malfunction in lockout/tagout procedure;” and 

“Environmental factor: Overhead moving- or falling-object action” have nonzero 

importance in the development of the tree but still did not show up in the tree structure. 

This means that they played an important role in the development of the tree in Figure 3.1 

strictly by acting as surrogates to the other splitting variables that showed up on the tree.  

 

 

 
Table 3.9. Variable importance of the proposed decision tree model 

Variables/Attributes Importance Score 

Source of injury: Parts and materials 49 

Source of injury: Tools, instruments and equipment 13 

Source of injury: Structures and surfaces 11 

Human factor: Malfunction in lockout/tagout procedure 9 

Environmental factor: Other 6 

Environmental factor: Overhead moving- or falling-object action 4 

Cause of injury: Interior plumbing, ducting, and electrical work 4 

Environmental factor: Work surface or facility layout condition 2 

Project type: New project or new addition 1 

Cause of injury: Other 1 
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By looking at Figure 3.1 and Table 3.9, one can see that parts and materials (root 

node) followed by tools, instruments, and equipment as sources of injury are the most 

relevant variables for the prediction of the nature of injury. It can also be observed that 

the two least important variables for predicting the nature of injury in electrical projects 

are new project or new addition project type and other cause of injury. 

 

Cross Validation results 

The cross-validation results of the training data set are presented in Table 3.10. 

The prediction accuracy of the training data set was arrived at by averaging the prediction 

accuracy obtained from each of the sub-testing data set (i.e., the 10 resamples in Table 

3.10). This gives the mean training prediction accuracy of the proposed model. Summary 

statistics of the ten-fold cross validation is shown in Table 3.11. As one can see, the mean 

prediction accuracy of the ten-fold cross validation is 0.917, and the minimum and 

maximum accuracies obtained are 0.840 and 0.980 respectively. In the same way, the 

mean kappa value obtained in the ten-fold cross validation is 0.829, and the minimum 

and maximum accuracies obtained are 0.672 and 0.958 respectively. In comparison with 

similar studies (Rivas et al., 2011; Mistikoglu et al., 2015), these results (e.g., accuracy 

on new data = 94.31%, Kappa = 0.881, and P-Value: Acc > NIR = 2e-16) indicate that 

the proposed model is reliable in predicting the nature of injuries that could occur in 

electrical projects. 
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Table 3.10. Prediction accuracy of the ten-fold cross validation 

S/N Accuracy Kappa Resample 

1 0.918 0.834 Fold 1 

2 0.980 0.958 Fold 2 

3 0.959 0.914 Fold 3 

4 0.918 0.828 Fold 4 

5 0.898 0.787 Fold 5 

6 0.900 0.790 Fold 6 

7 0.900 0.800 Fold 7 

8 0.940 0.874 Fold 8 

9 0.920 0.836 Fold 9 

10 0.840 0.672 Fold10 
 

 

 

Table 3.11. Summary statistics of the ten-fold cross validation 

S/N Statistic Accuracy Kappa 

1 Minimum 0.840 0.672 

2 First quartile 0.900 0.792 

3 Median 0.918 0.831 

4 Mean 0.917 0.829 

5 
Standard 

deviation 
0.038 0.078 

6 Third quartile 0.935 0.865 

7 Maximum 0.980 0.958 

 

 

 

3.6 Discussion 

This study aimed to investigate which accident factors have a statistically 

significant effect on the outcome of accidents (i.e., degree of injury) among electrical 

contractors. To address the objective, the authors reviewed every report manually to 

ensure the quality of the final data points, as the quality of data is paramount in any 

scientific study, without exception. This study also discusses the contributing factors to 

catastrophic construction accidents among electrical contractors. The results of 

exploratory, statistical, and machine learning analyzes are discussed here.  
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3.6.1 Exploratory Analysis 

To reveal nature of accidents, summary statistics of 11 variables (e.g., end-use, 

project type, nature of injury) were reported. As noted by Lee et al. (2012), safety-risk 

factors in projects are determined by location, type and complexity of projects. Better 

understanding these influential variables will enable safety managers to strategically 

allocate their limited safety resources, particularly in small enterprises. As far as 

electrical contractors are concerned, given situations in which an accident occurred, the 

results show that the majority of accidents happened in nonresidential buildings (e.g., 

commercial, industrial), new construction, and small projects (i.e., $50,000 or less). 

Historic events do not inherently predict future events, but the statistical significance of 

past accident factors describe conditions in which future accidents may face added risk. 

Therefore, contractors who are working on these projects should plan for precautionary 

actions and consider larger contingencies in their budgets.  

The main source of injury is parts and materials (e.g., electrical parts)—

representing 46% of accident sources—followed by tools, instruments, and equipment 

(19%), and structure and surfaces (16%). These findings are compatible with a study 

conducted by Abudayyeh et al. (2003): For non-fatal accidents among electrical 

contractors from 1992 to 1998 reported in BLS, Abudayyeh et al. found parts and 

materials as the most common source of injury (25%), followed by structures and 

surfaces (i.e., floors, walkways, or ground surfaces – 19%) and all other sources (17%). 

In comparison with Abudayyeh and his colleagues’ results, this study shows a large 

increase in the share of parts and materials, which may suggest the need for more 
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training regarding electrical sources. The share of accidents sourced in tools, vehicles, 

and machinery has also increased by 10%, 4%, and 3%, respectively, which may indicate 

the growing application of new tools and machines in construction and may emphasize 

the need for further, task-specific safety training and planning. One other notable 

outcome here is that due to the application of the comprehensive content analysis in this 

study, the other category is much smaller here (4%) compared to 17% in Abudayyeh et 

al. (2003). We posit that this difference can beneficially increase our understanding of 

accident mechanisms. 

The most frequent nature of electrical contracting injuries were fractures (31%), 

electrocutions (27%), and electrical burns (14%). These are in contrast with the findings 

of Abudayyeh et al. (2003), as that study reported “sprain and strains” (37%), “all other 

natures” (23%), and “cut and punctures” (13%) as the top three injury types among 

electrical workers. Only three cases of “strains/sprains” were reported in OSHA database, 

which can be attributed to the fact that while these injuries are prevalent among 

construction workers (Kisner and Fosbroke 1994; Kines et al. 2007; Choi 2015), since 

they usually do not lead to very serious consequences—such as permanent disability or 

fatality—they may have not been reported to OSHA inspectors. Indeed, this study’s 

findings relate to more severe injury types that might otherwise be neglected or washed 

out due to their relatively low frequency. Such a nuance demonstrates the benefit of 

focusing this study on the accidents within OSHA’s catastrophic database. 

Considering body parts, the OSHA accident reports have upper extremities (25%), 

head (23%), and body system (18%) as the main injured body parts. Also, lower 
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extremities and trunk were the two parts with the lowest frequency. Regarding severity, 

the chance of fatality is higher when the body system or head are injured. Further 

investigation showed that, most of the incidents in which the whole body was affected 

were cases of exposure to electricity. It’s important to note that the electricity usually 

enters from upper extremities (e.g., fingers, hands) and most of the time, it’s only the 

magnitude of flow which differentiates between a small injury in upper extremities and a 

serious (usually fatal) injury in body system. In other words, injuries to upper extremities 

must be analyzed more carefully, especially among electrical contractors, as they can 

rapidly escalate to situations in which the whole body can be severely affected. 

When considering only non-fatal accidents, Abudayyeh et al. (2003) reported that 

“contact with objects” (including struck-by and caught in/between), “overexertion,” and 

“falls” are the most common accident types, representing 31%, 22%, and 20% of nonfatal 

accidents, respectively. Comparatively, in accident reports from OSHA regarding non-

fatal cases, falls (37%), exposure to electricity (36%), and contact with objects (19%) 

caused most of the injuries. Putting aside “transportation incidents” (19%), the main three 

events for fatal accidents in BLS data were “exposure to harmful substances and 

environments” (50%), “falls” (21%), and “contact with objects and equipment” (7%). 

Among fatal cases of OSHA reports, exposure to electricity is also the leading event, 

causing exactly the same 50% of deaths followed by falls (28%) and contact with objects 

(19%). The order and magnitude of accident types are very similar in both studies 

especially in fatal cases. The share of exposure to electricity in fatal cases is much lower 

for the entire construction industry (18% in BLS data) which can be attributable to a 
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much wider range of work categories in the industry compared to a more limited 

activities among specialty trades such as electrical contractors. This finding further 

emphasizes on the necessity of investigating accidents within a specific trade, since 

focusing one particular type of accident (e.g., exposure to electricity) can reduce the 

number of fatalities/severe injuries dramatically. For electrical contractors this means 

more electrical training on main sources and causes of exposures to electricity and 

ultimately decrease the more severe injuries presented in OSHA’s data.  

By using these findings from exploratory data analysis, one can start to decipher 

some of the more common accident scenarios among electrical workers. For instance, 

electrocutions and burns to body system and upper extremities often happened 

historically in exposure to electricity accidents wherein parts and material are the source 

of injury and small, new, nonresidential buildings are the location of accident. Though 

they used different methods, some studies have similarly examined the associations 

linking accident factors (Chi et al. 2004, 2005, 2012). For instance, Chi et al. (2005) 

investigated fatal fall accidents to demonstrate how different types of falls are linked to 

specific causes; the team then suggested several prevention measures based on strong 

links between a cause and its consequent accident. Chi et al. (2012) also found that the 

source and cause of injury are significant factors in classifying accident scenarios.  

Furthermore, industry would benefit from studying the effect of different factors 

in fatal scenarios more. According to OSHA reports, and as we describe above, 37% of 

all catastrophic accidents that occurred to electrical contractors between 2007 to 2013 

were fatal. Our investigation suggests when the project type is demolition, project budget 
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is between $5 million to $20 million, sources of injury is vehicles or machinery, causes of 

injury is fencing, installing lights and signs, or installing plumbing and lighting fixtures, 

or temporary work, event type is exposure to electricity, injury type is electrocutions or 

concussions, and  body part is body system or head, there is a higher chance that an 

accident lead to a fatality (i.e., at least 5% more than the average fatality rate of 37%). 

Also, human factors—such as malfunctioned lockout/tagout procedures and 

inappropriate position for task—and environmental factors—such as material-handling 

equipment/method, overhead moving-/falling-object action, and squeeze-point action— 

have contributed to fatalities at larger rates. When planning for injury prevention 

practices, existence of any of these factors could raise a red flag and consequently, safety 

managers can design customized interventions to reduce severity and frequency of 

incidents among electrical contractors. Other than their exploratory values in showing 

more hazardous situations for electrical contractors, these findings propose that the 

degree of injury might be affected significantly by some factors that are related to a 

project’s characteristic or a worker’s task.  

3.6.2 Statistical Analysis 

To examine these potential associations, the research team applied chi-square 

independence test and found that, except for the project end-use, cost, and to a lower 

degree cause of injury, five accident factors have significant influence on the degree of an 

injury (Table 3.6 and Table 3.7). Ordered by their Cramer’s V values, nature of injury 

and part of body correlate with the degree of injury most, followed by source of injury, 

project type, and event type. Considering the effects of a single nature of injury on the 
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degree of injury, this study has found that electrocutions and concussions are associated 

with more fatal injuries. Regarding injured parts of body, this study found that, among 

electrical workers, injuries that affect the body system result in fatalities at a greater rate 

than even injuries to head. Investigating accident scenarios that lead to such body-part 

specific injuries (e.g., electrocutions that affect the body system or head concussions) 

should be prioritized in future studies. Similar conclusions, with a lower level of 

certainty, can be made about other factors such as source of injury and event type. Thus, 

knowing that a factor (e.g., a specific source of injury) might lead to a fatality more often 

than another provides empirical evidence for planning decisions that would impact safety 

of workers on construction sites. 

3.6.3 Data Mining Analysis 

To illustrate the possibility of forecasting the nature of injury of electrical 

contractors, a data mining technique (CART) was applied in this study. The algorithm 

was used to: classify the accident reports into categories of the response variable (nature 

of injury); gain insight into the relationship between some electrical project features 

(explanatory or predictor variables); and ascertaining their level of importance in terms of 

predicting the nature of injury.  As earlier mentioned, the model presented in Figure 3.1 

displays the relationship between some features of the project in the form of a decision 

tree. These relationships were defined in the form of decision rules and presented in 

Table 3.6. These rules/relationships could help safety managers in carrying-out risk 

assessment on jobsites. For instance, an example of the practical interpretation of a given 

rule is the decision rule derived with leaf node 7 which suggests that if the source of 
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injury is not parts and materials, then the nature of injury is non-electrical. This could be 

interpreted to mean that the source of most of the electrical injuries that occur during an 

electrical project could be attributed to parts and materials. The proposed decision tree 

model emphasized the importance of parts and materials as a major source of injury by 

involving it in the first split condition at the root node. Additionally, according to the 

variable importance list in Table 3.9, parts and materials as a source of injury is highly 

important and was given a 49 importance score out of a total importance score of 100. In 

other words, about half of the importance score goes to parts and materials while the 

remaining half is shared by all other predictor variables. Hence, during electrical 

workers’ safety training, the best ways of handling all parts and materials associated with 

electrical job sites should be emphasized as this is very essential and could dramatically 

reduce electrical injuries on site. As seen in Table 3.9, structures, surfaces, tools, 

instruments and equipment are the other importance sources of injury that could be 

constantly addressed during site meetings and safety trainings. Another important 

variable is the environmental factor involving overhead moving- or falling-object action. 

Hence, it is important to highlight the need to use protective coverings to safeguard site 

workers from important environmental factors such as material-handling equipment or 

method, and overhead moving- or falling-object action. It is also very essential to protect 

workers from occupational injuries by making sure they adhere to all safety regulations 

because this would help prevent accidents from occurring. One can expect an electrical 

injury for about 40% of the time and a non-electrical injury for about 60% of the time in 

occupational hazards involving electrical projects. The remaining decision rules are all 
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clearly stated as seen in Table 3.6. These rules give insight into the associations between 

project information (such as end-use, project type, project cost, source of injury, 

environmental factor, human factor, and cause of injury) that could help predict and 

prevent the nature of injury of electrical contractors. The significant amount of safety 

data being collected on construction sites—e.g., as accident reports—provides a valuable 

source of information for researchers seeking to better understand the root-causes of 

accidents. In the process of this ongoing updates of research work on construction safety, 

SARMAD research group developed a user-friendly mobile application for hazard 

identification. It is a software that is installed on the cell phones of workers and aimed at 

providing accurate and handy details regarding potential hazardous incidences. It uses 

empirical data obtained from safety managers on construction sites. The practical results 

of this research work can be reviewed by users, and they can enter various inputs () to the 

program to gain insight into the potential hazards and risks that they may be exposed to 

on their specific job site and work environment. 

 

3.7 Conclusions 

Electrical contractors working in the construction industry are exposed to various 

hazardous situations leading to high numbers of severe injuries and fatalities (Gholizadeh 

and Esmaeili 2020 a, b). Electrical contractors have experienced a rise in occupational 

fatalities in recent years. Identifying statistically significant dependencies between these 

catastrophic outcomes and a handful of well-defined contributing factors in construction 

accidents offers a first step in mitigating the risks of construction accidents in this trade. 

Despite its importance, little has been understood regarding the contributing factors to 
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occupational accident occurrence for small electrical contracting enterprises. To address 

this knowledge gap, the main objective of the present work is to study the individual 

effect of different contributing factors (e.g., project characteristics, sources, and causes of 

injury) on the degree of an injury. Our findings reveal that six factors have significant 

effects on fatality rates, with nature of injury and injured part of the body having the 

highest association and project type, source of injury, cause of injury, and event type with 

moderate impacts. The results of this research work are in line with previous studies and 

explained the association between electrical project features using accident reports from 

OSHA’s IMIS accidents database from 2007 to 2013 and proposed a model for predicting 

the nature of occupational injury of electrical contractors. The results of this study apply 

to the construction industry of the United States of America. The data mining technique 

known as CART (using decision trees) was employed in this research work to determine 

if the nature of injury (electrical or non-electrical) of an electrical contractor can be 

predicted from some project details such as end-use, project type, project cost, source of 

injury, environmental factor, human factor, and cause of injury. The results of this study, 

as depicted in the proposed decision tree model gave insight into: (1) the statistics of 

accident reports affecting electrical contractors; (2) forecasting the nature of injuries due 

to an accident during an electrical project; and (3) identifying the factors that are most 

important in forecasting the nature of electrical project injuries. The model proposed by 

this study revealed that the most important factor for predicting the nature of injury 

(electrical or non-electrical) is: whether the source of injury is parts and materials; 

followed by whether the source of injury is tools, instruments, and equipment. In other 
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words, in predicting (with a 94.31% accuracy) the nature of injury as electrical or non-

electrical, whether the source of injury is parts and materials and whether the source of 

injury is tools, instruments, and equipment are very important. Seven decision rules were 

derived from the proposed decision tree model. Safety managers can benefit from these 

findings to better allocate their limited safety resources and develop personalized 

interventions (e.g., trainings) to mitigate safety risks. One can conclude that protecting 

body systems from electric shocks and protecting the head from concussions could be 

effective ways to reduce occupational fatality rates among electrical workers.  

This work discusses several contributing factors to analyze accidents that occur to 

electrical contractors and provides insight for current and future consideration. In 

particular, future studies can incorporate other important general variables, such as age 

and sex of the employee, time of the accident, more specific information on the specific 

type of accidents (e.g., height for fall accidents, and voltage for exposure-to-electricity 

cases). The severity of accidents also can be defined more accurately by considering 

more variables such as monetary cost of injuries or days away from work for non-fatal 

incidents. Future studies also can include more recent incidents that are available on 

OSHA’s database. Continuing research in this filed will enable safety managers to 

develop personalize interventions to further reduce severity and frequency of incidents 

among electrical contractors. 
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CHAPTER FOUR: DEVELOPING A MULTI-VARIATE LOGISTIC 

REGRESSION MODEL TO ANALYZE ACCIDENT SCENARIOS: CASE OF 

ELECTRICAL CONTRACTORS 

4.1 Introduction 

 

In 1931, safety theorist Herbert William Heinrich described safety problems as 

relating to three elements: environment (i.e., safe or unsafe states); decision space (i.e., 

safe or risky human acts); and the probability that an accident happens given the risky 

action of humans in an unsafe state (Heinrich, 1941). While Heinrich’s concepts have 

shaped much of the industrial and occupational safety considerations of the last ninety 

years (Manuele 2002, Penkey and Siddiqui 2015), current fatality and injury trends 

within various industries demonstrate that these contributing elements have not been 

sufficiently controlled or considered to keep workers safe. More than 5000 workers have 

died while working and about 2.8 million workers were injured on jobsites in 2017. 

Almost one in every five fatalities has occurred in the construction industry (Bureau of 

Labor Statistics, 2019). These statistics further emphasize that new solutions to managing 

construction risk appear necessary. 

Many studies have leveraged Heinrich’s parameters to model occupational 

accidents and improve worksite safety for workers (Mitropoulos et al. 2005, Bellamy et 

al. 2007, Manu et al. 2012, Behm and Schneller 2013, Hola and Szóstak 2019, 

EUROSTAT 2013). For instance, Barkan et al.(1998) integrated signal detection theory 

into Heinrich’s framework to design and execute experiments to study the effects of 

several factors (e.g., giving positive feedback for good behaviors while imposing 



111 

 

punishment for unsafe behaviors) on the probability of choosing a risky task in an unsafe 

state (i.e., miss rates). Furthermore, to tailor Heinrich’s ideas to construction accident 

investigations, Abdelhamid and Everett (2000) proposed an accident root causes tracing 

model (ARCTM) which emphasizes unsafe environment/acts as the main root cause of 

accidents; ARCTM’s application is intended to identify accident causes to prevent 

accident recurrences. At their root, these applications of Heinrich’s theory demonstrate 

the desire to understand the circumstances under which workers—especially construction 

workers—are more prone to fatalities in occupational accidents, in order to improve 

safety performance. 

However, defining the circumstances of events (i.e., unsafe conditions/acts) can 

be challenging. Abdelhamid and Everett (2000) suggested that any physical layout, status 

of materials, tools, and so on, that are in violation of safety standards are a type of unsafe 

condition. Another study defines an unsafe act as “a violation of an accepted safe 

procedure which could permit the occurrence of an accident” (Hamid et al. 2008, p. 5). In 

the dynamic and diverse domain of construction, such specifications are too general to be 

useful to safety practitioners. Furthermore, these generically defined factors do not exist 

in a vacuum, so the interactions between environment, behavior, and probability make 

identifying and proactively managing risk a compounding puzzle for practitioners. 

To address this issue, this study builds a multivariate statistical model to identify 

which elements combine to contribute to more serious accident scenarios (i.e., 

combinations of project’s characteristics, worker’s tasks, and accident factors) among 

those performing a specific trade in the construction industry. To select a trade for 
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analysis, the authors evaluated the specialty trade contractors’ classifications within the 

North American Industry Classification System (NAICS) and found that electrical 

contractors faced the largest increase in the number of fatalities in recent years (Office of 

Management and Budget, 2017). In addition, electrical contractors face a wide range of 

accident types (e.g., such as electrocution, fall, struck-by, and caught in/between) that 

represent multiple accident scenarios. The variety of accident scenarios enabled the 

research team to better measure the impact of each individual accident factor. 

Furthermore, considering the large number of registered firms as electrical contractors 

and the large number of workers employed by these specialty contractors (Bureau of 

Labor Statistics, 2019), the research team decided to consider electrical contractors as a 

prime candidate for the analysis in this study. 

In this study, we used historical data about past accidents among electrical 

contractors to provide a quantitative representation of the unsafe conditions/acts that 

existed on the construction sites, with the severity of injuries serving as the metric to 

evaluate the safety performance. Then, using a thorough logistic regression modeling 

framework, the research team iteratively analyzed the impact of individual accident 

factors—as described in the accident reports—on the accidents’ outcomes; here, the 

severity of injury among the electrical contractors. As a logistic regression model 

determines which factors in a pattern have a significant effect on the dependent variable, 

this approach allowed our team to determine which accident factors contribute 

significantly to the injury pattern. Given that an accident pattern captures factors 

describing both unsafe environments and unsafe acts on a construction site, by 
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identifying significant contributory factors affecting accident severity, our model detects 

high-priority factors that may be preemptively mitigated to prevent or ameliorate 

accidents. Such knowledge of accident patterns helps safety managers prioritize 

addressing these conditions in the safety planning and resource-assignment phase of 

future projects, and therefore supports worker safety while saving safety practitioners 

time and resources. 

The rest of the paper is organized as follows: (1) the background section discusses 

findings of a literature review regarding the causes and circumstances of occupational 

accidents among electrical contractors; (2) the methodology section details the logistic 

regression modeling process, where data analysis and modeling were done using the R 

language [15]; (3) the results of each modeling process step are demonstrated for the case 

of electrical contractors, and the hazardous accident patterns observed in this trade are 

outlined; and lastly, (4) the important findings of the paper are discussed and 

summarized. 

4.2 Background 

4.2.1 Analyzing Accident Severity against Contributing Factors 

Investigating incident severity through statistical modeling and data-mining 

techniques has been a popular approach among accident-prevention studies (Chang and 

Chen 2005; Delen et al. 2006; Huang et al. 2008; Savolainen and Ghosh 2008). A data 

mining method, association rules, have been used by Liao and Perng (2008), and Cheng 

et al. (2010) to analyze construction accidents to discover potential associations among 

accident factors. Liao and Perng (2008) found that in civil engineering projects worker’s 
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age (i.e., between 45–54) and time of service (more than 365 days) are most associated 

with higher probabilities of fatal injuries. In building construction projects, however, the 

study found that the worker’s salary (i.e., more skilled workers) and day of the week 

(Mondays and Tuesdays) are more associated with higher fatalities. Cheng et al. (2010) 

applied association rules to investigate the main factors that are associated with falls in 

civil engineering and building construction projects. They revealed that “failure to install 

a work platform or protection when working in a high place, workers’ horizontal 

movements, and failure to use personal protection equipment when at work” are the top 

three factors contributing to falls in both types of projects (p. 443).  

Another popular statistical modeling method to explain relationships between 

accident variables and the outcome of the incident is logistic regression (Sze and Wong 

2007; Tay et al. 2008; Daniels et al. 2010). Many accident analyses studies have utilized 

variations of logistic regression models. For instance, Al-Ghamdi (2002) applied logistic 

regression on police reports to examine the effects of several variables on the severity of 

injuries and revealed that location and cause of accident are the most significant factors. 

In another study, Yan et al. (2005) analyzed the probability of rear-end accidents using 

Florida traffic accident data to identify the significance of risk factors such as road 

environment features (e.g., number of lanes, road surface condition) and driver/vehicle 

traits (e.g., drivers age, vehicle type) on this type of accident. In a study more relevant to 

construction safety, Harb et al. (2008) investigated three years of work-zone crash data 

from Florida using multiple logistic regression models; the authors found roadway 

geometry, age and gender of the driver, usage of drugs and alcohol, lighting and weather 
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conditions can all be major risk factors of work-zone crashes. Chau et al. (2002, 2004) 

reviewed 880 cases in the French construction industry to study the effects of the 

individual characteristics of workers on accident occurrence. The results indicated that 

sleep disorders and young age significantly contribute to higher injury rates. 

Savolainen et al. (2011) performed a comprehensive review of studies related to 

the application of logistic models in accident analysis; their work shows that among 

various modeling frameworks, discrete outcome models such as ordered probit and 

unordered (i.e., nominal) logit models have been applied the most. The choice between 

these models mainly depends on the nature of the response variable (i.e., degree on 

injury). When the accidents are classified with either fatal or nonfatal outcomes, binary 

outcome models become a viable choice for analysis. For instance, in an attempt to 

quantify the effects of four different street patterns on road accident injury risks—

controlling for other parameters such as driver’s age, condition, and so on—Riffat and 

Tay (2009) analyzed 22,704 crashes using a binary outcome logistic regression model; 

the study showed that some patterns such as lollipops and loops can be marginally safer 

when compared to the traditional gridiron pattern. Another study by Peek-Asa et al. 

(2010) investigated the impact of teenager drivers’ age on the degree of injury on rural 

and urban roads. This study found that among teenage drivers the odds of a fatal/severe 

injury were almost five times higher in non-urban areas than urban environments. The 

authors concluded that the higher fatality rates in rural areas could be associated with 

road conditions, uncontrolled intersections, narrower two-lane roads and less visibility. 

Each of these types of accident-severity analyses attempts to detect accident factors with 
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significant impacts on accident severity, and they can all lead to a better understanding of 

the latent causes of accidents, as well as to the design of better safety solutions. 

While the occupational safety literature is rich in the field of construction, 

severity-analysis studies based on empirical data are very limited compared to 

transportation accident studies. The lower number of accidents and fewer data sources, as 

well as the unique conditions of construction sites—as compared to the relatively 

ubiquitous conditions in traffic crashes—reasonably explains this gap in the literature. 

Furthermore, the majority of safety studies/programs in construction have focused on 

developing methods to reduce the frequency of accidents and not the severity of their 

outcomes (Moudon et al., 2011). This study addresses these knowledge gaps by 

analyzing the severity of construction accidents through a multi-variate model. Another 

limitation, even among crash-injury analyses, is that many details of the modeling 

process are usually missing from these studies. Thus, discussing the results of these 

models without describing the details can hurt the final conclusions, as logistic models 

can be very sensitive to their assumptions. Therefore, the authors provided a detailed 

description of modeling steps that can be replicated in future safety studies. 

4.2.2 Occupational Incidents among Electrical Contractors 

Construction is one of the largest industries in the United States. According to the 

Bureau of Labor Statistics, more than nine million people worked in this industry in 2018 

(DataUSA, 2019). The construction industry also consists of a wide range of professions 

and specialties, and therefore a large number of unique environments around each 
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project. To limit the scope of analysis, the authors decided to focus on only one specialty 

trade, electrical contractors. 

According to the Statistics of U.S. Businesses (SUBS), in 2016 more than 

144,000 establishments and firms were registered as electrical contractors, making this 

subindustry the second largest in business count among all specialty trades (United States 

Census Bureau 2016). In 2017, this trade also had the third highest number of fatalities 

among all 18 specialty trades within the industry (Bureau of Labor Statistics, 2019). To 

better understand accident patterns among electrical contractors, the authors have 

conducted an in-depth literature review related to occupational incidents in this trade. 

Studies investigating the nature of accidents among electrical contractors are 

minimal (Gholizadeh and Esmaeili, 2016). In one early study, an examination of the 

mortality patterns of 31,068 U.S. members of the International Brotherhood of Electrical 

Workers (IBEW) working in the construction industry between 1982 to 1987 showed an 

elevated proportion of mortality due to causes such as leukemia, brain tumors, melanoma 

skin cancer, and diseases caused by asbestos (e.g., lung cancer) (Robinson et al. 1999). 

However, their study reviewed mostly long-term causes of injuries—such as cancer and 

heart disease—and therefore did not cover day-to-day hazards and occupational injuries 

on construction sites. 

Rossignol and Pineault (1994) investigated fifty-seven electrocution accident 

reports that resulted in a fatality in Quebec during the period of 1981–1988. The authors 

defined three phases as pre-electrocution, electrocution, and post-electrocution, and they 

then set out seven descriptors for the first two phases. The authors used factor analysis to 
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classify the seven pre-defined descriptors. Results of the factor analysis showed more 

than 90% of cases were covered with only two factors: (1) twenty-six electrocutions 

occurred during an indoor electrical task performed in direct contact with a source of less 

than 10,000 volts; and (2) twenty cases happened while performing non-electrical 

outdoor tasks in indirect contact with a source of more than 10,000 volts. This clear 

distinction raised questions about the efficiency of safety trainings where around 43% of 

accidents occurred in non-electrical tasks. The authors suggested a shift in safety 

strategies from training to elimination or modification of hazard sources. While the 

outcomes were interesting, the study suffered limitations from a relatively small and old 

database of cases from outside the United States. 

In a study that considered age, company size, experience, tasks performed, source 

of injury, and accident causes as dependent variables, Chi et al. (2012) performed a chi-

square automatic interaction detector (CHAID) analysis of 250 fatal electrocution 

accidents to classify accidents into seven hazard-pattern scenarios. Among all these 

predictors, only source of injury and accident causes were indicated to be significant in 

classifying accident scenarios. Results of the study show that if the source of injury was 

energized equipment, then almost all electrocutions occurred due to direct contact; for 

other electrical sources, direct or indirect contact would happen relatively equally. As the 

authors indicated, the main limitations of this study were inconsistency in reporting 

accidents and using only two predictors in the analysis, along with the relatively small 

number of observations. 
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Considering the high proportion of fatalities due to electrocution in construction 

even after safety controls have been employed for decades, Zhao et al. (2015 a) examined 

486 recommended controls from 132 Fatality Assessment and Control Evaluation 

(FACE) accident reports to: (1) evaluate the effectiveness of electrical safety 

recommendations given by NIOSH experts; and (2) assess safety knowledge in the 

construction industry. Accident reports were coded using the hierarchy of controls: 

elimination, substitution, engineering, administration, and personal protective equipment. 

The authors also defined a variable to represent safety knowledge based on the number of 

recommendations for each accident. They compared these two variables by three 

important parameters for electrical safety—construction type (residential, commercial, 

etc.); occupation (electrician, and non-electrician); and electrical condition (low voltage 

and high voltage)—and found that the number of suggested safety practices was slightly 

higher for non-electrical workers, and control measures for high-voltage hazards, were 

statistically less effective than those for low-voltage hazards. The effectiveness of 

controls was not statistically different by construction type or occupation. Another 

interesting finding was that behavioral controls in electrical hazard mitigation are 

overemphasized and more attention should be paid to effective control measures, such as 

elimination. While the paper made several valuable contributions, it suffered the 

limitation that FACE reports were collected in multiple decades and were not randomly 

selected. Therefore, the assumption that the recommendations provided in those reports 

are common practices in the construction industry would not be correct. 
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To better understand the chain of decision mistakes that lead to an electrical 

accident, Zhao et al. (2016) examined 144 FACE accident reports. Considering 12 

common decision mistakes (e.g., failure to lockout/tagout) as independent variables and 

19 pre-defined factors (e.g., project type, safety training, etc.) as predictors, the authors 

classified accident reports using Exhaustive CHAID, a type of classification tree. The 

analysis detected five features of work (i.e., group of activities and sequences) and 

decisions that could prevent electrocution accidents. One main finding of the study was 

that the sooner a decision is made, the better it can mitigate the risk of electrical 

accidents. The results of the study can help safety managers find critical decision points 

in different situations in order to suggest effective safety controls before the construction 

phase. Using the same database, Zhao et al. (2015b) studied electrical injuries by 

considering the interactions among humans, technology, social structure, and 

environment as a sociotechnical system. By conducting latent class analysis and multiple 

correspondence analysis, the authors identified three sociotechnical systems in the 

construction industry: residential-building; heavy and civil-engineering; and non-

residential-building construction. The authors provided specific recommendations for 

each system to reduce the risk of electrocution injuries. However, both of these studies 

were conducted on a small number of fatal accident reports; for this reason, a severity 

analysis could not be done on such data. 

In another study, Gholizadeh and Esmaeili (2020) studied the effects of different 

accident types and project end uses on the cost of injury among electrical contractors 

using robust hypothesis testing methods (i.e., Welch-type procedure, extension of Yuen’s 
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method, and percentile bootstrapping). The results of the study confirmed that robust 

hypothesis testing approaches can be successfully implemented on safety data even when 

the assumptions of conventional test statistics are violated. The findings showed that 

various event types and project end-uses can impact the cost of injuries among electrical 

contractors: caught in/between and exposure to electricity accidents can, on average, lead 

to higher injury costs than fall to lower levels and struck-by objects/equipment accidents. 

For a project’s end-use, the outcomes indicated that injuries that occurred in nonbuilding 

projects are significantly costlier than those that occurred in building projects. 

The results of the literature review indicated several limitations in previous 

studies on the occupational health and safety of electrical contractors: (1) the majority of 

studies have focused only on fatalities and ignored other incident outcomes; (2) most of 

the studies investigated electrical incidents and not all types of possible hazards (e.g., fall, 

struck by) among electrical contractors; and (3) there is an absence of robust statistical 

analysis to support inferences made from incident databases—severity-analysis studies 

(i.e., using statistical models to explain and predict the outcome of an accident) are 

limited in the construction safety domain. On the other hand, researchers have been able 

to enhance our understanding of traffic accidents and their consequences by applying 

logistic regression models on traffic crash accident data. The authors believe that 

construction safety managers can also benefit from such analysis by identifying more 

severe accident scenarios. While the modeling method used in this study has been 

successfully applied to traffic accident data, its application to construction accident data 

was not guaranteed before this study. Our findings show that empirical data available 
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publicly through organizations such as the Occupational Safety and Health 

Administration (OSHA), while they may need improvements, are suited for such 

analysis, and that statistical models can be built upon construction accident data to find 

more severe patterns and prioritize managing them. Therefore, this study aims to address 

these limitations by using a multivariate logistic model to analyze accidents in the 

OSHA’s Integrated Management Information System (IMIS) accident database affecting 

electrical contractors. 

4.3 Materials and Methods 

To attain the research objectives, the research team first acquired reliable national 

data on occupational incidents involving electrical contractors from OSHA’s online 

database of catastrophic accidents. The authors then conducted a thorough content 

analysis to ensure consistency among variables, to reduce any ambiguity in reported 

values, and to prepare data for statistical analysis. As the most severe accidents end in a 

fatality, this study uses fatality rates to describe accident severity. Thus, to investigate 

and explain the relationship between factors contributing to accidents and the degree of 

accident injuries, this study executed a multivariate logistic regression model that 

estimates the fatality rates of different accident scenarios occurring among electrical 

contractors. The ability to consider several factors in one model and interpret the final 

coefficients in terms of adjusted odds ratios (i.e., controlled for other factors) makes 

multivariate logistic modeling a suitable approach for severity analysis. The rest of this 

section is devoted to explaining each of these steps. 
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4.3.1 Incident Database and Programming Language 

The authors collected 621 accident reports involving electrical contractors 

between 2007 to 2013 from OSHA’s IMIS online database. In total, 689 employees were 

injured in these incidents while performing their jobs on construction projects. The 

OSHA IMIS database has been successfully used by previous researchers to study 

occupational incidents (Esmaeili 2012; Esmaeili et al. 2015a, 2015b). Within this 

database, a summary of each accident, as reported by OSHA inspectors, appears along 

with variables that describe the accident (e.g., event type, source and cause of injury), its 

context (e.g., project end-use, type, and cost), and its consequences (e.g., nature and 

degree of injuries, and injured part of body). As this study’s concern is contributing 

factors, the analysis only considers variables that manifest before an accident occurs; 

therefore, variables such as nature of injury (e.g., fracture, burn), part of body (e.g., head, 

trunk), and event type (e.g., fall, struck by, exposure to electricity) are excluded from the 

modeling process in this study because these elements are all characteristics of the 

accident after the accident occurred and therefore do not represent contributory factors to 

accident severity. 

The data analysis and model development steps were done in R environments (R 

Core Team 2013). R is an open-source language for statistical computing and graphics 

which provides a broad range of statistical techniques such as classical statistical tests, 

classification, clustering, time series analysis, and linear and non-linear modeling. R 

environments can run on Windows, MacOS and Unix platforms. 
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4.3.2 Odds Ratio 

To better understand the associations between each significant covariate and the 

target variable (i.e., degree of injury) and to interpret the likelihood of a fatal accident in 

different situations, the unadjusted odds ratios of fatal accidents were calculated at this 

point. Odds ratios can compare the magnitude of different risk factors over an outcome 

(Szumilas 2010). For example, consider a comparison of the odds of a fatal injury among 

all accidents where the source of injury is either a vehicle or a machinery. The odds ratio 

for the effect of the vehicle category in this example can show the magnitude of its effect 

on the fatal injuries; an odds ratio of 4 means that the chance (i.e., odds) of a fatal injury 

is four times more where the source is a vehicle compared to cases where the source is a 

machine. These ratios can be compared to the adjusted ones once the final model is 

selected, as such a comparison reveals the effects of controlling factors on odds ratios. 

Significant changes among unadjusted and adjusted ratios would suggest high 

correlations between accident factors, and further encourages the use of logistic models 

to achieve adjusted ratios. 

4.3.3 Logistic Regression 

While using chi-square tests can show the relationship between a single factor and 

the degree of injuries, these tests are unable to determine the effects of these variables in 

the presence of other factors. Logistic regression is a proper method to test the 

association between potential accident risk factors and a dependent variable (Harb et al. 

2008). As mentioned in the background section, many studies have used various types of 

logistic regression models to investigate potential associations in the field of accident 
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analysis. While more advanced machine learning (ML) methods have emerged and been 

applied to accident studies in the past decade, logistic regression has some advantages 

over ML methods to justify its application in this study. First, the results of a regression 

model are easier to interpret. The model can be represented in one formula using only the 

independent variables and their coefficients. The coefficients of the model can directly 

determine important variables, along with the magnitude and direction of association 

between each independent variable (i.e., risk factor) and the dependent variable. This 

property is very important in studies where finding the relationship between risk factors 

and the dependent variable is as significant as the accuracy of the model’s predictions. 

This could be the main reason for the popularity of regression modeling in traffic 

accident analysis studies. Therefore, while some machine learning methods such as 

decision trees—and their variants such as random forests and gradient boosting trees—

and support vector machines might provide better prediction accuracy, their lack of 

interpretability can be a disadvantage. Second, once the risk factors are identified, 

developing a logistic regression model is straightforward and, unlike machine learning 

methods, does not require tuning various hyperparameters. This quality makes logistic 

regression the first choice in many predictive studies and a valid baseline for other more 

complicated classifiers. Third, while methods such as association rules can be useful to 

find latent patterns in large data sets, these methods are inherently different from 

classification methods such as logistic regression modeling. As Freitas (2000) has 

outlined, classification methods are about using the past data to predict the future; 

prediction is a non-deterministic task, and that’s why two different classification methods 
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(e.g., logistic regression and decision trees) could generate different predictions on the 

same set of values. On the other hand, association rules are deterministic: every algorithm 

would produce the same set of rules, while some might be faster. One of the objectives 

behind modeling construction accidents in this paper is to use a reliable and well-defined 

model to predict fatality rates in common accident scenarios; association rules cannot be 

used for such predictions. 

A logistic regression model can isolate effects and indicate which variables can 

explain the variability among accidents more accurately. Logistic regression models have 

been adopted widely in areas ranging from medicine (Higgins et al. 1992; Narayan et al. 

2003) to the social sciences (Pierson et al. 1983; Lattimore and Visher 2014). This 

section details several steps in developing and evaluating a multivariate logistic 

regression model. 

Traditionally, building statistical models starts with selecting variables that can 

result in a parsimonious model (i.e., having as few variables as possible), explain the 

data, are stable, and can be generalized to unseen situations (Bursac et al. 2008). To 

develop such models, this study adopted the purposeful selection of variables procedure 

proposed by Hosmer et al. (2013). One main advantage of this approach is that it 

considers both the significance and change-in-estimate criteria when selecting final 

variables (Dunkler et al. 2014). Each step will be explained here. One should note that to 

maintain the language of statistical modeling, accident factors are called “covariates” in 

this section. Three steps were taken to conduct this regression analysis (Figure 4.1): 

• Step 1: Select variables and calculate odds ratios 
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• Step 2: Develop and adjust model 

• Step 3: Assess and validate model 

 

 

 

 

Figure 4.1. Three steps of building and validating a multivariate logistic regression model. 
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Step 1: Select variables and calculate odds ratios 

A purposeful model-building process starts with building univariate (i.e., 

containing only one covariate such as project end-use or source of injury) models for 

each covariate and assessing their performance. The performance of each univariate 

model is calculated as the difference between its deviance and the deviance of a model 

with only the constant parameter (i.e., no covariate). The glm function from the stats 

package in R (R Core Team 2013) was used to determine the deviances of models. The 

significance of difference (i.e., presented by G) is determined through the p-value of a 

chi-square test (i.e., the pchisq() function in R) with a degree of freedom equal to (d-1), 

where ‘d’ is the number of categories of the covariate. Within this framework, a 

significant result recommends the inclusion of the variable in the final model. As this is 

the first step, Hosmer et al. (2013) recommended less conservative significance levels 

(i.e., 0.25 instead of 0.05) to include more variables in the model. In other words, this 

step allows less significant factors to remain in the model in order to analyze the effects 

of these apparently less significant factors on more significant ones in future steps. 

Factors that are neither significant at the 0.05 level nor have an effect on other factors 

would be excluded from the model eventually. 

Table 4.1 presents the log likelihood ratio statistics (i.e., G) for five univariate 

models. Low values of G indicate that the difference between fatality rates among 

different categories of a factor are negligible and therefore the variable would not be very 

predictive in the model. The significance of G also depends on the degree of freedom 

(i.e., d.f.) which ultimately determines the p-values (i.e., the evidence against a null 
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hypothesis: the smaller the p-value, the stronger the evidence to reject a null hypothesis). 

One can only check p-values and conclude whether the effect of a variable on fatality 

rates is significant or not. As the significant level in this step is 0.25, any value less than 

that is considered as significant at this step. Based on p-values of the chi-square tests, 

“end use” and “project cost” do not have significant effects on the probability of a fatal 

accident (even at the significance level of 0.25); in other words, the univariate models 

with these variables do not differ significantly from a model that has no covariates. The 

results indicate that the other three covariates are significant and should be considered in 

the multivariate model. 

 

 

 
Table 4.1. Fitting univariate logistic models. 

Model G 
Degree of 

freedom (d.f.) 
p-Value 

End use (EU) 0.4 4 0.983 

Project type (PT) 18.7 4 0.001 * 

Project cost (PC) 6.36 6 0.384 

Source of injury (SoI) 21.58 5 0.001 * 

Cause of injury (CoI) 11.80 5 0.038 * 

* Statistically significant variables at 0.25. 

 

 

 

Step 2: Develop and adjust model 

After finding the more important covariates (i.e., “source of injury,” “cause of 

injury,” “project type”), one can build an additive (i.e., no interaction) model and test the 

importance of individual covariates in this multivariate context using traditional 

significance levels (i.e., 0.05 in this study). The non-significant covariates are temporarily 

removed from the model—in the case of categorical covariates, all levels should be 
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removed even if only one of the categories is not significant. Next, the deviance of the 

new/reduced model is compared to the deviance of the original multivariate model (i.e., 

likelihood ratio test). A large difference means that the removed variables—though 

independently not significant—have a considerable effect on adjusting the significant 

variables, and hence should be added back to the model. This process can be repeated 

several times to make sure that the necessary variables are included in the model. The last 

step in building a multivariate model includes the interaction effects. As with the single 

covariates, the interaction terms are added to the model one-by-one, and their effects are 

measured through the amount of deviance they can reduce. Thus, using this approach, 

significant interactions also remain in the final model. The modeling step is accomplished 

using, mainly, the generalized linear modeling [i.e., glm()] function with ‘binomial’ link 

in R (R Core Team 2013). 

As there are only eighteen possible models of interest based on the different 

combinations of these variables and their interactions, all of them are shown in Table 4.2. 

Three subscripts were used to reflect the structure of the data: let πijk be the probability 

of a fatal accident in the (i, j, k)-th group, where i = 1, 2, 3, 4, 5, 6 indexes “source of 

injury,” j = 1, 2, 3, 4, 5 presents levels of “project type” and k = 1, 2, 3, 4, 5, 6 indicates 

the categories under “cause of injuries”. These variables can produce 180 accident 

patterns (i.e., 6 × 6 × 5). However, 72 of these patterns have zero cases in the data and 

therefore should be excluded from analysis, leaving 108 covariate patterns for modeling. 

As all predictors are categorical, the authors decided to focus on fatality rates among 

these patterns instead of looking at each accident individually. Table 4.2 shows models in 
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abbreviated notation, formulas for the linear predictor, the deviance, and the degrees of 

freedom. A unique ID number has also been assigned to each model for future references. 

 

 

 
Table 4.2. Deviance for logit models of fatality by “source of injury,” “project group,” and “Cause of Injury”. 

ID Model logit (πijk) Devia

nce 

d.f. 

1 Null η 156.87 107 

 One Factor    

2 SoI η + αi 135.29 102 

3 PT η  + βj 138.16 103 

4 CoI η + γk 145.07 102 

 Two Factors    

5 SoI + PT η + αi + βj 113.59 98 

6 SoI + CoI η + αi + γk 123.40 97 

7 PT + CoI η + βj + γk 125.49 98 

8 SoI × PT η + αi + βj + (αβ)ij 91.65 80 

9 SoI × CoI η + αi + γk + (αγ)ik 98.64 72 

10 PT × CoI η + βj + γk + (βγ)jk 100.98 82 

 Three Factors    

11 SoI + PT + CoI η + αi + βj + γk 101.20 93 

12 SoI × PT + CoI η + αi + βj + γk + (αβ)ij 78.21 75 

13 SoI × CoI + PT η + αi + βj + γk + (αγ)ik 75.10 68 

14 SoI + PT × CoI η + αi + βj + γk + (βγ)jk 77.79 77 

15 SoI × PT + SoI×CoI η + αi + βj + γk + (αβ)ij + (αγ)ik 55.17 50 

16 SoI × PT + PT × CoI η + αi + βj + γk + (αβ)ij + (βγ)jk 54.38 59 

17 SoI × CoI + PT × CoI η + αi + βj + γk + (αγ)ik + (βγ)jk 56.75 52 

18 SoI × PT + SoI × CoI + PT 

× CoI 

η + αi + βj + γk + (αβ)ij + (αγ)ik + 

(βγ)jk 

37.55 34 

 

 

 

Using the deviance and degree-of-freedom from Table 4.2, one should start with 

the additive model with three covariates (i.e., model 11). Next, one covariate would be 

excluded from the model to check its effect on the other two covariates. The results of 

these tests are presented in Table 4.3 (i.e., a1, a2, and a3). The results reveal that the 

additive model with three variables (i.e., SoI + PT + CoI) represents a significant 
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improvement over all the additive models with two factors (i.e., model 5, 6, and 7). In 

other words, while some levels of covariates are not significant (results are not shown), 

they have a significant effect on adjusting the other variables and therefore should remain 

in the model. 

The next step is to investigate the interaction effects, which includes models with 

one, two, or three interaction terms. Three models (i.e., 12, 13, 14) in Table 4.2 have one 

interaction term. For example, model 12 includes the main effects of source of injury 

(SoI), project type (PT), and cause of injury (CoI), and the interaction between SoI and 

PT. The log likelihood tests in Table 4.3 (i.e., b1, b2, and b3) show that none of these 

models with one interaction is better than the three-factor additive model (i.e., model 11). 

One can also consider models involving two interactions between two factors, of which 

there are three (i.e., models 15, 16, 17). The results show that only one model (i.e., model 

16) is marginally (p-value: 0.071) better than the additive model. Model 18, which 

includes all the interactions between each two variables, could not improve the additive 

model, and hence cannot be selected as a good model. Considering the p-values in Table 

4.3, one can conclude that model 11 (SoI + PT + CoI) is the best model. 
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Table 4.3. Model comparisons. 

Test ID Test (Model A vs. Model B) G d.f. p-Value 

a1 11 vs. 5 12.39 5 0.030 

a2 11 vs. 6 22.20 4 0.000 

a3 11 vs. 7 24.29 5 0.000 

b1 12 vs. 11 22.99 18 0.191 

b2 13 vs. 11 26.1 25 0.402 

b3 14 vs. 11 23.41 16 0.103 

c1 15 vs. 11 46.03 43 0.348 

c2 16 vs. 11 46.82 34 0.071 

c3 17 vs. 11 44.45 41 0.329 

d1 18 vs. 11 63.65 59 0.316 

 

 

 

The last task in model development is to consider non-significant variables from 

step 1 in the context of the new multivariate model and check whether they can improve 

the performance of this model. Table 4.4 shows the results of such comparisons and 

declares that adding the non-significant variables, one-by-one and together, cannot lead 

to better results. For instance, adding end use to the model would reduce the model by 

four degrees of freedom while only reducing the deviance by 0.73, which is not even 

close to a significant improvement (p-value: 0.949). Therefore, the research team 

concludes that the additive model with three variables is the best multivariate model 

among the possible options. 

 

 

 
Table 4.4. Additive models with and without non-significant variables. 

Model G d.f. p-Value 

PT + SoI + CoI + EU 0.73 4 0.949 

PT + SoI + CoI + PC 4.73 6 0.579 

PT + SoI + CoI + EU + PC 5.51 10 0.855 
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Step 3: Assess and validate model 

After building a model by selecting covariates and tuning the model in a 

purposeful manner, one should investigate the probabilities that are produced by the 

model against true values in data. To do so, the last step in every statistical modeling 

process includes model assessment. This section will detail this study’s three main 

attempts to fulfill the requirements needed to assess our final model. 

I. Goodness of fit 

After building models and comparing deviances to determine covariates and build 

a parsimonious model, one needs to examine how well the data fits the final model. Lack 

of fit means that estimated coefficients are biased, odds ratios could be misleading, and 

future predictions are not accurate. To check fit, one can compare predicted values 

derived from the model to observed values to confirm that the fitted model is correct (Ma 

2018). The Hosmer-Lemeshow (HL) statistic is a popular test for goodness-of-fit and has 

been used in several clinical studies (Higgins et al. 1992; Narayan et al. 2003; Campbell 

et al. 2003). The idea is to partition observations based on their estimated probabilities 

into g (usually 10 to represent deciles of risk) groups featuring approximately the same 

quantity of observations; here, the first group would represent the lowest probabilities of 

fatality, the next group would have larger estimated probabilities and so on, until the last 

group which includes the highest probabilities (Hosmer and Lemeshow 1980; Lemeshow 

and Hosmer 1982). The HL statistic is then calculated by comparing the sum of 

probabilities to the number of observed values in each group. A chi-square test on this 

value with g-2 degrees of freedom can determine whether there is enough evidence to 
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reject the hypothesis that data fits the model. The ‘hoslem.test()’ function from 

‘ResourceSelection’ package in R (R Core Team 2013) provides the test statistic and p-

value of the HL test. 

Table 4.5 shows the results of the Hosmer-Lemeshow tests when dividing the 

accident patterns into 10 groups. The value of Hosmer-Lemeshow’s goodness of fit 

computed for the frequencies in Table 4.5 is 5.85 when granted 8 degrees of freedom, 

with the corresponding p-value of 0.664. The large p-value indicates that the null 

hypothesis that the model fits the data cannot be rejected, demonstrating that the model 

fits the data quite well. A comparison of observed and expected frequencies in the 20 

cells in Table 4.5 also shows close agreements in every decile of risk. For instance, 

within the highest risk decile (i.e., decile 10), the difference between both observed and 

expected values are within one point. Figure 4.2 compares the average of observed and 

predicted values in each decile, which again shows a close agreement in most deciles. 

 

 

 
Table 4.5. Observed and estimated frequencies within ten deciles of risk for fatal and non-fatal accidents. 

Decile Cut Point 
Non-Fatal Fatal 

Observed Expected Observed Expected 

1 [0.058, 0.186] 55 56.4 10 8.6 

2 (0.186, 0.255] 54 51.3 12 14.8 

3 (0.255, 0.295] 48 50.8 23 20.2 

4 (0.295, 0.310] 32 32.0 14 14.0 

5 (0.310, 0.364] 48 52.3 32 27.7 

6 (0.364, 0.390] 35 31.1 15 18.9 

7 (0.390, 0.402] 38 33.7 18 22.3 

8 (0.402, 0.499] 33 33.0 29 29.0 

9 (0.499, 0.561] 26 29.1 35 31.9 

10 (0.561, 0.781] 24 23.3 38 38.8 
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Figure 4.2. Observed and predicted probabilities of fatal injury in ten deciles of risk. 

 

 

 

II. Diagnostics 

Even a strong fit can be very sensitive to outlying and extreme-leverage points in 

the data (Lesaffre and Albert 1989). So, while summary statistics such as the HL test can 

indicate the overall fit of a model to data with a single number, one still needs to check if 

the model fits over all covariate patterns. Pregibon (1981) introduced a range of 

diagnostic measures for logistic models with binary outcomes. Two types of measures, 

based on the leveraged value of covariate patterns, are adopted in this study: (1) those 

that determine fit in each pattern (i.e., change in value of the Pearson chi-square, Δχ2, and 

change in the deviance, ΔD); and (2) those that can determine the amount of influence a 

pattern can have over other patterns (i.e., change in value of the estimated coefficients, 

Δβ)̂. 

For each covariate pattern, values of Δχ2 (and ΔD) are calculated as the difference 

between the Pearson chi-square (and deviance) values of the original model and the 

model when excluding observations in that pattern. As mentioned by Peng et al. (2002), 
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at the significance level of 0.05, and based on the critical value of the chi-square 

distribution with one degree of freedom (i.e., 3.84), changes more than four are 

considered large and demonstrate that the pattern in question contributes significantly to 

the disagreement between the observed and predicted values. Large values of Δβ also 

indicate that estimates are not stable. Large values of Δχ2 or ΔD accompanied by large 

changes in coefficients can signal that a covariate pattern is an outlier and should be 

investigated in more detail. Figure 4.3 and Table 4.6 show diagnostic measures for 

covariates in the final model. Regarding the poorest fit, covariate pattern 97 (i.e., SoI: 

“parts and material,” PT: “alteration or rehabilitation,” CoI: “other”) and 55 (i.e., SoI: 

“machinery,” PT: “other,” CoI: “other”) induced large changes in Pearson chi-square 

values. Covariate pattern 97 also created significant changes in deviance values. In terms 

of effect of a covariate pattern on coefficients of other patterns, pattern 97 again has the 

largest value, followed by pattern 100 (i.e., SoI: “parts and material,” PT: “alteration or 

rehabilitation,” CoI: “installing plumbing and lighting fixtures”). Figure 4.3d combines 

Figure 4.3a with Figure 4.3c as the size of circles represent the value of Δβ. Based on 

these results, three covariate patterns (i.e., 97, 55, and 100) were selected for further 

investigation (Table 4.7). 
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Figure 4.3. Diagnostic measures for the logistic model 

(a) Change in Pearson Chi-square when removing individual covariate patterns from data, (b) Change in 

deviance when removing individual covariate patterns from data, (c) Change in the estimated coefficients 

when removing individual covariate patterns from data, (d) Combination of a and c: change in Pearson Ci-

square (y-axis) and estimated coefficients (size of circles) when removing individual covariate patterns 

from data. 
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Table 4.6. Covariate values, observed outcomes (yijk), number of cases in the covariate pattern (mijk), observed 

probability (Pijk), estimated logistic probability (π̂ijk), and the value of four diagnostic statistics Δχ2 (i.e., change 

in value of the Pearson chi-square), ΔD (i.e., change in the deviance), h (i.e., leverage), and Δβ̂ (i.e., change in 

value of the estimated coefficients), for three covariate patterns with at least one large diagnostic value. 

Covariate Pattern 

Number 
97 55 100 

Source of injury Parts and materials Machinery Parts and materials 

Project type 
Alteration or 

rehabilitation 
Other 

Alteration or 

rehabilitation 

Cause of injury Other Other 
Installing plumbing, 

lighting fixtures 

yjjk 5 2 14 

mjjk 28 4 21 

Pijk 0.179 0.500 0.667 

π ̂ijk 0.373 0.149 0.524 

Δχ2 6.667 4.464 2.737 

ΔD 7.452 3.115 2.802 

h 0.322 0.125 0.377 

Δβ 3.166 0.639 1.658 

 

 

 

To further validate this model, one can delete each of the three questionable 

patterns and look at the model statistics to see if the modified model can still perform 

well. Columns three, four, and five of Table 4.7 demonstrate deviance, sum of Pearson 

chi-square residuals, and the Hosmer-Lemeshow goodness-of-fit statistic for three models 

excluding covariates 97, 55, and 100, respectively. These numbers indicate that the 

selected additive model (i.e., SoI + PT + CoI) can still perform well and fit the data in 

each case. The results of three other scenarios in Table 4.7Table 4.7 (i.e., removing two 

covariates with the poorest fit, removing two covariates with the largest influence, and 

removing all three covariates) also show that the additive model with three variables can 

fit the data very well in each scenario. These findings indicate that the additive model 

performs well with the remaining 105 covariates patterns (representing 91% of all 
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accidents). Based on these results, the three questionable covariates were removed from 

the rest of analysis. 

 

 

 

Table 4.7. Model statistics for the original model and six scenarios. 

Model 

Statistics 

All Data 

Coefficients 
97 55 100 

Poorest 

Fit 

(97, 55) 

Largest 

Influence 

(97, 100) 

All 

Three 

D 101.20 94.02 97.90 98.42 90.81 92.68 89.67 

Χ2 83.82 77.24 77.24 80.99 74.35 75.62 72.94 

C 3.17 1.60 1.01 4.21 3.03 2.92 2.24 

 

 

 

III. Validation 

As mentioned by Iezzoni (2003), calibration and discrimination are two main 

methods to assess the performance of a logistic regression model on unseen data. While 

discrimination measures the ability of a model to distinguish between two classes of the 

dependent variable, calibration determines the model’s capability in producing 

estimations that are, on average, close to the observed classes (Kramer and Zimmerman 

2007). This study is focused on fatality rates among common accident scenarios. Due to 

the categorical nature of predictors, the fatality rate (i.e., dependent variable) of an 

accident scenario is calculated as the average of fatalities among all accidents in that 

scenario. For instance, among the eight accidents that have occurred in 

alteration/rehabilitation projects with tools and instruments representing the source of 

injury and interior plumbing/ducting/electrical work being the cause of injury, only one 

resulted in a fatality. Therefore, the observed/actual rate of fatality in this scenario is 

around 13%. As the objective is to study these rates and compare the performance of the 
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logistic model to them, the authors have concluded that calibration measures would better 

serve this purpose. 

The same measure (i.e., HL statistic) can be used for calibration/validation 

purposes. The only difference is that the data would be divided into training and testing 

sets and the model would be developed on the training set and be tested on the unseen 

testing set. Large p-values indicate there is no evidence to believe the model does not fit 

test data. For more information on the test statistics for testing dataset look at Hosmer et 

al. (2013) (p. 155). 

To validate the model on unseen data, a series of training sets were created using 

70% of the source data, and a series of testing sets were created using 30% of the source 

data. To increase the reliability of the results, this study applied a stratified sampling 

method to generate training/testing data sets. The same measure (i.e., Hosmer-Lemeshow 

statistic) was calculated to ensure that the model, which was trained only on the training 

set, can fit testing data well. The chi-square statistic of 6.97 and the p-value of 0.540 

showed that the proposed model can fit unseen data as well. 

4.4 Results 

This section starts by presenting the odds ratios of fatality among three significant 

accident factors and continues by presenting the final model, its coefficients, and the 36 

most common accident patterns among electrical contractors that can be explained by the 

model. 
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4.4.1 Odds Ratio 

Before presenting the final model, one can examine unadjusted odds ratios for the 

three variables that are included in the model: project type, source of injury, and cause of 

injury. The significant ratios reveal which categories of a variable caused higher fatality 

rates. These ratios can also be compared to adjusted ratios (i.e., controlled for other 

variables) from the logistic model and to identify the effect of controlling factors on each 

variable. Table 4.8 demonstrates these ratios among project types. In the first row, 1.24 

means that fatal accidents in “alteration or rehabilitation” projects are 1.24 times more 

likely to happen than in “maintenance or repair” projects. This ratio is the same as saying 

that fatal accidents are 0.81 times (second row) as likely to happen in “maintenance or 

repair” projects than in “alteration or rehabilitation” ones. As Table 4.8 shows, the odds 

of fatal accidents in the two largest project types (i.e., “new” and “alteration”) are almost 

identical. Table 4.8 also shows that while the odds of an occupational death are much 

larger in “demolition” projects than “new,” “maintenance,” and “alteration” projects, the 

difference is not significant due to the low frequency of “demolition” projects, which, in 

turn, produces large confidence intervals. While the definition of the ‘Other’ category is 

ambiguous, since no further details were available from accident reports, it was not 

possible to translate this category among project types. 
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Table 4.8. Odds ratios of fatal accidents among different project types. 

Project Types 
Alteration or 

Rehabilitation 

Maintenanc

e or Repair 

New Project or 

New Addition 
Demolition Other 

Alteration or 

rehabilitation † 
- 1.24 1.01 0.47 4.06 * 

Maintenance or repair 
† 

0.81 - 0.81 0.38 3.28 * 

New project or new 

addition † 
0.99 1.23 - 0.47 4.02 * 

Demolition † 2.11 2.62 2.13 - 8.58 * 

Other † 0.25 * 0.25 * 0.42 * 0.12 * - 
* Statistically significant at 0.05 level; † First term in odds ratio. 

 

 

 

Table 4.9 demonstrates the odds ratios among “sources of injuries”. As one can 

see, when the source was a “tool, instrument, or equipment,” much fewer fatalities 

happened as compared to tasks that involved “machinery,” “parts and material,” or 

“vehicles.” On the contrary, “vehicles” could lead to more severe injuries than “parts and 

materials,” “structures and surfaces,” or “tools, instruments, and equipment.” In fact, 

having a fatal accident is 2, 3, and 4.4 times more likely to occur when the source is a 

“vehicle” than when it is a “part and material,” a part of “structure or surface,” or a “tool, 

instrument, or equipment,” respectively. Among sources of injuries, 56 cases were 

defined as “other” in OSHA’s database. After reviewing accident reports, all 56 cases 

were reclassified with meaningful values (vehicles, machinery, etc.). However, there 

were seven categories (e.g., chemical products, natural gas, containers, etc.) with very 

low frequencies (less than 2% of sources). To reduce the number of groups in the 

analysis, the authors combined these categories (accounting for 23 cases all together) into 

one “other” category. One should note that this “other” category is less ambiguous after 

content analysis as its components are known. 
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Table 4.9. Odds ratios of fatal accidents among different sources of injuries. 

Source of Injury Machinery 
Parts and 

Material 

Structures 

and 

Surfaces 

Tools and 

Instruments 
Vehicles Other 

Machinery - 1.26 1.79 2.57 * 0.58 1.50 

Parts and Material 0.79 - 1.42 2.04 * 0.46 * 1.19 

Structures and 

Surfaces 
0.56 0.71 - 1.44 0.32 * 0.84 

Tools and instruments 0.39 * 0.49 * 0.70 - 0.23 * 0.58 

Vehicles 1.73 2.18 * 3.08 * 4.44 * - 2.59 

Other 0.67 0.84 1.19 1.71 0.39 - 
* Statistically significant at 0.05 level 

 

 

 
The odds ratios for different causes of injuries are shown in Table 4.10. 

 

 

Table 4.10 Four ratios were found to be significant. When the tasks are “fencing, 

installing lights, signs, etc.” or “installing plumbing, lighting fixtures,” the likelihood of a 

fatal accident is 2.88, and 2.01 times the likelihood of a non-fatal accident than when the 

task is “interior plumbing, ducting, or electrical work” respectively. In other words, 

“interior plumbing, ducting, or electrical work” is less hazardous than the other two tasks. 

Also, “fencing, installing lights, signs” and “installing plumbing and lighting fixtures” 

cause fatality, respectively, 2.39 and 1.67 times more than “Other” causes. One should 

note that the ‘Other’ category here is consisted of two types of cases: (1) causes with low 

frequency incidents and (2) reports in which the cause was not reported by OSHA 

inspectors. The first group represented less than 5% of the data. From 34 reported causes, 

only five had at least 5% and the rest (e.g., demolition, excavation, cutting concrete 

pavement) were labeled as ‘Other’. Other than low frequency causes, there were 130 

cases in which the cause of injury was not reported by OSHA inspectors. Interestingly, 

the fatality rate of ‘not reported’ cases was the same as those of the ‘Other’ category in 



145 

 

the data: 32% of injuries in both groups were resulted in a fatality. For this reason, the 

‘not reported’ cases were also added to the ‘Other’ category when calculating the odds 

ratios and building the regression model. 

 

 

 

Table 4.10. Odds ratios of fatal accidents among different causes of injuries. 

Cause of Injury 

Fencing, 

Installing 

Lights, Signs 

Installing 

Equipment 

Installing 

Plumbing 

Interior 

Plumbing, 

Ducting 

Temporary 

Work 
Other 

Fencing, installing lights, signs - 1.74 1.43 2.88 * 1.52 2.39 * 

Installing equipment 0.58 - 0.82 1.66 0.88 1.37 

Installing plumbing 0.70 1.22 - 2.01 * 1.07 1.67 * 

Interior plumbing, ducting 0.35 * 0.60 0.50 * - 0.53 0.83 

Temporary work 0.66 1.41 0.94 1.89 - 1.57 

Other 0.42 * 0.73 0.60 * 1.21 0.64 - 

* Statistically significant at 0.05 level 

 

 

 

4.4.2 Final Logistic Regression Model 

After selecting the final multi-variate model, one can discuss its coefficients for 

different levels of variables. Note that reference groups among variables are set to those 

with the highest fatality rates: accidents that have occurred in “demolition” projects, 

those where source of injury was a “vehicle,” and those wherein the cause was “fencing, 

installing lights, signs, etc.” From the 14 coefficients, six (excluding the constant) are 

significant at the level of 0.05, and three are marginally significant at the 0.10 

significance level. 

New adjusted odds ratios can be calculated easily from Table 4.11. For instance, 

to compute the adjusted odds ratios between “machinery” and “vehicle,” one can first get 

the estimated logits under the model: 
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𝑔̂(𝑆𝑜𝐼 = 𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑟𝑦; 𝑃𝑇∗ = 𝐴𝑙𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑟 𝑟𝑒ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑎𝑡𝑖𝑜𝑛; 𝐶𝑜𝐼∗ =

𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑔 𝑝𝑙𝑢𝑚𝑏𝑖𝑛𝑔, 𝑙𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑓𝑖𝑥𝑡𝑢𝑟𝑒𝑠) = 1.862 − 0.733 − 0.607 − 0.420 = 0.102; 
(1) 

𝑔 (𝑆𝑜𝐼 = 𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑠; 𝑃𝑇 = 𝐴𝑙𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑟 𝑟𝑒ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑎𝑡𝑖𝑜𝑛; 𝐶𝑜𝐼

= 𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑔 𝑝𝑙𝑢𝑚𝑏𝑖𝑛𝑔, 𝑙𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑓𝑖𝑥𝑡𝑢𝑟𝑒𝑠)

= 1.862 − 0.607 − 0.420 = 0.835 

(2) 

* Values for PT and CoI could vary as long as same values are used in both cases 

The difference between the two estimations is −0.733 and the odds ratio would be 

the exponential of −0.733, which is 0.48. Comparing this ratio to Table 4.9 reveals that 

controlling for “project type” and “cause of injury” has decreased the odds of fatality for 

machinery by around 17% (i.e., 0.58 to 0.48). Note that this odds ratio is more accurate 

than the unadjusted one in Table 4.9 (i.e., 0.58) as the effects of more accident factors are 

considered. 

 

 

 

Table 4.11. Final model for the electrical contractors (number of remaining accidents = 566). 

Accide

nt 

Factor 

Model Parameters Coefficient 
Std. 

Err. 
z p 

 Constant 1.862 0.786 2.369 0.018 * 

SoI Machinery −0.733 0.445 −1.646 0.100 † 

 Parts and materials −0.764 0.336 −2.276 0.023 * 

 Structures and surfaces −1.247 0.381 −3.272 0.001 ** 

 
Tools, instruments, and 

equipment 
−1.613 0.381 −4.235 

2.29 × 10−5 

*** 

 Other −1.072 0.545 −1.966 0.049 * 

PT Alteration or rehabilitation −0.607 0.651 −0.933 0.351 

 New project or new addition −0.635 0.629 −1.009 0.313 

 Maintenance or repair −1.082 0.637 −1.699 0.089 † 

 Other −2.456 0.751 −3.268 0.001 ** 

CoI 
Installing equipment (HVAC 

and other) 
0.445 0.435 −1.023 0.306  

 
Installing plumbing, lighting 

fixtures 
−0.420 0.476 −0.883 0.377 

 
Interior plumbing, ducting, 

electrical work 
−1.032 0.450 −2.290 0.022 * 

 
Temporary work (buildings, 

facilities) 
−0.389 0.526 −0.740 0.459 
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 Other −0.735 0.421 −1.748 0.081 † 
Significance levels: 0–0.001: ***; 0.001–0.01: **; 0.01–0.05: *; 0.05–0.1: †. HVAC: heating, ventilation, 

and air conditioning. 

 

 

 

4.4.3 Common Accident Patterns among Electrical Workers 

To investigate common covariate patterns and study the performance of the model 

in predicting the fatality rates among them, the authors decided to look into the observed 

and predicted fatality rates among patterns with at least six cases (i.e., representing at 

least one percent of the data). Using this criterion reduced the number of patterns to 36, 

which represent 411 accidents or 73 percent of the data. Table 4.12 shows these results, 

which were sorted based on the observed fatality rates in each pattern. Among the 36 

patterns, in 11 cases, the predicted value was within 5 percent of the observed fatality 

rates. These 11 patterns represent 38 percent of the 411 accidents in Table 4.12. Another 

10 patterns, representing 28 percent of the accidents, were predicted with 6–10 percent of 

the observed rates. Among the rest of patterns, four of them did not have close prediction 

numbers, but yielded ranks predicted correctly as having the highest fatality rates. For 

instance, the predicted fatality rate for pattern 99 was 62 percent, which is the second 

highest prediction rate and indicates the high risk-level of this pattern. These numbers 

indicate the satisfactory ability of the model to detect the level of risk among various 

accident patterns. 
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Table 4.12. Observed and predicted probability of fatal accidents in 36 common covariate patterns. 

ID Observed Estimate SoI Cause Type n 

149 0.00 0.07 Structures and surfaces Other Other 6 

137 0.00 0.23 Structures and surfaces Other Maintenance or repair 6 

165 0.10 0.22 Tools, instruments, and equipment Installing plumbing, lighting fixtures Maintenance or repair 1

0 

160 0.13 0.20 Tools, instruments, and equipment Interior plumbing, ducting, electrical work Alteration or 

rehabilitation 

8 

106 0.15 0.27 Parts and materials Interior plumbing, ducting, electrical work Maintenance or repair 1

3 

179 0.17 0.05 Tools, instruments, and equipment Other Other 6 

116 0.17 0.14 Parts and materials Installing equipment (HVAC and other) Other 6 

173 0.17 0.25 Tools, instruments, and equipment Other New project or new 

addition 

1

2 

119 0.20 0.11 Parts and materials Other Other 1

0 

172 0.27 0.20 Tools, instruments, and equipment Interior plumbing, ducting, electrical work New project or new 

addition 

1

1 

158 0.29 0.31 Tools, instruments, and equipment Installing equipment (HVAC and other) Alteration or 

rehabilitation 

7 

170 0.31 0.30 Tools, instruments, and equipment Installing equipment (HVAC and other) New project or new 

addition 

1

3 

113 0.31 0.43 Parts and materials Other New project or new 

addition 

3

2 

112 0.33 0.36 Parts and materials Interior plumbing, ducting, electrical work New project or new 

addition 

2

4 

108 0.33 0.41 Parts and materials Temporary work (buildings, facilities) Maintenance or repair 9 

11 0.33 0.63 Vehicle Other Alteration or 

rehabilitation 

6 

143 0.35 0.32 Structures and surfaces Other New project or new 

addition 

2

6 

107 0.36 0.33 Parts and materials Other Maintenance or repair 3

1 
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171 0.36 0.31 Tools, instruments, and equipment Installing plumbing, lighting fixtures New project or new 

addition 

1

1 

104 0.36 0.39 Parts and materials Installing equipment (HVAC and other) Maintenance or repair 1

1 

167 0.38 0.17 Tools, instruments, and equipment Other Maintenance or repair 8 

161 0.38 0.25 Tools, instruments, and equipment Other Alteration or 

rehabilitation 

8 

142 0.38 0.26 Structures and surfaces Interior plumbing, ducting, electrical work New project or new 

addition 

8 

159 0.38 0.32 Tools, instruments, and equipment Installing plumbing, lighting fixtures Alteration or 

rehabilitation 

8 

110 0.41 0.51 Parts and materials Installing equipment (HVAC and other) New project or new 

addition 

1

7 

140 0.42 0.39 Structures and surfaces Installing equipment (HVAC and other) New project or new 

addition 

1

2 

101 0.47 0.37 Parts and materials Interior plumbing, ducting, electrical work Alteration or 

rehabilitation 

1

7 

47 0.50 0.33 Machinery Other Maintenance or repair 6 

17 0.50 0.51 Vehicle Other Maintenance or repair 6 

128 0.57 0.39 Structures and surfaces Installing equipment (HVAC and other) Alteration or 

rehabilitation 

7 

98 0.59 0.51 Parts and materials Installing equipment (HVAC and other) Alteration or 

rehabilitation 

1

7 

103 0.67 0.50 Parts and materials Fencing, installing lights, signs, etc. Maintenance or repair 9 

114 0.67 0.52 Parts and materials Temporary work (buildings, facilities) New project or new 

addition 

6 

23 0.67 0.62 Vehicle Other New project or new 

addition 

9 

111 0.78 0.51 Parts and materials Installing plumbing, lighting fixtures New project or new 

addition 

9 

99 0.83 0.62 Parts and materials Fencing, installing lights, signs, etc. Alteration or 

rehabilitation 

6 
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4.5 Discussion 

To explore and quantify the effect of the three significant factors (i.e., “project 

type,” “source of injury,” and “cause of injury”) on fatality rates, odds ratios were 

calculated, and their significance was tested at the 0.95 level. Among “sources of 

injuries,” results indicate that “machinery” and “parts and materials’’ can cause death at 

significantly higher rates than “tools and instruments”. Moreover, in accidents where the 

primary “source of injury” was a “vehicle,” odds of a fatal injury would be two times, 

three times, and four times more than where the sources are “parts and material,” 

“structures and surfaces,” and “tools and instruments,” respectively. “Vehicles” in this 

study include highway motorized vehicles, powered off-road and industrial vehicles, and 

non-powered plant and industrial vehicles. All fatal accidents involving vehicles in this 

study can be categorized into four scenarios: (1) struck by/run over by passenger vehicles 

or construction vehicles; (2) electrocuted by touching part of a vehicle (e.g., boom) that 

was energized mistakenly; (3) fell from truck/forklift/bucket; and (4) pinned between 

vehicles or part of vehicles. Chi and Lin (2018) have mentioned the imperative of using 

vehicles that are in compliance with standards such as American National Standard for 

Powered Industrial Trucks. They also emphasized the need for required training and 

evaluation of operators based on OSHA standards. For instance, to avoid falls, OSHA 

1910.178 declares that operators must avoid unsafe behaviors such as placing arms or 

legs between the uprights of the mast or outside the running lines of the truck or standing 
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or passing under the elevated portion of any truck. Applying these recommendations 

could reduce the risk of accident scenarios involving vehicles. 

While the odds ratios could show which level(s) of factors are more hazardous 

(i.e., produce higher fatality rates), they are not enough to explain the relationship 

between fatality rates and accident scenarios in which more than one factor is present. In 

other words, considering combinations of attributing factors in a regression context could 

possibly reveal more about the outcome of accidents (i.e., the probability of a fatal injury 

in this case) than when only one factor has been studied. As mentioned by Hosmer et al. 

(2013), the dependent variable is usually associated with more than one predictor and 

therefore considering only univariate models could be insufficient and misleading. 

Therefore, the authors took several steps to find the best fitting, most parsimonious, and 

efficiently interpretable multivariate logistic regression model. The final model is an 

additive model consisting of three factors: source of injury; type of project; and cause of 

injury. The analysis shows that this model is better than any of the other 17 possible 

models and the saturated model (Table 4.2 and Table 4.3), that it can fit the data well 

(Table 4.5 and Figure 4.2), and that it has a satisfactory performance on unseen data 

validated by Hosmer-Lemeshow test. To ensure that the model can fit individual patterns, 

the authors have also performed diagnostic tests, which revealed that three patterns do not 

fit the model. These patterns have been removed from the data. 

Using coefficients of the final model (Table 4.11 

 

 

Table 4.11), one can study new adjusted odds ratios among factors. These ratios 

are different from those in Tables 4.2–4.4, as the new ones are controlled for the use of 
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other factors in the model. For instance, controlling for “project type” and “cause of 

injury,” the odds ratios of “vehicles” to “machinery,” “structure and surfaces,” “tools, 

instruments, and equipment,” and “other” sources would increase by 20 percent, 13 

percent, 13 percent, and 13 percent, respectively, while the odds ratio between “vehicles” 

and “parts and materials” would be reduced by 1 percent (compared to the ratios that are 

not adjusted for “project type” and “cause of injury” in Table 4.9: “vehicles’” row). The 

significance of coefficients strongly confirms the effects of the selected factors on the 

rate of fatality. 

The logistic regression model can also be used to estimate the probability of a 

fatal injury in a specific accident scenario. Using statistical methods to find common 

accident scenarios have been tested in previous studies. For instance, Chi et al. (2004) 

have applied Phi coefficients on fatal accidents to find strong positive associations 

between industry, sources of injury, and accident type. They reported that fatal falls from 

structures and construction facilities had the most obvious link to the construction 

industry. In this paper, the authors have considered both fatal and non-fatal accidents and 

used the fatality rates as the measure of risk among accident patterns. 

From the 105 accident scenarios/patterns used to validate the model, 36 of them 

happened more frequently. Each of these scenarios occurred at least six times, and 

together they cover 73 percent of all accidents in this study. To identify and study more 

hazardous scenarios both in terms of severity and frequency, observed rates of fatality 

and total number of accidents in each scenario were calculated. Furthermore, the logistic 

model’s estimated rates of fatality were computed and compared to observed rates to 
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detect which scenarios could be predicted correctly. The two most common patterns 

share the same source (i.e., “parts and materials”) and cause of injury (i.e., “other”), and 

only differ in their “project type.” Among the two, most accidents (32 cases) occurred in 

“new projects or new additions,” followed closely by “maintenance and repair” (31 

cases). Considering the fatality rates, though, “new projects” have caused fewer fatalities 

(31 percent) than “maintenance” projects (36 percent). Without considering the source 

and cause of injury, the total fatality rates in “new projects” and “maintenance projects” 

were 40 percent and 35 percent, respectively. The reduction in fatality rates among “new 

projects” (when putting source and cause into picture) is notable. One can conclude that 

when the “source of injury” is a “part or material” (e.g., an electrical part) and the cause 

is “other,” “new projects” are much less hazardous than “maintenance projects.” 

In terms of severity, there were nine patterns with at least 50 percent fatality rates. 

Among them, in five patterns the “source of injury” was “parts and materials”: two 

“alteration projects,” two “new projects,” and one “maintenance.” Reviewing the fatality 

rates among these five patterns further confirms the effect of “cause of injury” on fatality 

rates. Note that with the same source (i.e., “parts and material”) a different cause (i.e., 

“fencing, installing lights, signs, etc.”) increased the fatality rates from 36 percent to 67 

percent in “maintenance projects” (Table 4.12). “Type of project” can also play a 

significant role in determining the fatality rates. For instance, when “source of injury” 

was a “part or material” and “cause” is “installing equipment,” the fatality rates could 

vary from 17 percent in other projects to 59 percent in “alteration or rehabilitation 

projects.” These jumps in probabilities signal that safety managers may benefit from 
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preemptively addressing such coinciding factors in work situations to plan around the 

risks and thereby offset them. 

Considering the prediction performance, while the range of actual fatality rates 

among 36 patterns was 0 to 83, the predicted rates represent a smaller range of 5 to 62 

percent. This difference is important in interpreting the results as, for instance, an 

estimated value of 62 percent would refer to the most dangerous patterns whereas the 

same value might not be as alarming among observed rates. One should note that while 

this smaller range caused some large variations between the observed and estimated 

values—especially among larger rates (i.e., greater than 50 percent)—the level of severity 

was predicted correctly in these cases. As an example, consider the most fatal pattern (83 

percent death rate), which occurred in “alteration projects” when the “source” and “cause 

of injuries” were “part and materials” and “fencing, installing lights, signs, etc.,” 

respectively. The predicted rate for this pattern (i.e., 62 percent) was the second highest 

predicted rate, which clearly declares the high risk of this accident pattern. The research 

team could identify four of such patterns in which the predicted rate—thought not close 

to actual rates—accurately determined the high-risk level of the pattern. Other than that, 

11 and 10 scenarios were estimated within 5 percent and 10 percent of the actual rates, 

respectively. These 25 patterns represent 69 percent of the patterns and 73 percent of the 

accidents. 

Another practical application of the results is related to risk assessment of projects 

for electrical contractors. For example, as shown in Table 4.12, in new projects or new 

addition projects, when workers were “installing plumbing, lighting fixtures” and 
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exposed to “parts and materials”, the risk of fatality was the highest. In another example 

scenario, if the project was “alteration or rehabilitation” and activity was “fencing, 

installing lights, signs, etc.”, the risk of fatality was the highest again when workers were 

exposed to “parts and materials”. In these cases, a project or safety manager can assign 

more safety resources, conducting job hazard analysis, or toolbox meetings to increase 

awareness of construction workers regarding potential hazards. 

4.6 Conclusions 

Electrical contractors working in the construction industry are exposed to various 

hazardous situations leading to a high number of severe injuries and fatalities (Zhao et al. 

2012). This problem necessitates the identification of high-priority accident scenarios 

both in terms of frequency and severity (i.e., probability of a fatal outcome) to thereby 

allow for risk mitigation. Accordingly, the objective of the present work was to first study 

individual effects of different contributing factors (e.g., project characteristics, sources 

and causes of accident) on degree of an injury and then explain the significant effects 

through a multivariate logistic model. Rather than estimating the probability of a single 

accident, the authors utilized three significant factors (i.e., “project type,” “source of 

injury,” and “cause of injury”) to form 108 accident scenarios (i.e., covariate patterns) 

and reviewed these scenarios both in terms of frequency and fatality rates. Model 

assessment techniques verified the fit of the model to the data and its capability to 

estimate the probability of a fatal injury in future cases. All analysis has been done using 

R language packages. 
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Implications of this study suggest that, when controlling for “project type” and 

“cause of injury,” “vehicles” cause significantly higher fatality rates than “tools, 

instruments, and equipment,” “structures and surfaces,” “parts and materials,” and to a 

lower degree “machinery.” Considering common accident scenarios (i.e., 36 scenarios 

that were repeated at least 6 times in the data), there were nine of patterns with fatality 

rates of 50 percent or more. The logistic model also assigned the highest probabilities to 

most of these scenarios, demonstrating the effectiveness of our approach to predictive 

accident modeling. These patterns should be considered as high-priority safety-risk 

scenarios by electrical contractors and their safety managers when allocating safety 

resources and planning for possible interventions. Outside of these practical implications, 

this study also contributes to the body of knowledge by providing a roadmap for building 

multivariate regression models for safety studies. 

This work has discussed several contributing factors to analyze accidents that 

occur to electrical contractors. Future studies can incorporate more variables such as 

“time of the accident” to develop models with better prediction performance. The 

severity of accidents also can be defined more accurately by considering more variables 

such as “monetary cost of injuries” or “days away from work” for non-fatal incidents. 

Furthermore, more advanced, non-parametric machine learning methods can be applied 

to similar data for the same classification purposes. Addressing these limitations can 

improve the prediction ability of models in accident-severity classification problems. 
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CHAPTER FIVE: APPLYING A MULTI-LABEL MACHINE LEARNING 

APPROACH TO IMPROVE THE PREDICTION OF CONSTRUCTION 

ACCIDENT OUTCOMES 

5.1 Introduction 

Construction remains one of the most dangerous industries for its workers in the 

US (Kang et al. 2017; Baker et al. 2020). In 2019, more than two hundred thousand 

occupational injuries have occurred in the construction industry and more than one 

thousand workers lost their lives (Bureau of Labor Statistics 2021). Maintaining safe 

work conditions to mitigate hazardous incidents depends heavily on effective decision-

making by those in key positions (Hayes and Maslen, 2015). However, making good 

safety decisions under uncertain conditions of construction projects has been a significant 

challenge for safety managers. Tixier et al. (2016b) pointed out that the human’s 

limitation in inducing knowledge from a large number of historical observations is a main 

reason for the poor decisions on construction sites. This limitation is particularly 

important as learning from mistakes is critical in avoiding them to happen again (Hayes 

and Maslen, 2015).  

To this end, unlike humans, machine learning models can be used to accurately 

predict the outcomes of hazardous situations, improve decision making, and ultimately 

save lives by learning from massive high-dimensional data (Veropoulos, 2001; Seera and 

Lim, 2014; Tixier et al., 2016b). Other than the direct safety benefits, correct prediction 

of accident outcomes can help many other agencies as mentioned by Iranitalab and 

Khattak (2017): safety planners who are interested in predicting the more 
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hazardous/costly accidents to measure the cost of accidents on communities; the hospitals 

and first-respondents that need to provide appropriate medical assistant as fast as possible 

based on the severity of injuries; and insurance companies that need accurate estimations 

for their costumers’ premiums based on, among other factors, the costs of occupational 

accidents, which depends heavily on accident severity. To benefit from these advantages, 

this study is focused on predicting the outcomes of construction accidents using machine 

learning techniques. 

Predicting the type of an accident and its outcomes, through statistical modeling 

and machine learning techniques, has been one of the main topics of safety studies in the 

last two decades (Sarkar and Maiti, 2020). Most of previous studies have been focused on 

introducing novel optimization techniques to improve the performance metrics on 

individual accident outcomes such as nature of injuries or degree of injuries. For instance, 

Tixier et al. (2016b) have implemented an iterative approach, using out-of-bag error 

estimation, to optimize three hyperparameters (i.e., number of trees, number of features at 

each split, and stratified oversampling proportions) for the Random Forests models. Past 

studies (Mistikoglu et al., 2015; Baker et al., 2020) have validated the application of ML 

on accident data and expanded our knowledge about the potentials and limitations of 

these methods. For instance, Mistikoglu et al. (2015) showed that the extracted rules from 

decision trees can eliminate less important accident attributes and reveal the more critical 

attributes when predicting the degree of injuries. Baker et al. (2020) demonstrated that 

Natural Language Processing (NLP) methods can be combined to ML algorithms such as 

XGBoost and Support Vector Machines (SVM) to facilitate the extraction of accident 
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attributes from historical reports resulting in faster implementations of ML pipelines on 

accident data.  

On the other hand, these studies also enumerated some limitations on the 

application of ML in safety. For instance, both Mistikoglu et al. (2015) and Baker et al. 

(2020), recognized the need for collecting more attributes when gathering reports on 

previous accidents. Furthermore, Baker et al. (2020) also discussed the need for models 

that can predict the incident occurrence which requires data on non-accident scenarios 

such as near-misses. Another important aspect, that previous studies have failed to 

recognize, is that accidents result in multiple outcomes. However, the majority of 

previous studies have developed ML models to predict a single accident outcome (e.g. 

degree of injury) at a time which ignores the potential relationships and dependencies 

among different outcomes such as degree and nature of injury.  

One should note that, when describing the outcomes of an occupational injury, 

inspectors usually identify the type of accident (e.g., fall, struck by), the nature of injury 

(e.g., burn, fracture), the injured part of body (e.g., head, extremities), or the 

degree/severity of injury (e.g., fatal, non-fatal). The potential relationship among these 

outcomes and their predictive power in a machine learning context have not been 

investigated in safety literature.  

To address this knowledge gap, this study has adopted a multi-label approach and 

developed ML algorithms that can simultaneously consider multiple outcomes of an 

accident. The study, hence, aims to test the applicability of multi-label methods to 

improve the performance of ML algorithms with accident data. To achieve this goal, one 
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first needs to study and affirm the correlation among accident outcomes and then verify 

the impact of these correlations on improving the predictive performance of ML models. 

Studying these relationships has two main advantages. The first advantage is related to 

improving the performance of predictive models. In plain terms, if two accident outcomes 

‘a’ and ‘b’ are highly correlated, one can assume that knowing the value of ‘a’ can be a 

good predictor of the value of ‘b’. This can open a new way to improve the performance 

of ML models in safety studies. The second, and more practical, advantage is that even 

without a complicated model, one can apply this knowledge in safety planning. For 

instance, knowing the type and severity of injuries that are related to a specific type of 

accident (e.g., falls) can help safety management to assign safety resources accordingly. 

The rest of the paper is organized in five sections. Section 5.2 summarizes the 

application of machine learning models in safety studies, provides examples of multi-

label classification in other fields, and presents points of departures along with the two 

main hypotheses of the study. Section 5.3 outlines the methods used in this study to 

prepare data for machine learning experiments to examine the two main hypotheses. 

Section 5.4 presents the results of the experiments for both hypotheses and in section 5.5 

the authors discuss these results and their implications (theoretical and practical) on 

construction safety. The conclusions and limitations of the study are presented in section 

5.6. 

5.2 Literature Review 

The authors conducted an in-depth literature review regarding applications of ML 

in construction safety to determine their strengths and limitations and investigate the 
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feasibility of a multi-label approach in accident predictions through reviewing similar 

applications of multi-label methods in other fields. 

5.2.1 Machine learning in accident analysis studies in construction 

Previous studies have shown a wide range of applications for ML in the field of 

construction safety. Text mining is one important application of ML in construction 

safety. As historical accident reports are a major source of data in any safety study, text 

mining methods have been proposed to significantly reduce the amount of time/effort 

needed for data preparation by developing methods that can automatically classify 

accident reports (Chen et al., 2015; Chi et al., 2016). As an example, Goh and 

Ubeynarayana (2017) have applied text mining methods to classify accident reports from 

OSHA into a limited number of labels (e.g. electrocutions, exposure to extreme 

temperatures, struck by falling objects) by training six machine learning algorithms. The 

authors concluded that no ML method could perform best on all labels and each method 

was suited to predict some labels over others. While all these improvements in applying 

ML to enhance safety on construction sites are promising, to limit the scope of work, the 

focus of this study is on the application of ML in predicting the outcome(s) of accidents 

using historical accident reports. 

Machine learning methods have been vastly used in the last two decades to 

analyze historical accident reports to reveal common and hazardous accident scenarios 

and predict their outcomes. The two main types of accidents in these studies were vehicle 

crash incidents and occupational incidents. Many studies have applied methods such as 

Decision Trees (DT) (Chong et al., 2005; Chang and Wang, 2006; Abellan et al., 2013) 
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and Artificial Neural Networks (ANN) (Mussone et al., 1999; Abdelwahab and Abdel-

Aty, 2001; Abdel-Aty and Abdelwahab, 2004; Delen et al. 2006) on crash severity data. 

While DTs have been particularly popular in this field due to their interpretability and 

ability to extract accident scenarios/rules from large amounts of data (Montella et al., 

2011, Gholizadeh et al. 2021), ANN methods such as multilayer perceptron could 

provide more accurate predictions (Abdelwahab and Abdel-Aty, 2001) in the cost of 

“explainability”. Other statistical and machine learning methods such as Multinomial 

Logit (MNL), Random Forests (RF), Support Vector Machines (SVM), and Nearest 

Neighbors Classification (NNC) have been adopted to predict the severity of crashes in 

recent years (Iranitalab and Khattak, 2017).  

Each method has its own advantages and limitations, and the choice of a 

particular method depends heavily on the type of data and the objective of the study. For 

instance, while model parameters (coefficients) in a regression type statistical method 

such as Multinomial Logit can readily reveal the associations among variables (i.e., each 

accident attribute and the target variable: severity of injury) (Guo and Geng, 1995, 

Gholizadeh et al. 2020 b), these models consider strong assumptions about data (linear 

associations and error distribution) that can lead to inadequate prediction performance 

(Iranitalab and Khattak, 2017).  

On the other hand, machine learning methods utilize different ideas to improve 

prediction performance. For instance, RF follows the idea of training an ensemble of DTs 

(instead of one tree) with a random selection of features to split each node to create more 

generalizable models (Breiman, 2001), while SVM applies the idea of kernel functions to 
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project data from a low-dimensional space to a space of higher dimension (Noble, 2006) 

to better separate different classes of the target variable (e.g., fatal vs. non-fatal injuries). 

However, optimizing the hyperparameters and describing the learning mechanisms of 

these machine learning models are more challenging than linear models. Iranitalab and 

Khattak (2017) concluded that while machine learning methods, particularly those with 

less data assumptions such as NNC, outperform MNL when considering the overall 

prediction performance, no single method can predict all severity levels adequately. This 

conclusion further reinforces the need for taking a different approach when predicting 

accident outcomes which is not limited to the characteristics of a specific algorithm but 

implements a more holistic path by considering the associations among various outcomes 

of an accident. 

Analyzing occupational accidents is another major field in which machine 

learning methods have been implemented in the last 25 years. Sarkar and Maiti (2020) 

have pinpointed more than 230 articles on this topic between 1995 and 2019 with most of 

the studies published after 2010. They found that close to 94% of these studies have 

analyzed historical data (as opposed to surveys or real-time data), that the researchers 

from the United States have published the most papers (32%), and that Road and 

Construction were the sectors with most studies with 37% and 22% of the publications 

respectively. To this end, several studies have investigated the benefits of ML in 

predicting different accident outcomes, with more emphasis on the severity of injury as 

the main outcome (Gholizadeh and Esmaeili, 2016, Gholizadeh et al. 2018, Ayhan and 

Tokdemir 2019, Gholizadeh et al. 2021). Mistikoglu et al. (2015) have utilized two types 
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of DTs to predict the severity of fall accidents among roofers. While the extracted rules 

from the DTs in this study can provide valuable information on the relationship between 

accident attributes such as safety training and the severity of injury, the accuracy of both 

methods were less than 70% on the test data set. The authors also did not provide the 

more important performance metrics such as recall and precision. Based on their previous 

works on automatically creating accident attributes/features from incident reports 

(Desvignes, 2014; Villanova, 2014; Esmaeili et al., 2015; Tixier et al., 2016a), Tixier et 

al., (2016b) trained two tree-based ML algorithms to predict four accident outcomes 

using bagging (i.e., Random Forest) and boosting (i.e., Stochastic Gradient Tree 

Boosting) ideas. Other than relying on a large dataset of more than 5,000 injury reports 

and developing a wide set of features, this study also implemented an in-depth procedure 

to optimize the hyperparameters of each method to improve the performance of the ML 

models on predicting the four target variables. The results indicated that while these 

models could predict three target variables well, they were not successful in predicting 

the most important one (i.e., severity of injury). Another limitation was that the 

prediction performance of the models was evaluated by a metric called Rank Probability 

Skill Score instead of standard metrics such as F1-score or the area under ROC curve.  

To address these limitations, a follow up study conducted by Baker et al., (2020) 

that showed improvements in ML metrics for severity of injury. The second paper has 

benefited from a much larger data set (more than 90,000 samples), two more ML 

algorithms (i.e., XGBoost, and Linear SVM), and implementing model stacking ideas. 

The authors also have evaluated the models with standard metrics and analyzed feature 
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importance in more details. While, unlike the first paper, the results show that the ML 

algorithms can outperform a random model when predicting the degree of injury, the 

metrics are still not high (e.g., the F1-score for more severe injury class for the best 

model is 0.37). Also, the evaluation metrics presented in this study are all based on one 

probability threshold. A more robust metric such as area under ROC curve (ROC_AUC) 

or a sensitivity analysis on more thresholds could provide a better picture of the models’ 

performance.  

This study investigates the third application of ML in construction safety. While 

previous studies have shown the promising capabilities of ML algorithms in predicting 

the outcome of injuries, their results clearly indicate that the performance of ML models 

on safety data is still far from ideal and hence there is a need to explore other methods 

and ideas. None of previous studies, to the best of our knowledge, have considered the 

relationships and dependencies among different accident outcomes as a potential to 

enhance the performance of ML models. To address this limitation, this study aims at 

first investigating the correlation among accident outcomes and then implement a multi-

label approach that can benefit from this correlation to improve the prediction 

performance of ML models. Section 5.2.2 introduces multi-label classification and a few 

applications of this method in other fields. 

5.2.2 Multi-label classification 

A classifier which learns from a set of samples that are each associated with one 

label 𝑙, with 𝐾 classes, from a set of disjoint labels 𝐿, is called a single-label classifier. 

Single-label classifiers typically address two problems: binary classification where 𝐾 =
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 2, and multi-class classification if 𝐾 >  2. In contrast, in multi-label classification, each 

sample is identified by a set of labels 𝑌 ⊆  𝐿 (Tsoumakas and Katakis, 2007). Figure 5.1 

presents different types of classification problem and their presentations in a dataset. 

 

 

 

 

Figure 5.1. Single-label vs. multi-label classification (top) and the presentation of features and target(s) in a 

dataset 

 

 

 

Multi-label classification has many real-world applications, including the 

automatic labeling of many resources such as texts (Charte et al., 2015), images (Boutell 

et al., 2004), music (Wieczorkowska et al., 2006), and video (Snoek et al., 2006). As 

pointed out by Zhang and Zhou (2014), while early researches on multi-label learning 

mainly applied these methods on text categorization (McCallum, 1999; Schapire and 

Singer, 2000; Ueda and Saito, 2003), more recent efforts have been focused on a diverse 

range of ML problems from multimedia contents (Boutell et al., 2004; Qi et al., 2007; 

Sanden and Zhang, 2011; Trohidis et al., 2008; Wang et al., 2008) to bioinformatics 

(Zhang and Zhou, 2006), web mining (Tang et al., 2009), rule mining (Veloso et al., 
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2007), information retrieval (Gopal and Yang, 2010), and tag recommendation (Song et 

al., 2008). 

Methods to solve multi-label problems are usually divided into two groups: 

algorithm adaptation and problem transformation. As their names suggest, algorithm 

adaptation methods modify existing machine learning methods to handle multi-label 

space while problem transformation methods essentially convert the multi-label problem 

into one or more single-label classification problem(s) (Moyano et al., 2018). 

While previous studies have developed numerous algorithms in each group to 

address various multi-label problems in different fields, comparing the performance of all 

these methods on safety data is not in the scope of this study. Furthermore, because 

problem transformation methods are not limited to a specific algorithm and provide a 

basis for any ML algorithms, it is more reasonable to adopt them without going into the 

details of a specific algorithm. For these reasons and to limit the number of potential 

methods to study the dependencies among accident outcomes, this study chooses three 

problem transformation methods: Binary relevance (BR), Classifier Chains (CC), and 

Label Power-sets (LP). While all these methods can handle multi-label problems, their 

most important quality for this study is the degree to which each method considers the 

associations among labels during training. While BR ignores any potential association 

and LP only indirectly accounts for the associations when mapping labels into a class, CC 

directly utilizes these associations during training. This distinction among the three 

selected methods is essential to measure the impact of multiple accident outcomes on the 

overall prediction performance of the ML models.   
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5.2.2.1 Multi-label problem transformation algorithms 

Binary Relevance (BR) 

BR provides a framework to train multiple binary classifiers (one classifier for 

each label) using a fixed set of features and fit a model that can score all labels at once. 

The final model, however, is just a combination of separate binary classifiers and the 

performance of the model for each label is the same as a binary model for that label. By 

developing one binary classifier for each label, BR enables all labels to be trained at once 

and facilitates the computation of multi-label metrics such as exact match and hamming 

loss which evaluates the performance on all labels and not just one of them.  

As the most intuitive method among problem transformation algorithms, BR has 

been applied as a baseline model in many fields such as emotion detection from text 

(Huang et al., 2021), emotion detection from music (Li and Ogihara, 2006), cancer pre-

diagnosis (Ceylan and Pekel, 2017), and document classification (Yang et al., 2018). 

Figure 5.2 shows the BR algorithm representation where all labels use one set of features 

and no dependencies is assumed among labels. 
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Figure 5.2. Binary Relevance 

 

 

 

Classifier Chains (CC) 

Similar to BR, the CC models train one binary classifier for each label, but the 

difference lies in the size of feature space in consecutive classifiers. To benefit from the 

potential correlation between labels, unlike the invariable feature space in BR, the feature 

space for each binary classifier in CC is extended by all labels of previous classifiers to 

form a chain. Each label, therefore, has the chance to play an important role in predicting 

later labels in the chain. Moreover, the order in which labels are organized can affect the 

outcome significantly. To account for this, when the number of labels in the chain are 

small, one can consider all order combinations to study the effect of orders and ultimately 

pick the order with the highest performance metrics.  

Introduced by Read et al. (2009), CC has been one of the most popular multi-label 

methods and have been utilized in many areas since. Briggs et al. (2013), for instance, 

created an ensemble version of CC models to recognize bird species based on audio 
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recordings of bird sounds. Mohamed et al. (2018) also have adopted CC to predict 

multiple activities of home residents to better design smart home environments. Figure 

5.3 shows the CC algorithm representation where each label is trained on a set of features 

(X) plus all previous labels in the chain. 

 

 

 

 

Figure 5.3. Classifier chains 

 

 

 

Label Powersets (LP) 

LP considers every unique combination of labels as a separate class (e.g., with 

four labels 0000 → 0, 0001 → 1, 0011 → 2, etc.) and essentially converts the multi-label 

case to a multi-class problem. With 𝐿 labels in the data, the maximum number of classes 

would be 2𝐿. As 𝐿 increases, the number of classes can escalate fast. Some variants of LP 

have been developed in literature to address this issue by selecting only a sample of 𝐿 

labels randomly (e.g. RAndom k-labELsets or RAKEL [Tsoumakas and Vlahavas, 
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2007]) or limiting it to only more common labels (e.g. Pruned Sets [PS] and Ensembles 

of Pruned Sets [EPS] [Read et al., 2008]). For this study, however, 𝐿 is small and one can 

consider all combinations that exist among labels to create the powersets. 

Junior et al. (2017) used LP to classify data streams and presented comparable 

results to PS, EPS, BR, and CC. Furthermore, to detect hate speech and abusive language 

in Indonesian Twitter, Ibrohim and Budi (2019) developed several multi label models and 

revealed that LP models resulted in the best accuracy with fast computational time which 

shows the ability of LP when the label space is small. Figure 5.4 shows the LP algorithm 

representation where the set of labels in each data point are converted into one class. 

 

 

 

 
Figure 5.4. Label Powersets 

 

 

 

5.2.2.2 Evaluation metrics 

To compare the performance of multi-label algorithms, two types of metrics have 

been calculated in this study: i) metrics to measure the prediction performance of ML 

models and ii) a dissimilarity metric. Type (i) metrics are essential to determine if one 

multi-label method is superior to others in correctly predicting labels. Including multiple 
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Type (i) metrics can also ensure that different aspects of the models’ performance are 

evaluated. Type (ii) metrics are more specific to the objective of this study as they can 

identify the method that better captures the similarities among labels. These metrics are 

explained in more details here.   

Prediction performance metrics 

The following metrics have been considered to evaluate the performance of multi-

label classifiers: 

• Exact match (EM): For each observation in the test set, exact match is 1 

only if all labels are predicted correctly and 0 otherwise. The EM for the 

whole test set is the average of these individual binary values and 

therefore is a number between 0 and 1 (Li et al., 2017). This is a 

conservative metric and higher values indicate better performance. 

• Hamming loss (HL): HL is the fraction of labels that are incorrectly 

predicted and therefore lower values indicate better performance. HL is 

less conservative than EM as it considers partial score for samples with 

one or more correct predictions (Li et al., 2017). The HL for the whole test 

set is the average of these individual binary values and therefore is a 

number between 0 and 1. 

• Average of area under ROC curve (ROC_AUC): The Receiver Operating 

Characteristic (ROC) curve is presented by a two-dimensional graph 

wherein the X axis represents values of false positive rate (FPR) and the 

True positive rates (TPRs) are plotted on the Y axis. Once the prediction 



173 

 

thresholds are selected and sorted, the corresponding TPR and FPR values 

would be computed for each threshold and their corresponding points 

would be plotted on the ROC space. The area under this curve (i.e., a 

value between 0 and 1) can be considered as a metric to evaluate the 

prediction performance of a classifier (Rakotomamonjy, 2004). The main 

advantage of using the area under ROC curve (ROC_AUC) as an 

evaluation metric is its independence from a specific probability threshold 

(e.g., 0.5) which makes it a more robust measure of performance than 

those that are calculated based on one threshold such as recall and 

precision. In multi-label problems, one can calculate the ROC_AUC for 

each label and then compute the average of these values which is a 

number between 0 and 1. Higher values represent better performance. 

• Mean Average precision (MAP): Average Precision (AP) is the weighted 

average of precisions among thresholds of a precision-recall curve. Each 

precision value is weighted by the difference between recall of that 

threshold and recall of the previous threshold (Pecina, 2010). 

𝐴𝑃 =∑(𝑅𝑒𝑐𝑎𝑙𝑙𝑛 − 𝑅𝑒𝑐𝑎𝑙𝑙𝑛−1)  ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛
𝑛

 (1)  

Similar to ROC_AUC, AP also benefits from considering various thresholds. In 

the multi-label case, the AP of the positive class is first calculated for each label and then 

the weighted (i.e., using the number of positives as weight) average of the individual APs 
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is considered as MAP which is a number between 0 and 1. Higher values indicate better 

performance. 

Dissimilarity metric 

Other than the prediction performance metrics, one can examine the degree to 

which the multi-label algorithms could capture the correlation/similarity between labels. 

For instance, if two target variables are highly correlated, it is expected that the predicted 

values of them are also highly correlated. A multi-label method that can capture the 

magnitude of similarities among labels more accurately should have a better prediction 

performance as well. To calculate dissimilarity between pairs of targets, this study has 

adopted the Rogers-Tanimoto dissimilarity (RTD) measure (Rogers and Tanimoto, 

1960). RTD is defined as: 

𝑅𝑇𝐷 = 
2(𝑐01 + 𝑐10)

𝑐11 + 𝑐00 + 2(𝑐01 + 𝑐10)
  (2) 

Where cij is the number of corresponding pairs of elements in binary vectors u and 

v respectively equal to i and j. RDT is bounded between 0 and 1 where 0 represents 

complete agreement (c01 = c10 = 0) and 1 represents total disagreement (c11 = c00 = 0) 

between the two vectors. 

RTD has been used in several machine learning related studies. For instance, 

Sadri et al. (2006) adopted RTD as the similarity metric to categorized handwritten 

characters into similar clusters. 

5.2.3 Points of Departure and Hypotheses 

This study deviates from the current body of literature by proposing a multi-label 

machine learning approach towards the analysis of occupational construction accidents. 
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The findings of this study therefore provide new insight on the latent dependencies 

among accident outcomes and their impact on improving the prediction performance of 

machine learning models in this area. 

To benefit from the relationships among accident outcomes in a predictive 

modeling context, one needs to address two challenges. The first challenge is to prove 

that the correlation/impact exists among accident outcomes within a machine learning 

context. To this end, the authors have hypothesized that: 

Null Hypothesis 1: No significant predictive impact exists among accident 

outcomes. 

A simple correlation analysis might not be enough to test this hypothesis as the 

predictive impact of accident outcomes on each other can be more complicated than a 

linear correlation. Therefore, a set of experiments are proposed in this study to test 

hypothesis 1 by statistically measuring the predictive impact of accident outcomes on 

each other.  

The second challenge emerges from the fact that accident outcomes are not 

available before an accident occurs and therefore cannot be used directly as predictor 

variables of a model in real-world situations. For instance, consider a data analysist who 

has gathered some valuable information (e.g., the type of the project, the tools that 

workers are going to use) and plans to use a trained model to estimate the probability of a 

severe injury for each worker on the job site. As no accident has happened yet, the safety 

manager cannot use the type of accident or injury as inputs to the model. Therefore, even 

if hypothesis 1 is rejected, one cannot use accident outcomes as explicit predictors in a 
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machine learning model. This is perhaps one of the main reasons that predictive modeling 

in safety has been limited to single-label classifiers. To this end, a multi-label approach is 

proposed that can capture the latent relationships among chains of accident outcomes 

from historical accident data, without using outcomes as explicit features of the model, 

and apply this knowledge to better predict accident outcomes in real project scenarios. 

This approach facilitates testing the second hypothesis of this study that:  

Null Hypothesis 2: Capturing the latent relationships between accident outcomes 

cannot improve the predictive performance of machine learning models 

5.3 Methodology 

In this section we first introduce the data and describe the feature and target 

variables of the machine learning classifiers. Next, the two main hypotheses of the study 

and the process to test them are explained. 

5.3.1 Data 

To gather a reliable data to test the two hypotheses of the study, the authors 

collected 1,816 accident reports, occurred to specialty contractors, from the Occupational 

Safety and Health Administration (OSHA)’s Integrated Management Information System 

(IMIS) database. Specialty contractors in the construction industry play a critical role by 

performing manual construction tasks. However, such manual work means these workers 

face hazardous situations more than any other trades of construction. Reports from Bauru 

of Labor Statistics constantly show that more than 60% of construction fatalities occurs 

among specialty contractors (BLS 2021). Therefore, finding innovative ways to reduce 

the number of serious injurie among these trades is a promising option to enhance the 
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overall workplace safety in the construction industry. To focus on specialty contractors 

that are faced with more hazardous situations, accident reports were gathered from three 

trades with the highest number of fatalities in recent years: roofing, site-preparation, and 

electrical contractors. These trades, together, are accounted for 43% of all fatalities 

among 19 specialty contractor trades between 2012 and 2019. Table 5.1 provides more 

details about these trades using both data collected from OSHA for this study and overall 

data from BLS.  

 

 

 
Table 5.1. Summary of injury statistics for three specialty contractor trades with the highest number of fatalities 

Specialty contractor name Roofing Electrical Site preparation 

Specialty contractor NAICS code 238160 238210 238910 

Number of accident reports in this study  702 619 495 

Average annual number of all non-fatal 

injuries (BLS: 2012-2019) 

7,575 20,975 7,625 

Average annual number of all fatal 

injuries (BLS: 2012-2019) 

100 73 79 

 

 

 

One should note that OSHA only requires documentation of ‘catastrophic’ 

accidents such as falls and electrocutions, wherein a work-related accident caused a 

fatality, in-patient hospitalization, amputation, or loss of an eye. It is also important to 

note that inclusion in OSHA’s database inherently means an accident occurred. Thus, 

studying this database enables researchers to assess accidents that occurred historically 

rather than assessing or predicting rates of accidents, that requires data on non-accident 

scenarios and near misses which is outside the scope of this study. Within each entry in 

OSHA’s database appears a summary of accident, reported by OSHA inspectors, and a 

limited number of variables used to describe the accident (e.g., event type, source, and 
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cause of injury), its context (e.g., project end-use, type, cost, date), and its consequences 

(e.g., nature and degree of injuries, injured part of body). To process data, this study 

adopted categories found in the Occupational Injury and Illness Classification Manual 

(OIICM), developed by the U.S. Department of Labor Bureau of Labor Statistics (Bureau 

of Labor Statistics, 2012). Gholizadeh and Esmaeili (2020 a) provided more details on 

this data base and its content analysis approach. 

For the purpose of this study, the focus is on the outcomes of construction 

accidents (i.e., target variable) and variables that can be used in a machine learning model 

to predict such outcomes (i.e., features or predictors). To this end, four target groups (i.e., 

event type, nature of injury, injured part of body, and degree of injury) and four feature 

groups (i.e., project end-use, project type, project cost, and source of injury) were 

selected from data. Except for the binary degree of injury, target and feature groups are 

categorical variables with multiple values. To prepare these variables for ML models, one 

needs to first convert them to binary variables. Table 5.2 presents feature and target 

categories (column 2). and the binary variables that are derived from them (column 3) 

along with the frequency and a code, for binary variables, that will be used to refer to 

them in the next sections.  

 

 

 

 

 

 
Table 5.2. Ontology of categorical features and targets in machine learning models ordered by frequency 

Variable 

type 

Categorical 

Variables 

Binary Variables Frequency 

(proportion %) 

Code 

Feature Nonresidential building 927 (51.1) PE1 
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Project 

End-use 

Residential building 525 (28.9) PE2 

Utility system 156 (8.5) PE3 

Other heavy and civil 

engineering 

117 (6.4) PE4 

Highway, street, bridge 91 (5.0) PE5 

Project 

Type 

New project, new 

addition 

585 (32.2) PT1 

Maintenance, repair 512 (28.2) PT2 

Alteration, 

rehabilitation 

416 (22.9) PT3 

Demolition 168 (9.3) PT4 

Other project types 128 (7.1) PT5 

Project 

Cost 

Under $50,000 834 (45.9) PC1 

$50,000 to $250,000 333 (18.3) PC2 

$1,000,000 to 

$5,000,000 

172 (9.5) PC3 

$250,000 to $500,000 154 (8.5) PC4 

$500,000 to 

$1,000,000 

143 (7.9) PC5 

$20,000,000 and over 86 (4.7) PC6 

$5,000,000 to 

$20,000,000 

83 (4.6) PC7 

Source of 

Injury 

Structures and surfaces 647 (35.6) SI1 

Parts and materials 380 (20.9) SI2 

Tools, instruments, 

equipment 

255 (14.0) SI3 

Other sources 228 (12.6) SI4 

Machinery 169 (9.3) SI5 

Vehicles 137 (7.5) SI6 

Target Event 

Type 

Falls to lower level 877 (48.3) ET1 

Struck by object or 

equipment 

340 (18.7) ET2 

Exposure to electricity 301 (16.6) ET3 

Caught in/between 174 (9.6) ET4 

Other events 124 (6.8) ET5 

Nature of 

Injury1 

Fracture 648 (35.7) NI1 

Electrocutions, electric 

shock 

206 (11.3) NI2 

Concussion 146 (8.0) NI3 

Burn electrical 84 (4.6) NI4 

Bruise, contusion, 

abrasion 

81 (4.5) NI5 

Burn heat 64 (3.5) NI6 

Cut laceration 64 (3.5) NI7 
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Injured 

Part of 

Body 

Head 470 (25.9) PB1 

Multiple body parts 336 (18.5) PB2 

Upper extremities 280 (15.4) PB3 

Body systems 279 (15.4) PB4 

Trunk 254 (14.0) PB5 

Lower extremities 197 (10.9) PB6 

Degree of 

Injury 

Fatal 781 (43.0) D1 

1 Some smaller categories of ‘nature of injury’ (e.g., dislocation, foreign body in eye) were not included in 

the final feature list 

 

 

 

Table 5.2 shows that there are 23 potential features and 19 potential targets for 

machine learning models in this study. Other that the binary features mentioned in Table 

5.2, the year of accident has also been added to the features as a continuous predictor. 

5.3.2 Experiments to test hypotheses of the study 

Two main hypotheses have been defined previously: 

Hypothesis 1: No significant predictive impact exists among accident outcomes. 

Hypothesis 2: Capturing the latent relationships between accident outcomes 

cannot improve the predictive performance of machine learning models. 

To test these hypotheses, two sets of experiments were designed and 

implemented. This section presents these experiments in detail. 

5.3.2.1 Testing hypothesis 1 

Before explaining the designed steps to test hypothesis 1, the definition of 

“impact” in the context of machine learning performance in this study needs to be 

addressed. Impact is defined as the magnitude by which the prediction performance 

metric of a binary classifier is improved/declined by including additional features (i.e., 

accident outcomes) to the classifier. Impact is similar to the definition of relevant features 
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introduced by John et al. (1994). A relevant feature influences the target variable 

(relevancy) in the presence of other features (non-redundancy) (Dash and Liu, 1997). A 

simple correlation study is not enough to explain the impact that one accident outcome 

might have on another one. For instance, in the data of this study, the part of body ‘upper 

extremities’ has the highest correlation with the event type ‘exposure to electricity’ (phi 

coefficient of 0.28). However, when including all the 18 other outcomes in a classifier to 

predict whether the injured part of body is ‘upper extremities’, the degree of injury ‘fatal’ 

was the feature with the highest predictive power among outcome variables (phi 

coefficient of 0.21). This manifests the non-linear nature of relationships between 

accident outcomes in advanced machine learning models, particularly when feature space 

is large.  

To address this limitation of correlation analysis, this paper proposes an empirical 

method of directly comparing the prediction performance of models with different feature 

sets while controlling for all other parameters such as sample size, modeling method and 

model hyperparameters. With this approach, the differences in prediction performance 

are only the result of the extra features that one model has over the other ones. More 

specifically, for each target variable, three models are developed: v1, v2, and v3.  

The v1 classifiers are baseline models where the features are only those that are 

available before an accident occurs (i.e., pre-accident variables such as source of injury or 

project type) and therefore there is no outcome variable in their feature space. As shown 

in Table 5.2, there are 23 variables in these models. On the other hand, both v2 and v3 

contain outcome variables in their feature space, although v3 is a much more 
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conservative approach than v2. The v2 classifiers contain all 23 features of v1 plus all 

outcome variables except the target of the model (i.e., 18 outcome variables) for a total of 

41 features. Other than allowing all outcome variables in their feature space, v2 

classifiers also take advantage of the fact that they contain variables from the same group 

as the target of the model. For instance, if the target of the model is to predict the 

probability of ‘falls to a lower level’ (from ‘event type’ group), v2 classifiers allow all 

other event types such as ‘exposure to electricity’, ‘struck by object or equipment’, 

‘Caught in/between’, and ‘Other events’, to be part of the features. It is therefore 

expected that these classifiers show superior performance as they benefit from all 

possible scenarios of an accident event in this case (it would be easy for the model to 

predict fall if none of other event types have occurred). To limit this bias of including 

features from the same category of the target and reducing the size of feature space, the 

v3 models are proposed where not only no outcome is allowed from the target category 

but also only one outcome can be added to the feature set from the other three target 

categories to make a set of 26 features. In the example of target being ‘falls to a lower 

level’, the three additional targets for v3 should come from the other three groups (i.e., 

‘degree of injury’, ‘nature of injury’, and ‘injured part of body’). This way, the model 

would have no direct information about the event type in the feature space which 

provides a more impartial comparison to v1. 

In this paper, 𝑋 represents the vector of pre-accident variables with each pre-

accident variable denoted by 𝑥𝑖, where 𝑖 ∈ {1, 2, … , 23}, each accident outcome is 

denoted by 𝑦𝑗, where 𝑗 ∈ {1, 2, … , 19}, and for each outcome one classifier is trained 
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(ℎ𝑗). The following steps summarize the proposed approach to check the impact of 

outcome variables by comparing the performance of three types of classifiers:  

Train three different classifiers for each of the 19 targets in Table 5.2: 

v1: a classifier only with pre-accident variables (i.e., binary features). 

𝑦̂𝑗 = ℎ𝑗(𝑋)   (3) 

v2: a classifier with pre-accident variables (i.e., binary features) and all other 

accident outcomes (18 level-2 targets). 

𝑦̂𝑗 = ℎ𝑗(𝑋, 𝑦1, 𝑦2, … , 𝑦𝑗−1)     (4) 

v3: a classifier with pre-accident variables (i.e., level-2 features) and only three 

outcomes from a different target group. 

𝑦̂𝑗 = ℎ𝑗(𝑋, 𝑌),     (5) 

 𝑤ℎ𝑒𝑟𝑒 𝑌 𝑖𝑠 𝑎 𝑠𝑒𝑡 𝑜𝑓 3 𝑦 𝑓𝑟𝑜𝑚 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑔𝑟𝑜𝑢𝑝𝑠 𝑡ℎ𝑎𝑛 𝑦𝑗 

Compare the average of prediction performance metric (i.e., area under ROC 

curve) for each classifier. 

Identify features with the most contributions in predictions for v2 and v3 to 

determine if outcome variables are among top predictors. Note that v1 models do not 

have any outcome variable in their feature space and therefore are excluded from this 

step. 

If the predictive performance of the models with outcome variables is not 

significantly better than v1, then one can conclude that outcome variables have no 

significant impact on each other.  
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As mentioned before, v3 models include one binary outcome variable from each 

outcome category (i.e., event type, nature of injury, part of body, and degree) except the 

category that target of the model is from. This one outcome variable should ideally be the 

most predictive one of its category. One should note that a v2 classifier is already trained 

for the target and therefore one knows the power of each outcome variable in predicting 

that target. This ordered list of variables can be used to choose the three outcome 

variables for v3: from each outcome category, the variable that has the highest 

contribution in v2 can be selected. Figure 5.5 shows a hypothetical v2 classifier to predict 

values of 𝑦1and 15 most important features. Features with the same background color are 

coming from the same category. The v3 classifier for 𝑦1would include all 𝑋 features and 

one feature from each outcome category that is the most important in its category. One 

can see that among outcome variables [𝑦2, 𝑦3, 𝑦4, 𝑦5] , that are from the same category, 

only 𝑦2 is selected for v3. 

 

 

 

 

 

 

Figure 5.5. An example to show the method of selecting three outcome variables for v3 from features of v2 
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The importance of each feature is determined by its contribution in generating the 

value of target predictions. This contribution is calculated through SHAP (SHapley 

Additive exPlanations) values in this study. In the context of game theory, Shapley value 

is the average of marginal contributions, of each player, across all possible permutations 

of a set of players (Winter, 2002). Inspired by this method of measuring the contribution 

of players in a game, Lundberg and Lee (2017) presented a unified framework for 

interpreting predictions called SHAP which quantifies the contributions of features in ML 

models. SHAP has been widely applied in academia and industry to explain the results of 

machine learning black-box models (Parsa et al., 2020; Rodríguez-Pérez and Bajorath, 

2020).  

 

5.3.2.2 Testing hypothesis 2   

To test the second hypothesis of the study, the authors first defined all 

experiments needed to test the hypothesis and then, in each experiment, implemented 

multi-label algorithms on the data. To achieve this, a complete machine learning pipeline 

was designed and implemented in Python to automate data preparation, target definition, 

feature engineering, train/test split, model training, and validating model performance on 

test data. This section explains these steps in detail.  

Creating labels and designing experiments  

To test the second hypothesis, we need to consider different ways that these 

variables can be modeled for the analysis. As presented in Table 5.2, there are 19 target 

binary variables (e.g., falls to lower level, fracture, head, fatality) from four target groups 

(i.e., event type, nature of injury, injured part of body, and degree of injury) in this study. 
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To limit the experiments to more common labels, only those with more than 10% 

frequency are considered as valid labels which includes: three event types (i.e., fall to a 

lower level, struck by, and exposure to electricity), two natures of injury (fracture and 

electrocution), all six parts of body, and degree of injury (a total of 12 labels).  

Similar to the v3 models in section 5.3.2.1, the experiments are designed based on 

the idea that there should be only one label from each of the four target groups in the 

label-sets. This would result in 36 unique label-sets where each set consists of four binary 

labels. Table 5.3 shows these experiments with labels representing variable codes from 

Table 5.2. 

 

 

 
Table 5.3. Labels in 36 multi-label experiments 

Experiment 

number 

Labels Experiment 

number 

Labels Experiment 

number 

Labels 

1 ET1-NI1-PB1-D1 13 ET2-NI1-PB1-D1 25 ET3-NI1-PB1-D1 

2 ET1-NI1-PB2-D1 14 ET2-NI1-PB2-D1 26 ET3-NI1-PB2-D1 

3 ET1-NI1-PB3-D1 15 ET2-NI1-PB3-D1 27 ET3-NI1-PB3-D1 

4 ET1-NI1-PB4-D1 16 ET2-NI1-PB4-D1 28 ET3-NI1-PB4-D1 

5 ET1-NI1-PB5-D1 17 ET2-NI1-PB5-D1 29 ET3-NI1-PB5-D1 

6 ET1-NI1-PB6-D1 18 ET2-NI1-PB6-D1 30 ET3-NI1-PB6-D1 

7 ET1-NI2-PB1-D1 19 ET2-NI2-PB1-D1 31 ET3-NI2-PB1-D1 

8 ET1-NI2-PB2-D1 20 ET2-NI2-PB2-D1 32 ET3-NI2-PB2-D1 

9 ET1-NI2-PB3-D1 21 ET2-NI2-PB3-D1 33 ET3-NI2-PB3-D1 

10 ET1-NI2-PB4-D1 22 ET2-NI2-PB4-D1 34 ET3-NI2-PB4-D1 

11 ET1-NI2-PB5-D1 23 ET2-NI2-PB5-D1 35 ET3-NI2-PB5-D1 

12 ET1-NI2-PB6-D1 24 ET2-NI2-PB6-D1 36 ET3-NI2-PB6-D1 

ET: Event Type; NI: Nature of Injury; PB: Part of Body; D: Degree of Injury 

 

 

As mentioned before, the order of the labels in each set is important in the CC 

method. With four labels, there are 24 possible permutations to be considered in each CC 

experiment. In other words, to test hypothesis 2, for each experiment 26 (1 BR + 24 CC + 

1 LP) models are trained: a total of 936 models. 
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Implementing multi-label algorithms  

Model development pipeline 
To automate the process of training 936 models, a configurable machine learning 

pipeline was designed and implemented in Python. The pipeline is responsible for all 

required steps from reading in the raw data, preparing the features (excluding the 

unnecessary columns, encoding categorical features), creating label-sets and their orders, 

and randomly splitting data into train and test sets, to training multi-label models, and 

persisting the performance of them on test data. The details of the pipeline are presented 

in Appendix 1. 

Base classifier 
All problem transformation multi-label methods need a base classifier to predict 

the binary targets. Rivolli et al. (2020) tested several base classifiers in multiple binary 

strategies and found out that Random Forests was the best base algorithm among non-

ensemble strategies (BR, CC, and LP are all non-ensemble methods). In order to control 

for the effect of this base classifier, the random forest with the hyperparameters presented 

in Table 5.4 has been implemented in all experiments. One may note that optimizing the 

base classifier’s hyperparameters in each experiment could improve the results of this 

study. In fact, the parameters presented in Table 5.4 are the product of numerous rounds 

of optimization on different experiments. However, to control for the impact of 

hyperparameters on the performance of classifiers and limit the study on the effects of 

different multi-label algorithms, an invariable set of hyperparameters are used for all 

experiments. 
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Table 5.4. Hyperparameters for the base random forest classifier 

 

Base classifier hyperparameters Value 

Number of estimators 2 

Maximum depth of trees 3 

Split criterion Gini index 

Minimum number of samples required to split 2 

Minimum number of samples at a leaf node 1 

Number of features to consider in each tree 0.5 * number of all features 

Bootstrap samples used when building trees True 

Warm start False 

Class weights {0:1, 1:2} 
 

 

 

Evaluating the performance of multi-label model 
As mentioned in section 5.2.2.2, there are four metrics to measure the predictive 

performance of the models and one metric that measures the degree to which the multi-

label algorithms capture the dissimilarity between labels. Rogers-Tanimoto dissimilarity 

metric can be calculated between two arrays of binary variables. For labels ‘a’ and ‘b’, 

one can calculate one metric to compute the dissimilarity between actual values 

(𝑅𝑇𝐷𝑎𝑐𝑡𝑢𝑎𝑙) and one RTD to capture the dissimilarity among the predicted values for 

each multi-label model (𝑅𝑇𝐷𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑−𝐵𝑅 , 𝑅𝑇𝐷𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑−𝐶𝐶 , 𝑅𝑇𝐷𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑−𝐿𝑃). Next, the 

difference between RTD of each algorithm and the actual RTD is calculated (i.e., 

∆𝑅𝑇𝐷𝐵𝑅 , ∆𝑅𝑇𝐷𝐶𝐶 , ∆𝑅𝑇𝐷𝐿𝑃) and the algorithm with the lowest difference would be 

considered as the one that captures the dissimilarity the best. In this study, each 

experiment has four labels and therefore there are six possible pairs to be tested. For each 

multi-label algorithm, after predicting the labels on the test set, the average of the six 

∆𝑅𝑇𝐷𝑠 would be considered as the dissimilarity metric for that algorithm. 
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5.3.2.3 Statistical tests to compare the results of the experiments 

To statistically test the two hypotheses, the Paired Sample t-test was employed. 

The reason to use the paired t-test instead of the regular t-test is that, for both hypotheses, 

the subjects/samples are the same in all experiments (Ross and Willson, 2017). To use an 

example, the experiments here are similar to studies where the effect of a treatment is 

tested by comparing a metric (e.g., blood sugar) before and after giving a treatment to 

same subjects. Similarly in this study, the metrics (e.g., ROC_AUC) are calculated for 

different methods but on the same test data. The paired samples t-statistic is calculated as: 

𝑡 =  
𝑋̅𝐷 − 𝜇0

𝑆𝐷/√𝑛
         (6) 

Where 𝑋̅𝐷 and 𝑆𝐷 are the mean and standard deviation of differences among all 

pairs respectively,  𝑛 is the number of samples and 𝜇0 is the true mean of differences 

among all pairs (i.e., 0 when testing if the difference is significant). The significance level 

in this study is 0.05.  

After determining the significance of the difference between two methods, one 

also needs to check the magnitude of the difference. Two useful statistics to measure the 

magnitude of the difference (i.e., the effect size) and the strength of the relationship 

between the two variables are “Cohen’ d” and “Pearson’s r” respectively. 

Cohn’s d is the standardized mean difference between two populations (Cohen, 

2013):  

𝐶𝑜ℎ𝑒𝑛′𝑠 𝑑 =  
𝑋̅1 − 𝑋̅2

𝑠
        (7) 
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Where 𝑋̅1and 𝑋̅2 are the mean of the two samples and 𝑠 is the pooled standard 

deviation. If 𝑠1and 𝑠2are the standard deviations and 𝑛1and 𝑛2are the sample sizes of 

sample 1 and 2 respectively, the pooled standard deviation is defined as (Thalheimer and 

Cook, 2002): 

𝑠 =  √
(𝑛1 − 1) 𝑠1

2 + (𝑛2 − 1) 𝑠2
2

𝑛1 + 𝑛2
         (8) 

Cohen’s d is bounded between -1 and 1 where values close to -1 and 1 indicate 

larger effect sizes.  Pearson’s r measures the linear correlation among two sets of data. 

When comparing two machine learning models, it is expected that the prediction metrics 

are positively correlated. 

5.4 Results 

This section presents the results of the two hypotheses of this study through 

statistical tests. First, section 5.4.1 tests the hypothesis that “no significant predictive 

impact exists among accident outcomes” using the average values of ROC_AUC among 

three types of classifiers (i.e., v1, v2, v3). Next, in section 5.4.2, the results of testing 

hypothesis 2 is presented to determine whether capturing the latent relationships between 

accident outcomes can improve the predictive performance of machine learning models. 

To do so, first the results of dissimilarity comparisons among labels are presented to 

determine which multi-label method can better capture the dissimilarities within the 

predicted labels. Next, the prediction performances of three multi-label algorithms are 

compared using the average values of four metrics (i.e., exact match, hamming loss, 

ROC_AUC, and average precision). 
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5.4.1 Hypothesis 1 

To compare the performance of three classifiers (i.e., v1, v2, v3) presented in 

section 5.3.2.1, one can calculate the average of the performance metric (e.g., 

ROC_AUC) for all 19 experiments of each classifier. Table 5.5Table 5.5 provides the 

summary statistics on the ROC_AUC values for each classifier. As one can see, v2 has 

the highest ROC_AUC average followed by v3. As mentioned in section 5.3.2.1, both v2 

and v3 utilize accident outcomes as model features (i.e., predictor variables). Therefore, 

the higher prediction performance of v2 and v3 over v1 suggests that the predictions of 

one accident outcome can be impacted by adding other outcomes into the classifiers’ 

feature space. In other words, adding accident outcomes as predictors to v2 and v3 could 

improve their prediction performance. 

 

 

 

Table 5.5. Summary statistics for ROC_AUC values for the three classifier versions 

Classifiers N Mean SD SE 95% Conf. Interval 

v1 19 0.74 0.14 0.03 0.67 0.80 

v2 19 0.94 0.10 0.02 0.89 0.99 

v3 19 0.82 0.13 0.03 0.76 0.88 

 

 

 

Next, to statistically confirm the prediction performance improvements of v2 and 

v3 over v1, a paired sample t-test was designed to compare the average of performance 

metric, and the results are presented in Table 5.6. One may note that, the objective of 

hypothesis tests, in this section, is to compare the baseline model to each of alternate 

models separately. For this reason, a variant of t-test was selected instead of ANOVA 

which can compare the average values among more than two samples. The results clearly 
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show that both v2 and v3 classifiers have significantly higher ROC_AUC values than v1 

and hence are superior in performance (Difference < 0 test). The results of ‘v1 - v3’ is 

particularly interesting as v3 classifiers only use three additional accident outcomes from 

groups other than the target group. This leads to a more conservative approach than v2 

which includes more additional outcomes (18 additional features versus 3) in the feature 

space and outcomes can be from the same target group. The fact that even v3 models can 

improve the performance significantly over v1, indicates that accident outcomes have 

significant impact on predicting each other. In other words, knowing the value of one 

outcome group can reveal valuable information about the value of another group. The 

results provide enough evidence to reject the hypothesis that “accident outcomes have no 

significant impact on each other.” 

 

 

 

Table 5.6. Results of paired samples t-tests (v1 – v2 and v1 – v3) 

Tests Differe

nces 

df t statistic Two side 

p-value 

Diff. < 0  

p-value 

Diff. > 0  

p-value 

Cohen’

s d 

Pearson

’s R 

v1 - v2 -0.20 18 -6.74 0 0 1 -1.68 0.85 

v1 – v3 -0.08 18 -5.30 0 0 1 -0.62 0.78 

 

 

 

The authors also checked the SHAP values to determine the features with the 

most contributions to the predictions. As shown in Table 5.7, in all 19 cases, there are one 

or more outcome variables among the top five SHAP features for both v2 and v3 models. 

In 13 cases of v3, all three additional outcome variables were among the five most 

important features (e.g., when predicting fracture, three accident outcomes including 

“falls to lower level” [ET1], “fatality” [D1], and “lower extremities” [PB6] are among 
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top 5 features). These results further reveal the importance of outcome variables in this 

experiment. 

 

 

 
Table 5.7. Five features with the highest SHAP values in V2 and V3 

Target Feature codes with the most 

contribution in V2 

Feature codes with the most 

contribution in V3 

Falls to the lower level SI1, ET2, SI2, SI3, ET3 SI1, SI2, SI3, NI1, SI4 

Struck by object or equipment ET1, ET3, ET4, SI1, NI2 SI1, NI2, SI6, PT4, PE5 

Exposure to electricity SI2, NI2, NI4, ET1, ET2 SI2, NI2, SI1, D1, PB6 

Caught in/between ET1, ET2, ET3, SI5, SI6 SI5, SI1, SI6, PB5, PE4 

Other events SI4, NI6, ET1, ET2, PB4 SI4, NI6, PB4, D1, SI1 

Fracture ET1, D1, ET3, NI3, SI2 ET1, D1, SI2, PB6, SI1 

Electrocutions, electric shock ET3, SI2, NI4, ET1, D1 ET3, SI2, D1, SI1, SI4 

Concussion PB1, NI1, ET1, D1, SI2 PB1, ET1, D1, SI2, PE2 

Burn electrical ET3, NI2, SI2, D1, ET1 ET3, D1, SI2, PB3, PE1 

Bruise, contusion, abrasion PB1, ET3, PT4, SI3, SI2 PB1, ET3, PT4, SI3, SI2 

Burn heat ET5, SI4, D1, SI2, NI1 ET5, D1, SI4, SI2, PB4 

Cut laceration ET2, SI3, NI1, PB1, PE3 ET2, SI3, PB1, D1, PE3 

Head PB2, PB4, PB3, PB5, NI3 D1, NI3, ET1, SI2, SI1 

Multiple body parts PB1, PB4, PB5, PB3, PB6 ET1, SI1, D1, NI3, PT2 

Upper extremities SI2, D1, PB1, PB2, PB4 SI2, D1, ET3, NI2, SI1 

Body systems D1, PB1, PB2, PB5, PB3 D1, NI2, SI4, ET3, PC7 

Trunk PB1, PB2, PB3, PB4, PB6 ET4, NI1, PE1, SI2, D1 

Lower extremities D1, NI1, PB1, PB2, PB3 D1, NI1, ET2, PT3, SI2 

Fatal NI1, PB6, PB3, PB1, NI4 NI1, PB6, SI3, SI2, SI6 

 

 

 

5.4.2 Hypothesis 2 

Three multi-label algorithms were designed to predict 36 different accident 

scenarios. As mentioned in Table 5.3, each scenario consists of four binary targets (i.e., 

accident outcomes). To verify hypothesis 2 (i.e., capturing the latent relationships 

between accident outcomes cannot improve the predictive performance of machine 

learning models), the authors first utilized a dissimilarity metric to determine the 

algorithm that can better capture the relationships between accident outcomes. Next, the 

prediction performance of three algorithms is calculated through four performance 
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metrics. The findings indicate that the algorithm which captures the similarities among 

labels more accurately can significantly outperform the other two algorithms in 

prediction performance.  

5.4.2.1 Dissimilarity comparison between labels 

Table 5.8 provides the summary statistics of the Rogers-Tanimoto dissimilarities 

for multi-label models in 36 experiments. The results suggest that CC provides 

predictions that are closest to the actual labels and hence can capture the correlation 

among target variables better than the other two methods. The t-statistics of the paired 

samples along with their p-values, shown in Table 5.9, confirm that the difference 

between CC’s label predictions and the actual labels is significantly lower than such 

difference when the multi-label method is either BR or LP. The comparison between LP 

and BR also shows that the LP method is less effective than BR in capturing the 

similarity between label predictions. 

 

 

 
Table 5.8. Summary statistics of dissimilarity metric for the three multi-label methods 

Multi-Label 

method 

N Mean Std SE 95% Conf. Interval 

BR 36 0.08 0.03 0.01 0.07 0.09 

CC 36 0.05 0.03 0.01 0.04 0.06 

LP 36 0.22 0.17 0.03 0.16 0.28 

 

 

 
Table 5.9. Results of paired samples t-tests (CC – BR, LP – BR, CC – LP) for dissimilarity metric 

Test differe

nce 

df t 

statistic 

Two side 

p-value 

Diff. < 0 

p-value 

Diff. > 0 

p-value 

Cohen’s 

d 

Pearson’s 

R 

CC-BR -0.03 35 -3.36 0.0019 0.0009 0.9991 -0.85 0.49 

LP-BR 0.14 35 5.01 0 1 0 1.33 0.65 

CC-LP -0.16 35 -5.95 0 0 1 -1.61 0.71 
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5.4.2.2 Prediction performance metrics 

This section presents the results of 36 experiments to investigate whether multi-

label approaches can capture the significant impact that accident outcomes have on each 

other. Table 5.10 includes the summary statistics of four multi-label performance metrics 

of 36 experiments. The average values suggest that the CC method can improve the 

prediction performance of multi-label classifiers. The significance of these improvements 

is tested using paired sample t-test and the results are shown in Table 5.11. For all four 

metrics, CC shows a significant improvement over both BR and LP methods. LP method 

only shows significant improvement over BR method in one of the metrics (i.e., exact 

match) while BR outperforms LP regarding ROC_AUC and MAP metrics. There is no 

significant difference between the Hamming loss values of LP and BR methods. 

 

 

 
Table 5.10. Summary statistics of four performance metric values for the three multi-label methods 

Metric Multi-Label 

method 

N Mean Std SE 95% Conf. 

Interval 

Exact Match BR 36 0.30 0.08 0.01 0.27 0.33 

CC 36 0.36 0.06 0.01 0.34 0.38 

LP 36 0.33 0.07 0.01 0.31 0.35 

Hamming 

Loss 

BR 36 0.26 0.04 0.01 0.25 0.27 

CC 36 0.25 0.04 0.01 0.23 0.26 

LP 36 0.26 0.04 0.01 0.24 0.27 

ROC_AUC BR 36 0.70 0.04 0.01 0.69 0.72 

CC 36 0.72 0.04 0.01 0.71 0.73 

LP 36 0.69 0.06 0.01 0.67 0.71 

Avg. 

Precision 

BR 36 0.56 0.08 0.01 0.54 0.59 

CC 36 0.58 0.10 0.02 0.55 0.62 

LP 36 0.56 0.08 0.01 0.53 0.59 
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Table 5.11. Results of paired samples t-tests (CC – BR, LP – BR, CC – LP) for prediction performance metrics 

Metric  test difference df t 

statistic 

Two 

side p-

value 

Diff. < 

0 p-

value 

Diff. > 

0 p-

value 

Cohen

’s d 

Pearson

’s R 

Exact 

Match 

CC-BR 0.06 35 10.65 0 1 0 0.90 0.87 

LP-BR 0.03 35 3.76 0.0006 0.9997 0.0003 0.42 0.54 

CC-LP 0.03 35 4.41 0.0001 1 0 0.50 0.60 

Hamming 

Loss 

CC-BR -0.01 35 -10.11 0 0 1 -0.33 0.86 

LP-BR 0.00 35 -0.82 0.42 0.21 0.79 -0.06 0.14 

CC-LP -0.01 35 -3.24 0.00 0.00 1.00 -0.28 0.48 

ROC_AUC CC-BR 0.02 35 15.73 0 1 0 0.40 0.94 

LP-BR -0.01 35 -3.64 0.0009 0.0004 0.9996 -0.29 0.52 

CC-LP 0.03 35 7.65 0 1 0 0.64 0.79 

Avg. 

Precision 

CC-BR 0.02 35 5.48 0 1 0 0.22 0.68 

LP-BR -0.01 35 -2.24 0.0319 0.016 0.984 -0.08 0.35 

CC-LP 0.03 35 5.31 0 1 0 0.28 0.67 

 

 

 

5.5 Discussions 

An integrated machine learning and statistical testing approach was applied to 

investigate (1) the predictive correlation/impact among accident outcomes and (2) the 

effect of such impact on improving the predictive performance of machine learning 

models. Accordingly, two hypotheses were proposed. 

The results showed that there is enough evidence to reject hypothesis I which 

means that even a model with limited access to accident outcomes in their feature space 

(i.e., v3 classifiers with only three outcome variables) can reach significantly higher 

performance levels than a model with only pre-accident attributes as predictors. This 

finding clearly shows that knowing the nature of the injury, for instance, can help predict 

the severity of the injury and vice versa. Furthermore, the results of SHAP analysis 

evidently demonstrated the very powerful contribution of accident outcomes of certain 

categories in predicting outcomes of other categories. For instance, the three most 

important variables in predicting concussion were whether the injured part of the body is 
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“head”, whether it was a “fall to lower level” accident, and whether the accident has 

resulted in “fatality”. Intuitively, it makes sense that knowing the value of these three 

outcomes can help in predicting concussion. The findings of this study, through statistical 

tests, showed that this intuition was right. More interestingly, in all 19 experiments that 

were completed to test this hypothesis, there was at least one outcome variable in the top 

five predictors for v3 classifiers. In 13 out of 19 experiments, all three accident outcomes 

were found to be among the top five predictors. This is compelling evidence of a 

significant correlation/impact between accident outcomes. The v2 and v3 models can also 

provide practical applications in situations where an accident outcome is missing from 

data. Using other available outcomes, one can accurately predict the missing outcome. 

While accident outcomes demonstrated significant predictive power, these 

variables cannot be used directly as valid features of machine learning models in real 

situations in the future as they are not available before accident occurrence (Baker et al. 

2020). Hence, after showing the relationship between accident outcomes by rejecting the 

first hypothesis, the authors focused on testing multi-label ML methods that can capture 

such correlations and their effects on improving prediction performance without directly 

using accident outcomes as predictors. To this end, three multi-label algorithms were 

selected based on their level of incorporating label correlations during training. While the 

BR method does not utilize the correlation among labels and the LP method incorporates 

such correlation inexplicitly, the CC method fully employs the correlations among labels 

by creating a chain of labels where the predicted values of the first label in the chain are 

being used as a new feature in predicting the values of the second label and so on. After 
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completing 36 experiments with each of the three algorithms, the results first revealed 

that, on average, the predicted values of CC are closest to the actual labels than the other 

two methods. This confirms that, in practice, CC preserves the relationships between 

labels more than the other two methods. This can be mainly due to the fact that each label 

participates in the training process of predicting the subsequent labels and therefore the 

potential correlation between labels is reflected, to some extent, in the predicted values. 

The findings also show that CC has the highest predictive performance in all four 

performance metrics proposed in this study. Since all the multi-label algorithms in this 

study utilized the same data, base classifier, and hyperparameters, the authors discuss that 

the better performance of CC is mainly because of the fact that it captures the correlations 

among labels more than the other two methods. Therefore, there is enough evidence to 

reject the second hypothesis which means capturing the latent relationships between 

accident outcomes can improve the predictive performance of machine learning models. 

The findings of this study offer multiple contributions to academia and 

applications to industry. A major contribution of our study is the validation of the 

Classifier Chains (CC) multi-label machine learning method, that captures the 

relationships among accident outcomes, in improving the overall performance of accident 

outcome prediction models. This result indicates that machine learning methods can 

benefit from more than one accident outcome during the training to improve their overall 

prediction performance. This can have multiple implications for safety studies. First, it 

emphasizes the importance of collecting more variables not only to describe the context 

and causes of an occupational accident but also to paint a better picture of its outcomes 
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and consequences of it. Most accident outcome studies have been focused on expanding 

the feature space of their ML models by detecting more pre-accident attributes (Cheng et 

al. 2020, Zhu et al. 2021). For instance, Tixier et al. (2016 b) built their models based on 

79 attributes to predict four accident outcomes. This emphasis on detecting more pre-

accident attributes is reasonable when the goal is to train single-label models. However, 

the results of this study indicate that accident outcomes can also be utilized during the 

training of ML models using the classifier chain approach. This suggests that more 

keywords from accident reports can be extracted by NLP methods such as those 

introduced by Tixier et al. (2016 a) to describe accident outcomes. It also emphasizes the 

need for more details on the consequences of accidents in the reports of both federal 

agencies such as OSHA and private companies that would like to benefit from machine 

learning predictions. As recommended by Baker et al. (2020), construction companies 

can benefit from machine learning models if they systematically record as much 

information as possible.  

This method has another benefit in the data preparation process. While finding 

some pre-accident attributes (e.g., project type, cost, end-use) is simpler than detecting 

hazards as it does not require guessing (Baker et al. 2020), identifying other attributes 

such as the source/cause of an injury/accident can be challenging and subjective. Very 

similar accidents can be reported differently when inspected by different individuals. For 

instance, consider the following report from OSHA: 

Report# 202479499 “… Employee #1 removed a light bulb and cut wires while he 

was standing on the ladder. Employee #1 grabbed the top of a light fixture with his left 
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hand and was trying to remove a bolt with pliers, when he felt an electric shock. This 

caused Employee #1 to fall from the ladder and he landed on the concrete floor below … 

sustained hip fracture and scalp laceration in the event…” 

One could list three potential sources for this case: the electric part, the ladder, or 

the floor. OSHA has considered the electric part as the main source in this case. 

However, the main event that led to the injury—as mentioned in the report—was a “fall 

to a lower level”. BLS’s OIICM guide explains that in these events, “name the equipment 

or part of the structure (structural element) from or through which the worker fell” as the 

source and “name the object or substance, if any, that contributed to the worker’s fall” as 

the secondary source (Bureau of Labor Statistics, 2012, p. 110). By this definition, the 

ladder and not the electric parts would be the source of injury. Unlike these pre-accident 

attributes, codifying the outcomes of an accident is usually straightforward as the 

evidence is apparent and medical records are also available on those outcomes. It’s hard 

to miss the nature of an injury (e.g., fracture, electric shock) or the injured part of the 

body and almost impossible to report the severity of an injury (i.e., fatality vs. non-

fatality) incorrectly. Therefore, using the outcome of injuries in multi-label methods such 

as CC – which utilizes the correlations among labels - could reduce the noise in machine 

learning models. Noisy data is one of the main limitations in machine learning practices 

(Teng 1999, Kalapanidas et al. 2003, Gupta and Gupta 2019). Having a clean data can 

therefore significantly improve the prediction performance of ML models. 

The second implication is on the way machine learning methods have been used 

in safety studies. Previous studies have introduced various techniques such as automating 
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the creation of binary accident attributes (Tixier et al. 2016 a), automating accident report 

classification (Goh and Ubeynarayana 2017), Boruta feature selection (Poh et al. 2018), 

bagging and boosting algorithms with extensive hyper parameter optimizations (Tixier et 

al. 2016 b, Poh et al. 2018), and model stacking (Baker et al. 2020) to improve the 

accuracy of machine learning predictions. This study provides a novel approach that has 

not been tested in safety studies before: incorporating the correlations among accident 

outcomes in the training process using multi-label algorithms. This is a significant 

improvement over previous studies as it introduces a new approach to studying accidents 

and predicting their outcomes that can be generalized to real-world scenarios.  

Lastly, the findings of this study can contribute to curtail the quantity and severity 

of occupational incidents by providing objective knowledge and making accidents more 

predictable. As discussed by Tixier et al. (2016 b), by identifying accident attributes 

safety managers can now utilize only one model to accurately predict not only the 

severity of an injury but also its type and the effected part of body. The safety manager 

can then use this actionable feedback to replace or remove those attributes before 

exposure. More specific but hazardous scenarios can also be discussed during safety 

meetings. As an example, if a task involves certain attributes that can cause a fall to lower 

levels, the model can simultaneously predict the part of body that is going to be affected 

most by this accident and its outcome (i.e., fall) to encourage discussions about proper 

PPE for the predicted body part. Other than the benefits of utilizing the correlations 

among accident outcomes to improve prediction accuracy, multi-label methods train only 

one model with multiple predictions instead of training multiple models and trying to 
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combine their results. This consolidation of all outcome predictions into one multi-label 

model can facilitate the integration of machine learning techniques with safety planning 

practices. 

5.6 Conclusions 

The current study validated a multi-label approach to investigate the impact of 

correlations among accident outcomes on the performance of predictive models and 

offers potential benefits to both academia and industry. For academia, machine learning 

experiments that incorporate more than one accident outcome as the model’s target will 

expand existing insight about the latent relationships among multiple accident 

consequences. The study findings also offer novel intuition into the significance of one 

accident outcome in predicting the value of other outcomes. 

For the industry, this study illustrates the importance of collecting comprehensive 

data on the outcomes of occupational accidents in the construction industry. The findings 

will encourage safety managers and accident inspectors to carefully document the 

consequences of accidents as they can provide a better foundation for machine learning 

models.  

Furthermore, safety practitioners can benefit from the method presented in this 

study to make safety predictions during the planning phases of the projects. The more 

accurate prediction of accident outcomes will result in better safety planning and 

prioritization of safety resources leading to well-informed decisions making which is 

ultimately the goal of all machine learning efforts in construction safety. 
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Despite the contribution of this study to construction safety, there are a few 

limitations that can be addressed in future studies. First, the data for this study were 

collected from OSHA’s online database for around 1,800 accidents among three groups 

of specialty contractors. Future studies can apply the same methods to larger datasets 

from private companies to include more accident scenarios. Second, as mentioned in the 

literature review, the order of labels is important in the CC method, and therefore finding 

the right order in the chains is one of the main issues in validating the CC method. Due to 

the low dimension of the label space in this study (each experiment has 4 labels), 

considering all the permutations of labels (i.e., 24) in each experiment was manageable in 

this study. However, having more labels would introduce a combinatorial complexity in 

larger datasets (6 labels would produce 720 different chain orders). Therefore, future 

studies can incorporate variants of the CC method such as ensemble of chains of random 

orders (Read et al. 2011), heuristic on conditional label dependence (Zhang and Zhang 

2010), and searching the order space given a fixed structure (Read et al. 2015) to address 

this limitation. Third, interpreting the order of accident outcomes in the best chain was 

not in the scope of this study. Future research can investigate the best chain order in each 

accident scenario and provide more insight regarding the relationships between accident 

outcomes.  

In spite of these limitations, this research is proof of the concept that knowing the 

value of one accident outcome can help predict other outcomes and that multi-label 

algorithms such as classifier chains can directly benefit from these relationships to 
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improve the performance of models to predict the consequences of accidents in future 

cases. 
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CHAPTER SIX: CONCLUSIONS 

6.1 Research Summary 

The primary outcome of this doctoral dissertation is a validated statistical and 

machine learning approach for modeling occupational accidents in the construction 

industry. 

Through this systematic method, first the impact of different accident types and 

project characteristics were quantified by comparing their associated costs in chapter 2. 

The robust measures of location (trimmed mean) and scale (Winsorized variance) and 

hypothesis testing methods (the Welch-type procedure, an extension of Yuen’s method, 

and percentile bootstrapping) are suited for comparing the cost information found in 

safety data since no assumptions about the distribution of samples are required. This is a 

substantial contribution to the body of safety knowledge since it provides analytical tools 

for researchers to compare cost of injuries accurately. The validated results revealed that, 

despite being less frequent than falls and struck by accidents, accident categories like 

caught in-between can impose a much larger cost to companies and the industry. Safety 

managers can use this insight to prioritize tasks where caught in-between accidents are 

more likely to occur. Furthermore, estimations of the expenses that should be paid for 

injuries in a project can be made more accurately using costs associated to various types 

of injuries using a probabilistic model. Contractors, especially those that are self-insured, 

can use this information, and prepare appropriate contingency plans.  
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In chapter 3, a series of statistical tests were used to assess the level of association 

between pre-accident attributes (e.g., source and cause of injury, project end-use and 

cost) and the most significant consequence of accidents (i.e., degree/severity of injury). 

The results revealed that, except for the project end-use, cost, and to a lower degree cause 

of injury, five accident elements had a major impact on the severity of an injury. Ordered 

by their Cramer’s V values, nature of injury and part of body have the strongest 

correlations with injury degree, followed by source of injury, project type, and event 

type. Based on these statistically validated results, a multi-variate logistic regression 

model was developed in chapter 4 to predict the severity of injuries using solely pre-

accident variables. A stepwise procedure was adopted to find the optimum combination 

of accident attributes to be included in the model. The proposed model was also validated 

using a variety of diagnostics metrics to ensure a good fit with the data. This model can 

be beneficial to safety managers in finding more hazardous accident patterns that are 

otherwise difficult to identify as they are built based on a variety of accident factors. 

These results, for instance, can assist safety practitioners in safety planning sessions to 

predict the type of injuries by knowing the hazards and sources of injuries that are 

involved in a certain task. This knowledge can then translate into practical policies that 

will increase workers' awareness before they begin their job on construction sites or 

establish proper protocols for using particular personal protective equipment related to a 

specific type of incident. Additionally, safety managers can use these findings to develop 

tailored training for more dangerous and expensive accident scenarios. The 

interpretability of statistical models like logistic regression can be useful for both 
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researchers and practitioners, but it has two key drawbacks. First, as demonstrated in 

chapter 4, one must be extremely careful to examine all the assumptions related to these 

methods and use extended procedures to ensure the goodness of the model’s fit to the 

data. Second, when there are nonlinear relationships between the predictors and the target 

variable, these models typically perform poorly when making predictions. Recent studies 

have used machine learning methods to enhance the prediction ability of models to close 

this gap. 

Lastly, chapter 5 proposed a multi-label approach that can benefit from the 

relationships between accident outcomes during the model training phase in order to 

address the shortcomings of linear models in predicting the outcome of injuries and 

enhance the performance of single-label machine learning models. The fundamental 

contribution of this research is to verify the correlations among accident outcomes, such 

as nature and degree of injury, and to validate a modeling strategy that can benefit from 

such associations to enhance prediction performance. For safety practitioners, this means 

more accurate insight from historical accidents which translates into enhanced decision 

making under uncertainty, better resource allocations, optimized safety budgets, and 

eventually fewer occupational incidents on construction sites. 

For organizations like OSHA, the techniques utilized in this study to prepare the 

data for analysis can be useful. Safety inspectors can improve their reporting exercises by 

using the systematic content analysis given in this work, and more precise databases can 

be created for future academics and practitioners. 



208 

 

Overall, the presented methods will lead to a data-driven and objective framework 

that can be applied to real-word safety practices on construction job sites including safety 

planning activities.  

 

6.3 Limitations and Areas for Future Research 

This study introduces various novel construction safety topics that offer intriguing 

directions for future study. For instance, future studies can incorporate more accurate cost 

data from private companies or hospitals into the proposed methods to gain more reliable 

estimations. Furthermore, considering more predictors—such as safety budgets, 

experience and education levels of the workers, protective measures, and environmental 

and human factors—could have provided insightful information about how such factors 

affect the cost of injuries. 

As far as statistical tests on the correlations among accident factors and the 

severity of injuries and the linear modeling approaches, future studies can incorporate 

more variables such as “time of the accident” to develop models with better prediction 

performance. The severity of accidents also can be defined more accurately by 

considering more variables such as “monetary cost of injuries” or “days away from 

work” for non-fatal incidents.  

The most important area for future research emerges from multi-label 

classification. First, the data for this study were collected from OSHA’s online database 

for around 1,800 accidents among three groups of specialty contractors. Future studies 

can apply the same techniques on larger private company datasets to incorporate 

additional accident scenarios. Second, finding the proper order in the chains is one of the 
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key challenges in verifying the classifier chains approach since the order of the labels is a 

crucial factor in the performance of these models. Having more labels in the accident 

data, even though would better characterize the effects of accidents, can quickly increase 

the combinatorial complexity needed to determine the ideal chain order. Therefore, to 

overcome this constraint, future studies can use different variants of the classifier chains 

method such as ensemble of chains of random orders (Read et al. 2011), heuristic on 

conditional label dependence (Zhang and Zhang 2010), and searching the order space 

given a fixed structure (Read et al. 2015). Third, interpreting the order of accident 

outcomes in the best chain was not in the scope of this study. Future research can 

investigate the best chain order in each accident scenario and provide more insight 

regarding the relationships between accident outcomes. 
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APPENDIX 

Appendix 1 

A configurable pipeline is designed to run all the modeling experiments in this 

study. The pipeline consists of four stages, one file to define utility functions, two 

configuration files, and a wrapper to automatically run each experiment.  

By running the wrapper file, the pipeline starts with reading the specific 

configurations of an experiment along with converting the data file, containing 1,816 

accident reports in the csv format, into a ‘pandas’ data frame that can be consumed by 

python functions. The data frame and configurations then go through four stages where in 

each stage they enter as inputs, go through some data manipulation functions, and being 

persisted as inputs for the next stage. Details of each stage is described below. 

 

Stage 1: Data cleaning 

The data cleaning consists of three simple tasks: 

• Convert the column names to lower case 

• Drop columns that cannot be used in a specific experiment 

• Remove “,” from column values and replace single spaces with “_” 

 

Stage 2: Creating binary features and targets 

As shown in Table 5.2, all feature and target variables, except degree of injury, 

are categorical and need to be encoded as binary variables. This encoding is done through 

one hot encoding method (i.e., get_dummies function in pandas) in stage 2. While most 
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of the accidents have resulted in one injury, there are 70 cases with multiple injured 

workers. To capture this, the cumulative values are calculated for binary features. The 

final step in this stage is removing infrequent nature of injuries such as ‘amputation’, 

‘asphyxia’, ‘rupture’, etc.  

 

Stage 3: Splitting 

In this stage 40% of data is randomly selected for testing and the rest used to 

create three folds for training and validation. One should note the test proportion and the 

number of folds for validation are all configurable. 

 

Stage 4: Modeling 

After preparing the data and creating training and test sets in previous stages, the 

final stage is responsible for fitting the data into multi-label algorithms, optimizing their 

hyperparameters using the validation sets, and producing final predictions on the test set. 

Once the final model for each experiment is trained, the pipeline persists the 

model as a pickle file along with all the final training and test data frames and 

performance metrics mentioned in the manuscript in csv format. Another script is written 

to compute the Shap values using the persisted models and data files for each experiment. 
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