
DATA COLLECTION TECHNIQUES USING MULTI-CHANNEL
NETWORK CODING IN LOW-POWER AND LOSSY NETWORKS

by

Mansour Abdulaziz
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
In Partial fulfillment of

The Requirements for the Degree
of

Doctor of Philosophy
Computer Science

Committee:

Dr. Robert Simon, Dissertation Director

Dr. Hakan Aydin, Committee Member

Dr. Daniel Menasce, Committee Member

Dr. Jill Nelson, Committee Member

Dr. Sanjeev Setia, Department Chair

Dr. Kenneth Ball, Dean, Volgenau School
of Engineering

Date: Summer Semester 2016
George Mason University
Fairfax, VA

Data Collection Techniques Using Multi-Channel Network Coding In Low-Power and
Lossy Networks

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Mansour Abdulaziz
Master of Science

Missouri University of Science and Technology, MO, 2010
Bachelor of Science

Kuwait University, Kuwait, 2004

Director: Dr. Robert Simon, Professor
Department of Computer Science

Summer Semester 2016
George Mason University

Fairfax, VA

Copyright c© 2016 by Mansour Abdulaziz
All Rights Reserved

ii

Dedication

I dedicate this dissertation to my patient and stimulating wife, Maryam Dashti, who en-
dured the homesick while nursing my lovely angels: Abdullah, Fatma, Zainab and Maryam.
She strengthened me with unconditional support and enlightenment. I also dedicate this
dissertation to my parents and my wife’s parents for their continued prayers and enthusi-
asms.

iii

Acknowledgments

I would like to thank the following people who made this possible. First, I want to thank
my advisor, Dr. Robert Simon for all of his supervision, support, and endurance. I also
want to thank Dr. Hakan Aydin, Dr. Daniel Menasce and Dr. Jill Nelson for their feedback
to enhance my dissertation.

iv

Table of Contents

Page

List of Tables . vii

List of Figures . viii

Abstract . x

1 Introduction . 1

1.1 Thesis Overview . 5

1.2 Dissertation Roadmap . 7

2 Background and Related Works . 8

2.1 Low-Power and Lossy Network . 8

2.2 Network Coding . 11

2.3 Data Collection Architectures . 13

2.4 Mobility Models . 15

3 System Model . 18

3.1 LLN Node Model . 18

3.2 Channel Model . 20

3.3 Data Model . 21

3.4 Sink Model . 22

4 Multi-Channel Network Coding for LLN Convergecasting 23

4.1 MuCode Protocol . 23

4.2 Multi-Sink . 30

4.2.1 Multi-Sink Tree Construction . 31

4.2.2 Multi-Sink Subtrees . 34

4.2.3 Channel Assignment . 35

4.2.4 Synchronized Multi-Sink Transmission 36

4.3 Minimizing Data Rate Load . 36

4.3.1 Optimal Formulation . 38

4.4 Heuristic . 40

4.5 Evaluation . 41

4.5.1 MuCode Performance . 41

4.5.2 Latency Evaluation for Multi-Sink 49

v

5 MuTrans: Uncontrollable Predictable Mobility 53

5.1 MuTrans Architecture . 53

5.2 System Optimization . 54

5.2.1 Data Delivery Latency Analysis . 54

5.2.2 Optimization . 58

5.3 MuTrans Protocol . 61

5.3.1 Data Load Balancing . 62

5.3.2 Utilized Fair Scheduling . 64

5.4 Evaluation and Results . 67

5.4.1 Packet Delivery Rate (PDR) . 68

5.4.2 Network Throughput . 69

5.4.3 Trips Required for Data Delivery . 70

5.4.4 Energy Consumption . 71

6 MuCC: Controllable Predictable Mobility . 73

6.1 MuCC Architecture . 73

6.1.1 Sensor Layer: Distributed and Scalable Encoded Clustering 77

6.1.2 MuCar Layer: Trajectory Decision 77

6.2 MuCC Protocol . 78

6.3 MuCar Motion Planning . 82

6.4 System Analysis . 83

6.4.1 Packet Size Boundary . 87

6.4.2 Transmission Queue . 88

6.4.3 Energy Consumption . 90

6.5 Adaptive Cluster Heads . 90

6.6 Evaluation . 94

6.6.1 Packet Delivery Rate (PDR) . 95

6.6.2 Packets Latency . 98

6.6.3 Energy Consumption . 99

6.6.4 Covered Distance . 100

7 Future Work . 103

8 Conclusion . 104

A Appendix . 106

A.1 Uploading Optimization Problem . 106

Bibliography . 108

vi

List of Tables

Table Page

4.1 MuCode Notations Table . 24

5.1 MuTrans Notations Table . 56

vii

List of Figures

Figure Page

2.1 Example of Using Multi-Channel . 9

2.2 An example of network coding reliability. 11

4.1 An arbitrary Convergecast network . 25

4.2 The average performance of PDR and Latency versus PER. 43

4.3 The average packet delay with different packet error rates in grid networks. 44

4.4 Average throughput with different packet error rates in grid networks. . . . 45

4.5 Average throughput with different packet error rates in single chained networks. 46

4.6 Average network power with different packet error rates in grid networks. . 47

4.7 Average network power with different packet error rates in single chained

networks. 48

4.8 Average packet delay with different number of nodes deployed on the network

with no packet errors with variety of number of sinks. 50

5.1 MuTrans System Model . 53

5.2 A scheduling example for < = 3 and Γj = 9 head nodes at polling sector j.

Each number indicates the number of packets that must be uploaded to the

Mobile Collector where 3 uploading schedules are required. 59

5.3 A scheduling example: (a) the schedules before using Lemma (5.2.2); (b) the

schedules after using Lemma (5.2.2). 60

5.4 An example of the candidate head nodes per member node. Each number

represents the data load. 63

5.5 The member assignments after using DLB method. 64

5.6 DRRS example using multi-channel with < = 2. 66

5.7 George Mason University map . 68

5.8 Average packet delivery rates with < = 2. 69

5.9 Average network throughput versus PER with different <. 70

5.10 The average number of trips MS has to take to collects all the data with PER

= 40% and < = 2. 71

viii

5.11 The average of the maximum head node energy consumption versus packet

error rates with < = 2. 72

6.1 The MuCC two-layer framework. 74

6.2 MuCar starts collecting data from the cluster heads CH1, CH2, CH3, and

CH4 concurrently at the polling point z through different channels λ1, λ2, λ3

and λ4. 75

6.3 An example for MuCode communication with M = 2 (CH1 and CH2). Solid

lines represent direct transmission from cluster member to its cluster head,

while dashed lines represent overheard transmissions. Cluster member m2

overhears neighboring packets from m1 and m3. m2 transmits the encoded

packet α1x1 ⊕ α3x3 to cluster heads along with its own packet x2. 76

6.4 An example of network clustering for the first four phases with M = 2. . . 78

6.5 An example of a cluster that has three cluster heads (1,2 and 3) and 8 scat-

tered cluster members (dark circles). Each circle represents the transmission

range for each cluster head. Each cluster head has exactly B = 4 neighbored

nodes. 85

6.6 An example of a cluster with M = 9 cluster heads. 94

6.7 The packet delivery rate in different packet error rates per session with a

various number of cluster heads. The total number of nodes is 9. 96

6.8 The packet delivery rate in different packet error rates per session with a

various number of cluster heads. The total number of nodes is 20. 97

6.9 The latency in different packet error rates per session with a various number

of cluster heads. The total number of nodes is 9. 98

6.10 The latency in different packet error rates per session with a various number

of cluster heads. The total number of nodes is 20. 99

6.11 Consumption energy unit per session in different packet error rates with a

various number of cluster heads. The total number of nodes is 9. 100

6.12 Consumption energy unit per session in different packet error rates with a

various number of cluster heads. The total number of nodes is 20. 101

6.13 Total distance MuCar travels per number of nodes on the network. 102

ix

Abstract

DATA COLLECTION TECHNIQUES USING MULTI-CHANNEL NETWORK CODING
IN LOW-POWER AND LOSSY NETWORKS

Mansour Abdulaziz, PhD

George Mason University, 2016

Dissertation Director: Dr. Robert Simon

The underlying motivation for my dissertation research is to investigate the combined

use of wireless network coding with multi-channel communication to perform data collec-

tion in low-power and lossy networks (LLNs). Network coding allows eavesdropping on

non-source, non-destination wireless nodes in order to recombine overheard data with its

own data, which increases the ability of the ultimate destination to recover a high amount

of information, even in the case of high bit error rates. Coordinated multi-channel commu-

nication has the potential to dramatically increase the throughput for many types of LLN

applications. My work seeks to unify network coding and coordinated multi-channel com-

munication. I consider several important classes of LLN applications, including scenarios

with static data collection sinks and mobile data collection sinks.

This dissertation has three primary contributions to improve communication perfor-

mance in data collection LLN systems. The first is a protocol called MuCode, which is

designed to support single or multiple sinks that support a Convergecast (many-to-one)

communication pattern. I describe a synchronized channel switching policy that takes ad-

vantage of wireless overhearing to perform network coding operations. I show that optimally

solving certain aspects of this problem is quite challenging, and present a set of heuristics

for building the delivery mechanism. I have evaluated MuCode against several other schemes

and my results show significant performance improvements under a variety of scenarios.

The next two contributions use the results of the MuCode approach and extend them

into mobile environments. The second contribution is the protocol MuTrans, which is

employed in environments that require mobile data collection in a way that is predictable

but uncontrollable. I formally analyze the complexity of this problem in terms of how

to minimize data collection latency, which shows it is a challenging problem. I present a

synchronized dynamic round-robin scheduling policy for uploading data to a mobile collector

that is based on assigning a method for load balancing. My evaluation of data aggregation

in the presence of packet errors shows that MuTrans can significantly reduce the latency

for data collection, thus providing strong support for mobile data collection.

Finally, I present the MuCC protocol, which is designed to support data collection when

mobile data collectors motions are both controllable and predictable. After designing and

evaluating a two-layer architecture, I provide algorithms on cluster head selection, cluster

membership assignment, and trajectory planning. My experimental tests indicate that

MuCC substantially outperforms similar approaches in hierarchical data collection.

Chapter 1: Introduction

Network coding is a mathematical technique whereby nodes combine bits from different

packets to form new packets instead of relaying the packets of information they receive [1].

Network coding works by treating bit strings as elements in a Galois field and performs

finite field operations over different sets of bits. Network coding methods can be used to

reduce the number of packet transmissions, in the case of wired networks, or to reduce

the impact of transmission errors on wireless systems. Ostovari et al. [2] has shown that

by using network coding systems that experience high packet loss rates, such as wireless

sensor networks (WSNs), network coding can offer tremendous benefits regarding increased

throughput and reliability for successful packet transmissions received by the destination.

Another technique to improve performance in wireless systems is to use multiple com-

munication channels. This method allows nodes to transmit packets in different frequencies

without interference, as long as the gap between any adjacent frequencies is relatively large.

It has also been shown that using multiple communication channels WSNs decreases end-to-

end communication latency [3] and increases throughput [4]. This improvement is because

using a single channel forces nodes to compete with their neighbors prior starting trans-

mission in order to avoid collisions. By using multiple channel neighboring, nodes can

simultaneously transmit packets.

Despite the advantages offered by both network coding and multi-channel transmission

strategies, there has been little work done in the combination of these two techniques for

wireless sensor networks. One of the reasons for this lack of attention in combining network

coding and multi-channel communication is that transmitting on different frequencies elimi-

nates an essential advantage of network coding in a wireless system: The ability to overhear

neighboring transmissions. These eavesdropped packets can then be encoded with other

packets to improve reliability by allowing the same information to be sent to the gateway

1

via different paths. One of the core ideas in my dissertation work is to explore how net-

work coding can be used with multiple communication channels in a variety of application

scenarios.

Over the last few years, WSNs have been central as an enabling technology for a broad

range of Internet of Things (IoTs) applications. The IoT can be defined as networking for

embedded objects in a way that allows them to communicate, interact or exchange data

with other connected objects. IoT systems are growing at an explosive rate. For instance,

on December 2013, Gartner 1 stated that “the internet of things installed-base will grow to

26 billion units by 2020.” Here, WSN nodes are distributed and can monitor environmental

conditions [5], precision agriculture [6] ,or cyber-physical systems [7]. A typical scenario

in IoT system is to have the sensors periodically report their readings upwards toward a

gateway or base station. This style of networking is often called Convergecast [8]. From a

broader perspective, WSNs form an important subclass of a rapidly emerging system class

called Low-power and Lossy Networks (LLNs). LLNs are embedded systems with limited

resources such as processing, power, and memory [9]. LLNs may or may not sense their

environment. They are lossy because they use wireless communication that has a high error

rate and unpredictable reception. This situation generates a complex, unpredictable, and

challenging environment. Due to the broad importance of LLNs in the IoT world, my work

concentrates on this system architecture.

The primary motivation of my research combines multi-channel with network coding in

both tree-based and cluster-based LLN systems, where these systems represent and sup-

port Convergecast communication style. As explained above, Convergecast is a form of

networking in which source nodes transmit their data to the base station (sink) through

multi-hop routing or mobile data collection. My dissertation makes three primary contribu-

tions: the MuCode protocol for static Convergecast, the MuTrans protocol for uncontrol-

lable predictable mobile sink supporting Convergecast and MuCC protocol for controllable

predictable mobile sink supporting Convergecast.

1The technology research and advisory corporation

2

The first contribution combines multi-channel coding with network coding in tree-based

multi-hop routing networks through the design and implementation of the MuCode protocol

[10]. The protocol uses a set of graph construction algorithms that support synchronized

channel switching to take advantage of wireless eavesdropping for multi-path network coded

packet delivery. The nodes have radios that have single transceivers and are capable of

selecting multiple transmission channels. MuCode targets applications that are configured

into a tree-based topology with a powerful base station, equipped with multiple radios at

the root [11].

Using MuCode model for this system, I formulated an optimization problem for min-

imizing the maximum data load rate for the case of a Convergecast with multiple sinks.

I show that this problem is quite challenging, and I present several heuristic algorithms

that can be used to maximize data delivery. I then evaluate my heuristic methods with the

optimal solution and other path selection strategies, using different numbers of sinks that

share the same data from the source nodes.

The second and third contributions of my dissertation consider the impact of mobile

data collection nodes. One of the issues with using large scale static Convergecast systems

is that multi-hop routing to one or more sinks can both significantly degrade the network

lifetime and increase congestion. Gathering mobile data can save nodes’ battery life and

diminish the number of nodes that need to be deployed. A mobile data collector can traverse

the LLN network to collect data readings and relay new commands and updates [12, 13].

Such a portable scheme can reduce the number of required LLN nodes, since the network

does not need to be connected. Further, because the mobile unit can directly communicate

with embedded LLN nodes, the level of multi-hop routing can be reduced, thus improving

reliability by reducing the number of retransmissions.

A wide range of mobile data collection application classes has been broadly investigated

[14]. Data collector mobility patterns can be categorized as either controllable [15] or

uncontrollable [16, 17]. On one hand, the controllable mobile collector can freely traverse

to any location in the network where its trajectory is predicted. On the other hand, the

3

uncontrollable mobile collector can move either randomly (unpredictable) or on a fixed route

(predictable).

The second part of my research applies the advantage of MuCode protocol to support

applications that use uncontrollable predictable mobility collection. My research assumes

that the mobile collector traverses the network in a predetermined path with an arrival

schedule that is known in advance, without motion control that can be modified by my

algorithms or protocols. An example of such an application: a public transportation vehicle

(e.g. bus or train) in Smart Cities [18]. While the vehicle is in service, it collects data

from surrounding nodes and delivers it to the appropriate base station (BS). I designed

a network-coded multi-channel protocol called MuTrans (Multi-channel Transport). In

this way, MuTrans uses a cluster-based approach. There are two types of nodes in this

system: head nodes and member nodes. The head nodes are the nodes that have direct

communication with the mobile sink, while member nodes are unreachable by the mobile

sink but are one hop away from head nodes. Multi-hop routing is not required.

Since the mobile data sink moves in a known in advance arrival, data collection latency

becomes substantial in regards to the network instability, due to the dynamic changes

in the network environment. I analytically formulate the uploading latency model and

provide an optimization problem that is Zero-One Integer Linear Programming (ZOILP).

The MuTrans protocol consists of two heuristic techniques: data load balance and weighted

dynamic round robin scheduling. The first heuristic reduces the data overload at the head

nodes, while the second provides a fairness uploading schedule that dynamically changes to

reduce the overall uploading latency.

Under the circumstances of controlled mobility, whereby the trajectory and data transfer

points can be managed, it is essential to carefully plan the actual motion of the mobile

node, since the mobile node significantly affects data delivery rates and energy consumption

patterns. Thus, the last part of my research presents MuCC, a Multi-channel Network

C oding C lustering for controllable mobile data collection in the presence of high packet

and bit error rates. Using available network topological information and a centroid -based

4

approach, MuCC carefully picks its communication points in a way that minimizes energy

consumption and maximize reliability. MuCC efficiently develops the trajectory plan for

the mobile collector in order to collect the data and store it in a data repository. The path

plan is decided by finding the most efficient polling points to upload the data. The polling

points are locations that the mobile collector needs to stop at and retrieve the data from

the nearby sensors. The MuCC clustering protocol uses multiple channels for simultaneous

data, which uploads to the mobile collector to avoid packet collision. Multiple channels also

eliminate packet collision between clusters transmissions.

Since the polling points locations are based on the locations of the cluster heads, I devel-

oped an adaptive cluster head algorithm, called ACH, that determines better cluster heads

in order to reduce the number of polling points while maintaining the system configuration

and the durability of the network. By reducing the number polling points, ACH can sig-

nificantly reduce the traveling latency that the mobile data sink has to cover in order to

collect the same data. To the best of my knowledge, this thesis is the first work to examine

the use of the combined techniques, multi-channel and network coding, in order to support

static and mobile data collection schemes in LLNs.

1.1 Thesis Overview

My dissertation hypothesis can be presented as follows:

Thesis Hypothesis

Data collection in low-power and lossy networks with limited constraints re-

quire new methods for efficient communication performance. Algorithms using

multi-channel and network coding techniques will significantly improve the net-

work reliability and throughput of such systems. Both techniques can be used

together to enhance static multi-hop and mobile multi-data collection systems.

Data balancing among the nodes with synchronized scheduling can effectively

increase the network lifetime and reduce data delivery latency. Algorithmic

5

techniques that exploit load balanced clustering with hierarchical structuring

will also substantially improve system performance.

This dissertation describes a general communication protocol and different application

models for diverse data collection LLN systems. In static Convergecast multi-sink systems,

a new data load heuristic is proposed to minimize the maximum data load rate with the ob-

jective of maximizing network lifetime, throughput and reliability. Novel data collection rate

allocation and dynamic uploading scheduled algorithms will be proposed to minimize the

data uploading delay and utilize the network throughput in predetermined route mobility

collections. A new cluster architecture scheme that appropriate multi-channel and network

coding techniques will be performed in controllable mobility systems. An Innovative polling

points algorithm will be offered for allocating the best uploading locations while reducing

the traveling latency. These contributions will be evaluated through analytical methods

and high fidelity simulation.

My work improves system performance for both static and mobile collection systems in

several ways:

• An algorithm that combines network coding and multi-channel that supports LLN

nodes in Convergecast applications

• The use of time or epoch based approach to synchronize data transmissions.

• A system architecture for each of the three collection models.

• A formal model and analysis of how to minimize the uploading latency in uncontrol-

lable WSN mobility.

• An algorithm to allocate efficient polling points for latency management in controllable

WSN mobility.

The outcome of this work is a set of algorithms and protocols using multi-channel and

network coding, which is capable of maximizing network throughput and minimizing energy

6

consumption and latency in order to reach an ultimate goal of improving network resilience

of inconstant environment, while substantially maximizing the network lifetime.

1.2 Dissertation Roadmap

The outline for the rest of my dissertation is as follows: first, I present background informa-

tion and a literature review in Chapter 2 for WSNs and LLNs. I then define the foundation

of network coding and multiple-channels techniques and offer an overview of static and

mobile data collection systems. Next, I give my system architecture in Chapter 3. In

Chapter 4-6, I present the technical details of my research work, including a series of multi-

channel network coding algorithms for static and mobile LLN systems, and rate allocation

algorithms with dynamic fairness scheduling for maximizing the concurrent uploading of

WSN networks. In Chapter 7, I propose future works on using the above algorithms on

different topological and system scenarios. Finally, Chapter 8 offers some observations and

conclusions about my three contributions in LLN data collection systems.

7

Chapter 2: Background and Related Works

This chapter focuses on the characteristics of low-power and lossy networks, network coding,

multi-channel networking and, types of mobile data collection for wireless sensor networks.

2.1 Low-Power and Lossy Network

My research targets the broad range of wireless sensor networks that are now generally

referred to as belonging to the class of Low-Power and Lossy Networks (LLNs) [9]. LLNs

consist of nodes with limited resources, such as constrained processing power, energy (bat-

tery), and memory. These nodes are interconnected by different kinds of wireless links, such

as IEEE 802.15.4, Bluetooth LE, or Low Power WiFi [19]. LLNs may involve thousands

of nodes that are uniformly distributed or randomly scattered, depending on their primary

functionality. The constrained memory prevents nodes from maintaining complete global

topological knowledge. LLNs that operate off of battery power or energy harvesting must

use careful strategies to maximize network lifetime. The communication link in this system

is connectionless using UDP packets, and it is lossy due to wireless impairments. Further,

the link typically has a low data rate.

To support application requirements, LLN systems can be arranged in tree topologies

with a base station at the root. The base station may have unlimited resources, including

multiple radios while nodes periodically report their readings upwards toward the root.

Example applications include security surveillance, environmental monitoring, or Smart

Grid/Smart City systems. Broadcasting (one-to-many) from the base station to all the

nodes is also a routine activity.

LLN nodes use radios that have single transceivers. They are capable of selecting chan-

nels among multiple available transmission channels, such that each channel is centered

8

on a different radio frequency (RF). One example of multi-channel technology is a CC2420

radio, which is manufactured by Chipcon. This radio is a 2.4 GHz IEEE 802.15.4-compliant

technology that supports low-power and low-voltage wireless applications with a 250 kbps

data rate. Its frequency region resides between 2400 to 2483.5 MHz. IEEE 802.15.4 spec-

ifies 16 channels within the 2.4 ISM GHz band, which are numbered 11 through 26 [20].

This chip can also be employed in a non-IEEE 802.15.4 system by combining the direct

sequence spread spectrum (DSSS) and the frequency hopping spread spectrum (FHSS).

DSSS is a modulation technique that helps share a single channel among multiple nodes

transmissions, while FHSS is a radio signal transmitting method that allows switching a

carrier signal among multiple frequency channels.

My work is independent of the physical layer of the IoT protocol stack and focuses

on channel selection. Successful use of multi-channel communication requires that senders

and receivers agree upon which channels to use at which time, which requires a channel

scheduling policy. The advantage of this approach is that any pair of nodes that use different

channels will not interfere with each other, and those nodes can avoid the hidden terminal

problem.

Figure 2.1: Example of Using Multi-Channel

To demonstrate the power of using multiple channels, consider Figure 2.1.(A) is a net-

work with a single communication channel while (b) is a network with two available channels

(λ1 and λ2). In part (a), node S3 transmits its packets and both S2 and S4 receive them.

9

Node S1, however, cannot send nor receive at the moment of S3’s transmission, which can

cause latency in a packets delivery. Since both S1 and S3 interfere with S2 in part (b), node

S3 transmits its packets to S2 and S4 using channel λ2, while S1 is transmitting its packets

to S2 simultaneously. S2 has a single transceiver and has to tune its radio frequency to

either channel λ1 or λ2 depending on the traffic path.

The algorithmic issue with multi-channel networking is the difficulty in channel assign-

ment and synchronization. The nodes have to agree upon which channel to transmit at

which time. Related work in tree-based multi-channel LLN networking is discussed by Wu

et al. [3] who proposed a Tree-based Multi-Channel Protocol (TMCP) for multiple Con-

vergecast, which addresses the channel assignment problem. They construct K sub-trees

for K channels to eliminate inter-tree interference. They have minimized the intra-tree

interference for each sub-tree.

Other examples of work in a multi-channel LLN has focused on the design of new MAC

layers [21], routing protocols [3], or data dissemination [22]. Simon et al. [23] showed that

by using multi-channel communication technique for reliable data dissemination, the data

prorogation delay is significantly reduced. Zhou et al. [24] designed collision-free protocols

by conducting some radio interference detection experiments. Zhou observed that a link

with a high reliability causes the communication range to overcome the interference range,

while he observed the opposite for a weak reliability link. Further, Kyasanur et al. [25]

has shown that the network capacity can lose packets when the number of interferences

per node is relatively smaller than the number of available channels. Meanwhile, a channel

assignment algorithm is proposed in [26] to reduce the interference problem in multi-radio

wireless mesh networks (WMNs). They suggested that using multi-radio routers improve

the system performance, while static channel assignment can lessen the performance in

WMNs. However, none of this work considers the use of network coding.

10

2.2 Network Coding

In this section, I introduce some background information and related research on the network

coding in wireless systems. Network coding is a technique where nodes take several packets

and combine them for transmission of new packets with the same size as the single packet,

plus the encoding vector overhead. The combining operation can be a simple XOR or a

method such as Random Linear Network Coding (RLNC). The RLNC technique uses finite

field operations. The addition and multiplication operations are under a Galois field of some

size 2f . An example for f equal to 4 is to use an irreducible polynomial F2z where Z3+Z+1

[27][28]. Figure 2.2 depicts an example of how network coding can improve reliability in a

lossy network. The intermediate node (IN2) collects and combines both packets x1 and x2

using algebraic linear equations to produce the encoded packet x1 + x2 and sends it to the

sink node R. Now, assuming any one of the three transmissions to R is lost, R can still get

the packets x1 and x2 by having enough linearly independent packets to decode. Hence,

with a 33% probability of a packet loss at the receiver side R, the network can maintain

100% of the packets delivery (x1 and x2) by using network coding instead of retransmitting

by using the traditional wireless transmitting technique.

Figure 2.2: An example of network coding reliability.

11

The work in network coding that is related to my research includes several papers that

study the impact of duty cycling or the use of an enhanced MAC protocol. [29] provided a

study on a joint channel-network coding in order to examine the synergy between network

coding and a convolutional code (error-correcting code). [30] proposed a communication

model by combining duty cycle and network coding to improve network lifetime in bottleneck

zones, where the sink is located, since it has the maximum traffic flow in Convergecast

networking. Wang et al. [31] proposed a network coding-aware cooperative medium access

control protocols for wireless ad hoc networks in order to increase network throughput and

reduce latency. They also provided a network coding-aware utility-based relay selection

strategy to select the efficient relay for distribution. Last, they have incorporated two

collision-free relay selection strategies that can improve packet delivery rates and reduce

latency in 802.11.

Kamal et al. [32] proposed single and multiple link failure protection methods for wired

networks, without the need to detect link failure or implement rerouting for the data. They

provided a single replication for each transmitted data using synchronized network coding

that sends each bit of data into two opposite directions. Chandanala et al. [33] designed a

network coding and duty cycling scheme in which multiple access control protocols transmit

packets and implement network coding-aware algorithms in order to determine optimal duty

cycling schedules that reduces energy consumption. Focusing on the encoding overhead,

Jafari et al. [34] presented a new approach to design optimal relaxation for compressing

the encoding vectors in order to convey the encoding coefficients efficiently, as compared to

the classical approach. Alwis et al. [35] proposed a new method to minimize the coefficient

encoding vector size of RLNC encoded packets by exploiting the properties of small and

medium size networks.

Gnawali et al. [36] designed the first collection tree protocol in tree-based WSN net-

works. They described two routing protocols that improve the efficiency and robustness of

the high loss and dynamic link systems. Sensecode [37] is closely related to my work in

12

the static Convergecast case, which demonstrates the practical use of network coding in re-

source constrained LLN designed to support Convergecast. Unlike all of these approaches,

my work considers multi-channel networking. Further, I have designed MuCode to take

advantage of eavesdropping by a conservative policy of synchronized channel switching and

transmission overhearing.

2.3 Data Collection Architectures

A portion of my work falls into the category of hierarchical mobile data collection with

several node tiers. This architecture has been explored in many papers. For instance, [38]

construct clustering techniques by introducing a cluster head selection metric that considers

both the node’s residual energy and its neighbored links qualities. This metric helped in

designing two distributed algorithms to construct one-hop and k-hop clusters. Zhang et

al. [39] proposed a two-layered heterogeneous WSN with two types of sensors. The basic

sensors are simple and cheap nodes. The cluster head nodes are powerful and energy-rich,

which collect data from member nodes. They provided a collision-free polling schedule in

the multi-hop cluster. Ma et al. [40] designed a mobile data collection scheme for large scale

WSN. The mobile collector starts traversing the network from the static sink and collects

data from sensors and uploads the data to the data sink periodically. They also introduced

multiple data collectors for restricted deadlines or distance.

From an architectural perspective, cluster heads are responsible for collecting the data

from their members and forwarding it to the sink. This clustering can significantly reduce

packet collisions and balance the load of the data among the sensors, which typically pro-

vides more scalable network descent as compared to enhanced relay routing. However, the

cluster heads face massive data traffic from both intra-cluster aggregation and inter-cluster

data forwarding. Using a mobile data collector can reduce the overall congestion in clus-

ter heads. Nevertheless, in the mobile environment, data collection latency can become

excessively long.

Related work to my research includes Lee et al. [41] who proposed a data stashing

13

technique for wireless mesh sensor networks in which the data are routed to a relay node

that is involved in the announced or predicted trajectory path of the mobile sink. The work

in [42] proposes a data dissemination scheme that solves the energy consumption phase on

sink nodes when diffusing the information on the network. On the other hand, Lu et al.

[43] considered a mobile sink that is moving in a fixed trajectory and deploying gateways

nearby. Those gateways collect data from the wireless sensors and send them to the mobile

sink whenever it is within their transmission range.

Kweon et al. [44] proposes a Grid-Based Energy-Efficient Routing protocol that creates

a one grid structure of an event that effectively sends the data to multiple sinks with

minimized sensors energy consumption. Shon et al. [45] described a Hexagonal Path Data

Dissemination (HPDD) scheme that uses straight and diagonal line paths by constructing

a virtual hexagonal path. The authors in [46] present the Ring Routing (RR), a distributed

energy-efficient mobile sink routing protocol. Weiwei et al. [47] consider the problem of

collecting data packets from particular nodes to the sink by combining network coding with

collecting data packets in a specified area of interest.

This hierarchical protocol is based on a virtual ring structure. This protocol mitigates

the predicted hotspot problem and minimizes the data latency to the mobile sink. However,

this protocol works only with connected and uniformly distributed wireless sensors. Some

nodes can create the ring routing with low priority (such as energy), which may affect the

network lifetime. For lossy networks, ring routing cannot survive with unreliable communi-

cation, since it assumes all ring exploring packets either have been delivered to neighboring

nodes or there is no neighbor, which is not always the case. The enhanced relay routing –

such as [48] – relays the data to the sensors. The problem with the improved relay path is

that the sensors that are near the sink potentially consume more energy than the others,

which inevitably reduce their battery lifetime drastically.

Another study that is closely related to my work is Zhao et al. [49], who discussed

a method to reduce the collection latency from the cluster heads to the mobile sink in

order to increase network lifetime. They proposed a three-layer mobile data collection

14

framework called Load Balanced Clustering and Dual Data Uploading (LBC-DDU). Unlike

LBC-DDU, however, in my controllable predictable mobility approach, I consider the use

of both multiple communication channels and network coding to improve both reliability

and throughput by using MuCC, the hierarchical clustering protocol that I have designed.

In the controllable predictable, the mobile collector may modify its trajectory based on

some constraints (e.g. deadline or change in polling location). This mobile collector uses

stop-and-wait communication whereby it traverses according to a predetermined motion

plan. Once it reaches a designated sensor that holds some data, the mobile collector stops

and begins collecting from that sensor [50].

In order to perform the data collection, I devised a method to determine the best

locations for the mobile collector (MuCar) to reach. The MuCar is a multi-channel network

coding mobile data collector. It has multi-radio, so it can concurrently collect data from

nodes through different channels. It traverses the network freely to the designated polling

points and collects data from cluster heads. It applies decoding process through network

coding to retrieve the original data from the encoded received packets.

2.4 Mobility Models

Broadly speaking, there are two types of mobility trajectory management systems, control-

lable [51] and uncontrollable [52,53]. The controllable mobile data collector can change its

trajectory path and speed in order to collect the data from sensors and upload data to the

base station, as I derived in the previous section; while the uncontrollable mobile collector

can traverse the network randomly and unpredictably. Random waypoint is an example

model of the random movement of a mobile collector whereby location, velocity, and speed

change over time [54]. The Random Mobility Model (RMM) has been used as a synthetic

model for different areas, such as mobile ad hoc and mobile mesh networks [55], because of

how simple and available it was. This model can be divided into random waypoint, random

walk, and random direction models [56,57].

15

An example of other works in this area is Restuccia et al. [58] who proposed the Swarm-

Intelligence-based Sensor Selection Algorithm (SISSA) that optimizes network lifetime by

meeting predefined Quality of Service constraints for uncontrollable and random mobile

data collector.

The last part of my research focuses on the uncontrollable predictable mobile data

collector in WSN systems. Works related to my research include Kansal et al. [59] who

demonstrated that using mobile data collection can increase network lifetime and utility in

the embedded sensor nodes. The fluid infrastructure traverses the network in a predefined

linear path to collect data from nearby nodes. Depending on the amount of data a node

has, their paper provided an adaptive speed control technique for the mobile collector to

get high-quality data.

Jea et al. [60] extended [59] research by employing multiple mobile collectors to reduce

data latency. They divided a convex area into sub-areas in which a load balancing algorithm

is implemented to assign each mobile collector (MULE) to evenly sub-area. With a con-

stant speed, each MULE traverses its sub-area through a predetermined straight line path

back and forth in order to collect data from single-hopped sensor nodes. Nevertheless, the

scalability becomes an issue because increasing the size of the convex area and increasing

the size of the sensor nodes degrades the performance with multiple sinks.

A distributed mobile application called CarTel has been proposed by Hull et al. [61].

CarTel runs on a portal using a delay-tolerant continuous query processor, with oppor-

tunistic communication with other nodes. Hull analyzed Boston and Seattle metropolitan’s

Wi-Fi deployments, their commute time, and monitored the road traffic for a year using six

cars. Somasundara et al. [62] provided an enhanced communication protocol, emphasizing

the data delivery rates, which compares to [59], who used cluster formation with a mobility

motion control strategy by considering node’s buffer constrained and the mobile collector

velocity. They analyzed the tradeoff in energy and throughput by using controlled mobile

data collector with limited energy constraint.

Gao et al. [63] designed efficient member assignments to the sub sinks using a Genetic

16

Algorithm (GA) in order to enhance the power consumption and the data delivery to the

mobile data collector, which traverses the network in fixed trajectory with multi-hop com-

munication. Each sub-sink buffers the received data from member nodes using shortest

path routing trees. On the other hand, Liang et al. [64] suggested an approximation algo-

rithm for an NP-Hard optimization problem called Capacitated Minimum Forest (CMF) in

hierarchical heterogeneous WSN architecture. The mobile sink traverses through planned

trajectory and collects data from the gateways where they then temporarily aggregate data

from sensors through multi-hop routing. Smeets et al. [18] implemented a platform called

Trainsense in order to support mobile WSN applications. Essentially this platform behaves

like a model train, which runs to the deployed nodes for different mobility trajectories.

None of these related works have considered fixed route and uncontrollable mobile data

collectors with one-hop routing in unstable environments. By considering this mobility

model, I propose two heuristic methods to minimize the uploading latency by applying the

advantage of network coding and multi-channel coding in LLN networks. I use the MuCode

protocol, which allows head nodes the possibility to overhear packets synchronously from

their member nodes, while also eavesdropping on packets from other nodes in order to

increase the chances of recovering lost data. Each head node implements network coding

to the eavesdropped packets along with the already stored packets, and that combination

creates encoded packets. Then the head node stores them in the transmit queue, which

consists of both encoded and plain packets. Finally, each head node concurrently sends all

its data to the sink through different channels in order to avoid collision with one condition,

that the mobile sink has enough multi-radios to receive packets simultaneously.

17

Chapter 3: System Model

This chapter describes the hardware, wireless transmission channel, data, and sink model

underlying my dissertation research. As described in previous chapters, I am exploring

two topological configurations. The first configuration is a tree-based topological system

that has a powerful base station embedded within multiple radios at the root. I assume

that the network is connected and not partitioned, and based off of this assumption, multi-

hop routing is used for data transmitting through relay nodes. Tree-based applications are

considered general purpose LLNs that are inhabited by resource constrained wireless sensor

nodes. These nodes periodically sense and process data, and then report this data back to

a base station or base stations.

The second topological configuration also has the purpose to periodically sense, process

and report data. This configuration does not rely on multi-hop routing but uses a mobile

data collector to obtain the data. All nodes have the ability to broadcast wirelessly.

3.1 LLN Node Model

My work targets the current generation of wireless networks designed to support ”Internet-

of-things” applications, such as the Smart Grid or Building and Home Automation systems,

which control and automate the residential applications, such as lighting, air conditioning,

and appliance control. The sensors are resources constrained in the battery and memory

capacity, wireless capacity, and processing capabilities. I am assuming the nodes are static

placed and distributed in a two-dimensional area. LLNs may have sensors or may simply

function as relays. The sensors functionality varies from sensing, dating, or reporting to the

base station through relay nodes.

18

My communication protocol is designed to support any available network coding tech-

niques, such as XOR [27, 65] or Random Linear Network Coding (RLNC) [28, 66], which

can be implemented in the node model. In practice, RLNC is known to be an attractive

option for LLNs, due to the simplicity of its implementation.

Network coding allows LLN nodes to combine packets that have been overheard from

multiple senders [1] [67]. These eavesdropped packets can then be coded with other packets

to improve network reliability by allowing the same information to be sent to the sink via

different paths. In wireless systems, network coding is also used to allow a receiver to recover

a number of packets, even when some of those packets are lost by performing mathematical

operations that are based upon information they already hold. From a mathematical per-

spective, network coding can be performed using binary coding by simply performing bit by

bit XOR operations. Another technique is to use Random Linear Network Coding (RLNC),

where packets are defined by elements over a Galois field. Packets are coded randomly using

finite field operations. The lost original packets are recovered using operations such as the

Gaussian elimination. The Random part of RLNC means the bits are combined after they

are multiplied by a random coefficient.

For a static Convergecast tree, I assume the availability of standard WSN mechanisms

for routing [68], Convergecast tree construction, and inter-node time synchronization [69].

Basically, Convergecast is a many-to-one communication operation. I use mechanisms for

link level fairness based upon time-slotted round-robin transmissions [11] in order to provide

transmission fairness between nodes that reside on the same level, which I will discuss in

more detail later in the next chapter.

For the topologies that support the mobile data collection, I define two types of nodes:

member nodes and head nodes. The head nodes are within the transmission range of

mobile sink (MS), while the member nodes can only be reachable by the head nodes. In

uncontrollable predictable mobility, I assume that the route of the mobile collector (MuCar)

is known, and those head nodes are determined using the LBC-DDU algorithm, an algorithm

that I will detail in Chapter 6.

19

In order to continue, a working definition of a polling sector is in order. The polling

sector is a range in which the MuCar can communicate with head nodes and receive data

while it is on the move. The polling sector length at head node Hi can be measured by the

distance between the starting point, where MuCar contacts with Hi, and the ending point

before it disconnects with Hi. The location of each polling sector is known once the head

nodes are selected.

In the predictable controllable systems, I will present a clustering protocol to choose the

cluster head nodes and find the efficient route and locations in order to upload the data

to the mobile sink. The trajectory plan is determined by finding the most efficient polling

points to upload the data. The polling points are locations where the MuCar needs to stop

and retrieve the data from the nearby sensors. Cluster members transmit their data to the

nearby head nodes where the data is stored. Each member node picks one head node to

send their data. Once MuCar initiates a contact with the cluster heads, they send their

aggregated data along with their own data to the mobile collector.

My goal is to improve the efficiency of sending the data to the mobile collector, improve

performance, and increase the network lifetime.

3.2 Channel Model

LLN nodes possess radios that have single transceivers and are capable of supporting multi-

channel communication protocols [20]. The sink, on the other hand, has multiple radios

that allow it to receive data from head nodes concurrently through different channels. This

multiple radio setup is used to prevent packet collisions and reduce uploading latency.

By enabling multi-channel networking, head nodes in a neighborhood can send packets

simultaneously without causing collisions, as long as they use different channels (λi). The

gap between any two frequencies is large enough so that the interference is eliminated,

meaning that channel λi does not interfere with λj , where i 6= j. Successful use of multi-

channel communication requires that senders and receivers agree upon which channels to

use at which time, and their agreement requires a channel scheduling policy. The advantage

20

of this approach is that any pair of nodes that use different channels will not interfere with

each other, thus avoiding the hidden terminal problem.

Transmitting over multiple channels decreases latency and increases throughput. In

mobile systems, the head nodes must use different frequencies by a deliberate policy of

synchronized channel switching that occurs while uploading data to the multi-radio mobile

sink [10]. The channel switching is needed when the number of head nodes at the uploading

position are larger than the number of available radios at the mobile sink.

One of the primary challenges in engineering LLN systems is network reliability for

successful transmissions, especially because they have lossy communication links and low

data rates. To deal with these issues, many researchers have advocated the use of a control

plane and describe network management schemes that are epoch-based [11]. The epoch

divides time into a set of discrete points during which network control decisions are made.

The epoch is used to ensure stable routing trees or link transmission schedules and can be

implemented by a number of schemes, including the one presented in [70]. As will be seen

in the next chapter, I use an epoch based approach to coordinate channel assignments and

ensure that nodes can overhear the transmissions of other nodes in static tree-based WSN

networks.

3.3 Data Model

The application data, which has been processed, transmitted and stored in my research,

arises from sensors that sample the environment. I am assuming a non-splitting data flow

system, which means that the data from a node has to be sent to its dedicated neighbored

node without dividing the data into multiple receivers.

The role of the sink is to absorb sensed data. In general, sensed data can be streamed

or archived and retrieved by a sink at a later time. In static Convergecast systems, the

data is streamed such that the relayed nodes take the data and send it to the next hop

until it reaches the base station or the sink. Meanwhile, in mobile applications, the head

nodes archive the data that they receive from member nodes until the mobile sink arrives

21

and upload the archived data.

In my dissertation research, I assume sufficient memory for both buffering received data

and for the head nodes ability to archive data. Provisioning sufficient memory is the task

of the network administrator at deployment time.

3.4 Sink Model

In the system that I have designed, there are three types of sink trajectory managements:

static sink, uncontrollable predictable, and controllable predictable mobile sinks. The static

sink is a powerful base station that has multiple radios to concurrently receive data from

children nodes using different transmitting channels. Multiple static sinks are exploited

to study the impact of increasing the number of the sinks and the number of paths to

investigate the protocol performance scalability.

The uncontrollable predictable sink traverses the network in a predetermined path with

a known in advance arrival schedule and without motion control. It is also fully equipped

with multiple radios. Because of the uncontrollable predictable sink’s trajectory, it receives

data while on the move.

On the other hand, the controllable predictable sink crosses the network to collect the

data from the distributed clustered nodes with the best locations in order to upload the

data to where trajectory and motion are controlled by the system configuration. Like the

other sink models, it has multi-radio to receive data from cluster heads.

The three following chapters present my research work. Chapter 4 proposes multi-

channel network coding for single and multiple static sinks in tree-based WSN systems.

Chapter 5 targets the uncontrollable predictable mobility gathering systems and provides

heuristics for latency optimization. Chapter 6 frameworks the controllable predictable mo-

bility scheme and utilizes the uploading locations.

22

Chapter 4: Multi-Channel Network Coding for LLN

Convergecasting

This chapter presents MuCode, my Convergecast multi-channel network coded protocol.

The MuCode protocol uses a set of graph construction algorithms that support synchronized

channel switching to take advantage of wireless eavesdropping for multi-path network coded

packet delivery. I will show how to formulate this procedure as an optimization problem in

order to minimize the maximum data rate for multi-sinks Convergecast non-split network

flows. At the end of the chapter, I offer an experimental evaluation of MuCode. The

performance of the paper’s heuristic optimization has been evaluated against the optimal

shortest path OSP and other techniques for multi-sinks Convergecast.

4.1 MuCode Protocol

MuCode is executed in a centralized fashion by the base station before the start of each

epoch. This system relies on protocols for Convergecast tree construction, such as RPL

[9] and network management mechanisms [70], in order to enforce stable tree and channel

selection during an entire epoch. MuCode takes advantage of some of the tree-based channel

assignment algorithms presented in [3]. MuCode has five steps that need to be executed:

1. Transform the Convergecast tree to an Interference Graph.

2. Assign height metrics to each node in the Interference Graph.

3. Assign a particular channel for each node within a subtree.

4. Find and eliminates any hidden terminal problem.

5. Synchronize packet transmitting and eavesdropping opportunities.

23

Table 4.1: MuCode Notations Table

Notation Meaning

V Set of nodes on the network.

n Total number of nodes.

SR Total number of source nodes.

E Set of edges in the Interference tree IG.

ζ Set of edges in the Convergecast tree CG.

BS Single root of the tree-based network.

K Number of children BS has.

Kmin Minimum number of children a sink has.

Λ Number of available channels.

STλ Subtree that is assigned to channel λ.

Max Height Largest shortest number of hops between BS
and a node on the network.

Si Node i.

Ri Sink i.

γ Data rate in any source node.

γi,j Data rate load for source node i at node j.

 L(u) Accumulated data rate in node u.

=(u) Set of targeted sinks that node u has to forward
the data to.

N ′ Set of all nodes except the sinks.

d Graph diameter.

pr Available number of parents.

p-joint Number of p sinks a node can forward the data
using the shortest path.

T (lvl, Ri) Set of nodes that reside at height = lvl in respect
to the tree constructed by Ri.

δ(Ri) Current transmitting level to the sink Ri for the
multi-sink communication.

R Encoded packet replication.

I now describe each of these steps. In step 1, I take the Convergecast tree (CG) and

produce an Interference Graph (IG) using the algorithm CTI. IG is a graphical represen-

tation of how nodes wirelessly interfere with each other. The CG has a set of nodes V and

the set of edges ζ. Initially, CG is transformed to IG = (V,E) where E ≡ ζ. Then, for each

v node, the interfered edges that have not been discovered in CG are added to the set E

with the use of the neighbor information that is provided to the base station during routing

activities, such as those reported by RPL, a routing protocol for LLNs. An example of this

24

transformation is depicted in Figure 4.1, where the graph in (a) is transformed to the graph

in (b).

Algorithm 1 Convergecast to Interference (CTI)

1: Input: Convergecast Graph CG = (V, ζ)

2: V̀ ← V, E ← ζ;

3: while V̀ 6= φ do

4: v ← DEQUEUE(V̀);
5: for each u ∈ NB(v) do
6: if (v, u) /∈ E then
7: E ← E ∪ {(v, u)} ;
8: end if
9: end for

10: end while
11: Output: IG← (V,E);

Figure 4.1: An arbitrary Convergecast network

In step 2, each node in the IG tree is assigned a particular height and a parent set, using

a Breadth-First-Search Fat Tree (BFT) algorithm [3]. The BFT algorithm uses Breadth

First Search (BFS) to determine a node’s height in IG, which starts with the height of the

25

root BS, eventually being initialized to 0. A node u adjusts its height to its neighbor’s (v)

height plus one if, and only if, v is in a lower level than u’s level. Then, u adds node v into

its parent list. u’s height represents the minimum number of hops from u to the root BS,

while Max Height is defined as the largest number of hops in the shortest path between

node q and root BS, where q is a node that is the farthest from BS in IG graph.

Algorithm 2 Breadth-First-Search Fat Tree (BFT)

1: Input: Interference Graph IG = (V,E)
2: for each node u ∈ IG do
3: height(u)←MAX INT ;
4: parent(u)← φ;
5: end for
6: Q← {BS} , height(BS)← 0;
7: for each node u ∈ Q do
8: for each (u, v) ∈ IG do
9: if height(v) > height(u) then

10: height(v)← height(u) + 1;
11: parent(v)← parent(v) ∪ {u} ;
12: Q← Q ∪ {u} ;
13: end if
14: end for
15: end for
16: Output: Fat Tree IG;

As for step 3, I modify the greedy Partition Maximum Intra-Tree algorithm (PMIT) [3].

PMIT is an algorithm that partitions the IG fat tree into K vertex-independent trees, with

minimal intra-tree interference between these trees. The bottleneck in PMIT is limited to

the number of children K that the root BS has. It can be constrained as K ≤ Λ where

Λ is the total number of available channels. By adding the root BS to each sub-tree, the

algorithm initializes the sub-tree’s construction STλ, where λ is the channel assigned to the

root’s child that belongs to the subtree ST . Then, it initializes the channel for each node to

the default channel λ0. Next, it scans the IG level by level from low to high. On each level,

the nodes are sorted by their number of parents in ascending order. A condition stated in

the algorithm is that the node u is added to a sub-tree STλ if, and only if, it keeps the

tree connected and has minimum intra-tree interference with nodes within STλ. Last, the

algorithm assigns channel λ to node u and picks a parent v for node u so that both u and

26

v are connected to STλ. The time complexity of the greedy PMIT algorithm is O(d x K x

n2), where d is the graph diameter, K is the number of children the root BS has, and n is

the total number of nodes.

Algorithm 3 Greedy PMIT

1: Input: Fat Tree Interference Graph IG = (V,E)
2: for each channel λ ∈ Λ do
3: STλ ← {BS};
4: end for
5: for each node u ∈ V do
6: channel(u)← 0;
7: parent(u)← φ;
8: end for
9: level← 1;

10: repeat
11: node list← {u | height(u) = level ∧ channel(u) = 0};
12: Sort the node list by the number of parents in ascending order
13: for each node u ∈ node list do
14: Find STλ such that it keep connected after adding node u and has the minimum

interference.
15: STλ ← STλ ∪ {u};
16: channel(u)← λ;
17: parent(u)← v where v is the parent node that connects STλ after adding u;
18: end for
19: level← level + 1;
20: until level > Max Height;
21: Output: K sub-trees;

For step 4, I note that [3] proposed a Tree-based Multi-channel Protocol (TCMP) for the

Convergecast multiple channels, which solves the channel assignment problem. They have

constructed K sub-trees for K channels to eliminate the inter-tree interference. However,

their focus was on minimizing the intra-tree interference for each sub-tree, whereas my focus

is on minimizing the inter-tree interference within each sub-tree.

I now define the Channel Assignment Within Sub-Trees algorithm CAST, which con-

siders each ST individually. CAST scans the sub-tree STλ level by level from low to high

and assigns different channels for nodes that reside on the same STλ. Consequently, closed-

related nodes with distinct subtrees will never send data over the same channel; besides,

such nodes should not worry about the hidden terminal problem. The Convergecast flow

27

Algorithm 4 Channel Assignment Within Sub-Trees (CAST)

1: Input: K sub-trees are constructed using PMIT, where BS is the common root. Each
sub-tree is assigned to unique channel λ.

2: level← 2;
3: for each sub-tree STλ do
4: repeat
5: Pick node u such that height(u) = level;
6: if level ≤ 3 then
7: channel(u)← parent(u).channel +K;
8: else
9: channel(u)← channel(v), where:

u, v ∈ STλ and height(u) = height(v) + 3 ;
10: end if
11: level← level + 1;
12: until level > Max Height of STλ;
13: end for
14: Output: Multi-Channel Tree MCT graph;

is up-linked from nodes located in the highest level to the root where the opposite down-

linked flow is ignored by nodes. The children nodes of the root BS (i.e. nodes with height

level = 1) do not modify their channel after they have been assigned in CAST. If the node

is within the first three levels, then the channel is assigned to the parent’s channel + K.

Otherwise, the node will use the same channel that has been allocated for the grandparent

of its parent (i.e. three levels upward). The first three levels decide the channel assignment

pattern in the whole tree. More clearly, the channel of node u at level l in STλ has the

same channel as all other nodes at levels l ± 3, l ± 6, ... in STλ. This allocation process

guarantees two-hop collision avoidance within the same ST , as well as collision avoidance

between the sub-trees. The time complexity for the CAST algorithm is O(d x K x n).

Step 3 in the algorithm runs for K sub-trees, while step 4 takes the loop iteration along the

graph diameter d. Step 5 may run at most n times, choosing nodes at a given level. Figure

4.1 shows an example of MuCode tree construction and channel allocation for Convergecast

WSN.

The last step of MuCode is the algorithm shown in algorithm 5, the Synchronized

Eavesdropping in Multi-channel Sub-trees (SEMS). This algorithm is responsible for syn-

chronizing the sending and eavesdropping of packets in MuCode protocol. Initially, nodes

28

Algorithm 5 Synchronized Eavesdropping in Multi-channel Sub-trees (SEMS)

1: Input: MCT graph with allocated channels.
2: Initialization: All nodes at level = l are synchronized and scheduled in transmitting

and receiving from each other in time slot t, using default channel λ0.
3: h←Max Height , Round← 1;
4: repeat
5: for each node u at level h do
6: Send a synchronized control packet to node v at level h− 1 in channel λ0;
7: end for
8: h← h− 1;
9: until h = 2;

10: for each node u do
11: for each Round do
12: repeat
13: if (PTS(u, t) = true) then
14: u sends at channel λ;
15: else
16: u switches to channel β to overhear packets from synchronized neighbor;
17: end if
18: t← t+ 1;
19: until Next transmission;
20: end for
21: end for
22: Output: Synchronized transmitted packets in epoch-based;

at level l are scheduled synchronously in transmission, using time slot basis and round-robin

scheduling to assure transmitting fairness. Each node sends a number of packets per Round

session. For example, if node u sends its first packet at the time of t1, then node v can

also transmit at the same time t1, as long as both nodes are on the same level l, and v is

three-hops away from node u. Using round-robin scheduling, node u’s second transmission

takes place when all other nodes that reside on the same level send their first packet.

Node u can listen to v if the height(v) ≥ height(u) (upward-link). I define a Permission-

To-Send PTS(u, t) primitive for u at level l. PTS(u, t) is TRUE if, and only if, the following

three conditions are satisfied: (1) the nodes at level l− 1 and l+ 1 are not sending, (2) u’s

transmitting queue is not empty, and (3) it is u’s turn to send at t based on round-robin

scheduling mechanism. If PTS(u, t) is satisfied, u can transmit its packet otherwise it

switches its receiving channel to the scheduled channel β in order to overhear packets from

synchronized neighbors, which increases the chance to encode.

29

Here, a node u at level l switches the receiving channel to β if its neighbor v at level

l or l − 1 transmits at channel β. Steps 3-9 allow node v to understand its neighbors

transmission pattern in order to maximize the opportunity of overhearing. For example,

in figure 4.1 (c), node S7 can switch its receiver channel β to 1,2,5 or 6 and transmit at

channel λ = 5 based on the CAST algorithm. Node S11 sends control packets to S7 at

the default channel λ0 while telling S7 what time slots S11 is going to transmit in what

channel and what level S11 is actually located. For high efficiency transmission, for each

transmission round, nodes at level l can send if, and only if, all nodes at levels less than l

have completed transmitting at the same round. This transmission process allows nodes at

levels l, l − 2, l − 4, ... to send concurrently without collisions. This is a special case for

Convergecast wireless networks. The time complexity of this algorithm is O(Round x n).

The initialization in step 2 implements round-robin scheduling for n nodes. Step 4 allows

all nodes, except BS, to send control packets for synchronization between transmitting and

overhearing processes where the running time is O(n). Step 12 runs for all of the nodes n

in the graph, while each node sends Round packets per session.

4.2 Multi-Sink

Section 4.1 solved the multi-channel network coding problem for single sink Convergecasting.

This section applies my approach to the case of multiple sinks. In this circumstance, the

system is configured to send data from shared source nodes simultaneously to the multiple

sinks despite how far they are geographically located from the sources. This means that

some sinks can partially share the path with others, which can significantly reduce the packet

delivery latency and reduce the data load on the bottleneck nodes. Note that the simple

solution of treating the system as a single multi-hop routing for each sink will increase

the overall packet latency, energy consumption, and decrease the network lifetime. For

instance, suppose a network with three sinks R1, R2 and R3 wants to receive data from

shared source nodes with priority. Using single multi-hop tree-based routing for each sink,

sink R3 has to wait until sink R2 receives all the data, which consequently has to wait until

30

sink R1 get all the data. A simple and straightforward communication is that each node

broadcast its packets to the neighboring nodes. Then, the nodes that receive these packets

will re-broadcast the packets to the neighboring nodes until the sinks receive all the packets.

This scenario is also called flooding, which creates severe packet redundancy, collision, and

network contention including impacting the network lifetime.

Therefore, by designing a new method for the multi-sink scenario, we achieve a higher

level of efficiency by taking the advantage of packet transmission through shared subtrees.

Some of the MuCode protocol steps need to be changed, especially those that reflect the

impact of using multi-sink. The MuCode protocol for multi-sink now consists of six steps:

1. Transforms the Convergecast tree to an Interference Graph.

2. Assigns height metrics for each node within the interference graph for each sink within

the BFT algorithm.

3. Construct the parent-child tree with subtrees setups.

4. Assigns a particular channel for each node.

5. Finds and eliminates any hidden terminal problem.

6. Synchronizes packet transmitting and eavesdropping opportunities.

4.2.1 Multi-Sink Tree Construction

The first step in multi-sink MuCode protocol is the same as the first step for the single sink.

In step 2, I use algorithm 6 to construct the heights and the trees for multiple sinks. The

goal of MTS is to come up with an approximation approach that minimizes the data rate

load (γ) on each node on the network. I assume that each source node Sj has a data rate

of γj . In the beginning, each nodes – except the source nodes and the sinks data rate L

is initialized to 0. I define L(u) as an indication of how much data rate a node u has per

epoch transmission. The source nodes also have S height variables = 0, which reflect the

31

node’s height level corresponding to the S sinks. =(u) is the set of targeted sinks that node

u has to forward the data to.

Now, each sink Ri uses the BFT algorithm to assign heights to each node on the network.

Starting from the shared sources until the sinks’ children, it is necessary to select carefully

which parents to use since the data flow cannot be split, and the data rate load at a parent

node is always greater than or equal to its child. I define candidate parents of node u -

candidate parent(u) - as the set of nodes where u’s shared heights are greater than to all

the shared heights on these nodes, and each of these candidate parents shared at least one

targeted sink with u. Initially, the data rate load at source node Sj is equal to the data

rate load of Sj (γj). Intuitively, the targeted set for each source =(Sj) includes all the S

sinks – R1, R2, . . . , RS – since the sources are shared between the sinks.

I define path(u) as the set of sinks that node u can forward the data to using the shortest

path BFT. The parent-child assignment procedure is enforced by iterations level by level,

starting from the leaves up to the sinks’ children. The set Q has the nodes that reside on

the current iteration level.

Algorithm 6 Multi-sink Tree Setup (MTS)

1: Input: The Interference Graph IG;
2: Initialization: for every node u ∈ N ′, L(u)← 0, =(u)← φ and u.height(Ri)← 0 for

every sink Ri in the network.
3: Each Ri of S sinks uses breadth first search fat tree [3] algorithm to the shared sources.
4: if node u within the BFT path of sink Ri then
5: u.height(Ri)← level of u in Ri tree;
6: end if
7: For each source Sj , L(Sj)← γj and =(Sj)← {R1, . . . , RS};
8: path(u)← {Ri|∀i ∈ S ∧ u.height(Ri) 6= 0};
9: height← max height;

10: repeat
11: Q← {u|∀u ∈ n ∧ u.max height = height};
12: Parent Assignment(Q);
13: height← height− 1;
14: until height = 2;
15: for all nodes in level = 1 do
16: Assign all neighbored sinks as their parents;
17: end for
18: Output: Multi-Sink Tree MST graph;

The Parent Assignment procedure (PA) is described by algorithm 7. In the beginning,

32

PA sorts the set Q that are based on priorities, and these priorities are the size of the

candidate parents and the current data rate load in Q nodes. Iteratively, PA extracts the

node with the highest priority and finds its parent(s) until every node in Q is assigned to

his parent(s).

Algorithm 7 Parent Assignment(Q)

1: Input: The set Q from Algorithm 6;
2: Sort node q ∈ Q based on the number of its candidate parents in ascending order, then

based on L(q) in descending order;
3: repeat
4: q ← EXTRACT (Q)
5: if (∃w ∈ candidate parent(q) AND path(w) ≡ =(q) AND L(w) is the smallest) then
6: q picks w as parent and =(w)← =(q);
7: L(w)← L(w) + L(q);
8: else
9: q picks set of nodes W as parents where W are candidate parents of q, =(q) ⊆

path(W), L(W) is smallest possible, and |path(W)| is smallest possible;
10: Sort W based on each element path size in descending order;
11: covered← φ;
12: repeat
13: v′ ← EXTRACT (W)
14: =(v′)← path(v′)− (path(v′) ∩ covered);
15: covered← covered ∪ =(v′);
16: L(v′)← L(q) + L(v′);
17: until W is empty;
18: end if
19: until Q is empty;
20: Output: Each node is load balance assigned to parent node(s);

The criteria for selecting the parent node w of node u is based on whether w is a

candidate parent of u. The path that w leads to is the same as the targeted sinks of node

u, and the current data load in w is the smallest among the candidate parents of u. If the

current data load is the smallest, then w copies the targeted set of u′s and adds the data

rate load in u to its current data load.

Otherwise, u selects the set of candidate parents of W as its parents as long as the target

set of u is the subset of the path that W leads to; the data load per node in W also must be

as small as possible, as does the size of the path set of W . In this case, PA sorts W based

on the size of the path from largest to smallest in order to reduce the load of the other

common path nodes. Iteratively, PA extracts v′ from W and removes the covered paths by

33

other extracted nodes in W and assigns the uncovered path set to the targeted set of v′.

Then, it updates the covered set and adds the data rate load to v′.

The algorithm MTS iteratively uses procedure PA until reaching the sinks’ children.

Intuitively, these children choose their sinks as their parents. The asymptotic time for MTS

algorithm is O(2pr x d2 x n lg n), where d is the graph diameter, n is the total number of

nodes, and 2pr is the combination of candidate parents per node. I assume the number

of candidate parents of pr is small since they are chosen based on the shortest path that

excludes other non-relative neighbored nodes. This is a reasonable assumption in LLNs.

Otherwise, the algorithm complexity becomes exponential.

Algorithm 8 Multi-sink Subtrees (MSS)

1: Input: Multi-Sink Tree MST graph;
2: Initialization: for every node u with height ≥ 1, u.ST list← Φ.
3: for each node u where u.height = 1 do
4: u.ST list← unique subtree {au};
5: end for
6: for each node sink Ri do
7: for height = 2 to max height(Ri) do
8: if node v’s height list(Ri) = height then
9: v.ST list← v.ST list ∪ g.ST list,

10: where g is the parent of u in Ri’s tree;
11: end if
12: end for
13: end for
14: Output: Multi-Sink Sub-Tree MSST graph;

4.2.2 Multi-Sink Subtrees

The third step in multi-sink MuCode is assigning the subtrees to each node on the network

using algorithm 8. At first, each sinks’ child u assigns a unique subtree au, even if u has

more than one parent sink. The process of assigning subtrees to the remaining nodes on

the network is starting from height = 2 from each sink Ri, until the maximum height is

at Ri tree max height(Ri). Each node at that level assigns to his parent’s subtree list. I

define the p-joint node as a node that shares shortest multi-path communication for p sinks.

A node may have more subtree lists than his parent’s subtree list, which is the case of a

p-joint node in relation to p ≥ 2. The running time for MSS algorithm is O(n).

34

4.2.3 Channel Assignment

In the fourth and fifth step, each node must be assigned to channels in order to eliminate

hidden terminal problems and minimize the intra-tree interference. I developed an algorithm

called Multi-sink Channel Assignment (MCA) to do these steps for the multi-sink case in

a centralized approach. In the initialization phase, each node has set its channel to 0. The

algorithm iteration is starting from the highest leveled nodes based on their maxed level in

their height list. On each iteration, set L has all the nodes that reside on the highest level

that have not been investigated. It picks the first available node u from L so that it has

the highest p-joint value and high 1-hop and 2-hops density when compared to the nodes

in L. To guarantee reusing the channels, u.channel is assigned to channel λ if, and only

if, 1-hop and 2-hop neighbored nodes have not been assigned by channel λ, and λ is the

smallest possible choice from the set of available channels Λ. The iteration continues until

reaching the sinks. The asymptotic time for MCA algorithm is O(d x n x E2), where E is

the number of edges in the graph.

Algorithm 9 Multi-sink Channel Assignment (MCA)

1: Input: MSST graph.
2: Initialization: for every node u, u.channel = 0;
3: height← max height;
4: repeat
5: L← {u|MAX(height list) = height};
6: Sort L based on |height list| and the number of 1-hop and 2-hop neighbors;
7: repeat
8: Remove node u from L;
9: if (u.channel = 0) then

10: u.channel ← λ s.t. λ ∈ {1, 2, . . . ,Λ}, no 1-hop nor 2-hop neighbors of u has
assigned with channel λ, and λ is smallest possible choice;

11: end if
12: until L is empty;
13: height← height− 1;
14: until height = 0;
15: Output: MSST graph with allocated channels.

35

4.2.4 Synchronized Multi-Sink Transmission

The last step of the MuCode process is synchronizing the packets that are transmitting

and eavesdropping in a multi-sink network, where Algorithm 10 describes my method to

implement it. For each sink Ri, the variable δ(Ri) is initialized by the maximum height at

the tree of Ri (max height(Ri)). The set T (lvl, Ri) is defined as the set of nodes that reside

at height = lvl on the tree of the sink Ri. I define the set Q as the values that represent

the maximum heights of all the sinks, with set ∓ as the iteration set for each level of each

sink. The iteration process starts at the maximum height level in the set Q and stops at

the sinks’ children nodes. If all of the nodes in a tree of sink Ri, at the current level, have

already transmitted their data, then its current level decreases until there are some nodes

that have not been sent yet, or the current level reaches the sink. If the initial transmitting

level set Q and the current transmitting level set ∓ are not equal, and there is no node in

C(Q) that has a neighbor that belongs to one node in C(∓), then the next transmission

generation can be initiated. If there is no child-parent nodes in the current transmitting

set, then apply the SEMS algorithm for synchronized transmission. Otherwise, the children

have to transmit the rest of the nodes separately using SEMS. Once the transmission is

done at that level, ∓ will decrease its current level by one for each sink Ri. The running

time for SEMMS algorithm is O(d x n x lg n).

4.3 Minimizing Data Rate Load

As previously mentioned, multi-sink Convergecast, with shared sources, creates partially

shared multi-path subtrees from different source nodes. These subtrees hold the shared

data flow until the path is split into two or more sub-paths and the flow is carried for each

sub-path to reach its designated sink. It can be observed that relying only on the shared

paths can cause traffic bottleneck, thus increasing the packet delivery latency, reducing the

network lifetime, and potentially causing network congestion.

In this case, the p-joint nodes carry most of the traffic loads, where they suffer persistent

36

Algorithm 10 Synchronized Eavesdropping in Multi-channel Multi-Sink (SEMMS)

1: Input: MSST graph with allocated channels.
2: Initialization: for each sink Ri, δ(Ri)← max height(Ri);
3: Initialization: for each sink Ri, T (lvl, Ri)← {u | u is a node within the path of sink
Ri and u.height = lvl};

4: Q← ∓← {δ(R1), . . . , δ(RS)};
5: C(∓) =

⋃
T (δ(Ri), Ri)∀i ∈ {1, . . . , S};

6: for (height = max(Q) down to 1) do
7: if T (δ(Ri), Ri) already transmitted for each sink Ri then
8: repeat
9: δ(Ri)← δ(Ri)− 1;

10: Update ∓;
11: until T (δ(Ri), Ri) has some sending elements or δ(Ri) = 0
12: end if
13: if (Q 6= ∓ and nodes in C(Q) have no 1-hop nodes in C(∓)) then
14: Start new sending generation (step 6);
15: end if
16: if (no node in C(∓) is a child to another node in C(∓)) then
17: Synchronize transmission in C(∓) using SEMS algorithm;
18: else
19: Synchronize transmitting the children in C(∓) using SEMS algorithm;
20: Synchronize transmitting the parents in C(∓) using SEMS algorithm;
21: end if
22: ∓ ← {δ(R1)− 1, . . . , δ(RS)− 1}
23: end for
24: Output: Synchronized packet transmissions to multiple sinks;

37

overload. The data rate transmission in p-joint nodes will be much higher compared to 1-

joint nodes for p ≥ 2. Therefore, balancing the data rate load among nodes is substantial

for maximizing the network lifetime and decreasing the packet delivery latency.

4.3.1 Optimal Formulation

In order to obtain a better insight into this problem, I now describe how to solve it optimally.

Let SR be the total number of source nodes, and let γ be the equal data rate of these sources

for simplicity. I denote γi,j to be the data rate of the source i at the relay node j. I calculate

the data rate load at node j as:

 L(j) =
SR∑
i=1

γi,j (4.1)

To find the data rate of γi,j for each source, I define it in the following way:

γi,j =

 γ if j shared the same tree with Si;

0 otherwise.
(4.2)

Let Kmin be the minimum number of children for a sink, and let the set N ′ be the set

of all nodes in the network excluding the sinks. I formulate the optimization problem of

minimizing the data rate load as:

min(max L(j)) ∀j ∈ N ′ (4.3)

subject to:

SR . γ ≥ L(j) ≥ 0 (4.4)

max L(j) ≥
⌈
SR

Kmin

⌉
.γ (4.5)

38

The minimum data rate load L(j) can be zero, while its maximum would never get more

than all the traffic rate from the source nodes. The traffic flow cannot be split because it

is only used for shared sources and because every sink needs this common data. Therefore,

the traffic bottleneck resides in the sinks’ children. The maximum possible data rate load

in these nodes would never come below the data rate of the ratio between the number of

source nodes and the minimum number of children for a sink.

Therefore, my optimization problem constraints will look like:

SR . γ ≥ min(max L(j)) ≥
⌈
SR

Kmin

⌉
.γ ∀j ∈ N ′ (4.6)

Let Y be the maximum data rate load max L(j) on the set N ′. Y is formally defined as:

Y = max

{
SR∑
i=1

γi,1, . . . ,
SR∑
i=1

γi,N ′

}
(4.7)

which means that:

Y ≥
SR∑
i=1

γi,1

. . .

Y ≥
SR∑
i=1

γi,N ′

Therefore,

minY ≥
SR∑
i=1

γi,j ∀j ∈ N (4.8)

39

which gives the final optimization problem of minimizing the maximum data rate load:

minY ≥ max
∀j∈N ′

SR∑
i=1

γi,j ≥
⌈
SR

Kmin

⌉
.γ (4.9)

The complexity of this formulation is challenging because all possible permutations have

to be investigated for all possible parent selections in the network in order to find the optimal

solution, which is asymptotically exponential.

4.4 Heuristic

In order to balance the data rate load assignment among the nodes, my greedy heuristic

Parent Assignment algorithm chooses the parent node with lowest L(j) while simultane-

ously avoiding nodes with a relatively high data load rate as often as possible.

To evaluate my heuristic, I need to find and compare the optimal solution for minimiz-

ing the maximum data rate load in the network to MuCode heuristic. Cayley’s formula,

proved by [71], states that: “for any positive integer n, the number of all trees with vertex

set[n] is An = nn−2“. Finding all of the permutations of Cayley’s trees with a brute force

approach can lead to the optimal solution. Since Cayley’s formula is more general than my

tree assumption, another approach to find an optimal solution for an ordered tree root is

a brute force with a running complexity of O(bn), where b =
(
pr
S

)
and pr is the number

of parents a node can have, while S is the number of sinks . Nevertheless, this compu-

tation is exponential. Therefore, my MuCode heuristic method tries to solve the problem

in O(n log n) running time, with the assumption that pr is small. Another competitive

heuristic approach is using Breadth-First-Search for the shortest path from the root to the

leaves, which runs in O(n + E). Another heuristic algorithm would be that each source

node randomly chooses S paths to S sinks which run in O(SR x n) where SR is the number

of source nodes.

40

4.5 Evaluation

I have evaluated MuCode against Sensecode [37], one of the first network coding protocol

for static Convergecast WSN with single sink and one channel. Sensecode synchronizes

packets transmission, which provides nodes free-listening from neighboring transmissions

without the need to perform channel switching.

4.5.1 MuCode Performance

In this section, I evaluate MuCode against Sensecode with two baseline schemes. The first

scheme is No Coding without replication (called NC R = 0), and the second scheme is No

Coding with single replication (called NC R = 1). No coding uses a single channel, with

either one or two copies of the packet being sent. The experiments are conducted in 4X4,

6X6, and 12X12 grid networks, where the root BS is placed at the top corner and the

sources are distributed at the farther corner from BS. In order to implement MuCode in

these grids, the total available channels Λ = 9. I also evaluated a single chained network,

the worst case topology for MuCode with 5, 8, and 12 nodes, where the source and BS are

placed on opposite poles.

The reason why chained networks are the worst case is because nodes have no opportu-

nity in overhearing packets from surroundings. Based on CAST, I reduced the number of

channels Λ to 3 because K, the number of children of root BS, is reduced to 1. Packet Error

Rate (PER) is the ratio of the number of not received packets or received in error– even

after applying any error correction method– to the total number of packets that would have

been received without any error. The usual PER in LLN is between 0% to 20%. While in

noisy, high interference, and low Received Signal Strength Indication (RSSI) circumstances,

the PER becomes relatively very high. These experiments used a variety of wireless PERs

from 0% to 60%, in most cases, using a standard Random Linear Network Coding (RLNC)

technique.

In the evaluation process, I am interested in several metrics: packet delivery rate (PDR),

41

throughput, latency, and network power [72]. Network power is defined as the ratio of

network throughput and its average delay. Once the network gets higher throughput and

lower delay, then its network power will increase. Network power allows architecturally

independent comparisons between protocols and provides good insight to compare MuCode

to the other protocols.

I used the Contiki operating system [73] to implement the protocols. Cooja, the standard

simulation for tiny low-cost and low-power microcontrollers that runs in Contiki operating

system, emulates the network nodes and its hardware platform in large-scale networks. I

chose the T-Mote Sky mote because it can transmit 250 kbit/s using MSP430 microprocessor

and CC2420 radio. The platform works in 10 KB of random access memory and 48 KB of

program flash. I configured the radio medium to the Unit Disk Graph Medium Distance Loss

with 50m transmission and interference ranges. In my simulation experiments, I assumed

that each node sends a packet of size 50 bytes at time slot t, where the difference between two

consecutive time slots is ∓ t = ti+1−ti = 100 milliseconds per transmission. The simulation

considers stochastic parameters such as generating random seeds for the same PERs and

assign random data rate per node for the case of studying the multi-sink scenarios.

Packet Delivery Rate (PDR)

The metric Packet Delivery Rate (PDR) is the ratio of original packets that are successfully

received to the sink over the total original sent packets. Figure 4.2 (a) shows the average

packet delivery rate versus PER in grid networks. Sensecode and MuCode together have

the same PDR since they use the same network coding technique. Both Sensecode and

MuCode are more reliable in packet loss than NC R = 0 and NC R = 1 thanks to network

coding. The redundant factor R leverages PDR in NC R = 1 comparing to NC R =

0. However, overhearing packets from neighbors, encoding, and retransmitting them would

definitely lessen the packet loss. The nature of using network coding in reliable grid networks

assumes that the total sending packets of all nodes reside at level l is less than or equal to

the total sending packets of all nodes that reside at level l − 1.

42

Figure 4.2: The average performance of PDR and Latency versus PER.

In a single chained WSN, the farther the distance between the source and the sink,

the higher the chance for packet drops. Figure 4.2 (b) depicts the average packet delivery

rate versus PER in single chained WSN with variance distances. The low packet delivery

rate represents No coding, Sensecode, and MuCode with no replication. The high packet

delivery represents those protocols all with single replication. Unfortunately, network coding

has no advantage here because nodes have no chance to overhear packets from neighbors.

Replication has the substantial influence to improve PDR in chained topologies, however.

43

Delivery Latency

Figure 4.2 (c) shows average packet delay versus PER in single chained WSN with variance

distances. Again, nodes cannot overhear packets from neighbors but replicating the send-

ing packets can help with PDR, as I have showed in the previous subsection. Therefore,

retransmitting the lost packets would be cut down, which reduces the packets latency.

Figure 4.3: The average packet delay with different packet error rates in grid networks.

Figure 4.3 depicts the network delay versus PER in various densities for grid networks.

In small grids, NC R = 0 has the lowest delay, when PER ranges between 0% and 20%.

In relatively bigger grids, however, NC R = 1 conserves the lowest delay at PER = 10%.

44

Once PER gets higher in all of those cases, MuCode becomes the lowest in packet delay.

Observe that the incomplete lines show that the delay is equal to ∞ seconds, which is a

result of a packets loss, and they will never be delivered to the sink completely. Therefore,

MuCode reduces the delay efficiently compared to Sensecode, when there is a chance of

packets overhearing.

Network Throughput

Figure 4.4: Average throughput with different packet error rates in grid networks.

Figure 4.4 depicts the grid network throughput versus PER in different densities. When

the network error ratio is less than 20%, NC R = 0 is superior to the network throughput

45

in 4X4 grid. In more dense grid networks, NC R = 0 throughput would not be efficient

in unreliable communications. NC R = 1 possess the highest network throughput in 6X6

grid at PER = 10%. Other than those cases, MuCode delivers highest network throughput

comparing to all the others.

Figure 4.5: Average throughput with different packet error rates in single chained networks.

Figure 4.5 depicts average throughput versus PER for the single chained networks in

different densities. In 5 nodes dense, MuCode R = 0 has higher throughput when PER

is from 0% to almost 30%. Once PER gets higher, MuCode R = 1 will have the highest

throughput. Nothing is changed when the network density gets higher. However, the PER

break point between MuCode R = 0 and MuCode R = 1 is reduced from 30% to 20%

46

and 10% in single chained 8 and 12 nodes respectively. Bottom line, MuCode outperforms

Sensecode in throughput with or without end-to-end errors in chained networks.

Network Power

Figure 4.6: Average network power with different packet error rates in grid networks.

Figure 4.6 depicts grid network power versus PER in different densities. In small density,

NC R = 0 has the highest network power when PER is less than 20%, which is true because

the packet drops are low with high throughput. In medium density at 10% PER, NC R = 1

becomes the highest in network power. The reason for this superiority is because NC R = 0

drops huge packets compared to NC R = 1. Despite the fact that both Sensecode and

MuCode send all the packets to the sink without retransmitting, their delay is still high

47

comparing to NC R = 1. Whereas in high density, MuCode, with nine channels, has a

higher network power than the others. The chance of packet drops is very high in which

Sensecode and MuCode can survive better. Nevertheless, MuCode throughput is higher,

and its latency is lower compared to Sensecode.

Figure 4.7: Average network power with different packet error rates in single chained net-
works.

Figure 4.7 depicts single chained network power versus PER. MuCode R = 0 has higher

network power when PER ranges between 0% to 10%. Nevertheless, the more PER there

is, then the more network power there is in MuCode R = 1. Even though the algorithm

requires a slight increase O(d x K) in computational complexity, the overall improvement

in network power under certain circumstances justifies the complexity.

48

4.5.2 Latency Evaluation for Multi-Sink

In this evaluation section, I want to consider the impact of using MuCode heuristics for

multi-sink systems by comparing it with the optimal technique and other rival methods

in terms of packet delivery latency. The optimal technique, in this case, is called optimal

shortest path with minimized maximum data rate method (OSP), which has the optimal

latency. As previously shown, the optimal solution computation for multi-sink is asymptot-

ically expensive. Hence, I am comparing it against the MuCode heuristics with relatively

small size complexity by using the brute-force approach to obtain (OSP).

Another rival technique is the optimal minimal maximal data rate (OMX), which also

can be found in the same process as obtaining (OSP). Essentially, OMX only considers

minimizing the maximum data rate without taking into consideration the shortest path

that provides the optimal solution for maximizing the network lifetime but with extra

latency compared to OSP.

The breadth-first search (BFS) algorithm, where each sink runs (BFS) to find the source

nodes, is another heuristic that can be matched against the MuCode. More specifically, each

sink creates the shortest path tree to the source nodes. However, it does not count the data

overload at the nodes.

Last, I examine MuCode heuristic with the Random Shortest Path (RSP) approach,

where, at the beginning, it runs the (BFS) algorithm in order to find the shortest path

per node, and then each node randomly chooses its parent that is within its shortest path

routes.

I have conducted three major network setups with different experiments. The first setup

is implemented in 3X3, 4X4, 5x5, 6x6, and 8X8 grid networks where a single root BS is

placed at the top corner, and the sources are distributed at the farther corner from BS. The

second setup is constructed in 3X3, 4X4, 5x5, 6x6, and 8X8 grid networks. I placed the two

sinks separately in the top corners, while the source nodes are located at the bottom line.

I am assuming all source nodes reside on the same level with respect to the sinks. The last

network setup is conducted in 5x4, 7x5, 9x6, 11x7, and 13x8 grids, where four sinks are

49

placed at the four corners while the source nodes reside in the middle horizontally.

I am focusing on measuring the packet’s delivery latency with different data transmitting

rate per node, using MuCode protocol by comparing my heuristic to the other heuristics’

optimal but exponential solutions.

Figure 4.8: Average packet delay with different number of nodes deployed on the network
with no packet errors with variety of number of sinks.

Figure 4.8 part (a) depicts the packet delivery latency for the one sink while increasing

the data transmitting rates as the number of nodes increase. With a relatively small grid

size, my heuristic showed an identical solution to the optimal OSP and OMX. The reason

for this similarity is that my greedy heuristic found the full picture of the parent assignments

for the small grid, which allows it to provide the same answer as the OSP. At the same

50

time, OMX has been able to balance the data rate load per level while using the shortest

path. On the other hand, BFS does not consider selecting parents by data rate. Instead,

it chooses based on local node discovery, which potentially selects more children than its

next node’s discovery. Finally, the node in random shortest path RSP chooses his parent

randomly, which may lead to an unbalanced data rate load that increases the data latency,

even when using multi-channel in order to maximize the overhearing possibilities. Once

the network gets more depth, my heuristic will, for the most part, not provide the optimal

latency compared to OSP.

Even though the full picture of the network cannot be obtained from the local optimality,

which may end with inevitable parent selecting that is not generally optimal, the results

are promising and are the nearest to OSP, compared to all the other heuristics including

the optimal OMX. Even though OMX reduces the differences among the nodes per level

in terms of the data rate load into the minimum, it does not consider the shortest path as

the only solution, which provides longer paths that marginally increase the packet latency

compared to OSP and my heuristic.

The Figure 4.8 part (b) depicts the packet delivery latency for the two sinks that ag-

gregate the data from the same source nodes that are far equally distanced from the both

sinks. With a small grid network, all the methods have the same results except for BFS.

The reason is that BFS can construct a path that is longer than the shortest path, and this

path can lead to both sinks as the shortest path for one and not to the other sink.

In the medium size network, the gap in packet delivery latency gets higher between

OSP and the others, especially BFS and RSP as the network height goes deeper. In the

meantime, my heuristic and OMX are closer to OSP because the MuCode heuristic finds

more options to select the optimal local parent, while OMX has more chances to obtain the

shortest path with minimizing the maximum data rate.

In a large-sized network, both BFS and RSP data latencies are huge compared to the

others. RSP can construct an overloaded path that is accumulated throughout the ran-

domness choosing per parent selecting level in the deep network. It can be noticed that

51

my heuristic outperforms OMX because it still maintains the shortest path while minimiz-

ing the local parent load assignment, whereas OMX creates longer paths that needs to be

scheduled using SEMSS algorithm mostly.

The Figure 4.8 part (c) shows a packets latency to four sinks that collect data from

source nodes, which are equally distanced to these sinks. My heuristic outperforms the

other techniques, except OSP when the number of nodes become near to 40 and more. I

still maintain reasonable packet delivery latencies compared to the optimal solution.

52

Chapter 5: MuTrans: Uncontrollable Predictable Mobility

The previous chapter demonstrated that the combination of network coding and multi-

channel communication can substantially improve the performance of Convergecast LLNs.

The current chapter considers the network performance in uncontrollable predictable mobile

data collection systems using the MuCode protocol. Although the application class is

somewhat different, given that sinks are now mobile, the performance issues are similar. In

the mobile LLN environment, the wireless communication medium is unreliable. Further,

mobility means that there is limited contact time for the cases where the mobile collector

cannot be forced to reside until all of the data is successfully received.

I first show the basic architecture, and then I describe how to model and optimize the

system. Next, I describe the load balancing and scheduling protocol and provide the details

of my evaluation.

5.1 MuTrans Architecture

Figure 5.1: MuTrans System Model

53

Figure 5.1 illustrates the MuTrans system architecture. The basic idea is that there

are two types of nodes – head nodes and member nodes. The Figure shows the member

node m3 sending its packets to its head node (solid line) H3 , while another head node H4

overhears the packets (dotted line) and uses network coding to enhance network reliability.

Recall that the definition of a polling sector is the range within which the MuCar can

communicate with head nodes and receive data while on the move. The polling sector

length at head node Hi can be measured by the distance between the starting point where

MuCar contacts with Hi and the ending point before it disconnects with Hi. Notice that the

location of each polling sector is known once the head nodes are selected. Once the mobile

sink (MS) enters the polling sector, the head nodes transmit their stored data through

different assigned channels λi.

The member node assignment to each head node becomes critical in this situation.

This assignment can increase the data load at the head node, which increases the energy

consumption while also increasing the uploading latency to the MS. Since the MS has

uncontrollable mobility, the uploading deadline is firm and unbreakable at each polling

sector. Another important consideration is when the number of concurrent uploading head

nodes exceeds the number of radios available at the MS. Therefore, fair and balanced

scheduling mechanisms have to be designed to overcome this problem.

5.2 System Optimization

Based off of the system architecture described in Chapter 3 and the previous sections, I

now show how to model and optimize network and application performance.

5.2.1 Data Delivery Latency Analysis

This section describes the latency analysis in the worst-case scenario where all the packets

are successfully received to their designated head nodes. I first define the inter-session σ

as the total time the MS travels the network while receiving the data from all of the head

nodes and download them to the base station in a dwell position. Without loss of generality,

54

I consider the MS to perform periodic data collections, so, for every σ time unit, the mobile

makes a ”round trip.”

Let the distance PSj represent the polling sector j and the distance the MS travels once

it starts communicating with Hi until it terminates that communication. I define ∆j as the

contact duration time between MS and the head nodes at PSj. The upload time ωj(∆j) is

the time MS needs to upload data from a polling point j at contact duration ∆j . I assume

the MS has < radios, and those radios allow it to receive data simultaneously from most <

head nodes.

Let Ψi(σ) represent the data that needs to be uploaded to the MS from head node Hi

at inter-session σ. Ψi(σ) can be formulated as:

Ψi(σ) = γiσ +

ki∑
z=1

γz,iσ (5.1)

where γi is the data rate generated by the head node Hi and γz,i is the data rate generated

by a member node mz,i that is assigned to the head node Hi, while ki is the number of

member nodes assigned to Hi.

By assuming the packet size is fixed, using Equation (6.4) , the number of packets that

the head node Hi has at inter-session time σ can be found by the following equation:

Gi(σ) =

⌈
Ψi(σ)

packet size

⌉
(5.2)

Subsequently, the uploading latency for head node Hi at inter-session σ is equal to

multiplying Gi(σ) by τ , where τ is the packet transmitting latency time.

Let Γj represent the number of head nodes that the MS can cover while receiving data at

polling sector j. Again, without a loss of generality, and to simplify the notation, I assume

that if Hi and Hi′ share the same polling sector PSj , then they both have the same starting

and ending contact time while uploading their data to the MS. Consequently, if the number

55

Table 5.1: MuTrans Notations Table

Notation Meaning

MS The uncontrollable predictable mobile
sink

σ The time interval MS takes to collect
data from all polling sectors per trip.

PSj A polling sector j where MS upload the
data from.

∆j The contact duration between MS and
the head nodes at PSj .

N The total number of polling sectors.

ωj(∆j) Time MS needs to upload data from
PSj at contact duration ∆j .

< Number of multi-radios MS has.

Hi head node i.

HSj The set of head nodes at PSj .

mi Member node i.

Ψi(σ) Archived data in Hi during σ of time.

γi The data rate generated by Hi.

γz,i The data rate generated by mz as-
signed to Hi.

ki Number of member nodes assigned to
Hi.

Gi(σ) Number of packets Hi has during σ of
time.

τ Packet transmitting time.

Γj Total number of head nodes at PSj .

µj Total number of member nodes at PSj .

Πj Number of uploading schedules per
concurrent transmitting at PSj .

Ω(σ) The total uploading latency at inter-
session σ.

β Node’s buffer size.

C(mi) Set of mi’s candidate head nodes.

Gimin The minimum number of packets a
head node has in schedule i.

Gitot The total number of packets in all head
node at schedule i.

of head nodes are more than the number of radios available at MS, then all these nodes

cannot upload to the MS simultaneously, because there will be transmitting interference

between some head nodes that use the same channel. Therefore, I introduce the concept of

56

uploading scheduling where each number of at most < head nodes are allowed to transmit

concurrently to the MS, while the remaining are scheduled for next transmissions in the

same way as the previous schedule. The number of different uploading scheduling that the

MS needs at PSj is formulated as:

Πj =

⌈
Γj
<

⌉
(5.3)

This equation shows that if Γj ≤ <, then only one schedule is needed to transmit a

packet per head node at PSj . The challenge is to minimize the uploading latency. I observe

that each schedule latency is bounded by the maximum number of packets a head node

has per schedule. Hence, the upload time ωj(σ) takes to the MS at polling sector j for

inter-session time σ can be formulated as:

ωj(∆j) =

Πj∑
c=1

Gc∗(σ) . τ ≤ ∆j (5.4)

where Gc∗(σ) is the selected maximum number of packets that a head node has that belong

to the schedule c in inter-session σ at PSj using Equation (5.2). This uploading latency

should not exceed the contact interval time ∆j or else not all data will be received during

that trip. Unlike traditional transmitting with a single transceiver at the MS, in my multi-

channel scheme the uploading latency among the head nodes is only considered by the node

that has the maximum total number of transmitted packet among the head nodes. The

reason is that head nodes transmit concurrently to the MS using different channels that

have been assigned by the MS prior the uploading process.

Assuming that the communication duration between the MS and all of the head nodes

from all of the polling sectors have the same contact period ∆, the total uploading latency

Ω(σ) at inter-session time σ can be formulated as:

57

Ω(σ) =
N∑
j=1

ωj(∆j) ≤ N ∆ (5.5)

where N is the total number of polling sectors on the network. In order to minimize Ω(σ)

, ωj(∆j) has to be minimized where N is fixed. System design goals are to minimize

Equations (5.4) and (5.5).

5.2.2 Optimization

Consider the case where I want to minimize the uploading time ωj(∆j) at PSj . Let ∇j be

the set of head nodes that are within the range of MS communication at the polling sector

j. The set ∇j is sorted by Gi(σ) for each head node Hi in the set in descending order.

Therefore, an optimization problem for minimizing the uploading latency per inter-session

Ω(σ) ca be characterized as follows:

min Ω(σ) =

N∑
j=1

Πj∑
c=1

Gc∗(σ) . τ ≤ N ∆ (5.6)

where Gc∗ is the total packets of Hc
∗ placed in the

[
<(c − 1) + 1

]th
position of the set ∇j .

I assume the round robin scheduling is implemented for the Πj schedules to emphasize the

fairness between the head nodes. I define the fairness scheduling in Section 5.3.2.

Figure 5.2 depicts an example of the scheduling method with the number of radios

available < = 3, where the number of head nodes are 9 at polling sector j. The set ∇j is

sorted by the number of packets that each head node has, while Equation (5.3) calculates

the number of different schedules (Πj) needed which equals to
⌈

9
3

⌉
= 3 schedules. For c =

1, the G1
∗ = 10 where it is positioned in

[
3(1− 1) + 1

]th
= 1st in set ∇j . In the same way,

58

Figure 5.2: A scheduling example for < = 3 and Γj = 9 head nodes at polling sector j.
Each number indicates the number of packets that must be uploaded to the Mobile Collector
where 3 uploading schedules are required.

G2
∗ = 8 while G3

∗ = 6. Hence, the uploading time needed to transmit all the packets in PSj

is (G1
∗+G2

∗+G3
∗) . τ = 24 . τ where each schedule is transmitting in round-robin scheduling

for fairness perspective.

Observe that Equation (5.6) has two variables that are part of minimizing the uploading

latency: the number of schedules per polling sector (Πj) and the total number of packets

the head nodes have that are positioned in
[
<(c− 1) + 1

]th
in the set ∇j for c = 1, . . . ,Πj .

The inner sum equation of minimizing Ω(σ) is equivalent to Equation (5.4). Basically,

the uploading time ωj(∆j) at PSj is minimized if head nodes are sorted based on their

packets and balanced, and it will be ideal if Γj = a . < where a is a positive integer. I now

develop a theorem to compute the optimal assignments that minimize Equation (5.6). To

do this, I first prove two lemmas.

Lemma 5.2.1. Let Gx∗ be the maximum number of packets a head node has in schedule x

where x = 1, . . . ,Πj and all have the same packet size. For < ≥ 2, ωj is minimized if every

head node with Gx∗ is in the
[
<(x− 1) + 1

]th
position of the set ∇j, where ∇j is sorted by

Gi for each Hi in the set in descending order.

Proof. Since all head nodes that share the same schedule x can send packets simultaneously

using different channels, schedule x will finish transmitting as long as the head node with

Gx∗ finishes. Given that each schedule sends packets at different times, ωj(∆j) =
Πj∑
x=1

Gx∗ . τ .

59

The uploading time for schedule x depends on the size of Gx∗ on that schedule. Therefore,

minimizing Gx∗ per schedule x minimizes overall uploading time. To prove this by induction:

x = 1 where schedule 1 has < head nodes and G1
∗ is the maximum packets among all the

head nodes. The base step satisfies my lemma. Now, I assume the lemma is true for x = z.

For schedule z+ 1, the ωj is minimized as long as Gz+1
∗ is less than or equal to every Gzi in

schedule z, which must be true since they are sorted in descending order.

Lemma 5.2.2. ωj is minimized if every Gxi is equally balanced in a number of packets with

Gx∗ for the same schedule x.

Proof. Let Gxmin be the minimum number of packets for a head node in schedule x and

let Gxtot be the total number of packets that all the head nodes have at schedule x. Since

Gx∗ ≥ Gxmin, and the upload time at schedule x depends only on Gx∗ . Therefore, reducing

Gx∗ while maintaining the same size of Gxtot increases the size of packets in other head nodes,

and it can be the same size as Gxmin’s. Hence, balancing between Gx∗ and other head nodes

– especially Gxmin – should lead to minimizing Gx∗ , otherwise Gx∗ will be greater than Gxmin

with another head node. This is true for every schedule, which eventually minimizes the

overall uploading time at PPj .

Figure 5.3: A scheduling example: (a) the schedules before using Lemma (5.2.2); (b) the
schedules after using Lemma (5.2.2).

As an example, consider Figure 5.3, which shows a scheduling scenario for < = 3 where

the number of head nodes is nine at polling sector j. In part (a), the schedules are sorted

by the number of packets. Here, the total number of packets = 63, while the uploading

60

latency = 28 . τ . After applying Lemma (5.2.2), the total number of packets are the same

where some head nodes are able to get packets from the maxed head nodes on the same

schedule, therefore the uploading latency = 22 . τ , which is shorter in latency than the case

in (a).

Theorem 5.2.3. ωj is minimized if Γj = a.< where a is a positive integer and each schedule

size is exactly <.

Proof. Another way to describe this Theorem is that every schedule has exactly < head

nodes. To prove the Theorem by contradiction, let schedule x with ℵ head nodes get the

local minimum uploading time for Gxtot total packets where < > ℵ. The remaining < − ℵ

spots in schedule x are initialized to 0 packets. Based on Lemma 5.2.2, schedule x need to

be balanced to get local minimum uploading time, and that is not the case which contradicts

the assumption.

My approach to achieving this optimal result is to dimension the system, according to

known parameters, such as σ and the data rates of all head and member nodes. Appendix

A.1 formulates the problem as Linear Programming Optimization which is a challenging

problem. The next section describes the MuTrans protocol, which offers a practical solution.

5.3 MuTrans Protocol

The purpose of the MuTrans protocol is twofold: First, to dynamically assign each member

node to a head node. Second, to, as fairly as possible (in the sense of overall minimizing

total upload latency), assign uploading schedules to head nodes. For each of these problems,

I present polynomial time heuristics. The heuristics are meant to be run with full knowl-

edge of system parameters, and therefore can be run by the MS. The protocol can be run

continuously as the mobile traverses the system or can be run whenever system parameters

change, such as head node or member node assignment, changes in data rates, or changes

in mobility patterns as in LBC-DDU.

61

5.3.1 Data Load Balancing

The Data Load Balance (DLB) - Algorithm 11 - heuristically balances data loads among the

head nodes in order to reduce the uploading duration in the mobile data collector. I define

C(mi) as the set of candidate head nodes that the member node mi can assign its data

to. Those candidates are one-hop distanced to mi. Initially, each member and head node

calculates its collected data Ψmi(σ) and ΨHi(σ) respectively from Equation (6.4) during

inter-session time σ.

Algorithm 11 Data Load Balance (DLB)

1: Initialization: each member node mi defines C(mi) = {Hi|∀Hi ∈ NB(mi)};
2: Initialization: each member node mi calculates Ψmi(σ) = γmi .σ;
3: Initialization: each head node Hi calculates ΨHi(σ) = γHi .σ;
4: Q = {mi|∀i ∈ {1, . . . , µj}};
5: Sort mi in Q based on the size of C(mi) in ascending order, then based on Ψmi(σ) in

descending order;
6: while Q is not empty do
7: m← EXTRACT (Q);
8: m chooses head node Hi s.t. Hi ∈ C(m) and ΨHi(σ) is the lowest;
9: ΨHi(σ)← ΨHi(σ) + Ψmi(σ);

10: end while
11: Output: each member node is assigned to a head node with data load balanced;

I say that a schedule’s balance is measured by the quantity |Gxmax −Gxmin|, and that a

schedule that is ”balanced” has the property min |Gxmax −Gxmin|, which is also described by

Lemma 5.2.2.

In steps 4-5, the set Q is defined as having all of the member nodes at the current polling

sector so that it is sorted based on the number of candidate head nodes per member nodes

in ascending order and then based on the local data in descending order. In this way, the

least candidates’ member node chooses first in order to give more precise and better options

to the member nodes that have more candidate head nodes. If I do the opposite, then a

member node with high candidates may choose a head node, which may be the only option

for another member node – therefore increasing the load to that head node. This can be

avoided if that choice was processed later.

62

Figure 5.4: An example of the candidate head nodes per member node. Each number
represents the data load.

In steps 6-10, iteratively, I pick the first member node and choose the head node with

lowest data load and update its data load by including the member node’s data load. This

iteration is processed until the set Q is empty.

Figure 5.4 represents an example of the DLB algorithm where the dark circles are

the head nodes, while the white circles are the member nodes. The dotted line shows

the candidate head node that will be assigned by the member node, while the solid line

represents the path of the MS. Each node calculates its G value during σ duration using

the Equation (5.2). Because head nodes are not assigned to any member node yet, the head

nodes calculate their G values using only their local data.

In this example, the set Q is equal to {m1,m7,m3,m4,m6,m5,m2} , which is sorted

based on the member nodes with the least options to choose a head node and with the

highest number of packets. With regarding this sequence, each member node selects the

head node with smallest data load. Figure 5.5 shows the final assignment with load balanced

among the head nodes.

63

Figure 5.5: The member assignments after using DLB method.

The complexity time for my heuristic algorithm is O(µj x (Γj + logµj)), where µj is

the number of member nodes, while Γj is the number of head nodes, which is a feasible

polynomial solution of the optimization problem.

5.3.2 Utilized Fair Scheduling

A synchronized schedule that is based on the number of packets in the head nodes has to

be maintained to reduce the uploading latency. Given Γj , and given head nodes that want

to upload their data to the mobile data collector at a given polling sector PSj , I define

Algorithm 12 , which fairly and dynamically utilizes the scheduling of the concurrent head

nodes that are uploading. Let HSj be the head node set at the polling sector PSj .

Steps 1-2 takes the HSj set and assigns it to set S. The iteration of the algorithm considers

the remaining non-sent packets in the set S. At first, the set is sorted based on the number

of packets each head node has in descending order. Then, it divides these head nodes by the

number of available channels that the mobile data collector has, which creates g schedules

64

Algorithm 12 Dynamic Round-Robin Scheduling (DRRS)

1: Input: head node set HSj ;
2: S ← HSj ;
3: while S is not empty do
4: Sort S based on Gi in descending order;

5: Divide S into g =
⌈
|S|
<

⌉
schedules;

6: Select the g head nodes where each has minimum G per schedule x (Gxmin);
7: In each schedule x, head nodes concurrently transmit their data Gxmin times;
8: For each head node Hi at schedule x, Gxi ← Gxi −Gxmin;
9: Remove all head nodes with Gi = 0 from set S;

10: end while
11: Output: fairness dynamic schedules that maximize concurrent heads uploading;

of head nodes. Each schedule x has a head node with a minimum number of packets

(called Gxmin), which is the indicator for how many simultaneous transmitting should be

done during this iteration. I use Weighted Round Robin scheduling, in the sense that

G1
min ≥ G2

min ≥ . . . ≥ Ggmin, which leads to the number of concurrent transmitting per

iteration in schedule 1, which is always greater than or equal to schedule 2, and so on until

schedule g. After the transmitting process is complete in this iteration, each head node

at schedule x deducts Gxmin from its total packet, then S removes all the head nodes that

have no remaining packets to send. The algorithm repeats the previous steps until the head

nodes transmit all packets.

Before I define fairness, certain terminology must be introduced. Let x be a schedule,

and let |x| be the number of concurrent heads uploading at schedule x. A schedule x, which

has the ”maxed concurrent heads uploading” when it satisfies the property: min |< − |x||

, and this property is supported by Theorem 5.2.3. The fairness uploading scheduling

is weighted by the Gmin on each schedule. For each iteration, the weighted round-robin

scheduling is taking place with the queuing ratio
G1

min

Gg
min

:
G2

min

Gg
min

: . . . : 1 where for instance,

in the first iteration, schedule 1 transmits G1
min/G

g
min packets while schedule g transmits

only single packet in round-robin fashion. This process is repeated until the end of the first

iteration.

Figure 5.6 depicts an example of DRRS scheduling with two radios available at MS.

65

In the first iteration, the set S = {H4, H3, H1, H2} where it is sorted based on the largest

number of packets. Then, the set is divided into 2 schedules: schedule 1 = {H4, H3}

with G1
min = 11 while schedule 2 = {H1, H2} with G2

min = 8. Now, in the transmitting

phase, each head node on the same schedule transmits packets simultaneously using different

assigned channels. However, each schedule has its own time slot that does not overlap with

another schedule. The round robin scheduling is implemented to emphasize fairness among

the schedules, where schedule 1 transmits 11 packets, while schedule 2 transmits eight

packets during the first iteration.

Figure 5.6: DRRS example using multi-channel with < = 2.

In the second iteration, the set S will be {H4, H1}, which produces one schedule with

G1
min = 1, where each head node has only one remaining packet. The total time slots needed

to transmit 40 packets from 4 head nodes is 20, which is exactly the same as the optimal

solution, and that is not always the case. The running time complexity of DRRS algorithm

is O(Γ2
j log Γj).

66

5.4 Evaluation and Results

Using Cooja, an LLN simulation tool, I evaluated MuTrans against several other ap-

proaches. The purpose of this evaluation was to judge the effectiveness of my proposed

heuristic. Since there do not exist other heuristic algorithms that are applicable in my

predictable multi-channel environment, I defined two simple heuristics to solve my two sub-

problems: Random Member Assignment RMA and Static Round Robin Scheduling SRRS.

RMA is an algorithm that randomly assigns member nodes to their nearby head nodes with-

out considering data balancing, whereas SRRS is a round robin scheduling that fixes the

head node location to its original schedule.

These two baseline heuristics enabled us to define three new protocols. The first com-

bination is RMA + SRRS, where the head node selection is randomly assigned by the

member nodes, while the concurrent uploading schedules are statically assigned to the head

nodes with a single iteration. The second combination is RMA + DRRS, where the head

nodes are selected randomly by the member nodes, while the concurrent uploading sched-

ules are dynamically assigned to the head nodes with multiple iterations as in algorithm 12.

The last combination is DLB + SRRS. Here the head nodes are assigned by the member

nodes based on algorithm 11, which balances the data rate load at the head nodes; however,

the concurrent uploads are statically scheduled to these head nodes. All of these three new

protocols use multi-channel network coding.

To represent a realistic uncontrollable but predictable environment, I used a topological

representation of George Mason University, as shown in the Figure 5.7. I used the Contiki

operating system to implement the protocols, where the red/light drop pins are the polling

sectors in which head nodes upload their data to the MS, while the green/dark drop pin

represent the Base Station in which MS has to dwell at and send the collected data to.

The MS is traversing the GMU campus in a fixed route with a distance of 5.3 km and

a speed of 55 km/h. I installed 16 polling sectors, where the number of head nodes is 6 per

polling sector. The total number of deployed nodes are 192 with ∆ = 4.6 seconds contact

duration between the MS and the head nodes. Each member node i has its own data

67

transmitting rate γi in order to test the data balance algorithm. These member nodes are

randomly scattered and are 1-hopped away from the head nodes. I evaluated my protocols

with a different number of radios < available at the MS. These experiments are conducted

with a variety of wireless Packet Error Rates (PERs) using the MuCode network coding

protocol [10].

Figure 5.7: George Mason University map

5.4.1 Packet Delivery Rate (PDR)

The first experiment is to judge the Packet Delivery Rate. Figure 5.8 depicts the average

packet delivery rate versus PER using two radios in MS. In a reliable communication (i.e.

PER = 0%), the PDRs are maximized, and all of the four techniques are equal. At PER

= 10%, however, DLB + DRRS becomes the only method that maintains full PDR, with

a difference up to 8.7%. Even when PER gets higher, my protocol is superior to the other

techniques by, at least, 40% , 3%, and 11% in PDR, which can be compared to RMA +

SRRS , RMA + DRRS, and DLB + SRRS.

68

Figure 5.8: Average packet delivery rates with < = 2.

The reason for this result is that DLB increases the chance to get more overheard

encoded packets from neighbors, which eventually leverages the use of network coding to

decode the lost packets. Furthermore, DRRS increases the total number of packets to be

transmitted, compared to SRRS for the same contact duration, which raises both the plain

and encoded transmitted packets. It can be noticed that DLB significantly plays a greater

role in packet delivery consistency when compared to DRRS, which emphasizes the need

to consider Theorem 5.2.3 in network planning.

5.4.2 Network Throughput

Figure 5.9 shows the average network throughput with different PERs. The four protocols

shown with < = 2 are the same techniques from the previous results. At PER = 0%, the

throughput in DLB + DRRS outperforms the other method with < = 2 from 3.7% to

12%. The reason for this superiority is that DRRS allows more packets to be transmitted;

however, RMA creates unbalanced data loading among the head nodes, which affects the

uploading latency, as in Lemma 5.2.2. Meanwhile, DLB effectively uses this lemma in order

to reduce the uploading latency, which eventually increases the network throughput with a

fixed contact time.

On the other hand, DLB + DRRS (< = 6) outperforms the same model when < = 2

and < = 4 in relation to network throughput in different packet error rates up to 166% and

69

73%, while at PER = 40%, the gap is shrunk slightly to 154% and 72%. This throughput

advantage is because DRRS maximizes the concurrent data uploading by increasing the

number of radios available in MS in order to be equal to the number of head nodes at that

polling sector, which increases the total number of packets efficiently.

Figure 5.9: Average network throughput versus PER with different <.

5.4.3 Trips Required for Data Delivery

One of my motivations in my research is to quantify the number of trips required to complete

data delivery. To assess this, I ignore the impact of buffer overflow and simply count the

number of required trips. Figure 5.10 depicts the average number of trips that MS (< = 2)

has to accomplish in order to get the data needed by the system that has 40% of PER, with

different total data packets originated by all the nodes on the network.

With a small amount of data, even with the high packet error rate, all of the four

protocols can get all of the data that is originated by the nodes. There are two reasons

for this successful transmission: First, network coding is implemented in all of them, which

helps recover lost data packets. The second reason for the completed transmission is that

the contact duration meets the deadline for uploading the needed data packets without the

need for retransmissions.

70

Once the data packets increase to 900, the MS has to take another trip in order to get the

remaining lost packets that needed to be retransmitted. Since the contact duration time is

always fixed in such an application, the over amount data packets, which are not considered

by the system administrator, will miss the deadline. Hence not only are the retransmission

of packets needed in high packet loss rates, but also the MS has to take more trips in order

to receive all of the data packets, as seen in the previous figure. Nevertheless, DLB +

DRRS outperforms RMA + SRRS, RMA + DRRS, and DLB + SRRS by up to 57%,

36%, and 20% in data upload latency respectively.

Figure 5.10: The average number of trips MS has to take to collects all the data with PER
= 40% and < = 2.

5.4.4 Energy Consumption

The energy is a major factor where the transmission and the reception are using the radio

to consume some amount of energy. Depending on the MAC protocol that been used,

sometimes the cost of sending and receiving are roughly equal. Sometimes sending requests

significantly more power. In my evaluation, I am assuming both sending and receiving are

the same in terms of energy consumption because my system is fully synchronized where

the nodes know when to wake up and send or receive.

I estimated the energy consumption by using the same energy model that LBC-DDU

71

used where the model is presented by [76]. They defined the energy consumption et as

et = (e1d
α
r + e0)lp where e1 is the loss coefficient per bit, α is the path loss exponent, e0 is

the excessive energy consumed on sending, dr is the transmission range, and lp is the size

of the transmitted packet in bits1.

Figure 5.11 shows the average maximum energy a head node consumes to upload all of

the data to an MS with two radios and a variety of PERs. At PER = 0%, bothDLB+DRRS

and DLB + SRRS have the lowest energy consumption, since the data load is nearly

balanced between the head nodes by using DLB, which spreads the packets transmitting

fairly. Also, both RMA+DRRS and RMA+SRRS’s maxed energy head nodes consume

the same energy in the reliable environment, because they are using the same data load

method.

When the PER gets higher, however, head nodes tend to retransmit the missing packets

to MS, which increases the average energy consumption in many of the nodes in the network.

Thus, DLB+DRRS outperformsRMA+SRRS in saving energy by up to 70%. It also saves

energy up to 57% and 11%, which can be compared to DLB+SRRS and RMA+DRRS.

Figure 5.11: The average of the maximum head node energy consumption versus packet
error rates with < = 2.

1dr = 50m, e0 = 45 x 10−9J/bit, e1 = 10 x 10−9J/bit, α = 2

72

Chapter 6: MuCC: Controllable Predictable Mobility

Chapter 4 proposes the multi-channel network coding technique to improve the communica-

tion performance for single and multiple static sinks in tree-based LLN systems. Chapter 5

addresses uncontrollable predictable mobility gathering systems and provides heuristics for

latency optimization while simultaneously collecting data in a predetermined path and fixed

velocity. This chapter focuses on applications that are supported by a data collector whose

mobility pattern is controllable predictable. More specifically, I will describe the design of

a cluster-based system architecture and utilize the uploading latency by formulating the

optimization problem and provide heuristics to find a feasible solution in polynomial time.

This chapter also designs a method to reduce the uploading locations in order to reduce the

overall traveling latency.

I will first describe my proposed architecture and then discuss the multi-phase protocol.

Next, I will present how motion planning can be performed on the controllable mobile data

sink. Following that application, I will provide a performance analysis of the system and

discuss an adaptive way to select cluster heads. Finally, I show the details of my performance

analysis.

6.1 MuCC Architecture

I propose a two-layer clustering framework called Multi-channel Network Coding Clustering

(MuCC) Protocol for Low-power and Lossy Networks (LLNs). The mobile data collector

(MuCar) collects aggregated data from the cluster heads that are archived using MuCode

communication protocol as described in Chapter 4. Cluster heads have single transceivers

that are capable of choosing a unique channel from the set of available system channels Λ.

MuCar is a multi-radio mobile collector. It can concurrently receive data from those cluster

73

heads through different channels to prevent packet collisions.

The cluster heads aggregate the data from their cluster members including their own

data. The MuCar needs to visit polling points (PP) in order to collect the data from these

cluster heads. I assume that MuCar knows the location of all of the sensors. Clusters are

formed based on the maximum number of cluster heads per cluster (M). Figure 6.1 illus-

trates my system model, which shows that MuCar stops at a polling point and concurrently

collects data from cluster heads (dark hexagon), where they then aggregate the data from

their cluster members (white triangle). Then, MuCar traverses to the next polling point

through its planned trajectory path, which I will explain in more detail in Section 6.5.

Finally, MuCar returns back to store the collected data in the data repository.

Figure 6.1: The MuCC two-layer framework.

For each cluster, when M ≥ 2, MuCar can visit from 1 up to M/2 polling points. These

M cluster heads are all connected, and I will explain the reason in MuCC protocol section.

MuCar can retrieve data from at least two cluster heads simultaneously. In Figure 6.2,

assume that a cluster has M = 4 cluster heads (CH1, CH2, CH3 and CH4). For a single-

radio mobile collector, it has to implement four uploading scheduling (M) in order to collect

74

the data from the cluster heads. In comparison, a protocol like SenCar [49] - the LBC-DDU

mobile collector - has to perform two different uploading scheduling (M/2), since it uses the

Dual Data Uploading antennas. SenCar reduces the uploading latency by half compared

to the traditional mobile data collector. However, MuCar can reduce its uploading latency

by combining the transmitting scheduling for each cluster head CH1, CH2,CH3, and CH4

into one schedule using multiple radios, where each CHi transmits its data using a unique

channel concurrently without packet collision.

Figure 6.2: MuCar starts collecting data from the cluster heads CH1, CH2, CH3, and CH4

concurrently at the polling point z through different channels λ1, λ2, λ3 and λ4.

My approach uses the network coding technique to enhance system reliability in Low-

power and Lossy Networks (LLNs), where packet loss and bit errors are considered. MuCC

forms cluster heads when each head has its members that are one-hop away. Each cluster

member assigns its self to one of its neighboring cluster heads that have the minimum

number of members. Load balancing is an important consideration in this process of network

lifetime. Assigning cluster members to a cluster head, which already has a minimum amount

of cluster members, can effectively balance the energy consumption among the cluster heads,

as the transmitted packets are fairly distributed.

Members and cluster heads can overhear packets. Moreover, some members can encode

75

those overheard packets and transmit them along with their original packets. Figure 6.3

depicts an example of the network coding technique named Random Linear Network Coding

RLNC technique [74] for a cluster of M = 2 (CH1 and CH2) and three members (m1,m2

and m3). Here, the member node m2 overhears packets x1 and x3, encodes them using

RLNC, and transmits the encoded packets α1x1⊕α3x3 and its original x2, where α1 and α3

are the random coefficient values for the packets x1 and x3, and ⊕ is the encoding operation

for both packets in a Galois finite field. These coefficients are randomly generated by the

sensors in order to create linearly independent packets, which eases the decoding process

in cluster head sides. Otherwise, the packets cannot be decoded and, hence, need to be

dumped. The cluster heads receive packets where some are encoded. In the example of

network coding, each cluster head has three total packets. If there is a chance of a packet

loss, MuCar can still receive all of the packets. For instance, if packets x1, x2, and the

encoded packet α1x1 ⊕ α3x3 are lost, MuCar receives x3, x2, and the encoded α1x1 ⊕ α3x3

from the cluster heads and decodes α1x1 ⊕ α3x3 using the knowledge of having x3.

Figure 6.3: An example for MuCode communication with M = 2 (CH1 and CH2). Solid
lines represent direct transmission from cluster member to its cluster head, while dashed
lines represent overheard transmissions. Cluster member m2 overhears neighboring packets
from m1 and m3. m2 transmits the encoded packet α1x1⊕α3x3 to cluster heads along with
its own packet x2.

76

On the other hand, in traditional transmitting LLNs, data replication may reduce packet

loss. Back in Figure 6.3, without network coding, the cluster head CH1 will receive packets

x1 and x2 twice, while CH2 will receive twice the amount of x3. If there is a high hot spot

within CH1 transmission range, however, all of the CH1 packets are lost. Therefore, the

mobile data collector will only receive the packet x3 twice and will never receive the lost

packet under this circumstance. While, in my approach, even if the CH1 packets are all

lost, MuCar can still receive all of the packets from CH2, which uploads x2, α1x1 ⊕ α3x3,

and x3. MuCar can decode α1x1 ⊕ α3x3 using linear algebraic equations by having x3 in

the Galois field.

6.1.1 Sensor Layer: Distributed and Scalable Encoded Clustering

This layer constructs an energy-balanced sensor clustering by selecting cluster head nodes.

The residual energy mainly contributes on selecting these cluster heads. Each cluster has,

at most, M cluster heads. The other nodes become cluster members in such a way that

each associates with a single neighbored cluster head, which would produce a distributed

data balanced clustering. In each cluster, nodes create an encoding vector that index all of

the possible encountered source nodes in the intra-cluster transmission phase.

6.1.2 MuCar Layer: Trajectory Decision

The mobile collector (MuCar) approaches the selected polling points where the transmission

ranges of all of the cluster heads are covered by those points. MuCar has a multi-radio

capability that enables it to simultaneously receives all of the packets that have been sent

from the cluster heads. For each polling point, MuCar broadcasts a control message to the

local cluster heads, giving each a unique channel for uploading the transmission phase. The

local cluster heads transmit their data with their dedicated channels concurrently without

interference. Some of the received packets are encoded. MuCar can decode those packets

after receiving all of the packets from the cluster heads in that polling point by having

enough linearly independent packets for decoding.

77

The MuCar trajectory decision is based on two steps: The first step is finding the most

efficient polling points where the MuCar should go and collect. Finding these points is

implemented by the Cluster Polling Points (CPP) algorithm 14, which I will discuss later.

The second step is finding the minimum route cost that passes through each polling point

before it returns to the base. In the next section, I will show how to find the MuCar

trajectory path.

(a) Network configuration. (b) Initialization.

(c) Status claim: dark circles are
cluster heads.

(d) Cluster construction and
channel assignment.

Figure 6.4: An example of network clustering for the first four phases with M = 2.

6.2 MuCC Protocol

MuCC cluster-based protocol consists of six phases:

78

Initialization Phase

Each sensor node broadcasts its battery status - a value indicates its residual energy - to

its single-hopped neighbors. Then, each node sums up the battery status from the highest

M − 1 of the neighbors, including its result value, which is called priority. This technique

is similar to LBC-DDU initialization phase. Figure 6.4a depicts an example of a network

with 9 sensors and M = 2. Each sensor has its battery status between 0 and 1, where 1

indicates a full battery and 0 indicates a dead battery, which means the node is no longer

available. The edges denote the single-hop communication on each pair of nodes. In the

initialization phase, Figure 6.4b shows the priority value in each node. For each node, the

dotted arrows indicate its M − 1 cluster head lists. In the example, node 2’s cluster head

list has only node 8.

Status Claim Phase

The system defines two status thresholds: τh for a node to be become a cluster head, and

τm for a node to be become a member node. These thresholds enable a node to declare

itself to either status based on its priority value before reaching its maximum number of

iterations. A sensor broadcasts its current status when its battery value satisfies one of these

thresholds; otherwise, iteratively, this sensor finds the potential and the candidate cluster

heads list. Whenever there is an update on each list, the node broadcasts the updates until

some nodes announce their status claim, which might reflect their claiming process. For

each member assignment, the cluster head broadcasts a message that tells its neighbors the

content of its member list. Figure 6.4c depicts the cluster heads with dark circles, while the

remaining nodes are the cluster members.

Cluster Construction Phase

Each sensor finalizes its potential cluster head list if the sensor has not already been claimed

as a cluster head. If that list was empty, then the sensor will claim to be a cluster head.

Otherwise, the sensor becomes a member and picks its cluster head with the minimum

79

members, which it already knows from the member lists that have been broadcast by the

cluster heads. Figure 6.4d shows two clusters where each member is assigned to its cluster

head. Observe that node 7 chooses node 1 to be its cluster head; it does not choose node

6, because node 6 already has a member, while node 1 has no member.

Channel Assignment Phase

MuCar scans the network to find the cluster heads and creates a list, a Cluster Head

Location (CHL). Each cluster is assigned by a unique channel λi. Consider an undirected

graph G = (V,E), where V is the set of vertices, and each vertex is a cluster, and E is the

set of edges. An edge connects two vertices, vi and vj , if, and only if, the node u exists in

cluster vi and neighbors the node w in cluster vj . Let |Ev| be the total number of edges for

the vertex v. Algorithm 13 shows the cluster channel assignment. Initially, all the cluster

channels are set to null and each cluster has a sorted channel candidate list that contains

all of the possible channel assignments from 1 to Λ, where Λ is the maximum available

channel number a system can have. In steps 6-13, MuCC investigates all the clusters. It

picks the cluster with maximum neighbors and assigns it to the first available channel from

the cluster’s local channel candidate list. After that, it removes that channel from all of the

cluster’s neighbors channel candidate lists, where NB(vi) is the set of nodes that neighbors

node vi. Then, it eliminates that cluster from investigating. MuCC repeats this iteration

until all clusters are assigned to their channels. This process can significantly eliminate

data collisions for the inter-cluster communications. Back to Figure 6.4d, the left cluster

communication channel is assigned to channel λ1, while the right cluster communication

channel is assigned to channel λ2.

Scalable Encoding Vector Phase

In order to implement network coding, the encoding vector has to be appended to the

packet’s header. The encoding vector represents the coefficient values of all of the source

nodes, which, however, may not be scalable for a large network, and that large network can

80

Algorithm 13 Cluster Channel Assignment

1: Input: The undirected graph G = (V,E).
2: Output: Channel assignment per cluster.
3: for all vi ∈ V do
4: vi.channel = 0;
5: vi.candidate channels = {λi|λi = {1, . . .Λ}};
6: end for
7: while (V 6= φ) do
8: Pick a vertex v such that ∀vi ∈ V , max(|Evi |) = v;
9: v.channel← λi where λi is the first available channel in vi.candidate channels;

10: for all vj ∈ NB(vi) do
11: Remove λi from vj .candidate channels;
12: end for
13: Remove vi from V ;
14: end while

lead to insufficient data communication and collection. This phase significantly reduces the

packet encoding vector overhead and shortens it from n to NC , where n is the total number

of nodes on the network, and NC is the total number of nodes in cluster C. Initially, each

cluster head creates an encoding vector list that contains its indexed cluster member list

including itself. Iteratively, the cluster head broadcasts a control message that includes its

encoding vector list to all other cluster heads in the same cluster. Then, it re-indexes its

encoding vector list including the other cluster head list until the M rounds of transmissions

are satisfied. For each cluster head, all of the updated encoding vector lists have the same

list of indexed cluster members and cluster heads.

Data Transmission Phase

Each cluster member stores its own packets in both the storage queue and transmission

queue. Then, it transmits packets in the transmission queue to its cluster head. Another

cluster member can overhear and store them in its storage queue. Whenever its storage

queue is not empty, it applies random linear network coding among the storage packets and

inserts the new encoded packet to its transmission queue to transmit. Eventually, a cluster

head receives all packets whether it is from its cluster member or not.

81

6.3 MuCar Motion Planning

In order for MuCar to collect the data from all of the cluster heads, the MuCar trajectory

decision has to be made, which is because the system has a latency requirement that makes

the MuCar trajectory decision and data uploading scheduling quite significant. There are

two steps for the MuCar trajectory decision: The first step is to find the most utilized

polling points that reduce the uploading scheduling latency. I provide the cluster polling

points (CPP) algorithm 14, which finds the polling points efficiently, where each polling

point is chosen based on the nearest and mostly covered cluster heads.

MuCar starts at the nearest possible location for establishing communication with an-

other node on the network. In the CPP algorithm, MuCar is initially located at the starting

point p0, where it is the location of the closest cluster head on CHL. In step 3, the goal

of MuCar is to cover all of the cluster heads in CHL list. I use the Euclidean metric to

calculate the distance in two dimensions plane. In steps 5-9, MuCar eliminates all of the

cluster heads that are located twice as farther than the sensor transmission range RT . The

reason for this elimination is that there is no chance to find a new position with radius RT ,

which can cover those far cluster heads. Calculate Centroid(P) is a function that returns

the centroid position pc = (xc, yc) of the points in the set P where xc = x1+x2+...+xk
k , and

yc = y1+y2+...+yk
k where k is the number of positions in P. Dpc,pi represents the Euclidean

distance between the two points pc and pi. In steps 11-18, MuCar keeps eliminating the

cluster heads that are not reachable from the candidate polling point pc and keeps updating

the pc for each elimination process until all of the remaining cluster heads can be reached

from the updated pc position. In steps 19-21, MuCar adds pc to the polling point set PP ,

eliminates the cluster heads that have already been covered, and assigns a new starting

position from the Cluster Head List CHL in such a way that it has the shortest Euclidean

distance from pc. Finally, MuCar repeats the steps until all cluster heads are covered. The

result is the set of polling points PP .

The second step is to find the MuCar route in order to collect data from the cluster

82

heads with the minimum trajectory cost. Finding the MuCar route is quite challenging.

This problem is known as the Traveling Salesman Problem TSP , which is an NP-Hard

problem. The TSP tries to find the best route with a minimum cost in order to visit

each city only once before returning back to the starting city. Let ñ represent the number

of polling points. A Held-Karp algorithm solves the TSP in a running time O(ñ22ñ)

using dynamic programming and requires O(ñ2ñ) of memory space. For large ñ, however,

this algorithm is hard to implement. Therefore, I need to use some heuristics in order to

proximate the optimized solution in a reasonable running time. The most simplest and

straight forward tour construction heuristic for TSP is the Nearest Neighbor heuristic. At

first, MuCar selects the base station as its starting point(PP0). Then, it finds the nearest

polling point (PP1) from PP0. MuCar finds the next unselected polling point in the same

way until it covers all the polling points. After it covers all the polling points, it returns to

the starting point PP0. This algorithm runs in O(ñ2).

Now, the tour improvement heuristic is implemented in order to create MuCar tour near,

or equivalent, to the optimized solution as in Held-Karp. The most common optimization

technique is the 2-opt local search algorithm, which is proposed by Croes [1958]. The idea

of this algorithm is that it removes two edges from the constructed tour and reconnects

the two paths by selecting two shorter edges. For example, 2-opt selects an edge (p1, p2),

finds another edge (p3, p4) and performs the complete move if, and only if, Dp1,p2 + Dp3,p4

> Dp1,p4 + Dp2,p3 . The running time of 2-opt algorithm is O(ñ2). Usually, the 2-opt

heuristic will create a tour with a cost less than 5% above the Held-Karp bound [75].

6.4 System Analysis

Each node is integrated with a GPS receiver that allows it to transmit its location to its

neighbors during the initialization phase. I am assuming that each node is surrounded by B

neighbors. Implementing network coding requires overheads in both packets and a number

83

Algorithm 14 Cluster Polling Points (CPP)

1: Initialization: MuCar is located at position (x0, y0) that is the closest location to a
cluster head.
The set of Polling Points PP ← Φ.

2: Input: The set of cluster head locations CHL.
3: while (CHL 6= φ) do
4: The current set of cluster head positions P ← CHL;
5: for all pi ∈ P do
6: if (Dp0,pi > 2RT) then
7: There is no chance for the MuCar to collect both cluster heads in p0 and pi.

P = P − {pi} ;
8: end if
9: end for

10: Pc ← Calculate Centroid(P);
11: for all pi ∈ P do
12: if (Dpc,pi > RT) then
13: repeat
14: P = P − {pj} s.t. Dp0,pj = Max(Dp0,pi) for i, j ≤ k
15: Pc ← Calculate Centroid(P);
16: until ∀pi ∈ P : (Dpc,pi ≤ RT)
17: end if
18: end for
19: PP ← PP ∪ {pc}
20: CHL← CHL− P
21: p′0 ← pj where pj = Min(Dpc,pj) ∀pj ∈ CHL
22: end while
23: Output: PP the set of polling points.

84

Figure 6.5: An example of a cluster that has three cluster heads (1,2 and 3) and 8 scattered
cluster members (dark circles). Each circle represents the transmission range for each cluster
head. Each cluster head has exactly B = 4 neighbored nodes.

of transmissions. For encoding, nodes that belong to the same cluster are synchronized in

order to provide a higher chance for a node to overhear packets from different nodes, encode

these packets, and transmit them in each transmission session. The encoding vector - which

is embedded in the packet’s header - represents the coefficient values αi for each encoded

data. For simplicity, I am assuming each node has a single packet to send per transmission

session. Eventually, the only factor deciding the size of the encoding vector (CV Size) is

the total number of nodes NC for the cluster C. In the worst case, a cluster member may

overhear packets from all of the other cluster members from the same cluster. To find NC ,

each cluster head broadcasts its local member list in M iterations and updates the list to

include the list from all of the other cluster heads. Each update is considered an iteration.

Ideally, enlarging M produces larger NC , which inevitably increases CV Size. This

enlargement is because the encoding vector is indexed with nodes encoded with coefficient

values. With this consideration, each coefficient αi in the encoding vector needs β Bytes to

be represented in the packet’s header. Therefore,

CV Size = β.NC (6.1)

Lemma 6.4.1. Let NC be the total number of nodes in cluster C, and each node has at most

B neighbors. Let M be the maximum number of cluster heads. Then, NC ≤ (B − 1)M + 2

for M ≥ 2.

85

Proof. I proof this lemma by induction. Assume that f(M) is a function that returns the

maximum number of nodes in a cluster with the input M . This means that the lemma can

be transformed into f(M) = M(B − 1) + 2. Consider the distributed nodes in Figure 6.5.

Each node has, at most, B = 4 neighbors. For M = 2, CV Size needs 8 Bytes of packet

overhead, which includes the cluster heads 1 and 2 and their six neighbors by assuming that

the coefficient size β = 1 Byte. The base case in the proof is for M = 2. I can observe that

f(2) = (4 − 1)2 + 2 = 8, which is equal to what I have just shown. For M >2, the worst

case scenario exists if, and only if, the following three conditions are satisfied:

1. Each cluster head has exactly B neighbors

2. Only two cluster heads have exactly one neighbored cluster head

3. All the remaining cluster heads have exactly two neighbored cluster heads

Figure 6.5 depicts an example of the worst case scenario for M = 3, where each cluster

head has exactly B = 4 neighbors, and there are only two cluster heads (1 and 3) that

have one neighbored cluster head (2). Also, the remaining cluster head (2) has exactly two

neighbored cluster heads (1 and 3). To find the increment factor of the number of cluster

heads M to the total number of nodes in the cluster NC , consider the change of M from 2

to 3. Once the third cluster head is added to the cluster, it adds, at most, three more nodes

(B − 1). The reason this increment happens is that the cluster member itself is already

in the cluster before turning into a cluster head. Furthermore, the maximum number of

neighbors that this new cluster head can have to bring into the new shaped cluster is B−1,

because one of its B neighbors is the connected cluster head that allows it to join the cluster.

Otherwise, it cannot join this cluster and has to create or join different cluster based on the

Cluster Construction Phase.

The next part of the proof is the inductive step. Let f(k) = (B − 1)k + 2 be true for

k ≥ 2. The goal is to proof that f(k+ 1) = (B− 1)(k+ 1) + 2 is also true. Based on what I

have shown in incrementing the size of M , f(k+1) = f(k)+(B−1) is true where B−1 are

the new member nodes that I add to the cluster by increasing the number of cluster heads

86

by one. This implies f(k+ 1) = (B− 1)k+ 2 + (B− 1), which is equal to (B− 1)(k+ 1) + 2

and that concludes the proof.

6.4.1 Packet Size Boundary

With the presence of Packet Error Rates (PERs), it is reasonable to consider the Lemma

6.4.1 to provide a reliable communication using network coding. On the other side, the

packet overhead may become too expensive in data transmission. This tradeoff can be

observed by considering factors such as M , Packet Delivery Rate (PDR), packet replication

(R), and the packet size (P size).

With network coding, the packet size (P size) can be formulated as:

P size ≥ CV Size+ data+ ∂ (6.2)

where ∂ is the constant packet overhead.

Theorem 6.4.2. Let P size be the maximum packet size and r be the network throughput

where each packet is transmitted in t seconds. Let β be the number of Bytes needed to

represent a single coefficient α in the encoding vector. Then,

M ≤ P size− r.t− 2β − ∂
β(B − 1)

(6.3)

Proof. Let throughput (r) = data
time(t) . Then,

data = r · t. (6.4)

87

Starting from Equation (6.2):

P size ≥ CV Size+ data+ ∂

≥ β ·NC + data+ ∂ (using Equation (6.1))

≥ β ·NC + r · t+ ∂ (using Equation (6.4))

NC ≤
P size− r · t− ∂

β

(B − 1)M + 2 ≤ P size− r · t− ∂
β

(from Lemma 6.4.1)

M ≤ P size− r · t− 2β − ∂
β · (B − 1)

Once the system has monitored unbearable PDR, it increases the size of M by one. The

system reinitialization phase is processed among the other phases in order to set up the

communication process on the network. If PDR is still not satisfiable, the system repeats

the procedure until PDR is targeted or the Equation (6.3) is not satisfied. This increment

of the size of M can maintain a reasonable data size while transmitting and can provide

a more reliable network coding communication. If this does not satisfy the PDR, data

replication R is needed to reduce the packets error rates. Initially, R = 1 and the PDR are

checked to maintain a reliable communication. If not, the value of R increments by one and

rechecks the PDR once again. This process is repeated until the PDR is satisfied.

6.4.2 Transmission Queue

I wanted to find the transmission queue upper bound in order to estimate the data uploading

latency on the MuCar. In MuCode protocol, each node has two queues. The storage queue

(SQ) where all of the generated, received, and overheard packets are stored. The generated

packets are the source data packets, which are generated by the sensors. The received

packets are the packets that are sent from a cluster member to its cluster head. The

88

overheard packets are those packets that are sent from a sensor either to none of its cluster

head or to a cluster member. The transmission queue (TQ) stores the packets that need to

be transmitted. The TQ stores all the generated packets and the received packets. As for

the overheard packets, a sensor applies a network coding technique to the storage packets

in order to create the encoded packet pe and inserts it to the TQ for each transmission

session.

Theorem 6.4.3. Let Nm(u) be the number of cluster members in such a way that u is their

cluster head. Assuming each node transmits a single packet per transmission session, the

total transmitted packets in cluster head u is,

Tpkt(u) ≤ 2(Nm(u) + 1) ∀Nm(u) ≥ 1 (6.5)

Proof. To prove Equation (6.5) by induction, the base case is when Nm(u) = 1. Consider

the worst base case scenario where there are y cluster heads and z cluster members in such

a way that a cluster head u has only one cluster member v, which has u as its cluster head

i.e. Nm(u) = 1. Based on the adopted transmission queue, the cluster member v transmits

both the generated packet to its cluster head u and the encoded overhead packets from other

members. The u’s TQ has 4 packets: the two received packets from v, its own generated

packet, and an encoded packet that u overheard from other cluster heads and members.

Hence, Tpkt(u) = 4 = 2(1 + 1).

Let the equation f(k) = 2(k+ 1) be true for k ≥ 1. The goal is to proof that f(k+ 1) =

2((k + 1) + 1) is also true. Incrementing the size of k leads to f(k + 1) = f(k) + 2. The

reason for this exact increment is that when the one more cluster member of u is increased,

the generated and the received packets are both stored in u’s TQ queue. At the same time,

whenever changes in other cluster members that do not consider u as their cluster head, u

still has the single encoded packet to transmit. This implies f(k+ 1) = 2(k+ 1) + 2, which

equals 2((k + 1) + 1), thus concluding the proof.

Section 6.5 describes my Adaptive Cluster Head algorithm in order to minimize the

89

number of polling points and cluster heads.

6.4.3 Energy Consumption

The transmission queue size proportionally reflects the sensors’ energy consumption. I only

focus on the energy consumption in cluster heads since they transmit a huge amount of

data compared to the cluster members for each transmission session.

In reliable communications, the ideal energy saving per sensor is to have zero relay

sensors because each sensor transmits its own packet to the mobile collector. However, in

lossy networks, this scheme maximizes the trajectory latency since the mobile collector has

to visit all the sensors to collect the data. This scheme also minimizes the Packet Delivery

Rate (PDR) in high Packet Error Rates because there is no chance to encode packets and

transmit them along the original packets.

Unlike this scheme, the MuCC protocol decreases the energy consumption per cluster

head while increasing the size of M , as long as PDR is satisfiable. If PDR is relatively small

while increasing M , packets retransmissions are needed, which reduce the energy saving.

Notice that the increased size of M leads to lessening the number of clusters. This inevitably

increases the size of CV Size since more nodes are included and needed to encode during

data transmissions.

Considering the number of cluster members Nm per cluster head is another way to

save energy. From the Equation (6.5), the total number of transmission packets Tpkt(u) for

cluster head u is proportional to Nm(u). Minimizing Tpkt(u) leads to equalizing the Nm

values for all the cluster heads. This can significantly decrease the energy consumption per

cluster head.

6.5 Adaptive Cluster Heads

A cluster with M cluster heads forces MuCar to retrieve data from at most M/2 polling

points. Even with the CPP algorithm, the polling points may remain the same. Therefore,

90

the uploading latency from the cluster heads become undesirable. In order to minimize

this latency, algorithm 15 (ACH) rearranges the cluster heads to minimize the number of

polling points. The rearranging procedure considers swapping between cluster head and a

cluster member or changing the cluster head into a cluster member.

The MuCar runs the ACH algorithm that runs for each polling point pp in the set of

polling points PP , which was already found in algorithm 14. I define the set NCP (ppi) to

be the neighbored candidate polling points, which possibly can merge with ppj to a new

polling point. These possible polling points should not be twice as far in transiting range ;

otherwise, there is no chance to find a polling point that can cover more cluster heads. Let

NCP be the union set of all neighbored candidate polling point sets possible with respect

to each polling point.

The ACH iteration covers the NCP element, pp, that is sorted based on merging

possibilities in descending order. The next iteration tries to find a candidate polling point ppi

in NCP (pp) that can merge with where the set of cluster head locations P is constructed. P

includes all of the cluster heads locations that are within the transmission range of one of the

two polling points pp and ppi. For example, Figure 6.6a shows the set P = {1, 2, 3, 4, 5, 6, 7}

for the cluster heads that are within the transmission range of the polling points p1 and p2.

Step 11, the Pc is the centroid position for all the positions in P . Let ε be the residual

energy threshold that allows cluster member to swap its status with a cluster head. Let

NCH(u) be the number of cluster heads that neighbors the node u. In steps 12-18, for each

cluster head CHj in P that is out of the transmission range of the centroid position Pc, a

member node m temporarily swaps its status with CHj ’s status if, and only if, it satisfies

all of the following conditions:

1. neighbors the cluster head CHj

2. neighbors another cluster head

3. the difference between the residual energy in m and CHj does not exceed ε

4. resides within the transmission range of the centroid position Pc.

91

Algorithm 15 Adaptive Cluster Heads (ACH)

1: for each ppi ∈ PP do
2: NCP(ppi) ← {ppj | ppj ∈ PP ∧Dppi,ppj ≤ 2RT);

3: end for
4: NCP ← {∪ NCP(ppi) | ∀ppi ∈ PP};
5: Sort NCP based on the size of each element set NCP(ppi) in descending order;
6: repeat
7: NCP (pp)← EXTRACT (NCP);
8: repeat
9: for each ppi ∈ NCP (pp) where pp 6= ppi do

10: P ← {p | p ∈ CHL ∧ (Dp,pp ≤ RT ∨Dp,ppi ≤ RT) ;

11: Pc ← Calculate Centroid(P);
12: for each cluster head CHj ∈ P where DCHj ,Pc > RT do

13: if there exists a member node m that neighbors cluster head (CHj),

NCH(m) >1, e(CHj)− e(m) ≤ ε, and Dm,Pc ≤ RT then
14: Both m and CHj swap their status temporarily;

15: else if for all member node m that neighbors cluster head (CHj), NCH(m) >1
then

16: Change CHi status from cluster head to member temporarily;
17: end if
18: end for
19: if ∀CHj , DCHj ,Pc ≤ RT and ∀m,NCH(m) ≥ 1 then

20: Confirm the swapping/changing status;
21: Update P and recalculate Pc;
22: PP ← PP ∪ {Pc} − {pp ∪ ppi};
23: pp← Pc;
24: For every ppj ∈ PP , update NCP (ppj);
25: Update NCP ;
26: else
27: Rollback the swapping/changing status;
28: ppmax ← ppk s.t. ppk ∈ NCP (pp), ppk 6= pp and CHx ∈ NB(ppk) where CHx

has the maximum distance to Pc ;
29: NCP (pp)← NCP (pp)− {ppmax};
30: NCP (ppmax)← NCP (ppmax)− {pp};
31: end if
32: end for
33: until (NCP (pp) = {pp})
34: until (NCP is empty)
35: Apply cluster construction phase.

If no such m satisfies these conditions, and all members that neighbor CHj neighbors

another cluster head, then CHij temporarily changes its status into cluster member instead

of a cluster head.

In steps 19-29, if all of the cluster heads are within the transmission range from the

centroid position Pc, and if all of the members have at least one cluster head neighbor,

92

then the swapping and changing status should be confirmed, the two polling points pp and

ppi should be removed from PP , Pc should be added to PP instead , and NCP should be

updated. Otherwise, the changed status should be rolled to its previous state and the polling

point pmax should be removed from NCP (pp), and vice versa when pmax covers the cluster

head CHx, and CHx has the maximum distance from the centroid polling point. Once all

the merging processes are finalized, the cluster construction phase should be finalized but

only as far as assigning the members to their dedicated cluster head.

Figure 6.6a shows an example of a cluster with nine cluster heads and twelve mem-

bers. By applying the algorithm 14, MuCar will retrieve the data from three polling points

pp1, pp2, and pp3. Next, I apply the algorithm 15. For the first iteration, pp equals pp1, and

the only neighbored candidate polling point is pp2. The set P = {1, 2, 3, 4, 5, 6, 7}, which

are the cluster heads that reside within pp1 and pp2 transmission ranges. The centroid

position, pp1, will exclude cluster heads CH1 and CH7 as in 6.6b. For the case of CH1,

this cluster head does not have a neighbored member that satisfies the four conditions, but

all its members have another neighbored cluster heads. Therefore, CH1 changes its status

to cluster member temporarily. In the case of CH7, this cluster head has a member that

satisfies the four conditions assuming the difference between that member’s residual energy

and CH7 residual energy is less than ε. Therefore, CH7 swaps its status with that member

temporarily. Now, since all of the cluster heads are within the pp1′ transmission range, the

swapping changes are confirmed.

For the second iteration, the set P = {2, 3, 4, 5, 6, 7, 8, 9} for the polling points pp1′ and

pp3. The centroid position excludes CH2, CH3, CH4, CH8, and CH9. Since CH9 swap

its status with another member closer to the centroid position, some members will not be

associated with any cluster head. Therefore, the process is rolled back. The final result in

this example is the reduction of polling points from 3 to 2, which also reduces the uploading

latency in MuCar. The ACH algorithm running time is O(ñ4 Γ(ñ) n). This bi-quadratic

symbol represents the number of polling points which are much smaller than the number of

nodes on the network.

93

(a) The dark circles represent the cluster members, while the numbered circles
represent the cluster heads. Each dotted circle is the transmission range for each
polling point ppi.

(b) The cluster head CH1 changes its status to a cluster member, while CH7

swap its status with its member for the new polling point, pp1′ . The second
iteration rolled back because CH9 leaves some of its members without any as-
sociation with the other cluster heads after swapping with its member.

Figure 6.6: An example of a cluster with M = 9 cluster heads.

6.6 Evaluation

I evaluated MuCC against the LBC-DDU approach in two different aspects. The reason

for this comparison is that, as I have mentioned previously, LBC-DDU is a cluster-based

protocol for mobile data collection, and it is the most closely related to my work. The first

94

aspect of the experiment is conducted in two different area sizes so that (140m x 120m) is

setup for a number of nodes n = 9, and the area (260m x 200m) is setup for a number of

nodes n = 20. These experiments used a variety of wireless Packet Error Rates (PERs).

MuCC uses the standard Random Linear Network Coding (RLNC) technique, while SenCar

uses the traditional packet transmission. The second aspect’s experiment considers the total

distance that the MuCar has to take to collect the data from all of the cluster heads with

a various number of nodes that range from 30 to 130 with a different size of the network.

In the first set of experiments, there are 3 clusters where each has three nodes, where

the size of the area is (140m x 120m). I conducted three sub-experiments by varying the

number of cluster heads (M) from 1 to 3 per cluster. I am interested in several metrics for

comparison: Packet Delivery Rate (PDR), energy consumption, and latency.

6.6.1 Packet Delivery Rate (PDR)

Figure 6.7 depicts the average packet delivery rate versus PER for 3 clusters and n=9

networks with different M values. In Figure 6.7-a for M =1, MuCC’s PDR outperforms

LBC-DDU’s PDR whenever there is a PER. The reason for this superiority is that network

coding is more resistant than the traditional non-coding protocol. Packets are combined

by members when they overhear packets from their neighbors. This combination gives

the cluster head a higher chance to decode the encoded packets by having enough linearly

independent packets. On the other hand, SenCar’s packets cannot be decoded, since they are

not encoded. SenCar only transmits its own data, which leads to unreliable communication

in lossy networks.

In 6.7-b for M =2, the PDR in LBC-DDU is close but not superior to - MuCCs, when

PER ≤ 15%. The reason for this close PDR is because of network coding. Sometimes,

in network coding, there is a small chance for a cluster member to overhear packets from

neighbors when the number of cluster heads is increased while, at the same time, the number

of members is decreased. For PER = 35% where the packet error rates are increased, the

significance of network coding can be noticed by which the PDR in LBC-DDU and MuCC

95

are 0.11 and 0.27 respectively.

(a) PDR VS PER (M = 1) (b) PDR VS PER (M = 2)

(c) PDR VS PER (M = 3)

Figure 6.7: The packet delivery rate in different packet error rates per session with a various
number of cluster heads. The total number of nodes is 9.

Once all nodes become cluster heads, as you can see in Figure 6.7-c, the PDR in both

MuCC and LBC-DDU become identical. This mirroring is because there is no chance for

overhearing packets, therefore implementing network coding is useless.

For the second set of experiments, there are 5 clusters with 3 to 5 nodes each with a

total of n = 20, where the size of the area is (260m x 200m). I conducted another three

sub-experiment by varying the number of cluster heads (M) = 1,2 or 4 per cluster. In

Figure 6.8-a when M =1, the MuCC’s PDR is very high compared to the MuCC itself in

the smaller sized network. It is also evident that MuCC’s PDR is superior to LBC-DDU’s

96

PDR for the same system configuration. Like I said, the higher neighbored the members,

the higher the chance for overhearing packets, thus more encoding packets are produced.

This process will eventually provide a more reliable communication in lossy networks.

(a) PDR VS PER (M = 1) (b) PDR VS PER (M = 2)

(c) PDR VS PER (M = 4)

Figure 6.8: The packet delivery rate in different packet error rates per session with a various
number of cluster heads. The total number of nodes is 20.

When M = 2, the PDR in both MuCC and LBC-DDU are improved when compared to

the previous network configuration. Balancing between cluster members and cluster heads

will reduce the number of total transmissions in members. Also, having enough encoded

packets can leverage the overall PDR performance, as seen in Figure 6.8-b.

Again, whenever the total number of cluster heads become larger than the members, the

chance of overhearing is significantly reduced, thus network coding will not have that high

a superiority against SenCar, as seen in Figure 6.8-c for M = 4. Unbalanced distribution

can lead to small PDR for high PER.

97

6.6.2 Packets Latency

Figure 6.9 depicts the packet delivery latency in different Packet Error Rates when n =

9. In Figure 6.9-a the MuCC’s latency is about half of LBC-DDU’s when PER = 15%.

The difference between each is reduced when PER = 25%. Once the PER gets higher, the

SenCar’s latency becomes extensive because of the very high packet error rate. However,

MuCC can still maintain reasonable latency in high packet loss rate.

(a) Latency VS PER (M = 1) (b) Latency VS PER (M = 2)

(c) Latency VS PER (M = 3)

Figure 6.9: The latency in different packet error rates per session with a various number of
cluster heads. The total number of nodes is 9.

In Figure 6.9-b, the latency in both LBC-DDU and MuCC are close to each other

when PER ≤ 15%. Here, the clusters are balanced between members and cluster heads.

The latency gets higher in LBC-DDU than MuCC’s when PER gets increased, whereas in

Figure 6.9-c, both LBC-DDU and MuCC have the same latency because there is no chance

for applying network coding.

Figure 6.10 depicts the packets delivery latency in different packet error rates when n

98

= 20. The MuCC’s latency is steady when PER ≤ 15% for M =1 and 2. The latency in

MuCC also becomes stable when PER ≤ 10% for M = 4. On the other hand, LBC-DDU’s

latency gets higher once there is PER. The latency in LBC-DDU gets worse when PER gets

higher compared to MuCC in latency.

(a) Latency VS PER (M = 1) (b) Latency VS PER (M = 2)

(c) Latency VS PER (M = 4)

Figure 6.10: The latency in different packet error rates per session with a various number
of cluster heads. The total number of nodes is 20.

6.6.3 Energy Consumption

In this part of my evaluation, I used the same energy model as it has been described in

Section 5.4.4. Figure 6.11 depicts the total nodes energy consumption in different packet

error rates for n = 9. I excluded the energy consumption while setting up the members

and cluster heads status claim phase. SenCar consumes more energy than my proposed

MuCC when PER ≥ 35% and > 15% for M = 1 and 2 respectively. However, the MuCC

approach consumes more energy in nodes than SenCar when M =3. The reason for this

high energy consumption is that there is no chance to use network coding when there is

99

no chance for overhearing. Furthermore, there is a packet overhead for the encoding vector

when implementing network coding.

(a) Energy Consumption VS PER (M = 1) (b) Energy Consumption VS PER (M = 2)

(c) Energy Consumption VS PER (M = 3)

Figure 6.11: Consumption energy unit per session in different packet error rates with a
various number of cluster heads. The total number of nodes is 9.

Figure 6.12 depicts the total nodes energy consumption in different packet error rates for

n = 20. Again, LBC-DDU’s nodes consume more energy than MuCC’s when PER ≥ 25%

and ≥ 35% for M = 1 and 2. MuCC approach consumes less energy in nodes as compared

to the LBC-DDU approach when M = 4 for PER ≥ 45%.

6.6.4 Covered Distance

I evaluated the ACH algorithm against the LBC algorithm in relation to the total distance

that the MuCar has to take in order to collect the data from all the cluster heads that have

100

(a) Energy Consumption VS PER (M = 1) (b) Energy Consumption VS PER (M = 2)

(c) Energy Consumption VS PER (M = 4)

Figure 6.12: Consumption energy unit per session in different packet error rates with a
various number of cluster heads. The total number of nodes is 20.

101

a various number of nodes ranges from 30 to 130. The nodes are randomly distributed to

a network with a size that varies from 75m X 75m up to 150m X 150m.

Figure 6.13 depicts the distance amount in the meters that MuCar has traveled in order

to collect the data per session. The mobile sink starts moving from the BS location, which

is located outside of the network region. MuCar traverses the polling points based on the

locations of the cluster heads using the TSP heuristic algorithm. These cluster heads are

assigned based on either the LBC or the ACH algorithms. With the small size of the

network, the ACH ’s distance is shorter than LBC by 26%. When the system scales in size,

the difference of the magnitude between the two algorithms becomes noteworthy because,

for a number of nodes = 95 and 130, the ACH ’s distance is shorter than LBC by 32.8%

and 45% respectively.

Figure 6.13: Total distance MuCar travels per number of nodes on the network.

102

Chapter 7: Future Work

This chapter describes my future research. I plan to implement MuCode, MuTrans, and

MuCC algorithms proposed in chapter 4,5, and 6 on real LLN nodes. This implementation

will ultimately provide the most important evaluation of the methods I have discussed in

this dissertation.

Another portion of my future research is the consideration of a non-uniformly distributed

source node, along with more divergent network topologies in the scope of static Converge-

cast sinks. I also want to consider specific topologies – such as high-density networks – where

the number of available channels is not enough to fully use MuCode protocol. An algorithm

for reusing the channels is suggested in order to reduce the interference in neighborhood

nodes that reside on the same level.

Further, my future research, in relation to uncontrollable predictable mobility, will con-

sider the buffer overflow, where head nodes may not be able to hold all of the data from

their member nodes during the inter-session time. Analyzing the tradeoff between archiving

and streaming data to the mobile sink is needed.

In the area of controllable predictable mobility, more work can be done by finding the

practical ε value to allow cluster heads and member nodes to exchange their status for better

uploading locations. Also, comparing the network lifetime before and after the adaptive

cluster head is applied to an ACH algorithm should also be considered.

Finally, uncontrollable unpredictable mobility systems have not been explored in my

dissertation. Researchers have investigated this scope of work but have not considered both

multi-channel and network coding. Therefore, future work can implement a MuCode pro-

tocol and a hierarchical architecture that is similar to MuCC clustering-based architecture

in order to improve communication performance in LLN collection systems.

103

Chapter 8: Conclusion

My dissertation proposes multi-channel network coding techniques in order to improve net-

working performance in different data collection schemes for Low-power and Lossy networks.

Network coding can significantly improve the reliability and throughput of lossy wireless

sensor networks. Additionally, multi-channel protocols can significantly shorten the end-to-

end delay and improve throughput.

I first introduce MuCode, a tree-based multi-channel WSN protocol that uses network

coding. MuCode supports synchronized channel switching in order to take advantage of

wireless eavesdropping for multi-path network coded packet delivery. I have conducted

numerous simulated experiments and performance evaluation against Sensecode and other

schemes. My results indicated that MuCode delivers superior performance for combined

measures of throughput and latency in a tree based network and has offered clear ad-

vantages to single-channel Network Coded systems in chained networks. I formulated the

optimization problem for the minimum of the maximum data rate for multi-sinks Converge-

cast non-split network flows. Later, I introduced a heuristic optimization and evaluated it

against the optimal shortest path, the optimal minimal maximal data rate, the breadth-

first search, and Random Shortest Path techniques. The results showed that my heuristic

solution outperforms other methods and is closest to the optimal solution in packet latency

metric.

I then presented MuTrans, a network-coded multi-channel protocol for uncontrollable

but predictable mobile data transport. MuTrans balances the non-reachable node assign-

ments to the local head nodes. It uses synchronized dynamic round robin scheduling for

uploading data to the mobile data collector. I have investigated the optimization problem

for minimizing the uploading latency at the polling sector. I present two heuristic algorithms

Data Load Balance DLB and Dynamic Round-Robin Scheduling DRRS and evaluate them

104

against different heuristic techniques. The results indicated that MuTrans outperforms the

other methods in packet delivery rates, throughput, latency, and energy consumption.

Finally, I described the two-layer framework for controllable predictable mobile data

gathering in WSNs: sensor layer and mobile collector layer with multi-radio multi-channel

capabilities. Clusters are formed and balanced based on the remaining battery. Each

cluster has multiple paths based on each cluster head to reduce the latency and increase

energy savings. Network coding is implemented to maintain reliable paths, where cluster

heads decode and forward the data simultaneously to the MuCar. MuCar collects data

concurrently from different channels that have been assigned to each cluster head. The

MuCar trajectory decision is optimized by finding the most utilized polling points of the

cluster heads that collect the largest amount of cluster heads per polling point and apply

the traveling salesman algorithm to visit these points with minimum trajectory cost. The

simulation results show that, with moderate packet error rates, my scheme outperforms

the Load Balanced Clustering with Dual Data Uploading scheme 50%, which is shorter in

latency and up to 400% in energy saving. An adaptive cluster head algorithm has been

designed to overcome the traveling latency by reducing the traveling distance between the

polling points. The simulation shows that my ACH scheme outperforms the LBC-DDU in

up to %45 shorter in traveling distance.

105

Appendix A: Appendix

A.1 Uploading Optimization Problem

In this appendix, I formulate the optimization problem for the uploading latency in uncon-

trollable predictable mobile data collection. Let Ab be Γb X µb binary matrix where the

rows represent the head nodes, and the column represents the member nodes at the polling

sector b. The element ai,j is equal to 1 when member node j neighbors head node Hi oth-

erwise, ai,j = 0. With buffer capacity β, the optimization problem for balancing the head

nodes load for inter-session duration σ can be formulated as 0-1 integer linear programming

(ZOILP) as the following:

min max
∀i∈{1,...,Γb}

ΨHi(σ) (A.1)

Subject to:

ΨHj (σ) = γHi .σ + ∂ + σ.

µb∑
j=1

γj xi,j ≤ β (A.2)

xi,j =

 1 if mj is assigned to Hi and ai,j = 1

0 otherwise.
(A.3)

Γb∑
i=1

xi,j = 1 ∀j ∈ {1, . . . , µb} (A.4)

Γj ≥
µb∑
j=1

xi,j ≥ 0 ∀i ∈ {1, . . . ,Γb} (A.5)

106

β ≥ γe . σ ≥ 0 ∀e ∈ µb ∪ Γb (A.6)

The constraint (A.2) defines the data load at the head node Hi which is the sum of

its current data plus ∂ which is the additional overheard encoded data with the sum of all

his assigned member nodes’ data during σ time that is upper bounded by the buffer size

β . The condition (A.3) restricts that a member node can assign to a head node if both

are single-hop neighbors to each other. In constraint (A.4), it guarantees that a member

node has to be assigned to exactly one nearby head node, while constraint (A.5) makes

sure that a head node can be assigned by none up to µb member nodes. The last condition

(A.6) forces the data to be upper bounded by the buffer size β. By demonstrating that

one way of formulating an optimal uploading problem is through a zero-one integer linear

programming (ZOILP) which shows the desirability of developing heuristic solutions.

107

Bibliography

108

Bibliography

[1] C. Fragouli, J.-Y. Le Boudec, and J. Widmer, “Network coding: an instant primer,”
ACM SIGCOMM Computer Communication Review, vol. 36, no. 1, pp. 63–68, 2006.

[2] P. Ostovari, J. Wu, and A. Khreishah, “Network coding techniques for wireless and
sensor networks,” in The Art of Wireless Sensor Networks. Springer, 2014, pp. 129–
162.

[3] Y. Wu, J. Stankovic, T. He, and S. Lin, “Realistic and efficient multi-channel commu-
nications in wireless sensor networks,” in INFOCOM 2008. The 27th Conference on
Computer Communications. IEEE, April 2008.

[4] S. Chieochan and E. Hossain, “Channel assignment for throughput optimization in
multichannel multiradio wireless mesh networks using network coding,” Mobile Com-
puting, IEEE Transactions on, vol. 12, no. 1, pp. 118–135, Jan 2013.

[5] C. J. Watras, M. Morrow, K. Morrison, S. Scannell, S. Yaziciaglu, J. S. Read, Y.-H.
Hu, P. C. Hanson, and T. Kratz, “Evaluation of wireless sensor networks (wsns) for
remote wetland monitoring: design and initial results,” Environmental monitoring and
assessment, vol. 186, no. 2, pp. 919–934, 2014.

[6] J. Tooker and M. C. Vuran, “Mobile data harvesting in wireless underground sensor
networks,” in Sensor, Mesh and Ad Hoc Communications and Networks (SECON),
2012 9th Annual IEEE Communications Society Conference on, June 2012, pp. 560–
568.

[7] I. Stojmenovic, “Machine-to-machine communications with in-network data aggrega-
tion, processing and actuation for large scale cyber-physical systems,” 2014.

[8] V. Annamalai, S. K. Gupta, and L. Schwiebert, “On tree-based convergecasting in
wireless sensor networks,” in Wireless Communications and Networking, 2003. WCNC
2003. 2003 IEEE, vol. 3. IEEE, 2003, pp. 1942–1947.

[9] T. Watteyne, A. Molinaro, M. G. Richichi, and M. Dohler, “From manet to ietf roll
standardization: A paradigm shift in wsn routing protocols,” Communications Surveys
& Tutorials, IEEE, vol. 13, no. 4, pp. 688–707, 2011.

[10] M. Abdulaziz and R. Simon, “Multi-channel network coding in tree-based wireless
sensor networks,” in Computing, Networking and Communications (ICNC), 2015 In-
ternational Conference on. IEEE, 2015, pp. 924–930.

109

[11] P. T. A. Quang and D.-S. Kim, “Enhancing real-time delivery of gradient routing for
industrial wireless sensor networks,” Industrial Informatics, IEEE Transactions on,
vol. 8, no. 1, pp. 61–68, 2012.

[12] M. Di Francesco, S. K. Das, and G. Anastasi, “Data collection in wireless sensor
networks with mobile elements: A survey,” ACM Trans. Sen. Netw., vol. 8, no. 1, pp.
7:1–7:31, Aug. 2011. [Online]. Available: http://doi.acm.org/10.1145/1993042.1993049

[13] F. Restuccia, G. Anastasi, M. Conti, and S. Das, “Analysis and optimization of a
protocol for mobile element discovery in sensor networks,” Mobile Computing, IEEE
Transactions on, vol. 13, no. 9, pp. 1942–1954, Sept 2014.

[14] Y. Gu, F. Ren, Y. Ji, and J. Li, “The evolution of sink mobility management in wireless
sensor networks: A survey,” 2015.

[15] R. C. Shah, S. Roy, S. Jain, and W. Brunette, “Data mules: Modeling and analysis of
a three-tier architecture for sparse sensor networks,” Ad Hoc Networks, vol. 1, no. 2,
pp. 215–233, 2003.

[16] A. Chakrabarti, A. Sabharwal, and B. Aazhang, “Using predictable observer mobility
for power efficient design of sensor networks,” in Information Processing in Sensor
Networks. Springer, 2003, pp. 129–145.

[17] A. Hasson, “Daknet: Rethinking connectivity in developing nations,” work, vol. 5,
2004.

[18] H. Smeets, C.-Y. Shih, M. Zuniga, T. Hagemeier, and P. J. Marrón, “Trainsense:
a novel infrastructure to support mobility in wireless sensor networks,” in Wireless
Sensor Networks. Springer, 2013, pp. 18–33.

[19] M. Dohler, D. Barthel, T. Watteyne, and T. Winter, “Routing requirements for urban
low-power and lossy networks,” 2009.

[20] M. Sha, G. Hackmann, and C. Lu, “Real-world empirical studies on multi-channel
reliability and spectrum usage for home-area sensor networks,” Network and Service
Management, IEEE Transactions on, vol. 10, no. 1, pp. 56–69, 2013.

[21] O. D. Incel, L. van Hoesel, P. Jansen, and P. Havinga, “Mc-lmac: A multi-channel mac
protocol for wireless sensor networks,” Ad Hoc Networks, vol. 9, no. 1, pp. 73–94, 2011.

[22] G. H. E. Fard, M. Yaghmaee, R. Monsefi et al., “An adaptive cross-layer multichannel
qos-mac protocol for cluster based wireless multimedia sensor networks,” in Ultra Mod-
ern Telecommunications & Workshops, 2009. ICUMT’09. International Conference on.
IEEE, 2009, pp. 1–6.

[23] R. Simon, L. Huang, E. Farrugia, and S. Setia, “Using multiple communication chan-
nels for efficient data dissemination in wireless sensor networks,” in Mobile Adhoc and
Sensor Systems Conference, 2005. IEEE International Conference on, Nov 2005, pp.
10 pp.–439.

110

[24] G. Zhou, T. He, J. Stankovic, and T. Abdelzaher, “Rid: radio interference detection
in wireless sensor networks,” in INFOCOM 2005. 24th Annual Joint Conference of the
IEEE Computer and Communications Societies. Proceedings IEEE, vol. 2, March 2005,
pp. 891–901 vol. 2.

[25] P. Kyasanur and N. H. Vaidya, “Capacity of multi-channel wireless networks: Impact
of number of channels and interfaces,” in Proceedings of the 11th Annual International
Conference on Mobile Computing and Networking, ser. MobiCom ’05. New York, NY,
USA: ACM, 2005, pp. 43–57.

[26] K. Ramachandran, E. Belding, K. Almeroth, and M. Buddhikot, “Interference-aware
channel assignment in multi-radio wireless mesh networks,” in INFOCOM 2006. 25th
IEEE International Conference on Computer Communications. Proceedings, April
2006, pp. 1–12.

[27] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft, “Xors in the air:
practical wireless network coding,” in ACM SIGCOMM Computer Communication
Review, vol. 36, no. 4. ACM, 2006, pp. 243–254.

[28] T. Ho, R. Koetter, M. Medard, D. R. Karger, and M. Effros, “The benefits of coding
over routing in a randomized setting,” 2003.

[29] G. Angelopoulos, A. Paidimarri, A. Chandrakasan, and M. Medard, “Experimental
study of the interplay of channel and network coding in low power sensor applications,”
in Communications (ICC), 2013 IEEE International Conference on, June 2013, pp.
5126–5130.

[30] R. R. Rout and S. K. Ghosh, “Enhancement of lifetime using duty cycle and network
coding in wireless sensor networks,” Wireless Communications, IEEE Transactions on,
vol. 12, no. 2, pp. 656–667, 2013.

[31] X. Wang and J. Li, “Network coding aware cooperative mac protocol for wireless ad
hoc networks,” Parallel and Distributed Systems, IEEE Transactions on, vol. 25, no. 1,
pp. 167–179, Jan 2014.

[32] A. E. Kamal, A. Ramamoorthy, L. Long, and S. Li, “Overlay protection against
link failures using network coding,” IEEE/ACM Transactions on Networking (TON),
vol. 19, no. 4, pp. 1071–1084, 2011.

[33] R. Chandanala, W. Zhang, R. Stoleru, and M. Won, “On combining network coding
with duty-cycling in flood-based wireless sensor networks,” Ad Hoc Netw., vol. 11,
no. 1, pp. 490–507, Jan. 2013.

[34] M. Jafari, L. Keller, C. Fragouli, and K. Argyraki, “Compressed network coding vec-
tors,” in Information Theory, 2009. ISIT 2009. IEEE International Symposium on,
June 2009, pp. 109–113.

[35] C. de Alwis, H. Arachchi, A. Fernando, and A. Kondoz, “Towards minimising the
coefficient vector overhead in random linear network coding,” in Acoustics, Speech and
Signal Processing (ICASSP), 2013 IEEE International Conference on, May 2013, pp.
5127–5131.

111

[36] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collection tree protocol,”
in Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems,
ser. SenSys ’09. New York, NY, USA: ACM, 2009, pp. 1–14.

[37] L. Keller, E. Atsan, K. Argyraki, and C. Fragouli, “Sensecode: Network coding for
reliable sensor networks,” ACM Trans. Sen. Netw., vol. 9, no. 2, pp. 25:1–25:20, Apr.
2013.

[38] D. Gong, Y. Yang, and Z. Pan, “Energy-efficient clustering in lossy wireless sensor
networks,” Journal of Parallel and Distributed Computing, vol. 73, no. 9, pp. 1323–
1336, 2013.

[39] Z. Zhang, M. Ma, and Y. Yang, “Energy-efficient multihop polling in clusters of two-
layered heterogeneous sensor networks,” Computers, IEEE Transactions on, vol. 57,
no. 2, pp. 231–245, 2008.

[40] M. Ma, Y. Yang, and M. Zhao, “Tour planning for mobile data-gathering mechanisms
in wireless sensor networks,” Vehicular Technology, IEEE Transactions on, vol. 62,
no. 4, pp. 1472–1483, 2013.

[41] H. Lee, M. Wicke, B. Kusy, O. Gnawali, and L. Guibas, “Data stashing: energy-efficient
information delivery to mobile sinks through trajectory prediction,” in Proceedings of
the 9th ACM/IEEE International Conference on Information Processing in Sensor
Networks. ACM, 2010, pp. 291–302.

[42] J.-L. Lu and F. Valois, “On the data dissemination in wsns,” in Wireless and Mo-
bile Computing, Networking and Communications, 2007. WiMOB 2007. Third IEEE
International Conference on. IEEE, 2007, pp. 58–58.

[43] X. Xu, W. Liang, and T. Wark, “Data quality maximization in sensor networks with a
mobile sink,” in Distributed Computing in Sensor Systems and Workshops (DCOSS),
2011 International Conference on. IEEE, 2011, pp. 1–8.

[44] K. Kweon, H. Ghim, J. Hong, and H. Yoon, “Grid-based energy-efficient routing from
multiple sources to multiple mobile sinks in wireless sensor networks,” in Wireless
Pervasive Computing, 2009. ISWPC 2009. 4th International Symposium on. IEEE,
2009, pp. 1–5.

[45] M. Shon, C. Kong, and H. Choo, “Hexagonal path data dissemination for energy
efficiency in wireless sensor networks,” in Information Networking, 2009. ICOIN 2009.
International Conference on. IEEE, 2009, pp. 1–5.

[46] C. Tunca, M. Donmez, S. Isik, and C. Ersoy, “Ring routing: An energy-efficient routing
protocol for wireless sensor networks with a mobile sink,” in Signal Processing and
Communications Applications Conference (SIU), 2012 20th. IEEE, 2012, pp. 1–4.

[47] J. Weiwei, C. Canfeng, X. Dongliang, and M. Jian, “Efficient data collection in wireless
sensor networks by applying network coding,” in Broadband Network & Multimedia
Technology, 2009. IC-BNMT’09. 2nd IEEE International Conference on. IEEE, 2009,
pp. 90–94.

112

[48] W. C. Cheng, C.-F. Chou, L. Golubchik, S. Khuller, and Y.-C. Wan, “A coordinated
data collection approach: design, evaluation, and comparison,” Selected Areas in Com-
munications, IEEE Journal on, vol. 22, no. 10, 2004.

[49] M. Zhao, Y. Yang, and C. Wang, “Mobile data gathering with load balanced clustering
and dual data uploading in wireless sensor networks,” IEEE Transactions on Mobile
Computing, vol. 14, no. 4, pp. 770–785, 2014.

[50] G. Wang, G. Cao, T. L. Porta, and W. Zhang, “Sensor relocation in mobile sensor
networks,” in INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings IEEE, vol. 4. IEEE, 2005, pp. 2302–2312.

[51] Y.-C. Tseng, Y.-C. Wang, K.-Y. Cheng, and Y.-Y. Hsieh, “imouse: an integrated
mobile surveillance and wireless sensor system,” Computer, no. 6, pp. 60–66, 2007.

[52] R. Sugihara and R. K. Gupta, “Optimal speed control of mobile node for data collection
in sensor networks,” Mobile Computing, IEEE Transactions on, vol. 9, no. 1, pp. 127–
139, 2010.

[53] L. Zhou, X. Wang, W. Tu, G.-M. Muntean, and B. Geller, “Distributed scheduling
scheme for video streaming over multi-channel multi-radio multi-hop wireless net-
works,” Selected Areas in Communications, IEEE Journal on, vol. 28, no. 3, pp. 409–
419, 2010.

[54] E. Hyytiä, P. Lassila, and J. Virtamo, “Spatial node distribution of the random way-
point mobility model with applications,” Mobile Computing, IEEE Transactions on,
vol. 5, no. 6, pp. 680–694, 2006.

[55] D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad hoc wireless networks,”
in Mobile computing. Springer, 1996, pp. 153–181.

[56] T. Camp, J. Boleng, and V. Davies, “A survey of mobility models for ad hoc network
research,” Wireless communications and mobile computing, vol. 2, no. 5, pp. 483–502,
2002.

[57] J. Härri, F. Filali, and C. Bonnet, “Mobility models for vehicular ad hoc networks: a
survey and taxonomy,” Communications Surveys & Tutorials, IEEE, vol. 11, no. 4, pp.
19–41, 2009.

[58] F. Restuccia and S. K. Das, “Lifetime optimization with qos of sensor networks with
uncontrollable mobile sinks,” in World of Wireless, Mobile and Multimedia Networks
(WoWMoM), 2015 IEEE 16th International Symposium on a. IEEE, 2015, pp. 1–9.

[59] A. Kansal, A. A. Somasundara, D. D. Jea, M. B. Srivastava, and D. Estrin, “Intelligent
fluid infrastructure for embedded networks,” in Proceedings of the 2nd international
conference on Mobile systems, applications, and services. ACM, 2004, pp. 111–124.

[60] D. Jea, A. Somasundara, and M. Srivastava, “Multiple controlled mobile elements
(data mules) for data collection in sensor networks,” in Distributed computing in sensor
systems. Springer, 2005, pp. 244–257.

113

[61] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu, E. Shih, H. Balakr-
ishnan, and S. Madden, “Cartel: a distributed mobile sensor computing system,” in
Proceedings of the 4th international conference on Embedded networked sensor systems.
ACM, 2006, pp. 125–138.

[62] A. A. Somasundara, A. Kansal, D. D. Jea, D. Estrin, and M. B. Srivastava, “Control-
lably mobile infrastructure for low energy embedded networks,” Mobile Computing,
IEEE Transactions on, vol. 5, no. 8, pp. 958–973, 2006.

[63] S. Gao, H. Zhang, and S. K. Das, “Efficient data collection in wireless sensor net-
works with path-constrained mobile sinks,” Mobile Computing, IEEE Transactions
on, vol. 10, no. 4, pp. 592–608, 2011.

[64] W. Liang, P. Schweitzer, and Z. Xu, “Approximation algorithms for capacitated min-
imum forest problems in wireless sensor networks with a mobile sink,” Computers,
IEEE Transactions on, vol. 62, no. 10, pp. 1932–1944, 2013.

[65] S.-Y. Li, R. W. Yeung, and N. Cai, “Linear network coding,” Information Theory,
IEEE Transactions on, vol. 49, no. 2, pp. 371–381, 2003.

[66] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B. Leong, “A ran-
dom linear network coding approach to multicast,” Information Theory, IEEE Trans-
actions on, vol. 52, no. 10, pp. 4413–4430, 2006.

[67] F. Awad, O. Banimelhem, and N. Al-Rousan, “The potential of using network cod-
ing with geographical forwarding routing for wireless multimedia sensor networks,” in
Computer and Information Technology (CIT), 2011 IEEE 11th International Confer-
ence on. IEEE, 2011, pp. 9–14.

[68] J. N. Al-Karaki and A. E. Kamal, “Routing techniques in wireless sensor networks: a
survey,” Wireless communications, IEEE, vol. 11, no. 6, pp. 6–28, 2004.

[69] T. Watteyne, A. Molinaro, M. G. Richichi, and M. Dohler, “From manet to ietf roll
standardization: A paradigm shift in wsn routing protocols,” Communications Surveys
& Tutorials, IEEE, vol. 13, no. 4, pp. 688–707, 2011.

[70] J. Pope and R. Simon, “Crest: An epoch-oriented routing control plane for low-power
and lossy networks,” in Local Computer Networks Workshops (LCN Workshops), 2013
IEEE 38th Conference on. IEEE, 2013, pp. 128–136.

[71] M. Aigner, G. Ziegler, and P. Erdos, “Proofs from the book, vol. 274,” 2010.

[72] K. Bharath-Kumar and J. Jaffe, “A new approach to performance-oriented flow con-
trol,” Communications, IEEE Transactions on, vol. 29, no. 4, pp. 427–435, 1981.

[73] A. Dunkels, F. Österlind, and Z. He, “An adaptive communication architecture for
wireless sensor networks,” in Proceedings of the 5th international conference on Em-
bedded networked sensor systems. ACM, 2007, pp. 335–349.

[74] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, “An application-specific
protocol architecture for wireless microsensor networks,” IEEE Transactions on wire-
less communications, vol. 1, no. 4, pp. 660–670, 2002.

114

[75] T. Ho, R. Koetter, M. Medard, D. R. Karger, and M. Effros, “The benefits of coding
over routing in a randomized setting,” 2003.

[76] D. S. Johnson and L. A. McGeoch, “The traveling salesman problem: A case study
in local optimization,” Local search in combinatorial optimization, vol. 1, pp. 215–310,
1997.

[77] C. M. Angelopoulos, S. Nikoletseas, D. Patroump, and C. Rapropoulos, “A new random
walk for efficient data collection in sensor networks,” in Proceedings of the 9th ACM
international symposium on Mobility management and wireless access. ACM, 2011,
pp. 53–60.

[78] Z. Yao and K. Gupta, “Backbone-based connectivity control for mobile networks,” in
Robotics and Automation, 2009. ICRA’09. IEEE International Conference on. IEEE,
2009, pp. 1133–1139.

[79] S. Duquennoy, F. Österlind, and A. Dunkels, “Lossy links, low power, high through-
put,” in Proceedings of the 9th ACM Conference on Embedded Networked Sensor Sys-
tems. ACM, 2011, pp. 12–25.

[80] E. Ancillotti, R. Bruno, and M. Conti, “Rpl routing protocol in advanced metering
infrastructures: an analysis of the unreliability problems,” in Sustainable Internet and
ICT for Sustainability (SustainIT), 2012. IEEE, 2012, pp. 1–10.

[81] ——, “The role of the rpl routing protocol for smart grid communications,” Commu-
nications Magazine, IEEE, vol. 51, no. 1, pp. 75–83, 2013.

[82] C. Fragouli, J.-Y. Le Boudec, and J. Widmer, “Network coding: an instant primer,”
ACM SIGCOMM Computer Communication Review, vol. 36, no. 1, pp. 63–68, 2006.

[83] M. Abdulaziz and R. Simon, “Mobile data collection using multi-channel network cod-
ing in wireless sensor networks,” in Local Computer Networks (LCN), 2015 IEEE 40th
Conference on. IEEE, 2015, pp. 205–208.

[84] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet of things for
smart cities,” Internet of Things Journal, IEEE, vol. 1, no. 1, pp. 22–32, 2014.

[85] Q. Wang, K. Ren, W. Lou, and Y. Zhang, “Dependable and secure sensor data storage
with dynamic integrity assurance,” in INFOCOM 2009, IEEE, April 2009, pp. 954–962.

[86] K. Viswanatha, S. Ramaswamy, A. Saxena, and K. Rose, “Error-resilient and
complexity-constrained distributed coding for large scale sensor networks,” in Pro-
ceedings of the 11th international conference on Information Processing in Sensor Net-
works. ACM, 2012, pp. 293–304.

[87] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, and M. Médard, “Resilient network
coding in the presence of byzantine adversaries,” in INFOCOM 2007. 26th IEEE Inter-
national Conference on Computer Communications. IEEE. IEEE, 2007, pp. 616–624.

[88] L. Nutman and M. Langberg, “Adversarial models and resilient schemes for network
coding,” in Information Theory, 2008. ISIT 2008. IEEE International Symposium on.
IEEE, 2008, pp. 171–175.

115

[89] M. Wang and B. Li, “How practical is network coding?” in Quality of Service, 2006.
IWQoS 2006. 14th IEEE International Workshop on. IEEE, 2006, pp. 274–278.

[90] C. Fragouli and E. Soljanin, Network coding fundamentals. Now Publishers Inc, 2007.

116

Curriculum Vitae

Mansour Abdulaziz earned his B.S. degree from Kuwait University, Kuwait; and his M.S.
degree from Missouri University of Science and Technology, Rolla, Missouri, both in Com-
puter Science. His research interests include wireless sensor networks, low-power embedded
systems, and communication protocols. He has been awarded a full scholarship from Kuwait
University to pursue his Ph.D. in Computer Science.

117

