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Abstract

OPTIMAL INTEGRATION OF MACHINE LEARNING MODELS:
A LARGE-SCALE DISTRIBUTED LEARNING FRAMEWORK WITH APPLICATION
TO SYSTEMATIC PREDICTION OF ADVERSE DRUG REACTIONS

Che G. Ngufor, PhD

George Mason University, 2014

Dissertation Director: Dr. Janusz Wojtusiak

Too often in the real world information from multiple sources such as humans, experts,

agents, or classifiers need to be integrated to provide support for a decision making system.

One popular approach in machine learning is to combine these sources through an ensemble

learning method. Ensemble learning has been proven to provide appealing solutions to many

complex and challenging problems in machine learning. These include for example learning

under non-standard conditions such as learning from large volumes of data, learning in the

presence of uncertainties, learning with data streams, or when the concept to be learned

drifts over time. Although considerable amount of research work has been done in ensemble

learning in recent years, there still remain many open issues and challenges. This thesis

explores three major challenges in this research area: First, development of techniques that

scale up to large and possibly physically distributed databases. Second, construction of

exact or approximately exact global models from distributed heterogeneous datasets with

minimal data communication while preserving privacy of the data. Third, how to efficiently

learn from modern large-scale datasets which are often characterized by noisy data points,

unlabeled or poorly labeled, sample bias, missing values, etc.



These challenges are addressed in this thesis by the introduction of a large-scale paral-

lel efficient optimal Bayesian integration framework. The framework is divided into three

main parts: In the first part, two simple, fast and scalable active learning techniques are

used to provide the base learners with “desirable” training sets. Then, application of a

Bayesian inference and decision making technique allows the computation of several perfor-

mance measures for ranking and selection of the base learners. The second part presents

computationally efficient Bayesian inference and generative models to optimally integrate

the outputs of a collection of classifiers optionally selected in the first part. The models

improve overall performance by their ability to incorporate highly informative features not

available to the classifiers at training time. In addition, the influence of weak classifiers in

the final decision can be mitigated while the performances of reliable ones complimented.

The last part presents a collective machine learning system for learning large-scale homo-

geneous and heterogeneous distributed databases through the integration of parts one and

two. Each distributed data site modeled as an agent is tightly integrated with a collection

of classifiers, a data and algorithm selection model, a classification evidence model and an

ensemble model.

Two parallel programming models are explored for collective learning: an efficient single-

pass MapReduce programming model is proposed for homogeneous agents while the MPI

programming model with minimal communication is proposed for heterogeneous agents.

By sharing a small set of highly informative non-sensitive feature vectors hidden from the

agents at training time, the system is able to improve classification accuracy compared

to traditional methods. A salient feature of the system is that global models generated

are approximately exact. Further, since the information shared during learning is non-

restrictive, it negates in some cases the need for difficult and computationally intensive

privacy-preserving machine learning algorithms.



Three real world applications demonstrates the accuracy and scalability of the proposed

integration framework: First, experiments on a series of benchmark datasets demonstrates

the superiority of the framework in learning from distributed heterogeneous data sites.

Second, the framework is applied to predict with high accuracy flight delays from a large-

scale distributed flight arrival, departure and aircraft information modeled as homogeneous

agents on a small Hadoop cluster. The last experiment is a case study of the usability of

the collective machine learning system. Implemented on low cost cloud computing infras-

tructures such as Google Compute Engine, the system is used in a novel systematic and

structured approach to detect and predict large-scale drug-side effects interactions with very

high accuracy.



Chapter 1: Introduction

In many real world application problems, information from multiple sources such as agents,

experts or classifiers, be they computational or human, need to be integrated to provide

support for a local or global decision making system. Given the explosion of information in

the world today, this problem is now even more important. Most often, the various sources

are black boxes with no realistic measure of the reliability or confidence with which they

make decisions, or on the information they provide ( e.g online crowd-sourcing, consumers

online rating or preferences to products, spontaneous adverse events reports, citizen science,

etc). Bayesian methods have been shown to provide optimal solutions to the problem of in-

tegrating multiple sources of information in the presence of uncertainty. This thesis presents

scalable, distributed, and computationally efficient Bayesian methodology for learning the

performance of a collection of classifiers or agents enabling optimal decision integration.

The presented framework has a unique feature in that it improves overall accuracy by al-

lowing the incorporation of additional information from the data not visible to the base

classifiers at training time. In addition, the influence of weak classifiers in the final decision

can be mitigated while the performances of reliable ones complemented.

The primary case study used to demonstrate the efficiency and usability of the presented

framework is predicting adverse drug reaction (ADR) from spontaneous reporting systems

(SRS). ADRs are a major cause of morbidity and mortality worldwide. In the United States

alone, serious ADRs affects more than two million patients and cause more than 100,000

deaths every year (Giacomini et al., 2007), making them the fourth leading cause of death

and disease. Efficient methods capable of detecting and predicting ADR with high accu-

racy are in great need to reduce the unintended and sometimes fatal harm to patients. SRS

databases such as the US Food and Drug Administration (FDA) Adverse Event Report-

ing System (FAERS), WHO International Drug Monitoring Programme (VigiBase), and
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MedEffect Canada are database resources containing large amounts of voluntary reports of

suspected ADRs. The availability of such large real world data not available during clinical

trials provides a unique opportunity to detect and predict new ADRs. This case study is

the first of its kind to learn in a principled, structured and systematic way from large-scale

distributed SRS with very different observations and feature spaces. Specifically, supple-

mentary information about each drug such as chemical and biological properties and known

side-effects are merged with reported demographic information of “patients” who consumed

the drugs in FAERS and MedEffect Canada. The Bayesian integration framework devel-

oped in this thesis is then applied to the distributed drug sites to predict ADR for each

drug and patient.

1.1 Combining Multiple Classifiers

Combining multiple classifiers in an efficient way has been firmly established as a practical

and effective solution to achieving better classification than any of the individual classifiers,

even the best one. The idea of a multiple classifier system has appeared under various

names: multiple experts, mixture of experts, opinion pools, decision combination, hybrid

classifiers, classifier ensemble, etc.

The motivation behind the growing interest in designing multiple classifier systems has

been in part due to the natural requirements of the application problem: for example the

need to employ a variety of remote sensor types for environmental and natural resource

mapping. For the implemented classifier to produce results that meets the needs of the

application domain, it is crucial that the classification algorithm matches the properties of

the data. One way to alleviate this algorithm/application match is by combining multiple

classifiers.

The other part has arisen due to the fact that numerous applications of data-mining

and machine learning processes have shown the validity of the “No Free Lunch Theorem”

(Wolpert, 1996) which states that there is no single learning algorithm that is uniformly
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the most accurate in all applications. This can be explained by the fact that each learning

algorithm determines a model with certain additional assumptions and/or tuning parame-

ters in order to adapt it to the characteristics of a training data. These assumptions may

hold in some applications and on some datasets but may completely fail on others. Further,

determining the best set of tuning parameters to match specifics of different training data

can be a very difficult task and may even require the intervention of human experts. Under

these conditions, the machine learning method has not yet removed the need of a human

expert and the process is not automatic. The use of multiple classifiers has the potential to

alleviate the problem of algorithm/application assumptions, and to some extent, parameter

settings.

Even when restricted to a specific application, the classical approach of finding the best

classifier has some major drawbacks. The main drawback is that the best classifier for a

classification task may be very difficult if not impossible to find. In addition a single classifier

cannot exploit the complementary, or discriminatory information that other classifiers may

encapsulate.

Other advantages of combining multiple classifiers include:

1. By using multiple classifiers, a complex problem can be decomposed into multiple

sub-problems that are easier to solve, understand and interpret.

2. Mathematically, combining multiple classifier may produce a better bias/variance

trade-off (Rokach, 2010) than a single classifier. Some classifiers may reduce the

bias component while others the variance component of the generalization error. The

combination of these classifiers may therefore help reduce the generalization error.

3. The combination method can benefit from prior knowledge about the classifiers, do-

main of application or some additional information not available to the classifiers to

help guide the classification process and improve accuracy.

These and many other advantages of using multiple classifiers have given birth to a new

research field called ensemble learning. Ensemble learning has been proven to provide
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appealing solutions to many complex and challenging problems in machine learning and

many other fields. The main idea of ensemble learning is to combine the outputs of a variety

of classifiers (either of different types or different instantiations of the same classifier) and

make a final decision. The intuition behind this idea is that, it will become much less likely

that the ensemble will missclassify a new data point compared to a single classifier. The

learning algorithms comprising an ensemble are referred to as base learners. When trained,

the base learners generate classification models referred to as base classifiers.

Combining the base classifiers raises some interesting questions including:

1. How to select the base classifiers?

2. How to combine the outputs of these base classifiers to maximize classification accu-

racy?

3. How to make the method scalable?

The first step in building an efficient multiclassifier system is the selection of the base

classifiers. Intuitively, combining multiple classifiers that agree on all sub-areas of the

training set based only on their decisions cannot lead to any improvement in accuracy.

Disagreement or diversity among the base classifiers is therefore one key factor in combining

multiple classifiers. A detailed discussion on the importance of diversity in ensemble learning

can be found in Alpaydin (2004). Diversity methods in ensemble learning can be broadly

grouped into two groups:

• Base classifiers generated by different learning algorithms on the same data. This

is also known as heterogeneous set of base classifiers. For example in a classifica-

tion problem, a näıve Bayes classifier, k-nearest neighbors, Support Vector Machines

(SVM), and decision trees could be combined.

• Base classifiers generated by the same algorithm, either by running it on different

partitions of the training data, or using different parameter settings. Popular ensemble

methods using this approach include bagging, boosting and random forest.
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While ensemble methods that manipulate the training set or tuning parameters have been

well explored and shown to improve classification accuracy in many real applications, meth-

ods that combine a set of heterogeneous classifiers have not been given sufficient attention.

However, in the real world multiple sources of information often need to be combined when

no training data is available, thus manipulating the training set is not possible. In addition

these sources are often heterogeneous with different underlying theories and assumptions

making it inconvenient or difficult to use classifiers with the same underlying theory and

assumption. The ensemble method can greatly benefit from the complementary information

provided by heterogeneous classifiers.

Given the advantages of combining heterogeneous classifiers, possible reasons why this

approach has not been given much attention can be attributed to: the embarrassingly large

number of algorithms available today, the perceived high learning curve required to use some

algorithms, high computational cost, and scalability issues. This thesis therefore focuses

on methods that allow efficient combination of heterogeneous classifiers with the aim of

designing very simple, accurate and scalable combination methods.

Given a diverse set of classifiers, the quality or accuracy of the base classifiers is another

key factor for the success of the chosen combination scheme. Overall improvement in ac-

curacy cannot be achieved if the base classifiers are not accurate (Kuncheva, 2004; Brown,

2010). Clearly, diversity and accuracy are two primary factors that must be carefully con-

sidered for a successful combination scheme. However, in most combination methods there

is little or no principled approach to select the base learners to ensure they fit the char-

acteristics of the data and maximize classification accuracy. These methods either rely on

domain experts or on some heuristic approach. Relying on these approaches could be prob-

lematic especially in applications where domain experts are not available or in environments

where data is limited, large, expensive or unsafe to collect. Therefore there is need for a

systematic approach to select appropriate base learners for a given problem.

The second step in building an efficient multiclassifier system is construction of a good

combination scheme. A great number of combination methods have been proposed in the
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past years. Due to the large number of articles that have been written on these methods,

a section cannot be devoted for a comprehensive review, therefore, references will be given

throughout this work as necessary.

While most of these combination methods have been extensively studied and produce

reliable results one drawback is their inability to correct or mitigate missclassification by

using some additional information not available to the base learners at training time. When

class decision boundaries are separable or when data points are relatively easy to classify,

reliance on the predictions of the base learners alone may be enough to guarantee accurate

results. However, when the boundary is mixed or in the presence of ambiguous data points

that are difficult to classify, some of these points will inherently be missclassified even by

the best base classifier. Under such conditions, a classifier makes assignment to a class

with little or no evidence to support class membership. This problem can be mitigated if

in addition to the base classifier’s decision, the combination method can also make use of

additional information such as prior knowledge about the classifiers or some class related

hidden information. This additional information can be used to improve the performance

of the ensemble by correcting some misclassifications.

Finally, computational cost, complexity, and scalability are important factors to care-

fully consider for an efficient multiple classifier system. Combining multiple classifiers is not

a trick that always increases accuracy; it increases time and space complexity in training and

testing. Given today’s ever growing dataset sizes this problem cannot be ignored. Unless

the base learners are scalable, trained carefully and their decisions combined intelligently

no significant benefit can be derived.

1.2 Distributed Learning

In recent years, many organizations and institutions have witnessed an exponential growth

in the number and size of their databases. For example, the development of high throughput

data acquisition technologies have made it possible for hospitals and other institutions to
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generate large volumes of data (e.g Magnetic resonance imaging (MRI) files, Magnetic

Resonance Spectroscopy (MRS) files, digital mammographic files); protein sequence and

gene expression data are gathered steadily in biomedical sciences; commercial organizations

amass huge collection of their daily transactions (products and customer profiles); satellites

and other space borne instruments transmit terabytes of data daily. The acquisition of

these large, complex (and possibly distributed) data have significantly outpaced the ability

to analyze, summarized and extract “knowledge” from them. A major reason for this is

that, classical implementation of most machine learning algorithms require all data to be

present in main memory. In other words, the traditional approach to classification requires

that all data be collected in a centralized repository and a classification algorithm applied

to produce a predictive model. However, in the real world data is rarely available in a

centralized location. It is often distributed over several nodes of a network or different

geographic locations and thus integrating all data from the local nodes to a central node is

clearly unrealistic and untenable. In addition there might be other concerns or constraints

involved in moving or sharing data. Different institutions may not allow the exchange of data

due to privacy, legal restrictions or competitive advantage concerns. Under such conditions,

there is thus need for learning systems that can acquire knowledge at the location of the

data and where the computational resources are available. The knowledge acquired can be

used locally or transmitted and possible combined with knowledge from other locations to

establish a global solution to the problem.

The following examples may help highlight the importance of these points;

1. The diagnosis and prognosis of brain tumors from clinical data to aid patient man-

agement and treatment (González-Vélez et al., 2009). Individual hospitals do not

typically encounter sufficient cases of particular tumor types to constitute a sizable

training set for the construction of robust predictive models. However sufficient tumor

data with all tumor types may be available in several hospital groups across various

countries. Hospitals and countries vary their approach to restricting the mobility of

data. Some local centers may completely restrict the movement of patient data while
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others may agree to share only specific cases. Thus all data cannot be collected in a

centralized location. But through the use of distributed data mining techniques, pow-

erful diagnostic and prognostic support can be facilitated base on individual hospital

data. Local classifiers can be constructed that target specific patient population and

a global classifier to aggregate appropriate cases in the distributed system.

2. Analyzing customer transaction profiles of a major corporate chain in the US with the

hope of developing successful local and central marketing campaigns quickly. However,

the chain is composed of several outlets scattered across the country which makes

integrating all customer data to a central location time consuming and expensive if

not impossible.

3. Detecting and preventing fraudulent activities in financial information systems. Fraud-

ulent patterns from individual financial institutions can help other institutions identify

new patterns and implement preemptive measures swiftly. However, financial com-

panies such as banks may avoid sharing data due to legal and competitive reasons.

Therefore, combining the databases at a single location is not possible.

4. Drug Discovery: New technologies and research advances in cheminformatics and

bioinformatics has led to the generation of enormous amount of data in the pharma-

ceutical industry. In many cases, these datasets continue to grow in size, making it

impossible to store them at a centralized location. Handling these datasets, as well as

allowing sophisticated search queries for similarity structures, chemical properties, or

molecule keywords necessitates scalable distributed databases and learning systems.

Based on these motivational examples, it is clear that a centralized solution to many

real world problems is inapplicable or inconvenient. These problems can be best modeled by

multiple cooperating intelligent systems or multiagent systems. Multiagent systems (MAS)

is a sub-field of distributed artificial intelligence that studies how autonomous entities or

agents interact in a collaborative way to solve a given problem (Stone and Veloso, 2000).

By integrating learning in MAS, a decentralized learning, problem solving and decision
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framework known as Multiagent Learning Systems (MALS) is derived which can serve as a

viable option for modeling many real world problems. In MALS, agents are able to perform

inductive learning on their individual data and in addition can interact or collaborate with

other agents, learning from each other in such a way that they improve individual perfor-

mances and hence the overall performance of the system. Due to the inherent parallelism

and distributed nature of MAS, the design and implementation of MALS may offer a more

powerful, faster, and more robust distributed data mining system compared to a single

agent.

The individual agents can also benefit from ensemble methods as well. Since the major

goal of classification is to improve overall accuracy, integrating accurate ensemble methods

within each agent can produce very accurate local models. Yet, another benefit can be

derived through ensemble of agents. When a global solution is required, agents within

MALS can be modeled as an ensemble of agents, by which the same ensemble method can

be applied to integrate their decisions and thus generate a more accurate global model.

1.3 Research Goals and Contributions

From the simple questions that were raised in combining classifiers discussed in section 1.1,

and the discussions on distributed learning in section 1.2 this thesis formulates three related

research questions:

1. How to effectively evaluate, compare and rank learning algorithms on modern datasets

characterized by noise, poor labeling, class imbalance, sample bias, missing values, and

other complex phenomenons.

2. How can a machine learning system identify and correct the mistakes of learning algo-

rithms for distributed homogeneous/heterogeneous datasets. Producing exact models

while not compromising the sensitivity of the data.
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3. How to solve the two problems above and still remain efficient in both sample com-

plexity and computational complexity.

Based on these research questions, this thesis presents an alternative solution to the

problem of learning multiple classifier systems in a centralized or distributed data environ-

ment. Specifically, a framework is constructed in which each distributed data site modeled

as an agent is endowed with a collection of learning algorithms. Each agent uses these

tools to construct an ensemble model and all ensemble models are combined to produce one

global model for the system. It should be noted that the term agent is used here simply to

describe the independent data sites with a collection of learning algorithms and should not

be confused with its classical usage and meaning in artificial intelligence. That is, intrinsic

properties of agents such as autonomy, sociability, reactivity, pro-activeness, etc. are not

modeled (Stone and Veloso, 2000).

1.3.1 Optimal Bayesian Muticlassifier Integration Framework

To simplify the construction of the framework, the main goal is broken down into three

main parts:

1. Ensemble Learning.

(a) A Data and algorithm selection method: A crucial step in building efficient

ensemble models is the selection of base classifiers. A poor selection could lead

to an ensemble that is as worse as the worst classifier in the ensemble. On the

other hand, it is not necessarily true that the most accurate classifier contributes

the most to the ensemble’s final decision. Diversity among the classifiers also

plays a major rule. Diversity is the extend to which the individual classifiers

disagree in the error they make in classifying a new data point. This property

alone can guarantee to produce a good ensemble classifier even with the simplest

combination scheme (Sankar K. Pal, 2004).
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Given the profusion of classification algorithms, it is difficult to make a good

selection. Most often the analyst knowledge of the algorithms and the problem

domain is required to select a reliable algorithm. A reliable algorithm on one

dataset may not remain reliable on another. This problem is even more important

on datasets characterized by noise, missing values, labeling issues, sample bias

and class imbalance. To further complicate matters, many of these algorithms

require tuning parameters to adapt them to the characteristics of the training

set. A substantial increase in accuracy can be archived if the right parameters

are used.

To overcome these difficulties, a Bayes Active Data and Algorithm Selec-

tion method is proposed to optimally select informative data points and reliable

learning algorithms for ensemble learning. Specifically, starting with a set of

learning algorithms, the method trains them using a small set of carefully selected

learning examples and ranks their performances based on several performance

measures. The top k classifiers can then be selected for ensemble learning.

(b) Classification Evidence Model: The use of highly informative features extracted

from relevant features in the training set has the potential to provide evidence and

correct some misclassifications by a well designed ensemble method. A variational

Bayesian factor common spatial pattern is proposed for the computation of these

hidden feature scores or “classification evidence”.

(c) Efficient multiple classifier integration schemes: An optimal integration scheme

is required to generate efficient and accurate ensemble. Given a good selection of

diverse and accurate committee of classifiers and classification evidence, a poor

combination scheme will not guarantee improved results. It is desirable for the

combination method to take advantage of the strength of base classifiers while

ignoring their weakness.

Based on these observations and desired characteristics, three new ensemble

methods are proposed to optimally combine the decisions of multiple classifiers
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with supplementary information provided by the classification evidence. The

first method uses the expectation-maximization (EM) to derive point esti-

mates of classifier combination weights while the other two applies variational

Bayesian (VA) methods with automatic relevance determination (ARD) to

generate posterior distribution of the weights.

2. Collective Learning. At the base of collective learning are data sites or agents

tightly integrated with the ensemble learning properties described in the first part.

Thus each agent selects a set of relevant base learners, computes classification evidence

and construct an ensemble model. In a distributed environment with possibly different

observed features, the performance of the agents can be improved by collaboration.

Depending on the constraints of the environment, collaboration can be done by;

(a) Sharing data: Where sharing of data is possible, two agents may share their most

informative instances.

(b) Sharing classification evidence: Since the classification evidence are hidden vari-

ables, it is assumed that they can be shared without any restriction. This simple

collaboration technique therefore negates the need for difficult and expensive

privacy preserving methods.

(c) Sharing models: Finally the agents can share learned models. Either the ensem-

ble models or the base classifiers can be shared. Sharing base classifiers may be

restricted by the format of the database schema, however, no such restriction ap-

plies when sharing ensemble models. Another possibility is to share classification

evidence models.

3. Ensemble Agents. The local ensemble strategy designed within each agent is natu-

rally extended to integrate multiple agents. Each agent simply communicates the local

ensemble and classification evidence to one agent who applies the same integration

algorithms to combine the local models.
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1.3.2 Thesis-Generated Publications

Designing machine learning algorithms that scale up to very large and distributed datasets

is a central motivation of the work presented in this thesis. In the course of writing the

thesis, a number of large-scale parallel efficient algorithms were developed. The first al-

gorithm (Ngufor and Wojtusiak, 2013) is based on a simple approximation of the logis-

tic regression model leading to an approximate close form solution. The algorithm was

then implemented as a single-pass fast and inexpensive MapReduce program on a Hadoop

(http://hadoop.apache.org/) cluster. Based on this approach and the extreme machine

learning theory (Huang et al., 2006), five new simple and very fast algorithms for kernel

logistic regression were developed (Ngufor and Wojtusiak, 2014a; Ngufor et al., 2014). Two

of these algorithms are used as base algorithms for numerical experiments in this thesis.

Finally, a computational and parallel efficient single-pass formula for computing the covari-

ance matrix of distributed datasets is developed in Ngufor and Wojtusiak (2014b). The

single-pass covariance formula is used in this work to scale down a large scale dataset on

Hadoop for ensemble learning which otherwise would have been a tedious and computation-

ally very expensive exercise. The formula is also used to implement one of the presented

ensemble methods on Hadoop.

List of Thesis generated articles:

Che Ngufor and Janusz Wojtusiak. Learning from large-scale distributed health data: An

approximate logistic regression approach. ICML 13: Role of Machine Learning in Trans-

forming Healthcare, 2013.

Che Ngufor and Janusz Wojtusiak. Extreme logistic regression. Advances in Data Analysis

and Classification (ADAC), Springer (Accepeted with Revisions), 2014a.

Che Ngufor and Janusz Wojtusiak. Learning from large distributed data: A scaling down

sampling scheme for efficient data processing. International Journal of Machine Learning

and Computing (IJMLC), 4(3):216–224, 2014b.
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Che Ngufor, Janusz Wojtusiak, Andrea Hooker, Talha Oz, and Jack Hadley. Extreme

logistic regression: A large scale learning algorithm with application to prostate cancer

mortality prediction. In The Twenty-Seventh International Flairs Conference, 2014.

1.4 Thesis Overview

The rest of the thesis is arranged as follows: background material on classification, ensemble

learning and distributed learning are discussed in chapter 2. A brief description of some

articles generated by the thesis is also presented in this chapter. Chapter 3 presents algo-

rithms that select informative data points for learning, and a subset of learning algorithms

for ensemble learning. The performance of the algorithms selection method is illustrated on

two benchmark datasets. Algorithms for computing classification evidence and to integrate

multiple classifiers is presented in chapter 4. Different learning schemes and parallel pro-

gramming models for homogeneous and heterogeneous distributed databases implemented

as a collective machine learning system are presented in chapter 5. The performances of

the various methods are illustrated on 14 small benchmark datasets and a large-scale flight

dataset. The main case study of the thesis is presented in chapter 6. Chapter 7 offers

conclusions and discusses future work.
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Chapter 2: Background and Theory

This chapter presents notations used throughout the thesis, a review of some state-of the art

machine learning classification methods, distributed learning and databases, and scalable

and parallel efficient learning algorithms developed in the course of writing this thesis.

2.1 Machine Learning and Classification

Machine learning is a scientific field that is concerned with building computer programs able

to construct new knowledge or improve on already processed knowledge (Anderson et al.,

1986). Machine learning draws on concept and results from many fields including statistics,

artificial intelligence, information theory, biology, cognitive science, social science, philos-

ophy and control theory. Thus, machine learning offers an immense diversity of research

tasks and testing grounds. Learning can be studied in many different contexts, such as

decision making, classification, sensory signal recognition, problem solving, task execution,

control and planning.

2.1.1 Classification

The task of classification is an integral part of most human activities. Many daily situations

arise where people are faced with making a decision or forecast based on past or currently

available information. A classification procedure then, is some formal method for repeatedly

making judgments in new situations. Specifically, a classification problem deals with the

construction of a procedure that can be applied to a sequence of cases or data points, in

which each data point must be assigned to one of pre-defined or unknown classes on the

basis of observed attributes or features.
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A classification problem falls into one of two main divisions: supervised classification and

unsupervised classification. In supervised classification, given a set of observations or input

with corresponding class labels, the task is to use these examples to design a classification

procedure serving as an automatic means for deriving the class of new observations. In

unsupervised classification, the available data is not labeled and the task is to establish the

existence of classes, groups or clusters in the data. This thesis is mainly concerned with the

machine learning task of supervised classification. Henceforth the term classification will

mean the supervised classification in which the class labels are discrete and unordered.

A more formal definition of classification can be presented as follows: suppose a class

tj of K ≥ 2 possible classes is to be learned. A learning algorithm is given a set of n

training examples Dl = {(x1, t1), . . . , (xn, tn)} ⊆ X × Y where each input instance xi are

typically p-dimensional vectors: xi = 〈xi1, xi2, . . . , xip〉 ∈ X also called features or attributes

is associated with a categorical output or target variable ti ∈ Y = {t1, . . . , tK} that denotes

its class membership. X is typically the set of reals Rp. The learning algorithm is then

trained using the labeled data to induce a hypothesis f̂ from a set of possible hypotheses

F that approximates as closely as possible the true but unknown function f : X → Y that

is assumed to correctly map an input x ∈ X to its true class t ∈ Y without any error.

In the context of decision theory, a classifier is an approximation of the true but unknown

decision rule using the training data such that the generalization error or expected risk,

ε(θ) = E
D

[
L
(
f̂(x), f(x)

)]
(2.1)

is minimized, for some loss function L. D is the true joint distribution of X × Y and θ is

a vector of parameters (if any) of the classifier. The loss function L
(
f̂(x), f(x)

)
∈ [0,∞)

measures the quality of the classifier on the example (x, t). During learning, the goal is to

find hypotheses f̂ and values of θ that minimizes the generalization error. However, this is

usually a difficult task since the true distribution D is not known. The best alternative is
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to carry out the minimization using the training set leading to the empirical risk.

ε̂(θ) =
1

n

n∑
i=1

[
L
(
f̂(xi), f(xi)

)]
. (2.2)

In summary, a classification problem can be achieved in a sequence of two steps as shown

in Figure 2.1:

a. Training Phase

Training Data:
Dl =< x, t >

Learning
Algorithm

Prior Knowledge (if any)

Classifier:
f̂(x)

b. Testing Phase

Test Data:
Dt =< x >

Classifier:
f̂(x)

Classification:
< x, t̂ >

Figure 2.1: Training and Testing phase of classification

Some learning algorithms require the user to determine certain control parameters.

These parameters may be adjusted by optimizing the performance of the classifier through

an intermediate validation step using a subset of the training data or through cross-validation.

In cross-validation, the training set is divided into mutually exclusive and equal-sized sub-

sets and the classifier is trained on all but one subset and tested on the left-out subset. The

average of the error rate on all subsets gives an estimate of the error rate of the classifier.
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2.1.2 Examples of Classifiers

There are by far too many machine learning classification algorithms available to give a

brief description of each one. The purpose of this section is to offer a brief review of a few

state-of the art methods closely related to is thesis, and to present new scalable algorithms

designed in the course of developing this thesis.

2.1.2.1 Support Vector Machine

Support Vector Machine (SVM) has emerged as one of the most powerful machine learning

algorithms for solving binary classification and regression problems since its introduction

by Vapnik in his statistical learning theory Vapnik (1998). The basic learning principle of

SVM is to map the original input space into a high-dimensional feature space through a

kernel function. In the new feature space, an optimal separating hyperplane with maximal

margin is determined in order to minimize an upper bound of the expected risk instead of

the empirical risk.

2.1.2.2 Decision tree and Rule-based methods

These methods induce classification rules in the form of decision trees or rules from a set of

given examples. Decision tree (Quinlan, 1993) are constructed top-down: at each node, a

split is made based on an impurity measure such as the normalized information gain. The

attribute with the highest information gain is used to make the decision. The process is

stopped when no improvement is possible.

Rule induction is perhaps one of the most important techniques of knowledge repre-

sentation in machine learning. The general learning problem of the AQ learning system

as implemented in AQ21 (Wojtusiak et al., 2006), for example, is to generate general hy-

potheses H = {h1, . . . , hk} about target labels or classes T = {t1, · · · , tK} respectively

from the training set drawn from these classes. The hypotheses are generated in the form
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of attributional rulesets that optimize a given multi-criterion measure of hypotheses utility.

An attributional ruleset is a set of attributional rules describing the same target class or

concept.

2.1.2.3 Neural Networks

An Artificial Neural Network (ANN) is an information processing device that loosely mod-

els the way biological nervous systems such as the brain processes information. The key

component of the device is the information processing unit which is composed of a large

number of highly interconnected processing elements, or neurons, working in unison to solve

specific problems. An ANN is configured for a specific application, such as pattern recog-

nition or data classification, through a learning process. For example, most ANNs contain

some form of “learning rule” which modifies weights assigned to the connections according

to the input patterns that it is presented with. Thus, just like SVM and Decision trees,

ANNs learn by example as do their biological counterparts; a child learns to recognize dogs

from examples of dogs. A review of ANN from a statistical perspective can be found in

Cheng and Titterington (1994).

2.1.2.4 Naive Bayes

Naive Bayes is a simple probabilistic classifier based on applying Bayes’ theorem with strong

assumption of independence between the features. That is, it assumes that the presence or

absence of a particular feature is unrelated to the presence or absence of any other feature,

given the class variable. Despite this strong and not necessarily true assumption, naive

Bayes classifiers have worked quite well in many complex real world situations (Zhang,

2004).
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2.1.2.5 k-nearest neighbours

k-nearest neighbours finds a group of k instances in the training set, which are closest to

the test pattern. The predicted class label is based on the predominance of a particular

class in this neighbourhood. The distance and the number of neighbours are key elements

of the algorithm.

2.1.3 Approximate Logistic Regression

This section briefly describes a few large-scale learning algorithms based on simple ap-

proximations to the logistic regression (LR) model. First a simple approximation converts

classical LR into a least squares algorithm. Then the approximation is applied to kernel

logistic regression (KLR). Finally, extreme learning method is extended to KLR and its

approximate least squares version to derive a number of very fast, scalable and accurate

algorithms. See Ngufor and Wojtusiak (2013, 2014a); Ngufor et al. (2014) for a full discus-

sion of the methods. Based on the approach in Ngufor et al. (2014), another large-scale

algorithm for KLR is also presented.

2.1.3.1 Least-Squares Logistic Regression

Logistic Regression (LR) is a learning algorithm with sound statistical background and

widely used in machine learning, data mining, and statistics. The popularity of LR can be

attributed to its simplicity and interpretability of model parameters.

The fundamental assumption of the model is that the log-odds of the class posterior

probability π(x) = Pr(t = 1|x) is a linear combination of the independent variables i.e

η(x) = log

(
π(x)

1− π(x)

)
= βTx (2.3)

where t ∈ {0, 1} is a binary response variable, x = (x0, . . . , xp) are the independent variables
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and β = (β0, . . . , βp) are the unknown parameters of the model. The regularized negative

log-likelihood of the model can be written as

l(β) =
1

2
‖β‖2 − γ

2

n∑
i=1

[
yiβ

Txi − log
(
1 + exp(βTx)

) ]

where the parameter γ reflects the strength of regularization.

The maximum likelihood method is commonly used to estimate the model parameters.

The log-likelihood equation is differentiated with respect to β, set to zero and solve

∂l(β)

∂β
= β − γ

2

n∑
i=1

xi(yi − πi) = 0. (2.4)

Unfortunately, equation 2.4 is nonlinear and there is no close form solution. The traditional

approach is to approximately solve it using iterative methods.

There are many numerical optimization methods that can provide efficient solutions to

equation 2.4. The Newton-Raphson method is perhaps the first goto off-the-shelf method

to use. The method takes the first degree Taylor series approximation of equation 2.4 at a

point βold (initial guess), sets this to zero and solve for a new approximate solution βnew.

The update process is repeated until convergence. A full treatment of the Newton-Raphson

algorithm and other equivalent maximization techniques can be found in standard statistics

text such as Hastie et al. (2001).

However, for convergence, most of these techniques require several passes over the data,

and in addition some may require computing the inverse of the Hessian matrix. This

procedure can be computationally expensive especially for large datasets. To overcome this

problem, in Ngufor and Wojtusiak (2013), a simple approximation to the logistic function

was performed to transform the iterative solution into a closed-form “least-squares” solution
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for the MLE of the logistic model stated as:

(
1

4
XTX +

γ

2
Id+1

)
β = XT

(
t− 1

2
1n

)
(2.5)

were t is the n×1 response vector, X is the n×(p+1) model matrix, Ip+1 is a (p+1)×(p+1)

identity matrix and 1n is a n × 1 vector of ones. This simple least-squares algorithm for

logistic regression, or LS-LR, was shown to have excellent generalization and scalabilty

properties compared to popular gradient based methods such as the stochastic gradient

descent.

2.1.3.2 Extreme Logistic Regression

One major disadvantage of classical LR (and LS-LR) is that it is a linear classifier. However,

most real world classification problems are non-linear, and so LR cannot capture any non-

linearity that may exist in the data. Using the “kernel trick”, a kernelized version of LR, or

Kernel Logistic Regression (KLR) can be constructed. A mapping function φ : x ∈ Rd →

φ(x) ∈ Rdf is chosen to convert the non-linear relationship between the response and the

independent variable into a linear relationship in a higher (and possibly infinite) dimensional

feature space. The map function is however usually unknown, but dot products in the

feature space can be expressed in terms of the input vector through the kernel function:

K(x, y) = φ(x) · φ(y).

Estimation of model parameters can be performed just as in classical logistic regression.

In Ngufor and Wojtusiak (2014a) for example, KLR was cast into a constrained optimization
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problem leading to an iterative re-weighted least squares algorithm or IRLS-KLR stated as:


K + 1

γW−1 1n

1Tn 0



α

b

 =


z

0

 (2.6)

z = Kα+ b1n + W−1(t− π). (2.7)

W is an n× n diagonal matrix of weights with i′th element πi(1− πi), π = (π1, · · · , πn),

α = (a1, . . . , αn) ∈ Rn are Lagrange multipliers and b is the bias term.

The IRLS-KLR algorithm proceeds iteratively, updating α and b according to equation

2.6 and then updating z according to equation 2.7. As demonstrated in Ngufor and Wo-

jtusiak (2014a), this recursive training can be unbearably slow for small to medium size

datasets. Coupled with the expensive computation of the kernel matrix, IRLS-KLR can

quickly become infeasible for large datasets. Using a similar approximation technique as

introduced in Ngufor and Wojtusiak (2013), a least square version of KLR or LS-KLR can

be derived as: 
K + 4

γ In 1n

1Tn 0



α

b

 =


4(t− 1

21n)

0

 . (2.8)

Though LS-KLR significantly reduces the computational cost of IRLS-KLR, computing

the kernel matrix can still be a bottle neck for very large datasets. Motivated by the

Extreme Learning Machine theory of Huang et al. (2012), Ngufor and Wojtusiak (2014a)

extended the theory to IRLS-KLR and LS-KLR to derive a simple, computationally efficient

and accurate KLR called Extreme Logistic Regression (ELR). For LS-KLR, the ELR linear
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system is given by


φTφ+ 4

γ IN φT1n

1Tnφ(φTφ)−1 0



β

b

 =


4φT (t− 1

21n)

0

 . (2.9)

where φ = (φ1(x;w1), . . . , φN (x;wN ))T are N hidden node feature mapping with respect

to the input x. φi(x;wi) is the activation function of the i′th hidden node. The weights

of the hidden nodes w = (w1, . . . , wN ) can be randomly generated from any continuous

probability distribution. After solving for β and b, the class posterior probabilities can be

computed as:

π = Pr(t = 1|x;β) =
1

1 + exp(−φ(x; w) · β − b)

Based on the approached in Ngufor et al. (2014) used to derive equation 2.9, a similar

fast iterative system for IRLS-KLR can be written as


φTφ+ 1

γφ
TW−1φ(φTφ)−1 φT1n

1Tnφ(φTφ)−1 0



β

b

 =


φT z

0

 (2.10)

with

z = φβ + b1n + W−1(t− π) (2.11)

2.2 Ensemble Methods

The idea of ensemble learning is to integrate multiple classification models in order to obtain

a better representative model, with more accurate and reliable estimates or decisions than
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can be obtained from a single model. Experimental studies have shown that combining the

outputs from multiple classifiers can significantly reduce the generalization error (Rokach,

2005). Given the potential usefulness of ensemble methods, it is not surprising that a

plethora of methods exist in the machine learning literature. This section describes some

of the most popular approaches which allow the combination of a set of heterogeneous

classifiers.

They are three major types of classifier output: categorical, rank, and measurement or

continuous levels (Kuncheva, 2004). In most cases, the categorical level are the discrete

class predictions while the continuous are the class conditional probabilities. This work will

mainly consider classifiers that produce class predictions and/or class probabilities.

Let x ∈ Rp be a feature vector and T = {t1, · · · , tK} be the mutually exclusive set of

classes. Let F = {f1, · · · , fL} be a collection of L classifiers.

2.2.1 Bayesian Model Averaging

Bayesian Model Averaging (BMA) is a well known technique ideally suited for combining

multiple machine learning models through Bayes Theorem. BMA starts with a prior distri-

bution over F , p(fi) expressing the belief that the “right” classifier for the problem prior

to observing the data is fi. After observing the data D, the prior belief is updated by

computing the posterior probability that classifier fi is the right classifier for the problem

through the application of the Bayes Theorem:

p(fi|D) =
p(fi)p(D|fi)

p(D)
(2.12)

where p(D|fi) is the likelihood of the data given that the right classifier is fi

Given a new data point x, let p(tk|x,D, fi) be the class posterior probability for x by

classifier fi based on the training data D. BMA computes the single predicted class poste-

rior probability for x using the classifier posterior probability to weight the class posterior
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probability across all classifiers i.e the predicted class conditional probability is the expected

probability p(tk|x,D, fi) over F :

p(tk|x,D) = EF

[
p(tk|x,D, fi)

]

=
L∑
i=1

p(tk|x,D, fi)p(fi|D) (2.13)

The classification decision can then be taken as

t∗ = argmax
tk∈C

p(tk|x,D)

One of the limitations of the BMA is that, it is often difficult to and sometimes impossible

to compute the likelihood p(D|fi).

2.2.2 Stacked Generalization

Stacked generalization, as introduced in Wolpert (1992), is a multi-classifier system in which

the output of base classifiers serves as new input data for the combining function or meta-

learner. Typically the approach consists of two steps: in the first step, different based

classifiers are trained and the output of each classifier is collected into a new data set. The

new data along with the true class of each instance in the original data is then used to train

the meta-learner in the second step.

The original data and generated base models are called level-0 data and level -0 model

while the new data and model generated from the new data are referred to as level-1 data

and level-1 generalizer.

The effectiveness of stacked generalization in improving accuracy depends on the level-1

attributes and the type of level-1 generalizer. Ting and Witten (2011) performed a series

of experiments with stacked generalization using different base classifiers whose predictions
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are probability distributions over the set of class values. They concluded that, the use of

Multi-response linear regression as a level-1 generalizer was more suitable than any of the

non-linear algorithms attempted in their experiments. Džeroski and Ženko (2004b) extend

the method of Ting and Witten (2011) to include additional level-1 attributes and to use a

multi-response model tree for the level-1 generalizer. For the additional level-1 attributes,

they proposed multiplying the class probability distribution by the maximum probability

and to include the entropy of the probabilities. The use of class probability distribution as

level-1 data instead of unique class values has the advantage of capturing the confidence of

the classifiers predictions.

Stacking Framework

Given a training data D = {(x1, t1), · · · , (xn, tn)} and L classifiers, randomly split the

data into J almost equal parts D1, · · · ,DJ . For each j = 1, · · · , J , train all base classifiers

on the training set D\Dj (all training data except the j′th fold training data ) to induce

a level-0 model Mlj for each classifier l = 1, · · · , L. For each instance xi in Dj use model

Mlj to predict the class conditional probabilities Pl(xi) = (P (t1|xi), P (t2|xi), · · · , P (tK |xi))

of xi. At the end of the cross-validation process, the new data set assembled from the

predictions of the L level-0 models is given by

DCV =
{
ti, P1(xi), P2(xi), · · · , PL(xi)

}
, i = 1, · · · , n

DCV forms the level-1 data set. Then use a learning algorithm (could be any of the base algo-

rithms) to induce a level-1 model M for t as a function of the input (P1(x), P2(x), · · · , PL(x))

To predict the class of a new instance xnew, each base classifier predicts the class proba-

bilities 〈P (t1|xnew), P (t2|xnew), · · · , P (tK |xnew)〉 of xnew which is then passed to the level-1
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model for a final decision.

2.2.3 Ensemble Decision Rules

One of the most simple way of combining multiple classifiers is through non-trainable or

algebraic combiners. Fixed rules such as minimum, maximum, sum, mean, product, median,

etc are defined as functions that receive as inputs the outputs of a set of base classifiers and

combine them to produce a unique output.

Let plk(x) = Pr(tk|x) be the normalized output scores of classifier l in class k for the data

point x, then the predicted class t∗ for x by some of the most popular algebraic combination

rules is defined as:

1. Product Rule: t∗ = argmax
tk∈T

L∏
l=1

plk(x)

2. Mean Rule: t∗ = argmax
tk∈T

1
L

L∑
l=1

plk(x)

3. Sum Rule: t∗ = argmax
tk∈T

L∑
l=1

plk(x)

4. Maximum Rule: t∗ = argmax
tk∈K

max
l∈{1,...,L}

{
plk(x)

}

5. Minimum Rule: t∗ = argmax
tk∈K

min
l∈{1,...,L}

{
plk(x)

}

2.2.3.1 Majority Vote

The simplest and oldest decision rule for combining multiple classifiers is by voting. Voting

methods are applicable to classifiers whose output are unique class labels. Continuous

outputs need to be converted to discrete outputs for majority vote to work. The preferred

class of the ensemble using the majority (plurality) vote is the class t∗ ∈ T that receives

28



the largest total vote. Thus

t∗ = argmax
tk∈T

L∑
l=1

δlk (2.14)

where

δlk =


1 if classifier fl outputs class tk (or plk = max

ti∈T
{pli} )

0 otherwise

The above voting procedure assumes errors from individual classifiers are equally im-

portant. To account for varying errors, weights can be assigned to the more competent

classifiers, that is, weak classifiers can be down-weighted. The preferred class t∗ using the

weighted majority method is thus

t∗ = argmax
tk∈T

L∑
k=1

wlδlk

where wl is a reliability weight for classifier fl. However, in most applications the weights

are rarely known.

2.3 Distributed Machine Learning

The amount of data in the world has been growing at an exponential rate. Businesses,

healthcare, academic and government institutions amass petabytes of information on their

customers, patients, suppliers and other operations continuously. The healthcare system for

example is made up of multiple stakeholders including patients, providers, pharmaceutical

companies, insurers, and government entities. Each of these groups generate bigger and

bigger pools of data on a daily basis. Multimedia and the vast use of smartphones and

social networks sites continue to fuel this exponential growth of data. “Very large” data,
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or “Big data”, as it is commonly referred to is now part of every sector and function of the

global economy (Manyika et al., 2011).

Big data simply refers to data sets so large and complex that it becomes difficult for

conventional database management systems to capture, store and process efficiently in a

reasonable amount of time. Besides the share volume of big data, it has many economic

value if used efficiently. Mckinsey Global Institute (Manyika et al., 2011) estimated that

big data when used creatively and efficiently by the U.S healthcare industry can unlock

more than $300 billion every year in additional value throughout the sector. In addition,

its efficient use has the potential to revolutionize the way various stakeholders operate and

most importantly, the way patients are treated.

2.3.1 Machine learning and Big Data

This unstoppable growth in big data opens the way for new application of machine learning.

More advanced, scalable, and efficient automatic data analytic tools are needed to gain in-

sight from big data. One popular approach to gaining insight from data is to deploy decision

support systems that combine machine learning, optimization and visualization techniques

to assist decision making. For example, machine learning assisted decision support systems

are helping to reduce adverse drug reactions, reduce treatment error rates, and hence lia-

bility claims, automatic discovery of drug treatment patterns in electronic medical records

(EMRs), improve the diagnosis of rare diseases, predicting complications for patients under-

going various treatment options. However, most of these machine learning assisted decision

support systems are designed and work efficiently for centralized systems with relatively

small data sizes. Most existing learning algorithms assume that the entire data set fits into

main memory, which is not possible for big data.

A promising approach to deal with the big data crisis is to partition the data into subsets

and distribute them to different computing workstations. This approach works well, because

allocating learning tasks to several computing workstations is a natural way to scale up a

learning algorithm. In addition, if optimized for speed then the combination can produce
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efficient distributed machine learning systems.

The focus of this thesis is to design efficient distributed machine learning systems in

which the data may be distributed artificially between different computing nodes, such as the

distributed file system offered by Hadoop (http://hadoop.apache.org/) or where the data

is naturally distributed, but moving data between nodes is not permitted. A good example

of the latter is the situation of learning from two or more hospitals or financial institutions

such as banks where data may be private. High performance computing frameworks with

message passing can efficiently handle such restrictive environments. This topic is picked up

again in chapter 5, where these technologies are used to implement the ensemble learning

methods presented in this thesis.

This chapter ends by presenting a scalable algorithm to efficiently compute the co-

variance matrix of a distributed dataset in a single-pass fashion. The algorithm will find

useful application in chapter 5. The algorithm was first presented in Ngufor and Wojtusiak

(2014b), one of the articles written during the development of this thesis.

2.3.2 Single-Pass Parallel Statistics

Accurate computation of statistics such as the mean, variance/covariance matrix and the

correlation coefficient/matrix is critical for the deployment of many machine learning ap-

plications. For example, the performance of discriminant analysis, principal component

analysis, outlier detection, etc. depends on accurate estimation of these statistics. How-

ever, the computation of these statistics, particularly the variance or covariance matrix can

be expensive on large datasets and potentially unstable when the magnitude is very small.

The standard approach consists of calculating the sum of squares deviation from the mean.

This involves passing through the data twice, first to compute the mean and second the

deviations from the mean. This naive two-pass algorithm is known to be numerically stable,

but may become too costly especially in the context of learning from large distributed data.

To overcome these difficulties, several alternative single-pass algorithms have been pro-

posed. These include the pairwise and incremental updating formula for the variance by
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Chan et al. (1979) and its extension by Bennett et al. (2009) to the covariance matrix. The

draw back of these methods lies in the pairwise incremental updating steps. At each round

of the computation, the data is split into two and the formula is applied recursively. Some

special data structures and bookkeeping may be required to handle the tree-like structure

of the algorithm. Moreover, it is not readily amenable to the distributed frameworks like

Hadoop as some communications between processes may be required.

A general single-pass non-recursive covariance formula is presented next, which avoids

the tree-like combination structure of previous approaches.

2.3.2.1 A Single-Pass covariance matrix formula

Given a large distributed data set D that can be partitioned into k ≥ 2 finite blocks

D =
⋃k
i=1Di with Di∩Dj = ∅, ∀ i 6= j. Each Di is typically a set of ni multivariate random

samples Di = {X1, . . . , Xni} where each Xi is a p×1 random vector: Xi = (Xi1, . . . , Xip)
T .

The scatter matrix for each block is given by

Si =
∑
X∈Di

(X − X̄i)(X − X̄i)
T ,

where X̄i = 1
ni

∑
X∈Di X is the sample mean of each block. Unbiased estimate of the

covariance matrix of each block is given by Σ̂i = 1
ni−1Si. The main goal is to compute the

covariance matrix of the complete data D.

Proposition 1. The sample mean vector and scatter matrix of the distributed data D
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partitioned into k ≥ 2 disjoint data-blocks {Di}ki=1 is given by

X̄ =
1

n

k∑
i=1

niX̄i (2.15)

S =
k∑
i=1

Si +
1

n

∑
π

nπ1nπ2(X̄π1 − X̄π2)(X̄π1 − X̄π2)T (2.16)

where n =
∑k

i=1 ni and
∑

π denotes the summation over
(
k
2

)
combinations of distinct pairs

(π1, π2) from (1, . . . , k).

Due to space limitation in Ngufor and Wojtusiak (2014b), the proof of this proposition

could not be given. The full proof is given in appendix A. Experimental results compar-

ing the performance of the single-pass formula with the standard two-pass algorithm are

presented in the article.
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Chapter 3: Bayes Active Data and Algorithm Selection

This chapter deals with the problem of data and algorithm selection. An active learning and

decision making method is proposed for this task. The introduced methods employs two

simple, fast and efficient sampling schemes based on uncertainties in the linear discriminant

score and the logistic regression model to select informative data points for training a set of

learning algorithms. The prediction probabilities from each classifier are then modeled by

beta distributions from which a Bayesian decision procedure allows easy computation of the

probability of error, ROC analysis and Precision-Recall (PR) analysis. The active learning

methods for data selection were previously introduced in Ngufor and Wojtusiak (2014b),

an article written in the course of developing this thesis. Thus, most of the discussion will

be drawn if not replicated from that article. However, in Ngufor and Wojtusiak (2014b)

the focus was on sample size reduction and not on algorithm selection. As such, the active

learning algorithms are modified so that the base classifiers can be fully trained on carefully

selected training examples.

3.1 Introduction

Substantial progress has been made in machine learning over the past decades in the de-

velopment of learning algorithms, ranging from those based on stochastic models to those

based purely on symbolic representations. Given the profusion of these learning algorithms,

it is often difficult for researchers to determine which algorithm will perform most effectively

on any given application problem. Usually, the researcher’s understanding of the algorithms

and detailed knowledge of the problem is required to select a reliable algorithm. In addition

to this already difficult task, many of these algorithms have parameters that must be tuned
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to adapt them to the specifics of the dataset. A substantial increase in the performance of

an algorithm on a given dataset can be obtained if the right parameters are used.

A näive approach to solve this problem is to evaluate the performance of all algorithms

on the dataset and select the best one. In practice this is not possible, because they are

too many algorithms available and the computational complexity of some algorithms may

be too expensive especially when very large datasets are involved. An alternative is to pre-

select a small number of alternatives based on knowledge about the data and algorithms.

Without some improvements this approach is feasible, but it may still require considerable

computing time.

Traditionally, the problem of comparing and/or selecting learning algorithms has been

approached in two ways. The easiest and most popular approach is to train all algorithms

on a collection of datasets and compare their performances. The second approach involves

constructing a predictive model or a meta-learner. In the latter approach, a meta-learner

is contructed from a large collection of datasets with inputs or meta-features being some

statistical or information theoretic summaries of the datasets. Examples of such meta-

features include sample sizes, number of attributes, mean, standard deviation, skewness of

numeric features, class distributions, class entropies, etc. (Brazdil et al., 2008). The meta-

learner then use as dependent variable some performance measure of the algorithms on the

datasets. The meta model can then be used to predict the most appropriate algorithm or

tuning parameters for a given dataset.

While these approaches may be feasible in most cases, there are some major limitations.

The success of meta-learning algorithm selection methods depends on the extraction of

informative features able to discriminate between the performances of the base algorithms.

It is therefore imperative to compute appropriate measures from the data that are good

predictors of the relative performances of the algorithms. Many decisions have to be made

in this process and sometimes expert knowledge may be required. A poor choice of meta-

features may have a negative effect on the predictive power of the model. Meta-learning

algorithm selection methods require a number of datasets to build its database. When

35



access to several datasets is not possible or when only one dataset is available, a meta-

learner cannot be generated.

With today’s ever and steadily growing dataset sizes, these methods may be compu-

tationally expensive to deploy. Without some special sampling techniques it may not be

possible to get reliable estimates of performance measures of the base algorithms. Equally,

it might be the case that the majority of available data is unlabeled and only a small fraction

is labeled. Getting estimates of performance from this small fraction may be unreliable.

In addition, the implementation of these methods requires that all data be collected at a

central location. This might be unrealistic and unattainable due to band width and storage

limitations. Other reasons such as privacy and legal restrictions may forbid the sharing of

data. Under such conditions, it might not be possible or feasible to inspect all the datasets

at one processing unit in order to train the algorithms or build a meta-learner predictive

model. There is thus need for selection methods that scale up to large and possible physi-

cally distributed datasets.

This chapter presents an alternative solution to the problem of algorithm selection to

help researchers make informed decisions about the algorithm most suitable for a given

dataset. The selection process requires only the decisions of the base classifiers in the

form of prediction probabilities. Thus, it is possible for the base algorithms to have been

trained on different datasets but modeling the same input-output relationship. This is

beneficial in that, it can be advantageously applied in distributed learning environments or

in situations where data cannot be shared or moved around easily. The algorithms can be

trained independently on each data site and their predictions collected at a central location

for comparison.

Training of the base algorithms at each site is carried out by simple, fast and accurate

active learning algorithms based on interval estimates of the linear discriminant score and

the logistic regression model. Uncertainties in these statistics are used to select only the

most informative data points for training. The presented method has the following major

advantages:
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1. Active learning can drastically reduce computational time by reducing the amount of

data required to train an algorithm (Settles, 2010).

2. By selecting only the most informative or uncertain examples for learning, each algo-

rithm is adapted in a data driven way to the unique characteristics of the data.

3. Each algorithm may be trained on a different subset of the input space, making them

more diverse. This is an important property in ensemble learning where the purpose

is to combine the selected algorithms to improve accuracy.

4. A learning algorithm may have one or more parameters that need to be tuned so as

to adapt it to the specifics of the training set, such as the location of class boundary.

However, by providing the learning algorithm with the “desired” input/output pairs

such as those examples close to the class boundary, the problem of tuning parameters

can be seen as the problem of acquiring the desired training set. Algorithms trained

on their desired training set can thus be transparently compared.

5. The algorithms are compared using several performance measures instead of a sin-

gle measure as commonly done for meta-learner algorithm selection methods. Since

different data points may carry different misclassification error cost and some classi-

fiers may attach high cost to false positive rates while others are more tolerant, by

using several performance measures, these different qualities can be captured and the

classifiers that score high across the majority of measures are suitable for ensemble

learning.

6. There are many real learning problems where data is very expensive or difficult to

obtain, complex and non-standard such as non stationary environments, noisy, missing

values and sample bias. Under such circumstances, a method to optimally select

relevant data points for training could minimize or eliminate these learning difficulties.

7. Conversely there are situations where data is available in abundance, often for free

but obtaining class labels for the training set may be very expensive (e.g examining a
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huge collection of breast cancer biopsy images to determine presence or non presence

of breast cancer). In this case, if no optimal method to intelligently select specific

data points from the pool of unlabeled data is available, the analyst is limited to any

existing labeled data or the amount of data she can afford to label.

8. Finally, active learning is capable of solving the imbalance classification problem by

providing the algorithms with a more balanced training set (Ertekin et al., 2007).

The data and algorithm selection method presented in this chapter first actively trains a

collection of learning algorithms and extracts prediction probabilities 1 on an independent

test set for further analysis by a decision-maker (DM). The DM then uses parametric

methods to model the distribution of the prediction probabilities. Specifically, the prediction

probabilities are modeled as beta parametric models from which Bayesian decision theory

enables the computation of the probability of error, ROC analysis, PR analysis and the

Rényi-α divergence measures for comparing the performance of the classifiers.

3.2 Active Learning

The ultimate goal of machine learning is to create systems that can improve their perfor-

mance with minimal cost at some task as they acquire experience and data. In other words,

the learner is able to improve its generalization as it acquire more knowledge.

In most natural learning tasks, however, the generalization problem is studied only with

respect to selecting or randomly drawing from an underlying distribution independent and

identically distributed training samples for labeling. The learning is simply a “passive”

learner, i.e, it acts as a passive recipient of data to be processed. Passive learning is not

universally applicable, it ignores the fact that in many learning situations, the most powerful

tool of the learner lies in its ability to make use of at least some form of action, or do some

data gathering so as to influence the environment it is trying to understand. Learning

1The prediction probabilities of all classifiers are assumed to be well-calibrated, that is the probabilities
are reliable estimates of the true probabilities of class membership
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systems that try to make effective use of this ability are referred to as active learners.

Formally, active learning is a form of learning in which the learner has some control over

the inputs on which it learns. That is, the learner has the ability to make queries that

influence what data are added to its training set.

With the desirable properties of active learning, it is therefore not surprising to see the

recent growth of interest in this field with quite a large number of algorithms and heuristics

proposed. Some of key works on active learning can be found in Lewis and Gale (1994);

Seung et al. (1992); Roy and McCallum (2001).

The key idea behind active learning is that, if the learning algorithm can optimally

choose the most informative data points to be labeled, it may perform better with fewer

data points and at a lower cost. Precisely, the learning algorithm itself is responsible for

acquiring its training set. It can optimally select a new input x∗ from a pool or a stream of

unlabeled data, ask an oracle/teacher for its label t∗ and then incorporate the new example

(x∗, t∗) into its training set. The oracle is often a human user or domain expert or any other

appropriate information source.

To formalize the discussion on active learning, assume that the active learner has access

to a labeled training set Dl = {(x1, t1), . . . , (xn, tn)} ∈ X ×Y and a set Du = {x1, . . . , xu} ⊆

X of unlabeled examples. The labeled training set Dl is usually very small and may contain

only a single data point. On the other hand the unlabeled set Du may be a stream of

incoming data points or a very large pool of unlabeled data. Given the training set Dl∪Du,

the active learning task is therefore to select the “best” query instance x∗ ∈ Du and ask

an oracle O for its label t∗ = O(x∗) and add to Dl: Dl ← Dl ∪ {(x∗, t∗)}. Algorithm 1

summaries the basic active learning structure.

For active learning to be successful, there must be some method to efficiently query and

evaluate the informativeness of new unlabeled examples. Let φ(x) be some query strategy

to select and evaluate the usefulness of a new unlabeled example x ∈ Du. The question then

is how to design φ(x) to optimally select the “best” x∗? Some of the most popular active
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learning query strategies include Uncertainty Sampling (Lewis and Gale, 1994), Query-

by-Committee (Seung et al., 1992), Expected Error Reduction (Roy and McCallum, 2001),

Variance Reduction (Schein, 2005), minimum distance or cluster based (Fu et al., 2012;

Bodó et al., 2011) etc.

Algorithm 1: Generic Active Learning Structure

Input : Training dataset Dl ∪ Du, query measure φ, oracle O, stopping criteria

Output: Classified examples

1 repeat

2 Obtain query: x∗ ← φ(x ∈ Du);

3 Label query: t∗ ← O(x∗);

4 Add example to labeled training set: Dl ← Dl ∪ {(x∗, t∗)};

5 Induce new classifier from training dataset: f̂(x) : Dl → T ;

6 Evaluate classifier/stopping criteria;

7 until stopping criteria;

3.3 Linear Discriminant Uncertainty Based Active Learning

Linear discriminant analysis (LDA) aims at discriminating between two multivariate normal

populations with a common covariance matrix H0 = Np(µ0,Σ) and H1 = Np(µ1,Σ) say,

on the basis of independent random samples of sizes n0 and n1. Fisher’s linear discriminant

rule assigns a new test example x into population H0 if the discriminant score θ(x) satisfies

θ(x) = λ0 + λTx ≥ 0 (3.1)

where λ0 = log (π1/π0) − 1
2(µ1 − µ0)TΣ−1(µ1 + µ0), λ = Σ−1(µ1 − µ0) and πi is the

probability that x belongs to population Hi, i = 0, 1 (Ngufor and Wojtusiak, 2014b).

The decision boundary is defined by points satisfying θ(x) = 0. If the true value of θ(x)
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is known, then these points can be easily determined. However θ(x) is not known and is

usually estimated using unbiased sample version, such as, the minimum variance unbiased

estimator (Critchley and Ford, 1985) given as

θ̂(x) =
1

2
α̂2

1(x)− 1

2
α̂2

0(x) + log (n1/n0) (3.2)

where α̂2
i (x) = (n0 +n1− p− 3)(x− X̄i)

TS−1
p (x− X̄i)− p/ni with X̄i the sample mean and

Sp the pooled covariance matrix. If the probability distribution of θ̂(x) is known, then one

can easily find the likelihood that the true value of the score is within some specified range

for each test point x. For example if θ̂(x) is assumed to be normally distributed, then a

95% confidence interval centered at 0 will correspond to data points close to the decision

boundary.

The derivation of the LDA active learning scheme is based on an approximate dis-

tribution of θ̂(x) derived in Critchley and Ford (1985) under the assumption of equal

priors i.e π0 = π1. The case of unequal priors can be adjusted accordingly. Letting

∆2
i (x) = (x − µi)TΣ−1(x − µi) be the squared Mahalanobis distance between x and the

population center µi and φ(x) = 1
2∆2

1(x)+ 1
2∆2

0(x), it is shown in Critchley and Ford (1985)

that θ̂(x) is asymptotically normally distributed with mean θ(x) and variance var(θ̂(x))

given (in a simplified form) as:

var(θ̂(x)) =
a

d
(θ(x)− cM/2N)2

+
b

d
(φ(x)(cn/N + ∆2

1(µ0))−∆4
1(µ0)/4)

+
bc

d

(
2p(n+M)/N2 − (c+ 1)M2/N2

)
(3.3)

where n = n0 + n1, M = n1 − n0, N = n0n1, a = N − p − 1, b = a − 2, c = N − 2, and
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d = (a− 1)(b− 2).

With the approximate distribution of θ̂(x), uncertainties in classifying each data point

x can be estimated by computing confidence intervals about the mean value θ(x). In

particular, the (1 − δ)100% confidence interval about the decision boundary θ(x) = 0 is

given by

− Z1−δ/2 ≤
θ̂(x)√

var(θ̂(x))
≤ Z1−δ/2 (3.4)

where Z1−δ/2 is the Z-score at confidence level δ. Data points within this interval represent

points for which the classifier has high uncertainty about class memberships and are the

most informative for learning. A large confidence interval will select more points while a

tight interval will return fewer points. Equation 3.4 therefore presents an efficient principled

query strategy for uncertainty base active learning (Settles, 2010) that can be used for

sample size reduction.

In the standard pooled based active learning parlance, a small labeled training set Dl

and a large “unlabeled” pool Du are assumed to be available. The task of the active learner

is to use the information in Dl in a smart way to select the best query point x∗ ∈ Du and

ask the user or an oracle for its label and then add it to Dl. This process continues until

the desired training set size or accuracy of the learner has been archived. For the presented

data selection schemes, both Dl and Du are labeled training sets and the goal is to select

the most informative data points and their labels from Du. Algorithm 2 presents the LDA

sampling scheme. The stopping criterion can be set equal to the required sample size of the

reduce training set.

When Algorithm 2 is applied to train a number of algorithms such as in ensemble

learning, a different training set may be returned by each classifier. Though the selection

of examples is based on the linear discriminant score, however the selection is guided by

the predictions of each classifier. Each selected data point for training can therefore be

considered as informative to that classifier. The active training of the classifiers therefore
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Algorithm 2: LDA Active Data Selection Algorithm

Input : Dl, Du, learning algorithm f , confidence level δ, stopping criterion γ
Output: Training set Df , classifier f

1 Set Df ← Dl // most informative instances according to classifier f

2 repeat
3 Compute X̄0, X̄1 and Sp using Dl ;

4 Train classifier f on Df ;

5 ∀ x ∈ Du, predict class label: t̂← f(x);

6 ∀ x ∈ Du, compute θ̂(x) and var{θ̂(x)} ;

7 select x∗ using equation 3.4;

8 Set Dl ← Dl ∪
{
x∗, t̂

}
;

9 Set Df ← Df ∪ {x∗, t}; // t is the true class of x∗

10 Evaluate stopping criteria;

11 until γ;

makes the base classifiers more diverse. Optionally, after the active learning process, the

informative data points from each classifier can be aggregated and all the algorithms retrain

on the aggregated data.

Figure. 3.1 (a) shows a comparison of the performance of logistic regression trained

actively using: data points selected by LDA active learning technique, the support vectors

from a SVM active learning (Tong and Koller, 2002), and random sampling (Random). The

Forest Covertype data from the UCI Machine learning repository (Frank and Asuncion,

2010) was used for training. The classification problem represented by this data is to

discriminate between 7 forest cover types using 54 cartographic variables. The data was

converted to binary by combining the two majority forest cover types (Spruce-Fir with n

= 211840, and Lodgepole Pine with n = 283301) to one class and the rest (n = 85871)

to the second class. The data was split into 75% training and 25% testing. The sampling

schemes were stopped once 0.7% of the training set has been queried for learning. The

results showed that for the LDA sampling scheme to archive a reduction in error of about

22% (approximately where the algorithm stabilizes) only about 0.23% carefully selected

training data points where needed whereas random sampling method uses all 0.7% of the

training data and still achieved only 24 % reduction in error. The performance of LDA
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Figure 3.1: Performance of Different Sampling Schemes

and SVM sampling schemes are very similar, however LDA took by far a smaller time to

converge compared to SVM. Precisely in this example, the time ratio of SVM to LDA was

about 140 averaged over ten fold cross-validation.

3.4 Logistic Regression Uncertainty Based Active Learning

Let Dl = {(xi, ti)}ni=1 be a set of training examples where the random variables Yi = ti ∈

{0, 1} are binary and Xi = xi ∈ Rp are p-dimensional feature vectors. The fundamental as-

sumption of the logistic regression (LR) model is that the log-odds or “logit” transformation

of the posterior probability π(β;x) = p(t = 1|x;β) is linear i.e

log

(
π

1− π

)
= β0 + βTx (3.5)

where β0, and β = (β1, . . . , βp) are the unknown parameters of the model.
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Typically, the method of maximum likelihood is used to estimate the unknown param-

eters (β0,β). By setting x = (1, x) and β = (β0, . . . , βp), the regularized log-likelihood

function is given by

l(β) = βTXTY−
n∑
i=1

log
(

1 + ex
T
i β
)
− γ‖β‖2/2

where X is the design matrix, Y the response vector and γ reflects the strength of regular-

ization. Iterative methods such as gradient based methods or the Newton-Raphson method

are commonly used to compute the maximum likelihood estimates (MLE) β̂ of β. For

example, the one step training of L2 regularized stochastic gradient descent (SGD) ia given

by

βnew = βold + α
[(
ti − πi

(
βold

))
xi − γβold

]
(3.6)

where α > 0 is the learning rate. Each iteration of SGD consist of choosing an example

(xi, ti) at random from the training set and updating the parameter β.

One important feature of the LR parameters is that the parameter estimates are con-

sistent. It can be shown that the MLE of LR are asymptotically normally distributed

i.e

√
n(β̂ − β) −→ N

(
O, I(β)−1

)
where I(β) = XTWX is the Fisher information matrix with W = diag{πi(1 − πi)}, i =

1, . . . n (see for example Bickel and Li (1977) Section 6.5).

Based on the distribution of β̂, the asymptotic distribution of the MLE of the logistic

function can be derive by application of the delta method. Specifically, for any real valued
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function g with the property that ∂g(β)
∂β 6= 0 one has

√
n(g(β̂)− g(β)) −→ N

(
O,∇g(β)T I(β)−1∇g(β)

)

where ∇ is the gradient operator. Taking g(β) = π(β;x), the posterior probabilities of

the LR model are asymptotically normally distributed with mean π(β;x) and variance

V ar(π(β̂;x)) = ∇π(β;x)T I(β)−1∇π(β;x).

The decision boundary for the LR model is defined by β0 +βTx = 0, i.e where π(β;x) =

0.5. This shows that points on the boundary have equal chances of being assigned to

either population. The uncertainties in π(β̂;x) for the boundary points can therefore be

statistically captured by a (1− δ)100% confidence interval about 0.5.

Confidence intervals for parameter estimates of LR can be calculated from critical values

of the student t-distribution. By following a similar calculation presented in Rencher and

Schaalje (2008) section 8.6.3 for computing the confidence interval of a linear function aTβ

of parameters of a linear regression model, one obtain for π(β̂;x) the statistics

t =
π(β̂;x)− π(β;x)√

V ar(π(β̂;x)
∼ t(n− p− 1)

which has a student t-distribution with n− p− 1 degrees of freedom. Uncertainties about

the true decision boundary π(β;x) = 0.5 can then be determined by computing confidence

intervals. In particular, the (1− δ)100% confidence interval about the decision boundary is

given by

− t δ
2
,n−p−1 ≤

π(β̂;x)− 0.5√
V ar(π(β̂;x))

≤ t δ
2
,n−p−1 (3.7)

A similar algorithm for sample size reduction using the logistic regression model is presented

in Algorithm 3.
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Algorithm 3: LR Active Learning

Input : Dl, Du, learning algorithm f , confidence level δ, stopping criterion γ
Output: Training set Df , classifier f

1 Set Df ← Dl // most informative instances according to classifier f

2 repeat

3 Estimate β̂ using Dl ;

4 Train classifier f on Df ;

5 ∀ x ∈ Du, predict class label: t̂← f(x);

6 ∀ x ∈ Du, compute π(β̂;x) and V ar(π(β̂;x)) ;

7 select x∗ using equation 3.7;

8 Set Dl ← Dl ∪ {x∗, t̂};
9 Set Df ← Df ∪ {x∗, t}; // t is the true class of x∗

10 Evaluate stopping criteria;

11 until γ;

Figure 3.1 (b) shows the error curve for LR trained actively using: data points selected by

the LR active learning technique, the support vectors from a SVM active learning technique,

and random sampling. The Waveform dataset from the UCI machine learning repository

was used for this example. There are a total of 5000 records in this data with 40 attributes,

75% was used for training and 25% for testing. All the sampling schemes were stopped

when 16% of the training set has been queried for learning. Clearly, the LR sampling

scheme outperforms both the SVM and Random schemes.

3.5 Hausman Specification Test

Under the normal assumption, LDA and LR estimators are both known to be consistent

but LDA is asymptotically more efficient (Efron, 1975). Though the LDA and LR models

are very similar in form, there are significantly different in model assumptions. LR makes

no assumptions about the distribution of the independent variables while LDA explicitly

assumes a normal distribution. An excellent discussion of the two learning techniques can

be found in Cox and Snell (1989). Specifically, LR is more applicable to a wider class of

distributions of the input than the normal LDA. However, as illustrated in Efron (1975),
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when the normality assumption holds, LDA is more efficient than LR. Under non-normal

conditions, LDA is generally inconsistent whereas LR maintains its consistency. Since LDA

may perform poorly on non-normal data, an important criterion for choosing between the

LDA and LR active learning techniques is to check whether the assumption of normality is

satisfied before querying a new data point. The Hausman specification test (Lo, 1986) can

be applied to test for these distributional assumptions by comparing the two estimators.

The Hausman’s specification test is an asymptotic chi-square test based on the quadratic

form obtained from the difference between a consistent estimator under the alternative

hypothesis and an efficient estimator under the null hypothesis. Under the null hypothesis

of normality, both LDA and LR estimators should be numerically close, implying that for

large samples sizes, the difference between them converges to zero. However under the

alternative hypothesis of non-normality the two estimators may differ and sometimes by a

large margin. Naturally then, if the null hypothesis is true, one should use the more efficient

estimator, which is the LDA estimator and LR estimator otherwise.

Let Σ̂LDA and Σ̂LR be the estimated asymptotic covariance matrices of λ̂ and β̂; the

estimators of LDA and LR respectively (Σ̂LR in this case is the observed Fisher information

matrix I(β̂)). Letting Q̂ = λ̂− β̂, the Hausman chi-squared statistic is defined by

H = Q̂
T

[Σ̂LDA − Σ̂LR]†Q̂ ∼ χ2
p (3.8)

where † denotes the generalized inverse.

During training, Σ̂LR is readily available through the Fisher information matrix. There-

fore, the main difficulty in computing the Hausman statistic is how to compute Σ̂LDA. Sev-

eral methods have been proposed in the literature to compute Σ̂LDA (Lo, 1986; Efron, 1975).

These methods are however too complex to implement on large and/or distributed datasets.

A much simpler approach can be pursued by considering the asymptotic distribution Σ̂LDA

given by the following proposition.
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Proposition 2. Given the training set Dl = {(xi, ti), i = 1, . . . n} where ti = j = 0, 1

indicates the multivariate normal Np(µj ,Σ) that xi comes from. The limiting distribution

of
√
n(λ∗ − λ) ∼ Np(O,Γ)

where λ∗ = (n− 2)λ̂, λ = Σ−1(µ2−µ1) and Γ = Σ−1µµTΣ−1 +

(
n

n2n1
+ µTΣ−1µ

)
Σ−1

with µ = µ1 − µ0.

The proof of this proposition can be obtained by noting that
√
n0n1/n(x̄1 − x̄0) ∼

Np(
√
n0n1/nµ,Σ). Using this and the fact that the pooled sample covariance matrix

(n − 2)Sp ∼ W(Σ;N, p) has the Wishart distribution with N = n1 + n0 − 2 degrees of

freedom along with some simplifying algebraic transformations of random variables from

these distributions, the result follows by application of Theorem 3.1 in Gupta (1968).

3.6 Comparing Machine Learning Classification Models

As noted earlier, the comparison and selection of classifiers is an important component in

many machine learning applications. In the literature, comparing the generalization error

of learning algorithms is generally performed through statistical tests (Alpaydm, 1999).

Typically, this procedure is carried out through a cross-validation set-up. For example in

Bradley (1997), the analysis of variance (ANOVA) is used to test for statistical significance of

any difference in accuracy and the area under the receiver operating characteristics (ROC).

This section presents a number of performance measures for comparing the performances

of binary classification models presented in the form of posterior class probabilities. By

approximating the distribution of the posterior probabilities using parametric models, a

Bayesian decision framework allow easy computation of the Bayes risk, ROC analysis and

Precision-Recall (PR) analysis for the evaluation of a decision rule for a given classification

problem.
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The comparison framework proposed in this work is that of a decision-marker (DM)

who consults multiple experts regarding an outcome or event that was modeled by the

experts. The experts or base-learners express their opinion about the event in the form of

probabilities. No information about the training set is assumed to be available.

The opinions of the base-learners will obviously differ since they may have been trained

on different subsets of the input space or due to the fact that they make different assumptions

or because they may be built from different underlying theories. Thus the comparative

measures presented here aim to rank the base-learner according to the superiority of their

opinions.

3.6.1 A Bayes Decision Theoretic Framework

For generality, the Bayes decision framework will first be presented for a multiclass classi-

fication problem. Later, the results will be restricted to the binary case for which most of

the analysis in this thesis are base upon.

Consider a set of L base-learners H = {h1, . . . , hL} each modeling one of θ ∈ Θ =

{1, 2, . . .K} possible events or classes represented by probabilities xj = (xj1, xj2, . . . , xjK),

where xjk = p(θ = k|hj), j = 1, . . . L, k = 1, . . .K is learner hj ’s opinion regarding the

chance that θ = k. When θ = k, xjk should tend to be large and small otherwise. For

clarity of presentation, the j subscript will be dropped with the understanding that there

are L different probabilities x to be modelled independently.

Given that the DM has a prior probability πθ of the events before receiving the prob-

abilities x. After observing the data x, based on its prior, the DM must then assign a

probability to the particular value x as indicative of the event θ = k. That is, the DM must

express its believe that the value x assigned by h is indicative of the event θ = k in the form

of probability densities π(θ = k|x), k = 1, . . . k ( or simply π(k|x)). By Bayes theorem, the
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DM posterior probability of the event θ = k given x is given by

π(k|x) =
f(x|k)πk
m(x)

, k = 1, . . .K (3.9)

where f(x|k) is the likelihood of the base-learner’s opinion given that the event is k and

m(x) =
∑K

i=1 f(x|i)πi is the marginal probability density function of x. Having obtained the

class posterior probabilities, the DM can now make decisions about the true representative

event expressed in each x.

Many problems in statistics and machine learning involve making decisions under a

state of uncertainty. The Bayesian approach to statistical decision theory is a formal way

of incorporating prior beliefs with knowledge available from observed data with the goal of

deriving optimal decision rules.

Consider the problem of selecting a decision a ∈ A = Θ = {1, 2, . . .K} when the

uncertainty about an event θ ∈ Θ is expressed by probabilities x supplied by multiple base-

learners. No decision can be made without potential losses, thus for each decision-event pair

(a, θ) there is an associated loss (or cost) that can be quantified in terms of a loss function

L(a, θ) : A × Θ → [0,∞). Generally, no loss is associated with a correct decision, that is

L(a, θ) = 0 if a = θ. The objective of the DM is to select a decision a that minimizes the

Bayes conditional risk defined by

R(a|x) = E
Θ

[L(a, θ)|x] =

K∑
k=1

L(a, k)π(k|x)

Thus the optimal decision rule is δ = argmina∈AR(a|x). A measure of performance of the

decision rule can be assessed through the Bayes risk

r = E
X

[min
a∈A

R(a|x)] =

K∑
k=1

∫
X

min
a∈A

L(a, k)f(x|k)πk dx
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where X is the probability distribution of x. Note that the Bayes risk is a real number

independent of x and θ and so can be ordered for each base-learner, permitting a direct

comparison. Evaluation of the Bayes risk requires specification of the loss function and the

posterior probability.

Taking the log ratio of equation 3.9 for two distinct events θ = k and θ = i gives

log

(
π(k|x)

π(i|x)

)
= log

(
f(x|k)

f(x|i)

)
+ log

(
πk
πi

)
(3.10)

The above equation states that the DM posterior log-odds is equal to the sum of the log-

likelihood ratio and its prior log-odds. The DM’s prior log-odds is its initial odds about

the events. So if the log-likelihood is positive then its posterior log-odds is greater than its

prior log-odds and the minimum risk condition will make the DM favor the event θ = k

over θ = i, i 6= k. On the other hand if the log-likelihood is negative then the DM favors

θ = i over θ = k. Thus it can be seen that the log-likelihood ratio is a measure of how the

DM values the base-learners opinion expressed in each x as indicative of one of the events

θ = k. For a positive log-likelihood ratio, the DM favors θ = k over all the others, this can

be written as

− log
(
f(x|k)πk

)
+ max

i 6=k

{
log
(
f(x|i)πi

)}
< 0 i, k = 1, . . . k

Thus for each k, the sign of the discriminating function

S(x|k) = − log
(
f(x|k)πk

)
+ max

i 6=k

{
log
(
f(x|i)πi

)}

indicates a decision selection criterion. If S(x|k) < 0 the DM favors the event θ = k for x

and selects the decision a = k. If however S(x|k) ≥ 0 when the true value is θ = k, then an

error will be committed and a loss incurred. A loss function for this decision making can
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be defined as

L(i, k) =


λik if S(x|k) ≥ 0 and S(x|i) < 0 ∀ i 6= k

0 otherwise

(3.11)

where λik specifies the error cost associated with choosing the event a = i when the true

event is θ = k. This reduces to the “0/1” loss function when λik = 1, ∀ i 6= k. The sets

Xk = {x : S(x|k) < 0} are the decision regions which are mutually disjoint i.e Xi
⋂
Xk =

∅,∀ i 6= k and X =
⋃
kXk. Thus the Bayes risk and optimal decision rule can then be

written respectively as

r =
K∑
k=1

 ∫
⋃
i 6=kXi

λikf(x|k)πk dx

 (3.12)

δ = argmax
i∈A

(
K∑
k=1

λikπ(k|x)

)
(3.13)

Computing the Bayes risk and optimal rule depends on the specification of the error cost

λik for every decision-event pair. Choosing the error cost is highly problem dependent

and also on the computational complexity involved. For the simple 0/1 loss function, the

optimal rule is simply to select the event with the highest posterior probability or maximum

a posteriori (MAP) given the particular value x.

For a binary decision problem, A = Θ = {0, 1} and π1 = 1 − π0 = π. The MAP

condition implies that the DM should select the event a = 1 if λ10π(0|x) < λ01π(1|x) and
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a = 0 otherwise. That is

δ =



1 if
π(1|x)

π(0|x)
>
λ10

λ01

0 otherwise

Using the definition of the posterior in equation 3.9, the rule can be equivalently written as

δ =


1 if l(x) > τ

0 otherwise

where

l(x) = log

(
f(x|1)

f(x|0)

)
and τ = log

(
1− π
π

)
+ log

(
λ10

λ01

)
.

This form makes it clear that the Bayes optimal decision rule tries to make a compromise

between the evidence about the events supplied by the base-learners and prior knowledge

about the events and the error cost. The combined prior log-odds and the log cost ratio yield

a decision threshold τ . In medical diagnostic testing for example, this is simply the cut-off

value of the test. Note that the definition of the threshold here assumes the prior and/or

error cost are known. In problems where these parameters are not known or well defined,

the approach may simply to decide on a = 1 if l(x) > τ where τ may be independent of the

prior and/or cost. By varying the threshold different decisions can be made based on the

problem.

This simple and intuitive Bayesian decision making framework has been extensively

studied by statisticians and other researchers over the past few decades. It has been used in

statistics, signal detection and weather forecasting to combine the subjective probabilities

provided by multiple experts (Jacobs, 1995; Krzysztofowicz and Long, 1990).
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3.6.2 Error Probabilities

Based on the optimal decision rule for the binary case, the decision regions can be written

as X1 = {x : l(x) > τ} and X0 = {x : l(x) ≤ τ}. The Bayes risk (equation 3.12) can be

written as

r = λ01π

∫
X0

f(x|1) dx + λ10(1− π)

∫
X1

f(x|0) dx

It can be seen that the integrals

Iθ =

∫
Xc
θ

f(x|θ) dx, θ = 0, 1 (3.14)

represents the probability of incorrect decision (“error”) conditioned on each of the two

possible events θ = 0, 1 (Xc
θ is the complement of the set Xθ). The integral I0 = p(a =

1|θ = 0) is the probability that the value x indicative of the event θ = 0 will be taken

to lie in the decision region X1 associated with the event θ = 1. If θ = 1 represents the

positive class and θ = 0 the negative, then I0 is simply the type 1 error or false positive.

The integral I1 = p(a = 0|θ = 1) on the other hand qualifies the probability of the other

type of error or false negatives. The Bayes risk can then be written as

r = p(“error”|θ = 1)λ01π + p(“error”|θ = 0)λ10(1− π) = p(“error”)

The probability of error is simply the sum of the off diagonal elements of a classification

confusion matrix weighted by the prior and error cost. Thus the error or accuracy depends

on prior and cost. Since these parameters are usually not known in most real applications,

this dependence is often ignored and the probability of error is simply computed as
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p(“error”) = 1− p(“correct decision”)

= 1− p(a = 1|θ = 1)− p(a = 0|θ = 0).

Classifiers with small probability of error are preferred.

The erorr probability offers a useful means to evaluate the performance of a decision

rule for a given classification problem. However, the probability of error can be very diffi-

cult to compute, and exact closed-form expressions are only attainable in some very simple

situations. Approximate parametric and numerical methods are the usual approaches im-

plemented to compute them.

3.6.3 Beta Likelihood Model for Prediction Probabilities

Despite the simplicity of the Bayesian decision theoretic framework presented in section

3.6.1, it might be impractical in some real applications. The tractability of the integrals

involved in the Bayes risk depends upon the successful modelling of the likelihood function.

Defining an appropriate likelihood function can be a difficult task and a poorly defined

function may render computation of the Bayes risk impossible or very expensive. It is

therefore common in decision theory to make certain simplifying distributional assumptions

to ameliorate these problems.

For the binary decision problem, the marginal distribution of the base-learners’ posterior

probability is given by

m(xj) = πf(xj |1) + (1− π)f(xj |0), j = 1, . . . , L

A good base-learner provides reliable estimates of the true probability that a test sample is

a member of the class of interest. One will therefore expect the probabilities to be clustered

near xj = 0 and xj = 1 producing two distinct clusters in the distribution of m(xj). A poor
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base-learner on the other hand produces unreliable estimates with possible high frequency

of xj values near 0.5 resulting in two or more clusters in m(xj). The heterogeneity of

the distribution of x naturally motivates modeling it as a mixture of models. When data is

characterized by population heterogeneity, that is, consisting of unlabeled observations each

of which is thought to belong to one of distinct classes, finite mixture models have been

recognized as a useful and powerful probabilistic tool for modelling the data (McLachlan

and Peel, 2000). The probability of an observation falling into any of the components of the

mixture or the component densities themselves can then be used to model the likelihood

ratio.

Despite the favorable properties of finite mixtures, its is often computationally very

expensive to implement and therefore not desirable for the problem addressed in this study.

However, with the recent developments of Markov chain Monte Carlo techniques, these

computational burdens can be lessened. Gelfand et al. (1995) for example applied a Gibbs

sampling technique to estimate the parameters of a finite mixture of beta models used to

model the likelihood function of multiple experts opinions expressed as partial probabilities.

To keep all computations relatively simple, the more common approach of modeling each

base-learners prediction probability by a member of a standard parametric family of models

is pursued in this work.

The Gaussian family of densities is the most common choice for the likelihood function.

Jacobs (1995) for example combined the opinions of multiple experts by modeling their like-

lihood functions as normal models. Due to the fact that the Beta distribution has support

[0,1] and is frequently used for modeling probabilities and proportions, this work assumes

that the likelihood functions are beta distributions. That is, the prediction probabilities

xj provided by base-learner j about the events θ = 1 and θ = 0 are modeled by the beta

distribution given by

f(xj |1) ∼ B(xj ; aj1, bj1)

f(xj |0) ∼ B(xi; aj0, bj0)
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where B(x; a, b) is the probability density function of the beta distribution defined by

B(x; a, b) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1

=
1

B(a, b)
xa−1(1− x)b−1 (3.15)

with 0 ≤ x ≤ 1, a, b > 0, Γ is the gamma function and B the beta function. The mean

and variance of the distribution are respectively

E(x) =
a

a+ b

V ar(x) =
ab

(a+ b)2(a+ b+ 1)

The beta density can have quite different shapes depending on the values of the parameters

a and b that index the distribution. It is a very flexible distribution that can produce a

unimodal, uniform, or bimodal distribution of points that can either be symmetrical or

skewed. The beta distribution is therefore more appropriate to model the base-learners

prediction probabilities than the normal distribution. Furthermore, because the opinions

of the base-learners are define by xj = p(θ = 1|hj) and 1− xj = p(θ = 0|hj) it is clear that

a “symmetric beta likelihood” with only two parameters instead of four can be assumed.

That is

f(xj |1) ∼ B(xj ; aj , bj)

f(xj |0) ∼ B(xj ; bj , aj)

This assumption is reasonable and can be argued for by the fact that, when bj > aj , values
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close to 0 become more likely than those close to 1 and when bj < aj , values close to 1 are

more likely than those close to 0. For aj = bj the distribution is symmetric about xj = 0.5,

becoming more peaked as the common value of aj and bj increases. In other words, this is

simply the reflective symmetry property of beta density: B(xj ; aj , bj) = B(1 − xj ; bj , aj).

These conditions fully describe the observed distribution of the prediction probabilities

xj . The parameters aj and bj can be estimated from the data using maximum likelihood

methods.

3.6.4 ROC Analysis

The receiver operating characteristic (ROC) curve is a method for visualizing, assessment

and comparison of classifiers based on their performance. For binary classification, the

theoretical ROC curve of a classifier is a plot of its true positive rate ( sensitivity ) against

its false positive rate (1 - specificity ) for all possible values of the classification threshold.

Plotting the ROC curve is a popular way of displaying the discriminatory accuracy of a

classifier. The ROC curves compares the classifiers performance across an entire range of

decision thresholds. If the ROC curve for one classifier h1 is always above and to the left

of another classifier h2, then h1 is said to dominate h2. Most often this would mean that

classifier h1 has a lower probability of error than h2. However, if h1 has a smaller probability

of error than h2, this does not necessarily mean its ROC curve will always be above that

of h2. The two ROC curves may for example cross each other. Under such conditions, its

difficult to establish dominance relationship. In some cases where no dominance relation

exists between the ROC curves, the performances can be compared by considering the area

under the curves.

The area under the ROC curve or simply AUC is a global measure similar to the overall

accuracy for comparing the performance of learning algorithms. The AUC is the integrated

59



sensitivity as the specificity ranges over [0,1]. That is

AUC =

∫ 1

0
ROC(t) dt

where ROC(t) is the sensitivity at 1 - specificity = t. The larger the AUC, the better the

overall performance of the classifier to correctly discriminate between the classes. It is clear

that when there is a dominance relationship between the ROC curves the AUC will reflect

this dominance, but as with the probability of error, the reverse is not true. AUC has a nice

statistical property that, it represents the probability that a randomly chosen test sample

x ∈ X0 will have a small probability p(a = 1|θ = 0) of falling in X1. Another nice property

of AUC is that it is equivalent to the Wilcoxon test statistics (Hanley, 1982).

In Bradley (1997), several machine learning classification algorithms were compared

using the AUC and the results showed that the AUC offers several desirable properties

compared to the overall accuracy of the models. Theoretical arguments that the AUC is a

better measure than overall accuracy can be found in Huang and Ling (2005).

Despite the appealing properties of the AUC, there are circumstances where two classi-

fiers may perform quite differently, have different overall accuracy or crossing ROC curves

but may have the same AUC. Under such conditions, it becomes difficult to compare the

performance of the classifiers using ROC curves or AUCs. In such cases, and in situations

where high specificity is a perquisite, the AUC can be computed for a confined range of

specificity values. This area is called the partial area under the ROC curve (pAUC). Thus

if r ≤ t ≤ s is the required range of 1 - specificity, then the pAUC (normalized) is given by

pAUC =
1

s− r

∫ s

r
ROC(t) dt

It has been shown that the pAUC is preferred to the AUC for comparing learning

algorithms especially in application problems where high specificity is demanded (Wang
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and Chang, 2011).

ROC curves can be easily computed from the Bayes decision framework and likelihood

models presented in section 3.6.1. A plot of the probability of correct decisions or sensitiv-

ities p(a = 1|θ = 1) versus the false positives p(a = 1|θ = 0) for various decision thresholds

τ gives the ROC curve. Various decision thresholds τ can be obtained by varying either the

prior probability π over the interval (0,1) or the error cost ratio λ = λ01/λ10. The plotted

probabilities do not depend on the prior or error cost. This means that, if all operating

points or conditions are used, the ROC curve will remain invariant with respect to the

operating condition (priors and/or error cost). This is an appealing property of the ROC

curve and consequently the AUC: the performance of a set of classifiers can be graphed and

compared without regard to class distribution or error cost. These conditions may change

but the graph will remain the same.

3.6.5 Precision-Recall Analysis

The ROC analysis presented in the previous section assumed that the prior probabilities

and/or cost are known, consequently, the analysis was found to be insensitive to changes

in these operating points. However, the situation is different when the prior/cost are not

known or are not well defined. There is therefore need to inspect the performance of the

algorithms for different operating points using measures depending on the prior/cost. The

insensitivity of ROC analysis to changes in prior/cost is advantageous in some situation but

also disadvantageous in others. On datasets with highly skewed class distributions, a low

false positive rate may still produce a large number of false positives. Thus a large change

in the number of false positives can lead to a small change in the false positive rate used in

ROC analysis (Davis and Goadrich, 2006).

The Precision-Recall (PR) analysis has recently received much attention in the machine

learning literature as an alternative to ROC analysis for classification tasks on high skewed

datasets or when knowledge of the skewness is not available (Davis and Goadrich, 2006;
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Figure 3.2: PR curves for three algorithms: svm, nnet and kkn

Landgrebe et al., 2006). The PR analysis illustrates the tradeoff between the sensitivity

(p(a = 1|θ = 1)) or recall and the probability that the class is positive given that it was

classified as positive (p(θ = 1|a = 1)) or the precision. PR curves are obtained by plotting

recall against precision for varying decision thresholds. Using properties of conditional

probabilities and Bayes theorem, the precision can be written as

p(θ = 1|a = 1) =
p(θ = 1 and a = 1)

p(a = 1)

=
p(a = 1|θ = 1)p(θ = 1)

p(a = 1|θ = 1)p(θ = 1) + p(a = 1|θ = 0)p(θ = 0)

=
p(a = 1|θ = 1)π

p(a = 1|θ = 1)π + p(a = 1|θ = 0)(1− π)
(3.16)

Precision is thus seen to depend on the prior π. When the class distribution is highly

imbalanced, PR analysis may be more appropriate than ROC analysis since it remains
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sensitive to the performance of each class.

Taking the harmonic average of the precision and recall leads to another popular per-

formance measure known as the F1-score:

F1 =
2× precision× recall
precision+ recall

F1 has high values only when both precision and recall have high values. The maximum F1

over a varying prior is also commonly used.

Figure 3.2 (a) and (b) demonstrates the dependence of the PR curve to two different

prior settings (π = 0.5 and π = 0.1) for three classifiers trained on the Pima Indian dia-

betes dataset from UCI. The performances of the algorithms are comparable under a class

balanced assumption (π = 0.5), however the situation is very different for an imbalance

assumption (π = 0.1) where there is a clear first, second and third. Contours of F1 are also

shown. Classifiers with PR curves that fall in higher F1 regimes are typically considered of

higher quality.

Similar to the computation of AUC, the area under the PR curve (AUPR) is the inte-

grated recall for all possible values of the precision at a given prior π:

AUPRπ =

∫
PR(tπ) dtπ

where PR(tπ) is the recall value at precision = tπ for a given prior π. Under conditions where

the prior is not known or may vary, it may be more informative to estimate the performance

over various values of the priors. The easiest way to estimate the overall performance is to

take the average of the AUPRπ values. Another similar approach presented in Landgrebe

et al. (2006) is to integrate AUPRπ (IAUPR) over possible values of π.
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3.6.6 Divergence of Beta Likelihood Models

The goal of this section is to use an information-theoretic method to measure the similarity

between the likelihood of the prediction probabilities. The basic idea is that the distance

between the likelihood functions f(xj |1) and f(xj |0), j,= 1, . . . L offers a measure of the

discriminating power of the classifier.

Given the prediction probabilities xi and xj from two classifiers hi and hj , since the

probabilities are subinterval of the unit interval, hi is said to be of higher quality than hj if

xi is “finer” than xj , that is xi is a refinement of xj , meaning that xi is closer to 0 and 1 than

xj . This refinement property can be seen in the light of the likelihood functions as being

more concentrated at xi = 0 and xi = 1. Thus, comparing the distances between f(x|1)

and f(x|0) for two classifiers, a measure of quality of the classifiers can be established.

The distance or divergence between probability distributions is central to the estimation

of the dissimilarity between distributions in statistics, information theory, and many other

fields. Many machine learning classification and clustering algorithms for example employ

a variety of dissimilarity measures. The most popular and often used measures are the

squared Euclidean distance and Kullback-Leibler divergence. The Rényi-α and other α-

divergence measures are generalized alternative divergence measures that may provide more

robust solutions with respect to outliers and improved accuracy (Cichocki and Amari, 2010).

It is particularly very straight forward to compute the Rényi-α divergence for the beta

distribution.

Definition 3.6.1. Let f and g be continuous probability densities over R and α ∈ R+\{1}.

The Rényi-α divergence of order α is defined by

Rα(f‖g) =
1

α− 1
log

∫
fα(x)g1−α dx

The Rényi-α divergence is asymmetric i.e Rα(f‖g) 6= Rα(g‖f), however it can be sym-

metrized by taking the average of the two way measures: Rsym = (Rα(f‖g) +Rα(g‖f))/2.
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Letting Dα(f‖g) =
∫
fα(x)g1−α dx, and given two beta distributions f(x) = B(x; a, b)

and g(x) = B(x; c, d) it can be shown that:

Dα(f‖g) =

(
B(c, d)

B(a, b)

)1−α B(c1, d1)

(B(a, b))2

Dα(g‖f) =

(
B(a, b)

B(c, d)

)1−α B(a1, b1)

(B(c, d))2

where a1 = a+(c−a)α, b1 = b+(d−b)α, c1 = c+(a−c)α and d1 = d+(b−d)α. Classifiers

with higher values of Rα are considered to be of higher quality.

3.7 Numerical Experiments

This section presents performance comparison of 8 classification algorithms on the Pima

Indians diabetes and the Forest Covertype datasets from UCI. In the experiments, the active

learning procedure presented in this chapter is mainly used as a tool to train the algorithms

to ensure that all are trained on their “desired” training set. Training the algorithms on

their desired training set is considered in this thesis as presenting a suitable condition for

fair comparison of the classifiers. The active data selection procedure will find a very useful

application in chapter 5.

Ten performance measures are used for comparing the classifiers: The Bayes Risk

(B.Risk), ROC curves, area under ROC curves ( AUC and pAUC), PR curves, area under

PR curves (AUPR0.5 and IAUPR), maximum F1-scores at π = 0.5 (Max.F10.5), mean max-

imum F1-scores for a range of values of π (Mean.Max.F1), and the (symmetric) Rényi-α

divergence measure (Rα). These measures are all computed from the beta likelihood model

for the prediction probabilities. All experiments are performed with the following settings:

α = 0.5 for Rényi divergence, π = 0.5, λ01/λ10 = 1 for Bayes Risk, pAUC is reported for

false positive lower limit set at r = 0 and upper limits s = 0.01, 0.02, 0.05, 0.1, 0.2. PR

analysis is carried out for π = 0.1, 0.2, . . . , 0.9.
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3.7.1 Base Learning Algorithms

The 8 classification algorithms are respectively: Support Vector Machine (svm), Recursive

Partitioning and Regression Trees (tree), logistic regression (log), Näive Bayes (nb), Linear

discriminant analysis (lda), Quinlan’s C5.0 rule-based classifier (c50), Neural network (nnet)

and k-nearest neighbor (knn). All algorithms are trained with defualt parameter settings.

The Hausman specification test is applied to decide which of LDA or LR active learning

schemes to adopt for training. This procedure is repeated 5 times on independent subsets of

the datasets. Thus each classifier submits five distinct prediction probabilities to the DM.

The performance measures are averaged over these five experiments.

3.7.2 Results

Tables 3.1 and 3.2 shows the performance of the classifiers on the two datasets considered.

Except for the B.Risk, higher values indicates better performance. The five columns before

the last of each table are values of pAUC for different false positive rates s. The interest

here is to lookout for classifiers with high pAUC values for very small s. The higher the

value, the more likely the classifier will detect the positive class. The last column represents

overall ranking of the classifiers with the top 3 boldfaced. However, this does not indicate

they are superior across all performance measures. The ranking is done in the following

manner: First all the classifiers are ranked with respect to each performance metric. The

scores are then added and ranked.

Figures 3.3 and 3.4 shows the ROC and PR curves for the two datasets. The ordering of

the classifiers displayed in the legend is by decreasing AUC and IAUPR respectively. The

following points can be made from observing the results in the tables and figures.

1. No Free Lunch Theorem: None of the algorithms are always the best, even for this

two dataset experiment.
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2. Learning algorithms with the smallest Bayes risk (probability of error) do not nec-

essarily have their ROC or PR curves above those with higher risk. For example in

Table 3.1 Neural network has the smallest risk, but Figure 3.3 shows that its curve is

not the dominating curve. Interestingly, in Table 3.1 Quinlan’s C5.0 rule-based classi-

fier has the highest error rate but its ROC and PR curves are above Näive Bayes (nb)

and decision trees (tree) classifiers with smaller error rates. This shows the usefulness

of using several performance measures to evaluate classifiers.

3. Decision trees classifier performed well on the forest dataset but worst on the pima

dataset. The reverse is true for k-nearest neighbor. Näive Bayes performance was

consistently very poor.

4. Logistic regression, SVM, Neural network and Linear discriminant analysis have ex-

cellent performance on at least one dataset.

5. The values of the performance measures presented in tables are very close to some

published results in the machine learning literature (Caruana and Niculescu-Mizil,

2006; Huang and Ling, 2005). This indicates that, modeling the prediction proba-

bilities by the beta distribution is a viable approach to computing the performance

measures.

Table 3.1: Performance Measures on Pima Indian Data

Performance Metric pAUC at s

Classifier B.Risk AUC AUCPR.5 IAUCPR Max.F1.5 Mean.Max.F1 Rα 0.01 0.02 0.05 0.1 0.2 Rank

svm 0.21 0.70 0.69 0.65 0.68 0.65 0.31 0.04 0.07 0.13 0.21 0.32 5
tree 0.23 0.62 0.59 0.57 0.64 0.60 0.18 0.03 0.05 0.09 0.14 0.23 1
log 0.13 0.75 0.75 0.71 0.72 0.69 0.28 0.05 0.10 0.17 0.25 0.37 7
nb 0.13 0.64 0.64 0.61 0.67 0.63 0.13 0.03 0.05 0.10 0.15 0.24 2
lda 0.13 0.75 0.75 0.71 0.72 0.69 0.29 0.05 0.10 0.17 0.26 0.37 8
c50 0.30 0.67 0.66 0.62 0.67 0.64 0.25 0.03 0.05 0.11 0.18 0.28 3
nn 0.11 0.71 0.71 0.67 0.70 0.67 0.19 0.05 0.08 0.13 0.20 0.31 6
knn 0.20 0.70 0.69 0.65 0.68 0.65 0.32 0.04 0.07 0.14 0.21 0.32 5
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Table 3.2: Performance Measures on Forest Data

Performance Metric pAUC at s

Classifier B.Risk AUC AUCPR.5 IAUCPR Max.F1.5 Mean.Max.F1 Rα 0.01 0.02 0.05 0.1 0.2 Rank

svm 0.18 0.82 0.83 0.80 0.77 0.75 0.90 0.19 0.26 0.36 0.46 0.57 7
tree 0.49 0.74 0.75 0.72 0.70 0.68 1.31 0.16 0.23 0.34 0.43 0.51 5
log 0.07 0.95 0.94 0.92 0.87 0.85 1.35 0.42 0.49 0.60 0.69 0.78 8
nb 0.08 0.70 0.70 0.66 0.69 0.66 0.15 0.05 0.07 0.13 0.19 0.28 2
lda 0.25 0.72 0.73 0.70 0.70 0.67 0.67 0.09 0.14 0.23 0.31 0.42 3
c50 0.24 0.76 0.76 0.73 0.72 0.70 0.79 0.13 0.18 0.27 0.36 0.47 4
nn 0.23 0.79 0.80 0.77 0.75 0.73 1.01 0.19 0.25 0.35 0.44 0.55 6
knn 0.39 0.63 0.59 0.57 0.61 0.58 0.69 0.04 0.07 0.13 0.20 0.30 1
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Figure 3.3: ROC and PR curves for Pima Indian Data

3.8 Related Work

The STATLOG project (King et al., 1995) is one of the earliest evaluation study of learning

algorithms. Since then some of the algorithms used in the project have been improved and

new ones have been developed. A wide range of learning algorithms now exist today and its
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Figure 3.4: ROC and PR curves for Forest Cover Data

not surprising various empirical comparison methods have appeared in the literature. Caru-

ana and Niculescu-Mizil (2006) performed a similar large-scale empirical comparison of ten

learning algorithms using eight performance measures such as the classification accuracy,

F1-score, AUC average precision etc. Bradley (1997) uses ANOVA to test statistical differ-

ence in accuracy and AUC of different machine learning algorithms. The AUC is similarly

used in Huang and Ling (2005) to evaluate learning algorithms. The recall, false positive

rate and precision are used in Menzies et al. (2004) to compare detectors of software defects.

Brazdil et al. (2008) uses meta-learning technique to compare and rank learning algorithms.

Alpaydm (1999) presents a 5× 2 cv F test for comparing learning algorithms.

All these studies have a few things in common in their approach to comparison/ranking:

• If the learning algorithms are trained and tested on different subsets of the input

space it may become difficult to apply these methods to compare their performance.

Consequently, their application in distributed learning environment where data cannot
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be easily moved to a central location is limited.

• Scalability of the methods is not assured.

• All algorithms are trained on the same training examples. Some training examples

may not be suitable for learning by some algorithms. By making the algorithms

take part in selecting training examples, they may better generalize on unseen test

examples.

3.9 Summary

This chapter presented several principled methods to deal with the problem of data and

classifier selection. Two simple, fast and effective active learning techniques are used to train

a collection of learning algorithms using a small set of carefully selected training examples.

The selection of examples is done through a joint action of the active learner and classifier,

thus the acquired training set can be considered as the “desired” or most informative train-

ing set for the classifier. Through a Bayes decision framework, the prediction probabilities

from each classifiers are modeled by the beta distribution from which the performances of

the classifiers are evaluated and ranked.
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Chapter 4: Optimal Integration of Classification Models

This chapter introduces three methods for integrating the outputs of a collection of classifiers

optionally selected using the Bayes active data and algorithm selection method described

in chapter 3. The uniqueness of the presented methods lies in their ability to incorporate

additional information infered from the data to improve accuracy of the ensemble classifier.

A generative Bayesian model and inference is proposed for learning the information and

combining the classifiers. Specifically, a variational Bayesian factor common spatial pattern

(VBFACSP) is proposed for inferring hidden informative feature vectors from the training

set and three new combinations schemes are proposed to integrate the outputs of the clas-

sifiers. The first ensemble method uses the classical expectation-maximization (EM) opti-

mization algorithm to estimate classifier combination weights while the last two approaches

uses variational Bayesian inference with automatic relevance determination (ARD) hirar-

chical priors. A nice feature of the variational ensemble scheme is that the preprocessing

step of algorithm selection presented in chapter 3 is optional since unreliable classifiers can

be pruned automatically during the combination step.

4.1 Introduction

To the best of the knowledge of the author, the idea of incorporating (class specific) hidden

information about each data point in an ensemble combination scheme has not been ex-

plored before. The obvious question one might ask is why bother searching for such hidden

information. To answer this question, first one may observe that the learning process of

most classification algorithms may be seen as learning by ignoring hidden variables, or by

eliminating them through marginalization or “averaging out”. Therefore, some vital infor-

mation useful for classification may not be taken advantage of. A second observation in the
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classification process can be summarized as follows:

1. Some classifiers are good in classifying certain data points and worse at others i.e

they perform best on some subsets of the dataspace and worse on others. Relevant

information from other sub areas may help in deficient areas.

2. Different classifiers may attach different costs to different misclassification errors. Dif-

ferent data points may carry different misclassification costs.

3. Some data points are inherently easy or difficult to classifier. A difficult or ambiguous

data point may be classified incorrectly even by the most accurate classifier. The

term “classification difficulty” used here refers to some hidden intrinsic property of

the data point reflecting its ease to be classified by any given algorithm. How easy it

is to classify a given data point depends on this intrinsic property.

4. Given sufficient information, it is possible to determine the true class of some misclas-

sified samples by a classifier.

Based on these observations, it is assumed that there genuinely exists a unitvariate or

multivariate hidden variable e that encodes the true nature of a data point with respect

to its class membership. That is, the hidden variable represents some evidence that maps

each data point x to its corresponding true class t. This hidden variable will be referred to

as classification evidence or simple evidence. A generative Bayesian graphical model and

inference is formulated to infer the classification evidence and parameters of the proposed

ensemble models. While most of the presented results are valid for general multiclass

problems, the focus is on binary classification tasks.

4.2 Bayesian Graphical Evidence and Ensemble Model

Graphical models provide a framework for representing dependencies among variables of a

statistical modelling problem. The nodes in the graph correspond to variables while the
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edges represent the dependencies among them. Thus a directed edge from a node A to a

node B denotes that variable B depends on the value of variable A. Node A is said to be

the parent of node B. Circles are used to represent random variables while square boxes

denotes deterministic variables. Rounded boxes or plates enclosing one or more variables

denotes repetitions of the variables. Each node represents a conditional probability density

that defines the distribution of the variable given the values of its parents. The density

at the node may be parametrized by a set of parameters θ. All models in this section are

visualized as directed acyclic graphs also known as probabilistic directed acyclic graphical

models or simply Bayesian probabilistic networks.

Bayesian probabilistic networks have gained a lot of popularity over the past few years.

This is not surprising as these networks have been shown to be effective tools for deci-

sion making and reasoning under uncertainty. For example they perform well in complex

decision-making domains such as medical diagnostics, image analysis, robot control etc.

Further, the graphical nature of these networks makes the learning process typically com-

prehensible to humans.

The work presented in this section focuses on learning probabilistic networks where

some of the variables are hidden. This situation is not unusual, for the real world is rarely

fully observed. In medical diagnosis for example, the actual disease or cause of the disease

may not be known even at the end of some treatment. More generally, in classification the

observed input attributes may provide only partial evidence for classification. In the real

world it is often not possible to observe all attributes and not all of them may be relevant.

In this regard, one can intuitively envision the existence of some unknown mechanism

that transforms the attributes into a single variable or a small group of variables that

embeds most of the information about true classification. Equivalently, one can think

of the existence of a ground truth model that transforms the input into a variable with

complete information on classification. While this variable remain hidden, classical learning

algorithms with certain learning biases or defects may not have complete access to it.

Consider for example users online preferences or ratings of certain products such as movies,
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books, DVDs. The hidden variable may represent a user profile, such as the users affinity

for a certain item or group of items which is not directly observable. Access to this variable

could help improve the performance of some systems such as a recommender system. The

goal here is simply to draw inference from this variable through a probabilistic network for

classification purposes, the meaning or interpretation of this variable is irrelevant to this

work.

In learning probabilistic networks, it is very important to specify the correct network

structure for the learning algorithm uses it as a strong source of prior information about

the domain. The assumptions made here is that the network structure is known with the

following causal relationships among the main variables of the model.

1. The observed data x depends on the classification evidence e. This relationship can be

modeled as linear or non-linear. It is useful to think of this relationship as some mech-

anism described by the graphical model structure in which the evidence is responsible

for generating the observed data.

2. The observed output t̂ from each classifier depends on several factors including:

(a) the classification evidence e

(b) the true class t

(c) conditionally independent given the true class

(d) reliability and bias of the classifier

Given a training set Dl = {(x1, t1), . . . , (xn, tn)} ∈ X × Y on which a set of L classifiers

H = {h1, . . . , hL} have been trained and used to produce the predictions Ŷ = {t̂1, . . . , t̂L} for

each data point in Dl. The problem is to predict the class of a new data point x∗ ∈ X based

on the predictions of the base classifiers. Figure 4.1 shows the probabilistic graphical model

with the assumed causal relationships. In the figure, observed variables are shaded grey

while hidden variables are unshaded. Square boxes with numbers corresponds to repetitions

of the respective random variables appearing in the box.
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Figure 4.1: Graphical Model for Classification Evidence and Multiple Classifier Integration.

From the graphical model, the joint distribution of the variables can be written as

p(x, t, t̂, e,θ) =
1∏
t=0

p(xt|et,ϕt,A)p(et|Λt)p(t̂|et,w,b)p(A|α)p(ϕt)p(Λt)p(w)p(b) (4.1)

where θ = (ϕ,Λ,A,α,w,b) and p(at) ≡ p(a|t). The joint distribution can be split into two

model classes: An evidence model and an ensemble model with specific parametric models

specified as follows

1. Evidence Model

p(x, t, t̂, e,ϕ,Λ,A,α) =

1∏
t=0

p(xt|et,ϕt,A)p(et|Λt)p(A|α)p(ϕt)p(Λt)
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where x is assumed to be generated by

xt = Aet + εt, t = 0, 1 (4.2)

with A a p×K basis matrix. The K dimensional evidence e and p dimensional noise

ε vectors are assumed to follow a zero-mean Gaussian distributions,

et ∼ NK(O,
[
Λ−1

]t
), (4.3)

εt ∼ Np(O,
[
ϕ−1

]t
) (4.4)

where Λ = diag(λ1, . . . , λK) and ϕ = diag(φ1, . . . , φp) are diagonal matrices. Note

that a non-linear relationship between x and e can equally be specified. A linear rela-

tionship is assumed here for computational simplicity and readily available principled

statistical inference methods.

A model structure (equations 4.2) having the evidence e depending on the class t

as illustrated in figure 4.1 is equivalent to the probabilistic common spatial patterns

(PCSP) model (Wu et al., 2009). Common spatial pattern (CSP) is a widely used

feature extraction method applied in brain-computer interface systems for discrimi-

nating between positive and negative classes in electroencephalogram (EEG) data. It

discriminates between the two classes by maximizing the variance of one class and

minimizing the variance of the other.

If the dependency condition between the evidence and class is relaxed, then the model

structure reduces to standard factor analysis with the exception that the distribution

of the latent factor is zero mean Gaussian with non-identity covariance matrix Λ.

This modified factor model is useful in that, the parametrization represented by Λ

serves as an ARD prior, which helps to prune irrelevant factors.

A variational Bayesian algorithm is presented for the estimation of the maximum

76



likelihood of the parameters of the two model structures. However, to keep the com-

putations simple, subsequent analysis is restricted to the factor model. The class

dependent model is reserved for feature work.

2. Ensemble Model

p(t̂, t, e,w,b) =
1∏
t=0

p(t̂|et,w,b)p(w)p(b)

Because the output of the base classifiers can be binary t̂ = 0, 1 or continuous i.e

class scores or class posterior probabilities t̂ = p(t = 1|x) two modeling strategies are

considered.

(a) Binary predictions

The class predicted by each classifier given the true class t and the classification

evidence e is modeled by the logistic function

p(t̂ = t|e,w,b) =
1

1 + e−we−b
(4.5)

w is a L×K matrix whose rows weights the classifiers and columns the evidence

while b is the vector of biases for each classifier.

(b) Class posterior probabilities

For class probabilities, a new vector is created by a concatenation of the classifi-

cation evidence and the predicted probabilities, i.e Φ = (t̂, e) ∈ RL+K . The true

label t is equally modeled by the logistic function

p(t = 1|Φ,w,b) =
1

1 + e−wTΦ−b
(4.6)

In this case, w is a vector of weights for the classifiers and evidence.
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Inference for the evidence and ensemble models can be performed jointly or decoupled

into two successive steps: evidence then ensemble. Joint inference increases the compu-

tational complexity of the whole process and it might not be clear initially if any gain in

performance will be archived. However, the full representational power of the graphical

model is captured by a joint analysis. Any complex correlation patterns between the two

models is explicitly modeled and thus one might suspect it could lead to more reliable

predictions. The decoupled model inference on the other hand, is computationally simple

and easy to implement. Further, it allows the same evidence model to be used for different

ensemble learning schemes.

For computational reasons, the easier decoupled model structure is implemented in this

thesis while joint model structure is reserved for future investigation. The next section

presents a variational Bayesian method for estimating the classification evidence of the

decoupled system.

4.3 Variational Bayesian Inference for Evidence Model

Factor analysis (FA) is a powerful multivariate analysis technique that is used to uncover

or identify common hidden characteristics in a set of variables and to reduce the set to a

smaller number of derived variables called factors. That is, it explains a multivariate data set

x ∈ Rp in terms of K < p factors that captures the joint correlation or dependencies between

the p observed variables. The patterns uncovered by FA can help classify the original

data. The application of FA range in various fields, from psychology, physics, economics,

bioinformatics, machine learning, natural language processing and social sciences.

The maximum likelihood Expectation Maximization (EM) and Variational Bayesian

(VB) algorithms are the two most popular methods for learning FA (Dempster et al., 1977;

Ghahramani and Beal, 1999). EM methods work well in many substantive problems, but

can perform poorly when applied to large data sets. More importantly, EM methods do not

take into account model complexity. Thus very complex models are not penalized, which
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may lead to overfitting. More over, EM methods rely on very costly procedures such as

cross-validation to determine the best model size and structure (Ghahramani and Beal,

1999). Fully Bayesian approaches on the other hand overcome these problems by treating

the parameters of the model as unknown random variables and giving them priors to express

the model assumptions. By averaging out the unknown variables, very complex models are

penalized. Thus Bayesian methods provide a natural data-driven method for ensuring that

the model does not overfit the data.

The evidence model given by equation 4.2 is equivalent to the standard factor analysis

model except that the latent factors have non-identity covariance matrix and are class de-

pendent. The factor loadings on the other hand is shared between the classes. It can be

seen as a mixture of factor models, where each component of the mixture is a class distri-

bution. This model is commonly known as probabilistic common spatial patterns (PCSP).

Therefore a standard VB treatment of FA can be applied with just a few modifications

(Bishop, 1999; Lappalainen and Honkela, 2000).

4.3.1 Class Independent Evidence Model

This section presents a variational Bayesian algorithm for the evidence model assuming that

the classification evidence e is independent of the true class t. The presented algorithm can

be easily extended to the class dependent case. The graphical model for class independent

evidence model is shown in Figure 4.2. Small square boxes represents the fixed parameters

of the model.

From the assumptions stated for the evidence model (equation 4.2), the likelihood of

the data is given by

p(X|e,A,ϕ) =

n∏
i=1

Np(xi|Aei, ϕ−1). (4.7)

Here X denotes the n × p design matrix and e is a n × K matrix of factors. The prior
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Figure 4.2: Class Independent Evidence Model.

models for the unknown variables are specified as

p(A|α) =

K∏
k=1

Np(ak|O, α−1
k I), (4.8)

p(α) =
K∏
k=1

G(αk|aαk , bαk ), (4.9)

p(ϕ) =

p∏
j=1

G(φj |aφj , b
φ
j ), (4.10)

p(Λ) =
K∏
k=1

G(λk|aλk , bλk), (4.11)

where G(x|a, b) denotes a gamma distribution having mean 〈x〉 = a/b and 〈log x〉 = ψ(x)−

log b with ψ(x) the digamma function. ak is a vector corresponding to the k’th column of

the matrix A. Since the columns of A are given zero mean Gaussian distribution with the

parameter αk controlling the precision, if the posterior distribution over α concentrates on

large values, then the variance of the k’th column goes to zero thus shutting off the column.

This can be seen as an ARD prior which automatically shut off irrelevant factors and the

number of factors K can be determined. The same reasoning applies to the Λ prior.
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VB methods approximate the true posterior distribution p(θ) of the unknown variables

θ = (e,A,ϕ,α,Λ) using a much simpler distribution q(θ) which is assume to factorize with

respect to the unknown variables. Thus q(θ) factorizes as

q(θ) = q(e)q(A)q(ϕ)q(α)q(Λ).

This assumption is made purely to simplify tractability of the computations (Bishop and

Nasrabadi, 2006). In the factorized form, all the factorized posteriors q(θi) are usually of

the same form as the priors p(θi). This is one of the main objectives of variational Bayesian

method as it greatly facilitates the derivation of the q distributions through conjugacy. The

posterior q(θ) will generally differ from the true posterior p(θ) and is called variational

posterior. It will be optimized by alternatively updating each component of the variational

posterior to produce a best approximation to the true posterior. This is done by maximizing

the lower bound of the marginal log-likelihood of the model obtained via Jensen’s inequality:

log p(X) = log

∫
p(X,θ) dθ

≥
∫
q(θ) log

(
p(X,θ)

q(θ)

)
dθ

= 〈log p(X|θ)〉 −
〈

log

(
q(θ)

p(θ)

)〉
= F(q), (4.12)

where 〈·〉 denotes the expectation over the distribution q. The first term of the variational

lower bound F(q) corresponds to the likelihood term of the model while the second term is

the Kullback-Leibler (KL) divergence between the true posterior p(θ) and the variational

posterior q(θ). It can be seen from equation 4.12 that maximizing F(q) is equivalent to

minimizing the KL divergence. Thus the KL term serves as a penalty term which penalizes

complex models.

To obtain the variational posterior q(θi) for any of the variables θi, the expectation of the

complete log-likelihood log p(X,θ) is taken with respect to all other variational posteriors
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q(θj), j 6= i. The complete log-likelihood of the model is given by

log p(X,θ) = log p(X|e,A,ϕ) + log p(e|Λ) + log p(A|α) + log p(ϕ) + log p(α) + log p(Λ)

=
n

2
log |ϕ| − 1

2

n∑
i=1

(xi −Aei)
Tϕ(xi −Aei) +

n

2
log |Λ| − 1

2

n∑
i=1

eTi Λei

+
p

2

K∑
k=1

logαk −
1

2

K∑
k=1

αka
T
k ak +

K∑
k=1

(aαk − 1) logαk −
K∑
k=1

bαkαk

+

p∑
j=1

(aφj − 1) log φj −
p∑
j=1

bφj φj +
K∑
k=1

(aλk − 1) log λk −
K∑
k=1

bλkλk + constant,

(4.13)

where |A| is the determinant of the matrix A. The distribution and update rules for the

individual components of the variational posterior is presented in Algorithm 4.

Each update of the variational posteriors in Algorithm 4 is guaranteed to increase the

variational lower bound F(q). Thus, the posteriors are updated iteratively until no signif-

icant change in the lower bound is observed. The lower bound can also be used for model

selection. Models with higher F(q) and hence lower KL are preferred. With the variational

posteriors determined, F(q) can be computed as

F(q) = 〈log p(X|θ)〉 −KL(q(θ)‖p(θ)) (4.14)

with

〈log p(X|θ)〉 = −np
2

+
1

2

p∑
i=1

〈log φj〉 −
p∑
j=1

(âφj − b̂
φ
j 〈φj〉) (4.15)
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Algorithm 4: Variational Bayesian Inference for Class Independent Evidence
Model

Input : Observed data X, stopping criteria
Output: Variational posterior q(θ)

Initialize moments of variational posterior q(θ) ;

repeat
1 Update q(e) ;

q(e) =

n∏
i=1

NK(ei|mi
e,Σe), Moments

Σe =
(
〈Λ〉+

〈
ATϕA

〉 )−1

mi
e = Σe 〈A〉T 〈ϕ〉xi

2 Update q(A)

q(A) =

p∏
j=1

NK(aj |mj
a,Σ

j
a), Moments

Σj
a =

(
〈φj〉

n∑
i=1

〈
eie

T
i

〉
+ 〈α〉

)−1

mj
a = Σj

a 〈φj〉
n∑
i=1

xij 〈ei〉

3 Update q(α)

q(α) =
K∏
k=1

G(αk|âαk , b̂αk ), Moments

âαk = aαk +
p

2

b̂αk = bαk +

〈
aTk ak

〉
2

〈α〉 = diag

(
âα

b̂α
, k = 1, . . . ,K

)
4 Update q(ϕ)

q(ϕ) =

p∏
j=1

G(φj |âφj , b̂
φ
j ), Moments

âφj = aφj +
n

2

b̂φj = bφj +
1

2

n∑
i=1

〈
(xij − aTj ei)2

〉
〈ϕ〉 = diag

(
âφ

b̂φ
, j = 1, . . . , p

)
5 Update q(Λ)

q(Λ) =
K∏
j=1

G(λk|âλk , b̂λk), Moments

âλk = aλk +
n

2

b̂λk = bλk +
1

2

( n∑
i=1

〈
eie

T
i

〉 )
(k,k)

〈Λ〉 = diag

(
âλ

b̂λ
, k = 1, . . . ,K

)
until stopping criteria;
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and

KL
(
q(θ)‖p(θ)

)
=
〈
KL

(
q(e)‖p(e|Λ)

)〉
q(Λ)

+
〈
KL

(
q(A)‖p(A|α)

)〉
q(α)

+KL
(
q(α)‖p(α)

)
+KL

(
q(φ)‖p(φ)

)
+KL

(
q(Λ)‖p(Λ)

)
. (4.16)

The expression for KL is given in appendix B. During optimization, hyperparameters of the

model i.e the fixed gamma parameters a and b can be set to small values such 10−6. An

alternative approach is to perform hyperparameter optimization, i.e find hyperparameter

values that maximizes the expected complete log-likelihood. This can be done by standard

optimization algorithms such the Newton-Raphson algorithm.

The EM and VB methods are known to be very slow to converge. The maximization

of the lower bound in VB is carried out iteratively, one component update at a time. In

addition, observation of Algorithm 4 shows that the variables in the factorized distribution

are strongly coupled even though VB approximation assumed independence between the

variables. Recent techniques such as the parameter expanded VB methods (Luttinen and

Ilin, 2010) have been proposed to speed up the learning process. The general idea of the

method is to introduce auxiliary parameters in the original model to reduce the effect of

strong coupling between the variables.

4.3.2 Class Dependent Evidence Model

This section simply extends the VB estimation of the class independent evidence model to

the class dependent model. Figure 4.3 shows the class dependent model which emphasis

that the factor loading A is shared between the classes. The distribution and update rules

for the individual components is presented in Algorithm 5. Observe that the covariance
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matrix of the variational distribution of the factor loading A is the pool covariance matrix

of the two class distribution and the mean is simply the sum.
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Figure 4.3: Class Dependent Evidence Model.

4.4 Optimal Bayesian Combination of Multiple Classifiers

The primary goal of combining multiple classifiers is to improve classification accuracy. To

archive this goal the combination method must make the best use of the outputs of the clas-

sifiers in addition to any prior information that may be available. In a combination scheme

made up of a list of diverse heterogeneous classifiers, the classifiers may differ significantly

in reliability or strength. The list could be made up of multiple imperfect classifiers, such

as in combining decision from human decision makers. In addition, the base classifiers are

usually black boxes and one rarely have access to a reliable estimate of the confidence of

their decisions. Combining multiple classifiers in the presence of such uncertainty can be

optimally archived through a Bayesian inference. Bayesian learning provides a principled

statistical framework for knowledge integration and for inferring the appropriate structure
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Algorithm 5: Variational Bayesian Inference for Class Dependent Evidence Model

Input : Observed data X, stopping criteria
Output: Variational posterior q(θ)

Initialize moments of variational posterior q(θ) ;

repeat
1 Update q(e), for each t = 0, 1 ;

q(et) =
n∏
i=1

NK(eti|
[
mi
e

]t
,Σt

e), Moments
Σe =

(
〈Λ〉+

〈
ATϕA

〉 )−1

mi
e = Σe 〈A〉T 〈ϕ〉xi

2 Update q(A) ;

q(A) =

p∏
j=1

NK(aj |mj
a,Σ

j
a), Moments

Σj
a
−1

=

1∑
t=0

〈
φtj
〉 n∑
i=1

〈
eie

T
i

〉t
+ 〈α〉

mj
a =

1∑
t=0

Σj
a

〈
φtj
〉 n∑
i=1

xtij
〈
eti
〉

3 Update q(αt), for each t = 0, 1 ;

q(α) =
K∏
k=1

G
(
αtk

∣∣∣[âαk ]t, [b̂αk ]t), Moments

âαk = aαk +
p

2

b̂αk = bαk +

〈
aTk ak

〉
2

〈α〉 = diag

(
âαk
b̂αk

)
4 Update q(ϕ), for each t = 0, 1 ;

q(ϕt) =

p∏
j=1

G
(
φtj

∣∣∣[âφj ]t, [b̂φj ]t
)
, Moments

âφj = aφj +
n

2

b̂φj = bφj +
1

2

n∑
i=1

〈
(xij − aTj ei)2

〉
〈ϕ〉 = diag

(
âφj

b̂φj

)
5 Update q(Λ), for each t = 0, 1 ;

q(Λt) =
K∏
j=1

G
(
λtk

∣∣∣[âλk ]t, [b̂λk ]t
)
, Moments

âλk = aλk +
n

2

b̂λk = bλk +
1

2

( n∑
i=1

〈
eie

T
i

〉 )
(k,k)

〈Λ〉 = diag

(
âλk
b̂λk

)
until stopping criteria;
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of a model by penalizing very complex model.

In the previous section, it was seen that in Bayesian inference, hierarchical priors can

be constructed to automatically determine model structure or to determine the relevance

of inputs to the model without need for testing all possible model structures. Inputs found

to be irrelevant are automatically switch off. Such priors are called automatic relevance

determination (ARD) (MacKay et al., 1994) hierarchical priors. This section presents a

similar Bayesian framework for optimal integration of a set of classifiers of varying reliability.

Three combination schemes using the parametric model assumptions specified by equa-

tions 4.5 and 4.6 are presented. The first method obtains point estimates of the combination

weights by the classical EM algorithm while the other two methods apply a full Variational

Bayesian approach to obtain a posterior distribution over the weights. A ARD hierarchical

prior is placed on the distribution of weights in the VB methods to switch off irrelevant

classifiers in the ensemble. Note that, conceptually ARD prior is different from pruning.

In pruning, if a member of the ensemble is completely irrelevant, then it is dropped from

the ensemble and its contribution is zero. However, ARD technically allows all members to

interact to some degree.

The ensemble models are derived for class independent and dependent classification

evidence separately. However, only the general structure of the class dependent case is

presented. The graphical models for the two cases is shown in Figure 4.4. Note that in the

decoupled evidence and ensemble model inference procedures, the evidence is considered an

observed random variable in the ensemble model.

4.4.1 An EM Method for Integrating Classification Models

The EM ensemble learning method presented in this section assumes that the output of the

based classifiers are binary. The continuous case is treated under VB methods.
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Figure 4.4: Graphical Model for Multiple Classifier Integration.

4.4.1.1 The EM algorithm

The EM algorithm (Dempster et al., 1977) attempts to find the maximum likelihood esti-

mates of parameters of a model by marginalizing the likelihood of the observed data over

hidden variables. Hidden variables are introduced into the model to make a complex and

intractable likelihood easier to compute. Specifically, if θ is a set of parameters of a model

and the task is to find the value of θ that maximizes the likelihood p(x;θ)1. EM assumes

access to some hidden variables z is available such that maximizing p(x, z;θ) is much easier.

Once priors p(z;θ) for the hidden variables have been defined, one recovers the likelihood

p(x;θ) by averaging out the hidden variables:

p(x;θ) =

∫
p(x, z;θ) dz =

∫
p(x|z;θ)p(z;θ) dz.

1The notation p(x;θ) is used to indicate θ is a parameter, if θ is a random variable the notation p(x|θ)
is used
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In most problem, the interest is on the posterior of the hidden variables p(z|x;θ), as they

can be ascribed domain specific semantics to them. By application of Bayes theorem, the

posterior of the hidden variable can be obtained as

p(z|x;θ) =
p(x|z;θ)p(z;θ)

p(x;θ)
.

However in most cases, the integral above is either impossible or very difficult to compute

in close form. Assuming knowledge of the posterior p(z|x; θ) is the cornerstone of the

EM algorithm. Introducing any arbitrary distribution q(z) over the hidden variables, EM

maximizes the log-likelihood function through an auxiliary lower bound F(q,θ) given by

log p(x;θ) = log

∫
q(z)

p(x, z;θ)

q(z)
dz

≥
∫
q(z) log

(
p(x, z;θ)

q(z)

)
dz = F(q,θ). (4.17)

The inequality above becomes an equality when q(z) equals the true posterior p(z|x;θ).

The EM is a two step iterative algorithm that maximizes the lower bound F(q,θ) and

hence the log-likelihood. The standard EM iteration performs coordinate ascent on F(q,θ)

as follows:

E-Step

qnew(z) = argmax
q(z)

F(q,θold). (4.18)

The maximum occurs when KL(q(z)‖p(z|x;θold)) = 0 i.e when q(z) = p(z|x;θold),

thus E-Step basically computes p(z|x;θold)

M-Step

θnew = argmax
θ
F(qnew,θ). (4.19)
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A different expression of the lower bound F(q,θ) can be obtain by substituting q(z) =

p(z|x;θold) into the lower bound:

F(q,θ) =

∫
p(z|x;θold) log p(x, z;θ) dz −

∫
p(z|x;θold) log p(x, z;θold) dz (4.20)

= Q(θ,θold) + Entropy. (4.21)

Because the Entropy term is constant with respect to θ, the function Q(θ,θold) which is the

expectation of the complete log-likelihood (log-likelihood of data and hidden variables) is

the function to maximized in the M-Step. Thus the EM computes p(z|x;θold) in the E-Step

and maximizes Q(θ,θold) with respect to θ in the M-Step.

4.4.1.2 Ensemble Method with EM

Let t̂ij ∈ {0, 1} be the class assigned by classifier hj ∈ {h1, . . . , hL} for the data point xi

with classification evidence ei. Recall that by the assumptions of the model, the predictions

depends on the true class ti, the classification evidence ei, the reliability and bias of the

classifier and are modeled by the logistic function:

p(t̂ij |ti, ei,wj , bj) = p(t̂ij = ti|ei; wj , bj) = σ(wT
j ei + bj),

where σ(x) = 1/(1 + e−x) and wj is a K-dimensional weight or reliability vector for clas-

sifier j. Using Bayes theorem and the independence condition of the graphical model, the

posterior probability of the true class given the the predictions can be written as

p(ti|t̂ij) =
p(t̂ij |ti, ei; wj , bj)p(ti)

1∑
ti=0

p(t̂ij |ti, ei; wj , bj)p(ti)

. (4.22)
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The predictions can be grouped into an n × L matrix Y = {t̂ij , i = 1, . . . n, j = 1, . . . L}.

So if t̂i is the i’th row of the matrix Y, then using the conditional independence assumption

gives

p(ti|t̂i) ∝ p(ti)
L∏
j=1

p(t̂ij |ti, ei; wj , bj) (4.23)

The EM algorithm will be applied to obtain the MLE of the parameters of the model

θ = (w,b) where w ∈ RL×K is a matrix containing the combination weights for each

classifier and b ∈ RL is the vector of their biases. To derive the EM method for combining

the outputs of the base classifiers, it is assumed that the true class labels ti are the hidden

variables in the EM algorithm. Also it should be noted that in the presented EM ensemble

method, the parameters θ are deterministic and not random and should be treated as such

in the graphical model in Figure 4.4.

Ignoring the normalization constant, the EM algorithm proceeds as follows

E-Step: compute p(ti|t̂i) = p(ti)
∏L
j=1 p(t̂ij |ti, ei; wj , bj)

M-Step: maximize the auxiliary function Q(w,b), which is the expectation of the complete

log-likelihood with respect to the class posterior p(ti|t̂i) computed in the last E-Step. Thus

Q(w,b) = 〈log p(Y, t, e; w,b)〉

= 〈log p(t)p(Y|t, e; w,b)〉

=

〈
log

n∏
i=1

p(ti)
L∏
j=1

p(t̂ij |ti, ei; wj , bj)

〉

=

〈
n∑
i=1

log p(ti) +

n∑
i=1

L∑
j=1

log p(t̂ij |ti, ei; wj , bj

〉

=

n∑
i=1

〈log p(ti)〉+
n∑
i=1

L∑
j=1

〈
log p(t̂ij |ti, ei; wj , bj)

〉
. (4.24)
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Let pki = p(ti = k|t̂i), k = 0, 1, then

Q(w,b) =

n∑
i=1

1∑
k=0

pki log p(ti) +

n∑
i=1

L∑
j=1

1∑
k=0

pki log p(t̂ij |ti, ei; wj , bj)

p(t̂ij |ti, ei; wj , bj) = σ(wT
j ei + bj) can be expressed in terms of the two classes as

p(t̂ij |ti = 1, ei; wj , bj) = σ(wT
j ei + bj)

t̂ij
(

1− σ(wT
j ei + bj)

)1−t̂ij
(4.25)

p(t̂ij |ti = 0, ei; wj , bj) = σ(wT
j ei + bj)

1−t̂ij
(

1− σ(wT
j ei + bj)

)t̂ij
. (4.26)

Letting σij = σ(wT
j ei + bj), Q(w,b) can be written as

Q(w,b) =
n∑
i=1

1∑
k=0

pki log p(ti) +
n∑
i=1

L∑
j=1

[
p0
i log p(t̂ij |ti = 0, ei; wj , bj)

+ p1
i log p(t̂ij |ti = 1, ei; wj , bj)

]

=

n∑
i=1

1∑
k=0

pki log p(ti) +

n∑
i=1

L∑
j=1

[
p0
i

(
(1− t̂ij) log σij + t̂ij log(1− σij)

)]

+
n∑
i=1

L∑
j=1

[
p1
i

(
tij log σij + (1− t̂ij) log(1− σij)

)]
. (4.27)

To maximize Q(w,b) with respect to θ = (w,b) in the M-Step, its derivative with respect

to θ is taken and set to zero. By including a constant term of 1 in ei i.e ei := (ei, 1) and
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also augmenting wj with bj i.e wj := (wj , bj) the derivative can be written as

∂Q

∂wj
=

n∑
i=1

[
p0
i

(
(1− t̂ij)(1− σij)ei − t̂ijσijei

)
+ p1

i

(
(t̂ij)(1− σij)ei − (1− t̂ij)σijei

)]

=
n∑
i=1

[
p0
i (1− t̂ij) + p1

0t̂ij − σij
]
ei. (4.28)

The derivative is non-linear, therefore standard iterative methods such as the Newton-

Raphson or gradient ascent can be used to find a local maxima.

Letting σj be the j′th column of the n × L matrix {σij , i = 1, . . . n, j = 1, . . . , L} and

Vj = 1 −Yj − p1 + 2p1 ◦Yj where Yj is the j′th column of Y, p1 = (p1
1, . . . , p

1
n) and ◦

represents element wise matrix multiplication, the derivative can be written in matrix form

as

∂Q

∂wj
= eT (Vj − σj), j = 1, . . . L

The second derivative or Hessian matrix required by the Newton-Raphson algorithm is given

by

∂2Q

∂wj∂wT
j

= −eTWje, j = 1, . . . L, (4.29)

where Wj is a diagonal matrix with i′th element σij(1− σij).

The two steps of the EM are iterated until convergence. With the parameter estimates,

the posterior probabilities of the true class given the class predictions can be estimated

using equation 4.23. The class prior p(ti) can be estimated by p(ti = k) = nk
n , where nk is

the number of observations in class k in the training set.
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4.4.2 Variational Bayesian Ensemble Methods

A major draw back of the EM combination scheme presented in the previous section is

that it assumes the true class t is the hidden variable, and therefore does not benefit

from the information provided by this variable during learning. Another major problem,

which is typical with most maximum likelihood methods is that they often do not take

account of model complexity. Overfitting is very common with such methods as more

complex models are not penalized. By treating the parameters of the model as random

variables and averaging them out over an ensemble of models, full Bayesian approaches

are able to overcome these problems. All information inferred from the data about the

parameters (based on the assumed model) is captured by the posterior distribution of the

parameters rather than in the point estimates of maximum likelihood approaches. The

Bayesian approach is optimal and naturally data-driven.

In this section the principles of the variational Bayesian (VB) method are applied to

optimally combine the outputs of multiple classifiers. The reliability of each classifier in the

ensemble is determined by the use of a hierarchical ARD prior placed on the distribution

of the combination weights. In this way, the effect of weak classifiers in the ensemble

can be mitigated while allowing the strength of good and complementary classifiers to be

reinforced.

The outputs of the classifiers can be discrete (binary in this case) or continuous. For

discrete outputs, the presented VB method modify the standard VB logistic regression

(Jaakkola and Jordan, 1997; Bishop and Nasrabadi, 2006) allowing it to model the discrete

outputs, the true class and the classification evidence in a unique way. When the outputs

are continuous, the classification evidence is simply combined with the predictions and a

straightforward learning by the VB logistic regression or any other classification algorithm

can be used. Figure 4.5 shows the graphical model for VB ensemble learning.
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Figure 4.5: Variation Bayesian Ensemble Learning for Class Independent Evidence

4.4.2.1 VB Ensemble for Classifiers with Discrete Outputs (VBD)

Based on the model assumptions given by equation 4.5, the predicted probabilities satisfy

p(t̂ij = 1|ti, ei,wj) = σ(wT
j ei),

p(t̂ij = 0|ti, ei,wj) = 1− σ(wT
j ei).

Let sij = 2t̂ij − 1 (s2
ij = 1), then the probabilities for the two classes can be computed as

p(t̂ij |ti = 1, ei,wj) = σ(sijw
T
j ei),

p(t̂ij |ti = 0, ei,wj) = 1− σ(sijw
T
j ei).

These two equation can be combined as

p(t̂ij |ti, ei,wj) = σ(sijw
T
j ei)

ti
(

1− σ(sijw
T
j ei)

)1−ti
. (4.30)
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Letting Y be the n × L matrix containing the predictions t̂ij and w the L ×K matrix of

weights, the conditional independence assumption implies

p(Y|t, e,w) =

n∏
i=1

L∏
j=1

σ(sijw
T
j ei)

ti
(

1− σ(sijw
T
j ei)

)1−ti

log p(Y|t, e,w) =
n∑
i=1

L∑
j=1

[
ti log σ(sijw

T
j ei) + (1− ti) log

(
1− σ(sijw

T
j ei)

)]
. (4.31)

In VB logistic regression, the parameters w are treated as random variables and are

given zero mean Gaussian priors. These priors can also be given hierarchical ARD Gamma

priors. The specification of these priors presented here is some what different. In standard

variational logistic regression the parameters w is a vector where each element weights the

attributes of the training set. In this case however, w is a matrix that simultaneously

weights the classifiers and evidence. The rows weights the classifiers condition on the true

class while columns weights the evidence. To model a prior for w, each row is modeled as

a zero mean Gaussian distribution with a gamma prior controlling the precision. Thus the

following priors are specified for the parameters

p(w|α) =

L∏
j=1

NK(wj |O, α−1
j I) (4.32)

p(α) =
L∏
j=1

G(αj |aj , bj). (4.33)

VB Inference

VB inference is based on maximizing a lower bound of the log-likelihood of the data. The

data in this case are the outputs of the classifiers Y given the true class ti and the classifi-

cation evidence ei. The log-likelihood can be written as
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log p(t̂ij |ti, ei) = log

∫
p(t̂ij ,θ|ti, ei) dθ

= log

∫
p(t̂ij |ti, ei,θ)p(θ) dθ. (4.34)

Using Bayes theorem, inference on predicted class given the true class and evidence can be

transformed into inference on true class given the predicted class and evidence as

log p(ti|t̂ij , ei) = log p(t̂ij |ti, ei)p(ti|ei) + constant.

Thus

log p(ti|t̂ij , ei) = log

∫
p(t̂ij |ti, ei,θ)p(ti|ei)p(θ) dθ + constant

≥
∫
q(θ) log

(
p(t̂ij |ti, ei,θ)p(ti|ei)p(θ)

q(θ)

)
dθ = F(q), (4.35)

where the variational posterior q(θ) = q(w,α) approximates the true posterior p(θ) =

p(w|α)p(α) of the parameters and is assumed to factorize as q(w,α) = q(w)q(α).

In the discussion on VB for factor analysis in section 4.3.1, the variational posteriors

q(θi) for any of the parameters were obtained by taking the expectation of the complete

log-likelihood with respect to the other variational posteriors q(θj), j 6= i. This led to

simple analytic expressions for q(θ) because the the model structure was Gaussian i.e it has

a conjugate-prior in the exponential family. In this case, similar analytic expressions cannot

be obtained because the logistic model does not have a conjugate-prior in the exponential

family. It is nevertheless possible to find an accurate variational transformation of the

model such that the desired variational distributions can be computed. In Jaakkola and

Jordan (1997), a lower bound on the logistic function is introduced which allow the log-

likelihood for the logistic regression to be approximated by the exponential of a quadratic
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form. Specifically, the logistic function is lower bounded by

σ(x) ≥ σ(ξ) exp

{
1

2
(x− ξ)− λ(ξ)(x2 − ξ2)

}
, (4.36)

where λ(ξ) = 1
2ξ

{
σ(ξ)− 1

2

}
and ξ is a variational parameter corresponding to each data

point. Applying this lower bound to equation 4.31 with x = sijw
T
j ei, the log-likelihood of

the data is lower bounded by

log p(Y|t, e,w) ≥
n∑
i=1

L∑
j=1

[
ti

(
log σ(ξi) +

1

2
sijw

T
j ei − λ(ξi)w

T
j eie

T
i wj −

ξi
2

+ λ(ξ)ξ2
i

)

+ (1− ti)
(

log σ(ξi)−
1

2
sijw

T
j ei − λ(ξi)w

T
j eie

T
i wj −

ξi
2

+ λ(ξ)ξ2
i

)]

=
n∑
i=1

L∑
j=1

[
log σ(ξi) +

(
ti −

1

2

)
sijw

T
j ei − λ(ξi)w

T
j eie

T
i wj −

ξi
2

+ λ(ξ)ξ2
i

]

= logH(w, ξ). (4.37)

Substituting this expression into equation 4.35 result in a new variational lower bound given

by

log p(t|Y, e) ≥
∫
q(θ) log

(
p(Y|t, e,θ)p(t|e)p(θ)

q(θ)

)
dθ = F(q)

≥
∫
q(θ) log

(
H(w, ξ)p(t|e)p(θ)

q(θ)

)
dθ = F̃(q), (4.38)

where p(t|e) = p(t) for the class independent evidence model. With this new approximation,
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the complete log-likelihood is approximated by

log p(t,Y, e,w) = log p(t) + log p(Y|t, e,w) + log p(w|α) + log p(α)

≈
n∑
i=1

1∑
k=0

p(ti = k) +

L∑
j=1

[
wT
j

(
n∑
i=1

(
ti −

1

2

)
sijei

)

+ wT
j

(
n∑
i=1

λ(ξi)eie
T
i

)
wj

]
+

n∑
i=1

L

(
log σ(ξi)−

ξi
2

+ λ(ξi)ξ
2
i

)

+
K

2

L∑
j=1

logαj −
1

2

L∑
j=1

αjw
T
j wj +

L∑
j=1

(aj − 1) logαj −
L∑
k=1

bjαj + constant.

(4.39)

The distribution of variational posterior q(w) can now be computed by taking the ex-

pectation of the complete log-likelihood with respect to q(α) and keeping only terms in w.

The remaining expression can be identified as the joint distribution of L multivariate nor-

mal distributions. Similarly the posterior q(α) is obtained by taking the expectation with

respect to q(w) and keep only terms in α. The remaining expression can be identified as the

product of L gamma distributions. These distributions are alternately updated just as in

VB factor analysis until some convergence criterion, which is usually when a plateau in the

lower bound is observed. The updates of the distribution and their moments is presented

in Algorithm 6.

The expression for the new approximate variational lower bound is given by

F̃(q) =
〈
H(w,α)

〉
q(w)q(α)

+
〈

log p(t)
〉
q(w)q(α)

−KL, (4.40)
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Algorithm 6: VB Ensemble for Classifiers with Discrete Outputs

Input : Observed data t, Y, e, stopping criteria.
Output: Variational posteriors q(w) and q(α).

Initialize moments of variational posteriors ;

repeat
1 Update q(w) ;

q(w) =
L∏
j=1

NK(wj |mj ,Σj), Moments

Σj =
(
〈αj〉 I + 2

n∑
i=1

λ(ξi)eie
T
i

)−1

mj = Σj
n∑
i=1

(
ti −

1

2

)
sijei

2 Update q(α) ;

q(α) =

L∏
j=1

G(αj |âj , b̂j), Moments

âj = aj +
K

2

b̂j = bj +

〈
wT
j wj

〉
2

〈αj〉 =
âj

b̂j
3 Update ξi ;

ξ2
i ←−

1

L
eTi

 L∑
j=1

〈
wjw

T
j

〉 ei

until stopping criteria;

where

〈
H(w,α)

〉
q(w)q(α)

=
L∑
j=1

〈wj〉T
(

n∑
i=1

(
ti −

1

2

)
sijei

)

− tr

( n∑
i=1

λ(ξi)eie
T
i

) L∑
j=1

〈
wjw

T
j

〉

+

n∑
i=1

L

(
log σ(ξi)−

ξi
2

+ λ(ξi)ξ
2
i

)
(4.41)

and

KL =
〈
KL(q(w)‖p(w|α)

〉
q(α)

+KL(q(α)‖p(α))
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is the Kullback-Leibler divergence between the variational posterior and the true posterior

and its computation is similar to that for VB factor analysis. The function tr(·) computes

the trace of a matrix.

Notice that, in Algorithm 6 the covariance matrix for each wj depends on the local

variational parameters ξi through λ(ξi) and so its value needs to be specified. The values

of ξi can be obtain by optimizing the approximate lower bound F̃(q) as a function of ξi. In

F̃(q), only 〈H(w,α)〉q(w)q(α) is a function of ξi, thus taking its derivative with respect to

ξi and setting it to zero leads to the update rule

(ξnewi )2 =
1

L
eTi

 L∑
j=1

〈
wjw

T
j

〉 ei. (4.42)

The variational lower bound is maximized by iterating over each update in Algorithm

6 and the local variational parameter ξi until no significant change is observed in F̃(q).

Optionally, the hyperparameters a and b of the gamma distribution can also be optimized

after each update. This is done by taking the derivative of the complete log-likelihood with

respect to these parameters and setting them to zero. The resulting equation does not have

a close form solution and can be solve using iterative methods like the Newton-Raphson

method.

Algorithm 6 appears to be a little complex than standard VB logistic regression. How-

ever, because the outputs of the classifiers are binary and the dimension of e is usually very

small, the algorithm converges very fast taking far less number of iterations than standard

VB logistic regression.

Making Predictions

Once the variational posterior distributions and moments have been computed, predictions

for new inputs, i.e, new outputs Y∗ from the base classifiers and classification evidence e∗
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from the test set can be obtained by substituting the most probable value or mean of the

posterior distribution of the weights wMP = 〈w〉 into equation 4.22 to give the predictive

distribution in the form p(t∗|Y∗, e∗,wMP ).

An alternative and perhaps more accurate approach is to marginalize p(t∗|Y∗, e∗,w)

over the posterior distribution of the weights so as to account for any uncertainty in the

weights. That is, given new data (Y∗, e∗) and the training data Dl, compute the predictive

distribution

p(t∗ = 1|Y∗, e∗,Dl) =

∫
p(t∗ = 1|Y∗, e∗,w)p(w|Dl) dw

≈
∫
p(t∗ = 1|Y∗, e∗,w)q(w) dw

=

∫
p(Y∗|t∗ = 1, e∗i ,w)p(t = 1)

Z(w)
q(w) dw.

(4.43)

This gives for each data point

p(t∗i = 1|t̂∗i , e∗i ,D) = p(ti = 1)
L∏
j=1

∫
σ(s∗ijw

T
j e
∗
i )

Z(wj)
Nk(w|mi,Σj) dwj (4.44)

where Z(wj) =
∑
ti

p(t̂∗ij |ti, e∗i ,wj)p(ti) is the normalization constant in equation 4.22. Un-

fortunately, the integral above involves a product between a logistic sigmoid function and

a Gaussian which is intractable and requires numerical methods. An approximation to

such integrals is given in MacKay (1992). However, the normalization constant in the de-

nominator of the expression above depends on wj making it difficult to apply MacKay’s

approximation directly. Since Z(wj) is a normalization constant, it can be assumed to

be constant over all components of wj and thus can be approximated by Z(wMP ). This

approximation was however found to yield poor quality estimates of the class posterior
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probability and was dropped in favor of the first approach.

4.4.2.2 VB Ensemble for Classifiers with Continuous Outputs (VBC)

When the outputs of the classifiers are continuous, a simple ensemble scheme that make

use of the classification evidence is to combine the evidence with the predictions into a new

variable and learn using any standard classification algorithm. The VB logistic regression

is preferred in this work as it provides a principled approach to determine the reliability of

the classifiers and for easy comparison with the ensemble method using discrete outputs.

Let t̂i =
{
t̂i1, . . . , t̂iL

}
∈ RL be the continuous class predictions from L base classifiers

for the data point xi with classification evidence ei and true class ti ∈ {0, 1}. Form the new

vector Φi = (t̂i, ei) ∈ RL+K so that the training data becomes Dl = {(ti,Φi), i = 1, . . . n}.

From equation 4.6, the distribution of the class posterior probability given the data is given

by

p(ti|Φi,w) = σ(wTΦi)
ti
(
1− σ(wTΦi)

)1−ti
= σ

(
(2ti − 1)wTΦi

)
(4.45)

where w ∈ RL+K is the vector of weights for the classifiers and the classification evidence.

In VB logistic regression, the weights are given zero mean Gaussian priors whose preci-

sion are given gamma priors. Thus

p(w|α) =
L+K∏
j=1

N (wj |0, α−1
j ), (4.46)

p(α) =
L+K∏
j=1

G(αj |aj , bj). (4.47)

The likelihood of the data is

p(t|Φ,w) =
n∏
i=1

σ
(
(2ti − 1)wTΦi

)
. (4.48)
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The likelihood does not have a conjugate prior in the exponential family, but by introducing

a lower bound on the logistic sigmoid function as done in the previous section, the log-

likelihood can be approximated by the exponential of a quadratic form. Using similar

variational inference as done in the previous section, the updates for variational posterior

can be derived as shown in Algorithm 7.

Algorithm 7: VB Ensemble for Classifiers with Continuous Outputs

Input : Observed data Dl = (t,Φ) stopping criteria.
Output: Variational posteriors q(w) and q(α).

Initialize moments of variational posteriors ;

repeat
1 Update q(w) ;

q(w) = NL+K(w|m,Σ), Moments

Σ =

(
〈α〉+ 2

n∑
i=1

λ(ξi)ΦiΦ
T
i

)−1

m =
1

2
Σ

n∑
i=1

(2ti − 1)Φi

2 Update q(α) ;

q(α) =
L+K∏
j=1

G(αj |âj , b̂j), Moments

âj = aj +
K

2

b̂j = bj +

〈
w2
j

〉
2

〈α〉 = diag

(
âj

b̂j

)
3 Update ξi ;

ξ2
i ←− ΦT

i

(〈
wwT

〉)
Φi

until stopping criteria;

Making Predictions

Predictions can be made for new data Φ∗ = (Y∗, e∗) by substituting the most probable

value of the weights such as the posterior mean weights wMP = 〈w〉 into equation 4.6 to
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give the class posterior distribution

p(t∗|Φ∗,wMP ) = σ
(
wT
MP

Φ∗
)
. (4.49)

The above predictive distribution is computed using wMP as the sole representative of

the true posterior distribution of the weights. This approach may not be very accurate

since there may be regions in the input space where the ensemble is very uncertain about

class memberships. On such regions, one will require the ensemble to produce probabilities

close to 0.5. Class posterior probabilities computed with the most probable value of the

weights may produce extreme, unrepresentative and overconfident results (MacKay, 1992)

especially when unreliable classifiers are present.

MacKay Approximation

A more accurate result that takes into account uncertainties in the weights can be obtained

by marginalizing the posterior distribution p(t∗|Φ∗,w) over the posterior distribution of the

weights. That is, given a new data point Φ∗ and the training set Dl, compute the predictive

distribution

p(t∗ = 1|Φ∗,Dl) =

∫
p(t∗ = 1|Φ∗,w)p(w|Dl) dw

≈
∫
p(t∗ = 1|Φ∗,w)q(w) dw

=

∫
σ
(
wTΦ∗

)
NL+k(w|m,Σ) dw. (4.50)

The convolution of a logistic sigmoid function and a Gaussian cannot be computed

analytically. However, an approximate solution can be obtained by approximating the

sigmoid function σ(ξ) by a probit function φ(λξ) for a suitable parameter λ such that

the two functions have the same slope at the origin. This yields λ = (π/8)2. Since the
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convolution of a probit and a Gaussian is a probit, one has

∫
σ(ξ)N (ξ|µ, s2) dξ ≈

∫
φ(λξ)N (ξ|µ, s2) dξ

= φ

(
µ√

λ−2 + s2

)

≈ σ

(
µ√

1 + πs2/8

)
. (4.51)

This result can then be applied to equation 4.50 with

µ = 〈w〉T Φ∗ (4.52)

s2 = Φ∗TΣΦ. (4.53)

See MacKay (1992) for details.

Note that even though the VBC method is presented for classifiers with continuous

outputs, it can also combine classifiers with discrete outputs. Its restriction to continuous

output is based on the observations by Džeroski and Ženko (2004a) that using discrete

outputs in stack generalization cannot capture the confidence and uncertainties of the base

learners as class probabilities would.

4.5 Ensemble Method For Class Dependent Evidence Model

This section briefly presents the structure of the ensemble method with a class dependent

evidence. The EM and VB inference methods previously described for class independent

evidence model can be applied here with only minimal modifications.

From the graphical model of ensemble learning with the evidence depending on the true

class membership shown in Figure 4.4(b), the joint distribution of the random variables can

be written as
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p(t̂, t, e,Λ,w) = p(t̂|t, e,Λ,w)p(t|e,Λ,w)

= p(t|t̂, e,Λ,w)p(t̂|e,Λ,w).

Using the independence assumptions of the graphical model leads to the relation

p(t|t̂, e,Λ) ∝ p(t̂|t, e,w)p(t|e,Λ).

The unknown distribution in this expression is p(t|e,Λ), however, it can be easily derived

through Bayes theorem. Successive application of Bayes theorem gives

p(t|t̂, e,Λ) ∝ p(t̂|t, e,w)p(e|t,Λ)p(Λ|t)p(t) (4.54)

Thus if t̂i is the i′th row of the matrix Y, then the class posterior probability for each data

point is given by

p(ti|t̂i, ei,Λ) ∝ p(ei|ti,Λ)p(Λ|ti)p(ti)
L∏
j=1

p(t̂ij |ti, ei,wj). (4.55)

Since the distribution of the evidence e and the precision Λ are known (see equations 4.4 and

4.11), inference can be done with the same EM or VB ensemble learning methods presented

in this chapter. Comparing with equation 4.23 shows that the class dependent evidence

model supply more information for the estimation of class posterior probabilities taking

into account uncertainties in the evidence. This property may likely improve accuracy of

the ensemble models.
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4.6 Experiments

Numerical experiments are presented in this section to demonstrate the performance of the

three ensemble methods introduced in this chapter compared to other ensemble methods.

Specifically, the EM, VBD and VBC ensemble schemes are compared with three popular en-

semble methods: Stack generalization with a logistic regression meta-learner (Stack), Mean

Rule (M.Rule) and Majority Votes (M.Votes). The performance of the base classifiers are

also reported. The performance of the classifiers are evaluated using five measures: Percent

correctly classified (PCC), area under receiver operating characteristic curve (AUC), sensi-

tivity, specificity and G-Mean. Except for the AUC, the other measures can be computed

directly from the classification confusion matrix:

Table 4.1: Confusion Matrix

Predicted Class
Positive Negative Total

True Class
Positive a b a+ b
Negative c d c+ d

Total a+ c b+ d n

sensitivity =
a

a+ b

specificity =
d

c+ d

G-Mean =
√

sensitivity ∗ specificity

PCC =
a+ d

a+ b+ c+ d
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AUC requires predicted probabilities and thus it is only reported for ensemble methods that

generate probabilities. AUC is also not reported for the base classifiers.

4.6.1 Base Algorithms and Training

The Magic Gamma Telescope and Car evaluation datasets from the UCI Machine learning

repository are used for the experiments. Magic dataset consist of 19020 observations with

10 features on the real continuous scale. The classification task represented by the dataset

is to discriminate hadrons (background) from gamma rays (signal). This is an example of a

classification problem where high specificity is required, since classifying a background event

as signal is worse than classifying a signal event as background. The authors of the data

set recommends ROC curves for comparing different classifiers with the following relevant

false positive upper limits: s = 0.01, 0.02, 0.05, 0.1, 0.2. The Car dataset consist of 1728

observations with all categorical features (see section 5.8.1 for full description of the data).

The Bayes active data and algorithm selection scheme with the Hausman specification test

presented in chapter 3 is used to compare and rank the base learners based on a series of

performance measures. The top k classifiers can then be selected for ensemble learning.

Eleven classification algorithms were chosen for ensemble learning: iterative re-weighted

least squares extreme logistic regression (irls-elr) given by equation 2.10, linear discriminant

analysis (lda), support vector machines (svm), Näive Bayes (nb), logistic regression (log),

neural network (nn), decision trees (tree), extreme learning machine (elm) (see Huang et al.

(2012)), least-squares extreme logistic regression (ls-elr) given by equation 2.9, Quinlan’s

C5.0 rule-based classifier (c50) and k-nearest neighbor (knn).

The datasets are randomly split into three parts: training, validation and testing. The

training set is used to actively trained the base algorithms, ensemble combination weights

are generated on the validation set and final evaluation is done on the test set. For active

learning, the training set is randomly split into a small labeled set Dl and a large unla-

beled pool Du. At each round of the active learning as illustrated in Algorithms 2 and 3,
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informative points are queried from Du and add to Dl. The predictions probabilities from

all classifiers on Dl is then analyzed by the Bayes decision marker (DM) as described in

chapter 3. After active training the top k classifiers are selected for ensemble learning.

However, for the numerical experiments reported in this section, all base classifiers were

used for ensemble learning. The experiment was repeated 50 times and the average of

the five performance measures reported. The standard deviation of AUC is also reported.

Because the k-nearest neighbor classifier requires the training set to be available at test

time, the computational cost increases for the 50 runs and so the classifier was dropped.

4.6.2 Results

Results for the performance of the algorithm selection and ensemble methods on the two

datasets are presented in this section.

4.6.2.1 Active Training and Ranking

Table 4.2 and 4.3 shows the performance of the base algorithms across several performance

measures as computed by the DM during active data and algorithm selection step. The

last column is the overall ranking of the classifiers. The results clearly show that a good

number of the algorithms may perform very well on these datasets. A favorable advantage

can be seen for irls-elr, elm, elr and tree for the magic dataset while irls-elr, elm, elr, log

and c50 for the car dataset.

Surprisingly, decision trees performed very well on the magic dataset while its perfor-

mance deteriorates on the car dataset. A similar performance trend was observed in the

experiments reported in chapter 3. Neural network seems to not perform poor on these

datasets. This is quite opposite to its performances in chapter 3.
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Table 4.2: Active Training Performance on Magic Data

Performance Metric pAUC at s

Classifier B.Risk AUC AUCPR.5 IAUCPR Max.F1.5 Mean.Max.F1 Rα 0.01 0.02 0.05 0.1 0.2 Rank

irls-elr 0.21 0.72 0.76 0.72 0.72 0.70 0.56 0.01 0.03 0.07 0.15 0.29 11
lda 0.20 0.64 0.65 0.62 0.66 0.64 0.24 0.01 0.02 0.05 0.09 0.19 7
svm 0.16 0.57 0.57 0.55 0.64 0.61 0.09 0.01 0.01 0.04 0.07 0.14 5
nb 0.25 0.55 0.54 0.52 0.61 0.58 0.15 0.01 0.01 0.04 0.07 0.14 4
log 0.17 0.58 0.58 0.56 0.64 0.61 0.11 0.01 0.01 0.04 0.07 0.15 5
nn 0.03 0.57 0.58 0.56 0.67 0.63 0.03 0.01 0.01 0.03 0.06 0.13 2

tree 0.31 0.57 0.55 0.53 0.60 0.57 0.17 0.01 0.02 0.05 0.10 0.18 8
elm 0.21 0.68 0.70 0.66 0.69 0.66 0.32 0.01 0.02 0.06 0.11 0.22 10

ls-elr 0.20 0.66 0.68 0.65 0.68 0.65 0.29 0.01 0.02 0.05 0.10 0.21 9
c50 0.19 0.58 0.56 0.55 0.63 0.60 0.12 0.01 0.02 0.04 0.08 0.15 4
knn 0.62 0.51 0.37 0.37 0.43 0.40 0.27 0.01 0.01 0.03 0.06 0.12 1

Table 4.3: Active Training Performance on Car Data

Performance Metric pAUC at s

Classifier B.Risk AUC AUCPR.5 IAUCPR Max.F1.5 Mean.Max.F1 Rα 0.01 0.02 0.05 0.1 0.2 Rank

irls-elr 0.07 0.93 0.95 0.94 0.90 0.89 1.82 0.05 0.10 0.25 0.49 0.71 11
lda 0.13 0.80 0.84 0.80 0.77 0.75 0.61 0.02 0.03 0.08 0.16 0.33 6
svm 0.13 0.78 0.82 0.78 0.75 0.73 0.55 0.02 0.03 0.08 0.15 0.30 6
nb 0.16 0.59 0.60 0.58 0.66 0.63 0.05 0.01 0.01 0.03 0.07 0.13 2
log 0.15 0.81 0.84 0.81 0.78 0.76 0.87 0.02 0.04 0.09 0.19 0.38 8
nn 0.18 0.66 0.68 0.64 0.68 0.65 0.30 0.01 0.02 0.05 0.10 0.20 4

tree 0.91 0.46 0.23 0.25 0.22 0.19 1.10 0.01 0.01 0.03 0.05 0.08 1
elm 0.11 0.85 0.89 0.85 0.82 0.80 0.83 0.02 0.04 0.11 0.22 0.44 10

ls-elr 0.12 0.82 0.86 0.82 0.79 0.76 0.67 0.02 0.04 0.09 0.18 0.36 9
c50 0.34 0.68 0.67 0.64 0.66 0.63 0.81 0.03 0.06 0.14 0.24 0.34 10
knn 0.47 0.56 0.51 0.49 0.55 0.53 0.54 0.01 0.02 0.05 0.09 0.19 3

4.6.2.2 Ensemble Performance

Table 4.4 , 4.5, 4.7, and 4.8 shows the average performances over 50 different experiments

for the six ensemble methods and the base classifiers actively trained on the magic and car

datasets. The following observations can be easily inferred from the results:

• All algorithms except perhaps EM and Näive Bayes performed excellent on the vali-

dation and test set respectively.

• VBC outperformed all other algorithms on the Magic dataset. This is followed by

Stack, VBD and M.Rule. Table 4.6 further compares these four ensemble methods in

terms of the two sample student-t test that one sample mean AUC is greater than the
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other. Clearly, VBC is statistically better than Stack (p.value = 0.01) and M.Rule

(p-value � 10−16). VBD and S.Scores are not statistically different on this dataset.

• Stack outperformed all other algorithms on the Car dataset. Table 4.9 shows that

Stack is statistically better than VBD and VBC. On the other hand both VBD and

VBC are statistically better than M.Rule. It should be recalled that the car dataset

has all categorical attributes which violates the normal assumption of the evidence

model. Hence the performance of VBD and VBC may not be optimal.

• The performance of EM ensemble method was very poor. Possible reasons for this

poor results can be given as: first EM does not make use of the information pro-

vided by the true class label during training, second the algorithm does not penalize

complex models and so it is very prone to overfitting. And finally, as with VBD, its

performance depends on the quality of the predicted classes and on the classification

evidence. However, unlike VBD, poor or unreliable classifiers and evidence scores are

not “pruned” through ARD priors from the final decision. The results for EM indi-

cates that, even with supplementary hidden information, a good combination method

is very important for accurate results.
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Table 4.4: Performance Measures on Magic Validation Set

Model PCC AUC AUC.sd sensitivity specificity G-mean

VBD 0.81 0.88 0.01 0.72 0.86 0.79
VBC 0.84 0.91 0.00 0.81 0.85 0.83

EM 0.73 0.74 0.01 0.37 0.92 0.58
Stack 0.83 0.90 0.00 0.81 0.84 0.83

M.Rule 0.81 0.88 0.01 0.79 0.82 0.80
M.Votes 0.80 0.61 0.90 0.74

irls-elr 0.77 0.50 0.91 0.68
lda 0.79 0.58 0.90 0.72

svm 0.80 0.60 0.92 0.74
nb 0.64 0.62 0.65 0.61
log 0.79 0.62 0.88 0.74
nn 0.77 0.77 0.76 0.76

tree 0.80 0.67 0.87 0.76
elm 0.78 0.56 0.91 0.71

ls-elr 0.79 0.57 0.90 0.72
c50 0.81 0.70 0.87 0.78

Table 4.5: Performance Measures on Magic Test Set

Model PCC AUC AUC.sd sensitivity specificity G-mean

VBD 0.80 0.89 0.01 0.72 0.85 0.78
VBC 0.82 0.90 0.00 0.80 0.84 0.82

EM 0.68 0.72 0.01 0.11 0.99 0.33
Stack 0.82 0.90 0.00 0.80 0.83 0.81

M.Rule 0.80 0.88 0.01 0.78 0.82 0.80
M.Votes 0.80 0.61 0.90 0.74

irls-elr 0.77 0.51 0.91 0.68
lda 0.79 0.58 0.90 0.72

svm 0.80 0.60 0.92 0.74
nb 0.66 0.58 0.70 0.62
log 0.79 0.62 0.88 0.74
nn 0.78 0.76 0.79 0.77

tree 0.81 0.67 0.88 0.77
elm 0.78 0.56 0.91 0.71

ls-elr 0.79 0.57 0.90 0.72
c50 0.80 0.69 0.86 0.77

Table 4.6: p-values: Pr(VBD or VBC > Stack or M.Rule) on Magic dataset

VBC VBD

Stack 0.01 .88
M.Rule 0.00 0.44
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Table 4.7: Performance Measures on Car Validation Set

Model PCC AUC AUC.sd sensitivity specificity G-mean

VBD 0.95 0.99 0.00 0.97 0.94 0.95
VBC 0.98 0.99 0.00 0.98 0.97 0.98

EM 0.76 0.90 0.02 0.69 0.78 0.73
Stack 0.98 1.00 0.00 0.99 0.97 0.98

M.Rule 0.94 0.98 0.01 0.98 0.93 0.96
M.Vots 0.92 0.96 0.91 0.93

irls-elr 0.81 0.44 0.94 0.64
lda 0.90 0.90 0.89 0.90

svm 0.93 0.97 0.92 0.94
nb 0.68 1.00 0.56 0.75
log 0.90 0.88 0.91 0.90
nn 0.97 0.96 0.97 0.97

tree 0.90 0.88 0.90 0.89
elm 0.88 0.78 0.92 0.84

ls-elr 0.89 0.87 0.91 0.89
c50 0.93 0.91 0.94 0.92

Table 4.8: Performance Measures on Car Test Set

Model PCC AUC AUC.sd sensitivity specificity G-mean

VBD 0.93 0.98 0.01 0.94 0.93 0.94
VBC 0.97 0.99 0.00 0.96 0.97 0.97

EM 0.73 0.90 0.02 0.00 1.00 0.00
Stack 0.97 0.99 0.00 0.97 0.97 0.97

M.Rule 0.94 0.97 0.01 0.97 0.93 0.95
M.Votes 0.92 0.95 0.91 0.93

irls-elr 0.80 0.42 0.94 0.62
lda 0.89 0.89 0.89 0.89

svm 0.93 0.97 0.92 0.94
nb 0.68 1.00 0.57 0.75
log 0.90 0.87 0.91 0.89
nn 0.97 0.96 0.97 0.97

tree 0.89 0.87 0.90 0.89
elm 0.87 0.75 0.92 0.83

ls-elr 0.89 0.85 0.90 0.88
c50 0.93 0.90 0.94 0.92

Table 4.9: Car dataset p-values: Pr(VBD or VBC > Stack or M.Rule) on Car dataset

VDC VBD

Stack 0.80 1.00
M.Rule 0.00 0.00

114



4.7 Summary and Future Work

This chapter introduced an optimal framework for integrating a set of machine learning

classification models. A VBFACSP method was proposed for inference of the classification

evidence to be used in the integration step. Three methods for integrating the classification

models are then presented. The first method uses the EM algorithm to combine classifiers

with discrete outputs assuming the true classes are hidden variables. The second method

re-implements the VB logistic regression to combine classifiers with discrete outputs. The

third method applies standard VB logistic regression to combine classifiers with continuous

outputs.

Some classifiers can only generate discrete or class labels. While it may be possible to

transform the discrete outputs to probabilities, the quality of the result may be very poor.

The EM and VBD ensemble methods presented in this chapter can be advantageously

applied to combine such classifiers to produce quality class probabilities. A drawback with

these two ensemble method is that they rely on good estimates of the evidence e. Poor values

of e may result in a poor ensemble. The VBC ensemble on the otherhand can operate on

both continuous and discrete outputs. Because of the ADR priors, the dependence of this

method on the evidence is not critical. If some dimensions of e are irrelevant, the ARD

simply turn them off.

Future directions of the work presented in this chapter include a full implementation

of the VBFACSP method and the corresponding ensemble methods for class dependent

evidence model. It will be interesting to compare the performance of ensemble methods

with class dependent and independent evidence.
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Chapter 5: Collective Machine Learning

This chapter introduces a framework for learning large-scale distributed datasets. The pro-

posed framework builds efficient, scalable parallel and distributed machine learning models

from homogeneous or heterogeneous distributed data sites. Each data site (modeled as

an agent) is tightly integrated with a Bayes active data and algorithm selection scheme, a

classification evidence model and an optimal Bayesian multiclassifier integration scheme as

described in chapters 3 and 4 respectively. During learning, performance of the agents can

be improved by sharing

• classification evidence;

• local classification models and/or classification evidence models;

• local ensemble models.

With these learning properties, the system can be described as collective or cooperative

machine learning teams. When a global solution is required, a designated agent can com-

bine the local ensemble decisions of the agents through the same ensemble learning scheme

embedded within the agents. Two parallel programming frameworks are explored for col-

lective learning: MapReduce and traditional High Performance Computing (HPC) with

Message Passing Interface (MPI). Because the Hadoop-MapReduce technology is relatively

new, most of the implementation details are focused on it.

5.1 Introduction

In the past, one of the bottlenecks preventing the development of more intelligent systems

was information scarcity. Today, information has gone from scarce to superabundant. The
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world today contains an unimaginably vast amount of information which is getting ever

vaster more and more rapidly. Merely keeping up with the flood is hard and the ability to

collect and store the bits that might be useful is proving to surpass traditional database

management tools. Further, analyzing the data to identify and extract relevant information

is even more challenging. Even so, the “data deluge” is already transforming the way

research is conducted, business, government and every day life. It has spawn a large industry

in “Big Data” Analytics.

The MapReduce framework (Dean and Ghemawat, 2008) and its variants are recent

tools that have been developed to help solve the Big Data problem. MapReduce allows

application developers to effectively run parallel applications on a cluster of machines us-

ing high-level interfaces which hides low-level details such as data locality, load balanc-

ing, fault tolerant etc. The open source implementation of MapReduce mainly Hadoop

(http://hadoop.apache.org/) is one of such interfaces and has become the de facto standard

for performing large-scale processing tasks that require single pass over the dataset.

Big Data not only changed the tools traditionally used for collection and storage of

data, it also changed the algorithms traditionally used for predictive analytics. Further, it

entirely changed the way of thinking about knowledge extraction and interpretation. The

Manhout, Graphlab and many others (Low et al., 2010; Kraska et al., 2013; Chu et al., 2007;

Ngufor and Wojtusiak, 2013, 2014b) are some recently proposed scalable machine learning

algorithms for efficient processing of large and distributed datasets.

These parallel and distributed machine learning tasks have help derived accurate predic-

tions of various kinds; collaborative filtering, clustering and classification. Some application

examples include large scale signal detection of adverse drug events from millions of spon-

taneous reports (Fan et al., 2010), discovery of unknown drug interactions in millions of

electronic health records, learning online users preferences for product recommendations,

credit card fraud detection, market segmentation in other to learn customers habits, pro-

viding incentives and preventing churn. These examples illustrate that, the field of parallel

and distributed machine learning is of considerable importance, but also it is relatively
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young and growing. The work presented in this chapter can be considered as an attempt

to contribute to that growth.

5.2 Big Data Analytics

The term Big Data refers to voluminous datasets that cannot be stored and analyzed using

conventional database management systems. The data most often need to be accessed and

processed in real time to extract information. How useful such information is to scientific

or business decisions depends on the nature of the data. The nature of Big Data is con-

ventionally described in terms of its volume, velocity and variety. Analytics with Big Data

or simply Big Data Analytics is commonly carried out with tools from statistics, machine

learning, natural language processing, visualization, and data mining. The combination of

all these approaches have given birth to a new inter-disciplinary field called “data science”.

The recent interest in research in Big Data has been due to the increasing ability to

collect and store large datasets, the ability to tap its vast potentials by the research com-

munity, business, government and the society. A few examples illustrating how the use of

Big Data can create value include;

• Big Data can help unlock significant value by making information transparent and

usable at a much faster and higher frequency.

• As organizations and industries amass more and more data, they can collect more

accurate and detailed performance information on various items such as product in-

ventories, drug interactions, disease patterns etc.

• Big Data is increasingly use in research and industry to perform controlled experiments

so as to develop and test optimal solutions to problems before implementation.

• Big Data allows ever-narrower segmentation of customers making companies to pre-

cisely tailor products and services.
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Many other examples of the application of Big Data can be found in Manyika et al. (2011).

These examples reveal the need for Big Data analytics which in turn begs for the devel-

opment and use of more efficient machine learning and statistical methods that integrates

parallel processing of data. Conventional machine learning applications will need to be

redesigned or scale-up to meet the parallel and distributed nature of current and future

datasets. The MapReduce and its variants are promising tools in the industry.

5.3 Hadoop Distributed File System, MapReduce and MPI

The fast emerging field of data science in which massive data need to be stored processed,

analyzed, visualized and used brings new computing challenges. Consequently, high perfor-

mance computing (HPC) is becoming increasingly important in many data intensive areas

such as Biotechnology, geology, nuclear physics, web search, network video and multimedia

streaming, medical imaging and diagnosis, pharmaceutical design, mathematics, defense,

financial and economic modeling just to name a few. HPC typically involves distribution

of work across a cluster of machines which may or may not have access to a shared file

system hosted on a storage area network. Traditionally, parallelization in HPC has been

implemented with the Message Passing Interface (MPI). Recently, the implementation is

fast shifting towards the popular Hadoop’s MapReduce which is currently the large-scale

data analysis tool of choice.

Hadoop is an Appache project which develops open source software for reliable and

scalable computing. Inspired by technologies created inside Google, Appache Hadoop was

created in 2005 with two primary components: the Hadoop Distributed File System (HDFS)

for distributed storage of large-scale datasets and MapReduce parallel processing engine to

support distributed processing of data workloads on HDFS. In 2012, Hadoop underwent

a complete overhaul resulting in Hadoop YARN or Yet Another Resource Negotiator for

Hadoop, which is a more general usable framework that supports not only MapReduce, but

other distributed processing models. The Hadoop implementation in this thesis is however
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based on the pre-YARN Hadoop architecture.

5.3.1 HDFS

The HDFS is a fault tolerant and self healing distributed file system designed to turn

low cost clusters of commodity hardware into a massively scalable pool of storage. HDFS

was developed specifically for large-scale data processing applications where scalability,

flexibility and high throughput are critical. It accepts data in any format regardless of

the schema and optimizes for high bandwidth streaming. Thus HDFS is designed more for

batch processing rather than interactive or iterative processing.

An HDFS cluster consists of a single NameNode, a master server that manages the file

system namespace and regulates access to files by clients. In addition, there are several

DataNodes, one per node or machine in the cluster, which manage storage attached to

the node that they run. For failure resilient purposes, it has a secondary NameNode which

replicates the data of NameNode at regular intervals. Internally, HDFS is a block structured

file system, that is individual files are split into one or more blocks of fixed sizes (default is

64 MB) and these blocks are stored in a set of DataNodes. The NameNode is responsible for

operations such as opening, closing and renaming files. It also determines the mapping of

blocks to DataNodes. The DataNodes on the other hand are responsible for read and writing

data to the HDFS. DataNodes also performs block creation, deletion and replication upon

instruction from the NameNode. Because all blocks of a single file may not be stored on the

same DataNode, a fault in any one of the DataNode may render a file unavailable. HDFS

overcome this by replicating each block across a number of DataNodes (three by default).

The number of copies of a file is called its replication factor. The metadata containing

information about file partitioning to different DataNodes is stored in the NameNode.
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Figure 5.1: Hadoop-MapReduce Architecture

5.3.2 MapReduce

MapReduce is a massively scalable, parallel processing framework that works in tandem

with HDFS. With Hadoop-MapReduce, computation is executed at the location of the data

rather, than moving data to the computation, i.e, data storage and computation coexist on

the same physical node.

The MapReduce framework consist of a single master JobTracker and one or more

TaskTrackers per node. The JobTracker is responsible for managing the TaskTrackers on

the worker nodes, tracking resource consumption and availability, scheduling individual

jobs task, tracking progress and providing fault tolerance through heartbeats (periodic

messages). The TaskTrackers communicates through heartbeats to the JobTracker. If the

JobTracker does not receive a heartbeat form a TaskTracker, it assumes it has failed and
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takes appropriate action (such as restarting the map task on another node). Figure 5.3

illustrates the HDFS and MapReduce architecture.

In distributed data processing with MapReduce, a MapReduce job splits the input

dataset into independent chunks which are process by a Map and Reduce task in a com-

pletely parallel manner. The splits can be made up of one or more HDFS data blocks.

MapReduce operates entirely on a 〈key , value〉 pairs, that is, the input to the job is a set

of 〈key , value〉 pairs and produces a set of 〈key , value〉 pairs as the output. The map func-

tion takes an input 〈key1 , value1〉 pairs and produces a set of intermediate 〈key2 , value2〉

pairs. The Map output can have multiple values for the same key. The reduce function then

operates on the intermediate key and set of values associated with that key to produce a

smaller set of output values.

1. map: 〈key1 , value1〉 −→ list〈key2 , value2〉

2. reduce: 〈key2 , list{value2}〉 −→ list{value3}

The MapReduce framework hides all the complexity of parallelization, data distribution,

load balancing, task scheduling, monitoring and fault-tolerance from the client. All that

is required is for the client to specify the map and reduce functions. Also, although the

Hadoop framework is implemented in Java, MapReduce applications need not be written

in Java.

5.3.3 SPMD with Message Passing Parallel Programming Model

MPI is a message passing library standard used by industry and academia for parallel com-

puting on shared, distributed or hybrid (distributed-shared) memory architectures. The

Single Program Multiple Data (SPMD) with message passing is probably the most com-

monly used parallel programming model for multi-node clusters. In this model, all tasks

execute a copy of the same program simultaneously and exchange data through communica-

tions by sending and receiving messages. Data transfer between processes usually requires
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cooperative operation by each process in the “communicator”. For example, a send oper-

ation must have a matching receive operation. MPI libraries provide point to point and

collective communication routines. Common routines are MPI Send, MPI Recv, MPI Isend,

MPI Irecv and MPI Sendrecv, MPI Bcast, MPI Scatter,MPI Allreduce, MPI Allgather and

MPI Alltoall.

MPI programs are traditionally written in lower level languages like C, C++, or Fortran.

Recently, wrapper programs have been written to enable simplified interfaces to MPI for

high level languages like R, Python and Java. For example, the “Programming with Big

Data in R” project (pbdR) (Ostrouchov et al., 2012) used in this thesis is a SPMD model

that enables high-level distributed data parallelism in R. With pbdR packages, R users can

easily utilize large HPC platforms with thousands of cores while maintaining R original

syntax convenience.

5.4 Parallel and Distributed Machine Learning

The data deluge has open new ways for application of machine learning and statistical

methods. Automatic methods for extracting value from such Big Data is a growing need

and machine learning provides the necessary techniques to enable users to extract underlying

structure and make prediction from large datasets. Big Data also raises new problems and

challenges regarding the scalability, efficiency, accuracy, and computational time of learning

algorithms. Most existing algorithms operates on the assumption that all training data can

fit on a centralized memory. Consequently, they do not scale when confronted with very

large and possibly distributed datasets. This has led to a significant amount of research

in scaling methods, that is, designing algorithms to efficiently learn from very large and

distributed datasets. Two general approaches can be identified in this endeavour: scaling

down and scaling up (Bekkerman et al., 2011; Kargupta and Chan, 2000).

Following the latter approach, existing machine learning algorithms are modified or new

ones develop with the property of being able to learn from very large datasets. There has
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been a rapid rise in research methods for scaling up machine learning algorithms. This

research has been aided in part by the fact that some machine learning algorithms can be

readily deployed in parallel. For example Chu et al. (2007) showed that ten commonly used

machine learning algorithms (logistic regression, näive Bayes, k-means clustering, support

vector machines etc) can be easily written as MapReduce programs on multi-core machines.

The other part can be attributed to the rapid evolution of hardware and program-

ming architectures (Bekkerman et al., 2011). These new technologies are highly optimized

for distributed computing in the sense that they are parallel efficient, reliable, fault toler-

ant and scalable. The Hadoop-MapReduce framework for example has been successfully

applied to a broad range of real world machine learning applications. The Apache Ma-

hout project (Owen et al., 2011) for example contains implementation of some standard

machine learning algorithms on the Hadoop-MapReduce framework. RHadoop (https:

//github.com/RevolutionAnalytics/RHadoop/wiki) is a collection of packages that al-

lows R programmers to manage and perform statistical analysis through MapReduce on a

Hadoop cluster. Other successful scalable implementations of machine learning algorithms

include Google’s cloud-based machine learning API ( https://developers.google.com/

prediction/), GrapLab (Low et al., 2010), MLbase (Kraska et al., 2013), Vowpal Wabbit

(Langford et al., 2007) and many others. Lastly, in the course of writing this thesis, some

major contributions were also made in the line of developing accurate, fast and parallel ef-

ficient machine learning algorithms (Ngufor and Wojtusiak, 2013, 2014b) from which some

of the ideas form an integral part of this thesis.

5.5 Distributed Machine Learning Systems: An Agent-based

Approach

Parallel and distributed learning has been recognized as an optimal approach for effective

learning of large-scale datasets. As the examples in the previous section indicated, a great
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(a) Horizontal Partitioning (b) Vertical Partitioning

Figure 5.2: Homogeneous and Heterogeneous Data Sites

number of learning strategies have been proposed. Most of these distributed algorithms

are based on the basic principle of ensemble learning. Although the various methods may

vary, however the basic idea is to build local models on each data site and to combine the

outputs of the local models in some way. The different data sites may be homogeneous or

heterogeneous. Homogeneous data sites contains data for exactly the same set of features

but the observations may be different. This corresponds to a horizontal partitioning of the

distributed data. Heterogeneous data sites on the other hand, contains only a subset of

the features for the same observations. This corresponds to a vertical partitioning of the

distributed data (see Figure 5.2).

Knowledge extraction for large distributed databases has been traditionally done by

the use collaborative systems. These systems are often designed following the agent based

modeling approach popular in the field of artificial intelligence. The agents are basically

data mining tools which can interacts with each other and with the environment to solve a

particular task. Among the most successful implementation of cooperative learning systems

include PADMA, Papyrus and JAM.
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PADMA (PArallel Data Mining Agents) (Kargupta et al., 1997), is a parallel/distributed

data mining system that employs software agents for local data accessing, analysis and vi-

sualization. The framework is mainly based on homogeneous distributed databases. Local

models (clusters) are generated at the local sites and a centralized site is designed to in-

tegrate the local models. Papyrus (Bailey et al., 1999) is a Java-based system wide area

distributed data mining framework over clusters of heterogeneous data sites. It employs

mobile data mining agents to move data, intermediate results and models between clusters

to either perform local computation or from local to a central cluster for final computa-

tion. Papyrus supports various methods for combining and exchanging local models and

metadata required to describe them using a special makeup language. JAM (Java Agents

for Meta-learning) (Prodromidis et al., 2000) is equally a Java-based meta-learning system

for large-scale distributed data mining. JAM consist of two types of agents: a learning

agent and a meta-learning agent. Each learning agent trains a set of machine learning

classification models and sends the output to a meta-learning agent for combination. The

collective machine learning system presented in this section draws some motivations from

JAM. Other agent systems with data mining/machine learning capabilities can be found

in the following references (Bui and Lee, 1999; Tozicka et al., 2007; Kargupta et al., 1999;

Wojtusiak et al., 2012; Zhang et al., 2005; Weiß, 1998).

A major drawback with most of these approaches is that they do not guarantee prop-

erties like scalability, fault-tolerance/failure-resilient, load balancing, task monitoring and

dynamic addition of agents as offered by the Hadoop framework. For example, in a multi-

agent system involving hundreds of millions of agents such as modeling human decisions,

sensors, city traffic, fish schools, etc. the running time required to obtain acceptable solu-

tion can take several hours or days. If any of the agents fails during run time, the whole

process need to be restarted.

Another drawback with most traditional agent-based distributed data mining and ma-

chine learning systems which sometimes limits their applicability is the level of programming

involved. Most of them typically offer very complex programming abstractions which are
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difficult to program by domain scientists. This has led many organizations to often avoid

to build multi-agent based solutions even when there is clear need for one because of in-

vestment required and the perceived complexity of agent programming. On the other hand,

Hadoop-MapReduce framework hides all these complex programming constructs from the

user, in addition it offers the Hadoop Streaming and Hadoop Pipes API allowing non Java

applications to use the framework. This greatly opens the possibility to employ many

mathematical and statistical libraries which are limited in Java but very extensive in other

programming languages like R, Python, C and C++.

5.6 A Large-Scale Cooperative Machine Learning Framework

This section presents two approaches for integrating multiple machine learning models gen-

erated from distributed data sites modeled as agents on the Hadoop or HPC platforms.

The data sites may be homogeneous i.e each site contains data for exactly the same feature

set or heterogeneous i.e each site may contain dataset with different feature vectors. Each

agent in the system is endowed with a set of machine learning algorithms, a classification

evidence algorithm and can cooperate with each other through MapReduce or MPI.

To simplify the presentation, a brief overview of how agents are represented and trained

in MapReduce is first presented. The MapReduce and MPI implementations for homoge-

neous and heterogeneous data sites with their respective assumptions are then presented

separately.

5.6.1 Agent Representation and Training with MapReduce

A data site may consist of one or more databases stored on the same or on different machines.

A machine corresponds to a node in Hadoop. Hadoop splits the input file to a MapReduce

job into fixed-sizes (default equal to block size) called splits and assigned a map task for

each split. The splits are just references to the location (host names of the machines) of

the actual data. MapReduce uses this information to try to execute the map task on the
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node where the actual data resides in HDFS. This configuration can be changed to allow a

different input size splits. Each data site or agent is modeled as a single input file. Since

they can be multiple input files in a given node, therefore each of these files represent a

separate agent. This specification accommodates for homogeneous or heterogeneous agents

i.e all mappers operating on the same file contains the same type of features.

Each agent has two unique properties: a unique identifier which is assigned by Hadoop

and stored in the NameNode and the type of agent provided by the user. The type of an

agent is a file that is broadcasted to all agents and contains information on the number and

type of features the agent has. During communication, models or variables can be shared

between agents. Thus, an agent need to know the type of model or variables it is receiving

so as to be compatible with its learning theory. As will be seen below, the agent type is

only required for heterogeneous agents.

To avoid overfitting, each agent’s input data is split into a training and validation set.

The training set is used to select and train the base classifiers while the validation set is

use to predict class labels for ensemble learning. Selection of the base classifiers can be

(optionally) done using the the Bayes active data and algorithm selection method described

in section 3. Recall that in the selection process, the base algorithms are also trained on

the training set so no further training is required. The classification evidence required for

integration can be computed in two ways. The easiest approach is to generate the evidence

model on the validation set and predict on the test set. The second approach which may

be more accurate and robust is to use information from the active learning step to build

the evidence model. Recall that during active training of the base classifiers, each classifier

selects the data points it considers most informative for learning. The informative data

points from all selected classifiers can then be aggregated to build the evidence model.

The model is then used to predict the classification evidence on the validation and test set

respectively.
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5.6.2 Homogeneous Agents

Homogeneous agents contains the same number and type of features i.e it is equivalent

to a horizontal partitioning of the dataset. This is the most common type of distributed

databases and many mult-agent based distributed machine learning applications in the

literature are based on horizontal partitioned datasets (Prodromidis et al., 2000; Kargupta

et al., 1997; Bailey et al., 1999). Learning and programming design for homogeneous agents

is very straight forward involving very little or no communication between agents. Unless

some agents absolutely need to communicate, the design can be written as a single-pass

MapReduce job.

A situation where communication may be warranted is when agents select different

algorithms during the active learning step. For example, consider a system with two agents

A and B. A selects and trains classifiers {h1, h2, h3} and generates the ensemble hA =

h1 + h2 + h3. B selects {h1, h4, h5} and generates the ensemble hB = h1 + h4 + h5. The

global ensemble model is then constructed as h = hA + hB. At application time, the

global model need to be applied to any test data available at sites A or B. However, to

successfully carry out this operation either A needs to communicate classifiers h2 and h3 to

B, and likewise B communicates h4 and h5 to A. This is however not a major problem as it

can be easily resolved by assigning zero weights to the non-selected classifiers in each agent.

This is actually what the Variational Bayesian (VB) integration scheme described in chapter

4 section 4.4.2 does. Recall that this scheme does not require algorithm selection since it

performs automatic relevance determination (ARD). ARD practically sends the weights of

irrelevant classifiers to zero. Based on this fact, the algorithm for homogeneous agents in

this chapter assumes no communication.

5.6.2.1 Training

With no other form of communication between agents, the algorithm for training homoge-

neous agents is implemented as a single-pass MapReduce job. Each map function operating
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Figure 5.3: Training with MapReduce

on a block of the input file selects and trains a set of base algorithms. It also uses the

training (or validation) set to generate parameters of the evidence model. The classifica-

tion evidence and predictions of the classifiers on the validation set is used to generate

combination weights for each classifier. This constitutes the local ensemble model for each

agent.

For each base classifier type selected, the reducer simply computes the average of the

combination weights. Since prediction using the Mackay Approximation (MacKay, 1992)

requires the covariance matrix of the combination weights (see equation 4.53), the single-

pass covariance matrix formula described in chapter 2 section 2.3.2 can be used to combine

the covariance matrix of the weights.

The computed parameters constitutes the global ensemble model to be used for predic-

tion on new cases and can be stored locally or on HDFS. The overall training process is

illustrated in Figure 5.3.
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5.6.2.2 Prediction

Prediction is equally carried out as a single-pass MapReduce job. When new test data

is available at any of the sites, each agent uses the global ensemble model to predict the

output of the test set. Note that if the agent is more confident in its local ensemble model,

it may decide to use it instead of the global model.

5.6.3 Heterogeneous Agents

Heterogeneous agents represents the most general case of distributed machine learning task

that has not been adequately studied in the literature. A few authors have attempted

to address this very important topic with varying success (Kargupta et al., 1999; Provost

and Buchanan, 1995). As demonstrated in Kargupta et al. (1999), naive approaches to

distributed data analysis in heterogeneous environments may face ambiguous situations

and may lead to incorrect global solutions. The challenge with heterogeneous data sites is

that each dataset only has a subset of the feature space and models generated with with

such “incomplete” data may not be representative of the global model i.e the models are not

exact. However, some algorithms like decision trees and rules based learning are capable

of generating exact models on such datasets. Thus it is not surprising that most existing

studies on distributed machine learning with heterogeneous datasets are based on decision

trees (Kargupta et al., 1999; Ye et al., 2009). The authors in Kargupta et al. (1999) proposed

to used a set of orthogonal basis functions to generate local models which guarantees better

global models with minimal communication.

This section offers an alternative solution to the problem of learning from heterogeneous

database that makes use of the classification evidence to pull bits of information from the

various data sites together to generate more accurate local models and hence more accurate

global model. With this technique, the models generated can be considered approximately

exact. Since the dimension of the classification evidence can be far less than the dimension

of the dataset, communication cost can be maintained at a low and acceptable level.
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Consider a collection of M heterogeneous datasets D1 ∈ Rn×p1 , . . . ,DM ∈ Rn×pM , the

evidence model represented by equation 4.2 can be seen in the context of factor analysis

as the problem of finding K �
∑M

m=1 pm = p factors that describes the collection and

in particular the dependencies between the datasets or groups instead of the individual

variables. The solution to this problem includes the standard factor analysis as a special

case. This problem was recently introduced in Virtanen et al. (2011) and coined Group

Factor Analysis (GFA). An appealing property of GFA is that each factor provide weights

over the datasets in a sparse manner. Thus, one can analyze the factors just as in traditional

factor analysis. For example, with ARD priors, factors (groups) in GFA become sparse

in the sense that elements corresponding to some subsets of the collection becomes zero

indicating such datasets are irrelevant. A brief discussion of GFA is presented next and

some simplifying assumptions are made to enable the use of equation 4.2 to model GFA for

distributed datasets.

5.6.3.1 Group Factor Analysis

Given a collection D1 ∈ Rn×p1 , . . . ,DM ∈ Rn×pM of datasets with n co-occurring observa-

tions, the problem of GFA is to find a set of K � p =
∑M

m=1 pm factors that describes

the joint data Y = [D1, . . . ,DM ], where Y is a concatenation of the datasets Dm (Virtanen

et al., 2011). The model can be written as

Y = ZWT + E (5.1)

where W ∈ Rp×K is the weight or loading matrix, Z is the factors and E is a zero mean

Gaussian noise with diagonal covariance. GFA model can be solved by a simple extension

of the VB evidence model presented in Algorithm 4.

One main advantage of GFA model is that, it is essentially a Bayesian factor analysis

model with group-wise sparsity, where the groups corresponds to the datasets Dm instead
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of variables. Another advantage is that it enables the analysis of a completely new kind of

problem of which one of them is the problem studied in this section. That is, by introduc-

ing factors in GFA as classification evidence into the problem of integrating heterogeneous

agents, the problems associated with learning from heterogeneous datasets with incomplete

feature space can be minimize or eliminated since the evidence offers a higher level of infor-

mation about the whole distributed datasets. A motivating example of the application of

GFA taken from Virtanen et al. (2011) is the case where the authors studied drug responses

by modeling four different datasets. Three datasets contained gene expression measure-

ments of responses of different cell lines and one dataset contained chemical descriptors of

the drugs. The authors did a joint analysis of the four datasets using GFA and obtained

indicators on which drug descriptors were predictive of responses in a specific disease.

Unfortunately, with distributed data, GFA cannot be directly implemented without

incurring some significant cost in communication. Consequently, in this work, it is assumed

that the factors in GFA can be computed for each data site and distributed. That is, Z is

a collection of M distributed datasets Z1 ∈ Rn×K1 , . . .ZM ∈ Rn×KM with K =
∑M

m=1Km.

With this assumption, computing Z corresponds to applying the evidence model to each

data site (with local or global parameter estimates). The price paid is that the group-

wise sparsity property may be lost. Full implementation of GFA for distributed datasets is

reserve for future work as discussed in chapter 7.

During training, the evidence Zm computed by each agent is broadcasted to all agents.

Each agent therefore receives a copy of Z which describes the whole distributed datasets.

Because the original information available to each agent may be incomplete for training

the base classifiers, the supplementary information it receives from other agent may be

included in the training set for training the base classifiers. However, to demonstrate the

fact that the use of supplementary information by a well designed ensemble method can

help correct for some misclassification by the base classifiers, the shared evidence is used

only for constructing the ensemble models.

The challenge remaining now is how to communicate Z to all agents (or groups of

133



agents). Two communication strategies are described to solve this problem, the first is a

pure MapReduce implementation while the second is based on MPI.

5.6.3.2 Training Heterogeneous Agents with MapReduce

Training homogeneous agents on MapReduce is very straightforward and proceeds as a sim-

ple single-pass MapReduce job. Heterogeneous agents on the other hand presents a rather

challenging situation. The classification evidence from each agent need to be communicated

to all agents. In addition, if the base classifiers are to be shared, then the type of agent

need to be communicated as well. However, by design, the MapReduce framework does

not support communication between map tasks. The common approach to have mappers

communicate is to implement some ad hoc workarounds. For example communication can

be achieved by having a map task write some data to HDFS and another to retrieve it.

This strategy can be conveniently implemented through a series of MapReduce steps,

that is, the output of one MapReduce job becomes the input of the next:

Map1 7→ Reduce1 7→ Map2 7→ Reduce2 7→ Map3 ...

The first job in the chain writes its output to a path which is then used as input path for

the second job. This process can be repeated for as many jobs are necessary to arrive at a

complete solution to the problem.

To use chained MapReduce for training heterogeneous agents, two MapReduce jobs are

required;

• The first map task Map1 reads the input data and splits into training and validation.

The training set is used for training the classifiers and generation of parameters of the

evidence model. Class labels or probabilities and classification evidence are predicted

on the validation set. The classification evidence is stored on HDFS while the class

labels or probabilities, base classifiers and evidence model can be stored locally or on

HDFS. Local storage is preferred due to the small sizes of the data and for fast local
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access.

• The first reducer task Reduce1 does nothing, i.e this is no-operation reduce class.

• The next map task Map2 reads in the classification evidence for all agents and class

probabilities (stored locally) and generates the ensemble model parameters.

• The ensemble parameters are passed to the last reducer Reduce2 who aggregates

them. The parameters can be saved on HDFS or locally. Once again local storage is

preferred.

5.6.3.3 Prediction

Prediction equally requires two chained MapReduce jobs. The first mapper reads the local

classifiers, evidence models and predict on the test set. The second mapper reads the

predicted evidence for all agents from HDFS, the predicted class labels or probabilities and

global ensemble parameters and make final predictions.

This pure MapReduce training is relatively easy to implement and requires only two

chained jobs with a missing reduce step. However, because communication is achieved

by writing multiple files to HDFS, the process can suffer from serious system overhead

especially when the files written are huge. Numerical experiments are not reported for

heterogeneous agents on Hadoop in this thesis. This is reserve for future work. The next

section presents an MPI training approach for efficient communications.

5.6.3.4 Training Heterogeneous Agents with MPI

One of the keys to Hadoop-MapReduce popularity and success is its lack of data motion.

The framework is design to take computation to data rather than the other way around.

Thus Hadoop can achieve very high performance on applications involving very little or no

communication between processes. The Hadoop-MapReduce framework has been reported

by many authors (Bu et al., 2010; Ekanayake et al., 2010; Ngufor and Wojtusiak, 2013) to
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performs very poorly on problems requiring some sort of communication such as iterative

processing of data. Since most machine learning algorithms are inherently iterative, their

implementation on Hadoop is complex, inefficient and very slow. Even though projects like

Apache Mahout, GrapLab, MLbase have constructed machine learning on MapReduce the

implemented algorithms are rather too costly and slow. This major drawback of Hadoop-

Mapreduce makes the implementation of some very popular machine learning algorithms

such as Expectation Maximization, Gradient based optimization methods, SVM and many

others on MapReduce to be inefficient. The MPI-based parallel distributed framework on

very large HPC clusters is a more favorable alternative for the implementation of these

algorithms. Though some of the nice properties of Hadoop such as fault-tolerance and task

monitoring may be limited, the trade-off in terms of computational cost heavily favors MPI

(http://www.admin-magazine.com/HPC/Articles/The-New-Hadoop).

Under the MPI framework agents are modeled as individual processes. Thus on a

multicore machine, each of the CPU represents an agent. The training process is a straight

forward HPC computing tasks and follows the same procedure as the previously described

chain MapReduce jobs except that instead of writing files to HDFS, explicit point-to-point

or collective communication between agents is performed.

5.7 Experiments

This sections evaluates and compares the performances of the classifier integration schemes

presented in this thesis on 14 benchmark datasets and on a large public available flight

dataset. Eleven of the benchmark datasets are from the the UCI machine learning repository

(Frank and Asuncion, 2010), two from the website of the book The “Elements of Statistical

Learning” (Hastie et al. (2001), http://statweb.stanford.edu/~tibs/ElemStatLearn/)

and one from the KEEL repository (Alcalá-Fdez et al., 2009). Though the benchmark

datasets are relatively small with no need for distributed learning, the main purpose of this
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experiment is to demonstrate on a series of datasets the optimality of the presented frame-

work when learning from heterogeneous data sites and to show that the models generated

are approximately exact. Thus two main experiments are performed: The first experiment

models heterogeneous data sites using the benchmark datasets while the second experiment

models homogeneous data sites using the flight dataset.

To model heterogeneous data sites, a random subsets of the feature space is distributed

across several computing nodes and trained using the MPI framework described in sec-

tion 5.6.3.4. The MPI programming framework is implemented using the recent R package

pdbR or “Programming with Big Data in R” (Ostrouchov et al., 2012). pdbR is a SPMD

model that enables high-level distributed data parallelism in R on large scale computing

clusters with focus on analyzing big data. With pbdR packages, R users can readily access

compiled MPI codes through R traditional classes and methods while maintaining the lan-

guage original syntax convenience. However, the underlying code is readily available if the

user wishes to change or implement new constructs. The package also supports high level

functions for distributed dense matrix operations and scalable linear algebra, however in the

experiments only the basic MPI routines such as MPI Bcast, MPI Scatter, MPI Allgather

and MPI Allreduce are used.

The MapReduce framework with active data and algorithm selection as described in

section 5.6.2 is implemented for learning the flight data. However, the active algorithm

was mainly used for sample size reduction while all base classifiers were selected a priori.

The experiments were performed using Hadoop version 1.2.1 on a small cluster of three

machines: A 6 core 8 GB RAM and two 4 core 4 GB RAM each.

For each dataset, a total of six ensemble models were constructed:

1. The three integration schemes presented in chapter 4:

• Ensemble method with EM (EM) (see section 4.4.1.2).

• Variational Bayes Ensemble for Discrete outputs (VBD) (see section 4.4.2.1).

• Variational Bayes Ensemble for Continuous outputs (VBC) (see section 4.4.2.2).
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2. Stack generalization (Stack) with logistic regression as the combiner (see section 2.2.2).

3. Mean Rule (M.Rule) (see section 2.2.3).

4. Majority Votes (M.Votes).

The accuracy or percent correctly classified (PCC) and AUC are used to evaluate all en-

semble models. Since Majority Votes is determined using only the hard outputs {0, 1}, the

AUC is not reported for this method. The AUC of the base classifiers are also not reported,

but the PCC of the best base classifier (B.Base) is reported.

The same collection of algorithms used for the experiments in chapter 4 are equally used

as base algorithms. The algorithms are respectively: Support Vector Machine (svm), Linear

Discriminant Analysis (lda), Naive Bayes (nb), Logistic Regression (log), Neural Networks

(nn), Recursive Partitioning and Regression Trees (tree), Least-Squares Extreme Logistic

Regression (ls-elr), Iterative Least-Squares Extreme Logistic Regression (irls-elr), Extreme

learning machine (elm) and Quinlan’s C5.0 rule-based classifier (c50). Three random algo-

rithms were dropped from the hadoop experiments to lessen the computational cost. All

algorithms are trained with default parameter settings.

5.7.1 Benchmark Datasets

The 14 benchmark datasets consists of Abalone (abalone), Breast Cancer (breast), Car

Evaluation (car), Australian Credit Approval (credit), Magic Gamma Telescope (magic),

Mammographic Mass (mam), Ozone Level Detection (ozone), Page Blocks (pageblock),

Phoneme (phoneme) (data from http://statweb.stanford.edu/~tibs/ElemStatLearn/)

Pima Indians diabetes (pima), South African Hearth Disease (saheart) (data from http://

statweb.stanford.edu/~tibs/ElemStatLearn/), Spambase (spam), Twonorm (twonorm)

(data from Alcalá-Fdez et al. (2009)) and Wine Quality (wine). Each dataset is randomly

split into three equal parts: One part for training, one part for validation and the last part

for testing.
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The number of attributes and sample sizes of the datasets is presented in Table 5.1.

Most of the datasets represented binary classification problems. Multiclass datasets such

as the car, abalone and and wine were converted to binary. The car dataset has four

classes representing car evaluations. These were aggregated into two classes: class 1 =

(“unacceptable”, ”acceptable”) and class 0 = (“good” , “very good”). The abalone dataset

represents the problem of predicting the age of abalone from physical measurements. The

age is determined by the number of rings in the Abalone’s cone. The number of rings varied

from 1 to 29. The negative class was taken to represent rings in the range 1 to 10 while the

rest made up the positive class. Finally, the outcome variable in the wine dataset is wine

quality ranging from 0 (very bad) to 10 (very excellent). The binary classification problem

constructed out of this dataset was to distinguish poor or normal wine (0-6) from good or

excellent (7-10) wine.

Table 5.1: Classification datasets

Data Attributes Sample Size

abalone 8 4177
breast 9 277
car 21 1728
credit 14 690
magic 10 19020
mam 15 830
ozone 72 1847
pageblock 10 5473
phoneme 5 5404
pima 8 768
saheart 9 462
spam 57 4597
twonorm 20 7400
wine 11 4898

A three-fold cross-validation learning procedure is carried out to evaluate the generated

models. That is, each of the splits of the data is used alternatively as training, validation or
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testing. To model heterogeneous data sites, the base classifiers on each site are trained only

on a random sample of 50% of features. A total of 5 processors on an 8-core 16-GB memory

machine are used to model the data sites. Thus each processor reads the full dataset and

randomly selects 50% of the features for learning. The dimension of the evidence extracted

by each processor is set to K = 1, thus each data site broadcast a single evidence feature

vector to the rest of the data sites.

The car and magic datasets were also used for the experiments reported in chapter 4.

However, in chapter 4 the base classifiers were trained using all attributes of the datasets.

Thus the experiments on the car and magic datasets provides an empirical way to com-

pare the relative performance of the ensemble models when learning from distributed data

sites with different observed attributes against a centralized learning with all attributes.

This experiments will show that the ensemble methods proposed in this thesis generates

approximately exact models.

5.7.2 Flight Dataset

The Bureau of Transportation Statistics (BTS) provides arrival and departure information

for every commercial flight within the U.S from 1987 to date. Monthly data with the option

of filtering relevant features can be downloaded from the BTS website in CSV format. Ap-

proximately 120 million records are contained in the dataset between 1987 and 2008. This

subset has been used for the Visualization Poster Competition of the 2009 Joint Statisti-

cal Meetings (results of the competition can be found here http://stat-computing.org/

dataexpo/2009/posters/). This subset is also currently used as a benchmark dataset to

illustrate big data concepts in some implementations of the Hadoop-MapReduce framework

such as RHadoop, RHIPE (http://www.datadr.org/), Oracle R Advanced Analytics for

Hadoop1.

For the experiments performed in this chapter, only flight details for the most recent

years are considered. Specifically, flight details of the last 5 months of 2012 is used as

1http://www.oracle.com/us/products/database/big-data-connectors/overview/index.html
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training set while details for the last 5 months of 2013 used for testing. The classification

problem formulated here is to determine whether flight details of previous years can be used

to predict flight (arrival) delays with high accuracy in the feature.

This problem is of significant importance as it has severe impact on the U.S economy.

Using data from the U.S department of transportation, the Joint Economic Committee of

the U.S Congress estimated that the total cost of domestic air traffic delays to the U.S

economy was as much $41 billion in 2007 alone and cause an extra consumption of 740

million gallons of jet fuel (Schumer and Maloney, 2008). Further, almost 20% of total

domestic flight time in the same year was wasted in delays costing travelers time worth

of $12 billion. When air travel takes extra time than scheduled, delayed travelers, their

employers, and others lost productivity, business opportunities, and leisure activities. The

flight delay predictive analysis considered here can thus provide a useful tool for a traveler

to predict several months ahead if her flight will be delayed and therefore make inform

decision and best plan her travel.

5.7.2.1 Flight Data Preprocessing

As the primary objective is to predict flight arrival delays with high accuracy, a secondary

data source was used to enrich the flight details from BTS. Specifically, for each aircraft

in BTS identified by its Tail number, information such as year manufactured, type of air-

craft, type of engine were pulled from the Federal Aviation Administration (FAA) Aircraft

Registry by matching with the N-Number. After merging the two databases, the following

variables were selected for further processing and learning:

1. Flight details: Month, Day of Month, Day of Week, Unique Carrier Code, Flight Date,

Origin, Destination, CRS Departure Time, Departure Delay and Distance in miles

2. Aircraft Details: Age (year of flight - year manufactured), Type of Aircraft, Type of

Engine, Number of Engines, Number of Seats, Aircraft Weight and Average Cruising

Speed.
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The average cruising speed was not available for all flights so a simple imputation by the

mean was performed.

All categorical variables were converted to binary. To predict flight Arrival Delays,

a continuous variable which represented the difference in minutes between Scheduled and

Actual Arrival Time was converted into binary. Values greater than 15min were coded as 1

and 0 otherwise. This threshold can be turned to obtained different delay catergorization

as desired.

BTS also provide information if a flight was canceled or not and a reason if there was

a delay (departure or arrival). All flights that were canceled were removed and because

weather details of the flights were not modeled in the experiments, all flights that were

delayed because of weather conditions were also dropped.

Before loading the training data onto Hadoop, simple linux command line tools such as

cat, shuff and split were used to shuffle the data. This ensures that approximately a balanced

set of attributes is distributed to all nodes. Each of the shuffled dataset corresponding to a

month’s data is then compressed and loaded into hadoop. The compression step is however

not required, but because each map task selects only informative data points for learning,

the compression prevents further splitting of the data by Hadoop and ensures that a single

mapper is assigned to a single file. The MapReduce job is then run with 5 mappers and a

single reducer.

5.7.2.2 Training and Testing

Each month of the flight data in the training set is modeled as a homogeneous data site.

Thus all data sites contained exactly the same number and type of features. Training

proceeds as a single-pass MapReduce job. The active data and algorithm selection is first

applied to the input data to select only informative points for training. The scaled down

dataset is then split into traning and validation. Table 5.2 shows the sample sizes of the

five input and the scaled down training sets respectively. It can be seen that each mapper

learns on approximately 1% of the input data.
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Table 5.2: MapReduce input data sizes and selected training sizes

Input Training Validation

509519 5348 2674
469746 5082 2541
552312 5091 2545
536393 5092 2546
548642 5091 2545

The classification evidence and base classifiers are then trained on the training set and

predictions made on the validation set. Parameters of the ensemble models are computed

using the predictions and passed to the reducer who simply aggregated them by classifier

type. The trained models can either be saved locally or on Hadoop. Because access time

for files on Hadoop can be longer, it is easier to save the models locally.

Testing equally proceed as a single-pass MapReduce job. The trained ensemble model

parameters can be passed to the mappers as distributed cache or read locally depending on

how it was saved during training. Each mapper predicts class labels or probabilities on the

test set using the base classifiers and combine the predictions using the ensemble model.

5.8 Results

The results of the two experiments are presented and discussed in this section.

5.8.1 Performance on Benchmark Datasets

Table 5.4 and 5.5 shows the average validation and test performance of the six ensemble

methods and the best base classifier on the 14 benchmark datasets. The following observa-

tions can be drawn from the results

1. The overall performance of VBC on the validation set was superior to the other meth-

ods. Given that the ensemble parameters were estimated on the validation set, the
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performance of VBC and VBD indicates that the methods are not overly optimistic.

2. A remarkable performance can be seen for both VBC and VBD on the test set. Overall,

these two ensemble methods outperformed the other methods. No noticeable change

in performance can be observed for Stack, M.Rule, M.Votes and B.Base between the

validation and test experiments.

3. The EM ensemble method appears to be the weak link among the proposed methods.

Its performance is almost comparable to majority votes. The possible reasons for the

poor performance as discussed in chapter 4 also applies here.

4. Consider the performance of the methods on the magic and car datasets for exam-

ple; In chapter 4, the base classifiers were trained in a centralized manner i.e. using

all attributes of the datasets. All classifiers performed very well and further inspec-

tion showed that except for the EM method, the results for VBD, VBC, Stack, and

M.Rule were very close in magnitude. A reduction in AUC values from centralized

to distributed training is obtained for each ensemble method as follows: VBD 6.7%,

VBC 11%, EM 18%, Stack 19% and M.Rule 22% on magic dataset and VBD 9%,

VBC 11%, EM 8%, Stack 23% and M.Rule 22%. Dropping the EM method because

of its unstable performance, these results can be illustrated more clearly by showing

the centralized and distributed results together as in Table 5.3. Figure 5.4 shows

an alternative way to illustrate these results. It shows the percentage improvement

in AUC from a baseline random classifier whose AUC is 0.5 in both centralized and

distributed learning.

Clearly VBD and VBC are approximately consistent in performance in a distributed

environment. This can be attributed to the extra information provided by the classifi-

cation evidence that is shared among the data sites and used to combine the decisions

of the base classifiers.

5. In a distributed learning environment, some data sites may be irrelevant or contain

noisy features. The factors in group factor analysis describes the data sites as a whole
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Table 5.3: Approximate Exact Models

Model Data Centralized Distributed % Reduction

magic 0.89 0.83 6.7%
VBD

car 0.98 0.89 9%

magic 0.90 0.80 11%
VBC

car 0.99 0.88 11%

Stack
magic 0.90 0.73 19%

car 0.99 0.76 23%

M.Rule
magic 0.88 0.69 22%

car 0.97 0.76 22%
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Figure 5.4: magic and car experiment

and not just the features. With ARD priors, irrelevant data sites are pruned from the

ensemble decision and thus contribute to improving the accuracy of the methods.
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5.8.2 Performance on Flight Dataset

Table 5.6 shows the performance of the Hadoop experiment on the flight data. Tables 5.6

(a) and (b) are performances for the first two data sites while (c) is the average performance

over the 5 months data. Judging from the AUC values, the proposed ensemble methods

once again proved to be the better algorithm for learning the large-scale flight dataset on

MapReduce.

An important factor which contributed to improve the accuracy of the methods is that

the original flight data from BTS was enriched by several informative features about the

individual aircraft obtained from the aircraft registry. Some of the base classifiers may not

be able to make use of this information, but by supplementing their decision with hidden

information about them, VBC, VBD and EM ensemble methods were able to improve

prediction accuracy of flight delays by many percentage points.

While the performance of the EM method was poor on the benchmark datasets, it

however outperformed all methods on the flight data. The limitations of the method as

given for the benchmark experiments does not seems to apply here. This clearly indicates

that ensemble learning is not a trick that will always work in all cases.
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Table 5.4: Validation Performance on Benchmark Datasets

Data Measure VBC VBD EM Stack M.Rule M.Votes Best.Base

abalone
PCC 0.78 0.74 0.72 0.75 0.72 0.73 0.74(nn)
AUC 0.85 0.78 0.64 0.81 0.79

breast
PCC 0.69 0.71 0.69 0.73 0.69 0.71 0.71(nb)
AUC 0.62 0.54 0.54 0.69 0.6

car
PCC 0.82 0.78 0.77 0.76 0.77 0.77 0.77(svm)
AUC 0.89 0.86 0.55 0.79 0.78

credit
PCC 0.85 0.78 0.48 0.8 0.79 0.79 0.78(elr)
AUC 0.92 0.83 0.7 0.88 0.87

magic
PCC 0.75 0.73 0.72 0.75 0.73 0.73 0.74(nn)
AUC 0.76 0.65 0.6 0.75 0.71

mam
PCC 0.82 0.78 0.49 0.73 0.72 0.73 0.73(tree)
AUC 0.87 0.79 0.5 0.77 0.76

ozone
PCC 0.94 0.93 0.93 0.94 0.93 0.93 0.93(svm)
AUC 0.89 0.86 0.7 0.88 0.87

pageblock
PCC 0.96 0.94 0.92 0.96 0.93 0.94 0.96(tree)
AUC 0.98 0.9 0.79 0.97 0.94

phoneme
PCC 0.79 0.75 0.71 0.79 0.77 0.76 0.79(nn)
AUC 0.85 0.78 0.6 0.85 0.82

pima
PCC 0.65 0.64 0.63 0.63 0.64 0.63 0.64(nb)
AUC 0.72 0.56 0.54 0.71 0.7

saheart
PCC 0.68 0.65 0.62 0.68 0.63 0.64 0.66(lda)
AUC 0.71 0.6 0.58 0.7 0.62

sona
PCC 0.85 0.83 0.54 0.88 0.82 0.81 0.83(log)
AUC 0.92 0.9 0.63 0.92 0.91

spam
PCC 0.87 0.85 0.64 0.86 0.85 0.84 0.85(nn)
AUC 0.94 0.89 0.61 0.92 0.91

twonorm
PCC 0.92 0.5 0.5 0.87 0.87 0.87 0.87(nb)
AUC 0.98 0.52 0.51 0.94 0.94

wine
PCC 0.81 0.8 0.81 0.81 0.81 0.81 0.8(nn)
AUC 0.82 0.8 0.76 0.81 0.8
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Table 5.5: Test Performance on Benchmark Datasets

Data Measure VBC VBD EM Stack M.Rule M.Votes B.Base

abalone
PCC 0.78 0.76 0.65 0.75 0.74 0.74 0.75(nn)
AUC 0.84 0.82 0.76 0.81 0.81

breast
PCC 0.71 0.74 0.71 0.72 0.71 0.72 0.74(log)
AUC 0.6 0.54 0.65 0.63 0.63

car
PCC 0.82 0.85 0.80 0.73 0.73 0.72 0.73(elr)
AUC 0.88 0.89 0.83 0.76 0.76

credit
PCC 0.81 0.82 0.77 0.79 0.8 0.79 0.8(log)
AUC 0.85 0.88 0.84 0.88 0.88

magic
PCC 0.78 0.80 0.72 0.73 0.71 0.71 0.73(nn)
AUC 0.80 0.83 0.59 0.73 0.69

mam
PCC 0.77 0.78 0.57 0.71 0.71 0.72 0.72(log)
AUC 0.84 0.83 0.5 0.72 0.72

ozone
PCC 0.93 0.92 0.92 0.93 0.93 0.93 0.93(log)
AUC 0.83 0.88 0.82 0.87 0.88

pageblock
PCC 0.96 0.96 0.92 0.96 0.94 0.94 0.96(tree)
AUC 0.97 0.96 0.82 0.96 0.94

phoneme
PCC 0.78 0.79 0.73 0.78 0.75 0.75 0.77(nn)
AUC 0.85 0.85 0.74 0.85 0.82

pima
PCC 0.74 0.74 0.69 0.73 0.74 0.72 0.73(elr)
AUC 0.77 0.75 0.72 0.76 0.76

saheart
PCC 0.66 0.69 0.7 0.66 0.7 0.68 0.7(svm)
AUC 0.66 0.65 0.72 0.62 0.62

spam
PCC 0.87 0.88 0.67 0.86 0.84 0.83 0.85(nn)
AUC 0.93 0.93 0.71 0.92 0.91

twonorm
PCC 0.91 0.92 0.91 0.86 0.86 0.86 0.86(nb)
AUC 0.98 0.97 0.97 0.94 0.94

wine
PCC 0.8 0.80 0.78 0.81 0.8 0.8 0.81(tree)
AUC 0.81 0.81 0.71 0.82 0.81
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Validation Testing

Model PCC AUC PCC AUC

VBC 0.74 0.81 0.80 0.83
VBD 0.74 0.79 0.80 0.82
EM 0.73 0.79 0.80 0.89
Stack 0.74 0.81 0.80 0.79
M.Rule 0.74 0.80 0.80 0.64
M.Votes 0.74 0.80

svm 0.73 0.80
nb 0.62 0.66
log 0.74 0.80
nn 0.69 0.80
tree 0.74 0.80
elr 0.74 0.80
lda 0.74 0.80

(a) First Data Site

Validation Testing

Model PCC AUC PCC AUC

VBC 0.72 0.79 0.80 0.81
VBD 0.73 0.77 0.80 0.82
EM 0.72 0.79 0.80 0.89
Stack 0.72 0.79 0.80 0.77
M.Rule 0.72 0.78 0.80 0.62
M.Votes 0.72 0.80

svm 0.72 0.80
nb 0.63 0.66
log 0.72 0.80
nn 0.65 0.80
tree 0.72 0.80
elr 0.72 0.80
lda 0.72 0.80

(b) Second Data Site

Validation Testing

Model PCC AUC PCC AUC

VBC 0.73 0.79 0.80 0.83
VBD 0.73 0.77 0.80 0.81
EM 0.70 0.77 0.80 0.90
Stack 0.73 0.79 0.80 0.78
M.Rule 0.72 0.78 0.80 0.65
M.Votes 0.71 0.80

svm 0.72 0.80
nb 0.62 0.65
log 0.72 0.80
nn 0.66 0.80
tree 0.71 0.80
elr 0.72 0.80
lda 0.72 0.80

(c) Global Performance

Table 5.6: MapReduce Validation and Test Performance on Flight Data.
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5.9 Summary

This chapter presented a large-scale parallel and distributed machine learning framework

or collective machine learning. By integrating the Bayes active data and algorithm selec-

tion scheme presented in chapter 3, the classification evidence model and optimal Bayesian

multiclassifier integration schemes presented in chapter 4 within each data site, a parallel

efficient collective and cooperative machine learning system is developed for learning ho-

mogeneous and heterogeneous distributed data sites. Agents can collective communicate

by sharing informative features vectors not observed in the distributed datasets to improve

accuracy by correcting misclassifications by the base classifiers. By pulling these bits of in-

formation from other datasets to enrich a given dataset, it is shown that the global models

generated are approximately exact. Two parallel programming frameworks are proposed

for collective learning: the MapReduce and MPI models. A series of numerical experi-

ments on benchmark datasets and on a large-scale flight dataset demonstrates the superior

performance of the proposed framework.
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Chapter 6: Systematic Prediction of Adverse Drug

Reactions from FAERS and MedEffect Canada

Adverse drug reactions (ADRs) are a major global health concern accounting for more than

two million injuries, hospitalization and death each year in the US alone (Lazarou et al.,

1998). With these numbers, it is not surprising that ADRs are equally a leading cost of

healthcare (Classen et al., 1997). Each year billions of dollars are spent by the US public to

treat disease cause by side-effects from prescription drugs which by themselves could lead to

more side-effects. Therefore the timely and accurate detection and prediction of ADRs at

the post-approval period is very important in healthcare. A reduction in both the harm to

patients and cost can be archived if accurate models are available to predict at prescription

time for each drug the likelihood of a patient developing a known or potentially new ADR

based on known properties of the drug and characteristics of the patient.

This section presents a novel systematic and structured approach to a solve this problem

based on the optimal Bayesian integration framework presented in this thesis.

6.1 Introduction/Background

ADRs have become a major healthcare care concern: the US public for example spends

billions of dollars every year on prescription drugs of which an alarming number of them

result in serious side-effects. Over the past decade both reported ADRs and related deaths

have increased significantly, leading to the withdrawal of a number of drugs from the mar-

ket (http://www.fda.gov/safety/recalls/). Hence accurate predictions of ADRs is ex-

tremely important at both the pre-approval and post-approval cycle of a drug.
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Various approaches have been proposed to study the drug-event relationship. The tra-

ditional method for predicting or assessing potential ADRs has been done using two main

approaches: during clinical trials and post-marketing surveillance. At the early stage of

drug development, drug safety profiles are carried out by testing compounds with biochem-

ical and cellular assays. One crucial advantage of clinical trails is that potential drug-event

identified most often represent causal relationships. Despite the methodological rigor of

clinical trials, it is generally not possible to identify all safety issues associated with drugs

primarily due to cost and efficiency. The size and characteristics of patient population,

drug doses and duration of use, and other realistic variables frequently observed at the

post-marketing phase can be impossible to model at the clinical trial phase.

The second approach based on post-marketing surveillance aims at applying data min-

ing techniques to identify significant patterns of association or “signals” between drugs and

ADRs using spontaneous reporting systems (SRS). The most commonly used data min-

ing methods used in this phase include Proportional Reporting Ratio (PPR)(Evans et al.,

2001), Reporting Odds Ratio (van Puijenbroek et al., 2002), Information Component (IC)

and Empirical Bayesian Geometric Mean (EBGM). The US Food and Drug Administra-

tion (FDA) has adopted the EBGM implemented as the Gamma Poisson Shrinker (GPS)

(Szarfman et al., 2002) while the World Health Organization (WHO) implements the IC

using a Bayesian Confidence Propagation Neural Networks (BCPNN) (Bate et al., 1998).

The Bayesian methods accounts for variability associated with small report counts. Most

of these methods are based on the use of a disproportionality statistics to quantify the

degree of “unexpectedness” of a drug-event associations (Bate and Evans, 2009). How-

ever, analyzing SRS using these traditional data mining techniques is a very challenging

task primarily because these voluntary reports are subject to various limitations such as

under/over-reporting, reporting biases, unverified data, misattributed drug-event combina-

tion, missing and incomplete data, duplicated reporting and unspecified causal relationships.

Another concern with these methods is that, potential drug-events relationships identified

does not necessarily demonstrate causality. Reports of ADRs associated with a drug are
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not necessarily true ADRs, that is, they may be temporally associated with a drug but not

caused by the drug. Hypothesis generation of new possible side effects from such data is

referred to as signal detection (Bate and Evans, 2009) and thus cannot be used to prove or

refute causal relationship between a drug and an ADR.

Recently, a third approach has emerged that uses machine learning techniques and

available large public drug databases to predict ADR at both the clinical and post-marketing

phases. Most of these methods typically use chemical, biological and phenotypic properties

of drugs to build predictive models. For example Liu et al. (2012) applied five machine

learning algorithms, namely: logistic regression, näıve Bayes, k-nearest neighbor, random

forest, and support vector machine to investigate the use of phenotypic information on drugs

together with chemical and biological properties to predict ADRs. The underlying principle

behind most of these approaches is that drugs with similar chemical and or biological

properties most often exhibit similar ADRs (Fliri et al., 2005). To the best knowledge

of the author, none of these studies have considered incorporating reports of ADRs from

SRS databases to predict ADRs using a distributed machine learning approach such as the

collective machine learning system presented in this thesis.

The public availability of drug databases such as DrugBank (Knox et al., 2011) and

SIDER (Kuhn et al., 2010) containing chemical, biological, and phenotypic properties

of drugs provide a unique opportunity to bridge the gap between the clinical and post-

marketing domains in studying ADRs. A systematic leveraging of this type of information

i.e. combining information on drug protein binding sites; biological pathways of drug ac-

tion and metabolism; drug chemical similarities; demographic characteristics of patients

such as age, gender, weight, height; route of administration, geographic location; and other

relevant information of patients who consumed the drug, the drug-event association can be

better understood. Further, and more importantly, individualized patient specific predic-

tive models can be generated. Before prescription, based on patient information and known

drug information, the likelihood of developing a known or potentially new ADR can be

determined and the appropriate decisions made.

153



The objective of this chapter is to present a new approach to learning ADRs from chem-

ical and biological properties of drugs publicly available in drug databases such as SIDER

and DrugBank combined with information from SRS databases in a distributed high perfor-

mance computing framework. Chemical and biological properties of FDA approved drugs in

DrugBank are mapped to drugs in SIDER to retrieve known drug side effects. These drugs

are then mapped to drugs reported in FDA Adverse Events Reporting System (FAERS)

and MedEffect Canada and predictive models are generated using the optimal integration

framework presented in this thesis. To increase the sensitivity of the approach, BCPNN

is initially applied to the drug-events reported in both SRS databases to identify potential

signals. Based on these signals, the data is then clustered by the chemical and biologi-

cal properties of the drugs and patient demographic variables. Learning of ADRs is done

within each cluster. The intuition behind clustering is based on the observation that similar

drugs most often exhibit similar side-effects, thus the accuracy of ADRs predictive models

constructed within each cluster can significantly improve. In addition, by examining the as-

sociation between known ADRs and reported ADRs within each cluster novel ADRs can be

identified while spurious reported ADRs can be eliminated. Including patient demographic

information in the clustering can further strengthen the association.

6.2 Drug-ADRs Signal Detection and Clustering

Most Bayesian methods for signal generation between a single drug and a single event in

SRS use the information component (IC) measure that attempts to account for uncertainty

in the disproportionality measure. When the IC is positive for a drug-ADR association,

this implies that the association is more strong than expected. Values of IC close to zero

represent independence between the drug and event. The idea then is to search the SRS

database for all positive values of IC.

This one-to-one signal generation however ignores the fact that certain groups of drugs
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may share a common set of ADRs. Identifying such groups could provide valuable infor-

mation about the drugs and ADRs and possible facilitate the identification of new ADRs

(Harpaz et al., 2011).

Clustering of drug-ADRs is another data mining approach that has recently been applied

to detect signals in SRS. Harpaz et al. (2011) applied a biclustering technique to simultane-

ously cluster drugs and ADRs in FAERS. The authors pointed out that examining similar

drugs and ADRs in a bicluster, valuable information can be gained about the drugs and

ADRs, and the classes of drugs identified can be used to predict potential ADRs for new

drugs. To strengthen the clusters generated, clusters can be generated for drug-ADRs for

which the IC is positive.

The BCPNN is chosen for generation of signals in this study because of its efficient

computational power in handling all possible drug-ADR combinations. Another appealing

property of BCPNN is that it is very suitable for implementation on parallel computers.

6.3 Experiments

To systematically predict adverse drug reactions, information on FDA approved drugs,

known side-effects, spontaneous reported side-effects and characteristics of patients who

consumed the drugs are pulled together. This information is then used in a structured way

to predict side-effects of drugs: Chemical and biological properties of drugs are combined

with demographic information of patients who consumed the drugs to build clusters of

similar drugs and patients from which ensemble models are generated.

The idea behind the approach is based on the observation that similar drugs have similar

side-effects. Thus if patients were to be grouped into homogeneous groups based on some

demographic characteristics such as age, gender, height, weight, geographic location were

side-effect occurred, duration of use, etc., then it is reasonable to assume that similar

patients should have similar outcomes when administered the same treatment.

This assumption motivated the systematic and structured approach of combining drugs
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and their known side-effects with reported side-effects about the drugs and characteristics

of the patients to create a dataset whose observations are characterized by a drug and a

patient. Further, since the content and structure of most SRS databses are different but

contains information on the same type of drugs, sharing some information among SRS data

sites can substantially improve the performance of the predictive models. To this end, the

ensemble models are constructed from two SRS data sites: FAERS and MedEffect Canada.

WHO Global ICSR Database System (VigiBase) was also considered for a third SRS data

site, but unfortunately the reports are not freely available. Classification evidence for each

drug stratified by patient characteristics is extracted from each data site and shared.

The overall learning process follows a series of steps as illustrated in Figure 6.1.

1. Preprocessing

• Map drugs from SIDER to drugs in DrugBank to pull drug side-effects, drug

chemical structures, information on proteins, targets and enzymes. This creates

a known ADRs (KADR) dataset.

• Find BCPNN signals from drugs-events reported in FAERS and MedEffect Canada.

Select drug-event pairs with information content IC > 0.

• Map drugs from KADR to signaled drugs in FAERS and MedEffect Canada to

creat two data sites: FAERS-KADR and MedEffect-KADR.

2. Compute classification evidence from each data site using demographic variables and

other reporter specific variables. Broadcast evidence to all sites.

3. Perform k-means clustering of each data site using biological, chemical, and demo-

graphic variables. The optimal number of clusters is determined by the cluster-wise

assessment of cluster stability through a bootstrap procedure described in Hennig

(2007).

4. Within each cluster, match known ADRs (from KADR) with reported ADRs. The

modified Jaro-Winkler string comparator method with spelling correction is used for
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this exercise. The comparator score is set to a very high value such as 0.95. Matches

with scores less than 0.95 can be set aside for further investigation or can form a new

cluster.

5. For each side-effect within a cluster, build a set of binary classification models and

combine their predictions using the ensemble methods described in chapter 4.

Figure 6.1: Systematic Prediction of ADRs

6.3.1 SIDER and DrugBank Data

Known ADRs (KADRs) of drugs are obtained from SIDER. The SIDER database contains

drug side-effects relationship information on 888 drugs and 1450 side-effects. 70% of the

drugs have between 10 and 100 different side effects.
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Chemical and biological properties of drugs are obtained from DrugBank. The chemical

structure of each drug is extracted from a structure-data file (SDF) which holds information

about the atoms, bonds, connectivity, molecular weights, coordinates of a molecule etc.

Some of the chemical attributes extracted include: solubility, number of rotatable bonds,

polar surface area, exact mass, molecular weight, acid dissociation constant etc. All the

chemical attributes are continuous. Biological attributes of drugs include: protein targets,

transporters and enzymes. The biological attributes are all categorical and were converted

to binary.

Drugs from SIDER were then mapped to drugs in DrugBank to create the dataset

KADR. The mapping was done using drug names with the Jaro-Winkler string comparator

algorithm and only exact matches were retained.

6.3.2 FAERS Database

FDA collects individual reports on ADRs (RADRs) voluntary reported by health care pro-

fessionals and consumers. Data for the 4th quarter of 2012 with a total of 3,553,844 obser-

vations was used in this study. The database consists of 7 tables, but only data from the

patient demographic and administration, adverse events, and drug tables were used. All

data was loaded into a PosgreSQL database and merged. Selected demographic variables

include: age, gender, weight, reporter country, occur country, dose amount, and route of

administration.

Drug signals are generated from the processed FAERS data using BCPNN. Drugs with

IC > 0 are then mapped to drugs in KADR to create the FAERS-KADR dataset. The

k-means clustering algorithm is used to cluster the data and within each cluster known

side-effects (from KADRs) is matched with reported side-effects to generate the dependent

variable for classification.
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6.3.3 MedEffect Database

The Canada Vigilance Adverse Reaction Database (http://www.hc-sc.gc.ca/dhp-mps/

medeff/index-eng.php) contains information about suspected adverse reactions reported

voluntary by consumers and health professional. The database consists of 11 tables but only

data from 4 tables were used for this study: Reports (demographics), Reaction (RADRs),

Report Drug and Drug Product Ingredients (contains active ingredients associated with all

drugs). Reports from 2008 to 2013 with a total of 2,714,445 observations was used for

the analysis. Attribute selected include age, gender, weight, height, seriousness (yes/no),

system organ class, route of administration, dose amount and active ingredients. As can be

seen, MedEffect contains a richer set of attributes than FAERS for the same type of drugs.

Similarly, signals are generated with BCPNN and mapped to drugs in KADR to create

the MedEffect-KADR dataset. Clustering is similarly done as for the FAERS-KADR data.

6.3.4 Implementation

Detecting and predicting ADRs is a very challenging task in terms of the computational

complexity involved. For instance, calculating measure of disproportionality for detecting

drug-event signals involves computing two-by-two contingency tables for all pairs of drug-

events found in the SRS database. Due to the large volume and rapid accumulation of

reports in SRS sites, the computational cost can be very expensive. Further, the clustering

method can generate very large number of clusters and with ensemble learning within each

cluster it is not hard to see that the computational task quickly becomes very difficult if

not impossible for a single computing machine. Therefore a distributed high performance

computing model is required for this task. A suitable computing framework for this task

is cloud computing. Cloud computing provides a pay per service computing where high

intensive applications in terms of CPU and storage requirements can be launch on a large

number of computing nodes at relatively low cost. To this end, the systematic prediction

of ADRs is performed on a cloud computing framework. Specifically, the recent publicly
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available Google Compute Engine (GCE) (https://developers.google.com/compute/

docs/instances) which claims to support high-performance, computationally intensive and

sophisticated scientific problems is chosen for this task. A total of 24 nodes each with 4

cores and 26GB of memory is setup for the experiments. Thus a total of 96 processes can be

lunched in parallel. Load balancing can be enforced such that more processes are allocated

to FAERS-KADR datasets.

The programming model set up is similar to the experiments on benchmark datasets

described in chapter 5 section 5.8.1. In this case there are only two data sites FAERS and

MedEffect with different subsets of observed attributes. Parellization is archived by having

each process read a subset of the observations and perform the predictive task as previously

described. Since the classification evidence is stratified by patient characteristics, sharing

is done by drug type.

6.4 Results

Due to the limitation of the allowed budget for this thesis project, only 11 random side

effects were selected within each cluster for learning. For the same reason, only 3 ensemble

learning methods are implemented: VBC, VBD (see chapter 5) and Majority Votes. The

linear discriminant analysis base classifier was also dropped due to the large number of

binary attributes in the datasets. Note that unlike the experiment on benchmark datasets,

the active data selection is implemented in these experiments. That is, during ensemble

learning, each node or process selects most informative instances for learning within each

cluster, thus computational cost can be reduced significantly.

Table 6.1 shows the average PCC over all computing nodes for the three ensemble

learning methods. Clearly the two proposed ensemble methods out performed majority

voting. Overall, VBC outperformed the other methods. Highlighted in the table are the

few ADRs for which majority vote performed better than VBD. VBC outperformed majority

votes on almost all ADRs and by very large margin on a few.
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Table 6.2 shows the PCC, sensitivity, specificity, and AUC for VBC from a random

compute node. In terms of sensitivity, the method is very accurate in distinguishing the

presence of ADRs for a drug. Similar results were also observed for VBD.

Finally Table 6.3 presents the overall accuracy for all models. This is the average

accuracy for all ADRs presented in table 6.1 with values of the base classifiers included.

VBC archived a 91% while VBD 88% prediction accuracy. These are very encouraging

results and demonstrates the efficacy of the systematic approach to predict ADR.

Table 6.1: Average performance of VBC, VBD and Majority Votes

ADRs VBC VBD M.Votes

Abdominal pain 0.81 0.81 0.79
Agranulocytosis 0.89 0.87 0.74

Akathisia 1.00 1.00 1.00
Alopecia 0.82 0.80 0.79
Amnesia 0.93 0.92 0.89

Anal Hemorrhage 1.00 1.00 1.00
Anemia 0.85 0.85 0.77
Anxiety 0.79 0.78 0.74

Anxiety Disorder 1.00 0.98 0.96
Arthralgia 0.91 0.85 0.83
arthritis 0.97 0.95 0.96

Atrial fibrillation 1.00 1.00 1.00
Constipation 0.95 0.92 0.85

Convulsions 0.88 0.60 0.67
Corneal deposits 1.00 1.00 1.00
Corneal.opacity 0.95 0.94 0.94

Diarrhea 0.97 0.83 0.69
Disorientation 0.94 0.79 0.88

Dyskinesia 0.78 0.78 0.83
Ecchymosis 0.99 0.96 0.97

Erythema 0.68 0.68 0.68
Headache 0.77 0.59 0.60
Hypertonia 1.00 1.00 1.00
Somnolence 1.00 1.00 1.00

Tremor 0.73 0.65 0.63
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Table 6.2: VBC performance for 11 ADRs on a single node

ADR PCC sensitivity specificity AUC

Abdominal pain 0.80 0.64 0.90 0.89
Alopecia 0.79 0.82 0.68 0.92
Amnesia 0.93 0.85 0.96 0.98
Anemia 0.82 0.80 0.83 0.93
Anxiety 0.79 0.72 0.85 0.89

Anxiety.Disorder 1.00 0.90 1.00 1.00
Arthralgia 0.91 0.89 0.94 0.98

Arthritis 0.97 0.89 0.99 0.99
Atrial fibrillation 1.00 1.00 1.00 1.00

Constipation 1.00 1.00 1.00 1.00
Disorientation 0.94 0.89 0.95 0.99

Table 6.3: Comparing Ensemble and Base Classifiers Averaged over all ADRs

Classifier PCC

VBC 0.91
VBD 0.88

M.Votes 0.85
elr 0.82
log 0.84
nb 0.55
nn 0.86

svm 0.83
tree 0.86
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6.5 Summary

This section presented a novel systematic and structured approach to predicting ADRs

pulling information from multiple sources. The excellent performance of the proposed evi-

dence and ensemble methods is demonstrated once again on a real world large-scale learning

task. In particular, the proposed evidence model is advantageously applied to enrich dis-

tributed databases with very different observed attributes and observation. This results in

very efficient and accurate predictive models for ADRs.
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Chapter 7: Conclusion and Future Work

This thesis has described a framework for integrating information from multiple sources in

the presence of uncertainties. A generative Bayesian graphical model and inference was pre-

sented for the integration of a collection of optimally selected machine learning classification

models making use of supplementary information from the training data. A collective learn-

ing mechanism was then presented that integrates the Bayesian integration scheme within

each data site for learning large-scale distributed datasets with possibly different observed

observations and features. A number of interesting features of the proposed framework

were described and the methods shown to be effective in improving accuracy of a general

classification problem.

This chapter reviews these results in the light of the original research questions and

goals of the thesis. It re-examines the open issues and challenges of ensemble learning and

shows how the presented work meets the stated goals of the thesis. The chapter concludes

with the main case study of the work, other possible applications, and future directions of

the research.

7.1 Challenges and Solutions

A general discussion of the open issues and challenges in ensemble learning was presented

in chapter 1. Three main challenges were of interest to the thesis: first, development of

techniques that scale up to large and possibly physically distributed databases. Second,

construction of exact or approximately exact global models from distributed heterogeneous

datasets with minimal data communication while preserving privacy of the data. Third,

how to efficiently learn from modern large-scale datasets which are often characterized by

noisy data points, unlabeled or poorly labeled, sample bias, missing values, etc.
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The thesis addressed these challenges by the introduction of generative Bayesian graph-

ical model and inference to optimally integrate a collection of carefully selected classi-

fication models with the aid of supplementary hidden information for learning homoge-

neous and heterogeneous datasets. A Bayesian graphical model was chosen because it

offers a principled and powerful representative model that accounts for the structural de-

pendency/independence between the classifiers and other variables, and dealing with un-

certainties and complexities of the problem. In addition, the model offers a flexible way

to represent and infer hidden information from the problem domain which is of primary

interest to the thesis.

Integrating the decisions of the classifiers to meet the goals of the thesis raised a number

of interesting questions:

1. How to select the base classifiers?

2. How to combine the outputs of these base classifiers to maximize classification accu-

racy?

3. How to make the method scalable?

Based on these simple questions and the challenges of parallel and distributed machine

learning discussed in section 1.2, the thesis formulates three related research questions:

1. How to effectively evaluate, compare, and rank learning algorithms on modern datasets

characterized by noise, poor labeling, class imbalance, sample bias, missing values, and

other complex phenomenons.

2. How can a machine learning system identify and correct the mistakes of learning algo-

rithms for distributed homogeneous/heterogeneous datasets. Producing exact models

while not compromising the sensitivity of the data.

3. How to solve the two problems above and still remain efficient in both sample com-

plexity and computational complexity.
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These questions were addressed systematically in chapters 2, 3, 4, and 5. The next section

describes how the work presented in these chapters meets the goals of the thesis.

7.2 Meeting the Goals: Contributions of the Thesis

A review of some state of the art machine learning classification and ensemble methods was

given in chapter 2. Ensemble methods can be broadly classified into two groups:

• Methods based on using the same learning algorithms trained by manipulating the

the training set or tuning parameters or some other way.

• Methods based on using different learning algorithms.

While ensemble methods such as bagging, boosting, and random forest that, manipulate the

training set or tuning parameters have been well studied, methods that combine different

learning algorithms have lagged behind. Possible reasons for this can be given as: the

large number of learning algorithms available today makes it difficult to chose a reliable

algorithm, some algorithms are difficulties to implement while at the same time some are

computational very expensive to deploy even as stand-alone. However, in most interesting

real applications, there is either too much or insufficient training data to manipulate when

multiple sources of information need to be combined. In addition, these sources are often

heterogeneous with different underlying theories and assumptions, making it difficult or

inconvenient to use combination methods that implements the same learning algorithm.

The thesis therefore focused on developing simple, fast, scalable, and accurate ensemble

methods with heterogeneous base members.

A primary motivation of this dissertation was in learning large-scale distributed datasets

in a reasonable time. To this end, a number of large-scale learning algorithms were gener-

ated during the course of writing this thesis and discussed in chapter 2. These algorithms

have been shown to be very simple and extremely fast to train on very large datasets com-

pared to traditional methods like SVM and random forest (Ngufor and Wojtusiak, 2013,

166



2014a; Ngufor et al., 2014). At the same time, these algorithms are also very accurate as

demonstrated in chapter 4, where they were ranked in the top 5 algorithms by the Bayes

active data and algorithm selection method described in chapter 3. This shows that an

ensemble method based only on the algorithms generated by this thesis can be very fast,

scalable to large data set and above all, simple and accurate.

Modern datasets are often characterized by noisy data points, missing values, poor la-

beling, imbalance, sample bias, and many other irregularities. Given the large number of

classification algorithms available today, it is often a daunting task for a domain expert to

decide on the best algorithm to apply on such datasets. There exist a number of approaches

to deal with these problems. The thesis carefully addressed the limitations of these methods

and proposed an alternative solution. Two simple, fast and effective active learning tech-

niques were introduced in chapter 3 for the purpose of training a collection of classification

algorithms using a small sample of carefully chosen data points. By actively engaging the

classifiers in determining the best data points to train on, these problems are maintained

at a very minimal level. Further, the approach enables computationally expensive algo-

rithms to be trained in a reasonable time which otherwise would be impossible (Ngufor and

Wojtusiak, 2014b). With these favorable conditions, the thesis was able to fairly compare

and rank the algorithms. Through a Bayes decision making process using a specified or

arbitrary decision thresholds, several performance measures were computed for comparing

and ranking the classifiers. The top k algorithms can then be selected for ensemble learning.

The literature on ensemble learning methods in machine learning is very extensive.

Even though a large majority of the methods are based on combining classifiers of the

same type, an appealing property lacking in these approaches is the ability to incorporate

supplementary information to help correct for misclassifications by the the base classifiers.

This thesis addressed this issue in chapter 4 by introducing a generative Bayesian graphical

model and inference to simultaneously infer hidden information from the problem domain

not available to the classifiers at training time and to combine the decisions of the classifiers.
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Specifying the appropriate structure that models the domain problem is a critical step in

Bayesian probabilistic networks. Two model structures were explored in chapter 4: an evi-

dence graphical model for inference of the hidden information or classification evidence and

an ensemble graphical model for integrating the decisions of the base classifiers. Because

of the strong coupling between the two models, a joint inference may increase computa-

tional cost. The thesis therefore implements the computationally less expensive and simple

decoupled model structure and reserved the coupled structure for future work.

A variational Bayesian factor common spatial pattern (VBFACSP) was proposed for

the graphical evidence model. Common spatial pattern (CSP) (Wu et al., 2009) is a very

popular feature extraction technique commonly used in brain-computer interface systems

for discriminating between positive and negative classes in electroencephalogram data. It

discriminates between the two classes by maximizing the variance of one class and mini-

mizing the variance of the other. In the proposed VBFACSP, the classification evidence

depends on the true class variable, but when this dependency is relaxed, the standard vari-

ational Bayesian factor analysis (VBFA) is derived. Though VBFACSP may produce more

accurate results, a full implementation may be computationally more expensive, so the less

expensive VBFA was implemented.

Once estimated, the classification evidence becomes an observed variable in the ensemble

graphical model. Three Bayesian inference methods using the classification evidence were

proposed for the ensemble model: an expectation-maximization (EM) optimization method

for discrete class predictions, a variational Bayesian inference method for discrete class pre-

dictions (VBD) and a variational Bayesian inference method for continuous class posterior

probability predictions (VBC). The two variational Bayesian ensemble methods implements

automatic relevance determination (ARD) priors which helps to prune irrelevant classifiers.

VBD and VBC were shown in a series of numerical experiments in chapters 4, 5, and 6 to

significantly improve classification accuracy compared to other methods. Clearly the clas-

sification evidence contributed a large part to the accuracy of these methods. However, the

same thing cannot be said for the EM method as its performance appeared to be unstable
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and inferior to the other ensemble methods on most of the datasets. Its failure to make

use of the true class variable during training was cited as one possible reason for the poor

performance.

An interesting application of the classification evidence was discovered in chapter 5.

Chapter 5 addressed the problem of learning form large-scale distributed datasets with

possible different observed feature vectors. Thus the datsets may be homogeneous or het-

erogeneous or both. A collective learning system was proposed for this task. At the base

of collective learning are data sites or agents and tightly integrated with the Bayes active

data and algorithm selection method described in chapter 3 and the evidence and ensemble

graphical models described in chapter 4. Two parallel programming models were proposed

for collective learning: a single-pass MapReduce model with no communication between

agents was proposed for learning homogeneous agents while a High Performance Comput-

ing (HPC) model with minimal communication was proposed for heterogeneous agents.

A chained MapReduce programming model was also proposed for heterogeneous agents,

however its implementation was reserved for future investigation.

For heterogeneous agents, the classification evidence was modeled by a Group Factor

Analysis model (Virtanen et al., 2011). GFA enables the solution of a completely new type

of problem which is discovered in the thesis. The factors or “groups” in GFA described a

dataset as a whole in a sparse way instead of the individual variables as in traditional factor

analysis. In collective learning, some distributed datasets may be irrelevant containing

noisy observations or features. Using GFA group sparsity property, the influence of such

datasets on the learning procedure is minimized. Thus by introducing factors in GFA as

classification evidence in collective learning with heterogeneous agents, the many problems

associated with learning from incomplete feature spaces can be minimized or eliminated

since the evidence offers a higher level of information about the whole distributed datasets.

Further, since the dimension of the evidence can be far less than the dimension of the

distributed datasets, communication cost can be maintain at a low and acceptable level.
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The thesis demonstrated that global models generated through this technique were ap-

proximately exact. Meaning that, in terms of performance, models generated on a dis-

tributed datset with only a subset of the feature vectors were approximately the same as

models generated on the whole datset using all feature vectors. The thesis used two bench-

mark datasets to demonstrate this concept. The datasets are trained in a centralized site

using all features and in a distributed fashion where each data site contained only a random

subset of the feature space. The results showed only a relatively small percentage reduction

in accuracy for VBD and VBC compared to larger values for other methods.

The thesis also discovered another important property of the classification evidence.

Based on assumptions made in the thesis, the classification evidence being hidden variables

are considered non-restrictive or public and can be shared in distributed environments

where movement of data is restricted by privacy concerns. This therefore negates the need

for difficult and expensive privacy preserving machine learning methods (Kargupta et al.,

2003).

7.3 Applications

This section describes some applications of the work presented in this thesis.

7.3.1 Predicting Adverse Drug Reaction

The main case study of the work presented in the thesis was described in chapter 6. The

timely and accurate prediction of adverse drug reactions (ADRs) is increasingly becoming

important as ADRs accounts for more than two million injuries, hospitalizations and deaths

each year in the US alone (Lazarou et al., 1998).

The thesis described a novel systematic approach to the prediction of ADR. The Bayesian

multiclassifier integration framework is applied to predict ADR from two spontaneous re-

porting databases: FAERS and MedEffect Canada having very different observations and

feature vectors but containing information about the same drugs. Each spontaneous site
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contains demographic information of individuals or “patients” who consumed the drugs

and the reported side-effects. MedEffect Canada contains a much richer set of demographic

variables than FAERS, thus hidden information from one site can be used to enrich infor-

mation on the other. Supplementary information such as biological and chemical properties

and known side-effects about each drug available in the two sites are pulled from DrugBank

(Knox et al., 2011) and SIDER (Kuhn et al., 2010) repectively.

Based on the proven fact that, drugs with similar chemical and or biological properties

most often exhibit similar ADRs (Liu et al., 2012; Fliri et al., 2005; Harpaz et al., 2011), the

thesis formulates a systematic and structures method to predict ADRs. The approach is

based on the assumption that if patients were to be grouped into homogeneous groups based

on demographic characteristics such as age, gender, height, weight, geographic location were

side-effect occurred, duration of use, etc., then similar patients should have similar outcomes

when administered the same treatment. With this idea, chemical and biological properties

of drugs are combined with demographic information of patients who consumed the drugs to

contruct clusters of similar drugs and patients from which ensemble models are generated.

Figure 6.1 illustrates the series of systematic steps to detection and prediction of ADRs.

Three main features of the approach stand out:

1. Sharing Classification Evidence. Classification evidence inferred from the two sites

are shared using the HPC programming model described in chapter 5. The evidence

is computed only for reports that show significant pattern of association or “signals”

between a drug and an ADR.

2. Clustering. Similar drugs often exhibit similar ADRs and similar individuals often

responds similarly to the same treatment. Thus by clustering drug-ADRs signals, the

sensitivity of the models can be dramatically improved. Clustering may also generate

the following benefits:

• Increase sensitivity to the detection of rare side-effects.

• Minimize the imbalance problem in classification.
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• Relationships between known side-effects and reported side-effects. This could

lead to the discovery of potentially new side-effects.

• Interesting relationships can be discovered by studying the demographic char-

acteristics of patients, biological and chemical properties of drugs, and the side-

effects within a cluster.

3. Ensemble Models. The optimal Bayesian integration scheme described in the thesis

is embedded within each cluster for prediction of ADRS.

In terms of sensitivity (and specificity), the application of the ensemble methods intro-

duced in the thesis for ADR prediction was very effective in distinguishing the presence and

absence of ADR for a drug based on patient demographic characteristics and the biological

and chemical properties of the drug. Thus given a new patient whose demographic infor-

mation matches the characteristics of the training set, a doctor can determine with high

accuracy the likelihood of the patient experiencing a given side-effect or potentially new

side-effect based on these features.

7.3.2 Other Applications

There are many other possible applications of the Bayesian multiple classifier integration

framework presented in this thesis.

Even though the ensemble methods were generated using heterogeneous set of base

classifiers, the appraoch can also be advantageously applied to combine base classifiers of

the same type such as in bagging and booting methods. Thus the method can be used in

many cases were a classification algorithm is required.

The concept of classification evidence can be applied to boost the performance of many

systems: the evidence can be used to determine a higher level of item similarity in collab-

orative filtering and hence more accurate recommender systems. Equally, the classification

evidence can be used to explain or predict relationships between items such as online dating.

Some hidden characteristics about behaviors, interests, physical characteristics , etc. can

172



be inferred through the evidence model and used to improve dating relationship predictive

models.

7.4 Suggestions for Future Work

A few research issues were stated in some of the chapters of the thesis but were reserved for

future work. This section briefly expands on some of these issues and other research topics

stemming out from this thesis and warranting future investigation.

Chapter 2 presented a number of large-scale parallel efficient learning algorithms devel-

oped in the course of writing this thesis. To better understand how they work, a study

of their theoretical performance is needed. Thus rigorous theoretical investigations are re-

quired to establish convergence, stability, generalization bounds and general asymptotic

properties of the methods. This may be pursued through the development and application

of concentration inequalities and empirical processes theory (Bousquet, 2002).

Chapter 4 presented different versions of the classification evidence and ensemble graph-

ical models. Some are simple and computationally less expensive to implement while others

are complex and expensive. For reasons explained, the thesis implemented only the simple

and less expensive models. However, these algorithms may be sub-optimal and in some

non-standard conditions, results from these models may be misleading (overfitting). Some

of the methods assumed linear relationships while others failed to model any dependencies

that may exist among some components of the system. For example, a VBFACSP model

is assumed for the classification evidence model. This is a linear model with a Gaussian

distributional assumption. This may be impractical in some real applications. A better and

optimal approach is to consider robust kernel based methods which makes no distributional

assumptions and model non-linear relationships. Promising directions for a more robust ev-

idence model is to investigate kernel based VBFACSP or kernel based non-negative matrix

factorization methods for feature extraction (Lee et al., 2009) as has been done for princi-

pal components (Lawrence, 2005). The price paid for adopting kernel methods is that they
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are computationally very expensive to deploy. However, based on techniques used in the

thesis generated articles Ngufor and Wojtusiak (2014a); Ngufor et al. (2014), it is possible

to transform or approximate the kernels to reduce the computational cost.

The EM ensemble method presented in chapter 4 did not perform very well compared

to VBD or VBC even though it uses the classification evidence. Its performance was very

unstable. This indicates that a poorly designed ensemble scheme cannot produce good

results. Based on limitations that were addressed in the thesis, there are ways to improve

the EM ensemble method. The EM method can be re-implemented by introducing hidden

variables or using Bayes theorem to somehow transform the algorithm to depend directly

on the true class variable. Another possibility is to investigate how to use class posterior

probabilities instead of the discrete class predictions.

In learning heterogeneous data sites in collective learning presented in chapter 5, the

classification evidence model was approximated by GFA (Virtanen et al., 2011). The factors

or groups were simply computed independently for each distributed dataset. Thus the group

wise sparsity property may be lost and the dependencies between the dataset may not be

sufficiently modeled. A full distributed implementation of GFA is required to take advantage

of these properties. The main difficulty in computing GFA for a distributed dataset is how

to represent each factor as a distributed sparse matrix and how to compute the covariance

matrix updates in Algorithm 4 for distributed datasets with different feature spaces. The

later case may be resolved by modifying the single-pass covariance matrix formula presented

in section 2.3.2 to handle distributed datasets with different features. Group wise sparsity

is just a direct consequence of ARD priors and can be equally modified for distributed

datasets.

Finally, the collective learning system presented in chapter 5 artificially modeled the

distributed data sites as “agents”, the data sites were called agents for simplicity. The

obvious next step is to give these “agents” their desired artificial intelligence properties like

autonomy, sociability, reactivity and pro-activeness (Stone and Veloso, 2000). This is the

case of distributed data mining supported by artificial intelligence.
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Appendix A: Proof of Single-Pass covariance matrix formula

Proof. The sample mean of Proposition 2 is a classical result and the proof will be omitted.

The proof for the scatter matrix is carried out by induction on k the number of data-blocks,

however, some of the algebra involved will be omitted.

For the base case when k = 2, i.e, D = D1 ∪D2, by the definition of the scatter matrix,

the left hand side of equation 2.16 can be written as

S =
∑
X∈D

(X − X̄)(X − X̄)T = SD1 + SD2 ,

where SDi =
∑

X∈Di(X − X̄)(X − X̄)T , i = 1, 2 and X̄ = (n1X̄1 + n2X̄2)/n .

Now expand each SDi and substitute for the mean. After some simplification this gives

SD1 =
∑
X∈D1

(X − X̄1)(X − X̄1)T

+
n1n

2
2

n2
(X̄1 − X̄2)(X̄1 − X̄2)T .

The derivation of the above expression makes use of the fact that

n1n
2
2

n2

∑
X∈D1

(X − X̄1)(X̄1 − X̄2)T = 0 and

n1n
2
2

n2

∑
X∈D1

(X̄1 − X̄2)(X − X̄1)T = 0 .

A similar expression for SD2 can also be derived. Thus

S = S1 + S2 +
n1n2

n
(X̄1 − X̄2)(X̄1 − X̄2)T .

Now for k = 2, the total number of distinct pairs of elements selected from the set (1,2) is
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one. Hence (π1, π2) = (1, 2) and the right hand side of equation 2.16 becomes

S = S1 + S2 +
n1n2

n
(X̄1 − X̄2)(X̄1 − X̄2)T

and so both sides of equation 2.16 are equal for k = 2.

Now, suppose that the proposition is true for j = k ≥ 2 partitions of D, it remains to

proof that the formula also holds for j + 1 partitions of D. For j + 1 partitions, S can be

written as

S =

j∑
i=1

∑
X∈Di

(X − X̄)(X − X̄)T

+
∑

X∈Dj+1

(X − X̄)(X − X̄)T

=

j∑
i=1

SDi + SDj+1 (A.1)

= SDj + SDj+1 .

Another similar expansion is carried out for the j + 1’th scatter matrix to give

SDj+1 =
∑

X∈Dj+1

(X − X̄j+1)(X − X̄j+1)T

+
nj+1

n2

[
j∑
i=1

ni(X̄j+1 − X̄i) ·
j∑
i=1

ni(X̄j+1 − X̄i)
T

]
. (A.2)

The product in the square bracket is made up of a total of j2 terms of which j are of the

form

Vj+1,i =
nj+1n

2
i

n2
(X̄j+1 − X̄i)(X̄j+1 − X̄i)

T (A.3)
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and the remaining j2 − j = j(j − 1) terms are of the form

Vj+1,i,l =
nj+1ninl

n2
(X̄j+1 − X̄i)(X̄j+1 − X̄l)

T i 6= l . (A.4)

A similar expansion for each of the summands of the first term on the right hand side of

equation A.1 gives

SDi =
∑
X∈Di

(X − X̄i)(X − X̄i)
T

+
ni
n2

j+1∑
l=1
l 6=i

nl(X̄i − X̄l) ·
j+1∑
l=1
l 6=i

nl(X̄i − X̄l)
T

 . (A.5)

Since by Pascal’s identity
(
j+1

2

)
−
(
j
2

)
=
(
j
1

)
= j, this indicates that each SDi contains j

terms involving the j + 1 mean X̄j+1. Precisely, these terms are: exactly one term of the

form

Vi,j+1 =
nin

2
j+1

n2
(X̄i − X̄j+1)(X̄i − X̄j+1)T (A.6)

and j − 1 terms of the form

Vi,j+1,l =
nin

2
j+1nl

n2
(X̄i − X̄j+1)(X̄i − X̄l)

T , i 6= l . (A.7)

This gives a total of j2 terms of this form. By taking out all these terms from SDj =∑j
i=1 SDi and adding them to SDj+1 , the remaining terms in SDj is simply the expansion

of S for j partitions of D. But by the induction hypothesis, the formula holds for SDj .
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At this point, only further algebra is required to complete the proof by showing that

the updated SDj+1

S∗Dj+1
= SDj+1 +

j∑
i=1

Vi,j+1 +

j∑
i=1

j∑
l=1
l 6=i

Vi,j+1,l

can be written in as

Sk +
∑
π∗

nπ1nπ2
n

(X̄π1 − X̄π2)(X̄π1 − X̄π2)T (A.8)

where
∑

π∗ is the summation over the selection of distinct pairs (π1, π2) with π = i, i =

1, . . . j and π2 = j + 1.
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Appendix B: Expression for Kullback-Leibler (KL)

divergence

The KL divergence between two K variate gaussian distributions q(θ) = Nk(µq,Σq) and

p(θ) = NK(µp,Σp) is given by

KL
(
q(θ)‖p(θ)

)
=

∫
log

(
q(θ)

p(θ)

)
q(θ) dθ (B.1)

=
1

2

(
tr
(
Σ−1
p Σq

)
+ (µp − µq)>Σ−1

p (µp − µq)−K − log

(
|Σq|
|Σp|

))
.

(B.2)

A similar expression can be written for the KL of two gamma distributions. Using the

distributions of the variational posteriors q(θ) given in Algorithm 4 and the true posteriors

p(θ) (equations 4.8, 4.9, 4.10 and 4.11), the various components of the KL in equation 4.16

can be derived as:

〈
KL

(
q(e)‖p(e|Λ)

)〉
q(Λ)

= −n
2

(
log |Σe|+ tr [I−Σe]−

1

n

(
mT
e me

))

〈
KL

(
q(A)‖p(A|α)

)〉
q(α)

= −p
2

K∑
k=1

(
ψ(âαk )− log(b̂k

)
− 1

2

 p∑
j=1

log
∣∣Σj

a

∣∣+ pK

− tr

〈α〉
 p∑
j=1

Σj
a + mT

ama



KL
(
q(α)‖p(α)

)
=

K∑
k=1

[
âαk log b̂αk − aαk log bαk − log

(
Γ(âαk )

Γ(aαk )

)

+ bαk 〈αk〉 − âαk + (âαk − ααk )
(
ψ(âα)− log b̂αk

)]
(B.3)
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where

• me =
{
mi
e

}n
i

= X 〈φ〉 〈A〉Σe is a n×K matrix whose rows are the means of the q(ei)

distributions,

• ma =
{
mj
a

}p
j

= 〈A〉 is a p × K matrix whose rows are the means of the q(aj)

distributions,

• 〈α〉 = diag{〈αk〉 , k = 1, . . . ,K},

• Γ(·) is the gamma function.

The expressions ofKL
(
q(φ)‖p(φ)

)
andKL

(
q(Λ)‖p(Λ)

)
are very similar toKL

(
q(α)‖p(α)

)
.
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Indian Journal of Statistics, Series A, pages 387–400, 1968.

J.A. Hanley. The meaning and use of the area under a receiver operating characteristic

(roc) curve. Radiology, 743:29–36, 1982.

Rave Harpaz, Hector Perez, Herbert S Chase, Raul Rabadan, George Hripcsak, and Carol

Friedman. Biclustering of adverse drug events in the fda’s spontaneous reporting system.

Clinical Pharmacology & Therapeutics, 89(2):243–250, 2011.

185



Trevor Hastie, Robert Tibshirani, and J. H. Friedman. The elements of statistical learn-

ing: data mining, inference, and prediction: with 200 full-color illustrations. New York:

Springer-Verlag, 2001.

Christian Hennig. Cluster-wise assessment of cluster stability. Computational Statistics &

Data Analysis, 52(1):258–271, 2007.

Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning machine: theory

and applications. Neurocomputing, 70(1):489–501, 2006.

Guang-Bin Huang, Hongming Zhou, Xiaojian Ding, and Rui Zhang. Extreme learning

machine for regression and multiclass classification. Systems, Man, and Cybernetics,

Part B: Cybernetics, IEEE Transactions on, 42(2):513–529, 2012.

J. Huang and C.X. Ling. Using AUC and accuracy in evaluating learning algorithms.

Knowledge and Data Engineering, IEEE Transactions on, 17(3):299–310, 2005.

T Jaakkola and M Jordan. A variational approach to bayesian logistic regression models and

their extensions. In Sixth International Workshop on Artificial Intelligence and Statistics.

Citeseer, 1997.

R.A. Jacobs. Methods for combining experts’ probability assessments. Neural computation,

7(5):867–888, 1995.

Hillol Kargupta and Philip Chan. Advances in distributed and parallel knowledge discovery.

MIT Press, 2000.

Hillol Kargupta, Ilker Hamzaoglu, and Brian Stafford. Scalable, distributed data mining-an

agent architecture. In KDD, pages 211–214, 1997.

Hillol Kargupta, B Park, Daryl Hershberger, and Erik Johnson. Collective data mining: A

new perspective toward distributed data mining. Advances in Distributed and Parallel

Knowledge Discovery, (part II):131–174, 1999.

186



Hillol Kargupta, Kun Liu, and Jessica Ryan. Privacy sensitive distributed data mining

from multi-party data. In Intelligence and Security Informatics, pages 336–342. Springer,

2003.

R.D. King, C. Feng, and A. Sutherland. Statlog: comparison of classification algorithms on

large real-world problems. Applied Artificial Intelligence an International Journal, 9(3):

289–333, 1995.

Craig Knox, Vivian Law, Timothy Jewison, Philip Liu, Son Ly, Alex Frolkis, Allison Pon,

Kelly Banco, Christine Mak, Vanessa Neveu, et al. Drugbank 3.0: a comprehensive

resource for omics research on drugs. Nucleic acids research, 39(suppl 1):D1035–D1041,

2011.

Tim Kraska, Ameet Talwalkar, John C Duchi, Rean Griffith, Michael J Franklin, and

Michael I Jordan. Mlbase: A distributed machine-learning system. In CIDR, 2013.

R. Krzysztofowicz and D. Long. Fusion of detection probabilities and comparison of mul-

tisensor systems. Systems, Man and Cybernetics, IEEE Transactions on, 20(3):665–677,

1990.

Michael Kuhn, Monica Campillos, Ivica Letunic, Lars Juhl Jensen, and Peer Bork. A side

effect resource to capture phenotypic effects of drugs. Molecular systems biology, 6(1),

2010.

Ludmila I. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms. Wiley-

Interscience, 2004.

T.C.W. Landgrebe, P. Paclik, and R.P.W. Duin. Precision-recall operating characteristic (p-

roc) curves in imprecise environments. In Proceedings of the 18th International Conference

on Pattern Recognition-Volume 04, pages 123–127. IEEE Computer Society, 2006.

J Langford, L Li, and A Strehl. Vowpal wabbit online learning project, 2007.

187



Harri Lappalainen and Antti Honkela. Bayesian non-linear independent component analysis

by multi-layer perceptrons. In Advances in independent component analysis, pages 93–

121. Springer, 2000.

Neil Lawrence. Probabilistic non-linear principal component analysis with gaussian process

latent variable models. The Journal of Machine Learning Research, 6:1783–1816, 2005.

Jason Lazarou, Bruce H Pomeranz, and Paul N Corey. Incidence of adverse drug reactions

in hospitalized patients: a meta-analysis of prospective studies. Jama, 279(15):1200–1205,

1998.

Hyekyoung Lee, Andrzej Cichocki, and Seungjin Choi. Kernel nonnegative matrix factor-

ization for spectral eeg feature extraction. Neurocomputing, 72(13):3182–3190, 2009.

D.D. Lewis and W.A. Gale. A sequential algorithm for training text classifiers. In Proceed-

ings of the 17th annual international ACM SIGIR conference on Research and develop-

ment in information retrieval, pages 3–12. Springer-Verlag New York, Inc., 1994.

Mei Liu, Yonghui Wu, Yukun Chen, Jingchun Sun, Zhongming Zhao, Xue-wen Chen,

Michael Edwin Matheny, and Hua Xu. Large-scale prediction of adverse drug reactions

using chemical, biological, and phenotypic properties of drugs. Journal of the American

Medical Informatics Association, 19(e1):e28–e35, 2012.

Andrew W Lo. Logit versus discriminant analysis: A specification test and application to

corporate bankruptcies. Journal of Econometrics, 31(2):151–178, 1986.

Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and

Joseph M Hellerstein. Graphlab: A new framework for parallel machine learning. arXiv

preprint arXiv:1006.4990, 2010.

Jaakko Luttinen and Alexander Ilin. Transformations in variational bayesian factor analysis

to speed up learning. Neurocomputing, 73(7):1093–1102, 2010.

188



David JC MacKay. The evidence framework applied to classification networks. Neural

computation, 4(5):720–736, 1992.

David JC MacKay et al. Bayesian nonlinear modeling for the prediction competition. Ashrae

Transactions, 100(2):1053–1062, 1994.

James Manyika, Michael Chui, Brad Brown, Jacques Bughin, Richard Dobbs, Charles Rox-

burgh, and Angela Hung Byers. Big data: The next frontier for innovation, competition,

and productivity. McKinsey Global Institute, pages 1–137, 2011.

G. McLachlan and D. Peel. Finite mixture models, volume 299. Wiley-Interscience, 2000.

T. Menzies, J. DiStefano, A. Orrego, and R. Chapman. Assessing predictors of software

defects. In Proc. Workshop Predictive Software Models, 2004.

Che Ngufor and Janusz Wojtusiak. Learning from large-scale distributed health data: An

approximate logistic regression approach. ICML 13: Role of Machine Learning in Trans-

forming Healthcare, 2013.

Che Ngufor and Janusz Wojtusiak. Extreme logistic regression. Advances in Data Analysis

and Classification (ADAC), Springer (Accepeted with Revisions), 2014a.

Che Ngufor and Janusz Wojtusiak. Learning from large distributed data: A scaling down

sampling scheme for efficient data processing. International Journal of Machine Learning

and Computing (IJMLC), 4(3):216–224, 2014b.

Che Ngufor, Janusz Wojtusiak, Andrea Hooker, Talha Oz, and Jack Hadley. Extreme

logistic regression: A large scale learning algorithm with application to prostate cancer

mortality prediction. In The Twenty-Seventh International Flairs Conference, 2014.

G. Ostrouchov, W.-C. Chen, D. Schmidt, and P. Patel. Programming with big data in r,

2012. URL http://r-pbd.org/.

Sean Owen, Robin Anil, Ted Dunning, and Ellen Friedman. Mahout in action. Manning,

2011.

189

http://r-pbd.org/


Andreas Prodromidis, Philip Chan, and Salvatore Stolfo. Meta-learning in distributed data

mining systems: Issues and approaches. Advances in distributed and parallel knowledge

discovery, 3, 2000.

Foster John Provost and Bruce G Buchanan. Inductive policy: The pragmatics of bias

selection. Machine Learning, 20(1-2):35–61, 1995.

John Ross Quinlan. C4. 5: programs for machine learning, volume 1. Morgan kaufmann,

1993.

Alvin C Rencher and G Bruce Schaalje. Linear models in statistics. Wiley-Interscience,

2008.

Lior Rokach. Ensemble methods for classifiers. In Oded Maimon and Lior Rokach, editors,

Data Mining and Knowledge Discovery Handbook, pages 957–980. Springer US, 2005.

ISBN 978-0-387-24435-8. doi: 10.1007/0-387-25465-X 45. URL http://dx.doi.org/

10.1007/0-387-25465-X_45.

Lior Rokach. Pattern classification using ensemble methods, volume 75. World Scientific,

2010.

N. Roy and A. McCallum. Toward optimal active learning through monte carlo estimation

of error reduction. ICML, Williamstown, 2001.

Pabitra Mitra Sankar K. Pal. Pattern recognition algorithms for data mining: scalability,

knowledge discovery and soft granular computing. CRC Press, 2004.

Andrew Ian Schein. Active learning for logistic regression. PhD thesis, University of Penn-

sylvania, 2005.

CE Schumer and Carolyn B Maloney. Your flight has been delayed again: flight delays

cost passengers, airlines, and the us economy billions. The US Senate Joint Economic

Committee, 2008.

Burr Settles. Active learning literature survey. University of Wisconsin, Madison, 2010.

190

http://dx.doi.org/10.1007/0-387-25465-X_45
http://dx.doi.org/10.1007/0-387-25465-X_45


H.S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In Proceedings of the

fifth annual workshop on Computational learning theory, pages 287–294. ACM, 1992.

Peter Stone and Manuela Veloso. Multiagent systems: A survey from a machine learning

perspective. Autonomous Robots, 8(3):345–383, 2000.

Ana Szarfman, Stella G Machado, and Robert T ONeill. Use of screening algorithms and

computer systems to efficiently signal higher-than-expected combinations of drugs and

events in the us fdas spontaneous reports database. Drug Safety, 25(6):381–392, 2002.

Kai Ming Ting and Ian H Witten. Issues in stacked generalization. arXiv preprint

arXiv:1105.5466, 2011.

Simon Tong and Daphne Koller. Support vector machine active learning with applications

to text classification. The Journal of Machine Learning Research, 2:45–66, 2002.

Jan Tozicka, Michael Rovatsos, and Michal Pechoucek. A framework for agent-based dis-

tributed machine learning and data mining. In Proceedings of the 6th international joint

conference on Autonomous agents and multiagent systems, page 96. ACM, 2007.

Eugene P van Puijenbroek, Andrew Bate, Hubert GM Leufkens, Marie Lindquist, Roland

Orre, and Antoine CG Egberts. A comparison of measures of disproportionality for signal

detection in spontaneous reporting systems for adverse drug reactions. Pharmacoepidemi-

ology and drug safety, 11(1):3–10, 2002.

Vladimir N Vapnik. Statistical learning theory. 1998.

Seppo Virtanen, Arto Klami, Suleiman A Khan, and Samuel Kaski. Bayesian group factor

analysis. arXiv preprint arXiv:1110.3204, 2011.

Z. Wang and Y.C.I. Chang. Marker selection via maximizing the partial area under the roc

curve of linear risk scores. Biostatistics, 12(2):369–385, 2011.

191



Gerhard Weiß. A multiagent perspective of parallel and distributed machine learning. In

International Conference on Autonomous Agents: Proceedings of the second international

conference on Autonomous agents, volume 10, pages 226–230, 1998.

Janusz Wojtusiak, Ryszard S Michalski, Kenneth A Kaufman, and Jaroslaw Pietrzykowski.

The aq21 natural induction program for pattern discovery: initial version and its novel

features. In Tools with Artificial Intelligence, 2006. ICTAI’06. 18th IEEE International

Conference on, pages 523–526. IEEE, 2006.

Janusz Wojtusiak, Tobias Warden, and Otthein Herzog. Machine learning in agent-based

stochastic simulation: Inferential theory and evaluation in transportation logistics. Com-

puters & Mathematics with Applications, 64(12):3658–3665, 2012.

David H Wolpert. Stacked generalization. Neural networks, 5(2):241–259, 1992.

David H Wolpert. The lack of a priori distinctions between learning algorithms. Neural

computation, 8(7):1341–1390, 1996.

Wei Wu, Zhe Chen, Shangkai Gao, and Emery N Brown. A probabilistic framework for

learning robust common spatial patterns. In Engineering in Medicine and Biology Soci-

ety, 2009. EMBC 2009. Annual International Conference of the IEEE, pages 4658–4661.

IEEE, 2009.

Jerry Ye, Jyh-Herng Chow, Jiang Chen, and Zhaohui Zheng. Stochastic gradient boosted

distributed decision trees. In Proceedings of the 18th ACM conference on Information

and knowledge management, pages 2061–2064. ACM, 2009.

Chengqi Zhang, Zili Zhang, and Longbing Cao. Agents and data mining: Mutual enhance-

ment by integration. In Autonomous Intelligent Systems: Agents and Data Mining, pages

50–61. Springer, 2005.

Harry Zhang. The optimality of naive bayes. AA, 1(2):3, 2004.

192



BIOGRAPHY

Che Ngufor received his B.sc in Mathematics and Computer Sciences from the University
of Dschang, Cameroon in 2004. He taught mathematics and physics at Our Lady of Lourdes
College Mankon, Bamenda for two years before moving to the US where he obtained his
M.sc in Mathematics from Tennessee Technological University, Cookevile, TN in 2008. In
his masters thesis, he investigated the design of efficient and robust preconditioners for
groundwater flow.

In the fall of 2009, Che joined the PhD program in Computational Sciences and In-
formatics then offered by the Department of Computational and Data Sciences (CDS) at
George Mason University, Fairfax, VA. In 2011, CDS was merged with the Department
of Physics and Astronomy to form the School of Physics, Astronomy, and Computational
Sciences. His initial concentration in the program was Computational Mathematics, but
quickly switched to Computational Statistics. Currently his main areas of research include:
Computational Mathematics and Statistics, Medical Informatics, Distributed and Parallel
Machine Learning, and Big Data Analystics.

Che plans to continue doing research and in particular on innovative ideas on Big Data.
He is passionate about designing, improving, and using state of the art machine learning
techniques to solve outstanding Big Data problems in areas such as healthcare, drug dis-
covery, computational biology, operations research, and many other areas where he believes
machine learning can make a difference. In this direction, after graduation, his immediate
plan is to find a position as a data scientist in an environment that promotes scientific
research.

193


	List of Tables
	List of Figures
	List of Algorithms
	Abstract
	 Introduction
	Combining Multiple Classifiers
	Distributed Learning
	Research Goals and Contributions
	Optimal Bayesian Muticlassifier Integration Framework
	Thesis-Generated Publications

	Thesis Overview

	 Background and Theory
	Machine Learning and Classification
	Classification
	Examples of Classifiers
	Approximate Logistic Regression

	Ensemble Methods
	Bayesian Model Averaging
	Stacked Generalization
	Ensemble Decision Rules

	Distributed Machine Learning
	Machine learning and Big Data
	Single-Pass Parallel Statistics


	 Bayes Active Data and Algorithm Selection
	Introduction
	Active Learning
	Linear Discriminant Uncertainty Based Active Learning
	Logistic Regression Uncertainty Based Active Learning
	Hausman Specification Test
	Comparing Machine Learning Classification Models 
	A Bayes Decision Theoretic Framework
	Error Probabilities
	Beta Likelihood Model for Prediction Probabilities
	ROC Analysis
	Precision-Recall Analysis
	Divergence of Beta Likelihood Models

	Numerical Experiments
	Base Learning Algorithms
	Results

	Related Work
	Summary

	 Optimal Integration of Classification Models
	Introduction
	Bayesian Graphical Evidence and Ensemble Model
	Variational Bayesian Inference for Evidence Model
	Class Independent Evidence Model
	Class Dependent Evidence Model

	Optimal Bayesian Combination of Multiple Classifiers
	An EM Method for Integrating Classification Models
	Variational Bayesian Ensemble Methods

	Ensemble Method For Class Dependent Evidence Model
	Experiments
	Base Algorithms and Training
	Results

	Summary and Future Work

	 Collective Machine Learning 
	Introduction
	Big Data Analytics
	Hadoop Distributed File System, MapReduce and MPI
	HDFS
	MapReduce
	SPMD with Message Passing Parallel Programming Model

	Parallel and Distributed Machine Learning
	Distributed Machine Learning Systems
	A Large-Scale Cooperative Machine Learning Framework
	Agent Representation and Training with MapReduce
	Homogeneous Agents
	Heterogeneous Agents

	Experiments 
	Benchmark Datasets
	Flight Dataset

	Results
	Performance on Benchmark Datasets
	Performance on Flight Dataset

	Summary

	 Systematic Prediction of Adverse Drug Reactions
	Introduction/Background
	Drug-ADRs Signal Detection and Clustering
	Experiments
	SIDER and DrugBank Data
	FAERS Database
	MedEffect Database
	Implementation

	Results
	Summary

	 Conclusion and Future Work
	Challenges and Solutions
	Meeting the Goals
	Applications
	Predicting Adverse Drug Reaction
	Other Applications

	Suggestions for Future Work

	 Proof of Single-Pass covariance matrix formula
	 Expression for Kullback-Leibler (KL) divergence
	Bibliography

