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ABSTRACT 

SURVEY OF FUZZY SET THEORY IN ACTUARIAL LIFE MODELING 

Jean Guy Daniel Boni, M.S. 

George Mason University, 2016 

Thesis Director: Dr. Douglas Eckley 

 

This thesis describes Actuarial science and Fuzzy Logic as relatively recent fields of 

mathematics introducing methods for containing uncertainty and vagueness in the line of 

business in which it is being used. Whereas actuaries work on the financial risk in 

(re)insurance of future events, ‘Fuzzicists’ aim at modeling the degree to which such 

events may occur. In the process of researching and writing, the author conducted a 

literature search and review of Fuzzy Set Theory with a structural approach to actuarial 

modeling. Following the recent development and discoveries of fuzzy logic, life 

insurance actuaries gained ultramodern modeling techniques, replacing the sole use of 

probabilities that had started to become insufficient. This thesis is slated to span the 

applications of Fuzzy Mathematics in the actuarial modeling of Life Contingencies. 
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PART 1: STRUCTURAL APPROACH TO FUZZY LOGIC AND ACTUARIAL 

MODELING 

1. Introduction 
 

The year 1965 marked the birth of fuzzy logic as forefather Lotfi A. Zadeh 

published his paper entitled “Fuzzy Sets” in the journal of Information and Control. He 

introduced an alternative logic to the well-known Boolean logic that an event is either 

True (=1) or False (=0) or, as formerly stated in Aristotle’s law of excluded middle, an 

element is either contained in a set or not contained in a set. From this point of view, only 

a few elements of the real world can be properly represented, for everything has to be 

black and white and there are no shades of grey. On a note from Albert Einstein “So far 

as the laws of mathematics refer to reality, they are not certain. And so far as they are 

certain, they do not refer to reality.” Fuzzy logic proposes that sets of objects had 

boundaries not sharply defined, awarding elements to be contained in a set to a grade of 

membership. Today on its 50th year anniversary, it has evolved into a whole field of 

mathematics with its very own analysis, operations and rules. Pioneer work in the theory 

of Fuzzy Sets extends to actuarial science and, specifically for our purposes, life 

contingencies models. We must introduce and define the basic engineering of these 

fields.  
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1.1. Life Contingent Events 
 

Actuarial Science is the field of study that uses mathematical and statistical 

methods to assess risk in insurance, finance, and other industries/professions. The study 

is frequently associated with insurance and stock markets where its principles are 

commonly applied. In Life Insurance, actuaries aim to assess the risk of losing a life, to 

an insurer by modeling the policyholder's life expectancy. A person’s life becomes a 

probabilistic set and its distribution is represented with various assumptions. One future 

lifetime becomes a random variable, and probabilities of death or survival are calculated. 

“Life contingencies” is a term used to describe survival models for human lives and 

resulting cash flows that start/stop contingent upon the state of a human life. 

1.2. Fuzzy Logic 
 

The traditional way of thinking in mathematics complies with Boolean logic 

(Boole 1847) and dates to 300 B.C. with Aristotle’s law of the excluded middle. It states 

that for any two contradictory propositions (i.e. where one proposition is the negation of 

the other) one must be true (1), and the other false (0). Later adapted to algebra as X must 

be either in a set A or not in A.  

Fuzzy logic is rather an extended logic dealing with linguistic ambiguity and 

handling the concept of partial truths. Truth values of a variable may be any real number 

between 0 and 1. By linguistic ambiguity arises matters of daily life having two or more 

aspects whose boundaries have not been unanimously agreed upon. One such example is 

the temperatures for Cold, Hot and Warm. The three functions are plotted in Figure 1, 
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where the sense of transition between these aspects is more visible. Other examples may 

have more or less variables, such as Young-Adult-Old; Short-Tall, etc. 

Fuzzy Set Theory (Zadeh 1965) is the mathematical field based on Fuzzy logic, 

dealing with the sets whose elements have degrees of membership. Define a Fuzzy set as 

a pair (𝑈,𝑚) for a set U and a membership function 𝑚: 𝑈 → [0, 1]. For each 𝑥 ∈ 𝑈, the 

value m(x) is the grade of membership of x in the fuzzy set. In particular, x is not included 

if 𝑚(𝑥) = 0, and x is fully included if 𝑚(𝑥) = 1. That means for all 𝑥 ∈ 𝑈:𝑚(𝑥) ∈

(0,1), x is at the same time partly included and partly not included, hence the concept of 

sets with no sharp boundaries. Classical sets are special cases of fuzzy sets called crisp 

sets, with membership function 𝑚:𝑈 → {0,1}.  

Figure 1. Transition of Temperatures 
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1.3. Literature Review 
 

Most insurance executives deal better with the crisp/traditional logic, and often 

transform imprecise statements into rigid rules. This is the case of Belgian insurers using 

fuzzy statistical evidence, such as "Young drivers provoke more automobile accidents" to 

set up the rating rule "Drivers under 23 years old will pay $150 deductible if they 

provoke an accident” (Lemaire 1990). Thus, the initial statement was distorted and  

“Young” was equated to "under 23," when 23 is only perhaps 80% young.  

Since 1965, the count of publications on Fuzzy set theory has grown to exceed 

50,000 today (Chen et al). We have experienced what is called a fuzzy boom since the 

1990s thanks to pioneers in actuarial science such as Shapiro, Lemaire and Liu. Today, 

there are more researchers in Fuzzy Logic than in Actuarial Science, with important 

contributions from Japan, China & Russia. The evolution of the study in the literature 

Figure 2. Crisp set and Fuzzy set membership graphs 
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started with linguistic variables and fuzzy sets, followed by fuzzy numbers arithmetic, 

fuzzy inference systems and fuzzy linear programming, and more recently fuzzy 

clustering with soft computing. It may be found in a variety of applications such as 

helicopter autopilot, home electronics, vehicle control, camera stabilization. The figure 

below from Zimmerman’s “Fuzzy Sets Theory and its applications” 2001 provides a 

better grasp of the evolution.  

 

1.4. The Current Research 
 

 

This investigation aims at presenting the applications of Fuzzy Set Methodology 

in an actuarial science framework with focus on modeling life contingencies. The 

Figure 3. Survey of Evolution (Zimmerman 2001) 
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approach is meant to define where actuarial science and fuzzy logic intersect. First, the 

traditional mechanism of life insurance will be explained, from the underwriting process 

to the classification of policies in preference classes. This will require a review of 

probability theory in human life modeling, with the customary use of survival models and 

life tables for premium calculations. Second, the applications of fuzzy mathematics will 

be fully described through a series of theorems and definitions, including fuzzy rules, 

analysis, and clustering algorithms.  

The second part of the research will survey the use of the aforementioned 

applications in life insurance. This will involve the translation of the medical records of 

applicants for life insurance using a fuzzy decision-making process, followed by the 

classification of the policyholders by risk levels using a fuzzy system of preference 

classes. Next, the author will remodel actuarial survival probabilities, insurance benefits 

and premium computations using fuzzy parameters, to eliminate the inaccuracy caused by 

the fluctuation of interest rates. Finally, each policyholder’s risk derived from actuarial 

life tables using only the age factor will be rearranged in fuzzy clusters. 

2. Traditional actuarial Life 

2.1. Market Setup: Underwriting and Preferred Lives 
 

Life insurance is a contract between a person and an insurance company. The 

insurance company promises a compensation to a designated person with a certain 

amount of money upon death of the insured, in return for periodic payments. Life 

insurance has its own jargon and the designated person is called the beneficiary; the 

money received upon death is the sum insured or death benefit; the insured is also called 
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the policyholder and his/her payments are called premiums. Underwriting is the process 

of determining which risk class an insured belongs to, based on several factors such as 

age, gender, physical condition, medical history, financial background, personal habits, 

profession, hobbies, etc. Underwriting is an important aspect for an insurance company: 

it classifies the applicants according to their level of risk, protects the company from 

fraud or identity thefts, benefits consumers by keeping the insurance more affordable 

with low premiums, and helps the solvency of the company. 

The consumer chooses the type of insurance coverage he/she wishes. The 

traditional insurance contracts are:  

 Whole life insurance pays a lump sum benefit on the death of the policyholder 

whenever it occurs. Premiums are often payable up to a maximum age (80). 

 Term insurance pays a lump sum benefit on the death of the policyholder, 

provided death occurs before the end of a specified term. Subtypes of these 

contracts include term insurance renewable every year, and term insurance 

convertible to whole life insurance. 

 Pure Endowment pays the insured himself if he survives a specified period but 

pays nothing in case of a death prior the specified date. 

 Endowment insurance offers a lump sum benefit paid either on the death of 

the policyholder or at the end of a specified term, whichever occurs first. 

(Term insurance + pure endowment). 

Life insurance policies may involve a single premium at the beginning of the 

contract, or a series of premiums payable until death/end of term. Another type of 
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insurance contract to consider is Life Annuity. An annuity in financial mathematics is a 

contract that offers a regular series of payments to the buyer. If the annuity depends on 

survival of an individual, it is called a ‘life annuity’ and the recipient is the annuitant. 

Note that the beneficiary can be the policyholder himself in this case.  These contracts are 

often purchased by older lives to provide income in retirement. They include: 

 Whole life annuity pays until the death of the annuitant.  

 Term life annuity pays up to an agreed upon date, and may stop upon death of 

the annuitant, if sooner. 

 Other types of insurance contracts that are of more recent vintage and are more 

attuned to the current economy are: 

 With-profit insurance shares profits earned on the invested premiums are 

shared with the policyholders in the form of cash dividend, reduced 

premiums, or increased sum insured 

 Universal life insurance puts premiums into an investment fund and deducts 

insurance charges from the fund periodically. 

 

Once the type of contract is selected, underwriters do a classification of the risk 

level of the applicant following the guidelines of the insurance company executives. 

Insurance Risk Classes are groups of people with similar characteristics and risk level.  

The classes may be defined based on age, sex, income and physical condition. In 

life insurance, an underwriting decision is made whereby the applicant may be either 

denied coverage or put into one of the following generic classes: 
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 Preferred Class: healthy, middle-aged individuals with stable income and a 

better than average risk of insolvency or mortality. They are charged lower 

(preferred) rates. 

 Standard Class: This is for a more or less healthy person, complying with the 

definition of normal or typical risk the carrier desired to insure. This class is 

charged the standard rate. 

 Substandard/Rated Class: In this class are applicants for higher coverage with 

only tolerable physical or medical condition. They represent an above average 

risk and are charged higher premium rates than the Preferred and the Standard 

classes. 

 Postponed: Occasionally cases are postponed until additional information is 

gathered, some time passes, or until negative factors change in favor of 

assigning a risk class. For instance, a person with a medical condition could 

be subject to additional tests, such as a stress test to check cardiovascular 

functions. 

 Declined: if the client represents an uninsurable risk, coverage is declined. 

This is the type of underwriting scheme used by most life insurance carriers, in 

particular by the American International Group (AIG) in its ‘Field Underwriting Guide’. 

Other derivatives schemes can be found as in Figure 4, which shows the risk classes 

Deloitte Consulting uses for ‘Predictive modeling for Life Insurance.’ Note to the reader, 

declination of insurance coverage does not reflect the health or likelihood of dying, but 

solely a risky venture for the solvency of the company.  
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Life insurers agree that mortality is unevenly distributed in the population. For 

instance, with all factors being equal, females outlive males; the use of tobacco is 

detrimental to health and critically affects mortality. United States mortality tables are 

divided by sex, race and ethnicity and all give different statistics (See Tables 5, 6, 7 & 8). 

Preferred programs expanded in the 1980s with the HIV/AIDS scare (Hughes 

2012). Prior to this date, a single premium rate was charged for each age/sex cohort with 

occasionally a nonsmoker discount. All 35 year-old male customers would pay the same 

premium. This method had some negative outcomes by creating a pooling of risks – 

customers of higher mortalities offset costs of favorable mortalities, and vice-versa. To 

address this problem, carriers began demanding blood samples to determine if an 

applicant was HIV-positive. Initially, this additional information would only suggest 

denial of coverage. But eventually, blood panels revealed a wealth of data on a person’s 

well-being, later used to assess mortality risk in more refined ways.  

Figure 4. Predictive Modeling for Life Insurance by Deloitte Consulting, LLP 
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The main objectives for a preference program are to have rates in line with each 

risk profile, to reduce premium cross-subsidization, and to shape the industry into a 

competitive market. By design these programs operate more closely to individual risk 

setting. But the practice of grouping lives has been more prominent in life insurance sales 

historically, and requires less underwriting. 

Preferred programs are complicated to develop and require a chief pricing 

actuary. A preferred premium must correlate to the expected risk profile of the best class. 

Selection decisions outside the agreed-upon bounds (i.e. exceptions) can affect the 

distribution of risks and profitability. If underwriting guidelines are applied liberally, 

more applicants will qualify for the best class. On the other hand, if they are too rigorous, 

premium rates will be too high, driving away applicants the preferred class was designed 

to attract (Hughes 2012). Most companies require that clients apply for a stated minimum 

death benefit of perhaps $250,000 in order to qualify for preferred status. Industry 

surveys say that 10-45% of all applicants qualify for preferred classification. 

2.2. Survival Probability Models 
 

2.2.1. Survival Models In Statistics 

In Probability theory, the sample space Ω for a random phenomenon is the set of 

all possible outcomes (Ross 2013). The event E is any subset of the sample space and the 

probability of event E occurring is 𝑃(𝐸) ∈ [0,1]. There exists a duality property between 

an event E and its complement P(𝐸𝐶) + 𝑃(𝐸) = 1. Two important equalities in 

probability are: 

∀𝐴, 𝐵 ∈ Ω, 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵)– 𝑃(𝐴 ∩ 𝐵) 
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and the conditional probability of A given B is 

 𝑃(𝐴|𝐵) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
 

A random variable X is a numerical outcome of a random experiment. The distribution 

of X is the collection of outcomes and their probabilities. X is said to be discrete if it has 

a countable number of outcomes; and continuous if it has an infinite continuum of 

possible values (e.g. blood pressure, weight). The cumulative distribution function (or 

cdf) is given by:  𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥)   or  𝐹𝑋(𝑥) = 𝑃(𝑋 = 𝑥).  

The derivative of the cdf is called the probability density function (or pdf) in the 

continuous case, and the probability mass function (or pmf) in the discrete case. It is 

given by: 

 𝑓𝑋(𝑥) =
𝑑𝐹𝑥(𝑥)

𝑑𝑥
 

Each distribution has an expected value denoted  

𝐸[𝑋] = ∫ 𝑥 ⋅ 𝑓𝑋(𝑥)𝑑𝑥
∞

−∞

  𝑎𝑛𝑑  𝐸[𝑋] =∑ 𝑥 ⋅ 𝑃(𝑋 = 𝑥)
∞

−∞
 

and a variance  𝑉[𝑋] = 𝐸(𝑋 − 𝐸[𝑥])2.  

With the above considerations in mind, the author will attempt to define an 

actuarial survival model. 

The distribution of a future lifetime may be represented using probability theory. 

Actuaries and Statisticians agree that any survival function for a lifetime distribution 

must satisfy the following conditions: 

i. All lives must die before a stated terminal age ω. 
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ii. Survival functions are non-increasing over time. 

iii. The probability that a life aged x survives the next t minutes goes to 1 as 𝑡 → 0. 

Let (x) denote a “life aged x”, for x ≥ 0. Death may occur at any age greater than x, and 

the future lifetime of (x) is a continuous random variable denoted 𝑇𝑥. That means 𝑇0 

represents the future lifetime at-birth or for a life aged 0; and 𝑥 + 𝑇𝑥 represents the age-

at-death for (x). Denote the cdf of 𝑇𝑥 as 𝐹𝑥, so 𝐹𝑥(𝑡) is the probability that (x) does not 

survive beyond age 𝑥 + 𝑡 : 

𝐹𝑥(𝑡) = 𝑃[𝑇𝑥 ≤ 𝑡] 

The complement 𝑆𝑥 is the survival function and 𝑆𝑥(𝑡) is the probability that (x) survives 

at least t more years defined as: 

𝑆𝑥(𝑡) = 1 − 𝐹𝑥(𝑡) = 𝑃[𝑇𝑥 > 𝑡] 

The previous conditional probability formula gives the following relations: 

𝐹𝑥(𝑡) = 𝑃[𝑇𝑥 ≤ 𝑡] = 𝑃[𝑇0 ≤ 𝑥 + 𝑡|𝑇0 > 𝑥] =
𝑃[𝑥 < 𝑇0 ≤ 𝑥 + 𝑡]

𝑃[𝑇0 > 𝑥]
 

𝐹𝑥(𝑡) =
𝐹0(𝑥 + 𝑡) − 𝐹0(𝑥)

𝑆0(𝑥)
 

𝑆𝑥(𝑡) =
𝑆0(𝑥 + 𝑡)

𝑆0(𝑥)
     𝑜𝑟   𝑆0(𝑥 + 𝑡) = 𝑆0(𝑥) ⋅ 𝑆𝑥(𝑡) 

Condition (i) can be translated as 𝑆𝑥(0) = 1 ∀𝑥 ≤ 𝜔, the terminal age assumed, 

and condition (ii) as lim
𝑡→∞

𝑆𝑥(𝑡) = 0. In order for the mean and the variance of Tx to exist, 

other assumptions need to be made:  

1. 𝑆𝑥(𝑡) is differentiable for all 𝑡 > 0. Note this means that 
𝑑

𝑑𝑡
𝑆𝑥(𝑡) ≤ 0∀𝑡 > 0. 

2.  lim
𝑡→∞

𝑡 ⋅ 𝑆𝑥(𝑡) = 0 𝑎𝑛𝑑 lim
𝑡→∞

𝑡2 ⋅ 𝑆𝑥(𝑡) = 0.  
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2.2.2. Actuarial Survival Models 

Actuarial Mathematics uses another notation for life models: the International 

Actuarial Notation. Following the development of the survival models from Dickson et al 

(2009), the previously defined quantities are expressed using this notation as follows: 

𝑝𝑡 𝑥 = 𝑆𝑥(𝑡)     𝑎𝑛𝑑     𝑞𝑡 𝑥 = 1 − 𝑝𝑡 𝑥 = 𝐹𝑥(𝑡). 

Also, a deferred mortality probability 𝑞𝑢|𝑡 𝑥 is defined as the probability that (x) dies 

between ages 𝑥 + 𝑢 and 𝑥 + 𝑢 + 𝑡: 

𝑞𝑢|𝑡 𝑥 = 𝑃[𝑢 < 𝑇𝑥 ≤ 𝑢 + 𝑡] = 𝑆𝑥(𝑢) − 𝑆𝑥(𝑢 + 𝑡) = 𝑝𝑢 𝑥 − 𝑝𝑢+𝑡 𝑥 

The last term is derived following the above conditional survival formula in simple steps: 

𝑝𝑢+𝑡 𝑥 = 𝑆𝑥(𝑢 + 𝑡) = 𝑆𝑥(𝑡) ⋅ 𝑆𝑥+𝑡(𝑢) = 𝑝𝑡 𝑥 ⋅ 𝑝𝑢 𝑥+𝑡 

Deaths do not exactly occur at integer ages taken as points of time. To properly 

represent this, actuaries compound the possibilities of death on infinitesimal periods of 

life ∆t for a life (x). We define the force of mortality at fixed age x by 𝜇𝑥 (Daykin, 

Macdonald, 2004):  

𝜇𝑥 = lim
𝑑𝑡→0+

1

𝑑𝑡
𝑃[𝑇0 ≤ 𝑥 + 𝑑𝑡|𝑇0 > 𝑥] = lim

𝑑𝑡→0+

𝑃[𝑇𝑥 ≤ 𝑑𝑡]

𝑑𝑡
 

= 𝐹𝑥
′(0) = −𝑆𝑥

′ (0) =
−1

𝑆0(𝑥)

𝑑

𝑑𝑥
𝑆0(𝑥) 

This quantity will help connect others. Note the equation for the pdf of the 

lifetime distribution can be calculated as: 

𝑓𝑥(𝑡) = 𝑝𝑡 𝑥𝜇𝑥+𝑡 =
𝑑

𝑑𝑡
𝑞𝑡 𝑥 = −

𝑑

𝑑𝑡
𝑝𝑡 𝑥 
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This is because by definition the pdf 𝑓𝑥(𝑡) is the derivative of the 𝐹𝑥(𝑡), the complement 

of 𝑆𝑥(𝑡). Finally, the force of mortality and the survival functions can be newly expressed 

as the equations below, whose measurement can be clarified in Figure 5: 

𝜇𝑥+𝑡 =
𝑓𝑥(𝑡)

𝑆𝑥(𝑡)
  

𝑝𝑡 𝑥 = 𝑆𝑥(𝑡) = 𝑒−∫ 𝜇𝑥+𝑠𝑑𝑠
𝑡
0    𝑎𝑛𝑑  𝑞𝑡 𝑥 = ∫ 𝑝𝑠 𝑥𝜇𝑥+𝑠𝑑𝑠

𝑡

0

 

 

 

The mean of 𝑇𝑥 is the expected future lifetime of (𝑥). It is denoted 𝑒̇𝑥, for the 

complete expectation of life and is the following: 

𝑒̇𝑥 = E[𝑇𝑥] = ∫ 𝑡 𝑝𝑡 𝑥𝜇𝑥+𝑡

∞

0

𝑑𝑡. 

The second moment of 𝑇𝑥 is E[𝑇𝑥
2] and is expressed as: 

E[𝑇𝑥
2]=∫ 𝑡2 𝑝𝑡 𝑥𝜇𝑥+𝑡𝑑𝑡

∞

0

= ∫ 𝑡2 (−
𝑑

𝑑𝑡
𝑝𝑡 𝑥) 𝑑𝑡

∞

0

 

= −𝑡2 𝑝𝑡 𝑥|0
∞
+∫ 2𝑡 𝑝𝑡 𝑥𝑑𝑡

∞

0

 

Figure 5. Visualizing the mortality function on a timeline 
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= 2∫ 𝑡 𝑝𝑡 𝑥𝑑𝑡.
∞

0

 

The variance of 𝑇𝑥 is 

 𝑉[𝑇𝑥] = 𝐸[𝑇𝑥
2]−(𝑒̇𝑥)

2 

The curtate future lifetime is defined as the integer part of future lifetime 𝐾𝑥 for a life (x) 

𝐾𝑥 = ⌊𝑇𝑥⌋, obtained by the floor function. 

The actuarial science literature contains three pioneer efforts to find the exact 

force of mortality (Huang et al 2011). First is the law of Abraham de Moivre (1725) in 

“Annuities upon Lives,” with the quantity ω denoting the ultimate age, i.e. the terminal 

age at which no lives remain. This is usually taken to be 𝜔 = 100 or 𝜔 = 120. De 

Moivre’s law of mortality is expressed as: 

𝜇𝑥+𝑡 =
1

𝜔 − 𝑥 − 𝑡
   𝑎𝑛𝑑   𝑝𝑡 𝑥𝜇𝑥+𝑡 =

1

𝜔 − 𝑥
 

Second is the Gompertz law of mortality. In this case, Gompertz argues that life 

decays exponentially over time. For flexibility, constants B and c are given values such 

that 0 < 𝐵 < 1 and 𝑐 > 1. For a life aged 𝑥 > 0, 

𝜇𝑥+𝑡 = 𝐵𝑐
𝑥+𝑡   𝑎𝑛𝑑   𝑝𝑡 𝑥𝜇𝑥+𝑡 = 𝐵𝑐

𝑥+𝑡𝑒
𝐵
𝑙𝑛𝐶

𝐶𝑥(1−𝐶𝑡)
 

Another law is that of Makeham (1860), which extends the Gompertz force of 

mortality by adding a term 𝐴 ≥ −𝐵 that is not age-related for accidental deaths and 

improves the fit of the model to mortality data at younger ages. For a life aged x>0,  

𝜇𝑥+𝑡 = 𝐴 + 𝐵𝑐𝑥+𝑡   𝑎𝑛𝑑  𝑝𝑡 𝑥𝜇𝑥+𝑡 = (𝐴 + 𝐵𝑐
𝑥+𝑡)𝑒−𝐴𝑡+

𝐵
𝑙𝑛𝐶

𝐶𝑥(1−𝐶𝑡). 
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Unless stated otherwise, the assumptions in this research will be the Makeham’s law of 

mortality with parameters 𝐴 = 0.00022, 𝐵 = 2.7 × 10−6 𝑎𝑛𝑑 𝐶 = 1.124 (Dickson et al. 

2009). 

 Finally is the Weibull assumption (1951) that mortality is modelled as follows: 

𝜇𝑥+𝑡 = 𝑘(𝑥 + 𝑡)𝑛  𝑎𝑛𝑑  𝑝𝑡 𝑥𝜇𝑥+𝑡 = 𝑘(𝑥 + 𝑡)
𝑛𝑒  

𝑘
𝑛+1

[𝑥𝑛+1−(𝑥+𝑡)𝑛+1]
 

 

 

2.2.3. Life Tables  

 

Life tables are tables containing the mortality statistics that allow the calculation 

of life expectancy for a group of individuals. Given the survival models as above, we 

choose the parameters A, B and c to fit the data of the life table in use. Consider a life 

table starting from age 𝑥0 to a maximum age ω. 𝑙𝑥 for 𝑥0 ≤ 𝑥 ≤ 𝜔 is a function for the 

number of persons alive of age x. Define 𝑙𝑥0 to be any positive number and call it the 

radix of the table, and for 0 ≤ 𝑡 ≤ 𝜔 − 𝑥0, 

𝑙𝑥0+𝑡 = 𝑙𝑥0 𝑝𝑡 𝑥0   𝑎𝑛𝑑  𝑝𝑡 𝑥 =
𝑙𝑥+𝑡
𝑙𝑥

 

The number of deaths occurring during the interval between 𝑙𝑥 and 𝑙𝑥+1 is denoted 𝑑𝑥: 

𝑑𝑥 = 𝑙𝑥 − 𝑙𝑥+1 = 𝑙𝑥𝑞𝑥 

where 𝑞𝑥 is the probability that a person dies between 𝑥 and 𝑥 + 1.  
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Individuals of the same age in life tables are assumed to have the same life 

expectancy. See Tables 5, 6, 7 and 8 and Figure 19 in Appendix, excerpted from ‘United 

States Life Tables of 2011’ by the Division of National Vital Statistics.  

 

 

 

 

 

2.3. Benefits and Premium Calculations 
 

2.3.1. Financial Mathematics: Interest Theory  

The notation in actuarial science is consistent with that of interest theory. Define 𝑖 

to be the constant interest rate, and the force of interest or continuously compounded 

interest rate 𝛿: 

 𝛿 = log(1 + 𝑖) ,    1 + 𝑖 = 𝑒𝛿  

The discount rate, or the present value of $1 in one year, is expressed as:  

𝑣 =
1

1 + 𝑖
= 𝑒−𝛿 .    

The nominal rate of interest compounded p times per year is expressed as: 

 𝑖(𝑝) = 𝑝 ((1 + 𝑖)
1
𝑝 − 1)  ⟺  1 + 𝑖 = (1 +

𝑖(𝑝)

𝑝
)𝑝 

The effective rate of discount per year is 𝑑 = 1 − 𝑣 = 𝑖𝑣 = 1 − 𝑒−𝛿.  
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The nominal rate of discount compounded p times per year is 

 𝑑(𝑝) = 𝑝(1 − 𝑣
1
𝑝) ⟺  𝑣 = (1 −

𝑑(𝑝)

𝑝
)𝑝. 

 

2.3.2. Insurance benefits & Annuities  

The continuous future lifetime benefit random variable Z combines both the 

survival distribution and interest theory. It is the present value of a benefit of $1 payable 

immediately on death: 

 𝑍 = 𝑣𝑇𝑥 = 𝑒−𝛿𝑇𝑥 . 

Given (𝑥), the International Actuarial Notation defines the method for notation 

of the expected present value (EPV) of a life insurance contract in actuarial science. 

𝑨𝒙:𝒏|̅̅̅ is the present value of insurance for (x) paying 1 on the insured event for n years; 

𝒂𝒙:𝒏|̅̅̅ is the present value of an annuity for (x) paying 1 per annum for n years at the end 

of each year. To simplify the word editing, we will remove the bars above and to the right 

of 𝑛. Thus 𝐴𝑥:𝑛|̅̅ ̅ = 𝐴𝑥:𝑛  𝑎𝑛𝑑  𝑎𝑥:𝑛|̅̅ ̅ = 𝑎𝑥:𝑛 

The notation symbols and letter meanings are explained below using an example 

containing all of them. Denote an insurance contract of 𝑛 years starting 𝑢 years from now 

with interest compounded 𝑚 times a year and benefit payable at the beginning of the year 

with 

  𝐴̈
𝑥:𝑛|

1(𝑚)
𝑢|
   𝑜𝑟  𝐴̈𝑥

(𝑚)
𝑢|𝑛

  

 

- 𝑢 is the deferred period,  
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- (𝑚) represents the interest rate 𝑖 compounding frequency, and  

- the superscript “1” is the endowment indicator – 

when placed above 𝑥, it indicates that benefit is payable only if (𝑥) dies within n years, 

and when placed above n, it indicates that benefit is payable if (𝑥) survives n years. The 

absence of a superscript means that the insurance pays on the earliest of death or n-years. 

- The mark above “A” or annuity “a” represents the time of payment – 

For 𝐴̅𝑥 𝑜𝑟 𝑎̅𝑥, the line is for continuity i.e. payment is made continuously or immediately 

at the moment of death. For 𝐴̈𝑥 𝑜𝑟 𝑎̈𝑥, the double dot indicates that payments are made at 

the beginning of the year. For 𝐴𝑥 𝑜𝑟 𝑎𝑥, the absence of mark indicates that payments are 

made at the end of the year.  

 For instance, the EPV of a life insurance of $1 benefit payable immediately on 

death is: 

 𝐴̅𝑥:𝑛
1 = 𝐸[𝑍] = 𝐸[𝑒−𝛿𝑇𝑥] = ∫ 𝑒−𝛿𝑡𝑡𝑝𝑥𝜇𝑥+𝑡𝑑𝑡

𝑛

0

 

and the EPV of a life insurance of $1 benefit payable at the end of year of death is:  

𝐴𝑥:𝑛
1 =∑𝑣𝑡𝑡𝑝𝑥𝜇𝑥+𝑡

𝑛

0

 

As 𝑛 → ∞ or for a maximum age 𝜔, 𝑛 → 𝜔, the quantities become 𝐴𝑥 𝑜𝑟 𝑎𝑥. 

The second moment of the death benefit EPV is of the form 𝐴̅𝑥:𝑛|𝑚|
2  , 𝐴̈

𝑥:𝑛|
 

𝑚|
2  𝑜𝑟 𝐴

𝑥:𝑛|
 

𝑚|
2   

where the upper-left superscript “2” is for double force of interest. For example: 

𝐴̅𝑥:𝑛|
2 = ∫ 𝑒−2𝛿𝑡𝑡𝑝𝑥𝜇𝑥+𝑡𝑑𝑡

𝑛

0

+ 𝑒−2𝛿𝑛𝑛𝑝𝑥 

The variance of the EPV and for a sum insured S is given by:  
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𝑉[𝑍] = 𝑉[𝑒−𝛿𝑇𝑥] = 𝐴̅𝑥:𝑛|
2 − (𝐴̅𝑥:𝑛|)

2 

𝑉[𝑆𝑍] = 𝑉[𝑆𝑒−𝛿𝑇𝑥] = 𝑆2 ( 𝐴̅𝑥:𝑛|
2 − 𝐴̅

𝑥:𝑛|
2 ) 

The present value RV for the annuity payment series, Y are those of interest theory with 

the time now a (curtate) lifetime distribution. 

𝑎𝐾𝑥+1 = 
1 − 𝑣𝐾𝑥+1

𝑑
 

All other results can be derived, such as the following relationships between whole 

insurance and annuity contracts, and between annuities: 

𝑎̈𝑥 =
1 − 𝐴𝑥
𝑑

   ;    𝑎𝑥 =
1 − 𝐴𝑥
𝑑

 

𝑎𝑥:𝑛| < 𝑎
𝑥:𝑛|

(𝑚)
< 𝑎𝑥:𝑛| < 𝑎̈𝑥:𝑛|

(𝑚)
< 𝑎̈𝑥:𝑛| 

2.3.3. Premium Calculations 

Consider the net premium; that is, the remaining part of the premium once the 

company expenses are removed. Other concepts are the premium income and the 

insurance benefit outgo, both life contingent. The net future loss function is 𝐿0
𝑛 for a sum 

insured 𝑆 and premium rate 𝑃 for life insured (x). It is calculated at curtate/integer 

ages 𝐾𝑥 = ⌊𝑇𝑥⌋.  

𝐿0
𝑛 = 𝑃𝑉 𝑜𝑓 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 − 𝑃𝑉 𝑜𝑓 𝑝𝑟𝑒𝑚𝑖𝑢𝑚𝑠. 

𝐿0
𝑛 = 𝑆𝑣min (𝐾𝑥+1,𝑛) − 𝑃𝑎̈min (𝐾𝑥+1,𝑛) 

The expected value 𝐸[𝐿0
𝑛] involve the actuarial accumulation functions.  

𝐸[𝐿0
𝑛] = 𝑆𝐴𝑥:𝑛| − 𝑃𝑎̈𝑥:𝑛| 
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The Equivalence principle states that the net premium has to be set such that 𝐸[𝐿0
𝑛] = 0. 

This is meant to give a fair price for coverage. High prices drive away the customers, and 

low prices put the company solvency in danger. The equation for the Net premium is: 

 𝑃 = 𝑆
𝐴𝑥:𝑛|

𝑎̈𝑥:𝑛|
= 𝑆(

1

𝑎̈𝑥:𝑛|
− 𝑑) 

 

Example 2-1. Consider a 20-year endowment insurance with sum insured $100,000 

issued to a life aged 45 under which the death benefit is payable immediately at death. 

Using Makeham’s law with an interest rate of 5% per year, find the net premium payable 

in a year if premiums are payable annually. 

Solution. Use the equation above for P. From interest theory, 

𝑒𝛿 = 1.05  𝑎𝑛𝑑  𝑑 = 1 −
1

1.05
= .0479619; 

The SSSM gives the mortality rate for 𝑥 = 45 and for 𝑡 ∈ [0,20],  

𝜇𝑥 = .00022 + 27 × 10
−6 ⋅ 1.124𝑥  𝑎𝑛𝑑   𝑝𝑡 45 = 𝑒

−∫ 𝜇45+𝑠𝑑𝑠
𝑡
0  

If premium payments are made annually and are life contingent, then the present 

value is  

𝑎̅45:20| = ∫ 𝑒−𝛿𝑡𝑡𝑝45𝑑𝑡
20

0

= ∫ 1.05−𝑡𝑒−∫ .00022+27×10
−6⋅1.12445+𝑠𝑑𝑠

𝑡
0 𝑑𝑡

20

0

= 12.9295 

Finally, the net premium follows. 

𝑃 = 𝑆 (
1

𝑎̅45:20|
− 𝑑) = 100,000 (

1

12.9295
− .047619) = $ 2972.35. 

2.3.4. Modeling Issues 
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Classical probability theory has limited effectiveness when dealing with problems 

in which some of the principal sources of uncertainty are non-statistical in nature. Life 

tables group the risk of death by age and give the statistical mean as life expectancy. The 

mortality forces have parameters to help fit the data found in life table. Arguing the 

efficacy of the model leads to the pooling of risks by life insurance companies, whereby 

all individuals of the same risk class are insured at the same rate. Higher mortalities may 

offset costs of favorable mortalities (and vice-versa). Preferred programs are a refinement 

of the concept.  

Age is inevitably correlated to mortality, as over time one’s health decays. In 

reality, each individual has his own life expectancy depending not only on age but on his 

physical condition, gender, family medical history, financial background, and many other 

factors. Fuzzy mathematics, and precisely fuzzy statistical clustering, is the science able 

to combine these attributes.  

Furthermore, premium calculations often use a constant rate i and a force of 

mortality 𝛿𝑡 over time. The actuary may use time-series regression to forecast future 

interest rates but this does not allow for extreme events ranked as a “Black Swan” events. 

The Black Swan theory of Nicholas Taleb (2001) describes extreme outliers in a 

theatrical way that shows a major impact, and yet causes can only be found after the fact 

through retrospective analysis. Fuzzicists use the theory of possibility to extend the grasp 

of probability. Hence, the next section presents Zadeh’s engineering and its applications.  
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3. Fuzzy Mathematics 
 

Let us adopt the formal framework for mathematicians to present new concepts: 

Definitions, Theorems and Examples. 

3.1. Fuzzy Set Methodology  
 

The theory for classical/crisp sets remains the same as it is normally defined by a 

collection of elements or objects. 𝑥 ∈ 𝑋 that can be finite, countable, or infinite. Each 

element can either belong to or not belong to a set 𝐴 ⊆ 𝑋. A good general reference for 

the theory of fuzzy sets is H.J. Zimmerman "Fuzzy Set Theory and its Applications" 

(2001).  The notation given in that text is used for this thesis.  

 

3.1.1. Fuzzy Set Theory 

Definition 3-1. If X is a collection of objects x, then a fuzzy set A in X is a set of ordered 

pairs: 𝐴 =  {(𝑥,  𝑚𝐴(𝑥))|𝑥 ∈ 𝑋}  and 𝑚𝐴: 𝑋 → 𝑀 is the membership function of A for all 

x in X, where 𝑀 is a bounded subset of ℝ+ or [0,∞) called the membership space.  

The membership function is not limited to values between 0 and 1. If 

𝑠𝑢𝑝𝑥𝑚𝐴(𝑥) = 1, then the fuzzy set A is normal. A fuzzy set can always be normalized 

by dividing 𝑚𝐴(𝑥) by its supremum as shown below. 

𝑚𝐴(𝑥)

𝑠𝑢𝑝𝑥𝑚𝐴(𝑥)
 

One may omit elements with membership grade of 0 in writing the fuzzy sets. This is 

illustrated below. 
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Example 3-1. (Finite set.) Let 𝑋 = {1,  2,  3, … ,10} the set of houses with x the number of 

bedrooms. The fuzzy set "comfortable house for 4 individuals" is 

𝐴 =  {(1, .2), (2, .5), (3, .8), (4,1), (5, .9), (6, .4)} 

(Infinite Set) Let 𝑋 = ℝ, and A= “real numbers considerably larger than 25” 

𝑚𝐴(𝑥) = {
0,  𝑖𝑓 𝑥 ≤ 25
1

1 + (𝑥 − 25)−2
,  𝑥 > 25

 

B= “real numbers almost equal to 10” = {(𝑥,𝑚𝐵(𝑥))|𝑚𝐵(𝑥) = [1 + (𝑥 − 10)
2]−1} 

 

Definition 3-2. The Support of a fuzzy set A, S(A) is the crisp set of all 𝑥 ∈ 𝑋 such that 

 𝑚𝐴(𝑥) > 0. The crisp set of elements in A with grade of membership greater or equal to 

𝛼 ∈ 𝑀 is called the 𝜶-level set or 𝜶-cut: 𝐴𝛼 = {𝑥 ∈ 𝑋|𝑚𝐴(𝑥) ≥ 𝛼}. 

Note 𝐴𝛼
′ = {𝑥 ∈ 𝑋|𝑚𝐴(𝑥) > 𝛼} is called "strong 𝛼-level set" or "strong 𝛼-cut”. 

Example 3-2. Recall the finite set of Example 3-1. The following are α-level sets: 

𝐴0 = 𝑆(𝐴) = {1,  2,  3,  4,  5,  6} 𝐴.5 = {2,  3,  4,  5}  𝐴.8 = {3,  4, 5}   𝐴1 = {4} 

The strong α-level set for 𝛼 = .8 is 𝐴.8
′ = {4, 5} 

 

Definition 3-3. For finite A, the cardinality is defined as 

|𝐴| = ∑𝑚𝐴(𝑥)

𝑥∈𝑋

  𝑜𝑟  |𝐴| = ∫ 𝑚𝐴(𝑥)𝑑𝑥
𝑥

, 

and the relative cardinality of A is ‖𝐴‖ when divided by 𝑐𝑎𝑟𝑑(𝑋), the number of 

elements. 

‖𝐴‖ =
|𝐴|

𝑐𝑎𝑟𝑑(𝑋)
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Example 3-3. Same A as in finite set of example 3-1, |𝐴| = .2 + .5 + .8 + 1 + .9 + .4 =

3.8 and the relative cardinality ‖𝐴‖ = 3.8
10⁄ = .38 

 

Definition 3-4.  (Zadeh 1968) The intersection of fuzzy sets A and B is 𝐶 = 𝐴 ∩ 𝐵 and 

the membership function is defined pointwise by 

𝑚𝐶(𝑥) = min{𝑚𝐴(𝑥),  𝑚𝐵(𝑥)} ,  𝑥 ∈ 𝑋. 

The union is 𝐷 = 𝐴 ∪ 𝐵 and the membership function is defined pointwise by 

𝑚𝐷(𝑥) = 𝑚ax{𝑚𝐴(𝑥),  𝑚𝐵(𝑥)} ,  𝑥 ∈ 𝑋 

 

Definition 3-5.  The complement of a normal fuzzy set is the set 𝐴𝐶  and the membership 

function is defined by  𝑚𝐴𝐶(𝑥) = 1 −𝑚𝐴(𝑥),   𝑥 ∈ 𝑋 

Example 3-4. Recall the finite set of example 3-1, and let B be the fuzzy set "large 

house" with 𝐵 = {(3, .4), (4, .7), (5, .9), (6,1), (7,1), (8, .5)}. Then the intersection is 

𝐶 = 𝐴 ∩ 𝐵 =  {(3, .4), (4, .7), (5, .9), (6, .4)}  

and the union 𝐷 = 𝐴 ∪ 𝐵 = {(1, .2), (2, .5), (3, .8), (4,1), (5, .9), (6,1), (7,1), (8, .5)} 

The complement "not large house" may have small or extra-large houses:  

𝐵𝐶 = {(1,1), (2,1), (3, .6), (4, .3), (5, .1), (8, .5), (9,1), (10,1)} 

Now, consider the infinite set A in example 3-1, A="real numbers considerably larger 

than 25” and  C="x ≅ 26" with 𝑚𝐶(𝑥) =
1

1+(𝑥−26)4
.  

Their intersection and union are: 
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𝑚𝐴∩𝐶(𝑥) =

{
 
 

 
 0,  𝑖𝑓 𝑥 ≤ 25

min {
1

1 +
1

(𝑥 − 25)2

,
1

1 + (𝑥 − 26)4
} , 𝑖𝑓 𝑥 > 25

 

𝑚𝐴∪𝐶(𝑥) = max{
1

1 +
1

(𝑥 − 25)2

,
1

1 + (𝑥 − 26)4
} , ∀𝑥 ∈ ℝ 

 

Definition 3-6. A type 2 fuzzy set is a fuzzy set whose membership function is also a 

fuzzy set on the space M. More generally, for some integer m>1, a type m fuzzy set in X 

is a fuzzy set whose membership values are type m-1 fuzzy sets on M. 

 

From a practical point of view, type m fuzzy sets for 𝑚 ≥ 3, are extremely 

difficult to measure or visualize. Examples are fuzzy sets with membership function as a 

probabilistic set (Hirota 1981), or an intuitionistic fuzzy set of ordered triples (Atanassov 

and Stoeva 1983).  

Definition 3-7. A fuzzy number K is a fuzzy subset of the real line whose membership 

function is a continuous mapping defined by 𝑚𝐾: ℝ → 𝑀 ∩ [0,1] and is represented 

solely by (𝑎1, 𝑎2, 𝑎3, 𝑎4)  such that:  

- 𝑚𝐾(𝑥) = 0 𝑓or 𝑥 ∈ (−∞, 𝑎1] ∪ [𝑎4, ∞),  

- 𝑚𝐾(𝑥) increases linearly on [𝑎1, 𝑎2],  

- 𝑚𝐾(𝑥) = 1 𝑓𝑜𝑟 𝑥∈[𝑎2, 𝑎3],  

- 𝑚𝐾(𝑥) decreases linearly on [𝑎3, 𝑎4], 

In the case 𝑎2 = 𝑎3, it is a triangular fuzzy number; otherwise it is a trapezoidal. 
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Figure 6. Trapezoidal and Triangular Fuzzy Number 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.2. Fuzzy Set-Theoretic Operations 

Operations in this section apply to both normal and other fuzzy sets over the same 

underlying set. 

Operation 3-1. (Zadeh 1965) The algebraic sum of two fuzzy sets (probabilistic sum)  

𝐴 + 𝐵 is defined by       𝑚𝐴+𝐵(𝑥) = 𝑚𝐴(𝑥) + 𝑚𝐵(𝑥) − 𝑚𝐴(𝑥) ⋅ 𝑚𝐵(𝑥) 

The algebraic product of two fuzzy sets 𝐴 ⋅ 𝐵 is defined by   𝑚𝐴⋅𝐵(𝑥) = 𝑚𝐴(𝑥) ⋅ 𝑚𝐵(𝑥) 

 

Operation 3-2. The bounded sum of 

fuzzy sets 𝐴⊕𝐵 is defined by 

 𝑚𝐴⊕𝐵(𝑥) = min{1,𝑚𝐴(𝑥) + 𝑚𝐵(𝑥)} . 

The bounded difference 𝐴⊖ 𝐵 is defined by 𝑚𝐴⊖𝐵(𝑥) = max {0,𝑚𝐴(𝑥) + 𝑚𝐵(𝑥) − 1}. 
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Operation 3-3. The Cartesian product of fuzzy sets 𝐴1, … , 𝐴𝑛 in 𝑋1, … , 𝑋𝑛 respectively 

is a subset of 𝑋1 ×…× 𝑋𝑛 with membership function 

𝑚(𝐴1×…×𝐴𝑛)
(𝑥) = min

𝑖
{𝑚𝐴𝑖

(𝑥𝑖)|𝑥 = (𝑥1, … , 𝑥𝑛),  𝑥𝑖 ∈ 𝑋𝑖} 

 

Operation 3-4. The nth power of a fuzzy set A is 𝐴𝑛 with membership function 

𝑚𝐴𝑛(𝑥) = [𝑚𝐴(𝑥)]
𝑛,  𝑥 ∈ 𝑋 

This mapping is a concentration if 𝑛 > 1, and a dilation if 𝑛 < 1. When combined in 

order to increase the membership grade of certain elements and/or reduce the grade of 

others, it is an intensification.  

 

Example 3-5. Define the fuzzy sets 𝐽 = {(𝑎, .5), (𝑏, 1), (𝑐, .2)} 𝑎𝑛𝑑  𝐻 = {(𝑎, .3), (𝑏, .7)} 

The above definitions are then illustrated by the following: 

 𝐽 + 𝐻 = {(𝑎, .65), (𝑏, 1), (𝑐, .2)} 

𝐽 ⋅ 𝐻 = {(𝑎, .15), (𝑏, .7)} 

𝐽2 = {(𝑎, .25), (𝑏, 1), (𝑐, .04)} 

𝐽 ⊕ 𝐻 = {(𝑎, .8), (𝑏, 1), (𝑐, .2)} 

𝐽 ⊝ 𝐻 = {(𝑏, .7)} 

𝐽 × 𝐻 = {[(𝑎; 𝑎), .3], [(𝑏; 𝑎), .3], [(𝑐; 𝑎), 0], [(𝑎; 𝑏), .5], [(𝑏; 𝑏), .7], [(𝑐; 𝑏), .2]} 

Min and max for intersections and unions are not generally smooth functions. 

Their explicit formula is a sequence of interval brackets or piecewise-continuous 

functions. Fuzzy mathematics, though named “fuzzy” as if to emphasize imprecision, 

focuses on improving precisions. Fuzzicists eventually decided to consider softer 
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definitions of “intersection”. Many were suggested, with all satisfying the following 

properties (Dubois & Prade 1980):  

i. Cumulative effects: 𝑚𝐴∩𝐵(𝑥) ≤ min{𝑚𝐴(𝑥),𝑚𝐵(𝑥)} ,  𝑖𝑓𝑚𝐴(𝑥) < 1,  𝑚𝐵(𝑥) < 1 

ii. Interactions between criteria: Assume 𝑚𝐴(𝑥) < 𝑚𝐵(𝑥) < 1. Then the effect of a 

decrease of 𝑚𝐴(𝑥),  𝑜𝑛 𝑚𝐴∩𝐵(𝑥) may depend on 𝑚𝐵(𝑥). 

iii. Compensations between criteria: 𝑖𝑓 𝑚𝐴(𝑥),< 1,   𝑚𝐵(𝑥) < 1 the effect of a 

decrease of 𝑚𝐴(𝑥) 𝑜𝑛 𝑚𝐴∩𝐵(𝑥) can be erased by an increase of 𝑚𝐵(𝑥) (unless 

𝑚𝐵(𝑥) = 1) 

Earlier mathematics applications of triangular norm satisfy these criteria (Menger 

1942). Hence, intersections can be defined by t-norms and unions by a t-conorms.  

Definition 3-8.  A t-norm is any bivariate function t from 𝑀 ×𝑀 → [0,1] such that for 

all fuzzy sets A, B, C and D in X each with its own membership function, 𝑡(𝑎, 𝑏) is 

commutative, associative and monotonic, and ∀𝑥 ∈ 𝑋: 

𝑡(0,0) = 0,   

𝑡(𝑚𝐴(𝑥), 1) = 𝑡(1,𝑚𝐴(𝑥)) = 𝑚𝐴(𝑥) 

𝑡(𝑚𝐴,𝑚𝐵) = 𝑡(𝑚𝐵,𝑚𝐴) 𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑣𝑖𝑡𝑦.  

𝑡(𝑚𝐴, 𝑡(𝑚𝐵,𝑚𝐶)) = 𝑡(𝑡(𝑚𝐴, 𝑚𝐵),𝑚𝐶) 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑖𝑡𝑦 

𝑖𝑓 𝑚𝐴 ≤ 𝑚𝐶  𝑎𝑛𝑑 𝑚𝐵 ≤ 𝑚𝐷 , 𝑡ℎ𝑒𝑛 𝑡(𝑚𝐴, 𝑚𝐵) ≤ 𝑡(𝑚𝐶 ,𝑚𝐷)  monotonicity 

Definition 3-9.  A t-conorm or s-norm is a commutative, associative and monotonic 

bivariate function s from membership space 𝑀 ×𝑀 → [0,1] such that 

∀𝑥 ∈ 𝑋, 𝑠(1,1) = 1;   𝑠(𝑚𝐴(𝑥), 0) = 𝑠(0,𝑚𝐴(𝑥)) = 𝑚𝐴(𝑥). 
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For mathematical derivations, proofs and other t-norms the reader is referred to 

Klement et al. (1994)  

 

Theorem 3-5. (Alsina 1985). t-norms and t-conorms are dual such that the function t is 

defined as 𝑡(𝑚𝐴, 𝑚𝐵) = 1 − 𝑠((1 −𝑚𝐴), (1 − 𝑚𝐵)). 

 

Lemma 3-1. (Hamacher 1978). The intersection of two fuzzy sets A and B may be 

defined as a t-norm with 

𝑡(𝑚𝐴, 𝑚𝐵) =
𝑚𝐴 ⋅ 𝑚𝐵

𝑝 + (1 − 𝑝)[𝑚𝐴 +𝑚𝐵 −𝑚𝐴 ⋅ 𝑚𝐵]
, 𝑓𝑜𝑟 𝑝 ≥ 0 

and the union of two fuzzy sets A and B is defined as a t-conorm with  

𝑠(𝑚𝐴, 𝑚𝐵) =
(𝑝′ − 1)𝑚𝐴 ⋅ 𝑚𝐵 +𝑚𝐴 +𝑚𝐵

1 + 𝑝′ ⋅ 𝑚𝐴 ⋅ 𝑚𝐵
, 𝑓𝑜𝑟 𝑝′ ≤ −1 

Lemma 3-2. (Yager 1980). The intersection of two fuzzy sets A and B may be defined as 

a t-norm with 

𝑡(𝑚𝐴, 𝑚𝐵) = 1−min {1, [(1 −𝑚𝐴)
𝑝 + (1 −𝑚𝐵)

𝑝]
1
𝑝⁄ }, 𝑓𝑜𝑟 𝑝 ≥ 1 

and the union of two fuzzy sets A and B is defined as a t-conorm with  

𝑠(𝑚𝐴, 𝑚𝐵) = min {1, (𝑚𝐴
𝑝 +𝑚𝐵

𝑝)
1
𝑝⁄ } , 𝑓𝑜𝑟 𝑝 ≥ 1. 

 

For intersections or unions between more than two fuzzy sets, the method 

recommended is to merge them two-by-two or progressively. This means, first combine 

𝐴 ∩ 𝐵, then (𝐴 ∩ 𝐵) ∩ 𝐶, then (𝐴 ∩ 𝐵 ∩ 𝐶) ∩ 𝐷, 𝑒𝑡𝑐., as t-norms and t-conorms are 

associative and commutative by Definition 3-8.  
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 Note that the Hamacher norm for 𝑝 = 1 corresponds to the t-norm “Algebraic 

product”. Taking the infinity norm for the Yager norm (as 𝑝 → ∞), both the intersection 

and the union give the minimum operator and the maximum operator, respectively. Many 

other norms are used in Fuzzy Set Theory, see Table 9 for a list of common t-norms and 

s-norms (Bonissone and Decker 1986). 

 

An important arithmetic result in Dubois & Prade (1978, 1980), for the sum and 

product of fuzzy numbers, is associativity and commutativity of inverses. 

Theorem 3-2. (Dubois, Prade 1980)  Let 𝐴, 𝐵 be trapezoidal fuzzy numbers with 

membership notations 𝑚𝐴(𝑥) = 𝑈𝐴(𝑥) and 𝑚𝐵(𝑥) = 𝑈𝐵(𝑥). 𝑈𝐴1 is the increasing part of 

𝑈𝐴(𝑥) on [𝑎1, 𝑎2], and 𝑈𝐴2 is the decreasing part on [𝑎3, 𝑎4]. Their inverses are 

 𝑉𝐴1 = 𝑈𝐴1
−1 𝑎𝑛𝑑 𝑉𝐴2 = 𝑈𝐴2

−1. 

Then the sum 𝐶 = 𝐴⨁𝐵 has membership functions on [𝑎1, 𝑎2] and [𝑎3, 𝑎4] 

𝑈𝐶1 = [𝑈𝐴1
−1 + 𝑈𝐵1

−1]−1  𝑜𝑟  𝑉𝐶1 = 𝑉𝐴1 + 𝑉𝐵1 

𝑈𝐶2 = [𝑈𝐴2
−1 + 𝑈𝐵2

−1]−1  𝑜𝑟  𝑉𝐶2 = 𝑉𝐴2 + 𝑉𝐵2 

and the product 𝐷 = 𝐴⨀𝐵 has membership functions on [𝑎1, 𝑎2] and [𝑎3, 𝑎4] 

𝑈𝐷1 = [𝑈𝐴1
−1 ⋅ 𝑈𝐵1

−1]−1  𝑜𝑟  𝑉𝐷1 = 𝑉𝐴1 ⋅ 𝑉𝐵1 

𝑈𝐷2 = [𝑈𝐴2
−1 ⋅ 𝑈𝐵2

−1]−1  𝑜𝑟  𝑉𝐷2 = 𝑉𝐴2 ⋅ 𝑉𝐵2 

 

3.2. Fuzzy clustering algorithms 
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In Data mining, clustering techniques are used to put together objects showing 

similar characteristics within the same group, and to separate objects with different 

characteristics. To do so, one must write algorithms that permit iterations before 

stabilizing. These clustering techniques are made for detection and handling of noisy data 

or outliers. There are two approaches: Hard clustering and Soft clustering.  Hard data 

clustering divides data elements into clusters in such a way that one data item can belong 

to one cluster only. This is the crisp version for data mining. Soft clustering, also known 

as fuzzy clustering, allocates data elements to one or more clusters based on their 

membership levels in the different clusters. 

Fuzzy C-Means (Dunn 1973) is the most popular and efficient technique of soft 

computing. Note this is the fuzzy logic version of the most popular hard clustering 

method: K-means algorithm. Other names for it are Soft computing and Fuzzy K-means. 

The fuzzy c-means (FCM) algorithm requires steps such as the calculation of cluster 

centers, assignment of points to centers by taking their Euclidian distances, and 

continuous iteration until the cluster centers stabilizes (Thomas 2012).  

 

Definition 3-10.  Consider the set of data 𝑋 = {𝑥1, … 𝑥𝑛}, and 𝑉𝑐,𝑛 the set of real 𝑐 × 𝑛 

matrices (2 ≤ 𝑐 ≤ 𝑛). The matrix 𝑈̃ = [𝑚𝑗𝑘] ∈ 𝑉𝑐×𝑛, with 𝑚𝑗𝑘 ∈ [0,1],  1 ≤ 𝑗 ≤ 𝑐,  1 ≤

𝑘 ≤ 𝑛 is called a fuzzy-c partition if it satisfies the following conditions [Bezdek 1981]: 

∑𝑚𝑗𝑘

𝑐

𝑗=1

= 1   𝑎𝑛𝑑  0 <∑𝑚𝑗𝑘

𝑛

𝑗=1

< 𝑛 
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Example 3-6. Let 𝑋 = {𝑥1, 𝑥2, 𝑥3}. A fuzzy 2-partitions can be 

𝑈̃1 = [
1 . 5 0
0 . 5 1

]     𝑜𝑟     𝑈̃2 = [
. 8 1 . 9
. 2 0 . 1

]. 

In 𝑈̃1, 𝑥1 𝑎𝑛𝑑 𝑥3 are fully included in clusters 𝑐1 and 𝑐2 respectively, and 𝑥2 is equally 

contained in both. In 𝑈̃2, 𝑥2 is fully included in clusters 𝑐1, when 𝑥1 𝑎𝑛𝑑 𝑥3 are still 20% 

and 10% in cluster 2, respectively. Note the fuzzy c-partition conditions are met: the sum 

of each column is 1, and the row sums are always less than 3, the number of data. 

Fuzzy c-means became more popular for symmetric data such as 𝑈̃1, where the K-

means algorithm would fail. This is due to the presence of midpoints (𝑚𝑖𝑘 = 0.5). 

Eventually the algorithm would insert it in a random cluster when it may as well belong 

to another.  

  

Example 3-7. This is the case for the popular butterfly example (Zimmerman 1994). 

Let us define an algorithm to find these fuzzy c-partitions. For an FCM algorithm, 

it is necessary to choose a few parameters. These are the desired number of clusters c 

Figure 7. The midpoint bias of the Butterfly problem in data mining 
 

Figure 8. The midpoint bias of the Butterfly problem in data mining 
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(2 ≤ 𝑐 ≤ 𝑛); an exponential weight r (1 < 𝑟 < ∞) often called the fuzzy parameter; the 

type of norm ‖⋅‖ (here the Euclidean distance will serve as norm); and a termination 

criterion 𝜀 > 0. A method to initialize the membership matrix 𝑈̃(𝑙) ∈ 𝑉𝑐,𝑛, for 𝑙 ≥ 0 for 

each iteration is also necessary. Here membership values and cluster centers are given by: 

∀ 1 ≤ 𝑖 ≤ 𝑐, 1 ≤ 𝑗 ≤ 𝑐 and 1 ≤ 𝑘 ≤ 𝑛, 

 

𝑚𝑗𝑘 = [∑
‖𝑥𝑘 − 𝑐𝑗‖

‖𝑥𝑘 − 𝑐𝑖‖

𝑐

𝑖=1
]−
2
𝑟−1⁄        𝑤𝑖𝑡ℎ      𝑐𝑗 =

∑ 𝑚𝑗𝑘
𝑟 ⋅ 𝑥𝑘

𝑁
𝑘=1

∑ 𝑚𝑗𝑘
𝑟𝑁

𝑘=1

 

 

To summarize the steps: 

Step 1. Choose 𝑐, 𝑟, 𝜀. 

Step 2. Initialize 𝑈̃(𝑙) = [𝑚𝑗𝑘]
(𝑙)
∈ 𝑉𝑐,𝑛, for 𝑙 ≥ 0, set 𝑙 = 0 . 

Step 3. Calculate the c fuzzy cluster centers {𝑐𝑗
(𝑙)
} by using 𝑈̃(𝑙). 

Step 4. Calculate the new membership matrix 𝑈̃(𝑙+1)by using {𝑐𝑗
(𝑙)
}. If 

𝑥𝑘 ≠ 𝑐𝑗
(𝑙), Else set 𝑚𝑗𝑘 = {

1 𝑓𝑜𝑟 𝑗 = 𝑘

0 𝑓𝑜𝑟 𝑗 ≠ 𝑘 
 

Step 5. Calculate ∆= ‖𝑈̃(𝑙+1) − 𝑈̃(𝑙)‖.  

Step 6. If ∆> 𝜀,  𝑠𝑒𝑡 𝑙 = 𝑙 + 1 and go to Step 2. If  ∆≤ 𝜀 → 𝑠𝑡𝑜𝑝 

 

Example 3-7.(continued) The data of the butterfly were processed with a fuzzy 2-means 

algorithm.  Choose 𝑐 = 2, 𝜀 = .01,𝑚 = 1.25 with the Euclidean norm. In 6 iterations the 

clustering results in the memberships and cluster centers as shown in Figure 8. The 
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butterfly fuzzy c-partition gives the membership level of each point in its cluster. The 

partition is: 

𝑈̃ = [
. 99 1 . 99
. 01 0 . 01

     
1 1 1
0 0 0

     
. 99 . 47 . 01
. 01 . 53 . 99

     
0 0 0
1 1 1

     
. 01 0 . 01
. 99 1 . 99

] 
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Figure 8. Butterfly Fuzzy Clustering for m=1.25 

Figure 9. Butterfly Fuzzy Clustering for m=2 

To improve the fuzzy c-partitions, one only needs to increase the fuzzy parameter m and 

choose c suitably. The same process is done in Figure 9 for m = 2 and all other default 

parameters. The new butterfly fuzzy c-partition is 

𝑈̃ = [
. 86 . 97 . 86
. 14 . 03 . 14

     
. 94 . 99 . 94
. 06 . 01 . 06

     
. 86 . 5 . 14
. 14 . 5 . 86

     
. 06 . 01 . 06
. 94 . 99 . 94

     
. 14 . 03 . 14
. 86 . 97 . 86

]. 
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PART 2: APPLICATIONS TO LIFE CONTINGENCIES 

This part illustrates the use of the above applications in a life insurance setting. It 

involves the translation of medical records for applicants through fuzzy decision-making 

processes. Through a series of case studies, we will observe the classification of 

policyholder risks using a fuzzy system for preference; the definition of survival 

probability formula using fuzzy parameters to counter interest rate fluctuations; and 

lastly, the clustering of policyholder sociodemographic data by the fuzzy c-means 

algorithm. 

1. Classification of Preferred Policyholders in Life Insurance 
 

Let X be the set of applicants for a life insurance. The carrier may have a set of 

pricing policies or a preference program. For instance, one carrier may offer a bonus of 

15% more coverage, if the applicant is not a smoker or has not smoked for a minimum of 

12 months prior to application. Another may be even more generous and give a bonus of 

50% more coverage with no increases in premium if the applicant achieves the highest 

degree of health defined by the company. This corresponds to an applicant who has not 

smoked for a year, a resting pulse of 72 or below, a blood pressure below 134/80, a 

cholesterol reading below 200, and does not participate in hazardous sports. To reach the 

perfection standard laid out by the CDC/WHO (Centers for Disease Control and 
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Prevention/World Health Organization), the applicant must follow weekly exercise 

programs, be within Body Mass Index (BMI) specified height/weight restrictions, and 

have no family history of deaths prior to 50 years old due to kidney/heart disease, stroke 

or diabetes. However, this collection of individuals is extremely uncommon. Thus, for 

marketing purposes, the company may want to accept the preferred status for a person 

lacking only a few of these criteria. Fuzzy Set Theory will be very resourceful in 

modeling these preference classes for underwriting purposes.  

 

Case Study 1. (Lemaire 1990) For simplicity, limit the study to 4 variables 

𝑡𝑖,  𝑓𝑜𝑟 𝑖 = 1,2,3,4 and the fuzzy sets: Cholesterol in Blood (A), Systolic Blood Pressure 

(B), BMI (C) and Cigarette Consumption (D). Each applicant 𝑥 ∈ 𝑋 is represented with 

its information by 𝑥(𝑡1, 𝑡2, 𝑡3, 𝑡4). Lemaire uses the following membership functions for 

the fuzzy variables.  

 

𝒕𝟏 Blood Cholesterol (mg/dl) 

𝑚𝐴(𝑥, 𝑡1) =

{
  
 

  
 1,  𝑖𝑓𝑡1 ≤ 200

1 − 2 (
𝑡1 − 200

40
)
2

,  𝑖𝑓 200 ≤ 𝑡1 ≤ 220

2 (
240 − 𝑡1
40 )

2

,   𝑖𝑓 220 ≤ 𝑡1 ≤ 240

0,    𝑖𝑓 240 < 𝑡1

 

𝒕𝟐 Blood Pressure (mmHg) 
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𝑚𝐵(𝑥, 𝑡2) =

{
  
 

  
 1,  𝑖𝑓 𝑡2 ≤ 130

1 − 2 (
𝑡2 − 130

40
)
2

,  𝑖𝑓 130 ≤ 𝑡2 ≤ 150

2 (
170 − 𝑡1
40 )

2

,   𝑖𝑓 150 ≤ 𝑡2 ≤ 170

0,    𝑖𝑓 170 < 𝑡2

 

 

𝒕𝟑 Body Mass Index (%) 

𝑚𝐶(𝑥, 𝑡3) =

{
 
 
 
 
 

 
 
 
 
 0,                 𝑖𝑓 𝑡3 ≤ 60

2 (
𝑡3 − 60
25

)
2

,        𝑖𝑓 60 ≤ 𝑡3 ≤ 72.5

1 − 2 (
85 − 𝑡3
25

)
2

,      𝑖𝑓 72.5 ≤ 𝑡3 ≤ 85

1,         𝑖𝑓 85 < 𝑡3 ≤ 110

1 − 2 (
𝑡3 − 110
20 )

2

,      𝑖𝑓 110 ≤ 𝑡3 ≤ 120

2 (
130 − 𝑡3
20 )

2

,         𝑖𝑓 120 ≤ 𝑡2 ≤ 130

0,                   𝑖𝑓 130 < 𝑡3

 

𝒕𝟒 Cigarette Consumption 

𝑚𝐷(𝑥, 𝑡4) = {
1,    𝑖𝑓 𝑡4 = 0

0,     𝑖𝑓 𝑡4 > 0
 

 

Choose at random an applicant 𝑥 = 𝑥(210𝑚𝑔/𝑑𝑙, 145𝑚𝑚𝐻𝑔, 112%, 0) 

The fuzzy set 𝐸 = 𝐴 ∩ 𝐵 ∩ 𝐶 ∩ 𝐷 determines how fit a customer is for the preferred 

program. Recall the t-norms for intersection of fuzzy sets in Theorem 3-5 and Table 9. 

The pricing actuary of the life insurance carrier will choose which operator works best 

among the following. 
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- Minimum operator, 

𝑚𝐸(𝑥; 210,  145,  112,  0) = min(. 875,  . 71875,  . 98, 1) = .71875 

- Algebraic product, 𝑚𝐸(𝑥) = (. 875)(.71875)(. 98)(1) = .6163 

- Bounded difference, 

𝑚𝐸(𝑥) = max[0,  . 875 + .71875 + .98 + 1 − 3] = .57375 

- Hamacher operator for p=1/2,  

𝑚𝐸(𝑥; 210,  145) =
(. 875)(.71875)

. 5 + (1 − .5)[.875 + .71875 − (. 875)(. 71875)]
= .6402

𝑚𝐸(𝑥; 210,  145,  112,0) =
(. 6402)(.98)

. 5 + (1 − .5)[.6402 + .98 − (. 6402)(. 98)]
= .629

 

- Yager operator for p=2,  

𝑚𝐸(𝑥) = 1 −min{1, [(1 − .875)2 + (1 − .71875)2 + (1 − .98)2]
1
2} = .69157 

 

Thus, no computation of 𝑥(210, 145, 112, 0) health will give a preference status 

if the requirement is 100% grade of membership. Note that a smoker is never preferred; 

every operator gives 0% membership. The pricing actuary may allow a few infringements 

to perfection with a statement such as: “An applicant is considered preferred if he meets 

at least 75% of the requirements of the CDC/WHO health index.” This step may require, 

in crisp set theory, the creation of new membership functions. If the actuary uses only the 

minimum operator which is the strictest operator, underwriters will obtain rules defined 

by 

𝑡1 ≤ 214.2;          𝑡2 ≤ 144.2;        76.2 ≤ 𝑡3 ≤ 117.1;    𝑡4 =  0 
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This means, any applicant with information not in one of these intervals will be below 

75% and cannot be a preferred policyholder. 

Fuzzicists may, as in Definition 3-2, take the alpha-level set to refine the results 

and create classes such as the one from Section 2.1. Take, for any 𝛼, 𝐸𝛼 to be the crisp set 

of policyholders with grade of membership greater than 𝛼. Choose 𝛼 = 75%, so that 

after evaluating the membership of an applicant in the fuzzy set E above, he becomes 

preferred if 𝑚𝐸(𝑥) ≥ 0.75. Clearly, the policyholder 𝑥(210, 145, 112, 0)  is still not part 

of the preferred program under any operator/t-norm.  

Then, we build another preference class, as for Deloitte Consulting (Figure 4). 

Say “An applicant is considered Superpreferred if he meets at least 75% of the 

requirements of the CDC/WHO health index, and he is considered preferred if he 

qualifies from 65% to 75%.”  The same process works and the actuary does not need to 

build membership functions. By taking the alpha cut 𝐸.65, the applicant 

𝑥(210, 145, 112, 0) falls in the range for the preferred program benefits only if the 

actuary decides to use minimum operator or Yager t-norm with p=2. Otherwise 

𝑥(210, 145, 112, 0) may fall in the standard class or some residual classes. 

In reality, each criterion has its own importance. To show this difference, 

Fuzzicists use the operations of concentration, dilation, and intensification. Suppose 

blood pressure better predicts future health complications, while cholesterol level does 

less well. The actuary may then concentrate the fuzzy number 𝑡1 for the cholesterol by 

taking the square; while dilating 𝑡2 blood pressure by taking the square root. Then we 

have the following: 
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- Min operator, 

𝑚𝐸(𝑥; 210,  145,  112,  0) = min(. 875
2,  √. 71875,  . 98,  1) = .7656 

- Algebraic product, 𝑚𝐸(𝑥) = (. 875
2)√. 71875(. 98)(1) = .6361 

- Bounded difference, 

𝑚𝐸(𝑥) = max[0,  . 8752 +  √. 71875 + .98 + 1 − 3] = .59267 

- Hamacher operator for p=1/2,  

𝑚𝐸(𝑥; 210,  145) =
(. 8752)(.71875).5

. 5 + (1 − .5)[. 8752 +  . 71875.5 − (. 8752)(.71875).5]
= .6608

𝑚𝐸(𝑥; 210,  145,  112,0) =
(. 6608)(.98)

. 5 + (1 − .5)[.6608 + .98 − (. 6608)(. 98)]
= .6497

 

- Yager operator for p=2,  

𝑚𝐸(𝑥) = 1 − min{1, [(1 −. 875
2)2 + (1 −. 71875.5)2 + (1 − .98)2]

1
2 = .7198 

 

Then 𝑥(210, 145, 112, 0) ∈ 𝐸.75 when using the minimum operator, i.e. it is a 

Superpreferred policy, and 𝑥(210, 145, 112, 0) ∈ 𝐸.65 when using the Hamacher operator 

for 𝑝 = .5 and the Yager operator for 𝑝 = 2, making him a Preferred policy.  

This shows how fuzzy decision-making processes can be used to translate medical 

records and facilitate the classification of policyholder risks. It is in fact a faster and 

simpler process for underwriters.  Preferred classes offer bonuses on coverage but the 

author has yet to show how to calculate these benefits and premiums, using fuzzy set 

theory. For that it is necessary to have fuzzy survival functions. 
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2. Fuzzy Survival Probability  
 

The future lifetime may be represented as a fuzzy random variable (FRV) when 

one adds to it some linguistic variables; a basis for fuzzy logic. Assume for a moment the 

awful event where a medical doctor tells someone they only have a short time left to live. 

Short future lifetime (S), Medium future lifetime (M), and Long future lifetime (L) can be 

considered FRVs over the lifetime probability space Ω mentioned above. In this case, 

fuzzy sets and survival probabilities are combined. This scenario is best illustrated in Puri 

and Ralescu (1986) and Shapiro (2013). The following case study puts the problem in 

context. 

Case Study 2. (Shapiro 2013)  Consider the task of giving post-retirement 

planning advice to new retirees. At this juncture, it may be necessary to know how far 

their future lifetime will extend. The linguistic lifetime scale S, M, L cited above can be 

retained. Puri and Ralescu describe a function T that assigns a membership value to each 

retiree death probability time event 𝜔𝑖 ∈ Ω. This is done so that 𝑇(𝜔𝑖) is equated to the 

highest of the membership functions 𝑚𝑆(𝜔𝑖),𝑚𝑀(𝜔𝑖),𝑚𝐿(𝜔𝑖). Retirement is assumed to 

be 65 years of age, so future lifetime starts from (𝑥) = 65. Using the Gompertz law of 

mortality, we build simplistic fuzzy survival probabilities for S, M, L. 

Sivanandam et al. (2007) offers a catalog of methods for the development of 

membership functions (MF) but a simplistic model for a fuzzy set A is as follows:  

𝑚𝐴(𝑥) =

{
 
 

 
 
𝑥 − 𝑥𝐿
𝑥𝑀 − 𝑥𝐿

, 𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑀

𝑥𝑈 − 𝑥

𝑥𝑈 − 𝑥𝑀
, 𝑥𝑀 ≤ 𝑥 ≤ 𝑥𝑈

0,                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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where 𝑥𝐿 is the lower bound, 𝑥𝑀 is the midpoint and 𝑥𝑈 is the upper bound of the fuzzy 

number. In the same fashion, the lifetime scale MFs and their graphs are defined below 

(Figure 10). 

𝑚𝑆(𝑡) = {

1,            0 ≤ 𝑡 ≤ 5
15 − 𝑡

10
,    5 ≤ 𝑡 ≤ 15

0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑚𝑀(𝑡) =

{
 
 

 
 
𝑡 − 10

5
,     10 ≤ 𝑡 ≤ 15

20 − 𝑡

5
,     15 ≤ 𝑡 ≤ 20

0,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑚𝐿(𝑡) = {

1,          𝑡 ≤ 25
𝑥 − 15

10
, 15 ≤ 𝑡 ≤ 25

0,                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Short, Medium, Long future lifetime membership for 65 years old 

Short Medium 

Long 
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However, this only gives the lifetime as a fuzzy variable. The purpose is to make 

it a fuzzy random variable; that is a RV for which each value has a membership grade in 

the linguistic scale considered. Figure 11 offers a simple representation of this:  

 

 

 

Each event of death 𝜔𝑖 ∈ Ω has probability density 𝑃(𝜔𝑖) ∈ ℝ (contained in [0,1] 

if normalized), and this event has a degree of membership in the three groups Short, 

Medium or Long future lifetime. Finally, 𝑇(𝜔𝑖) outputs the highest degree of 

membership of 𝜔𝑖, and is also a fuzzy random variable: 

𝑇(𝜔𝑖) = max{𝑚𝑆(𝜔𝑖) ,𝑚𝑀(𝜔𝑖),𝑚𝐿(𝜔𝑖)} 

Now, let us consider the fuzzy death risk in a future lifetime. It weighs the risk of 

death in the whole linguistic groups instead of each individual event 𝜔𝑖 ∈ Ω. This means, 

for instance, if 𝑚𝑆(𝜔𝑖) > 0 for all 𝑖 ∈ [1, 𝑛],   such that every 𝜔1…𝜔𝑛 ∈ 𝑆, then the risk 

Figure 11. A Fuzzy random variable representation 

m 
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of the short lifetime is P(𝑇(𝑆)), the probability of the FRV short future lifetime S. It is 

equal to the expectation of the membership function in general (Zadeh 1968), such that 

𝑃(𝑇(𝑆)) = ∫ 𝑚𝑆(𝑡)𝑓𝑥(𝑡)dt
𝑛

0

= ∫ 𝑚𝑆(𝑡) 𝑝𝑡 𝑥𝜇𝑥+𝑡dt
𝑛

0

= E[𝑚𝑆]. 

 

In our case: 

𝑃(𝑇(𝑆)) =

{
 
 

 
 ∫ 1 ⋅ 𝑝𝑡 𝑥𝜇𝑥+𝑡dt

𝑛

0

, 0 ≤ 𝑡 ≤ 5

∫
15 − 𝑡

10
⋅ 𝑝𝑡 𝑥𝜇𝑥+𝑡dt

𝑛

0

, 5 ≤ 𝑡 ≤ 15

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Or equivalently, 

𝑃(𝑇(𝑆)) =

{
 

 
𝑞𝑛 𝑥, 0 ≤ 𝑡 ≤ 5

1

10
(15 𝑞𝑛 𝑥 − 𝑒𝑥̇), 5 ≤ 𝑡 ≤ 15

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Note that  𝑒̇𝑥 is the complete expectation of life and 𝑓𝑥(𝑡) uses the Makeham’s law of 

mortality for 𝑥 ≥ 65 as the assumed age for retirement. This gives the mortality 

probability. Using Definition 3-5 for the complement of a fuzzy variable, the finding of 

the survival probabilities becomes a simple process.  

𝑃(𝑇(𝑆)𝐶) =

{
 

 
𝑝𝑛 𝑥 , 0 ≤ 𝑡 ≤ 5

10 + 𝑒𝑥̇ − 15 𝑞𝑛 𝑥

10
, 5 ≤ 𝑡 ≤ 15

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Hence, this combines the membership function and the mortality probabilities as in 

Figure 12. The same argument derives the Medium and Long fuzzy survival probabilities.  
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3. Computation of Fuzzy Premiums 
 

This section gives more numerical results for better understanding of the theory. 

 

Case Study 3. (Buckley 1987, Lemaire 1990) Fuzzy interest Rates 

Compute the net single premium of an insurance benefit 𝑆 = $1000 on a 10-year 

pure endowment policy, issued to a life x aged (55), with 𝑝5510 = .87 using a fuzzy 

interest rate i. The interest rate i (approximately 6%) is defined as a fuzzy probabilistic 

set (Hirota 1981). This is the trapezoidal fuzzy number below. 

Figure 12. Combining for the Fuzzy survival probability 

𝑚𝑆(𝑡) 

𝑓𝑥(𝑡) 

𝑃(𝑇(𝑆)) 
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𝑚𝑖(𝑧) =

{
 
 

 
 0,                           𝑖𝑓 𝑧 ≤ .03

𝑚𝑖1 = 50𝑧 − 1.5,  𝑖𝑓 . 03 < 𝑧 ≤ .05

1,               𝑖𝑓 . 05 < 𝑧 ≤ .07

𝑚𝑖2 = 4.5 − 50𝑧,  𝑖𝑓 . 07 < 𝑧 ≤ .09

0,                           𝑖𝑓 . 09 < 𝑧

 

The net single premium is expressed as the actuarial present value of a pure 

endowment: 

𝑆 ⋅ 𝐸𝑛 𝑥 = 𝑆 ⋅ 𝑝𝑛 𝑥𝑣
𝑛 = 𝑆 ⋅ 𝑝𝑛 𝑥(1 + 𝑖̃)

−𝑛 

The tilde (~) above the “i” is meant to differentiate the fuzzy variables from the non-

fuzzy (or crisp) ones. By plugging in the quantities from our assumption, we obtain the 

fuzzy present value below. 

𝑆 ⋅ 𝐸5510 = 𝑆 ⋅ 𝑝5510 (1 + 𝑖̃)−10 = 1000 ∗ .87(1 + 𝑖̃)−10 

Following Theorem 3.6, take the inverse of the membership function of the interest rate 

𝑚𝑖(𝑧). Precisely, 𝑚𝑖1
−1(𝑧) and 𝑚𝑖2

−1(𝑧), i.e. 

𝑚𝑖1
−1(𝑧) = .03 + .02𝑧    𝑎𝑛𝑑     𝑚𝑖2

−1(𝑧) = .09 − .02𝑧 

It is the inverses that go through all the computations, and as for normal piecewise 

functions, we have: 

1000 ∗ .87(1 +𝑚𝑖1
−1(𝑧))

−10
= 870(1.09 − .02𝑧)−10, 𝑎𝑛𝑑 

1000 ∗ .87(1 +𝑚𝑖2
−1(𝑧))

−10
= 870(1.03 + .02𝑧)−10 

Again, take the inverses of the two new results in order to have the membership functions 

for the fuzzy set of 𝑆 ⋅ 𝐸5510 . Notice the change in the intervals for z since the exponent    

“-10” is negative. We obtain the following membership function and the corresponding 

graph: 
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Figure 13. Membership function for a 10-year continuous life insurance for 

a 55 year-old 

𝑚
𝑆⋅ 𝐸5510

(𝑧) =

{
 
 
 
 

 
 
 
 0,                             𝑖𝑓 𝑧 ≤ 367.5

54.5 − 50 (
870

𝑧
)

1
10⁄

,  𝑖𝑓 367.5 < 𝑧 ≤ 442.26

                   1,                              𝑖𝑓 442.26 < 𝑧 ≤ 534.1

50 (
870

𝑧
)

1
10⁄

− 51.5,  𝑖𝑓 534.1 < 𝑧 ≤ 647.36

0,                               𝑖𝑓 647.36 < 𝑧

 

 

 

 

 

Case Study 4. (Lemaire 1990) Fuzzy interest Rates and fuzzy survival probabilities 

Using the same assumptions as Case study 3 above, we compute the net single 

premium of a pure endowment with sum insured 𝑆 = $1000 for a life aged 𝑥 = (55) 

over 𝑛 = 10 𝑦𝑒𝑎𝑟𝑠. In this case however, not only the interest rate is fuzzy but so is the 

survival probability. For notation purposes, write 𝑝 = 𝑝5510
̃

, for the fuzzy short-term 

survival probability for a 55 year-old. One may relate to the Short future lifetime in Case 
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Figure 14. Membership function for the triangular fuzzy number 𝒑̃ 

Study 2. Below is the membership function for the triangular fuzzy number 𝑝 along with 

its graph: 

 

 

𝑚𝑝̃(𝑧) = {

0,  𝑖𝑓 (𝑧 ≤ .77) ∪ (𝑧 ≤ .97)

𝑚𝑝̃1(𝑧) = 10𝑧 − 7.7,  𝑖𝑓 . 77 < 𝑧 ≤ .87

𝑚𝑝̃2(𝑧) = 9.7 − 10𝑧,  𝑖𝑓 . 87 < 𝑧 ≤ .97

 

For convenience, we use a simpler membership function for the interest rate i, also 

approximately 6%. It is defined as the triangular fuzzy number below. 

𝑚𝑖̃(𝑥) = {

𝑚𝑖̃1(𝑧) = 50𝑧 − 2,     𝑖𝑓 . 04 < 𝑧 ≤ .06

𝑚𝑖̃2(𝑧) = 4− 50𝑧,      𝑖𝑓 . 06 < 𝑧 ≤ .08
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 



52 

 

Figure 15. Membership function for a triangular fuzzy interest rate 𝒊̃ 

 

 

The new actuarial present value of the pure endowment can be expressed taking 

into account the new fuzzy variable by 

𝑆 ⋅ 𝐸𝑛 𝑥 = 𝑆 ⋅ 𝑝(1 + 𝑖̃)
−10 

To find the membership function, we must use Theorem 3-6. First, we determine the 

inverses of 𝑚𝑝̃1(𝑧) and 𝑚𝑝̃2(𝑧), precisely 𝑚𝑝̃1
−1(𝑧) and 𝑚𝑝̃2

−1(𝑧), i.e. 

𝑚𝑝̃1
−1(𝑧) = .77 + .1𝑧   𝑎𝑛𝑑  𝑚𝑝̃2

−1(𝑧) = .97 − .1𝑧 

Next, the inverse of the membership function of the interest rate 𝑚𝑖(𝑥): 

𝑚𝑖1
−1(𝑧) = .04 + .02𝑧   𝑎𝑛𝑑  𝑚𝑖2

−1(𝑧) = .08 − .02𝑧 

To facilitate the calculation, we use the algorithm for multiplication of two trapezoidal 

fuzzy numbers from Dutta et al (2011) along with Theorem 3.6: 

𝑚𝑋 ⋅𝑌(𝑧)

=

{
  
 

  
 −((𝑏 − 𝑎)𝑝 + (𝑞 − 𝑝)𝑎) + √((𝑏 − 𝑎)𝑝 + (𝑞 − 𝑝)𝑎)

2
− 4(𝑏 − 𝑎)(𝑞 − 𝑝)(𝑎𝑝 − 𝑧)

2(𝑏 − 𝑎)(𝑞 − 𝑝)
, 𝑎𝑝 ≤ 𝑧 ≤ 𝑏𝑞

−((𝑟 − 𝑞)𝑐 + (𝑐 − 𝑏)𝑟) + √((𝑟 − 𝑞)𝑐 + (𝑐 − 𝑏)𝑟)
2
− 4(𝑐 − 𝑏)(𝑟 − 𝑞)(𝑐𝑟 − 𝑧)

2(𝑏 − 𝑎)(𝑞 − 𝑝)
, 𝑏𝑞 ≤ 𝑧 ≤ 𝑐𝑟

 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.02 0.04 0.06 0.08 0.1
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Hence, by the multiplication of two fuzzy numbers and multiplication of a fuzzy 

number by a scalar, we choose 𝑋 = 𝑆 ⋅ (1 + 𝑖̃)−10 and  𝑌 = 𝑝 to do the multiplication 

and obtain these new membership functions: 

𝑚𝑋(𝑧) = 𝑚𝑆⋅(1+𝑖̃)
−10(𝑧) =

{
 
 

 
 𝑚𝑋1(𝑧) = 54 − 50 (

𝑧

1000
)
−1 10⁄

,   𝑖𝑓 463.2 < 𝑧 ≤ 558.4

𝑚𝑋2(𝑧) = 50 (
𝑧

1000
)
−1 10⁄

− 52,   𝑖𝑓 558.4 < 𝑧 ≤ 675.6

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑎𝑛𝑑             𝑚𝑌(𝑧) = 𝑚𝑝̃(𝑧) =

{
 

 0,  𝑖𝑓 (𝑧 ≤ .77) ∪ (𝑧 ≤ .97)

𝑚𝑝̃1(𝑧) = 10𝑧 − 7.7,  𝑖𝑓 . 77 < 𝑧 ≤ .87

𝑚𝑝̃2(𝑧) = 9.7 − 10𝑧,         𝑖𝑓 . 87 < 𝑧 ≤ .97

 

The corresponding values are therefore: 

𝑎 = 463.2, 𝑏 = 558.4, 𝑐 = 675.6, 𝑎𝑛𝑑        𝑝 = .77, 𝑞 = .87, 𝑟 = .97 

So that the combination of both membership functions by the multiplication algorithm 

gives: 

𝑚𝑆⋅𝑛𝐸𝑥
(𝑧) = {

−6.2828 + .0525√38.08𝑧 + 728.136, 𝑖𝑓 356.66 < 𝑧 ≤ 485.81

7.7323 − .0427√46.88𝑧 + 2122.9, 𝑖𝑓 485.81 < 𝑧 ≤ 655.33

0,                                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Figure 16. Membership function of the net single premium of a pure endowment 
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The premiums computed with the fuzzy logic approach reveal more information 

than our usual crisp premiums. First, it gives a bargaining advantage to the 

underwriters/company to discuss premium rates. Second, since the premium is calculated 

for each interest rate 𝑖 ∈ [0.3,0.9], the fuzzy approach provides a range for the premium 

that entails with the probability that a change in interest rates will happen. That means, 

not only are you aware of the rate change according to the fluctuation in interest rates, but 

also the chance of that event occurring. Third, with the fuzzy survival probability, the 

insurance company is equipped with a short term lifetime probability distribution, 

allowing for accidental deaths or black-swan events. Another important application of 

fuzzy set theory is the segmentation of the policyholders into clusters by 

sociodemographic traits. 

 

4. Fuzzy Insurance Benefits 
 

Case Study 5. Consider the crisp models of distribution of future lifetime given 

by the laws of DeMoivre, Gompertz, Makeham and Weibull. One wants to find 

expressions for the insurance benefit of an n-year continuous life insurance (Huang et al 

2011). In this case, the only fluctuating variable is the interest rate i (approximately 6%) 

from Case Study 3. This is the trapezoidal fuzzy number below. 
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𝑚𝑖(𝑧) =

{
 
 

 
 0,                           𝑖𝑓 𝑧 ≤ .03

𝑚𝑖1 = 50𝑧 − 1.5,  𝑖𝑓 . 03 < 𝑧 ≤ .05

1,               𝑖𝑓 . 05 < 𝑧 ≤ .07

𝑚𝑖2 = 4.5 − 50𝑧,  𝑖𝑓 . 07 < 𝑧 ≤ .09

0,                           𝑖𝑓 . 09 < 𝑧

 

Note that the general equation for the insurance benefit is: 

𝐴̅𝑥:𝑛|̅̅ ̅
1 = ∫ 𝑆𝑒−𝛿̃𝑡 𝑝𝑥𝜇𝑥+𝑡𝑡 𝑑𝑡

𝑛

0

 

Again, the tilde (~) is meant to differentiate the fuzzy variables from the non-fuzzy (or 

traditional) ones. The force of interest 𝛿 = log(1 + 𝑖̃) is inherently fuzzy. Its membership 

function is:  

𝑚𝛿̃(𝑧) =

{
 
 

 
 0,                                     𝑖𝑓 𝑧 ≤ log(1.03) 𝑎𝑛𝑑 log (1.09) < 𝑧

𝑚𝛿̃1 = 50𝑒
𝑧 − 51.5, 𝑖𝑓 log (1.03) < 𝑧 ≤ log (1.05)

1,                                                  𝑖𝑓 log (1.05) < 𝑧 ≤ log (1.07)

𝑚𝛿̃2 = 54.5 − 50𝑒
𝑧 ,  𝑖𝑓 log (1.07) < 𝑧 ≤ log (1.09)

 

This is found by taking the inverse of the pieces of the membership function of the 

interest rate 𝑚𝑖(𝑧). Precisely, 𝑚𝑖1
−1(𝑧) = .03 + .02𝑧   𝑎𝑛𝑑  𝑚𝑖2

−1(𝑧) = .09 − .02𝑧.  

To go through the computations: 

log(1 + 𝑚𝑖1
−1(𝑧)) = log(1.03 + .02𝑧) , 𝑎𝑛𝑑 

log(1 + 𝑚𝑖2
−1(𝑧)) = log(1.09 − .02𝑧) 

And taking the inverse one more time: 

𝑚𝛿̃1 = 50𝑒
𝑧 − 51.5  𝑎𝑛𝑑  𝑚𝛿̃2 = 54.5 − 50𝑒

𝑧 

Using the DeMoivre assumption, the insurance benefit for n-year continuous life 

insurance is newly expressed as: 
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𝐴̅𝑥:𝑛|̅̅ ̅
1 =

𝑆

𝜔−𝑥
∫ 𝑒−𝛿̃𝑡𝑑𝑡
𝑛

0
=

𝑆

𝜔−𝑥
⋅
1

𝛿̃
⋅ 1 − 𝑒−𝛿̃𝑛  

So the membership value ∀𝑛 < 𝜔 ∈ Ω, 𝑆 > 0 is: 

𝑚𝐴̅𝑥:𝑛|̅̅ ̅
1 (𝑧) =

𝑆

𝜔 − 𝑥
⋅ 𝑚

1−𝑒−𝛿̃𝑛

𝛿̃

(𝑧) =
𝑆

𝜔 − 𝑥
⋅ 𝑚1

𝛿̃

⋅ 𝑚
1−𝑒−𝛿̃𝑛

(𝑧) 

=
𝑆

𝜔 − 𝑥
⋅
1 − (1 + 𝑚𝑖̃(𝑧))

−𝑛

log(1 + 𝑚𝑖̃(𝑧))
 

Since 
𝑆

𝜔−𝑥
 is a real number or a constant, we may focus on the membership 

function. To simplify the calculation, we split the membership function into two pieces 

and we combine them at the end. As in Case Study 4, we can rename the quantities to 

facilitate multiplication. 

Since 𝑚𝑋 = 𝑚1

𝛿̃

=
1

log(1+𝑚𝑖̃)
, we only need to take the inverse of the above results 

for the force of interest: 

1

log(1 + 𝑚𝑖1
−1(𝑧))

=
1

log(1.03 + .02𝑧)
, 𝑎𝑛𝑑 

1

log(1 + 𝑚𝑖2
−1(𝑧))

=
1

log(1.09 − .02𝑧)
 

Again, taking the inverses of the two new results in order to have the membership 

functions for the fuzzy set of 𝑚1

𝛿̃

: 

𝑚𝑋(𝑧) = 𝑚1

𝛿̃

(𝑧) =

{
 
 

 
 0,                        𝑖𝑓 𝑧 ≤ log(1.09)−1 𝑎𝑛𝑑 log (1.03)−1 < 𝑧

54.5 − 50𝑒1/𝑧,  𝑖𝑓 log (1.09)−1 < 𝑧 ≤ log (1.07)−1

1,                                    𝑖𝑓 log (1.07)−1 < 𝑧 ≤ log (1.05)−1

50𝑒1/𝑧 − 51.5,  𝑖𝑓 log (1.05)−1 < 𝑧 ≤ log (1.03)−1
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Next, the membership functions for the fuzzy set of 𝑚𝑌 = 𝑚
1−𝑒−𝛿̃𝑛

= 1 − (1 +𝑚𝑖̃)
−𝑛. 

Using the same argument as above, the inverses are: 

1 − (1 +𝑚𝑖1
−1(𝑧))

−𝑛
= 1 − (. 02𝑧 + 1.03)−𝑛,       𝑎𝑛𝑑 

1 − (1 +𝑚𝑖2
−1(𝑧))

−𝑛
= 1 − (1.09 − .02𝑧)−𝑛 

Taking the inverses of the two new results in order to have the membership functions for 

the fuzzy set of 𝑚
1−𝑒−𝛿̃𝑛

: 

𝑚𝑌(𝑧) = 𝑚
1−𝑒−𝛿̃𝑛

(𝑧) =

{
 
 

 
 50(1 − 𝑧)

−1/𝑛 − 51.5,  𝑖𝑓1 − 1.03−𝑛 < 𝑧 ≤ 1 − 1.05−𝑛

1,                                             𝑖𝑓 1 − 1.05−𝑛 < 𝑧 ≤ 1 − 1.07−𝑛

54.5 − 50(1 − 𝑧)−
1
𝑛,  𝑖𝑓 1 − 1.07−𝑛 < 𝑧 ≤ 1 − 1.09−𝑛

0,                                                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

The next step is to find 𝑚𝑋⋅𝑌 = 𝑚
1−𝑒−𝛿̃𝑛

𝛿̃

 by following the technique of Dutta et al. (2011) 

and Taleshian and Rezvani (2011) to multiply the two trapezoidal fuzzy numbers:  

𝑚𝑋 ⋅𝑌(𝑧)

=

{
  
 

  
 𝑚𝑋 𝑌1

(𝑧) =
−(𝑎𝑞 + 𝑏𝑝 − 2𝑎𝑝) + √(𝑎𝑞 − 𝑏𝑝)2 − 4(𝑏 − 𝑎)(𝑞 − 𝑝)𝑧

2(𝑏 − 𝑎)(𝑞 − 𝑝)
,                  𝑎𝑝 ≤ 𝑧 ≤ 𝑏𝑞

1,                                                                                                                                                𝑏𝑞 ≤ 𝑧 ≤ 𝑐𝑟

((𝑠 − 𝑟)𝑑 − (𝑑 − 𝑐)𝑠) − √((𝑠 − 𝑟)𝑑 − (𝑑 − 𝑐)𝑠)
2
− 4(𝑑 − 𝑐)(𝑠 − 𝑟)(𝑑𝑠 − 𝑧)

2(𝑑 − 𝑐)(𝑠 − 𝑟)
, 𝑐𝑟 ≤ 𝑧 ≤ 𝑑𝑠

 

Here, the corresponding letters are constants and we have: 

𝑎 = log (1.09)−1, 𝑏 = log (1.07)−1, 𝑐 = log (1.05)−1, 𝑑 = log (1.03)−1  𝑎𝑛𝑑  

  𝑝 = 𝑝𝑛 = 1 − 1.03−𝑛, 𝑞 = 𝑞𝑛 = 1 − 1.05−𝑛, 𝑟 = 𝑟𝑛 = 1 − 1.07−𝑛, 𝑠 = 𝑠𝑛 = 1 − 1.09−𝑛 

So that the combination of both their membership functions by the multiplication 

algorithm gives:  
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𝑚𝑋 ⋅𝑌1
(𝑧) =

−3.2𝑝𝑛 − 11.6(𝑞𝑛 − 𝑝𝑛) + √(3.2𝑝𝑛 + 11.6(𝑞𝑛 − 𝑝𝑛))
2
− 12.8(𝑞𝑛 − 𝑝𝑛)(11.6𝑝𝑛 − 𝑧)

6.4(𝑞𝑛 − 𝑝𝑛)
 

𝑚𝑋 ⋅𝑌2
(𝑧) =

13.3𝑠𝑛 − 33.8(𝑠𝑛 − 𝑟𝑛) + √(13.3𝑠𝑛 + 33.8(𝑠𝑛 − 𝑟𝑛))
2 − 53.2(𝑠𝑛 − 𝑟𝑛)(33.8𝑠𝑛 − 𝑧)

26.6(𝑠𝑛 − 𝑟𝑛)
 

 

As  𝑛 ∈ ℤ for years in integer form, we can approximate the membership function 

of the insurance benefit for term life insurance of n years or for whole life insurance. 

Whole life insurance can be treated by taking the limit of n to infinity. A simple but 

lengthy result for 𝑛 = 1 gives the membership functions below, along with the graph of 

the functions:  

𝑚1

𝛿̃
⋅1−𝑒−𝛿̃

=

{
 
 
 
 

 
 
 
 0,                         𝑖𝑓 𝑧 ≤

1 − 1.03−1

log(1.09)
 𝑎𝑛𝑑 

1 − 1.09−1

log (1.03)
< 𝑧

−.308 + √. 015 + .237𝑧

. 118
,  𝑖𝑓

1 − 1.03−1

log (1.09)
< 𝑧 ≤

1 − 1.05−1

log (1.07)

1,                                      𝑖𝑓 
1 − 1.05−1

log (1.07)
< 𝑧 ≤

1 − 1.07−1

log (1.05)

1.68 − √. 278 − .912𝑧

. 456
,  𝑖𝑓 

1 − 1.07−1

log (1.05)
< 𝑧 ≤

1 − 1.09−1

log (1.03)

 

 

 

 

 

 

 

 

 

Figure 17. Membership function of insurance benefit for a continuous 

life insurance 
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In the following page, we have the full expression of the membership function 

with the sequences for all n expressed. 
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The approach is similar for the other life distribution laws (Gompertz, Makeham, 

Weibull). The same function 
1−𝑒−𝛿̃𝑛

𝛿̃
 is used in every assumption, only to be multiplied by 

their very specific survival probability of 𝑝𝑥𝜇𝑥+𝑡𝑡 . Recall section 2.2.2 for these actuarial 

survival probabilities. Thus: 

- The insurance benefit of the n-year continuous life insurance using Gompertz 

assumption 

𝑚𝐴̅𝑥:𝑛|̅̅ ̅
1 (𝑧) = 𝑆 ⋅ ∫ 𝐵𝐶𝑥+𝑡𝑒

𝐵
ln𝐶

𝐶𝑥(1−𝐶𝑡)𝑑𝑡
𝑡

0

⋅ 𝑚
1−𝑒−𝛿̃𝑛

𝛿̃

(𝑧) 

- The insurance benefit of the n-year continuous life insurance using Makeham 

assumption 

𝑚𝐴̅𝑥:𝑛|̅̅ ̅
1 (𝑧) = 𝑆 ⋅ ∫ (𝐴 + 𝐵𝐶𝑥+𝑡)𝑒−𝐴𝑡+

𝐵
ln𝐶

𝐶𝑥(1−𝐶𝑡)𝑑𝑡
𝑡

0

⋅ 𝑚
1−𝑒−𝛿̃𝑛

𝛿̃

(𝑧) 

- The insurance benefit of the n-year continuous life insurance using Weibull 

assumption:  

𝑚𝐴̅𝑥:𝑛|̅̅ ̅
1 (𝑧) = 𝑆 ⋅ ∫ 𝑘(𝑥 + 𝑡)𝑛𝑒𝑘(𝑛+1)[𝑥

𝑛+1−(𝑥+𝑡)𝑛+1]𝑑𝑡
𝑡

0

⋅ 𝑚
1−𝑒−𝛿̃𝑛

𝛿̃

(𝑧) 
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5. Fuzzy Clustering of Policyholders 
 

A Non-Life Approach 

Age is always treated as a factor in mortality, because inevitably the older you get 

the more susceptible to die you are. The goal for preference classes is to have premium 

rates according to each policyholder’s risk profile. It is common practice to group 

policyholders for reasons of efficiency; even if the rating operates by design more 

effectively on an individual basis. The premium rate must be estimated for the group. 

Each underwriting structure regroups policyholders by blocks of ages, and most premium 

estimations are based on these classes. The crisp concept uses curtate age (section 2.2.2); 

that is the integer age at the last birthday. An example of grouping is Brockham and 

Wright (1991): 

17 − 18, 19 − 21, 22 − 24, 25 − 29, 31 − 34, 35 − 44, 45 − 54, 55 + 

Limitations to the model occur when we wish to assign a 30-year-old to a group. Given 

the random nature of insurance, the evidence favoring the 4th group over the 5th group is 

not likely to be conclusive. The theory of Fuzzy Set aims to resolve this ambiguity. In the 

next Case Study, Verrall & Yakoubov provide a fuzzy approach to grouping policyholder 

ages using past claims for non-life insurance.  

 

Case Study 6. (Verrall & Yakoubov 1999) Policyholder risk grouping by age. 

This is a case study of general insurance that can easily be applied to life 

insurance. The data for the study consist of approximately 50,000 motor policies of all 

ages. The youngest ages are grouped under the label “<25” and the oldest under “83+” to 
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remove the absent data or discrepancies. We only focus on two types of claims: Body 

Injuries (BI) and the Material Damage (MD). For each age, we retrieve the number of 

claims, or Frequency, along with the total cost of the claim, or Severity. For each claim 

many factors enter in the cause of an accident rather than age only. The Department of 

Motor Vehicles “Unit for Accidents: Causes and Prevention” gives an exhaustive list 

among which the most often cited are age, gender, driver’s years of exposure, car group, 

mechanical failure, location and road conditions and weather conditions. Most insurance 

companies use only age as the key to grouping policyholders. Hence, to remove 

distortion due to the uneven mix of policyholder age, we adjust the data as follows: 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 × 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 

Table 1 displays the Frequency and Severity of the MD and BI claims in the data 

set used in Verrall et al (1999). The exposure tab gives a numerical value for the number 

of earned driver years. The abbreviation AdjFreq means Adjusted Frequency and 

CruPrem mean Crude Premium. It is the a priori estimation of what a policyholder of age 

(𝑥) will need to pay in premium, before any extra fees such as taxes, state surcharges, 

transaction fees, etc. It equals the expenses the insurance carrier is at risk of incurring for 

the policyholder (𝑥); hence: 

𝐶𝑟𝑢𝑑𝑒 𝑃𝑟𝑒𝑚𝑖𝑢𝑚 = 𝑀𝐷 𝐴𝑑𝑗𝐹𝑟𝑒𝑞 + 𝐵𝐼 𝐴𝑑𝑗𝐹𝑟𝑒𝑞 
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Table 1. Frequency and Severity of Claims 
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 A fuzzy c-means algorithm (recall Section 3.2) is applied to the adjusted data for 

the optimal number of clusters 𝑐 = 6 (Bezdek 1981). The exponential weight or fuzzy 

parameter 𝑟 = 2; ‖⋅‖ is the Euclidean norm; the termination criterion 𝜀 = 0.05. For each 

cluster, we are to determine the center of the adjusted MD, the adjusted BI, and the Crude 

Premiums. The cluster centers (centroids) derived from Table 1 are allotted in Table 2.  
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Table 2. Clusters centers or centroids. 
 

 

 

 

 

 

The resulting table of centroids is then used to calculate the membership of each 

age to a cluster. We use the adjusted frequencies and determine the membership values 

for the corresponding age. As in Brockham and Wright (1991), we wish to create age 

groups for underwriters. With less computing skills or tools, underwriting procedure 

would require crisp age groups. Hence, to separate the element that belongs to more than 

one cluster, we proceed with an alpha-cut of 20%. The level set of the fuzzy membership 

is shown in Table 3. 
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Table 4. Risk Measure per Age group 

Underwriting usually anticipates that risk progress smoothly with age, and so age 

groupings must be adjacent. Verrall et al. uses a risk measure to determine which 

adjacent ages are in the same group. This is the following equality: 

 𝑅𝑖 =
1

‖𝑖‖
∑ ∑𝜇𝑗𝑘‖𝑣𝑘‖

𝑐

𝑘𝑎𝑔𝑒𝑠 𝑖𝑛 𝑖

 

From the beginning of the case study, it is assumed that <25 and 83+ were whole 

groups. Applying the risk measure to the 20 percent-cut data gives the results as in the 

Table 4 below. Hence, for the six clusters, we can count 7 age groups: 

 ≤ 25, 26 − 27, 28 − 31, 32 − 47, 48 − 51, 52 − 68, 69 +  

 

 

 

 

 

 

In figure 18, we have a comparative graph for the crude risk premium and 

premium based on risk groups. The group premium gives a very good fit of the model for 

crude premium. The fuzzy clustering allows the creation of risk groups with very smooth 

transition between ages. The accuracy may slightly be off at groups 1 and 2, for the little 

information available for these drivers; hence such high premiums.  

Age is only one factor among many others, yet the insurance industry made it as 

the primary indicator of risk in any type of coverage. 
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Figure 18. Comparative graph for the Crude Premium and the Group Premium. 

  

 

 

 

 

 

 

 

 

 

 

This experiment can be applied to a life contingency study of multiple state 

models. Simply replace the Material Damage (MD) claims by Disability Claims and the 

Body Injuries (BI) by Death Claims. 
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CONCLUSIONS AND FURTHER RESEARCH 

This paper presented successful concepts and techniques of fuzzy set theory as 

used in the actuarial science environment. The applications focused on life contingencies 

and life insurance from the underwriting to claims. Fuzzy actuarial mathematics offers a 

new and promising way of treating uncertainty, with a useful addition to the modeling 

tools. The Actuarial Research Clearinghouse is correct to forecast a drastic increase of 

interest for fuzzy methods in the future. New research may shift toward multiple state 

models including joint-survivorship, disability, sickness, retirement or withdrawal. Also 

involved are the hybrid models and the company-sponsored insurance with multiple 

options. Perhaps these are building blocks that will suggest other fields to develop fuzzy 

set applications. 
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APPENDIX 

Table 5. Life Table for the total population of United States, 2011 
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Table 6.  Life Table for the total population of United States, 2011 (continued) 
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Figure 19. Life expectancy at birth by origin, race and sex from 2006 to 2011 
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Table 9. Standard results for t-norms and t-conorms for Fuzzy set operations 
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