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ABSTRACT

SURVEY OF FUZZY SET THEORY IN ACTUARIAL LIFE MODELING
Jean Guy Daniel Boni, M.S.
George Mason University, 2016

Thesis Director: Dr. Douglas Eckley

This thesis describes Actuarial science and Fuzzy Logic as relatively recent fields of
mathematics introducing methods for containing uncertainty and vagueness in the line of
business in which it is being used. Whereas actuaries work on the financial risk in
(re)insurance of future events, ‘Fuzzicists’ aim at modeling the degree to which such
events may occur. In the process of researching and writing, the author conducted a
literature search and review of Fuzzy Set Theory with a structural approach to actuarial
modeling. Following the recent development and discoveries of fuzzy logic, life
insurance actuaries gained ultramodern modeling techniques, replacing the sole use of
probabilities that had started to become insufficient. This thesis is slated to span the

applications of Fuzzy Mathematics in the actuarial modeling of Life Contingencies.



PART 1: STRUCTURAL APPROACH TO FUZZY LOGIC AND ACTUARIAL
MODELING

1. Introduction

The year 1965 marked the birth of fuzzy logic as forefather Lotfi A. Zadeh
published his paper entitled “Fuzzy Sets” in the journal of Information and Control. He
introduced an alternative logic to the well-known Boolean logic that an event is either
True (=1) or False (=0) or, as formerly stated in Aristotle’s law of excluded middle, an
element is either contained in a set or not contained in a set. From this point of view, only
a few elements of the real world can be properly represented, for everything has to be
black and white and there are no shades of grey. On a note from Albert Einstein “So far
as the laws of mathematics refer to reality, they are not certain. And so far as they are
certain, they do not refer to reality.” Fuzzy logic proposes that sets of objects had
boundaries not sharply defined, awarding elements to be contained in a set to a grade of
membership. Today on its 50" year anniversary, it has evolved into a whole field of
mathematics with its very own analysis, operations and rules. Pioneer work in the theory
of Fuzzy Sets extends to actuarial science and, specifically for our purposes, life
contingencies models. We must introduce and define the basic engineering of these

fields.



1.1. Life Contingent Events

Actuarial Science is the field of study that uses mathematical and statistical
methods to assess risk in insurance, finance, and other industries/professions. The study
is frequently associated with insurance and stock markets where its principles are
commonly applied. In Life Insurance, actuaries aim to assess the risk of losing a life, to
an insurer by modeling the policyholder's life expectancy. A person’s life becomes a
probabilistic set and its distribution is represented with various assumptions. One future
lifetime becomes a random variable, and probabilities of death or survival are calculated.
“Life contingencies” is a term used to describe survival models for human lives and

resulting cash flows that start/stop contingent upon the state of a human life.

1.2. Fuzzy Logic

The traditional way of thinking in mathematics complies with Boolean logic
(Boole 1847) and dates to 300 B.C. with Aristotle’s law of the excluded middle. It states
that for any two contradictory propositions (i.e. where one proposition is the negation of
the other) one must be true (1), and the other false (0). Later adapted to algebra as X must
be either in a set A or not in A.

Fuzzy logic is rather an extended logic dealing with linguistic ambiguity and
handling the concept of partial truths. Truth values of a variable may be any real number
between 0 and 1. By linguistic ambiguity arises matters of daily life having two or more
aspects whose boundaries have not been unanimously agreed upon. One such example is

the temperatures for Cold, Hot and Warm. The three functions are plotted in Figure 1,



where the sense of transition between these aspects is more visible. Other examples may

have more or less variables, such as Young-Adult-Old; Short-Tall, etc.

warm hot

temperature ——
Figure 1. Transition of Temperatures

Fuzzy Set Theory (Zadeh 1965) is the mathematical field based on Fuzzy logic,
dealing with the sets whose elements have degrees of membership. Define a Fuzzy set as
a pair (U, m) for a set U and a membership function m: U — [0, 1]. For each x € U, the
value m(x) is the grade of membership of x in the fuzzy set. In particular, x is not included
if m(x) = 0, and x is fully included if m(x) = 1. That means for all x € U: m(x) €
(0,1), x is at the same time partly included and partly not included, hence the concept of
sets with no sharp boundaries. Classical sets are special cases of fuzzy sets called crisp

sets, with membership function m: U — {0,1}.



Crisp s¢ Fuzzy ' s¢

Figure 2. Crisp set and Fuzzy set membership graphs

1.3. Literature Review

Most insurance executives deal better with the crisp/traditional logic, and often
transform imprecise statements into rigid rules. This is the case of Belgian insurers using
fuzzy statistical evidence, such as "Young drivers provoke more automobile accidents" to
set up the rating rule "Drivers under 23 years old will pay $150 deductible if they
provoke an accident” (Lemaire 1990). Thus, the initial statement was distorted and
“Young” was equated to "under 23," when 23 is only perhaps 80% young.

Since 1965, the count of publications on Fuzzy set theory has grown to exceed
50,000 today (Chen et al). We have experienced what is called a fuzzy boom since the
1990s thanks to pioneers in actuarial science such as Shapiro, Lemaire and Liu. Today,
there are more researchers in Fuzzy Logic than in Actuarial Science, with important

contributions from Japan, China & Russia. The evolution of the study in the literature



started with linguistic variables and fuzzy sets, followed by fuzzy numbers arithmetic,
fuzzy inference systems and fuzzy linear programming, and more recently fuzzy
clustering with soft computing. It may be found in a variety of applications such as
helicopter autopilot, home electronics, vehicle control, camera stabilization. The figure

below from Zimmerman’s “Fuzzy Sets Theory and its applications” 2001 provides a

Tools and
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9 Fuzzy Sets 1965
Fuzzy Degi )
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Acaderric Fuzzy {Cement Kiln)
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Transt, .
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Figure 3. Survey of Evolution (Zimmerman 2001)
better grasp of the evolution.

1.4. The Current Research

This investigation aims at presenting the applications of Fuzzy Set Methodology

in an actuarial science framework with focus on modeling life contingencies. The



approach is meant to define where actuarial science and fuzzy logic intersect. First, the
traditional mechanism of life insurance will be explained, from the underwriting process
to the classification of policies in preference classes. This will require a review of
probability theory in human life modeling, with the customary use of survival models and
life tables for premium calculations. Second, the applications of fuzzy mathematics will
be fully described through a series of theorems and definitions, including fuzzy rules,
analysis, and clustering algorithms.

The second part of the research will survey the use of the aforementioned
applications in life insurance. This will involve the translation of the medical records of
applicants for life insurance using a fuzzy decision-making process, followed by the
classification of the policyholders by risk levels using a fuzzy system of preference
classes. Next, the author will remodel actuarial survival probabilities, insurance benefits
and premium computations using fuzzy parameters, to eliminate the inaccuracy caused by
the fluctuation of interest rates. Finally, each policyholder’s risk derived from actuarial

life tables using only the age factor will be rearranged in fuzzy clusters.

2. Traditional actuarial Life

2.1. Market Setup: Underwriting and Preferred Lives

Life insurance is a contract between a person and an insurance company. The
insurance company promises a compensation to a designated person with a certain
amount of money upon death of the insured, in return for periodic payments. Life
insurance has its own jargon and the designated person is called the beneficiary; the

money received upon death is the sum insured or death benefit; the insured is also called



the policyholder and his/her payments are called premiums. Underwriting is the process
of determining which risk class an insured belongs to, based on several factors such as
age, gender, physical condition, medical history, financial background, personal habits,
profession, hobbies, etc. Underwriting is an important aspect for an insurance company:
it classifies the applicants according to their level of risk, protects the company from
fraud or identity thefts, benefits consumers by keeping the insurance more affordable
with low premiums, and helps the solvency of the company.
The consumer chooses the type of insurance coverage he/she wishes. The
traditional insurance contracts are:
= Whole life insurance pays a lump sum benefit on the death of the policyholder
whenever it occurs. Premiums are often payable up to a maximum age (80).
=  Term insurance pays a lump sum benefit on the death of the policyholder,
provided death occurs before the end of a specified term. Subtypes of these
contracts include term insurance renewable every year, and term insurance
convertible to whole life insurance.
=  Pure Endowment pays the insured himself if he survives a specified period but
pays nothing in case of a death prior the specified date.
= Endowment insurance offers a lump sum benefit paid either on the death of
the policyholder or at the end of a specified term, whichever occurs first.
(Term insurance + pure endowment).
Life insurance policies may involve a single premium at the beginning of the

contract, or a series of premiums payable until death/end of term. Another type of



insurance contract to consider is Life Annuity. An annuity in financial mathematics is a
contract that offers a regular series of payments to the buyer. If the annuity depends on
survival of an individual, it is called a ‘life annuity’ and the recipient is the annuitant.
Note that the beneficiary can be the policyholder himself in this case. These contracts are
often purchased by older lives to provide income in retirement. They include:
= Whole life annuity pays until the death of the annuitant.
= Term life annuity pays up to an agreed upon date, and may stop upon death of
the annuitant, if sooner.
Other types of insurance contracts that are of more recent vintage and are more
attuned to the current economy are:
= With-profit insurance shares profits earned on the invested premiums are
shared with the policyholders in the form of cash dividend, reduced
premiums, or increased sum insured
= Universal life insurance puts premiums into an investment fund and deducts

insurance charges from the fund periodically.

Once the type of contract is selected, underwriters do a classification of the risk
level of the applicant following the guidelines of the insurance company executives.
Insurance Risk Classes are groups of people with similar characteristics and risk level.

The classes may be defined based on age, sex, income and physical condition. In
life insurance, an underwriting decision is made whereby the applicant may be either

denied coverage or put into one of the following generic classes:



» Preferred Class: healthy, middle-aged individuals with stable income and a
better than average risk of insolvency or mortality. They are charged lower
(preferred) rates.

» Standard Class: This is for a more or less healthy person, complying with the
definition of normal or typical risk the carrier desired to insure. This class is
charged the standard rate.

» Substandard/Rated Class: In this class are applicants for higher coverage with
only tolerable physical or medical condition. They represent an above average
risk and are charged higher premium rates than the Preferred and the Standard
classes.

= Postponed: Occasionally cases are postponed until additional information is
gathered, some time passes, or until negative factors change in favor of
assigning a risk class. For instance, a person with a medical condition could
be subject to additional tests, such as a stress test to check cardiovascular
functions.

= Declined: if the client represents an uninsurable risk, coverage is declined.

This is the type of underwriting scheme used by most life insurance carriers, in

particular by the American International Group (AIG) in its ‘Field Underwriting Guide’.
Other derivatives schemes can be found as in Figure 4, which shows the risk classes
Deloitte Consulting uses for ‘Predictive modeling for Life Insurance.” Note to the reader,
declination of insurance coverage does not reflect the health or likelihood of dying, but

solely a risky venture for the solvency of the company.



Substandard Stantjjard Preferred Super Preferred

+

+ Average mortality for class | / Range of mortality risk for members of class
|

Figure 4. Predictive Modeling for Life Insurance by Deloitte Consulting, LLP

Life insurers agree that mortality is unevenly distributed in the population. For
instance, with all factors being equal, females outlive males; the use of tobacco is
detrimental to health and critically affects mortality. United States mortality tables are
divided by sex, race and ethnicity and all give different statistics (See Tables 5, 6, 7 & 8).

Preferred programs expanded in the 1980s with the HIVV/AIDS scare (Hughes
2012). Prior to this date, a single premium rate was charged for each age/sex cohort with
occasionally a nonsmoker discount. All 35 year-old male customers would pay the same
premium. This method had some negative outcomes by creating a pooling of risks —
customers of higher mortalities offset costs of favorable mortalities, and vice-versa. To
address this problem, carriers began demanding blood samples to determine if an
applicant was HIV-positive. Initially, this additional information would only suggest
denial of coverage. But eventually, blood panels revealed a wealth of data on a person’s

well-being, later used to assess mortality risk in more refined ways.
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The main objectives for a preference program are to have rates in line with each
risk profile, to reduce premium cross-subsidization, and to shape the industry into a
competitive market. By design these programs operate more closely to individual risk
setting. But the practice of grouping lives has been more prominent in life insurance sales
historically, and requires less underwriting.

Preferred programs are complicated to develop and require a chief pricing
actuary. A preferred premium must correlate to the expected risk profile of the best class.
Selection decisions outside the agreed-upon bounds (i.e. exceptions) can affect the
distribution of risks and profitability. If underwriting guidelines are applied liberally,
more applicants will qualify for the best class. On the other hand, if they are too rigorous,
premium rates will be too high, driving away applicants the preferred class was designed
to attract (Hughes 2012). Most companies require that clients apply for a stated minimum
death benefit of perhaps $250,000 in order to qualify for preferred status. Industry

surveys say that 10-45% of all applicants qualify for preferred classification.

2.2. Survival Probability Models
2.2.1. Survival Models In Statistics
In Probability theory, the sample space Q for a random phenomenon is the set of
all possible outcomes (Ross 2013). The event E is any subset of the sample space and the
probability of event E occurring is P(E) € [0,1]. There exists a duality property between
an event E and its complement P(E¢) + P(E) = 1. Two important equalities in
probability are:

VA,B € Q,P(AUB) = P(A) + P(B)-P(ANB)

11



and the conditional probability of A given B is

P(ANB)
P(B)

P(A|B) =

A random variable X is a numerical outcome of a random experiment. The distribution
of X is the collection of outcomes and their probabilities. X is said to be discrete if it has
a countable number of outcomes; and continuous if it has an infinite continuum of
possible values (e.g. blood pressure, weight). The cumulative distribution function (or
cdf) is given by: Fy(x) = P(X <x) or Fy(x) =P(X =x).

The derivative of the cdf is called the probability density function (or pdf) in the
continuous case, and the probability mass function (or pmf) in the discrete case. It is
given by:

dF,(x)
dx

fx(x) =

Each distribution has an expected value denoted

[ee]

E[X] =me~fx(x)dx and E[X] =z x-P(X = x)

and a variance V[X] = E(X — E[x])?.

With the above considerations in mind, the author will attempt to define an
actuarial survival model.

The distribution of a future lifetime may be represented using probability theory.
Actuaries and Statisticians agree that any survival function for a lifetime distribution
must satisfy the following conditions:

i.  All lives must die before a stated terminal age w.

12



ii.  Survival functions are non-increasing over time.

iii.  The probability that a life aged x survives the next t minutes goesto 1 as ¢t — 0.
Let (x) denote a “life aged x”, for x > 0. Death may occur at any age greater than x, and
the future lifetime of (x) is a continuous random variable denoted T,.. That means T,
represents the future lifetime at-birth or for a life aged 0; and x + T, represents the age-
at-death for (x). Denote the cdf of T, as F,, so E,(t) is the probability that (x) does not
survive beyond age x + ¢t :

E.(t) = P[T, < t]
The complement S, is the survival function and S, (t) is the probability that (x) survives
at least t more years defined as:
Se(t) = 1= E(t) = P[Ty > t]
The previous conditional probability formula gives the following relations:

Plx < Ty < x+t]

E(t) =P[T, <t] =P[Ty < x +t|Ty, > x] =

P[T, > x]
_ Rt D)~ Fy()
O ®
5.0 = 20D or S+ 0 = 50050

Condition (i) can be translated as S, (0) = 1 Vx < w, the terminal age assumed,

and condition (ii) as tlim S, (t) = 0. In order for the mean and the variance of Ty to exist,

other assumptions need to be made:

1. S, (t) is differentiable for all t > 0. Note this means that%Sx(t) < 0vt > 0.

2. gim t-S,(t) =0and tlim t?-5,.(t) = 0.

13



2.2.2. Actuarial Survival Models

Actuarial Mathematics uses another notation for life models: the International
Actuarial Notation. Following the development of the survival models from Dickson et al
(2009), the previously defined quantities are expressed using this notation as follows:

Px = Sx(t) and g, =1— px = FE(0).
Also, a deferred mortality probability ,,.q, is defined as the probability that (x) dies
between ages x + u and x + u + t:
wedx = Plu<Ty su+t] =85,(w) —Sx(u+t) = upx — usbx
The last term is derived following the above conditional survival formula in simple steps:
utrtPx = Sx(W +t) = 5, () -S4t (W) = Dy ubr+e

Deaths do not exactly occur at integer ages taken as points of time. To properly
represent this, actuaries compound the possibilities of death on infinitesimal periods of
life At for a life (x). We define the force of mortality at fixed age x by u,. (Daykin,

Macdonald, 2004):

= i 1PT< dt|T, = i PIT, < dt]
te = lim TpPITo < x+dtlTo > x] = lim ——

= F!(0) = —S.(0) = — dS()

- Ix - x()_So(X)dX Ox

This quantity will help connect others. Note the equation for the pdf of the
lifetime distribution can be calculated as:

d d
fx(t) = tPxUx+t = % tdx = _a tPx

14



This is because by definition the pdf £, (t) is the derivative of the F,(t), the complement
of S, (t). Finally, the force of mortality and the survival functions can be newly expressed

as the equations below, whose measurement can be clarified in Figure 5:

_ L0
Uyt = S.(0)

t

t

tPx = Sx(t) = e_fo HetsdS gnd tdx = f sDxlx+sdS
0

Time 0 s s+ds t
Age X X+s  x+s+ds X+t
Event (x) survives s years d(;")

. A dies
Probability Py Mysds

Figure 5. Visualizing the mortality function on a timeline

The mean of T, is the expected future lifetime of (x). It is denoted é,,, for the

complete expectation of life and is the following:

(o]

éx = E[Ty] = j t (DxHxse dt.
0

The second moment of T, is E[T;2] and is expressed as:
2 ° 2 ° 2 d
E[T¢]= t* (Pxbxsedt = t _E tDx | dt
0 0

= —t? by, +f 2t p,dt
0

15



= 2f t (pydt.
0

The variance of Ty, is

V[T, = E[TZ]1-(éx)*
The curtate future lifetime is defined as the integer part of future lifetime K, for a life (x)
K, = |T,], obtained by the floor function.

The actuarial science literature contains three pioneer efforts to find the exact
force of mortality (Huang et al 2011). First is the law of Abraham de Moivre (1725) in
“Annuities upon Lives,” with the quantity o denoting the ultimate age, i.e. the terminal
age at which no lives remain. This is usually taken to be w = 100 or w = 120. De

Moivre’s law of mortality is expressed as:

Prose = =7 and  Pulpsr = ———
Second is the Gompertz law of mortality. In this case, Gompertz argues that life
decays exponentially over time. For flexibility, constants B and c are given values such

that 0 < B < 1and c > 1. For a life aged x > 0,

B _x
Hert = BT and  pyftes; = Be*temet (1760
Another law is that of Makeham (1860), which extends the Gompertz force of
mortality by adding a term A > —B that is not age-related for accidental deaths and

improves the fit of the model to mortality data at younger ages. For a life aged x>0,

B
Hare = A+ B and  Pefiere = (A + B e 4Tt (176,
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Unless stated otherwise, the assumptions in this research will be the Makeham’s law of
mortality with parameters A = 0.00022,B = 2.7 X 107% and C = 1.124 (Dickson et al.
2009).

Finally is the Weibull assumption (1951) that mortality is modelled as follows:

[xn+1_(x+t)n+1]

k
Hse = k(x + )" and  pypiyre = k(x + ) e n+1

2.2.3. Life Tables

Life tables are tables containing the mortality statistics that allow the calculation
of life expectancy for a group of individuals. Given the survival models as above, we
choose the parameters A, B and c to fit the data of the life table in use. Consider a life
table starting from age x, to a maximum age w. L, for x, < x < w is a function for the
number of persons alive of age x. Define L, to be any positive number and call it the
radix of the table, and for 0 <t < w — x,,

Litt
lx0+t = lxo tPxq and p, = );+
x

The number of deaths occurring during the interval between [, and [, is denoted d,:

Ay = L — Ly = LGy

where g, is the probability that a person dies between x and x + 1.
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Individuals of the same age in life tables are assumed to have the same life
expectancy. See Tables 5, 6, 7 and 8 and Figure 19 in Appendix, excerpted from ‘United

States Life Tables of 2011’ by the Division of National Vital Statistics.

2.3. Benefits and Premium Calculations
2.3.1. Financial Mathematics: Interest Theory
The notation in actuarial science is consistent with that of interest theory. Define i
to be the constant interest rate, and the force of interest or continuously compounded
interest rate §:
§=1log(1+i), 1+i=¢ed

The discount rate, or the present value of $1 in one year, is expressed as:

The nominal rate of interest compounded p times per year is expressed as:
1 i@®
i® =p<(1+i)p—1> e 1+i= (1+7)p

The effective rate of discount per yearisd =1 —v=iv=1—e9.
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The nominal rate of discount compounded p times per year is

1 d®
d® =p(1-vr) = v=(_1 —T)p.

2.3.2. Insurance benefits & Annuities
The continuous future lifetime benefit random variable Z combines both the
survival distribution and interest theory. It is the present value of a benefit of $1 payable
immediately on death:
7 = vTx = ¢=0Tx,
Given (x), the International Actuarial Notation defines the method for notation

of the expected present value (EPV) of a life insurance contract in actuarial science.
A, 7y is the present value of insurance for (x) paying 1 on the insured event for n years;
@, Is the present value of an annuity for (x) paying 1 per annum for n years at the end
of each year. To simplify the word editing, we will remove the bars above and to the right
of n. Thus A, 7 = Axn and aqp = Ay

The notation symbols and letter meanings are explained below using an example
containing all of them. Denote an insurance contract of n years starting u years from now

with interest compounded m times a year and benefit payable at the beginning of the year

with

- u is the deferred period,
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- (m) represents the interest rate i compounding frequency, and

- the superscript “1” is the endowment indicator —
when placed above x, it indicates that benefit is payable only if (x) dies within n years,
and when placed above n, it indicates that benefit is payable if (x) survives n years. The
absence of a superscript means that the insurance pays on the earliest of death or n-years.

- The mark above “A” or annuity “a” represents the time of payment —
For A, or a,, the line is for continuity i.e. payment is made continuously or immediately
at the moment of death. For 4, or d,, the double dot indicates that payments are made at
the beginning of the year. For A, or a,, the absence of mark indicates that payments are
made at the end of the year.

For instance, the EPV of a life insurance of $1 benefit payable immediately on

death is:
_ n
A%, =E[Z] = E[e7%] = f e ™% Dyblyredt
0

and the EPV of a life insurance of $1 benefit payable at the end of year of death is:

n

A}c:n = z vttpx.ux+t
0

As n — oo or for a maximum age w, n - w, the quantities become A, or a,.

The second moment of the death benefit EPV is of the form , 4 -, m'ﬁ,il'xﬂ or m"’le:n—|

where the upper-left superscript “2” is for double force of interest. For example:

n

27 - -

Ax:n_| :f e 2&:tpx.ux+tdt-l'e 2Snnpx
0

The variance of the EPV and for a sum insured S is given by:
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ViZl =V[e®™] = 24, &~ (A)°

x|

V[SZ] = V[Se~0Tx] = §2 ( A~ “Ti:nﬁ)

The present value RV for the annuity payment series, Y are those of interest theory with
the time now a (curtate) lifetime distribution.

1-— va+1

Ak, +1 = —a
All other results can be derived, such as the following relationships between whole

insurance and annuity contracts, and between annuities:

. 1-A4A, - _ 1- Zx
=Ty Ty
_ my _— _ _ ..(m) _
Aypqp < a, <@ < o <l

2.3.3. Premium Calculations
Consider the net premium; that is, the remaining part of the premium once the
company expenses are removed. Other concepts are the premium income and the
insurance benefit outgo, both life contingent. The net future loss function is L§ for a sum
insured S and premium rate P for life insured (x). It is calculated at curtate/integer
ages K, = |Tyl.
o = PV of benefit — PV of premiums.
LG = Sy™in®atIn) — Péi, ok r1m)

The expected value E[L7] involve the actuarial accumulation functions.

E[L}] = SA,— — P, —

x| n|
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The Equivalence principle states that the net premium has to be set such that E[L}] = 0.
This is meant to give a fair price for coverage. High prices drive away the customers, and

low prices put the company solvency in danger. The equation for the Net premium is:

= 1
= S(——d)

x:n| x:n|

P=S$

Example 2-1. Consider a 20-year endowment insurance with sum insured $100,000
issued to a life aged 45 under which the death benefit is payable immediately at death.
Using Makeham’s law with an interest rate of 5% per year, find the net premium payable
in a year if premiums are payable annually.

Solution. Use the equation above for P. From interest theory,

1
s — — —
=105and d=1- =.0479619;
¢ an 1.05

The SSSM gives the mortality rate for x = 45 and for t € [0,20],

t
Uy =.00022 + 27 X 107% - 1.124% and p4s = e~ Jo Hastsds
If premium payments are made annually and are life contingent, then the present

value is
. 8 “0 — [£00022+27x1076-1.12445+5¢
Qys5.70] =j e~ pysdt =J 1.057fe™ o ' Sdt = 12.9295
0 0

Finally, the net premium follows.

1 1
P=S (_ — d) = 100,000 (m - .047619) = $2972.35.

a4-5:2_0|

2.3.4. Modeling Issues
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Classical probability theory has limited effectiveness when dealing with problems
in which some of the principal sources of uncertainty are non-statistical in nature. Life
tables group the risk of death by age and give the statistical mean as life expectancy. The
mortality forces have parameters to help fit the data found in life table. Arguing the
efficacy of the model leads to the pooling of risks by life insurance companies, whereby
all individuals of the same risk class are insured at the same rate. Higher mortalities may
offset costs of favorable mortalities (and vice-versa). Preferred programs are a refinement
of the concept.

Age is inevitably correlated to mortality, as over time one’s health decays. In
reality, each individual has his own life expectancy depending not only on age but on his
physical condition, gender, family medical history, financial background, and many other
factors. Fuzzy mathematics, and precisely fuzzy statistical clustering, is the science able
to combine these attributes.

Furthermore, premium calculations often use a constant rate i and a force of
mortality §, over time. The actuary may use time-series regression to forecast future
interest rates but this does not allow for extreme events ranked as a “Black Swan” events.
The Black Swan theory of Nicholas Taleb (2001) describes extreme outliers in a
theatrical way that shows a major impact, and yet causes can only be found after the fact
through retrospective analysis. Fuzzicists use the theory of possibility to extend the grasp

of probability. Hence, the next section presents Zadeh’s engineering and its applications.
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3. Fuzzy Mathematics
Let us adopt the formal framework for mathematicians to present new concepts:

Definitions, Theorems and Examples.

3.1. Fuzzy Set Methodology

The theory for classical/crisp sets remains the same as it is normally defined by a
collection of elements or objects. x € X that can be finite, countable, or infinite. Each
element can either belong to or not belong to a set A € X. A good general reference for
the theory of fuzzy sets is H.J. Zimmerman "Fuzzy Set Theory and its Applications”

(2001). The notation given in that text is used for this thesis.

3.1.1. Fuzzy Set Theory
Definition 3-1. If X is a collection of objects x, then a fuzzy set A in X is a set of ordered
pairs: A = {(x, my(x))|x € X} and m,: X — M is the membership function of A for all
x in X, where M is a bounded subset of R* or [0, o) called the membership space.
The membership function is not limited to values between 0 and 1. If
sup,my(x) = 1, then the fuzzy set A is normal. A fuzzy set can always be normalized
by dividing m,4(x) by its supremum as shown below.

my (x)
sup,my (x)

One may omit elements with membership grade of 0 in writing the fuzzy sets. This is

illustrated below.
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Example 3-1. (Finite set.) Let X = {1, 2, 3, ...,10} the set of houses with x the number of
bedrooms. The fuzzy set "comfortable house for 4 individuals" is
A ={(1,.2),(2,.5),(3,.8),(41),(5,.9),(6,.4)}

(Infinite Set) Let X = R, and A= “real numbers considerably larger than 25”

0, if x <25
my(x) = 1

2
vz ¥~ %

B= “real numbers almost equal to 10” = {(x, mz(x))|ms(x) = [1 + (x — 10)*]7"}

Definition 3-2. The Support of a fuzzy set A, S(A) is the crisp set of all x € X such that

my(x) > 0. The crisp set of elements in A with grade of membership greater or equal to

a € M is called the a=level set or a~cut: A, = {x € X|my(x) = a}.

Note A, = {x € X|my,(x) > a} is called "strong a-level set" or "strong a-cut”.

Example 3-2. Recall the finite set of Example 3-1. The following are a-level sets:
Ag=5(A)={1,23,4,56}A5={23 45} Ag=1{3 45} 4, ={4)

The strong a-level set for « = .8is A'g = {4, 5}

Definition 3-3. For finite A, the cardinality is defined as

14| =ZmA(x) or |A| =f ma(x)dx,

x€X

and the relative cardinality of A is ||A|| when divided by card(X), the number of
elements.

4|

Al =
1l card(X)
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Example 3-3. Same A as in finite set of example 3-1, |[A| =24+ .5+ 8+ 1+ .9+ 4 =

3.8 and the relative cardinality [|4]| = 3-8/, = .38

Definition 3-4. (Zadeh 1968) The intersection of fuzzy sets Aand Bis C = An B and
the membership function is defined pointwise by

me(x) = min{m,(x), mp(x)}, x € X.
The union is D = A U B and the membership function is defined pointwise by

mp(x) = max{mA(x), mB(x)}, x€X

Definition 3-5. The complement of a normal fuzzy set is the set A¢ and the membership
function is defined by m,c(x) =1 —my(x), x € X
Example 3-4. Recall the finite set of example 3-1, and let B be the fuzzy set "large
house" with B = {(3, .4), (4,.7), (5,.9), (6,1),(7,1), (8,.5)}. Then the intersection is
C=ANB = {(3,4),(4,.7),(5,.9),(6,.4)}

and the union D = AU B = {(1,.2), (2,.5),(3,.8), (4,1), (5,.9), (6,1), (7,1), (8,.5)}
The complement "not large house" may have small or extra-large houses:

B¢ ={(1,1),(2,1),(3,.6), (4,.3),(5,.1), (8,.5), (9,1), (10,1)}

Now, consider the infinite set A in example 3-1, A="real numbers considerably larger

1

than 25” and C="x = 26" with m;(x) = 14(x-26)*"

Their intersection and union are:
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( 0, if x <25

Mync(x) = { . 1 1

[ 25
min . 1 T+ (x = 26)° Jif x>
\ x = 25)2
1 1
Myyc(x) = max . 1 T+ (x—26) ,Vx ER
(x — 25)2

Definition 3-6. A type 2 fuzzy set is a fuzzy set whose membership function is also a
fuzzy set on the space M. More generally, for some integer m>1, a type m fuzzy set in X

is a fuzzy set whose membership values are type m-1 fuzzy sets on M.

From a practical point of view, type m fuzzy sets for m > 3, are extremely
difficult to measure or visualize. Examples are fuzzy sets with membership function as a
probabilistic set (Hirota 1981), or an intuitionistic fuzzy set of ordered triples (Atanassov
and Stoeva 1983).

Definition 3-7. A fuzzy number K is a fuzzy subset of the real line whose membership
function is a continuous mapping defined by mg: R — M n [0,1] and is represented

solely by (a4, a,, a3, a,) such that:

mg(x) =0 forx € (—o0,a,] U [a,, ©),

- mg(x) increases linearly on [a4, a,],

mg(x) =1 for x€[a,, as],

my (x) decreases linearly on [as, a,],

In the case a, = as, it is a triangular fuzzy number; otherwise it is a trapezoidal.
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3.1.2. Fuzzy Set-Theoretic Operations
Operations in this section apply to both normal and other fuzzy sets over the same
underlying set.
Operation 3-1. (Zadeh 1965) The algebraic sum of two fuzzy sets (probabilistic sum)
A+ Bisdefinedby  my,p(x) = my(x) + mg(x) — my(x) - mg(x)

The algebraic product of two fuzzy sets A - B is defined by m,.5(x) = my(x) - mg(x)

Operation 3-2. The Figure 6. Trapezoidal and Triangular Fuzzy Number bounded sum of

fuzzy sets A @ B is defined by
Mugp(x) = min{1,m,(x) + mp(x)}.

The bounded difference A © B is defined by mygp(x) = max{0, m,(x) + mp(x) — 1}.
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Operation 3-3. The Cartesian product of fuzzy sets A4, ..., 4, in X4, ..., X,, respectively

is a subset of X; X ... X X,, with membership function

m(Alx...xAn)(x) = miin{mAi(xi)Ix = (X1, ) Xp), X; € Xi}

Operation 3-4. The n" power of a fuzzy set A is A™ with membership function
mgn(x) = [my(x)]", x € X

This mapping is a concentration if n > 1, and a dilation if n < 1. When combined in

order to increase the membership grade of certain elements and/or reduce the grade of

others, it is an intensification.

Example 3-5. Define the fuzzy sets | = {(a,.5), (b, 1), (¢,.2)}and H = {(a,.3),(b,.7)}
The above definitions are then illustrated by the following:
J+H ={(a,.65),(b1),(c.2)}
J-H ={(a,.15), (b,.7)}
J? ={(a,.25),(b, 1), (c,.04)}
J® H ={(a.8),(b,1),(c,.2)}
JOH ={(b,.7)}
J xH = {[(a;a),.3],[(b;a),.3], [(c; @), 0], [(a; b),.5], [(b; D), .7], [(c; b), .2]}
Min and max for intersections and unions are not generally smooth functions.
Their explicit formula is a sequence of interval brackets or piecewise-continuous
functions. Fuzzy mathematics, though named “fuzzy” as if to emphasize imprecision,

focuses on improving precisions. Fuzzicists eventually decided to consider softer
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definitions of “intersection”. Many were suggested, with all satisfying the following
properties (Dubois & Prade 1980):
i Cumulative effects: myng(x) < min{my(x), mg(x)}, ifmyu(x) <1, mg(x) <1
ii. Interactions between criteria: Assume my,(x) < mg(x) < 1. Then the effect of a

decrease of m,(x), on my,5(x) may depend on mg(x).
iii. Compensations between criteria: if my(x), < 1, mg(x) < 1 the effect of a

decrease of m4(x) on my,5(x) can be erased by an increase of mg(x) (unless

mp(x) = 1)

Earlier mathematics applications of triangular norm satisfy these criteria (Menger
1942). Hence, intersections can be defined by t-norms and unions by a t-conorms.
Definition 3-8. A t-norm is any bivariate function t from M x M — [0,1] such that for
all fuzzy sets A, B, C and D in X each with its own membership function, t(a, b) is
commutative, associative and monotonic, and Vx € X:

t(0,0) =0,
t(ma (), 1) = £(1,my (x)) = m, (%)
t(my, mg) = t(mg, my) commutativity.
t(mA,t(mB,mc)) = t(t(my, mg), m¢) associativity

if my < meand mg < mp, then t(my, mg) < t(mg, mp) monotonicity
Definition 3-9. A t-conorm or s-norm is a commutative, associative and monotonic
bivariate function s from membership space M x M — [0,1] such that

Vx € X, s(1,1) =1; s(my(x),0) = s(O, mA(x)) = my(x).
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For mathematical derivations, proofs and other t-norms the reader is referred to

Klement et al. (1994)

Theorem 3-5. (Alsina 1985). t-norms and t-conorms are dual such that the function t is

defined as t(my, mg) = 1 — s((1 —my), (1 —mp)).

Lemma 3-1. (Hamacher 1978). The intersection of two fuzzy sets A and B may be

defined as a t-norm with

my -Mmpg

t(my, mg) = , forp=0

p+ (1 —p)[my+mg —m,  -mg]
and the union of two fuzzy sets A and B is defined as a t-conorm with

@' —1Dmy -mp+my +mg

S(mAimB): ) fOTp’S—l

1+p'-my -mg
Lemma 3-2. (Yager 1980). The intersection of two fuzzy sets A and B may be defined as
at-norm with

tima,mg) =1 —min{1,[(1 = my)? + A —mp)P] 7}, forp>1

and the union of two fuzzy sets A and B is defined as a t-conorm with

s(my, mg) = min {1, (my?P + me)l/P}, forp > 1.

For intersections or unions between more than two fuzzy sets, the method
recommended is to merge them two-by-two or progressively. This means, first combine
AN B,then (AnB)NnC,then (AN BN C)nND,etc., as t-norms and t-conorms are

associative and commutative by Definition 3-8.
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Note that the Hamacher norm for p = 1 corresponds to the t-norm “Algebraic
product”. Taking the infinity norm for the Yager norm (as p — ), both the intersection
and the union give the minimum operator and the maximum operator, respectively. Many
other norms are used in Fuzzy Set Theory, see Table 9 for a list of common t-norms and

s-norms (Bonissone and Decker 1986).

An important arithmetic result in Dubois & Prade (1978, 1980), for the sum and
product of fuzzy numbers, is associativity and commutativity of inverses.
Theorem 3-2. (Dubois, Prade 1980) Let A, B be trapezoidal fuzzy numbers with
membership notations m,(x) = Uy (x) and mg(x) = Ug(x). Uy, is the increasing part of
Uy(x) on [aq, a,], and Uy, is the decreasing part on [as, a,]. Their inverses are
Var = Us and Vg, = Ugy'.

Then the sum C = A@B has membership functions on [a4, a,] and [as, a,]

Ucy = [Uai + Ugi 1™ or Vey = Vay + Vpy

Ucz = [Ugy + Uz 1™ or Vep = Vyp + Vg,
and the product D = A®B has membership functions on [a,, a,] and [as, a,]

Up1 = [1-7,41_11 ) U§11]_1 or Vpy = Va1 Vpy

Ups = [Upz - Ugz]™* or Vpy = Vay - Vi,

3.2. Fuzzy clustering algorithms
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In Data mining, clustering techniques are used to put together objects showing
similar characteristics within the same group, and to separate objects with different
characteristics. To do so, one must write algorithms that permit iterations before
stabilizing. These clustering techniques are made for detection and handling of noisy data
or outliers. There are two approaches: Hard clustering and Soft clustering. Hard data
clustering divides data elements into clusters in such a way that one data item can belong
to one cluster only. This is the crisp version for data mining. Soft clustering, also known
as fuzzy clustering, allocates data elements to one or more clusters based on their
membership levels in the different clusters.

Fuzzy C-Means (Dunn 1973) is the most popular and efficient technique of soft
computing. Note this is the fuzzy logic version of the most popular hard clustering
method: K-means algorithm. Other names for it are Soft computing and Fuzzy K-means.
The fuzzy c-means (FCM) algorithm requires steps such as the calculation of cluster
centers, assignment of points to centers by taking their Euclidian distances, and

continuous iteration until the cluster centers stabilizes (Thomas 2012).

Definition 3-10. Consider the set of data X = {x;, ...x,,}, and 1 ,, the set of real c X n
matrices (2 < ¢ < n). The matrix U = [mjy| € Vexn, Withmy, € [0,1], 1 <j <¢, 1<

k < n s called a fuzzy-c partition if it satisfies the following conditions [Bezdek 1981]:

C n
ijkzl and 0<ijk<n
j=1 j=1
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Example 3-6. Let X = {x;, x5, x3}. A fuzzy 2-partitions can be
n=[y 3

In U;, x; and x5 are fully included in clusters ¢, and c, respectively, and x, is equally
contained in both. In ,, x, is fully included in clusters c;, when x; and x; are still 20%
and 10% in cluster 2, respectively. Note the fuzzy c-partition conditions are met: the sum
of each column is 1, and the row sums are always less than 3, the number of data.

Fuzzy c-means became more popular for symmetric data such as U;, where the K-
means algorithm would fail. This is due to the presence of midpoints (m;, = 0.5).

Eventually the algorithm would insert it in a random cluster when it may as well belong

to another.

Example 3-7. This is the case for the popular butterfly example (Zimmerman 1994).

o6 o 12
[ L] s X7 "8 o*g e*11  e*1q
%4 e*10

*y

clustercenters 2 X

Figure 7. The midpoint bias of the Butterfly problem in data mining

Let us define an algorithm to find these fuzzy c-partitions. For an FCM algorithm,

it is necessary to choose a few parameters. These are the desired number of clusters ¢
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(2 < ¢ < n); an exponential weight r (1 < r < o) often called the fuzzy parameter; the
type of norm ||-|| (here the Euclidean distance will serve as norm); and a termination
criterion € > 0. A method to initialize the membership matrix UV € V., for I > 0 for
each iteration is also necessary. Here membership values and cluster centers are given by:

Vi<i<c 1<j<candl1<k<n,

c J— . N_ mr X
_— o=l 2y gy o Bz
i=1 |k — cill k=1mjrk

To summarize the steps:

Step 1. Choose ¢, 1, .

l
()E

Step2. Initialize T® = [myy] V.o forl>0,setl=0.

Step 3. Calculate the ¢ fuzzy cluster centers {cj(l)} by using U®.
Step 4. Calculate the new membership matrix T“*Yby using {cj(l)}. If

1forj=k

X * cj(l), Else set mj;, = {Of .
orj +

Step5.  Calculate A= ||[T¢D — gO|.

Step 6. If A> ¢, setl =1+ 1andgoto Step 2. If A< & - stop

Example 3-7.(continued) The data of the butterfly were processed with a fuzzy 2-means
algorithm. Choose ¢ = 2,& = .01, m = 1.25 with the Euclidean norm. In 6 iterations the

clustering results in the memberships and cluster centers as shown in Figure 8. The
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butterfly fuzzy c-partition gives the membership level of each point in its cluster. The

partition is:

Q
I
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Butterfl zy Clustering for m=1.25

To improve the fuzzy c arti %ons on y'needs to mcrease t'ﬁe fuzzy parameter m and

choose c suitably. The same process is done in Figure 9 for m = 2 and all other default

parameters. The new butterfly fuzzy c-partition is

U=['86 .97 .86 .94 .99 .94 .86 .5 .14 .06 .01
.14 .03 .14 .06 .01 .06 .14 .5 .86 .94 .99

B& Valuas for B, me=2.00
.
04 .06
. .
a7 89 Ba 50 a2 m
. X e . . . . x
v -/ 94 08 \
1 ™ ] -
B8 i
.

.06
.94

Figure 9. Butterfly Fuzzy Clustering for m=2
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PART 2: APPLICATIONS TO LIFE CONTINGENCIES

This part illustrates the use of the above applications in a life insurance setting. It
involves the translation of medical records for applicants through fuzzy decision-making
processes. Through a series of case studies, we will observe the classification of
policyholder risks using a fuzzy system for preference; the definition of survival
probability formula using fuzzy parameters to counter interest rate fluctuations; and
lastly, the clustering of policyholder sociodemographic data by the fuzzy c-means

algorithm.

1. Classification of Preferred Policyholders in Life Insurance

Let X be the set of applicants for a life insurance. The carrier may have a set of
pricing policies or a preference program. For instance, one carrier may offer a bonus of
15% more coverage, if the applicant is not a smoker or has not smoked for a minimum of
12 months prior to application. Another may be even more generous and give a bonus of
50% more coverage with no increases in premium if the applicant achieves the highest
degree of health defined by the company. This corresponds to an applicant who has not
smoked for a year, a resting pulse of 72 or below, a blood pressure below 134/80, a
cholesterol reading below 200, and does not participate in hazardous sports. To reach the

perfection standard laid out by the CDC/WHO (Centers for Disease Control and
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Prevention/World Health Organization), the applicant must follow weekly exercise
programs, be within Body Mass Index (BMI) specified height/weight restrictions, and
have no family history of deaths prior to 50 years old due to kidney/heart disease, stroke
or diabetes. However, this collection of individuals is extremely uncommon. Thus, for
marketing purposes, the company may want to accept the preferred status for a person
lacking only a few of these criteria. Fuzzy Set Theory will be very resourceful in

modeling these preference classes for underwriting purposes.

Case Study 1. (Lemaire 1990) For simplicity, limit the study to 4 variables

t;, fori = 1,2,3,4 and the fuzzy sets: Cholesterol in Blood (A), Systolic Blood Pressure
(B), BMI (C) and Cigarette Consumption (D). Each applicant x € X is represented with
its information by x(t,, t,, t5, t,). Lemaire uses the following membership functions for

the fuzzy variables.

t, Blood Cholesterol (mg/dl)

( 1, ift; <200
2

t, — 200\% |

1_2<T> , if 200 < t; < 220
240 — t;\* .

2(Z552)  if 220 <t < 240

\ 0, if240<t,

mA(x, tl) = <

t, Blood Pressure (mmHg)
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( 1, if t;, <130

t, —130\*
1—2(—) ,if 130 < t, < 150

mp(x, t7) = < 170 40 2
2(F5g-2) L if 150 < 1, < 170
\ 0, if170 <t,

t; Body Mass Index (%)

( 0, if t; < 60
2 (%)2, if 60 < t; < 72.5
1-2 (85275 t3>2, if 72.5 < t; < 85
me(x, t3) = 1 1, if85<t; <110

t; —110\*
1-2(2557) , if110 < t3 <120

130 — t3\* .
Z(T) . if120<t, <130

L 0, if 130 < t5

t4 Cigarette Consumption

1, lft4_:0
0, ifty,>0

mD (X, t4-) = {
Choose at random an applicant x = x(210mg/dl, 145mmHg, 112%, 0)
The fuzzy set E = An B N C n D determines how fit a customer is for the preferred
program. Recall the t-norms for intersection of fuzzy sets in Theorem 3-5 and Table 9.
The pricing actuary of the life insurance carrier will choose which operator works best

among the following.
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- Minimum operator,
mg(x; 210, 145, 112, 0) = min(.875, . 71875, .98,1) = .71875
- Algebraic product, mg(x) = (.875)(.71875)(.98)(1) = .6163

- Bounded difference,
mg(x) = max|0, .875 +.71875 + .98 + 1 — 3] = .57375

- Hamacher operator for p=1/2,

(55210, 145) = (.875)(.71875) _ 6102
MEVG ST ) = S (1 - 5)[875 + 71875 — (.875)(.71875)]

(x;210, 145, 112,0) = (6402)(98) =.629
MG &35 259, 2240) = TS (1 — 5)[6402 + .98 — (.6402)(.98)]

- Yager operator for p=2,

mg(x) =1 —min{1,[(1 —.875)% + (1 —.71875)? + (1 — .98)2]%} =.69157

Thus, no computation of x(210, 145, 112, 0) health will give a preference status
if the requirement is 100% grade of membership. Note that a smoker is never preferred,;
every operator gives 0% membership. The pricing actuary may allow a few infringements
to perfection with a statement such as: “An applicant is considered preferred if he meets
at least 75% of the requirements of the CDC/WHO health index.” This step may require,
in crisp set theory, the creation of new membership functions. If the actuary uses only the

minimum operator which is the strictest operator, underwriters will obtain rules defined
by

t, < 214.2; t, < 144.2; 762<t;<117.1; t, = 0
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This means, any applicant with information not in one of these intervals will be below
75% and cannot be a preferred policyholder.

Fuzzicists may, as in Definition 3-2, take the alpha-level set to refine the results
and create classes such as the one from Section 2.1. Take, for any «, E, to be the crisp set
of policyholders with grade of membership greater than a. Choose a = 75%), so that
after evaluating the membership of an applicant in the fuzzy set E above, he becomes
preferred if mg(x) = 0.75. Clearly, the policyholder x(210, 145,112, 0) is still not part
of the preferred program under any operator/t-norm.

Then, we build another preference class, as for Deloitte Consulting (Figure 4).
Say “An applicant is considered Superpreferred if he meets at least 75% of the
requirements of the CDC/WHO health index, and he is considered preferred if he
qualifies from 65% to 75%.” The same process works and the actuary does not need to
build membership functions. By taking the alpha cut E 5, the applicant
x(210, 145,112, 0) falls in the range for the preferred program benefits only if the
actuary decides to use minimum operator or Yager t-norm with p=2. Otherwise
x(210, 145,112, 0) may fall in the standard class or some residual classes.

In reality, each criterion has its own importance. To show this difference,
Fuzzicists use the operations of concentration, dilation, and intensification. Suppose
blood pressure better predicts future health complications, while cholesterol level does
less well. The actuary may then concentrate the fuzzy number t, for the cholesterol by
taking the square; while dilating t, blood pressure by taking the square root. Then we

have the following:
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- Min operator,
mg(x; 210, 145, 112, 0) = min(.8752, V. 71875, .98, 1) =.7656

- Algebraic product, mg(x) = (.875%)+.71875(.98)(1) = .6361

- Bounded difference,

mg(x) = max|0, .875% + v.71875 + .98 + 1 — 3] = .59267
- Hamacher operator for p=1/2,

(.8752)(.71875)>
mg(x; 210, 145) = =.6608
.5+ (1—.5)[.8752 + .718755 — (.8752)(.71875)"5]
(.6608)(.98)

:210, 145, 112,0) = = 6497
mg(x R (1—.5)[.6608 + .98 — (.6608)(.98)]

- Yager operator for p=2,

1
2 =.7198

mg(x) = 1 — min{1, [(1 —.875%)% + (1 —.71875%)2 + (1 — .98)?]

Then x(210,145,112,0) € E ;5 when using the minimum operator, i.e. itis a
Superpreferred policy, and x(210, 145,112, 0) € E 45 when using the Hamacher operator
for p = .5 and the Yager operator for p = 2, making him a Preferred policy.

This shows how fuzzy decision-making processes can be used to translate medical
records and facilitate the classification of policyholder risks. It is in fact a faster and
simpler process for underwriters. Preferred classes offer bonuses on coverage but the
author has yet to show how to calculate these benefits and premiums, using fuzzy set

theory. For that it is necessary to have fuzzy survival functions.
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2. Fuzzy Survival Probability

The future lifetime may be represented as a fuzzy random variable (FRV) when
one adds to it some linguistic variables; a basis for fuzzy logic. Assume for a moment the
awful event where a medical doctor tells someone they only have a short time left to live.
Short future lifetime (S), Medium future lifetime (M), and Long future lifetime (L) can be
considered FRVs over the lifetime probability space Q mentioned above. In this case,
fuzzy sets and survival probabilities are combined. This scenario is best illustrated in Puri
and Ralescu (1986) and Shapiro (2013). The following case study puts the problem in
context.

Case Study 2. (Shapiro 2013) Consider the task of giving post-retirement
planning advice to new retirees. At this juncture, it may be necessary to know how far
their future lifetime will extend. The linguistic lifetime scale S, M, L cited above can be
retained. Puri and Ralescu describe a function T that assigns a membership value to each
retiree death probability time event w; € Q. This is done so that T'(w;) is equated to the
highest of the membership functions mg(w;), my (w;), m; (w;). Retirement is assumed to
be 65 years of age, so future lifetime starts from (x) = 65. Using the Gompertz law of
mortality, we build simplistic fuzzy survival probabilities for S, M, L.

Sivanandam et al. (2007) offers a catalog of methods for the development of

membership functions (MF) but a simplistic model for a fuzzy set A is as follows:

X —Xxp
( ) X <x <Xy
Xm — XL
m X) = XU—X
4(%) _ Xy <x<xy
Xy — Xm
0, otherwise
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where x; is the lower bound, x,, is the midpoint and x;; is the upper bound of the fuzzy

number. In the same fashion, the lifetime scale MFs and their graphs are defined below

(Figure 10).
1, 0<t<5
mg(t) = -t s
s 10 > =7
0, otherwise
(t—10
J o 10<t<15
my(t) =<20—t
u(®) |—— 15=<t<20
k 0, otherwise
1, t <25
m, (t) = x— 15 15 < t < 25
L 10 ’ ==
0, otherwise
1.0 i‘\ 1.0 — M
08 | 0.8
0.6 4 ! 0.6
| Short L\ | Medium
04 — 0.4 .
02 \ 024 =
0'Oo f 1‘0 20 3'0 4l0 5‘o o 0 10 : 20 30 40 50
1.0
08
0.6 f
- Long
0.2
0.0 ; . ‘ :
0 10 20 30 40 50

Figure 10. Short, Medium, Long future lifetime membership for 65 years old
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However, this only gives the lifetime as a fuzzy variable. The purpose is to make
it a fuzzy random variable; that is a RV for which each value has a membership grade in

the linguistic scale considered. Figure 11 offers a simple representation of this:

TeR

Figure 11. A Fuzzy random variable representation

Each event of death w; € Q has probability density P(w;) € R (contained in [0,1]
if normalized), and this event has a degree of membership in the three groups Short,
Medium or Long future lifetime. Finally, T (w;) outputs the highest degree of
membership of w;, and is also a fuzzy random variable:

T(w;) = max{mg(w;), my(w;), my(w;)}
Now, let us consider the fuzzy death risk in a future lifetime. It weighs the risk of
death in the whole linguistic groups instead of each individual event w; € Q. This means,

for instance, if mg(w;) > 0foralli € [1,n], such thatevery w; ...w, € S, then the risk
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of the short lifetime is P(T'(S)), the probability of the FRV short future lifetime S. It is

equal to the expectation of the membership function in general (Zadeh 1968), such that

P(T(S)) = f mg(t) f,, ()dt = f mgs(t) (Pybxredt = E[mg].
0 0

In our case:
( n
f 1 ° tpx‘u.x_'_tdt, 0 S t S 5
0
P(T(S)) = ! nis—t¢
( ( )) f © tPxMresrdt, 5<t<15
l o 10
0, otherwise
Or equivalently,
( G 0<t<>5
1
P(T(S)) = {E(w ndx—€x), 5<t<15
0, otherwise

Note that é, is the complete expectation of life and f, (t) uses the Makeham’s law of
mortality for x > 65 as the assumed age for retirement. This gives the mortality
probability. Using Definition 3-5 for the complement of a fuzzy variable, the finding of
the survival probabilities becomes a simple process.

2P 0<t<5

P(T(S)C) = 10 + e, — 15 ,,q4
10 ’
0, otherwise

5<t<15

Hence, this combines the membership function and the mortality probabilities as in

Figure 12. The same argument derives the Medium and Long fuzzy survival probabilities.
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Figure 12. Combining for the Fuzzy survival probability
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3. Computation of Fuzzy Premiums
Thisse s ® 'es more numerical results for better understanding of the theory.
. . P(T(S
Case Study 3. (Buckley 1987, Lemaire 1990) Fuzzy interest (1)

Compute the net single premium of an insurance benefit S = $1000 on a 10-year

pure endowment policy, issued to a life x aged (55), with ;,ps5 = .87 using a fuzzy
interest rate i. The interest rate i (approximately 6%) is defined as a fuzzy probabilistic

set (Hirota 1981). This is the trapezoidal fuzzy number below.
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[ 0, if z<.03
my =50z—15,  if.03<z<.05

m;(z) = 4 1, if . 05<z<.07
Lmiz = 4.5 - 50z, if .07<z<.09
0, if .09<z

The net single premium is expressed as the actuarial present value of a pure

endowment:
S nEx =8 apxv™ =8 ap(1+D7"
The tilde (~) above the “i”” is meant to differentiate the fuzzy variables from the non-
fuzzy (or crisp) ones. By plugging in the quantities from our assumption, we obtain the
fuzzy present value below.
S 10Ess =S - 10pss(1 + )71 = 1000 «.87(1 + 1)~ 1°
Following Theorem 3.6, take the inverse of the membership function of the interest rate
m;(z). Precisely, m;; 71(z) and m;; " 1(2), i.e.
m;;"1(z) =.034+.02z and m;"1(z) =.09 —.02z

It is the inverses that go through all the computations, and as for normal piecewise

functions, we have:
1000 + .87(1 +my~1(2)) = 870(1.09 —.022)"1%,  and
1000 + .87(1 + my"1(2)) = 870(1.03 +.02z)~10
Again, take the inverses of the two new results in order to have the membership functions

for the fuzzy set of S - ,E5s. Notice the change in the intervals for z since the exponent
“-10” is negative. We obtain the following membership function and the corresponding

graph:
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( 0, if z < 367.5
870 1/10
54.5 — 50 (T) , if367.5 <7< 44226
ms'mEss(z) = < 1, if 442.26 < z < 534.1
870y /10
50 (7) _ 515,  if534.1<z< 647.36
\ 0, if 647.36 < z

360 400 440 480 520 560 600 640

Case Study 4. (Lemaire 1990) Fuzzy interest Rates and fuzzy survival probabilities
Using the same assumptions as Case study 3 above, we compute the net single
premium of a pure endowment with sum insured S = $1000 for a life aged x = (55)

Figure 13. Membership function for a 10-year continuous life insurance for ]
over n = 10 years. In this case howg\esry@etdaly the interest rate is fuzzy but so is the

survival probability. For notation purposes, write p = ;,pss, for the fuzzy short-term

survival probability for a 55 year-old. One may relate to the Short future lifetime in Case
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Study 2. Below is the membership function for the triangular fuzzy number g along with

its graph:

1.2

1
0.8
0.6
0.4
0.2

0
0 0.5 1 1.5

Figure 14. Membership function for the triangular fuzzy number p

0,if (z<.77)U (z<.97)
my(z) = {mp1(2) =10z = 7.7, if .77 <z < .87
my,(2) = 9.7 — 10z, if .87 < z < .97

For convenience, we use a simpler membership function for the interest rate i, also

approximately 6%. It is defined as the triangular fuzzy number below.

m;;(z) =50z—-2, if.04<z<.06
mi(x) ={m;,(z) = 4—50z, if.06<z<.08
0, otherwise
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0.8
0.6
0.4
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0 0.02 0.04 0.06 0.08 0.1

The new actuarial present value of the pure endowment can be expressed taking
into account the new fuzzy variable by
S- L E,=S-p(1+1D)1°
To find the membership function, we must use Theorem 3-6. First, we determine the
inverses of mpidurk asdviepider3hipréaissiymigy a'ttrandamys7zy (myerast rate 1
my;~H(z2) =.77 +.1z and mgz, "' (2) = .97 — .1z

Next, the inverse of the membership function of the interest rate m;(x):

miy " 1(2) =.04 + .02z and m;,"1(z) = .08 —.02z
To facilitate the calculation, we use the algorithm for multiplication of two trapezoidal
fuzzy numbers from Dutta et al (2011) along with Theorem 3.6:

my (2)

(~(@-p+@-pa)+ (- ap + (@ -pa)’ - 40— a)q - p)ap - 2)

_ 26— 0@ P w=z=ba
| —(r=q@)c+(c—br)+ J((r —q)c+ (c— b)r)2 —4(c—b)(r — q)(cr — 2)
\ 26— )@ —p) o basz=a
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Hence, by the multiplication of two fuzzy numbers and multiplication of a fuzzy
number by a scalar, we choose X = S - (1 + )" and Y = p to do the multiplication

and obtain these new membership functions:

_1/
My1(2) = 54 — 50 (ﬁ) Y if463.2 <2< 5584
my(z) =m .—10(2) = -1
X 5-(1+0) | my(2) = 50 (10200) Y 52, if5584 <z<675.6
0, otherwise
( 0,if (z<.77)U (2<.97)

and my(z) = my(2) = {mm(z) =10z—7.7,  if.77<z<.87
\my(2) =9.7 - 10z,  if .87 <2<.97

The corresponding values are therefore:
a = 463.2,b = 558.4,c = 675.6, and p=.77,q = .87,r =.97
So that the combination of both membership functions by the multiplication algorithm

gives:

—6.2828 +.0525v/38.08z + 728.136,  if 356.66 < z < 485.81
Mgng, (2) =1 7.7323 —.0427V/46.88z + 21229,  if 485.81 < z < 655.33

0, otherwise

4(‘10 5(‘)0 6(‘)0

Figure 16. Membership function of the net single premium of a pure endowment
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The premiums computed with the fuzzy logic approach reveal more information
than our usual crisp premiums. First, it gives a bargaining advantage to the
underwriters/company to discuss premium rates. Second, since the premium is calculated
for each interest rate i € [0.3,0.9], the fuzzy approach provides a range for the premium
that entails with the probability that a change in interest rates will happen. That means,
not only are you aware of the rate change according to the fluctuation in interest rates, but
also the chance of that event occurring. Third, with the fuzzy survival probability, the
insurance company is equipped with a short term lifetime probability distribution,
allowing for accidental deaths or black-swan events. Another important application of
fuzzy set theory is the segmentation of the policyholders into clusters by

sociodemographic traits.

4. Fuzzy Insurance Benefits
Case Study 5. Consider the crisp models of distribution of future lifetime given
by the laws of DeMoivre, Gompertz, Makeham and Weibull. One wants to find
expressions for the insurance benefit of an n-year continuous life insurance (Huang et al
2011). In this case, the only fluctuating variable is the interest rate i (approximately 6%)

from Case Study 3. This is the trapezoidal fuzzy number below.
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[ 0, if z<.03
my =50z—15,  if.03<z<.05

m;(z) = 4 1, if . 05<z<.07
LmQ=45—5w, if .07<z<.09
0, if .09<z

Note that the general equation for the insurance benefit is:

n
Aylc:n_| =f Se™% \Dylhysedt
0

Again, the tilde (~) is meant to differentiate the fuzzy variables from the non-fuzzy (or

traditional) ones. The force of interest § = log(1 + ) is inherently fuzzy. Its membership

function is:
IfO, if z<log(1.03) and log(1.09) < z
ma(2) = 4 mg, = 50e? — 51.5, if log(1.03) < z < log(1.05)
o 1, if log(1.05) < z < log(1.07)
Lm—gz = 54.5 — 50e?, if log(1.07) < z < log(1.09)

This is found by taking the inverse of the pieces of the membership function of the
interest rate m;(z). Precisely, m;;71(z) = .03 + .02z and m;;"1(z) = .09 —.02z.
To go through the computations:
log(1 +my;~(2)) =log(1.03 +.02z), and
log(1 + my;"1(2)) = log(1.09 — .022)
And taking the inverse one more time:
mg, = 50e” — 51.5 and mj, = 54.5 — 50e”
Using the DeMoivre assumption, the insurance benefit for n-year continuous life

insurance is newly expressed as:
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-1 I S n _gt _ S .
Ax=n| w—x fO € dt w—x

Nl =
—_
[
Q
|
<%
S

So the membership value vn < w € Q,5 > 0 is:

mg_(2) = My _-wn(2) = ———- m% my_-50(2)

w—Xx 2
5

S 1-A+m2)™
T w—x  log(1+m(2)

. S . :
Since ——isa real number or a constant, we may focus on the membership

function. To simplify the calculation, we split the membership function into two pieces
and we combine them at the end. As in Case Study 4, we can rename the quantities to

facilitate multiplication.

, We only need to take the inverse of the above results

Since my = m% = m

for the force of interest:

1 1
log(1 +m;;~1(z)) log(1.03 +.02z)’

and

1 1
log(1+my=1(z))  log(1.09 —.02z)

Again, taking the inverses of the two new results in order to have the membership

functions for the fuzzy set of ma:
1)

(0, if z < log(1.09)" ! and log(1.03) ! < z

54.5 — 50e'/7, if log(1.09)"! < z < log(1.07)*

mX(Z) =mi(z) = J f 8 )_1 8 )_1
3 1, if log(1.07) ~ <z <log(1.05)

50e!/% — 51.5, if 10g(1.05)"! < z < log(1.03) ™"
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Next, the membership functions for the fuzzy set of my, = m,_ s =1- A+my)™

Using the same argument as above, the inverses are:
1-(14+my(z)  =1-(02z+1.03)™ and
1-(14+my(2) =1-(@1.09-.022)7"
Taking the inverses of the two new results in order to have the membership functions for
the fuzzy set of M, _ 5
(50(1 — z)"/" - 51.5, if1-1.03"<z<1-105"
1, if1-105"<z<1-107"
mY(Z) = ml_e*STl(z) =

1
| 54.5 — 50(1 — Z)_7_1, if 1-— 1.07"<z<1-1.09™"
k 0, otherwise

The next step is to find my.y = m_ ___3, by following the technique of Dutta et al. (2011)
5

and Taleshian and Rezvani (2011) to multiply the two trapezoidal fuzzy numbers:

my (2)
_ —(aq + bp — 2ap) +/(aq — bp)? — 4(b — a)(q — p)z
M () = 2(b - a)(g—p) ' ap =z=bq
_J1 bg<z<cr
' ((s —r)d—(d-— c)s) — \/((s —r)d—(d - c)s)2 —4(d—-c)(s—1r)(ds — 2)
L 2d =G =1) ,cr <z <ds

Here, the corresponding letters are constants and we have:
a =10g(1.09)"}, b = log(1.07) %, ¢ = log(1.05) "}, d = log(1.03)"! and
p=p,=1-103"qg=q,=1-105"r=1rn=1-107"s=s,=1-109"
So that the combination of both their membership functions by the multiplication

algorithm gives:
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2
_3-2pn - 11'6(qn - pn) + \/(32pn + 11-6(Qn - pn)) - 12'8(qn - pn)(11'6pn - Z)
6'4(Qn - pn)

My .y, (2) =

13.3s, — 33.8(s,, — 1) + \/(13.3571 + 33.8(s, — 1))? — 53.2(s, — 1,,)(33.8s,, — 2)
26.6(s, — 1)

My y,(2) =

As n € Z for years in integer form, we can approximate the membership function
of the insurance benefit for term life insurance of n years or for whole life insurance.
Whole life insurance can be treated by taking the limit of n to infinity. A simple but
lengthy result for n = 1 gives the membership functions below, along with the graph of
the functions:

1-1.0371 1-1.0971 -
log(1.09) “™ Tog(1.03) ~7
—308++.015+.237z 1—1.0371 1-1.0571

, if <z ———F—
.118 log(1.09) log(1.07)
) 1-1.0571 e, < 1-1.0771
’ Y Tog07) %= Tog(1.05)
1.68 —+.278 — 912z __ 1-1.077" 1-1.0971
, if <ZS—F7—
\ .456 log(1.05) log(1.03)

0, if z<

Figure 17. Membership function of insurance benefit for a continuous
life insurance
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In the following page, we have the full expression of the membership function

with the sequences for all n expressed.
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The approach is similar for the other life distribution laws (Gompertz, Makeham,

1— on

Weibull). The same function is used in every assumption, only to be multiplied by

S
their very specific survival probability of ,p,u,,;. Recall section 2.2.2 for these actuarial
survival probabilities. Thus:

- The insurance benefit of the n-year continuous life insurance using Gompertz

assumption

t

B
Bexrteme " Ngrom_ 5.(2)

mA;:m(z) =S j

0

- The insurance benefit of the n-year continuous life insurance using Makeham

assumption

t B ..

mglfl(Z) =S- f A+ BCxH)e_AHlnCC (1_Ct)dt ) m1—e-3n(z)
xn 0 e
)

- The insurance benefit of the n-year continuous life insurance using Weibull

assumption:

t
mp () =5 f k(x4 trek Db -G a om,_ 5.(2)
_ . -
6
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5. Fuzzy Clustering of Policyholders

A Non-Life Approach

Age is always treated as a factor in mortality, because inevitably the older you get
the more susceptible to die you are. The goal for preference classes is to have premium
rates according to each policyholder’s risk profile. It is common practice to group
policyholders for reasons of efficiency; even if the rating operates by design more
effectively on an individual basis. The premium rate must be estimated for the group.
Each underwriting structure regroups policyholders by blocks of ages, and most premium
estimations are based on these classes. The crisp concept uses curtate age (section 2.2.2);
that is the integer age at the last birthday. An example of grouping is Brockham and
Wright (1991):

17 — 18,19 — 21,22 — 24,25 — 29,31 — 34,35 — 44,45 — 54,55 +
Limitations to the model occur when we wish to assign a 30-year-old to a group. Given
the random nature of insurance, the evidence favoring the 4" group over the 5" group is
not likely to be conclusive. The theory of Fuzzy Set aims to resolve this ambiguity. In the
next Case Study, Verrall & Yakoubov provide a fuzzy approach to grouping policyholder

ages using past claims for non-life insurance.

Case Study 6. (Verrall & Yakoubov 1999) Policyholder risk grouping by age.
This is a case study of general insurance that can easily be applied to life
insurance. The data for the study consist of approximately 50,000 motor policies of all

ages. The youngest ages are grouped under the label “<25” and the oldest under “83+” to
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remove the absent data or discrepancies. We only focus on two types of claims: Body
Injuries (BI) and the Material Damage (MD). For each age, we retrieve the number of
claims, or Frequency, along with the total cost of the claim, or Severity. For each claim
many factors enter in the cause of an accident rather than age only. The Department of
Motor Vehicles “Unit for Accidents: Causes and Prevention” gives an exhaustive list
among which the most often cited are age, gender, driver’s years of exposure, car group,
mechanical failure, location and road conditions and weather conditions. Most insurance
companies use only age as the key to grouping policyholders. Hence, to remove
distortion due to the uneven mix of policyholder age, we adjust the data as follows:
Adjusted Frequency = frequency X severity

Table 1 displays the Frequency and Severity of the MD and BI claims in the data
set used in Verrall et al (1999). The exposure tab gives a numerical value for the number
of earned driver years. The abbreviation AdjFreq means Adjusted Frequency and
CruPrem mean Crude Premium. It is the a priori estimation of what a policyholder of age
(x) will need to pay in premium, before any extra fees such as taxes, state surcharges,
transaction fees, etc. It equals the expenses the insurance carrier is at risk of incurring for
the policyholder (x); hence:

Crude Premium = MD AdjFreq + Bl AdjFreq
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Table 1. Frequency and Severity of Claims

Frequency Severity AdjFreq
Age MD BI MD BI MD Bl CruPremn Exposure
<25 0.30691 0.04384 51590 538168 121.10 248.14 369.25 43.54
25  0.27846 0.05967 43960 224276 109.88 337.70 447 .58 31.99
26 0.13580 0.01598 302.74 974290  53.59 9.42 144.01 79.66
27 018732 0.01767 36429 4286498 7391 10.01 173.93 36.11
28 0.20380 0.01002 39548 525442 8.42  56.73 137.15 571.41
29 0.18907 001126 36236 4598.03 7461 63.75 138.35 79.95
30 018175 0.01486 43433 6041.05 7172  84.10 155.82  1113.44
31 014277 0.01142 406.46 7614.30 56.34  64.64 1298 1671.45
32 0.15469 0.00729 331.00 592838 61.04 41.26 102.30  2007.57
33 012644 0.00651 3071 542397 4989  36.85 86.74  1857.12
34 012914 0.00861 416.71 603758 5.96 48.73 9969 1921.73
35 014105 0.00641 369.25 6043.16 55.66  36.29 91.94  1885.85
36 0.12895 0.00794 41431 474269 5.88 4496 95.85  2082.56
37 014444 0.00698 365.89 547363 57.00  39.53 96.52  2004.59
38 0.12641 0.00967 423.00 544577 4988 54.74 10462  1907.93
39 012772 0.00872 45840 4757.70 540 4937 99.77  1823.65
40 012218 0.00732 356.89 3381.56 4821 4140 80.61 1739.68
41 011796 0.01222 42291 342466 46.55 69.14 115.69  1666.95
42 0.11471 0.00828 401.68 6085.11 45.26 46.85 92.11 1614.38
43 011017 0.00646 416.18 4804.83 4347  36.55 8.02 1675.11
Nores: AdjFreq = Adjusted Frequency; aﬁd EruPrem = Crude Premium.
44  0.11005 0.00758 385.92 5724.75 4342 4288 86.30  1596.01
45 0.11247 0.00287 34549 455151 44.38 16.26 6.64 155.33
46 0.11479 0.00776 36.96 3789.87 45.29 43.89 89.19 164.99
47 0.11970 0.00874 385.04 7947.82 47.23 49.45 96.68  1456.71
48 0.11975 0.01023 411.26 3776.65 47.25 57.88 105.13  1493.30
49 0.12098 0.01052 34341 4671.31 47.74 59.54 107.27  1209.86
50 0.11047 0.00440 337.79 8008.71 43.59 24.90 68.49 1301.91
51 0.14009 0.01302 386.38 415.16 55.28 73.69 128.96  1221.93
52 0.12067 0.00546 396.67 7867.67 47.61 3.90 78.52 1165.49
53  0.12340 0.00507 391.90 2685.65 48.69 28.70 7740  1129.33
54 0.12615 0.00788 455.80 6436.11 49.78 44.62 94.40 887.81
55 0.10273 0.00654 535.29 699940 4.54 37.03 77.57 972.51
56 0.09071 0.00542 366.74 5385.20 35.79 3.65 66.44 94.04
57 0.07957 0.00918 387.84 3859.75 3140 51.96 83.36 415.89
58 0.11671 0.00824 382.74 2726.71 46.05 46.63 92.68 463.46
59 0.10629 0.00518 496.70 1153843 41.94 29.34 71.28 49.95
60 0.07552 0.00252 3790 1599.23 29.80 14.25 44.05 505.56
61 0.08699 0.00829 619.72 9716.70 34.33 46.89 81.22 46.85
62 0.08507 0.00597 503.03 3677.61 33.57 33.79 67.36 426.37
63 0.06762 0.00432 353.15 3397.81 26.68 24.43 51.11 442.31
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Frequency Severity AdjFreq
Age MD BI MD BI MD BI CruPrem Exposure
64 0.06307 0.00293 696.58 27154.86 24.89 16.60 41.49 433.88
65 0.07488 0.00326  346.98 2545.45 29.55 18.42 47.97 39.95
66 0.08823 0.01307 514.26 6541.60 34.81 73.97 108.79 389.50
67 0.08404 0.00615 343.60 464238 33.16 34.80 67.96 31.47

68 0.08037 0.00423 304.66 1415.02 31.71 23.94 55.65 30.88
69 0.08252 0.00236 35.23 23768.18 32.56 13.34 45.91 269.91
70 0.06287 0.00286 31.02 708909 2481 16.17 4.98 222.70
71 0.07759 0.00517 749.87 9937.03 3.62 29.27 59.89 246.06
72 0.07509 0.00901 401.62 378242 29.63 51.00 8.63 211.86
73 0.08597 0.00000 351.00 0.00 33.92 0.00 33.92 17.25
74 0.04838 0.00000 43.71 0.00 19.09 0.00 19.09 157.85
75 0.04505 0.00000 379.38 0.00 17.77 0.00 17.77 155.39
76 0.09957 0.01494 37872 3991.06 39.29 8453 123.82 127.82
77 0.06820 0.00000 662.06 0.00 26.91 0.00 26.91 74.65
78 0.11220 0.00863 276.11 636.36 44.27  48.85 93.12 73.73
79 0.04088 0.00000 172.09 0.00 16.13 0.00 16.13 46.70
80 0.05759 0.01920 857.47 6532.27 22.73 108.65 131.38 33.15
81 0.06099 0.02033 1782.07 636.36 24.07 115.06 139.13 31.30
82 0.04193 0.00000 193.53 0.00 16.55 0.00 16.55 3.35
83+ 0.00854 0.00000 396.89 0.00 3.37 0.00 3.37 74.50

Notes: AdjFreq = Adjusted Frequency; and CruPrem = Crude Premium.

A fuzzy c-means algorithm (recall Section 3.2) is applied to the adjusted data for
the optimal number of clusters ¢ = 6 (Bezdek 1981). The exponential weight or fuzzy
parameter r = 2; ||-|| is the Euclidean norm; the termination criterion € = 0.05. For each
cluster, we are to determine the center of the adjusted MD, the adjusted Bl, and the Crude

Premiums. The cluster centers (centroids) derived from Table 1 are allotted in Table 2.
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Table 2. Clusters centers or centroids.

Centers of the Six Clusters

Clusters 1 2 3 4 5
MDAD] 11448 48.39 52.16 48.53 36.80
BIAD] 202.07  90.79 64,61 4344 29.85

Crude premium 406.55 139.18 116.77 91.97 66.65

B
21.94
4.47
26.41

MNotes: MDAD] = MD Adjusted Frequ;:nw: and BIAD] = BI Aﬁjuarcd Frequency.

The resulting table of centroids is then used to calculate the membership of each

age to a cluster. We use the adjusted frequencies and determine the membership values

for the corresponding age. As in Brockham and Wright (1991), we wish to create age

groups for underwriters. With less computing skills or tools, underwriting procedure

would require crisp age groups. Hence, to separate the element that belongs to more than

one cluster, we proceed with an alpha-cut of 20%. The level set of the fuzzy membership

is shown in Table 3.
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Underwriting usually anticipates that risk progress smoothly with age, and so age
groupings must be adjacent. Verrall et al. uses a risk measure to determine which
adjacent ages are in the same group. This is the following equality:

C
1
Ri=tr O D el
il £
agesini k

From the beginning of the case study, it is assumed that <25 and 83+ were whole
groups. Applying the risk measure to the 20 percent-cut data gives the results as in the
Table 4 below. Hence, for the six clusters, we can count 7 age groups:

< 25,26 —-27,28-31,32—-47,48 — 51,52 — 68,69 +

Table 4. Risk Measure per Age group

Group, i 1 2 3

R 406.29 13565 114.79

Group, i 4 5 6 7
R; 90.15 100.15 71.78 60.92

In figure 18, we have a comparative graph for the crude risk premium and
premium based on risk groups. The group premium gives a very good fit of the model for
crude premium. The fuzzy clustering allows the creation of risk groups with very smooth
transition between ages. The accuracy may slightly be off at groups 1 and 2, for the little
information available for these drivers; hence such high premiums.

Age is only one factor among many others, yet the insurance industry made it as

the primary indicator of risk in any type of coverage.
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Figure 18. Comparative graph for the Crude Premium and the Group Premium.

This experiment can be applied to a life contingency study of multiple state
models. Simply replace the Material Damage (MD) claims by Disability Claims and the

Body Injuries (BI) by Death Claims.
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CONCLUSIONS AND FURTHER RESEARCH

This paper presented successful concepts and techniques of fuzzy set theory as
used in the actuarial science environment. The applications focused on life contingencies
and life insurance from the underwriting to claims. Fuzzy actuarial mathematics offers a
new and promising way of treating uncertainty, with a useful addition to the modeling
tools. The Actuarial Research Clearinghouse is correct to forecast a drastic increase of
interest for fuzzy methods in the future. New research may shift toward multiple state
models including joint-survivorship, disability, sickness, retirement or withdrawal. Also
involved are the hybrid models and the company-sponsored insurance with multiple
options. Perhaps these are building blocks that will suggest other fields to develop fuzzy

set applications.
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Table 5. Life Table for the total population of United States, 2011
Spreadsheet version available from: fip.//ftp.cde.gov/pub/Health_Statistics/NCHS/Publications/NVSR/64_11/Table01.xlsx.

Probability of Number Number dying Person-years lived Total number of
dying between surviving to between between person-years lived Expectation of
ages xand x+ 1 age x ages xand x+ 1 ages xand x + 1 above age x life at age x
Age (years) qr Ir dy Ly Te =
0.006058 100,000 606 99,470 7,870,915 78.7
0.000415 99,394 M 99,374 7,771,445 78.2
0.000264 99,353 26 99,340 7,672,071 72
0.000208 99,327 pal 99,316 7,572,731 76.2
0.000167 99,306 17 99,298 747345 753
0.000151 99,289 15 99,282 7,374,117 743
0.000134 99,274 13 99,268 7,274,835 73.3
0.000120 99,261 12 99,255 7,175,567 723
0.000106 99,249 1 99,244 7,076,312 71.3
0.000092 99,239 9 99,234 6,977,068 70.3
0.000084 99,230 8 99,225 6,877,834 69.3
0.000080 99,221 9 99,217 6,778,609 68.3
0.000117 99,212 12 99,207 6,679,392 67.3
0.000172 99,201 17 99,192 6,580,185 66.3
0.000246 99,184 24 99,171 6,480,993 65.3
0.000326 99,159 32 99,143 6,381,822 64.4
0.000404 99,127 40 99,107 6,282,679 63.4
0.000486 99,087 48 99,063 6,183,572 62.4
0.000570 99,039 56 99,011 6,084,509 61.4
0.000655 98,982 65 98,950 5,985,499 60.5
0.000743 98,917 73 98,881 5,886,549 595
0.000826 98,844 82 98,803 5,787,668 58.6
0.000886 98,762 88 98,719 5,688,865 57.6
0.000919 98,675 N 98,630 5,590,146 56.7
0.000930 98,584 92 98,538 5,491 517 55.7
0.000934 98,493 92 98,447 5,392,978 54.8
0.000943 98,400 93 98,354 5,204,532 53.8
0.000958 98,308 94 98,261 5,196,178 52.9
0.000983 98,214 96 98,165 5,007,917 51.9
0.001016 98,117 100 98,067 4,999,752 51.0
0.001055 98,017 103 97,966 4,901,685 50.0
0.001094 97,914 107 97,860 4.803,719 491
0.001132 97,807 111 97,751 4,705,859 481
0.001167 97,696 114 97,639 4,608,107 47.2
0.001203 97,582 17 97,623 4,510,468 46.2
0.001250 97,465 122 97,404 4,412,945 453
0.001313 97,343 128 97,279 4,315,541 44.3
0.001389 97,215 135 97,148 4,218,262 43.4
0.001476 97,080 143 97,008 4,121,114 425
0.001576 96,937 153 96,860 4,024,106 M5
0.001685 96,784 163 96,702 3,927,245 40.6
0.001813 96,621 175 96,533 3,830,543 396
0.001972 96,446 190 96,351 3,734,009 387
0.002171 96,256 209 96,151 3,637,659 378
0.002405 96,047 23 95,931 3,541,508 36.9
0.002652 95,816 254 95,688 3,445 577 36.0
0.002910 95,561 278 95,422 3,349,888 351
0.003196 95,283 305 95,131 3,254,466 342
0.003513 94,979 334 94,812 3,159,335 333
0.003851 094,645 364 94,463 3,064,523 324
0.004204 94,281 396 94,083 2,970,060 315
0.004563 93,884 428 93,670 2,875,977 30.6
0.004928 93,456 461 93,226 2,782,307 298
0.005304 92,995 493 92,749 2,689,081 288
0.005702 92,502 527 92,238 2,506,332 281
0.006131 91,975 564 91,693 2,504,094 271.2
0.006596 91,411 603 91,109 2,412,401 26.4
0.007096 90,808 644 90,486 2,321,292 2586
0.007621 90,164 687 89,820 2,230,806 247
0.008164 89,476 730 89,111 2,140,986 239
0.008732 88,746 775 88,359 2,051,875 231
See footnote at end of table.
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Table 6. Life Table for the total population of United States, 2011 (continued)

Probabity of Number Rumber dying Person-years Inved Tkl bt of
dyan Bebwioen sURRg 1o bertwieen betwean [person-years lved Expectation of
ages xand ¥+ 1 age x apes wand x4+ 1 ages xand x + 1 abowe age x life &t age x

.7 I oy L T o
0005335 87.9M B2 87,560 1963516 w3
0003 87,150 &0 B6.T15 1875956 M5
0.010715 86,280 a4 B5B18 1,789,241 207
0011568 85,355 a&7 B4,562 1,703 423 200
0.002586 84,368 1,062 83,837 1 618562 192
0015763 83,506 1,147 82,733 1,534,725 184
0.005057 82160 1.237 81,541 1,451,992 177
0.01E380 80,923 1,3% BO, 260 1,370,451 169
0.047T56 70,547 1413 78,580 1,200,191 162
0.015239 78,184 1509 17429 1,211,301 155
D.02039 76,675 1613 75,868 1.133.8M1 148
0.2y 75,062 1,726 14,199 1,058,003 141
0025162 73,335 1,847 T2 083,805 134
0.0ETE3 71,483 1975 10,501 1,392 127
[ ix v 60,503 2108 68,450 840,802 121
0.033309 67,405 2245 66,783 Tiean 1.5
0.0EETA0 65,160 2554 63,963 06,140 10.8
0.040588 62,765 554 61,489 42,186 0z
0045172 &0,212 270 58,852 580,807 1
0.050072 57453 Z8m 56,053 521,844 a1
0055306 54614 100 53,103 465,70 a5
0061241 51,553 3160 50,013 412,688 an
0.06TE03 48,434 3288 46,780 62674 15
0.07S504 45,145 413 43,430 315,885 o
0.084649 44,733 151 39,966 T2 A% 85
0.084437 38,200 07 36, 796 232480 61
0.108152 34,543 367 27 196,083 &7
0116835 30,055 ki 20,147 163300 53
0129516 7,338 3541 #5560 134,163 a9
0A4x215 23758 FA08 22094 108,595 46
0157937 20,383 30 18,7749 BE S0 47
04736 17,164 2am 15,678 67,122 an
0,190385 14,187 &0 12837 52.043 ai
(-] 11,488 2380 10,252 0.7 a4
0.E2653 0,087 2,081 B.066 a5 az
0245796 7,008 1,72 171 20,540 an
0265711 5,307 1410 4,602 4677 28
0.FEE42 1,807 1,115 1530 10,075 26
0. 300841 278 854 2,355 6,736 24
1.000000 1,908 1,928 4,557 4382 23
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Age (years)

85

80

~
o

70

AN\

Hispanic female 83.8
82.9 —
Non-Hispanic white female 81.1
80.6
79.0
Hispanic male 77.9
77.5 .
Non-Hispanic black female
76.4 76.4
75.7
- Non-Hispanic white male
T
| Non-Hispanic black male
69.5
1 1 1 1 | 1
2006 2007 2008 2009 2010 2011
Figure 19. Life expectancy at birth by origin, race and sex from 2006 to 2011
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Table 9. Standard results for t-norms and t-conorms for Fuzzy set operations

t-norm t(z,y)

t-conorm c(z,y)

Dubois and Prade (1980b)

operators (0 < p<1)

X
m“zz¢V-ps

Algebraic product-sum zy zT+y-zy
Hamacher product-sum e 511"_‘:—’:1
Einstein product-sum TS5 li-rtzlv
Bounded difference-sum max(0,z +y - 1) min(l,z + y)
| — __(=5)(1-y)

mu[(‘ —2),(1 -V)-p]
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