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Abstract

#COVID-19 SEARCHING FORA RELATIONSHIP BETWEEN TWITTER SENTIMENT
AND INFECTIOUS DISEASE

James Odysseus Van Der Loo Stassinos

George Mason University, 2023

Thesis Director: Dr. Taylor Anderson

Digital health data such as social media data has shown potential for identifying out-

breaks faster than ocial records of disease incidence. The objective of this thesis 1 is to

examine the relationship between COVID-19-related Tweet sentiment and COVID-19 cases

over space and time and assess the extent to which Twitter-derived sentiment can be used

for local COVID-19 surveillance in the United States. To our knowledge, there is no existing

study that examines the relationship between Tweet sentiment and infectious disease cases

at a spatially local level. The sentiment is computed using 56,755,894 Tweets from the TB-

COV dataset for US counties over time. Tweet sentiment is examined with COVID-19 cases

for each county globally, over time, and space using Pearson’s R correlation. A negative

association was observed between COVID-19 cases and the sentiment polarity of COVID-

19 tweets, but only in some regions of the US and only for some duration of the period

of study. Further research is needed to understand the cause of the spatial and temporal

non-stationary correlations between Twitter sentiment and COVID-19 cases. This would

allow for the identication of when and where Twitter sentiment could be used as a signal

for early disease outbreak warning.
1The original thesis research has been submitted to Nature Scientic Reports under the title "Towards

using Twitter Sentiment for Infectious Disease Detection" and is currently under review



Chapter 1: Introduction

Accurate and timely data capturing the trajectory of COVID-19 pandemic has been crucial

for informing policy interventions [1, 2]. To measure the cases and deaths resulting from

SARS-CoV-2 across the US, the Center for Disease Control (CDC) gathers data from juris-

dictional and state partners that independently report the new daily number of conrmed

COVID-19 cases and deaths for each county of residence based on testing data captured

by pharmacies, hospitals, and other testing facilities [3]. However, due to a decentralized

and fragmented public health infrastructure, this data is subject to inherent geographic bi-

ases, a lack of standards, and reporting lags [4]. One such example is testing bias, where

some locations may have better testing infrastructure, well-funded access to testing, and less

stigma around getting tested [4]. In another example, a lack of standardization resulted in

an inconsistent set of reporting metrics metrics where some states dened a positive case

as a total count of positive tests and others as the total number of unique individuals that

tested positive [5]. Furthermore, delays and backlog in the reporting pipeline result in on

average a 3-21 day lag between the time a patient is tested positive and reported as having

tested positive [6].

Publicly available data from news outlets, chat rooms, web searches, or social media

are often used as a supplement to ocial data sources to identify outbreaks of existing or

emerging diseases faster than what is reported by the CDC and can even detect outbreaks

not detected by ocial sources [7–10]. Collectively, these sources, referred to as digital

health data, provide a lens into public health that is fundamentally dierent from that

yielded by ocial sources [11]. Among such sources, Twitter is used to detect the prevalence

of diseases such as inuenza and dengue fever. In some cases, the volume of tweets is used

as an indicator for disease. More specically, the number of tweets that contain keywords
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relating to a disease or have been classied as a "self report" have been found to correlate

with CDC reported cases and other ocial sources and thus can be used as a tool for early

detection and monitoring [12–17].

In other cases, additional analyses of the tweets, using natural language processing ap-

proaches such as sentiment analysis, has been used to dierentiate between tweets that are

positively i.e. "my u shot worked, no u for me!" and negatively associated with disease

i.e. "my whole family has the u" and predict to what extent inuenza is present in the

population over time [18–21]. Where tweet sentiment and ocial inuenza cases tend to

be inversely associated, the relationship is less clear for COVID-19. For example, Valdez et

al [22] were surprised to observe a positive correlation between US wide COVID-19 related

tweet sentiment and cases and deaths, meaning that as cases and deaths increase in the US,

sentiment towards COVID-19 trends positive. This contradicts what would intuitively be

expected. In another example, Feng and Kirkley [23] nd a weak negative or absent correla-

tion between state-level Twitter sentiment and COVID-19 and cases and deaths. They use

the GEOCOV19 dataset [24] which contains geolocated tweets spanning only Feb 1, 2020 to

May 1, 2020 in 49 cities across the United States and is the precursor dataset to the larger

TBCOV dataset [25]. Given the limited and conicting number of studies, there is a need to

thoroughly examine the relationship between tweet sentiment and COVID-19 cases across

space and time and the potential to use such information as a surveillance tool.

Therefore, this thesis seeks to answer the following research questions:

1. What is the relationship between COVID-19 related tweet sentiment and ocial case

data over space and time?

2. What is the extent to which Twitter derived sentiment can be used for local COVID-19

surveillance in the United States?

The thesis hypothesizes that there should be a strong negative association between local

sentiment and cases, where as cases in a county go up, county sentiment goes down (and vice

versa). The thesis also hypothesizes that this relationship will be the same across space and

2



time, also known as spatial and temporal stationarity [26]. Towards answering these research

questions and testing these hypotheses, this thesis leverages the full TBCOV dataset [25],

containing a total of two billion geolocated COVID-19 related tweets between Jan 2020 to

Dec. 2021. The county level correlation between tweet sentiment and ocial data from

February 1, 2020 to March 31, 2021 is examined in order to determine whether, when, and

where tweet sentiment from a county can be used as a predictor of the number of cases in

the same county.
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(a) Tweet Sentiment.

(b) New COVID-19 Cases.

Figure 1.1: Seven-day Rolling average of COVID-19 sentiment and new COVID-19 cases.
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Intuition would suggest that there should be an inverse association between COVID-19

tweet sentiment and COVID-19 cases at the local level. Thus, places experiencing a high

number of COVID-19 cases are expected to have a low COVID-19 sentiment during that

time. This inverse association can observed in Figure 1.1 which shows both the COVID-19

related sentiment on Twitter and the number of COVID-19 cases for the entire U.S. and

for some locations in the U.S. For example, in the case of New York City, near the end of

April, when COVID-19 cases dramatically decrease, one can observe a large increase in mean

sentiment. Yet, in general it is dicult to discern any clear relationship, thus, warranting

further investigation. In the case that there is an inverse association between COVID-19

tweet sentiment and COVID-19 cases at a local level, it is anticipated that COVID-19 related

tweet sentiment could be used to supplement ocial disease surveillance data streams and

provide important insights for local outbreak detection of diseases [27]. As far as is currently

known, there is no existing study that examines the relationship between tweet sentiment

and infectious diseases cases at a spatially local level.

This thesis is organized as follows: Chapter 2 introduces social media as a proxy for

disease surveillance. Chapter 3 describes the tweet dataset used and any pre-processing

methods used. Chapter 4 describes the experiments and how tweet sentiment is compared

to COVID-19 cases. Chapter 5 presents the results and emphasizes noteworthy informa-

tion. Chapter 6 provides context for the results and how tweet sentiment correlates with

cases. Chapter 7 describes how this research contributes to disease surveillance using Twitter

sentiment as a data source.
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Chapter 2: Related Work

Infectious disease outbreak detection has come a long way since John Snow’s revolutionary

discovery that contaminated water was causing Cholora outbreaks in London[28]. In mod-

ern times predicting disease incidence using publicly available data from news outlets, chat

rooms, web searches, or social media data has become an increasingly popular research topic,

given the vast amounts of health-related information that people share on these platforms.

This type of data is referred to as digital health data and has the potential to comple-

ment traditional disease surveillance methods and provide timely and cost-eective insights

for mitigating the spread of illnesses. However, the use of digital health data for disease

prediction is a relatively new area of investigation.

2.1 Digital Health Data for Disease Detection

In general, digital health data has been shown to be a viable method for detecting diseases.

Ginsberg et al. [29] use the weekly volume of inuenza related web searches normalized by

the total number of searches to estimate the level of weekly inuenza in each region of the

United States. They compare their search volume to the CDC reported Inuenza Related

Illness percentages for an average correlation of 0.90 between 2003 and 2007. Blogging is

another form of digital health data that has shown positive results in detecting u like

illnesses. For example, Corley et al. [30] was able to detect the beginning of the 2008 u

season using blogs. They count the number of blogs that contain keywords mentioning u like

illnesses comparing this to the CDC’s Outpatient Inuenza-like-illness Surveillance Network

(ILINet) and produce a Pearson’s correlation of r = 0.767 with 95% condence. In another

interesting example, Beauchamp [31] explains that detecting the loss of smell through online

text can be dicult due to infrequent discussions. Using a unique data source in Amazon
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candle reviews, and a novel Bayesian Vector Autoregression determined that COVID-19

cases appear to signicantly eect the "no smell" review rates [31]. Alternatively, Human

mobility data has been used to understand human behavior in various applications [32].

In the context of understanding infectious diseases, mobility data has also been used for

infectious disease spread visualization [33], understanding of spread processes [34, 35] for

contact tracing [36], and to inform infectious disease spread simulations [37, 38].

In this section, the existing literature on this topic will be reviewed specically focusing

on the sentiment analysis of Twitter data as a digital health data source, sometimes also

referred to as volunteered geographic information (VGI) [39].

2.2 Twitter for Disease Surveillance

Microblogging platforms, specically Twitter is a valuable source for VGI that can be used for

disease detection. Recent research into inuenza prediction from micro-blogging platforms

has yielded positive results in moving towards a strengthened public health prediction model.

Sadilek et al. [40] nds that using Twitter data and their probabilistic model they can predict

with high precision and good recall if that person will fall ill. They start with a Support

vector machine (SVM) classier to identify sick users within the corpus. A prediction can

be made using a Conditional Random Field (CRF) model that incorporates that user’s

social network and co-location. The drawback of this study in the current environment is

Twitter has restricted the amount of access researchers have to exact coordinates, limiting

the repeatability of the co-location portion of the study.

Another method for outbreak detection is proposed in the research of Paul and Dresde

[41] showing a correlation coecient of 0.958 when comparing CDC Flu view data to their

Ailment Topic Aspect Model plus’s (ATAM+) "u" ailment Probability that uses Twitter

data. The ATAM+ model is based on topic models such as latent Dirichlet allocation (LDA)

and is ne tuned for topics relating to how users express their illnesses and ailments. The

tweet dataset starts with 2 billion tweets and after classifying all the health related tweets
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they have a corpus of 1.63 million English tweets[41]. This research shows positive results,

however it needs to be more spatially precise if its to be use full for containing local outbreaks

with precision mitigation.

The previous two studies focus on diseases that well known by the public and have

been formalized by national public health institutes. Lim et al. [42] proposes a method

for detecting latent diseases using tweet data as it can take time for a top down style

public health institution to recognize a novel disease which is why a bottom up approach is

required. They focus on users over time who tweet about potential symptoms with negative

sentiment, this way they can infer that the user is suering from the symptom. Then

symptom weighting vectors are used to match the symptoms from a user’s tweets about

to their electronic medical records (EMR). As EMR’s are private by law they recruited

104 volunteers who were diagnosed with inuenza from the Penn State’s Health Services to

participate in the study. The resulting F1 score of 0.724 shows that this model is use full

for detecting latent infectious disease without the use of manually classied data.

Looking outside the United States, in China, Weibo is a popular social media platform

similar to Twitter. Shen et al. [43] analyzed COVID-19 related posts and were able to

classify "sick posts" based on user’s reported symptoms. These "sick posts" are able to

predict daily case counts up to 14 days ahead of the public health infrastructure’s ocial

statistics. Providing evidence that social media posts relating to diseases can be predictive

of epidemic measures.

2.3 Sentiment For Disease Surveillance

Sentiment analysis is a sub eld of natural language processing that is concerned with the

identication and categorization of opinions in text. Valdez et al. [22] applied this to tweets

using Vader Sentiment to calculate polarity. They were surprised to learn that the polarity

for the COVID-19 corpus of tweets increased becoming more positive starting when the

WHO declared a pandemic on March 10, 2020 to the end of March. In deeper COVID-

19 tweet sentiment research Feng and Kirkley [23] compare polarity to epidemic measures
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(cases and deaths) and human mobility patterns. They report high associations between

online emotional responses and oine mobility but very little correlation with geolocalized

mean sentiment values. In the past, research on tweet sentiment for disease detection used

sentiment classication in the pre-processing stage to identify tweet sentiment. The classied

tweets are then used for analysis, and not raw sentiment values.

There are many papers using tweet sentiment as a proxy for public opinion and topic

opinion concerning diseases, but there is limited evidence that sentiment can be used as a

proxy for disease incidence detection. The following paragraph describes some examples.

Signori et al. [44] used google maps to display tweets as points on a continuously updating

web map in order to show the evolving conversation surrounding H1N1. They used the

Geolocation of the tweets to estimate Inuenza like illness (ILI) rates, however sentiment

polarity was not utilized as a basis for comparison with ILI rates in the prediction process.

Behexra and Eluri [45] created a Degree of concern (DOC) metric using sentiment analysis

for measuring how a population felt about dierent diseases over time and space. They

used a two step sentiment calculation process where a user’s personal negative tweets were

identied. This method is designed to extract a user’s personal level of concern and then

aggregate it for the population at large. They do not take the extra step to compare their

degree of concern metric against disease incidence levels. Ji et al. [46] used a similar method

for sentiment analysis idenfying personal and non personal negative tweets from Twitter

users to create a Measure of Concern (MOC) metric. This MOC metric was unable to

be used for prediction but the peaks matched up with peaks in news volume suggesting

negativity increases as news increases.

2.4 Summary

There are many papers that are able to nd a link between digital health data and disease

incidence[29–31]. In digital health data obtained from Twitter, studies have examined the

correlation between the volume of tweets often it and CDC ILI data [41], the use of tweets
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to predict users getting sick[40], and detecting unknown diseases in populations[42]. In

China, Weibo is a micro-blogging platform that used "sick posts" to predict disease incidence

up to 14 days earlier than ocial public health reporting. All of these papers use post

volume changes and ratios as their variable. Many papers use sentiment as a proxy for

understanding disease related public opinion. Web maps have been created to show H1N1

tweet sentiment[44]. Others create custom metrics using personal negative posts to create

a Degree of Concern[45], or a Measure of Concern [46]. The sentiment analysis metrics will

be useful to public health ocials if they can predict disease incidence in a community.

The research using sentiment as a proxy for detection is not clear with one paper showing

a surprising increase in sentiment polarity[22] and another showing it is inconclusive for

detection[23].

Given the release of the massive geolocated twitter data set TBCOV[25] and the existing

work that says Twitter can be used for disease detection. This thesis will explore the

relationship between geolocated tweet sentiment and COVID-19 disease incidence at the

county level. The value lies in the fact that there has been no prior investigation that

compares sentiment derived from a vast collection of geolocated tweets to disease incidence

data and that sentiment may oer more than the tweet count only. It is hypothesized that

if there is a relationship between tweet sentiment and COVID-19 disease incidence at the

local level, this can help identify patterns and trends that may be useful in predicting and

tracking the spread of diseases, ultimately leading to more eective public health strategies.
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Chapter 3: Data and Pre-Processing

The objectives of the thesis are to investigate the relationship between COVID-19 related

tweet sentiment and ocial case data over space and time to determine whether tweet

sentiment can be used for early detection of COVID-19. This chapter describes the data

leveraged for such an analysis including the steps for pre-processing the Twitter data, the

approaches used to calculate sentiment, and the collection of the COVID-19 case data.

3.1 Tweet Pre-processing

The primary source of geolocated tweets used in this work is the TBCOV dataset [25].

This dataset contains over two billion tweets collected world-wide with keywords related

to COVID-19. All tweets are enriched with geolocation information, using either the lo-

cation directly provided by the user or using location information from publicly avail-

able user proles. The dataset covers a 424 day period from February 1,2020 to March

31, 2021. Since Twitter does not allow the re-distribution of Twitter data, the TBCOV

dataset is provided as a “dehydrated” dataset which includes only the tweet identiers.

To obtain the full dataset, rehydration using the Twitter API is required. The code is

provided to help other research to rehydrate their Twitter data in the code repository at

https://github.com/jstassinos/Processing-the-TBCOV-Dataset. TBCOV is a global dataset.

Therefore, all of the tweets from outside of the US are removed, reducing the number of

tweets that are considered to 384,073,303. To avoid redundant information, all re-tweets from

the dataset are removed. Re-tweets echo the tweet of another user and would contribute

noise to the analysis. This step reduced the number of tweets to 120,678,732. Furthermore,

some tweets may not be successfully rehydrated because these tweets may have already been

removed - either through deletion by the user or because an account has been removed or

11



banned from Twitter. The tweets in this research were hydrated through April 3, 2022 to

April 10, 2022. Depending on when a person hydrates the dataset the number of tweets will

change. Out of the 120,678,732 unhydrated tweets, there were 77% successfully rehydrated

out of tweets for a total of 93,362,576. Globally, very few tweets (0.1%) in the TBCOV

dataset have explicit coordinates (latitude, longitude). Thus, for the majority of the tweets,

the tweet location is inferred either based on the user location or the content of the tweet

text. The authors of the TBCOV dataset report 76.1% and higher F1-scores for county-level

localization using the location of the user [25]. However, for the case of locations inferred

from tweet text, the F1-score was only 0.100%. For this reason, all tweets whose location is

estimated using tweet text were discarded. After removing such tweets, the dataset was re-

duced to a total of 56,755,894 tweets. Using the set of tweets that are reliably geo-located,all

tweets are grouped by day and by county. Through this process, it was observed that many

counties have an insucient number of observed tweets to constitute a representative sam-

ple. Therefore, a 7-day rolling sum of tweets is used for each county and any pairs(county,

day) with fewer 30 tweets total across the seven days is discarded. The original TBCOV

dataset has a gap in the tweet collection from September 15, 2020, to September 23, 2020.

This period plus the 7 days following were omitted from the nal aggregation.

3.2 Sentiment Measures

Sentiment is generally measured on a scale from -1 to + 1 where the signum describes the

polarity (+, -) and the absolute describes the magnitude of the sentiment. To compute

the sentiment of tweets for a (county, day) pair, applying four common sentiment analysis

algorithms which leverage natural language processing, text analysis, and computational

linguistics to systematically identify, extract, quantify, and study peoples moods, opinions,

attitudes, and emotions in written text are used [47]. These are Text Blob [48], Vader

Sentiment [49], Ann [50], and an included calculation denoted as TBCOV Sentiment [24].

Text Blob [48] is a commonly used natural language processing module for Python. By

12



using its sentiment analysis function, it will return a named tuple with polarity and sub-

jectivity based on the input text. TextBlob is built on top of the popular natural language

processing platform Natural Language Toolkit (NLTK). The default implementation of sen-

timent analysis uses pattern analyzer which is built on top of pattern from NLTK. It is a

Lexicon Based sentiment analyzer. TextBlob returns a score between 1 and -1 indicating

both polarity (positive or negative) and strength of the sentiment [48].

Valence Aware Dictionary for Sentiment Reasoning (VADER) is the second python mod-

ule that will be used to calculate sentiment on the tweets. It is a lexicon-based sentiment

analyzer. This tool is also built on top of NLTK. It calculates the polarity of sentiment

by matching sentiment intensity scores to words and then aggregating these scores into an

overall score. This process is repeated for each tweet in the database. VADER returns a

number between 1 and -1 for polarity [49].

Ann is the third sentiment calculation python module named after its developer Finn

Årup Nielsen. The developer created a dictionary of 2477 words for calculating polarity

scores. Ann is a lexicon-based sentiment analyzer. It returns a number between 5 and -5

for polarity [50].

TBCOV Sentiment, the included tweet sentiment calculation uses a multilingual transformer-

based deep learning model. This returns a polarity number between 1 and -1, and a con-

dence score. It uses a transformer based deep learning model called XML-T, trained on

millions of general-purpose tweets in 8 dierent languages[24]. Figure 1.1a shows the senti-

ment polarity from TBCOV from February 1, 2020 to March 31, 2021.

3.3 COVID-19 Case Data

The number of conrmed COVID-19 cases per county over time is collected by the Center

for Disease Control (CDC) and this paper uses an aggregated version published by USA

Facts[51]. After reviewing the county case data, there is additional processing required.

The data is reported as a total of cases so the rst step is to determine how many new
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cases per day are reported Some municipalities report once a week, others will not report

on weekends and this causes spikes in the new case counts[52]. To account for this a 7-day

rolling average is applied. To account for population dierences the daily case counts are

normalized by population. When COVID-19 cases are mentioned the text is referring to a

7-day rolling average of new cases normalized by population to a per 100,000 persons value.

Figure 1.1b shows the daily COVID cases from February 1, 2020 to March 31, 2021.
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Chapter 4: Sentiment-Disease Case Correlation Analysis

This chapter will cover analysis methods and the data required for each method and the

formulas will be formalized. Three experiments will be conducted focusing on Global corre-

lation, temporal correlation and spatial correlation. To understand whether the correlation

between COVID-19 related tweet sentiment and COVID-19 cases can be observed at the lo-

cal level over space and time, the observed COVID-19-related tweets are grouped by county

and calendar week. This grouping provides one set of tweets for each county r (among all

counties R)and for each week w (among all weeks W). Deriving the sentiment of each such

set provides the function S(w, r) that returns the sentiment of all tweets observed in region

r during week w. The following measures to quantify the correlation are dened, globally,

spatially, and temporally, between these sets S(w, r) and the number of COVID-19 cases

C(w, r) observed in the same region during the same week.

4.1 Global Analysis

To measure the correlation between COVID-19 tweet sentiment and COVID-19 cases ob-

served over all weeks and overall regions, Pearson’s correlation is used across space and time,

as follows:

corr(W ,R) = corrw∈W,r∈R(S(w, r), C(w, r)) =


w∈W,r∈R(S(w, r)− S) · (C(w, r)− C)


w∈W,r∈R(S(w, r)− S)2 ·w∈W,r∈R(C(w, r)− C)2

, (4.1)

where S denotes the average sentiment (across all weeks and counties) and C denotes the

average number of cases (across all weeks and counties). Equation 4.1 provides the sample

15



correlation coecient (a single scalar) that measures the correlation between COVID-19

Twitter sentiment and COVID-19 cases. Intuitively, the expectation is a negative correlation

as a high number of cases should (in average across all weeks and counties) yield a low

(negative) sentiment towards COVID-19. However, the experimental evaluation shows that

this intuition is not conrmed by the data. That is because an aggregation across all weeks

and all counties overgeneralizes any interesting spatial and temporal patterns. To nd

such patterns, the next proposal is to measure the correlation between COVID-19 Twitter

sentiment and COVID-19 disease cases both temporally local (for a specic “frozen” week

in time) and spatially local (for a specic “frozen” county).

4.2 Temporal Analysis

To understand whether and how the correlation between COVID-19 sentiment and COVID-

19 cases changes over time, a correlation by week over all spatial regions is dened R, as

follows:

corr(w) = corrr∈R(S(w, r), C(w, r)) =


r∈R(S(w, r)− S(w)) · (C(w, r)− C(w))

r∈R(S(w, r)− S(w))2 ·r∈R(C(w, r)− C(w))2
,

(4.2)

where S(w)) =


r∈R S(w,r)

|R| is the average sentiment across all counties during week w and

C(w)) =


r∈R C(w,r)

|R| is the average number of cases across all counties during week w.

Equation 4.2 provides the sample correlation coecient between sentiment and cases

across all states during week w. Intuitively, the expectation is that this correlation should

be stationary over time, such that at any time a region having a higher number of cases

should have a lower sentiment towards COVID-19. This hypothesis will be evaluated by

computing corr(w) for each week and plotting the resulting time series (and corresponding

p-values of the signicance of the correlations) in the experiments results section.
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4.3 Spatial Analysis

To understand whether the correlation between COVID-19 sentiment and COVID-19 cases

is stationary over space, the correlation is computed, across all weeks W of the dataset for

each spatial region r. This correlation is dened as:

corr(r) = corrw∈W(S(w, r), C(w, r)) =


w∈W(S(w, r)− S(r)) · (C(w, r)− C(r))

w∈W(S(w, r)− S(r))2 ·w∈W(C(w, r)− C(r))2
,

(4.3)

where S(r)) =


w∈W S(w,r)

|W| is the average sentiment in region r over all weeks and

C(r)) =


w∈W C(w,r)

|W| is the average number of cases across in region r over all weeks.

Equation 4.2 provides the sample correlation coecient between sentiment and cases

observed in region r during the entire COVID-19 pandemic. Intuitively, the expectation is

that this correlation should be stationary over space, such that, for all regions, meaning that

times having a higher number of cases should have a lower sentiment towards COVID-19.

This hypothesis will be evaluated by computing corr(r) for each region r and mapping the

results across the United States in the experiments results section.
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Chapter 5: Results

Recall that the thesis hypothesizes a negative association between sentiment and COVID-19

cases, where as cases go up, sentiment goes down (and vice versa). Given that this hypothesis

is true, there is potential to use sentiment as a measure of early disease outbreak detection.

This chapter presents the results of our correlation analysis between COVID-19-related

Twitter sentiment and COVID-19 cases globally (Equation 4.1), across time (Equation 4.2),

and across space (Equation 4.3).

5.1 Global Correlation

Table 5.1: Statistical values for Overall Correlation

Sentiment Correlation coecient T-Stat P-Val

TBCOV -0.05745 -44.12266 0.00000

TBLOB -0.06347 -48.76026 0.00000

VADER 0.01663 12.75548 0.00000

AFINN -0.02421 -18.56581 0.00000

Table 5.1 shows the global correlation between COVID-19 Twitter sentiment and COVID-19

cases using the four dierent sentiment measures TBCOV [25], TBLOB [48], VADER [49],

and AFINN [50].

Surprisingly, the negative correlation that would be intuitively expected is observed only

when using three out of the four sentiment measures. For VADER, a positive correlation
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is observed. For all the others, a negative correlation is observed, but the magnitude of

correlation is weak (≤ 0.016). Despite the weak correlations, all these correlations are

highly signicantly dierent from zero due to the very large number of (week, county) pairs.

Summarizing, Table 5.1 shows some signicant correlation, but the magnitude is weak and

even the direction of the correlation diers between sentiment measures. This supports the

inconsistent ndings from Feng and Kirkley [23] and Valdez et al. [22]. In order to examine

to what degree these associations are spatially and temporally stationary and thus, may

vary over time, the associations at ner spatial and temporal granularity are examined.
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5.2 Correlation Over Time

(a) correlation coefcients

(b) p-values

Figure 5.1: (a) Daily correlation coecient between TBCOV sentiment and the daily new
cases per 100,000 in each county and (b) the corresponding p-values
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(a) correlation coefcients

(b) p-values

Figure 5.2: (a) Daily correlation coecient between TextBlob sentiment and the daily new
cases per 100,000 in each county and (b) the corresponding p-values.
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(a) correlation coefcients

(b) p-values

Figure 5.3: (a) Daily correlation coecient between VADER sentiment and the daily new
cases per 100,000 in each county and (b) the corresponding p-values.
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(a) correlation coefcients

(b) p-values

Figure 5.4: (a) Daily correlation coecient between AFINN sentiment and the daily new
cases per 100,000 in each county and (b) the corresponding p-values.

23



Based on Equation 4.2, Figures 5.1a, 5.2a, 5.3a, and 5.4a present the correlation coecient

between a 7-day moving average of TBCOV, TextBlob, Vader and Ann’s respective senti-

ment measures and a 7-day moving average of COVID-19 cases for all counties from January

20, 2020 to April 14, 2021.

First, the hypothesis of temporal heterogeneity is supported: observing that dierent

time intervals exhibit dierent magnitudes and directions of correlation between Twitter

COVID-19 sentiment and COVID-19 cases. Figures 5.1b, 5.2b, 5.3b, and 5.4b provide the

p-values of each correlation, thus having p-values close to zero on days where the correlation

(over the last seven days) was signicantly dierent from zero.

Looking at Figures 5.1a, 5.2a, 5.3a, and 5.4a more closely, four time intervals that

exhibit signicantly dierent correlations can be seen. The rst time interval is a period

of having a weakly signicant (p-values < 0.05 on most days) positive correlation between

tweet sentiment and COVID-19 from March 2, 2020 to June 10, 2020 where as COVID-

19 cases increase, tweet sentiment increases. This unexpected positive correlation may be

explained by having many counties that had zero cases at this time, but which did already

exhibiting a low sentiment towards COVID-19 despite the zero cases. In late June, the

correlation between sentiment and COVID-19 cases abruptly shifts to a period of highly

signicant (p-values approaching zero) relatively strong ( 0.15) negative correlation from

June 12, 2020 to August 15, 2020 where as COVID-19 cases increase, tweet sentiment

decreases. This short period aligns with the intuition that places with a high number of

cases should have a negative sentiment towards COVID-19. Third, another shift to a period

of positive correlation is observed from November 2, 2020 to December 6, 2020 similar to the

rst period. Finally, from December 6 onward, the correlation coecients uctuate around

a sentiment of zero with p-values seemingly uniform in the interval [0, 1] indicating no more

signicant correlation after this time.
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5.3 Correlation Over Space

(a) Correlation coefcients

(b) Local Moran’s I values

Figure 5.5: (a) Correlation coecients between TBCOV sentiment and COVID-19 cases
for all counties. (b) Anselin Local Moran’s I Cluster and Outliers Analysis of TBCOV
Correlation Coecients.
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(a) Correlation coefcients

(b) Local Moran’s I values

Figure 5.6: (a) Correlation coecients between TextBlob sentiment and COVID-19 cases
for all counties. (b) Anselin Local Moran’s I Cluster and Outliers Analysis of TextBlob
Correlation Coecients.
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(a) Correlation coefcients

(b) Local Moran’s I values

Figure 5.7: (a) Correlation coecients between VADER sentiment and COVID-19 cases
for all counties. (b) Anselin Local Moran’s I Cluster and Outliers Analysis of VADER
Correlation Coecients.
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(a) Correlation coefcients

(b) Local Moran’s I values

Figure 5.8: (a) Correlation coecients between AFINN sentiment and COVID-19 cases for
all counties. (b) Anselin Local Moran’s I Cluster and Outliers Analysis of AFINN Correlation
Coecients.
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Using Equation 4.3 to obtain a correlation measure for each county, Figures 5.5a, 5.6a, 5.7a,

and 5.8a presents the correlation coecients map aggregated over all 424 days. For this

experiment, any county with fewer than 200 days of data and any day with less than 30

tweets across a 7 day period was omitted. After omitting counties with insucient data,

1,442 counties were retained out of all the 3,025 counties that have at least one tweet in the

dataset. While correlations aggregated to the entire United States were rather weak, some

counties did indeed exhibit strong correlations, ranging from −0.76 to 0.51. Additionally

observing that these correlations exhibit spatial clustering, with many counties having either

a strong negative correlation (red color in Figure 5.5a) or medium negative correlation

(orange color) in the North Eastern US. Counties having a positive correlations (light and

dark blue in Figure 5.5a) are less frequent, which is expected as the average correlation

for TBCOV is −0.055 as shown in Table 5.1, but appear more frequently in the West and

Midwest. As these spatial trends may not be immediately evident from Figure 5.5a, applying

Anselin’s test for local spatial autocorrelation to the correlations values obtaining the map of

local clusters as shown in Figure 5.5b, 5.6b, 5.7b, and 5.8b. As expected, large cluster of low

values is observed (this indicating negative correlation values) to the Northeast (although

having many outliers of relatively high values within this low cluster). A large cluster of

high values is observed (indicating positive correlation) in the West and Midwest, but with

parts of California being excluded from this cluster as not signicant.
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Chapter 6: Discussion and Conclusions

The objective of this thesis was to determine whether infectious disease-related tweet sen-

timent (for which billions of tweets have been made available for analysis) at a given time

and location exhibits an inverse correlation to the number of observed disease cases at the

same time and location. If such a correlation could be shown, it may be possible to use

local sentiment as an early indicator of an outbreak that would precede reported cases and

thus, may give local health departments a valuable head start to save lives and curb disease

spread.

Globally, across all counties of the United States and across the entire one-year study

period, report a negative correlation coecient. The correlation is very weak, and even

shows dierent directions (positive and negative) for dierent sentiment measures. When

conducting Pearson’s correlation analysis, there is a maximum number of data points that

can be used before the statistical signicance of the correlation coecient, as indicated by

the p-value, becomes unreliable or meaningless. Thus, the analysis is extended to spatial

and temporal dimensions to investigate the spatial and temporal stationarity of such a trend

and whether variations in the magnitude and direction of the correlation could be found at

certain times or in certain locations.

The temporal analysis showed that the inconclusive global correlation exhibits signicant

temporal patterns, including an interval of a strong and signicant negative correlation in

the Summer of 2020. Thus, during this time, Twitter sentiment could have indeed been used

as a signicant indicator of the severity of COVID-19 cases locally. There are also periods

of positive correlation (which contradicts the intuition that a high number of cases should

correspond with low sentiment) as well as periods of insignicant correlations. This result is

quite interesting: It shows that if it is possible to understand the type of correlation (positive,
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negative, strong, weak, spatial, temporal) during a new infectious disease outbreak, Twitter

sentiment could indeed be leveraged as a local indicator.

A spatial analysis was performed to understand whether dierent counties across the

United States may also exhibit non-stationarity. It was observed that areas in the Northeast

of the U.S. exhibit a stronger negative correlation while West exhibits are more positive

correlation. This result is also interesting, as it shows some regions of the U.S. may allow

more accurate forecasting of infectious disease cases based on Twitter sentiment than others.

Further research is needed to understand both temporal and spatial processes that cause

the correlations between Twitter sentiment and infectious diseases to shift across space and

time. In understanding these processes, it may be possible to identify when and where

Twitter sentiment could be used as a signal for early disease outbreak warning.

There are some limitations to this thesis, specically emanating from the spatial data

and the availability of tweet data. First, the original dataset starts with approximately 384

million tweets in the Unites States but not all of these tweets are able to be geolocated

in a county, additionally some counties do not have enough tweets to consider in the anal-

ysis. This leaves gaps in the analysis with sparsely populated counties underrepresented.

A similar situation can occur where one user is doing the majority of the tweeting for a

county causing their individual sentiments to represent all the users in that county. Fur-

thermore, it is more likely that a user location is identied if they are a more prolic user

of the platform, increasing the likelihood that a few users are over represented in a counties

data[53,54].Second, the modiable areal unit problem becomes an issue when using counties

as the container for tweets and cases which are point features. The distribution of the pop-

ulation within a county is not uniform but when attaching tweets and cases to a county it

is represented as uniform. Third, sentiment measures can also be a limitation, in text with

complex linguistics or common phrasing of a topic favoring positive or negative polarity.

Finally, correlation values on their own carry no meaning as they are unitless, future work

would need to determine the level of correlation that has meaning.
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Chapter 7: Contributions

This thesis addresses a gap in the existing knowledge bases of Geography, Data Science,

and Public Health. Before this thesis there was no research to our knowledge that directly

compared local twitter sentiment to local disease incidence with the purpose of local disease

prediction.

Health geography uses spatial information and analysis techniques to study health and

disease. This thesis specically focuses on the spatial distribution of the COVID-19 cases

and the local tweet sentiment and the relationship between the two. While the results are

not without limitations they still provide evidence for sentiment representing real-world con-

ditions at certain times and places. The results provide justication for monitoring DOC

and MOC metrics elevating their signicance beyond an academic exercise. Furthermore,

the spatial non-stationary nature of this relationship as seen in Figures 5.5, 5.6, 5.7, and

5.8 requires further investigation and in future research identifying what causes the spatial

variations in correlation will improve the model. Furthermore, identifying what topic specif-

ically caused the sentiment in the corpus using topic sentiment analysis can further improve

the results [55, 56].

The eld of sentiment analysis is a subeld of Natural Language Processing (NLP),

which investigates the interactions between computers and human language, with a specic

focus on the analysis of human emotions and sentiments. In this thesis four dierent python

libraries are utilized[25, 48–50] to process the geolocated tweet corpus with each of them

showing a similar correlations with COVID-19 as seen in Figures 5.1, 5.2, 5.3, and 5.4. This

thesis provides evidence for the partial ecacy of applying sentiment analysis techniques

on a large corpus of tweets, as they can reect real world conditions at certain times and

places. With the continuous advancements in NLP techniques, sentiment analysis will likely

improve in accuracy and eectiveness.
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Disease detection in public health is an essential part of mitigating the spread of infections

in a population and accurate local disease incidence information will enable public health

decision makers to predict outbreaks and deploy mitigation strategies more eectively. An

improvement in understanding how tweet sentiment correlates with disease incidence can

improve disease modeling. This thesis clearly show that at some times and in some areas

twitter sentiment can be used for disease prediction, and therefore this thesis is contributing

to improving the use of sentiment analysis for disease detection.
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