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Abstract

QUANTIFYING THE GLYCINE MAX PROXIMAL CIS–REGULOME DURING PATHO-
GENESIS

Parsa Hosseini, PhD

George Mason University, 2013

Dissertation Director: Dr. Benjamin F. Matthews

Transcription regulation is a highly orchestrated dynamic which mediates every aspect of

organismal development. Following host perception of positive or negative stress, hormone–

driven signaling amplifies extracellular cues and triggers a multifaceted, exquisite array of

downstream signaling cascades. These cascades go on to drive synthesis of small metabolites

and regulatory proteins known as transcription factors which mediate transcription regula-

tion. Transcription factors drive transcription expression by binding onto short non–coding

genomic regions known as transcription factor binding sites. Additional regulatory proteins

are recruited to collectively bind to a regulatory element, bringing about tightly regulated,

tissue–specific gene expression.

With transcriptomic assays capable of quantifying cDNA at unprecedented levels of

granularity and resolution, we can now quantify not only these regulatory elements but

entire transcriptomes in a matter of hours. Novel questions can now be proposed, questions

which necessitate utilization of these high–throughput platforms. Investigators can now

build novel isoform models and ultimately get one step closer to filling in gaps sprinkled

throughout the organismal systematic landscape.



These technologies, known by many as next-generation sequencing (NGS), encompass

ultrafast, parallel sequencing assays. Their name is fitting for the intent: unprecedented

nucleotide resolution with a dynamic range of expression. A popular NGS assay, RNA

sequencing, or RNA–Seq for short, provides the ability to sequence an entire cDNA library

at high–resolution. Unlike traditional microarrays, probe-sets are not required, making it

possible to quantify novel transcript isoforms, identify structural variants, and SNPs.

Quantification of the soybean (Glycine max ) root and leaf transcriptome is an active

area of agriculture research, however, quantification of the soybean proximal regulome is

still in its infancy. In this dissertation, we investigate the transcriptomic and regulatory

interplay between both soybean roots and leaves and two major compatible pathogens. We

present numerous potentially novel defense–response candidate genes as well as a regulatory

signature that captures and models host–pathogen interplay in a biologically–sound manner.



Epilogue

“Most of an organism, most of the time, is developing from one pattern into

another, rather than from homogeneity into a pattern. One would like to be able

to follow this more general process mathematically also. The difficulties are,

however, such that one cannot hope to have any very embracing theory of such

processes, beyond the statement of the equations. It might be possible, however,

to treat a few particular cases in detail with the aid of a digital computer.”

– Alan Turing (1952)

“The chemical basis of morphogenesis.”

Phil. Trans. R. Soc. Lond. B., 237(641)

1



Chapter 1: Introduction

1.1 Motivation

With next–generation sequencing (NGS) technologies now a staple assay in today’s molecu-

lar biology, we can now investigate biological phenomena and quantify systematic interplay

with relative ease. NGS is not a singular technology but rather an umbrella–term to en-

capsulate parallel, dynamic, and high–resolution biological sequencing. Two popular NGS

technologies include RNA sequencing (RNA–Seq) and Chromatin Immunoprecipitation se-

quencing (ChIP–Seq). As implied by the former assay, entire transcriptomes are sequenced,

producing billions of short reads. These reads are subsequently mapped onto a reference

index such as a transcriptome. Each feature in this index is then quantified, shedding

light onto magnitude of differential expression. ChIP–Seq on the other hand quantifies

protein–DNA binding rather than RNA transcription. Similar to RNA–Seq, ChIP–Seq also

generates billions of short reads which get mapped to a reference index. Resultant map-

pings reveal insight into transcription factor (TF) binding affinity and likely TF binding

sites (TFBSs). Advances in NGS chemistry and parallelism have democratized the financial

barrier of entry; seemed like yesterday when NGS was exclusive solely to large, well–funded

institutes. Even still, NGS costs continue to drop with no end in sight.

Virtually all scientific disciplines from plant biology to personalized medicine have ben-

efited from NGS assays such as RNA–Seq or ChIP–Seq. One such field is soybean (Glycine

max ) genomics which utilizes NGS assays to decipher interplay between the host plant and

a compatible pathogen. By quantifying the transcriptome of soybean leaves and roots upon

pathogenesis, the commandeering nature of the pathogen can be quantified. Supplement-

ing this transcriptional profile with quantification of regulatory elements therefore reveals

systematic interplay between soybean and the pest.

2



In–closing, the motivation of this dissertation is to investigate the soybean transcriptome

and proximal regulome during pathogenesis. The intent of such investigation is to answer

biologically–relevant questions regarding plant–pathogen interplay and ultimately reveal

novel insight into host transcription regulation in the face of a pest.

1.2 Plant hormone–driven signaling

Plant hormones, otherwise known as phytohormones, drive virtually all aspects of plant

development, from seed germination to floral development. Due to the sessile and immobile

nature of plants, plants must effectively adapt to an ever–changing range of external stimuli

encompassing numerous biotic and abiotic stressors. To mediate such adaptations, plants

utilize an interconnected, exquisite collection of phytohormones. Among the first identified

phytohormones were ethylene (ETH), auxin (indole-3-acetic acid; IAA), gibberellin (GA)

and abscisic acid (ABA). As of lately, numerous phytohormones have joined these ranks,

namely salicylic acid (SA) and jasmonic acid (JA). All together, phytohormone cross–talk

mediates systematic interplay so as to enable plant development in the face of positive or

negative stress.

1.3 Core pathways involved in defense–response

Pathway databases such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) [1]

and MetaCyc [2] contain well annotated signaling pathways, allowing for effortless tracking

of desired metabolites and enzymes from one pathway to the next. Well–studied pathways

such as phenylalanine biosynthesis, flavonoid biosynthesis, isoflavonoid biosynthesis, and

phenylpropanoid biosynthesis have been shown to orchestrate synthesis of numerous phyto-

hormones and just as many secondary metabolites. Utilizing KEGG and MetaCyc tool–sets

can therefore reveal insight into the roles defense response metabolites play throughout the

stress response landscape.

3



1.3.1 Phenylalanine, tyrosine and tryptophan biosynthesis

Beginning with the glycolysis derivative, phosphoenolpyruvate (PEP), this very molecule

ultimately serves as the precursor to phenylalanine, tyrosine, and tryptophan (Figure 1.1).

A critical aspect of this pathway is the synthesis of shikimate, a seven–carbon carboxylic acid

(KEGG: C00493) from 3–Dehydroshikimate. A phosphate group is subsequently attached

by shikimate kinase (EC: 2.7.1.71) and catalyzed by chorismate synthase (EC: 4.2.3.5).

L-Phenylalanine

PEP

Chorismate

3-Dehydroquinate

Phenylpropanoid 
biosynthesis 

Shikimate 3-phosphate

3-Dehydroshikimate

Shikimate

Glycolysis

L-Tryptophan

Anthanilate

L-Argogenate Phenylpyruvate

Prephenate

4-HPPA

Tyrosine

Figure 1.1: Phenylalanine and tyrosine biosynthesis.

Chorismate, a ten–carbon aromatic is subsequently synthesized and forks into two inde-

pendent branch-points which ultimately generate three amino acids [3]. The first branch–

point leads to synthesis of L–tryptophan, while the second branch–point leads to synthesis

of tyrosine and phenylalanine. What makes chorismate such a critical metabolite is its abil-

ity to undergo modification of its hydroxyl group and become isochorismate. With the help

of isochorismate pyruvate lyase (EC: 4.2.99.21), isochorismate becomes salicylic acid (SA),

a classical phytohormone known for its defense–response signaling capabilities [4]. Besides

orchestrating synthesis of SA, chorismate regulates synthesis of indoleacetate (IAA; auxin),

a well–studied phytohormone involved in defense response [5].
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1.3.2 Phenylpropanoid biosynthesis

Metabolites generated from phenylalanine, tyrosine and tryptophan biosynthesis serve as

the entry–point for synthesis of phenylpropanoids. These metabolites are synthesized from

phenylalanine and go on to assist in regulation of many aspects of plant development [6–8].

Phenylpropanoid biosynthesis begins with phenylalanine ammonia lyase (PAL; EC: 4.3.1.24)

removing an NH2 group from L–phenylalanine (Figure 1.2a). The resultant compound, cin-

namic acid (cinnamate) is subsequently processed by 4-coumarate–CoA ligase (EC: 6.2.1.12)

which converts this nine–carbon phenylalanine derivative into cinnamoyl–CoA.

Flavonoid biosynthesis

p-Coumaroyl-CoA

4-coumarateCinnamoyl-CoA

L-Phenylalanine Tyrosine

Cinnamate

(a) Flavonoid biosynthesis precursors.

Naringenin chalcone

p-Coumaroyl-CoA

Naringenin

Dihydrokaempferol
Isoflavonoid biosynthesis Apigenin

Kaempferol

(b) Biosynthesis of major flavonoids.

Figure 1.2: Phenylpropanoid and flavonoid biosynthesis.

1.3.3 Flavonoid biosynthesis

Similar to phenylpropanoids, flavonoids are secondary metabolites which execute a diverse

set of biological roles ranging from defense response to floral pigmentation [9, 10]. Their

antioxidative properties thus make this metabolite a beneficial human supplement. The

entry–point to flavonoid biosynthesis is p–Coumaroyl–CoA, a metabolite generated from

phenylpropanoid biosynthesis (Figure 1.2b). Chalcone synthase (CHS; EC: 2.3.1.74) con-

verts p–Coumaroyl–CoA to naringenin chalcone. CHS provides the ability to generate
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chalcones: metabolites well known for their defense–response roles [11]. From here, chal-

cone isomerase (CHI; EC: 5.5.1.6) converts naringenin chalcone to naringenin which then

goes on to synthesize the isoflavonoid metabolite, genistein.

1.3.4 Aspartate and methionine biosynthesis

The amino acid aspartate is synthesized by the Krebs cycle by–product oxaloacetate [12].

What makes aspartate an interesting compound is its ability to contribute to the synthesis

of fellow amino acids threonine, lysine and methionine [13]. With respect to methionine

biosynthesis, the first synthesis step involves conversion of aspartate to yield the methion-

ine precursor, O–phosphohomoserine (OPS). OPS is converted into cystathionine, a seven–

carbon compound which is subsequently converted to yield homocysteine [14,15]. With the

help of S-methyltransferase (EC: 2.1.1.14), a CH3 methyl group is added to homocysteine

resulting in methionine (Figure 1.3). From here on, methionine can serve as the precursor

for ETH biosynthesis, a critical phytohormone responsible for a diverse range of physio-

logical processes [16, 17]. To begin this conversion, S–adenosylmethionine synthetase (EC:

2.5.1.6) converts methionine to S–adenosylmethionine (SAM) which is subsequently con-

verted to the ethylene precursor 1–aminocyclopropane–1–carboxylate (ACC) [18–20]. ACC

is subsequently converted to ethylene using ACC oxidase (EC: 1.14.17.4).

1.3.5 α–linolenic acid and jasmonic acid biosynthesis

Fatty acids (FAs) such as α–linolenic acid are hydrocarbon compounds with a carboxylic

acid tail. Such compounds play fundamental roles in not just plant defense but all through-

out the organismal landscape, from signaling to defense response. The shorthand FA naming

convention entails counting from the carboxyl terminal carbon the number of carbon atoms

as well as the number of double bonds. Counts are then delimited with a colon. For in-

stance, α–linolenic acid contains 18 carbon atoms and 3 carbon double bonds, hence the

derived shorthand name of 18:3 (Figure 1.4). Often, double bond indices may also be writ-

ten in conjunction to the shorthand convention. In the case of α–linolenic acid, the revised

6



L-Lysine

Homocysteine

Methionine

O-phosphohomoserine

Oxaloacetate

L-Cysteine

Cystathione

L-Aspartate

L-Threonine

Figure 1.3: Biosynthesis of methionine from aspartate.

convention would be 9,12,15–18:3. Polyunsaturated FAs can be divided into classes known

as omega (ω). Beginning at the opposite end of the FA, omega pertains to the carbon at

which the first double bond occurs. As is the case of α–linolenic acid, the first double bond

is found at carbon 3, thus classifying this FA as an ω–3 FA.

CH3HO

O

Figure 1.4: α–linolenic acid (C18H30O2).

The FA α–linolenic acid is particularly important within the systematic defense re-

sponse context. As a matter of fact, this FA is a precursor for numerous jasmonates,

secondary metabolites inextricably linked with plant defense response. The first phase

in jasmonate synthesis utilizes lipoxygenase (EC: 1.13.11.12) to convert α–linolenic acid to

13(S)–hydroperoxy linolenic acid (Figure 1.5). Allene oxidase synthase (AOS) slightly mod-

ifies the hydroxyl group of this product to yield 12,13(S)–epoxylinolenic acid [21]. Allene

oxidase cyclase (AOC) converts this 18–carbon product to generate 12–OPDA, subsequently

followed by OPC–8. OPC–8 then undergoes β–oxidation, producing JA–CoA. Amazingly,
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JA–CoA signals biosynthesis of fellow JA metabolites, namely jasmonate, methyl–jasmonate

(Me–JA), and jasmonate–isoleucine (JA–Ile) [22]. Jasmonates are tried–and–true secondary

metabolites actively involved in biotic stress response and capable of rapid induction fol-

lowing herbivory or wound perception [23–25].

OPC-8

Methyl-Jasmonate

12-OPDA

13(S)-hydroperoxy 
linolenic acid 

Jasmonate

JA-CoA

alpha-linolenic acid

12,13(S)-epoxylinolenic 
acid 

Jasmonate-Isoleucine

Figure 1.5: Biosynthesis of jasmonates.

1.4 Organization of the Dissertation

This dissertation is solely comprised of manuscripts which are either accepted, in–review or

submitted for publication in peer–reviewed journals.
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Chapter 2: Over–represented TFBSs during SR pathogenesis

2.1 Background

2.1.1 Abstract

Background

From initial seed germination through reproduction, plants continuously reprogram their

transcriptional repertoire to facilitate growth and development. This dynamic is mediated

by a diverse but inextricably-linked catalog of regulatory proteins called transcription factors

(TFs). Statistically quantifying TF binding site (TFBS) abundance in promoters of differ-

entially expressed genes can be used to identify binding site patterns in promoters that are

closely related to stress-response. Output from today’s transcriptomic assays necessitates

statistically-oriented software to handle large promoter-sequence sets in a computationally

tractable fashion.

Results

We present Marina, an open-source software for identifying over-represented TFBSs from

amongst large sets of promoter sequences, using an ensemble of 7 statistical metrics and

binding-site profiles. Through software comparison, we show that Marina can identify con-

siderably more over-represented plant TFBSs compared to a popular software alternative.

Conclusions

Marina was used to identify over-represented TFBSs in a two time–point RNA-Seq study

exploring the transcriptomic interplay between soybean (Glycine max ) and soybean rust
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(Phakopsora pachyrhizi). Marina identified numerous abundant TFBSs recognized by tran-

scription factors that are associated with defense-response such as WRKY, HY5 and MYB2.

Comparing results from Marina to that of a popular software alternative suggests that re-

gardless of the number of promoter-sequences, Marina is able to identify significantly more

over-represented TFBSs.

2.1.2 Definitions and Presumptions

We define a list of transcription factor binding sites (TFBSs), t1, t2, . . . , tN , where ti is

either a DNA motif, mi or position weight matrix (PWM), wi. The former is a variable-

length character-string from the four-nucleotide DNA alphabet, while the latter is a two-

dimensional matrix of preset weights.

A group, Ga, is a FASTA file populated with user-provided promoter sequences. Let

Ga, Ga+1, . . . , GN represent a list of N groups such that N ≥ 2. We define a contingency

matrix, ci, as a 2× 2 matrix, used to model ti over-representation across Ga and Ga+1. A

set of statistical metrics, S, quantify degree of ti over-representation given ci.

2.1.3 Transcription factors and binding site representation

Plants are constantly surrounded by stimulus, be-they deleterious pathogens or positive

stimuli such as light and nutrients. In order for the plant to respond to these signals,

plants must utilize regulatory proteins known as transcription factors (TFs) to facilitate

transcriptional reprogramming in a dynamic, tissue-dependent manner. These proteins bind

to enhancer or promoter cis-elements and facilitate the recruitment of RNA polymerase II.

This combinatorial binding of TFs facilitates downstream execution of adaptative signals

in the face of drought, herbivory, and high salinity. By quantifying binding–sites for these

regulatory proteins, inherent transcriptional dynamics and magnitude of over-representation

can be inferred.

TFs are classified into families by inherent DNA-binding signatures otherwise known as

protein domains. In Arabidopsis thaliana, for instance, there are 64 known TF families[26],
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and it is not uncommon for different TF family members to exhibit relatively similar func-

tionality. This redundancy is especially true when it comes to stress-response [27–29].

DNA motifs and PWMs are two models frequently used to define a TFBS. The former

is a short cis–element region presumed to be a TFBS, while the latter models nucleotide

propensities of a TFBS in the form of a matrix[30, 31]. PWMs have been used across a

broad spectrum of plant investigations such as identification of conserved exonic splice-

site enhancers in Arabidopsis thaliana [32], prediction of potential seed-storage regulatory

elements in mustards, grasses and legumes [33], and identification of novel regulatory ele-

ments in Arabidopsis thaliana [34]. With assays such as ChIP-ChIP and ChIP-Seq, novel

regulatory elements can be identified and modeled as a PWM[35].

2.2 Implementation

Marina is an operating-system independent GUI software tool built using the Java program-

ming language. This manuscript builds on the works of Chekmenev et al. [36], Loots et

al.[37], and Kel et al.[38], by implementing multiple statistical metrics to identify the maxi-

mum number of biologically-sound TFBSs, while accounting for cases when large promoter

sets are provided.

To begin analysis with Marina, at least two FASTA files populated with user-provided

promoter sequences are required. Each FASTA file is known as a group. A group, for

instance, could represent promoter sequences of interest for a particular condition or time–

point. The Marina workflow (Figure 2.1) is partitioned into three distinct phases. The

first phase performs abundance-estimation given a catalog of known TFBS models (Figure

2.1a). Initial abundance derivation is performed by mapping TFBS models onto user-

provided promoter sequences. Subsequently, low-quality TFBSs are removed (Figure 2.1b).

Finally, statistical metrics quantify and rank TFBS over-representation (Figure 2.1c).
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Figure 2.1: High–level overview and flow of the Marina algorithm.

2.2.1 Binding site mapping

In order to effectively quantify TFBS abundance using this tool, TFBS models must be

provided. These models are in the form of either DNA motifs or PWMs. Cumulatively,

1,240 TFBS models were mined and utilized throughout this study. Of these models, 1,160

were DNA motifs with the remaining 80 being PWMs; motif-to-PWM ratio of 13:1. Plant

DNA motif and PWM models originated from AthaMap[39], AGRIS[40], PlantCARE[41],

TRANSFAC[42], and JASPAR[43]. DNA motifs and PWMs were stored in either a tab-

delimited or FASTA file format, respectively. Due to licensing restrictions, Marina does not

come pre-packaged with a catalog of TFBS models, however several PWMs are provided,
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built from known PDB structures using the 3DTF web-server[44]. Be it PWMs or DNA

motifs, a user-friendly schema is provided for importing custom TFBS profiles.

DNA motif and PWM mapping

To efficiently derive over-representation using DNA motifs, Marina scans promoter se-

quences for any occurrence of this motif using the Boyer-Moore-Horspool algorithm[45].

Due to the short length of many DNA motifs, elements such as ARF1 (TGTCTC)[46] may

ubiquitously map throughout a promoter sequence with many mappings having little bi-

ological significance. Though this tool provides the option to filter short-length models

be it PWMs or DNA motifs, resultant abundance estimations may seldom be biologically

significant simply due to the likelihood of spurious mappings.

Marina maps each PWM onto promoter sequences using a concurrent implementation of

the P–MATCH algorithm[36]. P–MATCH calculates a likelihood that a particular candidate

promoter region contains a TFBS. By default, Marina uses a probability-cutoff of 0.80; any

sub-sequence with a score greater than this cutoff is rendered a potential TFBS. Alongside

DNA motif and PWM extrapolations is a third pseudo-extrapolation known as combined

mode. This mode simply performs the two former extrapolations back-to-back, merging

their results into a singular data-structure. Combined mode capitalizes on the abundance

of DNA motifs and probabilistic power of PWMs.

2.2.2 Modeling TFBS over-representation

TFBS abundances across all promoter sequences are modeled using a group-specific acyclic

graph. Each graph is organized such that group name is the root-node and each TFBS

is a child leaf node. Every TFBS node references a list of promoter sequences containing

this TFBS. Per graph child node, two measures are used to model initial TFBS abundance:

raw counts and support[47]. The former is simply defined as the number of promoter

sequences which contain this particular TFBS. Raw counts are a useful, comparable metric

if all groups have approximately the same number of promoter sequences. Unfortunately
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some groups may be larger than others, resulting in skewed and uncontrastable counts.

To circumvent this possibility, the latter probabilistic measure, support, comes in helpful.

Support, P (ti, Ga), is a data-mining metric for representing abundance of a TFBS within

a particular group. A collection of statistical metrics continue where support leaves off,

providing a means of deducing TFBS abundance. Both raw-counts and support serve as

viable metrics to initially model TFBS abundance, however there may be cases were a rift

between the two measures can appear. For example, suppose a single TFBS mapped only

once to a group. Due to such minimal mapping, raw-count will be small but support would

be large. Both low-support and low-count thresholds exist so as to filter corresponding

graph nodes. Such graph trimming ensures that high-support and/or high-count TFBS

nodes remain as they are more likely of having correlations to a particular group[48]. A

caveat with threshold cutoffs is that low-abundance TFBSs will get discarded.

2.2.3 Derivation of TFBS over–representation

Given remaining TFBSs nodes, Marina aims to deduce magnitude of over-representation

per TFBS, ti, by contrasting its abundance across groups Ga and Ga+1. To facilitate this

objective, a collection of 7 knowledge discovery metrics, S, are implemented (Table 2.1).

Though a single metric can theoretically suffice, employing the entire set provides a means

to appreciate unique features per measure and avoid individual bias. This table is by no

means exhaustive as there are well over 20 frequently used metrics [49, 50]. The metrics in

this table were selected so that there exists a sound mixture of both well-studied association

and correlation measures.

In order to utilize such measures, TFBS abundances must be modeled in a suitable data-

structure. A contingency matrix, ci, is an ideal data-structure candidate as it models TFBS

distributions throughout multiple, independent groups (Table 2.2). Each metric within

S processes frequencies within a contingency matrix, ci, so as to quantitatively deduce

over-representation of TFBS, ti. Certainly not all metrics deduce magnitude of TFBS

over-representation the same, resulting in difficulties as to which TFBSs are unanimously
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Table 2.1: Statistical metrics utilized throughout Marina.

Metric Equation Output range Ref.

Confidence
(CF)

max(P (Ga|ti), P (ti|Ga)) 0 . . . 1 [51]

Cosine (CO) P (ti,Ga)√
P (ti)P (Ga)

0 . . .
√
P (ti, Ga) . . . 1 [52]

Jaccard (JAC) P (ti,Ga)
P (ti)+P (Ga)−P (ti,Ga)

0 . . . 1 [53]

Kappa coeffi-
cient (K)

P (ti,Ga)+P (ti,Ga)−P (ti)P (Ga)−P (ti)P (Ga))

1−P (ti)P (Ga)−P (ti)P (Ga)
−1 . . . 1 [54]

Laplace (LP) max
(
NP (ti,Ga)+1
NP (ti)+2 , NP (ti,Ga)+1

NP (Ga)+2

)
0 . . . 1 [55]

Lift (LI) P (ti,Ga)
P (ti)P (Ga)

0 . . .∞ [56]

Phi coefficient
(PHI)

P (ti,Ga)−P (ti)P (Ga)√
P (ti)P (Ga)(1−P (ti))(1−P (Ga))

−1 . . . 1 [57]

most over-represented by all metrics. A solution to bringing uniform over-representation

agreement across all metrics is to standardize contingency matrix counts using Iterative

Proportional Fitting (IPF) [58].

Table 2.2: A 2× 2 contingency matrix.

Ga Ga

ti ci(0, 0) ci(1, 0) n(ti)
ti ci(0, 1) ci(1, 1) n(ti)

n(Ga) n(Ga) N

Iterative Proportional Fitting (IPF)

IPF is an algorithm for standardizing counts in a two-dimensional contingency matrix such

that matrix row and column marginals are equal to one another (Table 2.3). Through such

adjustment, inherent associations and correlations can be discovered [59]. By performing

IPF-standardization, output for all 7 metrics become normalized so as to agree which TFBSs

are the most over-represented.
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Table 2.3: IPF–normalization adjusts counts in a contingency matrix.

Ga Ga

ti x N/2− x N/2
ti N/2− x x N/2

N/2 N/2 N

Equations 2.1 and 2.2 present an implementation of the IPF algorithm originally outlined

by Tan et al.[60]. The former equation adjusts counts, a, such that they are equal on the

diagonal axis. The latter equation then subtracts the remainder of the counts from that of

the entire matrix sum, N .

ci1,1 = ci0,0 = a =
N
√
ci1,1ci0,0

2
(√
ci1,1ci0,0 +

√
ci1,0ci0,1

) (2.1)

ci0,1 = ci1,0 =
N

2
− a (2.2)

2.3 Results and Discussion

2.3.1 Case study: Over-represented TFBSs during SR inoculation

To evaluate the functionality of this software tool, we utilized a two time-course RNA-Seq

study that investigates soybean (Glycine max ) transcriptional dynamics upon pathogen-

esis with soybean rust (SR; Phakopsora pachyrhizi). As outlined in our previous study,

susceptible Williams 82 soybean leaves were inoculated with SR and assayed using RNA-

Seq 10 days after inoculation (dai) [61]. An accompanying uninoculated control was also

assayed to serve as a baseline condition. In both the control and 10 dai samples, a total

of 5,940,995 70bp reads and 5,574,892 40bp reads were respectively sequenced using the

Illumina platform (GenomeAnalyzer IIx). Sequenced reads were deposited in NCBI SRA

under accessions SRX100854, SRX129967 and SRX100853, SRX129959, respectively. Per
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run, quality assessment and control (QA/QC) entailed removal of low quality reads and

trimming of low-quality 3’ ends should its quality score be less than 22. Reads were also

discarded if they had at most one nucleotide mismatch to either the human genome (Hg19)

or the JCVI Microbial Resource [62]. Upon QA/QC completion, a total of 5,015,459 control

reads and 5,420,745 10 dai reads passed filtering; quality-scores of 27 and 30, respectively.

For each time–point, reads were mapped with at-most 3 nucleotide mismatches onto the

soybean transcriptome (Glyma 1.0) using BWA[63]. Custom Python scripts inferred differ-

ential expression by deriving RPKM[64] and log2

(
RPKM10dai
RPKM0dai

)
per transcript.

Two gene-sets were then declared to contain the top 600 induced and 600 suppressed

differentially expressed genes (DEGs), respectively. Per gene set, the promoter sequence

2.5kb upstream from each genes transcription start site (TSS) was retrieved and appended

to a FASTA file. Both FASTA files in-conjunction with 80 plant PWMs and 1,160 plant-

specific DNA motifs served as input into Marina. Using default settings, Marina identified

71 over-represented TFBSs given the control group (promoters of suppressed transcripts,

GS) and the query group (promoters of induced transcripts, GI) (Table 2.4).

Table 2.4: Over–represented TFBSs without IPF.

Metrics Count

TFBS LP CO JAC LI CF K PHI p–value GS GI

ABF1 20 39 39 20 20 3 2 8.21e-274 130 169

ABFS 9 9 10 9 9 16 12 2.38e-31 10 20

ABI3/FUS3 67 19 17 67 67 41 58 3.03e-47 14 7

ABI4(2) 64 34 33 64 64 64 67 4.46e-172 66 43

AG 14 20 21 14 14 13 18 4.61e-82 30 42

AGP1 48 57 56 48 48 58 49 2.41e-720 427 398

ALFIN1 34 58 57 34 34 34 34 1.58e-731 440 426

ARF1 65 29 24 65 65 57 62 1.24e-113 40 25
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ARR10 39 65 65 39 39 43 39 1.83e-895 579 552

ARR2 69 27 22 69 69 60 69 4.02e-99 33 15

ATHB-5 43 68 68 43 43 49 43 1.54e-901 584 555

ATHB1 40 67 67 40 40 45 40 3.16e-901 584 556

ATHB5-1 63 21 20 63 63 44 55 3.20e-78 26 18

ATHB5-2 37 60 60 37 37 37 37 9.77e-769 470 452

ATHB6 27 23 25 27 27 29 32 3.06e-109 41 46

ATHB9 53 38 36 53 53 55 52 2.10e-225 95 81

AtLEC2 55 51 51 55 55 68 61 1.06e-611 336 284

ATML1/PDF2 71 18 11 71 71 54 71 8.73e-38 10 1

AtMYB2 29 33 34 29 29 23 31 1.60e-170 70 76

AtMYB77 60 32 31 60 60 56 57 2.95e-141 53 40

AtMYC2 2 2 2 2 2 30 8 0.00027 1 7

AtSPL3 30 45 46 30 30 8 26 7.99e-426 220 236

BLR/RPL/PNY 35 61 61 35 35 35 35 1.44e-777 478 462

bZIP910(2) 10 12 16 10 10 14 11 6.06e-42 14 26

bZIP911 12 11 13 12 12 19 14 4.35e-37 12 21

bZIP911(1) 11 10 12 11 11 20 13 2.52e-34 11 20

bZIP911(2) 18 13 14 16 16 32 29 3.73e-38 12 16

CBF 43 68 68 43 43 49 43 1.54e-901 584 555

CDC5 4 4 4 4 4 18 3 1.34e-10 3 13

DOF2 42 71 71 42 42 48 42 1.25e-902 585 556

DPBF1/2 51 55 55 51 51 66 54 1.85e-712 418 379

E2Fa 70 13 9 70 70 38 64 8.05e-24 6 1

E2Fc/d 1 1 1 1 1 26 5 0.0003 1 8

EmBP-1 25 43 43 25 25 5 17 3.31e-397 203 228

GAMYB 47 59 59 47 47 53 47 2.04e-743 447 422

Gamyb 58 28 26 58 58 40 50 6.18e-120 44 36
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GATA-1 17 24 28 18 18 12 16 5.92e-120 47 62

GATA-1/2/3/4 16 15 18 17 17 28 27 9.29e-54 18 24

GT-3b 13 25 29 13 13 7 7 1.24e-128 52 76

HAHB4 46 64 64 46 46 52 46 1.03e-891 575 546

HAT5 43 68 68 43 43 49 43 1.54e-901 584 555

HSE 19 26 30 19 19 11 15 1.64e-130 52 68

HVH21 41 66 66 41 41 46 41 3.88e-900 583 555

HY5 6 8 8 6 6 21 10 6.24e-20 6 15

ID1 28 31 32 28 28 27 33 4.01e-146 58 63

MYB.PH3(1) 56 41 41 56 56 61 56 4.15e-333 154 130

MYB.PH3(2) 52 49 49 52 52 62 53 6.93e-564 306 276

MYB98 62 36 35 62 62 65 65 2.64e-210 85 60

O2 33 56 58 33 33 6 28 2.96e-731 446 457

OsbHLH66 26 40 40 26 26 9 20 1.72e-308 147 165

OsCBT 3 3 3 3 3 24 6 1.54e-7 2 10

P 57 52 52 57 57 71 66 2.57e-629 347 286

PCF2 61 47 44 61 61 70 70 3.56e-441 215 160

PCF5 59 48 48 59 59 69 68 2.61e-498 254 201

PEND 31 35 37 31 31 15 30 3.82e-230 101 108

PIF3(2) 21 22 23 21 21 17 25 4.17e-99 37 46

RAP2.2 66 30 27 66 66 59 63 1.61e-125 45 28

RAV1(1) 49 54 53 49 49 63 51 1.95e-688 400 366

RAV1(2) 38 62 62 38 38 39 38 1.07e-854 543 519

STF1 24 37 38 24 24 10 22 1.24e-242 109 124

TAC1 68 17 15 68 68 42 59 1.47e-44 13 6

TaMYB80 54 50 50 54 54 67 60 2.7e-594 324 276

TBP 36 63 63 36 36 36 36 1.54e-881 568 547

TEIL 50 42 42 50 50 47 48 8.45e-340 160 146
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TGA1 23 46 47 23 23 2 9 3.41e-468 253 293

TGA1a 32 53 54 32 32 4 23 3.32e-688 413 433

WRKY11 7 7 7 8 8 31 19 2.34e-14 4 9

WRKY18/40/62 7 6 6 7 7 33 21 2.87e-11 3 7

WRKY26/38/43 15 16 19 15 15 25 24 4.16e-56 19 26

WRKY6 5 5 5 5 5 22 4 1.09e-10 3 12

ZAP1 22 44 45 22 22 1 1 2.46e-415 219 268

As shown in Table 2.4, there exists no consensus amongst the various metrics as to

which TFBS is truly the most over-represented. There are however some TFBSs that are

ranked by all metrics in a relatively uniform manner: AG, ATHB6, and ABFS. For all other

TFBSs, it is difficult to deduce magnitude of over-representation. Such a scenario warrants

IPF-standardization as it normalizes metric-ranks to agree in-concert which TFBSs are the

most over-represented (Table 2.5). By visually contrasting this table with that of Table 2.4,

it is clear that unstandardized ranks from Laplace Correction (LP), Confidence (CF) and

Lift (LI) perfectly equal their IPF-standardized counterpart.

Table 2.5: IPF identifies over–represented TFBSs.

Metrics

TF LP CO JAC LI CF K PHI

ABF1 20 20 20 20 20 20 20

ABFS 9 9 9 9 9 9 9

ABI3/FUS3 67 67 67 67 67 67 67

ABI4(2) 64 64 64 64 64 64 64

AG 14 14 14 14 14 14 14

AGP1 48 48 48 48 48 48 48

ALFIN1 34 34 34 34 34 34 34

ARF1 65 65 65 65 65 65 65
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ARR10 39 39 39 39 39 39 39

ARR2 69 69 69 69 69 69 69

ATHB-5 43 43 43 43 43 43 43

ATHB1 40 40 40 40 40 40 40

ATHB5-1 63 63 63 63 63 63 63

ATHB5-2 37 37 37 37 37 37 37

ATHB6 27 27 27 27 27 27 27

ATHB9 53 53 53 53 53 53 53

AtLEC2 56 56 56 56 56 56 56

ATML1/PDF2 71 71 71 71 71 71 71

AtMYB2 29 29 29 29 29 29 29

AtMYB77 60 60 60 60 60 60 60

AtMYC2 2 2 2 2 2 2 2

AtSPL3 30 30 30 30 30 30 30

BLR/RPL/PNY 35 35 35 35 35 35 35

bZIP910(2) 10 10 10 10 10 10 10

bZIP911 12 12 12 12 12 12 12

bZIP911(1) 11 11 11 11 11 11 11

bZIP911(2) 17 17 17 17 17 17 17

CBF 43 43 43 43 43 43 43

CDC5 4 4 4 4 4 4 4

DOF2 42 42 42 42 42 42 42

DPBF1/2 51 51 51 51 51 51 51

E2Fa 70 70 70 70 70 70 70

E2Fc/d 1 1 1 1 1 1 1

EmBP-1 25 25 25 25 25 25 25

GAMYB 47 47 47 47 47 47 47

Gamyb 58 58 58 58 58 58 58
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GATA-1 18 18 18 18 18 18 18

GATA-1/2/3/4 16 16 16 16 16 16 16

GT-3b 13 13 13 13 13 13 13

HAHB4 46 46 46 46 46 46 46

HAT5 43 43 43 43 43 43 43

HSE 19 19 19 19 19 19 19

HVH21 41 41 41 41 41 41 41

HY5 6 6 6 6 6 6 6

ID1 28 28 28 28 28 28 28

MYB.PH3(1) 55 55 55 55 55 55 55

MYB.PH3(2) 52 52 52 52 52 52 52

MYB98 62 62 62 62 62 62 62

O2 33 33 33 33 33 33 33

OsbHLH66 26 26 26 26 26 26 26

OsCBT 3 3 3 3 3 3 3

P 57 57 57 57 57 57 57

PCF2 61 61 61 61 61 61 61

PCF5 59 59 59 59 59 59 59

PEND 31 31 31 31 31 31 31

PIF3(2) 21 21 21 21 21 21 21

RAP2.2 66 66 66 66 66 66 66

RAV1(1) 49 49 49 49 49 49 49

RAV1(2) 38 38 38 38 38 38 38

STF1 24 24 24 24 24 24 24

TAC1 68 68 68 68 68 68 68

TaMYB80 54 54 54 54 54 54 54

TBP 36 36 36 36 36 36 36

TEIL 50 50 50 50 50 50 50
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TGA1 23 23 23 23 23 23 23

TGA1a 32 32 32 32 32 32 32

WRKY11 8 8 8 8 8 8 8

WRKY18/40/62 7 7 7 7 7 7 7

WRKY26/38/43 15 15 15 15 15 15 15

WRKY6 5 5 5 5 5 5 5

ZAP1 22 22 22 22 22 22 22

Many over-represented TFBSs have defense or stress-response functions

Given the list of IPF-standardized TFBSs (Table 2.5), all 4 WRKY TFBSs were over-

represented at 10 dai. These abundances are supported by numerous studies which show

that WRKY genes are perceived upon PAMP signals or abiotic stressors. [65–68]. WRKY

genes drive defense-response by regulating NONEXPRESSOR OF PR1 (NPR1) expression

by binding to W-box motifs in the NPR1 promoter. NPR1 protein binds with TGA TFs

which regulate pathogenesis-response (PR) expression, hence providing a means of positively

regulating SA-defense response [69–71].

Similar to WRKY, a bZIP family TFBS, HY5, was also over-represented 10 dai. In-

extricably linked to photomorphogenesis, this TF is also known for its positive regulation

of auxin signaling; a phytohormone which regulates defense response[72, 73]. Through in-

teractions with HY1 and MYC2, HY5 is able to regulate photomorphogenesis, ABA and

JA signaling[74, 75]. Much like MYC2, AtMYB2 is not only over-represented at 10 dai

but also plays a role in ABA-signaling. Microarray analyses on Arabidopsis plants with

35S:AtMYC2/AtMYB2 over-expression constructs revealed induced expression of several

ABA-regulated genes[76].

The GT (Trihelix) TF family member, GT-3b, was over-represented at 10 dai. Much

is unknown about this TF family let alone GT-3b, however what is known is that many

24



GT members, like HY5, regulate photomorphogenic signaling[77]. A recent study showed

how GT-2a and GT-2b over-expression positively-regulates ABA-signaling[78]. Though an

over-expressed GT-3b construct was not part of this recent study, translating findings from

GT-2a and GT-2b over to GT-3b could reveal potentially novel insights into whether GT-3b

plays a part in ABA and defense-signaling roles.

Strong relationship between degree of TFBS over-representation and IPF-rank

Due to the multi-dimensional nature of unstandardized TFBS ranks (Table 2.4), dimension-

ality reduction was performed to facilitate rank visualization on a 2D coordinate plane. To

carry-out such analysis, Principal Component Analysis (PCA) followed by bi-variate clus-

tering was executed using the R library clusplot[79]. All 71 TFBSs were partitioned into 6

discrete clusters and labeled based on their respective IPF-standardized rank (Figure 2.2).

Interestingly, there appears to be a strong relationship between the magnitude of TFBS

over-representation and IPF-standardized rank. This suggests that IPF-standardization is

suitable for deducing magnitude of over-represented TFBSs.

Comparative software analysis

Several actively-used software tools and web-interfaces are available to quantify TFBS over-

representation [39,40,80–82]. We classified such tools into two classes: software that deduce

TFBS over-representation given either 1) one promoter-sequence set or 2) at least two

promoter-sequence sets. Marina falls into this latter class and as does a popular software

tool, F-MATCH [38]. Both tools require two FASTA files as input such that one file serves

as a query sequence-set while the other a baseline control. Degree of over-representation

is therefore deduced by statistically contrasting TFBS over-representation across these two

groups. Both software tools were compared using three independent sets of promoter-

sequences of varying sizes. Each of these three analyses encompassed promoter-sequences

of DEGs 10 dai from our prior soybean – soybean rust RNA-Seq study [61]. F-MATCH
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Figure 2.2: Dimensionality reduction of Marina–derived TFBSs.

and Marina identify relatively the same number of over-represented TFBSs when promoter-

sequence sets are 600 sequences in size (Table 2.6). As these promoter sets increase in

size, Marina maintains steady consistency as to identification of over-represented TFBSs,

while F-MATCH failed to detect any over-represented TFBSs. We believe the reasoning

behind why F-MATCH yields 0 over-represented TFBSs while Marina identified almost 50

TFBSs to be attributed towards usage of the binomial distribution by F-MATCH, which

is known to be sensitive to large test sets. As far as output consistency between the two

tools, our only comparison pertains to results obtained with 600 sequences sets. Given the

44 F-MATCH and 47 Marina over-represented TFBSs, 21 TFBSs were shared between the

two result-sets. Unlike F-MATCH, we did not include TRANSFAC Professional PWMs in

our analysis. We believe by introducing such PWMs, the number of shared TFBSs would

certainly increase.
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Table 2.6: Comparing Marina to F–MATCH.

Group size PWMs (x 80) DNA motifs (x 1,160)
(# sequences) F-MATCH Marina F-MATCH Marina

600 44 47 N/A 24
1500 0 50 N/A 41
2500 0 53 N/A 44

2.4 Conclusions

Marina is an operating-system independent software tool to identify over-represented TF-

BSs across different groups of promoter sequences. It is freely available under the BSD

license and can be downloaded at http://mason.gmu.edu/~phossein/marina/. The Java

7 virtual machine is required.

We illustrate its usage using an RNA-Seq plant-pathogen study, however promoter se-

quences from any organism can be analyzed using Marina as long as compatible TFBS

models are provided. We also show its capability to identify over-represented TFBSs re-

gardless of input size. Given large sets of DEGs, our results show that by contrasting their

promoter sequences, TFBSs perceived during defense and stress response were significantly

over-represented. Other lesser-known TFBSs joined these ranks, raising questions as to

potential candidate TFs affiliated with defense-response.

The underlying algorithms within this tool are guided by a catalog of user-provided

TFBSs models be-it DNA motifs or PWMs. Thankfully, many regulatory element resources

and databases exist. By contrasting this software tool to a popular alternative, we show

that Marina is built for large promoter-sequence sets while being able to identify biologically

sound over-representative TFBSs.

27



Chapter 3: Soybean root and soybean cyst nematode

interplay

3.1 Background

3.1.1 Abstract

Background

Plant–parasitic nematodes (PPNs) are obligate parasites that feed on the roots of living host

plants. Often, these nematodes can lay hundreds of eggs, each capable of surviving without

a host for as long as 12 years. When it comes to wreaking havoc on agricultural yield,

few nematodes can compare to the soybean cyst nematode (SCN). Quantifying soybean

(Glycine max ) transcription factor binding sites (TFBSs) during a late–stage SCN resistant

and susceptible reaction can shed light onto the systematic interplay between host and

pathogen, thereby elucidating underlying cis–regulatory mechanisms.

Results

We sequenced the soybean root transcriptome at 6 and 8 days upon independent inocu-

lation with a resistant and susceptible SCN population. Genes such as β–1,4 glucanase,

chalcone synthase, superoxide dismutase and various heat shock proteins (HSPs) exhibited

reaction–specific expression profiles. Several likely defense–response genes candidates were

also identified which are believed to confer SCN resistance. To explore magnitude of TFBS

representation during SCN pathogenesis, a multivariate statistical software identified 46

over–represented TFBSs which capture soybean regulatory dynamics across both reactions.
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Conclusions

Our results reveal a set of soybean TFBSs which are over–represented solely throughout

a resistant and susceptible SCN reaction. This set furthers our understanding of soybean

cis–regulatory dynamics by providing reaction–specific levels of over–representation at 6

and 8 days after inoculation (dai) with SCN.

3.2 Introduction

Obligate parasites, such as plant–parasitic nematodes (PPNs), are infamously known for

their ability to suppress host defense mechanisms and cripple yield of many agricultural

crops. Such devastation is tightly orchestrated by nematode effector proteins that com-

mandeer host–plant metabolic machinery. One of the most destructive PPNs to soybean

yield is the soybean cyst nematode (SCN; Heterodera glycines). Worldwide, approximately

1.5 billion dollars in soybean yield is lost annually due to SCN infestations[83,84]. In SCN

susceptible soybeans, this devastation begins when the female juvenile–stage 2 (J2) nema-

tode penetrates the host root. J2 effector proteins are injected into the root, dissolving

plant cell walls and driving formation of a metabolically–active, multinucleated feeding site

known as a syncytium[85]. Newly–molted J3 males and females feed from this nutrient–rich

syncytium, subsequently molt into J4 larvae and copulate[86]. After approximately 30 days

post–copulation, a hardened sac of SCN eggs known as a cyst becomes visible to the naked–

eye. In the resistant reaction however, cysts are not visible since nematodes can neither

form a nutrient–rich syncytium nor copulate. Thus, these nematodes starve to death in the

resistant reaction.

With next–generation sequencing (NGS) now becoming a central assay in transcrip-

tomics, entire transcriptomes can now be sequenced at unprecedented resolution. Fueled

by the economic impact of SCN infestations, numerous studies have utilized NGS assays

to sequence and quantify the soybean transcriptome [87–90]. In this study, we extend such

works by conducting transcriptomic and regulatory analyses on soybean roots (Peking cv.)
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inoculated with SCN. We sequence the soybean root transcriptome and contrast resistant

and susceptible SCN reactions at 6 and 8 days after inoculation (dai). Our findings re-

veal likely defense–response gene candidates and a potential regulatory “signature” that

captures TFBS over–representation throughout both resistant and susceptible reactions.

3.3 Results and Discussion

3.3.1 Illumina sequencing and read alignment

cDNA libraries from soybean roots were generated after independently inoculating roots for

both 6 and 8 dai in two SCN populations, NH1RHg (confers resistant reaction in Peking;

Race 3) and TN8 (confers susceptible reaction in Peking; Race 14). A baseline control

cDNA library was also created from roots uninoculated with SCN. RNA was prepared

using the Illumina TruSeq sample preparation kit. Single–end RNA–sequencing (RNA–

Seq) was performed on the Illumina GAIIx, producing a total of 30 million reads 80 bp in

length. Across all sequenced libraries, quality assessment subtracted between 10% – 19%

of reads for being either a contaminant sequence or of low quality (Table 3.1).

Table 3.1: RNA–Seq summary upon SCN inoculation.

SCN population Time–point SRA Reads Filtered Hits soybean

Uninoculated Control SRR849499 2,141,303 401,913 1,201,664

Race 3
6 dai SRR847313 8,069,844 1,130,372 4,640,251

8 dai SRR848922 7,319,342 745,019 4,135,793

Race 14
6 dai SRR848921 9,160,690 1,624,774 4,486,182

8 dai SRR849498 4,078,344 637,475 2,193,208

Total – – 30,769,523 4,539,553 16,657,098
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Using the BWA aligner [63], quality reads were mapped against the soybean transcrip-

tome build version 1.1 [91]. Reads aligning to multiple transcripts were identified and

assigned to the transcript with the highest alignment score. In total, 59% to 67% of quality–

assessed reads mapped to the soybean transcriptome.

3.3.2 Many isoforms are involved in defense response

Differential expression tests were performed using the R package DESeq[92]. Soybean tran-

scripts were functionally annotated using both Gene Ontology (GO)[93] and PFAM[94].

Both an RPKM [64] and log2 RPKM were computed against a baseline uninoculated sam-

ple. To render a soybean transcript differentially expressed (DE), the transcript had to have

a log2 RPKM beyond ±0.5 and have at least 5 mapped reads. A total of 25,245 soybean

transcripts were identified to be DE in at least one of the samples. Over 270 DE transcripts

perceived during pathogenesis were mined (Table 3.2).

Table 3.2: Numerous DE genes involved in defense–response.

Median RPKM
Race3 Race14

Function n 6 dai 8 dai 6 dai 8 dai

β–1,4–G 19 1.05 0.85 -0.53 -0.78
4CL 37 -0.84 -0.55 -0.93 -0.64
A–8 LOX 22 0.81 0.70 -1.89 -1.24
ChR 5 1.04 1.01 -3.65 -2.8
ChI 11 0.64 0.61 -0.74 -1.01
ChS 19 0.82 1.41 -0.82 -0.83
GST 33 0.65 0.56 -0.61 -0.72
GLY I 11 0.55 0.58 -0.66 -1.06
L–13S LOX 23 0.60 0.61 -1.96 -1.65
PCS 9 0.10 0.80 -0.78 -0.68
PR5 18 0.76 0.62 -2.77 -0.84
PR10 22 0.67 0.07 -0.75 -0.77
PDI 20 0.69 0.83 -0.67 -0.88
RnDR 6 1.39 0.93 -0.6 -0.66
SOD 17 0.70 0.65 0.70 -0.15
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DE transcripts were subsequently binned based on annotated function, yielding bins of

differing size, n. To estimate a bin–specific median RPKM, a 95% bootstrap confidence

interval (CI) with 50,000 replicates was predicted (Table 3.3).

Virtually all annotation classifications exhibited induced expression profiles exclusive

to the resistant reaction. For instance, all 19 transcripts of β–1,4–glucanase (β–1,4–G)

were generally induced throughout the resistant but suppressed in the susceptible reaction.

Numerous studies reveal how a pathogenic nematode can commandeer not only β–1,4–

glucanase but other cellulases to drive formation of a nematode feeding site [95–97]. Critical

genes encoding isoflavonoid and flavonoid biosynthesis such as chalcone synthase (ChS),

chalcone reductase (ChR), and chalcone isomerase (ChI) also exhibited similar induced

expression profiles. Glutathione S-transferase (GST) genes were also induced in the resistant

reaction. GST is a class of enzymes involved in reactions leading to xenobiotic degradation

[98], and has been shown to be induced during an SCN resistant reaction [99–101].

Table 3.3: Confidence intervals of genes involved in defense–response.

95% CI
Race3 Race14

Function 6 dai 8 dai 6 dai 8 dai

β–1,4–G (0.64, 1.36) (0.60, 1.16) (-2.38, 0.94) (-2.76, -0.09)
4CL (-1.71, -0.44) (-1.77, -0.06) (-1.13, -0.6) (-1.93, -0.29)
A–8 LOX (-0.10, 2.31) (0.24, 2.90) (-2.66, -1.47) (-3.09, -0.67)
ChR (0.68, 5.13) (0.91, 4.51) (-4.07, -3.23) (-5.07, -2.59)
ChI (-0.04, 2.95) (-0.03, 4.49) (-0.84, 2.43) (-1.3, -0.56)
ChS (0.28, 2.17) (0.87, 2.2) (-1.07, -0.31) (-1.66, -0.44)
GST (0.48, 2.13) (0.17, 1.9) (-1.93, -0.24) (-2.24, -0.04)
GLY I (0.43, 2.72) (0.05, 2.38) (-0.80, 0.16) (-2.67, -0.71)
L–13S LOX (0.36, 2.50) (-0.38, 2.66) (-2.34, -1.57) (-3.35, -1.07)
PCS (-0.70, 2.03) (-1.05, 2.51) (-2.28, -0.03) (-2.19, -0.23)
PR5 (0.02, 4.10) ( 0.06, 1.86) (-6.26, 0.37) (-2.25, 2.10)
PR10 (0.53, 2.85) (-0.87, 2.01) (-2.32, 0.04) (-2.33, 0.16)
PDI (0.35, 1.59) (0.11, 3.71) (-0.84, 0.75) (-1.88, 0.80)
RnDR (1.06, 1.97) ( 0.89, 0.96) (-1.90, 0.64) (-0.71, 0.36)
SOD (0.29, 0.91) ( 0.51, 0.75) ( 0.34, 4.95) (-1.01, 4.30)
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Transcripts of genes encoding two lipoxygenase (LOX) gene family members, arachido-

nate 8-lipoxygenase (A–8 LOX; EC: 1.13.11.40) and linoleate 13S-lipoxygenase (L–13S LOX

(LOX2); EC: 1.13.11.12) were also induced throughout the resistant reaction. The role A–8

LOX plays during a nematode reaction has yet to be elucidated, however lipoxygenases

in–general are consistently induced throughout a resistant SCN reaction [102–105]. This

raises speculation that A–8 LOX may be perceived during SCN pathogenesis.

Ribonucleoside–diphosphate reductase (RnDR; EC: 1.17.4.1) as well as protein disulfide–

isomerase (PDI; EC: 5.3.4.1) were induced in the resistant reaction. Both RnDR and

PDI are thioredoxins, a family of reductases known to play defense–response roles upon

perception of a pathogen [106–108]. Little is known about the role RnDR plays in SCN

pathogenesis, however an earlier microarray study examined abaxial and adaxial soybean

embryo expression profiles upon exposure to auxin 2,4-dichlorophenoxyacetic acid (2,4–D).

Microarray results revealed differentially expressed levels of expressed transcripts of RnDR

21 days after auxin inoculation[109]. PDI on the other hand, is a well–studied thioreductase

expressed during plant defense[110,111], especially in soybean roots undergoing a resistant

SCN reaction[112].

Pathogenesis–related (PR) transcripts were induced in the resistant reaction. PR genes

are expressed not just during pathogen perception [87, 113–118] but also following abiotic

stress[119], phytohormone signaling[120] and drought[121]. Two such PR genes, PR–5 and

PR–10, were both not only induced in the resistant reaction but had similar expression

profiles even in the susceptible reaction. Glyoxalase I (GLY I; lactoylglutathione lyase,

EC: 4.4.1.5), was also induced throughout the resistant reaction. Though not as induced

compared to PR genes, GLY I has been shown to exhibit an induced expression profile in

pumpkin seeds exposed to numerous abiotic stresses[122]. Little is known about the role

phytochelatin synthetase (PCS) plays throughout SCN pathogenesis, however PCS has been

shown to be induced during aphid herbivory[123].
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3.3.3 Reaction–dependent Gene Ontology enrichments

To identify statistically significant Gene Ontology (GO) annotations, the top 750 induced

and 750 suppressed genes across all SCN samples each independently underwent GO Process

enrichment using the AgriGO web–server[124]. Numerous GO Processes were statistically

significant across resistant and susceptible reactions (Table 3.4). GO Process p–values were

adjusted using Bonferroni False Discovery Rate (FDR) and all GO Processes with adjusted

p–values less than 0.05 were selected.

Table 3.4: Distribution of GO enrichments during SCN inoculation.

Race3 Race14
6 dai 8 dai 6 dai 8 dai

Count
Induced 53 48 25 19
Suppressed 73 104 113 86

The top 10 most statistically significant GO Processes within induced genes were subse-

quently identified (Table 3.5). Processes such as “defense response”, “response to hormone

stimulus”, and “response to stress”, were revealed to be statistically significant mainly in

the resistant reaction when compared to the susceptible. Similarly, the top 10 most sta-

tistically significant GO Processes within suppressed genes were also identified (Table 3.6).

Contrasting GO Processes in suppressed genes to that of induced genes reveals an entirely

different catalog of annotations. For instance, 9 of the 10 GO Processes in suppressed genes

are statistically significant across both resistant and susceptible reactions. This indicates

that nematode effectors are generally operable in a race–independent manner and capable

of effortlessly suppressing a majority of crucial basal processes. The most suppressed GO

Processes were “photosynthesis”, “photosynthesis, light harvesting”, “photosynthesis, light

reaction”, and “generation of precursor metabolites and energy”. Interestingly, it has been

shown in prior studies that PPNs can suppress photosynthesis in tomato plants by disrupt-

ing cytokinin and gibberellin signaling[125,126]. Aside from photosynthetic processes, those
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associated with metabolism and biosynthesis were highly suppressed across both reactions.

This suggests that both resistant and susceptible SCN populations share a common goal

of crippling basal metabolic machinery and suppressing the host machinery responsible for

photosynthesis.

Table 3.5: GO Processes within induced transcripts during SCN pathogenesis.

−log10FDR
Term Description Race 3 Race 14

GO:0006325 chromatin organization 7.18 0
GO:0051276 chromosome organization 6.11 0
GO:0006952 defense response 6.69 1.45
GO:0006323 DNA packaging 11.55 0
GO:0051704 multi-organism process 3.69 0
GO:0009825 multidimensional cell growth 6.08 1.79
GO:0034728 nucleosome organization 11.85 0
GO:0006996 organelle organization 3.48 0
GO:0009725 response to hormone stimulus 2.50 5.95
GO:0006950 response to stress 5.35 0

Table 3.6: GO Processes within suppressed transcripts during SCN pathogenesis.

−log10FDR
Term Description Race 3 Race 14

GO:0006091 generation of precursor metabolites and energy 83.18 87.31
GO:0006096 glycolysis 1.48 3.95
GO:0009853 photorespiration 6.48 9.04
GO:0015979 photosynthesis 215.70 211.61
GO:0019684 photosynthesis, light reaction 132.78 130.48
GO:0009767 photosynthetic electron transport chain 43.33 47.11
GO:0009773 photosynthetic electron transport in photosystem I 23.73 28.55
GO:0009416 response to light stimulus 11.30 13.85
GO:0009314 response to radiation 10.71 13.19
GO:0000302 response to reactive oxygen species 0 3.73
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3.3.4 Many over–represented TFBSs during SCN pathogenesis

The 1,000 most induced and 1,000 most suppressed genes were identified for each sample and

the promoter sequence 2kb upstream from each genes transcription start site was retrieved

and appended to a FASTA file. To quantify abundance of cis–regulatory TFBSs within

promoter sequences, we used a collection of 68 plant Position Weight Matrices (PWMs) from

AthaMap[39] and JASPAR[43]. PWMs are multi–dimensional matrices frequently used to

model regulatory elements, namely TFBSs. Each cell in a PWM represents a weight as to

the likelihood a particular base at a specific index is a regulatory element. Thus, mapping

PWMs onto promoter sequences and statistically quantifying its abundance reveals insight

into the magnitude of TFBS over–representation. To efficiently execute such mapping,

we had developed a multivariate statistical software named Marina[127]. Marina maps

TFBS models such as PWMs onto promoter sequences and infers magnitude of TFBS over–

representation using 7 knowledge–discovery metrics. The Iterative Proportional Fitting

(IPF) algorithm [58] normalizes output produced from each of the 7 metrics, enabling

unanimous agreement across the metrics as to the magnitude of TFBS over–representation.

IPF scores range from 1 to N whereby N is the total number of over–represented TFBSs.

Scores in the range of 1 represent over–represented TFBSs while scores in the range of N

represent highly under–represented TFBSs.

For all SCN samples, Marina mapped all 68 plant PWMs onto promoter sequences of

both induced and suppressed genes and contrasted TFBS abundance between these sequence

sets. In total, 46 TFBSs were over–represented in at least one of the four samples (Figure

3.1). There were 29 TFBSs over–represented across all four samples. If a TFBS was not

over–represented in a specific sample, that TFBS was assigned an IPF score of N+1 so as to

serve as a proxy for being highly under–represented. Contrasting TFBS IPF scores across

samples reveals that 30 of the 46 TFBSs either increase or decrease in IPF score regardless

of the reaction (Figure 3.1). For instance, the TFBS for STF1 exhibits a relatively modest

increase in its IPF score across both reactions. Interestingly, STF1 IPF score increases from

11th to 1st from 6 dai to 8 dai respectively in the resistant reaction.
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IPF score for the HAHB4 TFBS greatly increased in the resistant and susceptible re-

action. A prior study found HAHB4 to contribute to jasmonic acid and ethylene signaling

crosstalk [128]. Similarly, TFBSs for DOF2 and DOF3 exhibited relatively weak increases

in IPF scores across resistant and susceptible samples. DOF transcripts have not been

explicitly quantified as–far as their gene expression during SCN pathogenesis, however such

proteins have been detected during auxin signaling [129]. In contrast to DOF2 and DOF3,

the TFBS for TEIL had a near–50% jump in IPF scores across both reactions. Being the

tobacco homolog of ethylene insensitive (EIN3), TEIL gene products have been shown to

bind directly to the promoter sequence of PR1a[130]. Interestingly, across both resistant

and susceptible reactions, TEIL scores appear to be relatively equal to one another.

The A. thaliana MYB77 homolog, AtMYB77, exhibits a mild change in IPF score across

both resistant and susceptible reactions. Across both reactions, AtMYB77 IPF scores were

generally under–represented at 6 dai but become slightly over–represented at 8 dai. The

TFBS for OsCBT exhibited pronounced IPF scores. In both the resistant and susceptible

reaction, OsCBT was highly over–represented only at 6 dai. It was shown that OsCBT

mutants conferred increased pathogen resistance upon inoculation with Magnaporthe grisea,

revealing that OsCBT suppresses defense response[131].

3.3.5 TFBSs are over–represented in a reaction–dependent manner

The remaining 16 TFBSs from the total set of 46 TFBSs were over–represented in one

reaction compared to the other. Such TFBSs can expose novel insight into TFBSs over–

representation patterns respective to a specific reaction.

ZAP1, a TFBS for a WRKY TF [67], appears to be highly over–represented during

the resistant reaction but slightly under–represented in the susceptible reaction. Similarly,

PIF3–1 and PIF3–2 were both under–represented during the susceptible reaction, however

slightly over–represented in the resistant reaction. It has been shown that PIF plays roles in

phytochrome signaling[132]. Since photosynthetic processes are heavily suppressed within

resistant and susceptible reactions (Table 3.6), such suppression explains why PIF3–1 and
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Figure 3.1: Heatmap of TFBSs over–represented during SCN pathogenesis.

PIF3–2 have severely under–represented IPF scores. Indeed SCN pathogenesis does not

only disrupt the photosynthetic machinery but also the plants ability to execute sound

phytochrome signaling. Numerous TFBSs of TFs perceived during defense response such

as bZIP910, bZIP911, TaMYB80, and TGA1a were all over–represented during the resistant

reaction but under–represented in the susceptible.
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3.4 Conclusions

We used RNA–Seq to sequence soybean whole–root (Peking cv.) at both 6 and 8 dai upon

inoculation with a resistant (NH1–RHg; Race 3) and susceptible (TN8; Race 14) SCN pop-

ulation. Contrasting TFBSs over–represented in promoter sequences of DE soybean genes

after 6 and 8 dai revealed underlying transcriptomic and cis–regulatory dynamics within the

soybean root during pathogenesis. In–total, over 30 million reads from soybean whole–root

was sequenced and differential expression analysis revealed over 270 transcripts to be statis-

tically and biologically significant during defense–response. Several viable defense–response

gene candidates joined these ranks, including glyoxalase I, arachidonate–8 lipoxygenase,

phytochelatin synthetase, and ribonucleoside-diphosphate reductase. A set of 46 TFBSs

were rendered over/under–represented across all resistant and susceptible samples. Inter-

estingly, 30 of these TFBSs were either over or under–represented across both reactions.

Thus, our results reveal presence of a biologically–sound regulatory signature that identifies

reaction–specific soybean regulatory patterns during both resistant and susceptible SCN

reactions.

3.5 Methods

3.5.1 Plant procurement and SCN inoculation

Glycine max cv. Peking seeds were surface–sterilized by treating the seeds with 10% bleach

(0.6% sodium hypochlorite) for 10 minutes, followed by several washes with distilled water.

Seeds were planted in sterile sand in 20x20 cm flats. Eight days later, seedlings were gently

lifted out of the sand and rinsed clean with water. Five seedlings for each time–point

were placed on moistened germination paper in 8x12x3.5 cm plastic trays. The two SCN

populations NH1–RHg and TN8 were independently harvested from stock plants [133].

Females were crushed with a rubber stopper and eggs were washed through a 250 micron

screen and collected on a 25 micron screen. Eggs were left to hatch on a rotary shaker for 3

days. J2 stage nematodes were further purified by passing them through a 30 micron cloth
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into deionized, distilled water and gently centrifuged at 250 relative centrifugal force (RCF)

for 1 minute to concentrate to 2,000 J2/ml. Roots from each plant were inoculated with 1

ml of inoculum. Roots were covered with a second piece of moistened germination paper

and the trays were placed in a larger tray with 0.5 cm water and wrapped in a semi-clear

plastic bag for the duration of the time–points. Uninoculated control plants were also placed

in trays and collected separately. Four of the plant roots following 6 and 8 dai with SCN

were harvested, immediately frozen in liquid nitrogen, ground to a fine powder in a mortar

and pestle, and stored in microfuge tubes at –80◦C until RNA extraction. A fifth root was

stained for visualization of nematode infection with acid fuchsin [134]. RNA was extracted

after 6 and 8 days after inoculation by phenol/chloroform and lithium chloride precipitation

[135]. RNA was treated with DNase to remove any genomic DNA remaining in the samples.

RNA integrity was checked by visualizing the intact 18S and 28S ribosomal bands on an

agarose gel and concentrations were measured on a NanoDrop spectrophotometer (Thermo

Scientific; Waltham, MA).

3.5.2 RNA extraction and cDNA isolation

cDNA libraries were prepared using the TruSeq RNA Prep Kit according to the manufac-

turer instruction (Illumina). Briefly, mRNA was purified from four micrograms of total

RNA diluted in fifty microliters of nuclease–free ultra pure water using magnetic beads.

Resulting mRNA was fragmented at 94◦C for eight minutes. Seventeen microliters of frag-

mented mRNA was used as template for cDNA synthesis performed by a Superscript II

Reverse Transcriptase. Second–strand synthesis was immediately performed and fifty mi-

croliters of double stranded DNA was transferred to a new tube and submitted to end

repair followed by adenylation of 3’ ends. Once adenylation of 3’ ends reached completion,

adapters containing different indexes were ligated to each library. DNA fragments having

adapter molecules on both ends were amplified and enriched. Quantification and quality

control were performed by loading one microliter of cDNA libraries on an Agilent DNA–1000

chip and running it on an Agilent Technologies 2100 Bioanalyzer.
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3.5.3 Deep–sequencing and transcriptome quantification

For both NH1–RHg (Race 3) and TN8 (Race 14) reactions, cDNA libraries were sequenced

from 8 day old soybean whole–root independently inoculated with SCN at 6 dai and 8 dai.

Single–end RNA–sequencing was performed on the Illumina GAIIx at the United States De-

partment of Agriculture (USDA), Beltsville, MD. An uninoculated whole–root control was

also sequenced using the same sequencing protocol. To remove low quality reads across all

sequencing runs, custom bash scripts filtered all reads should its 3’ tail have a quality score

of less than 22. To remove contaminant reads, sequences were subtracted if they mapped at

least once to both the Ensembl human genome (Hg19) or the JCVI Microbial Resource[62].

Remaining sequences were mapped to the soybean transcriptome (build 1.1) using BWA.

Across all SCN inoculated samples, transcript counts underwent normalization and variance

estimation using the DESeq R package. To infer magnitude of differential expression, RPKM

was computed for all inoculated and uninoculated samples and log2(
RPKMinoculated

RPKMuninoculated
) was

subsequently derived. A transcript was rendered non–differentially expressed if it failed any

of the following conditions: log2 RPKM not beyond ±0.5, an adjusted p–value greater than

or equal to 0.05, or fewer than 5 mapped reads.

3.5.4 Functional annotation & Gene Ontology (GO) enrichment

Functional annotation comprised of homology–based analysis of all sequences in the Phy-

tozome soybean transcriptome. Of these 73,320 soybean transcriptomic sequences, 7,810

sequences were subtracted for being either a scaffold or duplicate sequence. BLASTX[136]

aligned the remaining 65,510 query sequences onto all UniProt plant proteins[137]. The

top–scoring UniProt function annotation was assigned to the query if it did not contain

ambiguous keywords, namely “Hypothetical”, “Uncharacterized” or “Unknown”.

For all samples, soybean Phytozome accessions for the top 750 induced and top 750 sup-

pressed transcripts were identified. Gene Ontology (GO) enrichment on each accession–set
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was performed using the AgriGO web–server. AgriGO settings were modified to quan-

tify GO annotations using the hypergeometric distribution and Bonferroni p–value false–

discovery rate (FDR) correction. To measure GO Process statistical significance in both

resistant and susceptible reactions, the −log10FDR per GO Process was summed across

both 6 and 8 dai time–points. Subsequently, the top 30 most statistically significant GO

Processes from the top 750 induced and suppressed transcript sets were identified.
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Chapter 4: Interplay between soybean rust and susceptible

soybean plants

4.1 Abstract

In virtually all soybean–growing regions of the world, one of the most devastating pathogens

is Phakopsora pachyrhizi, an obligate biotroph that causes Soybean Rust (SR). At least 10%

of annual soybean yield in the United States is lost due to this pathogen. In spite of this,

soybean remains amongst one of the top agricultural exports of the United States. To better

understand interaction of SR with soybean at the molecular level and how aspects may be

regulated, we examined changes in expression of soybean genes and quantified proximal cis–

regulatory elements within promoter sequences of differentially expressed soybean genes.

Understanding soybean cis–regulatory dynamics during an SR time–course contributes to

our understanding of plant–pathogen interplay by revealing numerous transcription factor

binding sites rendered over–represented and statistically significant during infection.

4.2 Introduction

Phytopathogenic fungi are plant pathogens which feed and live off nutrients within host

tissues. The invasive mechanism of these pathogens is made possible through a cocktail

of effector proteins that cripple plant defenses and commandeer host metabolic machinery

[138, 139]. Since many agricultural crops are hosts to phytopathogenic fungi, agricultural

yield–loss at the hand of these pathogens is inevitable. In the case of soybean (Glycine max ),

one phytopathogenic fungus, Phakopsora pachyrhizi, has gained notoriety for devastating

entire soybean yields. As a result, quantifying soybean proximal cis–regulatory elements

during fungal pathogenesis could shed light on soybean regulatory dynamics during soybean
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rust pathogenesis.

Soybean is a major agricultural export by the United States and is a legume rich in an-

tioxidants, oils, and protein [140]. Unfortunately, Phakopsora pachyrhizi and its causative

foliar disease, soybean rust (SR), have been shown to sever yield with losses as much as 10%

to 50% in the United States [141,142]. In Brazil however, SR can be found in approximately

80% of soybean fields, resulting in millions of dollars in lost yield annually [143]. Unfor-

tunately, no soybean cultivar is yet available that is resistant to all SR strains. Certainly

alternative measures such as fungicide treatment and fungitoxic essential oils have shown

promising results when it comes to reducing the extent of SR infection [144–147].

The SR life cycle begins with the germination of asexual urediniospores on host leaves.

Following post–germination is the elongation of a thin extremity known as the germ tube.

The germ tube grows on the host leaf surface and eventually forms a specialized structure

known as an appresorium which punctures leaf epidermis, thereby allowing the fungus to

penetrate the leaf. Such penetrance is made possible by an appresorial cone, a cone–shaped

extremity grown out of the appresorium. Once the fungus has entered plant mesophyll,

primary hyphae are produced which lead to development of a specialized structure known

as haustorium. The haustorium is dedicated to absorbing host nutrients, enabling further

pathogenesis. Over the course of fungal differentiation, haustoria will be formed throughout

the host tissue. On the leaf surface, red–brown spots representing localized necrosis become

visible to the naked eye. Within leaf mesophyll however, hyphae aggregate together, form-

ing uredinia primordia. Such structures then differentiate to form asexual urediniospores.

Overall, the entire SR lifecycle can take between 7 to 10 days [148–150].

In two prior studies [61, 151], we sequenced the soybean leaf transcriptome at 7 hours

after inoculation (hai), 48 hai and 10 days after inoculation (dai) with SR. In this study, we

extend both works by examining and quantifying soybean proximal cis–regulatory elements

within differentially expressed soybean transcripts.
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4.3 Materials and Methods

4.3.1 Plant procurement and RNA sequencing

In an earlier study [61], we used RNA–Sequencing (RNA–Seq) to quantify the soybean leaf

transcriptome at 10 dai with SR. A control sample 15 seconds after inoculation was also

sequenced as part of this prior investigation. In a follow–up study [151], we utilized RNA–

Seq to further quantify the soybean leaf transcriptome at two additional time–points: 7 hai

and 48 hai with SR (Table 4.1).

Custom Python scripts parsed FASTQ files produced from both prior studies and re-

moved low quality reads if its 3’ tail had a quality score less than 25, or at least 35% of the

entire read had a quality score less than 22.

Table 4.1: RNA–Seq runs investigating soybean–SR interplay.

Time–point SRA # reads Reference

Control SRR352328 4,467,871 [61]
7 hai SRR863029 7,543,421 [151]
48 hai SRR863032 9,082,363 [151]
10 dai SRR352327 3,510,311 [61]

4.3.2 Differential expression analysis and functional annotation

Reads passing quality filters were subsequently mapped onto both the human genome

(Hg19) and all microbial genomes from the JCVI Microbial Resource [62] using the BWA

aligner [63] to remove potentially contaminant reads. Reads across all four RNA–Seq time–

points that passed quality and contaminant checks were subsequently mapped onto the

soybean transcriptome build 1.1 [91] using the TopHat splice–aware aligner [152]. The

Cuffdiff software [153] inferred differential expression between each SR inoculated and con-

trol sample. A transcript was rendered differentially expressed if its Benjamini–Hochberg

p–value was below 0.05 and had at least a log2 Fragments Per Kilobase per Million fragments
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mapped reads (FPKM) of at least ±1.5.

For all inoculated RNA–Seq runs, Phytozome accession numbers for the top 750 in-

duced and suppressed soybean transcript isoforms were subsequently identified and termed

an accession–set. The AgriGO web–server [124] analyzed each accession–set so as to identify

statistically over–represented Gene Ontology (GO) terms; a process known as GO enrich-

ment. A term was rendered enriched if its Hochberg false discovery rate (FDR) adjusted

hypergeometric p–value was below 0.05. For each enriched GO Process, its −log10FDR

was subsequently summed across all time–points and the resultant summation was ranked

in descending order, producing a list of enriched GO Processes.

4.3.3 Derivation of over–represented soybean binding sites

For 7 hai, 48 hai, and 10 dai samples, the top 1,000 induced and suppressed soybean

transcripts were identified and their promoter sequences 2kb upstream of their transcription

start site were appended to two FASTA files respectively. A total of six FASTA files were

therefore created, each termed a positive set. To effectively control for length distribution

and GC content within of the six positive sets, a matching control set of 1,000 promoter

sequences were randomly generated from non–differential soybean transcripts. Each control

set differed in GC content by at most ± 7% when compared to its respective positive set;

on average, GC content differed by ± 4%. Upon generation of a control set, the positive

set was paired with its respective control set and termed a positive–control pair.

To model cis–regulatory transcription factor binding sites (TFBSs), a set of 66 plant

Position Weight Matrices (PWMs) were mined from AthaMap [39], JASPAR [43], and

TRANSFAC [42]. PWMs are multi–dimensional matrices frequently used to model regula-

tory elements, namely TFBSs. Each cell in a PWM represents a weight as to the likelihood

a particular base at a specific index is a regulatory element. Thus, mapping PWMs onto

promoter sequences and statistically quantifying relative abundance reveals insight into the

magnitude of TFBS over–representation.

To quantify TFBS PWM over–representation given a positive and control set, we used

46



the Marina software [127]. Marina performs TFBS over–representation analysis using a

set of 7 statistical metrics to compute magnitude of TFBS over–representation. To yield

a collective measure of TFBS over–representation across all 7 metrics, Marina utilizes the

Iterative Proportional Fitting (IPF) algorithm [58]. Doing so enables the investigator to

identify the most over–represented TFBSs with ease. IPF ranks range from 1 to N whereby

a rank of 1 represents a highly over–represented TFBS while N represented a highly under–

represented TFBS. If a TFBS was over– or under–represented in one SR inoculation but not

in another, that TFBS was set an IPF rank of N + 1 so as to serve as a proxy for a highly

under–represented TFBS. For each TFBS, the IPFinduced / IPFsuppressed ratio was derived

per time–point to provide a time–point measure of TFBS over–representation. Resultant

IPF ratios were visualized using the gplots R package [154].

4.3.4 Building a soybean TFBS classifier

To assess the quality of TFBS hierarchical clustering (Figure 4.1), we built LASSO regres-

sion classifiers [155]. TFBS PWMs fitted by a LASSO model receive real–number weights

which represent the magnitude of TFBS classification to a particular sequence set.

For all positive–control pairs, Marina generated an abundance matrix to model TFBS

counts within individual promoter sequences. Using the glmnet R package [156], a LASSO

classifier with 10–fold cross–validation (CV) was subsequently built for each abundance

matrix. CV is a popular statistical procedure for testing predictive power of a classifier. In

the case of 10–fold CV used in our models, the classifier is trained on nine–tenths of the

input matrix and tested on the remaining one–tenth. Thus, classifier testing can shed light

into how statistically accurate hierarchical clustering of TFBS over–representation truly is.
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4.4 Results and Discussion

4.4.1 GO Processes capture soybean–SR pathogenesis interplay

Numerous enriched GO Processes within induced soybean transcripts were identified across

all three time–points (Table 4.2). Not surprising, “defense response”, “response to stimuli”,

“response to stress”, “flavonoid biosynthesis process”, and “phenylpropanoid biosynthetic

process” were enriched across all three time–points. These five GO Processes alone appear

to be moderately enriched early in SR pathogenesis, but increase several fold during the 10

dai time–point. An earlier microarray study quantified leaves of both resistant and suscep-

tible soybean plants after SR inoculation and found GO Processes “defense response” and

“flavonoid biosynthetic process” to be enriched during a 7 dai reaction [157]. When com-

paring enriched GO Processes within induced transcripts to that of suppressed transcripts,

there appears to be an entirely different catalog of enriched GO Processes (Table 4.3).

Despite this fact, there is some enrichment overlap. GO Processes such as “aromatic com-

pound biosynthetic process”, “cellular amino acid derivative biosynthetic process”, “cellular

amino acid derivative metabolic process”, “flavonoid biosynthetic process”, “lignin biosyn-

thetic process”, “phenylpropanoid biosynthetic process”, and “phenylpropanoid metabolic

process”, are enriched across both induced and suppressed transcripts.

Within suppressed transcripts, 12 of the 15 total enrichments were either associated with

biosynthesis or metabolism. This majority alone is testament to the commandeering nature

of SR, bent on crippling host machinery and leeching nutrients from its host. A further 12

of the 15 GO Processes were enriched in either 7 hai or 48 hai but not at 10 dai. These 12

processes were generally associated with amino acid biosynthesis, fatty acid biosynthesis,

and lignin biosynthesis. A plausible explanation why a bulk of the biosynthesis–related

processes were not enriched at 10 dai is that by this time–point, uredinial primordia and

resultant urediniospores are released, rupturing the host cell epidermis [158], collapsing the

cell wall, lignin, and membranes formed from fatty acids.
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Table 4.2: GO Processes within induced transcripts during SR pathogenesis.

−log10FDR
GO Process 7 hai 48 hai 10 dai

aromatic compound biosynthetic process 1.31 2.96 6.82
cellular amino acid derivative biosynthetic process 1.60 3.34 6.82
cellular amino acid derivative metabolic process 1.62 3.09 5.80
cellular aromatic compound metabolic process 0 1.92 4.96

defense response 0 5.26 5.80
flavonoid biosynthetic process 0 1.77 4.32

lignin biosynthetic process 3.68 5.26 5.08
lignin metabolic process 3.68 5.26 5.08

petal formation 0 8.27 0
petal morphogenesis 0 6.25 0

phenylpropanoid biosynthetic process 1.77 3.85 8.15
phenylpropanoid metabolic process 1.34 3.42 8.15

response to inorganic substance 3.13 3.14 1.77
response to stimulus 1.68 2.68 2.49

response to stress 3.01 3.34 4.13

4.4.2 Over–represented soybean TFBSs capture SR dynamics

Of the 66 TFBS PWMs used in this study, 25 TFBSs were over–represented in at least

one of the three time–points. To model inoculation–specific magnitude of TFBS over–

representation, a TFBS IPF ratio was computed given IPFinduced / IPFsuppressed. Thus,

ratios closest to 0 are over–represented within promoter sequences of induced transcripts

whereas ratios much larger than 0 are over–represented within promoter sequences of sup-

pressed transcripts. To aide visualization of TFBS over–representation, hierarchical clus-

tering was performed on TFBS ratios, creating 4 fixed clusters each designated by their

respective color and integer (Figure 4.1).

TFBSs within cluster 1 (n = 15) were predominantly over–represented within promoter

sequences of induced transcripts across 7 hai, 48 hai, and 10 dai. At 10 dai however, ratios

of some TFBSs changed entirely and generally became more abundant within promoter

49



Table 4.3: GO Processes within suppressed transcripts during SR pathogenesis.

−log10FDR
GO Process 7 hai 48 hai 10 dai

aromatic compound biosynthetic process 1.62 1.41 0
cellular amino acid derivative biosynthetic process 1.38 2.15 0
cellular amino acid derivative metabolic process 0 1.47 0

fatty acid biosynthetic process 0 2.80 0
fatty acid metabolic process 0 2.22 0

flavonoid biosynthetic process 1.49 0 0
lignin biosynthetic process 1.43 0 0

lipid localization 8.74 7.80 19.96
lipid metabolic process 0 2.80 0

lipid transport 2.00 2.17 6.82
multidimensional cell growth 0 0 1.77

phenylpropanoid biosynthetic process 2.00 1.60 0
phenylpropanoid metabolic process 1.66 1.47 0

positive regulation of biosynthetic process 0 1.64 0
positive regulation of cellular biosynthetic process 0 1.64 0

sequences of suppressed sequences. The TFBS for ATHB1, for instance, exhibited approxi-

mately equal IPF ratios throughout the three time–points. When contrasting against fellow

homeodomain TFBS, ATHB5, both TFBSs remain relatively equal in IPF ratios, but vary

considerably at 10 dai. ATHB5 has been shown to play roles in regulating abscisic acid

(ABA) accumulation [159,160]. The TaMYB80 TFBS shared a similar IPF ratio to that of

the ATHB5 TFBS. TaMYB80 has been shown to play active roles in meristem formation

[28] and pollen development regulation [161], respectively. As a protein family however,

MYB proteins have been shown to play a number of diverse roles in plants, ranging from

pathogen defense [27,162] to metabolism [163–165].

TFBSs within cluster 2 (n = 2) are generally over–represented within promoter se-

quences of induced transcripts and have an IPF ratio far more closer to 0 when compared

to cluster 1. ABI4, for instance, is known for its involvement in both abscisic acid (ABA) sig-

naling and stress response regulation [166–168]. Similar to the TFBS of ABI4, the TFBS of

ZAP1 exhibited similar magnitudes of over–representation. Being a member of the WRKY
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TF family, ZAP1 has shown to regulate salicylic acid and stress response signaling [69,169].

TFBSs comprising cluster 3 (n = 6) are heavily over–represented within promoter se-

quences of suppressed transcripts at 7 hai. However at 48 hai, IPF ratios do not follow

this consistency. Only at 10 dai do IPF ratios appear to be generally found within pro-

moter sequences of induced transcripts. For instance, TGA1A has been shown to bind to

promoter sequences of xenobiotic regulators [170]. The magnitude of TGA1A TFBS over–

representation at 7 hai could therefore reveal insight into how TGA1A contributes to regu-

lating temporal defense response. Similarly, the TFBS of PCF5 is highly over–represented

at 7 hai within promoter sequences of suppressed transcripts, but becomes over–represented

within induced transcripts at both 48 hai and 10 dai. Belonging to the TCP protein family,

this family is known for its ability to regulate biosynthesis of jasmonic acid [171]. Thus,

suppressive efforts by SR effector proteins to undermine host defense mechanisms such as

jasmonic acid signaling may explain the decreases in PCF5 TFBS representation at 7 hai.

TFBSs comprising cluster 4 (n = 2) were over–represented within promoter sequences

of induced transcripts at both 7 hai and 10 dai. The TFBS for DYT1, for instance, has been

shown to regulate pollen development [172]. It comes to no surprise that manipulation of

host photosynthesis machinery by SR disrupts regulatory factors associated with this very

process, hence the severe under–represented nature of the DYT1 TFBS.

4.4.3 Accurate classification of soybean TFBSs

A cross–validated LASSO model was generated for all six positive–control pairs (Figure

4.2). The efficiency of LASSO classification, or area under the curve (AUC), maximizes at

1.0. AUC curves approaching this vicinity therefore represent excellent classification per-

formance. Our LASSO classifiers collectively reached AUC ranges of 0.82–0.87, indicative

of very good classification performance. Thus, our LASSO models can confidently classify

TFBSs given a positive set and a corresponding control.

To quantify extent of TFBS classification within each positive set, a numerical LASSO

weight per TFBS was generated from each model. Positive weights signified classification of
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Figure 4.1: Over–represented TFBSs during a time–course SR inoculation.

a TFBS to the positive set be–it promoter sequences from induced or suppressed transcripts.

Negative weights however meant that the TFBS was classified predominately in the control

set. Weights equal to zero signified no inherent classification to neither the positive nor

control set. Of the 25 over–represented TFBSs, all but 1 TFBS had non–zero weights across

all time–points. In each of the three time–points, the number of TFBSs were enumerated

if its weight was positive and was over–represented in promoters of induced or suppressed

transcripts. Subsequent enumeration was then visualized to illustrate over–represented

TFBSs classified within the positive sets of promoter sequences (Figure 4.3).

Of the 24 TFBSs, 9 (ZAP1, AtLEC2, ABI4–1, EmBP1, HAT5, DOF3, ZmHOX2a-2,

HAHB4, CBF) were collectively weighted in all inoculations and over–represented within

promoters of induced transcripts (Figure 4.3a). This should come as no surprise since many

of these regulatory elements are TFBSs of TFs perceived in defense response. For instance,

ZAP1, otherwise known as WRKY1, exhibited high levels of TFBS over–representation
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Figure 4.2: TFBS classification within promoter sequences.

within promoters of induced transcripts. WRKY proteins have been well–studied and are

cataloged extensively as to their roles in biotic stress response [68, 173]. The TFBS for

ABI4–1 also exhibited significantly high levels of over–representation, with numerous stud-

ies implicating its involvement in regulating abscisic acid biosynthesis and jasmonic acid

signaling [174, 175]. Aside from weighted TFBSs within promoters of induced transcripts,

11 TFBSs were both weighted and over–represented within suppressed loci (Figure 4.3b).

Interestingly, numerous TFBSs of TFs induced during stress response, such as ZAP1, Os-

bHLH66, and TGA1, were present within this set, however their weights were trivial when

compared to promoters of induced transcripts. Nonetheless, this set similarity should come

as no surprise since well studied TF families (WRKY, bZIP, and MYB) have multi–purpose

functionalities and are found in promoters of induced and suppressed loci.

53



0

2

1

0

9

0

4

7 hai 48 hai

10 dai

(a) Promoters of induced transcripts.

3

0

3

1

11

0

0

7 hai 48 hai

10 dai

(b) Promoters of suppressed transcripts.

Figure 4.3: Distribution of classified over–represented TFBSs.

4.5 Final remarks

Much progress has been made by the soybean community to advance our understanding of

soybean–pathogen transcriptomic and regulatory interplay. With next–generation sequenc-

ing assays now used extensively in molecular biology, host dynamics can be examined at

unprecedented nucleotide resolution. These assays have proven invaluable towards quanti-

fying soybean tissues during a pathogen time–course as they can identify potentially novel

insight into host cis–regulatory dynamics during defense response.

In this study, we build on prior analyses by quantifying soybean cis–regulatory elements

during a 7 hai, 48 hai, and 10 dai time–course treatment with soybean rust. We show

there to be 25 TFBSs over–represented across the three time–points, with many serving

as TFBSs of TFs perceived in defense or stress response. To gauge whether these TFBSs

were predominately over–represented within promoter sequences of induced or suppressed

transcripts, linear regression models quantified such classification. Indeed numerous TFBSs

were found within promoters of induced transcripts, serving as a glimpse into soybean

regulatory dynamics during defense response.
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Chapter 5: Soybean root transcriptomes following

phytohormone treatment

5.1 Abstract

Jasmonic acid, ethylene, and auxin are amongst a collection of empirically studied plant hor-

mones induced during plant defense response. Otherwise known as phytohormones, these

signaling molecules are regulated through numerous elegant and precise biochemical cas-

cades in a tissue–specific manner. In the face of commandeering stimuli such as pathogens,

phytohormones drive synthesis of defense response elicitors. Thus, quantifying host cDNA

and upstream transcription factor binding sites following phytohormone treatment could

reveal potentially novel insight into defense response signaling and co–regulatory interplay.

In this study, we quantified soybean (Glycine max ) root cDNA following treatment with

jasmonic acid, ethylene, and auxin. Statistical analysis of promoter sequences of differen-

tially expressed transcripts revealed numerous over–represented soybean binding sites of

transcription factors induced during stress response. Our results provide a biologically–

sound catalog of differential transcripts and corresponding binding sites over–represented

following soybean root treatment with jasmonic acid, ethylene, and auxin.

5.2 Introduction

Phytohormones are plant hormones which regulate virtually every aspect of plant develop-

ment. Systematic interplay amongst such molecules, even at very low concentrations, drives

biochemical signaling cascades which govern processes such as seed germination and leaf

senescence to flower differentiation. In the face of herbivory and pathogenesis, this tightly
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regulated interplay, be–it synergistic or antagonistic, is necessary for orchestrated and per-

fectly timed signaling cross–talk. Throughout the past several decades, our understanding

of plant hormones and their corresponding receptors has grown orders of magnitude, with a

bulk of such advances discovered in the Arabidopsis thaliana model. Amongst the first em-

pirically studied phytohormones were auxin (IAA), abscisic acid (ABA), gibberellin (GA),

and ethylene (ETH). These phytohormones were termed “classical” phytohormones due to

their core ability to regulate plant organ differentiation [176,177]. More recently discovered

signaling molecules such as jasmonic acid (JA), salicylic acid (SA), and brassinosteriods

(BS) have also joined the phytohormone catalog. Upon perception of external stimuli such

as pests or pathogens, virtually all phytohormones are involved in systematic cross–talk

[178–181]. Thus, treating plant tissues with various phytohormones and quantifying cDNA

abundance of such samples could provide a transcriptomic and regulatory snapshot into

both systematic cross–talk and defense–response signaling.

In this study, we independently treated soybean (Glycine max ) roots with three phy-

tohormones: JA, IAA, and ETH. Treated roots were sequenced using RNA–Sequencing

(RNA–Seq), generating almost 300 million high–quality reads. Functional analysis of dif-

ferential transcripts revealed numerous distinct transcriptomic profiles following either in-

dividual or pairs of treatments. In addition, statistical analysis of soybean transcription

factor binding sites identified numerous proximal regulatory elements of genes perceived in

defense–response signaling. Our results provide a potentially novel catalog of biologically–

sound and over–represented soybean cis–regulatory proximal binding sites following IAA,

ETH, and JA treatment.

5.3 Materials and Methods

5.3.1 Plant procurement and phytohormone treatment

Soybean plants (Glycine max cv. Williams 82) were grown in a greenhouse under natural

light at 25◦C. Two weeks after sowing plants, roots from twelve plants were treated, three
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with JA, ETH, and IAA (Invitrogen, USA), respectively. JA and IAA were dissolved in 1

mL ethanol and dispersed in water to produce 5 mM and 0.5 mM concentrations solutions,

respectively. Roots of each of the plants were submerged into 250 mL containing JA or IAA

for 8 hrs in the dark. Plants treated with ETH were placed in an airtight cabinet in the

dark. ETH was injected to achieve a final concentration of 1 µl/L. To serve as a baseline,

control plants were also grown and maintained in the dark for 8 hrs but treated with neither

JA, IAA nor ETH.

5.3.2 RNA isolation and cDNA sequencing

Total RNA was extracted from roots of each plant using the RNeasy Mini Kit (Qiagen,

USA). Two RNA libraries were generated from untreated roots as well as roots treated

with JA and IAA. For roots treated with ETH, only one RNA library was generated.

cDNA libraries were generated for all 7 RNA libraries and sequenced using the Illumina

paired–end sequencing recipe by Expression Analysis (Durham, NC).

5.3.3 Transcriptome assembly and quantification

Paired–end FASTQ files from each of the sequenced lanes were mapped to the Phytozome

Glycine max transcriptome build 1.1 [91] using the BWA short–read aligner [63]. Reads

mapping to more than one transcript were assigned to the transcript with the highest

alignment score. Following read alignment, custom bash scripts enumerated read–counts

per transcript. The DESeq R package [92] performed read–count normalization, variance

estimation across replicates, and differential expression hypothesis testing. A transcript was

rendered differentially expressed (DE) if it had at least 5 mapped reads in all replicates, a

log2 fold–change greater than ±1.5 and an adjusted p–value less than 0.05.

5.3.4 Gene Ontology analysis

Across each treatment, accession identifiers for the top 200 differentially induced and sup-

pressed transcripts were selected and termed an accession–set. The AgriGO web–server [124]
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identified statistically significant Gene Ontology (GO) terms within each accession–set, a

process known as GO enrichment. AgriGO settings were modified so as to execute statis-

tical testing using the hypergeometric distribution and p–value correction using Hochberg

false discovery rate (FDR).

5.3.5 Identification of outlier differential transcripts

In the context of this study, outlier transcripts were defined as transcripts with statistically

significant log2 fold–change variance following two treatments. To investigate transcripts

with outlier expression profiles, all transcripts DE following pairs of treatments were iden-

tified. Expression profiles were subsequently represented as an i × j matrix. Each matrix

column, j, referenced transcript log2 fold–change expression, while each row i referenced a

unique DE transcript accession identifier. For each matrix row, i, the Mahalanobis distance,

mi, was computed. The 97.5% quantile with j degrees of freedom from the chi–squared dis-

tribution, q, was subsequently derived. A transcript was rendered an outlier if mi ≥ q.

5.3.6 Identification of over–represented soybean binding sites

Following each of the three phytohormone treatments, Phytozome accession identifiers for

the top 400 induced soybean transcripts were retrieved. For all accession identifiers, its

promoter sequence 2kb upstream from its transcription start site was subsequently identi-

fied. Thus, three sets of promoter sequences were produced, each termed a query set. To

effectively identify over–represented transcription factor binding sites (TFBSs) within each

query set, a matching control set was generated from promoter sequences of non–differential

transcripts following all treatments. Each control set was generated to match length distri-

bution of its respective query set and differ in GC content by at–most 2%. To model TFBSs,

71 publicly available position weight matrices (PWMs) were retrieved from AthaMap [39]

and JASPAR [43]. The Marina software [127] was used to statistically contrast abundance

of all 71 PWMs within each query and control set. Following abundance analyses, a PWM

abundance matrix was generated by Marina to represent frequency of individual PWMs
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within all promoter sequences. To effectively quantify magnitude of TFBS classification

to either the query or control set, a LASSO classifier was built for each matrix using the

glmnet R package [156]. Each classifier was built using 10–fold cross–validation whereby

the model was built using nine–tenths of the matrix and tested on the remaining one–tenth.

Magnitude of TFBS classification was modeled as real–number weights, with positive and

negative weights indicative of classification towards the query or control set, respectively.

All TFBSs with negative weights were assigned a weight of 0 to indicate no classification

towards the query set.

5.4 Results and Discussion

5.4.1 The phytohormone–treated soybean root transcriptome

Approximately 290 million 50bp paired–end reads were generated upon sequencing all 7

cDNA libraries. Phred quality (q) scores throughout all lanes were either 38 or 39, indicating

base calling accuracy of approximately 99.99% (Table 5.1). Similarly, percentage of reads

mapping to the soybean transcriptome consistently ranged between 89% to 92%, averaging

a respectable alignment percentage of 90%.

To determine linearity between each replicate, Pearson correlation coefficients (ρ) were

derived given read counts following JA, IAA, and control replicates (Figure 5.1a). The high

Pearson coefficients associated with these treatments (ρ ≥ 0.98) thus indicates presence of

robust, biologically–sound replicates. Of the 73,026 transcripts and 53,917 genes making up

the Phytozome Glycine max 1.1 transcriptome build, 6,632 transcripts and 5,498 genes were

rendered DE upon treatment with at least one phytohormone (Figure 5.1b). DE transcripts

were subsequently stratified based on their log2 fold–change, f , and classified into one of

six categories: heavily induced (f ≥ 5), moderately induced (2 ≤ f < 5), lightly induced

(1.5 ≤ f < 2), lightly suppressed (−2 < f ≤ −1.5), moderately suppressed (−5 < f ≤ −2),

and heavily suppressed (f ≤ −5). Across all treatments, heavily induced and heavily sup-

pressed transcripts were the least abundant transcript group (Figure 5.1c). On the contrary,
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Table 5.1: Sequencing phytohormone–treated root transcriptomes.

Treatment Replicate # reads Map (%) SRA q–score

Untreated
1 42,820,946 89 SRR976388 38
2 40,705,166 89 SRR976389 38

JA
1 40,631,916 90 SRR976390 39
2 43,081,146 89 SRR976392 38

IAA
1 40,906,124 91 SRR976393 38
2 39,896,498 92 SRR976395 38

ETH 1 39,837,842 90 SRR976396 38

Total – 287,879,638 µ =90 – µ =38

moderately induced and lightly induced transcripts were the most abundant category, but

only after JA and IAA treatment. ETH treatment however resulted in increased abundance

of lightly suppressed and moderately suppressed transcripts.

Of the 6,632 DE transcripts, 88 transcripts were DE following all treatments (Figure

5.1d). Almost one–third of these transcripts (n=34) were collectively induced. Of these

transcripts, 15 transcripts were identified to functionally encode numerous enzymes cen-

tral to metabolism and biosynthesis, such as phosphoethanolamine (EC: 3.1.3.75), glucosu-

crase (EC: 3.2.1.26), glutathione S-transferase (EC: 2.5.1.18), and flavonol synthase (EC:

1.14.11.23). Thus, there exists a core set of induced transcripts following IAA, ETH, and JA

treatment which collectively contribute towards the regulation of critical basal operations.

5.4.2 Ontology analysis captures systematic phytohormone interplay

Following all treatments, the top 200 most induced transcripts DE solely after at least one

treatment were identified and termed a transcript set. For each transcript set, the top 20

enriched Gene Ontology (GO) Processes were identified within induced transcripts (Figure

5.2a). Such results could therefore provide a glimpse into systematic interplay orchestrated

solely by each individual phytohormone. Of the 20 enriched GO Processes within induced

transcripts, 10 were exclusively enriched following IAA treatment. Such GO enrichments

were exclusively associated with classical IAA regulatory roles such as root development
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Figure 5.1: RNA–Seq analysis of phytohormone–treated soybean roots.

and post–embryonic differentiation. An additional 2 enrichments (“response to jasmonic

acid stimulus” and “secondary metabolic process”) were statistically significant following

both JA and ETH treatments. This mutually–shared set of ontologies should come as no

surprise considering the well studied co–regulation between JA and ETH [182–184]. Two
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of the most enriched GO Processes within induced transcripts were “oxylipin metabolic

process” and “oxylipin biosynthetic process”, both exclusive to transcripts following JA

treatment. This should come as no surprise since oxylipins represent a family of fatty acids

such as JA, signaling molecules known for their ability to regulate stress response signaling

[185–187].
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(b) Suppressed transcripts.

Figure 5.2: GO Processes within transcripts following at least one treatment.

Contrasting GO enrichments within induced transcripts to those from suppressed tran-

scripts yields pronounced differences between the two enrichment sets (Figure 5.2b). To

begin with, almost all (n=14) of the 20 enriched GO Processes appear within suppressed

transcripts solely following IAA treatment. Of the remaining 6 Processes, 3 were enriched

exclusively following ETH treatment.

5.4.3 Outlier transcripts following treatment–pairs

Of the 1,001 transcripts DE following any two treatments, A and B, outlier analysis re-

vealed numerous transcripts which exhibited pronounced expression variances (Figure 5.3).

Such results shed light on systematic interplay by revealing expression profiles that could

potentially capture individual hormone–driven signaling dynamics.
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Figure 5.3: Distribution of outlier transcripts following treatments.

Outlier transcripts following JA and ETH treatment

A total of 44 transcripts were rendered outliers following JA and ETH treatment. Of this set,

16 transcripts were induced following both treatments (Figure 5.4a). An additional 11 tran-

scripts were identified to be induced following JA treatment but suppressed following ETH

treatment. One such loci, Glyma02g09130.2, encodes alliin lyase (EC: 4.4.1.4), an enzyme

shown to play critical roles in herbivory stress response [188,189]. An additional subset of 16

transcripts were induced following ETH treatment and suppressed following JA treatment.

Such transcripts encoded numerous transcription factors (TFs) critical to ethylene interplay.

Four genomic loci from this set (Glyma13g18330.1, Glyma13g18370.2, Glyma19g34670.2,

Glyma10g04170.2) encoded an AP2/ERF TF, a regulatory protein critical to ethylene

signaling [190, 191]. Two additional soybean loci (Glyma14g06710.1, Glyma01g32310.1)

encoded shikimate O–hydroxycinnamoyltransferase (EC: 2.3.1.133) and peroxidase (EC:

1.11.1.7), respectively. Both enzymes are well–known for their roles in flavonoid and phenyl-

propanoid biosynthesis, two key defense signaling pathways [7].
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Outlier transcripts following JA and IAA treatment

A set of 36 transcripts were identified as outliers following both JA and IAA treatment.

Interestingly, only 3 transcripts (Glyma13g06880.1, Glyma07g05740.1, Glyma03g27120.1)

were induced after JA treatment but suppressed after IAA treatment (Figure 5.4b). Of the

remaining 33 transcripts, 20 were induced following IAA treatment but suppressed following

JA treatment. Surprisingly, five of these 20 transcripts (Glyma14g06710.1, Glyma13g18330.1,

Glyma13g18370.2, Glyma10g04170.2, Glyma19g34670.2) were also outlier transcripts fol-

lowing JA and ETH treatment. Of these 20 outliers, the most induced following only IAA

treatment was Glyma16g03600.1, a vital gene encoding 1–aminocyclopropane–1–carboxylate

synthase (EC: 4.4.1.14), a key regulator of ETH biosynthesis [19, 192]. Lastly, 13 of the 36

total outlier transcripts were induced following both IAA and JA treatment. Four of these

transcripts (Glyma17g18040.1, Glyma05g21680.1, Glyma02g13910.1, Glyma17g18080.1) en-

coded GH3 proteins which have been shown in soybean plants to undergo rapid induction

following IAA treatment [193].

Outlier transcripts following ETH and IAA treatment

A set of 72 outliers were identified following both ETH and IAA treatment. Within

this set, four soybean transcripts (Glyma02g09130.2, Glyma18g06230.1, Glyma13g34221.1,

Glyma06g14640.1) were induced solely after IAA treatment but suppressed after ETH treat-

ment (Figure 5.4c). A further four outlier transcripts (Glyma05g21680.1, Glyma17g18080.1,

Glyma17g18040.1, Glyma10g04160.1) were induced following both IAA and ETH treatment.

Surprisingly, the last transcript in this set encodes an AP2/ERF TF, a family of proteins

with well–studied roles in host stress and defense response.

5.4.4 Proximal binding sites shed light on defense–response signaling

For each treatment, a LASSO regression model was built to classify over–represented TF-

BSs to either promoter sequences of the query set or control set. TFBSs classified to the

former set were assigned a positive LASSO weight whereas TFBSs classified to the latter
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Figure 5.4: Outlier soybean transcripts following pairs of treatments.

set were assigned a negative LASSO weight. Thus, magnitude of the LASSO weight is

indicative of the degree of classification to one set over the other. To quantify robustness of

the LASSO classifier, area under the curve (AUC) of the receiver operating characteristic

(ROC) curve was computed. An AUC score in the range of 1.0 therefore indicates excellent

classification. AUC scores given the ETH, IAA and JA LASSO models were 0.87, 0.86, and

0.82, respectively. Of the 71 TFBS PWMs used in this study, less than half (n=33) were

over–represented in promoter sequences of transcripts induced after at least one treatment

(Figure 5.5).

AP2 / EREBP binding site over–representation

The APETALA2 / ethylene responsive element binding protein (AP2 / EREBP) TF family

has been shown to be play critical roles in plant defense signaling [194–197]. One such

TFBS, ABI4–1, exhibited over–representation within promoters of transcripts following

both JA and ETH treatment. Fellow AP2 / EREBP TFBS, RAV1–2, exhibited similar

over–representation but was also over–represented in promoters following IAA treatment.

Functional annotation of 142 soybean loci with at least 3 occurrences of the RAV1–2 TFBS

in their promoter sequence revealed these loci encode gene products associated with defense

response signaling (Table 5.2). Such results were supported by an earlier study which
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probed the role of RAV1–2 TFs in stress response following infection of pepper leaves with

Xanthomonas campestris [198].

Table 5.2: Differential genes with RAV1–2 binding sites.

Phytozome ID EC EC Description Function

Glyma20g30835.3

– – AP2/ERF TF
Glyma03g31912.1
Glyma10g04160.1
Glyma13g18330.1
Glyma15g05520.1

– – IAA–inducible proteinGlyma08g19500.1
Glyma06g00880.1
Glyma08g19980.1

– – ETH response factor
Glyma13g18340.1
Glyma03g33340.2

2.3.1.74 Chalcone synthase Chalcone synthase
Glyma10g05480.3
Glyma13g34420.1

– – Pathogenesis–related
Glyma07g37280.1
Glyma17g03330.1
Glyma03g05530.1
Glyma15g06830.1

In contrast, ABI4–1 TFBSs were less over–represented. Numerous transcripts contain-

ing this TFBS in their promoter encoded gene products involved in defense response, namely

1–aminocyclopropane–1–carboxylate (ACC) synthase, chalcone synthase, glutathione S-

transferase (GST), and auxin–inducible proteins (Table 5.3).

bZIP binding site over–representation

Much like AP2/EREBP TFs, bZIP proteins have also been shown to regulate aspects of

defense signaling [199,200]. bZIP TFBSs bZIP911, O2, and TGA1 were collectively classified

within induced promoters following all three treatments. TGA1 TFBSs were however found

at least twice in 323 soybean promoters following all treatments. Sequence analysis of

these loci indicated presence of statistically significant annotations associated with ethylene

signaling, defense response, and xenobiotic perception (Table 5.4).

Fellow bZIP TFBSs ABF1 and PEND were over–represented exclusively following ETH
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Table 5.3: Differential genes with ABI4–1 binding sites.

Phytozome ID EC EC Description Function

Glyma05g23020.1
4.4.1.14 ACC synthase ACC synthase

Glyma17g16990.1
Glyma02g16090.1

– – IAA–inducible protein
Glyma10g03710.2
Glyma08g11630.2 2.3.1.74 Naringenin–

chalcone synthase
Chalcone synthase

Glyma03g33340.2 2.5.1.18 Glutathione
S–transferase

Glutathione transferase

Glyma08g15600.1 2.7.11.1 Serine/threonine
protein kinase

WD repeat-containing
protein

Table 5.4: Differential genes with TGA1 binding sites.

Phytozome ID EC EC Description Function

Glyma01g44270.1 6.2.1.12 4-coumarate–CoA lig-
ase

4-coumarate–CoA ligase

Glyma14g05350.1
1.14.11.23 Flavonol synthase ACC–oxidaseGlyma14g05355.1

Glyma08g05500.1
Glyma05g21680.1

– – Auxin–responsive GH3Glyma17g18080.1
Glyma17g18040.1
Glyma08g11630.2

2.3.1.74 Chalcone synthase Chalcone synthaseGlyma08g11530.1
Glyma05g28610.2
Glyma18g49761.1

– – ETH–responsive TFGlyma13g28810.2
Glyma19g34650.1
Glyma07g03920.2

1.13.11.40 Arachidonate 8-LOX Lipoxygenase

Glyma08g20210.1
Glyma08g20220.1
Glyma08g20190.1
Glyma04g11640.1
Glyma04g11870.1
Glyma07g00920.1

1.13.11.12 Linoleate 13S–LOX Lipoxygenase
Glyma08g20220.2
Glyma08g20200.2
Glyma07g00886.1
Glyma14g31400.1
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and JA treatment, respectively. More specifically, a total of 128 soybean loci had at least

one occurrence of the PEND TFBS in their promoter sequence. Aside from the role PEND

plays in DNA binding within chloroplast [201], little is known about its regulatory contri-

butions towards defense signaling. Surprisingly, functional annotation of these 128 PEND–

containing loci revealed strikingly similar GO Processes to that of TGA1–containing loci

(Table 5.5). Thus, further investigation examining PEND defense response cross-talk could

provide novel insight into JA–driven systematic regulation. As far as ABF1 TFBSs are

concerned, these TFBSs were less represented than PEND, being found at least twice in 54

soybean promoters. Annotating such transcripts revealed generally similar annotations to

that of PEND and TGA1–containing loci.

Table 5.5: Differential genes with PEND binding sites.

Phytozome ID EC EC Description Function

Glyma05g36310.1 1.14.11.23 Flavonol synthase ACC–oxidase
Glyma14g08560.1 4.2.1.92 Hydroperoxide dehy-

dratase
Allene–oxidase synthase

Glyma04g42990.1

– – IAA–inducible protein
Glyma06g11760.1
Glyma08g15440.1
Glyma06g00880.1
Glyma08g20190.1

1.13.11.40 Arachidonate 8-LOX LipoxygenaseGlyma13g42340.1
Glyma07g03910.1
Glyma07g00920.1

1.13.11.12 Linoleate 13S–LOX Lipoxygenase
Glyma08g20200.2
Glyma07g00886.1
Glyma08g20230.2
Glyma16g24831.2 2.1.1.141 Jasmonate O–

methyltransferase
Salicylic acid methyl–
transferase–like

Glyma08g01430.1 – – WRKY TF

MYB binding site over–representation

MYB TFs are key regulators of biotic stress response. In total, 7 MYB TFBSs were repre-

sented from which over–representation of 2 TFBSs (GAMYB, AtMYB61) were statistically
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significant. The remaining 5 TFBSs (TaMYB80, ARR10, MYB83, MYB46, AtMYB77)

exhibited nominal over–representation following all treatments.

A total of 31 and 32 soybean loci had at least once occurrence of the GAMYB TFBS

within their promoter sequence following IAA and ETH treatment, respectively. AtMYB61

TFBSs were found at least three times in 106 and 132 soybean loci promoter sequences

following JA and IAA treatment, respectively. Functional annotation of the former 106

loci revealed enriched levels of jasmonic acid signaling processes as well as gene products

classically involved in defense response (Table 5.6). On the other hand, the latter set of 132

soybean loci revealed a pronounced catalog of processes, with almost all associated with

regulation of lateral shoot differentiation and development.

Table 5.6: Differential genes with AtMYB61 binding sites.

Phytozome ID EC EC Description Function

Glyma08g46610.1
1.14.11.23 Flavonol synthase ACC-oxidaseGlyma08g46610.2

Glyma14g05350.1
Glyma08g15440.1 – – IAA–induced protein
Glyma08g11630.2

2.3.1.74 Chalcone synthase Chalcone synthase
Glyma08g11530.1
Glyma07g04630.1 – – JAZ2
Glyma01g41290.1

– – TIFY
Glyma04g01531.1
Glyma13g17640.1
Glyma17g04850.1
Glyma17g05540.1

WRKY binding site over–representation

Otherwise known as WRKY1, ZAP1 is a member of the WRKY protein family, a TF family

known for its ability to drive defense–response signaling [67, 202]. The ZAP1 TFBS was

found at least three times in 79 soybean loci promoters following all treatments. Collectively,

these transcripts encoded genes involved in phenylpropanoid and flavonoid biosynthesis,

vital pathways central to biotic stress signaling (Table 5.7).
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Figure 5.5: Over–represented binding sites following phytohormone treatments.

Table 5.7: Differential genes with ZAP1 binding sites.

Phytozome ID EC EC Description Function

Glyma07g05420.1 1.14.11.23 Flavonol synthase ACC–oxidase
Glyma15g01560.1 – – IAA–induced protein
Glyma08g11630.2 2.3.1.74 Naringenin–

chalcone synthase
Chalcone synthase

Glyma13g28810.2
– – ETH–responsive TF

Glyma17g02711.1
Glyma05g29400.1 2.5.1.18 Glutathione S–

transferase
Glutathione trans-
ferase

Glyma13g34420.1 – – Pathogen–related
Glyma10g27860.5 – – WRKY TF

5.5 Discussion

Hormone–driven signaling within plants is an exquisite, tightly regulated orchestra of small

metabolites working in–concert to trigger transcription of downstream gene products. Nu-

merous plant hormones, namely phytohormones, officiate such interplay. Well–studied phy-

tohormones include ethylene, auxin, salicylic acid, jasmonic acid, gibberellin, and brassi-

nosteriods. Each phytohormone is armed with a unique transcriptional repertoire designed

to regulate crucial aspects of plant development, from seed germination to defense response
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and cell death. The plant signaling community has made ever so increasing strides when

it comes to deciphering phytohormone signaling mechanisms. Coupled with advances in

next–generation sequencing assays, individual actors involved in such signaling can now be

quantified, providing potentially novel transcriptomic snapshots.

In this study, soybean (Glycine max ) roots were treated with three well–studied phyto-

hormones: ethylene (ETH), auxin (IAA), and jasmonic acid (JA). Sequencing the transcrip-

tome of treated roots produced almost 300 million paired–end reads. Expression analysis

of transcripts following each treatment revealed presence of 88 transcripts differentially ex-

pressed following all three treatments. Functional analysis of these transcripts revealed

a majority of transcripts encode critical gene products vital to defense response and sec-

ondary metabolite biosynthesis. Further analysis of transcripts exclusively expressed after

each treatment revealed distinct transcriptional profiles. For instance, IAA–treated roots

contained a significant number of differential transcripts encoding gene products involved

in root development and embryonic differentiation. On the other hand, JA–treated roots

exhibited a significant number of transcripts encoding oxylipin biosynthesis, a family of

fatty–acids critical to defense signaling.

Statistical examination of proximal binding site abundance within promoters of induced

transcripts reveals over–represented levels of numerous binding sites of transcription factors

involved in defense signaling. Amongst the most represented binding sites were ZAP1,

bZIP911, GAMYB, O2, and TGA1; all serving as binding sites for genes involved in various

defense signaling processes. Interestingly, annotation of loci containing PEND binding sites

yielded statistically significant annotations associated with jasmonic acid signaling, even

though little is known of the role PEND plays in defense response. Further examination

of how PEND co–regulates defense response signaling would therefore be an investigative

avenue with potential novelty.

In closing, our results provide a high–coverage snapshot of the plant signaling and reg-

ulatory defense–response landscape by sequencing the phytohormone–treated soybean root

transcriptome and quantifying proximal regulatory elements.
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Chapter 6: Soybean promoter sequences and the

defense–response landscape

6.1 Abstract

Plant transcription regulation is a vital biological process that governs every aspect of

growth and development, from seed germination, flower differentiation, to senescence and

pathogen perception. Regulatory proteins known as transcription factors drive transcription

regulation by binding onto non–coding genomic regions within the target gene promoter

sequence and recruit additional regulatory factors which collectively transcribe the target

gene. The sessile nature of plants therefore necessitates fine–tuned regulatory machinery

in the face of stimuli be–it positive or negative stress. In this study, we perform genome–

wide computational analysis on soybean (Glycine max ) promoter sequences with intent of

cataloging binding sites present within host defense response elicitors. We reveal binding

profiles of soybean genes involved in defense response, such as glutathione S–transferase,

flavonol reductase, hexokinase, and allene oxide cyclase.

6.2 Introduction

Regulating transcription of plant genes is a dynamic and non–linear biological process or-

chestrated by proteins known as transcription factors (TFs). These regulatory proteins

bind to non–coding genomic regions adjacent to the target gene known as transcription fac-

tor binding sites (TFBSs). This delicate dynamic is of utmost importance throughout the

life of a plant, driving virtually every aspect of its development. During defense response,

the plants regulatory machinery is put on high–alert as it goes into overdrive regulating

synthesis of hundreds of small metabolites that collectively meet the pathogen head–on.
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In a stunning show of events, a pathogen can even commandeer and manipulate such dy-

namics, fooling the plant into transcribing a weaker set of defense elicitors. For instance,

the whitefly parasitoid, Encarsia formosa, has been shown to suppress Arabidopsis thaliana

jasmonic acid defense signaling but induce salicylic acid signaling which is a less effective

Encarsia formosa countermeasure [203]. Therefore, it goes without saying that transcrip-

tion regulation is a delicate network comprised of many TF families, TFBSs, and signaling

cascades.

The promoter sequence of a transcript is a non–coding stretch of genomic sequence that

serves as the starting point for transcription. Numerous software tools have been developed

to analyze promoter sequences and derive statistically significant TFBSs [31, 37, 80, 204].

By utilizing such analytical software tools, promoter sequences of entire genomes could

be analyzed, leading to insight as to which TFBSs are present within particular loci. In

this study, we performed genome–wide analysis of soybean promoter sequences to identify

abundant patterns of TFBSs with respect to soybean loci functionally involved in defense

response. Numerous TFBSs of TFs empirically associated with defense response were ana-

lyzed, identifying numerous functional transcripts which could possibly serve as potentially

novel gene candidates likely involved in defense elicitation. Our results therefore aim to

provide a genomic–scale investigation probing the interplay between soybean transcripts

involved in defense and associated binding sites.

6.3 Results

6.3.1 Identification of binding sites in soybean promoter sequences

For each of the 73,320 transcript isoforms making up the Glycine max transcriptome build,

the promoter sequence 2kb upstream from its transcription start site was identified. A

collection of 71 position weight matrices (PWMs) were retrieved to statistically model TFBS

abundance in promoter sequences. The Marina software [127] mapped all PWMs onto each

soybean promoter sequence and produced an abundance matrix that enumerates TFBS
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counts in each promoter sequence. Of the 71 TFBS PWMs, 64 passed default filtering

criterion set by Marina. Of these, 40 (62%) were present in at least one soybean promoter

sequence. This low percentage could be attributed to the fact that numerous PWMs were

from plants distantly related to soybean, namely rice (Oryza sativa) and corn (Zea mays).

To identify abundant TFBSs within promoter sequences, TFBSs found at least 3 times

in any promoter of soybean loci were enumerated. TFBS counts, c, were subsequently

partitioned into three bins: low abundance (c ≤ 95), medium abundance (95 < c ≤ 2, 452),

and high abundance (c ≥ 2, 453). The most abundant TFBSs appear to be ATHB5, HAHB4,

ATHB1, and HAT5, each found three or more times in promoters of at least 58,450 loci

(Figure 6.1). A plausible explanation for such pronounced abundance could be attributed

to the homogeneous nature of their PWMs. For instance, the ATHB5 PWM (Figure 6.2a)

has weights heavily skewed to a particular nucleotide. A similar skew is present with the

HAT5 PWM (Figure 6.2b). Thus, explicitly weighted bases often yield many ubiquitous

false–positive mappings since the resulting short, consensus motif may occur spuriously

throughout a promoter sequence.

6.3.2 Proximal binding sites and the defense–response landscape

Analysis of soybean promoter sequences revealed numerous TFBSs serving as docking sites

of proteins induced during pathogen response. Such TFBSs were classified into distinct

groupings based on the TF the binding site interacts with. Functional annotation of tran-

scripts containing various TFBSs in their promoter sequence revealed biologically–sound

insight into not only the transcriptomic defense response landscape, but also cis–regulatory

dynamics involving nearby regulatory elements.
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Figure 6.1: Enumerating TFBSs found at least 3 times in soybean promoters.

AP2/EREBP binding sites

Like many regulatory proteins, APETALA 2 / ETHYLENE RESPONSE ELEMENT BIND-

ING PROTEIN (AP2 / EREBP) TFs play key roles in regulating key aspects of plant

development, ranging from flower differentiation to biotic response [205–207]. Of the

4 AP2/EREBP TFBS PWMs present in this study (ANT, ABI4, RAV1, EmBP1), the

ANT TFBS was the least abundant, found in promoters of four loci (Glyma14g33170.1,

Glyma07g20411.1, Glyma15g02350.1, Glyma15g22975.1). The latter three TFBSs, ABI4,

RAV1, and EmBP1, were found at least twice in 440, 913, and 825 soybean loci, respectively.

Gene Ontology (GO) enrichments “sulfur amino acid biosynthetic process” and “protein im-

port” were exclusively associated with loci containing ABI4. On the other hand, annotating

75



Index

Bits
1

2

1 2 3 4 5 6 7 8 9

(a) ATHB5.

Index

Bits
1

2

1 2 3 4 5 6 7 8

(b) HAT5.
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transcripts with RAV1 in their promoter sequences revealed 23 significant GO Processes

such as “auxin mediated signaling pathway”, “cellular response to chemical stimulus”, and

“response to auxin stimulus”. A total of 26 transcripts made up these 3 enrichments, en-

coding various defense response elicitors such as glutathione S–transferase (GST) and six

auxin–responsive proteins (Table 6.1). Thus, such results may further our understanding

of the role transcripts with RAV1 TFBSs play in auxin–driven defense response [198].

Table 6.1: Soybean genes with AP2/EREBP binding sites.

Phytozome ID EC EC Description PFAM Description

Glyma14g39090.1 2.5.1.18 GST GST
Glyma08g21450.1 2.7.1.1 hexokinase Hexokinase
Glyma12g14900.1

– – Auxin responsive protein

Glyma09g35580.1
Glyma08g16490.1
Glyma06g43270.1
Glyma06g43220.1
Glyma05g27580.1

ABI3/VP1 binding sites in loci encoding auxin signaling

ABI3/VP1 TFs represent proteins which mediate auxin signaling [208]. The ABI3/VP1 TF,

ARF1, is of particular interest in plant defense response as it has been shown to bind auxin

responsive elements [46, 209]. ARF1 TFBSs were found in 1,826 soybean promoters, but
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were not found occurring more than 3 times in any one promoter sequence. GO analysis of

loci containing this binding site revealed most transcripts being involved in processes such

as “auxin mediated signaling pathway”, “phenylpropanoid metabolic process”, “phenyl-

propanoid biosynthetic process”, “hormone-mediated signaling”, and “pathway response

to auxin stimulus”. Transcripts mapping to such processes encoded cinnamyl–alcohol de-

hydrogenase (CAD), glutathione–S transferase, as well as various proteins induced in the

presence of auxin (Table 6.2).

Table 6.2: Soybean genes with ABI3/VP1 binding sites.

Phytozome ID EC EC Description PFAM Description

Glyma10g40870.1 1.1.1.195 CAD Zinc–binding dehydrogenase
Glyma15g40220.1 2.5.1.18 GST GST
Glyma06g43310.1

– – Auxin responsive protein

Glyma06g43400.1
Glyma06g43470.1
Glyma08g16490.1
Glyma09g35310.1
Glyma09g35370.1
Glyma09g35510.1
Glyma12g03870.1

bZIP binding sites in loci vital to stimulus perception

Basic Leucine Zipper (bZIP) TFs, such as O2, bZIP911, ABF1, and STF1, encompass

proteins which regulate a diverse set of basal plant operations, from seed maturation, to

light perception, and pathogen response [199,210]. GO enrichments within transcripts con-

taining O2 and ABF1 TFBSs generally exhibited similar GO enrichment levels, sharing 71

GO Processes between each other. Of these, the most significant ontologies (p < 0.001)

were “response to abiotic stimulus”, “inositol phosphate-mediated signaling”, “response to

cytokinin stimulus”, “response to endogenous stimulus”, “response to jasmonic acid stim-

ulus”, and “jasmonic acid mediated signaling pathway”. A set of 50 soybean transcripts

mapping to the latter two enrichments were identified and functionally annotated. From
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this subset, 8 transcripts contained the No Apical Meristem (NAM) domain (Table 6.3).

NAM domains have been shown to contribute towards actively regulating plant develop-

ment and stress [211]. An additional two transcripts encoded glutaredoxins (EC: 1.20.4.1),

small enzymes with noted roles in the mediation of SA–JA cross–talk [212, 213]. Further

examination of such soybean transcripts could therefore provide potentially novel insight

into glutaredoxin–driven host–pathogen interplay.

Table 6.3: Soybean genes with bZIP binding sites.

Phytozome ID EC EC Description PFAM Description

Glyma12g33510.1
1.20.4.1 glutaredoxin Glutaredoxin

Glyma15g08520.1
Glyma05g32850.1

– – No Apical Meristem (NAM)

Glyma06g11970.1
Glyma06g16440.1
Glyma06g38410.1
Glyma12g22880.1
Glyma12g35000.1
Glyma13g35550.1
Glyma14g24220.1

Diverse functionalities in loci containing MYB binding sites

A set of 8 MYB TFBSs (MYB46/83, TaMYB80, ARR10, CDC5, AtMYB84, AtMYB15, At-

MYB61, AtMYB77) were identified at least once within all soybean promoters. MYB46/83

was the most abundant MYB TFBS, found at least three times in 28,516 soybean promot-

ers. On the other hand, AtMYB77 was the least abundant, found only in 139 promoter

sequences. MYB proteins have been well–studied and their defense response and regula-

tory roles have been cataloged [162,214,215]. GO enrichment on transcripts containing any

of these 8 TFBS reveals pronounced variances in transcription functionality (Figure 6.3).

TFBSs namely ARR10 and AtMYB84 were found in transcripts predominately associated

with amino acid metabolism. Transcripts solely containing ARR10 in their promoters re-

vealed such transcripts to be enriched for processes associated with protein ubiquitination
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and modification. Virtually all enrichments were exclusively present within transcripts con-

taining a specific TFBS. This alone captures the diverse systematic and independent roles

regulated by MYB proteins. For instance: transcripts containing MYB46/83 were exclu-

sively associated with defense response signaling. An earlier study investigating Arabidopsis

thaliana interplay with the pathogen Botrytis cinerea revealed myb46 mutants confer in-

creased susceptibility upon perception of this fungal pathogen [216,217].
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Figure 6.3: Loci with MYB TFBSs captures numerous basal processes.

bHLH binding sites in loci critical to biotic stress response

Basic Helix–Loop–Helix (bHLH) TFs have been shown to be involved in numerous signaling

pathways ultimately leading to the plant defense phytohormone, jasmonic acid [218, 219].

Only 3 bHLH PWMs were available: OsbHLH66, PIF3, DYT1. Of these, the most abundant

TFBS was OsbHLH66, being found in 15,757 promoters or 15.5% of all promoter sequences.

DYT1 however was the least abundant, being found in 913 promoters. GO analysis of tran-

scripts with at least one occurrence of these TFBSs in their promoter sequence revealed
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stark differences in transcript functionality (Figure 6.4). Generally, transcripts containing

PIF3 and OsbHLH66 TFBSs in their promoters tend to execute approximately similar sys-

tematic functionalities, ranging from mediating cytokinin perception, to regulating jasmonic

acid signaling. Filtering soybean transcripts containing both PIF3 and OsbHLH TFBSs and

which mapped to “response to wounding”, “response to jasmonic acid stimulus”, “jasmonic

acid mediated signaling pathway”, and “response to abiotic stimulus” produced a set of 217

transcripts. Several transcripts within this set encoded enzymes involved in stress signaling

and synthesis of metabolites such as allene oxide cyclase (AOC), glutathione S-transferase,

anthocyanidin synthase, and flavonoid 3’—hydroxylase (Table 6.4). Besides functional anal-

ysis of transcripts containing PIF3 and OsbHLH66 TFBSs, transcripts containing DYT1

appear to be exclusively associated with maintaining ion homeostasis. Little information is

known of the role DYT1 proteins play in defense response, however bHLH TFs are a diverse

family of regulatory proteins controlling virtually every aspect of the plant developmental

process [220,221].
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Table 6.4: Soybean genes with bHLH binding sites.

Phytozome ID EC EC Description PFAM Description

Glyma01g22160.1 5.3.99.6 AOC AOC
Glyma15g40200.1 2.5.1.18 GST GST
Glyma01g42350.1 1.14.11.19 anthocyanidin syn-

thase
2OG–Fe(II) oxygenase

Glyma17g08550.1 1.14.13.21 flavonoid–3’–
hydroxylase

Cytochrome P450

TCP binding sites in loci regulating defense response

TEOSINTE BRANCHED1, CYCLOIDEA, and PCF (TCP) TFs regulate numerous de-

velopmental processes in plants, from shoot meristem differentiation [222], to circadian

regulation [223], and jasmonic acid signaling [224, 225]. A total of 6 TCP–family TFBSs

(PCF2, PCF5, TCP11, TCP15, TCP16, TCP20) were identified within soybean promot-

ers. The least abundant of these TFBSs was TCP16, found in 3,851 or 5.25% of promoter

sequences. In contrast, PCF5 was the most abundant TCP TFBS, being found in 12,772,

or 17.4% of promoter sequences. A total of 1,040 soybean promoters had at least one oc-

currence of all 6 TCP TFBSs in their promoters. From within these 1,040 transcripts, GO

analysis revealed enrichments associated with defense response, transcription regulation and

biosynthesis (Figure 6.5). TCP11, TCP15, TCP20, and PCF2 all appear to be enriched for

“response to endogenous stimulus” and “response to jasmonic acid stimulus”. Interestingly,

4 transcripts (Glyma03g41700.1, Glyma04g00960.1, Glyma12g35550.1, Glyma19g34370.1)

were mapped to the latter enrichment. The first transcript in this set, Glyma03g41700.1, en-

coded an auxin–inducible GH3 protein family [226], while the latter two, Glyma12g35550.1,

Glyma19g34370.1 contained AUX/IAA protein domains (Table 6.5). Thus, transcripts con-

taining TCP binding sites may possibly interplay with auxin and jasmonic acid to enable

auxin–driven or jasmonic acid–driven defense signaling. Prior studies have examined TCP–

auxin cross–talk during plant development [227, 228], however examining such interplay

strictly with respect to defense response would certainly be a potentially novel area of
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plant–pathogen inquiry. Surprisingly, many enrichments appear to be lower in magnitude

within transcripts containing either TCP16 or PCF5. Nonetheless, the vast number of GO

enrichments associated with biosynthetic regulation captures the systematic and diverse

role TCP TFs play in plant development and defense.
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Figure 6.5: Annotation of transcripts containing TCP and PCF binding sites.

Table 6.5: Soybean genes with TCP binding sites.

Phytozome ID EC EC Description PFAM Description

Glyma03g41700.1 – – GH3
Glyma12g35550.1

– – AUX/IAA domain
Glyma19g34370.1

TBP binding sites in loci encoding phenylpropanoid biosynthesis

The TATA–box binding protein (TBP) is central to regulating assembly of the transcription

initiation complex. Numerous studies have examined systematic interplay involving TBP
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and its ability to regulate defense response [229–231]. GO enrichment on soybean transcripts

with at least one occurrence of the TBP TFBS in its promoter sequence revealed statistically

significant annotations involved in multicellular differentiation and metabolism. Making up

such processes included “phenylpropanoid biosynthetic process” and “flavonoid biosynthetic

process”. A set of 24 transcripts mapped to both these processes, encoding enzymes such

as 4–coumarate–CoA ligase (4CL), hydroxyindole methyltransferase, and flavonol reductase

(Table 6.6).

Table 6.6: Soybean genes with TBP binding sites.

Phytozome ID EC EC Description PFAM Description

Glyma18g08550.1 6.2.1.12 4CL AMP–binding enzyme
Glyma19g45000.2 2.1.1.4 hydroxyindole

methyltransferase
O–methyltransferase

Glyma11g29460.1 1.2.1.44 flavonol reductase NAD–dependent epimerase
Glyma15g16490.1

1.14.11.23 flavonol synthase 2OG-Fe(II) oxygenase
Glyma13g21120.1
Glyma06g11590.1
Glyma09g05170.1
Glyma02g15390.1

WRKY1 and PR–1 interplay

ZAP1, also known as WRKY1, was the only WRKY TFBS with an available PWM. In

terms of stress response, WRKY TFs play vital roles in regulating synthesis of defense–

response elicitors such as pathogenesis–related 1 (PR–1) genes [67,169]. Within all promoter

sequences, ZAP1 TFBSs occurred at least twice in 1,197 promoters. GO enrichment on this

set revealed highly significant processes involved in regulation of both transcription and

protein kinase cascades. Processes such as “phenylpropanoid biosynthesis” and “aromatic

compound biosynthesis” were amongst such enrichments. A subset of 22 transcripts mapped

to lesser–enriched processes (p < 0.013), namely “phenylpropanoid metabolic process”,

“positive regulation of response to stimulus”, and “regulation of immune response”. Such

transcripts encoded anthocyanin reductase and a MAP2K protein (Table 6.7).
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Table 6.7: Soybean genes with WRKY/ZAP1 binding sites.

Phytozome ID EC EC Description PFAM Description

Glyma07g19180.1 2.7.11.1 serine/threonine
protein kinase

Leucine Rich Repeat

Glyma08g06630.1 1.3.1.77 anthocyanin reduc-
tase

NAD–dependent epimerase

Glyma19g00220.1 – MAP2K Protein kinase domain

6.4 Discussion

In this study, promoter sequences throughout the soybean (Glycine max ) genome were an-

alyzed to investigate links between binding site specificities and transcript functionality.

A set of 40 TFBS PWMs were found to occur in at least one soybean promoter. Filter-

ing this set revealed a subset of 31 TFBS PWMs with three or more occurrences in any

given promoter. Stratifying such PWMs into their respective TF family produced 8 dis-

tinct categories (AP2/EREBP, ABI3/VP1 bZIP, MYB, bHLH, TCP, TBP, WRKY). GO

analysis on transcripts within each of these categories revealed statistically significant an-

notations involved predominantly in defense–response and stress signaling. Soybean loci

mapping to such functions were identified, with most encoding enzymes associated with

phenylpropanoid biosynthesis, flavonoid biosynthesis, and jasmonic acid and auxin signal-

ing. Such findings therefore conclude that frequency of certain TFBSs can indeed help

decipher functionality of transcripts involved in defense–response.

6.5 Materials and Methods

6.5.1 Acquisition of soybean promoter sequences

A total of 73,320 soybean transcript identifiers were mined from the Phytozome plant ge-

nomics resource [91]. Per identifier, the promoter sequence 2kb upstream from its tran-

scription start site was retrieved and appended to a FASTA file.
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6.5.2 Identification of over–represented soybean binding sites

TFBSs are frequently modeled as two–dimensional matrices known as position weight ma-

trices (PWMs). Each cell in this data–structure therefore references the likelihood of a

nucleotide being part of a regulatory element. A set of 21 PWMs were mined from JAS-

PAR[43] while another 50 were mined from AthaMap[39]. PWMs ≤ 7 columns wide were

filtered and not utilized in analysis. The Marina software mapped all valid TFBS PWMs

onto all promoter sequences. A PWM alignment was rendered successful if at least 85%

of the PWM aligned against the promoter sequence. Custom Python scripts parsed PWM

mappings along all promoter sequences and enumerated PWM frequency in the form of an

abundance matrix.

6.5.3 Functional annotation of soybean transcripts

Functional annotation comprised of identifying statistically significant GO Processes within

soybean transcripts, a process known as GO enrichment. Accession identifiers for such

transcripts underwent GO enrichment using the AgriGO web–server [124]. A GO Process

was termed enriched if its Hochberg–adjusted p–value was less than 0.05 and at least 5

transcripts were mapped to the respective annotated ontology.
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Chapter 7: Conclusions and Future Work

7.1 Research Implications

This dissertation is comprised of five original first–author manuscripts. Each study inves-

tigates a specific segment of the soybean proximal cis–regulome and transcriptome during

biotic stress perception. Collectively, such studies aspire to contribute novel and biologically

interesting findings to the plant–pathogen research community.

Chapter 2 proposes a novel software tool named Marina. This software identifies statisti-

cally over–represented transcription factor binding sites (TFBSs) given a set of 7 statistical

metrics. Section 2.2 discusses such metrics in–depth as well as its ability to be used in

inferring magnitude of TFBS over–representation. Section 2.3 examines how Marina fares

against a leading TFBS analysis tool when it comes to identifying over–represented TFBSs.

Results indicate that indeed Marina identified more over–represented TFBSs even as the

number of input promoter sequences increased. Thus, chapter 2 proposes a scalable software

tool which yields biologically–sound and over–represented TFBSs.

Chapter 3 examines the soybean transcriptome after inoculation with resistant and sus-

ceptible soybean cyst nematode (SCN) populations. Section 3.2 discusses RNA sequencing

of the soybean transcriptome post–inoculation. Differential transcripts in each reaction re-

veal a biologically–sound set of transcripts which capture host defense response dynamics

across an inoculation time–course. Section 3.3.2 reveals reaction–specific Gene Ontology

(GO) annotations across differential transcripts. Such results reveal the commandeering

nature of SCN through its ability to suppress host metabolism and biochemical synthesis

processes. Section 3.3.3 revealed presence of numerous over–represented TFBSs within pro-

moter sequences of differentially expressed transcripts. Such over–represented TFBSs could

be used to compile a cis–regulatory signature which captures proximal soybean regulatory
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element dynamics during SCN pathogenesis.

Chapter 4 quantifies the soybean leaf transcriptome following inoculation with soybean

rust (SR). Such an investigation builds on prior peer–reviewed manuscripts by computation-

ally analyzing promoter sequences of differential transcripts following an SR time–course.

Section 4.4 reveals GO enrichments given soybean transcripts induced and suppressed fol-

lowing SR inoculation. Promoter sequences of such transcripts were analyzed in section

4.4.1, revealing a set of 25 soybean binding sites over–represented following pathogenesis.

Thus, the ultimate goal of this study is to be used as a platform for the development of

synthetic promoters designed to increase transcription of genes associated with pathogen

and stress response.

Chapter 5 quantifies the soybean root transcriptome following inoculation with phyto-

hormones jasmonic acid (JA), auxin (IAA), and ethylene (ETH). Unlike traditional exper-

imentation in plant–pathogen studies in–which a tissue is infected with a deleterious pest,

this chapter is dedicated towards understanding the plant defense–response signaling land-

scape. Section 5.4 reveals a high–coverage, high–quality root transcriptome build following

high–throughput sequencing. Section 5.4.2 statistically identifies transcripts with significant

changes in fold expression following two independent phytohormone treatments. These dif-

ferential transcripts were termed “outliers”. Across all phytohormone treatments pairs,

outlier transcripts capture defense–response interplay and cross–talk. Section 5.4.3 reveals

numerous statistically–sound TFBSs over–represented following individual phytohormone

treatments. Such TFBSs were found to be not only over–represented but also present in pro-

moter sequences of genes commonly involved in defense response. Thus, chapter 5 provides

a high–coverage map of the soybean root transcriptome following numerous phytohormone

treatments. Analysis of GO enrichments reveal functions which codify hormone–driven de-

fense signaling. Further analysis of promoter sequences from differential transcripts reveal

over–represented levels of TFBSs of TFs induced during defense response. Our findings

therefore aim to contribute potentially novel insight into phytohormone–specific expression

profiles of numerous transcripts.
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Chapter 6 provides a detailed genomic–scale investigation into the binding site profiles

of soybean genes involved in defense response. Unlike prior chapters which were built

around quantifying host–pathogen interplay, this study is dedicated entirely to the analysis

and quantification of promoter sequences within the soybean genome. Section 6.3.1 reveals

numerous TFBSs that were found in promoter sequences of soybean genes which play roles

in plant defense. Soybean accession numbers mapping to such annotations could therefore

be used to drive functional genomic assays be–they over–expression or knockout.

7.2 Conclusions

This dissertation is a collective series of manuscripts exploring the soybean transcriptome

and proximal regulome upon inoculation with two major host pathogens: soybean rust (SR)

and soybean cyst nematode (SCN). Results reveal numerous biologically–sound transcripts

involved in defense response such as glutathione S–transferase, lipoxygenase, hexokinase,

and flavonoid synthase, amongst others. Several promising stress response gene candi-

dates such as arachidonate–8 lipoxygenase, phytochelatin synthetase, and ribonucleoside-

diphosphate reductase may also exhibit defensive properties and would be excellent can-

didates for empirical validation. Quantifying a complex organism is an incredibly multi-

dimensional, non–linear process, however advances in high–throughput sequencing allow

high–resolution quantification of transcriptomes in a matter of hours. Manuscripts in this

dissertation utilize such assays to probe the soybean transcriptome and gauge its defensive

countermeasures.

Alongside exploring the transcriptomic landscape of infected soybean tissues, this dis-

sertation also gauges the proximal binding site landscape without inoculation with a pest.

Manuscripts comprising this dissertation collectively reveal the presence of a signature that

captures binding site profiles of genes involved in stress response. In general, this signature

traditionally encompasses TFBSs of TFs such as WRKY, AP2/EREBP, MYB, and bZIP.

We extend this TFBS set by showing that TFBSs of TFs such as ABI3/VP1, GT–3b, TCP,

and TBP, are over–represented in promoters of soybean genes involved in defense response.
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In conclusion, this dissertation explores the systematic interplay between the soybean

host and its two major pathogens: soybean rust and soybean cyst nematode. Utilizing

high–throughput sequencing assays reveals high–coverage transcriptomic maps and analysis

of promoter sequences reveals biologically–sound binding site profiles capturing defense

response dynamics.

7.3 Future Work

This dissertation lays the foundations for further analyses involving soybean–pathogen in-

terplay. The entirety of this dissertation was comprised of RNA–Seq studies investigating

the soybean transcriptome and analysis of upstream promoter sequences. Indeed such anal-

yses provide a glimpse into regulatory element dynamics, however transcription regulation

is a process often spanning the reaches of promoter sequences.

A bulk of the organismal transcriptional landscape is mediated many kilobases from

the target gene. Assays such as Hi–C, ChIP–Seq and resultant histone marks can be em-

ployed to measure such dynamics by quantifying cis– or trans– distal enhancer activity.

Thus, superimposing ChIP–Seq assays with corresponding RNA–Seq runs provides a truly

systematic snapshot.

Analysis of proximal regulatory elements is an excellent first–step to quantifying the

organismal transcriptional landscape. Such findings could be translated towards build-

ing of synthetic promoter sequences by knocking–out or over–representing certain TFBSs.

Systematically however, these proximal elements often collaborate with distal enhancers,

silencers, and insulators to paint a global transcriptional landscape. Thus, introducing

assays designed for quantification of distal elements will reveal novel insight into soybean

regulatory element dynamics during pathogenesis.

89



Appendix A: Abbreviations

Abbreviations

4CL: 4–Coumarate–CoA ligase

AOC: Allene oxidase cyclase

A–8 LOX: Arachidonate 8–LOX

ABA: Abscisic acid

ChI: Chalcone isomerase

ChR: Chalcone reductase

CO: Cosine metric

CF: Confidence metric

DE: Differentially expressed

DEG: Differentially expressed gene

ETH: Ethylene

GLY I: Glyoxalase I

GO: Gene Ontology

GST: Glutathione S–transferase

IAA: indole-3-acetic acid; IAA; auxin

IPF: Iterative Proportional Fitting

JA: Jasmonic acid

JAC: Jaccard index

K: Cohen’s Kappa

L–13S LOX: Linoleate 13S–LOX

LP: Laplace correction

LI: Lift metric

LOX: Lipoxygenase

NPR1: Non-expressor of PR1

PCS: Phytochelatin synthetase

PDI: Protein disulfide–isomerase

PHI: Phi-coefficient

PPN: Plant–parasitic nematode

PR: Pathogen–related

PWM: Position Weight Matrix

RnDR: Ribonucleotide reductase

SA: Salicylic acid

SCN: Soybean cyst nematode

SOD: Super–oxide dismutase

SR: Soybean rust

TF: Transcription Factor

TFBS: TF binding site

TSS: Transcription Start Site
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