
IMPLEMENTATION OF DYNAMIC RESOURCE ALLOCATION FOR LTE
SYSTEM USING GNU RADIO

by

Hanke Cheng
A Thesis

Submitted to the
Graduate Faculty

of
George Mason University
in Partial Fulfillment of

The Requirements for the Degree
of

Master of Science
Electrical and Computer Engineering

Committee:

L~C2 Dr. Bijan Jabbari,
Thesis Director
Dr. Brian L. Mark,
Committee Member

Dr. Yariv Ephraim,
Committee Member

Dr. Monson Hayes,
Department Chair

Dr. Kenneth S. Ball,
Dean, Volgenau School of Engineering

Fall Semester 2014
George Mason University
Fairfax, VA

Implementation of Dynamic Resource Allocation for LTE System Using GNU Radio

A Thesis submitted in partial fulfillment of the requirements for the degree of Master of

Science at George Mason University

by

Hanke Cheng

Bachelor of Science

Wuhan University of Technology, 2011

Director: Bijan Jabbari, Professor

Department of Electrical and Computer Engineering

Fall Semester 2014

George Mason University

Fairfax, VA

ii

Copyright © 2014 by Hanke Cheng

All Rights Reserved

iii

DEDICATION

This is dedicated to my parents Jishan Cheng and Qin Wang, for their unconditional

support and love, and to my girl friend, Yi Zhang.

iv

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dr. Bijan Jabbari, who provided all of the academic

advices and the devices I need during my work of Master thesis. With his encouragement

and stimulation, he helped me find my way to the completion of my research and

improved my research ability.

I thank Dr. Mark and Dr. Ephraim for serving on my committee. I thank Dr. Mark for

his knowledge of GNU Radio. I also thank Dr. Ephraim for the fundamental course in

communication theory, which is helpful for my research.

I thank my friend Pei Li and Hao Sun, who helped me tremendously on programming.

I also thank all of my friends in Communications and Networking Lab (CNL), especially

Ben for useful discussion about GNU Radio technologies.

v

TABLE OF CONTENTS

Page

List of Tables ... viii

List of Figures .. ix

Abstract .. xi

Chapter 1: Introduction ... 1

1.1 Statement of the Problem .. 3

1.2 Related Works ... 4

1.2.1 Dynamic Resource Allocation in OFDM Based System.................................... 4

1.2.2 Software Defined Radio ... 4

1.3 Structure of the Thesis... 6

Chapter 2: Dynamic resource allocation ... 7

2.1 Wireless Channel Characteristics .. 7

2.1.1 Multi-path ... 7

2.1.2 Shadowing .. 10

2.1.3 Time Varying .. 10

2.2 Resource Allocation for Single User ... 11

2.3 Resource Allocation for Multi-user... 13

2.3.1 Max-Sum .. 14

2.3.2 Max-Min ... 15

2.3.3 Max-Product ... 16

Chapter 3: GNU radio mechanism .. 18

3.1 Flow Graph .. 18

3.2 GRC Mechanism ... 21

3.2.1 Block Definition ... 22

3.2.2 Block Instantiation and Configuration ... 24

3.2.3 Block Connection ... 25

3.2.4 Top Block ... 25

vi

3.3 Signal Processing Block .. 26

3.3.1 Smart Pointer .. 26

3.3.2 IO Signature .. 26

3.3.3 Type of Block ... 27

3.3.4 Core of Block.. 28

3.3.5 Tags and Messages ... 30

Chapter 4: Physical layer of LTE Implemented on GNU Radio 32

4.1 Communication Logic of User Device and Base Station .. 32

4.1.1 3-Way Handshake ... 32

4.1.2 Packet Allocation and Identification .. 34

4.2 Downlink Module ... 40

4.2.1 Introduction to OFDM .. 40

4.2.2 Timing Synchronization and Frequency Correction .. 42

4.2.3 Implementation of OFDM by GNU Radio ... 45

4.3 Uplink Module .. 49

4.3.1 Introduction to SC-FDMA.. 52

4.3.2 Implementation of SC-FDMA by GNU Radio... 54

4.2.3 PAPR Comparison between OFDM and SC-FDMA 59

Chapter 5: Simulation and result discussion ... 60

5.1 Simulation Model and Environment ... 61

5.2 Results and Discussion .. 62

5.2.1 Uplink and Downlink Functionality Check .. 62

5.2.2 Dynamic Resource Allocation Algorithms Test ... 66

5.2.3 Algorithms Simulation with GNU Radio Channel Model 66

Chapter 6: Conclusion and future work .. 71

Appendix A: Resource Allocation Algorithm Source Code ... 73

A.1 Max-Sum Algorithm .. 73

A.2 Max-Min Algorithm ... 73

A.3 Max-Product Algorithm ... 74

A.4 Finding Maximum Value From Vector .. 76

A.5 Finding the Index of Maximum Value From Array ... 76

A.6 Finding the Index of Maximum Value From Vector ... 76

vii

A.7 Finding the Index of Minimum Value From Vector .. 77

References ... 78

viii

LIST OF TABLES

Table Page

Table 2. 1 Subcarrier allocation by Max-Sum algorithm ... 14
Table 2. 2 Subcarrier allocation by Max-Min algorithm .. 14
Table 2. 3 Subcarrier allocation by Max-Product algorithm .. 15

Table 3. 1 The list of frequently used tags in XML block definition file 22

Table 4. 1: The representation of message types for packet from user device and base

station.. 36

Table 4. 2 Packet header structure for multi-user communication 46
Table 5. 1 Simulation platform... 61

ix

LIST OF FIGURES

Figure Page

Figure 2. 1 An example for multi-path transmission and shadowing 8
Figure 2. 2 The comparison between the signal transmitted through AWGN channel and

frequency selective fading channel ... 9
Figure 2. 3 The received signal with positive Doppler shift ... 11

Figure 2. 4 Water filling algorithm for single user ... 13
Figure 3. 1 Flow Graph of Audio Signal .. 19
Figure 3. 2 Properties of Signal Source and WX GUI Slider Block................................. 20
Figure 3. 3 Parameters of Noise Source Block ... 23

Figure 3. 4 Tags associated with some data at different positions on data stream 30

Figure 4. 1 Communication logic between user device and LTE base station 33

Figure 4. 2 The flow graph of the scheduler of the base station 35

Figure 4. 3 The flow graph of the decomposer on user device ... 39

Figure 4. 4 The structure of OFDM resource block (symbols are converted to binary) ... 39
Figure 4. 5 Typical Flow Graph of OFDM Modulation ... 41

Figure 4. 6 The Preamble Sequence Used for Timing Synchronization by Schmidl and

Cox (SC) algorithm ... 42
Figure 4. 7 The timing metric M(d) with AWGN channel (SNR = 10dB) [4] 44

Figure 4. 8 The structure the implementation of Schmidl and Cox Timing

synchronization and frequency offset estimation algorithm in GNU Radio..................... 44

Figure 4. 9 The flow graph of OFDM modulator built by GNU Radio............................ 50
Figure 4. 10 The flow graph of OFDM demodulator built by GNU Radio 51

Figure 4. 11 Flow Graph of SC-FDMA Modulation .. 52

Figure 4. 12 Subcarrier Mapping Methods: (a) Localized; (b) Distributed 54

Figure 4. 13 Different symbol structure of OFDM and SC-FDMA 55
Figure 4. 14 The flow graph of SC-FDMA modulator built by GNU Radio 57
Figure 4. 15 The flow graph of SC-FDMA demodulator built by GNU Radio................ 58
Figure 4. 16 The Waveform of Transmitted Signal of SC-FDMA and OFDM 59

Figure 5. 1 The channel model for the simulation .. 60

Figure 5. 2 The list of information printed in the console .. 63
Figure 5. 3 Channel gains on the 8 subcarriers for each user ... 63
Figure 5. 4 Result comparison between GNU Radio and [14] for Max-Sum algorithm .. 64
Figure 5. 5 Result comparison between GNU Radio and [14] for Max-Min algorithm ... 64
Figure 5. 6 Result comparison between GNU Radio and [14] for Max-Product algorithm

... 65
Figure 5. 7 Subcarrier allocation for Max-Sum algorithm ... 68

x

Figure 5. 8 Subcarrier allocation for Max-Min algorithm .. 68
Figure 5. 9 Subcarrier allocation for Max-Product algorithm .. 69

xi

ABSTRACT

IMPLEMENTATION OF DYNAMIC RESOURCE ALLOCATION FOR LTE

SYSTEM USING GNU RADIO

Hanke Cheng, M.S.

George Mason University, 2014

Thesis Director: Bijan Jabbari

 Nowadays, the fourth generation mobile communication is being popularized all

over the world. As the core technologies, OFDM and MIMO are being widely researched

and attracting more and more people to make them perfect. Dynamic resource allocation

for OFDM is one of the research topics in the field of OFDM technology for Long Term

Evolution (LTE) standard. In order to dynamically allocate resource to multiple users

with different purposes, there is large number of algorithms used in specific situations.

On the other hand, a universal technology named Software Defined Radio (SDR) is

rapidly developing for signal processing and wireless communication. With more

flexibility and lower cost, SDR, especially GNU Radio, are widely used for researching

and building portable communication devices. This thesis combines LTE and GNU Radio

technology.

xii

 This thesis consists of two parts: one is a study of the important issues in wireless

communication and dynamic resource allocation for OFDM based systems; the other is

the implementation of a simplified signal processing structure for an LTE communication

system using GNU Radio. Within this signal processing structure, the dynamic resource

allocation algorithms are embedded in the OFDM modulator.

 In this thesis, we choose three typical dynamic resource allocation algorithms:

Max-Sum, Max-Min and Nash Bargaining Game. We assume a general LTE network

with one eNodeB base station and multiple user devices. Max-Sum algorithm maximizes

the total throughput of the network since it only allocates channels to those users who

have the best channel gain. Max-Min algorithm maximizes the worst user device rate to

guarantee that the user device which is in the worst channel environment can obtain an

opportunity to access to the network and maintain an acceptable quality of service. Nash

bargaining game algorithm maximizes the product of the rates of each user device. This

algorithm provides an approach to enlarge the total throughput and guarantees the

fairness of the occupancy for each user devices.

 Using GNU Radio to implement dynamic resource allocation requires a large

amount of prerequisites. GNU Radio, a kind of Software Defined Radio framework,

provides a C++ library for signal processing. It provides GNU Radio Companion (GRC)

for researchers to build a signal processing flow graph for a specific task. GRC translates

the flow graph to Python codes and the Python script calls the compiled C++ programs

which process the signals in encapsulated blocks. Based on the rules of GNU Radio

development and some built-in signal processing modules, we build the OFDM

xiii

modulator and demodulator for downlink communication and the SC-FDMA modulator

and demodulator for uplink communication, which are the technologies adopted by the

LTE standard. More important, we design and build the base station and user device to

simulate real situations in which people use mobile phones to send requests and get

information. Then, the three dynamic resource allocation algorithms are embedded in the

resource allocation module of the base station to study the differences among them.

1

CHAPTER 1: INTRODUCTION

With the growing requirement of better quality of service (QoS) and faster rate of

data transmission, the gap between two generations of wireless communication system

becomes smaller. The fourth generation wireless communication system has just been

popularized recently. However, the fifth generation wireless communication standard is

being prepared for drafting. As we know, each new generation develops new

communication technologies and brings a tremendous improvement of wireless

communication.

In order to promote the rate of data transmission and better quality of service,

wide band technologies are used in the wireless communication system. However, the

major challenges for wide band communication are the limited spectrum resource and the

frequency-selective fading caused by multipath transmission. As a result, more efficient

utilization of spectrum resource and better performance of overcoming nature of the

wireless channel are required to lead a revolution of wireless communication. Orthogonal

Frequency Division Multiplexing (OFDM) is the leading technology which overcomes

those problems. The fourth generation standard, Long Term Evolution (LTE), adopts it as

the downlink modulation. Besides, some Wireless Local Area Network also applies

OFDM as the primary modulation. The well-known standard before the birth of LTE,

WiMAX, is also using OFDM modulation to approach to a higher rate. The idea of

2

OFDM modulation is to divide a wide bandwidth into small pieces that the impulse

response of the small bands overlaps with each other. However, all of the small bands are

orthogonal to each other so that there is no interference between the adjacent bands but

the utilization of spectrum resource is maximized. Since OFDM modulation is to divide a

wide band into a large number of sub-channels with narrow band, the bandwidth of one

channel usually smaller than the coherence bandwidth of frequency selective fading

channel. As a result, the fading on the channel is flat most of the time.

When using OFDM modulation in wireless communication system, the resource

allocation becomes the critical aspect of the effect on the performance. If there is only

one user, all of the subcarriers are occupied by this user. While in multi user system, the

algorithm of resource allocation affects the equipment cost, throughput, capacity, fairness

and so forth. The fixed resource allocation has the lowest complexity of the equipment

but the efficiency is also low since it has to face the varying channel environment. In

order to improve the efficiency, dynamic resource allocation is introduced and applied in

most of the wireless communication systems. The dynamic resource allocation

algorithms vary for specific systems and devices so that it requires new equipments for

different kind of use. To improve the flexibility, universal technologies are usually better

solutions.

As a kind of universal technology, Software Defined Radio technology requires

fewer types of equipment but does a variety of tasks. As mentioned above, different

dynamic resource allocation algorithms require different equipments. However, if using

SDR technology, the number of required devices can probably be limited to one or two.

3

This is due to the mechanism of SDR, which uses software to process signal via universal

equipment, such as personal computer. As an outstanding framework of SDR, GNU

Radio only needs a personal computer and a Universal Software Radio Peripheral

(USRP). The computer processes the signal and USRP transmits and receives signal

through the air. With the high flexibility and low cost, the GNU Radio platform lowers

the threshold of real world based research. This fact contributes to more useful

experiment with the theoretical research in the field of wireless communication and

signal process.

1.1 Statement of the Problem
A large number of researches on dynamic resource allocation are done with the

development of OFDM based communication system. However, most of the researches

are theoretical work with some analysis done by the simulation software such as

MATLAB. In reality, if the theoretical research introduces an infeasible technology for

real life use, the research loses its value.

As the development of GNU Radio technology, a low cost real world experiment

platform is possible for every laboratory conducting the research in the field of wireless

communication. Regard as a popular research field, dynamic resource allocation and

other practical researches need to move to SDR platform such as GNU Radio in order to

achieve more valuable result from real world experiments.

4

1.2 Related Works

1.2.1 Dynamic Resource Allocation in OFDM Based System
The problems of dynamic resource allocation in OFDM based system are widely

researched in [6, 7, 10, 11, 14]. Some algorithms for optimizing the dynamic resource

allocation are put forward, as well as their modifications for specific purpose. In [6], the

algorithm maximizes the rate of the user which has the worst channel condition to

guarantee the fairness for all of the users. However, it significantly drops the total rate of

the system since the sacrifice of the users with better channel condition. In contrary, [7]

puts forward an algorithm that maximizes the total rate of the system by allocating

resources only to the user which has best channel gain. As a result, the total rate is

improved but the worst user may face high latency, and even lose the connection. In

order to guarantee the fairness and obtain higher rate at the same time, an algorithm using

Nash Bargaining Solution is developed in [14]. Except for these basic algorithms, there

are a number of algorithms similar to them and deal with different situations [8, 10, 12,

13].

1.2.2 Software Defined Radio
With the fast growing wireless communication network, modern people get more

opportunities to achieve high speed network service. At the same time, the improved

design and fabrication of the chips and devices of communication system become less

expensive. However, every component in different communication systems is customized

which is solidified in specified system. In order to overcome the low flexibility, software

defined radio was born and GNU Radio became the most outstanding one in the open

source world.

5

Decades ago, the performance of personal computer was extremely restricted

because of the limited scale and fabrication of chips. CPU, for instance, is responsible for

all of the commands and calculation. As a result, the low upper limit of CPU allows it to

take small burden work. As the fast development of CPU and other chips, heavier burden

of work is able to be processed by personal computer. Thus, it is possible to process

signals in communication systems so that software defined radio such as GNU radio is

being developed in recent years.

GNU Radio is a framework for signal processing via small computers. Instead of

a solid chip, developing programs to process signal makes system more flexible and

lower cost. By using some algorithms, every personal computer can process digital signal

in the same way defined by specific programs. The flexibility, reusability and universality

make GNU Radio known as the revolution of wireless communication. Take OpenBTS

as the typical example, it follows the second generation (2G) mobile communication

standard and implements the entire functions of mobile communication system. With

Universal Software Radio Peripheral (USRP) designed by Matt Ettus, the personal

computer running OpenBTS turns into a base station of 2G mobile communication.

Nowadays, the fourth generation (4G) mobile communication technology, LTE, does

achieve milestones. Amerisoft LTE published some products which implements eNodeB,

the base station of 4G mobile communication, via USRP. Another group, OpenLTE, is

working hard to provide a free LTE module of GNU Radio. Regard as those works, the

low cost and portable 4G base station will promote the coverage of 4G mobile

communication network.

6

Not only contribute to mobile communication system, GNU Radio has much

deeply extensibility for other field of radio systems. By utilizing available modules of

GNU Radio, it can be developed as an FM radio, a surveillance system in the field of

aerospace, and so forth. GNU Radio fulfills the requirement of any technologies of digital

signal processing since all the processing is able to be done by proper algorithms.

1.3 Structure of the Thesis
This thesis is more practical because the goal is to build the LTE uplink and

downlink to establish the environment for dynamic resource allocation research on GNU

Radio platform. Chapter 2 introduces the details of main aspects of dynamic resource

allocation. Three typical algorithms, Max-Min, Max-Sum and Nash Bargaining Game,

are introduced in this chapter. Chapter 3 explains the mechanism of GNU Radio

framework for easier understanding of the work with GNU Radio. Chapter 4 describes

the communication logic between base station and user device, which is designed for

simple implementation of the downlink and uplink technologies in LTE system by GNU

Radio. The full implementation of downlink and uplink is elaborated. Chapter 5 presents

an experiment of the environment using the three kinds of dynamic allocation algorithms.

Conclusions and future work are discussed in Chapter 6.

7

CHAPTER 2: DYNAMIC RESOURCE ALLOCATION

This thesis focuses on dynamic resource allocation algorithm for OFDM based

wireless communication systems, especially LTE system. We will explain the water-

filling algorithm for single user dynamic resource allocation and three algorithms, Max-

Sum, Max-Min and Max-Product, for multi-user dynamic resource allocation. All of

these algorithms represent the original work on their own directions and a large number

of optimized algorithms for specific environments have been developed based on these

classic algorithms. This chapter discusses the major issues of wireless channel

characteristics first, then the dynamic resource allocation algorithms.

2.1 Wireless Channel Characteristics
Unlike the wired channel, wireless channel is not constrained in a solid medium.

This fact contributes to a harsh channel environment because of these three phenomenons:

multi-path transmission, shadowing and time varying characteristics.

2.1.1 Multi-path
A typical multi-path transmission situation is shown in Figure 2.1. The triangles

stand for the transmitters or receivers while the rectangles represents obstacles such as

constructions and vegetations. The transmission path 2 is the signal directly transmitted

from the antenna of the transmitter to that of the receiver. The transmission path 1,3 and 4

8

Figure 2. 1 An example for multi-path transmission and shadowing

include reflection when the transmitter sends signal to the receiver, which leads to multi-

path interference effecting the direct transmission signal. As the matter of fact, the extra

transmission path exists numerously in the wireless channel which contributes to

significant fading of the signal at the receiver.

Multi-path fading can be modeled by a Rayleigh distribution. In frequency

domain the signal shows a significant amplitude drop on some frequencies so that the

multi-path fading is also called frequency selective fading, which can be classified as fast

fading. Figure 2.2a is the OFDM signal in frequency domain only with Additive White

Gaussian Noise (AWGN) and Figure 2.2b applies the frequency selective fading on the

9

(a) The signal transmitted only through AWGN channel

(b) The signal transmitted only through frequency selective fading channel

Figure 2. 2 The comparison between the signals transmitted through AWGN channel and

frequency selective fading channel

signal. Comparing the FFT plot of the same signal, the amplitude of the signal with only

AWGN channel shows a relatively even throughout the bandwidth, while the frequency

selective fading leads to amplitude drops in the range from -30 to -20 kHz and from 0 to

10 kHz. To overcome the fast fading channel, the bandwidth of the channel has to smaller

10

than the coherence bandwidth so that the channel avoids going across the amplitude

dropping area. Since the bandwidth of each channel of OFDM modulation is narrow,

OFDM modulation has better performance in frequency selective fading channels.

2.1.2 Shadowing
Shadowing is caused by the situation that the signal cannot be transmitted to the

receiver directly. In other word, if the receiver is under the shadow of the transmitter, the

signal can only reach the receiver by reflection from other ways. Hence, shadowing

completely depends on multi-path transmission. The Figure 2.1 shows the situation of

shadowing. The direct transmission path from the transmitter and the second receiver is

blocked by a obstacle so that the signal need to find other paths such as path 3 and 4.

Shadowing is model as lognormal distribution which implies that the fading is

categorized as slow fading. The impact on the amplitude of the signal is much gentler

over the entire bandwidth than frequency selective fading.

 2.1.3 Time Varying
Time varying characteristics is due to the mobility of receiver relatively to

transmitter. When the relative speed of receiver and transmitter is larger than 0, the

Doppler frequency shift occurs. If the receiver is approaching to the transmitter, the

central frequency of the received signal shifts positively comparing to the transmitted

signal and vice versa. Figure 2.3 shows the OFDM signal with positive frequency shift.

Compare to Figure 2.2a, the central frequency of the signal shifts approximately 6 kHz.

In order to correct the frequency offset, an appropriate frequency offset estimation

11

Figure 2. 3 The received signal with positive Doppler shift

algorithm is essential for signal demodulation. Schmidl and Cox algorithm [4] is a typical

one implemented in OFDM based communication system.

2.2 Resource Allocation for Single User
Assume that there is only one user device communicating with base station, all of

the OFDM subcarriers are allocated to the user device. Due to the frequency selective

fading, some of the subcarriers are affected by severe channel environment. In this case,

the probability of packet loss increases and the rate decreases if the system still allocates

these subcarriers to the user device. To overcome the rate loss and maximized the

throughput, water-filling algorithm is introduce in the single user dynamic resource

allocation [22].

 According to Shannon's Equation, we can obtain the maximum rate for the single

user device as

12

2

2 2
1

log (1)
N

n n

n

P h
R B



  (2.1)

where B is the bandwidth, N is the number of subcarriers, Pn is the power on n-th

subcarrier and hn is the channel envelope. If we apply the method of Lagrange multiplier to

maximize R, we obtain

2

2n

n

B
P

h




  (2.2)

where λ is the Lagrange multiplier and
2 2

nh stands for Noise-to-Carrier Ratio (NCR).

For all of the subcarriers, we have

2 2

11
N

nn
P h

NB










 (2.3)

where P is the maximum total power of transmitted signal.

Water-filling algorithm iteratively calculates the amount of power that allocates to

every subcarrier based on the total provided power and the carrier-to-noise ratio of every

subcarrier until no negative amount of power is figured out in the calculation. The

carrier-to-noise ratio of every subcarrier is obtained from the channel. The negative

amount of power is contributed by low carrier-to-noise ratio, and the algorithm does not

allocate power to the subcarriers with such a low carrier-to-noise ratio. After calculation,

the sum of the allocated power and NCR on every subcarrier, except for the subcarriers

with no power allocated, is a constant value. The constant 1  in equation 2.3 is the

constant value, so called water level.

Figure 2.4 shows the result of an example implementing water-filling algorithm.

The total amount of power is 0.1 mW allocated to 16 subcarriers. The bandwidth is 1

13

Figure 2. 4 Water filling algorithm for single user

MHz and the noise density is -80 dBm. The power allocated to each subcarrier is marked

as red rectangles and the NCR on each subcarrier is marked as yellow rectangles beneath

the red rectangles. We can see subcarrier with the NCR higher than the water level will

be left empty.

2.3 Resource Allocation for Multi-user
Although the single user dynamic resource allocation can be dealt with water-

filling algorithm, the wireless communication system usually supports more than one user

devices which have distinct channel environment. To optimize the resource allocation,

some algorithms for different purpose are developed. This section introduces three typical

multi-user dynamic resource allocation algorithms.

14

Table 2. 1 Subcarrier allocation by Max-Sum algorithm

1. Initialization:

i. Set 0iR  for all 1,2,...,Ki  .

ii. Set {1,2,..., }S N .

2. While S 

i. Find (,)i a satisfying
, ,i a i jG G for all j S .

ii. Update iR and S for a :
,()i i i aR R C G  and { }S S a 

Table 2. 2 Subcarrier allocation by Max-Min algorithm

1. Initialization:

i. Set 0iR  for all 1,2,...,Ki  .

ii. Set {1,2,..., }S N .

2. For i = 1 to K,

i. Find a satisfying
, ,i a i jG G for all j S .

ii. Update iR and S for a :
,()i i aR C G and { }S S a 

3. While S 

i. Find i satisfying i nR R for all [1,K]n

ii. For the n corresponding to found i , Find a satisfying

, ,i a i jG G for all j S .

iii. Update iR and S for a : ,()i i i aR R C G  and { }S S a 

2.3.1 Max-Sum
Max-Sum algorithm maximizes the total rate through finding the subcarriers with

maximum channel gain [7]. This algorithm has low complexity since the only work is to

find the largest channel gain on each subcarrier for all of the users. The detail of the

algorithm is shown in Table 2.1. iR stands for the current rate of i-th user when allocating

subcarrier. The total number of users is K. S stands for the set of subcarriers.

2 2

, ,i a i aG h  and ,()i aC G is the Shannon's equation for calculating the maximum rate

based on the Channel Gain to Noise Ratio (CGNR).

15

Table 2. 3 Subcarrier allocation by Max-Product algorithm

1. Initialization:

i. Set 0iR  and i  for all 1,2,...,Ki  .

ii. Set {1,2,..., }S N and {1,2,..., }U K .

2. While U  ,

i. Find (,)i a satisfying
, ,i a i jG G for all i U and j S .

ii. For the found i ,

If
,mini iR R ,then { }i i a  , { }S S a  ,

,()i i i aR R C G 

else { }B B i 

3. While S  ,

i. Find i satisfying
,a m,a

, m,
i m

i

i j jj j

G G

G G
 


 

 for all

[1,K]m and a S

ii. For the found i , Find a satisfying
, ,i a i kG G for all

k S .

iii. Update iR , S and i for found a : ,()i i i aR R C G  ,

{ }S S a  and { }i i a 

4. Power allocation: water fill power for each i

2.3.2 Max-Min
In order to reduce the probability of connection lost, some researches introduce

Max-Min algorithm. It maximizes the capacity of the users which have the worst channel

environment [6]. First, the algorithm finds the largest channel gain for each user and

allocates corresponding subcarrier to it. At the same time, calculate and store the current

rate R for each user. Thus, the algorithm guarantees the opportunity for every user.

Second, find the user with the smallest current rate R, then find the second largest

channel gain which is on the available subcarrier for this user and allocate corresponding

subcarrier to it. Meanwhile, accumulate the current rate R for this user. The second step

16

runs over and over again until all of the subcarriers are occupied. The detail of the

algorithm is shown in Table 2.2.

2.3.3 Max-Product
Max-Min algorithm improves the fairness for the users with the worst channel

gains. However, maximizing the rate of the user with the worst channel gains sacrifices

the rate of users with good channel condition too much. In this case, the total rate of the

system keeps at a relatively low level. To optimize the performance, Max-Product

algorithm, using Nash Bargaining Solution, is put forward [14]. Similar to Max-min

algorithm, the first step is to find the largest channel gain for each user and allocate

corresponding subcarrier to it. However, the algorithm sets a minimum rate for each user.

If the current user rate is smaller than the minimum rate, the algorithm will continue

searching second largest channel gain and allocate one more subcarrier to the user until

reaching the minimum rate. After all users reach the minimum rate, the allocation logic

moves to the second part. To allocate the rest of subcarriers, the algorithm searches the

user which satisfies

, m,

, m,
i m

i n n

i j jj j

G G

G G
 


 

(2.4)

for all m that 1<m<K where K is the last user. In addition, Gi,n is the Channel Gain to

Noise Ratio (CGNR) of i-th user on n-th subcarrier and Ωi is the set of allocated

subcarriers of i-th user. This step of the algorithm finds the user on each available

subcarrier satisfies that the division of CGNR and the sum of CGNRs on the allocated

17

subcarriers of the user is larger than the result from the same computation of each other

users. If found the user, the algorithm finds the second largest channel gain and allocate

the corresponding subcarrier to this user. This step iterates until all of the subcarriers are

occupied. In conclusion, Max-Product algorithm takes both rate and fairness into

consideration. The detail of the algorithm is shown in Table 2.3. B stands for the set of

users. i represents the set of allocated subcarriers of the i-th user.

18

CHAPTER 3: GNU RADIO MECHANISM

GNU Radio framework consists of flow graph, GNU Radio Companion (GRC)

and signal processing module. Flow graph provides a visualization solution for

developers building customized system. GRC translates and executes the system flow

graph. Signal processing module is in charge of the work of specific signal processing. In

this chapter, we introduce the three components in detail with the example of dial tone,

the hello world system in GNU Radio.

3.1 Flow Graph
In order to simplify the work of building system, GNU Radio project developed a

visualized tool named GNU Radio Companion (GRC). GRC component is classified in

two, signal processing blocks and assistant blocks.

First of all, signal processing blocks take full burden of the work in a system.

Each block definitely includes at least one input/output port for digital signal stream

transfer. Generally, source blocks only contains output port, sink blocks only contain

input block and other signal processing blocks acting as middle operation block contain

both input and output block.

Second, assistant blocks do not process any signal. Instead, they make definitions

for some variables and create Graphical User Interfaces (GUI) for convenience. Variable

block defines an ID as a specific value. If the value changes, the arguments set as the

19

Figure 3. 1 Flow Graph of Audio Signal

corresponding ID in any signal processing blocks changes automatically. In a word,

variable block improves the maintenance of systems, especially in sophisticated systems.

Another kind of assistant block, GUI block, defines the components for dynamic control

of arguments, such as WX GUI slider which controls some values smoothly.

Figure 3.1 shows a typical flow graph of a audio output system. The main part of

the system contains 5 components, 2 signal sources, one noise source, one adder and one

audio sink, assisted by 2 WX GUI sliders and one variable definition.

20

 (a) Signal Source Property (b) WX GUI Slider Property

Figure 3. 2 Properties of Signal Source and WX GUI Slider Block

Since the system simulates the dial tone when pick up the receiver of phones, the two

signal sources generate the sounds with two different frequencies. As the properties

shown in the signal source blocks, one sound is generated with frequency 350Hz and the

other one with frequency 440Hz. Both signals are in a cosine waveform. In addition, the

noise source generates Gaussian noise by pseudo random number for simply simulating

the channel noise.

To process these signals, an adder collects all outputs of the three source blocks

and adds them together. Finally, the mixed signal is sent to an audio sink, which visits the

audio driver and transfer the signal to speakers.

21

The variable block and GUI blocks improve the test environment. If set the

sample rate of signal source block as the ID of variable block, shown as Figure 3.2a, the

change of the value of variable block is also applied to the value of sample rate in signal

source block. The amplitude property is referred to the value of GUI block shown in

Figure 3.2b. Act as a slider, this block defines the minimum and maximum value of the

slider, as well as the amount of value for each step. Launching the system, two sounds

with different frequency can be heard from the speaker and a dialogue appears for

volume and noise adjustment. When moving the slider, the change of the volume of

sound and noise occurs distinctly. In conclusion, with the variable block and GUI block,

better controllability and flexibility of system simulation are available for research.

3.2 GRC Mechanism
The language that implements the flow graph in GRC is Python. As a script

language, Python plays a role of connecting different blocks. Primarily, the object-

oriented characteristics of Python simplify the work of building a system via required

signal processing modules and blocks. Secondarily, Python is designed as a much

advanced programming language in order to minimize the quantity of source code and

reduce the burden on programmers. With these advantages, Python is chosen for the

critical part of GNU Radio.

GRC translator takes responsibility of converting flow graph into Python program.

Since GNU Radio provides a bunch of application program interfaces (API) to connect

each signal processing blocks and to build the convenient simulation environment by

variable and GUI blocks, writing a Python program to perform the flow graph is not a

22

high burden work. However, GRC releases the repeated work of programming and turns

it into establishment of a visualized system flow graph. When creating, configuring and

connecting blocks, GRC translator converts them into specific Python codes

automatically. The four essential elements of GRC mechanism are as follows.

3.2.1 Block Definition
Sometimes, a block is installed into GNU Radio but not provided by GRC. In this

case, the block is available if writing Python code manually while it cannot be

implemented in GRC. To solve this problem, the block definition in XML file is

introduced by GNU Radio. The frequently used tags in XML file are as follows. Figure

3.3 is the parameter dialog of noise source block in the system shown in Figure 3.1. The

ID is a default parameter defined by GNU Radio which represents the name of the new

instance of noise source block. This parameter does not influence the operation of the

system, only distinguishes the names of the instances defined by the same block.

Table 3.1 The list of frequently used tags in XML block definition file

Block The envelope of the block definition

Name The name of the block or a property in this block

Key The name that be identified by program, such as XML file,

required block or data type

Import The library that is necessary for the block

Make The name and arguments of the block that will be translated into

Python from GRC

Param The definition of a parameter in the block

Type The data type of a parameter

Option The options listed in a parameter

Source The definition of an output port

Sink The definition of an input port

23

The output type defines the type of digital signal stream generated by computer and sent

from the output port, such as complex, float, integer and short. The definition in XML

file is given in the first “param” tag. In this parameter, four option tags are listed and their

names and keys are defined, standing for the four output data types. Since there are four

C++ classes written for only one block, the GRC translator needs to know which class is

specified. The solution is to use the content of key (type) and opt (fcn) tag corresponding

Figure 3. 3 Parameters of Noise Source Block

24

to them in the content of make tag (type.fcn behind the first dollar sign). When float is

chosen, the GRC translator will instantiate noise_source_f class with those arguments.

Similarly, the noise type parameter contains four options which generate noise signal

with difference distribution such as Gaussian and Uniform distribution. The other two

parameters, amplitude and seed, are simply defined by the name, key, value and data type.

Finally, the source tag defines the output port of the block. Different output data types are

represented as varieties of colors. For example, the float output data type is orange (see

Figure 3.1).

3.2.2 Block Instantiation and Configuration
Block instantiation and configurations consist of the foundation of GNU Radio

signal processing system. Since signal processing blocks are written by C++, Python

desires a tool to connect them. For GNU Radio, Simplified Wrapper and Interface

Generator (SWIG) is chosen for the responsibility. Based on the compiled C++ files,

SWIG generates the interfaces for calling the methods written in C++ by Python

programs. After importing related libraries, block establishment is completed by the

instantiation of corresponding classes in the libraries and appropriate arguments settings.

If using GRC to initialize blocks, simply find the required blocks and drag them to the

work space. Then set the properties for each blocks. For example, the first signal source

in Figure 3.1 is initialized with sample rate as 32kHz, waveform as cosine, frequency

350Hz, amplitude as 400mV and offset as 0. Translated to Python, it instantiates

sig_source_f class from library analog with the same arguments. Other blocks, including

variable and GUI blocks, are instantiated one by one.

25

3.2.3 Block Connection
After definition and configuration of blocks, a vital method, connect, plays a role

in the connection of each block in the system. Connection method defines a regular way

to establish the association between blocks. First of all, a connection method contains two

arguments. Both of them are a pair of instance of block and its port number. Second, the

port number of left block represents the output port and that of right block is the input

port number. Finally, the specific output port of left block is connected to the specific

input port of right block. As a result, the right block can receive the message from left

block, which completes the communication of two blocks. In GRC, the connection is

established by an arrow between the output port of one block and the input port of the

other block. For instance, the output ports of the three signal source are connected to the

adder block via three arrows. When starting the simulation, GNU Radio translates the

arrows into three connect methods with every blocks and ports as their arguments.

3.2.4 Top Block
As the backbone of GRC, the top block is the father of each flow graph. The

Python code generated by the flow graph shown in Figure 3.1 proves that every flow

graph defined by different systems inherits from top block. The Python code in Appendix

1 shows that the class is inherited from top_block_gui in grc_wxgui. However, this class

is also a child class of top block class. Top block class defines the most important

methods for the operation of system. For example, start method, stop method and wait

method are the keys to run, stop and keep the system. In addition, as mentioned above,

connection method integrates each block into a system. Thus, top block contributes to the

real implementation of the entire system.

26

3.3 Signal Processing Block
Signal processing blocks from the core of GNU Radio. For example, an adder

block adds all signals to one output; a signal source generates different kinds of

waveforms; BPSK modulator block implements BPSK modulation on input digital signal.

Hundreds of signal processing blocks are developed for GNU Radio so that varieties of

communication systems are able to be built for researches or as products.

A signal processing block is written by C++ programs. GNU Radio developed a

set of C++ APIs for constructing signal processing blocks. The essential parts of a signal

processing block are introduced as follows. Take the adder block shown in Figure 3.1 as

example.

3.3.1 Smart Pointer
Smart pointer is mainly developed for releasing the burden of manipulating

memory when making sophisticated C++ programs. Shared pointer is one of the smart

pointers which allow each reference to share the management of the same object. For

memory allocation, shared pointer introduces a reference counter to make determination

to free the memory or not. If there is one reference points to an object, the reference

counter stores 1; if more references share the same object, the value of the reference

counter will be the number of the references. When destroy a reference, the reference

counter deducts 1. However, the memory occupied by the object will not be freed until

the value of the reference counter becomes 0.

3.3.2 IO Signature
IO signature is one of the most important concepts in GNU Radio. As the signal

processing block requires input and output, the definition of the input and output ports are

27

the primary work. IO signature requires three arguments, the minimum number of port,

the maximum number of port and the size of each port. For instance, in the constructor of

add_ff_impl class, an input IO signature and an output IO signature are created for the

block. For input IO signature, at least one port is required and no upper limit of the

number of input port because the second argument is set as -1, while the output IO

signature describes that only one output is allowed. Both of the size of input port and

output port are the size of float number multiplying by the number of input port. With the

IO signature, it guarantees the digital signal streams to be appropriate for the mechanism

of this signal processing block, otherwise, the processing will be in chaos.

3.3.3 Type of Block
Typically, signal processing blocks are classified into four types: synchronized

block, decimation block, interpolation block and general block.

 Synchronized block guarantees the size of input and output streams to be

equal. If the number of digits of input stream for one input port is 1, the output

for one port will also produce 1 digit as the output stream.

 Decimation block guarantees the size of input and output streams to be

proportional. When the multiple is N, if the number of digits of input stream

for one input port is N, the processing will narrow down the signal and the

output for one port will produce 1 digit as the output stream.

 Interpolation block is the inverse of decimation block. In a word, 1 digit of

input stream will generate N digits of output stream.

28

 General block does not restrict the size of input and output streams. If the size

of input and output streams are not disciplined, general block is the best

choice.

The adder block in Appendix 3 inherits from synchronized block. The name of the

class of the block and IO signatures are regarded as the arguments when constructing the

synchronized block. As a result, the adder block is capable to work as a synchronized

block and follow its principles.

3.3.4 Core of Block
The real implementation of signal processing is executed in work method.

Typically, work method takes four arguments, number of input items, number of output

items, the head pointer of the vector of input item and the head pointer of the vector of

output items. The first two arguments are optional while the last two arguments are

necessary.

 Number of input items is collected by GNU Radio framework from the

previous signal processing block. As GNU Radio framework defined, every

work method returns the number of output items. Thus, if the next block

desires the number of input items, the returned number of output items from

previous block will be available for calculation.

 Number of output items is calculated manually or by default. Generally, the

signal processing algorithm requires the accurate number of output items. For

example, the adder block determines the size of output buffer by calculating

the number of output items.

29

 Head pointer of the vector of input item is the start point of a consecutively

stored input stream. Based on the pointer, the block can retrieve all the input

data and execute signal processing.

 Head pointer of the vector of output item the start point of a consecutive space

for holding the output data. Typically, part or entire input data are copied to

this space for the following calculation. For example, the adder block copies

all the data from the first input port and execute addition on the data from all

the input ports correspondingly.

GNU Radio framework defines independent thread for each block. When launch

the system, every block is initialized and operates simultaneously. Take pipeline in a

factory as example, the belt of each pipeline is working whenever product exists or not.

Once the first pipeline obtains raw materials, the processed materials are passed to next

pipelines until all the products are completed. Comparing to GNU Radio framework, the

execution of the constructor of a class is the initialization of pipelines and the work

method is the belt on each pipeline.

After initialization, the work method starts to work. The work flow of the work

method is listed as follows.

1. The Connect method connects current and previous block and the number of

output items and the output stream are available for current block.

2. Current block reads the number of output items of previous block as the

number of input items and calculates the number of output items.

3. Current block reads the output stream of previous block as the input stream.

30

4. Pass the number of output items and input stream to the work method and start

to process the signals.

5. Store the processed signals in the output buffer and return the number of

output items.

6. The connect method collects the output stream and the number of output items

for next block's use.

All of the blocks in the system keep operating until the system is shut down or the

work load is beyond the performance of the hardware.

3.3.5 Tags and Messages
Tags and messages are two vital mechanisms associated with most of the signal

processing blocks. Both of them transmit Meta data and information related to the data

streams. However, tags are transmitted along with data stream, while messages are

transmitted through a specific port. Figure 3.4 presents how tags works with data passed

from one block to another. Assume that one letter represents a small amount of data.

When data flows, the associated tags are transmitted simultaneously in parallel.

Meanwhile, the information of each tag may vary from others. At the input port of next

signal processing block, the tags are retrievable only if the position is known. In addition,

Figure 3. 4 Tags associated with some data at different positions on data stream

31

the accurate position is required for tag retrieving. For example, only knowing the

position of data b, f and p on the data stream shown in Figure 3.5 can the signal

processing block obtain the information stored in tags.

 Unlike tags, messages occupy a special port of the signal processing block.

Whenever the message is sent, the receiver block will call a bound function to deal with

the information stored in the message. Generally, the information in a message stored in

pairs with key and value. In the construct of OFDM and SC-FDMA modulation in GNU

Radio, the tags and messages are widely used for Meta data transmission in order to

simplify the flow graph and burden of programming.

Although the composition of signal processing block is not only what mentioned

above, smart pointer, IO signature, different types of blocks, core of blocks and the

mechanism of tags and messages are the essential components of signal processing block.

Smart pointer simplifies the maintenance of blocks after creating objects for blocks; IO

signature defines the input and output port, which is the foundation of communication;

different types of block distinguish the models of signal processing; the work method

conducts the execution of signal processing algorithm. As the trunk of a tree, these four

components consist of the backbone of C++ programs of signal processing block in GNU

Radio framework.

32

CHAPTER 4: PHYSICAL LAYER OF LTE IMPLEMENTED ON GNU RADIO

LTE standard adopts OFDM technology as the downlink modulation to provide

large channel capacity and better anti multipath fading performance. However, the

mobile devices require lower complexity and the control of power consumption. Hence,

Single Carrier Frequency Multiplexing Access (SC-FDMA) technology is utilized in

uplink communication. This chapter will explain the logic of the communication between

base station and user devices. Then the implementation of OFDM and SC-FDMA

modulation is introduced. The source codes are published to GitHub [21].

4.1 Communication Logic of User Device and Base Station
With the downlink and uplink communication systems, we are able to establish

the communication between user devices and base station in GNU Radio. This section

focuses on the establishment of communication by typical 3-way handshake model and

the packet allocation and identification.

4.1.1 3-Way Handshake
Originally, 3-way handshake model is adopted in TCP/IP. For simplicity, this

thesis implements the connection logic via 3-way handshake model. The procedure of 3-

way handshake is shown in Figure 4.1. To establish a connection, the user device sends a

request to base station with its device ID. Typically, the device ID is International Mobile

Equipment Identity (IMEI), which is the unique sequence for each mobile device.

33

Figure 4. 1 Communication logic between user device and LTE base station

The base station will check the IMEI with Home Location Register (HLR) where the

cellular network stores the information of each mobile device. If the device is roaming in

other area, the Visitor Location Register (VLR) will allocate a Temporary Mobile

Subscriber Identity (TMSI) which is an instead ID for roaming mobile devices. If the

base station assures the device ID, it sends an acknowledgement to user device to confirm

that it receives the request from the user device. After recognizing the acknowledgement

from base station, the user device sends back another acknowledgement to base station

for the confirmation of receiving the acknowledgement from base station. Finally, the

34

base station starts to transmit data requested by the user device after identifying the

answered acknowledgement from the user device. In conclusion, the request and

acknowledgement are sent back and forth for 3 times before base station transmits data to

the user device.

 Additionally, we create a scheme for disconnection of the data transmission after

the last data packet is transmitted. Showing in the Figure 4.1, the last two steps are the

procedure of transmission disconnection between user device and base station. Once the

last packet is transmitted, the base station sends an acknowledgement to the user device

for the notice of the end of transmission. Then the user device sends an acknowledgement

back to the base station if it receives the acknowledgement from the base station.

Eventually, this session is ended after the base station receives the acknowledgement

from the user device.

4.1.2 Packet Allocation and Identification
In this thesis, we assume the user device only send request and acknowledgement,

which are small amount of data, to the base station, while the base station send data with

high capacity, as well as acknowledgement with small size. Since the data modulation of

uplink communication indicates that the signal transmits in serial, the whole bandwidth is

occupied by one symbol at one time. Hence we do not consider about the subcarriers

allocation for uplink communication. On the other hand, the identification of user devices

on base station side utilizes the device ID in the header of each packet sent from user

devices. The header structure is introduced in Table 4.2. The flow graph of the

35

Figure 4. 2 The flow graph of the scheduler of the base station

implementation of packet allocation and Identification on base station side is shown in

Figure 4.2. The heart of the base station is a scheduler which is in charge of user devices

identification, dynamic resource allocation and packet dispatching. The dynamic resource

36

Table 4. 1: The representation of message types for packet from user device and base

station

Message type User device Base station

0 Request Acknowledgement btu

1 Acknowledgement utb Data

2 Acknowledgement end utb Acknowledgement end btu

allocation algorithms are introduced in Section 2.3.Previously, the base station creates a

buffer for storing the ID and message type of the active user devices. If an ID exists in

the buffer, the base station is transmitting acknowledgement or data to the corresponding

user device. The message types of the packet sent from user devices is shown in Table

4.1. If the message type of the packet received by base station is 0, it indicates that the

packet is a request from the user device; if the message type is 1, it indicates that the

packet is an acknowledgement for confirmation that the user device receives the

acknowledgement from the base station; the message type 3 implies that the packet is the

acknowledgement for knowing the data transmission completed.

 Now we explain the flow graph of the scheduler. First of all, the scheduler keeps

detecting incoming signals. As long as a valid packet is received, the scheduler resolves

the device ID and message type from the packet header. Then, it stores the ID and

message type in the buffer and identifies the type of the packet. If the scheduler does not

detect a valid packet, it will traverse the buffer to check if there is data for processing.

37

Based on the result of buffer checking, the scheduler may keep detect packet if no items

in the buffer or it may keep processing data for each device ID.

 Second, after figuring out the type of received packet, the scheduler traverses the

buffer and processes the data for each device ID based on the message type. If the

message type is 0, it places the symbols of the acknowledgement called

"acknowledgement btu" on the subcarriers acquired from dynamic resource allocation

algorithms; if the type is 1, the "acknowledgement utb" and the estimated channel

information calculated by the user device based on the previously transmitted

acknowledgement will be included in the incoming packet. Then it places data symbols

on the allocated subcarriers; if the type is 2, it removes the ID and its associated

information from the buffer since the data transmission is finished.

 Third, the symbols are probably not transmitted to the user devices immediately

after copied to the OFDM resource block. If there is more than one device ID in the

buffer, the subcarriers are impossible to be entirely allocated to one user device because

more than one user devices are receiving data from the same base station. Only if all of

the available subcarriers are occupied by data symbols can the base station emits the

signal to the air. Therefore, the schedule needs to traverse the buffer to guarantee the data

for all of the user devices are placed on their own subcarriers. Once the OFDM resource

block is ready for transmission, the scheduler adds an outer header for the OFDM

resource block for distinguishing the subcarriers for reconstruction of data packet.

 Fourth, if the last amount of data are place on OFDM resource block, the

scheduler will transmit the acknowledgement named "acknowledgement end btu" to the

38

corresponding user device. If the base station receives "acknowledgement end utb", the

scheduler removes the device ID from the buffer, which means the transmission is

completed.

 In order to obtain the required data packet from the signals, the user device owns

a decomposer for data screening according to the OFDM resource block structure. The

flow graph of the decomposer is shown in Figure 4.3. Based on the outer header of the

OFDM resource block, the decomposer is capable to distinguish the data on the

subcarriers with the same carrier ID. The structure of the OFDM resource block is shown

in Figure 4.4. According to the instance, the first 6-bit sequence on each subcarrier is the

carrier ID and the outer header consists of all of the carrier IDs. The subcarrier 1, 3, 4, 6

have the same carrier ID, which implies that the data on these subcarriers are in the same

data packet. If the performance of channel estimation is adequate for equalizer to

perfectly recover the data, the decomposer is able to recognize and reconstruct the data

packet from subcarrier 1, 3, 4, 6. Then, it separates the header of the data packet which

contains the information of the packet such as device ID, packet length and so forth.

Finally, the decomposer checks the resolved device ID to determine whether keep or

abort the packet. If the device Id matches, the user device receives a data packet

successfully, otherwise, it will not stop reconstructing data packet from the subcarriers

with different carrier Id until it find the data packet belonging to this user device.

 Once receiving a packet, the message type included in the packet header will

guide the behavior of the user device. The relationship between message type and the

39

Figure 4. 3 The flow graph of the decomposer on user device

Figure 4. 4 The structure of OFDM resource block (symbols are converted to binary)

data in the packet is listed in Table 4.1. If the message type is 0, it indicates that the

received packet is the acknowledgement which confirms that the request is received by

the base station. Meanwhile, the user device appends the estimated channel information

to the acknowledgement packet which will be sent to the base station for the completion

of establishment of connection. If the message type is 1, the user device receives the

requested data. If the message type is 2, the user device is informed that the last packet of

requested data is transmitted.

40

 In conclusion, this design for the communication logic between user device and

base station is the minimal of the wireless communication in the real world. More aspects

need to be taken into consideration to improve the performance of the wireless

communication system. Based on the design, the implementation of the downlink and

uplink is introduced in the following two sections.

4.2 Downlink Module
Orthogonal Frequency Division Multiplexing (OFDM) modulation is widely used

in varieties of communication standards such as WiMAX and LTE standards. Nowadays

the communication equipments which support these standards are ubiquitous since the

mobile communication technologies are developing rapidly. This section introduces the

basic theory of OFDM modulation first and then develops OFDM modulator and

demodulator via GNU Radio for the communication between LTE base station and

multiple users.

4.2.1 Introduction to OFDM
OFDM modulation is similar to Frequency Division Duplex (FDD) since they

divide a wide range of frequency into some small range of frequencies and allocate these

frequencies as channels to users. The difference is that OFDM allows these small ranges

of frequencies overlap a specific amount but they do not interfere with each other, in

other word, they are orthogonal with each other. In this case, the same bandwidth

contains much more channels than FDD so that the channel capacity increases

tremendously. The typical flow graph of OFDM modulation is shown in Figure 4.5.

41

Figure 4. 5 Typical Flow Graph of OFDM Modulation

When the complex symbols come into OFDM modulator, the serial data are converted

into parallel data which has N subcarriers transmitted simultaneously. Then compute

IDFT on the parallel data and append cyclic prefix to each OFDM symbol to protect data

symbols from Inter Symbol Interference (ISI). After converting the parallel data into

serial, the data is transmitted to the receivers. The demodulator does the reverse of the

actions of the modulator plus the work of recovery of the data from channel noise, multi-

path fading and Doppler frequency shift. Generally, a channel gain estimator figures out

the channel taps in frequency domain through known symbols or some blind estimation

algorithms. Subsequently, the equalizer recovers the symbols using the estimated channel

taps.

Although OFDM modulation contributes to more efficient bandwidth usage, the

small bandwidth of each subcarrier with no guard frequency introduces no neglecting of

42

Figure 4. 6 The Preamble Sequence Used for Timing Synchronization by Schmidl and

Cox (SC) algorithm

Inter Channel Interference (ICI) when frequency shift occurs. The sensitivity of

frequency shift of OFDM modulation has motivated a large amount of researches on

frequency offset estimation and the algorithms for synchronization. In this thesis, we

utilize a mature algorithm developed by Schmidl and Cox. Another disadvantage of

OFDM modulation is high peak-to-average power ratio (PAPR). Since the subcarriers are

transmitted in parallel, the transmitted signal is the sum of all the signals on each

subcarrier, which leads to some high peaks on the signal but the average amplitude keeps

relatively low. Considering about the cost and power control on mobile devices, LTE

standard applies OFDM modulation only for downlink communication.

4.2.2 Timing Synchronization and Frequency Correction
Unlike MATLAB simulation for OFDM based system, the communication system

in the real world require more consideration for signal transmission. The signal

synchronization and frequency correction is one of the most important issues on the

receiver devices. For signal synchronization and frequency correction at the frontend of

receiver, GNU Radio provides a block using Schmidl and Cox (SC) algorithm [4]. SC

algorithm uses preamble symbols created by Pseudo Noise (PN) sequences to detect the

start point of OFDM symbol on the receiver devices. The preamble sequence is designed

43

as Figure 4.6 shows. The sequence consists of two halves and the PN sequences are

placed only on odd positions. Besides, the sequences on the first half and second half are

the same. The core idea of SC algorithm is to compute the correlation of the halves of the

preamble symbols. Let R(d) be the energy of received signal, P(d) be the conjugate

multiplication result and M(d) be the timing metric that is used to detect the start point of

received symbols. The energy is

/2 1

2

0

() | () |
2

N

k

N
R d r d k





   (4.1)

and the conjugate multiplication of the preamble sequence is

/2 1

*

0

P() () r()
2

N

k

N
d r d k d k





    (4.2)

where d is the start position of the sliding window, k is the amount of shift of the window

and N is the length of the preamble sequence.

 R(d) is the energy of the half of the preamble sequence. P(d) calculates the

conjugate multiplication of shifting half preamble sequence and the other half. Finally,

the timing metric is measured by

2

2

| () |
()

(())

P d
M d

R d
 (4.3)

which is the correlation of halves of preamble symbols. Ideally, M(d) should be 1 if the

shifting part enters the range of symbols without ISI, which shows as a plateau in the

timing metric. However, if the noise exists, the height of the plateau will be lower than 1

(see Figure 4.7). When the correlation drops, the dropping position is the start point of the

44

Figure 4. 7 The timing metric M(d) with AWGN channel (SNR = 10dB) [4]

Figure 4. 8 The structure the implementation of Schmidl and Cox Timing

synchronization and frequency offset estimation algorithm in GNU Radio

data signal. The other part of SC algorithm is frequency offset estimation. The frequency

offset is done by calculating the angle between the conjugated first half of the preamble

sequence and the second half. The implementation structure of SC timing

synchronization algorithm is shown in Figure 4.8. The original solution contains a

matched filter after the division operator to help detecting the drop edge of the plateau.

45

However, the plateau is located in the cyclic prefix symbols without ISI. Thus, all of the

effective received symbols are preserved and can be recovered by the estimated channel

taps.

4.2.3 Implementation of OFDM by GNU Radio
 GNU Radio provides a simple example of OFDM modulator and demodulator

flow graph. However, this example only supports the communication between one user

device and one base station. In order to support multi-user communication, some required

block creation and modification are completed for establishment of the communication

between one base station and more than one user devices. Figure 4.9 shows the structure

of OFDM modulator that the base station sends data to user devices. Figure 4.10 shows

the structure of OFDM demodulator that one user device receives the data from the base

station. All of the blocks in OFDM modulator are explained as follows.

 Base station core

This block detects the user devices. It sends acknowledgement or requested

data to the user devices if it receives request or acknowledgement from user

devices. To process the request and send data stream to multiple user devices,

it contains a scheduler to manage the data which belong to different user

devices. The scheduler is explained in detail in Section 4.3. The dynamic

resource allocation algorithms are implemented in this block.

 Stream CRC32

46

This is a built-in block of GNU Radio. It generates 4 bytes Cyclic

Redundancy Check (CRC) according to the data packet. The 4 bytes are

attached to the end of data packet.

 Packet header generator

The original packet header generator only contains the packet length, packet

ID and an 8-bit tiny CRC, which is only compatible with one-to-one

communication. In order to support multi-user communication, the header

structure is designed in Table 4.2. The use of message type is mentioned in

Section 4.3.

 Repack bits

This is a built-in block of GNU Radio. It converts some bits into an integer for

the preparation of constellation mapping. For instance, this thesis uses QPSK

to map the payload stream. Thus, this block converts every 2 bits into an

integer from 0 to 3.

Table 4.2 Packet header structure for multi-user communication

Items in header Number of bits

Device ID 16

Message type 2

Packet length 11

Packet number 11

CRC 8

47

 Chunks to symbols

This is a build-in block of GNU Radio. It maps the integers from repack bits

block to varieties of constellation symbols or directly from other blocks that

the data will be mapped to BPSK symbols. For example, the integers from 0

to 3 are mapped to QPSK symbols.

 Tagged stream mux

This built-in block merges the header symbols and payload symbols.

 OFDM carrier allocator

This block is modified from the original one provides by GNU Radio for

working with the scheduler of the base station core. It gather the packets with

different device ID and allocates them on specific subcarriers according to the

results of dynamic resource allocation algorithms. Before sending symbols to

next block, it adds two synchronization words for time synchronization and

frequency offset estimation. Moreover, the second synchronization word also

acts as the training sequence for initial channel estimation.

 OFDM cyclic prefixer

This build-in block copies the last N symbols from each OFDM symbol and

paste to the front of it. Typically, N is equal to the quarter of the amount of

subcarriers.

Main blocks in OFDM demodulator are explained as follows.

 Schmidl & Cox OFDM sync

48

This build-in block implements SC algorithm to obtain the timing metric and

frequency offset. Although the algorithm cannot detect the exact start symbol

of required data, the frame equalizer will recover the correct order of symbols

based on the estimated channel taps. After calculation the timing metric, it

sends the trigger to inform the next block where is the start symbol of a packet.

 Header/payload demux

This build-in block plays an critical role in received data processing. First, it

checks the trigger signal from the Schmidl & Cox OFDM synchronization

block. Once it finds the trigger, the synchronization words and outer header

will be transmitted first. After receiving the information from the parsed outer

header, it transmits the rest of data along with the information to the second

frame equalizer for the identification of the data belonging to this user device.

 Channel estimator

Based on the second synchronization word, this block calculates the initial

channel taps and sends them to the rest of blocks by tags. Before transmitting

the outer header symbol, it removes both of the synchronized words.

 OFDM frame equalizer

There are two frame equalizers, one works on the outer header symbols and

the other one works on data packets. The one follows the channel estimator

does equalization on the outer header symbols and transmits them to the

serializer. The other one takes heavy burden work on separating the packet

according to the subcarriers with the same packet ID. After reconstructing

49

each packet, it parses the header of each packet and obtain the device ID.

Comparing to the device ID of the current user device, this block only passes

the data belonging to the valid device.

 OFDM serializer

This block converts parallel transmitted data to serial based on the information

of occupied carriers.

 OFDM outer header parser

This block analyzes the outer header and figure out the index of subcarriers

with the same packet ID. Then it informs the second frame equalizer for

packet reconstruction.

 User device core

This block simulates the behavior of terminal devices such as mobile phones.

Initially, it sends request to base station with its device ID. Then it answers the

acknowledgement and prepares for receiving required data from the base

station. The logic of this block is described in detail in Section 4.3.

4.3 Uplink Module
Single Carrier Frequency Division Multiple Access (SC-FDMA) is accepted by

3GPP for the use of uplink transmission in LTE standard. This section introduces the

theory of SC-FDMA modulation and compares SC-FDMA to OFDM modulation. Finally,

the implementation in GNU Radio is introduced.

50

Figure 4. 9 The flow graph of OFDM modulator built by GNU Radio

51

Figure 4. 10 The flow graph of OFDM demodulator built by GNU Radio

52

Figure 4. 11 Flow Graph of SC-FDMA Modulation

4.3.1 Introduction to SC-FDMA
As we know, OFDM technology transmits data in parallel, while SC-FDMA

transmits data sequentially over the whole bandwidth which is why it is called single

carrier FDMA. Although OFDM modulation improves the utility of spectrum and raises

the capacity of channel, the high PAPR is still not ignorable. Since each subcarrier of

OFDM modulation come into SC-FDMA modulator, the S/P converter changes the data

to parallel with M time domain symbols. Then the parallel symbols are converted to

frequency domain by M-point DFT. After placing the M parallel symbols to N

subcarriers (M<N), the N-point IDFT converts data to time domain again. The rest part of

the modulator is the same as OFDM modulator. Similar to OFDM demodulator, SC-

FDMA demodulator adds a reverse subcarrier mapping and M-point IDFT after the

equalizer. Since SC-FDMA modulation is the same as OFDM modulation but pre-

53

processes the data by a smaller point DFT and maps it to N subcarriers, SC-FDMA

modulation is also named DFT-precoded OFDM or DFT-spread OFDM modulation.

There are two ways of subcarrier mapping: localized and distributed.

 Localized mapping

Localized mapping places frequency domain data together over a wide

bandwidth (Figure 4.12a). Suppose we have 4 symbols in a data block, they

are carried by 4 consequent subcarriers on a wide bandwidth with 16

subcarriers and the rest of subcarriers are filled with 0. After IDFT, symbols

are distributed to the whole bandwidth. Every two symbols are similar to be

interpolated 3 symbols between them.

 Distributed mapping

Distributed mapping disperses frequency domain symbols to the entire

bandwidth (Figure 4.12b). Take the same 4-symbols data block as example,

they are carried by 4 subcarriers with 3 subcarriers gap between each other.

All the gap subcarriers are filled with 0. After IDFT, original data symbols are

repeated in time domain over the symbol (OFDM symbol) period. Basically,

distributed subcarrier mapping is simply implemented by interleaver.

 In conclusion, the structure of SC-FDMA and OFDM is similar but the data

contained on a symbol is different. Both of SC-FDMA and OFDM divides a wide

bandwidth into small pieces and each piece carries data. However, the subcarriers of

OFDM are allocated to different data such as the data with different sources or varieties

of modulation, while all subcarriers of SC-FDMA contain one data symbol (Figure 4.13).

54

Figure 4. 12 Subcarrier Mapping Methods: (a) Localized; (b) Distributed

Therefore, each SC-FDMA symbol is the original data with same modulation like QPSK

or 64QAM. As a result, the sum of the power of signals on all subcarriers remains even

and low level, which means a low PAPR level.

4.3.2 Implementation of SC-FDMA by GNU Radio
The implementation of SC-FDMA is similar to that of OFDM. Most blocks from

OFDM modulator are reserved but the essential modification is done for the SC-FDMA

modulator. Since SC-FDMA modulation is the same as OFDM except for an additional

55

Figure 4. 13 Different symbol structures of OFDM and SC-FDMA

DFT and subcarrier mapping, two new blocks are created: SC-FDMA Carrier Allocator

and SC-FDMA Interleaver. These two blocks are added before the reverse FFT block.

Between the two new blocks, a forward FFT block is inserted. Thus, the SC-FDMA

modulator is complete (Figure 4.13). The additional blocks are introduced as follows.

 SC-FDMA Carrier Allocator

 This block modifies the original OFDM Carrier Allocator. As the work is

mapping original consequent data to parallel, the properties like pilot symbols,

pilot carriers and synchronization words are removed. FFT length stands for

the value of M mentioned in Section 4.2.1. The occupied carriers property

covers all of the M subcarriers.

56

 FFT

Since we need to execute forward FFT after S/P converter, this FFT block is

set as Forward. Besides, the FFT length is the same as the value of M. Other

properties remain the same.

 SC-FDMA Interleaver

The interleaver, acting as subcarrier mapping, distributes the frequency

domain data symbols to the larger set of subcarriers. The distribution scheme

is based on Figure 4.11b. The lower FFT length stands for M and the upper

FFT length stands for N mentioned in Section 4.2.1. The SC-FDMA

demodulator is also similar to OFDM demodulator but the equalizer is simpler

and the symbol decision is separated from the equalizer. The packet header

structure is the same as it in OFDM modulation; however the packet header

parser is independent to other blocks. The newly created and modified blocks

are explained as follows.

 SC-FDMA frame equalizer

Since there is no consideration about the packet distribution from user device

to base station, the complicated logic and algorithm for packet identification is

unnecessary in this block. Besides, the symbol decision is executed after the

deinterleaved data with FFT computing. Hence, the equalizer and symbol

decision are separated.

57

Figure 4. 14 The flow graph of SC-FDMA modulator built by GNU Radio

58

Figure 4. 15 The flow graph of SC-FDMA demodulator built by GNU Radio

59

(a) SC-FDMA (b) OFDM

Figure 4. 16 The Waveform of Transmitted Signal of SC-FDMA and OFDM

 Symbol decision

This block converts the complex symbols to binary data according to the

constellation mapping. In this thesis, we use BPSK on packet header and use

QPSK on payload data.

4.2.3 PAPR Comparison between OFDM and SC-FDMA
Typically, the transmitted signal of OFDM is shown in Figure 4.16b. Within the

known timeline, we can see most part of the waveform keeps under the amplitude 0.5.

However, there exist some peaks with amplitude over 0.5, especially the peak with much

higher amplitude at 1.6ms. Thus, the PAPR remains a high level after OFDM modulation.

Unlike OFDM transmitted signal waveform, the peak of waveform of SC-FDMA

transmitted signal stays almost in the same level, which contributes to a close value of

peak and average. Therefore, the PAPR of SC-FDMA modulation is quite lower than

OFDM modulation.

60

CHAPTER 5: SIMULATION AND RESULT DISCUSSION

Since the limit of time and heavy burden of programming, this thesis simulates

the system without USRP devices. In other words, this simulation uses the channel

models provided by GNU Radio. In this case, the simulation is similar to MATLAB but

using C++ and Python instead of MATLAB language. However, this work is the vital

preparation for the simulation based on real world channel. The work on real world

channel will be done later.

 (a) AWGN channel (b) Multi-path fading channel

Figure 5. 1 The channel model for the simulation

61

Table 5. 1 Simulation platform

Items Version

Operating System Ubuntu 12.04 LTS

GNU Radio 3.7.5.1

g++ 4.6.3

Python 2.7

5.1 Simulation Model and Environment
The simulation platform is listed in Table 5.1. The whole system consists of a

signal processing module named "gr-howto", two GRC flow graph files named "full-

ofdm.grc" and "uplink.grc", and some C++ blocks provided by GNU Radio, which are

explained in Chapter 4. The source code is updated to GitHub and share to public [21].

After compiling all of the C++ blocks, the system can be launched by the Python

programs generated by the two GRC flow graph files. The simulation in "full-ofdm.grc"

focuses on the LTE downlink communication, while that in "uplink.grc" focuses on the

LTE uplink communication.

This simulation focuses on the dynamic resource allocation and the performance

of the LTE downlink connection. The channel information is shown in Figure 5.1. Figure

5.1a is the AWGN channel model with noise voltage 0.01, while Figure 5.1b is the multi-

path fading model with Rayleigh distribution and a small normalized maximum Doppler

shift. The bandwidth is set as 1 MHz.

62

 For the uplink, we only check the functionality since we do not apply dynamic

resource allocation algorithms for uplink. Although the water-filling algorithm is best for

single user, one SC-FDMA symbol contains just one data symbol over the entire

bandwidth. Thus, implementing water-filling algorithm gains the complexity of the

uplink connection. For the downlink, except for functionality checking, we apply all of

the three dynamic resource allocation algorithms on the base station block. For the

functionality check, we assign 64 subcarriers for the transmitted signal. In order to

present the result in a clear way, we assume the number of subcarrier N = 8 and the

number of users M = 3. The results of subcarrier and power allocation are collected from

GNU Radio and plot in MATLAB.

5.2 Results and Discussion
The results and discussion is divided into two parts: uplink and downlink

functionality check and the dynamic resource allocation analysis.

5.2.1 Uplink and Downlink Functionality Check
Both of uplink and downlink system introduce the 32-bit Cyclic Redundancy

Check (CRC32) to determine whether the received packet is original one or not. Since the

conflict probability of CRC32 is ignorable, we assume that the received packet is original

if it passes the CRC32 check. When we send packets from user device to base station, the

base station core block resolves a list of information shown in Figure 5.2. The key

"rx_time" is the time point that the base station core receives the packet;

"ofdm_sync_carr_offset" indicates the amount of the frequency shift;

"ofdm_sync_chan_taps" shows the channel gains; "device_id" presents the source of the

63

Figure 5. 2 The list of information printed in the console

Figure 5. 3 Channel gains on the 8 subcarriers for each user

packet; "message_type" presents the type of data in the packet; "packet_num" shows the

number of the current packet; "packet_len" shows the size of the packet. Only if the list

of information is printed in the console does the base station obtains the corresponding

packet. In the functionality check for both uplink and downlink, we see most of the lists

of information, which means the most of the packets reach the receiver.

 Subsequently, we test the communication logic for both user device and base

station. The criterion is the packet transmission and reception follows the communication

logic mentioned in Section 4.1. We check the logic through the lists of information. The

64

(a) Results obtained by GNU Radio

(b) Results obtained by [14]

Figure 5. 4 Result comparison between GNU Radio and [14] for Max-Sum algorithm

 (a) Results obtained by GNU Radio

(b) Results obtained by [14]

Figure 5. 5 Result comparison between GNU Radio and [14] for Max-Min algorithm

65

 (a) Results obtained by GNU Radio

(b) Results obtained by [14]

Figure 5. 6 Result comparison between GNU Radio and [14] for Max-Product algorithm

device id and message type are the critical information for logic test. At the perspective

of the user device, the result is that after sending the request with device ID "12345" and

message type "0", it receives the packet with the same device ID and message type "0",

which means the user device receives the "acknowledgement btu" from base station.

Then, the user device receives packets with the same device ID and message type "1"

after sending acknowledgement to base station, which means the user device is receiving

the requested data. Several seconds later, the packet with same device ID and message

type "2" is received. Finally the user device sends a packet with message type "2" to base

station and the session is over.

66

In conclusion, this series of behavior implies the functionality of the system

works perfectly. We do not need to check the functionality from the other side because

the entire logic binds each part of the system. If one works well, the others work too.

However, we still checked it at the base station side and it works perfectly.

5.2.2 Dynamic Resource Allocation Algorithms Test
Before simulating with the channel models provided by GNU Radio, we test the

algorithms based on the channel gains almost same as the simulation done by Akram

Baharlouei [14] and compare the results obtained from GNU Radio to that in [14]. The

channel gains for each user in [14] are shown in Figure 5.3.

Figure 5.4 shows the result of subcarrier allocation from Max-Sum algorithm.

Figure 5.5 shows the result of subcarrier allocation from Max-Min algorithm. Figure 5.6

shows the result of subcarrier allocation from Max-Product algorithm. The "a" part of the

three figures is the result obtained by GNU Radio, while the "b" part is the result from

[14]. In "a" part of each figure, the bar marked by "A" means that this user occupies the

corresponding subcarrier, while in "b" part the shown bar indicates that this subcarrier is

allocated to this user. Comparing to the results of the three algorithms, the

implementation of the three algorithms works perfect since all of the three algorithms

achieve the same result as that in [14]. Thus, the correctness of the implementation is

proved to be true by the result comparison.

5.2.3 Algorithms Simulation with GNU Radio Channel Model
The channel information is obtained by the user device based on the

acknowledgement from the base station. Then, the information is sent back to base

67

station along with the acknowledgement from the user device. We implemented Max-

Sum, Max-Min and Max-Product algorithm respectively.

Figure 5.7 shows the result of subcarrier allocation from Max-Sum algorithm. The

channel information of three user devices is plotted in a group bar chart. The bars which

are marked with an "A" above indicate the subcarrier is allocated to the corresponding

user. We see the channel condition of user 1 is the worst since no channel gain is better

than both user 2 and 3. Furthermore, most of the channel gains are worse than the other

two users. The gains of user 2 and 3 are higher but that of user 3 is more even. According

to the Figure 5.7, the result of resource allocation from GNU Radio is exactly matches

the analytical result by Max-Sum algorithm. All of the subcarriers are allocated to the

user with best channel gain. Unfortunately, the user 1 lost all opportunities to obtain a

channel in the 8 subcarriers. In conclusion, the largest rate of this algorithm is guaranteed

but sometimes the user may have significant latency or lost connection from the

communication.

Figure 5.8 shows a different solution for the resource allocation using Max-Min

algorithm. Obviously, user 1, the worst user, obtains opportunities to utilize the subcarrier

resources. According to the algorithm, each user obtains the subcarrier at the position of

best channel gain. Then, the rest of the algorithm calculates the accumulation of the

channel gains where the subcarriers are occupied and determine to allocate subcarrier to

which user. Finally, we see total rate of each user has no large gap between each other.

68

Figure 5. 7 Subcarrier allocation for Max-Sum algorithm

Figure 5. 8 Subcarrier allocation for Max-Min algorithm

69

Figure 5. 9 Subcarrier allocation for Max-Product algorithm

Figure 5.9 shows the result of subcarrier allocation from Max-Product algorithm.

We set ,miniR as 0 so that the first two stages of the algorithm are the same as Max-Min

algorithm. The only difference is the determination condition in the third stage. Under the

effect, we can see the difference resource allocation strategy on subcarrier 1, which is

allocated to user 3. Since the channel gain of user 3 is larger than user 1, the data rate on

subcarrier 1 by Max-Product algorithm is larger than that by Max-Min algorithm

according to Shannon's Equation. The channel gains on other subcarriers keep same as

the result of Max-Min algorithm. Eventually, this solution improves the total rate of the

system comparing to Max-Min algorithm.

In conclusion, the result collected from GNU Radio matches the theoretical

analysis of these dynamic resource allocation algorithms. Max-Sum only allocates

70

subcarrier to the best channel gain; Max-Min allocate more subcarriers to the worst

channel gain; Max-Product acts as a centrist which makes a moderate strategy.

Since the power allocation and the rate calculator are not completed using GNU

Radio, the power allocation on each subcarrier is the same.

71

CHAPTER 6: CONCLUSION AND FUTURE WORK

This thesis supposes to implement the theory through real world. Three basic

dynamic resource allocation algorithms are implemented: Max-Sum algorithm aims at

maximizing the total rate of the communication system; Max-Min algorithm focuses on

the fairness of dynamic resource allocation making sure the user with the worst channel

condition has fair opportunities to obtain the communication resource; Max-Product

algorithm introduces Nash Bargaining Solution to overcome the disadvantages of Max-

Sum and Max-Min algorithms.

To implement these algorithms in the real world channel, we used GNU Radio, a

highly flexible and low cost platform. Unlike the simulation on computer, GNU Radio

can work with USRP for signal transmission and reception. To implement the dynamic

resource allocation algorithms for LTE system, the thesis completes building the

downlink and uplink system based on LTE technologies. The downlink and uplink work

perfect in GNU Radio. Besides, the implementation of the behavior simulation of user

device and base station is completed and work well in GNU radio.

The original plan for the thesis was to get the system working both with GNU

Radio and its hardware device USRP. However, the limited time and high burden work of

programming on GNU Radio left this part of work behind. Thus, the future work on the

implementation of dynamic resource allocation for LTE system by GNU Radio is to let

72

the user device and base station transmit and receive signal through USRP. Meanwhile,

the base station is able to detect and establish connection with more than one user devices.

Moreover, the power allocator will be built before transmission. Furthermore, the

ultimate goal of this work is to implement an LTE base station on one computer and

URSP so that our mobile phones can find the network provided by GNU Radio and send

a call and message to each other, like the OpenBTS does.

73

APPENDIX A: RESOURCE ALLOCATION ALGORITHM SOURCE CODE

The three dynamic resource allocation algorithms consist of three main C++

functions for the implementation of the algorithms and four utility functions for finding

the maximum or minimum value and corresponding index from a vector or an array.

A.1 Max-Sum Algorithm
vector<vector<int> > maxsum(vector<vector<double> > chan){
 vector<vector<int>> result;
 for (int i = 0; i < chan.size(); i++){
 vector<int> a;
 result.push_back(a);
 }

 double* temp = new double[chan.size()];

 for (int i = 0; i < chan[0].size(); i++){
 for (int j = 0; j < chan.size(); j++){
 temp[j] = chan[j][i];
 }
 result[find_max_index(temp)].push_back(i);
 }
 return result;
}

A.2 Max-Min Algorithm
vector<vector<int> > maxmin(vector<vector<double> > chan){
 //initialization
 vector<double> R(chan.size(),0);

 vector<vector<int> > result;
 for (int i = 0; i < chan.size(); i++){
 vector<int> a;
 result.push_back(a);
 }

 //step 2
 for (int i = 0; i < chan.size(); i++){
 int n = find_max_index(chan[i]);
 result[i].push_back(n);

74

 R[i] += chan[i][n];
 for (int j = 0; j < chan.size(); j++){
 chan[j][n] = 0;
 }
 }

 //step3
 while (find_max(chan[0]) != 0){
 int user = find_min_index(R);
 int n = find_max_index(chan[user]);
 result[user].push_back(n);
 R[user] += chan[user][n];
 for (int j = 0; j < chan.size(); j++){
 chan[j][n] = 0;
 }
 }
 return result;
}

A.3 Max-Product Algorithm
vector<vector<int> > maxproduct(vector<vector<double> > chan){
 //initialization
 double rmin = 0; // assume Rmin is 0 for all users

 vector<double> R(chan.size(), 0);
 vector<vector<double> > nbs_metric;
 vector<double> gain_allocated(chan.size(), 0);
 for (int i = 0; i < chan.size(); i++){
 vector<double> a;
 nbs_metric.push_back(a);
 }

 vector<double> user_set; // should be int
 for (double i = 0; i < chan.size(); i++){
 user_set.push_back(i);
 }

 vector<vector<int> > result;
 for (int i = 0; i < chan.size(); i++){
 vector<int> a;
 result.push_back(a);
 }

 //step 2
 //find user with largest gain
 while (find_max(user_set) >= 0){
 vector<double> temp;

 for (int j = 0; j < user_set.size(); j++){
 if (user_set[j] != -1){
 temp.push_back(find_max(chan[j]));

75

 }
 else{
 temp.push_back(0);
 }
 }
 int user = find_max_index(temp);

 while (R[user] <= rmin){
 int n = find_max_index(chan[user]);
 result[user].push_back(n);
 R[user] += chan[user][n];
 gain_allocated[user] += chan[user][n];
 for (int m = 0; m < chan.size(); m++){
 chan[m][n] = 0;
 }
 for (int k = 0; k < nbs_metric.size(); k++){
 if (nbs_metric[k].size() != 0){
 nbs_metric[k][n] = 0;
 }
 }
 }
 user_set[user] = -1;

 //calculate nbs metric
 for (int a = 0; a < chan[0].size(); a++){
 nbs_metric[user].push_back(chan[user][a] /
gain_allocated[user]);
 }

 }

 //step3
 while (find_max(chan[0]) != 0){
 vector<double> temp;

 for (int j = 0; j < nbs_metric.size(); j++){
 temp.push_back(find_max(nbs_metric[j]));
 }
 int user = find_max_index(temp);

 int n = find_max_index(chan[user]);
 result[user].push_back(n);
 R[user] += chan[user][n];

 //update nbs metric
 gain_allocated[user] += chan[user][n];

 for (int a = 0; a < chan[0].size(); a++){
 nbs_metric[user][a] = chan[user][a] / gain_allocated[user];
 }

 for (int m = 0; m < chan.size(); m++){

76

 chan[m][n] = 0;
 }
 for (int k = 0; k < nbs_metric.size(); k++){
 nbs_metric[k][n] = 0;
 }
 }
 return result;
}

A.4 Finding Maximum Value From Vector
double find_max(vector<double> a){
 double max_value = -1;
 for (int i = 0; i < a.size(); i++){
 if (a[i] >= max_value){
 max_value = a[i];
 }
 }
 return max_value;
}

A.5 Finding the Index of Maximum Value From Array
int find_max_index(double a[]){
 double max_value = 0;
 int max_index = -1;
 int l = sizeof(a);
 for (int i = 0; i < sizeof(a); i++){
 if (a[i] >= max_value){
 max_value = a[i];
 max_index = i;
 }
 }
 return max_index;
}

A.6 Finding the Index of Maximum Value From Vector
int find_max_index(vector<double> a){
 double max_value = 0;
 int max_index = -1;
 for (int i = 0; i < a.size(); i++){
 if (a[i] >= max_value){
 max_value = a[i];
 max_index = i;
 }
 }
 return max_index;
}

77

A.7 Finding the Index of Minimum Value From Vector
int find_min_index(vector<double> a){
 double min_value = 10000;
 int min_index = -1;
 for (int i = 0; i < a.size(); i++){
 if (a[i] <= min_value){
 min_value = a[i];
 min_index = i;
 }
 }
 return min_index;
}

78

REFERENCES

[1] A. Baharlouei and B. Jabbari, "Efficient and Fair Power and Subchannel

Allocation in Multiuser OFDM Networks," IEEE communications

letters, 17 (10), p. 1905 - 1907, 2013

[2] H. G. Myung, J. Lim, and D. J. Goodman, "Single Carrier FDMA for Uplink

Wireless Transmission," IEEE Vehicular Technology Magazine, vol. 1, no. 3, pp.

30-38, Sep. 2006.

[3] H. G. Myung, "Introduction to Single Carrier FDMA," 15th European Signal

Processing Conference, pp. 2144-2148, Sep. 2007.

[4] T.M. Schmidl and D.C. Cox, "Robust frequency and timing synchronization for

 OFDM," IEEE Transactions on Communications, 1997.

[5] G. Ren, H. Zhang and Y. Chang, "SNR estimation algorithm based on the

 preamble for OFDM systems in frequency selective channels," IEEE Transactions

 on Communications, VOL. 57, NO.8, August 2009

[6] W. Rhee, and J. Cioffi, "Increase in Capacity of Multiuser OFDM System using

 Dynamic Subchannel Allocation," in Proc. IEEE VTC, 2000.

[7] Z. Shen, J. G. Andrews and B. L. Evans, "Adaptive Resource Allocation in

Multiuser OFDM Systems with Proportional Rate Constraints," IEEE Trans.

Wireless Commun., vol. 4, no. 6, 2005.

[8] J. Jang and K. B. Lee, "Transmit power adaptation for multiuser OFDM systems,"

IEEE J. Select. Areas Commun., vol. 21, no. 2, 2003.

[9] B. Mathias, "Dynamic resource allocation in OFDM systems: an overview of

cross-layer optimization principles and techniques," IEEE network, 21 (1), p. 53 -

59, 2007

[10] N. Damji, "Dynamic Downlink OFDM Resource Allocation With Interference

Mitigation and Macro Diversity for Multimedia Services in Wireless Cellular

Systems," IEEE transactions on vehicular technology, 55 (5), p. 1555 - 1564,

2006

[11] T. Wu, "Dynamic and fair resource allocation algorithm for OFDM

systems," IEEE communications letters, 11 (12), p. 931 - 933, 2007

79

[12] K. Letaief, "Advances in smart antennas - Dynamic multiuser resource allocation

and adaptation for wireless systems," IEEE wireless communications,13 (4), p. 38

- 47, 2006

[13] Y. Zhang, "A Distributed Algorithm for Resource Allocation in OFDM Cognitive

Radio Systems," IEEE transactions on vehicular technology, 60 (2), p. 546 - 554,

Feb. 2011

[14] A. Baharlouei and B. Jabbari, "Dynamic Subchannel and Power Allocation using

Nash Bargaining Game for Cognitive Radio Networks with Imperfect PU Activity

Sensing," 8th International Conference on Cognitive Radio Oriented Wireless

Networks, 2013.

[15] 3GPP, "LTE; Evolved Universal Terrestrial Radio Access; Physical Channels and

Modulation", 3GPP TS 36.211, Jul. 2013

[16] 3GPP, "LTE; Evolved Universal Terrestrial Radio Access; Multiplexing and

Channel Coding", 3GPP TS 36.212, Jul. 2013

[17] 3GPP, "LTE; Evolved Universal Terrestrial Radio Access; Physical Layer

Procedure", 3GPP TS 36.213, Jul. 2013

[18] 3GPP, "LTE; Evolved Universal Terrestrial Radio Access and Evolved Universal

Terrestrial Radio Access Network; Overall Description", 3GPP TS 36.300, Sep.

2013

[19] 3GPP, "LTE; Evolved Universal Terrestrial Radio Access; Medium Access

Control Protocol Specification", 3GPP TS 36.321, Jul. 2013

[20] W. Zhang, "Game and Society," Peking University Press, Jan. 2013

[21] H. Cheng, Thesis Source Code, https://github.com/harrychk/github-repository,

last retrieve: Dec. 2 2014

[22] T. M. Cover and J. A. Thomas, "Elements of Information Theory," New York:

Wile, 1991.

80

BIOGRAPHY

Hanke Cheng received his BS degree in Electrical Engineering from Wuhan University

of Technology, China in 2011. Subsequently, he continued his MS degree in Electrical

Engineering at George Mason University, Fairfax, VA in Spring 2011. Before the MS

program, he completed the study at Linnaeus University, Sweden in 2011and got the BS

degree in Computer Science. His research interests are GNU Radio, wireless

communication.

