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Abstract

NEW UNIT ROOT TESTS TO DECREASE SPURIOUS RESULTS WITH APPLICA-
TIONS IN FINANCE AND TEMPERATURE ANOMALIES

Edward Herranz, PhD

George Mason University, 2016

Dissertation Director: Dr. James Gentle

Simulation studies show that when testing for cointegration with pairs of independent

explosive(φ1 > 1) AR(1) time series almost invariably lead to spurious cointegrating rela-

tionships. A new unit root test, the lagged-series test, is proposed with similar power to

the ADF test for non-explosive AR(1) series but higher power in the explosive case. The

lagged-series unit root test can be combined with other unit root tests such as the Elliot-

Rothenberg-Stock tests and the Zivot-Andrews test, as well as the ADF test to improve

the statistical power in the explosive case. A new unit root test, the Hybrid Bai-Perron

Zivot-Andrews test, is proposed which allows for structural breaks in intercept and linear

trend under the null hypothesis and compares favorably in some cases to the Lee-Stratizich

unit root test. A new testing procedure to check for stationary to nonstationary shifts

in a time series, referred to as the Hybrid Bai-Perron ADF procedure, is proposed and

tested. It is shown that different unit root test related statistics can be combined using

deep learning neural networks and results in techniques that outperform individual unit

root tests in various simulation studies. Simulation based studies of the ADF, ERS-Ptest,

ERS-DFGLS, the Zivot-Andrews, and the new lagged-series unit root tests, under various

model configurations were made and compared.



Findings are consistent with various behaviors covered in the literature such as these

tests are sensitive to the starting value of the AR(1) process, and when there are structural

breaks these tests hardly ever reject the null hypothesis of a unit root. The covered interest

rate parity formula is expressed as three linear terms and tested for cointegration; statis-

tical evidence is provided showing when cross-currency swap basis spreads are added to

one term the cointegration relationship always strengthens. Statistical evidence is provided

that shows likely cointegration relationships between bank credit default swap spreads and

cross currency basis swap spreads, indicating that bank credit risk is related to cross cur-

rency basis swap spreads; also statistical evidence is provided that there are cointegration

relationships between bank credit default swap spreads and spot FX, indicating that bank

credit risk affects the FX Spot rate. Statistical evidence that USD-JPY cross-currency basis

swaps spreads Granger cause JPY fixed-floating interest rate swaps. A possible explanation

may be USD based entities issuing JPY fixed debt and hedging it fully or partially with

USD-JPY cross currency basis swaps. Various analyses to check for unit roots in zonal

temperature anomaly time series were done. A number of models were fitted to these zonal

temperature anomalies including a 3 regime SETAR model, and it is shown that better fits

are always achieved when including linear trends. Estimated SETAR models for the South-

ern Hemisphere temperature anomalies are more likely to be stationary than the Northern

Hemisphere, which includes an explosive AR(1) middle regime.



Chapter 1: Introduction: Unit Root Nonstationarity and

Cointegration

This thesis is divided into sections describing related time series (TS) theory and explana-

tory examples, the new unit root tests, related financial and economic theory and and

applications exploring relationships between forward foreign exchange rates, interest rate

swap rates, cross currency basis swap rates and credit default swap rates, as well as an

analysis of hemispheric temperature anomalies. NIST (2005) defines a TS as an ordered

sequence of values of a variable at equally spaced time intervals. I will focus on discrete time

models involving one or more univariate TS. These are mostly commonly auto-regressive

AR(1) models, but other AR orders are considered. I use the R Core Team (2015) language

and various add-on statistical packages packages, as well as implemented some new tests

of my own, to conduct many Monte Carlo simulation experiments, as well as a number of

empirical tests. The notation and definitions in this theory are based on Shumway,R.H. and

Stoffer, D.S. (2000), Pfaff, B. (2008), Tsay, Ruey S. (2014), Hill, R. Carter and Griffiths,

William E. and Lim, Guay C. (2011) and Stock, James H. and Watson, Mark W. (2011). I

will provide more specific references at the relevant sections.

1.1 Types of Time Series Statistical Models

NIST (2005) defines a time series (TS) as an ordered sequence of values of a variable at

equally spaced time intervals.

We define a TS {xt} as

{xt} = {x1, x2, ..., xn} (1.1)
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We will also use the equivalent notation:

{x(t)} = {x(1), x(2), ..., x(n)} (1.2)

And we define the time-lag operator as

Lk(xt) = xt−k (1.3)

Throughout this thesis we focus on discrete time models, although we make reference to

continuous time models used to develop the theory of Brownian motion that is used to derive

the asymptotic behavior of some of the test statistics used. As explained in Shumway,R.H.

and Stoffer, D.S. (2000) there are two broad categories of time series models: those in the

time domain, and those in the frequency domain. I will only discuss time domain models in

this thesis. Within the time domain the most commonly used models are the auto-regressive

models ( AR), the moving average models (MA) and a combination of the two referred to as

the auto-regressive moving-average (ARMA) models. An AR(p) model is defined in terms

of its lagged values x(t) and the innovations εt as :

x(t) =

p∑
i=1

φix(t− i) + εt (1.4)

It is commonly assumed that the innovations are Gaussian white noise series εt ∼

N(0, σ2) ; cor(εt, εt−1) = 0.

An MA(q) model is defined in terms of its current and past innovations εt as :

x(t) =

q∑
i=1

θiεt−i (1.5)

An ARMA(p,q) model is defined in terms of its lagged values x(t) and its current and
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past innovations εt as :

x(t) =

p∑
i=1

φix(t− i) +

q∑
i=1

θiεt−i + εt (1.6)

We define the difference operator as follows:

∆(x(t)) = (x(t)− x(t− 1)) (1.7)

And differencing can be applied d times to a series:

∆d(x(t)) = ∆(...(∆(∆(x(t))))) (1.8)

An ARIMA(p,d,q) model is a model of a time series x(t) where we first difference the

series d-times, resulting in ∆d(x(t)) , and then we build an ARMA(p,q) model from the

differenced series. Here the “I” stands for integrated.

Other common time series models in the time domain, are the auto-regressive-conditional-

heteroskedasticity (ARCH) and general-ARCH (GARCH) models used to model processes

with non-constant variances. GARCH models are very commonly used to model financial

asset returns–as these exhibit heteroskedastic behavior. Shumway,R.H. and Stoffer, D.S.

(2000, p. 286) define a GARCH(m,r) model as:

yt = σtεt

σ2
t = α0 +

m∑
j=1

αjy
2
t−j +

r∑
j=1

βjσ
2
t−j

(1.9)

where εt ∼ i.i.d.N(0, 1)

The previous univariate ARMA and also GARCH models can be extended to to mul-

tivariate form; these are the VARMA and MGARCH models. All of these models can be

3



considered sub-classes of a more general type of model know as the state-space model, also

known as tge dynamic linear model(DLM.) Shumway,R.H. and Stoffer, D.S. (2000, p. 319)

define a state-space model first by the state equation as a vector autoregression:

xt = Φxt−1 +wt (1.10)

where xt is a p × 1 state vector. wt is a p i.i.d. zero-mean Gaussian vector and it is

assumed that the model starts with a given initial vector x0 and has mean µ0 and p × p

covariance matrix Σ0. The state-space model assumes that xt is not directly observable

and adds the observation equation:

yt = Atxt + vt (1.11)

where At is a q × p observation matrix and vt is a p × 1 white noise vector. In this

thesis much of the consideration is for univariate time series models, however I also consider

two-variate time series models in various cases.

Another type of TS models are nonparemtric models. The literature in this area keeps

increasing, as in Zhang, Ting and Wu, Wei Biao (2015) where nonparametric time-varying

time series model estimation is presented. The key idea behind nonparametric models is for

them to be based on the data and be model-free, making as few assumptions as possible.

1.2 Linear Regression Model Estimation Via Least Squares

The following exposition of the estimation of linear regression models using least squares

is based on Hastie, Trevor and Tibshirani, Robert and Friedman, Jerome (2001, p. 43-44).

Consider the linear regression model expressed in matrix form:

y = Xβ + ε (1.12)

where y denotes an N-vector of the dependent variable, X denotes an N×(p+1) matrix
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of the independent variables. The +1 allows for constants in the model, by making the first

element of each row to be 1. ε is a N-vector of errors (or innovations.) β is an (p+1)-vector

of coefficients to be estimated. Consider the residual sum of squares as a function of β:

RSS (β) = (y −Xβ)T (y −Xβ) (1.13)

We differentiate this quadratic function with respect to the β parameter:

∂RSS

∂β
= −2XT (y −Xβ) (1.14)

And we differentiate the previous result one more time:

∂2RSS

∂β∂βT
= 2XTX (1.15)

Given the second derivative is always positive, and if we assume that X if of full rank

then the minimum of this parabolic function is obtained by setting the first derivative to

zero and solving for β:

XT (y −Xβ) = 0 (1.16)

β̂ =
(
XTX

)−1
XTy (1.17)

1.3 Conditional Least Squares for AR(p) Models

As presented by Levine, Michael (2012) an AR(p) model can be rewritten as a VAR(1)

model:

yt = Yt−1φ+ εt (1.18)
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where φ = {φ1, ..., φp}T and Yt−1 = {yt−1, ..., yt−p} and using least squares as presented

before in Equation (1.17) the estimate for the auto-regressive coefficient vector is:

φ̂ =
(
Y T
t−1Yt−1

)−1
Y T
t−1yt (1.19)

Equation 1.19 is commonly known as the conditional least squares coefficient estimate

of an AR(p) model.

1.4 Stationary Time Series

A weakly stationary TS process is defined as having a constant mean, and an autocovariance

function γ(s, t) that depends on s and t only through their difference |s−t|. Throughout this

document a stationary TS is intended to mean a weakly stationary TS. A strictly stationary

TS is one where the joint probability distribution does not change with time. Each element

xt of a strictly stationary TS follows the same distribution; there is no standard test for

strict stationarity as it is not possible to infer a distribution based on a single element. In

any case, strict stationarity is too strict and rarely observed in practice. A non stationary

TS can have a time varying mean as well as a time varying covariance function.

1.5 Unit Roots

Unit root tests (URTs) of a TS address the null hypothesis that the series is unit root

nonstationary; that is, the hypothesis the series is an integrated order 1 process, I(1). The

alternative hypothesis is that the TS is weakly stationary. A process that is integrated

order n, I(n), is a process that needs to be differenced n times to become weakly stationary.

A weakly stationary process is referred to as an I(0) process. This thesis develops new unit

root tests (URTs) that can reduce false positives for near-integrated processes. These new

unit root tests can also help reduce false positives when it comes to analyzing cointegration

relationships between two or more TS, since if any of the variables tested for cointegration
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are I(0) then the test can often result in a spurious cointegration relationship.

1.5.1 Unit Root Test Hypotheses

We largely focus on AR(1) models, with intercept and linear trend. The ADF unit root test

handles AR(p) models by rewriting them as an AR(1) model with additional components of

differences; after essentially ”taking out” these additional components in a helper regression

it is then able to use the critical values of the Dickey-Fuller that were designed with an AR(1)

model.

Null Unit Root Test Hypothesis

Unless otherwise noted, we define the null hypothesis as an AR(1) model x(t) = φ1x(t−1)+εt

where φ1 = 1. We use the symbol H
I(1)
0 to denote the null hypothesis. This corresponds to

a nonstationary I(1) process. This is unusual in statistics where we would normally consider

the multiplier to be 0 under the null as in a t-test for the coefficient of a linear regression

model. The reason φ1 = 1 is picked as the null is because many time series in Finance and

Economics are unit roots, so setting the null as I(1) helps us increase the confidence that if

we reject the null it is not I(1), and we can choose the significance level to be as precise as

needed.

We also consider the extended null hypothesis AR(1) model to deal with an intercept

and a linear trend as follows, in a one-dimensional state-space model like representation:

x(t) = φ1x(t− 1) + εt

y(t) = β0 + β1t+ x(t)

φ1 = 1

(1.20)

In this thesis we also consider enhancing the unit root test null hypothesis to allow for

structural breaks/changepoints in the deterministic coefficients β0 and β1.
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If instead we had allowed the trend in the AR formula under the null we will see that

this leads to quadratic time trends in the levels. Consider:

x(t) = φ1x(t− 1) + β0 + β1t+ εt

φ1 = 1

(1.21)

If we solve the recursion, using Faulhaber’s formula we would find the following expres-

sion in the levels of x(t) with a quadratic time trend component:

x(t) = β0t+ β1
t(t+ 1)

2
+

t∑
i=1

εi (1.22)

Alternative Unit Root Test Hypothesis

Unless otherwise specified, we consider the alternative to be AR(1) with φ1 6= 1. When

|φ1| < 1 this corresponds to a stationary I(0) process. Most of the standard unit root tests,

such as the ADF test consider the alternative hypothesis to be |φ1| < 1. However in the

case with an explosive AR(1) process with φ1 > 1 this is a highly nonstationary process.

We use the symbol H
I(0)
1 to denote the stationary possibility of the alternative hypothesis.

And we use the symbol HExplosive AR
1 to denote the stationary possibility of the alternative

hypothesis. When testing for cointegration with AR(1) explosive series can quite easily

lead to a spurious cointegration result as will be explained later. This is why I think it is

beneficial to have unit root tests with power against the explosive alternative hypothesis.

When allowing an intercept and a linear trend in the time series being tested for unit

roots we consider the same one-dimensional state-space model like representation as under

8



the null:

x(t) = φ1x(t− 1) + εt

y(t) = β0 + β1t+ x(t)

φ1 6= 1

(1.23)

We also will consider the unit root test alternative hypothesis to allow for structural

breaks/changepoints in the deterministic coefficients β0 and β1 later in this thesis.

1.6 Introductory Examples

1.6.1 A Spurious Regression Model of a Stock and a Foreign Exchange

Rate

Consider Google stock prices and the US dollar/Brazil real exchange rate (expressed as

number of reals per 1 dollar) for the period between 2014-03-27 and 2016-01-08. Stock prices

and foreign exchange rates are always positive and can be modeled as stochastic processes.

We take the logarithm of these TS as the models studied here do not have a restriction on

the sign of the variable. Also a non-linear function can be made more linear by taking the

logarithm; for example consider a parabolic function: f(x) = x2 ; log(f(x)) = 2log(x). See

Figure 1.1 for the TS of log Google prices. This figure displays a nonstationary pattern. The

concept of stationarity of a stochastic process will be defined more rigorously in subsequent

sections–it is related to the constancy of the mean, variance and the auto-covariance of the

process.

The models we will study involve discrete time variables. However, a very common

continuous time model of financial asset prices such as these is geometric Brownian motion

(GBM):

St = S0 expf(t)+σWt (1.24)
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Figure 1.1:
log(Google),log(Brazil/USD).

Figure 1.2:
diff(log(Google)),diff(log(Brazil/USD)).

where S0 is the initial asset price/exchange rate, f(t) is a deterministic function of

time and Wt represents Brownian motion. GBM is always positive however log(St) =

log(S0) + f(t) + σWt can fluctuate in sign. As detailed in Tsay, Ruey S. (2014, p. 268),

Brownian motion (Wiener process) can be constructed as a re-scaled random walk. More

specifically, a re-scaled sum of mean-zero, variance-one random variables εi as follows. Define

r ∈ [0, 1], the the limit of the sum converges in distribution to a Wiener process:

lim
n→∞

1√
n

bnrc∑
i=1

εi ⇒D W (r) (1.25)

The Wiener process has the following properties:

• W (0) = 0

• E(W (t)) = 0

• E(W (t)W (s)) = min(t, s) for s, t ≥ 0

• Given 0 ≤ t ≤ s, we have W (s)−W (t) is independent of W (u) where u ≤ t and has

a Gaussian distribution of N(0, s− t)
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If we difference the St process defined in Equation (1.24) as log(St) − log(St−1) =

f(t) − f(t − 1) + σ(Wt −Wt−1) we expect to obtain a deterministic part, which could be

a constant, plus independent random increments, εi√
n

. And essentially this is what we

see in Figure 1.2. This figure appears to be a process that is much more stationary than

Figure 1.1. It seems plausible that the mean is close to zero in Figure 1.2. The variance does

not appear to be constant, and that is indeed a common feature of most TS of financial asset

values or rates. We will not be focusing on this aspect within this study. As a side note,

we will see later that the test statistics for the Dickey-Fuller unit root test, as well as those

for the Johansen cointegration test are based on functionals of Wiener processes(Brownian

Motion.)

We estimate, using the lm() function of the R language, a simple linear model between

the log TS based on the ordinary least squares (OLS) method:

log(Google(t)) = c+ β log(BrUs(t)) + εt (1.26)

And derive the coefficient estimates ĉ and β̂. The results are detailed in Table 1.1. The

coefficient estimates obtained are very significant, and even the R-squared of 0.419 is not

small.

Unfortunately this regression is most likely a spurious one, that happens often with non-

stationary variables such as these that follow random walks, or a related process referred

to as a unit root. It would be hard to conceive that somehow Google’s profits are closely

linked to the US dollar/Brazil real exchange rate.

We can perform a statistical test of non-stationarity on each of the TS being analyzed;

one of the most famous and commonly used such tests is the Augmented Dickey-Fuller

(ADF) test, which will be discussed in more detail later; this is what is referred to in

the literature as a unit-root test. The null hypothesis of this test is that the TS is non-

stationary (has a unit root) and the alternative is that the TS is stationary. We see that

for log(Google(t)) we cannot reject the null hypothesis of a unit root/random walk, as well
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Table 1.1: log(Google) = ĉ+ β̂ log(BrUs)

Dependent variable:

Log Google

Log BrUs 0.351∗∗∗

(0.020)

Constant 5.992∗∗∗

(0.021)

Observations 446
R2 0.419
Adjusted R2 0.418
Residual Std. Error 0.084 (df = 444)
F Statistic 320.153∗∗∗ (df = 1; 444)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

as for the log of the exchange rate:

Listing 1.1: Unit Root Tests of Log TS

> adf . t e s t ( tsp1$Log Google )

Augmented Dickey−F u l l e r Test

data : t sp1$Log Google

Dickey−F u l l e r = −1.6311 , Lag order = 7 , p−value = 0.7337

a l t e r n a t i v e hypothes i s : s t a t i o n a r y

> adf . t e s t ( tsp1$Log BrUs )

Augmented Dickey−F u l l e r Test

data : t sp1$Log BrUs

Dickey−F u l l e r = −3.025 , Lag order = 7 , p−value = 0.1444

a l t e r n a t i v e hypothes i s : s t a t i o n a r y

So what can be done now? One of the most powerful and useful concepts in Economet-

rics/Time Series research is that of cointegration. It was originally proposed by Engle, R.
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F. and Granger,C. W. J. (1987). This concept will be more precisely defined later, but we

will describe it here as a number of non-stationary TS are cointegrated if a linear combi-

nation of the series results in a stationary process. There are various ways of testing for

cointegration; perhaps the simplest is to test the residuals of the regression between the

pair of TS using a unit root test to see if the null hypothesis of a unit root can be rejected

or not. This method is only good for two-variable equations; in this example we will use

the Johansen test of cointegration which can be used for any number of variables:

Listing 1.2: Johansen Cointegration Test of Log TS

######################

# Johansen−Procedure #

######################

Test type : maximal e i g enva lue s t a t i s t i c ( lambda max) , with l i n e a r trend

Eigenva lues ( lambda ) :

[ 1 ] 0 .0132568305 0.0007475134

Values o f t e s t s t a t i s t i c and c r i t i c a l va lue s o f t e s t :

t e s t 10 pct 5 pct 1 pct

r <= 1 | 0 .33 6 .50 8 .18 11 .65

r = 0 | 5 .93 12 .91 14 .90 19 .19

Eigenvectors , normal i sed to f i r s t column :

( These are the c o i n t e g r a t i o n r e l a t i o n s )

Log Google . l 2 Log BrUs . l 2

Log Google . l 2 1 .0000000 1.000000

Log BrUs . l 2 −0.4643095 1.137981

Weights W:

( This i s the load ing matrix )

Log Google . l 2 Log BrUs . l 2

Log Google . d −0.020232932 0.0004519718

Log BrUs . d 0.005646056 0.0009019347

The Johansen test has multiple related hypothesis tests. The first null-hypothesis of the

Johansen cointegration test is that the series are not cointegrated. This can be seen in the

line r = 0. The test statistic is 5.93 in this case and we cannot reject the null hypothesis.

The second test has the null hypothesis that the cointegration order is less than or equal to
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1 which we can see in line r ≤ 1 and we cannot reject this one either. So in short this sample

Johansen test provides statistical evidence that log(Google(t)) and log(Brazil/USD(t)) are

not cointegrated; this implies there is no reason to think these TS are closely related.

In this example we have seen that using linear regression with variables that follow

random walks(unit roots) yielded a spurious relationship. Then we saw that if we checked

for cointegration there was no real evidence of a significant relationship between the analyzed

variables.

Table 1.2: diff(log(Google)) diff(log(BrUs))

Dependent variable:

Diff Log Google

Diff Log BrUs −0.096
(0.069)

Constant 0.001
(0.001)

Observations 445
R2 0.004
Adjusted R2 0.002
Residual Std. Error 0.016 (df = 443)
F Statistic 1.953 (df = 1; 443)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Is there a way to consistently use linear regression while avoiding the pitfalls involving

random walks? One approach is to run a regression on the differenced TS; we can see that

a differenced random walk results in a TS of the random increments: Given x(t) =
∑t

i=0 εi

where E(εi) = 0,Var(εi) = a, then for the differences we obtain: x(t)− x(t− 1) = εt . For

our previous example we regress the first differences of the logs of the variables, and the

summary of the regression is in Table 1.2. We see now that the fitted coefficients for this

regression are no longer statistically significant, and the R-squared is practically zero.
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Maddala, G.S. and Kim, In-Moo (1998, p. 33) survey literature on the consequences

of misspecification of models. They consider processes that are stationary around a deter-

ministic trend (TSP) and processes that are stationary after first differences (DSP) and

discuss how to distinguish between them. If the TS is DSP but is treated as TSP this is

a problem of under-differencing. If the TS is TSP but is treated as DSP this is a case of

over-differencing. They refer to literature providing cases where misleading results can be

obtained, but also point to solutions such as adjusting for the serial correlations of errors.

1.6.2 Differencing TS Can Hide Relationships

Does the previous example suggest that if we always regress differenced TS when we think

we are dealing with random walks we avoid all the potential pitfalls? Unfortunately one

can miss out on relationships when we difference. Consider the following DGP (1.27):

x(t) = x(t− 1) + ε1(t) ; ε1(t) ∼ N(0, 1)

y(t) = x(t− α) + ε2(t) ; ε2(t) ∼ N(0, 1)

α one of {1, 2, 3, 4, 5} with equal probability

x(0) = y(0) = y(1) = y(2) = y(3) = y(4) = y(5) = 0

cor(ε1(t), ε2(t)) = 0

(1.27)

First notice that x(t) is a random walk, and that y(t) is just a random lagged (t − α)

value of x(t) plus an innovation term which is not cumulated over time steps. So y(t) is

also a random walk with additional noise. So we can see that these two TS are closely

related. Since they are both random walks we should be wary of deriving conclusions from

a linear regression analysis of the level TS. However in this case if we run a regression on the

differenced TS it will not show any significant relationship. Let us try with a simulation.
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The data for this test can be replicated using the R language as follows:

Listing 1.3: Random Lag Simulation

l ibrary ( zoo )

set . seed ( 12345 )

l<−1000

x <− cumsum(rnorm( l ) )

y <− rep (0 , l )

for ( i in 6 : l )

{

l ag <− sample ( 1 : 5 , 1 )

y [ i ] <− x [ i−l ag ] + rnorm(1 )

}

x <− zoo ( x )

y <− zoo ( y )

First we find statistical evidence that x(t) and y(t) are nonstationary:

Listing 1.4: ADF Test of Randomly Lagged Series

> adf . t e s t ( x )

Dickey−F u l l e r = −1.8271 , Lag order = 9 , p−value = 0.6515

a l t e r n a t i v e hypothes i s : s t a t i o n a r y

> adf . t e s t ( y )

Dickey−F u l l e r = −1.7453 , Lag order = 9 , p−value = 0.6861

a l t e r n a t i v e hypothes i s : s t a t i o n a r y

Now we estimate the following linear regression model:

∆(x(t)) = β̂0 + β̂1∆(y(t)) + εt (1.28)

And from the regression results summarized in Table 1.3 we see that there are no statistically
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significant coefficients and the R-squared is zero. So that could lead us to the incorrect

conclusion that these two TS are unrelated.

Table 1.3: ∆x = β0 + β1∆y

Dependent variable:

∆x

∆y −0.00002
(0.017)

Constant 0.046
(0.032)

Observations 999
R2 0.000
Adjusted R2 -0.001
Residual Std. Error 1.000 (df = 997)
F Statistic 0.00000 (df = 1; 997)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

As in the previous example given we believe our individual variables are random walks(unit

roots) we should perform a test to see if they are cointegrated, and we will use the Johansen

test again:
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Listing 1.5: Johansen Test of x and y

> summary( ca . j o ( t sx ) )

######################

# Johansen−Procedure #

######################

Test type : maximal e i g enva lue s t a t i s t i c ( lambda max) , with l i n e a r trend

Eigenva lues ( lambda ) :

[ 1 ] 0 .332242393 0.005952608

Values o f t e s t s t a t i s t i c and c r i t i c a l va lue s o f t e s t :

t e s t 10 pct 5 pct 1 pct

r <= 1 | 5 .96 6 .50 8 .18 11 .65

r = 0 | 403 .02 12 .91 14 .90 19 .19

Eigenvectors , normal i sed to f i r s t column :

( These are the c o i n t e g r a t i o n r e l a t i o n s )

x . l 2 y . l 2

x . l 2 1 .0000000 1.0000000

y . l 2 −0.9967988 −0.2076108

Weights W:

( This i s the load ing matrix )

x . l 2 y . l 2

x . d −0.007177517 −0.0057276936

y . d 0.637051425 −0.0002333098

In the Test Result Listing 1.5 we can see that the test statistic for the case of no

cointegration (r = 0) is 403.02 so we can easily reject the null hypothesis of no cointegration.

We cannot reject the second null hypothesis of a cointegration of order 1 (r ≤ 1). From

these results we conclude that x and y are likely cointegrated.

1.6.3 Two Cases of Spurious Cointegration with Near Unit Roots

The previous example showed us that if we are building a model involving TS that appear

to be random walks, we should always perform a cointegration test, instead of relying on

building a linear regression model based on the differenced TS. Cointegration tests become

problematic if they are performed on TS which are not random walks, i.e. are stationary,
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as they will indicate that the series are cointegrated. This is particularly troublesome when

the TS we analyze are close to random walks, and the unit root tests will fail to reject the

null hypothesis of nonstationarity. First we will define what is meant by near unit roots.

A simple autoregressive model involving a single lag, AR(1) with standard normal in-

novations is detailed in Equation (1.29):

xt = φ1xt−1 + εt ; εt ∼ N(0, 1) (1.29)

The simple unit root case (random walk) consists of when φ1 = 1 and given this multi-

plier value we can see the recursive definition would collapse to xt =
∑n

i=1 εi which is the

standard model of a random walk. A near unit root is the case where φ1 <> 1 but it is

close to 1. We will look at two practical examples one where it is less than 1, and one where

phi1 is larger than one, referred to as the explosive case.

A case with an AR(1) Processes with φ1 < 1

The DGP used for this example is that in Equation (1.29) with phi1 = 0.94 and the data

for this test can be replicated using the R language as follows:
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Listing 1.6: Two Near Unit Root Series, ts1 and ts2

l ibrary ( zoo )

set . seed (12345)

l <− 200

t s1 <− rep (0 , l )

t s2 <− rep (0 , l )

t s1 [ 1 ] <− rnorm(1 )

t s2 [ 1 ] <− rnorm(1 )

for ( i in 2 : l )

{

t s1 [ i ] <− 0 .94 ∗ t s1 [ i −1] + rnorm(1 )

t s2 [ i ] <− 0 .94 ∗ t s2 [ i −1] + rnorm(1 )

}

t s1 <− zoo ( t s1 )

t s2 <− zoo ( t s2 )

The Augmented Dickey Fuller unit root tests provide statistical evidence that the ts1

and ts2 TS are nonstationary as can be seen in the following results:

Listing 1.7: ADF Tests of ts1 and ts2

> adf . t e s t ( t s1 )

Dickey−F u l l e r = −2.9404 , Lag order = 5 , p−value = 0.1822

a l t e r n a t i v e hypothes i s : s t a t i o n a r y

> adf . t e s t ( t s2 )

Dickey−F u l l e r = −2.6176 , Lag order = 5 , p−value = 0.3174

a l t e r n a t i v e hypothes i s : s t a t i o n a r y

Now we perform a cointegration test of ts1 and ts2 as detailed in Test Results Listing 1.8:
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Listing 1.8: Johansen Test for near unit roots ts1 and ts2

######################

# Johansen−Procedure #

######################

Test type : maximal e i g enva lue s t a t i s t i c ( lambda max) , with l i n e a r trend

Eigenva lues ( lambda ) :

[ 1 ] 0 .07508604 0.03716230

Values o f t e s t s t a t i s t i c and c r i t i c a l va lue s o f t e s t :

t e s t 10 pct 5 pct 1 pct

r <= 1 | 7 .50 6 .50 8 .18 11 .65

r = 0 | 15 .45 12 .91 14 .90 19 .19

Eigenvectors , normal i sed to f i r s t column :

( These are the c o i n t e g r a t i o n r e l a t i o n s )

t s1 . l 2 t s2 . l 2

t s1 . l 2 1 .0000000 1.000000

t s2 . l 2 −0.3582286 2.523358

Weights W:

( This i s the load ing matrix )

t s1 . l 2 t s2 . l 2

t s1 . d −0.13853693 −0.006762077

t s2 . d 0.04118509 −0.028669928

As can be seen in Listing 1.8 the first null hypothesis of no cointegration ( a cointegration

rank of r = 0 ) can be rejected at the 5% significance level, and the second null hypothesis

of a co-integration rank of 1 cannot be rejected with the same significance level. We could

conclude that ts1 and ts2 based on this test are cointegrated. The problem here lies in the

unit root tests did not reject the null hypothesis of the unit root as they should.

A case with an Explosive Processes (AR(1) with φ1 > 1 )

The DGP used for this example is that in Equation (1.29) with phi1 = 1.01 and the data

for this test can be replicated using the R language using the same code as in Listing 1.6

but replacing the 0.94 with 1.01.
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Just as before we test the underlying TS ts1 and ts2 for unit roots, and the null hypoth-

esis of nonstationarity cannot be rejected:

Listing 1.9: ADF Tests for Explosive ts1 and ts2

> adf . t e s t ( t s1 )

Dickey−F u l l e r = 0 .67457 , Lag order = 5 , p−value = 0.99

a l t e r n a t i v e hypothes i s : s t a t i o n a r y

> adf . t e s t ( t s2 )

Dickey−F u l l e r = 0 .30167 , Lag order = 5 , p−value = 0.99

a l t e r n a t i v e hypothes i s : s t a t i o n a r y

Now we perform a cointegration test of explosive series ts1 and ts2 as detailed in Test

Results Listing 1.10:
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Listing 1.10: Johansen Test for ts1 and ts2

######################

# Johansen−Procedure #

######################

Test type : maximal e i g enva lue s t a t i s t i c ( lambda max) , with l i n e a r trend

Eigenva lues ( lambda ) :

[ 1 ] 0 .08025426 0.03045790

Values o f t e s t s t a t i s t i c and c r i t i c a l va lue s o f t e s t :

t e s t 10 pct 5 pct 1 pct

r <= 1 | 6 .12 6 .50 8 .18 11 .65

r = 0 | 16 .56 12 .91 14 .90 19 .19

Eigenvectors , normal i sed to f i r s t column :

( These are the c o i n t e g r a t i o n r e l a t i o n s )

t s1 . l 2 t s2 . l 2

t s1 . l 2 1 .000000 1.000000

t s2 . l 2 −9.027077 −1.353337

Weights W:

( This i s the load ing matrix )

t s1 . l 2 t s2 . l 2

t s1 . d −0.001868595 −0.01847405

t s2 . d −0.001105020 0.03229835

In Listing 1.8 the first null hypothesis of no cointegration ( a cointegration rank of

r = 0 ) can be rejected at the 5% significance level, and the second null hypothesis of

a co-integration rank of 1 cannot be rejected with the same significance level. We could

conclude that ts1 and ts2 based on this test are cointegrated, just as we did on the previous

test case with φ1 = 0.94. The problem again is that the unit root tests did not reject the

null hypothesis.

A contribution of this thesis is a new unit root test (the lagged-series unit root test)

that can be used alone or in conjunction with other unit root tests to reduce the chance of

spurious cointegration, mainly in the explosive case.
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1.7 Integrated Time Series

A standard way to convert a non stationary TS into a stationary one is via successive

differencing; a TS is integrated order d, labeled I(d), if it has to be differenced d times to

become stationary. This is the definition of integration order of a process given by Engle,

R. F. and Granger,C. W. J. (1987) in their seminal paper.

The simplest case of an I(1) TS can be described using an auto-regressive process AR(1):

X(t) = φ1X(t− 1) + ε where φ1 = 1 and ε is a zero-mean random innovation. This process

is a random walk with a 0 deterministic drift. We see that this process can be re-written as

X(t) = X(0) +
∑n

i=1 εi. It can be described as having a long memory, as all innovations εi

are equally weighted. The summation of innovations is commonly referred to as a stochastic

trend. If φ1 < 1 then older values would be increasingly weighted less and less.

Consider an auto regressive process of order p:

x(t) = φ1x(t− 1) + φ2x(t− 2) + ...+ φpx(t− p) + ε(t) (1.30)

The characteristic polynomial of this AR(p) process is defined as

φ(z) = 1− φ(1)z − ...− φ(p)zp (1.31)

A unit root is defined as an auto-regressive process that has 1 as a valid root of the

characteristic polynomial equation as in Chan, Ngai Hang (2010, p. 29). TS with unit

roots are non-stationary processes. In the case of an AR(1) process if abs(φ1) = 1 there

will be a unit root. As detailed in Chan, Ngai Hang (2010) if AR(p) process has all of

its characteristic polynomial roots with an absolute value greater than one, then such as

process is defined to be causal, and will also be stationary. It is possible for an AR(1) process

with |φ1| > 1 to be re-written in a form that would imply it is stationary, even though it

is non-convergent however it requires expressing the model in terms of future values which

would make it an unusable model. For example for an AR(1) model as detailed in Chan,
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Ngai Hang (2010, p. 27):

x(t) =
x(t+ 1)

φ1
− ε(t+ 1)

φ1
(1.32)

There are various statistical tests to check for the presence of unit roots. In this paper

we review the Augmented Dickey Fuller test, the Elliot, Rothenberg and Stock tests, and

propose new tests.

1.8 Spurious Regressions

Finding linear relationships involving TS that are integrated order 1, I(1), or higher can

result in ”spurious” or ”nonsense” regressions. As Pfaff, B. (2008, p. 74) points out, a

spurious regression can have a high unadjusted R2 = 1−
∑n
i=1 ε̂i

2∑n
i=1(y(i)−ȳ)2

The denominator in

the second term of the formula becomes very large since extreme values on both sides of

the non-constant mean are weighted heavily due to the nonstationarity of the process, so

in the limiting case R2 → 1.

1.8.1 Linear Relationships Between Time Series

Many financial TS are random walks, which are non-stationary processes. Consider the

simple Gaussian random walk model expressed as an auto regressive process:

X(t) = X(t− 1) + εt where X(0) = 0 and εt ∼ N(0, 1) (1.33)

This discrete model can be rewritten as follows:

X(t) =
t∑
i=1

εi, for some t > 0 (1.34)

So it is easy to see that the variance of this process is ever increasing as it is the sum of

the variances; in this case it would be t.
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We consider the following trivial models of linearly related X(t) and (Y (t) series:

X(t) = gX(t− 1) + εt

X(0) = 0

εt ∼ N(0, 1)

Y (t) = hX(t) + γt

γt ∼ N(0, 1)

cov(εt, γt) = 0

(1.35)

We perform simulations where we pick the multiplier g and then we select at random h

from a uniform distribution [−10, 10] and derive the {X(t)} and {Y (t)} TS. The we regress

Y (t) = βX(t) +νt. The results of the regression (R2 and F-stat p-value) are summarized in

Table 1.4. In this case we can see that all regressions are significant as the R2 are close to

100%, and all of the F-stat p-values are close to zero, rejecting the null-hypothesis of β = 0.

These results are expected given the DGP (1.35) used to generate X and Y .

Table 1.4: Regressing Y (t) on X(t) as Defined in Equation (1.35) with l = 1000 and
m = 1000

Adj R2 Fstat p-value
g Q:0.5 Q:0.50

1.01 1.0000 0.00
1.00 0.9998 0.00
0.90 0.9922 0.00
0.50 0.9714 0.00
0.20 0.9638 0.00
0.00 0.9624 0.00

Now we consider the following trivial models of linearly independent X(t) and Y (t)
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series:

X(t) = gX(t− 1) + εt

X(0) = 0 ; εt ∼ N(0, 1)

Y (t) = hY (t) + γt

γt ∼ N(0, 1) ; cov(εt, γt) = 0

(1.36)

Table 1.5: Regressing Y (t) on X(t) as Defined in Equation (1.36) with l = 1000 and
m = 1000

Adj R2 Fstat p-value
g h Q:0.5 Q:0.5

1.01 1.01 1.0000 0.00
1.00 1.00 0.4045 0.00
0.90 0.90 0.034 0.04
0.00 1.00 -0.006 0.50
0.50 1.00 0.003 0.25
0.50 0.50 -0.002 0.38
0.20 0.20 -0.005 0.47
0.00 0.00 -0.006 0.50

Just as before we regress Y (t) = βX(t) + νt with the results of the DGP (1.36) in a

simulation. Table 1.5 summarizes the regression results, and we see that in the cases of

g = 1.01, h = 1.01 and g = 1, h = 1 the regressions appear to be significant even though

Y (t) and X(t) are independent of each other. Even in the case of g = 0.9, h = 0.9 with an

F-stat p-value 0.04 leads us to reject the null hypothesis of β = 0 at the 0.05 significance

level. Granger, C. W. J. (2000, p. 13) confirm similar findings: that spurious regressions

can happen for non I(1) processes (with an AR(1) φ1 multiplier of 0.9.)
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1.9 Dickey Fuller Unit Root Test

The original simplest version of the Dickey Fuller test considered the standard AR(1) model

with Gaussian white noise, see Dickey, D. A. and Fuller, W.A. (1981):

yt = φ1yt−1 + εt ; εt ∼ N(0, 1) ; cor(εt, εt−1) = 0 ; y0 = 0 (1.37)

As detailed in Patterson, Kerry (2010, p. 208) the two main test statistics for the Dickey

Fuller test are the normalized bias δ̂ and the t-type statistic τ̂ :

δ̂ = T (φ̂1 − 1) (1.38)

τ̂ =
(φ̂1 − 1)

σ̂φ̂
(1.39)

φ̂1 is the standard coefficient estimate as derived using ordinary least squares:

φ̂1 =

∑T
t=1 ytyt−1∑T
t=1 y

2
t−1

(1.40)

φ̂1 − 1 =

∑T
t=1 yt−1(yt − yt−1)∑T

t=1 y
2
t−1

=

∑T
t=1 yt−1εt∑T
t=1 y

2
t−1

(1.41)

The last step in Equation (1.41) is based on εt = yt − yt−1.

Given these previous equations we can now define the normalized bias as a function of

the observations yt:

δ̂ = T

∑T
t=1 yt−1εt∑T
t=1 y

2
t−1

=

∑T
t=1 yt−1εt/T∑T
t=1 y

2
t−1/T

2
(1.42)

As detailed in Table 7.1 of Patterson, Kerry (2010, p. 197) for the DGP (1.37) following
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sample quantities have a limiting form expressed as functionals of Brownian motion:

T∑
t=1

yt−1εt/T ⇒
D
σ2

∫ 1

0
WtdWt (1.43)

T∑
t=1

y2
t−1/T

2 ⇒
D
σ2

∫ 1

0
W 2
t dr (1.44)

These quantities can be simulated to determine critical values for these test statistics.

The Dickey-Fuller test, as all Unit Root tests consider, has a null hypothesis of φ1 = 1

and the alternative hypothesis is |φ1| < 1. The case of a negative unit root φ1 = −1

leads to a distribution of
(
φ̂1 + 1

)
that is the mirror image of the standard Dickey-Fuller

distribution as detailed in Choi, In (2010, p. 55). When φ1 > 1 this leads to an explosive

case. As derived in Phillips,Peter C.B. and Magadalinos,Tassos (2005) the asymptotics of

the estimation error of φ1 is this case under certain assumptions is Cauchy distributed.

We can extend the DGP (1.37) to have a constant and a linear trend. Then using OLS

we can removed these extra terms. This will affect the critical values of the test statistics.

Zivot, Eric (2005) suggests a simulation approach based in R. This approach is extended for

the trend and drift terms here for the normalized bias (NB) and t-type (DF) test statistics;

the R code to perform these simulations is detailed in Listing 1.11.

Listing 1.11: NB and DF Test Statistic Simulations

l ibrary ( fUnitRoots )

l ibrary ( dynlm )

l ibrary ( zoo )

wiener bar <− function ( nobs )

{

e <− rnorm( nobs )

d r i f t <− runif (1 ,−20 ,20)
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#Model i s y t = C + D ∗ t + phi 1 ∗ y ( t−1) + ep s i l on

#HO: we assume tha t phi 1 = 1 and D=0

y <− cumsum( e ) + cumsum( rep ( d r i f t , nobs ) )

t sy <− zoo ( y )

l <− length ( t sy [ , 1 ] )

u1 <− 1 : l

model1 <− dynlm ( formula = tsy˜ u1 )

D <− model1$coef f ic ients [ ’ u1 ’ ]

C <− model1$coef f ic ients [ ’ ( I n t e r c e p t ) ’ ]

#demean and detrend

y <− y − rep (C, nobs ) − D∗u1

ym1 <− y [ 1 : ( nobs−1)]

intW2 <− nobs ˆ(−2) ∗ sum(ym1ˆ2)

intWdW <− nobs ˆ(−1) ∗ sum(ym1∗e [ 2 : nobs ] )

ans <− l i s t ( intW2=intW2 , intWdW=intWdW)

ans

}

set . seed (12345)

nobs <− 1000

nsim <− 10000

NB <− rep (0 , nsim )

DF <− rep (0 , nsim )

for ( i in 1 : nsim )

{

BN. moments <− wiener bar ( nobs )

NB[ i ] <− BN. moments$intWdW/BN. moments$intW2

DF[ i ] <− BN. moments$intWdW/sqrt (BN. moments$intW2 )

}

quantile (DF, probs=c ( 0 . 0 1 , 0 . 0 5 , 0 . 1 ) )

qun i t roo t (c ( 0 . 0 1 , 0 . 0 5 , 0 . 1 0 ) , trend=’ ct ’ , s t a t i s t i c=’ t ’ , N=10000)

quantile (NB, probs=c ( 0 . 0 1 , 0 . 0 5 , 0 . 1 ) )

qun i t roo t (c ( 0 . 0 1 , 0 . 0 5 , 0 . 1 0 ) , trend=” ct ” , s t a t i s t i c=”n” , N=10000)

And results of the simulation code from Listing 1.11 and comparison with the critical

values to those from the R qunitroot() function from the fUnitRoots R package as reported

by MacKinnon, J.G. (1996) is detailed in Results Listing 1.12:
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Listing 1.12: Critical Values of Simulated DF Statistics

> quantile (DF, probs=c ( 0 . 0 1 , 0 . 0 5 , 0 . 1 ) )

1% 5% 10%

−3.980987 −3.406626 −3.125696

> qun i t roo t (c ( 0 . 0 1 , 0 . 0 5 , 0 . 1 0 ) , trend=’ ct ’ , s t a t i s t i c=’ t ’ , N=10000)

[ 1 ] −3.958799 −3.410295 −3.126858

> quantile (NB, probs=c ( 0 . 0 1 , 0 . 0 5 , 0 . 1 ) )

1% 5% 10%

−29.29784 −21.59540 −18.13030

> qun i t roo t (c ( 0 . 0 1 , 0 . 0 5 , 0 . 1 0 ) , trend=” ct ” , s t a t i s t i c=”n” , N=10000)

[ 1 ] −29.32316 −21.68862 −18.23051

We see in the Simulation Results Listing 1.12 that the simulated values and the ones

computed by MacKinnon, J.G. (1996) as reported in the qunitroot() function of the fUnit-

Roots R package are close.f

Said, S. E. and Dickey, D. A. (1984) extended the Dickey Fuller URT for ARMA models

and not just AR models; this is known as the Augmented Dickey Fuller( ADF ) unit root

tests and is one of the most commonly used URTs in the literature (Choi, In, 2010, p. 33).

The ADF test regression is fitted using OLS:

4 yt = α+ δt+ βyt−1 +

n∑
i=1

γi 4 yt−i + εt (1.45)

where 4 is the difference operator and εt represent 0-mean white-noise innovations.

Under the null hypothesis yt is considered to be I(1) which is equivalent to 4yt being I(0)

in which case β would be zero. The test statistic is the standard regression t-statistic

tβ = β̂

s.e.(β̂)
. A normalized bias test statistic is used as well.

The tests’ authors derived the critical values for these test statistics as they follow a

non-standard distribution; they are the same as the standard Dickey-Fuller critical values

which depend on the form of the deterministic components. The lagged differences allow
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correcting for serial correlation in the innovations. For the details see Said, S. E. and Dickey,

D. A. (1984).

1.10 Elliott, Rothenberg and Stock Unit Root Tests

See Pfaff, B. (2008, p. 93) for a detailed overview of the Elliott, Rothenberg and Stock

(ERS) unit root tests; the following overview is taken from there. To increase the power

of a unit root test under the null hypothesis of a unit root, Elliott, Rothenberg and Stock

[1996] proposed a local to unity detrending of the TS. The assumed generating process the

series yt is as follows:

yt = dt + ut ut = aut−1 + vt dt = β̂
′
zt (1.46)

where zt is a deterministic (q× 1) vector and νt is a stationary zero-mean process. If a = 1

the yt is I(1), but if |a| < 1 then yt is I(0).

The authors developed feasible point-optimal tests, which take serial correlation of the

error term into account. The feasible point-optimal test statistic is defined as:

PT =
S(a = ā)− āS(a = 1)

ω̂2
(1.47)

where S(a = ā) and S(a = 1) are the sums of squared residuals from a least-squares

regression of ya on Za with ya = (y1, y2−ay1, ..., yT −ayT−1) and Za = (z1, z2−az1, ..., zT −

azT−1) and ya is a T -dimensional vector and Za is a (T × q) matrix. The estimator for the

variance of the error process νt is:

ω̂ =
σ̂2
ν

(1−
∑p

i=1 α̂i)
2

(1.48)
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where σ̂2
ν and α̂i for i = 1, ..., p are from the OLS regression:

∆yt = α0 + α1∆yt−1 + ...+ αp+1∆yt−p + νt (1.49)

And ā = 1+ c̄/T where c̄ is a constant, set to -7 in the case of a constant or -13.5 in the case

of a linear trend. The second test type is denoted as the DF-GLS test, which is a modified

ADF-type test applied to the detrended data without the intercept, which is the t-statistic

for testing α0 = 0 in the regression:

∆ydt = α0y
d
t−1 + α1∆ydt−1 + ...+ αp∆y

d
t−p + εt (1.50)

where ydt are residuals from yt − β̂
′
zt

Both of these tests are available in the urca package in the ur.ers() function.

1.10.1 Phillips Perron Unit Root Test

Phillips, Peter C. B. and Perron, Pierre (1988) developed a unit root test that corrects for

serial correlation and heteroskedasticity of the innovations. Pfaff, B. (2008, p. 95) reviews

the Phillips-Perron (PP) procedure details. The PP test regression is fitted using OLS. The

first case is with out a linear-trend:

yt = µ+ αyt−1 + εt (1.51)

Z(α̂) = T (α̂− 1)− λ̂

m̄yy
(1.52)

Z(τα̂) =
ŝtα̂
σ̂T l
− λ̂

′
σ̂T l

m̄
1
2
yy

(1.53)

33



Z(τµ̂) =
ŝtµ̂
σ̂T l
− λ̂

′
σ̂T lmy

m̄
1
2
yym

1
2
yy

(1.54)

with m̄yy = T−2
∑

(yt − ȳ)2, myy = T−2
∑

(y2
t ), my = T−3/2

∑
(yt), and λ̂ = 0.5(σ̂2

T l−

ŝ2), where ŝ2 is the sample variance of the residuals, λ̂
′

= λ̂/σ̂2
T l, and tα̂, tµ̂ are the student

t ratios of α̂ µ̂ respectively. The long run variance σ̂2
T l is estimated as follows:

σ̂2
T l = T−1

T∑
t=1

ε̂2t + 2T−1
l∑

s=1

wsl

T∑
t=s+1

ε̂tε̂t−s (1.55)

where wsl = 1− s/(l + 1)

The case of adding a linear trend is now considered:

yt = µ+ β(t− T

2
) + αyt−1 + εt (1.56)

In this case the test statistics used are:

Z(α̂) = T (α̂− 1)− λ̂

M
(1.57)

Z(τα̂) =
ŝtα̂
σ̂T l
− λ̂

′
σ̂T l

M
1
2

(1.58)

Z(τµ̂) =
ŝtµ̂
σ̂T l
− λ̂

′
σ̂T lmy

M
1
2 (M +m2

y)
1
2

(1.59)

Z(τβ̂) =
ŝtβ̂
σ̂T l
− λ̂

′
σ̂T l(0.5my −mty)

(M12 )
1
2m

1
2
yy

(1.60)
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where my, m̄yy, λ̂, λ̂
′

and σ̂T l are as defined previously and mty = T−5/2
∑
tyt and

tµ̂,tβ̂,tα̂ are the student t ratios of µ̂,β̂,α̂ respectively. The scalar M is defined as M =

(1 − T−2)myy − 12m2
ty + 12(1 + T−1)mtymy − (4 + 6T−1 + 2T−2)m2

y. The critical values

used are the same as for the Dickey Fuller unit root test.

1.11 Structural Breaks and Unit Root Tests

1.11.1 Perron(1989) Unit Root Test

Perron, Pierre (1989) proposed unit root tests for processes with a linear trend with a break

in intercept with the unit root as a null hypothesis, and the break model without the unit

root as an alternative hypothesis (Perron, Pierre, 1989, p. 4-5):

H0 : yt = yt−1 + µ1 + (µ2 − µ1)1{t > TB}+ βt+ et

H1 : yt = µ1 + (µ2 − µ1)1{t > TB}+ βt+ et

(1.61)

where the innovations et are stationary ARMA processes:

A(L)et = B(L)vt ; vt i.i.d (0, σ2) (1.62)

with A(L) and B(L) pth and qth order polynomials, so the innovation series {et} is taken

to be an ARMA(p,q) process.

And the AR(1) multiplier of yt−1is estimated using OLS (φ̂1). As presented by Choi,

In (2010, p. 60) φ̂1 is asymptotically biased towards 1, but is consistent for Model (1.61),

which makes this test have low statistical power.

Perron, Pierre (1989) also considers tests for a process with breaks in intercept in trend

35



and intercept:

H0 : yt = yt−1 + µ1 + (µ2 − µ1)1{t > TB}+ (t− TB)(β2 − β1)1{t > TB}+ β1t+ et

H1 : yt = µ1 + (µ2 − µ1)1{t > TB}+ (t− TB)(β2 − β1)1{t > TB}+ β1t+ et

(1.63)

Choi, In (2010, p. 60) explains that φ̂1 p
−→

1 for Model (1.63) implying that the unit root

tests for this model are inconsistent: a stationary process with a breaking trend cannot be

distinguished from a unit root process with drift.

1.11.2 Zivot Andrews Unit Root Test

Andrews, Donald and Zivot, Eric (1992) developed a unit root test (ZA) that can handle

structural breaks. The test statistic of the ZA test is the Student t ratio just as was the

case with the PP test. As detailed in Pfaff, B. (2008, p. 110):

tα̂i [λ̂
i
inf ] = inf

λ∈∆
tα̂i(λ) for i = A,B,C (1.64)

where ∆ is a closed subset of (0, 1). Depending on the model, the test statistic is inferred

from one of these three regression models:

yt = µ̂A + θ̂ADUt(λ̂) + β̂At+ α̂Atyt−1 +

k∑
i=1

ĉAi ∆yt−i + ε̂t (1.65)

yt = µ̂B + γ̂BDT ∗t (λ̂) + β̂Bt+ α̂Btyt−1 +
k∑
i=1

ĉBi ∆yt−i + ε̂t (1.66)

yt = µ̂C + θ̂CDUt(λ̂) + β̂Ct+ α̂Ctyt−1 + γ̂BDT ∗t (λ̂) +
k∑
i=1

ĉCi ∆yt−i + ε̂t (1.67)
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whereDUt(λ) = 1 if t > Tλ and 0 otherwise, andDT ∗t (λ) = t−λT for t > Tλ and 0 otherwise.

The null hypothesis of the ZA URT does not allow structural breaks. Only breaks are al-

lowed in the alternative hypothesis. Glynn, J. and Perera, N. and Verma, R. (2007) criticize

this since if there are breaks under the null (φ1 = 1) we can mistakenly conclude that the

series is stationary (with breaks.)

1.12 Kwiatkowski–Phillips–Schmidt–Shin (KPSS) Stationar-

ity Test

The KPSS test proposed by Kwiatkowski, D. and Phillips, P. C. B. and Schmidt, P. and

Shin, Y. (1992) has the null hypothesis of stationarity around a deterministic trend and the

alternative of a unit root. The following definitions and explanations of the KPSS test are

taken from Pfaff, B. (2008, p. 103). The underlying model considered in the KPSS test is:

yt = ξt+ rt + εt (1.68)

rt = rt−1 + ut (1.69)

where rt is a random walk and the innovations are assumed to be i.i.d. (0, σ2
u). r0

is assumed to be a constant level. If ξ <> 0 then the model will contain a time trend

component in addition to the level. Under the null hypothesis yt is assumed to be I(0) so

that sigma2
u = 0 and rt = r0 = constant.

The test statistic is derived as follows. First yt is regressed on a constant or a constant

plus a linear trend. The the partial sums St of the residuals ε̂t are computed:

St =
t∑
i=1

ε̂i, t = 1, ..., T (1.70)
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The test statistic LM is computed as:

LM =

∑T
t=1 S

2
t

σ̂ε
2 (1.71)

where σ̂ε
2 is an estimate of the error variance of the residuals. The authors suggest using a

Bartlett window w(s, l) = 1− s/(l+ 1) as an optimal weighting function for estimating the

long run variance of the errors:

σ̂ε
2 = T−1

T∑
t=1

ε̂t
2 + 2T − 1

l∑
s=1

+
s

l + 1

T∑
t=s+1

ε̂t ˆεt−1 (1.72)

The critical values of the test statistic are given in Kwiatkowski, D. and Phillips, P. C.

B. and Schmidt, P. and Shin, Y. (1992).

1.13 Cointegration

Linear relationships involving integrated non-stationary TS are meaningful only if the TS

are cointegrated. There are various definitions of cointegration; we define a cointegrating

relationship between two or more TS each having unit roots (I(1)) if a linear combination

exists that is stationary, i.e. I(0). When there are only two TS to test for cointegration a

common approach is two use the two-step Engle Granger procedure, where the first step

consists of using least squares to derive a linear relationship between the two variables, and

the second step consists of using a unit root test on the residuals of the first step’s regression.

When there are more than two TS to check for cointegration, there are multiple possible

cointegrating relationships, and the Engle Granger two step methodology is not sufficiently

flexible. In this case the most common approach is to use the Johansen cointegration test.
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1.13.1 Error Correcting Model

Assume that xt and yt are cointegrated and define st = yt−βxt as the error in the equilibrium

relationship at time t. Consider the so called error correction model (ECM):

∆yt = λ0 + γ0∆xt + ρ∆yt−1 + γ1∆xt−1 + δstεt

∆yt = λ0 + γ0∆xt + ρ∆yt−1 + γ1∆xt−1 + δ(yt−1 − βxt−1) + εt (1.73)

This model factors in an equilibrium relationship between the non-stationary level vari-

ables x and y. The error correction term st is an adjustment that is a linear function of the

disequilibrium between both variables. This type of ECM can be expanded to include any

number of variables in what is referred to as a vector error correcting model (VECM.) See

Engle, R. F. and Granger,C. W. J. (1987).

1.13.2 Johansen Cointegration Test

A vector autoregression (VAR) model is a linear model involving multiple TS. VAR models

are a multivariate extension of the univariate AR models. The most common way to test

for multiple cointegrating relationships is the approach developed by Johansen, S. (1988)

and Johansen, S. and Juselius, K. (1990), which is based on the estimation of a pth–order

VAR in the k variables. The VAR in the k–vector y is:

yt = Π1yt−1 + Π2yt−2 + · · ·+ Πpyt−p + ΨDt + εt (1.74)

whereDt is a d–vector of deterministic terms, such as a constant, time trend and seasonal

dummies if necessary. The VAR may be expressed as an ECM:

∆yt = Πyt−2 + Γ1∆yt−1 + Γ2∆yt−2 + · · ·+ Γp−1∆yt−(p−1) + ΨDt + εt (1.75)
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Equation (1.75) here can be augmented to include exogenous variable differences as

Johansen, S. and Juselius, K. (1990) did, but we do not include them here.

The following matrix Π will be the key element to analyze the rank of the system to

estimate the number of possible cointegrating relationships if any:

Π = − (I −Π1 −Π2 − ...−Πp) (1.76)

No assumption is made about the rank of Π. In the decomposition Π = αβ′, α and β

are k x k matrices. We seek to determine whether any columns of β (that is, rows of β′) are

statistically indistinguishable from zero vectors. The existence of r cointegrating vectors

reduces the rank of Π by k − r: that is, If there were r cointegrating relationships between

the given variables, then there would be r nonzero eigenvalues in the dynamic system, and

k − r zero eigenvalues. Consider the decomposition Π = αβ′ where α and β are both k x

r matrices. If the cointegration rank was r = k, then the VAR is stationary in the levels.

However if the cointegration rank were zero no cointegration relationship would exist.

The Johansen methodology provides inference on the number of nonzero eigenvalues,

or cointegrating relationships, by setting up an eigenvalue problem derived from the levels

and differences of the k variables. The eigenvalues are ordered, from largest to smallest.

The space spanned by the r largest eigenvalues is the r–dimensional cointegrating space. If

r = 1, β is k x 1, and is the eigenvector corresponding to the largest eigenvalue. If r = 2, β

is k x 2; the first column is as before,and the second column is the eigenvector corresponding

to the second largest eigenvalue.

One of the key ideas behind the Johansen approach is given by the Frisch–Waugh–Lovell

theorem. Consider the regression:

y1 = β1x1 + β2x2 + ε (1.77)

The idea is we can ”take out” x2 to estimate the coefficient on x1 as follows. We regress

40



y1 on x2 and get residuals r1:

y1 = β3x2 + ε1 (1.78)

r1 = y1 − β̂3x2 (1.79)

We regress x1 on x2 and obtain residuals r2:

x1 = β4x2 + ε2 (1.80)

r2 = x1 − β̂4x2 (1.81)

Finally we regress r1 on r2 without an intercept.

r1 = β5r2 + ε3 (1.82)

The estimated coefficient on r2 is equivalent to the β1 coefficient that would have been

estimated from Equation (1.77) using OLS: β̂5 = β̂1.

As we will see shortly to estimate Equation (1.75) we will separate it out to two separate

regressions in Equations (1.86), and (1.86) which reflect the regressors Γa∆yt−a and Πyt−2.

Following is a detailed overview of the Johansen cointegration test as performed in the

ca.jo() function in the urca R package.

Define xt = (x1(t), ..., xk(t))
ᵀ as a vector of k TS to be tested for a cointegrating

relationship, with n observations of each. As Pfaff, B. (2008, p. 81)explains, the Johansen

cointegration approach is based on canonical correlation analysis as a way to reduce the

information content of the n observations in the k dimensional space, to a lower dimensional

space.

For this purpose 2k regressions are estimated using ordinary-least-squares. ∆xt is re-

gressed on lagged differences of xt , and the residuals are labeled R0.

Then xt−p is regressed on lagged differences of xt , and the residuals are labeled R1. In

more detail:
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Z0 and Zk are n× k matrices, and Z1 is a n× (k + 1) matrix. The first column of Z1

are all 1 entries.

Z0=



∆(x1(k + 1)) ... ∆(xk(k + 1))

∆(x1(k + 2)) ... ∆(xk(k + 2))

... ... ...

∆(x1(n)) ... ∆(xk(n))


((n− k)× k)

(1.83)

Z1=



1 ∆(x1(k)) ... ∆(xk(k))

1 ∆(x1(k + 1)) ... ∆(xk(k + 1))

... ... ... ...

1 ∆(x1(n− 1)) ... ∆(xk(n− 1))


((n− k)× (k + 1)

(1.84)

Zk=



x1(1) xk(1)

x1(2) xk(2)

... ...

x1(n− k) xk(n− k)


((n− k)× k)

(1.85)

Z0 = Z1β1 + ε1 (1.86)

Zk = Z1β2 + ε2 (1.87)

R0 = Z0 −Z1β̂1 (1.88)
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Rk = Zk −Z1β̂2 (1.89)

M00 =
Zᵀ

0Z0

n
(1.90)

M11 =
Zᵀ

1Z1

n
(1.91)

Mkk =
Zᵀ
kZk
n

(1.92)

M01 =
Zᵀ

0Z1

n
(1.93)

M0k =
Zᵀ

0Zk
n

(1.94)

Mk0 =
Zᵀ
kZ0

n
(1.95)

M10 =
Zᵀ

1Z0

n
(1.96)

M1k =
Zᵀ

1Zk
n

(1.97)

Mk1 =
Zᵀ
kZ1

n
(1.98)

R0 = Z0 −
(
M01M

−1
11 Z

ᵀ
1

)ᵀ
(1.99)

Rk = Zk −
(
Mk1M

−1
11 Z

ᵀ
1

)ᵀ
(1.100)

R0 = (R01, ..., R0n) (1.101)

Rk = (Rk1, ..., Rkn) (1.102)

The residual vectors R0 and R0 are used to compute the product moment matrices:

Ŝij =
1

n

n∑
t=1

RitR
ᵀ
jt (1.103)

The four product moment matrices are computed in urca as follows:

S00 = M00 −
(
M01M

−1
11 M10

)
(1.104)
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S0k = M0k −
(
M01M

−1
11 M1k

)
(1.105)

Sk0 = Mk0 −
(
Mk1M

−1
11 M10

)
(1.106)

Skk = Mkk −
(
Mk1M

−1
11 M1k

)
(1.107)

Skk ≈ C = LLᵀ (1.108)

And finally the matrix E will be used to decompose into eigenvalues that will be used

by the Johansen test statistics:

E = C−1Sk0S
−1
00 S0k

(
C−1

)ᵀ
(1.109)

Johansen defined two statistics to determine the cointegration rank of Π by computing

the eigenvalues of matrix E: first, the trace statistic,

trace = −n
k∑

i=r+1

ln(1− λi) (1.110)

which allows for the test of the hypothesis H(r): the rank of Π is r, v.s. the alternative

hypothesis that the rank of Π is k. A large value of the trace statistic provides evidence

against hypothesis H(r): for example, if with r = 1, the value of the trace statistic is greater

than the appropriate critical value then we would reject the hypothesis of cointegration with

rank r = 1 in favor of a cointegration with rank r > 1. The test can then be repeated for

r = 2, r = 3, ... and so forth.

The λmax test statistic may be used as well :

44



λmax = −n ln(1− λr+1) (1.111)

This test allows for the comparison of the null hypothesis of cointegration rank of r

against the alternative hypothesis of a cointegration rank of r+ 1. This test also may then

be repeated for larger values of r until the null hypothesis can no longer be rejected.

The distributions of trace and λmax statistics are nonstandard, and depend on the

deterministic parameters in Dt. Critical values have been tabulated by the authors of the

Johansen approach and others Johansen, S. and Juselius, K. (1990). The Johansen test

used in this paper was implemented as part of the urca R software package written by

Pfaff, B. (2008).

The critical values for these test statistics are determined using simulation. As Jo-

hansen, S. and Juselius, K. (1990, p. 179) explains the asymptotic distribution for the trace

statistic is based on the trace of the following stochastic matrix where W denotes an (n−r)

dimensional Brownian motion

∫ 1

0
(dW )F T

(∫ 1

0
FF Tdr

)−1 ∫ 1

0
F (dW )T (1.112)

F = (F1, ..., Fn−r) (1.113)

Fi(t) = Wi(t)−
∫ t

0
Wi(t)ds (1.114)

The asymptotic distribution for the maximum eigenvalue test is given by the maximum

eigenvalue of the stochastic matrix Equation (1.112). For the case when the model allows

for a mean and/or a trend the multivariate Brownian motions in the previous formulas

should be replaced by the demeaned and/or detrended Brownian motions; this will result

in a different set of critical values for these test statistics.
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1.14 Threshold Cointegration

In their seminal work, Balke, Nathan S. and Fomby, Thomas B. (1997) introduced the

concept of threshold cointegration.

yt + αxt = zt , where zt = φ(i)zt−1 + εt (1.115)

yt + βxt = Bt , where Bt = Bt−1 + ηt (1.116)

where Bt is the common stochastic trend of xt and yt and εt and ηt are zero mean i.i.d.

random variables, and φ(i) is defined as follows:

φ(i) =


φ1, with |φ1| < 1, if |zt−1| ≤ θ

1, if |zt−1| > θ

(1.117)

Equation (1.115) represents an equilibrium relationship, while Equation (1.116) repre-

sents a common stochastic trend, i.e., a nonstationary relationship. If the equilibrium error

is less than the threshold then xt and yt do not revert to an equilibrium, however if the

error is greater than the threshold then the two TS variables equilibrate.

This formulation of threshold cointegration can be equivalently expressed as a threshold

error correcting model:

∆yt = γ
(i)
1 zt + υ1t (1.118)

∆xt = γ
(i)
2 zt + υ2t (1.119)

Balke, Nathan S. and Fomby, Thomas B. (1997) also consider a more general equilibrium

model of zt based on a self exciting threshold auto regressive framework (SETAR) such as
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the following with a low, middle and high regimes:

zt =


µh + φhzt−1 + εt, if zt−1 > θH

µm + φmzt−1 + εt, if θL ≤ zt−1 ≤ θH

µl + φlzt−1 + εt, if zt−1 < θL

(1.120)

As Stigler,Matthieu (2010) points out the common assumed case where Equation (1.120)

is stable is when φh < 1 and φl < 1.

Seo, B. (2006) developed a test for the linear no cointegration null hypothesis against

threshold cointegration in a threshold vector error correction model. They used a sup-Wald

type test and derived its null asymptotic distribution. They proposed using a residual-

based bootstrap and showed with Monte Carlo simulations that the bootstrap corrected

size distortions of the asymptotic distribution in finite samples, and that it had greater

power against the threshold cointegration alternative than conventional cointegration tests.

Stigler,Matthieu (2010) posits that SETAR models are so complex that their probability

distribution and moments are only known for simple cases. Estimation for more than one

threshold is not easy. He points out that in a cointegration model with threshold effects

there is no known procedure to test for stationarity with an unknown cointegrating vector.

A test to determine 2 versus 3 regimes only works in a restricted case.

Bec,Frederique and Ben Salem,Melika and Carrasco,Marine (2004) proposed the BBC

unit root test which considers a three-regime self-exciting threshold autoregressive (SETAR)

model.
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1.15 Long Memory Processes

The following definitions and explanations are taken from Pfaff, B. (2008, p. 63-68). A

series {xt} is a stationary and invertible ARFIMA(p,d,q) process if it can be written as

∆dxt = zt (1.121)

where {zt}∞t=−∞ is an ARMA(p,q) process such that zt = φp(L)−1θq(L)εt and both

polynomials have their roots outside of the unit root circle where εt is a 0-mean i.i.d.

random variable with variance σ2 and d ∈ (−0.5, 0.5].

When 0 < d < 0.5 the process has long memory, meaning the autocorrelation of {xt}

is highly persistent so the sum of the correlations for different lags becomes infinite, unlike

standard ARMA models where the correlation decays to zero over a relatively short amount

of time. When −0.5 < d < 0 the sum of the autocorrelations for different lags is more or

less constant, and are often labeled as having ”intermediate memory.” As long as d >

0.5 the process has an invertible moving average representation. It can be shown that

the auto-correlation function of long memory processes declines hyperbolically instead of

exponentially as it does with ARMA processes. The speed of the decay depends on the

parameter d.

As Pfaff, B. (2008, p. 63) points out, Hurst, H. E. (1951) provided a commonly used

approach for detecting the presence of long-term memory. Hurst proposed the rescaled

range statistic( R/S.) This descriptive measure is defined as

R/S =
1

sT

 max
1≤k≤T

k∑
j=1

(yj − ȳ)− min
1≤k≤T

k∑
j=1

(yj − ȳ)

 , (1.122)
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where sT is the standard deviation estimator

sT =

 1

T

T∑
j=1

(yj − ȳ)2

 1
2

(1.123)

Hurst[1951] showed that the probability limit

plim
T→∞

(
T−H

R/S

sT

)
= constant (1.124)

The Hurst coefficient (H) can be estimated as:

Ĥ =
logR/S

log T
(1.125)

A short-memory process has a value of H = 0.5 , and estimated values greater than 0.5

are indicative of long-memory behavior. The estimated differencing parameter d̂ = Ĥ − 1
2 .

Granger, C. W. J. (2000) discuss “stylized facts” of financial asset return TS where

their autocorrelations remain positive and significant for very long lags (2000); even though

there is considerable literature that uses this as a justification for modeling the returns

as a fractionally integrated I(d) process, the author argues that an adequate alternative

explanation is a non-fractionally integrated, or an I(0) model with occasional structural

breaks.

1.16 Cointegration Under Structural Breaks

When testing for cointegration of variables that experience structural breaks the standard

tests cannot be used as the asymptotic distributions of the test statistics change as explained

by Giles, David E. and Godwin, Ryan T. (2011). These authors provide a new set of critical
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values to use with the standard Johansen cointegration test.

Lutkepohl, H. and Saikkonnen, P. and Trenkler, C. (2004) propose a different method-

ology for testing cointegration for variables with structural shifts in level( a change in the

mean );first the breakpoint is estimated and the effect of the structural shift in the deter-

ministic terms is removed and then the standard Johansen cointegration procedure can be

used with the standard critical values.

1.17 Estimation of Breakpoints

As Zeileis,Achim and Leisch,Friedrich and Hornik,Kurt and Kleiber,Christian (2002)

point out the foundation for estimating breaks was given by Bai, J. (1994) for one break

and later extended to multiple breaks by Bai, J. and Perron, P. (1998). In this thesis we

use the breakpoints() function of the strucchange R package which implements the multi-

ple simultaneous breakpoint estimation procedure in Bai, J. and Perron, P. (2003). This

implementation was proposed in Zeileis,Achim and Kleiber,Christian and Kramer,Walter

and Hornik,Kurt (2003).

We follow the explanation given by Zeileis,Achim and Leisch,Friedrich and Hornik,Kurt

and Kleiber,Christian (2002, p. 12). The algorithm for computing the optimal breakpoints

given the number of breaks is based on a dynamic programming approach. It assumes the

underlying linear model with a dependent one dimensional variable yt, a p × 1 covariates

vector xt with corresponding coefficient vector β, and the innovations εt:

yt = xtβ + εt (1.126)

If there arem change points in the coefficient this impliesm+1 regimes. Equation (1.126)

can be rewritten as:

yt = xtβj + εt (j = Tj−1 + 1, ..., Tj , j = 1, ...,m+ 1) (1.127)
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The underlying idea is that of the Bellman Principle of Optimality that posits solving a

problem by dividing it into independent optimally solvable sub-problems, whose solutions

can be combined to solve the larger problem. The sub-problem solutions are typically stored

in memory (“memoized”.) In this case a triangular residual sum of squares (RSS) matrix

is computed and stored in memory which can be reused over and over again to derive the

residual sum of squares for a segment starting at observation t and ending at t′ with t < t′.

This approach is considerably faster than the brute force approach of computing the RSS

for all possible sub-segments. The Bai, J. and Perron, P. (2003) algorithm uses only O(T 2)

least squares operations for any number of change points m. The brute force approach

would require O(Tm) least squares operations. If considering breaks does not lower the

RSS, then the procedure will return NA.

There are other methods to infer changepoints and break dates as Stock, James H. and

Watson, Mark W. (2011, p.557-560) explain: when the break dates are known dummy

variables can be added to enhance the model with date dependent coefficients, and these

can be tested with F-test statistics with the null hypothesis being that these additional

coefficients are zero. This is known as a Chow type test. When the break-dates are not

known then Chow-tests can be performed across all possible dates and the one that results

in the best fit can be returned. This modified Chow-test is called the Quandt likelihood

ratio (QLR) statistic (Quandt,Richard E., 1960), and is also known as a sup-Wald statistic.

Since the QLR statistic is the maximum of many F-statistics it has a different distribution

from an F-statistic.

1.18 Summary of Research Contributions

This thesis contributes the following novel research findings:

• I showed via simulation studies that when testing for cointegration of two slightly

explosive TS (φ1 > 1) results almost invariably in spurious cointegration; this is not

mentioned in the literature. None of the standard established unit root tests analyzed

51



in this thesis such as the ADF URT reject the null hypothesis of I(1) in the case of

φ1 > 1. See Tables 3.36, 3.37 and 3.38.

• I developed a new unit root test (URT)–the lagged-series URT which has similar

statistical power to the Augmented Dickey Fuller (ADF) test when the auto-regressive

multiplier φ1 < 1 but exceeds the power of the ADF test when φ1 > 11. We show

empirically via simulation studies that a valid2 cointegration relationship between a

TS and its lag implies an I(1) TS. This cointegration test will never result in a case

of no possible cointegrating relationships for a reasonable lag.

• The new lagged-series test does not reject I(2) series similarly to the ADF and ERS

URTs. However the new lagged-series URT rejects at least 65% of I(3) tests and 85%

of I(4) tests; by comparison the ADF URT only rejected 5% of the I(3) and I(4) tests.

• I combined the new lagged-series (URT) with other unit root tests such as ERS and

ZA tests which improve the power of these tests when the AR(1) auto-regressive

multiplier φ1 > 1.

• I developed and tested the HBPZA unit root test which allows for structural breaks

in intercept and linear trend under the null hypothesis and compared it to an existing

implementation of the Lee-Stratizich URT that also allows breaks in the null. The

new test performs better than the Lee-Stratizich3 in a number of situations.

• I developed the HBPADF testing procedure that allows discerning I(0)-I(1) shifts

within the evaluated time series, and performed simulation studies on it.

• I combined URTs with deep learning neural networks (DLNNs) which outperform

individual tests when we consider the net error across null and alternative hypotheses.

1 Chandra, Suresh K. and Janhavi, J.V. (2008) developed a modified ADF URT that is supposed to
reject explosive unit roots. I did not have access to this test so I cannot make any comparisons with the
lagged-series test.

2When testing a TS with its lag if it has two cointegrating relationships this implies that the series is
I(0). Two variables can only have one valid cointegration relationship.

3I am in contact with Johannes Lips,the author of the R implementation of the Lee-Stratizich URT. This
test appears to reject much more than expected under the null hypothesis, so it is not certain if this is a bug
in the software or an issue with the procedure itself.
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• I performed simulation based studies of the ADF, ERS-Ptest, ERS-DFGLS, the Zivot-

Andrews, and the new lagged-series URTs, under various Model configurations. Find-

ings are consistent with the literature that points out these tests are sensitive to the

starting value of the unit root. Also when there are structural breaks in the null

hypothesis the standard unit root tests hardly ever reject the null hypothesis of a unit

root.

• I used a linear form of the covered interest rate parity (CIP) formula and showed that

if cross-currency swap basis spreads are added to one of the 3 terms the cointegration

relationship always strengthens.

• I showed that there are likely cointegration relationships between bank credit default

swap spreads and cross currency basis swap spreads. This would provide evidence

bank credit risk is related to cross currency basis swap spreads. I showed that there

are cointegration relationships between bank credit default swap spreads and spot FX.

This would indicate that bank credit risk affects the FX Spot rate.

• I analyzed interest rate and cross currency swap liquidity and ensured the series are

not unit roots, and provided statistical evidence that USD-JPY cross-currency basis

swaps Granger cause JPY fixed-floating IR swaps. A possible explanation may be

USD based entities issuing JPY fixed debt and hedging it fully or partially with USD-

JPY cross currency basis swaps.

• I used various analyses to check for unit roots in zonal temperature anomaly time

series including under structural breaks in the null hypothesis using the new HBPZA

test as well as the HBPADF testing procedure.A number of model were fitted to

the temperature anomaly data, including a 3 regime SETAR model and showed that

better fits are always achieved when adding linear trends.

• I showed that the estimated 3-regime SETAR models for the Southern Hemisphere

temperature anomalies are more likely to be stationary than the Northern Hemisphere,

which includes an AR explosive (φ1 > 1) middle regime.
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1.18.1 Building Linear Models with Time Series

As is shown throughout this thesis there are certain cases when building linear regression

models or cointegration models of time series that may appear to yield meaningful results,

however they are spurious. The figures in this section consist of flowcharts that detail how

to build a two or more linear model of time series variables to avoid as much as possible

spurious relationships.

Consider the following AR(1) model with constant and a linear trend of a time series

yt:

yt = xt + β0 + β1t ; xt = φ1xt−1 + εt (1.128)

We assume that we do not know what type of time series variables we are dealing with a

priori but they can each be one of the following:

• A stationary I(0) variable: |φ1| < 1 in Equation (1.128)

• A unit root I(1) variable: φ1 = 1 in Equation (1.128)

• An explosive variable: φ1 > 1 in Equation (1.128)

• An I(n) TS variable zt where n > 1: zt = wt+β0+β1t ; wt =
∑t

i1=1

∑t
i2=1 ...

∑t
in=1 yin

where xi is defined as in Equation (1.128)

Some of the major factors that contribute to spurious and/or sub-optimal linear models

are as follows:

• A unit root test should be run on each time series variable to determine if they are

either I(0) ( stationary) or I(1) (unit root non-stationary.) The tests are not perfect

and type I and type II errors can occur. In addition the series may be of another type

besides I(1) or I(0) such as I(n) or explosive.

• Linear regression models involving I(1) time series variables produce spurious results.

If all of the time series analyzed are I(1) and they are cointegrated then an error
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correcting model can be estimated. Otherwise a linear regression on the differenced

time series should be used.

• When testing for cointegration with explosive time series this almost invariably results

in spurious cointegration. Most unit root tests cannot distinguish between an I(1)

variable and an explosive variable. The lagged-series unit root test developed in this

thesis can distinguish between I(1) and explosive processes as long at the series are

not too short.

• Standard unit root tests such as the Augmented-Dickey-Fuller test cannot distinguish

between an I(0) process with structural breaks in constant(β0) and/or linear trend(β1)

and an I(1) process.

• The Zivot-Andrews unit root test can distinguish between an I(0) process with struc-

tural breaks in constant(β0) and/or linear trend(β1) and an I(1) process; however this

test does not allow structural breaks under the null hypothesis I(1)–which could lead

to a user accepting that an I(1) process with breaks is actually I(0) with breaks. In

this thesis the HBPZA unit root test was developed that allows for breaks under the

null of I(1).

• Standard unit root tests assume that an entire time series being tested can be either

I(1) or I(0). It is possible that the series could have a strucutural break in the

auto-regressive coefficient φ1 such that it could be composed of alternating I(0)/I(1)

segments in no particular order, and of any possible length, and this series could also

exhibit structural breaks in the β0 and β1 coefficients. In this thesis the HBPADF

testing procedure was developed to address this case.

• Another type of model that captures structural breaks is a 3-regime SETAR (thresh-

old) model where the active regime is determined by checking the previous level of

the variable to see if it belongs to a regime specific range. This type of model can

have a non stationary middle regime while the outer regimes are stationary.
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The suggested approach to build linear models of two or more time series variables is as

follows in this order:

1. Figure 1.3 details how to estimate if each time-series is either I(0),I(1), Explosive or

I(n) with n > 1 under the possibility of change points in all coefficients of Equa-

tion (1.128): β0, β1 and φ1.

2. The second step is detailed in Figure 1.4 and shows how to estimate if each time-series

is either I(0),I(1), Explosive or I(n) with n > 1 without change points. The first step

also calls to this second step because either there was no evidence of change-points in

the prior step, or because the breakpoints were “removed” after estimating them via

the usage of dummy variables in the regressions.

3. Once all of the individual variables have been analyzed in the previous steps it is time

to attempt to build a linear model. If all of the variables are of the same type, either

all I(0) or all I(1) and there is no evidence of structural breaks then the procedure

detailed in Figure 1.5 should be followed. If there is evidence of breakpoints in any of

the series then the procedure detailed in Figure 1.6 should be followed instead.

4. This thesis does not consider the cases of how to build models when there are mixed

orders of integration I(0), I(1), I(2). There is an expanding literature in this area but

it was not considered in this thesis.
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Figure 1.3: Determining a TS’s Order of Integration/Explosiveness With/Without Struc-
tural Breaks
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Figure 1.4: Determining a TS’s Order of Integration/Explosiveness Without Structural
Breaks
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Figure 1.5: Regressions with I(n) TS Variables Without Structural Breaks Based on Hill et
al. (2011, Fig. 12.4)
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Figure 1.6: Regressions with I(n) TS Variables Without Structural Breaks Based on Hill et
al. (2011, Fig. 12.4)
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Chapter 2: New Unit Root Tests

2.1 The lagged-series Unit Root Test

I propose a new URT where we will show empirically performs better than the other analyzed

tests in the case when φ1 > 1 in the AR(1) process, which I refer to throughout this thesis

an an explosive AR(1) process. Because this test uses statistics computed from the lagged

series I call it the lagged-series unit root test. Chandra, Suresh K. and Janhavi, J.V. (2008)

proposed a modified ADF unit root test to better handle explosive AR(1) processes. I did

not have access to an implementation of this URT for comparison purposes.

To give an intuition of why the explosive case is not easy to deal with we refer to the work

of Phillips,Peter C.B. and Magadalinos,Tassos (2005) where they consider the following

AR(1) framework:

x(t) = φLx(t− 1) + εt (2.1)

where the auto-regressive multiplier is assumed to have the following structure where L

is the time-series length and c is a constant:

φL =
c

kL
; kL = O(L) (2.2)

They find the following asymptotic properties of the difference between the estimated

and actual φL coefficient is as follows for the non-explosive case of c < 0 the scaled error

made in the estimation is Gaussian with variance of −2c:

√
LkL

(
φ̂L − phiL

)
⇒ N(0,−2c) for c < 0 (2.3)
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and for the explosive case of c > 0 the scaled estimation error is as follows:

kLφ
L
L

2c

(
φ̂L − phiL

)
⇒ C for c > 0 (2.4)

where C denotes a Cauchy variate, which is problematic since the mean and variance of

the Cauchy distribution do not exist.

2.1.1 Calculation

I propose the new lagged-series URT where we test for the number of cointegrating rela-

tionships of a time series (TS) with the lagged same TS using the Johansen cointegration

test as explained earlier. If the time-series is a unit root, I(1), we expect only one valid

cointegrating relationship but if there are two cointegrating relationships the process is I(0).

Given two variables, only one valid cointegration relationship is possible,

We test the cointegration of the TS {x∗t }:

{x∗t } = {xk+1, ..., xn} (2.5)

And the lagged TS {Lk(xt)}:

{Lk(xt)} = {x1, x2, ..., xn−k} (2.6)

The null hypothesis of the lagged-series test is that the series being tested, X(t), has

a unit root. i.e. that it is an I(1) process. The alternative hypothesis is that the TS is

stationary, i.e. it is an I(0) process. This version of the URT is for a driftless TS; later we

will consider the case with an intercept an d a linear trend. The Johansen cointegration test

has different critical values depending on whether the estimated relationship is assumed to

have a constant, a linear trend or is driftless. Here we use the critical values corresponding

to the driftless case.
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The lagged-series URT is conducted as follows:

• We run the Johansen cointegration test of the TS {xt} and the k-lagged TS {Lk(xt)}

• The Johansen test will compute a primary and secondary test statistic when run with

two variables; the first test statistic is for the null hypothesis of a cointegration rank

of 0. The second test statistic is for a null-hypothesis of a cointegration rank of less

than or equal to 1.

• We examine the second cointegration test statistic of a rank of less than or equal

to 1. If this test statistic is less than or equal to the critical value for the specified

significance level α then we do not reject the null of I(1). Otherwise, if the statistic is

greater than the critical value we reject the null of I(1) and accept the alternative of

I(0).

I explain why this lagged-series URT works. Consider the vector error correcting model:

∆yt = Πyt−1 + Γ1∆yt−1 + Γ2∆yt−2 + · · ·+ Γp−1∆yt−(p−1) + ΨDt + εt (2.7)

Π = − (I −Π1 −Π2 − ...−Πp) (2.8)

I performed a simulation that is summarized in Table 2.1. I ran 100 simulations of an

AR(1) process of length 1000 and tested it for cointegration with itself lagged by 3. This

cointegration test has two eigenvalues since there are two variables. I computed the mean

and standard deviations of the first and second eigenvalues.

• When the process is stationary, I(0), then Π will have a rank of 2. In this case

Π1 = Π2 = ... = Πp = 0 so Π = −I, therefore we expect there two be two cointegrating

relationships in this trivial case. We see when the multiplier is 0 that both eigen values

are near 0.3 and the standard deviation is much smaller.
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• When the process is a unit root, I(1), then Π will have a rank of 1. Xt and Xt−k

will never be too far apart, thus we expect to see a cointegrating relationship. We

see when the multiplier is 1 that the first eigenvalue is near 0.5 and the second one is

near 0. The standard deviations are small.

• When the multiplier of the AR(1) process is from 0.25 to 0.725 we observe similar

behavior as with the 0 multiplier case, however we see that the magnitude of the

second eigenvalue continues to decrease as the multiplier increases.

• When the process is an explosive AR(1) with a multiplier of 1.01 the second eigenvalue

is larger than with a multiplier of 1.

Table 2.1: Mean and Standard Deviation of Johansen Cointegration Eigenvalues of AR(1)
Process with Itself lagged by 3 with a TS with l = 1000,m = 100 and s = 1234

φ1 λ1 λ2 Sλ1 Sλ2
0.000 0.343 0.326 0.018 0.016
0.250 0.343 0.233 0.014 0.017
0.500 0.377 0.153 0.016 0.013
0.750 0.436 0.090 0.018 0.010

1.000 0.501 0.003 0.016 0.002

1.010 0.696 0.183 0.008 0.012

To see more intuitively why this test works consider these equivalent AR(1) processes:

yt = φ1yt−1 + εt (2.9)

yt−3 = φ1yt−4 + εt−3 (2.10)

And we consider the TS aligned with itself lagged by 3–these are the two TS used in the
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co-integration test: 
yt, yt+1, ..., yt+n

yt−3, yt−2, ..., yt+n−3

(2.11)

We can now write yt as a function of yt−3:

yt = φ3
1yt−3 + φ2

1εt−2 + φ1εt−1 + ε (2.12)

If φ1 = 0 then the pairing would be between yt and εt, and E(yt) = 0. Since εt is

an I(0) process this represents the nonsense case of two possible cointegration cases; the

Π matrix with a rank of 2 as discussed earlier.If φ1 = 1 then yt = yt−3 + εt−2 + εt−1 + ε

and therefore E(yt|yt−3) = yt−3 and in this case we would expect there to be a valid

cointegrating relationship between yt and yt−3. If we were to consider an in between φ1

value such as φ1 = 0.8 the relationship between the series and the lagged value would be

yt = 0.512yt−3 + 0.64εt−2 + 0.8εt−1 + ε and the relationship with the lagged value would be

weaker.

I performed another similar simulation, however this time the lag was 30 instead of 3.

The results are summarized in Table 2.2. Overall the behavior is similar to what we see in

Table 2.1. The main difference is that in the case of a multiplier of 1, the unit root case,

the mean first eigenvalue is much smaller than when a lag of 3 was used. This simulation

would seem to indicate that the lagged-series URT can be useful under various lags. Under

certain cases, such as when testing I(3) and I(4) processes for unit roots can lead to errors

in matrix computations when using a short lag like 3, however if the lag is increased to 30

these errors disappear. In Table 2.2 we see the mean and standard deviations of the eigen

values using a lag of 30, and overall we see a similar pattern to when the lag is 3—however

the magnitudes are lower in the case of the unit root (multiplier of 1.)

The Johansen Critical Values for no cointegration (r = 0) and one cointegrating rela-

tionship between two series (r ≤ 1) for the maximum eigenvalue test statistic are detailed
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Table 2.2: Mean and Standard Deviation of Johansen Cointegration Eigenvalues of AR(1)
Process with Itself lagged by 30 with a TS with l = 1000,m = 100 and s = 1234

φ1 λ1 λ2 Sλ1 Sλ2
0.000 0.344 0.325 0.017 0.018
0.250 0.283 0.266 0.015 0.016
0.500 0.210 0.195 0.013 0.013
0.750 0.121 0.108 0.010 0.010

1.000 0.036 0.003 0.006 0.002

1.010 0.510 0.019 0.021 0.004

in Table 2.3.

Table 2.3: Critical Values for Johansen Maximum Eigenvalue Test Statistic

Coint
Rank α = 0.10 α = 0.05 α = 0.01

r ≤ 1 6.50 8.18 11.65
r = 0 12.91 14.90 19.19

We simulate the trace and maximum eigenvalue test statistics from the asymptotic

Brownian motion functionals in Equations (1.112), (1.113) and (1.114) for the two variable

case with cointegration rank 0 and 1. See the R code Listing 2.1 for details.

Listing 2.1: Simulation of Johansen Brownian Functional for 2 TS

> quantile (DF, probs=c ( 0 . 0 1 , 0 . 0 5 , 0 . 1 ) )

N <− 400

# time increment

W1 <− numeric (N+1)

W2 <− numeric (N+1)

# i n i t i a l i z a t i o n o f the vec to r W approximating

# Wiener process

t <− seq (0 ,T, length=N+1)
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s imu la t i on s <− 8000

JohansenMaxEigenval <− rep (0 , s imu la t i on s )

JohansenTrace <− rep (0 , s imu la t i on s )

r 0 s t a t <− rep (0 , s imu la t i on s )

for ( sim in 1 : s imu la t i on s )

{

dW1 <− rnorm(N)

dW2 <− rnorm(N)

W1 <− c (0 , cumsum( dW1 ) )

W2 <− c (0 , cumsum( dW2 ) )

W1 <− W1 − mean(W1)

W2 <− W2 − mean(W2)

intWdW <− matrix ( rep ( 0 , 4 ) , nrow=2,ncol=2)

intWWdr <− matrix ( rep ( 0 , 4 ) , nrow=2,ncol=2)

intW1dW1 <− 0

intW1W1dr <− 0

W <− matrix ( c (W1[ 1 :N] , W2[ 1 :N] ) , nrow=N, ncol=2 )

dW <− matrix ( c (dW1[ 1 :N] , dW2[ 1 :N] ) , nrow=N, ncol=2 )

for ( i in 1 :N )

{

intWdW <− intWdW + W[ i , ] %∗% t (dW[ i , ] )

intWWdr <− intWWdr + W[ i , ] %∗% t (W[ i , ] )

intW1dW1 <− intW1dW1 + W[ i , 1 ] ∗dW[ i , 1 ]

intW1W1dr <− intW1W1dr + W[ i , 1 ] ∗W[ i , 1 ]

}

s t o cha s t i cMat r i x <− t (intWdW ) %∗% solve ( intWWdr) %∗% intWdW

JohansenTrace [ sim ] <− sum(diag ( s t o cha s t i cMat r i x ) )

JohansenMaxEigenval [ sim ] <− max( eigen ( s t o cha s t i cMat r i x )$va lue s )

r 0 s t a t [ sim ] <− intW1dW1 ∗ intW1dW1 / intW1W1dr

}

quantile ( r0 s ta t , probs=c ( 0 . 9 0 , 0 . 9 5 , 0 . 9 9 ) )

quantile ( JohansenTrace , probs=c ( 0 . 9 0 , 0 . 9 5 , 0 . 9 9 ) )

quantile ( JohansenMaxEigenval , probs=c ( 0 . 9 0 , 0 . 9 5 , 0 . 9 9 )

The results of the Brownian functional simulation for the maximum eigenvalue test

can be found in Table 2.4 and we see that the results are close to the published critical

values in Table 2.3. The results will depend on the choice of time series length, number of
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simulations and the specific random number generation functionality. I chose a time series

length of 400 as it the same as that in Johansen, S. and Juselius, K. (1990). I chose 8000

simulations instead of the 6000 the authors used originally, as this produced closer results

to the published critical values.

Table 2.4: Johansen Critical Values from Brownian Functional Simulations

Coint
Rank α = 0.10 α = 0.05 α = 0.01

r <= 1 6.51 8.11 11.55
r = 0 12.90 14.75 19.27

I performed simulations of the basic lagged-series approach of testing for cointegration

of a TS of length 1000, with it’s lagged version with a lag of 3 in Table 2.5. We see that

for the I(1) case with φ1 = 1 for one cointegrating relationship (r ≤ 1) the 0.9, 0.95 and

0.99 quantiles are 6.55, 8.24, 12.08 with a TS length of 1000. When we use a TS

of length 100 instead as detailed Table 2.7, the corresponding quantiles are close to the

previous one; they are: 7, 8.64, 12.04. These quantiles for both l = 1000 and l = 100

series are close to the Brownian functional simulation derived quantile values of 6.51,

8.11, 11.55 in Table 2.4 where the assumed time series length was l = 400, and they are

close to the published Johansen critical values in Table 2.3 of 6.50, 8.18, 11.65 used by

the ca.jo() function of the urca R package (Pfaff, B., 2008). I use the fact that the (0,9, 0.95

and 0.99) quantiles of the simulated test statistics under the null are close to the published

Johansen critical values for a cointegration rank less than or equal to 1 as empirical evidence

that we can use the published Johansen critical values for the lagged-series URT.

In addition we see that if we increase the lag to 30 the simulation results as detailed

in Table 2.6 are still very close for at least the 0.9 and 0.95 quantiles and larger for the 0.99

quantile: 6.61, 8.18, 13.07. So I argue that the asymptotic behavior of the lagged-series

test statistic under the null hypothesis of a unit root for the r ≤ 1 case is the same as that

of the Johansen cointegration test for reasonable lags.
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Table 2.5: Quantiles of Maximum Eigenvalue Test Statistics Run on Various AR(1) Pro-
cesses and their lagged version(lag=-3) with l = 1000, m = 1000 and s = 12345

r = 0 r = 0 r = 0 r ≤ 1 r ≤ 1 r ≤ 1
φ1 Q0.9 Q0.95 Q0.99 Q0.9 Q0.95 Q0.99

1.009 1199.76 1203.59 1213.79 222.54 227.87 240.45
1.008 1198.59 1202.45 1211.22 222.20 227.59 239.97
1.005 1160.58 1170.60 1181.11 206.13 215.38 229.24
1.004 1033.03 1063.55 1103.57 170.28 181.39 202.71
1.003 780.70 812.66 874.07 66.58 86.60 112.84
1.002 734.70 744.67 767.12 7.28 10.02 16.68
1.001 732.50 743.67 766.19 5.72 7.14 10.24

1.000 732.68 743.40 766.53 6.55 8.24 12.08

0.990 729.39 739.11 762.40 11.58 13.06 16.29
0.970 719.11 729.60 753.43 22.34 24.23 28.65
0.950 708.21 718.77 744.23 32.53 34.41 39.67
0.900 682.48 693.15 719.65 54.85 58.46 63.91
0.500 502.79 511.58 529.99 186.71 193.20 208.26
0.000 460.19 475.81 496.30 422.25 432.01 446.87

Table 2.6: Quantiles of Maximum Eigenvalue Test Statistics Run on Various AR(1) Pro-
cesses and their lagged version(lag=-30) with l = 1000, m = 1000 and s = 12345

r = 0 r = 0 r = 0 r ≤ 1 r ≤ 1 r ≤ 1
φ1 Q0.9 Q0.95 Q0.99 Q0.9 Q0.95 Q0.99

1.009 737.49 750.01 785.66 24.38 26.23 29.57
1.008 736.11 749.59 785.89 24.30 26.19 29.44
1.005 670.24 696.67 732.75 23.72 25.17 29.05
1.004 497.37 548.23 607.40 22.80 24.37 28.36
1.003 156.88 194.11 287.18 19.09 21.44 25.64
1.002 46.33 50.82 64.18 6.93 9.00 14.39
1.001 42.91 46.53 53.26 5.85 7.43 9.96

1.000 43.13 46.18 53.35 6.61 8.18 13.07

0.990 38.30 40.68 44.92 11.19 13.01 17.68
0.970 36.64 38.95 42.65 21.14 23.34 28.59
0.950 42.74 44.97 49.86 31.60 34.07 39.16
0.900 67.30 70.27 77.06 57.34 60.57 65.43
0.500 252.49 261.09 275.52 232.89 239.45 252.53
0.000 443.51 453.11 467.62 414.72 424.12 442.51
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Table 2.7: Quantiles of Maximum Eigenvalue Test Statistics Run on Various AR(1) Pro-
cesses And their lagged version(lag=-3) with l = 100, m = 1000 and s = 12345

r = 0 r = 0 r = 0 r ≤ 1 r ≤ 1 r ≤ 1
φ1 Q0.90 Q0.95 Q0.99 Q0.9 Q0.95 Q0.99

1.009 79.71 84.78 95.35 6.08 7.71 11.50
1.008 79.82 84.77 95.24 6.35 7.64 11.56
1.005 79.88 84.74 95.52 6.45 8.59 11.66
1.004 79.89 84.73 95.54 6.46 8.59 11.83
1.003 79.89 84.73 95.56 6.65 8.70 12.31
1.002 79.90 84.72 95.57 6.90 8.91 12.14
1.001 79.91 84.82 95.58 7.03 8.71 12.34

1.000 79.90 84.80 95.58 7.00 8.64 12.04

0.990 79.76 84.72 95.31 7.09 8.65 12.39
0.970 79.18 84.13 94.51 7.51 8.97 12.79
0.950 78.53 83.28 93.43 8.29 9.92 13.22
0.900 76.18 80.63 91.30 10.41 12.14 15.64
0.500 57.57 61.98 72.54 25.27 27.73 34.52
0.000 58.85 64.15 78.75 45.52 48.19 55.34

Table 2.8: Proportion of Failures to Reject H
I(1)
0 lagged-series and ADF Tests Run on

Various AR(1) Processes with l = 1000, m = 1000 and s = 12345 and α = 0.01

φ1 ADF lagged-series

1.010 1.000 0.000
1.005 0.999 0.054

1.000 0.988 0.983

0.990 0.685 0.904
0.980 0.100 0.553
0.970 0.003 0.142
0.960 0.000 0.016
0.950 0.000 0.000
0.900 0.000 0.000
0.000 0.000 0.000
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Table 2.8 shows the proportions of failures to reject the null hypothesis of a unit root

(H
I(1)
0 ) for various cases of φ1 and for the significance level of 0.01 for both the new lagged-

series URT and the ADF URT using the critical values for no trend and no intercept using

the adfTest() function of the fUnitRoots R package (Wuertz, Diethelm and many others,

2013). We see that for the case of φ1 = 1 both lagged-series and ADF reject the null

hypothesis around 1% of the cases as expected. The lagged-series URT rejects much more

than the ADF test when φ1 > 1; for example when φ1 = 1.01 lagged-series rejects 100% of

the test cases, yet ADF rejects none. When φ1 < 1 the statistical power of the ADF URT is

larger than that of the new lagged-series test–that is ADF rejects the null hypothesis more

often than the lagged-series in this scenario.

Table 2.9: Proportion of Failures to Reject H
I(1)
0 llagged-series and ADF Tests Run on

Various AR(1) Processes with l = 1000, m = 1000 and s = 12345 and α = 0.05

φ1 ADF lagged-series

1.010 1.000 0.000
1.005 0.999 0.042

1.000 0.946 0.948

0.990 0.262 0.670
0.980 0.004 0.195
0.970 0.000 0.014
0.960 0.000 0.000
0.950 0.000 0.000
0.900 0.000 0.000
0.000 0.000 0.000

Table 2.9 shows the proportions of failures to reject the null hypothesis of a unit root

(H
I(1)
0 ) for various cases of φ1 and for the significance level of 0.05 for both the new lagged-

series URT and the ADF URT using the critical values for no trend and no intercept. We

see that for the case of φ1 = 1 both lagged-series and ADF reject the null hypothesis around

0.05 of the cases as expected. Just as before, the lagged-series URT rejects much more than

the ADF test when φ1 > 1; for example when φ1 = 1.01 lagged-series rejects 100% of the
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test cases, yet ADF rejects none. Just as in the previous case, when φ1 < 1 the statistical

power of the ADF URT is larger than that of the new lagged-series test.

Table 2.10: Proportion of Failures to Reject H
I(1)
0 lagged-series and ADF Tests Run on

Various AR(1) Processes with l = 1000, m = 1000 and s = 12345 and α = 0.10

φ1 ADF lagged-series

1.010 1.000 0.000
1.005 0.995 0.040

1.000 0.899 0.899

0.990 0.075 0.491
0.980 0.001 0.061
0.970 0.000 0.003
0.960 0.000 0.000
0.950 0.000 0.000
0.900 0.000 0.000
0.000 0.000 0.000

Table 2.10 shows the proportions of failures to reject the null hypothesis of a unit root

(H
I(1)
0 ) for various cases of φ1 and for the significance level of 0.10 for both the new lagged-

series URT and the ADF URT using the critical values for no trend and no intercept. We see

that for the case of φ1 = 1 both lagged-series and ADF reject the null hypothesis around

10% of the cases as expected. Just as with previous significance level tests, the lagged-

series URT rejects much more than the ADF test when φ1 > 1; for example when φ1 = 1.01

llagged-series rejects 100% of the test cases, yet ADF rejects none. As in the previous two

cases for significance levels of 0.05 and 0.01, when φ1 < 1 the statistical power of the ADF

URT is larger than that of the new lagged-series test.

Even though the statistical power of the lagged-series test is less than that of the ADF

test we will see later in a test of spurious cointegration of two TS when the lagged-series URT

is used to pretest the series before performing a cointegration test, the results are not signif-

icantly worse than when the ADF URT is used for pretesting when φ1 < 1. For detaild see

Tables reftbl:UnitRootCointegrationTest1000:01, reftbl:UnitRootCointegrationTest1000:05
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and reftbl:UnitRootCointegrationTest1000:10. Section 3.1 contains multiple simulation

studies of the lagged-series URT under various model specifications.

2.2 The Lagged-Series Unit Root Test with Constants and/or

Linear Trends

In Section 2.1 the new unit root test was proposed for the case when there is no drift. Here

a modification is considered to handle a constant and/or a linear trend. We consider an

intercept and a linear trend that is added to the auto-regressive process as follows:

Xt = φ1Xt−1 + εt (2.13)

Yt = Xt + α+ βt (2.14)

Now we re-order the terms

Xt = Yt − α− βt (2.15)

(Yt − α− βt) = φ1(Yt−1 − α− β(t− 1)) + εt (2.16)

Yt = φ1Yt−1 + (1− φ1)α+ (t− φ1t+ φ1)β + εt (2.17)

This expression can be rewritten as:

Yt = φ1Yt−1 + C +Dt+ εt (2.18)

where C = (1− φ1)α+ φ1β and D = β(1− φ1)

Now we will run a regression based on first differences to determine φa1, C and D terms
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:

∆Yt = Yt − Yt−1 = φa1Yt−1 + C +Dt+ εt (2.19)

where φa1 = (φ1 − 1)

And we can finally back out the original auto-regressive model terms φ1, α and β as

follows: φ1 = φa1 + 1, β = D/(1− φ1) and α = (C − βφ1)/(1− φ1).

The Johansen cointegration test has different critical values depending on whether the

estimated relationship is assumed to have a constant, a linear trend or is driftless. Here we

use the critical values corresponding to the critical values for the trend case. In the driftless

version of the test we use the Johansen driftless critical values. Table 2.11 shows some tests

of this procedure compared with existing URTs. When φ1 = 1 all the tests reject the null

close to 5% of the test cases as expected given the 0.05 significance level in this simulation

test done with 500 simulations. When φ1 > 1 we see that the lagged-series rejects the

null much more often than the other tests; when φ1 = 1.005 the lagged-series test rejects

95% of the tests while the other URTs in this simulation study reject none. When φ1 < 1

the lagged-series and ADF tests are very similar, and the ERS tests have higher statistical

power in this case.

Section 3.1 contains multiple simulation studies of the lagged-series URT with intercept

and linear-trend under various model specifications.

2.3 The ERS-PTest-lagged-series and ZA-lagged-series URTs

I propose a new URT which consists of mixing the Elliott, Rothenberg & Stock test together

with the lagged-series Test proposed in the previous section, as detailed in Algorithm 1.

This algorithm returns TRUE if the hypothesis of a unit root (I(1)) cannot be rejected, or

FALSE if it is rejected. Using simulation studies I selected a critical value of 20.09299 for

the lagged-series test statistic that does not interfere with the null hypothesis of a unit root

AR(1) φ1 = 1 yet it rejects the null when φ1 > 1; these simulations where performed with a

time series of length l = 1000. When I combine this lagged-series URT with the ERS-Ptest
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Table 2.11: Proportion of Failures to Reject H
I(1)
0 of URTs on AR(1) Processes with Inter-

cept and Linear Trend with l = 1000, m = 500, and α = 0.05 and s = 12345

φ1 ADF lagged-series ERS-Ptest ERS-DFGLS

1.0050 1.00 0.05 1.00 1.00
1.0025 0.97 0.70 0.96 0.97

1.0000 0.94 0.94 0.95 0.95

0.9950 0.92 0.92 0.86 0.89
0.9900 0.82 0.83 0.63 0.70
0.9800 0.45 0.42 0.15 0.20
0.9700 0.15 0.12 0.00 0.01
0.9600 0.02 0.02 0.00 0.00
0.9500 0.00 0.00 0.00 0.00
0.9000 0.00 0.00 0.00 0.00
0.7000 0.00 0.00 0.00 0.00
0.5000 0.00 0.00 0.00 0.00
0.3000 0.00 0.00 0.00 0.00
0.1000 0.00 0.00 0.00 0.00
0.0000 0.00 0.00 0.00 0.00

URT under alternative hypotheses it results in a increase of statistical power relative to the

ERS-Ptest as can be seen in Table 2.12. The computations to combine the two tests are

detailed in Algorithm 1.

Algorithm 1 ERS-lagged-series URT

C ← 20.09299

x0← LaggedSeriesUnitRootTest( tsx, lag, cvalLevel)@Statistic
x1← ur.ers(tsx,type=’P-test’,model=’trend’)@Statistic
if x1 > CV and x0 < C then

return(TRUE)
else

return(FALSE)
end if
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Table 2.12: Proportions of Failures to Reject H
I(1)
0 ERS-lagged-series URT on a Series with

l = 1000,m = 5000 and α = 0.10 Compared to ADF,ERS

φ1 ADF lagged-series ERS-Ptest ERS-DFGLS ERS-Ptest-lagged-series

1.010 1.0000 0.0040 1.0000 0.0652 0.0008
1.005 0.9974 0.0466 0.9968 0.9968 0.0728

1.000 0.9022 0.8894 0.8970 0.8968 0.8968

0.990 0.6998 0.5064 0.5082 0.5108 0.5082
0.980 0.2862 0.0612 0.0570 0.0662 0.0570
0.970 0.0636 0.0030 0.0020 0.0036 0.0020
0.960 0.0078 0.0000 0.0000 0.0000 0.0000
0.950 0.0080 0.0000 0.0000 0.0000 0.0000
0.900 0.0000 0.0000 0.0000 0.0000 0.0000
0.000 0.0000 0.0000 0.0000 0.0000 0.0000

In a similar fashion the Zivot Andrews (ZA) URT is combined with the lagged-series

URT. The details are in Algorithm 2. The deterministic component can incorporate either

an intercept, time trend, or both. The same approach could be used to combine the lagged-

series URT and the ADF URT. In Section 3.1 there are various simulation experiments

performed using this ZA-lagged-seriesURT under various model specifications.

Algorithm 2 ZA-lagged-series URT

C ← 20.09299

x0← LaggedSeriesUnitRootTest( tsx, lag, cvalLevel)@Statistic
x1← ur.za(tsx,model=’trend’)@Statistic
if x1 > CV and x0 < C then

return(TRUE)
else

return(FALSE)
end if

76



2.4 The Hybrid Bai-Perron Zivot-Andrews (HBPZA) Unit

Root Test

URTs assume the null hypothesis that there is at least one unit root present in the TS being

tested. One of the most widely used URTs is the Augmented Dickey Fuller (ADF) test.

Perron, Pierre (1990) enhanced the Augmented Dickey-Fuller tests to allow for a known

structural break. Given the arbitrariness in determining the break, Andrews, Donald and

Zivot, Eric (1992) proposed URTs where the break point was determined ‘endogenously’

from the data; these are the ZA URTs. Unlike Perron, Pierre (1990)’s URT null hypothesis,

these ZA endogenous tests assume there are no breaks under the unit root null. Not allowing

breaks in the unit root null can bias these tests to provide evidence of stationarity with

breaks (Lee, J. and Strazicich, M.C. (2001)). The one-break Lee, J. and Strazicich, M.C.

(2001) procedure and the two-break Lee, J. and Strazicich, M.C. (2003) procedure allows

for the breaks to be determined endogenously from the data and breaks are allowed under

both the null and the alternative hypothesis.

The ZA URT is detailed in Section 1.11.2. Under the null hypothesis of this test only a

unit root process with a deterministic component; no strucutural breaks are allowed under

the null.

The ADF URT and many others fail to reject a false null hypothesis of a unit root

under the presence of structural changes in intercept and/or linear trend, as can be seen in

Tables 3.20, 3.21, and 3.22 in Section 3.1. We can see that the ZA URT and related ZA-

lagged-series URT are able to reject false null hypotheses (φ1 6= 1) much more significantly

than the other tests, however they do not perform well in the valid unit root case (φ1 = 1)

and reject much more than they should. This is because the ZA test does not consider

structural breaks in the null hypothesis.
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2.4.1 Calculation

I propose a new URT that allows structural breaks under the null hypothesis, which we

refer to here are the Bai-Perron-Zivot-Andrews (HBPZA) URT.

1. Given a TS, we first use the Bai-Perron break-point estimation procedure in Bai, J. and

Perron, P. (2003) using Regression Model (2.20) to detect changes in the coefficients.

This divides the TS into k + 1 segments given a total of k breakpoints.

2. For each segment within the TS we compute the ZA URT statistic.

3. A final test statistic is computed by weighing each sub-test statistic by the segment

length.

4. If there are more than 3 breakpoints estimated, only the first three breakpoints are

used to determine 4 segments.

The Regression Model (2.20) is used to detect breakpoints in the coefficients β0, β1 and

β2 using the Bai, J. and Perron, P. (2003) procedure:

xt = β0 + β1t+ β2xt−1 + εt (2.20)

Model (2.21) was used to simulate TS under the null hypothesis (H0) of a unit root

with 1 structural break at time TB to derive the critical values of the test statistic (via

simulation):
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yt = φ1yt−1 + µ1 + (µ2 − µ1)1{t > TB}+ (t− TB)(β2 − β11)1{t > TB}+ βt+ et

µ1 ∼ unif(−10, 10) ; µ2 ∼ unif(−10, 10)

β1 ∼ unif(−3, 3) ; β2 ∼ unif(−3, 3)

H0 : φ1 = 1

HA : φ1 6= 1

(2.21)

Model (2.22) was used to simulate TS under the null hypothesis (H0) of a unit root with

2 structural breaks to derive the critical values of the test statistic (via simulation):

yt = φ1yt−1 + µ1 + (µ2 − µ1)1{t > TB}+ (µ3 − µ2)1{t > TC}+

+(t− TB)(β2 − β1)1{t > TB}+ (t− TC)(β3 − β2)1{t > TC}+ βt+ et

µ1 ∼ unif(−10, 10) ; µ2 ∼ unif(−10, 10) ; µ3 ∼ unif(−10, 10)

β1 ∼ unif(−3, 3) ; β2 ∼ unif(−3, 3) ; β3 ∼ unif(−3, 3)

H0 : φ1 = 1

HA : φ1 6= 1

(2.22)

Only 300 simulations for each number of breaks (0,1,2) were chosen to derive the critical

values as each one takes at least 30 seconds to run on a desktop machine running an Intel

Core I7 processor. The HBPZA critical values for 0, 1 and 2 breakpoints under the null

hypothesis of a unit root are detailed in Table 2.13.
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Table 2.13: HBPZA Unit Root Critical values from Simulations

Breaks α = 0.01 α = 0.05 α = 0.1

2 -6.021853 -4.414791 -4.151678
1 -6.069573 -4.631409 -4.336683
0 -4.837634 -4.376655 -4.178676

Table 2.14: Zivot-Andrews Critical values with Intercept and Trend

α = 0.01 α = 0.05 α = 0.10

-5.57 -5.08 -4.82

Table 2.14 details the published ZA critical values with 1 breakpoint used in the urza-

Test() function of the fUnitRoots R package (Wuertz, Diethelm and many others, 2013).

Since the HBPZA test statistic is a estimated break-segment weighted ZA test statistic,

there is some validity for comparing the HBPZA and ZA test statistic values. We simulate

I(1) TS and compute the quantiles of the ZA test statistics using the R Code in Listing 2.2:

Listing 2.2: R Code to Compute Quantiles of Simulated ZA Test Statistics with an I(1) TS

without Breaks

l ibrary ( fUnitRoots )

set . seed (12345)

s <− 500

zaTests <− rep (0 , s )

for ( i in 1 : s )

{

zaTests [ i ] <− urzaTest (cumsum(rnorm( 1000 ) ) , doplot=FALSE,

model = ’ trend ’ ) @test$ t e s t @ t e s t s t a t

}

quantile ( zaTests , probs=c ( 0 . 0 1 , 0 . 05 , 0 . 1 0 ) )
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The results of running the R code in Listing 2.2 are as detailed in Results Listing 2.2:

Listing 2.3: Quantiles of Simulated ZA Test Statistics with an I(1) TS without Breaks

> quantile ( zaTests , probs=c ( 0 . 0 1 , 0 . 05 , 0 . 1 0 ) )

1% 5% 10%

−4.909521 −4.430225 −4.183176

We see that the (0.01, 0.05,0.10) quantiles in Results Listing 2.3 for 0 breaks of (-

4.909521, -4.430225, -4.183176) are close to the critical values in Table 2.14 for 0 breaks

of (-4.837634, -4.376655, -4.178676); this gives us some comfort that the Bai, J. and

Perron, P. (2003) estimation procedure error when there are no breaks does not significantly

distort the ZA statistic. In addition we see that the (0.01, 0.05, 0.10) critical values of the

HBPZA test with 1 break (-6.069573, -4.631409, -4.336683) in Table 2.13 are not quite

different from the published ZA critical values of (-5.57, -5.08, -4.82) in Table 2.14.

Now we perform a simulation test computing the ZA test statistic (0.01, 0.05, 0.10)

quantiles when run on an I(0) process without breaks using the R code in Listing 2.4:
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Listing 2.4: R Code to Compute Quantiles of Simulated ZA Test Statistics with an I(0) TS

without Breaks

set . seed (12345)

s <− 500

zaTests <− rep (0 , s )

for ( i in 1 : s )

{

zaTests [ i ] <− urzaTest (rnorm(1000) ,

doplot=FALSE, model = ’ trend ’ ) @test$ t e s t @ t e s t s t a t

}

quantile ( zaTests , probs=c ( 0 . 0 1 , 0 . 05 , 0 . 1 0 ) )

Listing 2.5: Quantiles of Simulated ZA Test Statistics with an I(0) TS without Breaks

> quantile ( zaTests , probs=c ( 0 . 0 1 , 0 . 05 , 0 . 1 0 ) )

1% 5% 10%

−20.17250 −19.51512 −19.27001

We see that the values for the I(0) test in Results Listing 2.5 (-20.17250, -

19.51512, -19.2700) are to the left of the I(1) test results in Listing 2.3 of (-4.909521,

-4.430225, -4.183176).

Table 2.15: HBPZA Quantiles with φ1 = 0.95 from Simulations

Breaks α = 0.01 α = 0.05 α = 0.1

2 -6.076275 -5.545940 -5.328129
1 -6.302416 -5.830326 -5.531494
0 -6.974804 -6.579809 -6.375370
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Table 2.15 contains the HBPZA test statistic (0.01, 0.05, 0.10) quantiles for 0,1 and 2

breaks in intercept and linear trend under the alternative hypothesis where the AR(1) mul-

tiplier φ1 = 0.95 which is somewhat close to a unit root using just as before 300 simulations

for each number of breaks (0,1 and 2). We see that every value in Table 2.15 with φ1 = 0.95

is to the left of the corresponding value on the critical value Table 2.13 with φ1 = 1. This

provides some evidence that the HBPZA test can distinguish to some extent between φ = 1

and φ = 0.95.

Table 2.16: Proportions of Failures to Reject H
I(1)
0 on a Series with Randomly chosen

intercepts(-10,10) and trends(-10,10) l = 1000,m = 200 and α = 0.05

φ1 HBPZA Breaks

1.000 0.96 2

0.950 0.63 2
0.900 0.09 2

1.000 0.94 1

0.950 0.46 1
0.900 0.00 1

1.000 0.98 0

0.950 0.02 0
0.900 0.00 0

Using Models (2.21) and (2.22) we simulated under various sets of φ1 and ran the HBPZA

and for 0,2 and 2 breaks in intercept and linear trend with a significance level α = 0.05.

The results for a time series length of l = 1000 are in Table 2.16. We see that in the null

hypothesis case for 2 breaks it rejects 4% of the cases, for 1 break it rejects 6% of the cases,

and for 0 breaks it rejects 2% of the cases. The number of simulations is only m = 200 for

each φ1 as these tests are quite slow–in the order of 30 seconds per simulation on a Pentium

Core I7. For the cases when φ1 < 1 the HBPZA test rejects 37% of the test cases when

φ1 = 0.95 for 2 breaks and rejects 54% for 1 break and 98% of the cases when there are no

breaks.

The results of the HBPZA URT results on simulations with a time series of length
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Table 2.17: Proportions of Failures to Reject H
I(1)
0 on a Series with Randomly chosen

intercepts[-10,10] and trends[-10,10] l = 100,m = 1000 and α = 0.05

φ1 HBPZA Breaks

1.000 0.92 1

0.950 0.92 1
0.900 0.91 1
0.800 0.85 1
0.500 0.41 1
0.000 0.01 1

1.000 0.96 0

0.950 0.95 0
0.900 0.92 0
0.800 0.77 0
0.500 0.09 0
0.000 0.00 0

l = 100 with 1 break and 0 breaks are summarized in Table 2.17. We see that the results

are worse in this case than the previous one with l = 1000. The null hypothesis is rejected

in 8% of the cases which is higher than it should be for a significance level of 0.05 When

there are zero breaks the null hypothesis is rejected in 4% of the cases. In the case of φ1 < 1

for example for φ1 = 0.8 under 2 breaks only 15% of the test cases are rejected, and this

rejection rate is 23% when there are no breaks.

We see that these HBPZA tests are sensitive to the time series length; the critical values

were derived via simulation using l = 1000 and we could derive them for the time series

length we are interested in testing.

2.5 The Hybrid Bai-Perron-ADF I(0)/I(1) Test Procedure

(HBPADF)

Kim (2003) showed that standard unit root tests are not consistent against processes dis-

playing a shift from stationarity (I(0)) to nonstationarity (I(1)) and vice versa. Therefore
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new methods are required for differentiating between processes that are I(0) or I(1) for the

entire period v.s. those with a shift from I(0) to I(1) or vice versa.

Kejriwal, Mohitosh and Perron, Pierre and Zhou, Jing (2013) proposed hybrid testing

procedures that allows ruling out of stable stationary processes or ones that are subject to

only stationary changes under the null, helping the researcher in interpreting a rejection as

emanating from a switch between an I(1) and an I(0) regime. The authors use a combina-

tion of their own developed unit root tests together with a test with a null of no breaks vs

an alternative with one or more breaks given by Bai, J. and Perron, P. (1998). The calcu-

lation of the test statistics and the asymptotic critical values are done using the dynamic

programming algorithm proposed in Perron and Qu (2006, Journal of Econometrics 134,

373–399).

Kejriwal, Mohitosh and Perron, Pierre and Zhou, Jing (2013) used the approach of

detrending the data when trends are included prior to using their hybrid testing procedure

and they suggest using a sequential procedure developed by Kejriwal, Mohitosh and Perron,

Pierre and Zhou, Jing (2013) that is robust to whether the errors are I(1) or I(0). The

smallest time series length the authors consider is 150.

I propose a testing procedure referred to as the HBPADF procedure whereby given a

TS to consider if the series follows one of the following four possibilities:

• The entire series is stationary (I(0))

• The entire series is nonstationary (I(1))

• The series consists of a stationary segment (I(0)) followed by a nonstationary segment

(I(1))

• The series consists of a nonstationary segment (I(1)) followed by a stationary segment

(I(0))

The idea for this type of testing procedure was suggested by my adviser, Dr. James

Gentle. The proposed approach is to use the Bai, J. and Perron, P. (1998) methodology of
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estimating structural break date/s based on finding the model specification that minimizes

the RSS via a dynamic programming approach, and then to use the ADF URT to test each

section to determine if it is likely I(0) or I(1). To do this we use the following Regression

Model (2.23) with the Bai, J. and Perron, P. (1998) procedure which will estimate structural

breaks in the coefficients β0, β1, β2:

x(t) = β0 + β1t+ β2x(t− 1) + εt (2.23)

If the Bai, J. and Perron, P. (1998) structural date methodology does not find a break

date, then we run the ADF test on the entire time series–and both segments would have

the same result.

If we assume that if any structural changes in linear trend and/or intercept happen they

do so at the same time as a structural break in AR(1) autoregressive multiplier φ1 then

the ADF and the Bai, J. and Perron, P. (1998) methodology were highly accurate, then

the ADF test would fit the correct linear trend and intercept in each segment; in any case

experiments show that the Bai, J. and Perron, P. (1998) approach can handle changes in β2

across both I(0) and I(1) regimes, as well as when there are changes in the other coefficients.

yt = φA1 yt−11{t ≤ TB}+ φB1 yt−11{t > TB} (2.24)

Simulations were performed using the DGP (2.24) which has breaks only in the AR φ1

multiplier with time series of length l = 1000 and are summarized in Table (2.18). We see

that the approach works well to distinguish between φ1 = 1 vs. φ1 = 0.9 when the break

happens in the middle of the time series (break proportion=0.5.) When the break happens

in the first quarter of the time series (break proportion=0.25) the approach works well to

distinguish between an I(1) to I(0) with φ1 = 0.9 transition, but it is not good to distinguish

between an I(0) to I(1) change.
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Table 2.18: Proportions of Failures to Reject H
I(1)
0 on a AR(1) Series with a Break in φ1

l = 1000,m = 100 and α = 0.05

Break

Proportion φA1 φB1 ΓA
ADF > CVα ΓB

ADF > CVα ΓAll
ADF > CVα

0.50 0.000 0.000 0.00 0.00 0.00

0.50 1.000 1.000 0.93 0.93 0.94

0.50 1.000 0.500 0.93 0.04 0.84
0.50 0.900 1.000 0.07 0.90 0.86
0.50 1.000 0.900 0.89 0.05 0.82
0.50 1.000 0.950 0.82 0.30 0.81
0.50 1.000 0.980 0.84 0.69 0.86
0.25 0.000 0.000 0.00 0.00 0.00

0.25 1.000 1.000 0.93 0.93 0.94

0.25 1.000 0.500 0.97 0.02 0.61
0.25 0.900 1.000 0.70 0.91 0.94
0.25 1.000 0.900 0.84 0.00 0.43
0.25 1.000 0.950 0.54 0.06 0.42
0.25 1.000 0.980 0.73 0.66 0.72

Table 2.19: Proportions of Failures to Reject H
I(1)
0 on a AR(1) Series with a Break in φ1,

intercept and linear trend with l = 1000,m = 100 and α = 0.05

Break

Proportion φA1 φB1 µA µB µAt µBt ΓA
ADF > CVα ΓB

ADF > CVα ΓAll
ADF > CVα

0.50 0.000 0.000 10 -30 5 -2 0.00 0.00 1.00

0.50 1.000 1.000 10 -30 5 -2 0.95 0.97 1.00

0.50 1.000 0.500 10 -30 5 -2 0.96 0.00 1.00
0.50 0.900 1.000 10 -30 5 -2 0.04 0.97 1.00
0.50 1.000 0.900 10 -30 5 -2 0.95 0.00 1.00
0.50 1.000 0.950 10 -30 5 -2 0.95 0.12 1.00
0.50 1.000 0.980 10 -30 5 -2 0.95 0.65 1.00
0.25 0.000 0.000 10 -30 5 -2 0.00 0.00 0.03

0.25 1.000 1.000 10 -30 5 -2 0.98 0.96 0.02

0.25 1.000 0.500 10 -30 5 -2 0.98 0.00 0.10
0.25 0.900 1.000 10 -30 5 -2 0.53 0.96 0.00
0.25 1.000 0.900 10 -30 5 -2 0.98 0.00 0.00
0.25 1.000 0.950 10 -30 5 -2 0.98 0.01 0.01
0.25 1.000 0.980 10 -30 5 -2 0.98 0.60 0.01

87



yt = φA1 yt−11{t ≤ TB}+ φB1 yt−11{t > TB}+

+µ1 + (µ2 − µ1)1{t > TB}+

+(t− TB)(β2 − β11)1{t > TB}+ βt+ et

µ1 = 10 ; µ2 = −30 ; β1 = 5 ; β2 = −2

(2.25)

Table 2.19 summarizes the results of the new testing procedure run on simulations were

performed with changes in the AR φ1 multiplier as well as in the intercept and linear trend

with time series of length l = 1000. Just as in the previous trendless case we see that the

approach works well to distinguish between φ1 = 1 vs. φ1 = 0.9 when the break happens

in the middle of the time series (break proportion=0.5.) Also as before when the break

happens in the first quarter of the time series (break proportion=0.25) the approach works

well to distinguish between an I(1) to I(0) with φ1 = 0.9 transition, but it is not good

to distinguish between an I(0) to I(1), however it performs somewhat better than in the

trendless case.

See Section 3.2 for additional simulation tests of the HBPADF procedure using more

simulations, as well as tests on a time series of length l = 100.

2.5.1 Running the HBPADF I(0)/I(1) Test Procedure on IBM Stock

Prices

We run the HBPADFf I(0)/I(1) Test Procedure on IBM Stock Prices from ’2014-03-04’

until ’2016-03-04’. The procedure estimates two breakpoints in the series as can be see in

Figure 2.1 as detailed in Results Listing 2.6:
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Figure 2.1: Estimated Changepoints in IBM Prices.
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Listing 2.6: IBM Estimated Break Dates

> IBM $IBM. Close [ bp1$breakpo int s ]

IBM. Close

2014−10−20 169 .10

2015−04−27 170 .73

The R code used to provide the estimated changepoints is provided in Listing 2.7.

Listing 2.7: R code to Estimate IBM Breakpoints

l ibrary ( quantmod )

l ibrary ( s t rucchange )

l ibrary ( t s e r i e s )

getSymbols ( ’IBM ’ , s r c=’ yahoo ’ )

IBM <− window( IBM, start=’ 2014−03−04 ’ , end=’ 2016−03−04 ’ )

t s1 <− IBM $IBM. Close

l <− length ( t s1 )

ts dat <− as . data . frame (merge( ts1 , d i f f ( t s1 ) , l ag ( ts1 , k = −1) , zoo ( 1 : l ) ) )

ts dat [ , ’ date ’ ] <− time ( t s1 )

colnames ( ts dat ) <− c ( ’ t s1 ’ , ’ dts1 ’ , ’ t s 1 l 1 ’ , ’ trend1 ’ , ’ date ’ )

bp1 <− breakpo int s ( t s1 ˜ t s 1 l 1+ trend1 , data = ts dat , h=0.05)

The two estimated breakpoints imply 3 segments in the original IBM TS. We will in-

dependently test each segment for unit roots using the ADF procedure. The results are

provided in Listing 2.8.
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Listing 2.8: ADF URTs on IBM Segments

> adf . t e s t (IBM $IBM. Close [ 1 : bp1$breakpo int s [ 1 ] ] )

Dickey−F u l l e r = −1.2919 , Lag order = 5 , p−value = 0.8717

a l t e r n a t i v e hypothes i s : s t a t i o n a r y

> adf . t e s t (IBM $IBM. Close [ bp1$breakpo int s [ 1 ] : bp1$breakpo int s [ 2 ] ] )

Dickey−F u l l e r = −1.7957 , Lag order = 5 , p−value = 0.6615

a l t e r n a t i v e hypothes i s : s t a t i o n a r y

> adf . t e s t (IBM $IBM. Close [ bp1$breakpo int s [ 2 ] : l ] )

Dickey−F u l l e r = −2.4495 , Lag order = 5 , p−value = 0.3874

a l t e r n a t i v e hypothes i s : s t a t i o n a r y

We see in Listing 2.8 that the null hypothesis of a unit root cannot be rejected for any of

the three segments, which leads us to conclude they are likely nonstationary: I(1),I(1),I(1).

This finding is consistent with the common assumption that asset prices follow a random

walk. Even though breakpoints are estimated using the Bai, J. and Perron, P. (2003)

procedure the ADF tests show that it is likely the AR(1) multiplier φ1 is 1, even if the drift

has a changepoint. Visually we see that there is a level-shift between the first and second

segments, and there is likely a linear trend starting in the third component.
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Chapter 3: Simulation Studies of Unit Root and

Cointegration Tests

3.1 Simulation Studies of Unit Root Tests

This chapter describes the results of various Monte Carlo simulation studies of existing unit

root tests (URTs), as well as the new lagged-series and Zivot Andrews-lagged-series URT

on AR time series (TS). The URT used were: ADF, ERS Ptest, ERS DFGLS, ZA, lagged-

series and ZA-lagged-series. The ADF and ERS tests were chosen as these are often the

most widely used under the assumption of no structural breaks. The ZA URT was chosen

as this is one of the preferred tests under the assumption of the existence of a structural

break. These tests are described in Sections 1.45, 1.10 and 1.11.2. The purpose of these

tests was to compare their accuracy with AR(1) processes with 0 < φ1 < 1.1 under various

types of deterministic intercepts and components, various assumptions of the distributional

characteristics of the innovations, as well as under structural breaks. These tests offer

different versions depending on the assumed deterministic form under; these are generally

a constant and/or a linear trend. To simplify the number of combinations to test, there are

two general configurations. In the case where there is 0 drift and 0 linear trend we select

the following versions of the URT:

• lagged-series with no constant/drift.

• ZA-lagged-series with intercept term on Zivot Andrews and lagged-series with no drift.

• ADF with no deterministic component.

• ZA with an intercept.

• ERS-Ptest with a constant.
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• ERS-DFGLS with a constant.

In the case where there is either a non zero drift or a non-zero linear trend we select the

following versions of the URTs:

• lagged-series with constant and trend.

• ZA-lagged-series with drift and trend term on Zivot Andrews and lagged-series with

constant and trend.

• ADF with constant and trend.

• ZA with constant and trend.

• ERS-Ptest with a trend.

• ERS-DFGLS with a trend.

Unless specified the initial value of the simulated series is x(0)← N(0, 1).

More specifically the test scenarios consist of simulations of:

• driftless AR(1) processes where the φ1 multiplier is chosen at random with indepen-

dent identically distributed Gaussian innovations.

• AR(1) processes with a deterministic intercept and linear trend where the φ1 multiplier

is chosen at random with independent identically distributed Gaussian innovations.

• AR(1) processes with a deterministic linear trend where the φ1 multiplier is chosen

at random with independent identically distributed Gaussian innovations.

• AR(1) processes with deterministic intercept where the φ1 multiplier is chosen at

random with independent identically distributed Gaussian innovations.

• driftless AR(1) processes where the φ1 multiplier is chosen at random with pairwise

correlated Gaussian innovations.
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• driftless AR(1) processes where the φ1 multiplier is chosen at random with indepen-

dent identically distributed Beta innovations.

• driftless AR(1) processes where the φ1 multiplier is chosen at random with indepen-

dent identically distributed Gaussian innovations with random standard deviations

picked as the absolute value of Gaussian random variables.

• AR(1) processes with one structural break in intercept and linear trend where the

φ1 multiplier is chosen at random with independent identically distributed Gaussian

innovations.

• AR(1) processes with with one structural break in linear trend where the φ1 multiplier

is chosen at random with independent identically distributed Gaussian innovations.

• AR(1) processes with with one structural break in intercept where the φ1 multiplier

is chosen at random with independent identically distributed Gaussian innovations.

• AR(1) with negative φ1 < 1

• ARMA(1,3) processes

• AR(1) with time series of length 50

• Various AR(2) processes.

• I(2), I(3) and I(4) processes.

• The new Hybrid Bai-Perron-ADF (HBPADF) testing procedure to detect changes in

I(0)-I(1) sections within a time series.

3.1.1 Unit Root Tests on Driftless AR(1) TS

Table 3.1 summarizes the results of simulations performed with Model (3.1). This model

consists of driftless AR(1) processes with independent identically distributed Gaussian in-

novations for various values of φ1.
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The results can be summarized as follows:

• Data simulated under the alternative hypothesis where φ1 > 1 (HExplosive AR
1 ): ERS,

ADF and ZA tests do not significantly reject the null hypothesis of even though

ideally they should in this case, however the lagged-series and ZA-lagged-series tests

significantly reject the null hypothesis of a unit-root in these cases.

• Data simulated under the null Hypothesis where φ1 = 1 (H
I(1)
0 ): The URTs reject the

null hypothesis as expected close to the significance level of 5%: ADF 5%, ERS-Ptest

4%, ERS-DFGLS 4% and ZA 6%, lagged-series 5%, ZA-lagged-series 6%

• Data simulated under the alternative hypothesis where φ1 < 1 (H
I(0)
1 ): The null

hypothesis is rejected at a proportion of 5% or less as follows from best to worst:

– Both ERS tests: φ1 ≤ 0.98

– ADF test: φ1 ≤ 0.98

– lagged-series test: φ1 ≤ 0.97

– ZA test: φ1 ≤ 0.95

– ZA-lagged-series test: φ1 ≤ 0.95

x(t) = φ1x(t− 1) + ε(t) ; x(0) = 0

ε(t) ∼ N(0, 1)

cor(ε(t), ε(t− 1)) = 0 ; t = 1, ..., l

(3.1)

We can see that these URTs are sensitive to the initial starting value of the TS in

Table 3.2 where x(0) = 20. Choi, In (2010, p. 52) points out that the initial value of the

time series affect the statistical power of the of the URTs. He states that for large initial

values the power decreases; that is given the alternative hypothesis is true, the URTs do
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Table 3.1: Proportions of Failures to Reject H
I(1)
0 of URT on Driftless AR(1) Processes

with l = 1000, m = 1000, and α = 5% and s = 12345

φ1 ADF lagged-series ERS-Ptest ERS-DFGLS ZA-lagged-series ZA

1.0050 1.00 0.04 1.00 1.00 0.07 1.00
1.0025 0.99 0.67 0.99 0.99 0.85 0.97

1.0000 0.95 0.95 0.95 0.95 0.94 0.94

0.9950 0.70 0.89 0.69 0.68 0.91 0.91
0.9900 0.25 0.71 0.26 0.26 0.86 0.86
0.9800 0.00 0.17 0.00 0.00 0.67 0.67
0.9700 0.00 0.01 0.00 0.00 0.32 0.33
0.9600 0.00 0.00 0.00 0.00 0.10 0.11
0.9500 0.00 0.00 0.00 0.00 0.02 0.02
0.9000 0.00 0.00 0.00 0.00 0.00 0.00
0.7000 0.00 0.00 0.00 0.00 0.00 0.00
0.5000 0.00 0.00 0.00 0.00 0.00 0.00
0.3000 0.00 0.00 0.00 0.00 0.00 0.00
0.1000 0.00 0.00 0.00 0.00 0.00 0.00
0.0000 0.00 0.00 0.00 0.00 0.00 0.00

not reject the null hypothesis of a unit root as often as they should. Muller, Ulrich K. and

Elliott, Graham (2003) find that the optimal URT for when the initial value is large in the

Dickey-Fuller t-ratio, however when the initial value is small the optimal test is the ERS-

DFGLS test. In Table 3.2 we see that for a starting value of 20 the ERS tests have quite

low power as they do not reject any cases when φ1 < 1. The lagged-series URT performs

slightly better than ADF when φ1 < 1 and much better than ADF when φ1 > 1.

In Table 3.3 we see that for a starting value of -10 the ERS tests have quite low power

as they do not reject any cases when φ1 < 1, just as was the case with the previous example

with x(0) = 20. The lagged-series URT performs slightly better than ADF when φ1 < 1

and much better than ADF when φ1 > 1. However we see that all tested URTs reject the

null hypothesis of φ1 = 1 at more than the expected 5% level.

In Table 3.4 shows simulations of Model(3.1) using negative values of φ1. The results for

data simulated under the alternative hypothesis where φ1 < 0 (H
I(0)
1 ) can be summarized
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Table 3.2: Proportions of Failures to Reject H
I(1)
0 of URTs on Driftless AR(1) Processes

with l = 1000, m = 1000, and α = 5%, s = 12345 and initial value of 20

φ1 ADF lagged-series ERS-Ptest ERS-DFGLS ZA-lagged-series ZA

1.010 1.00 0.00 1.00 0.00 0.00 1.00
1.005 1.00 0.01 1.00 1.00 0.01 1.00

1.000 0.94 0.95 0.96 0.96 0.94 0.95

0.990 0.78 0.75 0.99 0.98 0.90 0.90
0.980 0.29 0.21 1.00 1.00 0.60 0.64
0.970 0.04 0.01 1.00 1.00 0.18 0.22
0.960 0.00 0.00 1.00 1.00 0.02 0.03
0.950 0.00 0.00 1.00 1.00 0.00 0.00
0.900 0.00 0.00 1.00 1.00 0.00 0.00
0.000 0.00 0.00 1.00 1.00 0.00 0.00

Table 3.3: Proportions of Failures to Reject H
I(1)
0 of URTs on AR(1) Processes with X(0) =

−10 with l = 1000, m = 200, and α = 5% and s = 12345

φ1 ADF lagged-series ERS-Ptest ERS-DFGLS ZA-lagged-series

1.010 1.00 0.00 1.00 1.00 0.00
1.005 0.99 0.04 1.00 1.00 0.06

1.000 0.90 0.91 0.93 0.91 0.93

0.990 0.16 0.55 0.93 0.93 0.81
0.980 0.00 0.10 0.98 0.97 0.61
0.970 0.00 0.00 0.98 0.99 0.22
0.960 0.00 0.00 0.99 0.99 0.04
0.950 0.00 0.00 1.00 1.00 0.00
0.900 0.00 0.00 1.00 1.00 0.00
0.000 0.00 0.00 0.99 1.00 0.00
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Table 3.4: Proportions of Failures to Reject H
I(1)
0 of URTs on Driftless AR(1) Processes

with φ1 < 0 and l = 1000, m = 1000, and α = 5%, s = 12345

φ1 ADF lagged-series ERS-Ptest ERS-DFGLS ZA-lagged-series ZA

1.0000 0.95 0.95 0.95 0.95 0.94 0.94
-0.9950 0.00 0.00 0.68 0.05 0.00 0.00
-0.9900 0.00 0.00 0.26 0.06 0.00 0.00
-0.9800 0.00 0.00 0.01 0.06 0.00 0.00
-0.9700 0.00 0.00 0.00 0.05 0.00 0.00
-0.9600 0.00 0.00 0.00 0.05 0.00 0.00
-0.9500 0.00 0.00 0.00 0.05 0.00 0.00
-0.9000 0.00 0.00 0.00 0.05 0.00 0.00
-0.7000 0.00 0.00 0.00 0.02 0.00 0.00
-0.5000 0.00 0.00 0.00 0.01 0.00 0.00
-0.3000 0.00 0.00 0.00 0.01 0.00 0.00
-0.1000 0.00 0.00 0.00 0.01 0.00 0.00
0.0000 0.00 0.00 0.00 0.00 0.00 0.00

as follows: The null hypothesis is rejected as follows from best to worst:

• ADF, lagged-series, ZA and ZA-lagged-series reject the null for all tested negative

values of φ1 clearly outperforming the ERS tests.

• ERS-DFGLS: The null hypothesis rejection rate is not higher than 95% of the test

cases when −0.995 ≤ φ1 ≤ −0.9

• ERS-Ptest: This test fails to significantly reject the null for φ1 = {−0.995,−0.99}

only 32% and 74% of the test cases respectively.

3.1.2 URTs on AR(1) TS with Deterministic Intercept and a Linear

Trend

Table 3.5 summarizes the results of simulations performed with Model (3.2). This model

consists of AR(1) processes with a deterministic intercept and a linear trend with indepen-

dent identically distributed Gaussian innovations for various values of φ1.

The results can be summarized as follows:
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• Data simulated under the alternative hypothesis where φ1 > 1 (HExplosive AR
1 ): The

ERS, ADF and ZA tests do not significantly reject the null hypothesis of even though

ideally they should in this case. However the two lagged-series based tests reject 95%

of the time for φ1 = 1.005.

• Data simulated under the null Hypothesis where φ1 = 1 (H
I(1)
0 ): The URTs reject the

null hypothesis as expected close to the significance level of 5%: ADF, and lagged-

series tests at 6%, ERS-Ptest 5%, ERS-DFGLS 5% and ZA 6%

• Data simulated under the alternative hypothesis where φ1 < 1 (H
I(0)
1 ): The null

hypothesis is rejected at a rate of 5% or less as follows from best to worst:

– Both ERS tests: φ1 ≤ 0.97

– ADF and lagged-series tests: φ1 ≤ 0.96

– ZA and ZA-lagged-series tests: φ1 ≤ 0.95

y(t) = φ1x(t) + α+ βt

x(t) = x(t− 1) + ε(t) ; x(0) = 0

ε(t) ∼ N(0, 1) ; cor(ε(t), ε(t− 1)) = 0 ; t = 1, ..., l

α ∼ unif(−1, 1) ; β ∼ unif(−1, 1)

(3.2)

In Table 3.6 shows simulations of Model (3.2) using negative values of φ1. The results for

data simulated under the alternative hypothesis where φ1 < 0 (H
I(0)
1 ) can be summarized

as follows: The null hypothesis is rejected as follows from best to worst:

• ADF, lagged-series, ZA and ZA-lagged-series reject the null for all tested negative

values of φ1 clearly outperforming the ERS tests.

99



Table 3.5: Proportions of Failures to Reject H
I(1)
0 of URTs on AR(1) Processes with Inter-

cept and Linear Trend with l = 1000, m = 500, and α = 5% and s = 12345

φ1 ADF lagged-series ERS-Ptest ERS-DFGLS ZA-lagged-series ZA

1.0050 1.00 0.05 1.00 1.00 0.07 1.00
1.0025 0.97 0.70 0.96 0.97 0.81 0.96

1.0000 0.94 0.94 0.95 0.95 0.94 0.94

0.9950 0.92 0.92 0.86 0.89 0.93 0.93
0.9900 0.82 0.83 0.63 0.70 0.89 0.89
0.9800 0.45 0.42 0.15 0.20 0.69 0.70
0.9700 0.15 0.12 0.00 0.01 0.34 0.36
0.9600 0.02 0.02 0.00 0.00 0.11 0.12
0.9500 0.00 0.00 0.00 0.00 0.02 0.02
0.9000 0.00 0.00 0.00 0.00 0.00 0.00
0.7000 0.00 0.00 0.00 0.00 0.00 0.00
0.5000 0.00 0.00 0.00 0.00 0.00 0.00
0.3000 0.00 0.00 0.00 0.00 0.00 0.00
0.1000 0.00 0.00 0.00 0.00 0.00 0.00
0.0000 0.00 0.00 0.00 0.00 0.00 0.00

Table 3.6: Proportions of Failures to Reject H
I(1)
0 of URTs on Driftless AR(1) Processes

with φ1 < 0 and l = 1000, m = 1000, and α = 5%, s = 12345

φ1 ADF lagged-series ERS-Ptest ERS-DFGLS ZA-lagged-series ZA

1.0000 0.95 0.93 0.94 0.95 0.94 0.94
-0.9950 0.00 0.00 1.00 0.34 0.00 0.00
-0.9900 0.00 0.00 1.00 0.19 0.00 0.00
-0.9800 0.00 0.00 1.00 0.08 0.00 0.00
-0.9700 0.00 0.00 1.00 0.03 0.00 0.00
-0.9600 0.00 0.00 1.00 0.02 0.00 0.00
-0.9500 0.00 0.00 1.00 0.01 0.00 0.00
-0.9000 0.00 0.00 0.87 0.01 0.00 0.00
-0.7000 0.00 0.00 0.23 0.01 0.00 0.00
-0.5000 0.00 0.00 0.01 0.00 0.00 0.00
-0.3000 0.00 0.00 0.00 0.00 0.00 0.00
-0.1000 0.00 0.00 0.00 0.00 0.00 0.00
0.0000 0.00 0.00 0.00 0.00 0.00 0.00
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• ERS-DFGLS: The null hypothesis rejection rate is not higher than 95% of the test

cases when −0.995 ≤ φ1 ≤ −0.98

• ERS-Ptest: This test fails does not reject at all the null for −0.995 ≤ φ1 ≤ −0.95 and

only 13% for φ1 = −0.9 and 77% of the test cases when φ1 = −0.7.

3.1.3 URTs on ARMA(1,3) TS with Deterministic Intercept and a Linear

Trend

yt = φ1xt + α+ βt

xt = xt−1 + εt + 0.5εt−1 + 0.4εt−2 − 0.2εt−3 ; x0 = 0

εt ∼ N(0, 1) ; cor(εt, εt−1) = 0 ; t = 1, ..., l

α ∼ unif(−1, 1) ; β ∼ unif(−1, 1)

(3.3)

Table 3.7: Proportions of Failures to Reject H
I(1)
0 of URTs on ARMA(1,3) Processes having

Intercept and Trend with φ1 < 0 and l = 1000, m = 1000, and α = 5%, s = 12345

φ1 ADF lagged-series ERS-Ptest ERS-DFGLS ZA-lagged-series ZA

1.0050 1.00 0.06 1.00 1.00 0.07 1.00
1.0025 0.98 0.72 0.96 0.97 0.80 0.92
1.0000 0.96 0.91 0.93 0.93 0.87 0.87
0.9950 0.95 0.88 0.84 0.84 0.82 0.82
0.9900 0.88 0.76 0.63 0.63 0.72 0.72
0.9800 0.57 0.31 0.13 0.14 0.41 0.41
0.9700 0.22 0.07 0.01 0.01 0.14 0.15
0.9600 0.06 0.01 0.00 0.00 0.03 0.03
0.9500 0.01 0.00 0.00 0.00 0.00 0.00
0.9000 0.00 0.00 0.00 0.00 0.00 0.00
0.7000 0.00 0.00 0.00 0.00 0.00 0.00
0.5000 0.00 0.00 0.00 0.00 0.00 0.00
0.3000 0.00 0.00 0.00 0.00 0.00 0.00
0.1000 0.00 0.00 0.00 0.00 0.00 0.00
0.0000 0.00 0.00 0.00 0.00 0.00 0.00
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Table 3.7 summarizes the results of simulations performed with Model (3.3). This

model consists of ARMA(1,3) processes with a deterministic intercept and a linear trend

with independent identically distributed Gaussian innovations for various values of φ1.

The results can be summarized as follows:

• Data simulated under the alternative hypothesis where φ1 > 1 (HExplosive AR
1 ): The

ERS, ADF and ZA tests do not significantly reject the null hypothesis of even though

ideally they should in this case. However the two lagged-series based tests reject at

least 93% of the test cases for φ1 = 1.005.

• Data simulated under the null hypothesis φ1 = 1 (H
I(1)
0 ): Only the ADF rejects ≤ 5%

of the test cases as expected with a significance level α = 0.05. The lagged-series test

rejects 9% of the test cases, the ERS tests reject 7% of the cases and the ZA based

tests reject 13% of the test cases.

• Data simulated under the alternative hypothesis where φ1 < 1 (H
I(0)
1 ): The null

hypothesis is rejected at a rate of 5% or less as follows from best to worst:

– Both ERS tests: φ1 ≤ 0.97

– lagged-series, ZA and ZA lagged-series tests: φ1 ≤ 0.96

– ADF and lagged-series tests: φ1 ≤ 0.95

Given that the null hypothesis is rejected more often than it should, a solution to better

handle this case would be to use the standard critical values for α = 0.01 as the critical

value for α = 0.05, and the standard critical value for α = 0.05 as the critical value for

α = 0.10.

3.1.4 URTs on AR(1) TS with a Deterministic Linear Trend

Table 3.8 summarizes the results of simulations performed with Model (3.4). This model

consists of AR(1) processes with a deterministic linear trend with independent identically

distributed Gaussian innovations for various values of φ1.
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The results can be summarized as follows:

• Data simulated under the alternative hypothesis where φ1 > 1 (HExplosive AR
1 ): The

ERS, ADF and ZA tests do not significantly reject the null hypothesis of even though

ideally they should in this case. The Lagges-Series URT rejects 27% of the cases

when φ1 = 1.005 when none of the other standard tests reject more than 4%( the

ZA-lagged-series test rejects 16% of the cases when φ1 = 1.005.)

• Data simulated under the null Hypothesis where φ1 = 1 (H
I(1)
0 ): The URTs reject the

null hypothesis as expected close to the significance level of 5%: ADF 5%, ERS-Ptest

6%, ERS-DFGLS 4% and ZA 4%

• Data simulated under the alternative hypothesis where φ1 < 1 (H
I(0)
1 ): The null

hypothesis is rejected at a rate of 5% of the test cases or less as follows from best to

worst:

– All tests: φ1 ≤ 0.90

y(t) = x(t) + βt

x(t) = φ1x(t− 1) + ε(t) ; x(0) = 0

ε(t) ∼ N(0, 1) ; cor(ε(t), ε(t− 1)) = 0 ; t = 1, ..., l

β ∼ unif(−1, 1)

(3.4)

3.1.5 URTs on AR(1) TS with a Deterministic Intercept

Table 3.9 summarizes the results of simulations performed with Model (3.5). This model

consists of AR(1) processes with a deterministic intercept with independent identically

distributed Gaussian innovations for various values of φ1.
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Table 3.8: Proportions of Failures to Reject H
I(1)
0 of URTs on AR(1) Processes with a

Linear Trend using l = 1000, m = 500, and α = 5% and s = 12345

φ1 ADF lagged-series ERS-Ptest ERS-DFGLS ZA-lagged-series ZA

1.0050 0.98 0.73 0.98 0.98 0.84 0.96
1.0025 0.95 0.94 0.94 0.95 0.94 0.94

1.0000 0.95 0.95 0.94 0.96 0.95 0.95

0.9950 0.95 0.95 0.93 0.94 0.94 0.94
0.9900 0.93 0.93 0.88 0.90 0.93 0.93
0.9800 0.83 0.84 0.68 0.72 0.89 0.90
0.9700 0.69 0.69 0.39 0.46 0.83 0.83
0.9600 0.52 0.49 0.16 0.22 0.70 0.72
0.9500 0.35 0.29 0.06 0.10 0.56 0.57
0.9000 0.02 0.00 0.00 0.00 0.02 0.02
0.7000 0.00 0.00 0.00 0.00 0.00 0.00
0.5000 0.00 0.00 0.00 0.00 0.00 0.00
0.3000 0.00 0.00 0.00 0.00 0.00 0.00
0.1000 0.00 0.00 0.01 0.00 0.00 0.00
0.0000 0.00 0.00 0.01 0.00 0.00 0.00

The results can be summarized as follows:

• Data simulated under the alternative hypothesis where φ1 > 1 (HExplosive AR
1 ): The

ERS, ADF and ZA tests do not significantly reject the null hypothesis of even though

ideally they should in this case. However the lagged-series with φ1 = 1.005 rejects in

95% of the cases.

• Data simulated under the null hypothesis where φ1 = 1 (H
I(1)
0 ): The URTs reject the

null hypothesis as expected close to the significance level of 5%: ADF 6%, ERS-Ptest

5%, lagged-series and ZA-lagged-series 6%, ERS-DFGLS 5% and ZA 6%

• Data simulated under the alternative hypothesis where φ1 < 1 (H
I(0)
1 ): The null

hypothesis is rejected at a rate of 5% of the test cases or less as follows from best to

worst:

– Both ERS tests: φ1 ≤ 0.97
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– ADF, lagged-series: φ1 ≤ 0.96

– ZA and ZA-lagged-series test: φ1 ≤ 0.95

y(t) = x(t) + α

x(t) = φ1x(t− 1) + ε(t)

x(0) = 0

ε(t) ∼ N(0, 1) ; cor(ε(t), ε(t− 1)) = 0 ; t = 1, ..., l

α ∼ unif(−1, 1)

(3.5)

Table 3.9: Proportions of Failures to Reject H
I(1)
0 of URTs on AR(1) Processes with an

Intercept using l = 1000, m = 500, and α = 5% and s = 12345

φ1 ADF lagged-series ERS-Ptest ERS-DFGLS ZA-lagged-series ZA

1.0050 1.00 0.05 1.00 1.00 0.07 1.00
1.0025 0.97 0.70 0.96 0.97 0.81 0.96

1.0000 0.94 0.94 0.95 0.95 0.94 0.94

0.9950 0.92 0.92 0.88 0.89 0.93 0.93
0.9900 0.82 0.83 0.67 0.70 0.89 0.89
0.9800 0.45 0.42 0.17 0.20 0.69 0.70
0.9700 0.15 0.12 0.00 0.01 0.34 0.36
0.9600 0.02 0.02 0.00 0.00 0.11 0.12
0.9500 0.00 0.00 0.00 0.00 0.02 0.02
0.9000 0.00 0.00 0.00 0.00 0.00 0.00
0.7000 0.00 0.00 0.00 0.00 0.00 0.00
0.5000 0.00 0.00 0.00 0.00 0.00 0.00
0.3000 0.00 0.00 0.00 0.00 0.00 0.00
0.1000 0.00 0.00 0.00 0.00 0.00 0.00
0.0000 0.00 0.00 0.00 0.00 0.00 0.00
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3.1.6 URTs on Driftless AR(1) TS with Consecutive Pairwise Correlated

Innovations

Tables 3.10,3.11 and 3.12 summarize the results of simulations performed with Model (3.6),

for values of ρ = 0.9999, ρ = 0.8 , and ρ = −0.8. This model consists of AR(1) processes

with a deterministic intercept with consecutive pairwise correlated Gaussian innovations for

various values of φ1.

x(t) = φ1x(t− 1) + ε(t) ; x(0) = 0

ε(t) ∼ N(0, 1) ; cor(ε(t), ε(t− 1)) = ρ ; t← 1, ..., l

(3.6)

The results can be summarized as follows. For cor(ε(t), ε(t− 1)) = 0.9999, summarized

in Table 3.10 the null hypothesis of a unit root is barely ever rejected. This is an extreme

case of highly correlated innovations but we can see how they certainly affect the results.

Masuda, Junya and Ohtani, Kazuhiro (2008, p. 361) also conclude that with AR(1) time

series lengths of up to 100 with serially correlated errors with high correlations, the null

hypothesis of a unit root is never rejected.

For the case of cor(ε(t), ε(t− 1)) = −0.8 summarized in Table 3.11:

• Data simulated under the alternative hypothesis where φ1 > 1 (HExplosive AR
1 ): All

ERS, ADF, lagged-series, ZA and ZA-lagged-series URTs do not significantly reject

the null hypothesis of even though ideally they should in this case.

• Data simulated under the alternative hypothesis where φ1 < 1 (H
I(0)
1 ): The null

hypothesis fails to be rejected at a rate of 5% of the test cases or less as follows from

best to worst:

– ADF test: φ1 ≤ 0.97

– ZA, lagged-series and ZA-lagged-series tests: φ1 ≤ 0.90
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Table 3.10: Proportions of Failures to Reject H
I(1)
0 of URTs on Driftless AR(1) Processes

with Consecutive Innovations Correlated by 0.9999 with l = 1000, m = 500, and α = 5%
and s = 12345

φ1 ADF lagged-series ERS-Ptest ERS-DFGLS ZA-lagged-series ZA

1.0050 1.00 0.86 0.99 1.00 1.00 1.00
1.0025 0.99 0.84 0.96 0.99 0.99 0.99

1.0000 0.95 0.90 0.92 0.94 0.93 0.93

0.9950 0.90 0.90 0.94 0.90 0.93 0.93
0.9900 0.90 0.91 0.95 0.89 0.92 0.92
0.9800 0.90 0.92 0.97 0.89 0.92 0.92
0.9700 0.90 0.92 0.97 0.89 0.92 0.92
0.9600 0.90 0.93 0.97 0.89 0.93 0.93
0.9500 0.90 0.92 0.97 0.89 0.93 0.93
0.9000 0.90 0.92 0.97 0.89 0.93 0.93
0.7000 0.90 0.92 0.95 0.89 0.94 0.94
0.5000 0.89 0.93 0.94 0.92 0.94 0.94
0.3000 0.89 0.93 0.93 0.92 0.94 0.94
0.1000 0.88 0.93 0.92 0.93 0.94 0.94
0.0000 0.88 0.93 0.93 0.93 0.94 0.94
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– ERS-Ptest: φ1 ≤ 0.7

– ERS-DFGLS test: never rejects less than 8% of the cases and for the range

0.9 ≤ φ1 ≤ 0 as φ1 decreases the rejection rate of the null hypothesis decreases

as well making this the worst performing test in this case.

Table 3.11: Proportions of Failures to Reject H
I(1)
0 of URTs on Driftless AR(1) Processes

with Consecutive Innovations Correlated by -0.8 with l = 500, m = 1000, and α = 5% and
s = 12345

φ1 ADF lagged-series ERS-Ptest ERS-DFGLS ZA-lagged-series ZA

1.0050 0.99 0.65 0.99 0.99 0.85 0.99
1.0025 0.98 0.97 0.98 0.98 0.96 0.96

1.0000 0.95 0.95 0.96 0.95 0.95 0.95

0.9950 0.86 0.93 0.87 0.84 0.94 0.94
0.9900 0.68 0.89 0.72 0.69 0.94 0.94
0.9800 0.24 0.70 0.43 0.39 0.88 0.88
0.9700 0.03 0.41 0.23 0.22 0.81 0.81
0.9600 0.00 0.18 0.15 0.14 0.68 0.68
0.9500 0.00 0.06 0.10 0.11 0.50 0.50
0.9000 0.00 0.00 0.06 0.08 0.01 0.01
0.7000 0.00 0.00 0.03 0.12 0.00 0.00
0.5000 0.00 0.00 0.01 0.19 0.00 0.00
0.3000 0.00 0.00 0.01 0.27 0.00 0.00
0.1000 0.00 0.00 0.00 0.32 0.00 0.00
0.0000 0.00 0.00 0.00 0.35 0.00 0.00

For cor(ε(t), ε(t− 1)) = 0.8 summarized in Table 3.12:

• Data simulated under the alternative hypothesis where φ1 > 1 (HExplosive AR
1 ): The

ERS, ADF and ZA tests do not significantly reject the null hypothesis of even though

ideally they should in this case. The lagged-series test rejects 94% of the tests cases

φ1 = 1.005 which is significantly more than the other tests.

• Data simulated under the null hypothesis where φ1 = 1 (H
I(1)
0 ): The URTs reject the

null hypothesis as expected close to the significance level of 5%: ADF, ERS-Ptest,

ERS-DFGLS, and lagged-series at 5% and ZA and ZA-lagged-series at 6%.
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• Data simulated under the alternative hypothesis where φ1 < 1 (H
I(0)
1 ): The null

hypothesis fails to be rejected at a rate of 5% of the test cases or less as follows from

best to worst:

– ADF test and both ERS tests: φ1 ≤ 0.98

– lagged-series test: φ1 ≤ 0.97

– ZA and ZA-lagged-series test: φ1 ≤ 0.90

The results with a correlation of 0.8 are slightly worse in the sense of lower statistical power

than the results with a 0 pairwise correlation detailed in Table 3.1.

Table 3.12: Proportions of Failures to Reject H
I(1)
0 of URTs on Driftless AR(1) Processes

with Consecutive Innovations Correlated by 0.8 with l = 1000, m = 500, and α = 5% and
s = 12345

φ1 ADF lagged-series ERS-Ptest ERS-DFGLS ZA-lagged-series ZA

1.0050 1.00 0.06 1.00 1.00 0.08 1.00
1.0025 0.99 0.67 0.99 0.98 0.85 0.97

1.0000 0.95 0.95 0.95 0.95 0.94 0.94

0.9950 0.70 0.90 0.69 0.69 0.91 0.91
0.9900 0.27 0.76 0.26 0.28 0.87 0.88
0.9800 0.01 0.24 0.01 0.01 0.71 0.71
0.9700 0.00 0.04 0.00 0.00 0.44 0.44
0.9600 0.00 0.00 0.00 0.00 0.20 0.20
0.9500 0.00 0.00 0.00 0.00 0.06 0.07
0.9000 0.00 0.00 0.00 0.00 0.00 0.00
0.7000 0.00 0.00 0.00 0.00 0.00 0.00
0.5000 0.00 0.00 0.00 0.00 0.00 0.00
0.3000 0.00 0.00 0.00 0.00 0.00 0.00
0.1000 0.00 0.00 0.00 0.00 0.00 0.00
0.0000 0.00 0.00 0.00 0.00 0.00 0.00

3.1.7 URTs on Driftless AR(1) TS with Beta Distributed Innovations

Table 3.13 summarizes the results of simulations performed with Model (3.7). This model

consists of AR(1) processes with a deterministic intercept with independent identically
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distributed Beta(5,2) innovations for various values of φ1.

x(t) = φ1x(t− 1) + ε(t) ; x(0) = 0

ε(t) ∼ B(5, 2) ; cor(ε(t), ε(t− 1)) = 0 ; t = 1, ..., l

(3.7)

The results can be summarized as follows:

• Data simulated under the alternative hypothesis where φ1 > 1 (HExplosive AR
1 ): The

ERS, ADF and ZA tests do not significantly reject the null hypothesis of even though

ideally they should in this case. However the lagged-series URT rejects 95% , and the

ZA-lagged-series 93% of the tests when φ1 = 1.005.

• Data simulated under the null hypothesis where φ1 = 1 (H
I(1)
0 ): The unit root tests

reject the null hypothesis as expected close to the significance level of 5%: ADF 5%,

ERS-Ptest 4%, ERS-DFGLS 4% and ZA, lagged-series and the ZA-lagged-series URTs

6%.

• Data simulated under the alternative hypothesis where φ1 < 1 (H
I(0)
1 ): The null

hypothesis fails to be rejected at a rate of 5% of the test cases or less as follows from

best to worst:

– ADF and both ERS tests: φ1 ≤ 0.98

– lagged-series test: φ1 ≤ 0.97

– ZA and ZA-lagged-series test: φ1 ≤ 0.95

3.1.8 URTs on Driftless AR(1) TS with Gaussian Innovations with Ran-

dom Standard Deviations

Table 3.14 summarizes the results of simulations performed with Model (3.8). This model

consists of AR(1) processes with independent identically distributed Gaussian innovations
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Table 3.13: Proportions of Failures to Reject H
I(1)
0 of Unit Root Tests on Driftless AR(1)

Processes with Beta(5,2) Innovations with l = 1000, m = 1000, and α = 5% and s = 12345

φ1 ADF lagged-series ERS-Ptest ERS-DFGLS ZA-lagged-series ZA

1.0050 1.00 0.05 1.00 1.00 0.07 1.00
1.0025 0.99 0.69 0.99 0.99 0.85 0.98

1.0000 0.94 0.94 0.94 0.94 0.94 0.94

0.9950 0.69 0.88 0.68 0.68 0.91 0.91
0.9900 0.25 0.71 0.25 0.27 0.87 0.87
0.9800 0.00 0.19 0.00 0.00 0.66 0.66
0.9700 0.00 0.01 0.00 0.00 0.35 0.35
0.9600 0.00 0.00 0.00 0.00 0.10 0.11
0.9500 0.00 0.00 0.00 0.00 0.02 0.02
0.9000 0.00 0.00 0.00 0.00 0.00 0.00
0.7000 0.00 0.00 0.00 0.00 0.00 0.00
0.5000 0.00 0.00 0.00 0.00 0.00 0.00
0.3000 0.00 0.00 0.00 0.00 0.00 0.00
0.1000 0.00 0.00 0.00 0.00 0.00 0.00
0.0000 0.00 0.00 0.00 0.00 0.00 0.00

with a random standard deviation parameter that is the absolute value of a Gaussian

distributed variable for various values of φ1.

x(t) = x(t− 1) + ε(t) ; x(0) = 0

ε(t) ∼ N(0, a) ; a ∼ |N(0, 1)| ; t = 1, ..., l

cor(ε(t), ε(t− 1)) = 0 ;

(3.8)

The results can be summarized as follows:

• Data simulated under the alternative hypothesis where φ1 > 1 (HExplosive AR
1 ): The

ERS, ADF and ZA tests do not significantly reject the null hypothesis of even though

ideally they should in this case. However the lagged-series URT rejects 95% and the

ZA-lagged-series URT rejects 92% when φ1 = 1.005.
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Table 3.14: Proportions of Failures to Reject H
I(1)
0 of URTs on Driftless AR(1) Processes

with N(0,—N(0,1)—) Innovations with l = 1000, m = 1000, and α = 5% and s = 12345

φ1 ADF lagged-series ERS-Ptest ERS-DFGLS ZA-lagged-series ZA

1.0050 1.00 0.05 1.00 1.00 0.08 1.00
1.0025 0.99 0.68 0.99 0.98 0.83 0.97

1.0000 0.95 0.95 0.94 0.94 0.93 0.93

0.9950 0.67 0.86 0.67 0.66 0.93 0.93
0.9900 0.26 0.69 0.26 0.26 0.89 0.89
0.9800 0.00 0.18 0.01 0.01 0.69 0.69
0.9700 0.00 0.01 0.00 0.00 0.37 0.38
0.9600 0.00 0.00 0.00 0.00 0.11 0.12
0.9500 0.00 0.00 0.00 0.00 0.01 0.01
0.9000 0.00 0.00 0.00 0.00 0.00 0.00
0.7000 0.00 0.00 0.00 0.00 0.00 0.00
0.5000 0.00 0.00 0.00 0.01 0.00 0.00
0.3000 0.00 0.00 0.00 0.01 0.00 0.00
0.1000 0.00 0.00 0.00 0.01 0.00 0.00
0.0000 0.00 0.00 0.00 0.01 0.00 0.00

• Data simulated under the null hypothesis where φ1 = 1 (H
I(1)
0 ): The URTs reject the

null hypothesis as expected close to the significance level of 5%: ADF 5%, ERS-Ptest

6%, ERS-DFGLS 6% and ZA 7%

• Data simulated under the alternative hypothesis where φ1 < 1 (H
I(0)
1 ): The null

hypothesis fails to be rejected at a rate of 5% of the test cases or less as follows from

best to worst:

– ADF and both ERS tests: φ1 ≤ 0.98

– lagged-series test: φ1 ≤ 0.96

– ZA and ZA-lagged-series tests: φ1 ≤ 0.95
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3.1.9 URTs with ADF and Lagged-Series on a Time Series of Length 50

We use DGP 3.9 to perform simulation studies on short TS of length 50 with the lagged-

series and the ADF URTs.

y(t) = φ1x(t) + α+ βt

x(t) = x(t− 1) + ε(t) ; x(0) = 0

ε(t) ∼ N(0, 1) ; cor(ε(t), ε(t− 1)) = 0 ; t = 1, ..., l

α ∼ unif(−1000, 1000) ; β ∼ unif(−100, 100)

(3.9)

Table 3.15: Quantiles of φ̂1 Estimated Via OLS on AR(1) Processes with Intercept and
Trend with l = 50, m = 5000 and s = 12345

φ1 Q:0 Q:0.25 Q:0.50 Q:0.75 Q:1

1 0.21 0.75 0.82 0.88 1.07
0 -0.47 -0.13 -0.04 0.05 0.45

Table 3.15 shows the quantiles of the OLS (conditional-least-squares) estimated AR(1)

multiplier φ1 using DGP 3.9 for two cases when φ1 = 1 (I(1)) and φ1 = 0 (I(0)). We see

that there is considerable variance in both cases; this is expected since it is a very short

time series.

Table 3.16: Proportions Rejections of H
I(1)
0 with ADF URT AR(1) Processes with Intercept

and Trend with l = 50, m = 5000 and s = 12345

φ1 0.01 0.05 0.10

1 0.01 0.05 0.09
0 0.24 0.56 0.73
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Table 3.16 shows the proportions to reject the null hypothesis of a unit root using the

ADFURT for two scenarios of φ1. We see that this test rejects as expected under the null

of φ1 = 1. In the alternative hypothesis case of φ1 = 0ADF does not reject the null as much

as ideally; even with α = 0.10 it does not reject in 27% of the test cases.

Table 3.17: Proportions Rejections of H
I(1)
0 with lagged-series URT AR(1) Processes with

Intercept and Trend with l = 50, m = 5000 and s = 12345

φ1 α = 0.01 α = 0.05 α = 0.10

1 0.02 0.08 0.14
0 0.65 0.93 0.98

Table 3.17 shows the proportions to reject the null hypothesis of a unit root using the

lagged-series URT. We see that this test in this circumstance rejects more than it should

under the null of φ1 = 1. In the φ1 = 0 it rejects considerably more than the ADF case.

Table 3.18: Proportions Rejections of H
I(1)
0 with lagged-series URT with adjusted CVs on

AR(1) Processes with Intercept and Trend with l = 50, m = 5000 and s = 12345

φ1 α = 0.05 α = 0.10

1 0.02 0.08
0 0.65 0.93

We recommend that when using the lagged-series URT if the time series length is short,

less than 300, to use the 0.01 standard CV as the 0.05 CV, and the standard 0.05 CV as

the 0.10 CV. Table 3.18 shows the results of doing this. We see that the lagged-series used

this way has a higher statistical-power than the ADF test: when φ1 = 0 with α = 0.05 it

rejects 65% of the test cases as opposed to 56% of the cases with ADF and with α = 0.10

it rejects 93% of the test cases as opposed to 73% of the cases with ADF .
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3.1.10 URTs on AR(1) TS with Structural Breaks in Intercept

Tables 3.19, and 3.20 summarize the results of simulations performed with Models (3.10).

These models consist of AR(1) processes with one structural break in deterministic intercept

where the break time is determined at random and with independent identically distributed

Gaussian innovations for various values of φ1. There are two sets of tests, the first one has

an intercept of -1 before the structural break and an intercept of 1 after the break (β0 = 1.).

y(t) = x(t) + αt

x(t) = φ1x(t− 1) + ε(t) ; x(0) = 0 ; ε(t) ∼ N(0, 1)

cor(ε(t), ε(t− 1)) = 0

αt =


β0, if t ≥ tu

−β0, otherwise

tu ∼ unif(3, l − 2) ; t = 1, ..., l

(3.10)

The simulation results detailed in Table 3.19 for the intercept pair of -1 before the break

and 1 after the break, can be summarized as follows:

• Data simulated under the alternative hypothesis where φ1 > 1 (HExplosive AR
1 ): The

ERS, ADF and ZA tests do not significantly reject the null hypothesis of even though

ideally they should in this case. However, The lagged-series URT rejects 95% and the

ZA-lagged-series URT rejects 93% of the cases when φ1 = 1.005.

• Data simulated under the null hypothesis where φ1 = 1 (H
I(1)
0 ): The URTs reject the

null hypothesis as expected close to the significance level of 5%: ADF 5%, ERS-Ptest

6%, ERS-DFGLS 6%, lagged-series and ZA-lagged-series 6% and ZA 5%.
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Table 3.19: Proportions of Failures to Reject H
I(1)
0 of URTs on AR(1) Processes with one

Structural Break in Intercept (-1,1) with l = 1000, m = 1000, and α = 5% and s = 12345

φ1 ADF lagged-series ERS-Ptest ERS-DFGLS ZA-lagged-series ZA

1.0050 1.00 0.05 1.00 1.00 0.07 1.00
1.0025 0.98 0.75 0.98 0.98 0.84 0.97

1.0000 0.95 0.94 0.95 0.95 0.94 0.95

0.9950 0.92 0.93 0.90 0.90 0.94 0.94
0.9900 0.85 0.86 0.71 0.73 0.91 0.91
0.9800 0.49 0.48 0.18 0.23 0.71 0.71
0.9700 0.16 0.14 0.01 0.01 0.41 0.42
0.9600 0.03 0.01 0.00 0.00 0.13 0.15
0.9500 0.01 0.00 0.00 0.00 0.02 0.03
0.9000 0.00 0.00 0.00 0.00 0.00 0.00
0.7000 0.00 0.00 0.00 0.00 0.00 0.00
0.5000 0.00 0.00 0.00 0.00 0.00 0.00
0.3000 0.00 0.00 0.00 0.00 0.00 0.00
0.1000 0.00 0.00 0.00 0.00 0.00 0.00
0.0000 0.00 0.00 0.00 0.00 0.00 0.00

• Data simulated under the alternative hypothesis where φ1 < 1 (H
I(0)
1 ): The null

hypothesis fails to be rejected at a rate of 5% of the test cases or less as follows from

best to worst:

– Both ERS tests: φ1 ≤ 0.97

– ADF and lagged-series tests: φ1 ≤ 0.96

– ZA and ZA-lagged-series tests: φ1 ≤ 0.95

The simulation results for the intercept pair of -10 before the break and 10 after the

break (β0 = 10) detailed in Table 3.20 can be summarized as:

• Data simulated under the alternative hypothesis where φ1 > 1 (HExplosive AR
1 ): ERS-

Ptest, ADF and ZA tests do not significantly reject the null hypothesis of even though

ideally they should in this case. However, The lagged-series URT rejects 94% and the

ZA-lagged-series URT rejects 93% of the cases when φ1 = 1.005. The ERS-DFGLS
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Table 3.20: Proportions of Failures to Reject H
I(1)
0 of URTs on AR(1) Processes with one

Structural Break in Intercept (-10,10) with l = 1000, m = 200, and α = 5% and s = 12345

φ1 ADF lagged-series ERS-Ptest ERS-DFGLS ZA-lagged-series ZA

1.010 1.00 0.00 1.00 0.10 0.01 1.00
1.005 1.00 0.06 1.00 1.00 0.07 0.99

1.000 0.92 0.92 0.94 0.93 0.71 0.71

0.990 0.92 0.92 0.93 0.92 0.51 0.51
0.980 0.88 0.88 0.87 0.86 0.19 0.19
0.970 0.85 0.85 0.83 0.83 0.03 0.03
0.960 0.84 0.83 0.79 0.81 0.00 0.00
0.950 0.84 0.82 0.76 0.81 0.00 0.00
0.900 0.89 0.82 0.67 0.83 0.00 0.00
0.000 0.93 0.91 1.00 1.00 0.00 0.00

rejects the null 90% of the cases when φ1 = 1.01.

• Data simulated under the null hypothesis where φ1 = 1 (H
I(1)
0 ): The URTs reject the

null hypothesis more than the significance level of 5%: ADF and lagged-series at 8%,

ERS-Ptest 6%, ERS-DFGLS 7%, and ZA-lagged-series and ZA 29%.

• Data simulated under the alternative hypothesis where φ1 < 1 (H
I(0)
1 ): The null

hypothesis never fails to be rejected at a rate of 5% of the test cases or less for the

ADF, lagged-series and ERS tests. However for φ1 < 0.97 the ZA and ZA-lagged-series

URTs fully reject the null hypothesis of a unit root.

This set of tests cases is the worst performing so far, and only the ZA test has reason-

able behavior under alternative hypotheses but performs poorly under the case of the null

hypothesis of a unit root (with breaks.) This result is understandable as the Zivot Andrews

(ZA) URT does not allow breaks under the null; it only allows breaks under the alternative

hypothesis. Authors, as surveyed by Choi, In (2010, p. 60), note that a stationary AR

process with breaks in intercepts and/or linear trends can be indistinguishable from a unit

root with a linear trend. The seminal work in unit root testing under structural breaks was
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done by Perron, Pierre (1989).

3.1.11 URTs on AR(1) TS with Structural Breaks in Linear Trend

Table 3.21 summarizes the results of simulations performed with Model (3.11). This model

consists of AR(1) processes with one structural break in intercept with independent identi-

cally distributed Gaussian innovations for various values of φ1. The break time is determined

at random; it is uniformly distributed.

y(t) = x(t) + β1t+ (β2 − β1)(t− tu)1{t > tu}

x(t) = φ1x(t− 1) + ε(t) ; x(0) = 0 ; ε(t) ∼ N(0, 1)

cor(ε(t), ε(t− 1)) = 0 ; β1 = −1 ; β2 = 1

tu ∼ unif(3, l − 2) ; t = 1, ..., l

(3.11)

Table 3.21: Proportions of Failures to Reject H
I(1)
0 of URTs on AR(1) Processes with one

Structural Break in Linear Trend (-1,1) with l = 1000, m = 500, and α = 5% and s = 12345

φ1 ADF lagged-series ERS-Ptest ERS-DFGLS lagged-series-ZA ZA

1.010 1.00 0.02 1.00 0.87 0.01 0.99
1.005 1.00 0.82 0.99 0.99 0.12 0.25

1.000 0.94 0.95 0.93 0.93 0.01 0.01

0.990 0.93 0.94 0.91 0.91 0.01 0.01
0.980 0.92 0.93 0.90 0.90 0.01 0.01
0.970 0.91 0.92 0.90 0.90 0.01 0.01
0.960 0.91 0.92 0.90 0.90 0.00 0.00
0.950 0.91 0.92 0.90 0.90 0.00 0.00
0.900 0.91 0.92 0.90 0.90 0.00 0.00
0.000 0.91 0.92 0.90 0.90 0.00 0.00

The results can be summarized as follows:
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• Data simulated under the alternative hypothesis where φ1 > 1 (HExplosive AR
1 ): The

ERS, ADF and ZA tests do not significantly reject the null hypothesis of even though

ideally they should in this case. The lagged-series URT rejects 98% of the test cases,

and the ZA-lagged-series URT rejects 99% of the cases when φ1 = 1.01.

• Data simulated under the null hypothesis where φ1 = 1 (H
I(1)
0 ): Three of the four

URTs reject the null hypothesis as expected close to the significance level of 5%: ADF

6%, lagged-series 5%, ERS-Ptest 7%, ERS-DFGLS 7%. However the ZA URT and

ZA-lagged-series URT have a rejection rate of 99% , which is quite poor.

• Data simulated under the alternative hypothesis where φ1 < 1 (H
I(0)
1 ): The null

hypothesis is never significantly rejected with te ADF, both ERS and lagged-series

URTs regardless of the value of φ1. All of these URTs perform quite poorly in the

case of a structural break of a linear trend. The ZA and the ZA-lagged-series close

to fully reject all test cases which makes them work very well under the alternative

hypothesis,

These results are similar yet worse than those in Table 3.20 with breaks in intercept.

Just as before, the results are understandable as the Zivot Andrews (ZA) URT does not

allow breaks under the null; it only allows breaks under the alternative hypothesis.

3.1.12 URTs on AR(1) TS with Structural Breaks in Intercept and Linear

Trend

Tables 3.22 and 3.23 summarize the results of simulations performed with Model (3.12). This

model consists of AR(1) processes with one structural break in intercept and one structural

break in linear trend with independent identically distributed Gaussian innovations for

various values of φ1. The break time is determined at random; it is uniformly distributed,

and the same break time is used for the intercept change and the linear trend change. Is it

tested with two different set of intercept and trend levels.
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y(t) = x(t) + α1 + (α2 − α1)1{t > tu}+ β1t+ (β2 − β1)(t− tu)1{t > tu}

x(t) = φ1x(t− 1) + ε(t) ; x(0) = 0 ; ε(t) ∼ N(0, 1) ; cor(ε(t), ε(t− 1)) = 0

tu ∼ unif(3, l − 2) ; t = 1, ..., l

(3.12)

Table 3.22: Proportions of Failures to Reject H
I(1)
0 of URTs on AR(1) Processes with one

Structural Break in Intercept U(-1,1) and Linear Trend U(-1,1) with l = 1000, m = 500,
and α = 5% and s = 12345

φ1 ADF lagged-series ERS-Ptest ERS-DFGLS ZA-lagged-series ZA

1.010 1.00 0.01 1.00 0.48 0.00 0.99
1.005 1.00 0.44 0.99 0.99 0.10 0.57

1.000 0.97 0.97 0.97 0.98 0.13 0.13

0.990 0.94 0.95 0.91 0.93 0.09 0.09
0.980 0.88 0.89 0.85 0.86 0.05 0.05
0.970 0.85 0.85 0.83 0.84 0.03 0.03
0.960 0.84 0.84 0.82 0.83 0.01 0.01
0.950 0.84 0.84 0.82 0.83 0.00 0.00
0.900 0.84 0.83 0.83 0.83 0.00 0.00
0.000 0.88 0.87 0.86 0.87 0.00 0.00

The results can be summarized as follows. For Model (3.12) with the smaller intercepts

and trends we pick them uniformly random for each simulation as follows: α1, α2, β1, β2 ∼

unif(−1, 1):

• Data simulated under the alternative hypothesis where φ1 > 1 (HExplosive AR
1 ): The

ERS, ADF and ZA tests do not significantly reject the null hypothesis of even though

ideally they should in this case. However the lagged-series test rejects 99% of the test

cases and the ZA-lagged-series test rejects 100% of the cases when φ1 = 1.01.

• Data simulated under the null hypothesis where φ1 = 1 (H
I(1)
0 ): Four of the unit root
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tests reject the null hypothesis as expected close to the significance level of 5%: ADF

3%, ERS-Ptest 3%, lagged-series 3% and ERS-DFGLS 2%. However the ZA and the

ZA-lagged-series tests have a rejection rate of 87% under the null. The ZA related

tests are the worst performing test under the null hypothesis.

• Data simulated under the alternative hypothesis where φ1 < 1 (H
I(0)
1 ): The null

hypothesis is never significantly rejected with the ADF, the lagged-series and both

ERS tests regardless of the value of φ1. The ZA and the ZA-lagged-series tests reject

the null hypothesis 95% or more of the cases when φ1 ≤ 0.98.

Similar to previous structural change cases, the results are understandable as the Zivot

Andrews (ZA) URT does not allow breaks under the null; it only allows breaks under the

alternative hypothesis. And when using standard unit root tests such as the ADF it is not

possible to distinguish a stationary process with structural breaks in the linear trend from

a unit root with a drift(trend) as in Choi, In (2010, p. 60).

For Model (3.12) with the larger deterministically chosen intercepts α1 = −10, α2 = 10

and trends β1 = 10 and β2 = −10 the results can be summarized as follows:

• Data simulated under the alternative hypothesis where φ1 > 1 (HExplosive AR
1 ): The

ERS, ADF and ZA tests do not significantly reject the null hypothesis of even though

ideally they should in this case. However the lagged-series test rejects 88% of the test

cases and the ZA-lagged-series test rejects 97% of the cases when φ1 = 1.01.

• Data simulated under the null hypothesis where φ1 = 1 (H
I(1)
0 ): Four of the unit root

tests reject the null hypothesis is not close to the significance level of 5%: ADF 8%,

ERS-Ptest 10%, lagged-series 8% and ERS-DFGLS 10%. The ZA and the ZA-lagged-

series tests have a rejection rate of 100% under the null. The ZA related tests are

the worst performing test under the null hypothesis.

• Data simulated under the alternative hypothesis where φ1 < 1 (H
I(0)
1 ): The null

hypothesis is never significantly rejected with the ADF, the lagged-series and both
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ERS tests regardless of the value of φ1. The ZA and the ZA-lagged-series tests reject

the null hypothesis 100% of the cases when φ1 ≤ 1.

Table 3.23: Proportions of Failures to Reject H
I(1)
0 of URTs on AR(1) Processes with one

Structural Break in Intercept(10,-10) and Linear Trend (-10,10) with l = 1000, m = 500,
and α = 5% and s = 12345

φ1 ADF lagged-series ERS-Ptest ERS-DFGLS ZA-lagged-series ZA

1.010 1.00 0.12 1.00 0.98 0.03 0.92
1.005 0.96 0.94 0.97 0.97 0.02 0.05

1.000 0.92 0.92 0.90 0.90 0.00 0.00

0.990 0.92 0.92 0.90 0.90 0.00 0.00
0.980 0.91 0.92 0.90 0.90 0.00 0.00
0.970 0.91 0.92 0.90 0.90 0.00 0.00
0.960 0.91 0.92 0.90 0.90 0.00 0.00
0.950 0.91 0.92 0.90 0.90 0.00 0.00
0.900 0.91 0.92 0.90 0.90 0.00 0.00
0.000 0.91 0.92 0.90 0.90 0.00 0.00

Just as in the previous case, the results are understandable as the Zivot Andrews (ZA)

URT does not allow breaks under the null; it only allows breaks under the alternative hy-

pothesis. And the standard unit root tests such as the ADF cannot distinguish a stationary

process with structural breaks in the linear trend from a unit root with a drift(trend) as in

Choi, In (2010, p. 60).

3.1.13 Comparison of Lee Strazicich and HBPZA URT under Breaks in

Intercept and Trend

The Lee Strazicich (LS) URT (Lee, J. and Strazicich, M.C., 2003) and the Hybrid Bai-

Perron Zivot-Andrews (HBPZA) URT proposed in this thesis both allow strucutural breaks

of the intercept and/or linear trend under the null hypothesis of a unit root. Simulations

were preformed with AR(1) TS with one structural break using Model (3.12) with α1 =

50, α2 = 1000, β1 = 1, β2 = 3 under various levels of φ1. The break times were 25% and
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50% of the time series length. Two sets of tests were performed, one with time series of

length 100 summarized in Table 3.24, and one with time series length 500 summarized in

Table 3.25.

Table 3.24: Proportions of Failures to Reject H
I(1)
0 of URTs on AR(1) Processes with 1

break in intercept and trend with l = 100, m = 500, and α = 5% and s = 123456

Breakpoint
φ1 HBPZA LS Breaks Proportion α1 α2 β1 β2

1.01 0.97 0.08 1 0.25 50 1000 1 3

1.00 0.96 0.05 1 0.25 50 1000 1 3

0.97 0.95 0.07 1 0.25 50 1000 1 3
0.95 0.96 0.06 1 0.25 50 1000 1 3
0.90 0.95 0.05 1 0.25 50 1000 1 3
0.50 0.51 0.04 1 0.25 50 1000 1 3
0.25 0.03 0.02 1 0.25 50 1000 1 3
0.00 0.00 0.01 1 0.25 50 1000 1 3
1.01 0.95 0.51 1 0.50 50 1000 1 3

1.00 0.95 0.49 1 0.50 50 1000 1 3

0.97 0.96 0.50 1 0.50 50 1000 1 3
0.95 0.96 0.51 1 0.50 50 1000 1 3
0.90 0.95 0.49 1 0.50 50 1000 1 3
0.50 0.37 0.33 1 0.50 50 1000 1 3
0.25 0.04 0.24 1 0.50 50 1000 1 3
0.00 0.00 0.20 1 0.50 50 1000 1 3

The summary of results with time series length 100 is as follows:

• Data simulated under the alternative hypothesis where φ1 > 1 (HExplosive AR
1 ): The

HBPZA test does not significantly reject the null hypothesis of a unit root even though

ideally they should in this case. However the Lee-Strazicich(LS) test rejects 92% of

the test cases when φ1 = 1.01 and the break time is 25; when the break time is 50 it

only rejects 49% of the test cases.

• Data simulated under the null hypothesis where φ1 = 1 (H
I(1)
0 ): The HBPZA test

rejects the null hypothesis close to the significance level of 5% for both break times
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of 50 and 25. However the Lee-Srazicich test rejects 95% of the test cases under the

null when the break time is 25 and 51% when the break time is 50.

• Data simulated under the alternative hypothesis where φ1 < 1 (H
I(0)
1 ): When the

break time is 25 the Lee-Strazicich significantly outperforms the HBPZA test in this

scenario up to φ1 = 0.25 when both tests become similar. However when the break

time is 50 the Lee-Strazicich test does not reject as much as before in this scenario

and the HBPZA performs better than with a break time of 25.

Table 3.25: Proportions of Failures to Reject H
I(1)
0 of URTs on AR(1) Processes with 1

break in intercept and trend with l = 500, m = 500, and α = 5% and s = 123456

Breakpoint
φ1 HBPZA LS Breaks Proportion α1 α2 β1 β2

1.01 0.13 0.45 1 0.25 50 1000 1 3

1.00 0.99 0.00 1 0.25 50 1000 1 3

0.97 0.99 0.00 1 0.25 50 1000 1 3
0.95 0.96 0.00 1 0.25 50 1000 1 3
0.90 0.73 0.00 1 0.25 50 1000 1 3
0.50 0.00 0.00 1 0.25 50 1000 1 3
0.25 0.00 0.00 1 0.25 50 1000 1 3
0.00 0.00 0.00 1 0.25 50 1000 1 3
1.01 0.54 0.10 1 0.50 50 1000 1 3

1.00 1.00 0.64 1 0.50 50 1000 1 3

0.97 0.99 0.68 1 0.50 50 1000 1 3
0.95 0.98 0.68 1 0.50 50 1000 1 3
0.90 0.88 0.37 1 0.50 50 1000 1 3
0.50 0.00 0.00 1 0.50 50 1000 1 3
0.25 0.00 0.00 1 0.50 50 1000 1 3
0.00 0.00 0.00 1 0.50 50 1000 1 3

The summary of results with time series length 500 is as follows:

• Data simulated under the alternative hypothesis where φ1 > 1 (HExplosive AR
1 ): The

HBPZA test 87% of the test cases and the Lee-Strazicich(LS) test rejects 55% of the

test cases when φ1 = 1.01 when the break time is 125. When the break time is 250
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the HBPZA rejects 46% of the test cases, and the Lee-Strazicich rejects 90% of the

test cases when φ1 = 1.01.

• Data simulated under the null hypothesis where φ1 = 1 (H
I(1)
0 ): The HBPZA test

rejects the null hypothesis less than the significance level of 5% for both break times

of 125 and 250. However the Lee-Srazicich test rejects 100% of the test cases under

the null when the break time is 50 and 51% when the break time is 50.

• Data simulated under the alternative hypothesis where φ1 < 1 (H
I(0)
1 ): When the

break time is 125 the Lee-Strazicich significantly outperforms the HBPZA test in this

scenario up to φ1 = 0.5 when both tests become similar. However when the break

time is 250 the Lee-Strazicich test does not reject as much as before in this scenario.

3.1.14 Testing with AR(2) Processes

I tested the lagged-series, ERS Ptest and DFGLS unit root tests with AR(2) processes

with l = 500, m = 1000 for the Model x(t) = φ1x(t − 1) + φ2x(t − 2) + εt where x(0) ∼

N(0, 1) ; x(1) ∼ N(0, 1) ; εt ∼ N(0, 1) and with independent innovations. The results are

summarized on Table 3.26. The AR characteristic polynomial Equation (1.31) needs to be

solved to determine if these AR(2) processes have 1, 2, or no unit roots, where a unit root

is a root with a modulus of 1. The modulus of the two roots are in the last two columns

of Table 3.26. We see that the lagged-series Unit test out-performs the cases where the

multipliers are φ1 = 1, φ2 = 0.01 and φ1 = 1, φ2 = 0.005 which do not contain a unit root.

In the case of φ1 = 1, φ2 = −1 ERS-DFGLS outperforms the others, however it still does

not make for a valid unit root test under this scenario as it rejects 68% of the test cases and

it should only reject 5% of the cases. In any case the lagged-series Test always produces

better results than the ADF test, and sometimes better and sometimes worse than the ERS

DF-GLS and Ptest tests for the evaluated AR(2) cases.
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Table 3.26: Proportions of Failures to Reject H
I(1)
0 with lagged-series and Other Tests on

AR(2) Processes with l = 500, m = 1000 and α = 5%

ERS ERS Root1 Root2
φ1 φ2 ADF lagged-series PTest DFGLS Modulus Modulus

2.000 -1.000 0.934 0.943 0.780 0.951 1.000 1.000

1.897 -0.900 0.78 0.625 0.540 0.632 1.038 1.071

1.000 -1.000 0.000 0.000 0.013 0.320 1.000 1.000

1.000 -0.050 0.310 0.062 0.039 0.075 1.056 18.944
1.000 0.010 1.000 0.047 0.998 0.998 0.990 100.990
1.000 0.005 0.984 0.686 0.977 0.981 0.995 200.995

3.1.15 URTs on I(2),I(3) and I(4) Processes

We will develop how to derive I(2), I(3) and I(4) processes for the purpose of simulation

and we will write them in auto-regressive form first to consider how these processes com-

pare to I(1) processes. First we define a random walk AR(1) process in recursive form in

Equation (3.13). This is an I(1) process:

x(t) = x(t− 1) + ε(t)

x(0) = 0

(3.13)

Now we define an I(2) process in recursive form in Equation (3.14), which reuses Equa-

tion (3.13).

y(t) = y(t− 1) + x(t− 1) + ε(t)

y(0) = 0

(3.14)
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We define an I(3) process in recursive form in Equation (3.15), which reuses Equa-

tions (3.14) and (3.13).

z(t) = z(t− 1) + y(t− 1) + x(t− 1) + ε(t)

z(0) = 0

(3.15)

We see that all I(1), I(2) and I(3) processes embed a unit root plus additional additive

terms that weigh past values even higher. However these processes are not as potentially

ill-behaved/non-convergent as explosive AR(1) processes with φ1 > 1. So we would not be

surprised if URTs such as ADF are used with I(2), I(2) and I(4) series that they would not

reject the null hypothesis of a unit root since they do not reject with an explosive AR(1)

process (φ1 > 1). We see this behavior in the simulations performed in Chapter 3 these

higher integrated processes.

In Equation (3.16) we see that if we difference Equation (3.13) once we end up with an

I(0) series.

∆x = x(t)− x(t− 1) = ε(t) (3.16)

In Equation (3.17) we see that if we difference Equation (3.14) twice we end up with a

stationary process, i.e., I(0).

∆y = y(t)− y(t− 1) = x(t− 1) + ε(t)

∆∆y = x(t− 1) + ε(t)− x(t− 2)− ε(t− 1)

= ε(t− 1) + ε(t)− ε(t− 1) = ε(t)

(3.17)

In Equation (3.18) we see that if we difference Equation (3.15) thrice we end up with
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an I(0) series.

∆z = z(t)− z(t− 1) = y(t− 1) + x(t− 1) + ε(t)

∆∆z = y(t− 1) + x(t− 1) + ε(t)− y(t− 2)− x(t− 2)− ε(t− 1)

= x(t− 2) + ε(t− 1) + ε(t− 1) + ε(t)− ε(t− 1) = x(t− 2) + ε(t− 1) + ε(t)

= x(t− 2) + x(t− 1)− x(t− 2) + ε(t) =

x(t− 1) + ε(t)

∆∆∆z = x(t− 1) + ε(t)− x(t− 2)− ε(t− 1)

= ε(t− 1) + ε(t)− ε(t− 1)

= ε(t)

(3.18)

In R we can generate these integrated order n processes of length 1000 as follows:

• For I(1): cumsum(rnorm(1000))

• For I(2): cumsum(cumsum(rnorm(1000)))

• For I(3): cumsum(cumsum(cumsum(rnorm(1000))))

• For I(4): cumsum(cumsum(cumsum(cumsum(rnorm(1000)))))

The cumsum() function creates a series that has the cumulative sum of the elements of

initial series up to that each element.

Table 3.27 shows simulation tests of the proportions of failures to reject the null hypoth-

esis of a unit root with I(1), I(2), I(3) and I(4) processes using various URTs with a time

series length of 1000. Table 3.28 is similar but summarizes the results using a time series

length of 500 instead. We see that the ADF, ERS-DFGLS and ERS-ptest never reject more

128



than 6% of the cases. The lagged-series URT rejects 65.4% of cases for I(3) processes and

close to 86% of cases for I(4) processes.

Table 3.27: Proportions of Failures to Reject H
I(1)
0 with lagged-series and Other Tests on

I(1),I(2),I(3) and I(4) TS with l = 1000, m = 2000 and α = 0.05 with a lagged-series lag of
30

I(x) ADF lagged-series ERS-Ptest ERS-DFGLS ERS-lagged-series

I(1) 0.9460 0.9405 0.9505 0.9495 0.9505
I(2) 0.9370 0.9375 0.7805 0.9440 0.7805
I(3) 0.9470 0.3245 0.8755 0.9550 0.4675
I(4) 0.9435 0.1115 0.9695 0.9720 0.2015

Table 3.28: Proportions of Failures to Reject H
I(1)
0 with lagged-series and Other Tests on

I(1),I(2),I(3) and I(4) TS with l = 500, m = 2000 and α = 0.05 with a lagged-series lag of
30

I(x) ADF lagged-series ERS-Ptest ERS-DFGLS ERS-lagged-series

I(1) 0.9570 0.9435 0.9465 0.9530 0.9460
I(2) 0.9385 0.9255 0.7760 0.9520 0.7750
I(3) 0.9605 0.3460 0.8600 0.9555 0.4830
I(4) 0.9425 0.1380 0.9705 0.9675 0.2430

3.1.16 Threshold Unit Root Tests

The three regime threshold Model (3.19) was used for simulations under various combina-

tions of the auto-regressive multipliers φH1 , φM1 and φL1 corresponding to the high(H), mid-

dle(M) and low(L) regimes. Two different sets of symmetric thresholds were used (θH = 2,

θL = −2) and (θH = 20,θL = −20). Threshold models are complex to fit as there are many

factors that affect the quality of the fit including the amount of data in each regime, and

the number of parameters that need to be fit, and the length of the TS. If the threshold

parameters are known, then conditional least squares can be used to fit the model.
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zt =


φH1 zt−1 + εt, if zt−1 > θH

φM1 zt−1 + εt, if θL ≤ zt−1 ≤ θH

φL1 zt−1 + εt, if zt−1 < θL

(3.19)

Stigler,Matthieu (2010) points out the common assumed case where Model (3.19) is

stationary is when φh < 1 and φl < 1. The AR multiplier φM1 in the middle regime

does not matter much as long as the high and/or low regimes are being activated. If the

realization of the process were to always stay in the middle regime because the threshold

values are never reached, then for all practical purposes this regime would be the important

one to consider. Simulations were performed under different combinations of AR multipliers

for each high(φH1 ), middle(φM1 ) and low(φL1 ) regimes, for two sets of symmetric thresholds

(θL = −2, θH = 2) and (θL = −20, θH = 20) and tests were done for time series of length

1000, 300, and 100.

Table 3.29: Proportions of Failures to Reject H
I(1)
0 of Unit Root Tests on Various Threshold

AR(1) Processes with l = 1000, m = 500, and α = 0.05 and s = 12345

θH θL φH1 φM1 φL1 ADF lagged-series ERS-Ptest ERS-DFGLS BBC
2 -2 1.00 1.00 1.00 0.94 0.94 0.93 0.93 0.94
2 -2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 -2 1.00 0.90 1.00 0.91 0.93 0.91 0.91 0.92
2 -2 1.00 1.10 1.00 0.96 0.94 0.95 0.96 0.93
2 -2 1.01 1.10 1.01 1.00 0.00 1.00 1.00 0.00
2 -2 0.90 1.00 0.90 0.00 0.00 0.00 0.00 0.00
2 -2 0.90 1.10 0.90 0.00 0.00 0.00 0.00 0.00

20 -20 1.00 0.90 1.00 0.00 0.00 0.00 0.00 0.00
20 -20 1.00 1.10 1.00 1.00 0.34 1.00 1.00 0.41
20 -20 1.01 1.10 1.01 1.00 0.00 1.00 1.00 0.00
20 -20 0.90 1.00 0.90 0.91 0.83 0.91 0.91 0.48
20 -20 0.90 1.10 0.90 1.00 0.00 1.00 1.00 0.00

The results for tests with time series of length 1000 are in Table 3.29 and can be
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summarized as follows:

• Trivial unit root(φH1 = φM1 = φL1 = 1): As expected the tests reject close to the 5%

rate of the test cases as dictated by the significance level of 0.05: ADF 6%, lagged-

series 6%, ERS-Ptest 7%, ERS-DFGLS 7% and BBC 6%.

• Unit root(φH1 = φL1 = 1, φM1 <> 1): When the threshold range is (θL = −2, θH = 2)

all the tests perform relatively well and reject only close to 5% of the test cases as

expected, however the ERS tests perform worse when φM1 = 0.9 and reject 9% of the

cases. When the threshold range is (θL = −20, θH = 20) the results are significantly

worse where all of the tests fully reject the null of a unit root when φM1 = 0.9 most

likely because the process stays in the middle regime. When φM1 = 1.1 the ERS tests

do not reject the null root hypothesis at all, and the lagged-series and the BBC test

reject much more, 66% and 59% respectively.

• Stationary process(φH1 = φL1 = 0.9) When the threshold range is (θL = −2, θH = 2)

all the tests perform quite well and reject the null hypothesis of a unit root 100% of

the cases. When the threshold range is (θL = −20, θH = 20) when φM1 = 1 all of

the tests do not significantly reject the null of a unit root; the BBC test is the best

with a 52% rejection rate. When the middle regime is explosive (φM1 = 1.1) both the

lagged-series and BBC tests fully reject all tests for a unit root, and the ADF and

ERS tests do not reject any. This is the scenario and the fully explosive scenario is

where we see the largest contrast between tests.

• Fully explosive process(φH1 = 1.01, φM1 = 1.1, φL1 = 1.01): Both the lagged-series and

BBC tests fully reject all tests for a unit root, and the ADF and ERS tests do not

reject any for both threshold ranges.

The results for tests with time series of length 300 are in Table 3.30 and can be sum-

marized as follows:
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Table 3.30: Proportions of Failures to Reject H
I(1)
0 of Unit Root Tests on Various Threshold

AR(1) Processes with l = 300, m = 500, and α = 0.05 and s = 12345

θH θL φH1 φM1 φL1 ADF lagged-series ERS-Ptest ERS-DFGLS BBC
2 -2 1.00 1.00 1.00 0.95 0.95 0.94 0.94 0.95
2 -2 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00
2 -2 1.00 0.90 1.00 0.93 0.95 0.92 0.91 0.93
2 -2 1.00 1.10 1.00 0.96 0.94 0.96 0.96 0.92
2 -2 1.01 1.10 1.01 1.00 0.58 0.99 0.99 0.82
2 -2 0.90 1.00 0.90 0.00 0.08 0.00 0.01 0.64
2 -2 0.90 1.10 0.90 0.00 0.16 0.01 0.01 0.49

20 -20 1.00 0.90 1.00 0.00 0.05 0.00 0.01 0.70
20 -20 1.00 1.10 1.00 1.00 0.33 1.00 1.00 0.55
20 -20 1.01 1.10 1.01 1.00 0.06 1.00 1.00 0.11
20 -20 0.90 1.00 0.90 0.95 0.94 0.94 0.94 0.80
20 -20 0.90 1.10 0.90 1.00 0.08 1.00 1.00 0.00

• Trivial unit root(φH1 = φM1 = φL1 = 1): As expected the tests reject close to the 5%

rate of test cases as dictated by the significance level of 0.05: ADF 5%, lagged-series

5%, ERS-Ptest 6%, ERS-DFGLS 6% and BBC 5%.

• Unit root(φH1 = φL1 = 1, φM1 <> 1): When the threshold range is (θL = −2, θH = 2)

all the tests perform relatively well and reject only close to 5% of the test cases as

expected, however the ERS tests perform worse when φM1 = 0.9 and reject 8% to

9% of the cases. When the threshold range is (θL = −20, θH = 20) with φM1 = 0.9

the results are significantly worse where the ERS reject 100% to 99% of the cases,

the lagged-series tests reject 95% of the tests of a unit root. However the BBC only

rejects 30% of the cases; the process spends considerable more time in the middle

regime than with the smaller thresholds. When φM1 = 1.1 the ERS tests do not reject

the null root hypothesis at all, and the lagged-series and the BBC test reject much

more, 67% and 45% respectively.

• Stationary process(φH1 = φL1 = 0.9) When the threshold range is (θL = −2, θH = 2)

all the ADF and ERS perform very well and reject the null hypothesis of a unit root
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at least 99% of the cases. The lagged-series tests rejects at least 84% of the tests in

this scenario. However the BBC test does not perform as well and rejects at most

36% of the cases. When the threshold range is (θL = −20, θH = 20) when φM1 = 1 all

of the tests do not significantly reject the null of a unit root; the BBC test is the best

with a 20% rejection rate. When the middle regime is explosive (φM1 = 1.1) the BBC

tests fully reject all tests for a unit root, the lagged-series rejects 92% of the cases

and and the ADF and ERS tests do not reject any. This is the scenario and the fully

explosive scenario is where we see the largest contrast between tests.

• Fully explosive process(φH1 = 1.01, φM1 = 1.1, φL1 = 1.01): The ADF and ERS tests

at most reject 1% of the test cases for a unit root for both threshold ranges. The

lagged-series tests rejects 42% of the tests cases for a unit root and the BBC rejects

18% when the threshold range is (θL = −2, θH = 2). When the threshold range is

(θL = −20, θH = 20) the lagged-series tests rejects 94% of the tests cases for the null

of a unit root and the BBC rejects 89%.

Table 3.31: Proportions of Failures to Reject H
I(1)
0 of Unit Root Tests on Various Threshold

AR(1) Processes with l = 100, m = 500, and α = 0.05 and s = 12345

θH θL φH1 φM1 φL1 ADF lagged-series ERS-Ptest ERS-DFGLS BBC
2.0 -2.0 1.00 1.00 1.00 0.96 0.95 0.93 0.93 0.95
2.0 -2.0 0.00 0.00 0.00 0.00 0.00 0.02 0.21 0.01
2.0 -2.0 1.00 0.90 1.00 0.91 0.95 0.90 0.90 0.95
2.0 -2.0 1.00 1.10 1.00 0.97 0.94 0.95 0.95 0.95
2.0 -2.0 1.01 1.10 1.01 0.98 0.96 0.97 0.97 0.95
2.0 -2.0 0.90 1.00 0.90 0.39 0.82 0.39 0.51 0.90
2.0 -2.0 0.90 1.10 0.90 0.52 0.84 0.49 0.59 0.86

20.0 -20.0 1.00 0.90 1.00 0.27 0.76 0.28 0.40 0.93
20.0 -20.0 1.00 1.10 1.00 1.00 0.67 1.00 1.00 0.52
20.0 -20.0 1.01 1.10 1.01 1.00 0.94 1.00 1.00 0.82
20.0 -20.0 0.90 1.00 0.90 0.96 0.95 0.93 0.93 0.95
20.0 -20.0 0.90 1.10 0.90 1.00 0.49 1.00 1.00 0.00
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The results for tests with time series of length 100 are in Table 3.31 and can be sum-

marized as follows:

• Trivial unit root(φH1 = φM1 = φL1 = 1): As expected the tests reject close to the 5%

rate of test cases as dictated by the significance level of 0.05: ADF 4%, lagged-series

5%, ERS-Ptest 7%, ERS-DFGLS 7% and BBC 5%.

• Unit root(φH1 = φL1 = 1, φM1 <> 1): When the threshold range is (θL = −2, θH = 2)

all the tests perform relatively well and reject only close to 5% of the test cases as

expected, however the ERS tests perform worse when φM1 = 0.9 and reject 10% of the

cases. When the threshold range is (θL = −20, θH = 20) with φM1 = 0.9 the results are

significantly worse where the ERS reject 60% to 72% of the cases, the lagged-series

tests reject 24% of the tests of a unit root. However the BBC only rejects 7% of

the cases; the process spends considerable more time in the middle regime than with

the smaller thresholds. When φM1 = 1.1 the ERS tests do not reject the null root

hypothesis at all, and the lagged-series and the BBC test reject much more, 33% and

48% respectively.

• Stationary process(φH1 = φL1 = 0.9): When the threshold range is (θL = −2, θH = 2)

none of the tests sufficiently reject, the ERS-Ptest performs best here rejecting 61%

of the cases when φM1 = 1 and 51% of the cases when φM1 = 1.1 . When the threshold

range is (θL = −20, θH = 20) when φM1 = 1 all of the tests do not significantly reject

the null of a unit root. When the middle regime is explosive (φM1 = 1.1) the BBC

tests fully reject all tests for a unit root, the lagged-series rejects 51% of the cases and

and the ADF and ERS tests do not reject any. This is the scenario where we see the

largest contrast between tests with length 100.

• Fully explosive process(φH1 = 1.01, φM1 = 1.1, φL1 = 1.01): All tests hardly reject the

null hypothesis of a unit root.
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3.1.17 Summary of Results with Threshold Simulations

For the given threshold simulations URTs performed with the given URTs there is no single

test that outperforms the others in every case. It is clear that the time series length is a

significant factor in these tests, as well as of course the threshold settings–if the process

does not have sufficient data in all thresholds then it is impossible to expect the tests to

work across all thresholds. We see that the lagged-series and the BBC tests deal best with

explosive regimes.

3.2 Simulations with the Hybrid Bai-Perron ADF I(0)/I(1)

(HBPADF) Testing Procedure

yt = φA1 yt−11{t ≤ TB}+ φB1 yt−11{t > TB} (3.20)

Table 3.32: Proportions of Failures to Reject H
I(1)
0 on a AR(1) Series with a Break in φ1

l = 1000,m = 1000 and α = 0.05

Break

Proportion φA1 φB1 ΓA
ADF ΓB

ADF ΓAll
ADF

0.50 0.000 0.000 0.00 0.00 0.00
0.50 1.000 1.000 0.93 0.92 0.94
0.50 1.000 0.500 0.94 0.03 0.87
0.50 0.900 1.000 0.09 0.89 0.85
0.50 1.000 0.900 0.91 0.05 0.83
0.50 1.000 0.950 0.84 0.31 0.83
0.50 1.000 0.980 0.90 0.74 0.90
0.25 0.000 0.000 0.00 0.00 0.00
0.25 1.000 1.000 0.93 0.92 0.94
0.25 1.000 0.500 0.96 0.01 0.65
0.25 0.900 1.000 0.68 0.90 0.94
0.25 1.000 0.900 0.83 0.01 0.45
0.25 1.000 0.950 0.58 0.11 0.47
0.25 1.000 0.980 0.72 0.62 0.72

Simulations were performed using the DGP (3.20) which has breaks only in the AR φ1
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multiplier with time series of length l = 1000 and are summarized in Table 3.32. We see

that the approach works well to distinguish between φ1 = 1 vs. φ1 = 0.9 when the break

happens in the middle of the time series (break proportion=0.5), however the I(1) to I(0)

transition is better detected than the I(0) to I(1) transition. When the break happens in the

first quarter of the time series (break proportion=0.25) the approach works much better to

distinguish between an I(1) to I(0) with φ1 = 0.9 transition, but it is not good to distinguish

between an I(0) to I(1) change. The results when the break happens in the first quarter

of the time series are not as good, especially much worse results with I(0) to I(1) changes

than with I(1) to I(0) changes.

Table 3.33: Proportions of Failures to Reject H
I(1)
0 on a AR(1) Series with a Break in φ1

l = 100,m = 1000 and α = 0.05

Break

Proportion φA1 φB1 ΓA
ADF ΓB

ADF ΓAll
ADF

0.50 0.000 0.000 0.06 0.06 0.06
0.50 1.000 1.000 0.94 0.94 0.96
0.50 1.000 0.500 0.93 0.65 0.91
0.50 0.900 1.000 0.90 0.93 0.93
0.50 1.000 0.900 0.94 0.93 0.95
0.50 1.000 0.950 0.95 0.95 0.97
0.50 1.000 0.980 0.94 0.95 0.96
0.25 0.000 0.000 0.06 0.06 0.06
0.25 1.000 1.000 0.94 0.94 0.96
0.25 1.000 0.500 0.79 0.43 0.74
0.25 0.900 1.000 0.94 0.95 0.96
0.25 1.000 0.900 0.91 0.88 0.91
0.25 1.000 0.950 0.93 0.92 0.94
0.25 1.000 0.980 0.95 0.94 0.95

Simulations performed using the DGP (3.20) which has breaks only in the AR φ1 mul-

tiplier with a now shorter time series of length l = 100 are summarized in Table 3.33. We

see that the approach does not work well to distinguish between φ1 = 1 vs. φ1 = 0.9. If we

consider the case where the series transitions from a unit root (φ1 = 1) to φ1 = 0.5 with a
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break in the middle of the series, the proportions of the failures to reject the null of a unit

root are not good (0.95, 0.65) so it rejects only 35% of cases on the second segment which

is I(0). However if we were to compare this to running the ADF test on the entire TS as is

displayed on the last column of the table (0.91) we would only reject in 9% of the cases.

yt = φA1 yt−11{t ≤ TB}+ φB1 yt−11{t > TB}+

+µ1 + (µ2 − µ1)1{t > TB}+

+(t− TB)(β2 − β11)1{t > TB}+ βt+ et

µ1 = 10 ; µ2 = −30 ; β1 = 5 ; β2 = −2

(3.21)

Table 3.34: Proportions of Failures to Reject H
I(1)
0 on a AR(1) Series with a Break in φ1,

intercept and linear trend with l = 1000,m = 1000 and α = 0.05

Break

Proportion φA1 φB1 µA µB µAt µBt ΓA
ADF ΓB

ADF ΓAll
ADF

0.50 0.000 0.000 10 -30 5 -2 0.00 0.00 1.00
0.50 1.000 1.000 10 -30 5 -2 0.96 0.96 1.00
0.50 1.000 0.500 10 -30 5 -2 0.96 0.00 1.00
0.50 0.900 1.000 10 -30 5 -2 0.01 0.96 1.00
0.50 1.000 0.900 10 -30 5 -2 0.96 0.00 1.00
0.50 1.000 0.950 10 -30 5 -2 0.96 0.14 1.00
0.50 1.000 0.980 10 -30 5 -2 0.96 0.67 1.00
0.25 0.000 0.000 10 -30 5 -2 0.00 0.00 0.03
0.25 1.000 1.000 10 -30 5 -2 0.96 0.95 0.04
0.25 1.000 0.500 10 -30 5 -2 0.96 0.00 0.15
0.25 0.900 1.000 10 -30 5 -2 0.47 0.95 0.02
0.25 1.000 0.900 10 -30 5 -2 0.96 0.00 0.03
0.25 1.000 0.950 10 -30 5 -2 0.96 0.02 0.04
0.25 1.000 0.980 10 -30 5 -2 0.96 0.58 0.04

Table 3.34 summarizes the results of the new testing procedure run on simulations were
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performed with changes in the AR φ1 multiplier as well as in the intercept and linear trend

with time series of length l = 1000 using DGP (3.21). We see that the approach works very

well to distinguish between φ1 = 1 vs. φ1 = 0.9 when the break happens in the middle of

the time series (break proportion=0.5) as well as the transition from φ1 = 0.9 to φ1 = 1.

When the break happens in the first quarter of the time series (break proportion=0.25) the

approach works well to distinguish between an I(1) to I(0) with φ1 = 0.9 transition, but it

is not good to distinguish between an I(0) to I(1).

Table 3.35: Proportions of Failures to Reject H
I(1)
0 on a AR(1) Series with a Break in φ1,

intercept and linear trend with l = 100,m = 1000 and α = 0.05

Break

Proportion φA1 φB1 µA µB µAt µBt ΓA
ADF ΓB

ADF ΓAll
ADF

0.50 0.000 0.000 10 -30 5 -2 0.49 0.21 1.00
0.50 1.000 1.000 10 -30 5 -2 0.96 0.95 1.00
0.50 1.000 0.500 10 -30 5 -2 0.96 0.52 1.00
0.50 0.900 1.000 10 -30 5 -2 0.94 0.95 1.00
0.50 1.000 0.900 10 -30 5 -2 0.96 0.92 1.00
0.50 1.000 0.950 10 -30 5 -2 0.96 0.95 1.00
0.50 1.000 0.980 10 -30 5 -2 0.96 0.95 1.00
0.25 0.000 0.000 10 -30 5 -2 0.83 0.09 0.00
0.25 1.000 1.000 10 -30 5 -2 0.95 0.95 0.00
0.25 1.000 0.500 10 -30 5 -2 0.95 0.33 0.00
0.25 0.900 1.000 10 -30 5 -2 0.95 0.95 0.00
0.25 1.000 0.900 10 -30 5 -2 0.95 0.90 0.00
0.25 1.000 0.950 10 -30 5 -2 0.95 0.95 0.00
0.25 1.000 0.980 10 -30 5 -2 0.95 0.94 0.00

Table 3.35 summarizes the results of the new testing procedure run on simulations were

performed with changes in the AR φ1 multiplier as well as in the intercept and linear trend

with time series of length l = 100 using DGP (3.21). We see that the approach does not

work well to distinguish between φ1 = 1 vs. φ1 = 0.9. If we consider the case where the

series transitions from a unit root (φ1 = 1) to φ1 = 0.5 with a break in the middle of the

series, the proportions of the failures to reject the null of a unit root are not good (0.96,

138



0.52) so it rejects only 48% of cases on the second segment which is I(0). However if we

were to compare this to running the ADF test on the entire TS as is displayed on the last

column of the table (1.0) we would not reject at all in this case.

3.2.1 Summary of BPADF Tests

We have seen that this new HBPADF testing procedure is sensitive to the time series length

and the location of the structural break. When the series is of length 1000 and the break

occurs in the middle the procedure works well; it is not as good when the break happens

in the first quarter. When the time series length is reduced to 100 the results are worse,

however when compared to using a single unit root test on the entire time series, this

approach is still significantly more accurate.

3.2.2 Summary of Unit Root Tests

The ADF,ERS-Ptest, ERS-DFGLS and ZA URTs (URT) simulation studies detailed in this

chapter can be summarized as follows:

• None of these tests reject the null hypothesis of a unit root (φ1 = 1) when the simulated

data follow an explosive AR process (φ1 > 1)

• When there are no structural breaks in intercept and/or linear trend in the simulated

data:

– Under a significance level of 0.05 all of these tests when run with simulated data

under the null hypothesis reject the null hypothesis close to 5% rate of test cases

as expected.

– This is true regardless of whether the innovations are Gaussian, or Beta dis-

tributed, or Gaussian with Gaussian distributed standard deviations, or even if

the Gaussian innovations are significantly positively or negatively pairwise cor-

related (-0.8, +0.8 or +0.9999).
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– When φ1 < 1 generally the ERS tests are the best performers in terms of rejecting

the null hypothesis, followed by the ADF test and finally the ZA test is the worst

performing when there are no structural breaks. The best performing test in

these scenarios is the ERS-Ptest.

– When φ1 < 1 and the innovations are Gaussian and largely negatively pairwise

correlated (-0.8) the tests do not perform as well as with 0 or positively pairwise

correlated. For instance for ERS-Ptest the null hypothesis is rejected with simu-

lated data with φ1 ≤ 0.97 at a rate of 5% or less with a 0.8 correlation, yet with

a correlation of -0.8 the null hypothesis is rejected at a rate of 5% or less with

φ1 ≤ 0.90.

• When there are structural breaks in intercept in the simulated data if the intercepts

are small (-1,1) then all URTs perform reasonably well. However if the intercepts

are large (-10,10) then the only test that produces somewhat reasonable results is ZA

even though it is far from ideal–it will reject the null hypothesis at a rate of 26% when

tested on data simulated with φ1 = 1.

• When there are structural breaks in linear trend in the simulated data none of the

tests perform satisfactorily.

• When there are structural breaks in intercept and linear trend in the simulated data

none of the tests perform satisfactorily either.

• HBPZA and Lee-Stratizich URTs with breaks in the null: The Lee-Strazich tests

do not perform well under the null hypotheses of unit roots tested–however they

reject alternative hypothesis at higher rates than the HBPZA test. The HBPZA test

performs well under the null hypotheses considered.

• AR(2): The lagged-series URT performs sometimes better and sometimes worse than

the ADF and ERS URTs on simulations with AR(2) processes.

• I(2),I(3),I(4): The ADF and ERS URTs can distinguish between I(1), and I(2), I(3)
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and I(4) processes. However the lagged-series URT rejects the null hypothesis of a

unit root much more than the other tests for I(3) and I(4) series.

• URTs with a Threshold model. For the tested ADF, ERS, BBC and lagged-series

URTs there is no one that outperforms the other in every case. The lagged-series and

BBC tests outperform the others when there are explosive (φ1 > 1 regimes.)

• The new HBPADF I(0)/I(1) testing procedure is sensitive to the time series length

and the location of the structural break. Even when the time series are short, this

approach is still significantly more accurate than using a single URT on the entire

series.

3.3 Simulation Studies of Cointegration Tests

Figure 3.1 is a flowchart on how to perform regressions of two or more TS variables. This

Figure is an extension of Hill, R. Carter and Griffiths, William E. and Lim, Guay C. (2011,

Fig. 12.4); The referred author only considers nonstationary TS but here we expand the

approach to consider stationary ones as well. The assumption in this diagram is that all

of the series being analyzed are either I(0) or I(1). We do not consider here if the series

are of mixed integration order, or if the series are of higher integration orders than 1. One

approach to deal with these cases would be to difference every series as many times required

to obtain an I(0) series and then regress all of the sufficiently differenced series; however we

note that every time we difference time series we are loosing information and there can be

cases as the example provided in Section 1.6.2. We can see that determining if a series is

I(1) or I(0) is quite important as it will dictate which methodology should be used to infer a

valid linear regression model. Regression models with independent I(1) variables very often

lead to spurious results as was seen in Table 1.5, and instead we should pursue a model

with first differenced variables. If the I(1) variables are cointegrated then we can estimate

a short run model(Error Correcting Model) a long run model in the levels of the series.

However if we believe that we have variables that are I(1), but they area near-integrated
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two or more
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(with or
without
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All TS are
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(I(0)) or
trend-

stationary
(I(0) with
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include trend
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TS are trend-
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cointegrated.
Choose long
run or short
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All TS
are not

cointegrated

Estimate
long-run
equation

with least-
squares

Estimate
short-run

Error
Correcting

Model Estimate
ARDL model

in first
differences

Figure 3.1: Regressions with I(0)/I(1) TS Variables Based on Hill, R. Carter and Griffiths,
William E. and Lim, Guay C. (2011, Fig. 12.4)
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(φ1 = 1−ε for a small positive epsilon) or they are explosive φ1 > 1 this can lead to spurious

cointegration results. In this section we perform simulation studies where we simulate two

independent TS and first check to see if they are I(1) using a URT; if the test does not

reject the null hypothesis of a unit root for both TS then we perform a cointegration test

using the Johansen procedure. Finally we check for spurious cointegration results.

3.3.1 Spurious Cointegration

xt = φa1xt−1 + σ1

yt = φb1yt−1 + σ2

σ1 ∼ N(0, 1)

σ2 ∼ N(0, 1)

(3.22)

Spurious Cointegration Without Pretesting for Unit Roots

We use DGP (3.22), where xt and yt are independent, to perform simulation tests of spurious

cointegration where the Johansen cointegration test is performed on the two series, without

considering if they are unit roots or not.

Tables 3.36, 3.37 and 3.38 show these results of spurious cointegration for α=0.01,α=0.05

and α=0.10 respectively with time series of length 1000.

We can see that in Tables 3.36, 3.37 and 3.38 for the case of φa1 = 1 and φb1 = 1 the

failure to reject the null hypothesis of no-cointegration is the significance level.

We can see that in Tables 3.36, 3.37 and 3.38 for the case of φa1 > 1 and/or φb1 > 1 the

failure to reject the null hypothesis of no-cointegration are quite high–showing evidence of

cointegration in 90% to 100% of the cases which is entirely spurious. The same is true if

φa1 < 0.9 and/or φb1 < 0.9

Now we use DGP (3.22) to run simulations with time series of length 100. Tables 3.36,

3.37 and 3.38 show these results of spurious cointegration for α=0.01,α=0.05 and α=0.10
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Table 3.36: Proportions of Failures to Reject HJohansen
0 r = 0 of Pairs of AR(1) TS with

m = 5000, l=1000 and α = 0.01 as Defined in Model (3.22) and s=12345

φa1 φb1 Γco > CV α
co

1.010 1.010 1.00
1.000 1.020 1.00
1.000 1.010 1.00
1.000 1.005 0.93
1.000 1.000 0.01
0.990 0.990 0.04
1.000 0.960 0.81
1.000 0.970 0.46
1.000 0.980 0.13
1.000 0.990 0.03
1.000 0.900 1.00
1.000 0.200 1.00
0.900 0.900 1.00
0.500 0.500 1.00
0.200 0.200 1.00
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Table 3.37: Proportions of Failures to Reject HJohansen
0 r = 0 of Pairs of AR(1) TS with

m = 5000, l=1000 and α = 0.05 as Defined in Model (3.22) and s=12345

φa1 φb1 Γco > CV α
co

1.010 1.010 1.00
1.000 1.020 1.00
1.000 1.010 1.00
1.000 1.005 0.94
1.000 1.000 0.05
0.990 0.990 0.17
1.000 0.960 0.97
1.000 0.970 0.80
1.000 0.980 0.42
1.000 0.990 0.12
1.000 0.900 1.00
1.000 0.200 1.00
0.900 0.900 1.00
0.500 0.500 1.00
0.200 0.200 1.00
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Table 3.38: Proportions of Failures to Reject HJohansen
0 r = 0 of Pairs of AR(1) TS with

m = 5000, l=1000 and α = 0.10 as Defined in Model (3.22) and s=12345

φa1 φb1 Γco > CV α
co

1.010 1.010 1.00
1.000 1.020 1.00
1.000 1.010 1.00
1.000 1.005 0.95
1.000 1.000 0.10
0.990 0.990 0.31
1.000 0.960 0.99
1.000 0.970 0.92
1.000 0.980 0.60
1.000 0.990 0.22
1.000 0.900 1.00
1.000 0.200 1.00
0.900 0.900 1.00
0.500 0.500 1.00
0.200 0.200 1.00
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Table 3.39: Proportions of Failures to Reject HJohansen
0 r = 0 of Pairs of AR(1) TS with

m = 5000, l=100 and α = 0.01 as Defined in Model (3.22) and s=12345

φa1 φb1 Γco > CV α
co

1.010 1.010 0.01
1.000 1.020 0.02
1.000 1.010 0.01
1.000 1.005 0.01
1.000 1.000 0.01
0.990 0.990 0.01
1.000 0.960 0.02
1.000 0.970 0.02
1.000 0.980 0.01
1.000 0.990 0.01
1.000 0.900 0.04
1.000 0.200 1.00
0.900 0.900 0.06
0.500 0.500 0.99
0.200 0.200 1.00
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Table 3.40: Proportions of Failures to Reject HJohansen
0 r = 0 of Pairs of AR(1) TS with

m = 5000, l=100 and α = 0.05 as Defined in Model (3.22) and s=12345

φa1 φb1 Γco > CV α
co

1.010 1.010 0.05
1.000 1.020 0.08
1.000 1.010 0.06
1.000 1.005 0.06
1.000 1.000 0.06
0.990 0.990 0.07
1.000 0.960 0.07
1.000 0.970 0.07
1.000 0.980 0.06
1.000 0.990 0.06
1.000 0.900 0.13
1.000 0.200 1.00
0.900 0.900 0.19
0.500 0.500 1.00
0.200 0.200 1.00
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respectively. For the case of φa1 = 1 and φb1 = 1 the failure to reject the null hypothesis of

no-cointegration is larger than the significance level for glsalpha=0.05 where it is 0.06 and

for α=0.10 where it is 0.12.

Table 3.41: Proportions of Failures to Reject HJohansen
0 r = 0 of Pairs of AR(1) TS with

m = 5000, l=100 and α = 0.10 as Defined in Model (3.22) and s=12345

φa1 φb1 Γco > CV α
co

1.010 1.010 0.10
1.000 1.020 0.14
1.000 1.010 0.11
1.000 1.005 0.12
1.000 1.000 0.12
0.990 0.990 0.13
1.000 0.960 0.13
1.000 0.970 0.13
1.000 0.980 0.12
1.000 0.990 0.12
1.000 0.900 0.23
1.000 0.200 1.00
0.900 0.900 0.33
0.500 0.500 1.00
0.200 0.200 1.00

We can see that in Tables 3.39, 3.40 and 3.41 for the case of φa1 > 1 and/or φb1 > 1

the failure to reject the null hypothesis of no-cointegration is not much higher than the

significance level; this is because in 100 time steps the AR(1) processes have not had much

of a chance to “explode” yet. However if φa1 < 0.5 and/or φb1 < 0.5 this results in a very

high failure rate to reject the null hypothesis of a unit root.

Spurious Cointegration Pretesting for Unit Roots

Model (3.22), where xt and yt are independent, is used to perform simulation tests of

spurious cointegration where the Johansen cointegration test is performed only if both

series cannot reject the null hypothesis of a unit root test.
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Table 3.42: Proportions of Failures to Reject H
I(1)
0 with ADF and lagged-series Tests To-

gether with Cointegration of Pairs of AR(1) TS with m = 5000, l=1000 and α = 0.01 as
Defined in Model (3.22)

φa1 φb1
(
Γla < CV α

la

)
∧ (Γco > CV α

co)
(
Γad > CV α

ad

)
∧ (Γco > CV α

co)

1.01 1.00 0.00 0.99
1.01 1.01 0.00 1.00
1.01 0.97 0.00 0.00
1.00 1.00 0.01 0.01
0.99 0.99 0.01 0.01
1.00 0.96 0.00 0.00
1.00 0.97 0.01 0.00
1.00 0.98 0.02 0.00
1.00 0.99 0.01 0.01

Table 3.43: Proportions of Failures to Reject H
I(1)
0 with ADF and lagged-series Tests To-

gether with Cointegration of Pairs of AR(1) TS with m = 5000, l=1000 and α = 0.05 as
Defined in Model (3.22)

φa1 φb1
(
Γla < CV α

la

)
∧ (Γco > CV α

co)
(
Γad > CV α

ad

)
∧ (Γco > CV α

co)

1.01 1.00 0.00 0.95
1.01 1.01 0.00 1.00
1.01 0.97 0.00 0.00
1.00 1.00 0.03 0.04
0.99 0.99 0.02 0.00
1.00 0.96 0.00 0.00
1.00 0.97 0.00 0.00
1.00 0.98 0.02 0.00
1.00 0.99 0.03 0.01
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Table 3.44: Proportions of Failures to Reject H
I(1)
0 with ADF and lagged-series Tests To-

gether with Cointegration of Pairs of AR(1) TS with m = 5000, l=1000 and α = 0.10 as
Defined in Model (3.22)

φa1 φb1
(
Γla < CV α

la

)
∧ (Γco > CV α

co)
(
Γad > CV α

ad

)
∧ (Γco > CV α

co)

1.01 1.00 0.00 0.90
1.01 1.01 0.00 1.00
1.01 0.97 0.00 0.00
1.00 1.00 0.05 0.08
0.99 0.99 0.02 0.00
1.00 0.96 0.00 0.00
1.00 0.97 0.00 0.00
1.00 0.98 0.01 0.00
1.00 0.99 0.04 0.01

Table 3.45: Proportions of Failures to Reject H
I(1)
0 with ADF and lagged-series Tests To-

gether with Cointegration of Pairs of AR(1) TS with m = 5000, l=100 and α = 0.01 as
Defined in Model (3.22)

φa1 φb1
(
Γla < CV α

la

)
∧ (Γco > CV α

co)
(
Γad > CV α

ad

)
∧ (Γco > CV α

co)

1.01 1.00 0.01 0.01
1.01 1.01 0.01 0.01
1.01 0.97 0.01 0.01
1.00 1.00 0.01 0.01
0.99 0.99 0.01 0.01
1.00 0.96 0.01 0.01
1.00 0.97 0.02 0.02
1.00 0.98 0.01 0.01
1.00 0.99 0.01 0.01
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Table 3.46: Proportions of Failures to Reject H
I(1)
0 with ADF and lagged-series Tests To-

gether with Cointegration of Pairs of AR(1) TS with m = 5000, l=100 and α = 0.05 as
Defined in Model (3.22)

φa1 φb1
(
Γla < CV α

la

)
∧ (Γco > CV α

co)
(
Γad > CV α

ad

)
∧ (Γco > CV α

co)

1.01 1.00 0.04 0.05
1.01 1.01 0.04 0.05
1.01 0.97 0.04 0.04
1.00 1.00 0.04 0.05
0.99 0.99 0.05 0.05
1.00 0.96 0.05 0.04
1.00 0.97 0.04 0.05
1.00 0.98 0.04 0.05
1.00 0.99 0.04 0.05

Table 3.47: Proportions of Failures to Reject H
I(1)
0 with ADF and lagged-series Tests To-

gether with Cointegration of Pairs of AR(1) TS with m = 5000, l=100 and α = 0.10 as
Defined in Model (3.22)

φa1 φb1
(
Γla < CV α

la

)
∧ (Γco > CV α

co)
(
Γad > CV α

ad

)
∧ (Γco > CV α

co)

1.01 1.00 0.07 0.09
1.01 1.01 0.07 0.09
1.01 0.97 0.06 0.06
1.00 1.00 0.07 0.10
0.99 0.99 0.08 0.09
1.00 0.96 0.07 0.05
1.00 0.97 0.07 0.06
1.00 0.98 0.07 0.08
1.00 0.99 0.07 0.09
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Tables 3.42, 3.43, 3.44 summarize simulations tests where we simulate two AR(1) pro-

cesses of length 1000 with multipliers φa1 and φb1, then we check if the appropriate unit root

test statistic for lagged-series (Γla) and ADF (Γad) with the given significance level and also

test for cointegration using the Johansen cointegration test (Γco) with significance levels of

0.01, 0.05 and 0.10. CV α represents the critical value of relevant test.

We see in Tables 3.42, 3.43, 3.44 of TS of length l = 1000 that when we use the ADF

test if either φb1 > 1 orφa1 > 1 this leads to spurious cointegration in almost 100% of the

cases. In contrast if we use the new lagged-series test in this case the spurious cointegration

is fully avoided.

We see in Tables 3.45, 3.46, 3.47 of TS of length 100 that when we use the ADF test if

either φb1 > 1 orφa1 > 1 this does not lead to much spurious cointegration; since the series

are short they were not able to “explode”. If we use the new lagged-series test the results

are slightly improved.

3.3.2 Testing Pairs of Cointegrated Variables under Threshold Effects

using Johansen

Model (3.23) is used to simulate pairs of cointegrated pairs of time series x(t) and y(t) with

a threshold error series z(t) as defined in Equation (3.19).

x(t) = x(t− 1) + εt ; t = 1, ..., l ; x(0) = ε0 ; εt ∼ N(0, 1)

y(t) = β1x(t) + z(t) ; β1 ∼ unif(−20, 20)

(3.23)

Table 3.48 summarizes the proportions of cointegrated pairs x(t) and y(t) using Johansen

for various simulations performed under two sets of threshold variables (θL = −2, θH = 2)

and (θL = −20, θH = 20) and different combinations of the auto-regressive multipliers for

the high(φH1 ), middle(φM1 ) and low(φL1 ) regimes. The column labeled β̂1−β1
β1

lists the average
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proportion error of the estimated cointegration multiplier and the column labeled S β̂1−β1
β1

displays the standard deviation of the proportion error of the cointegration multiplier.

Table 3.48: Proportions of Two Cointegrated TS under Threshold Noise with m=1000,
l=1000, s=12345

θL θH φH1 φM1 φL1
β̂1−β1
β1

S β̂1−β1
β1

Γco > CV 0.10
co Γco > CV 0.05

co Γco > CV 0.01
co

-2 2 1.000 1.000 1.000 5.23 97.94 0.11 0.06 0.01
-2 2 0.000 0.000 0.000 0.00 0.01 1.00 1.00 1.00
-2 2 1.000 0.900 1.000 1.27 9.26 0.10 0.05 0.01
-2 2 1.000 1.100 1.000 2.16 22.21 0.11 0.05 0.01
-2 2 1.009 1.100 1.009 0.12 0.59 1.00 1.00 1.00
-2 2 0.900 1.000 0.900 0.01 0.03 1.00 1.00 1.00
-2 2 0.900 1.100 0.900 0.03 0.56 1.00 1.00 1.00

-20 20 1.000 0.900 1.000 0.01 0.05 1.00 1.00 1.00
-20 20 1.000 1.100 1.000 1.92 32.65 0.62 0.49 0.28
-20 20 1.009 1.100 1.009 0.17 0.80 1.00 1.00 1.00
-20 20 0.900 1.000 0.900 0.60 6.58 0.17 0.10 0.03
-20 20 0.900 1.100 0.900 0.02 0.14 1.00 1.00 1.00

The low and high regimes determine in the long run if z(t) is a stationary I(0) or

nonstationary I(1) process, or a nonstationary explosive process (φ1 > 1). The largest

estimation errors and standard deviations of the estimated β occur in all the cases when

(φH1 = 1, φL1 = 1) except when (φH1 = 1, φM1 = 0.9, φL1 = 1) when (θL = −20, θH = 20)

because this process spends most of the time in the middle regime, so it is stationary for

practical purposes since the other nonstationary regimes are not reached.

When (φH1 = 1.009, φL1 = 1.009) z(t) is not stationary however the Johansen test always

returns that x(t) and y(t) are cointegrated even though this is just a spurious cointegration.

This is also the problem when (φH1 = 1, φM1 = 1.1, φL1 = 1)and (θL = −20, θH = 20)

since the z(t) process spends a considerable amount of time in the middle regime which is

explosive which results in spurious cointegration. These spurious cointegration cases with

non-threshold setups.
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Chapter 4: Combining Unit Root Tests with Machine

Learning Techniques

4.1 Combining Unit Root Tests with SVM and DLNN Tech-

niques

I propose two new types of unit root test based on combining multiple unit root tests,

including the new the new lagged-series unit root test in this thesis, one with support

vector machines(SVM) and one with deep learning neural networks(DLNN.) We train and

test these configurations under two scenarios: one where there are intercepts and linear

trends allowed, and the other case where there are intercepts allowed with strucutural

breaks in the intercept.

The SVM and DLNN were trained on the following 3 input parameters that where

provided for each simulation:

• The test statistic of the Zivot-Andrews URT.

• A binary value corresponding to the lagged-series URT that is 0 if the test accepts

the alternative hypothesis of H
I(0)
1 for α = 0.05, and 1 if the test fails to reject the

null-hypothesis of H
I(1)
0 .

• The p-value of the ADF URT.

And the expected output was provided as well for each training simulation:

• The output of 1 for an I(1) process and 0 for an I(0) process.

During the testing phase the 4 inputs were provided to the SVM and DLNN and the

estimated output was compared to the actual output to determine accuracy.
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Figure 4.1: DLNN Architecture
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The DLNN architecture, which is depicted in Figure 4.1, and settings were as follows:

• An input layer with 3 inputs at the very bottom as previously detailed.

• Three hidden layers from the bottom-up of sizes 200, 100 and 50 nodes.

• A top output layer with 1 node.

• All of the nodes between two layers are fully inter-connected with each other.

• The neural activation function of tanh with dropout.

• Hidden layer dropout ratios of 0.1, 0.01 and 0.01 for the layers with 200, 100 and 50

nodes respectively.

• The training data class counts are balanced via over/under-sampling for improved

predictive accuracy. This was done since in each of the training cases there are 3000

I(1) TS and 7000 I(0) series.

• The number of passes of the training set (epochs) was set to 2000. This number can

be increased for improving accuracy.

The DLNN software used is documented in H2O.ai Team (2016).

The settings for the SVM were:

• cost=1000. These are the cost of constraints violation; it is the “C”-constant of the

regularization term in the Lagrange formulation.

• gamma=50; Gamma is the free parameter of the Gaussian radial basis function.

• The output of 1 for an I(1) process and 0 for an I(0) process.

The SVM software used is detailed in Meyer,David and Dimitriadou,Evgenia and Hornik,Kurt

,Weingessel,Andreas and Leisch,Friedrich (2015).
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4.2 Combined Unit Root Tests with SVM and DLNN under

Intercepts and Linear Trends

y(t) = φ1x(t) + α+ βt

x(t) = x(t− 1) + ε(t) ; x(0) = 0

ε(t) ∼ N(0, 1) ; cor(ε(t), ε(t− 1)) = 0 ; t = 1, ..., l

(4.1)

The training data for this case without structural breaks was generated using the

following randomly chosen intercepts and linear trends:

α ∼ unif(−10, 10) + 5

β ∼ unif(−10, 10) + 5

seed← 12345

(4.2)

The testing data for this case without structural breaks was generated using the fol-

lowing randomly chosen intercepts and linear trends:

α ∼ unif(−1000, 1000) + 100

β ∼ unif(−1000, 1000) + 100

seed← 54321

(4.3)

The tested values of φ1 were 0, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.960, 0.970, 0.980, 0.99,

0.995, 1, 1, 1, 1, 1, 1, 1.0025 and 1.005. There were 500 cases for each value of φ1. The

value of 1 was repeated 6 times to increase the number of unit root cases. That is a total

of 7000 I(0) cases and 3000 I(1) cases. We will compare the SVM and DLNN methods to

the standard ADF, Philips-Perron (PP) .
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Table 4.1: Proportions of URT Training Errors under Intercept and Linear Trends

φ1 DLNN lagged-series ERS-Ptest ADF PP SVM KPSS

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.94
0.10 0.00 0.00 1.00 0.00 0.00 0.00 0.94
0.30 0.00 0.00 1.00 0.00 0.00 0.00 0.92
0.50 0.00 0.00 1.00 0.00 0.00 0.00 0.90
0.70 0.00 0.00 1.00 0.00 0.00 0.00 0.83
0.90 0.00 0.00 1.00 0.00 0.00 0.00 0.47
0.95 0.00 0.00 1.00 0.00 0.00 0.00 0.11
0.96 0.00 0.01 1.00 0.00 0.00 0.00 0.08
0.97 0.06 0.09 1.00 0.06 0.05 0.05 0.01
0.98 0.46 0.53 1.00 0.46 0.43 0.45 0.02
0.99 0.84 0.86 1.00 0.84 0.84 0.83 0.00
0.99 0.93 0.95 1.00 0.93 0.94 0.93 0.00

1.00 0.05 0.06 0.00 0.05 0.05 0.05 1.00
1.00 0.05 0.05 0.00 0.04 0.05 0.06 1.00
1.00 0.04 0.05 0.00 0.04 0.04 0.05 1.00
1.00 0.05 0.06 0.00 0.05 0.05 0.06 1.00
1.00 0.05 0.06 0.00 0.05 0.06 0.07 1.00
1.00 0.06 0.06 0.00 0.06 0.06 0.07 1.00

1.0025 0.75 0.74 1.00 0.98 0.98 0.64 0.00
1.005 0.04 0.04 0.99 1.00 1.00 0.04 0.00
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Table 4.1 shows the proportion of training errors of the DLNN, and SVM machine

learning techniques as well as other unit root tests and the KPSS stationarity test.

Table 4.2: Proportions of URT Testing Errors under Intercept and Linear Trends

φ1 DLNN lagged-series ERS-Ptest ADF PP SVM KPSS

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.93
0.10 0.00 0.00 1.00 0.00 0.00 0.00 0.94
0.30 0.00 0.00 1.00 0.00 0.00 0.00 0.94
0.50 0.00 0.00 1.00 0.00 0.00 0.00 0.90
0.70 0.00 0.00 1.00 0.00 0.00 0.00 0.83
0.90 0.00 0.00 1.00 0.00 0.00 0.00 0.39
0.95 0.00 0.00 1.00 0.00 0.00 0.00 0.09
0.96 0.01 0.01 1.00 0.01 0.00 0.01 0.07
0.97 0.07 0.11 1.00 0.07 0.06 0.07 0.05
0.98 0.43 0.48 1.00 0.43 0.39 0.43 0.01
0.99 0.82 0.84 1.00 0.82 0.80 0.81 0.00
0.99 0.93 0.95 1.00 0.93 0.93 0.93 0.00

1.00 0.05 0.04 0.00 0.04 0.05 0.07 1.00
1.00 0.04 0.05 0.00 0.04 0.05 0.05 1.00
1.00 0.06 0.07 0.00 0.06 0.07 0.07 1.00
1.00 0.05 0.05 0.00 0.05 0.05 0.06 1.00
1.00 0.06 0.06 0.00 0.06 0.06 0.06 1.00
1.00 0.04 0.05 0.00 0.04 0.04 0.04 1.00

1.0025 0.75 0.74 1.00 0.98 0.98 0.65 0.00
1.005 0.05 0.05 1.00 1.00 1.00 0.04 0.00

Table 4.3 shows the total training error proportions of the various techniques across null

and alternative hypotheses. We see that DLNN, and SVM machine achieve the lowest error

of 0.17. However we see in Table 4.1 that the I(1) errors (φ1 = 1) are higher for the SVM

than for the DLNN. This is probably due to the DLNN technique over-samples the I(1) test

cases to balance the classes and the SVM technique used does not.

Table 4.2 shows the proportion of testing errors of the DLNN, and SVM machine learning

techniques as well as other unit root tests and the KPSS stationarity test.

Table 4.4 shows the total testing error proportions of the various techniques across null

and alternative hypotheses. We see that SVM achieves the lowest error of 0.16, and DLNN
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Table 4.3: Proportions of Total URT Training Errors under Intercept and Linear Trends

Total Error
URT Proportion

DLNN 0.17
SVM 0.17

lagged-series 0.18
ADF 0.23

PP 0.23
ERS-Ptest 0.70

KPSS 0.56

Table 4.4: Proportions of Total URT Testing Errors under Intercept and Linear Trends

Total Error
URT Proportion

SVM 0.16
DeepLearning 0.17

lagged-series 0.18
PP 0.22

ADF 0.23
KPSS 0.56

ERS-Ptest 0.70
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the second lowest error of 0.17. However just as was the case during training we can see

the same in testing in Table 4.2 where the I(1) errors (φ1 = 1) are higher for the SVM than

for the DLNN.

Table 4.5: DLNN URT Training Confusion Proportion Matrix under Intercept and Linear
Trends

I(0) I(1)

I(0) 0.78 0.22
I(1) 0.05 0.95

Table 4.5 shows the total training confusion proportion matrix for DLNN. We see there

are 5% of the I(1) cases are considered I(0), which makes this machine learning technique

a reasonable approach consistent with α = 0.05.

Table 4.6: DLNN URT Testing Confusion Proportion Matrix under Intercept and Linear
Trends

I(0) I(1)

I(0) 0.78 0.22
I(1) 0.05 0.95

Table 4.6 shows the total testing confusion proportion matrix for DLNN. We see there

are 5% of the I(1) cases are considered I(0), which makes this machine learning technique

a reasonable approach consistent with α = 0.05.

Table 4.7: Correct DLNN URT Training Classifications under Intercept and Linear Trends

Correct Incorrect
Proportion Proportion

0.82 0.17

162



Table 4.7 shows that 82% of the training cases are classified correctly with DLNN.

Table 4.8: Correct DLNN URT Testing Classifications under Intercept and Linear Trends

Correct Incorrect
Proportion Proportion

0.83 0.17

Table 4.8 shows that 83% of the testing cases are classified correctly with DLNN.

4.3 Combined Unit Root Tests with SVM and DLNN Tech-

niques under Structural Breaks in Intercept

y(t) = x(t) + αt + βt

x(t) = φ1x(t− 1) + ε(t) ; x(0) = 0 ; ε(t) ∼ N(0, 1)

cor(ε(t), ε(t− 1)) = 0

αt =


α1, if t ≥ tu

α2, otherwise

tu ∼ unif(3, l − 2) ; t = 1, ..., l

α1 = unif(−A+B,B +A)

α2 = unif(−A+B,B +A)

β = unif(−A+B,B +A)

(4.4)

We use DGP (4.4) to simulate TS with breaks in level.

The break-time is randomly picked between the 0.25l and 0.75l, where l = 1000 is the
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length of the time series.

The training data for this case with structural breaks was generated using the following

randomly chosen intercepts and linear trends:

α1 ∼ unif(−1000, 1000) + 100

β1 ∼ unif(−1000, 1000) + 100

α2 ∼ unif(−1000, 1000) + 100

seed← 12345

(4.5)

The testing data for this case with structural breaks was generated using the following

randomly chosen intercepts and linear trends:

α1 ∼ unif(−10, 10) + 5

β1 ∼ unif(−10, 10) + 5

α2 ∼ unif(−10, 10) + 5

β2 ∼ unif(−10, 10) + 5

seed← 54321

(4.6)

The tested values of φ1 were 0, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.960, 0.970, 0.980, 0.99,

0.995, 1, 1, 1, 1, 1, 1, 1.0025, 1.005. There were 500 cases for each value of φ1. The value

of 1 was repeated 6 times to increase the number of unit root cases. That is a total of 7000

I(0) cases and 3000 I(1) cases.

Table 4.9 show the proportions of training errors of the various techniques.

Table 4.10 show the proportions of testing errors of the various techniques.

Table 4.11 shows SVM and KPSS and then DLNN with the lowest training errors. We
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Table 4.9: Proportions of URT Training Errors with Intercept Changepoints

φ1 DLNN lagged-series ERS-Ptest ADF PP SVM KPSS

0.00 0.14 1.00 1.00 0.99 0.98 0.00 0.00
0.10 0.13 0.99 1.00 0.98 0.98 0.00 0.00
0.30 0.14 0.99 1.00 0.97 0.98 0.00 0.00
0.50 0.14 0.99 1.00 0.99 0.99 0.00 0.00
0.70 0.19 0.99 1.00 0.99 0.99 0.00 0.00
0.90 0.32 0.98 1.00 0.98 0.98 0.00 0.00
0.95 0.41 0.99 1.00 0.99 0.99 0.00 0.00
0.96 0.45 0.99 1.00 0.98 0.98 0.00 0.00
0.97 0.53 0.99 1.00 0.99 0.99 0.00 0.00
0.98 0.55 0.99 1.00 1.00 0.99 0.00 0.00
0.99 0.67 1.00 1.00 1.00 1.00 0.00 0.00
0.99 0.74 1.00 1.00 1.00 1.00 0.00 0.00

1.00 0.21 0.00 0.00 0.00 0.00 1.00 1.00
1.00 0.24 0.00 0.00 0.00 0.00 1.00 1.00
1.00 0.19 0.00 0.00 0.00 0.00 1.00 1.00
1.00 0.20 0.00 0.00 0.00 0.00 1.00 1.00
1.00 0.18 0.00 0.00 0.00 0.00 1.00 1.00
1.00 0.22 0.00 0.00 0.00 0.00 1.00 1.00

1.0025 0.91 0.99 1.00 1.00 1.00 0.00 0.00
1.005 0.69 0.69 1.00 1.00 1.00 0.00 0.00
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Table 4.10: Proportions of URT Testing Errors with Intercept Changepoints

φ1 DLNN lagged-series ERS-Ptest ADF PP SVM KPSS

0.00 0.05 0.34 1.00 0.05 0.03 0.00 0.03
0.10 0.03 0.27 1.00 0.03 0.03 0.00 0.05
0.30 0.03 0.24 1.00 0.03 0.04 0.00 0.05
0.50 0.01 0.20 1.00 0.01 0.06 0.00 0.05
0.70 0.01 0.10 1.00 0.01 0.05 0.00 0.09
0.90 0.02 0.06 1.00 0.02 0.03 0.00 0.09
0.95 0.07 0.12 1.00 0.07 0.08 0.00 0.05
0.96 0.13 0.19 1.00 0.13 0.13 0.00 0.02
0.97 0.24 0.33 1.00 0.26 0.24 0.00 0.03
0.98 0.53 0.60 1.00 0.54 0.51 0.00 0.01
0.99 0.84 0.87 1.00 0.86 0.83 0.00 0.00
0.99 0.90 0.91 1.00 0.91 0.90 0.00 0.00

1.00 0.05 0.04 0.00 0.03 0.04 1.00 1.00
1.00 0.05 0.04 0.00 0.05 0.05 1.00 1.00
1.00 0.07 0.06 0.00 0.06 0.07 1.00 1.00
1.00 0.06 0.05 0.00 0.04 0.05 1.00 1.00
1.00 0.06 0.05 0.00 0.05 0.06 1.00 1.00
1.00 0.06 0.05 0.00 0.05 0.04 1.00 1.00

1.0025 0.78 0.78 1.00 0.98 0.98 0.00 0.00
1.005 0.04 0.04 0.99 1.00 1.00 0.00 0.00

Table 4.11: Proportions of URT Total Training Errors with Intercept Changepoints

Total Error
URT Proportion

SVM 0.300
KPSS 0.300

DLNN 0.362
lagged-series 0.680

ADF 0.693
PP 0.693

ERS-Ptest 0.700
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see in Table 4.9 that SVM and KPSS pretty much return the same answer no matter what–

that the series is stationary. The DLNN tecnique is the only one that returns different

values.

Table 4.12: Proportions of URT Total Testing Errors with Intercept Changepoints

Total Error
URT Proportion

DLNN 0.201
ADF 0.259

PP 0.261
lagged-series 0.268

SVM 0.300
KPSS 0.323

ERS-Ptest 0.700

Table 4.12 shows DLNN with the lowest training errors.

Table 4.13: DLNN URT Training Confusion Proportion Matrix with Intercept Changepoints

I(0) I(1)

I(0) 0.57 0.43
I(1) 0.21 0.79

Table 4.13 shows that the I(1) cases reported as I(0) happens 21% of the cases.

Table 4.14: DLNN URT Testing Confusion Proportion Matrix with Intercept Changepoints

I(0) I(1)

I(0) 0.74 0.26
I(1) 0.06 0.94

Table 4.14 when the drifts are smaller shows that the I(1) cases reported as I(0) happens

6% of the cases; this is close to a significance level of α = 0.05.

167



Table 4.15: DLNN URT Correct Training Classifications with Intercept Changepoints

Correct Incorrect
Proportion Proportion

0.64 0.36

Table 4.15 shows that DLNN classifies 64%of the cases correctly.

Table 4.16: DLNN URT Correct Testing Classifications with Intercept Changepoints

Correct Incorrect
Proportion Proportion

DLNN 0.80 0.20

Table 4.16 shows that DLNN classifies 80%of the cases correctly.

4.4 Summary of SVM and DLNN Unit Root Tests

The unit root tests derived from combining the standard unit root tests as well as the new

lagged-series URT using DLNN outperform all of the others when testing, not necessarily

when training. The DLNN procedure is able to preserve more or less the test significance

under the null hypothesis of H
I(1)
0 as the classical statistical based tests, and the overall

error across null and alternative hypotheses is the smallest among all of the tests. In the

structural break case, we train the DLNN with a very wide range of possible intercepts and

trends, and it does not achieve the target 0.05 significance level – it is closer to 0.10. However

when we test with a more reasonable range of trends, then the desired significance level for

the null hypothesis is reached. This indicates that the DLNN architecture has derived a

worthwhile combination of inputs, and has not simply built a model that overfits the training

data. The SVM based test, while it has one of the smallest overall errors across all null and

alternative hypotheses, it has high level of errors under the null hypothesis. We also see
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that the SVM methodology has the smallest training errors compared to all of the other

methodologies, and these errors become much larger during the testing phase. This leads

us to believe that the SVM model has a tendency to overfit I also believe that a significant

reason for the performance of the DLNN architecture is the dropout methodology which

reduces overfitting by randomly dropping out a number of the units with their connections

with associated weights during training. Another issue is that the DLNN technique over-

samples the I(1) training cases, as there are less than I(0) cases, to balance the classes. The

SVM tested did not implement this feature.

This approach of combining multiple statistical tests using machine learning techniques

could be employed for other hypothesis testing problems where there is no single test that

outperforms the others. One example would be testing the equality of two population

variances.
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Chapter 5: Applications In Financial Time Series(TS)

5.1 Related Economic and Financial Theory

5.1.1 Covered Interest Rate Parity and Cross Currency Basis Swaps

The following overview of covered interest rate parity (CIP), and relationship with cross

currency basis swaps is derived from Mazzi, Biagio (2013) as well as many detailed personal

discussions with the author.

The CIP formula relates the price of the FX forward (F
X/Y
T ) for maturity T with the

spot FX (F
X/Y
0 ) and the discount factors from the current date to time T of both currencies

(DX
T , DY

T ) as follows:

F
X/Y
T = F

X/Y
0

DY
T

DX
T

(5.1)

F
X/Y
T is the number of units of currency Y one obtains for one unit of currency X at time

T (the X/Y forward rate at time T ). F
X/Y
0 is the current value of that exchange (the

spot X/Y rate). DY
T and DX

T are the discount factors at time T in currencies Y and X

respectively. Equation ((5.1)) a very generic way of describing the CIP relationship as it

does not specify how to compute the discount factors, which can be derived in various ways.

In the econometric community the currency basis is the value needed to restore the

covered interest rate parity when it does not hold, that is that value bF such as expressed

in the following formula:

F
X/Y
T = F

X/Y
0

(1 +RX + bF )T

(1 +RY )T
(5.2)
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In Equation (5.2) all symbols have the same meaning as in Equation (5.1). RX and RY

are some interest rates for currencies X and Y . If bF is zero we have a covered interest rate

parity. Another term for bF is “CIP deviation”.

In the Fixed Income trading community by X-currency basis one means the number

bC that when paid on top of a (usually three months) X−London Interbank Offered Rate

(LIBOR) in exchange for a flat Y−LIBOR (usually three months USD-LIBOR1), produces

a par value in the swap. This instrument is called a cross-currency basis swap (CCBS) and

formally we have

NX

{
−1 +

T∑
i=1

(
LXi + bC

)
DX
i ∆i +DX

T

}
(5.3)

= NY

{
−1 +

T∑
i

LYi D
Y
i ∆i +DY

T

}

where LXi and LYi are the 3 month LIBOR rates in currencies X and Y setting at time

Ti−1 and paying at time Ti, D
X
i and DY

i are the discount factors at time Ti in currencies

X and Y and ∆i is the day count fraction. At the beginning and at the end there is an

exchange of notional. A cross-currency basis swap compares the relative worth, so to speak,

of two floating LIBOR rates and estimate it through the basis: by exchanging the notionals

and applying therefore the covered interest rate parity, we eliminate the absolute difference

between the two rates.

Overnight Indexed Swap Rates (OIS) are (typically geometric) averages of daily rates

set by Central Banks. Since the 2009 financial crisis OIS rates have replaced LIBOR rates

as the new proxy for risk free rates for various reasons. One reason is the market views

payments with a lower reset frequency (say 3 months) resulting in a higher credit risk than

1There are some exceptions where the currency basis in Y is not paid against USD (for example for some

Eastern European currencies where it is paid against EUR) or when it is not paid in the Y -leg of the swap

(as in Chilean Pesos or Mexican Pesos) but usually this swap set up holds as general.
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payments with higher reset frequency such as daily. Another reason for the preference of

OIS over LIBOR is that OIS rates are the interest rates paid on posted collateral.

USD OIS is based on daily Fed Funds, and EONIA is based on daily European Central

Bank rates. The majority of interest rate swaps, including cross currency basis swaps

(CCBS) are still linked to LIBOR rates; this is probably because it would be too complex and

would cause too much uncertainty to switch existing obligations to a new index. The market

practice has evolved into using multiple curves to value trades where the coupon curves (such

as 3 month LIBOR) is bootstrapped separately from the curve used for discounting (OIS.)

LIBOR rates as well as OIS rates are used for un-collateralized transactions between

top rated private banks and Central Banks, which embed non-trivial credit risk as even

top banks can default as proven in the 2009 financial crisis. A mystery and inconsistency

of fixed income financial markets is given OIS and LIBOR rates are used in risky transac-

tions as detailed before, why are these rates most widely used for over-the-counter (OTC)

collateralized transactions, which bear hardly any credit risk at all.

The two values bF and bC are closely related in a formal way: a one payment cross-

currency basis swap as given by Equation (5.3) could be made to look quite similar to

Equation (5.2). Because of this both quantities would deserve to be called currency basis

if by basis we define (see Mazzi, Biagio (2013)) a numerical value assigned to a financial

anomaly: in the first case, given by Equation (5.2), the deviation from the covered interest

rate parity and in the second, given by Equation (5.3), the assumption that a stream of

floating rates discounted with the same rate should be worth par.

The first important difference is that whereas bF is quantity that we can somehow imply

(see Baba, Naohiko and Packer, Frank (2008) as one example out of a vast literature), bC

is a traded quantity. Not only bC is a traded quantity but we know exactly, by the terms

of the cross-currency basis swap, to what type of rates the basis is applied to. Admittedly

there is no unique way of finding the discount factors. In order to imply bF we need

to make an assumptions about RX and RY appearing in Equation (5.2): what kind of

rates are they? It is difficult to say, but anecdotal evidence from the trading world (see
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Mazzi, Biagio (2013)) would suggest that these rates used to be considered lower than the

interbank lending rates (LIBOR): this anecdotal evidence seems to be supported by the

work of Mancini Griffoli, Tommaso and Ranaldo, Angelo (2010) and McAndrews, James J.

(2009). As with any implied quantity, the issue is far from clear and in the literature there

are examples where LIBOR type rates (Coffey,N. and Hrung, W.B. and Sarkar, A. (2009))

were applied to estimate the deviation from the covered interest rate parity. As long as the

choice is consistent, i.e. the rate in the two currencies is of the same nature (both interbank

rates, both swap rates, both OIS rates, etc.), the impact of the choice should not be very

large.

The literature on covered interest rate parity and in particular the deviation from it is

vast and covers economic theory and finance. It starts with the seminal work of Frenkel,

Jacob A. and Levich, Richard M. (1975) and Frenkel, Jacob A. and Levich, Richard M.

(1977) and the work of Bilson, John F. O. (1981) who first draw the attention to the concept

of “forward premium puzzle”. It continues with works concentrating on the connection

between interest rate derivatives and CIP deviation such as the one of Fletcher,Donna J.

and Sultan, Jahangir (1997), Popper, Helen (1993) or Takezawa, Nobuya (1995) although

the focus is on fixed for floating interest rate swaps rather than basis swaps. In the wake

of the recent financial crisis the focus has moved to the relationship between CIP deviation

and credit such as in the works of Baba, Naohiko and Packer, Frank (2008) and Baba,

Naohiko and Packer, Frank (2009) or Genberg, Hans and Hui, C. H. and Wong, Alfred and

Chung, T. K. (2009).

5.1.2 Bank Credit Default Swaps

A credit default swap (CDS) is an over-the-counter (OTC) financial contract where the

buyer of the CDS pays premiums to the seller, typically on a regularly recurring basis, and

has a reference bond or loan. If the bond issuer( or loan borrower) defaults (or triggers

some other credit event) on the bond (or loan), then the CDS buyer would deliver one of

the reference obligor’s defaulted bonds (or loans) to the CDS seller in exchange for par, i.e.
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the full bond (or loan) notional amount; this is the case of physical settlement of the CDS

contract.

If it so happens that there are no available defaulted bonds (or loans) in the market,

then an auction would be conducted to determine the bond’s (or loan’s) recovery rate and

then the CDS contract would be cash settled. CDS are often used as a form of insurance

by bond buyers (or loan creditors.)

5.1.3 Granger Causality

Consider an auto-regressive linear model:

X(t) = β1X(t− 1) + ...+ βpX(t− p) + ε(t) (5.4)

And now consider extending the model with lagged versions of another predictor:

X(t) = β1X(t− 1) + ...+ βpX(t− p) + γ1Y (t− 1) + ...+ γqX(t− q) + ε(t) (5.5)

We say that Y Granger-causes X if it is a useful predictor in Model (5.5). This can be

tested using an F-test where the null hypothesis is that γi are zero. See Stock, James H.

and Watson, Mark W. (2011, p. 538) for a more detailed overview.

5.2 FX Rates with Explosive Periods

We analyze two daily FX rate TS from 2012-09-10 until 2015-09-10, Brazilian Reals per 1

US Dollar (DEXBZUS) and Malaysian Ringgits per 1 US Dollar (DEXMAUS.) The data

was obtained from the Federal Reserve Economic Data - FRED - St. Louis Fed. We see in

Figures 5.1 and 5.2 that these series are very steep.

First as we perform a simulation test with AR(1) models to infer the multiplier in

X(t) = βX(t − 1) + εt by regressing X(t) on X(t − 1) as summarized in Table 5.1. We

see that as the actual multipliers become higher than 1 the variability of the estimated
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Figure 5.1: Brazilian Reals per 1 US Dol-
lar.

Figure 5.2: Malaysian Ringgits per 1 US
Dollar.

multipliers decreases significantly; this would give us confidence that this regression would

help us find explosive AR(1) processes.

Table 5.1: Quantiles of Inferred AR(1) Multipliers of Series with l = 500 and m = 500 with
Seed 1234

β β̂ Q0 β̂ Q0.25 β̂ Q0.50 β̂ Q0.75 β̂ Q1

1.050 1.050 1.050 1.050 1.050 1.050
1.020 1.020 1.020 1.020 1.020 1.020
1.010 0.966 1.010 1.010 1.010 1.013
1.000 0.944 0.986 0.991 0.995 1.004
0.990 0.928 0.974 0.982 0.987 0.998

So we perform the regression of X(t) on X(t−1) on the DEXBZUS and DEXMAUS TS

and the results are summarized in Tables 5.2 and 5.3. In both cases the inferred multiplier

is larger than 1.

Now we run the lagged-series and ADF unit root tests without linear trends and without

constants on DEXBZUS and DEXMAUS and we can see that the ADF test does not reject

I(1), however the lagged-series test does (for DEXBZUS at α = 0.10, and for DEXMAUS
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Table 5.2: DEXBZUS Auto-Regression Results

Dependent variable:

DEXBZUS.window

L(DEXBZUS.window, 1) 1.006∗∗∗

(0.002)

Constant −0.011∗∗

(0.005)

Observations 752
R2 0.997
Adjusted R2 0.997
Residual Std. Error 0.024 (df = 750)
F Statistic 241,712.100∗∗∗ (df = 1; 750)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 5.3: DEXMAUS Auto-Regression Results

Dependent variable:

DEXMAUS.window

L(DEXMAUS.window, 1) 1.008∗∗∗

(0.002)

Constant −0.023∗∗∗

(0.008)

Observations 752
R2 0.996
Adjusted R2 0.996
Residual Std. Error 0.016 (df = 750)
F Statistic 198,162.900∗∗∗ (df = 1; 750)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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at α = 0.05). The results are in Tables 5.4 and 5.5.

Table 5.4: Unit Root Tests on DEXBZUS

lagged-series lagged-series lagged-series ADF ADF
I(1) Test Stat Crit Val I(1) P-value α

FALSE 6.675 6.500 TRUE 0.990 0.100

Table 5.5: Unit Root Tests on DEXMAUS

lagged-series lagged-series lagged-series ADF ADF
I(1) Test Stat Crit Val I(1) P-value α

FALSE 14.153 8.180 TRUE 0.990 0.050

Now we perform a cointegration test of DEXBZUS and DEXMAUS which provides evi-

dence for a cointegration relationship–however we would have not considered cointegration

had we been using the lagged-series unit root test. The results of the cointegration test are

in Results Listing 5.1. The fact that we have 2 variables and both the r = 0 and r <= 1

rank hypotheses can both be rejected at 5% significance level should make us suspicious of

this cointegrating relationship in any case, and it is likely spurious.
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Listing 5.1: Johansen Cointegration Test of DEXBZUS and DEXMAUS

######################

# Johansen−Procedure #

######################

Test type : maximal e i g enva lue s t a t i s t i c ( lambda max) , with l i n e a r trend

Eigenva lues ( lambda ) :

[ 1 ] 0 .02331532 0.01712828

Values o f t e s t s t a t i s t i c and c r i t i c a l va lue s o f t e s t :

t e s t 10 pct 5 pct 1 pct

r <= 1 | 12 .97 6 .50 8 .18 11 .65

r = 0 | 17 .72 12 .91 14 .90 19 .19

Eigenvectors , normal i sed to f i r s t column :

( These are the c o i n t e g r a t i o n r e l a t i o n s )

DEXBZUS. l 2 DEXMAUS. l 2

DEXBZUS. l 2 1 .0000000 1.000000

DEXMAUS. l 2 −0.8202336 −1.719604

Weights W:

( This i s the load ing matrix )

DEXBZUS. l 2 DEXMAUS. l 2

DEXBZUS. d 0.009335439 −0.025177956

DEXMAUS. d 0.010763129 0.007381374

;

5.3 Cross Currency Basis Swaps and Covered Interest Rate

Parity

We define a spot FX rate at time2 0 as the number x in currency c1, per 1 unit of currency

c2: FX(0) = xc1
1c2

. We denote the discount factor for amounts in currency c at time t = T

as DFc(T ) which present values those amounts to today t = 0. In Equation (5.6) I start

from the covered interest rate parity formula and I re-arrange it as three separate terms,

involving interest rates (Rc) in both currencies.

2Usually spot FX has an implicit number of settlement days which varies for currency pairs but is often
2 business days. Here we assume it is 0.
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FX(t) = FX(0)
DFc2(t)

DFc1(t)

FX(t) = FX(0)

(
1 + Rc1

f

)ft
(

1 + Rc2
f

)ft
FX(t)

FX(0)

(
1 +

Rc2
f

)ft
=

(
1 +

Rc1
f

)ft
(5.6)

Care must be take when applying this equation as FX rates have a preferred quoting

convention; some are x XYZ per 1 USD and others are x USD per 1 XYZ: examples are

c1=JPY
c2=USD and c1=USD

c2=GBP .

I use the quarterly compounded (f = 4) swap rates in both currencies.

The three linear terms to test for cointegration are :

log

(
FX(t)

FX(0)

)
+ (ft) log

(
1 +

Rc2
f

)
= (ft) log

(
1 +

Rc1
f

)

A+B = C

(5.7)

In Table 5.6 we show the estimated coefficients of the A,B,C terms in Equation 5.7 with

and without cross-currency basis. If covered interest rate parity were to hold perfectly then

we would expect the coefficients for the three terms to be 1 for A, 1 for B and -1 for C. We

see in general this is closer when we add the cross-currency basis to the interest rates, vs

when we do not.

In the following Figures 5.3-5.20 we compare the XYZ interest rate inferred from USD

swap rates to XYZ Swap Rate and also to XYZ Swap rate + CCBS Spread and we see that

in every case when we add the CCBS Spread we get closer to the inferred rate.
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Table 5.6: Estimated Coefficients for A,B and C Terms

Currency2 Term ACCBS BCCBS CCCBS A B C

JPY 1 1.00 0.98 -1.04 1.00 1.54 -3.59
JPY 5 1.00 1.02 -1.13 1.00 0.77 -1.25
JPY 10 1.00 1.04 -1.18 1.00 0.77 -1.25
GBP 1 1.00 0.81 -0.86 1.00 0.57 -0.08
GBP 5 1.00 0.87 -1.23 1.00 0.04 0.43
GBP 10 1.00 0.85 -1.40 1.00 0.04 0.43
EUR 1 1.00 1.05 -1.58 1.00 1.04 -1.57
EUR 5 1.00 1.00 -1.59 1.00 0.93 -1.29
EUR 10 1.00 0.99 -1.70 1.00 0.93 -1.29
AUD 1 1.00 1.00 -0.99 1.00 0.97 -0.98
AUD 5 1.00 1.06 -1.69 1.00 1.04 -1.73
AUD 10 1.00 0.94 -1.67 1.00 1.04 -1.73
NZD 1 1.00 1.08 -1.65 1.00 1.06 -1.65
NZD 5 1.00 1.07 -1.78 1.00 1.03 -1.81
NZD 10 1.00 0.89 -1.54 1.00 1.03 -1.81
CHF 1 1.00 1.00 -1.27 1.00 1.01 -1.36
CHF 5 1.00 1.01 -1.21 1.00 0.87 -1.35
CHF 10 1.00 1.15 -1.48 1.00 0.87 -1.35

Figure 5.3: Inferred CHF 1Y Swap
with CCBS Spread.

Figure 5.4: Inferred CHF 1Y Swap
without CCBS Spread.
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Figure 5.5: Inferred CHF 5Y Swap
with CCBS Spread.

Figure 5.6: Inferred CHF 5Y Swap
without CCBS Spread.
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Figure 5.7: Inferred CHF 10Y Swap
with CCBS Spread.

Figure 5.8: Inferred CHF 10Y Swap
without CCBS Spread.

In the following Table 5.9 we see that the covered interest rate parity (CIP) relationship

between the three terms detailed earlier always strengthens when we add CCBS spread to

the XYZ swap rates.

First we check the 3 terms mentioned earlier in Equation (5.7) with with and without

unit CCBS spread for unit roots with a linear trend and with a constant term. The terms

are T1,T2 and T3 without the cross currency basis and T1 CCBSS,T2 CCBSS,T3 CCBSS

with the cross currency basis. We see that in the majority of cases the terms are unit roots

for a significance level of 0.01 as can be seen in Tables 5.7 using the lagged-series URT and

5.8 using the ADF URT.

In Table 5.9 we see that the cointegration relationship (with a linear trend) between the

three CIP terms detailed earlier in Equation (5.7) always strengthens when we add CCBS

spread to the XYZ swap rates.
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Figure 5.9: Inferred EUR 1Y Swap
with CCBS Spread.

Figure 5.10: Inferred EUR 1Y Swap
without CCBS Spread.

Figure 5.11: Inferred EUR 5Y Swap
with CCBS Spread.

Figure 5.12: Inferred EUR 5Y Swap
without CCBS Spread.
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Figure 5.13: Inferred EUR 10Y Swap
with CCBS Spread.

Figure 5.14: Inferred EUR 10Y Swap
without CCBS Spread.

Figure 5.15: Inferred JPY 1Y Swap
with CCBS Spread.

Figure 5.16: Inferred JPY 1Y Swap
without CCBS Spread.
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Figure 5.17: Inferred JPY 5Y Swap
with CCBS Spread.

Figure 5.18: Inferred JPY 5Y Swap
without CCBS Spread.

Figure 5.19: Inferred JPY 10Y Swap
with CCBS Spread.

Figure 5.20: Inferred JPY 10Y Swap
without CCBS Spread.
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Table 5.7: lagged-series Unit Root Test Failures to Reject H
I(1)
0 of the 3 Terms in Equa-

tion (5.7) with and without CCBS Spread for 1,5 and 10 Years for α = 0.01

Term
Currency2 Years A CCBSS B CCBSS C CCBSS A B C
JPY 1 TRUE TRUE TRUE TRUE TRUE TRUE
JPY 5 TRUE TRUE TRUE TRUE TRUE TRUE
JPY 10 TRUE TRUE TRUE TRUE TRUE TRUE
GBP 1 TRUE FALSE TRUE TRUE TRUE TRUE
GBP 5 FALSE TRUE TRUE FALSE TRUE TRUE
GBP 10 FALSE TRUE TRUE FALSE TRUE TRUE
EUR 1 TRUE TRUE TRUE TRUE TRUE TRUE
EUR 5 TRUE TRUE TRUE TRUE TRUE TRUE
EUR 10 TRUE TRUE TRUE TRUE TRUE TRUE
AUD 1 TRUE TRUE TRUE TRUE TRUE TRUE
AUD 5 TRUE TRUE TRUE TRUE TRUE TRUE
AUD 10 TRUE TRUE TRUE TRUE TRUE TRUE
NZD 1 FALSE TRUE TRUE FALSE TRUE TRUE
NZD 5 FALSE TRUE TRUE FALSE TRUE TRUE
NZD 10 FALSE TRUE TRUE FALSE TRUE TRUE
CHF 1 TRUE TRUE TRUE TRUE TRUE TRUE
CHF 5 FALSE TRUE TRUE FALSE TRUE TRUE
CHF 10 FALSE TRUE TRUE FALSE TRUE TRUE
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Table 5.8: ADF Unit Root Test Pvalues of the 3 Terms in Equation (5.7) with and without
CCBS Spread for 1,5 and 10 Years

Term
Currency2 Years A CCBSS B CCBSS C CCBSS A B C
JPY 1 0.08 0.42 0.21 0.08 0.42 0.90
JPY 5 0.06 0.51 0.76 0.06 0.51 0.56
JPY 10 0.10 0.40 0.43 0.10 0.40 0.07
GBP 1 0.31 0.50 0.70 0.31 0.61 0.70
GBP 5 0.02 0.67 0.56 0.02 0.73 0.56
GBP 10 0.01 0.54 0.42 0.01 0.54 0.42
EUR 1 0.59 0.84 0.80 0.59 0.91 0.80
EUR 5 0.77 0.70 0.50 0.77 0.72 0.50
EUR 10 0.60 0.69 0.30 0.60 0.74 0.30
AUD 1 0.81 0.68 0.95 0.81 0.74 0.95
AUD 5 0.38 0.47 0.47 0.38 0.54 0.47
AUD 10 0.09 0.24 0.09 0.09 0.26 0.09
NZD 1 0.10 0.77 0.90 0.10 0.80 0.90
NZD 5 0.01 0.55 0.48 0.01 0.61 0.48
NZD 10 0.01 0.66 0.38 0.01 0.71 0.38
CHF 1 0.70 0.96 0.85 0.70 0.96 0.94
CHF 5 0.02 0.36 0.25 0.02 0.36 0.12
CHF 10 0.02 0.35 0.50 0.02 0.35 0.46
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Table 5.9: Cointegration Statistic of 3 Terms in Equation (5.7) for r = 0

Term
Currency2 Years With CCBBS Without CCBBS
JPY 1 514.28 65.67
JPY 5 247.12 25.07
JPY 10 320.91 45.08
GBP 1 67.38 71.38
GBP 5 81.62 22.41
GBP 10 183.29 85.80
EUR 1 56.12 53.52
EUR 5 45.83 26.54
EUR 10 208.38 130.37
AUD 1 898.64 322.35
AUD 5 268.32 251.44
AUD 10 229.53 216.91
NZD 1 100.92 70.72
NZD 5 402.99 362.63
NZD 10 387.88 215.06
CHF 1 228.93 58.40
CHF 5 89.93 50.12
CHF 10 107.55 35.43

5.4 Bank Credit Default Swap and Cross Currency Basis

Swap Spreads

See Sections 5.1.2 for an explanation of Credit Default Swaps and 5.1.1 for an introduction

to cross-currency basis swap spreads (CCBS spreads.) First we compute average Bank

Credit Default Swap (CDS) spreads on senior unsubordinated debt for Banks in the United

States, Europe and Japan for 1 year, 5 year and 10 year maturities. I detail the market

data sources.

Data Sources:

United States’ Banks (US): Citigroup, Inc., Bank of America and JP Morgan Chase &

Co.

• 1Y Bloomberg tickers: CINC.CDS.USD.SR.1Y.D14.Corp, BOFA.CDS.USD.SR.1Y.D14.Corp,

JPMCC.CDS.USD.SR.1Y.D14.Corp
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• 5Y Bloomberg tickers: CINC.CDS.USD.SR.5Y.D14.Corp, BOFA.CDS.USD.SR.5Y.D14.Corp,

JPMCC.CDS.USD.SR.5Y.D14.Corp

• 10Y Bloomberg tickers: CINC.CDS.USD.SR.10Y.D14.Corp, BOFA.CDS.USD.SR.10Y.D14.Corp,

JPMCC.CDS.USD.SR.10Y.D14.Corp

European Banks (EU): BNP Paribas, HSBC Bank, Le Crédit Lyonnais, S.A., and

Deutsche Bank.

• 1Y Bloomberg tickers: BNP.CDS.EUR.SR.1Y.D14.Corp, HSBC.BK.CDS.EUR.SR.1Y.D14.Corp,

LCL.SA.CDS.EUR.SR.1Y.D14.Corp, DB.CDS.EUR.SR.1Y.D14.Corp

• 5Y Bloomberg tickers: BNP.CDS.EUR.SR.5Y.D14.Corp, LCL.SA.CDS.EUR.SR.5Y.D14.Corp,

DB.CDS.EUR.SR.5Y.D14.Corp, HSBC.BK.CDS.EUR.SR.5Y.D14.Corp

• 10Y Bloomberg tickers: BNP.CDS.EUR.SR.10Y.D14.Corp, HSBC.BK.CDS.EUR.SR.10Y.D14.Corp,

LCL.SA.CDS.EUR.SR.10Y.D14.Corp, DB.CDS.EUR.SR.10Y.D14.Corp

Japanese Banks (JP): Sumitomo Mitsui Banking Corporation and Nomura Holdings.

• 1Y Bloomberg tickers: SMBC.CDS.JPY.SR.1Y.D14.Corp

• 5Y Bloomberg tickers: SMBC.CDS.JPY.SR.5Y.D14.Corp, NOMURAH.CDS.JPY.SR.5Y.D14.Corp

• 10Y Bloomberg tickers: SMBC.CDS.JPY.SR.10Y.D14.Corp

First we show that all of these CDS TS are likely unit-roots as evidenced in Table 5.10.

We test for unit roots without linear trend and without constants.

Table 5.11 shows evidence there are cointegrating relationships between European Bank

CDS spreads and EUR-USD cross currency basis swaps as well as other Bank CDS and

EUR-USD combinations. We test for cointegration without a linear trend.

Table 5.12 shows evidence there are cointegrating relationships between European Bank

CDS spreads, American Bank CDS spreads and EUR-USD CCBS as well as many other

Two Bank Country CDS and CCBS combinations.
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Table 5.10: Unit Root Tests of Country Bank CDS

Bank lagged-series ADF

Country Maturity Failure to Reject H
I(1)
0 P-value Start End

US 1 TRUE 0.033 2003-05-15 2015-03-20
US 5 TRUE 0.071 2002-09-11 2015-03-20
US 10 TRUE 0.191 2005-01-12 2015-03-20

EU 1 TRUE 0.172 2004-03-15 2015-02-27
EU 5 TRUE 0.143 2002-07-22 2015-03-20
EU 10 TRUE 0.266 2004-03-12 2015-02-27

JP 1 TRUE 0.086 2008-06-18 2015-02-10
JP 5 TRUE 0.411 2005-04-08 2015-03-20
JP 10 TRUE 0.287 2004-02-02 2015-02-10

US 1 TRUE 0.135 2010-01-05 2015-03-20
US 5 TRUE 0.334 2010-01-01 2015-03-20
US 10 TRUE 0.389 2010-01-01 2015-03-20

EU 1 TRUE 0.224 2010-01-01 2015-02-27
EU 5 TRUE 0.315 2010-01-01 2015-03-20
EU 10 TRUE 0.387 2010-01-01 2015-02-27

JP 1 TRUE 0.116 2010-01-04 2015-02-10
JP 5 TRUE 0.378 2010-01-04 2015-03-20
JP 10 TRUE 0.383 2010-01-01 2015-02-10

Table 5.11: Johansen Cointegration Tests Between a Country Bank CDS Rate and CCBS.
CV(10%,5%,1%)=(12.91, 14.9, 19.19).

Cointegration Cointegration
Variables ΓJohansen Start End Vector

EuCds5y, EurUsdCcbs5y 33.68 2002-07-22 2015-01-14 1.00, 3.64
EuCds5y, EurUsdCcbs5y 24.34 2010-01-01 2015-01-14 1.00, 3.65

UsCds5y, EurUsdCcbs5y 41.94 2002-09-11 2015-01-14 1.00, 4.44
UsCds5y, EurUsdCcbs5y 22.74 2010-01-01 2015-01-14 1.00, 4.30

EuCds5y, JpyUsdCcbs5y 24.98 2002-07-22 2015-01-14 1.00, 1.95
EuCds5y, JpyUsdCcbs5y 14.49 2010-01-01 2015-01-14 1.00, 3.41
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Table 5.12: Various Cointegration Tests Between Two Countries’ Bank CDS Rates and a
CCBS. CV(10%,5%,1%)=(18.9, 21.07, 25.75).

Cointegration Cointegration
Variables ΓJohansen Start End Vector

EuCds1y, UsCds1y, EurUsdCcbs1y 40.61 2004-03-15 2014-09-15 1.00, -0.14, 2.10
EuCds1y, UsCds1y, EurUsdCcbs1y 32.50 2010-01-05 2014-09-15 1.00, 0.28, 3.58
EuCds5y, UsCds5y, EurUsdCcbs5y 52.37 2002-09-11 2015-01-14 1.00, 1.05, 8.18
EuCds5y, UsCds5y, EurUsdCcbs5y 28.45 2010-01-01 2015-01-14 1.00, 0.30, 4.95

EuCds10y, UsCds10y, EurUsdCcbs10y 43.38 2005-01-12 2014-04-09 1.00, 11.62, 74.21
EuCds10y, UsCds10y, EurUsdCcbs10y 18.75 2010-01-01 2014-04-09 1.00, -14.90, -55.51

JpCds1y, UsCds1y, JpyUsdCcbs1y 40.77 2008-06-18 2015-01-14 1.00, -0.02, 4.77
JpCds1y, UsCds1y, JpyUsdCcbs1y 25.49 2010-01-05 2015-01-14 1.00, -0.50, -1.22
JpCds5y, UsCds5y, JpyUsdCcbs5y 28.96 2005-04-08 2015-01-14 1.00, -1.11, 0.23
JpCds5y, UsCds5y, JpyUsdCcbs5y 37.74 2010-01-04 2015-01-14 1.00, -1.22, 0.02

JpCds10y, UsCds10y, JpyUsdCcbs10y 37.45 2005-01-21 2015-01-14 1.00, -1.01, -0.46
JpCds10y, UsCds10y, JpyUsdCcbs10y 44.32 2010-01-01 2015-01-14 1.00, -1.13, -0.43

Table 5.13 shows evidence there are cointegrating relationships between Japanese Bank

CDS spreads, American Bank CDS spreads and JPY-USD spot FX rates as well as many

other two Bank Country CDS and FX combinations.

Table 5.13: Various Cointegration Tests Between Two Country Bank CDS Rates and Spot
FX. CV(10%,5%,1%)=(18.9, 21.07, 25.75).

Cointegration Coint
Variables ΓJohansen Start End Vector
JpCds5y, UsCds5y, UsdJpy 32.26 2005-04-08 2015-01-14 1.00, -1.19, 0.05
JpCds5y, UsCds5y, UsdJpy 36.47 2010-01-04 2015-01-14 1.00, -1.29, -0.39
EuCds5y, UsCds5y, EurUsd 20.18 2002-09-11 2015-01-14 1.00, -0.97, 163.96
EuCds5y, UsCds5y, EurUsd 16.82 2010-01-01 2015-01-14 1.00, -0.84, 59.88
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5.5 Interest Rate Swap and Cross-Currency Basis Swap Liq-

uidity

Figure 5.21 shows the daily liquidity of USD-JPY 1 year cross currency basis swap (CCBS)

liquidity as the sum of the JPY leg notionals. Figure 5.22 shows the daily liquidity of JPY

1 year interest rate swap liquidity as the sum of the JPY leg notionals. These TS do not

appear to be unit roots. In any case we will perform This data was obtained from the

Depository Trust & Clearing Corporation (DTCC) swap data repository (SDR), referred

to as the DTCC Data Repository (DDR). On December 31, DDR began accepting data

from swap dealers for over-the-counter (OTC) trades as outlined by the Dodd Frank Act

(DFA) and the Commodity Futures Trading Commission’s (CFTC) real-time and regulatory

reporting rules.

The Press Release announcing the availability of the DDR can be found here: http://

www.dtcc.com/news/2013/january/03/swap-data-repository-real-time.aspx. This

is an excerpt:

”DDR is now publishing real-time price information. Since the December

31 swap dealer reporting deadline, DDR has disseminated more than 10,000

records, which represent the vast majority of the reportable OTC derivatives

market. Reports are available through file transfers, RSS feeds and internet

access to a ticker page, Excel and search functions on DRR’s website,https:

//rtdata.dtcc.com/gtr/dashboard.do”
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Figure 5.21: USD JPY 1Y CCBS
Liquidity in Net USD Notional
per Day.

Figure 5.22: JPY 1Y Fixed-Float Swap
Liquidity in Net JPY Notional
per Day.

Listing 5.2: URTs for ln(CCBS(t)usd/jpy) and ln(IRS(t)jpy)

> adf . t e s t ( log usd jpy 1y i r s )

Dickey−F u l l e r = −7.1271 , Lag order = 7 , p−value = 0.01

a l t e r n a t i v e hypothes i s : s t a t i o n a r y

> adf . t e s t ( log usd jpy 1y cc s )

Dickey−F u l l e r = −6.6781 , Lag order = 7 , p−value = 0.01

a l t e r n a t i v e hypothes i s : s t a t i o n a r y

Listing 5.2 displays the results of ADF URTs on the two series being tested, ln(CCBS(t)usd/jpy)

and ln(IRS(t)jpy), and we can see that in both cases we can reject the null hypothesis of a

unit-root, so we can assume they are stationary I(0) processes. If instead of using ADF we

were to use the lagged-series URT we reach the same conclusions.
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Listing 5.3: VAR Model Lag Selection for ln(CCBS(t)usd/jpy) and ln(IRS(t)jpy)

> i r s c c s log <− merge( log jpy 1y i r s , log usd jpy 1y cc s )

>colnames ( i r s c c s log ) <− c ( ’ l og jpy 1y i r s ’ , ’ l og usd jpy 1y cc s ’ )

>VARselect ( i r s c c s log , type=’ both ’ )

$ s e l e c t i o n

AIC(n) HQ(n) SC(n) FPE(n)

5 1 1 5

> v1 <− vars : :VAR( i r s cc s log , p=1, type=’ both ’ )

To perform the selection of the lag for the VAR model to use for Granger causality

testing I used the VARselect() function of the R vars package. Listing 5.3 show the results

and I picked 1 based on the Hannan-Quinn criterion (HQ) and Schwarz-Bayes criterion

(SC), and since it is a much simpler model than using a lag of 5, as suggested by the Akaike

Information Criterion (AIC) and Akaike’s Final Prediction Error (FPE) criterion.

Listing 5.4: Granger Causality Tests of ln(CCBS(t)usd/jpy) and ln(IRS(t)jpy)

> c a u s a l i t y ( v1 , cause = ” log usd jpy 1y cc s ” , boot=TRUE, boot . runs= 100000 )$Granger

Granger c a u s a l i t y H0 : log usd jpy 1y cc s do not Granger−cause log jpy 1y i r s

data : VAR ob j e c t v1

F−Test = 6 .3908 , boot . runs = 1e+05, p−value = 0.00893

> c a u s a l i t y ( v1 , cause = ” log jpy 1y i r s ” , boot=TRUE, boot . runs= 100000 )

$Granger

Granger c a u s a l i t y H0 : log jpy 1y i r s do not Granger−cause log usd jpy 1y cc s

data : VAR ob j e c t v1

F−Test = 2 .2413 , boot . runs = 1e+05, p−value = 0.1114

$ In s tant

H0 : No ins tantaneous c a u s a l i t y between : log jpy 1y i r s and log usd jpy 1y cc s

data : VAR ob j e c t v1

Chi−squared = 0.040932 , df = 1 , p−value = 0.8397

Listing 5.4 shows the results of two Granger-causality tests on 1 year USD-JPY CCBSs
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and 1 year JPY interest rate swaps, as well as an instantaneous causality test between them.

• The first Granger causality test rejects the null and accepts that ln(CCBS(t)usd/jpy)

Granger-causes the 1 year ln(IRS(t)jpy)

• and the second causality test does not reject the null so the 1 year ln(IRS(t)jpy) does

not Granger-cause ln(CCBS(t)usd/jpy)

• the Instant causality test between ln(CCBS(t)usd/jpy) and ln(IRS(t)jpy) is rejected

These tests provide statistical evidence that while there is no instant causality (correla-

tion) between ln(IRS(t)jpy) and ln(CCBS(t)usd/jpy), and that trading activity in JPY-USD

cross currency basis swaps appears to Granger Cause trading activity in JPY interest rate

swaps, and not the other way around. One potential explanation for this is that often when

a USD-JPY cross currency swap is traded a JPY floating-fixed interest rate swap is traded

in conjunction. This can happen if a USD based entity would issue fixed-rate debt denomi-

nated in JPY (with a very low interest rate) and engages in a JPY-USD cross currency swap

to hedge some or all of the FX risk. However when a JPY fixed-floating swap is traded, it

is not necessarily the case that a related cross-currency swap would be traded.

195



Chapter 6: Unit Roots in Other Fields

The bulk of the literature on unit roots and cointegration spans mostly the social sciences,

largely focusing on economic and financial applications. However there are other fields

where they may be proving to be useful tools.

Kipinski, L. and Konig, R and Sieluzycki, C. and Kordecki, W. (2011) used Phillips-

Perron unit root tests as well as other statistical tests to investigate the stationarity of

magnetoof (MEG) or electroencephalography (EEG) time series (TS) , and they found

they are largely stationary. However, Koruek, Mehmet and Ozkaya, Ata (2010) analyzed

electroencephalogram (EEG) TS before, during and after seizures, and they determined that

short interictal (between seizures) EEG series were nonstationary and could be modeled as

an ARIMA unit root process.

There have been various studies on testing worldwide zonal temperature anomalies for

unit roots under various assumptions of strucutural changes as in Coggin, T. Daniel (2012),

Romilly, Peter (2005) and Ivanov, Martin A. and Evtimov, Stilian N. (2010). In the next

section we will use some of the existing unit root tests as well as some that were developed

in this thesis.

6.1 Zonal Temperature Anomalies

I analyzed multiple TS of global zonal temperature anomalies provided by NASA/Goddard

Institute for Space Studies(GISS). The details of the data source are:

• Annual mean Land-Ocean Temperature Index in .01 degrees Celsius for selected zonal

means.
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• Sources: GHCN-v3 1880-09/2015 + SST: 1880-09/2015 ERSST v4 using elimination

of outliers and homogeneity adjustment.

• The data an be found in http://data.giss.nasa.gov/gistemp/graphs_v3/Fig.B.

txt.

Details of this data are explained in the Frequently Asked Questions section of the

GISS Surface Temperature Analysis (GISTEMP) website: http://data.giss.nasa.gov/

gistemp/FAQ.html#q103

We quote verbatim the explanation of the Land-Ocean Temperature index which refers

to temperature anomalies over land, water and see-ice:

Q. What is L-OTI, the Land-Ocean Temperature Index? A. Weather stations

reporting surface air temperatures (SATs) are positioned on land, which covers

only one third of the planet; the rest is covered by oceans where SAT reports

are rare. However, water temperatures (SSTs, sea surface temperatures) are

available from ship and buoy reports, and more recently there are also SST

estimates derived from satellite data. Whereas SATs and SSTs may be very

different (since air warms and cools much faster than water), their anomalies

are very similar (if the water temperature is 5 degrees above normal, the air

right above the water is also likely to be about 5 degrees warmer than normal).

This is not true in the presence of sea ice, since in that case water temperature

will stay at the freezing level. This allows us to use SST anomalies as proxies

for SAT anomalies in regions without sea ice. L-OTI maps show SAT anomalies

over land and sea ice, and show SST anomalies over (ice-free) water.

The definition of a meteorological year is from December 1 to November 30, as explained

by GISS:

Q. What is a meteorological year? A. When comparing seasonal temper-

atures, it is convenient to use ”meteorological seasons” based on temperature
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and defined as groupings of whole months. Thus, Dec-Jan-Feb is the Northern

Hemisphere meteorological winter, Mar-Apr-May is N.H. meteorological spring,

Jun-Jul-Aug is N.H. meteorological summer and Sep-Oct-Nov is N.H. meteoro-

logical autumn. String these four seasons together and you have the meteoro-

logical year that begins on Dec. 1 and ends on Nov. 30.

Instead of temperatures, anomalies are used as explained by GISS:

Q. What are temperature anomalies (and why prefer them to absolute tem-

peratures)? A. Temperature anomalies indicate how much warmer or colder it

is than normal for a particular place and time. For the GISS analysis, normal

always means the average over the 30-year period 1951-1980 for that place and

time of year. This base period is specific to GISS, not universal. But note

that trends do not depend on the choice of the base period: If the absolute

temperature at a specific location is 2 degrees higher than a year ago, so is the

corresponding temperature anomaly, no matter what base period is selected,

since the normal temperature used as base point is the same for both years.

Note that regional mean anomalies (in particular global anomalies) are not

computed from the current absolute mean and the 1951-80 mean for that re-

gion, but from station temperature anomalies. Finding absolute regional means

encounters significant difficulties that create large uncertainties. This is why the

GISS analysis deals with anomalies rather than absolute temperatures. For a

more detailed discussion of that topic, please see ”The Elusive Absolute Tem-

perature”.

As GISS explains the reason for using the 1951-1980 base period is for consistency

purposes, but it is not the only standard:

Q. Why stick with the 1951-1980 base period? A. The primary focus of

the GISS analysis are long-term temperature changes over many decades and

centuries, and a fixed base period makes the anomalies consistent over time.
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However, organizations like the NWS who are more focused on current weather

conditions work with a time frame of days, weeks, or at most a few years. In

that situation it makes sense to move the base period occasionally, i.e., to pick

a new ”normal” so that roughly half the data of interest are above normal and

half below.

Figure 6.1: Zonal Temperature Anomalies.
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Table 6.1: ADF P-value For Zonal Temperature Anomalies 1880-2014

ADF Reject H
I(1)
0

P-value Zone TS α = 0.01

0.74 Glob FALSE
0.92 NHem FALSE
0.33 SHem FALSE
0.94 X24N.90N FALSE
0.36 X24S.24N FALSE
0.21 X90S.24S FALSE
0.81 X64N.90N FALSE
0.65 X44N.64N FALSE
0.85 X24N.44N FALSE
0.39 EQU.24N FALSE
0.30 X24S.EQU FALSE
0.57 X44S.24S FALSE
0.05 X64S.44S FALSE
0.06 X90S.64S FALSE

6.1.1 Unit Root Tests of Temperature Anomalies

Table 6.1 displays the p-values of the ADF URT on the zonal temperature anomaly yearly

TS being analyzed for the entire period of 1880 to 2014. We see that the null-hypothesis of

a unit root (H
I(1)
0 ) is not rejected in any of the cases. If we look back to the URT simulation

results in the case of structural breaks under the null, and alternative hypotheses as detailed

in Tables 3.22 and 3.23 we see there that the ADF URT case barely rejects.

Table 6.2: BBC Critical Values

α = 0.10 α = 0.05 α = 0.01
Q : 0.90 Q : 0.95 Q : 0.99

15.77 17.90 22.23

Table 6.3 displays the BBC results of the URT under a three-regime threshold (SETAR)
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Table 6.3: BBC Test Statistics For Zonal Temperature Anomalies 1880-2014

Reject H
I(1)
0

ΓBBC Zone TS α = 0.01

5.53 Glob FALSE
5.90 NHem FALSE
9.59 SHem FALSE
4.03 X24N.90N FALSE
12.62 X24S.24N FALSE
9.97 X90S.24S FALSE
2.82 X64N.90N FALSE
8.00 X44N.64N FALSE
4.11 X24N.44N FALSE
11.79 EQU.24N FALSE
10.71 X24S.EQU FALSE
8.73 X44S.24S FALSE

18.09 X64S.44S TRUE
32.07 X90S.64S TRUE

model. Other than the last two TS on the table the results are the same as with the ADF

URT in Table 6.1, where the null-hypothesis of a unit root (H
I(1)
0 ) is not rejected.

Table 6.4: Zivot Andrews Critical Values

α = 0.01 α = 0.05 α = 0.10
Q : 0.01 Q : 0.05 Q : 0.10

-5.34 -4.80 -4.58

Table 6.5 displays the results of the the ZA URT on the zonal temperature anomaly

yearly TS being analyzed. We see that the null-hypothesis of a unit root (H
I(1)
0 ) is rejected

in most of the cases. If we look back to the URT simulation results in the case of structural

breaks under the null, and alternative hypotheses as detailed in Tables 3.22 and 3.23 we

see there that for the ZA URT rejects almost always for the alternative hypothesis case of
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Table 6.5: Zivot Andrews Test Statistics For Zonal Temperature Anomalies 1880-2014

Reject H
I(1)
0

ΓZA Zone TS α = 0.01

-5.54 Glob TRUE
-6.39 NHem TRUE
-5.86 SHem TRUE
-7.23 X24N.90N TRUE
-7.34 X24S.24N TRUE
-5.31 X90S.24S FALSE
-9.86 X64N.90N TRUE
-9.91 X44N.64N TRUE
-6.42 X24N.44N TRUE
-7.17 EQU.24N TRUE
-7.49 X24S.EQU TRUE
-4.39 X44S.24S FALSE
-5.61 X64S.44S TRUE
-10.21 X90S.64S TRUE

φ1 < 0 (H
I(0)
1 ), and it also rejects considerably under the null-hypothesis of φ1 = 1 (H

I(1)
0 ).

This is because the ZA test did not consider breaks under the null and only under the

alternative hypotheses.

These URT results leads us to testing the zonal temperature anomalies using URTs that

allow structural breaks under the null hypothesis, namely the Lee Strazicich, and the newly

developed HBPZA URTs.

Table 6.6: HBPZA Critical Values

α = 0.01 α = 0.05 α = 0.10
Q : 0.01 Q : 0.05 Q : 0.10

-6.07 -4.63 -4.34

Table 6.7 displays the results of the the newly developed HBPZA URT on the zonal

temperature anomaly yearly TS being analyzed that allows structural breaks under the

202



Table 6.7: HBPZA Test Statistics For Zonal Temperature Anomalies 1880-2014

Reject H
I(1)
0

with Breaks
ΓHBPZA Zone TS α = 0.01

-4.96 Glob FALSE
-4.81 NHem FALSE
-5.29 SHem FALSE
-4.94 X24N.90N FALSE
-6.51 X24S.24N TRUE
-4.50 X90S.24S FALSE
-5.42 X64N.90N FALSE
-5.53 X44N.64N FALSE
-4.51 X24N.44N FALSE
-7.87 EQU.24N TRUE
-6.73 X24S.EQU TRUE
-4.78 X44S.24S FALSE
-3.93 X64S.44S FALSE
-7.03 X90S.64S TRUE
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null. We see that the null-hypothesis of a unit root (H
I(1)
0 ) is rejected in 4 out of 14 TS.

If we look back to the URT simulation results in the case of structural breaks under the

null, and alternative hypotheses of the HBPZA and Lee Strazicich URTs as detailed in

Tables 3.24 we see that these tests perform better that the standard URTs even on a time

series length of 100. The TS X64S.44S and X24N.90N and in the subset of series where the

tests fail to reject the null hypothesis of a unit root.

Table 6.8: Lee Strazicich URT Critical Values

λ α = 0.01 α = 0.05 α = 0.10

0.10 -5.11 -4.50 -4.21
0.20 -5.07 -4.47 -4.20
0.30 -5.15 -4.45 -4.18
0.40 -5.05 -4.50 -4.18
0.50 -5.11 -4.51 -4.17

Table 6.9 displays the results of the Lee Strazicih URT on the zonal temperature anomaly

yearly TS being analyzed that allows structural breaks under the null. We see that the null-

hypothesis of a unit root (H
I(1)
0 ) is rejected in 6 out of 14 TS. The zonal TSs X64S.44S and

X24N.90N are also in the subset of series where the Lee Strazicih URTs fail to reject the

null hypothesis of a unit root, just as they were when the HBPZA URT was used.

6.1.2 Structural Breaks in Temperature Anomalies

We use the Bai, J. and Perron, P. (1998) methodology that was used to develop the HBPADF

testing methodology previously, to test here for structural breaks in the zonal temperature

anomalies. First the Regression Model (6.1) is employed to test for breaks in the coefficients

with an intercept:

x(t) = φ1x(t) + β0 + ε(t) (6.1)

Under the null hypothesis of a unit root (φ1 = 1) Model (6.1) results in a linear time
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Table 6.9: Lee Strazicich URT Statistics For Zonal Temperature Anomalies 1880-2014

Reject H
I(1)
0

with Breaks
ΓLS Zone TS α = 0.05, λ = 0.5

-3.91 Glob FALSE
-4.14 NHem FALSE
-5.10 SHem FALSE
-3.98 X24N.90N FALSE
-5.31 X24S.24N TRUE
-4.68 X90S.24S FALSE
-5.92 X64N.90N TRUE
-5.42 X44N.64N TRUE
-5.04 X24N.44N FALSE
-5.19 EQU.24N TRUE
-5.38 X24S.EQU TRUE
-4.58 X44S.24S FALSE
-3.88 X64S.44S FALSE
-10.33 X90S.64S TRUE
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Table 6.10: Estimated Breakpoints for Zonal Temperature Anomalies 1880-2014 without a
linear trend

Break Zone TS

1918 X24N.90N
1918 X64N.90N
1918 X44N.64N
1918 X64S.44S
1928 NHem
1932 Glob
1934 X64S.44S
1935 X24N.44N
1965 X44S.24S
1968 X90S.64S
1973 X64S.44S
1974 EQU.24N
1975 Glob
1975 SHem
1975 X24S.24N
1975 X90S.24S
1975 X24S.EQU
1984 NHem
1986 X24N.90N
1986 X44N.64N
1993 X64N.90N
1995 Glob
1996 X24N.44N
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trend in levels. Table 6.10 displays the breaks inferred with Regression Model (6.1). We

see that most zones have an estimate of two break periods.

We also use the Regression Model (6.2) to test for breaks which adds a linear time trend

in the AR formula:

x(t) = φ1x(t) + β0 + β1t+ ε(t) (6.2)

Table 6.11: Estimated Bai-Perron Breakpoints for Zonal Temperature Anomalies 1880-2014
with AR(1) with a Linear Trend and Intercept

Break Zone TS

1929 X90S.64S
1931 X64S.44S
1935 X64N.90N
1943 X90S.24S
1943 X44S.24S
1944 SHem
1944 X24S.EQU
1962 Glob
1962 NHem
1962 X24N.90N
1962 X24S.24N
1962 X44N.64N
1970 X64N.90N
1992 X24N.44N
NA EQU.24N

Under the null hypothesis of a unit root (φ1 = 1) Model (6.2) results in a quadratic

time trend in levels. Table 6.11 displays the breaks inferred with Regression Model (6.1).

We see that most zones have an estimate of one break period, except for EQU.24N which

has none.

We perform the HBPADF URT testing procedure where we use the ADF URT on each

of the two sections. A number of the zones fail to reject the null-hypothesis of a unit root

in both time periods; these include X64S.44S and X24N.90N, which also showed up when

we did not include a time trend.
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Table 6.12: HBPADF Estimated AR Break Models for Zonal Temperature Anomalies 1880-
2014 with a time trend

Break Break ADF ADF
Zone Year Prop PvalueA β0,A φ1,A β1,A PvalueB β0,B φ1,B β1,B

X90S.64S 1929 0.37 0.02 37.6 0.1 -2.1 0.01 -136.1 0.0 1.5

X64S.44S 1931 0.38 0.34 -8.9 0.4 -0.4 0.34 -18.1 0.7 0.2
X64N.90N 1935 0.41 0.06 -132.6 0.1 2.8 0.79 -49.9 0.5 0.8

X90S.24S 1943 0.47 0.78 -5.5 0.8 0.1 0.07 -44.6 0.5 0.5
X44S.24S 1943 0.47 0.72 -5.7 0.8 0.1 0.08 -33.9 0.7 0.4

SHem 1944 0.48 0.90 -6.2 0.8 0.1 0.04 -61.7 0.4 0.7
X24S.EQU 1944 0.48 0.12 -11.7 0.5 0.1 0.01 -72.5 0.3 0.9

Glob 1962 0.61 0.33 -10.8 0.7 0.1 0.05 -139.5 0.1 1.5

NHem 1962 0.61 0.44 -16.8 0.6 0.3 0.24 -148.9 0.3 1.6
X24N.90N 1962 0.61 0.52 -26.9 0.5 0.5 0.16 -197.5 0.2 2.1

X24S.24N 1962 0.61 0.24 -11.3 0.5 0.1 0.02 -112.5 0.1 1.3
X44N.64N 1962 0.61 0.40 -40.8 0.1 0.7 0.02 -247.8 0.0 2.7

X24N.44N 1992 0.83 0.42 -11.9 0.6 0.1 0.66 -156.0 0.4 1.6

EQU.24N NA NA 0.39 -16.4 0.6 0.3 NA NA NA NA

Ivanov, Martin A. and Evtimov, Stilian N. (2010) provide statistical arguments for a

change in trend in the Northern Hemisphere in 1963. We can see in Table 6.11 that our

estimated changepoint for the Northern Hemisphere(NHem) was in 1962. The authors’

provided these data source details:

The first is the HADCRUT3 (Brohan P. and Kennedy JJ. and Harris I. and

Tett SFB. and Jones PD. (2006)) version of combined land and marine data,

the second is the CRUTEM3 (Brohan P. and Kennedy JJ. and Harris I. and

Tett SFB. and Jones PD. (2006)) series of land air data and the third series

is HADSST2 (Rayner NA. and Brohan P. and Parker DE. and Folland CK.

and Kennedy JJ. and Vanicek M. and Ansell TJ. and Tett SFB. (2006)) for

marine data. The anomalies are against the 1961–1990 climatology and span

the 1850–2007 period.
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6.1.3 Cointegration of X24N.90N and X64S.44S Temperature Anomalies

Figure 6.2: Correlation of Differences of X24N.90N and Differences of X64S.44S

Figure 6.2 shows that the differences of the X24N.90N and X64S.44S TS are not cross-

correlated. There seems to be some autocorrelation with X24N.90N differences with a lag

of 1 and 3, and with X64S.44S differences for a lag of 1.
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Listing 6.1: Cointegration Test of X24N.90N, X64S.44S with no trend,nor constant

######################

# Johansen−Procedure #

######################

Test type : maximal e i g enva lue s t a t i s t i c ( lambda max) , with l i n e a r trend

Eigenva lues ( lambda ) :

[ 1 ] 0 .037395208 0.002030704

Values o f t e s t s t a t i s t i c and c r i t i c a l va lue s o f t e s t :

t e s t 10 pct 5 pct 1 pct

r <= 1 | 0 .27 6 .50 8 .18 11 .65

r = 0 | 4 .99 12 .91 14 .90 19 .19

Eigenvectors , normal i sed to f i r s t column :

( These are the c o i n t e g r a t i o n r e l a t i o n s )

X24N.90N. l 5 X64S .44 S . l 5

X24N.90N. l 5 1 .000000 1.0000000

X64S .44 S . l 5 −2.803177 −0.2642928

Weights W:

( This i s the load ing matrix )

X24N.90N. l 5 X64S .44 S . l 5

X24N.90N. d −0.04004946 0.016427154

X64S .44 S . d 0.03017643 0.009176225

Results Listing 6.1 shows that there is no evidence of cointegration using the Johansen

cointegration test without a linear trend.
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Listing 6.2: Cointegration Test of X24N.90N, X64S.44S with a linear trend

######################

# Johansen−Procedure #

######################

Test type : maximal e i g enva lue s t a t i s t i c ( lambda max) , with l i n e a r trend

in c o i n t e g r a t i o n

Eigenva lues ( lambda ) :

[ 1 ] 1 .156881 e−01 2.513105 e−02 6.541002 e−18

Values o f t e s t s t a t i s t i c and c r i t i c a l va lue s o f t e s t :

t e s t 10 pct 5 pct 1 pct

r <= 1 | 3 .33 10 .49 12 .25 16 .26

r = 0 | 16 .11 16 .85 18 .96 23 .65

Eigenvectors , normal i sed to f i r s t column :

( These are the c o i n t e g r a t i o n r e l a t i o n s )

X24N.90N. l 5 X64S .44 S . l 5 trend . l 5

X24N.90N. l 5 1 .000000 1.0000000 1.0000000

X64S .44 S . l 5 2 .405250 −1.1594729 −0.1883196

trend . l 5 −2.394985 −0.9555919 −0.2977645

Weights W:

( This i s the load ing matrix )

X24N.90N. l 5 X64S .44 S . l 5 trend . l 5

X24N.90N. d −0.01828637 −0.067173804 −1.001798e−15

X64S .44 S . d −0.09748640 0.006931988 −4.774705e−16

Results Listing 6.2 shows that there is no evidence of cointegration using the Johansen

cointegration test with a linear trend.
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Listing 6.3: Lutkepohl Cointegration Test of X24N.90N, X64S.44S with a Linear Trend

######################

# Johansen−Procedure #

######################

Test type : trace s t a t i s t i c , with l i n e a r trend in s h i f t c o r r e c t i o n

Eigenva lues ( lambda ) :

[ 1 ] 0 .1163060 0.0289185

Values o f t e s t s t a t i s t i c and c r i t i c a l va lue s o f t e s t :

t e s t 10 pct 5 pct 1 pct

r <= 1 | 3 .73 5 .42 6 .79 10 .04

r = 0 | 18 .15 13 .78 15 .83 19 .85

Eigenvectors , normal i sed to f i r s t column :

( These are the c o i n t e g r a t i o n r e l a t i o n s )

X24N.90N. l 1 X64S .44 S . l 1

X24N.90N. l 1 1 .000000 1.0000000

X64S .44 S . l 1 1 .778241 −0.3498645

Weights W:

( This i s the load ing matrix )

X24N.90N. l 1 X64S .44 S . l 1

X24N.90N −0.07876826 −0.14403678

X64S .44 S −0.13769160 0.04069908

Results Listing 6.3 shows that there is evidence of cointegration using the Lutkepohl

cointegration test with a linear trend with a significance level of α = 0.05.
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Listing 6.4: Lutkepohl Cointegration Test of X24N.90N, X64S.44S without a Linear Trend

######################

# Johansen−Procedure #

######################

Test type : trace s t a t i s t i c , without l i n e a r trend in s h i f t c o r r e c t i o n

Eigenva lues ( lambda ) :

[ 1 ] 0 .097385138 0.006518081

Values o f t e s t s t a t i s t i c and c r i t i c a l va lue s o f t e s t :

t e s t 10 pct 5 pct 1 pct

r <= 1 | 0 .85 3 .00 4 .12 6 .89

r = 0 | 13 .02 10 .45 12 .28 16 .42

Eigenvectors , normal i sed to f i r s t column :

( These are the c o i n t e g r a t i o n r e l a t i o n s )

X24N.90N. l 1 X64S .44 S . l 1

X24N.90N. l 1 1 .00000 1.0000000

X64S .44 S . l 1 −47.33876 −0.3765719

Weights W:

( This i s the load ing matrix )

X24N.90N. l 1 X64S .44 S . l 1

X24N.90N −0.005076601 −0.03503179

X64S .44 S 0.003196657 −0.02415221

Results Listing 6.4 shows that there is evidence of cointegration using the Lutkepohl

cointegration test without a linear trend with a significance level of α = 0.05.

The Lutkepohl cointegration test allows for structural breaks in the level, but not in the

linear trend. Other earlier analyses may indicate potential breaks in trend–so it is unclear

what we can conclude.

6.2 Three Regime SETAR Models of NHem and SHem

We use the auto.arima() function of the R package to build the best possible fit models to the

Northern Hemisphere and the Southern Hemisphere temperature anomalies. We also build
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3-regime SETAR models of these TS using the setar() function of the tsDyn R package (Di

Narzo, Antonio and Di Narzo, Fabio and Aznarte,Jose Luis and Stigler,Matthieu, 2009).

For known thresholds the SETAR model can be fit using conditional least squares; the

setar() function performs a grid search to find the thresholds that minimize the RMSE. We

consider for both ARIMA and SETAR models versions with intercepts and linear trends

and without any deterministic components.

We allow for a constant and linear trend in the auto-regressive process which is equivalent

to a quadratic trend [finish.]

Table 6.13: Model Fits of NHem and SHem TS

Zone Model Type Drift Shapiro p-value Box Pierce p-value Sresid

NHem ARIMA(1,1,1) TRUE 0.42 0.86 13.14
NHem SETAR 3-regimes TRUE 0.02 0.68 11.91
SHem ARIMA(1,1,1) TRUE 0.61 0.81 9.55
SHem SETAR 3-regimes TRUE 0.62 0.26 8.92
NHem ARIMA(0,1,2) FALSE 0.32 0.77 13.15
NHem SETAR 3-regimes FALSE 0.61 0.01 13.98
SHem ARIMA(1,1,1) FALSE 0.64 0.87 9.57
SHem SETAR 3-regimes FALSE 0.66 0.04 10.06

Table 6.13 shows model various model fits of the NHem and SHem TS. These include

the following information regarding the residuals:

• the p-value of the Shapiro-Wilk test of normality; the null hypothesis is that the

residuals are Gaussian

• The Box-pierce test of independence of values in a time series; the null hypothesis is

that the residuals are independent of each other

• the standard deviation of the residuals (Sresid)

We see that:
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• The versions of the models with time trends and intercepts(drift) always produce the

best results.

• The SETAR 3-regime models provide the best fits in terms of lowest RMSE and lowest

standard deviation of residuals (Sresid).

• The fits are better for the Southern Hemisphere than they are for the Northern Hemi-

sphere.

Listing 6.5: NHem 3 Regime SETAR Model

Non l i n e a r a u t o r e g r e s s i v e model

SETAR model ( 3 reg imes )

C o e f f i c i e n t s :

Low regime :

const . L trend . L phiL . 1

−5.8130703 0.2855119 0.8795019

Mid regime :

const .M trend .M phiM . 1

−19.1155054 0.2297229 1.0047473

High regime :

const .H trend .H phiH . 1

−2.530446 e+02 2.580310 e+00 7.563802 e−03

Threshold :

−Var iab le : Z( t ) = + (1) X( t )

−Value : −16 29

Proport ion o f points in low regime : 34.07% Middle regime : 48.15%

High regime : 17.78%

Listing 6.5 shows the fitted 3-regime SETAR model of the Northern Hemisphere tem-

perature anomalies (NHem.) We see that there is a middle AR(1) regime that is explosive.

Whyte, JM and Metcalfe, AV (2011) proposed a similar model they refer to as MTAR

using temperature anomaly data from Burgundy, France. The constants are negative but

the linear trends are positive indicating a diverging relationship further exacerbated by the
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explosive middle regime.

Listing 6.6: SHem 3 Regime SETAR Model

Non l i n e a r a u t o r e g r e s s i v e model

SETAR model ( 3 reg imes )

C o e f f i c i e n t s :

Low regime :

const . L trend . L phiL . 1

−8.3633052 0.1050809 0.7485235

Mid regime :

const .M trend .M phiM . 1

−47.7776797 0.6255392 0.3539460

High regime :

const .H trend .H phiH . 1

−58.4964850 1.0803433 −0.5868101

Threshold :

−Var iab le : Z( t ) = + (1) X( t )

−Value : 10 35

Proport ion o f points in low regime : 68.15% Middle regime : 15.56%

High regime : 16.3%

Listing 6.6 shows the fitted 3-regime SETAR model of the Southern Hemisphere temper-

ature anomalies (SHem.) None of the regimes are explosive and appear to all be stationary.

The high regime has a negative φ1 < 0 value which encourages an oscillatory behavior in

that regime. The constants are negative but the linear trends are positive indicating a

diverging relationship.

We simulate 200 stepwise paths starting from the beginning of the SHem series and

using the standard deviation of the residuals as the standard deviation of the error terms,

and plot them in Figure 6.4. We can see that this model is fairly well behaved.

We simulate 200 step-wise paths starting from the beginning of the NHem series and

using the standard deviation of the residuals as the standard deviation of the error terms,

and plot them in Figure 6.6. We can see that this model is less stationary than the one of
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Figure 6.3: SHem Original
Data

Figure 6.4: 200 SHem SETAR Simula-
tions with σ = 8.916936

Figure 6.5: NHem Original Data
Figure 6.6: 200 NHem SETAR Simula-
tions with σ = 11.91102
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the SHem series.

A likely reason for the differences between hemispheric models is in the Southern Hemi-

sphere, the ratio of land to water is one-third that in the Northern Hemisphere (Mielke,

HW, 1989). Oceans help stabilize temperatures. Another factor may be that only 13% of

the world’s population lives in the Southern Hemisphere (Warren, Stephen G, 2015).
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Chapter 7: Conclusions

As Choi, In (2010, p. 57) states, no unit root test is dominant, and the author recommends

trying as many tests as possible and seeing if there are differences. In this thesis I proposed

new tests with certain advantages over existing ones, I compared existing and new tests

under various scenarios and had practical applications in areas of Finance and Temperature

Anomalies. More specifically these were the research contributions of this thesis:

• I showed via simulation studies that when testing for cointegration of two slightly

explosive TS (φ1 > 1) results almost invariably in spurious cointegration; this is not

mentioned in the literature. None of the standard established unit root tests analyzed

in this thesis such as the ADF URT reject the null hypothesis of I(1) in the case of

φ1 > 1. See Tables 3.36, 3.37 and 3.38.

• I developed a new unit root test (URT)–the lagged-series URT which has similar

statistical power to the Augmented Dickey Fuller (ADF) test when the auto-regressive

multiplier φ1 < 1 but exceeds the power of the ADF test when φ1 > 11. We show

empirically via simulation studies that a valid2 cointegration relationship between a

TS and its lag implies an I(1) TS. This cointegration test will never result in a case

of no possible cointegrating relationships for a reasonable lag.

• The new lagged-series test does not reject I(2) series similarly to the ADF and ERS

URTs. However the new lagged-series URT rejects at least 65% of I(3) tests and 85%

of I(4) tests; by comparison the ADF URT only rejected 5% of the I(3) and I(4) tests.

1 Chandra, Suresh K. and Janhavi, J.V. (2008) developed a modified ADF URT that is supposed to
reject explosive unit roots. I did not have access to this test so I cannot make any comparisons with the
lagged-series test.

2When testing a TS with its lag if it has two cointegrating relationships this implies that the series is
I(0). Two variables can only have one valid cointegration relationship.
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• I combined the new lagged-series (URT) with other unit root tests such as ERS and

ZA tests which improve the power of these tests when the AR(1) auto-regressive

multiplier φ1 > 1.

• I developed and tested the HBPZA unit root test which allows for structural breaks

in intercept and linear trend under the null hypothesis and compared it to an existing

implementation of the Lee-Stratizich URT that also allows breaks in the null. The

new test performs better than the Lee-Stratizich3 in a number of situations.

• I developed the HBPADF testing procedure that allows discerning I(0)-I(1) shifts

within the evaluated time series, and performed simulation studies on it.

• I combined URTs with deep learning neural networks (DLNNs) which outperform

individual tests when we consider the net error across null and alternative hypotheses.

• I performed simulation based studies of the ADF, ERS-Ptest, ERS-DFGLS, the Zivot-

Andrews, and the new lagged-series URTs, under various Model configurations. Find-

ings are consistent with the literature that points out these tests are sensitive to the

starting value of the unit root. Also when there are structural breaks in the null

hypothesis the standard unit root tests hardly ever reject the null hypothesis of a unit

root.

• I used a linear form of the covered interest rate parity (CIP) formula and showed that

if cross-currency swap basis spreads are added to one of the 3 terms the cointegration

relationship always strengthens.

• I showed that there are likely cointegration relationships between bank credit default

swap spreads and cross currency basis swap spreads. This would provide evidence

bank credit risk is related to cross currency basis swap spreads. I showed that there

3I am in contact with Johannes Lips,the author of the R implementation of the Lee-Stratizich URT. This
test appears to reject much more than expected under the null hypothesis, so it is not certain if this is a bug
in the software or an issue with the procedure itself.
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are cointegration relationships between bank credit default swap spreads and spot FX.

This would indicate that bank credit risk affects the FX Spot rate.

• I analyzed interest rate and cross currency swap liquidity and ensured the series are

not unit roots, and provided statistical evidence that USD-JPY cross-currency basis

swaps Granger cause JPY fixed-floating IR swaps. A possible explanation may be

USD based entities issuing JPY fixed debt and hedging it fully or partially with USD-

JPY cross currency basis swaps.

• I used various analyses to check for unit roots in zonal temperature anomaly time

series including under structural breaks in the null hypothesis using the new HBPZA

test as well as the HBPADF testing procedure.A number of model were fitted to

the temperature anomaly data, including a 3 regime SETAR model and showed that

better fits are always achieved when adding linear trends.

• I showed that the estimated 3-regime SETAR models for the Southern Hemisphere

temperature anomalies are more likely to be stationary than the Northern Hemisphere,

which includes an AR explosive (φ1 > 1) middle regime.

7.1 Suggested Future Work

• The critical values for the HBPZA test were not derived using sufficient simulations

due to how slow the test is; only 300 were used. This needs to be redone with 5000

simulations.

• Critical values were derived for the lagged-series and HBPZA URTs using simulation

based arguments. It would be helpful to mathematically attempt to derive their

asymptotic behavior under certain assumptions.

• The new lagged-series and HBPZA URTs can be further enhanced to deal better with

short time series, as well as with ARMA time series.
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• Further experiments combining unit root tests with deep learning neural network

architectures that allow for structural breaks in linear trend under the null hypothesis

of a unit root such as the HBPZA test. These tests typically are very computationally

intensive, so this experiment would take considerable computational effort and time.

But once the DLNN is trained it is very fast to run.

• We would like to investigate how to fit a 3-regime SETAR model that allows for

structural breaks in intercept and trend for fixed periods of time, along with the

breaks inherent in transitioning between regimes.

• The procedure of combining multiple statistical tests using machine learning tech-

niques which was used in Chapter 4 could be could be employed for other hypothesis

testing problems where there is no single test that outperforms the others. One ex-

ample would be testing the equality of two population variances.
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