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Abstract

NUMBER FIELD SIEVE: PSEUDOCODES AND SOFTWARE IMPLEMENTATION

Theodore Kemp Winograd, M.S.

George Mason University, 2011

Thesis Director: Dr. Kris Gaj

The RSA cryptosystem has been the mainstay of modern cryptography since it was first

introduced in 1978. RSA serves as the basis for securing modern e-commerce–it functions as

the primary key exchange mechanism for the Secure Sockets Layer (SSL) protocol. It is used

by US Government Personal Identity Verification (PIV) smart cards and the Department

of Defense Common Access Card (CAC) for authenticating users, digitally signing and

encrypting email.

Due to the importance of this algorithm, cryptanalysts have been working for decades

to identify weaknesses in the algorithm. Because the security of the RSA algorithm rests

on the computational infeasibility of factoring large numbers, a good deal of research has

been in the field of factorization. Of note was the introduction of the Number Field Sieve

in 1993, which remains the fastest known algorithm for factoring large numbers.

One of the most difficult aspects of the Number Field Sieve is the complexity of the

algorithm, requiring a great deal of number theory simply to understand how the individual

steps of the algorithm function. To this end, there are very few implementations of the

algorithm that are coupled with concise and detailed descriptions of the algorithm. This

thesis describes an implementation of the Number Field Sieve implemented using C++ in a

straightforward manner–leaving efforts to improve this particular implementation as future



work. Based on the implementation, the author was able to derive a set of pseudocodes

that can be provided to students to gain a full understanding of the number field sieve

algorithm.

Finally, this thesis performs a number of experiments on this implementation–as well as

other open source implementations that have been developed in the past few years. This

thesis aims to identify the trade-offs within the algorithm that can be made based on the

wide variety of parameters that can be applied. While some of these trade-offs are to be

expected (e.g., the performance impact of using a lattice sieve over a line sieve), a more

detailed understanding of the various options will aid both implementers and students in

improving software implementations and–where possible–identifying methods for breaking

the number field sieve algorithm into components and identifying which components are

best implemented in hardware and which components are best implemented in software.



Chapter 1: Introduction

Cryptography is the art of secret writing. Throughout the centuries, there has been an arms-

race between those who create cryptosystems, the the code makers and those who break

cryptosystems the code breakers. Cryptosystems began as relatively simple mechanisms to

hide the meaning of a particular message from prying eyes; in ancient times, little effort was

required to do this as most people were illiterate and so unable to read even the plaintext

of a message–let alone the ciphertext.

One of the first known cryptosystems, the Caesar cipher, “replaced each letter in a

message with the letter that is three places further down the alphabet.”[1] With this simple

cipher, the content of the message was unreadable except by a knowledgeable observer.

Of course, the Caesar cipher is an example of an algorithm that fails the fundamental

tenet of cryptography: that the security of the cipher depends only upon the security of

the cryptographic key. In the case of the Caesar cipher, knowledge of the algorithm itself

is all that is required to decipher it. Similarly, the Caesar cipher is also an example of

an algorithm that does not protect against frequency analysis: when the cipher is used

to encrypt a sufficiently long message, attackers may notice that certain letters that are

common within the English language (e.g., e, t and a) have been replaced by letters three

places further down (e.g., h, w and d). To resolve this issue, cryptographers created new

cryptosystems–ones that were immune to this simple form of cryptanalysis.

This has lead to a long arms race between cryptographers and cryptanalysis, with new

cryptographic algorithms and new methods of cryptanalysis being developed over time. For

hundreds of years, cryptographers have created new ciphers and cryptanalysts have created

new methods for analyzing cryptographic algorithms. Figure 1.1 shows a brief history of

cryptographic algorithms and cryptanalytic methods. Before the advent of computers, cryp-

tographic algorithms were required to be simple enough that a human could easily encrypt

1



Figure 1.1: Cryptography Timeline [2, p2]

and decrypt the data. Over time, cryptographers developed mechanical devices that would

perform the necessary computations on behalf of the user–only requiring knowledge of the

key for encryption and decryption. One of the most famous examples of such cryptographic

devices is the German ENIGMA machine. One such cryptographic device, the Lorenz, was

ultimately defeated by the precursor to digital computing devices: the Colossus[3].

Once digital computing devices became commonplace for breaking cryptographic ci-

phers, cryptographers began using them to create new cryptosystems. Such cryptosystems

are the precursors to those that are used today. In fact, the Data Encryption Standard

(DES) [4] (first released in 1977) is still in use today as the 3DES cryptosystem–and still

considered to be secure.

While classical symmetric encryption algorithms proved to be a powerful force in de-

signing and implementing strong cryptosystems, they still required knowledge of a secret

key to be passed from one party to another. In previous eras, these cryptographic keys

would simply be a string of letters and numbers memorized on a piece of paper. However,

2



with modern cryptosystems like DES requiring 56-bit keys–and computers’ ability to pro-

cess large amounts of data, consistently transferring cryptographic keys using out-of-band

methods became a problem in and of itself. In fact, the downfall of the ENIGMA machine

was primarily due to the fact that German key distribution was not out-of-band! This lead

to the introduction of public-key cryptography by Whitfield Diffie and Martin Hellman in

1976 [5]. The Diffie-Hellman key exchange allowed for distribution of cryptographic keys

to occur over an insecure channel, making it much simpler to secure communication across

computing networks. Shortly thereafter, Ronald Rivest, Adi Shamir and Leonard Adleman

introduced the RSA algorithm in 1978 [6] (discussed in Section 2.2).

RSA has become the backbone of modern e-commerce: it is the basis of the Secure

Sockets Layer (SSL) protocol used to secure online purchases, it is used by US government

Personal Identity Verification (PIV) and Department of Defense (DoD) Common Access

Card (CAC) for digitally signing and encrypting email as well as for authenticating to

US Government Web sites. To this end, a large chunk of cryptanalysis research has been

performed against the RSA algorithm. Of particular note is that the RSA algorithm assumes

that factoring large numbers is a computationally infeasible problem. In particular, in 1993

Buhler, Lenstra and Pomerance introduced the Number Field Sieve, the fastest known

algorithm for factoring large numbers. To that end, a large amount of research has been

done to develop efficient implementations of the Number Field Sieve (see Section 3).

1.1 Goals of this Thesis

When research for this thesis first began in 2007, it was intended to be an analysis of various

different open source implementations of the NFS algorithm:

• Chris Monico’s GPL’d Implementation of the General Number Field Sieve [7]

• Per Leslie Jensen’s Pleslie’s Number Field Sieve [8]

• Chris Card’s factor-by-gnfs [9]

3



• Jason Papadopoulos’ msieve [10]

Results of running each of these different implementations quickly showed that the various

design choices available in NFS were being applied differently across implementations. To

truly describe the effects of these various design choices and compare the results, it became

apparent that a full discussion of the NFS algorithm would be necessary. While such

discussions have been provided over the years (see [11], [12], [8] and [13] are but a few

examples), few have provided both the pseudocode necessary and tests required to validate

an implementation of NFS. As such, the direction of this thesis turned to developing a set of

pseudocodes and discussion of validations that folks can use to develop an implementation

of NFS. This thesis aims to improve upon the efforts put forth by [8] and add insight

into alternative algorithms for each of the components of NFS. Nevertheless, there are

many improvements that need to be made for this implementation to reach the level of

performance and stability attained by other open source implementations of NFS. The

author hopes that this implementation can serve as a good learning tool for future Masters’

students to have a good framework for developing implementations of NFS. To that end,

part of this thesis discusses efforts underway to integrate this implementation with the

CrypTool [14] as well as a cross-platform graphical user interface developed specifically for

this implementation.

4



Chapter 2: Background

Factoring large numbers is considered to be a computationally difficult problem. There are

a number of different techniques, each with an increasing level of complexity and speed,

that solve the problem. However, mathematicians have yet to come up with a method of

factoring numbers in polynomial time. In fact, a large number of factorization algorithms

complete in exponential time! This chapter introduces the mathematics required for the

rest of this paper as well as the concept of asymmetric cryptography (specifically the RSA

algorithm).

2.1 Mathematical Background

This section discusses the mathematical background necessary to understand the rest of this

thesis. One of the goals of this thesis is to minimize the amount of mathematics required

to implement the number field sieve in an effective fashion, but there will always be a set

of mathematical concepts that will be required.

2.1.1 Groups

From [15, p75]: A group (G, ·) consists of a set G with binary operation · on G satisfying

the following three axioms.

1. The group operation is associative. That is, a · (b · c) = (a · b) · c for all a, b, c ∈ G.

2. There is an element 1 ∈ G, called the identity element, such that a · 1 = 1 · a = a for

all a ∈ G.

3. For each a ∈ G there exists an element a−1 ∈ G, called the inverse of a, such that

a · a−1 = a−1 · a = 1.

5



A group G is abelian if a · b = b · a for all a, b ∈ G.[15, p75]

A group G is finite if |G| is finite, with the number of elements referred to as the group’s

order. [15, p75]

A group can also be written in a different convention, (G, +), where the binary operation

+ satisfies the three axioms as follows:

1. The group operation is associative: a + (b + c) = (a + b) + c for all a, b, c ∈ G.

2. There is an identity element 0 ∈ G, such that a + 0 = 0 + a = a for all a ∈ G.

3. For each a ∈ G there exists an inverse element −a ∈ G, such that −a+a = −a+a = 0.

2.1.2 Rings

A ring (R,
⊕

,
⊙

) consists of a set R with two binary operations arbitrarily denoted
⊕

(addition) and
⊙

(multiplication) on R, satisfying the following axioms.[15, p76]

1. (R,
⊕

) is an abelian group with identity denoted 0. [15, p76]

2. The operation
⊙

is associative (e.g., a
⊙

(b
⊙

c) = (a
⊙

b)
⊙

c for all a, b, c ∈ R)

[15, p77]

3. There is a multiplicative identity 1, with 1 6= 0 such that 1
⊙

a = a
⊙

1 = a for all

a ∈ R [15, p77]

4. The operation
⊙

is distributive over
⊕

: a
⊙

(b
⊕

c) = (a
⊙

b)
⊕

(a
⊙

c) and (b
⊕

c)
⊙

a =

(b
⊙

a)
⊕

(c
⊙

a) for all a, b, c ∈ R [15, p77]

The ring is a commutative ring if a
⊙

b = b
⊙

a for all a, b ∈ R. [15, p77]

2.1.3 Fields

A field is a commutative ring in which all non-zero elements have multiplicative inverses.

[15, p77]
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The characteristic of a field is 0 if
m times︷ ︸︸ ︷

1 + 1 + · · ·+ 1 + 1 is never equal to 0 for any m ≥ 1.

Otherwise, the characteristic of the field is the least positive integer m such that
∑m

i=1 1

equals 0. [15, p77]

A subset F of a field E is a subfield of E if F is itself a field with respect to the operations

of E. If this is the case, E is also referred to as an extension field of F. [15, p77]

2.1.4 Sets of Polynomials

According to [15, p78], if R is a commutative ring, then a polynomial in the indeterminate

x over the ring R is an expression of the form: f(x) = an · xn + · · · + a2 · x2 + a1 · x + a0

where each ai ∈ R and n ≥ 0.

It follows that if R is a commutative ring then the polynomial ring R[x] is the ring

formed by the set of all polynomials in the indeterminate x having coefficients from R.

The two operations are polynomial addition and polynomial multiplication, with coefficient

arithmetic performed in R. [15, p78]

For example, (Z2[x],
⊕

) is an abelian group with an identity element 0. Similarly,

(Z2[x],
⊙

) is commutative with an identity element 1. Finally,
⊙

is distributive over
⊕

–

meaning that (Z2[x],
⊕

,
⊙

) is a polynomial ring. [16]

Performing division on a polynomial is performed as follows: g(x) = q(x) · h(x) + r(x)

where deg(r(x)) < deg(h(x)).

An irreducible polynomial over a field F[x] must have a degree of 1 and cannot be

written as a product of two polynomials in F[x]. [15, p78]

F[x]/f(x) refers to the set of polynomials whose degree is less than deg(f(x)) with

addition and multiplication performed modulo f(x). This also means that F[x]/f(x) is a

commutative ring. If f(x) is irreducible, then F[x]/f(x) is a field!

7



2.1.5 Finite Fields

A finite field is a field F that contains a finite number of elements and its order is the

number of elements in F. A finite field has the following properties: [15, p80]

1. The order of F is pm for p prime and integer m ≥ 1.

2. For each prime p, there is a unique finite field with an order pm called Fpm or GF (pm).

Finite fields are also referred to as Galois Fields because they were originally described

by Évariste Galois.

2.1.6 Primitive Element

For a particular finite field Fq, there is a multiplicative group denoted as F∗
q . The group

F∗
q is cyclic with an order of q− 1. This means that aq = a for all a ∈ Fq. There also exists

an element of F∗
q for which each power (e.g., a1, a2, a3, ..., aq−1) results in a unique element

of F∗
q ; this is the primitive element or generator of F∗

q . [15, p81]

2.1.7 Primitive Polynomial

If x is a primitive element for F∗
pm , then the irreducible polynomial f(x) ∈ Zp[x] of degree

m is a primitive polynomial of the group Fpm = Zp[x]/f(x). [15, p84].

2.1.8 Chinese Remainder Theorem

The Chinese Remainder Theorem allows for the deconstruction of a congruence mod n into

a system of congruences mod factors of n. The Chinese remainder theorem is as follows:

[17]

n← n1 · n2 · · ·nM

for any i, j: gcd(ni, nj) = 1

for each A such that 0 ≤ A ≤ N − 1 do

A↔ (a1 = A mod n1, a2 = A mod n2, . . . , aM = A mod nM )

8



end for

With the proper values of ai and ni, A can be reconstructed using (2.1). [17]

A =
M∑
i=1

ai ·N
ni

(2.1)

For example, given a number n ≡ 26 mod 99 we can also construct a set of congruences

that are equivalent: [18, p72]

n ≡ 26 mod 99⇒

 n ≡ 8 mod 9

n ≡ 4 mod 11
(2.2)

Using the Chinese Remainder Theorem, we can calculate n ≡ 26 mod 99 from the two

congruences shown in (2.2).

The two congruences a mod m and b mod n can ge solved if gcd(m,n) = 1. Thus we

solve b + nk ≡ a mod m and calculate x mod mn ≡ b + nk mod mn. Using the example

in (2.2), gcd(9, 11) = 1, so this can be solved as: [18, p73]

4 + 11 · k = 4 + 11 · 2 ≡ 4 mod 11

x ≡ 4 + 11 · 2 mod (9 · 11) ≡ 26 mod 99

2.2 Asymmetric Cryptography

In 1978, Rivest, Shamir and Adleman introduced the RSA algorithm. It is an implementa-

tion of asymmetric cryptography in which a user, Alice has both a public key and a private

key. The public key, as implied by its name, can be distributed throughout the world grant-

ing anyone, Bob, the ability to encrypt a message and send it to the user. Once the message

is encrypted, it is computationally infeasible for a third party, Eve, to decrypt the message.
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In fact, even Bob is unable to decrypt the message. Only through knowledge of the secret

key can Alice decrypt the message.

This is accomplished through the use of a trap door function. In mathematics there

are a number of operations and functions that are computationally infeasible in general,

but in special cases they are easy to perform. For example, factoring a large number

is computationally infeasible. The RSA algorithm takes advantage of this fact and uses

Euler’s theorem and Euler’s Totient function to provide a trap door mechanism.

The Totient function is described as follows: [18, p77]

Let φ(n) be the number of integers 1 ≤ a ≤ n such that gcd(a, n) = 1.

Euler’s Theorem can be described as follows: [18, p77]

if gcd(a, n) = 1 then

aφ(n) ≡ 1 mod n

end if

In general, calculating the Totient of a composite number requires factoring that number,

because the Totient function is multiplicative: φ(m·n) = φ(m)·φ(n). [18, p77] Additionally,

the Totient of a prime number is very easy to calculate: φ(p) = p− 1. [18, p77]

With this knowledge, Rivest, Shamir and Adleman constructed a cryptosystem: [18,

p138]

Alice chooses secret primes p and q and computes n = p · q

Alice chooses e with gcd(e, φ(n)) = 1

Alice computes d with d · e ≡ 1 mod (φ(n))

Alice makes n and e public, and keeps p, q, d secret.

Bob encrypts m as c ≡ me mod n and sends c to Alice

Alice decrypts by computing m ≡ cd mod n

When Bob encrypts the message m, he gets c ≡ me mod n. Alice receives this message

and calculates cd, which is equivalent to (me)d mod n ≡ med mod n. From the algorithm,
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e · d ≡ 1 mod (φ(p) · φ(q)), so med mod n can be written as m1+k·φ(p)·φ(q) mod n ≡

m1+k·φ(n). This can be rewritten as m · (mφ(n))k mod n ≡ m · 1k mod n ≡ m mod n.

[18, p140]

Factoring n would allow an attacker to easily decipher the message n, because it would

provide the missing elements required to calculate d. Based on the algorithm, d ≡ e−1

mod φ(n) because gcd(e, φ(n)) = 1. By constructing n such that Alice knows φ(n) it is

trivial for Alice to perform the necessary calculations and decipher the message!

Due to the power of public key cryptography, the RSA algorithm has grown to become

one of the most important factors of e-commerce. The Transport Layer Security (TLS)

[19] algorithm uses RSA to authenticate users and computers as well as to agree upon

and distribute symmetric keys to initiate secure communication channels over untrusted

networks (e.g., the Internet). Due to the importance of the RSA algorithm, RSA launched

the RSA challenge, [20] in which prizes were awarded to teams who successfully factored

a series of larger composite numbers. The most recent factorization was the RSA-768

challenge number in 2010. By performing a linear regression on previous factorization

records, see Figure 2.1, a 1024-bit number will be factored by 2028. will be factored by the

year 2028. To this end, NIST issued guidance on acceptable key sizes for use within the

Figure 2.1: Linear Regression of Factorization Records [21]
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Federal government: 1024-bit keys were considered secure through 2010, 2048-bit keys are

secure through 2030 and 3072-bit keys are considered secure past 2030. [22]

2.3 Factoring

Factoring is a computationally hard problem. Conceptually, the easiest factoring method

is trial division, which has the following algorithm:

Choose a composite number n to factor

Choose an integer i = 2

for i = 1→ b
√

nc do

if n mod i = 0 then

return i

end if

end for

return 1

There are some improvements that can be made to this algorithm, but it is the least

efficient algorithm for factoring numbers. To that end a number of different algorithms are

available to factor large numbers, each with an increasing level of complexity.

A large number of these algorithms are rooted in the Fermat factorization method[18,

p149], which states that n can be written as a difference of two squares: n = x2−y2. Thus,

n can be rewritten as n = (x + y)(x− y). Finding the factors of n can be performed using

the following algorithm:

for i = 1→ n do

a← n + i2

b← b
√

ac

12



if a = b2 then

return i

end if

end for

return 1

This method works because where n = x2 − y2 can also be written as n + y2 = x2. As

such, finding a value of y such that n+ y2 is square is provides the values of x2 and y2 such

that n = x2−y2. Thus, the factors of n could be written as n = (
√

x2 +
√

y2)(
√

x2−
√

y2).

Like trial division, this method of factorization can take an inordinate amount of time

to complete. To that end, a number of algorithms exist that aim to simplify finding the

two squares, x2 + y2 and the corresponding factors, (x + y) and (x − y). Specifically, the

quadratic sieve and the number field sieve use this method of factorization.

Another method is Pollard’s ρ. In the ρ method, one looks for a cycle in a randomly

generated formula, f(x). For example, the formula xi+1 = x2
i + a mod n will usually form

a cycle for any starting value x0 [23]. The length of time it takes xn to become cyclic is

proportional to
√

n. Through the Chinese remainder theorem, xi mod n is equivalent to

both xi mod p and xi mod q [23]. Substituting these values into the function gives:

xi+1 = x2
i + a mod pxi+1 = x2

i + a mod q

As such, the function will fall into shorter cycles of lengths proportional to
√

p and
√

q.

Similarly, if gcd(xi+1− xi, n) = p then xi+1 and xi have the same value mod p and that p

is a factor of n [23].

Pollard’s algorithm can be summarized as follows: [24]
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b← c← 2

Choose random a

repeat

f(x)← x2 + a

b← f(b) mod n

c← f(f(c)) mod n

d← gcd(b− c, n)

until d 6= N and d 6= 1

d is a non-trivial factor of n

There are a wide variety of algorithms available for factoring large numbers. In fact, the

minifactoring step of the number field sieve (see Section 4.5) leverages these algorithms. It

is important to note that while none of these methods are as fast as the number field sieve

for factoring large numbers, all of them are faster than the number field sieve for factoring

numbers that are not large
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Chapter 3: Previous Work

There has been a good deal of previous work on the Number Field Sieve since it was

introduced in 1993 [25]. As discussed in Section 1.1, one of the goals of this thesis is to

synthesize much of the information currently available on the topic into a single document,

easing the barrier to entry for new players who are interested in improving the performance

of Number Field Sieve implementations.

3.1 Overviews of the Number Field Sieve

In 1988, Pollard introduced the idea of the Number Field Sieve in his paper Factoring with

cubic integers [26]. In addition, the volume The development of the number field sieve was

published in 1993. [27] Since then, a number of different papers have been published to

provide an overview of the Number Field Sieve.

• In 1993, H. Lenstra Jr. provided the first full description of the Number Field Sieve

in [11] with a description of the implementation by Bernstein in [28].

• In 1996, Huizing published a paper describing a software implementation of the Num-

ber Field Sieve. [29]

• In 1998, as part of his Masters Thesis, Matt Briggs put together a more in-depth

overview of the Number Field Sieve, providing a set of examples so that the reader

may follow through the process. [12]

• In 2008, Ekkelkamp published a paper on Predicting the Sieving Effort for the Number

Field Sieve [30]. This paper provided an overview of the number field sieve as well

as a new method for estimating the amount of time it will take for the Number Field

Sieve to run through for a set of parameters.
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3.2 Algorithmic Improvements

After the introduction of the number field sieve, a number of researchers have worked to

improve its efficiency. While the asymptotic efficiency of the algorithm has not been im-

proved substantially–it is still a sub-exponential factoring algorithm, these efforts combined

with improvements in computational speed have made it so that the number field sieve is

increasingly capable of factoring larger and larger numbers, with the potential to factor a

1024-bit number within the next twenty years.

3.2.1 Polynomial Selection

• In 1993, polynomial selection was first described in [11] by H. Lenstra, Jr. using

base-m expansion. See Section 5.4 for a discussion of the algorithm.

• In 1999, Brian Murphy developed an influential paper on polynomial selection for

the Number Field Sieve as part of his PhD work. Specifically, he introduced the

α approximation, which provides an heuristic for determining the effectiveness of a

particular polynomial. [31]

• In 2006, Kleinjung improved upon Murphy’s work, describing new methods for choos-

ing polynomials appropriate for the Number Field Sieve. [32]

3.2.2 Sieving

• Line sieving was first described in [11] by H. Lenstra Jr.

• A more detailed example of the line sieving algorithm was provided by Geiselmann.

[33]

• In 1993, Pollard describes the Lattice sieving method [34]. This is traditionally con-

sidered an improvement over Line Sieving methods and is the basis of most modern

implementations of the Number Field Sieve.
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• In 1994, Golliver, A. K. Lenstra and McCurley improved upon the Lattice sieving

method using trial division. [35]

• In 2005, Franke and Kleinjung improved upon the Lattice sieving method, using con-

tinued fractions to improve its performance and distribute it across multiple processes.

[36]

3.2.3 Matrix Step

• In 1990, Wiedemann introduced an algorithm for solving sparse linear equations over

finite fields. [37]

• In 1994, Coppersmith improved upon the Wiedemann algorithm and devised the

Block Wiedemann algorithm which provides a faster method for solving sparse linear

equations over finite fields. [38]

• In 1995, Montgomery introduced the Block Lanczos algorithm, which can be used to

solve systems of linear equations in a parallel manner using an improvement of the

Lanczos algorithm, originally developed in 1950. [39]

3.2.4 Square Root Step

• In 1993, H. Lenstra, Jr. introduced the original square root step. [11]

• In 1993, Couveignes introduced a slightly different method of performing the square

root step than that introduced by Lenstra and discussed by Briggs [12] and Jensen

[8]. [40] Couveignes’ method is used in this thesis.

3.3 Software Implementations

There have been a number of software implementations published under Open Source li-

censes:
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• Chris Monico’s GPL’d Implementation of the General Number Field Sieve [7]: pro-

vides a full implementation of multiple elements of the algorithm. Specifically, it

includes Franke’s implementation of Lattice sieving.

• Per Leslie Jensen’s Pleslie’s Number Field Sieve [8]: provides an easy-to-understand

implementation of the number field sieve.

• Chris Card’s factor-by-gnfs [9]: provides a full implementation of the number field

sieve written in C++ with optimizations.

• Jason Papadopoulos’ msieve [10]: a full implementation of the number field sieve that

is capable of working together with GGNFS. The GGNFS/msieve combination has

been used to successfully factor numbers up to 180-digits.

There are additional software implementations that have been used and discussed since the

advent of the number field sieve, including:

• In [11], H. Lenstra, Jr. et al. introduced an implementation of the number field sieve.

• In 2005, Anand developed implementations of the Wiedemann and Block Wiedemann

algorithms, which are commonly used to implement the linear algebra step. [41]

The majority of implementations that have been used to factor RSA challenge values have

been closed source. While these are important implementations for the development of

improvements to the algorithm, they raise the barrier to entry for new researchers into the

field.

3.4 Hardware Implementations

The CAIRN [42] hardware implementation was used by the author to get a better grasp

of the Number Field Sieve algorithm. The CAIRN implementation has seen numerous

improvements with CAIRN 1 [43], CAIRN 2 [44], and CAIRN 3 [42].
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The CAIRN implementations are among the few practical implementations of the Num-

ber Field Sieve. Other implementations, focused primarily on the mini-factoring step, in-

clude:

• Khaleeluddin Mohammed’s implementation of Elliptic Curve factoring for the mini-

factoring step of the number field sieve [45]

• An FPGA implementation of trial division by small primes by GMU [46]

• Ramakrishna Bachimanchi’s FPGA implementations of Rho and P-1 methods of fac-

toring for the mini-factoring step of the number field sieve [24]

• An implementation of the mini-factoring step in hardware by GMU [47]

A number of theoretical designs exist:

• In 1999 and 2000, Shamir introduced TWINKLE [48], which is based on optoelectronic

devices (fast LEDs) [21].

• In 2003, Shamir and Tromer introduced TWIRL [49], which leverages fast communi-

cation between chips located on the same 30 cm diameter wafer [21].

• In 2003 and 2004, Geiselmann and Steinwandt introduced Mesh Based Sieving [50],

which aimed to improve upon the performance of TWINKLE using mesh-based cir-

cuits to improve the latency between hardware components.

• In 2005, Franke et. al introduced SHARK [51], which relies on an elaborate butterfly

switch connecting large number of chips [21].

• In 2007, Geiselmann and Steinwandt introduced the Non-Wafer Scale Sieving Hard-

ware [33], which is based on moderate sized chips and implements line sieving rather

than lattice sieving.
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Chapter 4: Pseudocode

This chapter describes the Number Field Sieve and presents a set of psuedocodes that de-

scribe the function of the algorithm. By breaking the algorithm into its discrete components,

the reader can better understand the steps necessary to develop a full implementation of

the number field sieve. Chapter 5 details the implementation that was developed based on

the pseudocodes presented in this chapter.

4.1 Number Field Sieve Overall Algorithm

The Number Field Sieve is a complex algorithm, but it has a succinct number of steps–with

each step getting more complex as the algorithm processes data. The steps are:

1. Polynomial selection

2. Factor base generation

3. Sieving

4. Mini-factoring

5. Linear algebra

6. Square root

Each step is covered in its own section within this chapter. However, prior to launching

the NFS algorithm, the following inputs must be provided by the user:

1. n: A large composite number to be factored

2. Balgebraic fudge and Brational fudge: Fudge factors that are used in the sieving step
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3. A: The range of values of a to sieve

4. c : The multiplication factor to determine how many values of b to sieve at a time.

The following listing describes the overall Number Field Sieve algorithm, including addi-

tional portions of the linear algebra step. While these portions are illustrated in this listing,

they are discussed in detail in Sections 4.2, 4.3, 4.4, 4.5, 4.6 and 4.9.

INPUTS:

n : the number to factor

A : boundary of the sieving range for a

Balgebraic fudge : an empirical fudge factor used to determine if a value is likely smooth

over the algebraic factor base

Brational fudge : an empirical fudge factor used to determine if a value is likely smooth

over the algebraic factor base

c : the multiplication factor for use in the equation to determine the number of values

of b to be tested.

NOTE: Balgebraic fudge and Brational fudge are independent of a and b in this im-

plementation, but need not be.

OUTPUTS:

q: a non-trivial factor of n

VARIABLES:

f(x) : polynomial [for the algebraic side]
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d : degree of polynomial f(x)

m : root of polynomial f(x) mod n, i.e. an integer, such that f(m) mod n = 0

RFB : rational factor base

AFB : algebraic factor base

RFB and AFB are sets of pairs (p, r) fulfilling conditions specific to the given base.

QCB : quadratic character base

QCB is a set of pairs (q, s) fulfilling conditions specific to the given base.

We denote the numbers of such pairs by #RFB, #AFB, #QCB, respectively.

relations : set of pairs (a, b) obtained after sieving the number of pairs in this set is

denoted by #relations

good relations : set of pairs (a, b) that represent vectors in matrix

good pairs : the set of pairs (a, b) that are passed to the sieving step

matrix : binary matrix used in the linear algebra step

Vzero : The zero vector.

solutions : set of solutions to the equation matrix · solution = Vzero

solution : binary vector of the size (#relations) fulfilling the equation

matrix · solution = Vzero

PSEUDOCODE:

BEGIN

{The values for B, d and m are nominal and may be changed based on empirical

evidence}

(m, f(x))← polynomial selection(n)

(RFB,AFB,QCB)← factor bases(n, m, f(x))

#relations required← 1 + #RFB + #AFB + #QCB

Bmax ← −1

22



#good relations← 0

matrix← an empty matrix

while (#good relations < #relations required) do

Bmin ← Bmax + 1

Bmax ← (#relations required−#good relations) · c + Bmax

relations← line sieving(n, f(x),m, RFB,AFB,QCB,A,Bmin, Bmax, Balgebraic fudge,

Brational fudge)

{Build the matrix using the existing numbers}

(matrix, relations found, #relations found)← mini factoring(matrix,

#relations required, relations,

m, f(x), RFB, AFB, QCB

add relations found to good relations

#good relations← #good relations + #relations found

end while

(matrix, freecols)← solve matrix(matrix)

{Identify the number of free variables that we have}

freevals← 0

for (k ← 0; k < size(freecols); k ← k + 1) do

if (freecols[k] == 1) then

freevals← freevals + 1

end if

end for

for (numSols← 1;numSols < freevals;numSols← numSols + 1) do

x← GetSolutionSet(matrix, freecols, numSols)

for (i← 0; i < size(x); i← i + 1) do

if (x[i] == 1) then

Add good relations[i] to the list of good pairs
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end if

end for

factor ← sqrt step(good pairs, f, n,m)

if (factor > 1) then

return factor

end if

end for

END

The goal of the Number Field Sieve is to calculate two congruent squares such that the

following statement is true:

x2 ≡ y2 mod n, 0 ≤ x ≤ y ≤ n, x 6= y, x + y 6= n (4.1)

Where n is the number to be factored. If the above statement is true, then x2 ≡ y2

mod n and, by definition, n | x2 − y2 and n | (x + y) · (x − y). Assuming n = p · q, then

the following is also true: x2 ≡ y2 mod pq and pq | (x + y) · (x− y). Thus, p divides either

(x + y) or (x− y) and describes one of the factors of n.

These squares are identified using polynomials. In particular, using Proposition 2.4.1

from [12], “Given a monic, irreducible polynomial f(x) with integer coefficients, a root

θ ∈ C of f(x), and an integer m ∈ Z/nZ for which f(m) ≡ 0 mod n, the mapping

φ : Z[φ] → Z/nZ with φ(1) ≡ 1 mod n and which sends φ to m is a surjective ring

homomorphism.”

From [12], if there is a set U of pairs of integers (a, b) such that:

∏
(a,b)∈U

(a + bθ) = β2

and
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∏
(a,b)∈U

(a + bm) = y2

If β ∈ Z[θ] and y ∈ Z and we let φ(β) = x ∈ Z/nZ, then:

x2 ≡ φ(β)2 ≡ φ(
∏

(a,b)∈U

(a + bθ))

≡
∏

(a,b)∈U

φ(a + bθ) ≡
∏

(a,b)∈U

(a + bm) ≡ y2 mod n

Thus, finding a monic, irreducible polynomial f(x) with integer coefficients meeting

these needs can be performed using one of the following algorithms.

Throughout this discussion, the number 45113 will be factored with the following parame-

ters:

• n = 45113

• Balgebraic fudge = 0

• Brational fudge = 0

• A = 1000

• c = 50

The number 45113 is used to parallel the example in [12], both showing that this im-

plementation of the number field sieve is valid as well as providing a check against the

implementation.

4.2 Polynomial Selection

Polynomial selection is one of the most important aspects of the number field sieve–the

polynomial is used to choose the (a, b) pairs that will ultimately be used to generate the
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factorization of n. To that end, a great deal of research has been performed in identifying

good polynomials. One of the most important such documents is Murphy’s PhD thesis [31],

which introduced Murphy’s alpha approximation, an heuristic for estimating how effective

a given polynomial will be in producing valid (a, b) pairs without empirical testing (e.g.,

running the sieving step against the given polynomial to determine how efficient it is in

creating (a, b) pairs). In generally, a smaller value of α(f(x)) indicates a better polynomial.

Murphy’s Alpha Approximation

α =
∑

pprime≤B

(1− qp
p

p + 1
)
log p

p− 1

return α

Where B is the smoothness bound, and qp is the number of distinct roots of f(x)

mod p.

There are a number of different methods for generating a polynomial described in the

literature–due to time restrictions the implementation discussed in this thesis is limited to

the simplest polynomial selection algorithm described in [52].

INPUTS:

n : the number to factor

OUTPUTS:

f(x) : polynomial [for the algebraic side]

m : root of polynomial f(x) mod n, i.e. an integer, such that f(m) mod n = 0

PSEUDOCODES:
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VERSION 1 (based on Crandall and Pomerance)

http://books.google.com/books?id=RbEz- D7sAUC&lpg=PP1&pg=PA293#v=

onepage&q&f=false

BEGIN

d← b 3·log(n)
log(log(n))

1
3 c

if d is not acceptable then

choose d

end if

m← n
1
d

if m is not acceptable then

choose m

end if

Write n in base m: n = md + cd−1 ·md−1 · · ·+ c0 ·m0

f(x) = xd + cd−1 · xd−1 · · ·+ c0 · x0

return (m, f(x))

END

VERSION 2 (based on Jensen, p. 61)

http://pgnfs.org/DOCS/thesis.pdf

BEGIN

choose m0 such that bn
1

d+1 c ≤ m0 ≤ dn
1
d e

choose X1, X2 such that 0 < X1 < X2 < 0.5

choose ad such that X1 < abs(ad)
m0

< X2
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mδ ← b n
ad

1
d c

m← m0

while ad has a large b-smooth co-factor do

write n in base m: n = ad ·md + ad−1 ·md−1 · · ·+ a0 ·m0

fm(x) = ad · xd + ad−1 · xd−1 · · ·+ a0 · x0

if α(fm(x)) is good then

add fm(x) to F ′

end if

m← m + mδ

choose ad such that X1 < abs(ad)
m0

< X2

end while

choose f(x) from F ′ by performing small sieving experiments

return (m, f(x))

END

VERSION 3 (based on Murphy, PhD Thesis, 1999)

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.1081

BEGIN

Fix an interval ad in which each ad � m for each m

Select X1, X2 such that X1 ≤ abs(ad)
m ≤ X2

Choose c such that c is a cofactor of ad and is a product of many small primes pk

for each ad in the interval do

m1 = bN
ad

1
d c

Find values m surrounding m1 such that: abs((ad−1)m) ≤ Xm

Add m to M ′
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end for

for each m in M ′ do

write n in base m: n = ad ·md + ad−1 ·md−1 · · ·+ a0 ·m0

fm(x) = ad · xd + ad−1 · xd−1 · · ·+ a0 · x0

if α(fm(x))) is good then

choose fm(x)

end if

end for

return (m, f(x))

END

Each of these techniques provides ever more efficient polynomials. As mentioned above,

the algorithm from [52] is potentially the least efficient. The algorithm from [8] is a more

complicated version akin to that discussed by by Murphy in his dissertation. [31]

In 1999, [31] introduced some heuristics that allow implementations to better determine

how efficient a given polynomial is before using a trial sieving step.

In his research, [31] identified several properties that influence the smoothness yield of

a polynomial in the number field sieve:

• Size: “Here we have verified that d = 4, 5, 6 are the relevant degrees for non-monic

base-m polynomials and N in the range of interest. For most of this range, d = 5 is

the best degree.” [31, p54]

• Root Properties: Murphy introduces the α-approximation, which measures the root

properties of polynomial in the number field sieve. Thus, where root properties are

measured using α(F ), a polynomial with α(F )� 9 will be preferred.

• Choice of d: Murphy found that on average, d = 4 is better than d = 6 and d = 5, but

the difference is not so great that these considerations should enter into the choice of

d. [31, p54]
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For 45113, the values of d, m and f(x) are calculated to be:

• d = b 3·log(45113)
log(log(45113))

1
3 c = 2, but we will choose d = 3

• m = n
1
d = 45113

1
3 = 35, but we will choose m = 31

• f(m) = c3 ·m3 + c2 ·m2 + c1 · x + c0 = 1 ·m3 + 15 ·m2 + 29 ·m + 8

4.3 Factor Bases

After polynomial selection, the algorithm requires a set of factor bases which are used to

test the smoothness of the the results of the (a, b) pairs over both the algebraic polynomial

and the rational polynomial. Generating the rational factor base is conceptually simple: it

is simply the pairs (r, p) where r = m mod p for all primes less than the desired threshold

for the factor base (e.g., all primes p less than BRFB). The algebraic base is calculated

using a similar construct for the algebraic field: all pairs (r, p) where 0 ≤ r ≤ p − 1 and

f(r) = 0 mod p. A third factor base, called the quadratic character base, which is used in

the linear algebra step to better define (a, b) pairs that will result in the desired congruent

squares.

INPUTS:

n : the number to factor

m : root of polynomial f(x) mod n, i.e. an integer, such that f(m) mod n = 0

f(x) : polynomial [for the algebraic side]

OUTPUTS:

RFB : rational factor base
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AFB : algebraic factor base

RFB and AFB are sets of pairs (p, r) fulfilling conditions specific to the given

base.

We denote the numbers of such pairs by #RFB, #AFB respectively.

QCB : quadratic character base

QCB is a set of pairs (q, s) fulfilling the conditions for the given base.

We denote the size of the QCB by #QCB.

PSEUDOCODE:

VERSION 1 (based on Crandall and Pomerance)

http://books.google.com/books?id=RbEz- D7sAUC&lpg=PP1&pg=PA293#v=

onepage&q&f=false

BEGIN

BRFB = BAFB = b89
1
3 · (ln(n))

1
3 · (ln(n))

2
3 c

if BRFB is not acceptable then

choose BRFB

end if

if BAFB is not acceptable then

choose BAFB

end if

BQCB ← max(BRFB, BAFB)

RFB = {(p, r) : p prime, p ≤ BRFB, r = m mod p}
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#RFB = size of RFB

AFB = {(p, r) : p prime, p ≤ BAFB, 0 ≤ r ≤ p− 1, f(r) = 0 mod p}

#AFB = size of AFB

#QCB = k = b3 · ln(n)c

if #QCB is not acceptable then

choose #QCB

end if

{QCB consists of pairs with values of q starting at BQBC such that the size of QCB

is #QCB}

QCB = {(q, s) : q prime, q >= BQCB, 0 ≤ s ≤ q − 1, f(s) = 0 mod q, f ′(s) 6= 0

mod q}

return (RFB,AFB,QCB)

END

VERSION 2 (based on Jensen, p. 61-62)

http://pgnfs.org/DOCS/thesis.pdf

Primary difference compared to VERSION 1

#AFB = c ·#RFB, where 2 ≤ c ≤ 3

#QCB < 100

The algebraic and rational factor bases are then used within the sieving step to determine

whether a particular (a, b) pair, when evaluated via the algebraic and rational polynomials,

respectively, are smooth over their corresponding factor bases.

The largest prime for the rational factor base will be set to 29. For 45113, the rational

factor base will be calculated as (p, m mod p) as shown in the Table 4.1: The largest

prime for the algebraic factor base will be set to 109. The algebraic factor base will be
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Table 4.1: Rational Factor Base
(2, 1) (3, 1) (5, 1)
(7, 3) (11, 9) (13, 5)
(17, 14) (19, 12) (23, 8)
(29, 2)

calculated as AFB = {(r, p) : p ≤ 109, 0 ≤ r ≤ p − 1, f(r) = 0 mod p} and is shown

in Table 4.2: There will be five elements of the quadratic character base, calculated as

Table 4.2: Algebraic Factor Base
(2, 0) (7, 6) (17, 13) (23, 11)
(29, 26) (31, 18) (41, 19) (43, 13)
(53, 1) (61, 46) (67, 2) (67, 6)
(67, 44) (73, 50) (79, 47) (79, 23)
(79, 73) (89, 62) (89, 28) (89, 73)
(97, 28) (101, 87) (103, 47)

QCB = {(q, s) : p ≤ 109, 0 ≤ r ≤ p− 1, f(r) = 0 mod p} and is shown in Table 4.3:

Table 4.3: Quadratic Character Base
(107, 80) (107, 4) (107, 8) (109, 99) (113, 108)

4.4 Sieving Step

Technically, the sieving step is an extremely simple aspect of the number field sieve. The

goal is to parse all of the (a, b) pairs on a particular plane–starting with b = Bmin and

−A ≤ a ≤ A and incrementing b until b > Bmax.
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INPUTS:

n : number to be factored

f(x) : polynomial [for the algebraic side]

m : the value such that f(m) = 0 mod n

RFB : rational factor base

AFB : algebraic factor base

QCB : quadratic character base

A : boundary of the sieving range for a

Bmin : the starting point for the value b

Bmax : the ending point for the value b

Balgebraic fudge : the fudge factor for algebraic sieving

Brational fudge : the fudge factor for rational sieving

We denote the size of respective bases by #RFB, #AFB, and #QCB.

OUTPUTS:

relations : set of pairs (a, b) such that norm(a − b · α) is smooth over AFB

and a− b ·m is smooth over RFB

the number of pairs in this set is denoted by #relations

VARIABLES:

A : boundary of the sieving range for a:
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−A ≤ a ≤ A

RS[a] : array with index a, indicating the level

to which G(a, b) is divisible by primes p from RFB

AS[a] : array with index a, indicating the level

to which F (a, b) is divisible by primes p from AFB

PSEUDOCODE:

BEGIN

d← degree(f(x))

A← b89
1
3 · (lnn)

1
3 · (lnn)

2
3 c

F (x, y)← yd · f(x
y )

G(x, y)← y · (x
y −m)← x− y ·m

b← Bmin

repeat

{Added the threshold calculation here}

for (a← −A; a ≤ A; a← a + 1) do

RS[a]← − log√2 G(a, b) + Brational fudge

AS[a]← − log√2 F (a, b) + Balgebraic fudge

end for

for all (p, r) ∈ RFB do

log p← log√2 p

a← b · r mod p
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while (a ≤ A) do

RS[a]← RS[a] + log p

a← a + p

end while

a← b · r mod p

a← a− p

while (a ≥ −A) do

RS[a]← RS[a] + log p

a← a− p

end while

end for

for all (p, r) ∈ AFB do

log p← log√2 p

a← b · r mod p

while (a ≤ A) do

AS[a]← AS[a] + log p

a← a + p

end while

a← b · r mod p

a← a− p

while (a ≥ −A) do

AS[a]← AS[a] + log p

a← a− p

end while

end for

for (a← −A; a < A; a← a + 1) do

{Now the threshold test is for positive values}
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if RS[a] > 0 and AS[a] > 0 and gcd(a, b) = 1 then

add a pair (a, b) to the set of relations

end if

end for

b← b + 1

until b > Bmax

return relations

Each (a, b) pair is processed through the algebraic and rational polynomials, which are

as follows:

• F (x, y) = yd · f(x
y ), where f(x) is the polynomial from Section 5.4

• G(x, y) = x− y ·m, where m was chosen in Section 5.4

The results are tested for smoothness, which for performance purposes is calculated

using a simple heuristic. Rather than calculating F (a, b) and G(a, b) for each (a, b), the line

sieve relies on the following fact:

• For any (a, b) pair and the set of pairs (p, r) ∈ AFB, the value b · r mod p + k · p

identifies a value of a such that the corresponding F (a, b) is divisible by p

• For any (a, b) pair and the set of pairs (p, r) ∈ RFB, the value b · r mod p + k · p

identifies a value of a such that the corresponding G(a, b) is divisible by p

Each element of RS and AS are initialized as follows:

• AS[a]← − log√2 F (a, b) + Balgebraic fudge

• RS[a]← − log√2 G(a, b) + Brational fudge

For each value of a = b · r mod p + k · p, log(p) is added to a vector AS[a], for the

set of (p, r) pairs in AFB and a vector RS[a] for the set of (p, r) pairs in RFB. Thus,
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AS[a] = log√2(p1)+ log√2(p2)+ log√2(p3)+ · · ·+log√2(pmax) for a set of primes p in AFB.

By adding the logarithms of pi instead of multiplying each pi out, the performance of the

algorithm is increased. Ultimately, if a given value of AS[a] is larger than 0, it implies that

the prime-factorization of F (a, b) is smooth over the factor base. Because this will not be

completely accurate if there are any prime powers in the factorization, it is important to

include a fudge factor (e.g., Balgebraic fudge), then that number is likely to have a prime-

factorization of a sufficient number of elements of the factor base such that it is truly smooth

over the factor base. Once the algebraic side has been completed, the algorithm repeats

using the exact same methodology for the polynomial G(a, b) and the RFB.

The sieving step will produce the relations shown in Table 4.4.

Table 4.4: Sieved Relations
(-73, -1) (-47, -1) (-28, -1) (-13, -1) (-6, -1) (-2, -1) (-1, -1)
(1, -1) (2, -1) (3, -1) (4, -1) (8, -1) (13, -1) (14, -1)
(15, -1) (23, -1) (32, -1) (56, -1) (61, -1) (104, -1) (116, -1)
(-5, -2) (1, -2) (3, -2) (25, -2) (33, -2) (-16, -3) (-8, -3)
(2, -3) (5, -3) (17, -3) (19, -4) (-132, -5) (-43, -5) (14, -5)
(37, -5) (48, -5) (54, -5) (313, -5) (-43, -6)

4.5 Mini Factoring and Matrix Generation

The mini-factoring step includes the following function: factor(c, base, a, b), which performs

the following operations:

INPUTS:

c : the number to factor

base : either the AFB or RFB

a : the value of a
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b : the value of b

NOTES:

Both F (x, y) and G(x, y) are known

OUTPUT:

v : an exponent vector representing c =
∏

p∈FB pi

PSEUDOCODE:

BEGIN

Calculate the prime factorization of c such that U = {qi : qi | c}

v = {}

if base = RFB then

for Each p ∈ RFB do

if pi ∈ U for any i then

Append i to v

else

Append 0 to v

end if

end for

else if base = AFB then

for Each (p, r) ∈ AFB do
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if pi ∈ U for any i and a− br mod p = 0 then

Append i to v

else

Append 0 to v

end if

end for

end if

The prime factorization can be calculated using any factoring algorithm available. It has

been implemented using elliptic curves, Pollard’s ρ, Pollard’s ρ − 1 and many other algo-

rithms. In this implementation, trial division over the factor base was implemented.

For the relation (−8,−3) (chosen by [12]), the exponent vectors of factor(F (−8,−3), AFB,−8,−3)

and factor(G(−8,−3)), RFB,−8,−3) will be calculated. G(−8,−3) = −8 − (−3) · m =

−8 + 3 · 31 = 85 = 5 · 17. Thus, the exponent vector would be: U = {0010001000},

representing 20 · 30 · 51 · 70 · 110 · 130 · 171 · 190 · 230 · 290.

Once the requisite number of (a, b) pairs have been identified, the algorithm constructs

a matrix to solve for a system of linear equations. These equations represent each of the

(a, b) pairs, with each column representing the following:

• The first entry is 1 if G(a, b) < 0 and 0 if G(a, b) ≥ 0

• For each element in e ∈ factor(G(a, b), RFB), add the result of e mod 2 to the vector

• For each element in d ∈ factor(F (a, b), AFB), add the result of d mod 2 to the vector

• For each (q, s) ∈ QCB, calculate the Jacobi symbol of
(

a−bs
q

)
and add element of

value 1 if the Jacobi symbol is −1 and a 0 otherwise.

If there were not enough rows added to the matrix, more (a, b) pairs will be identified via

further iterations of the sieving step.
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INPUTS:

matrix : the matrix that will be used to perform the linear algebra step

#relations required : the number of relations that we need to factor n

relations : the (a, b) pairs

m : the value such that f(m) = 0 mod n

f(x) : sieving polynomial

RFB : rational factor base

AFB : algebraic factor base

RFB and AFB are sets of pairs (p, r) fulfilling conditions specific to the given

base.

QCB : quadratic character base

QCB is a set of pairs (q, s) fulfilling conditions specific to the given base.

We denote the sizes of such pairs by #RFB, #AFB, #QCB, respectively.

NOTES:

d← degree(f(x))

F (x, y)← yd · f(x
y )

G(x, y) = x− y ·m
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For each (a, b) in relations there is an exponent vector showing the prime factor-

ization of F (a, b) over RFB and G(a, b) over AFB

OUTPUT:

matrix : a matrix meeting the requirements set forth in Pomerance on page

293

relations found : a copy of relations with all invalid relations removed

#relations found : the number of valid relations added to the matrix

PSEUDOCODE:

BEGIN

#relations found← 0

t← #RFB

u← #AFB

for all (a, b) ∈ relations and matrix rows ≤ #relations required do

{factor(c, base, a, b) returns the exponent vectors of c over the factor base base}

(e1, · · · , et)← factor(G(a, b), RFB, a, b)

if (e1, · · · , et) = Vzero then

remove (a, b) from relations

break

end if

{factor(c, base, a, b) returns the exponent vectors of c over the factor base base}

(d1, · · · , du)← factor(F (a, b), AFB, a, b)

if (d1, · · · , du) = Vzero then

42



remove (a, b) from relations

break

end if

#relations found← #relations found + 1

if G(a, b) < 0 then

vector[0]← 1

else

vector[0]← 0

end if

for (col← 1; col ≤ t; col← col + 1) do

vector[col]← ecol mod 2

end for

for (col← t + 1; col ≤ t + u; col← col + 1) do

vector[col]← dcol−t mod 2

end for

for (col← t + u + 1; col ≤ t + u + #QCB; col← col + 1) do

(q, s)← QCB.next

{Jacobi symbol}

if
(

a−bs
q

)
= −1 then

vector[col]← 1

else

vector[col]← 0

end if

end for

matrix.append row(vector)

end for
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return (matrix, relations found, #relations found)

For the relation (−8,−3), the vector will be written as:

{000100010000000000000000000001000010010}

4.6 Linear Algebra Step

Once the matrix has been constructed, the algorithm solves the system of linear equations.

There are a number of different algorithms that have been introduced in the literature, most

notably the Wiedemann, Block Wiedemann, Lanczos and Block Lanczos algorithms. For

simplicity, this implementation uses the much less efficient Gaussian elimination technique,

in which operations are performed on columns and rows of the matrix in order to determine

the upper triangular form of the matrix, which is as follows:

To do this, the system of linear equations (below) [53]



a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn





x1

x2

...

xm


=



b1

b2

...

bm


(4.2)

where b1 through bm are 0 into the augmented matrix equation: [53]



a11 a12 · · · a1n b1

a21 a22 · · · a2n b2

...
...

. . .
...

...

am1 am2 · · · amn bm





x1

x2

...

xm


(4.3)

Converting the matrix into its upper triangular form provides the information needed to
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solve the system of linear equations. [53]



a′11 a′12 · · · a′1n b′1

0 a′22 · · · a′2n b′2
...

...
. . .

...
...

0 0 · · · a′mn b′m


(4.4)

This allows us to solve the equation for the first row and substitute the result into

the second row and continue for each row of the matrix [53]. The result of the Gaussian

elimination usually provides a number of rows where there are an infinite number of possible

solutions–meaning the variable associated with that row is a free variable. Solutions for

the system can be calculated by assigning an arbitrary number to the free variable and

computing the solutions for the rest of the variables in the matrix. As such, the linear

algebra step returns both the reduced form of the matrix and the list of free variables for

later processing.

INPUTS:

M - the matrix

OUTPUTS:

freecols - the column representing the free variables

M - the matrix in reduced Echelon form

NOTE:

Free variables are the set of variables within the solution such that if values for
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the free variables are chosen, a solution will be generated.

PSEUDOCODE:

Set the size of freecols to the number of rows in M

{The matrix is built row-by-row, so we transpose.}

M ←MT

(M,freecols)← GaussianElimination(M)

return (M,freecols)

4.7 GaussianElimination

See page 72 of Per Leslie Jensen’s masters thesis

INPUTS:

M : the Matrix

OUTPUTS:

M : the matrix in reduced echelon form

freecols : the free variables

VARIABLES:

freecols : a binary vector of length #rows

t : used to sort the rows into reduced echelon order

h : used to specify columns with free variables

PSEUDOCODE:
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#rows←M.rows()

#cols←M.cols()

for i← 0; i < #freecols; i← i + 1 do

freecols[i]← 0

end for

h← 0

for (i← 0; i < #rows and h < #cols; i← i + 1) do

next← false

if (M [i][h] is 0 then

t← i + 1

while (t < #rows and M [t][h] is 0) do

t← t + 1

end while

if (t < #rows) then

swap rows M [i] and M [t]

else

freecols[h]← 1

i← i− 1

next = true

end if

end if

if (next is false) then

for (j ← i + 1; j < #rows; j ← j + 1) do

if M [j][h] is 1 then

{Add rows}

M [j]←M [j] + M [i]

end if

47



end for

for (j ← 0; j < i; j ← j + 1) do

if M [j][h] is 1 then

{Add rows}

M [j]←M [j] + M [i]

end if

end for

end if

h← h + 1

end for

return (M,freecols)

4.8 Get Solution Set

INPUTS:

M - the Matrix

freecols - the vector of free variables

num - the number of solutions to use

OUTPUT:

res - a vector where 1 represents the column of an (a, b) pair in the solution

PSEUDOCODE:

for (i← 0; i < M.cols(); i← i + 1) do

res[i]← 0
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end for

j ← −1

i← num

while i > 0 do

j ← j + 1

while freecols[j] = 0 do

j ← j + 1

end while

i← i− 1

end while

res[j]← 1

for i = 0; i < M.rows()− 1; i← i + 1 do

if M [i][j] = 1 then

h← i

while h < j do

if M [i][h] = 1 then

res[h] = 1

break

end if

h← h + 1

end while

end if

end for

return res
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4.9 Square Root Step

The square root step takes all of the (a, b) pairs identified by the matrix step and calculates

u2 as the product of a set of algebraic numbers, (a− b · α). An algebraic number is defined

as a number that is a root of a polynomial with integer coefficients. Thus, (a − b · α) is a

root of the polynomial h(x) = a− bα. The square root step generates an algebraic number

for each (a, b) pair: (a− b · α) mod f(α) together with f ′(α)2 mod f(α). This allows for

the construction of a polynomial, γ(α)2 mod f(α), for which each (a, b) pair is a root.

Because γ(α)2 is an algebraic number, it is important to have a mapping function that

maps γ(α)2 back to Z. To this end, the number field sieve uses the norm function, which

is a mapping function allowing for the following:

• norm : Z[α]→ Q(α)

• norm : Z[α]→ Z

• norm : Z→ Q

• norm : Q(α)→ Q

A norm function also has the following properties:

• norm(f(x)i) = norm(f(x))i

• norm(−f(x)) = −norm(f(x))

• norm(g(x) · f(x)) = norm(g(x)) · norm(f(x))

• norm(c · f(x)) = c · norm(f(x))

A good example of the norm function can be seen below:
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INPUT

g(x) : the polynomial for which norm will be calculated

f(x) : the sieving polynomial

OUTPUT

r : the norm of g(x)

VARIABLES:

mat : a matrix of size o + p× o + p

PSEUDOCODE:

c← coefficient of xp in f(x)

c← co

for (0 ≤ i < o) do

for (0 ≤ j ≤ p) do

mat[i][i + j]←coefficient of xp−j in f(x)

end for

end for

for (0 ≤ i < p)) do

for (0 ≤ j ≤ o) do

mat[o + i][i + j]←coefficient of xo−j in g(x)

end for

end for

r ← det(mat)/c

return r 51



Thus, γ(α)2 represents u2 and through the Chinese remainder theorem, the algorithm

calculates
√

γ(α)2, using norm(γ(α)) to produce an integer value u. Finally, the algorithm

calculates v =
√

f ′(m)2
∏

(a,b)∈pairs (a− b ·m) mod n.

INPUT:

pairs : a list of the (a, b) pairs which produce a square in R and A

f(x) : the sieving polynomial

n : the number to factor

m : the value m from f(m) = 0 mod n

OUTPUT:

fact : one of the factors of n

PSEUDOCODE:

gamma alpha 2← 1

norm← 1

u← 0

for all (a, b) ∈ pairs do

if u < |a| then

u← |a|

end if

if u < |b| then

u← |b|

end if

norm← norm(a− bα, f(x)) · norm

gamma alpha 2← gamma alpha 2 · (a− bα) mod f(α)
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end for

gamma alpha 2← gamma alpha 2 · (f ′(α))2 mod f(α)

(ps,M)← choose ps(m, f(α), gamma alpha 2(α), u, n,#pairs)

xps← find xps(f(α), ps, gamma alpha 2(α),m)

u← calculate crt(xps, ps)

v ←
√

f ′(m)2
∏

(a,b)∈pairs (a− b ·m) mod n

fact← gcd(u− v, n)

return fact

To use CRT to calculate
√

u2, the algorithm identified a four prime numbers meeting

the following requirements:

1. ε = 0.01

2. d = degree(f(x))

3. u = largest absolute value of a or b from the (a, b) relations returned from the matrix

step

4. #s = the size of the (a, b) pairs returned from the matrix step

5. n = the number to be factored

6. p1 · p2 · p3 · p4 · (1
2 − ε) ≥ d

d+5
2 · n · (2 · u

√
d · n

1
3 )

#s
2

7. Both f(x) and gamma alpha 2(α) are irreducible over each pi

The pseudocode below describes one method to find these four prime numbers.

INPUT

m : the root of f(x) mod n where n is the number we are factoring
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f(x) : the sieving polynomial

gamma alpha 2(α) : the product of all smooth (a − b · α) pairs over AFB multiplied

by f ′(α).

u : the largest absolute value found in a or b over all (a, b) pairs in gamma alpha 2(α)

n : the number to be factored

#s : the size of the (a, b) pair list

CONSTANTS

ε← 0.1

OUTPUT

ps : the list of primes for which #ps = 4

M : the product of all the primes in ps

PSEUDOCODE:

d← degree(f(x))

choose x ≤ d
d+5
2 · n · (2 · u

√
d · n

1
3 )

#s
2

p← (2 · x)
1
4

M ← 1

while x ≤ (1
2 − ε) ·M do

p← next prime(p)

if #ps > 4 then

M ←M/ps.front

remove ps.front

end if
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if f(x) mod p is irreducible then

if gamma alpha 2(α) mod p is irreducible then

add p to ps

M ←M ∗ p

end if

end if

end while

return (ps,M)

The four primes for the example 45113 are: 75516479, 75516409, 75516457, and 75516473.

In the second phase of the algorithm,
√

u2 is calculated over the four primes selected in

the function find xps. By performing the following: hp(α) = gamma alpha 2(α) mod p

and fp(α) = f(α) mod p for each of the four values of p calculated above, the square root of

the algebraic function can be calculated over the finite field Fd
p. With this value, the correct

sign of gp(α) will be calculated by comparing norm(gp(α)) to
√

norm(gamma alpha 2(α))

mod p. If these two values don’t match, then −gp(α) is congruent to
√

gamma alpha 2(α)

mod p. Thus, gp(m) mod p is congruent to
√

u2 mod p. These steps are repeated for each

of the four values of p calculated above as per the pseudocode.

INPUT

f(α) : the sieving polynomial

ps : a list of primes such that f(α) is irreducible over each p and gamma alpha 2 is a

square root over each p

gamma alpha 2(α) : the product of all smooth (a − b · α) pairs over AFB multiplied

by f ′(α).

m : the root of f(α) mod n where n is the number we are factoring
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OUTPUT

xps : the list of values for γ(m) mod p for each p in ps

PSEUDOCODE:

for all p ∈ ps do

d← degree(f(α))

hp(α)← gamma alpha 2(α) mod p

fp(α)← f(α) mod p

gp(α)←
√

gamma alpha 2(α) over Fp
d

nm←
√

norm(gamma alpha 2(α), f(α)) mod p

gn ← norm(gp(α), f(α))

if nm 6= gn then

gp(α)← −gp(α) mod p

gn ← norm(gp(α), f(α))

end if

xp ← gp(m) mod p

add xp to the list xps

end for

return xps

The four pairs produced are:

• (4461724, 75516409)

• (4461100, 75516457)

• (4460896, 75516473)
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• (4460814, 75516479)

With the four pairs (xp, p) such that each value xp =
√

u2 mod p, there is enough

information to use the CRT to reconstruct the value of
√

u2. The algorithm takes a value

Mi =
∏

pi1≤i≤4/pi and calculates ai = M−1 mod pi. Using these two values, a values z

can be computed such that z =
∑

ai ·Mi · xpi1≤i≤4.

Using z, a value r can be calculated such that r = d zQ
pi1≤i≤4

+ 1
2e. Using r, the value of

u can be calculated as u = (z − r ·
∏

pi1≤i≤4) mod n.

INPUT:

xps : the values of γ(m) mod p for each p in ps

ps : the list of primes p over which f(x) is irreducible

NOTE: the length of xps and ps is the same

n - the number to be factored

OUTPUT

u : the algebraic square root mod n of γ(m)2

NOTE: m is the root of f(x) mod n where f(x) is the sieving polynomial

PSEUDOCODE:

z ← 0

t← 0

prod p←
∏

p∈ps(p)
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for (i← 0; i < #xps; i← i + 1) do

M ← prod p
ps[i]

ai ←M−1 mod p

z ← z + ai ·M · xps[i]

end for

r ← d z
prod p + 1

2e

u← (z − r · prod p) mod n

return u

From the example:

z =
∑

ai ·Mi · xpi1≤i≤4

= 2131976 · 430650580094814534137119 · 4461724

+ 27572267 · 430650306363383456125903 · 4461100

+ 12475459 · 430650215119650425663327 · 4460892

+ 33336766 · 430650180903260507405849 · 4460957

= 145075609402044436800526470852523622188

r = d z∏
pi1≤i≤4

+
1
2
e

= 4460957
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u = (z − r · p1 · p2 · p3 · p4) mod 45113

= (145075609402044436800526470852523622188

− 4460957 · 32521185342527273139043140485671) mod 45113

= 4861

With the value of u, a factor of n can be performed as either u− v or u + v.

The value v can be calculated as:
∏

(a− b ·m) · f ′(m)2 = 205972529162400. Finally,

gcd(4861 + 205972529162400, 45113) = 229. And 229 is a factor of 45113.
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Chapter 5: C++ Implementation

As part of this thesis, an implementation of the Number Field Sieve was implemented us-

ing C++ and the LiDiA [54] library. Using C++ and object-oriented programming, the

implementation was able to be developed to match the pseudocodes that were developed

in parallel. This way, the pseudocodes presented in Chapter 4 have been vetted by being

implemented as part of a working example of the number field sieve. This chapter describes

the mechanisms used to test and validate the implementation (see Section 5.1), the perfor-

mance of the implementation (see Section 5.2), some experiments performed against this

and other available implementations (see Section 5.3), and describes attempts to integrate

an implementation of the number field sieve with the CrypTool educational software [55]

(see Section 5.4).

5.1 Testing

This section will discuss the approaches to testing used for each piece of the implementation.

One of the most complicated aspects of developing an implementation of the number field

sieve is validating that the implementation is correct and functions as expected. Due to the

complexity of the algorithm, there are many steps where a simple error can be introduced–

and without a robust model for testing there is no guarantee that an end-to-end run of the

implementation will be successful. To that end, as part of the development effort for this

implementation, a number of tests were devised to aid in validating the implementation as

it was developed. These tests range from simple smoke-test style checks to full validation

of various components. Only with these tests was it possible to prove that the implemen-

tation developed was capable of correctly factoring numbers using the number field sieve

algorithm–as the anecdote in Section 5.1.6 shows.
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5.1.1 Testing the Polynomial Step

For the most part, testing the polynomial for the implementation used for this thesis was a

straightforward process. Because the polynomial selection step used in this thesis was the

simplest form of polynomial selection–simply the base-m expansion of n–where m ≈ n
1

d+1

and d is a degree chosen based on the size of the number n to be factored. Testing that the

polynomial selection implementation met the functional requirements was simply a test to

validate that: f(m) ≡ 0 mod n. Per [31], the base-m technique is sufficient for numbers as

large as 140 base-10 digits.

Beyond simply testing the functionality of the polynomial, it is important to determine

how many smooth values the polynomial produces–which is essential to speeding up the

number field sieve. To this end, most implementations of the number field sieve include a

small sieving step to determine how efficient a chosen polynomial is in producing smooth

values.

5.1.2 Testing the Factor Bases

Testing that the factor bases were generated correctly is a straightforward activity, but

it must be performed to ensure that all aspects of the number field sieve are functioning

correctly. Specifically, the factor bases are defined as follows: [52, p293]

• RFB : RFB = {(p, r) : p prime, p ≤ B, r ≡ m mod p}

• AFB : AFB = {(p, r) : p prime, p ≤ B, 0 ≤ r ≤ p− 1, f(r) ≡ 0 mod p}

• QCB : QCB = {k pairs (q, s) : q prime, q >= B, 0 ≤ s ≤ q−1, f(s) = 0 mod q, f ′(s) 6=

0 mod q}

To validate these, it is important to go through the generated RFB and validate that

one pair exists for each prime p and verify that r ≡ m mod p. Similarly, there must be at

least one pair for each prime p in the AFB, and f(r) ≡ 0 mod p for each pair. Because

the (p, r) relations in the AFB are based on the roots of f(x) mod p, there may be more
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than one value r associated with each value p. Complete testing would require validating

that each possible value of r is included in the results. However, generating the AFB in

an iterative fashion should guarantee that all possible (p, r) relations are included in AFB.

Similarly, validating the QCB simply requires ensuring that each relation (q, s) meets the

criteria f(s) = 0 mod q and f ′(s) 6= 0 mod q.

5.1.3 Testing the Sieving Step

Testing the sieving step is one of the more complicated testing activities performed during

the implementation developed for this thesis. Due to the extremely large amounts of data

processed by the sieving step it is important to test not only the end of of the sieving but

in-line with the sieving process.

Once sieving has been performed for all values of a where −A ≤ a < A for a fixed

value of b, the algorithm chooses likely relations (a, b) where a and b are co-prime and

the algebraic and rational thresholds have been reached. This implies that F (a, b), where

F (x, y) = yd · f(x
y ), should be smooth over the algebraic factor base and G(a, b), where

G(x, y) = x− y ·m, should be smooth over the rational factor base.

During the course of the implementation, checks against smoothness were performed

in-line with the line sieving. In practice, this is overkill as it duplicates effort used in the

matrix generation step. In addition, the algorithm used to validate the smoothness was also

not truly efficient:

{b is fixed at this point}

if (gcd(a, b) = 1 and AS[a] > 0 and RS[a] > 0) then

FRFB ← |G(a, b)|

for all p ∈ RFB do

while (FRFB > 0 and FRFB 6= 1 and FRFB mod p = 0) do

FRFB = FRFB
p
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end while

end for

if FRFB = 1 then

G(a, b) is smooth over RFB

end if

FAFB ← |F (a, b)|

for all p ∈ AFB do

while (FAFB > 0 and FAFB 6= 1 and FAFB mod p = 0) do

FAFB = FAFB/p

end while

end for

if FAFB = 1 then

F (a, b) is smooth over AFB

end if

end if

5.1.4 Testing the Matrix Step

Upon completion of the linear algebra step, the algorithm computes the value of X in the

equation A · X = 0. To that end, testing the results of the linear algebra step simply

require validating that the results provided satisfy the above equation. Further, because

this implementation leveraged the matrix step developed by [8], an abundance of testing

had already been performed to validate it.

5.1.5 Testing the Square Root Step

Testing the square root step turned out to be the most complicated aspect of this entire

endeavor. To perform this, much of the testing had to occur in parallel with the implemen-

tation. The first step was to ensure that all (a, b) pairs deemed to be part of the γ2 are
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calculated correctly. To this end, testing requires calculating the product of norm(a− bα)

for each (a, b) pair as well as the product of (a− bα) mod f(α) for each (a, b) pair.

This serves two purposes: validating that the norm function is behaving properly–as

the norm of the product of a− bα should be equal to the product of norm(a− bα)–and it

provides the necessary validation that
√

γ2 was calculated correctly as taking the result of

Couveignes’ algorithm and squaring it should result in the value of γ2.

Another heuristic for determining that the square root step was implemented correctly

involves counting the prime factorizations of G(a, b) and F (a, b) for each (a, b) pair: each

element of the RFB and AFB, respectively, should end up with an even number of powers.

For example, if G(a1, b1) = 29 ·57 and G(a2, b2) = 23 ·519 then G(a1, b1) ·G(a2, b2) = 212 ·526.

Because 12 and 26 are even, the result is a square–meaning that there is an integer u such

that u =
√

G(a1, b1) ·G(a2, b2).

5.1.6 End-to-End Testing

Once each individual portion of the number field sieve was complete, a mechanism was

needed to perform end-to-end testing to validate that the implementation was correct. Ide-

ally, an implementation that meets all of the previously discussed tests should be complete–

and result in factors when provided a number generated as the product of two random prime

numbers. In practice, this was not the case. In fact, the implementation had a subtle flaw in

it that any randomly-generated composite number that had a factor of 3 would be correctly

factorized, but any other composite number would not be correctly factorized. To fully vali-

date that the implementation works correctly requires walking through the implementation

with a known-good example of the number field sieve.

As it turns out, Briggs provides a very detailed example of the number field sieve in

action in [12]. While his example uses slightly different algorithms for the linear algebra

step and the square root step, the end result should be the same and all pairs generated by

the sieving step should be valid given the test inputs include the same polynomial as that

used by Briggs. To this end, the number 45,113 was factored in this implementation using
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the value m = 31. Because Briggs uses the base-m expansion to generate the polynomial,

the implementation generated the polynomial f(x) = x3 + 15x2 + 29x + 8, which matches

that used by Briggs’ example. As such, the factor bases generated by the implementation

matched those in the example, making it highly likely that the sieving step would result

in the same (a, b) pairs. However, comparing the results of the implementation, a different

set of (a, b) pairs were generated–implying an error in the implementation of the sieving

step. As it turns out, one line of the sieving step implemented a + bm where it should

have implemented a − bm. With the correct set of (a, b) pairs, the algorithm successfully

completed and produced factors for 45,113: 197 and 229.

5.2 Timing Results

First, initial timing results were taken with a naive implementation of the threshold test

(e.g., testing that AS[a] > Balgebraic fudge and RS[a] > Brational fudge). For smaller num-

bers, this implementation ran with the timings for each step as shown in Table 5.1. Results

Table 5.1: Sample Timing Results
n 657033396953910741871
d 3
BAFB 2000
BRFB 2000
Balgebraic fudge 50
k 10
Polynomial selection 14ms
Factor base generation 25162ms
Line sieving 3478ms
Linear algebra 222ms
Square root 27013ms

for larger numbers were not successful, see Table 5.2. Specifically, results for n3 did not

produce a single relation even after 50 hours of running. There was a suspected scaling

issues in the implementation were identified: the array S for the sieving step requires a
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Table 5.2: Larger Numbers
n1 903446913989887751229829
n2 534811055500486755544760729316203
n3 272281914804060071572974366950855982676425838267016377021567

contiguous amount of memory. However, the errors received were not memory related. To

this end, the Very Sleepy [56] profiler was deployed to identify the issue. First, the threshold

test in the line sieving phase was implemented as shown:

if(gcd(a, b) == 1 && s[0][t] > T[0] && s[1][t] > T[1])

{

...

}

Very Sleepy showed that over 80% of the program’s running time was being used to

calculate gcd. This is due to the fact that in C++, the first item in a set of conditionals will

always be tested–if the result is false, the following items will not be tested. As such, the

gcd implementation as called for every (a, b) pair. Additionally, the gcd implementation

was a naive implementation that did not account for performance. To this end, the gcd

implementation was updated to use binary gcd [57] and the threshold test was altered as

shown:

if(s[0][t] > T[0] && s[1][t] > T[1] && gcd(a, b) == 1)

{

...

}

With these simple changes to the implementation, it was able to process 24-digit numbers

(see Table 5.2) in reasonable amounts of time (e.g., 644312ms). However, larger numbers

still result in extreme slowdowns as the value of b increases. This is due, primarily, to
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the fact that the algebraic and rational fudge factors increase in an almost linear fashion

as the value of b increases. As such, the static choices for the fudge factors presented at

the initialization phase of the algorithm become less of a barrier to bad (a, b) pairs as b

increases, resulting in a large amount of time validating the smoothness of these pairs.

An improvement, as identified by [12] is to implement a slightly more complicated version

of the threshold test: initializing the AS and RS arrays to: AS[a] ← − log√2 F (a, b) +

Balgebraic fudge and RS[a] ← − log√2 G(a, b) + Brational fudge. Using an improved test as

shown:

if(s[0][t] > 0 && s[1][t] > 0 && gcd(a, b) == 1)

{

...

}

This produced the timing results shown in Table 5.3. While this slowed increased the

Table 5.3: Sample Timing Results
n 657033396953910741871
d 3
BAFB 2000
BRFB 2000
m 8693523
Balgebraic fudge 10
Brational fudge 5
k 10
Polynomial selection 16ms
Factor base generation 24939ms
Line sieving 425348ms
Linear algebra 227ms
Square root 75702ms

length of time it takes the line sieve to run by 122 times. However, this also allowed the

implementation to support factoring larger numbers, one of which is shown in Table 5.4.
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As shown in the tables, the most time consuming aspect of the number field sieve is simply

Table 5.4: Sample Timing Results
n 903446913989887751229829
d 3
BAFB 3000
BRFB 3000
m 96672039
Balgebraic fudge -60
Brational fudge -40
k 10
Polynomial selection 9ms
Factor base generation 62564ms
Line sieving 6727832ms
Linear algebra 439ms
Square root 124583ms

the line sieve. In fact, where increasing the number of digits factored from 21 digits to 24

digits increases the length of time the line sieve takes by a multiple of 15, the increases in

other phases were not nearly as stark: the matrix step only doubled (taking an insignificant

amount of the algorithm’s total time) while the amount of time required for the square root

step only increased by 1.6. Also, the amount of time added to the line sieve by implementing

the threshold test from [12] as it requires a large number of calculations for each possible

value of a and b, making the time the line sieve takes to initialize the AS and RS arrays

proportional to the amount of time required to calculate − log√2 F (a, b) + Balgebraic fudge

and − log√2 G(a, b) + Brational fudge. In practice, this adds a noticeable lag to the run-

time of the implementation. However, where the naive threshold test would slow down

the algorithm as b increases in value, the threshold test from [12] does not–meaning that

because the setup time is not related to the size of n, as n increases in size, the effect of

this set-up time on the running time of the line sieve will become less noticeable.

However, with and without the improved threshold test, the profiler has shown that

25% to 50% of the time used in this implementation is spent on memory allocation and
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deallocation and dealing with (a, b) pairs that do not produce smooth values of F (a, b) and

G(a, b). This can most likely be addressed by two avenues of future work:

• Implement the polynomial selection algorithms found in [31] rather than the naive

implementations that are shown in [12] and [52].

• Rework the implementation of the line sieve to reduce the amount of memory alloca-

tion and deallocation that is performed.

The value of reducing the amount of memory operations used in the sieving step is arguable

as the majority of those memory operations occur in the portion of the algorithm that

generates the exponent vectors. With improved polynomials and improved threshold tests,

the effect of the memory operations may be greatly reduced.

It is important to note that as b increases, the values of AS[a] and RS[a] increase as

well–regardless of which form of threshold test is performed. Another avenue for future work

will be to implement improvements over the a rolling average of good threshold values and

allow it to increase as valid (a, b) pairs are identified with larger threshold values. This will

also have the benefit of reducing the number of gcd operations and mini-factoring operations

that are currently performed in the implementation.

5.3 Experiments

Because GGNFS is widely considered to be the most efficient implementation of the number

field sieve, an initial set of experiments were performed using the GGNFS suite of programs

on Enigma. The Enigma machine has the following properties:

• Owned and operated by GMU

• Quad Xeon 2.8 GHz processor

• 4 GB RAM

• Several hundred GB of hard disk space
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As such, Enigma provides a platform on which these experiments can easily be repeated.

The GGNFS suite of programs divides the NFS process into a number of steps. Each

step is defined as its own application with its own set of inputs and parameters. This allows

users of the GGNFS suite to tune a large number of NFS parameters to the specific number

and polynomial that will be used. Table 5.5 outlines the parameters supported by the

basic GGNFS polynomial selection function. GGNFS also provides an implementation of

Franke’s polynomial selection algorithm, but it is not suitable for numbers smaller than 98

digits. In addition, there is no documentation describing the parameters that the improved

polynomial selection code accepts. The second phase of the GGNFS suite generates the

Table 5.5: Polynomial Selection Parameters
n The number to factor
d The desired degree of the polynomial
j0 and j1 Murphy’s sieving-for-root properties
maxs1 Threshold for the initial polynomial test
maxskew The maximum acceptable skew for the polynomial
lc1 The maximum relative size of the leading coefficient
lcp The number of primes to choose from for

leading coefficient divisors
leave The number of bits of the leading coefficient

that will be random

factor base. The parameters supported for factor base generated are outlined in Table 5.6.

The third phase of the GGNFS suite performs sieving. As GGNFS provides two sieving

implementations (line and lattice), there are slightly different parameters available for each.

Table 5.7 shows the parameters for each. Once sieving is complete, the GGNFS suite

provides an application that will process the relations from one or more sieve runs into a

format suitable for generating the matrix. The matrix step consists of three applications:

one for building, pruning, and solving the matrix. The parameters available during the

matrix step are given in Table 5.8. The final step of the GGNFS suite, as with the final

step of the NFS algorithm, is the square root step. As with the other steps, GGNFS provides
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Table 5.6: Factor Base Parameters
n The number to factor
f The polynomial chosen for NFS
m The value at which f(m) = 0 mod n

rl The maximum size of the rational factor base
al The maximum size of the algebraic factor base
mpr The max large rational prime for

large-prime variation
mpa The max large algebraic prime for

large-prime variation
p The number of large rational and algebraic primes

several parameters that may be of use, identified in Table 5.9. As there is a relationship

between skew and the results of the sieving step, an initial line of experiments would be

to perform some tests based on the skew results of the polynomial. In particular, Monico

states in the documentation that most skews are between 1500 or 2000. Similarly, j0 and j1

are used to find “nearby” polynomials that may have more small roots, providing smoother

ideals. Nevertheless, there will be some trade-off between the amount of time spent in

polynomial selection and the amount of time spent performing the rest of the algorithm.

In addition, the effects of sieving parameters (e.g., a and b) were also evaluated, aside

from the obvious values affecting the performance of the sieving step. It is, nevertheless,

expected that lattice sieving will perform far better than line sieving.

According to the GGNFS documentation, the two most important parameters are

maxrelssinff and wt. maxrelsinff defines the maximum number of relations per relation-

set when preparing the matrix. It is expected that this value and the sparseness of the matrix

will have a direct impact on the performance of the matrix solution step.

The following test procedures were performed to gain a better understanding of the

number field sieve algorithm:

1. Generate multiple n’s of different sizes (40-digit, 80-digit, more if time allows)

2. Generate multiple polynomials for each value of n with different parameters
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Table 5.7: Sieving Parameters
n The number to factor
f The polynomial chosen for NFS
m The value at which f(m) = 0 mod n

(r|a)lambda How far from perfect sieve values to look
for good relations.

q0 The initial value of q for the lattice sieve
qintsize The q range size for the lattice sieve
a0 The initial value of a for the line sieve
a1 The final value of a for the line sieve
b0 The initial value of b for the line sieve
b1 The final value of b for the line sieve

Table 5.8: Matrix Parameters
minff The minimum number of FFs
maxrelsinff The maximum relation-set weight
wt The weight factor determining the sparseness

of the matrix.

3. Generate multiple sieving runs for each polynomial with different parameters, to see

how these parameters affect the efficiency of the algorithm

4. Generate multiple matrices for each sieving run with different parameters, to see how

to modify the length of the matrix step versus the sieving step

5. Tabulate the time spent in each step

6. Analyze the results

Tests were developed for a 40-digit number, but they were not effectual because with the

appropriate sieving parameters, NFS can factor a 40-digit number in less than 30 seconds.

As such, more tests were performed on the 80-digit number.
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Table 5.9: Square Root Parameters
depnum The specific dependency to try from the

matrix solution
knowndiv The product of known small divisors of n

Table 5.10 shows the results of different sieving parameters on a polynomial generated

to have a skew of 1500 for an 80-digit number. The results column indicates the result of

the matrix generation step, showing the number of columns generated against the minimum

required by the algorithm. Table 5.11 shows the results for a polynomial with a skew of

1625. Higher skews are not provided because higher skew polynomials were not found even

when specified. As expected, the polynomial with a higher skew produces better results.

Table 5.10: Results of a 1500 skew polynomial
A0 A1 B0 B1 Time Results

−2 ∗ 106 2 ∗ 106 1 2000 4m51s 2233/71537
−2 ∗ 106 2 ∗ 106 1 20000 33m43s 3949/71537
−2 ∗ 106 2 ∗ 106 1 100000 182m15 5748/71537

Table 5.11: Results of a 1625 skew polynomial
A0 A1 B0 B1 Time Rels

−2 ∗ 106 2 ∗ 106 1 2000 5m47s 2935/71297
−2 ∗ 106 2 ∗ 106 1 20000 35m0s 5805/71297
−2 ∗ 106 2 ∗ 106 1 100000 185m56s 8829/71297

Nevertheless, the effect of the higher skew is almost negligible. More interesting results are

shown in Table 5.12, which illustrates the effects of altering the sieving parameter a vs. the

sieving parameter b. Because sieving must find pairs a+bm that are smooth over the factor

base, it is interesting to notice that the size of a has little effect on the number of relations

produced per second vs. the size of b. When running the sieving step on Enigma, low
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Table 5.12: Results of altering the value of a vs b

A0 A1 B0 B1 Time Rels

−4 ∗ 106 4 ∗ 106 1 2000 18m0s 5062/71297
−6 ∗ 106 6 ∗ 106 1 2000 19m30s 6862/71297
−8 ∗ 106 8 ∗ 106 1 2000 26m14s 8529/71297
−10 ∗ 106 10 ∗ 106 1 2000 43m21s 10103/71297
−2 ∗ 107 2 ∗ 107 1 2000 41m17s 17017/71297
−4 ∗ 107 4 ∗ 107 1 4000 138m54s 57503/71297
−4 ∗ 107 4 ∗ 107 1 8000 253m97s 71297/71297
−6 ∗ 107 6 ∗ 107 1 2000 103m53s 41891/71297
−8 ∗ 107 8 ∗ 107 1 2000 130m2s 52969/71297

values of b result in 0.002 relations per second. With the value of A at 2∗106, the value of b

increases much faster, resulting in as much as 0.014 relations per second for higher values of

b. In contrast, a can be as high as 8∗107 without effecting the amount of time per relation.

At 8 ∗ 107, the amount of time necessary for each relation begins to increase slightly, but

not at the rate that higher values of b provide. This shows that it is possible to perform

line sieving with larger values of a in a significantly reduced amount of time. In fact, when

compared to the 60m required for lattice sieving to process this 80-digit number, it seems

it may be possible to achieve similar performance (perhaps only twice as slow) with line

sieving.

It was also interesting to note that the parameters for matrix generation and processing

had no effect on the algorithm. In fact, if an invalid parameter was supplied (either too

small or too large) GGNFS would ignore it and calculate a better, more optimal parameter.

5.4 CrypTool Integration

CrypTool [55] is educational software that aims to assist students in learning about cryptog-

raphy. CrypTool provides tools for performing encryption, decryption, generating message

authentication codes (MACs), digital signatures, and many other cryptographic operations
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using both modern and historical ciphers. In addition, CrypTool provides some mechanisms

for performing cryptanalysis against both classical and modern ciphers, including the RSA

algorithm that serves as a bedrock for modern electronic commerce.

CrypTool’s RSA analysis tools include several different factoring algorithms, including

trial division, Pollard’s algorithm, the quadratic sieve, and several others[55]. These algo-

rithms are very powerful against small RSA keys (less than about 100 digits), but larger keys

require the more efficient Number Field Sieve. While it would be impractical for students

to use a single computer to factor large RSA keys, it will be beneficial to provide a user

interface for the complex algorithm. Part of the implementation effort involved working to

extend the CrypTool software by providing support for the Number Field Sieve (NFS).

By extending CrypTool to support NFS, students will be able to see first-hand how the

security of RSA depends on the difficulty of factoring large numbers. Similarly, students

will also be able to examine how the different NFS parameters can drastically effect the

amount of time necessary to factor a large number–anywhere between 15 minutes and two

hours for a 50-digit number. Similarly, because students can generate RSA keys of any size

in CrypTool, they will be able to feasibly generate and perform attacks against small RSA

keys.

CrypTool is a C++ application written using Microsoft Visual C++ .NET 2003 and the

Perl scripting language for the Windows Platform. There is a port of CrypTool for Linux

[58] in progress, but it is not advanced enough for the purposes of this effort. As mentioned

previously, CrypTool provides tools for performing cryptographic operations using classical

and modern ciphers as well as tools for performing cryptanalysis. All of these tools are

available from the CrypTool menu bar. When a particular operation is desired, CrypTool

will open a dialog box for the user to provide input about the key or the type of operation

to be performed, allowing for a graphical user interface to what are otherwise “black box”

algorithms.

The CrypTool source code relies on the Microsoft Foundation Classes (MFC) GUI li-

brary for interacting with the user, preventing it from easily being ported to other platforms.
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Nevertheless, the MFC library is a very straightforward interface for developing GUI ap-

plications. By relying on a single main menu to launch dialog boxes for each application,

the CrypTool developers have ensured that it is relatively painless to introduce new func-

tionality into CrypTool: new functionality need only be added as a menu item and the

appropriate dialog box can be instantiated.

To aid in distribution, all of the libraries that CrypTool requires are statically linked to

the CrypTool application, precluding users from downloading additional software–or even

running a software installer. As such, any extensions to CrypTool should aim to keep with

this tradition.

5.4.1 GGNFS and Msieve

Originally, the CrypTool effort was to integrate msieve and GGNFS into the CrypTool

framework. Both msieve and GGNFS rely on Murphy’s α approximation to generate poly-

nomials. Both implementations provide line sieves, but msieve’s line sieve uses the bucket

sort algorithm outlined by Aoki and Ueda.[59] For the linear algebra step, both applications

provide an implementation of the Lanczos algorithm.

In testing performed to compare the GGNFS and msieve implementations, GGNFS was

found to factor a 100-digit number in 10 hours (via its lattice sieve implementation) while

msieve factored the same number in a little over four days via its line sieve implementation.

When compared to a commercial NFS implementation provided by the MAGMA compu-

tational algebra system, which took over six days to complete, GGNFS proved the most

efficient candidate. Nevertheless, the GGNFS source code is very convoluted with little

documentation and (at the time) had not been updated in several years.

Msieve, on the other hand, had a number of benefits over GGNFS:

• msieve relies on its own multi-precision implementation

• msieve does not perform lattice-based sieving as suggested by portions of the readme

• msieve implements a bucket-sort version of the line sieve, as outlined by Kazumaro
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Aoki and Hiroki Ueda. [59]

• msieve is actively developed

• msieve is written to be a library that can be included by other applications (the msieve

application is a demonstration of how these library functions may be used)

• the msieve code is well-commented

The primary drawback of the msieve implementation was that it is hard-coded to factor

only numbers larger than 97 digits via NFS. Nevertheless, the code changes necessary to

disable this check and provide parameters for smaller numbers were negligible. As a testa-

ment to msieve’s performance, the msieve Web site indicates that it is used by the NFSNet

project to perform the final stages of NFS.

Partway through this integration effort, it was discovered that Jason Papadopoulos has

been granted commit access to the GGNFS subversion repository with the intent of merging

the GGNFS and msieve code-bases. Once complete, the more efficient GGNFS sieving code

will work seamlessly with the more efficient msieve matrix processing code.

5.4.2 Implementation Results

The original goal of the implementation phase of this effort was to integrate both the msieve

and GGNFS code-base into CrypTool, allowing users to choose which algorithms to use with

different steps of the NFS. In particular, the NFS extension would allow users to perform

the polynomial selection step separate from the rest of the algorithm. Because polynomial

selection is a non-deterministic function, this will allow users to record and re-use the results

of this step before running the rest of the algorithm. Similarly, users would be able to see

first hand how polynomial selection can affect the rest of the algorithm. Users would also

have the ability to input polynomials generated using other tools to test their effectiveness.

For the rest of the algorithm, users will be able to supply the NFS parameters described in

Table I to monitor how the choice of parameters affects the amount of time spent running

the NFS algorithm. Ultimately, users would be allowed to specify the algorithms used for
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Table 5.13: NFS Implementation Parameters
General Parameters
n The number to factor
f(x) The polynomial NFS will use
m A value of x at which f(x) = 0
Pmax The largest prime to be used in each factor base
RFB The size of the rational factor base
RFBmax The largest value of the rational factor base
AFB The size of the algebraic factor base
AFBmax The largest value of the algebraic factor base
QCB The size of the quadratic character base (optional)
Polynomial Selection Parameters
α The maximum allowed value of Murphy’s α

approximation in selecting the polynomial
d The degree of the polynomial (usually 3 or 5)
Line Sieving Parameters
A For line sieving, the sieving interval such that

−A < a < A

each step of the NFS algorithm in addition to specifying NFS parameters. Users would be

able to store the results of each intermediate step and perform analyses of the performance

of each option.

Because msieve has no external library dependencies and provides a Win32 implemen-

tation from their Web site, it was chosen as the first NFS implementation to integrate with

CrypTool. Nevertheless, several roadblocks were encountered while working on this phase

of the effort. In particular, the Win32 implementation of msieve and CrypTool required

functions specific to their respective compilers. At the beginning of this effort, it seemed

relatively simple to port the msieve code, but the resulting binary consistently failed to

factor different 40-digit numbers (see Figure 5.1). In the interim, it is likely that these is-

sues have resolved with msieve and CrypTool now supporting similar compilers. After some

research on the GGNFS Web site[60], Visual Studio project files for the GGNFS suite that

support various implementations of the Microsoft Visual Studio compiler were identified:

Visual C++ 6.0, Visual C++ .NET 2003, Visual C++ 2005 and Visual C++ 2008. While
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Figure 5.1: Msieve Error

work on GGNFS has begun anew under Jason Papadopoulos, there were still a number of

issues to deal with:

• GGNFS relied on a different version of the GMP library than CrypTool

• The Windows patches for GMP are no longer available [61]

• The Visual Studio project files did not function easily out-of-the-box

After a good deal of work, it was possible to compile and run GGNFS and GMP in

Windows. Several rounds of testing resulted in the same output and findings as testing in

Linux. As such, it became possible to work on the CrypTool merge.

A CrypTool menu item was created (see Figure 5.2) and a Dialog Box was developed

for NFS (see Figure 5.3), polynomial selection (see Figure 5.4), factor base generation

(see Figure 5.5) and sieving (see Figure 5.6). This lead to the final road blocks in

the phase of the integration effort: updating CrypTool’s GMP library and integrating the

polynomial selection code. Updating the GMP library proved straightforward once all

references to the older library file were removed from the CrypTool project and replaced

with the newer version. CrypTool continued to function without any issues, indicating the

two GMP versions are binary compatible (except for the functions required by GGNFS).

The final hurdle in this phase was converting the polynomial selection code to C++ in
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Figure 5.2: CrypTool NFS Menu

Figure 5.3: NFS Dialog

such a way that it would compile, run and output could be displayed to the dialog. As

such, the current version of the CrypTool extension includes support for every NFS step up

to matrix generation. The biggest obstacle in compiling the polynomial selection code was

getting the LN2 identifier and other mathematical constants to compile. In the GGNFS

project, the compiler does not complain about these identifiers–nor does the GCC compiler

in Linux. After much searching, I found there is a #define that must be set to include

math.h constants. Even though it is not explicitly set in the GCC or main GGNFS Visual

C++ project, somehow it is enabled when those projects are compiled. Nevertheless, once

the appropriate #define was enabled, CrypTool began to correctly compile the polynomial

selection code.
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Figure 5.4: Polynomial Selection

Figure 5.5: Factor Base

Finally, to allow users to cancel the polynomial selection process, the polynomial selec-

tion code was modified to be launched in a separate thread, allowing the CrypTool user

interface to remain responsive while searching for appropriate polynomials. Because of all

of these roadblocks, efforts focused on implementing the standalone version of the number

field sieve described throughout this chapter–as well as a graphical user interface for the

standalone implementation described in Section 5.5.

5.5 Graphical User Interface

With the goal of eventually integrating the standalone number field implementation with

the CrypTool interface, a graphical user interface was added to this implementation. By

using a Windows implementation of the GCC tools (MinGW [62]), all of the underlying
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Figure 5.6: Sieving

libraries were compiled for the Microsoft Windows platform, resulting in a command-line

implementation of the number field sieve for Windows. By modifying the command-line

implementation using the wxWidgets library [63], a cross-platform graphical user interface

was developed allowing users on Windows, Linux, and Mac OS X to use the implemen-

tation developed to support this thesis for learning purposes, see Figure 5.7. Specifically,

Figure 5.7: GMU NFS GUI

any platform with GNU compiler tools and a wxWidgets library will be able to run this

implementation. By using the GNU tools to port all of the underlying libraries, a future

effort to integrate these GNU-compiled binaries with the Microsoft Visual Studio-compiled

CrypTool may be more successful.
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Chapter 6: Summary and Conclusions

One of the primary goals at the beginning of this thesis was to identify a document that

outlined the number field sieve in a manner accessible to those without multiple years of

research using or implementing the number field sieve algorithm. This document provided

that insight–giving readers a simple source to gain an understanding of how to implement the

number field sieve. Couple with this insight is an implementation of the number field sieve

using C++, allowing individuals to parse through the C++ code an gain an understanding

of how a simple implementation of the number field sieve can function. Due to the modular

nature of the C++ language, it is expected that future work will include updating this

implementation to improve performance and provide modular mechanisms for swapping out

individual components of the number field sieve–as simple as adding implementations that

use alternate libraries or implementations of alternate algorithms (e.g., the Block Wiedeman

algorithm in place of Gaussian elimination for the matrix step).

This implementation was developed with scalability in mind–specifically within the siev-

ing step. Minor modifications to the sieving step will allow it to use hard drive space on the

system to store and access all of the data components used in the line sieving algorithm. By

minimizing the number of points where 32-bit or 64-bit integer values, this implementation

will avoid many of the pitfalls associated with other implementations–specifically a hard

limit where integer overflows begin to affect functionality.

Completion of the graphical user interface provides additional utility for this imple-

mentation. The GUI provides a learning environment where students can easily modify

parameters to the algorithm–and even modify the source code of the implementation. By

using a cross-platform framework, students will not be limited to a specific version of an

OS or specific hardware to run this particular implementation of NFS. Additionally, by

relying solely on open source software libraries, this implementation is fully extensible and
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allows students to extend or modify the existing codebase to improve upon it or develop

alternative implementations of the various steps of the number field sieve. In fact, one of the

primary issues that students often run into while studying the number field sieve is that the

algorithm is extremely complex and, in most cases, there is insufficient time to implement

more than one specific aspect of the algorithm. As noted in [41], many projects require

students to develop test input to analyze their implementations. By using this implemen-

tation of NFS, students will be able to generate input from an running implementation of

NFS and–where possible–integrate their code with this framework and, over time, develop a

GMU implementation of NFS that encompasses all aspects of the number field sieve. Addi-

tionally, through the pseudocodes outlined in this thesis and the implementation provided,

students will also be able to identify areas where software implementations of the number

field sieve can benefit from improved performance.

While there are numerous benefits from using the standalone implementation developed

as part of this thesis, integrating it with CrypTool will provide a GUI interface consistent

with other learning environments within the cryptographic engineering space. With further

modifications of the source of this implementation–specifically those that will allow it to

link and build with the Microsoft Visual Studio compilers–students could use the CrypTool

interface to better understand weaknesses of RSA by performing the steps necessary to

generate small RSA keys, encrypt messages, and attack those messages all within the same

user interface.
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