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Dissertation Director: Dr. Randolph A. McBride

This dissertation is a study of the shoreline and tidal inlet changes of the
Parramore—Cedar barrier-island and Wachapreague tidal inlet system through the
integration of a variety of geospatial data sets over a range of spatial and temporal scales.
Fundamental changes to the historical trends of shoreline and tidal inlet behavior provide
a means to quantitatively test the three-stage model of runaway transgression (Fitzgerald
et al., 2004). The analysis of a robust set of shoreline data sets demonstrates the pattern of
clockwise rotational instability over the long term as documented by Leatherman et al.
(1982) has evolved into sustained rapid retreat along the entire outer shoreline of
Parramore Island. In addition, Cedar Island has transitioned from in-place narrowing to
rapid barrier rollover and landward migration through overwash and inlet processes. The

non-inlet-influenced, open-ocean shoreline of Parramore Island experienced a -4.1 m/yr



retreat rate from 1852 to 1998 and a -12.2 m/yr retreat rate from 1998 to 2010, according
to a linear regression analysis. Similarly, Cedar Island’s non-inlet-influenced, open-ocean
shoreline underwent a -5.5 m/yr retreat rate from 1852 to 2007 and a -15.4 m/yr retreat
rate from 2007 to 2010, also according to a linear regression analysis. The short-term
retreat rates for both islands are nearly triple the long-term rates. These increases in short-
term retreat rates constitute a fundamental change in the pattern of historical shoreline
movement for the Parramore—Cedar barrier-island system.

The cross-sectional area of an inlet throat is used as a proxy to calculate tidal
prism and ebb-tidal delta volume of tidal inlets. The historical cross-sectional areas for
Wachapreague Inlet were 1845 m2 in 1852, 4473 m2 in 1871, 4737 m2 in 1911, 4572 m2
in 1934, 4047 m2 in 1972, 4398 m2 in 2007, 4735 m2 in 2010 (April), 5014 m2 in 2010
(August), and 5210 m2 in 2011. Tidal prism and ebb-tidal delta volumes at
Wachapreague Inlet fluctuated from 1871 to 2011 with tidal prism ranging between 4.82
x 107 m® and 6.09 x 10’ m* and ebb-tidal delta volumes ranging between 1.85 x 10’ m?
and 2.46 x 107 m*. From 1871 to 2007, the long-term linear regression rates of change
were -2.4 m?/yr for cross-sectional area, -2.67 x 10* m3/yr for tidal prism, and -1.26 m®/yr
for ebb-tidal delta volume. However, from 2007 to 2011, the short-term linear regression
rates of change switched to high rates of increase with 186.1 m*/yr for cross-sectional
area, 2.04 x 10% m3/yr for tidal prism, and 9.89 x 10°> m3/yr for ebb-tidal delta volume.
Overall, from 1871 to 2007, cross-sectional area, tidal prism, and ebb-tidal delta volumes
were characterized by relative stability to a slight decrease with a distinct increase more

recently (2007-2011). This research accounts for the natural variability in tidal prism on



a monthly basis (e.g., neap vs. spring tides, perigee vs. apogee) and a seasonal basis (e.g.,
potential coastal setup caused by meteorological events, thermal expansion of the water
column [steric effect]) by utilizing a 15% natural variability in the tidal-inlet analyses as
documented by O’Brien (1969).

These spatial analyses provide insight into how shoreline and bathymetric
changes of the Parramore—Cedar barrier-island system are driven by 1) the southern
extension of the large arc of erosion located south of Assateague Island in response to
sediment trapping at the large recurved spit complex at Fishing Point, Virginia; 2)
relative sea level rise along the southern Delmarva Peninsula; 3) updrift barrier-island
breaching north of Wachapreague Inlet along Cedar Island and other breaches further
north; and 4) increased storminess along the outer barrier islands of the Virginia Eastern
Shore. Of these four coastal-change drivers, the southern propagation of the large arc of
erosion (i.e., lack of sediment supply) appears to be the primary driver of coastal
evolution along the Parramore-Cedar barrier-island system for the past 150 years and
potentially for the next 10 to 100 years into the future. Furthermore, this research presents
a six-stage model of barrier evolution along the southern Delmarva Peninsula. The six-
stage model accounts for changes in sediment supply, relative sea level rise, increased
storminess, and the projected consequences to the Parramore—Cedar barrier-island
system. The significance of short-term shoreline and bathymetric changes that depart
from historical trends is important because these developments may indicate wider
patterns of barrier-island change for the entire Virginia Eastern Shore and, perhaps, large

expanses of mixed-energy coasts along the entire U.S. Atlantic seaboard.



CHAPTER ONE: INTRODUCTION

Statement of the Problem

The Virginia barrier islands along the southern Delmarva Peninsula exist in a
natural state and the effects of sustained human activities upon this coastal environment
are largely absent. These circumstances make the area uniquely suited to study the natural
oceanographic and geologic processes operating along this coastline without the
statistical noise of anthropogenic influences. Moreover, recent studies indicate certain
barrier islands along the Virginia Eastern Shore—such as Parramore and Cedar Islands—
are experiencing a fundamental adjustment in their pattern of historical shoreline
movement (Gaunt, 1991; Richardson & McBride, 2007; Richardson & McBride, 2011;
Nebel et al., 2012).

The average erosion rate for the U.S. mid-Atlantic shoreline is between -0.5 and -
1.5 m/yr (Dolan et al., 1979; Hapke et al., 2011). In contrast, non-inlet-influenced, open-
ocean shorelines of the Parramore—Cedar Island barrier-island system have experienced
long-term retreat rates an order of magnitude greater than the average background rate of
the U.S. mid-Atlantic coast (Gaunt, 1991; Richardson & McBride, 2007; Richardson &
McBride, 2011; Nebel et al., 2012). As a result, these barrier-island shorelines along the
southern Delmarva Peninsula stand out as having some of the highest long-term retreat

rates along the U.S. mid-Atlantic seaboard. Examining why the southern Delmarva



Peninsula deviates from the average behavior of the U.S. mid-Atlantic coast could
provide further insight on why substantial portions of U.S. Atlantic shorelines do not
recede at consistent rates over long time periods (Fenster & Dolan, 1994).

The Intergovernmental Panel on Climate Change (IPCC) (2007) reports the global
average sea level rose 1.8 mm per year from 1961 to 2003 and up to 3.1 mm per year
from 1993 to 2003. The IPCC estimates eustatic sea level will continue to rise between
0.18 and 0.59 m by the end of the 21 century. A rise in relative sea level along the U.S.
mid-Atlantic coast during the Holocene epoch is a well-documented phenomenon, and
rates are projected to increase throughout the 21* century (Zervas, 2001; Engelhart et al.,
2011). The rate of relative sea-level rise along the southern Delmarva Peninsula ranges
from 3.5 mm/yr (1951-2006) at the southern end of the peninsula (Kiptopeke, Virginia)
to 5.5 mm/yr (1975-2006) at Ocean City, Maryland (NOAA, 2009).

Leatherman et al. (2000), Leatherman and Douglas (2003), and Zhang et al.
(2004) reach the conclusion that a rise in relative sea level is the primary cause of coastal
erosion along the U.S. Atlantic coast, and in fact, they minimize the influence of storms
upon these coastlines throughout the 20" century. However, Zhang et al. (2004) does not
include transects of nearly the entire Virginia Eastern Shore in their analysis of the
relationship between sea-level rise and beach erosion. In contrast, Fenster and Dolan
(1994) conclude that nearly two thirds of the U.S. East Coast shorelines underwent a
significant change in the long-term rates of change during the 1960s. Fenster and Dolan
(1994) link this adjustment in the long-term rate of shoreline change to a peak in

extratropical storm frequency and magnitude that occurred around 1967 or 1968. In



addition, Fenster et al. (2001) demonstrate the frequency and magnitude of storms can
influence long-term shoreline changes.

Curray (1964), Morton (1979), and Kraft and Chrzastowski (1985) documented
the critical role of sediment supply, a primary factor in driving the landward or seaward
migration of barrier islands. Interruptions or fundamental changes in updrift sediment
supply affect downdrift islands and may outweigh the effects of relative sea-level rise. It
is notable that Cedar Island resides within the large arc of erosion south of Fishing Point,
Virginia (Rice and Leatherman, 1983). Sand trapping at the recurved spit complex at the
southern end of Assateague Island has captured large quantities of sediment from the
regional sediment budget. The spit’s growth has resulted in downdrift sediment starvation
that over time has resulted in a decreased sediment supply moving from north to south.as
discussed by Wikel (2008).

The changes to the Parramore—Cedar barrier-island system are clearly and
immediately evident through observing numerous qualitative factors. Particularly striking
are the considerable tree die-offs along the backshore and further inland along the interior
dune ridges of Parramore Island (Figures 1-4). In fact, the impacts are most noticeable
along historically stable portions of Parramore Island’s open-ocean shoreline. These eco-
geomorphic impacts to the maritime forest of Parramore Island are presumably the result
of rapid rates of shoreline retreat with an increase in saltwater intrusion and the landward
penetration of salt spray into relict dune ridges from an encroaching ocean (Figure 5). In
addition, a lightning strike caused a natural fire on Parramore Island on September 1,

2002 that burned approximately 1,200 acres or 1/3 of the island (Harper, 2002).



Figure 1: Extensive tree die-offs strewn along the foreshore of the north-central, non-inlet-influenced, open-
ocean shoreline of Parramore Island, April 27, 2006.

Figure 2: Maritime forest impacts at the transition zone between the southern, washover-dominated, open-ocean
shoreline and the north-central, non-inlet influenced, open-ocean shoreline of Parramore Island, April 27, 2007.



Figure 3: Nearly complete elimination of the maritime forest along the backshore of the north-central, non-inlet-
influenced, open-ocean shoreline of Parramore Island, August 31, 2011. Note the dead trees (snags) along the
interior relict dune ridges (i.e., Italian Ridge). Image provided by Randolph A. McBride.

Figure 4: Northern extent of widespread tree die-offs at the transition zone between the north-central, non-inlet-
influenced, open-ocean shoreline and the northern, inlet-influenced shoreline, April 22, 2010. Note the large
number of dead trees in the interior of Parramore Island.



Figure 5: Ecogeomorphic changes (e.g., tree die-offs) because of the intrusion of saltwater spray along Italian
Ridge (a relict dune) of Parramore Island, April 22, 2010. Note the interspersing of dead trees among the
remnants of the living trees in the distance.

Additional qualitative factors provide evidence of the rapid and ongoing changes
to the Parramore—Cedar barrier-island system. These include expansive areas of relict
marsh outcropping along the foreshore of both Parramore and Cedar Islands, especially
long stretches along the foreshore of Cedar Island (Figures 6 and 7). In addition, large
washover fans are commonplace on both Parramore and Cedar Islands (Figures 8 and 9).
Cedar Island is experiencing expansive areas of washover onto backbarrier marsh along
its open ocean shoreline and this behavior is indicative of rapid rates of shoreline retreat.
Furthermore, Cedar Island is impacted by episodes of island breaching along two distinct
areas, and this development leads one to conclude that Cedar Island is in the process of

fragmenting into smaller and thinner remnants (Figures 10 and 11).



Figure 6: Relict marsh outcropping along the foreshore of the southern, washover-dominated, open-ocean
shoreline of Parramore Island, April 27, 2007.

Figure 7: Relict marsh outcropping along the foreshore of the southern, bay-backed, open-ocean shoreline of
Cedar Island, April 25, 2008.



Figure 8: Large washover fan and exposed relict marsh along the northern, non-inlet-influenced, open-ocean
shoreline of Cedar Island, April 21, 2010.

Figure 9: Large washover fan, exposed relict marsh, and extensive foreshore along the southern, washover-
dominated shoreline of Parramore Island, April 22, 2010.



Figure 10: Location of the most recent Cedar breach that closed in the spring of 2007 along the south-central,
bay-backed, open-ocean shoreline. Photo taken August 31, 2011 by Randolph A. McBride.

Figure 11: The “Coast Guard” breach along the northern inlet- and breach-influenced shorelines of Cedar
Island, April 21, 2010.



This dissertation will analyze shoreline and tidal inlet changes along the
Parramore—Cedar barrier-island and Wachapreague tidal inlet system in order to test
Fitzgerald et al.’s (2004) three-stage conceptual model of sand trapping processes at tidal
inlets and the long-term response of barrier islands to a diminished sediment supply in a
regimen of accelerated sea-level rise (Figure 12). The Fitzgerald et al. (2004) conceptual
model is applicable to mixed-energy coasts (such as those along the Virginia Eastern
Shore) that are characterized by short, stubby barrier islands, numerous tidal inlets, well-
developed ebb-tidal deltas, and backbarrier marsh. The model accounts for the
transformation of backbarrier salt marsh to open water and intertidal environments and an
associated increase in tidal prism (i.e., the volume of water moving in or out of an inlet
during a tidal cycle) between the ocean and estuary in a regimen of accelerated sea-level
rise. Essentially, the backbarrier salt marsh is incapable of accreting vertically at the same
rate as the rate of relative sea-level rise and thus cannot maintain its areal extent. The
progressive decline in salt marsh area enlarges bay area and increases tidal range, the two
fundamental variables in the determination of tidal prism. Tidal range in the backbarrier
region may increase as salt marsh converts to open water (Fitzgerald et al., 2008). This
increase in tidal prism leads to a widening and deepening of the tidal inlet and the growth

in both the ebb- and flood-tidal deltas.
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The stages of the Fitzgerald et al. (2004) conceptual model include the initial
phase of a stable barrier, followed by 1) marsh decline, 2) fringing marsh and marsh
islands, and 3) runaway transgression (Figure 12). The initial stable barrier stage is
represented as the present or past general configuration of mixed-energy coasts
characterized by barrier islands backed with an expansive estuarine marsh system and a
network of tidal creeks. Stage 1 is a period in which an accelerated rise in relative sea
level converts portions of the estuarine marsh to intertidal and subtidal environments.
This transformation increases tidal prism that scours tidal creeks further, enlarges the
tidal inlet, and sequesters more sand on the ebb tidal delta. In Stage 2 large expanses of
estuarine marsh areas are in rapid decline and increased tidal prism continues to enlarge
tidal inlet size and ebb-tidal delta volume. In addition, the inlet hydraulics now favor
flood dominance with flood tidal current transporting sand in a net landward direction
because of the absence of natural sand flushing by ebb currents. The adjacent barriers
thin and breach and new ephemeral and permanent tidal inlets emerge. In Stage 3
(runaway transgression) many new tidal inlets and island breaches develop, the
antecedent tidal inlets drown, and barrier-island rollover is an active process during
moderate to severe storms. The collapse of ebb-tidal deltas onshore is a result of the
multiple new inlets that capture and reduce tidal prism at the former large inlets. This
sand reworking from the ebb-tidal deltas temporarily nourishes the drowning barriers.
Finally, the mainland suffers from encroaching tidal waters and coastal flooding.

During a sustained regimen of relative sea-level rise, backbarrier marsh is

transformed to open water through channel deepening and marsh inundation. This
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conversion of the estuarine marsh to open water results in an increased tidal prism. In
response, increased tidal prism widens and deepens the tidal inlet through channel scour.
In addition, increased tidal prism causes progradation of the ebb-tidal delta and the
expansion and retrogradation of the flood-tidal delta. This seaward advance of the ebb-
tidal delta results in the sand body capturing more longshore sediment transport and the
ever-larger sediment sequestration on the ebb- and flood-tidal deltas. The increased sand
capture by the ebb-tidal delta results in barrier degradation because of downdrift sediment
starvation (Miner et al., 2007). Consequently, ebb-tidal delta growth diminishes sediment
supply along the coast and this leads to barrier starvation, barrier-island fragmentation,

onshore migration, and evolution to a transgressive coastal system.

Research Questions

A spatial and temporal analysis of the long-term and short-term shoreline change
rates of Parramore and Cedar Islands and the analysis of trends in cross-sectional area at
the inlet throat of Wachapreague Inlet may answer a number of queries pertaining to the
behavior of the Parramore—Cedar barrier-island system. Specific questions posed are as
follows:

e Are the qualitative changes to the Parramore—Cedar barrie