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ABSTRACT

ANALYZING THE RELATIONSHIPS BETWEEN HAZARD VULNERABILITY
SCIENCE AND DISASTER MANAGEMENT POLICY AND PRACTICE: A CASE
STUDY OF ATLANTIC HURRICANES

David Jean-Paul Alexander

George Mason University, 2016

Dissertation Director: Dr. David W. Wong

Vulnerability indices have been used extensively in disaster management, and the social
vulnerability index (SoV1) has been regarded as the most popular despite its
appropriateness and performance not being validated conceptually and empirically.

A pedigree matrix and variable crosswalk were used to examine the conceptual
relationships between hazard vulnerability science (three selected vulnerability indices,
including SoVI) and disaster management (using disaster operations impact model data).
The research indicates there are theoretical linkages between hazard vulnerability
indicators and disaster management essential elements of information. The analysis also
show that SoV1 is conceptually the most appropriate among the three vulnerability index.
Subsequently, I conducted an empirical study to assess the capability of SoVI to predict
damages caused by natural disaster events. SoV1 index scores were related to nine

Atlantic hurricanes and their associated federal disaster costs and estimated damages at



the county level. Ordinary least squares regression, spatial econometrics, and
geographically weighted regression are used to evaluate their empirical relationships. The
study demonstrates that SoVI has little explanatory power in explaining federal disaster
costs per capita and that the disaster impact model variables are more effective in
explaining the variation in federal disaster costs per capital rather than the SoVI. The
results also show that these relationships varied tremendously across the nine hurricane
events. Although using logarithmic transformation to reduce skewness in variables
improved model performance marginally, no model involving SoVI performs reasonably
well. The research recommends using the disaster impact model outputs for constructing

a more reliable predictive model to support disaster operations.



CHAPTER 1: INTRODUCTION

Disasters are not just one-off phenomena and represent the results of continuous
social, economic, and environmental processes over time (Lavell 2008, p. 82).
Vulnerability provides a conceptual link between disasters, built environment, and
people. This research applies exploratory regression methods and spatial econometric
models to examine the relationships between hazard vulnerability science, disaster impact
modeling, and disaster management practice in the context of Atlantic Hurricanes in the
United States from 1999-2004. It considers an operational framework that fuses those
disciplines into an all-hazards, all-threats regime to provide a more practical mechanism
for informing disaster management policy.

Figure 1 shows a map of the storm tracks for the nine (9) hurricanes and Table 1 lists
the disaster declaration numbers. These observations represent the hurricanes that made
landfall and received presidential disaster declarations during the study period that data
was made available for this research. FEMA registers presidential disaster declarations
with a unique identification number in the National Emergency Management Information
System (NEMIS), more commonly referred to as a DR#, to track and monitor activities

relating to these events.
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Figure 1: Map of Storm Tracks for Hurricanes included in Study



Table 1: List of Disaster Declarations for Hurricanes included in Study

DR# State Year Hurricane
1287 Tx 1999 Bret
1292 NC 1999 Floyd
1293 Va 1999 Floyd
1294 Pa 1999 Floyd
1295 NJ 1999 Floyd
1296 NY 1999 Floyd
1297 De 1999 Floyd
1298 SC 1999 Floyd
1300 FI 1999 Floyd
1302 Ct 1999 Floyd
1303 Md 1999 Floyd
1305 NH 1999 Floyd
1307 Vit 1999 Floyd
1308 Me 1999 Floyd
1306 Fli 1999 Irene
1437 La 2002 Lili
1479 TX 2003 Claudette
1490 NC 2003 Isabel
1491 Va 2003 Isabel
1492 Md 2003 Isabel
1493 DC 2003 Isabel
1494 De 2003 Isabel
1496 wv 2003 Isabel
1539 FI 2004 Charley
1543 SC 2004 Charley
1548 La 2004 lvan
1549 Al 2004 lvan
1550 Ms 2004 lvan
1551 FI 2004 lvan
1553 NC 2004 lvan
1554 Ga 2004 lvan
1563 NJ 2003 lvan
1565 NY 2004 lvan
1557 Pa 2004 lvan
1561 FI 2004 Jeanne

STATEMENT OF THE PROBLEM
Hazard vulnerability is broadly defined as the potential for loss or capacity to suffer

harm across social, economic and ecological dimensions (Kates 1985, Mitchell 1989,
3



Gall 2007). While the occurrence of natural disasters cannot be prevented, losses from
their impacts can be minimized through better understanding of natural disaster losses
and informed policies that are risk-based, linking disaster operations, preparedness, and
mitigation. The United States government responds to more than 50 declared disasters or
emergencies per year totaling more than $3 billion annually in relief and recovery
expenditures (Garrett and Sobel 2003). These facts are attributed in part to political
motivations, as the Robert T. Stafford Disaster Relief and Emergency Assistance Act
(Public Law 93-288) was amended in 1988 to provide the US president more discretion
in declaring natural disasters (Garrett and Sobel 2002, Sobel et al. 2007). A more holistic
interpretation is that a variety of factors from settlement patterns, land-use practices, and
global climate change have placed society increasingly in harm’s way. This perspective is
underscored by the Gulf Coast hurricanes of Katrina and Wilma making landfall in 2005;
in which, more than 1,500 people perished and initial direct losses covered by federal
disaster assistance programs exceeded 25 billion dollars as these storms became the
deadliest and costly hurricanes in United States history (FEMA 2013).

One way to counter the upward trend in disaster losses is through mitigation and
preparedness strategies to reduce risk as people continue to settle in more hazard prone
areas. The United Nations identified comprehensive mitigation and preparedness planning
as critical opportunities to reduce future losses and costs associated with disasters at the
World Summit for Sustainable Development in 1992 (UN/ISDR 2004). The causes of risk
must be identified in order to assess the effectiveness of both corrective and prospective

mitigation measures to properly inform response and recovery plans and appropriately
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influence disaster management policy (Cardona 2005). Neal (1997) indicated that the
disaster management lifecycle has been traditionally viewed as an over-simplified heuristic
device due to the lack of holistic understanding of the four phases of mitigation,
preparedness, response, and recovery. Geis (2000) reiterates this view noting that
“everything is interconnected in [disasters and emergency management] and a holistic,
integrated approach is required” (p. 152). The complexity of emergency management, as
realized through the disaster management lifecycle, depicted in Figure 2, below is often
misinterpreted as a sequential process of cascading activities where preparedness precedes

response, followed by recovery, ending with mitigation.

Vulnerability
indices

Impact
models

Figure 2: Disaster Lifecycle

The United States government passed the Disaster Mitigation Act in 2000 to

reinforce the importance of pre-disaster mitigation planning to reduce disaster losses
5



nationwide. The Disaster Mitigation Act of 2000 signaled a trend away from this
elementary interpretation of the disaster management lifecycle toward a more integrated
view where mitigation is recognized as an on-going process whose assessment indicators
should inform policy and preparedness activities rather than a finite activity necessitated
by disaster. This intellectual shift in the disaster management community, while
significant, belies linkages between pre-event mitigation planning envisioned through
hazard vulnerability indices and the conduct of disaster operations supported through
event-specific impact modeling. Those same indicators used to quantify community
vulnerability as part of on-going mitigation planning activities are seldom validated against
ground-truth data from real-world events nor aligned to impact modeling efforts used by
disaster response teams to support critical life-saving, damage assessment and recovery
missions.

The difficulty in achieving effective disaster risk management has been partly the
result of a lack of a comprehensive framework of disaster risk that facilitates
multidisciplinary impact modeling and subsequent mitigation strategies (Cardona 2005).
McEntire (2004) suggests that the concepts of hazard vulnerability “may help us to better
describe and comprehend the true nature of disasters, since they deal with the goals of
liability reduction and capability enhancement (i.e.: reducing risk and susceptibility and
raising resistance and resilience)” (p.11). Alexander (2006) argues that “the key problem
of vulnerability” serves “as a far greater determinant of disaster risk than hazards
themselves” (p.2). Gall contends that hazard vulnerability, risk, and capacity assessments

form the basis for effective mitigation and preparedness strategies (Gall 2007).
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According to Cardona, these assessments are an unavoidable and necessary step in
evaluating the performance of disaster management policy and risk reduction strategies
(Cardona 2005b). ). To avoid skewed vulnerability assessments and decision-making,
hazard researchers need to take stock of existing indices (Gall 2007). Without calibrated
measures of vulnerability and risk, applied to impact models utilized across the disaster
management lifecycle, mitigation cannot be effective and losses will be difficult to
reduce over time (Cutter 2003 and Gall 2007, p. 4) as evidenced by the magnitude of
federal disaster losses in the United States over the preceding decade.

To date, substantial research has been conducted by social and physical scientists
on disaster management with an emphasis toward hazard vulnerability and risk
assessments to help focus efforts to strengthen communities and enhance their local
resiliency. A multitude of hazard vulnerability and risk indices have been realized
through this applied research. While this research has contributed to our understanding of
vulnerability; it has done little to improve our ability to identify, measure, and reduce
disaster risk (Birkmann 2007). These hazard indices often do not represent the true nature
of a hazard or vulnerability as they are quantitative, subjective measures that act as
proxies for natural hazard susceptibility (Cobb 2001, Cobb and Rixford 1998). Cardona
states that “most existing indices and evaluation techniques do not adequately express
risk and are not based on a holistic approach that invites intervention” (2005a p. 1). In
many cases, indices were defined based on the availability of data rather than the
information that truly represents the hazard (King 2001). Additionally, there is little

research validating these indicators and no framework that integrates hazard
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vulnerability assessments with disaster operations and associated impact modeling
activities. In other words, research needs to establish linkages between the factors of
vulnerability and the elements of disaster impact using empirical data from federal
disaster assistance programs. Federal Operating procedures for Emergency Support
Function #5 of the National Response Framework (NRF) compiles situational reports
based on essential elements of information (EEIS) that cover population, infrastructure,
and economic conditions. These EEIs are intended to serve as indicators for mobilizing
federal assistance programs required to facilitate community recovery and rebuild. This
dissertation attempts to address Cardona’s concerns by examining hazard vulnerability
based on disaster management policy and practice. It compares the social vulnerability
index, a proxy measure of vulnerability, with ground-truth data that represents actual
impacts from Atlantic hurricane disasters.

Schmidtlein et al. (2008) suggests that the inability to assess the validity of
vulnerability indices is due to “the complexity of factors contributing to vulnerability, no
variable has yet been identified against which to validate such indices” (p 3-4). Cutter et
al. (2003) attempted to test the reliability and usefulness of the social vulnerability index
(SoV) to predict disaster impacts using the number of presidentially declared disasters at
the county level. This examination yielded no statistically significant results. This lack of
statistical correlation may be a reaffirmation of the theory about the political nature of
disaster declarations. Downton and Pielke (2001) argue that disaster declarations are
often treated as political rewards rather than as a result of disaster impacts. An alternate

interpretation of the finding from Cutter et al. (2003) may suggest a dissonance between
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the concepts of vulnerability and the impacts of a disaster. Or the lack of correlation may
indicate that there is no single variable that can be used to authenticate vulnerability
indices, but validation must come from a multivariate approach. Questions like these
indicate a need for further research in this area and the validation of hazard vulnerability
indexes as useful instruments for formulating effective disaster management policies.
Without applied research that demonstrates a direct link between vulnerability science
and disaster impact, vulnerability indexing will continue to be considered an academic
exercise (theoretical endeavor) rather than a practical tool for mitigating disaster risk.

Empirical based research on vulnerability indicators and indices will provide much
needed insight into the validity of hazard vulnerability indicators to accurately assess the
level of community susceptibility from Atlantic Hurricanes. It also helps bridge the
research policy nexus described by Cutter et al 2008 (p. 598) and improve our
understanding of the components of vulnerability in the context of actual disasters based
on empirical data. This will help progress vulnerability science past the “leap of faith”
conundrum expressed by Adger (2006, p. 275) into a reliable metric based on proven
indicators.

Reliable hazard vulnerability indicators will go a long way toward understanding
the predictors of hurricane disaster losses, thereby determining the factors most important
in explaining the behavior of such losses. This knowledge will also help better enlighten
decision-makers on the dimensions of hazard vulnerability to hurricanes and inform
subsequent policies and mitigation strategies. Additionally, an operational framework for

impact modeling that applies validated hazard vulnerability indicators and incorporates
9



the geographic characteristics of hurricanes would be a crucial tool toward ensuring
public safety and economic stability, given the heightened risk of future catastrophic
hurricane disasters along the Atlantic-Gulf coast of the United States. Aligning
indicators used by mitigation planners to determine hazard vulnerability, to those
indicators used by disaster operators to derive impact models should result in better
community preparedness and resiliency, improve disaster response and recovery efforts,
and produce more informed policies. Such a model would help to expedite disaster
recovery efforts, by ensuring appropriate resources are available to aid individuals and
families and enable community rebuild. Theoretical contributions would likely serve as a
grounding agent for many of the scholarly premises influencing disaster management
research. McEntire (2004) suggests that disaster management theory grounded in reality
is more likely to generate theories with practical implication; while theories based on
faulty assumptions will produce conclusions that will inevitably be problematic. To put it
more bluntly, “what gets measured, gets managed” and what the hazard research
community attempts to measure and understand needs to be validated (Drucker 1954,

Gall 2007, p. 11).

RESEARCH OBJECTIVES
The purpose of this dissertation is to examine the relationships between hazard
vulnerability indicators, disaster impacts, and the essential elements of information (EEIS)
that drive disaster operations with the objective of establishing an operational framework

that integrates social vulnerability indicators with the modeling of community impacts to
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serve as a proxy for estimating the likelihood of and magnitude of direct federal assistance
(i.e., quantified losses from a declared disaster) expected for Atlantic hurricane disaster
declarations. It uses the following definitions of hazard and social vulnerability as a
conceptual anchor. These definitions are both widely recognized by the hazard science
community and consistent with U.S. disaster preparedness policy.

Hazard vulnerability or “vulnerability to environmental hazards means

the potential for loss. Since losses vary geographically, over time, and among

different social groups, vulnerability also varies over time and space.” (Cutter
and Emrich 2006).

“Social vulnerability to natural hazards is the potential for loss and the
complex interaction among risk, mitigation, and the social fabric of a place”
(Schmidlin et al. 2009) and “is defined as the susceptibility of social groups to
the impacts of hazards, as well as their resiliency, or ability to adequately
recover from them.” (Cutter and Emrich, 2006; Sapam Ranabir Singh,
Mohammad Reza Eghdami and Sarbjeet Singh, 2014).

This dissertation is informed by the following research questions:

a) Does vulnerability science have a nexus with disaster management?

b) Do hazard vulnerability indicators align with disaster operations variables?

c) Do social vulnerability indices accurately predict the exposure of a community
to a natural hazard and therefore its level of vulnerability or the level of

damages and serve as a good predictor for disaster management purposes?

d) Do hazard vulnerability indices account for the geography of the hazard across

space or inadvertently treat the units of measure as discrete locations?
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e) Do hazard vulnerability indices provide an effective planning tool for building

disaster resiliency?

Demonstrating linkages between disaster impacts and vulnerability indices
provides a validation point for the use of risk-based vulnerability assessments as a
practical tool for creating local strategies and prioritizing the efforts necessary for
building more resilient communities. It also provides a starting point for considering a
vulnerability indexing method comprised of impact model simulations calibrated by
empirical data from historical events rather than general socio-economic indicators or
national estimates of loss. This approach is very similar to that employed by the National
Hurricane Center (NHC), and validated by the meteorological community, to produce the
Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model. The SLOSH model is
a numerical model that uses a proven set of characteristics (indicators) run through a set
of statistical equations several thousand times to produce a composite measure of risk for
an area based on estimated storm surge heights from historical, hypothetical, and

predicted hurricanes (NHC website 2016).

DISSERTATION STRUCTURE
The remaining content of this dissertation is organized as follows. Chapter two
provides a synthesis of hazard vulnerability science complemented by a review of disaster
management policy and practice. It includes a discussion of existing weaknesses and gaps

in the development, application, and validation of sound measures to support place
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vulnerability, hazard assessment, and impact modeling activities. Chapter two also outlines
current challenges moving beyond hazard vulnerability and impact modeling theory into
applied research and toward operationalizing it to support the various facets of the disaster
management lifecycle.

Chapter three assesses the linkages between hazard vulnerability theory and disaster
management policy and the selection of SoVI as the most applicable vulnerability index
for evaluating whether hazard vulnerability indices can accurately predict exposure of a
community to a hurricane disaster. It includes a comparative analysis of three hazard
vulnerability indices (social vulnerability index, disaster risk index, and disaster
preparedness index) and their underlying indicators to determine which variables are
considered the most common elements of vulnerability. These vulnerability indices were
chosen as representative of the three dimensions of hazard vulnerability: economic, social,
and physical (UNDP / BCPR 2004). The social vulnerability index focuses on the social
dimensions of vulnerability. The disaster risk index is more exposure based with an
emphasis on ecological conditions. The disaster preparedness index emphasizes economic
dimensions with additional elements for measuring emergency management factors to
account for policy shifts toward prevention and mitigation strategies. Many of the
preparedness factors in the disaster preparedness index are expressed as fiduciary terms
such as funding for emergency operations, local funding for mitigation/planning, funding
per capita, and public debt (Simpson 2006). Each index has its own merits and subsequent

shortcomings. These characteristics will be fully discussed in this dissertation.
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Chapter four discusses the statistical analysis approach for analyzing the predictive
power of SoVI with the Federal disaster assistance data and the FEMA Disaster Operations
Impact Models for the selected hurricanes. The chapter includes a discussion of the data
sources and processing routines used to prepare the data for statistical analysis. Data used
in this study differs from previous research such as Cutter et al. (2003) in that they include
both frequency counts and financial totals for federal mitigation and disaster loan
assistance programs for individuals and public, at the county unit for each presidentially
declared hurricane disaster included in the research sample. Cutter (2003) only evaluated
SoVI for correlation with the single variable of frequency of presidentially declared
disasters at the county level. Chapter 4 also introduces the regression scenarios used for
analyzing the relationships between hazard vulnerability science, disaster management
policy, and disaster operations practice and for validating the accuracy of SoVI to serve as
a good predictor of community vulnerability for disaster management purposes.

Chapter 5 attempts to quantify the findings from the comparative analysis
completed in chapter 3 using a correlation analysis. It includes an exploratory regression
to assist with variable selection for the OLS regression. Chapter 6 presents findings from
the regression analysis based on the OLS models constructed to analyze the relationships
between hazard vulnerability science and disaster management, using SoV|, and the
FEMA disaster impact models. Chapter 7 addresses model bias in the OLS regression
that includes skewness of data and missing variables. Chapter 8 seeks to resolve issues
with spatial autocorrelation in the OLS regression by applying spatial econometrics and

geographically weighted regression (GWR) to the same regression scenarios.
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Chapter 9 provides a summary of findings and implications for future research,
reasoning for a conceptual framework for operationalizing hazard vulnerability into
disaster management practice by fusing impact modeling and vulnerability indexing, that
integrates deterministic and probabilistic methods to incorporate results from historical,
hypothetical, and predicted events to produce a more dependable, composite index for

hazard vulnerability.
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CHAPTER 2: LITERATURE REVIEW

DISASTER MANAGEMENT POLICY AND PRACTICE IN THE UNITED
STATES: ABRIEF HISTORY
From a historical perspective, an increasing federalization of disaster policy and

emergency management in the United States has been happening during the past sixty
years. During this same period of federalization, disaster management practice has
refocused from a reactive profession emphasizing preparedness (education and training)
and response to a proactive emergency management approach emphasizing mitigation
and protection measures (McEntire 2004, Sylves 2008). Disaster policy has shifted from
its roots in civil defense where disasters are viewed as one-off local events best managed
by local resources toward an all-hazards emergency management perspective that
involves all levels of government with exceedingly more federal bearing (Sylves 2008).
This one-off attitude means events are not assessed in context to other similar events to
identify weaknesses or lessons learned that could affect operations for future like events
or other events that may have similar characteristics because there was no effort to
connect the dots or draw commonalities stressed in an all-hazards emergency
management approach. Figure 3 illustrates these trends in disaster management and

provides a timeline of key policy and legislation.
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Figure 3: Timeline of Key Federal Disaster Policy and Legislation

The Federal Disaster Relief Act of 1950 (DRA) set forth a framework and process
that underscores most of the major federal disaster legislation to this day (Sylves 2008).
The 1950 DRA introduced the notion that state governors could request federal disaster
assistance from the president. It also recognized the “dual use” philosophy of civil
defense, where federal support to civil defense units provided overlapping benefits to
emergency management. The 1950 DRA served as a companion measure for the Federal
Civil Defense Administration (Sylves 2008). The Disaster Relief Act of 1966 furthered
the “dual use” policy linking civil defense warning systems with natural disaster alerts;
and that same year, Congress amended the 1950 Civil Defense Act to authorize funding
on a “dual use basis to prepare for the threat of enemy attack and for natural disasters”
(Sylves 2008, p. 50). These congressional attempts to unify disaster policy on the “dual

use” premise did nothing to address the disjointed nature of federal disaster authorities
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that were spread across several agencies, antecedents of the organic and reactionary
developments of the preceding acts.

Congress passed the Disaster Relief Act of 1974 to help remedy a series of
presidential reorganizations of federal disaster functions across multiple agencies. This
same law introduced three key concepts to federal disaster policy: 1) direct federal
assistance to individuals and families affected by a disaster, 2) hazard mitigation as a
precondition for federal disaster assistance, and 3) a multi-hazard approach to disasters
(Sylves 2008). In many ways, the 1974 DRA signaled the start of a new trend in disaster
management toward mitigation and the transition away from civil defense toward all-
hazard emergency management.

Despite the 1974 DRA, federal disaster policy remained fragmented and dispersed
across several agencies. In 1978, President James Carter sought to consolidate federal
disaster management programs within his five principle executive agencies through the
establishment of the Federal Emergency Management Agency (FEMA website 2012).
FEMA was created by executive order on April 1, 1979 following Congressional
approval of presidential reorganization plan 3 of 1978. Executive Order 12127 combined
the Defense Civil Preparedness Agency, the Federal Insurance Administration, the
National Fire Protection and Control Administration, the Federal Preparedness Agency
within the General Services Administration, and the Federal Disaster Assistance
Administration within the Department of Housing and Urban Development along with
one hundred other federal disaster response programs reporting to twenty different

congressional committees (Office of the President 1978, 1979). While the formation of
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FEMA did not fully consolidate disaster policy under one agency; the Department of
Agriculture retained primary responsibility for agricultural disasters. FEMA did
incorporate hazard mitigation activities linked to preparedness and disaster assistance,
introduce the notion of emergency support functions, and establish a single agency within
the federal government dedicated to emergency management (Sylves 2008).

During the next two decades, Congress passed or repealed key pieces of federal
disaster legislation and continued the trend of establishing mitigation as a cornerstone of
federal disaster policy. It passed the Robert T. Stafford Disaster and Emergency
Assistance Act in 1989, (Stafford Act) granting the president authority to declare
disasters or emergencies. In 1993, Congress repealed the Civil Defense Act of 1950
transferring all civil defense emergency management functions under Title V1 of the
Stafford Act to be coordinated by FEMA. It passed the Disaster Mitigation Act in 2000
reinforcing the importance of pre-disaster mitigation planning to reduce disaster losses
nationwide.

Following the terrorist acts of September 9, 2001, Congress passed the Homeland
Security Act of 2002 (P.L. 107-296), placing FEMA within the newly formed
Department of Homeland Security (DHS) and reaffirming an all-hazards, all threats
approach to federal disaster management. This act was followed by executive issuance of
Homeland Security Presidential Directive Five (HSPD-5) in 2003 that established the
National Incident Management System (NIMS) and the National Response Framework
(NRF). While citing an all-hazards and all-threats focus, the HSPD-5 policy lacked a

risk-based perspective instead concentrating on threat scenario action plans and
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provisioning of disaster relief. That same year, the president issued Homeland Security
Presidential Directive Eight (HSPD-8), intended to strengthen the policies to prevent,
prepare for, respond to, and recover from terrorist attacks, major disasters, and other
emergencies with an attention toward training, planning, equipment, and exercises for
Federal incident management and asset preparedness.

The Homeland Security Acts and Presidential Directives passed between 2002-
2011, coupled with enabling legislation passed by Congress in the preceding decades
operationalized comprehensive emergency management (CEM) theory, incorporating all
phases of disaster management within the encompassing federal policy and practice. The
Intelligence Reform and Prevention of Terrorism Act of 2004 (P.L. 108-458 or IRPTA)
required the implementation of NIMS and renewed emphasis on disaster preparedness to
include comprehensive risk assessments for terrorism related attacks, but not for natural
hazard or non-terrorism related events. The focus in IRPTA was on law enforcement and
prevention and protection measures based on findings from the 911 Commission Report.
In response to federal response failures to Hurricane Katrina in 2005, Congress passed
the Post-Katrina Emergency Management Reform Act in 2007 (PKEMRA) reaffirming
FEMA'’s placement as a distinct agency within DHS and placing certain functions
transferred to the DHS preparedness directorate under the Homeland Security Act of
2002 back within FEMA (US GAO 2008).

In 2011, the National Preparedness System was established under the auspices of
Presidential Policy Directive 8 (PPD-8). PPD-8 directed the development of a national

preparedness goal implemented through a national preparedness system of integrated
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planning guidance, programs, and processes and defined national preparedness as a
shared responsibility aimed at facilitating an integrated, all-of-Nation, capabilities-based
approach to preparedness. The national preparedness system under PPD-8 encompasses
the whole community from Government, businesses, communities, and citizens. It also
incorporates a risk component that was lacking in its predecessor HSPD-8. Per
Whitehouse policy memorandum 2011, “the national preparedness goal shall be informed
by the risk of specific threats and vulnerabilities — taking into account regional variations
- and include concrete, measurable, and prioritized objectives to mitigate that risk. The
national preparedness goal shall define the core capabilities necessary to prepare for the
specific types of incidents that pose the greatest risk to the security of the Nation, and
shall emphasize actions aimed at achieving an integrated, layered, and all-of-Nation

preparedness approach that optimizes the use of available resources.”

The national preparedness system is intended to “allow the Nation to track the
progress of our ability to build and improve the capabilities necessary to prevent, protect
against, mitigate the effects of, respond to, and recover from those threats that pose the
greatest risk to the security of the Nation” and capacity “for building and sustaining a
cycle of preparedness activities over time” (Obama 2011). PPD-8 signifies a further
transition in disaster management policy from one of response and recovery to one of

disaster risk management and vulnerability assessment.
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“The national preparedness goal shall be informed by the risk of specific
threats and vulnerabilities — taking into account regional variations - and include
concrete, measurable, and prioritized objectives to mitigate that risk. The national
preparedness goal shall define the core capabilities necessary to prepare for the
specific types of incidents that pose the greatest risk to the security of the Nation,
and shall emphasize actions aimed at achieving an integrated, layered, and all-of-
Nation preparedness approach that optimizes the use of available resources. The
national preparedness goal shall reflect the policy direction outlined in the National
Security Strategy (May 2010), applicable Presidential Policy Directives, Homeland
Security Presidential Directives, National Security Presidential Directives, and
national strategies, as well as guidance from the Interagency Policy Committee
process. The goal shall be reviewed regularly to evaluate consistency with these
policies, evolving conditions, and the National Incident Management System
(Obama 2011).”

DISASTER MANAGEMENT THEORY, PRINCIPLES, AND CONCEPTS

During the period of federalization of disaster policy and practice, disaster

management began to emerge as a field of study, coalescing around a handful of core

principles and holistic theory. Since 1950, the concept of CEM has become the

traditional theory of disaster management (McEntire et al. 2001, McEntire 2004). CEM

organizes disaster management into disaster phases: preparedness, response, recovery,

and mitigation that represent the full lifecycle of disaster (Sylves 2008, McEntire et al.

2001, McEntire and Marshall 2003, McEntire 2004) as depicted in figure 2. While CEM

may represent the bedrock of federal emergency management theory, the concept has

underlying weaknesses (McEntire and Marshall 2003). Neal (1997) determined that the

four phases recognized by CEM are useful, but CEM in general is an over-simplified

heuristic device that does not recognize the complexity of disasters (McEntire 2004).
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According to Britton, CEM fails to capture the wider political, economic, and cultural
explanations of disaster (Britton 1999, McEntire and Marshall 2003, McEntire 2004).

To address the weaknesses in CEM, several paradigms have emerged in the
academic literature. Some scholars have suggested a move toward the concepts of
disaster resistant community (Geis 2000, Armstrong 2000). Others have emphasized a
need to focus on resiliency (Britton and Clarke 2000, Burby et al. 2000, and Buckle et al.
2000). Boulle et al. (1992), Berk et al. (1993) and Mileti (1999) championed the concept
of sustainability or sustainable hazards mitigation. Cutter (1996, 2001), Cutter et al.
(2003), Blaikie et al. (1994), and Anderson (2000) recommended a focus on hazard
vulnerability as a means to tie in all phases of disaster management.

Regardless of its weaknesses, CEM attempts to provide a holistic view of the
disaster lifecycle and its concomitant functions. Geis (2001) notes that “everything is
interconnected and a holistic, integrated approach [to disaster management] is required. ..
(p. 152).” Mileti (1999) observes that “researchers have called for a broad view of the
disaster problem... (p. 35).” McEntire (2004) furthered this notion stating that
“comprehensive perspectives should become more valued in future disaster scholarship
and that maintaining a reliance on the phases of disasters should be a priority in
emergency management theory” (p. 35). While it is clear more research on the
complexities of disaster is required to better understand the disaster problem as described
by Mileti (1999), scholars need to direct more research toward understanding and
measuring the relationship between mitigation, recovery, preparedness and response

(McEntire et al 2001, McEntire and Marshall 2003, McEntire 2004).
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The disaster management community historically has placed more emphasis on
emergency response rather than disaster mitigation and recovery. This preference for
response over preparedness has done little to address rising disaster losses (McEntire
2004). This is understandable given the limelight endeared by live video feeds of disaster
victims, flooded homes, or streets filled with debris. Mitigation is not the sexiest of
endeavors and more often than not goes unnoticed by the public until local protective
measures fail during times of need.

Although disaster policy and operations remain largely event driven, a paradigm shift
in emergency response practice has taken place over the past fifty years from simply
responding to disasters and providing relief to victims toward emergency management as
a discipline to better prepare for, respond to, mitigate for, and recover from disasters
(McEntire et al 2001, McEntire and Marshall 2003, McEntire 2004, Sylves 2008). This
philosophical shift has been strengthened by enabling legislation passed by Congress
incorporating mitigation into routine federal disaster operations and as a requirement for
federal assistance for local preparedness activities and post-disaster relief. This paradigm
shift has also been reinforced by acknowledgement of several core principles that have
invariably guided federal disaster policy and local emergency management practice during
this period. These fundamental tenets of disaster management are:

e emergency management is a shared responsibility across all levels of government
e emergency response is primarily a local responsibility

e policy and practice should represent the full life cycle of disaster
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e all-hazards approach to disaster management instead of maintaining unique and

separate capacities

PPD-8 characterizes an evolution in national emergency management policy and
application of CEM theory. By joining the traditional pillars of the disaster lifecycle with
the law enforcement and interdiction elements of Homeland Security through prevention
and protection, PPD-8 represents a logical progression toward all hazards, all threats
emergency management. Encapsulated by five mission frameworks: Prevention,
Protection, Response, Recovery, and Mitigation and their supporting initial operating
plans; PPD-8 engenders a culture of preparedness, bridging comprehensive emergency
management with disaster risk management, recognizing that” risk unmanaged leads to
the occurrence of disaster” (Yodmani 2001). With its notions of risk, vulnerability, and
regional variation, it is reasonable to assert that PPD-8 is largely based on a Hazards-of-
Place construct of vulnerability assessment.

Other disaster management concepts also operate within the framework of CEM.
Many of these concepts and operating models are encapsulated by the National Incident
Management System (NIMS) that was established as federal emergency management
doctrine under HSPD-5. NIMS covers the emergency management concepts of incident
command system, unified command, multiagency coordination and addresses common
terminology, training and qualifications, and information and technology to name a few.
The NIMS is linked to PPD-8 and the coordinating structures of the underlying national

preparedness system.
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DISASTER OPERATIONS, IMPACT MODELING, AND ESSENTIAL
ELEMENTS OF INFORMATION

The National Incident Management Systems (NIMS) serves as the foundation for
disaster operations across all levels of government and community involved in
emergency management. The NIMS unites the practice of emergency management and
incident response throughout the country by focusing on five key areas or components
(preparedness, communications and information management, resource management,
command and management, and ongoing management and maintenance) and leveraging
existing structures such as the incident command system to create a comprehensive and
proactive system for those responding to incidents or planned events (FEMA NIMS Fact
Sheet 2012). Disaster operational units apply the principles of NIMS, Incident Command
System (ICS), and the various frameworks under PPD-8 to manage the conduct and
maneuvers necessary to assist in the response, recovery, mitigation, and future planning
and preparedness activities related to an incident. Many of the functions necessary to
support disaster operations are executed by emergency support functions (ESFs) per the
National Response Framework that aligns to NIMS (NRF Fact Sheet 2012). FEMA
serves as the federal lead for ESF #5: Emergency Management. ESF#5 operates at all
levels of disaster operations, serving as the emergency support team for DHS and the
information and planning section for the disaster field office. ESF#5 facilitates the
overall activities of the Federal Government in providing assistance to one or more

affected States, coordinating with the local incident commander, as well as mission and
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decision support elements through collection, analysis, processing, and dissemination of
information about a potential or actual disaster or emergency to all parties involved (ESF
5 — Information and Planning Annex 2003).

Standard operating procedures require that ESF#5 provide the initial assessment of
the incident, work across the emergency support functions and mission support partners
to compile timely and appropriate information on the incident, and disseminate necessary
information to emergency managers and first responders. To achieve situational
awareness, ESF#5 compiles situational reports based on essential elements of information
(EEls) from a variety of sources. These EEIs serve as the basis for understanding disaster
conditions, forecasting potential impacts and consequences, provisioning key resources,
tracking progress and ground crews, conducting current and future planning, and
maintaining overall situational awareness of the incident. According to the ESF#5 -
Information and Planning Annex, EEIs provide emergency managers early intelligence
on the effect of a disaster on the population and infrastructure of an area and gage the
resourcing requirements that might be required to support the incident response and
recovery. For hurricane events, ESF#5 and disaster field units leverage hurricane storm
track information supplied through the NOAA subtropical weather advisories published
from the National Weather Service, storm surge information derived from the sea, lake,
and overland surge (SLOSH) model outputs generated by the NOAA Coastal Services
Center, and damage and impact assessments produced using the FEMA HAZUS-MH
program (HLS GeoCONOPS v5.0 2013; FEMA Geospatial Standard Operating

Procedures 2012).
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“This information [from the EEIs] facilitates accurate assessment of what response
activities and materiel are required to save lives, relieve human suffering, and
expedite response and recovery operations. During the early hours of a disaster and
in the absence of “ground truth” information such as actual on-site surveys or
imagery, GIS, computerized predictive modeling, and damage estimation software
may be used to develop initial estimates of damage. As soon as possible, actual on-
site ground surveys will be performed. Sources may include a Federal-State
Preliminary Damage Assessment (PDA) and information from Federal, State, and
local government agencies, among others, to establish “ground truth”... (ESF#5 —
Information and Planning Annex 2003). See appendix A.

During the recovery and mitigation phases of disaster operations, public and
individual assistance grant programs are initiated to support community rebuild and
restoration and to provide citizens with housing and other needs. This direct federal
assistance also includes grants issued through the hazard mitigation grants program to
assist state and local governments with the development of hazard mitigation risk plans
and with the implementation of long term mitigation measures to promote community
resilience. The status of these projects and activities become EEIs within the situational
reports produced by ESF#5.

In many ways, EEIs act as indicators for assessing the scope and severity of a
disaster and the ensuing actions required to support disaster operations and serve as
outcomes measures for assessing the impact of the disaster and tracking progress toward
recovery. Since EEIls are intended to reflect ground-truth and the effects of a disaster on
population and infrastructure, it begs a comparison with the indicators used to conduct
hazard vulnerability assessments and derive the associated hazard vulnerability / risk

indexes. This comparative analysis may reveal any potential relationships between the
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practice of disaster operations and disaster risk management and help to validate if

vulnerability indicators are true surrogates of exposure, susceptibility, and risk.

HAZARD VULNERABILITY AND COMPREHENSIVE EMERGENCY
MANAGEMENT

Hazard assessment and vulnerability research offers one of the more promising
approaches to CEM within disaster management research, fusing the science of
mitigation with the practice of emergency response. McEntire (2004) suggests that
“vulnerability may [in fact] help us to understand the purpose of emergency management
since it deals with the goals of liability reduction and capability enhancement (i.e.,
reducing risk and susceptibility and raising resistance and resilience (p. 11).”

As Cuny postulated in his work titled, “Disaster and Development”, the rise in
disasters is related to a rise in the vulnerability of people induced by the development of
the built environment and that the increase in vulnerability is not uniform and varies
across regions (Cuny 1983). From this perspective, vulnerability is the only aspect
emergency managers have control over in the disaster equation and may provide the best
venue for accurately describing and understanding the true nature of disasters. Yodmani
notes that within emergency management the “emphasis has shifted to using vulnerability
analysis as a tool in disaster management” as part of a more comprehensive approach to
disaster risk management that encompasses “three distinct but interrelated components:
hazard assessment, vulnerability analysis, and enhancement of management capacity”

and the ongoing development of disaster operations (Yodmani 2001, p. 2). Taking this
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one step further, hazard assessment and vulnerability thereby extends the practice of
mitigation performed through risk indices into the realm of response operations often
accomplished through the application of impact models. The fusion of impact modeling
with vulnerability indexing may offer the best opportunity for studying the complexity of
disasters and their associated response and recovery operations, and gaining a better
understanding of disaster phenomena and how impact models relate to vulnerability
assessments to complete the CEM feedback loop of the disaster lifecycle. This is
especially true when considering the large number of variables involved in the two

processes.

HAZARD VULNERABILITY RESEARCH TRENDS AND CONCEPTS
Hazard assessment and vulnerability research is a relatively new paradigm in the social
sciences only materializing as an important theoretical topic in the 1980s (Bohle et al.
1994, Rygel et al. 2005). Alwang et al. conducted a multi-disciplinary review of
vulnerability research and concluded that “practitioners from different disciplines use
different meanings and concepts of vulnerability, which, in turn, have led to diverse
methods of measuring vulnerability” (2001, p. 2). Cutter et al (2003, p.1) also concluded
that “vulnerability has many different connotations depending on the research orientation
and perspective” (Dow 1992, Cutter 1996, 2001, 2003). According to Cultter,
vulnerability is broadly defined as the “potential for loss” (1996, p.529). Balikie et al.
define vulnerability as “the characteristics of a person or group in terms of their capacity

to anticipate, cope with, resist, and recover from the impact of a natural hazard”

30



(Kumpulainen 2006, p. 67). Other researchers define vulnerability as the capacity to be
wounded (Kates 1985, Dow 1992). The United Nations Development Project Bureau for
Crisis Prevention and Recovery defines vulnerability as “a condition or process resulting
from physical, social, economic, and environmental factors, which determines the
likelihood and scale of damage from the impact of a given hazard” (UNDP 2004, p. 11).
The European Union Spatial Program Observation Network (ESPON) Hazards Project
defines “vulnerability as a set of conditions and processes resulting from physical, social,
economic, and environmental factors that increase susceptibility of a community to the
impact of hazards” (EPSON 2003, p. 12). Vulnerability encompasses the idea of response
and coping, since it is determined by the potential for a community to react and withstand
a disaster.

Rygel et al. (2005) have determined that two main perspectives or camps on
vulnerability have formed within the academic literature based on the difference
conceptualizations of vulnerability (Dow 1992, Cutter 1996, 2001, Wu et al. 2002, Adger
et al. 2004). Cutter asserts that a third perspective exists based on “hazard of place”
(Cutter 1996, 2003, Rygel 2005). The first perspective treats vulnerability as a pre-
existing condition with an emphasis on potential exposure to hazards (Cutter 1996, Rygel
et al. 2005). Cutter brands this perspective as an exposure-based model (Burton et al.
1993; Cutter 1996, 2001, 2003). Research from this perspective tends to assess the
distribution of some hazardous conditions, the human occupancy of the hazard zone, and
the degree of loss of life and property resulting from a particular event (Rygel et al.

2005). The second perspective on vulnerability advocates that not all individuals and
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groups exposed to a hazard are equally vulnerable and affected people display patterns of
differential loss (Wu et al. 2002). This differential loss depends in part on the coping
ability of those affected as well as exposure to the hazard (Anderson and Woodrow 1991,
Dow 1992, Watts and Bohle 1993, Cutter 1996, Clark et al. 1998, Wu et al. 2002, Rygel
et al. 2005). Coping ability in this context has been defined as a combination of resistance
and resilience (Dow 1992, Cutter 1996, Clark et al. 1998, Wu et al. 2002). Resistance is
expressed as the ability to absorb the damaging impacts of a hazard and continue
functioning and resilience as the ability to recover from losses quickly (Rygel et al.
2005). Cultter refers to this perspective as vulnerability as a social condition, a measure of
societal resistance or resilience to hazards (Blaikie et al, 1994, Hewitt 1997, Cutter 2001,
2003). The third perspective on vulnerability combines the elements of the first two
perspectives and is referred to by Wu et al as the vulnerability of places framework (Wu
et al. 2002, Rygel 2005). This perspective treats vulnerability as a biophysical risk and a
social response within a specific geographic domain (Rygel 2005). Cutter expresses this
perspective as the integration of potential exposures and societal resilience with a specific
focus on particular places or regions (Kasperson et al. 1995; Cutter, Mitchell, and Scott
2000, Cutter 1996, 2001, 2003). This perspective attempts to address the “vulnerability
paradox” described by Cutter to examine social and place inequalities — characteristics of
community and the built environment. In this conceptualization, risk interacts with
mitigation to produce hazard potential (Cutter 2003, p. 243). This construct is realized
through the Hazards-of-Place model of vulnerability (Figure 4) as a means to understand

the components of vulnerability (Cutter 1996, Cutter et al. 2000; Heinz Center 2002).
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Figure 4: Hazards-of-Place Model (Cutter et al. 2003)

MEASURING VULNERABILITY IN HAZARDS RESEARCH

Vulnerability science is not nearly as advanced as risk estimation science (Hill and
Cutter 2002, p. 25). Measuring vulnerability is usually achieved by constructing a
vulnerability index based on several indicators that are reflective of a phenomenon (Pine
2009). Gall (2007) characterizes a vulnerability index as “an abstract theoretical
construct in which two or more indicators of the construct are combined to form a single
summary score” (p. 13). This construct requires a careful balance between simplifying
the phenomenon and providing sufficient detail to detect characteristic differences
(Deiner and Suh 1997). The complexity of the quantitative analysis used to derive the

vulnerability index increases as the number of indicators selected increases in order to
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represent the phenomena. This yields a “complex measure [of vulnerability] that is
almost impossible to verify, especially when the phenomena cannot be measured
directly” (Gall 2007, p. 18).

The selection of vulnerability indicators is often subjective and descriptive having
been chosen based on a particular theoretical framework or functional relationship
(Deiner and Suh 1997). These indicators can be either direct variables of interest or
proxy variables that serve as substitutes for the variables of interest (Gall 2007). Hill and
Cutter (2002) find that current indices of vulnerability differ in indicator selection,
statistical downscaling and incorporation of scale. Gall (2007) contends “there is no
generally accepted set of indicators to assess social vulnerability nor is there empirical
evidence for the connectivity or relative importance of those indicators” (p. 15-16). For
example, indicators for the disaster risk index (DRI) are based on best-fit linear
regressions or statistical relationships; while, indicators for the social vulnerability index
(SoV1) are based on a combination of theoretical framework and functional relationships
(Gall 2007, p. 17). The disaster preparedness index (DPI) also employs a combination
approach to choosing its indicators.

Additionally, “vulnerability indices at all scales possess questionable reliability and
explanatory power not only because of conceptual challenges but also because of the lack
of empirical evidence, standards, and quality assessments in constructing these indices”
(Gall 2007, p. 19). Deiner and Suh (1997) find that vulnerability science is plagued by
significant amounts of subjective judgment in the research process. Andrews et al.

(1994) argue that many indices rarely have adequate scientific foundations to support
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precise rankings. Cash and Moser (2000) infer that vulnerability assessments are often
conducted at geographic scales that differ from the scale at which management occurs.
Clark et al. (2000) propose choosing a vulnerability assessment scale that is congruent
with the level at which social-environmental interactions are particularly intense or
problematic for that hazard and at which management occurs. Eakin and Luers (2006, p.
381) suggests that “scale is not only a concern of the unit of analysis in research but also
an issue of compatibility with decision making”. According to Gall (2007),
“implementation of theoretical knowledge in the form of vulnerability indices is currently
subject to arbitrary choices by researchers” (p. 28). This lack of transparency, empirical
basis, and uncertainty poses a challenge to the reliability, voracity, and utility of
vulnerability indices to deliver robust vulnerability metrics (Gall 2007).

A brief discussion of the indices being examined by this research is provided in
context to the aforementioned issues. The disaster risk index (DRI) is an outcome-
oriented vulnerability index intended to “a) improve understanding of the relationship
between development and disaster risk, b) enable the measurement and comparison of
relative levels of physical exposure to hazard, vulnerability and risk, c) identify
vulnerability indicators, and d) map international patterns of risk” (UNDP/BCPR 2004, p.
2). It is relevant to note that increased land-use and economic development are
considered contributing factors to the increased susceptibility and vulnerability of the
coastal United States to hurricane damage. According to Gall (2007), “the selection of
the DRI indicators was guided by correlations with proxy measures and not by theoretical

framework or expert opinion” (p. 54). DRI is based on the methodology: Risk = Hazard *
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Population * Vulnerability. The DRI is a backwards looking vulnerability index as it
considers vulnerability from the context of past events rather than attempting to predict
vulnerability through statistical modeling (Gall 2007). “All indicators are aggregated
averages over a 21-year period from 1980-2000 (Gall 2007, p. 55). In the DRI, risk is
expressed as hazard-mortality with population representing biophysical factors and
vulnerability representing physical conditions. It is comprised of four hazard-specific
vulnerability sub-indices as noted in Appendix C. Hazard-mortality serves as the
dependent variable; while the independent variables include exposed population and
twenty-six socioeconomic indicators. The DRI is derived from a stepwise linear
regression used to determine the important indicators and produce the indicator weights
(beta coefficients). The final DRI score is the sum of the weighted aggregation for each
hazard type sub-indices. (See Appendix C). DRI indicators are not normalized and the
unit of measurement is not unit-less like other vulnerability indices. It is expressed as the
number of Killed per 21-year average.

The disaster preparedness index (DPI) is based on the theoretical underpinnings of
existing vulnerability science and applied research on vulnerability indicators. It
leverages works from UNDP /BCPR (2004), Dwyer et al. (2004), Cutter et al. (2003),
Simpson (2001), Tapsell et al. (2003), Cardona (2005a), and Davidson and Lambert
(2001). According to Simpson (2006), the disaster preparedness index (DPI) is a
composite result of the presumed relationship between community preparedness
measures and the derivation of the vulnerability score as depicted in Appendix D. It is

based on the equation: Vulnerability = hazard * probability * frequency * Vulnerability
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measures (VM). Unlike the DRI, the selection of indicators for the disaster preparedness
index was driven by expert opinion among identified experts in vulnerability science
(Simpson 2006). The DPI considers 150 different indicators that are identified as
functional measures of preparedness (FM) or vulnerability measures (VM). Functional
measures are construed as community assets and include factors such as the physical,
economic, sociocultural, and ecological dimensions of capital. Vulnerability measures are
interpreted as community liabilities and include factors such as frequency and probability
of the hazard as well as socio-economic factors like public debt, housing vacancy rate,
and age of emergency operations plans (See Appendix D). DPI indicators are normalized
and weighted based on statistical regression.

The social vulnerability index (SoV1) is based on the Hazards-of-place model
posited by Cutter (1996a). However, it does not utilize expert opinion to determine the
vulnerability indicators. It defines vulnerability through the interaction of biophysical and
social conditions with the integrating mechanism as place. From the perspective of Hill
and Cutter (2002, p. 15), “understanding the social vulnerability of places is just as
essential as knowing about the biophysical exposure.” This approach allows for more
direct insertion of location as a factor of exposure and better understanding of the role of
geography as a determinant of vulnerability. It allows us a means to discern between
disaster-prone and disaster-resilient communities and what factors influence both
outcomes (Hill and Cutter 2002).

In simple terms, “SoVI quantifies the social vulnerability of U.S. counties to

environmental hazards and results in a comparative metric that facilitates the examination
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of the differences in social vulnerability among them...” (HVRI SoVI® webpage 2013)".
SoVI is constructed based on an initial analysis of 250 variables of social vulnerability
identified through a broader review of vulnerability research. Cutter et al. (2003) tested
these 250 variables for multicollinearity producing a subset of 42 normalized variables.
Using principal component analysis, Cutter et al. (2003) reduced the 42 independent
variables to 11 factors that represented 76.4% of the variance. The 11 factors, depicted in
Table 2 below, consist of personal wealth, age, density of the built environment, single-
sector economic dependence, housing stock and tenancy, race, ethnicity, occupation, and
infrastructure dependence. Schmidtlein et al. (2008, p. 1110) suggests that the “SoVI
algorithm does not appear to be substantially influenced by scalar changes, [and] it is
sensitive to variations in construction.” This highlights the need to validate SoVI using
disaster outcome data to provide an empirical analysis of its ability to characterize

community vulnerability.

1. Hazards Vulnerability Research Institute 2013. Social Vulnerability Index
webpage. http://webra.cas.sc.edu/hvri/products/sovi.aspx. HVRI, University of
South Carolina website. Accessed on multiple occasions in production of this
research between January, 2012 to May, 2016.
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Table 2: Dimensions of Social Vulnerability
US County Level 42-variable Component Summary

Percent of
Factor Name Dominant Variable Variation | Cardinality
Explained
1 Personal Wealth Per capita income 12.4 +
2 Age Median age 11.9 -
Density of the Built No. Commercial establishments/sq.
3 . ; 11.2 +
Environment mile
Single-sector
4 Economic % employed in extractive industries 8.6 +
Dependence
5 Housing Stock and % housing units that are mobile homes 7.0 -
Tenancy
6 Race — African % African American 6.9 +
American
7 Ethnicity — Hispanic % Hispanic 4.2 +
8 Ethnicity — Native % Native American 4.1 +
American
9 Race — Asian % Asian 3.9 +
10 Occupation % Employed in service occupations 3.2 +
Infrastructure % Employed in transportation,
11 L A 2.9 +
Dependence communication, and public utilities

(Source: Cutter et al. 2003, p. 252)

The objectives of this dissertation are to examine the relationships between hazard

vulnerability science and disaster management policy and practice and to analyze the

explanatory power of the social vulnerability index (SoVI) to accurately predict the federal

costs and level of damages for a hurricane disaster using empirical data and model data for

9 Atlantic hurricanes. The first step involves conducting a comparative analysis of three

hazard vulnerability indices (social vulnerability index, disaster risk index, and disaster

preparedness index) and their underlying indicators to determine which variables are

considered the most common elements of vulnerability. The second step involves

performing a statistical analysis using exploratory OLS regression and spatial econometrics

39




and geographically weighted regression. The statistical analysis encompasses five
regression scenarios: scenarios 1-2 attempt to quantify the theoretical relationships
between hazard vulnerability science and disaster management policy and practice;
scenarios 3-4 attempt to analyze the explanatory power of hazard vulnerability science to
accurately predict costs and damages; and scenario 5 attempts to quantify the relationships

between disaster operations practice and disaster management policy.
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CHAPTER 3: COMPARATIVE ANALYSIS OF HAZARD VULNERABILITY

THEORY AND DISASTER MANAGEMENT POLICY

This research seeks to substantiate the following a) hazard vulnerability theory and
disaster management policy share common foundations and b) the use of the social
vulnerability index (SoVI) - to test the hypothesis that hazard vulnerability indices can be
used to accurately predict the exposure of a community to a hurricane hazard or the level
of damages in the community if a hurricane disaster of similar size and magnitude did
occur. First, the study performs a qualitative analysis of hazard vulnerability indices using
a pedigree matrix based on a qualitative taxonomy adopted from Gall (2007, p.33-34). This
approach is widely used for critical analysis of indices and indicators (Gall 2007, Booysen
2002; Eyles and Furgal 2002, von Schirnding 2002) and allows for an “apples to oranges”
comparison of the scale and the composition of the social vulnerability, disaster risk, and
disaster preparedness indices. These vulnerability indices were chosen as representative
of the leading concepts in hazard vulnerability science considering the three dimensions of
hazard vulnerability: economic, social, and physical (UNDP / BCPR 2004). The social
vulnerability index focuses on the social dimensions of vulnerability. The disaster risk
index is more exposure based with an emphasis on ecological conditions. The disaster
preparedness index emphasizes economic dimensions with additional elements for

measuring emergency management factors to account for policy shifts toward prevention
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and mitigation strategies. Many of the preparedness factors in the disaster preparedness
index are expressed as fiduciary terms such as funding for emergency operations, local
funding for mitigation/planning, funding per capita, and public debt (Simpson 2006).

Hazard vulnerability indicators and disaster data are not free from bias regardless of
the data source. Each hazard vulnerability index examined is based on certain theoretical
aspects that emphasize different elements or components of vulnerability just as disaster
management policy is influenced by currents of ideology. Cobb and Rixford (1998)
contend that all indicator work has some political aspects that are value oriented and
subjective in nature. Carly (1981) argues that all social indicators can and will be used to
advocate particular political stances, and Cobb (2000, p. 20) claims that government data
are subtly motivated by ideology. King (2001) suggests bias arises more from the
misapplication of data based on availability rather than the applicability of the data to
vulnerability. The goal is to compare and contrast the indices to understand the theoretical
frameworks, structures, merits, and shortcomings of the vulnerability indices. The findings
from this analysis answer the question regarding the most suitable vulnerability index for
testing the hypothesis that hazard vulnerability indices can be used to accurately predict
the exposure of a community to a hurricane hazard or the level of damages in the
community if a hurricane disaster of similar size and magnitude did occur.

The first step in the qualitative assessment is to input the characteristics for each
vulnerability index into a pedigree matrix using the scoring criteria and ratings listed in
Table 3. Based on the pedigree matrix scoring system, an index is ranked from poor to

excellent by averaging the results for each characteristic. Table 3 shows that SoV1 received
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the highest qualitative score amongst the three indices. SoVI received an average score of
good (3.1) on the pedigree matrix. It received a score of good or excellent on 7 of 9
dimensions. SoVI is based on well-established theory in hazard vulnerability science and
uses a composite approach to selecting indicators that relies on expert opinion and
statistical relationships. The data used to produce SoVI is public domain and regularly
maintained. However, SoVI uses proxy indicators to determine vulnerability rather than
direct measurements. This resulted in a medium score for technique. There has also been
limited empirical validation of SoVI with independent measurements warranting a score
of 2 for validity. Overall, SoVIscored 27 out of a possible 36 points or 75% on the pedigree
matrix. This is 36 percentage points higher than the next closest candidate index. The
other 2 indices each scored below 50% with average scores of 1.6 and 1.1. The DRI scored
14 points out of a possible 36 or 39%. It achieved low scores for conceptual framework,
representativeness, reliability, and validity. Previous research suggests the DRI has issues
with documentation, repeatability of results, very weak and low validation of results, and
methodological limitations (Gall 2007, Openshaw and Alvanides 2005; Wrigley et al.
1997). Gall (2007) found that “bias related to hazard mortality ultimately diminishes the
explanatory power of the DRI” (p. 107), and that the DRI is “contestable due to its implicit
acceptance of ecological fallacy and/or modifiable areal unit problem since it neglects the
socio-economic characteristics of its population at risk in demarcated zones” (p. 110).
The DPI received the lowest score of the indices included in the pedigree matrix receiving
10 points out of a possible 36 or 28%. This is partly due to limited application of the DPI.

Research was scarce on the actual implementation of the DPI based on the conceptual
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framework developed by Simpson 2006. It was also not clear if the data required to support
the DPI were publicly available and maintained. The DPI received a score of 0 for
sensitivity and reliability due to those factors. The theory behind the DPI was considered
preliminary due to the limited availability of supporting research and many of the indicators
used to comprise the DPI are based on survey or imputed data. These qualitative analysis

findings indicate that SoV1 is the most viable candidate index for testing the hypothesis.
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Table 3: Results of Functional Analysis for Vulnerability Indices using Pedigree
Matrix (Adapted from Gall 2007)

Score Matrix

Description

4 - Bxcellent

Well established theory, readily available data, empirical measurements, method is best practice in community, validation by
comparing to independent measurements same variable, easily reproduced

3-Good

Accepted theory, public domain data regular maintenance, historical data direct measurements, reliable method common in
discipline, compared with independent measurements related variable, method require few transformations

2 - Medium|

Partial theory, public domain irregular maintenance, model derived data, accepted limited consensus, compared with
measurements not independent, model specific data

1-Low]|

Preliminary theory, limited data access, educated guess measurements, preliminary methods, weak or indirect validation,

modelled parameters

0-Poor

Speculation, proprietary data, specalutive measurements, method is unproven, no validation, not transferable

Hazard Vulne rability Index

How many indicators are selected?

Criteria Disaster Risk Index Disaster Preparedness Index Social Vulne rability Index
Conceptual Framework 1 1 4

Is the approach methods or data driven? Both Data driven Methods

Purpose 3 3 4

Is the purpose of the index to inform policy-

making, assess impact/damage, or capture Yes - Policy/Trends Yes - Policy Yes - Policy/Impact/Trends
trends?

Representativeness 1 1 3

How are indicators selected? Statistical Relationship Expert Opinion Expert Opinion/Statistical Relationship

26 regressed to 10

150 regressed to 7

250 regressed to 29

Data 2 1 3
What are the data sources? UN- Country mortality estimates US census and survey data US census socio-economic data
Are the data readily available? Yes No Yes
What is the quality of the data? Low Unknown Good
Technique 2 1 2
‘What are the indicators’ levels of measurement . . .
. o Ratio Unitless Unitless
(ordinal, ratio, interval)?
Are indicators scaled/adjusted? No No No
Are sub-indices used and if so how many? Yes - 4 Yes -7 Yes -7
How are indicators combined statistically? Best Fit Linear Regression Best Fit Linear Regression Principal Component
Are indicators/sub-indices weighted? Yes Yes Yes
What is the index’s level of measurement?
Country County County
Is the index scaled/adjusted? Yes Yes Yes
Are spatial techniques used (mapping, spatial Yes No Yes
analysis, spatial statistics)?
Sensitivity 2 0 3
Are indicators sensitive of capturing variations No Unknown Yes
Does the index capture longitudinal changes? Yes No Yes
Feasibility 1 2 3
Do the authors provide sufficient information
) No Yes Yes
so that other users can replicate the approach?
Reliability 1 0 3
Does the index 'p'roduce similar results after No Unknown Yes
numerous repetitions?
Validity 1 1 2
What elements (.)f \_/ulnerab|lrty are measured | physical/social vuln.e.r abilty - hazard physical/social/economic vulnerability socialleconomic vulnerability
by the selected indicators? specific
Does the index capture the phenomena in Low - Weak and very indirect o . Medium - Compared with previous
. . Poor-no validation available .
question? validation measurements not independent
Total 14 10 27
Average Score 1.6 11 3.0
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Since it has been established that SoVI is the most viable hazard vulnerability index
for testing if a hazard vulnerability index can accurately predict the impact or level of
damages from a hurricane, the next step in the comparative analysis is to examine the
relationship between hazard vulnerability theory and disaster management policy that
employs the practice of impact modeling to generate the essential elements of information
(EEIS) used to estimate the size and magnitude of a disaster. This is done by constructing
a crosswalk matrix to cross referencing social vulnerability indicators (representing the
science), essential elements of information (representing the disaster management policy),
and disaster operations impact model variables (representing the disaster operations
practice). FEMA produces the impact model variables using HAZUS-MH software and
spatial algorithms that are consistent with ESF#5 operating procedures and the best
practices described in the Homeland Security Geospatial Concept of Operations. The
findings from this analysis answer the question whether hazard vulnerability theory and
disaster management policy and practice share common foundations.

Figure 5 below indicates strong linkages exist between disaster management policy,
practice, and hazard vulnerability science. SoVI includes variables that align with 3 of the
4 groupings of EEIs: disaster boundary areas, socio-economic/political, critical
infrastructure information. The only EEI group omitted by SoVI is geophysical
information. From the perspective of Hill and Cutter (2002, p. 15), “understanding the
social vulnerability of places is just as essential as knowing about the biophysical
exposure” as it allows for more direct insertion of location as a factor of exposure and better

understanding of the role of geography as a determinant of vulnerability.
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Figure 5: Crosswalk matrix of Variables for Disaster Management Policy (EEIS),
Disaster Response Practice (Impact Model), and Vulnerability Science (SoVI).

Figure 5 also depicts linkages between SoVI and the disaster operations impact
model variables. These linkages are consistent with the theoretical underpinnings of SoVI
and suggest hazard vulnerability science and disaster management policy and practice
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share common foundations. As SoVI is based on the hazards-of-place model posited by
Cutter et al. (1996a), it defines vulnerability through the interaction of biophysical and
social conditions using place as the integrating mechanism. SoVI was initially comprised
of 11 factors, depicted previously in Table 2, personal wealth, age, density of the built
environment, single-sector economic dependence, housing stock and tenancy, race,
ethnicity, occupation, and infrastructure dependence. SoVI was updated by the authors
following the 2010 Decennial census and release of the American Community Survey to
one based on 29-variables representing 7 factors that account for 72.5% of the variance as
compared to earlier versions that utilized 11 factors that made up 74.6% of the variance.
The 7 factors included in the current version of SoVI are: personal wealth, race and class,
age, Hispanic ethnicity, nursing home residents, gender, and Native American ethnicity.
These factors are essentially a more calibrated subset of the previous 11 factors. This
dissertation uses the more current 7 factors versions of SoVI as those were the data
provided by the HVRI for this dissertation.

Figure 5 above shows theoretical linkages between disaster management EEIs and
disaster operations impact model variables. This is not surprising given that the disaster
operations impact model was constructed to provide FEMA with initial estimates on the
potential impact to life, property, and community disruption for a projected hurricane. It
was developed to operationalize EEIls into an impact model based on HAZUS-MH and
National Weather Service subtropical storm advisories. The impact model variables align
with all 4 groupings of EEls. EEIs provide FEMA a means “to assess quickly and

accurately the effect of a disaster on the population and infrastructure of an area” and

48



“facilitates accurate assessment of what response activities and materiel are required to
save lives, relieve human suffering, and expedite response and recovery operations” (ESF
#5 - Information and Planning Annex 2003, p. 11).

‘During the early hours of a disaster and in the absence of “ground truth”

information such as actual on-site surveys or imagery, GIS, computerized

predictive modeling, and damage estimation software may be used to develop

initial estimates of damage.’ (ESF #5 - Information and Planning Annex 2003,

p. 11)

The comparative analysis conducted for this dissertation utilized a two-tiered
approach using a pedigree matrix and variable crosswalk matrix. The pedigree matrix
was used to compare the various dimensions of vulnerability indices to determine that
SoVI1 was the most applicable candidate index for testing the predictive power of hazard
vulnerability indices. The crosswalk matrix was used to demonstrate that hazard
vulnerability science and disaster management policy and practice have common
foundations and share similar theoretical underpinnings. To examine the empirical
relationship between hazard vulnerability science and disaster management policy and

practice, depicted in Figure 5, this dissertation used exploratory OLS regression and

correlation analysis.
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CHAPTER 4: STATISTICAL REGRESSION ANALYSIS: DATA, METHODS, AND

APPROACH

The findings from Chapter 3 of this research demonstrated common theoretical
foundations between hazard vulnerability science and disaster management and practice.
This was accomplished using a comparative analysis based on a pedigree assessment of
hazard vulnerability indices and a crosswalk mapping of variables across these
disciplines. The pedigree matrix results argue that SoVI has the best pedigree compared
with two other leading composite vulnerability indices. It also argues that SoVI was
constructed to serve as a reliable metric for disaster preparedness and mitigation
planning.

According to Cutter et al (2003), SoVI provides the emergency management
community and policy makers a useful tool to illustrate the geographic variation in social
vulnerability, to identify areas where there is uneven capacities for preparedness and
response, to target areas where resources might be used more effectively to reduce pre-
existing vulnerability and promote risk mitigation measures, and as an indicator in
determining the differential recovery from disasters (Cutter et al 2003, HVRI SoVI
webpage 2013). Today, SoVI is actively being used in hazard mitigation planning and
disaster response and recovery by states and federal agencies (Emrich and Cutter 2016).

SoVI1 was used in support of Hurricane Sandy along the Mississippi coast and New Jersey
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Shore and for the 2015 floods in South Carolina. Emrich and Cutter (2016) claim that
SoVI “has high utility as a decision-support tool for emergency management” turning
“historical disaster impact measures into actionable information for emergency managers,
recovery planners, and decision makers because it empirically measures and visually
depicts a population’s (in)ability to adequately prepare for, respond to, and rebound from
disaster events” (Emrich and Cutter 2016).

This chapter expands upon the findings from the comparative analysis conducted in
chapter 3 and the work from Cutter et al. (2003) and Gall (2007) to quantify the
theoretical foundations and to test the reliability and usefulness of SoVI to predict
disaster impacts and form the basis for effective mitigation and preparedness strategies. It
applies exploratory regression using ordinary least squares combined with spatial
econometrics and geographically weighted regression to examine the relationship
between the SoVI scores, federal disaster assistance outcome data, and impact model runs
for nine (9) Atlantic hurricanes that occurred between the years 1999-2004. The
hurricane disasters were selected based on the following criteria: a) geographic position
along the Atlantic coastline, b) storm intensity between categories 1-5 on the Saffir-
Simpson scale, and c) access to the micro-level disaster outcome data.

The statistical approach proposed in this research provides a means to determine: a)
if SoVI is a reliable metric for disaster management based on empirical data, b) quantify
the relationship between the determinants of vulnerability and disaster policy and c)

improve our understanding of the spatial dimensions of vulnerability.
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DATA SOURCES AND PROCESSING ROUTINES
Statistical analysis was conducted at the county level — unit of geography - using three
types of data: social vulnerability index, disaster outcome, and FEMA impact model data.
A complete list of data sources incorporated into this research is listed in table 4 below

including those that served as inputs for the FEMA impact models.

Table 4: Data Sources

Type Author Source Dataset Year
Vulnerability data  |Univ. of South Carolina |HVRI SoVI - county level index using 29 variables 2009
Outcome data FEMA NEMIS Disaster Assistance database 1999-2004
Outcome data SBA NICAR SBA Disaster Loans data 1999-2004
Model Outputs FEMA HAZUS-MH [Impact Model data 2009
Model Outputs NOAA Hurrevac NWS Hurricane Forecast Advisory data 1999-2004
Model Outputs Census Bureau Census 2000 | TIGER 2000 data w/ SF3 demographic tables 2002
Model Outputs NGA HSIP HSIP infrastructure data 2009

The disaster outcome data are based on a sample of disaster declarations for nine
hurricanes spread along the Atlantic seaboard representing 1037 county level
observations. An observation is a county that received a disaster declaration (604) or was
captured in the impact model (1037 unique). Each observation includes a SoVI score that
was computed using the complete SoV1 dataset of counties and county equivalents. Table
5 below lists the total number of observations for each hurricane. The frequency counts
for those counties declared that were included in the analysis are depicted in Figure 6
below. There were 214 counties declared under multiple hurricane events included in the
analysis. The breakdown is as follows: 8 counties were declared under 5 hurricanes, 9

counties were declared under 4 hurricanes, 20 counties were declared under 3 hurricanes,
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and 177 counties were declared under 2 hurricanes. The remaining 390 counties were

declared under a single hurricane event. Of the 214 counties declared under multiple

hurricane events, the distribution by SoVI classification was as follows: 84 had a low

SoVI score, 81 had a medium SoV|1 score, and 49 had a high SoVI score using the 3-

classification scheme provided by the Univ. of South Carolina Hazards Vulnerability

Research Institute.

Table 5: Number of Observations per Hurricane

Number of Counties
I —— Accuracy of Impact Model
Presidentially| Projected by I_DCt' D_e clared Notes on Difference
. Declared  |Impact Model indentified by between Declared and Impact Model
Hurricane Impact Model
Bret 13 20 100% Overestimated by 7 counties or 35%
Charley 69 32 42% Underestimated by 40 counties or 68%; identifed 3 counties not declared
Claudette 18 29 100% Overestimated by 11 counties or 38%
Floyd 182 263 96% Underestimated by 8 counties or 4%; identified 89 counties not declared
Irene 18 43 100% Overestimated by 25 counties or 58%
Isabel 158 193 100% Overestimated by 35 counties or 18%
lvan 325 348 90% Underestimated by 32 counties or 10%; identified 55 counties not declared
Jeanne 53 55 100% Overestimated by 2 counties or 4%
Lili 44 54 100% Owerestimated by 10 counties or 19%
Totals 880 1037 -

604 unique - number of counties declared for a single hurricane
203 duplicates - number of counties declared under mutiple hurricanes
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Figure 6: Map of Frequency Counts for Counties Declared under Multiple

Hurricanes

The social vulnerability index data was supplied by the Hazard VVulnerability
Research Institute at the University of South Carolina (HVRI). The HVRI also provides a
complete county-level dataset of the social vulnerability index (SoV1) developed by
Cutter et al. (2003). The version of the SoV|I dataset represented in this analysis is based
on a more current iteration of SoVI that relies on statistical analysis from 29 of the
original 42 variables of economic, demographic, and housing characteristics that hazard
vulnerability research suggests influence a county’s ability to prepare for, respond to, and

recover from a natural hazard (Cutter et al. 2003). This updated version of SoV1 is based
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on 7 factors that account for 72.5% of the variance. Table 6 below provides the complete
list of SoVI variables with component loadings for each of the 7 factors used to generate

the county level SoVI index.

Table 6: SoVI variables and Component Loadings

Component Name % Variance Dominant |Component
Explained Variables Loading
QFHH 0.863
QBLACK 0.752
QPOVTY 0.715
1 Race (Black) and Class (Poverty) 16.599 QNOAUTO 0.615
QCVLUN 0.612
QEDI12LES 0.547
QFAM 0.547
MEHSEVAL 0.891
QRICH200K 0.854
2 Wealth 15.905 MDGRENT 0.85
PERCAP 0.805
QASIAN 0.681
MEDAGE 0.889
QAGEDEP 0.767
QSSBEN 0.763
3 Age (Old) 13.196 QUNOCCHU 0.718
PPUNIT -0.596
QRENTER -0.669
QNOHLTH 0.744
QHISP 0.725
4 Ethnicity (Hispanic) 9.479 QEXTRCT 0.545
QEDI12LES 0.532
QFEMLBR -0.621
. . QNRRES 0.666
5 Nursing Home Residents 7.471 HOSPTPC 0.643
6 Ethnicity (Native American) 5.042 QNATAM 0.892
. . . QSERV 0.739
7 Employment in Service Industries 4.809 QFFH 20,660
Cumulative Variance
Explained 72.501
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The SoVI dataset includes the following core data elements: County, State,
individual variables, component loadings, 7-factors, SoVI Score, 5 and 3-level
classifications, and National Percentile (where the county score ranks in comparison to
the rest of the nation). (HVRI SoVI webpage 2012). See Appendix B for the complete
list of variables included in the SoV1 data schema. The composite index scores are
mapped in Figure 7 using a 3-level classification scheme. It is worthwhile to note that a
number of counties within coastal states have low SoVI scores coded in blue in map
below. Figure 8 maps an extract of just those counties declared that were included in the
analysis using the same classification scheme. Of the 604 counties declared that were
included in the analysis, 177 or 19.4% had high SoV1 scores, 266 or 44% had medium

SoVI scores, and 221 or 36.6% had low SoVI scores.
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Figure 7: Map of SoVI Index Scores at County Level

56



Legend
l:l Declared Counties

SOVI 3-classifications
B vion (177 o 13.23)
[ medium (268 or 42%)
B o (221 o 35.0%)
[ Jusa states

Figure 8: Map of SoVI Index Scores for Declared Counties included in Analysis

The federal disaster outcome data were supplied by FEMA based on an extract
from the National Emergency Management System (NEMIS) and from the SBA through
the National Institute for Computer-Assisted Reporting database. NEMIS is the system
of record for managing disaster assistance issued under the provisions of the Robert T.
Stafford Act. The FEMA Disaster assistance grant programs fall into three main
categories: individual assistance, public assistance, and hazard mitigation assistance.
Individual assistance (1A) grants provide financial assistance as a direct result of a major
disaster for temporary housing, home repairs, replacement of a home, or permanent or
semi-permanent housing construction and for other expenses or serious needs resulting
from the disaster such as medical, funeral and burial, household items, cleaning, storage,

heating, ventilation, and air condition, or other needs determined by FEMA (FEMA
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website 2012). The Public Assistance (PA) grants provide supplemental Federal disaster
grant assistance to state, tribal, and local government including eligible Private Nonprofit
organizations for debris removal, emergency protective measures, and the repair,
replacement, or restoration of disaster-damaged, publicly owned facilities and the
facilities of eligible Private Non-Profit organizations (FEMA website 2012). The Hazard
mitigation (HM) grant program provides assistance for long-term hazard mitigation
measures to be implemented during the initial community recovery to encourage
protection of the damaged infrastructure from future events to end the cycle of repetitive
damage and loss. The dataset compiled for this effort includes grant information
aggregated at the county-level for disaster declarations issued for the selected hurricanes.
It includes the following data elements: disaster number, disaster name, year, State,
place name, place code, number of grants, and total amount in dollars. This dataset
provides a tool for examining vulnerability indices using metrics based on direct federal
assistance resulting from the impact of a natural hazard (i.e., hurricane).

SBA disaster loan program is managed by the Small Business Administration in
coordination with FEMA. The U.S. Small Business Administration (SBA) provides
disaster loans under the provisions of the Small Business Act, 15 U.S.C. 636(b), (c), and
(f). The SBA offers these low interest disaster loans to homeowners, renters, businesses
of all sizes and private, nonprofit organizations to repair or replace real estate, personal
property, machinery and equipment, inventory and business assets that have been
damaged or destroyed in a declared disaster (SBA website 2012). The National Institute

for Computer-Assisted Reporting (NICAR) maintains a national level database of the
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SBA disaster loan issued between 1980 and 2010. This dataset includes information on
the borrower, disaster, location and amount of each loan issued by the SBA as well as the
North American Industry Classification Codes (NAICS). There are a few limitations with
the data. The SBA includes data on loans that were not fully dispersed. This is due to the
fact that the SBA distributes loans as a series of payments not as a lump sum. SBA
reports that occasionally borrowers decide not to accept the entire loan amount after
getting an installment or two, this introduces some error in cost figures (IRE website
2013). The data also contains the mailing address of the borrower and not the location of
the damaged property. This may skew financial calculations based on locations
depending on the level of data aggregation. Regardless of these reporting issues, the
SBA disaster loan dataset provides a useful tool for examining the effects of a particular
disaster on small businesses and various sectors of the economy using the NAICS codes.
The disaster assistance data was aggregated to the county level using the 5-digit
county FIPS code. To remove the duplicate records for hurricane events that
encompassed multiple disaster declarations, the county records were unduplicated using a
composite key based on event name and 5-digit county FIPS code. The amounts of
federal assistance were then standardized per capita using Census 2000 population to
control for county size and population variance. The SoVI scores were appended to the
composite dataset for each county. The disaster outcome data was down selected to the
18 most meaningful variables. Data elements with little or no applicability to a statistical
regression analysis were disregarded. Figure 9 below provides a visual representation

of the data schema with the standardized variables highlighted in yellow: total amount of
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federal assistance per capita (TA_pcap), total amount of individual assistance per capita
(1A_pcap), total amount of public assistance per capita (PA_pcap), total amount of hazard
mitigation assistance per capita (HM_pcap), and total amount of SBA disaster loans
assistance per capita (SBA_pcap). In total, there are nine federal disaster outcome
datasets; one for each hurricane event included in the analysis. A complete list of

variables for the disaster assistance data is enumerated in Appendix F.
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Figure 9: Schema for Disaster Assistance Outcome Datasets
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The impact model data were also provided by FEMA and are based on their
ESF#5 operating procedures. FEMA generates the impact models by loading the National
Weather Service Advisories forecasts published through the Hurrevac software, Census
2000 socio-demographic data, and HSIP foundational data into the HAZUS-MH. The
impact model data supplied represents the final run executed based on the last hurricane
forecast advisory issued subsequent to hurricane landfall. HAZUS-MH provides the
ability to generate empirical-based damage and impact assessments for hurricanes based
on field tested fragility and loss estimation algorithms supported by the National Institute
of Building Sciences (HAZUS-MH User Guide 2009). HAZUS-MH includes an
extensive database of land-use, critical infrastructure, and population data. The National
Oceanic and Atmospheric Administration (NOAA) publishes historical data in a GIS-
ready format for sub-tropical storms based on the official National Hurricane
Center(NHC) public warnings and forecast advisories. This dataset includes storm tracks,
cones of uncertainty, and wind speed probabilities for each storm dating back to 1848 and
is available for public download from the NOAA National Climatic Data Center.

The U.S. Census Bureau offers a comprehensive database of population and
demographic data based on the Summary File 3 (SF3) and the Topologically Integrated
Geographic Encoding Referencing system (TIGER) for all jurisdictions. The TIGER
dataset provides for geographic representation of the SF3 data variables. The SF3
includes data from the “long form” of the census questionnaire that encompasses
statistically adjusted variables for populations, race, gender, socio-economic, and other

variables (US Census Bureau Fact Sheet 2000). This study utilizes the 2000 Decennial
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census data as a best representation of local population and demographics. The Decennial
Census is a snapshot in time of the night-time population of the United States produced to
assist with the reapportionment and redistricting of Congressional seats in the US House
of Representatives. Use of the 2000 Decennial Census data also reduces the time
differential between the hurricane disasters selected for study and the fixed-population
and demographic data enumerated during the 2000 Census. This data was also used by
Cutter et al. (2003) in the construction of the social vulnerability index (SoVI). These two
factors will allow for more consistency in the analysis based on common data sources.
The National Geospatial-Intelligence Agency (NGA) in partnership with the Departments
of Homeland Security and Interior compiles the Homeland Security Infrastructure
Protection (HSIP) Gold Data Product on an annual basis (since 2004) to provide a unified
database of mission-critical geospatial information for use by Homeland Security and
Homeland Defense (HLS/HD) partners to fill common operating data requirements in
support of operational needs for preparedness, response, and recovery efforts to natural
and man-made disasters. The HSIP Gold database encompasses more than 450 layers of
critical information and key resources (CIKR) comprised of the best available Federal
and commercial-proprietary data sets. HSIP Gold provides a comprehensive national
level dataset of structural elements of the built environment including the LANSCAN
Day/Night population dataset developed by Oak Ridge National Lab, the NAVTEQ
national transportation dataset, and various facilities and public assets (NGA HSIP Fact
Sheet 2012). Since SF3 data was discontinued by the US Census Bureau following the

2000 decennial census; hence, SoVI was updated in 2010 to uses the American
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Community Survey data. FEMA will also need to update their operating procedures to
include a replacement dataset for Census SF3 variables. Figure 10 below provides a
visual representation of the data schema for the impact model data. The data elements
that were duplicates or had little or no applicability to a statistical regression analysis
were removed from the dataset. SoV|I scores and total assistance per capita variables
(TA_pcap) were appended to the composite dataset for each county. In total, there are
nine federal impact model datasets; one for each hurricane event included in the analysis.

A complete list of variables for the impact model data is enumerated in Appendix E.
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Figure 10: Schema for the Impact Model Datasets
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The FEMA impact model accurately forecasted the declared counties for 8 of the 9
hurricane events used in the analysis (see table 5). The model only identified 42% of the
declared counties for hurricane Charley. The model achieved 90% or higher accuracy for
the remaining hurricanes of which it was 100% accurate for 6 of those hurricanes. While
the FEMA impact model appears to be reliable in identifying counties that end up
meeting requirements for presidential declaration (being declared), it has a tendency to
over forecast the number of counties for consideration. Analyzing the causes of the
model over forecasting are beyond the scope of this dissertation but should be examined
in future research. Figure 11 below provides a comparison of the declared counties and
the impact model counties included in the analysis. Counties shown in orange were over

forecasted by the FEMA impact model.
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Figure 11: Map of Declared Counties and Impact Model Counties
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Figures 12-20 provide detailed maps of the storm tracks, declared counties, impact
model counties, and SoVI scores for each hurricane included in the analysis followed by
a brief narrative explaining the accuracy of each model forecast and the related SoVI

Scores.
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Figure 12: Map of Hurricane Bret Storm Track, Declared Counties, Impact Model Counties, and SoV1 Scores

Hurricane Bret was the first hurricane of the 1999 Atlantic hurricane season and strengthened to a category 4 on the
Saffir-Simpson scale prior to landfall (peaks winds of 145 mph). All the counties forecasted by the FEMA impact model and
included in the disaster declaration are categorized as highly vulnerable in the SoVI index. The impact model over forecasted
the number of counties for Hurricane Bret by 35%, but accurately predicted all 13 counties included in the disaster declaration.

The impact model over forecast occurred in the northeastern and southwestern quadrants of the hurricane storm track.
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Figure 13: Map of Hurricane Charley Storm Track, Declared Counties, Impact Model Counties, and SoV1 Scores

Hurricane Charley was the second hurricane of the 2004 Atlantic hurricane season making landfall as a category 4 on the
Saffir-Simpson scale (peak winds of 150 mph). The FEMA impact model significantly under forecast the number of counties
for Hurricane Charley by 68%, missing counties to the northwestern and southeastern quadrants of the hurricane storm track.
The impact model also identified 3 counties that were not included in the declaration. For counties included in the Hurricane

Charley impact model and disaster declaration, the SoVI index scores are a blend of low, medium, and high vulnerability.
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Figure 14: Map of Hurricane Claudette Storm Track, Declared Counties, Impact Model Counties, and SoV1 Scores

Hurricane Claudette was the first hurricane of the 2003 Atlantic hurricane season making landfall as a strong category 1
on the Saffir-Simpson scale (peaks winds of 90 mph). The FEMA impact model over forecasted the number of counties for
Hurricane Claudette by 38%, but accurately predicted all 18 counties included in the disaster declaration. The impact model
over forecast occurred in the northeastern and northwestern quadrants of the hurricane storm track. The counties forecasted by
the FEMA impact model and included in the disaster declaration were mostly categorized as highly vulnerable in the SoVI

index as well as 2 counties with low and 3 counties with high SoV1 scores.
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Figure 15: Map of Hurricane Floyd Storm Track, Declared Counties, Impact Model Counties, and SoVI Scores

Hurricane Floyd was the third hurricane of the 1999 Atlantic hurricane season making landfall as a strong category 4 on
the Saffir-Simpson scale (peak winds of 155 mph). The FEMA impact model accurately forecast 96% of the counties declared
for Hurricane Floyd; however, it significantly over forecast counties to the west of the hurricane storm track as Hurricane
Floyd moved its way northward along the US coastline. The impact model missed 8 declared counties and forecast 89 more
counties that were not included in the declaration. For counties included in the Hurricane Floyd impact model and disaster

declaration, the SoVI index scores are a blend of low, medium, and high vulnerability.
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Figure 16: Map of Hurricane Irene Storm Track, Declared Counties, Impact Model Counties, and SoVI Scores

Hurricane Irene was the sixth hurricane of the 1999 Atlantic hurricane season making landfall in the US as a strong

category 1 on the Saffir-Simpson scale (peaks winds of 110 mph). The FEMA impact model over forecasted the number of

counties for Hurricane Irene by 58%, but accurately predicted all 18 counties included in the disaster declaration. The impact

model over forecast occurred in the northwestern and southeastern quadrants of the hurricane storm track. For counties

included in the Hurricane Irene impact model and disaster declaration, the SoVI index scores are a blend of low, medium, and

high vulnerability.
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Figure 17: Map of Hurricane Isabel Storm Track, Declared Counties, Impact Model Counties, and SoVI Scores

Hurricane Isabel was the second hurricane of the 2003 Atlantic hurricane season making landfall as a strong category 1
on the Saffir-Simpson scale (peaks winds of 105 mph). The FEMA impact model over forecasted the number of counties for
Hurricane Isabel by 18%, but accurately predicted all 158 counties included in the disaster declaration. The impact model over
forecast occurred in the western and eastern quadrants of the hurricane storm track. For counties included in the Hurricane
Isabel impact model and disaster declaration, the SoVI index scores are a blend of low, medium, and high vulnerability with a

concentration of low vulnerability counties along the northeastern portion of the storm track.
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Figure 18: Map of Hurricane Ivan Storm Track, Declared Counties, Impact Model Counties, and SoVI Scores

Hurricane lvan was the sixth hurricane of the 2004 Atlantic hurricane season making landfall in the US as a strong
category 3 on the Saffir-Simpson scale (peaks winds of 125 mph). The FEMA impact model accurately forecast 90% of the
counties declared for Hurricane lvan; however, it significantly over forecast counties to the east as Hurricane Ivan moved
northward into Alabama and to the west in Louisiana during a second landfall. The impact model missed 12 declared counties
and forecast 55 more counties that were not included in the declaration. For counties included in the Hurricane Floyd impact

model and disaster declaration, the SoVI index scores are a blend of low, medium, and high vulnerability.
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Figure 19: Map of Hurricane Jeanne Storm Track, Declared Counties, Impact Model Counties, and SoVI Scores

Hurricane Jeanne was the fifth hurricane of the 2004 Atlantic hurricane season making landfall in the US as a strong
category 2 on the Saffir-Simpson scale (peaks winds of 120 mph). The FEMA impact model was highly accurately in the
forecast for Hurricane Jeanne identifying 100% of the counties declared and over forecasting by just 2 counties in the western
edge of the Florida pan handle. For counties included in the Hurricane Jeanne impact model and disaster declaration, the SoVI

index scores are a blend of low, medium, and high vulnerability.
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Figure 20: Map of Hurricane Lili Storm Track, Declared Counties, Impact Model Counties, and SoVI Scores

Hurricane Lili was the sixth hurricane of the 2002 Atlantic hurricane season making landfall in the US as a category 2 on
the Saffir-Simpson scale (peaks winds of 75 mph). The FEMA impact model accurately forecast 100% of the counties
declared for Hurricane Lili, identifying all 44 counties included in the disaster declaration. The impact model over forecasted
the number of counties for Hurricane Lili by 19%. The impact model over forecast occurred in the northeastern and
northwestern quadrants of the hurricane storm track. For counties included in the Hurricane Lili impact model and disaster

declaration, the SoVI index scores are a blend of low, medium, and high vulnerability.



EXPLORATORY REGRESSION AND SPATIAL ECONOMETRICS
APPROACH

Hazard vulnerability is perceived as a spatial varying phenomenon based on the
hazards-of-place model. Vulnerability does not occur in isolation to each community.
Statistical regression analysis has been used effectively to evaluate the relationship
between human and environmental factors in climate vulnerability studies (Samson et al.
2011, p.2), forest management studies on modeling of forest growth factors (Shi et al.
2006, p. 996), and hazard vulnerability studies related to the spatial distribution of
consent forms for individual requiring assistance during disaster in Japan (Arima et al.
2014, p.2), the analysis of vulnerability assessments (Emrich 2005, p.53), and in
quantifying urban vulnerability to terrorist incidents (Piegorsch et al 2007, p.1417).
Schmidtlein et al. 2008 infers that “there is no obvious avenue through which indices of
social vulnerability may be validated” and hazard researchers “must strive at least to
understand the limitations of [sic] their methodologies” (p. 1111).

While statistical regression analysis is often used to understand and explain
complex phenomena like hazard vulnerability; it is not always easy to find a set of
independent variables to explain or predict the phenomenon in question. Exploratory
spatial regression is an iterative approach that applies ordinary least squares (OLS)
regression and spatial autocorrelation (Moran’s I) to a set of candidate independent
(explanatory) variables to identify if there is a viable model for answering the research

question. The exploratory regression tool in ArcGIS was used to evaluate multiple
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models and combinations of candidate variables for the regression scenarios. This tool
considers the following search criteria when evaluating potential models: minimum and
maximum number of explanatory variables, minimum acceptable adjusted R-squared,
maximum acceptable coefficient p-value, maximum variance inflation factor, minimum
Jarque-Bera P-value, and minimum spatial autocorrelation (Moran’s I) P-value. The Esri
ArGIS software documentation defines a properly specified model as meeting the
following criteria:

1) Coefficients are statistically significant for all independent variables.

2) Coefficients match the expected relationships between dependent and
independent variables.

3) No multicollinearity exists.

4) Jarque-Bera is not statistically significant and residuals are normally
distributed.

5) Spatial autocorrelation p-value is not statistically significant and residuals are
randomly distributed, or exhibit no systematic patterns in the attribute space
and geographical space.

Ordinary least squares (OLS) regression was used to determine the relationship
between the variables, assess the goodness of fit, and derive the beta estimates to test for
spatial dependence. The adjusted R-squared values were used to evaluate the
performance of a model — how well it was able to explain the dependent variable. The P-

values were used to identify the independent variables that are significant predictors. The
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variance inflation factors (VIF) were used to identify variable redundancy or
multicollinearity. If there is a presence of multicollinearity, which is highly likely given
that mulitcollinearity was discovered in the construction of SoVI, then exploratory
regression analysis was used as a way to identify and eliminate variables causing
multicollinearity. According to O’Brien (2007), the rule of thumb most commonly used
as a sign of severe multicollinearity is 10. Menard (1995) suggests using a rule of 5 to
indicate concern for serious multicollinearity. For this dissertation, Menard’s rule of 5
was used as the parameter for the exploratory OLS regression.

The Jarque-Bera diagnostics, combined with a scatterplot review, were used to
identify bias and outliers. Regression coefficients were analyzed to understand the
strength and sign of the relationship between dependent and independent variables used
in a model.

The Moran’s I statistic was used to examine the regression residuals from model
inputs to reveal any underlying spatial dimensions that may bias the data (Smith et al.
2007, Wong and Lee 2005) including spatial autocorrelation. Observations made at
different locations may not be independent. For example, measurements made at nearby
locations may be closer in value than measurements made at locations farther apart. This
phenomenon is called spatial autocorrelation and was essentially defined by Tobler’s
First Law of Geography (Brent Hecht and Emily Moxley 2009, p. 1). Calculation of
Moran’s I involves the construction of a spatial weights matrix used to quantify the

spatial relationships among the observations in the dataset. A statistically significant
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Moran’s I value would reaffirm Tobler’s first law of geography in the context of hazard
vulnerability as well as the relationship between spatial frequency, geophysical
characteristics, and location to the hazard. Hazards-of-place theory considers hazard
vulnerability to be unevenly distributed across space with place serving as the integrating
mechanism. A statistically significant Moran’s I would raise questions regarding the
applicability of Cutter’s Hazards-of-place theory to discreet phenomena and the spatial
variation of hazard vulnerability. Is hazard vulnerability more a product of the existence
of the hazard or of the presence of human and the built environment?

Standard regression models such as OLS can be inefficient as standard errors are
often underestimated and spatial dimensions are often “treated as noise rather than
informative patterns” (Samson et al. 2011, p. 2). There may be a mismatch between the
spatial unit of observation and the spatial extent of the phenomena. This mismatch will
result in spatial measurement errors and spatial autocorrelation between these errors and
will bias the model (Anselin and Bera 1998). Since OLS regression is unable to
discriminate spatial variation when geographical heteroscedasticity or local
multicollinearity exists, a spatial econometrics approach is required. If the relationship
varies as we move across the spatial data sample or the variance changes, alternative
estimation procedures are needed to successfully model this variation and draw
appropriate inferences (LeSage 1999, p. 2). Spatial econometrics models were
constructed to deal with these types of spatial effects, specifically spatial autocorrelation

and spatial heterogeneity. “Spatial autocorrelation (dependence) violates the Gauss-
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Markov assumptions in regression modeling that explanatory variables are fixed in
repeated sampling; and spatial heterogeneity violates the Gauss-Markov assumptions that
a single linear relationship with constant variance exists across the sample data
observations” (LeSage 1999, p. 2). The Lagrange Multiplier (LM) diagnostic was used to
detect the presence and type of spatial dependence in the data and determine which
spatial regression method to use: spatial error or spatial lag. The null hypothesis of the
LM test is that there is no spatial dependence in the residuals. For this research, the
spatial weights for the spatial regression models were based on queens-contiguity.

Additionally, geographically weighted regression (GWR), a local regression model
that allows for the depiction of spatial heterogeneity in a regression context and the
description of spatial non-stationarity through a spatial weighting function using the local
estimate of model coefficients (Shi et al. 2006, p. 997), was also employed. Spatial non-
stationarity refers to variations in relationships over space between some sets of variables
because the “rates of change are not universal but determined by local culture or local
knowledge, rather than a global utility assumed for each commodity” (Brunsdon 1996, p.
283). The spatial weights matrix serves as an expression of spatial dependence between
observations (Fotheringham et al. 2002, p. 44).

Model results from OLS, spatial regression, and GWR were compared using
goodness of fit measures: Akaike Information criterion (AIC), Schwarz criteria (SC),
Likelihood ratio (LR), Lagrange Multiplier (LM), and the Joint Wald statistic (W)

(Anselin 2005, p. 207). The LR, LM, and W tests address the same basic question, does

81



leaving out explanatory variables reduce the fit of the model. When the model is linear,
according to Johnston and DiNardo (1997 p. 150), these three test statistics have the
following relationship W > LR > LM. To determine if the model is a better fit than OLS
and if it is properly specified, these diagnostics were compared in the expected order per
Anselin 2005 (p. 209): W > LR > LM. If the model is not compatible with the expected
order, the model is likely mis-specified (missing a key explanatory variable) or under the

influence of other factors not represented by the model.

SPATIAL REGRESSION SCENARIOS

Using the exploratory regression and spatial econometrics approach described in
the preceding section, this research sought to evaluate if the theoretical relationships
between SoVI and disaster management policy and practice are supported by the
empirical evidence, using the selected 9 hurricanes. It also investigates the ability of
SoVI and the FEMA impact models to accurately predict disaster impacts (expressed as
costs per capita). It is intended to shed light on the voracity of SoVI to adequately
measure and predict potential exposure and risk to a hurricane hazard. The statistical
analysis was based on five regression scenarios listed in table 7 below. The dependent
variables used in the analysis were the total federal assistance per capita and the SoVI
score. Total federal assistance per capita was used as an expression of the overall impact
of each event defined as the costs of federal programs for public assistance (PA),

individual assistance (1A), mitigation (MA), and small business disaster assistance loans
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(SBA). These data account for the majority of public (federal) hurricane disaster
expenditures and represent the federal components of actual damage and cost of a
disaster. Rygel et al. 2005 (p. 761) suggests that cost might be an important
consideration when constructing vulnerability indices and for validating their utility to
mitigation planning. SoVI was used as a dependent variable to better understand the
relationship between social vulnerability, federal disaster outcomes, and impact model
data elements.

The independent (explanatory) variables used in the statistical analysis are
comprised of the federal disaster outcome data subset, the disaster impact model data
subset, and the SoVI component factors. The disaster impact model data (demographic,
socio-economic, infrastructure, and storm track data) represent the essential elements of
information defined in disaster management policy (characteristics of impact and
damage) discussed in the previous chapter. Essential elements of information are
intended to serve as indicators for mobilizing federal assistance programs required to
facilitate community recovery and rebuild. The SoVI data subset includes the component
factors that make up the composite index score. The federal disaster outcome data subset
includes costs and counts for each federal assistance program.

Regression scenario 1 seeks to quantify the theoretical relationships between
hazard vulnerability science and disaster management policy and practice advanced in
chapter 3. Regression scenarios 2 and 3 seek to quantify the predictive power of SoVI

and its sub-factor components to predict disaster impact and costs. Regression scenario 4
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seeks to offer a new approach to hazard vulnerability indexing based on disaster impact

modeling. It examines the relationship between disaster costs and impact results to

demonstrate a statistical basis for this approach. Regression scenario 5 seeks to improve

upon SOVI by incorporating variables representing the geophysical properties of the

hazard (average distance to coast and max sustained winds). SoV1 did not have linkages

to this group of disaster management EEIs as depicted in Figure 5.

To determine if spatial econometrics is able to produce a better fit model, the

results of OLS, spatial regression, and GWR are compared using the AIC, Schwarz

criterion, R-squared values, and model coefficients.

Table 7: Regression Scenarios used in the Statistical Analysis

Dependent Independent (Explanatory) .
Variable Variables 0.5

Rearession How do disaster impact model data elements relate to SoVI1?

gress SoVI score Disaster Impact Model Data Subset  |Which disaster impact model data elements have the strongest
Scenario 1 S

relationships to SoVI1?

Regression Total Federal Assistance per Capita SoVI Score Can SoVI accurately predict disaster impacts as expressed by
Scenario 2 (TA_pcap) total federal assistance per capita?
Regression Total Federal Assistance per Capita SoVI Factors How do SoVI Component factors relate to disaster impacts as
Scenario 3 (TA_pcap) expressed by total federal assistance per capita?
Regression Total Federal Assistance per Capita . Can the disaster impact model data accurately predict disaster
Scenario 4 (TA_pcap) Disaster Impact Model Data Subset impacts as expressed by total federal assistance per capita?
Regression Total Federal Assistance per Capita . . |Can the performance of SoVI be improved by adding missing
Scenario 5 (TA_pcap) SO WDl 2 LU ST variables for the hazard?
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CHAPTER 5: RESULTS OF CORRELATION ANALYSIS AND EXPLORATORY

REGRESSION

Findings from chapter 3 demonstrated the conceptual alignment of SoVI with the
disaster management policy EEI groupings for disaster boundary areas, socio-economic,
and critical infrastructure information but not with the grouping for geophysical
information. It also demonstrated alignment of SoVI and FEMA impact model data
variables. These conceptual relationships were demonstrated in the crosswalk matrix
depicted in Chapter 3, Figure 5. Based on these conclusions and hazard vulnerability
theory, one expects to find strong statistical correlations between SoV|1 scores and key
disaster impact variables.

This chapter attempts to quantify these conceptual linkages using a combination
of correlation analysis and exploratory OLS regression with SoV1 as the dependent
variable and disaster impact model data elements as the independent (explanatory)
variables. These are the same variable sets used in the crosswalk matrix depicted in
Chapter 3, Figure 5. Correlation analysis provides a means for determining the degree of
linear association between the variables. Exploratory regression analysis provides a

means to assess the statistical relationships between the variables, to eliminate redundant
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variables, and find a potential set of variables able to explain the dependent variable.

Statistically significant results would substantiate the conclusions from chapter 3.

CORRELATION ANALYSIS

By way of comparison with Cutter et al. 2003a, the Pearson Product-Moment
Correlation Coefficient was calculated for the 604 declared counties using two sets of
values: actual SoVI index score and the frequency count of hurricane events. The Pearson
coefficient was 0.028714. Just as Cutter et al. 2003a found, there was no statistical
correlation between the frequency counts and SoV1 index score for the declared counties
included in the analysis. However, this correlation analysis does not consider us of soVI
in a disaster operation context. It is a gross assessment of the correlation between the
number of hurricane events and the SoVI score for a county over the sample period.

To examine the utility of SoVI in disaster operations as claimed by Cutter and
Emrich 2016, Pearson correlation coefficients were generated for each set of variables for
the 9 hurricanes. The complete correlation matrixes are provided in the appendix. Table
8 below provides a consolidated view that shows the correlation of SoVI with the
independent variables for each of the 9 hurricanes. This table indicates that there are
strong statistical correlations between SoVI and the variables linked to the socio-
economic information grouping. Each variable was statistically significant at the 95%
confidence level for 5 or more hurricanes. PCTPOV (percent poverty) was significant for

all 9 hurricanes. SoVI had few statistically significant correlations with the variables
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linked to the geophysical information grouping. One exception was AVEDISTC
(average distance to coast) that was significant for 5 hurricanes. Additionally, SoVI was
not significantly correlated with most of the variables linked to critical infrastructure
information. A few exceptions include NUMBRIDGE (number of bridges), ROADMI
(miles of road), FIRESTA_CNT (number of fire stations), and SCH_CNT (number of
schools). These findings are consistent with the conclusions from chapter 3. This table
also shows conflicting information for some variables (ie; both positive and negative
correlations for the same variables across different storms); as result, the correlation
matrixes were not helpful in variable selection. Exploratory OLS regression was used as
a more manageable method given the difficulty in synthesizing the information from the

correlation matrixes.
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Table 8: Pearson Correlation Coefficients for SoVI and FEMA Impact Model Data

Hurricane
Bret Charley |Claudette| Floyd Irene Isabel Ivan Jeanne Lili
Disaster Mgmt. Policy
EEI Groupings Variables SOVI SovI SOVI SovI SOVI SOVI SOVI SoVI SoVI

Boundary Information

AREASQMI -0.069 0.095 0.090 0.101 0.129 0.081 0.015 0.019 -0.023

HUNITS -0.428 -0.567 -0.765 -0.288 -0.476 -0.284 -0.177 -0.258 -0.083

Socio-Economic POP2000 -0.413 -0.577 -0.768 -0.326 -0.500 -0.318 -0.209 -0.249 -0.107

Information POPDENOO -0.474 -0.668 -0.590 -0.041 -0.721 -0.126 -0.131 -0.306 -0.060

PERCAPINC -0.481 -0.455 -0.660 -0.702 -0.493 -0.750 -0.538 -0.505 -0.672

PCTPOV 0.554 0.656 0.823 0.815 0.733 0.826 0.615 0.536 0.841

AVEDISTC 0.233 0.316 0.564 0.211 0.432 0.185 0.073 0.305 0.502

Geophysical TREEVOL 0.236 -0.073 -0.306 0.093 -0.330 0.018 -0.054 -0.164 0.081

Information MAXSUSWIN -0.136 0.084 0.168 -0.014 -0.115 -0.036 0.154 0.014 0.215

BLDGLOSS1K 0.332 0.067 -0.313 0.031 -0.250 -0.063 -0.041 -0.073 0.003

CNTLOSS1K 0.172 0.059 -0.313 0.035 -0.252 -0.018 -0.040 -0.078 0.000

NUMBRIDGE -0.513 -0.430 -0.692 -0.220 -0.431 -0.203 -0.293 -0.333 0.069

ROADMI -0.440 -0.464 -0.763 -0.228 -0.440 -0.329 -0.221 -0.287 0.118

ERC_CNT -0.147 -0.268 -0.101 -0.230 -0.343 -0.075 -0.259 -0.274 0.204

FIRESTA_CT -0.419 -0.282 -0.601 -0.303 -0.493 -0.184 -0.356 -0.313 -0.298

POLSTA_CT -0.254 -0.354 -0.470 -0.275 -0.412 -0.062 -0.263 -0.250 0.113

SCH_CT -0.477 -0.584 -0.503 -0.247 -0.550 -0.239 -0.192 -0.429 -0.069

MEDFAC_CT -0.495 -0.443 -0.441 -0.244 -0.358 -0.090 -0.131 -0.300 0.025

ERC_prob 0.429 -0.238 0.087 0.027 -0.213 0.013 -0.025 0.021 0.247

Critical Infrastructure Fire_prob 0.102 0.337 -0.164 0.142 -0.175 0.160 -0.021 0.247 0.216

Information Pol_prob 0.217 0.318 -0.155 0.134 -0.220 0.160 -0.020 0.278 0.193

Sch_prob 0.332 0.228 -0.203 0.149 -0.240 0.151 -0.028 0.213 0.156

Med_prob -0.174 0.386 -0.176 0.072 -0.201 0.139 -0.017 0.313 0.233

Gra_prob 0.329 0.313 -0.226 0.142 -0.236 0.162 -0.024 0.228 0.155

Gov_prob 0.325 0.311 -0.227 0.143 -0.236 0.162 -0.024 0.229 0.154

GovE_prob 0.325 0.311 -0.226 0.143 -0.236 0.162 -0.024 0.229 0.154

NH_prob 0.226 0.315 -0.213 0.140 -0.236 0.162 -0.022 0.225 0.128

Nonp_prob 0.307 0.318 -0.226 0.136 -0.236 0.160 -0.025 0.221 0.150

Hosp_prob 0.358 0.302 -0.227 0.150 -0.236 0.166 -0.023 0.235 0.161

Coll_prob 0.325 0.310 -0.226 0.144 -0.237 0.162 -0.024 0.230 0.154

Values in bold are different from 0 with a significance level alpha=0.05

EXPLORATORY OLS REGRESSION

The ARCGIS exploratory regression tool was used to build OLS models using all

possible combinations of explanatory variables included in the FEMA impact model

datasets (30 potential variables). The regression scenario is illustrated in Figure 21

below.
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Dependent Exploratory Regression Candidate Independent Variables for
Variable Indepdendent (Explanatory) Variables OLS\GWR Model Runs

HUNITS: Number of Housing Units in affected county tracks

POP2000: Total Population in affected county tracts

AREASQMI: Area of county

POPDENOO: Population 2000 Density

PERCAPINC: Per capita Income

PCTPOV: Percent Poverty

AVEDISTC: Average Distance to Coast

TREEVOL: Estimation of tree volume in tons

MAXSUSWIN: Sustained wind speed at the time of landfall

BLDGLOSS1K: Building loss as cost to re-build estimated number of structures damaged

CNTLOSS1K: Content/Interior damage estimated from number of structures damaged POPDENOO:
NUMBRIDGE: Number of Bridges in affected area PCTPOV:
ROADMI: Number of Roads miles in affected area AVEDISTC:
ERC_CNT: Count of affected Emergency Response Centers MAXSUSWIN:
SoVI score FIRESTA_CT Count of affected Fire Stations BLDGLOSS1K
POLSTA_CT: Count of affected Police Stations NUMBRIDGE:

SCH_CT: Count of affected Schools

MEDFAC_CT: Count of affected Medical Facilities

ERC_PROB: Damage Probability to Emergency Response Centers
FIRE_PROB: Damage Probability to Fire Stations

POL_PROB: Damage Probability to Police Stations

SCH_PROB: Damage Probability to Schools

MED_PROB: Damage Probability to Medical Facilities
GRA_PROB: Damage Probability to Grade Schools
GOV_PROB: Damage Probability to Government Services
GOVE_PROB: Damage Probability to Government Emergency Services
NH_PROB: : Damage Probability to Nursing Homes
NONP_PROPB: : Damage Probability to Not for Profits
HOSP_PROB: : Damage Probability to Hospitals

Figure 21: Exploratory Regression - Model Variables

The parameter settings for the exploratory OLS regression are depicted in Figure
22, and these settings were consistent for all 9 hurricanes. The objective was to identify a
consistent set of variables that would be effective for all 9 hurricanes. The output reports,
produced by ArcGIS for the exploratory OLS regression, include 6 sections: passing
models (by number of independent variables), summary of global model diagnostics,
summary of variable significance, summary of multicollinearity, summary for residual

normality, and summary for spatial autocorrelation. At this stage, it is reasonable to focus
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on 3 key outputs from the exploratory OLS regression: passing models, summary of

global model diagnostics, and summary of multicollinearity.

t Search Criteria
Maximum Mumber of Explanatory Variables (optional)

7 il
1 20

Minimurm Mumber of Explanatory Variables (optional)

1 [}
1 20
Minimum Acceptable Adj R Squared (optional)
0.5
Maximum Coefficient p value Cutoff (optional)
0.05
Maximum VIF Value Cutoff {optional)
5
Minimum Acceptable Jargue Bera p value (optional)
0.1
Minimum Acceptable Spatial Autocorrelation p value {optional)
0.1

Figure 22: Exploratory OLS Parameter Settings

Bret, Claudette, Irene, and Lili each had passing models, while the remaining 5
hurricanes had no passing models. Analyzing the passing models was unable to identify a
consistent set of variables that could be used across all 9 hurricanes. For example, both
Bret and Claudette had passing models with 4 variables; however, the combination of

variables was different for the 2 hurricanes as shown in Figure 23 below.
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Hurricane Bret

Passing Models
Adjr2 AICC 1B K(BP) VIF SA Model
0.880487 51.282098 0.601377 0.241331 2.511938 0.569830 +PCTPOV**¥
0.880307 51.301655 0.666149 0.216128 2.507424 0.565024 +PCTPOV#®¥
0.880305 51.301899 0.665068 0.216552 2.507487 0.565148 +PCTPOV##¥

Hurricane Claudettel

Passing Models
Adjr2 AICC 1B K(BP) VIF 54 ModeT
0.BB2260 62.385525 0.363830 0.737212 1.433980 0.478092 -HUNITS®®¥

0.869891 64.183565 0.563682 0.095204 1.645996 0.536662 -POPDENQO®*¥* +PCTPOV***
0.869B868 64.186816 0.566379 0.092965 1.646210 0.538531 -POPDENQO®*¥* +PCTPOV***

—ROADMI*#*
—ROADMI®#*
—ROADMTI®**

—AREASQMI**

Figure 23: Sample of Passing Models for Bret and Claudette

+ERC_CNT®#**
+ERC_CNT®#®*
+ERC CNT®#®¥

+PCTROV 5
~ROADMI ***
~ROADMI ***

+HOSP_PROB ¥
+GOV_PROB¥ ¥
+COLL PROB***

+ERC_CNT®*
-NONP_PROB®*
-GOV_PROB®¥®

Analysis of the OLS model diagnostics summary depicted in table 9 also indicated

there are severe issues of multicollinearity between many of the variables across all the

hurricane model runs based on the percentage of model combinations passing with VIF

scores of less than 5.0. This indicates there are a number of redundant variables

measuring the same aspect of the dependent variable. The Jarque-Bera statistic was

insignificant in 8 of the 9 hurricanes at percentages of 61.03 or higher, suggesting the

residuals are normally distributed with linear relationships. And hurricanes Bret,

Claudette, Irene, and Lili had essentially no issues with spatial autocorrelation with over

71% of model combinations passing the Moran’s I test. However, these diagnostics have

little meaning until the multicollinearity issues are resolved and a good set of independent

variables have been identified.
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Table 9: Exploratory Regression Model Diagnostics

Percentage of Passing Models
Diagnostic Bret | Charley| Claudette | Floyd| Irene | Isabel| Ivan]Jeanne| Lili
Min Jarque-Bera p-value > 0.10 93.33 | 68.66 96.27 |61.03| 91.94 | 65.22 [ 0.00 | 99.25 |99.66
Min Spatial Autocorrelation p-value > 0.10 | 98.68 | 25.00 98.75 | 0.00]97.87| 0.00 [ 0.00 | 25.00 |71.43
Max VIF Value < 5.0 5.75 | 22.06 11.41 |21.35| 2.01 | 43.48 [11.62| 43.03 | 9.80

1)  No multicollinearity exists (VIF less than 5).

2) Jarque-Bera is not statistically significant and residuals are normally distributed.

3) Spatial autocorrelation p-value is not statistically significant and residuals are randomly distributed, or exhibit no
systematic patterns in the attribute space and geographical space.

The next step of the exploratory OLS regression analysis was to examine the
summaries of multicollinearity to eliminate redundant variables based on the VIF score,
number of violations, and covariates for each hurricane run. The results of this
examination were that six variables were selected for inclusion in the OLS regression
model to eliminate issues of multicollinearity. Population density (POPDen00) was
chosen as an indicator of individual assistance; even though, it had mixed significance
across the 9 hurricanes. Percent poverty (PctPOV) was highly significant for all the
hurricanes and was selected as an indicator of disadvantaged at risk population. Average
distance to coast (AVEDISTC) and maximum sustained wind speed (MAXSUSWIN)
were chosen to represent the geophysical properties of hurricanes. The variables for
probability of damage for the different facility types (police, fire, medical, etc.) had
collinearity with total building loss (BldLoss1k) for all facilities, so that variable was
chosen to represent those elements of public assistance from the impact model data. The
facility probabilities and facility counts were also highly collinear amongst one another,

so it made sense to remove these variables from the final selection. Number of bridges
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(NUMBRIDGE) was collinear with road mileage affected and was chosen to represent
public infrastructure damaged. HUNITS and POP2000 were routinely correlated with
each other as well as with the variables for facility probabilities and facilities counts, so
they were also eliminated from the selection. 5 of these 6 selected variables had

significant correlations with SOV based on the correlation analysis depicted in Table 8.

REGRESSION SCENARIO 1 - ANALYSIS OF VARIABLE SELECTION USING
OLS REGRESSION

The final step is to run classic OLS regression for each of the 9 hurricanes to
demonstrate the effectiveness of those six variables and if this model will produce more
consistent results. This will help quantify the conceptual relationships from chapter 3
and provide the benchmark variables for regression scenario 4. Model diagnostics for the
OLS model are shown in table 10 below. The adjusted R-squared values indicate the
model was able to explain 57% or above of the variance in SoVI for 6 of 9 hurricanes and
approximately 40% for 2 of the remaining 3 hurricanes. Adjusted R-squared values were
lowest for hurricane Jeanne at 28.9%. The other model diagnostics and results were
examined to determine the reliability of the adjusted R-squared values. The probabilities
for the Koenker (BP) statistics were insignificant for all the hurricanes, suggesting the
data is generally stationary with little regional variation. Since the Koenker (BP)
statistics were insignificant, we consult the probabilities from table 11 to determine if the

model coefficients were statistically significant. Results varied across hurricane run.
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Model coefficients for PCTPOV were significant for 7 of 9 hurricanes, while the model
coefficients for the remaining variables were significant in 2 or less hurricanes. The
Jarque-Bera probabilities were also insignificant indicating the residuals are normally
distributed and confirmed by the histograms depicted in figure 25.  The scatterplots
from figure 24 suggests the relationships are linear. POPDENO0O, BLDGLOSS1K, and
NUMBRIDGE have a surprisingly negative relationship to SoVI. When vulnerability is
high, building loss and number of bridges are low. AVEDISTC has an anomalous,
positive relationship to SoVI. When SoVI1 is high, average distance to the coast is high.
MAXSUSWIN has a mixed relationship with SoVI. PCTPOV has the expected positive
relationship with SoVI. When SoV1 is high, percent poverty is high. Over and under
predictions for the residuals displayed in figure 26 exhibit a random pattern, indicating
the models are properly specified. However, a more critical review of the scatterplots
from figure 24 and the variable coefficients listed in Table 11 suggests that the OLS
models may be suffering from skewness in the data. This skewness issue will be
examined further in the remaining regression analysis.

The results from the chapter 5 analysis identified 6 variables for inclusion in an
OLS regression model. These 6 variables addressed the following issues critical to
performing a meaningful OLS regression: a) eliminate multicollinerity, b) significant
correlation with SoV1, c) theoretical basis in disaster management and hazard

vulnerability, and d) best able to explain the most variance across the 9 hurricanes.
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Table 10: Regression Scenario 1 - OLS Model Diagnostics

Joint Koenker Jarque- Akaike's
Multiple | Adjusted Joint Joint F- Wald (BP) Koenker Bera Informatio
R-Squared| R-Squared | F-Statistic | Statistic | Statistic [Joint Wald| Statistic (BP) Statistic |Jarque-Bera|n Criterion
Hurricane [d] [d] [e] Probability [e] Probability [fl Probability [a] Probability | (AlCc) [d]
Bret 0.71911 | 0.438221 | 2.560117 | 0.138735 | 75.89167 | 0.000000* | 5.281359 | 0.508266 | 0.170562 | 0.918254 | 93.662086
Charley | 0.665421 [ 0.574172 | 7.292369 | 0.000221* [ 219.211 |0.000000*| 4.866328 | 0.561069 0.404 0.817095 | 115.593
Claudette | 0.847958 | 0.765026 | 10.22475 | 0.000587* | 438.2385 | 0.000000* | 5.073021 | 0.534482 | 0.085261 | 0.958265 |84.180085
Floyd |0.669643 | 0.65953 |66.21622 | 0.000000* | 441.5511 | 0.000000*| 6.211095 | 0.399964 | 17.98053 | 0.000125* | 745.28418
Irene 0.846996 | 0.763539 | 10.14893 | 0.000606* | 225.6268 | 0.000000* [ 11.794519 | 0.066713 | 0.228974 | 0.891823 | 73.684669
Isabel | 0.713583 | 0.702202 | 62.70047 | 0.000000* | 257.6172 | 0.000000*  7.0328 0.317824 | 42.301629 | 0.000000* | 591.92581
Ivan 0.417186 | 0.404917 | 34.00117 | 0.000000* | 182.3723 | 0.000000*| 17.400173 | 0.007920* | 16.278567 | 0.000292* | 1118.2135
Jeanne 0.371697 | 0.289744 | 4.535514 | 0.001087* | 51.85256 | 0.000000*| 6.215869 | 0.399448 | 0.554575 | 0.757837 |221.33428
Lili 0.750893 | 0.710497 | 18.58843 | 0.000000* | 159.2947 | 0.000000* | 7.253086 | 0.298075 | 0.046342 | 0.977096 | 145.74506
* Significant level at p = 0.05.
Table 11: Regression Scenario 1 - OLS Model Results
Model Coefficients
Independent Variable Bret Charley Claudette Floyd Irene Isabel lvan Jeanne Lili
POPDENOO: 0.000011 | -0.003504 | -0.004537 | 0.000000 | -0.004143 | -0.000157 | 0.000001 | -0.000189 | 0.000646
PCTPOV: 16.392748 | 19.820064 | 22.625353 | 36.323401 | 19.737047 | 40.323905 | 19.475065 | 23.284709 | 29.314799
AVEDISTC: 0.002657 | 0.006304 | 0.002821 0.003439 | 0.013934 | 0.004957 | -0.002141 | -0.002638 | 0.012664
MAXSUSWIN: -0.001118 | -0.000506 | -0.000776 | -0.000059 | 0.001437 | 0.000865 | -0.000662 | -0.001253 | 0.000701
BLDGLOSS1K 0.000053 | 0.000000 | -0.000019 | 0.000000 | 0.000000 | -0.000001 [ 0.000000 | 0.000000 | 0.000000
NUMBRIDGE: -0.012072 | 0.000515 | -0.008507 | -0.001112 | -0.000474 | -0.005159 | -0.002785 | -0.003003 | -0.000567
Model Probabilities
Independent Variable Bret Charley Claudette Floyd Irene Isabel lvan Jeanne Lili
POPDENOO: 0.999189 | 0.014726* | 0.196946 0.582723 | 0.002290* | 0.100613 | 0.195095 | 0.759844 | 0.389742
PCTPOV: 0.111868 | 0.006485* | 0.011634* [ 0.000000* | 0.055473 | 0.000000* | 0.000000* | 0.000374* [ 0.000000*
AVEDISTC: 0.907508 | 0.577584 | 0.821141 0.238736 | 0.383405 | 0.177807 | 0.485257 | 0.803634 | 0.041355*
MAXSUSWIN: 0.726819 | 0.442082 | 0.475906 0.699722 | 0.969398 | 0.374549 | 0.041300* | 0.106435 | 0.342077
BLDGLOSS1K 0.497314 | 0.169864 | 0.693271 0.509607 | 0.109052 | 0.557552 | 0.59712 0.406443 0.86143
NUMBRIDGE: 0.374873 | 0.821413 | 0.073354 0.135559 | 0.818712 | 0.002979* | 0.000380* | 0.145602 | 0.715491
Model Robust Probabilities
Independent Variable Bret Charley Claudette Floyd Irene Isabel lvan Jeanne Lili
POPDENOO: 0.998926 | 0.000119* | 0.027702* | 0.420366 | 0.000092* | 0.113326 | 0.209458 | 0.684542 | 0.254987
PCTPOV: 0.113082 | 0.003724* | 0.000030* [ 0.000000* | 0.011637* | 0.000000* | 0.000000* | 0.000378* [ 0.000000*
AVEDISTC: 0.920517 | 0.570285 | 0.810349 0.18692 0.258171 | 0.177941 | 0.537879 | 0.778056 | 0.026447*
MAXSUSWIN: 0.684772 | 0.373162 | 0.247845 0.61361 0.949765 | 0.178313 | 0.025012* | 0.086945 | 0.334765
BLDGLOSS1K 0.471809 | 0.000337* | 0.525283 0.412378 | 0.010589* | 0.332087 | 0.352089 | 0.056875 | 0.629357
NUMBRIDGE: 0.297528 | 0.659353 | 0.006394* | 0.095866 | 0.694323 | 0.003385* | 0.000087* [ 0.008832* | 0.636639
Model Variance Inflation Factors (VIF)
Independent Variable Bret Charley Claudette Floyd Irene Isabel lvan Jeanne Lili
POPDENOO: 8.914447 | 2546206 | 2.187917 1.26932 2.807564 | 1.133472 | 1.385762 | 1.683228 | 1.507882
PCTPOV: 1.730067 1.590533 2.705854 1.14749 2.225361 | 1.059329 | 1.256976 1.560114 1.227641
AVEDISTC: 2.246167 1.284819 2.06197 1.244665 | 3.437236 | 1.462683 | 1.183625 | 1.547705 | 1.564522
MAXSUSWIN: 2.373553 1.281939 2.018525 1.067006 3.29992 1.116614 | 1.214682 1.202655 1.05646
BLDGLOSS1K 1.951325 | 1.155562 | 1.296542 1.061165 3.44602 | 1.196571 | 1.078852 | 1.299882 | 1.086706
NUMBRIDGE: 9.507743 | 2.130976 | 1.667509 1.367457 | 2.652962 | 1.167186 | 1.434354 | 1.873098 | 1.413117

* Significant level at p = 0.05.
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Figure 24: Scatterplots of Variable Relationships for Regression Scenario 1
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Figure 25: Histograms of Residuals for Regression Scenario 1
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Figure 26: Scatterplots of Over/Under Predictions for Regression Scenario 1
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CHAPTER 6: RESULTS OF INITIAL OLS REGRESSION

This chapter attempts to analyze the relationships between hazard vulnerability

science and disaster management, using SoV|1, and the FEMA disaster impact models.

The OLS models are constructed using the six independent variables identified in chapter

5, to accurately predict the level of damages in the community -- expressed as total cost

of federal assistance. It involved running 3 scenarios using OLS regression where total

amount of federal assistance per capita (TA_pcap) serves as the dependent variable.

Table 12: Scenarios used for the Initial OLS Regressions

Dependent Independent (Explanatory) .
Variable Variables RUESES

Rearession How do disaster impact model data elements relate to SoVI?

gress SoVI score Disaster Impact Model Data Subset  |Which disaster impact model data elements have the strongest
Scenario 1 S

relationships to SoVI1?
Regression Total Federal Assistance per Capita SoVI Score Can SoVI accurately predict disaster impacts as expressed by
Scenario 2 (TA_pcap) total federal assistance per capita?
Regression Total Federal Assistance per Capita SoVI Factors How do SoVI Component factors relate to disaster impacts as
Scenario 3 (TA_pcap) expressed by total federal assistance per capita?
Regression Total Federal Assistance per Capita . Can the disaster impact model data accurately predict disaster
Di | Model D:

Scenario 4 (TA_pcap) isaster Impact Model Data Subset impacts as expressed by total federal assistance per capita?
Regression Total Federal Assistance per Capita . . |Can the performance of SoVI be improved by adding missing
Scenario 5 (TA_pcap) SO WD H P LU T variables for the hazard?
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REGRESSION SCENARIO 2 - OLS REGRESSION USING SOVI AS THE

INDEPENDENT VARIABLE

This model was run using the SoVI score as the independent (explanatory) variable.
OLS models were run for all 9 hurricanes included in the research sample. Based on this
scenario, one expects to find a positive relationship between the dependent and
independent variables, where a county with a larger amount of federal assistance would
have a high SoVI score compared to a county with a lower SoV1 score for each hurricane
event. Table 13 shows the diagnostics for the OLS regression model runs for each
hurricane. Table 14 shows the results for those same OLS model runs.

Model diagnostics for the OLS regression model runs indicates poor model
performance for 8 of 9 hurricanes. The AIC scores varied widely across hurricanes from
142.386169 to 4582.9921 suggesting the model is miss-specified or not a good match.
The adjusted R-squared values show the model was able to explain less than 5% of the
variance for 8 of 9 hurricanes. The only model run to demonstrate significant
explanatory power was hurricane Bret, where SoVI was able to explain 38% of the
variance. To determine the reliability of the adjusted R-squared values, the other model

diagnostics and results were examined.
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Table 13: Regression Scenarios 2 - OLS Model Diagnostics

Joint Koenker Jarque- Akaike's

Multiple | Adjusted Joint Joint F- Wald (BP) Koenker Bera Informatio
R-Squared| R-Squared | F-Statistic | Statistic | Statistic [Joint Wald| Statistic (BP) Statistic |Jarque-Bera[n Criterion

Hurricane [d] [d] [e] Probability [e] Probability [fl Probability [a] Probability | (AlCc) [d]
Bret 0.439957 | 0.389044 | 8.641339 | 0.013457* | 6.035907 | 0.014018*| 6.762961 ]0.009307* ] 0.907866 | 0.635125 |[142.38617
Charley [ 0.056786 | 0.042708 | 4.033743 | 0.048632* | 2.157323 | 0.141892 | 5.085072 | 0.024133* | 954.17522 | 0.000000* | 1045.2858
Claudette | 0.024964 | -0.035976 | 0.409651 | 0.531206 |0.751308 | 0.386062 | 1.201044 | 0.273113 | 13.382542 | 0.001242* | 214.71787
Floyd 0.046563 | 0.041266 | 8.790569 | 0.003438* | 11.65113 | 0.000642* | 4.598464 ]0.032001* | 2481.7665 | 0.000000* | 2583.7908
Irene 0.000749 | -0.061704 | 0.011989 | 0.914173 | 0.041988 | 0.837642 | 0.011583 | 0.914293 | 44.890553 | 0.000000* | 167.84771
Isabel 0.018167 | 0.011873 | 2.886423 | 0.091322 | 2.148428 | 0.142716 2.67614 0.101862 | 5171.9218 ] 0.000000* | 2160.234
lvan 0.000984 | -0.002109 | 0.318171 | 0.5731 |0.614361| 0.43315 0.191101 | 0.662002 | 133056.45 ] 0.000000* | 4582.9921
Jeanne | 0.060907 | 0.042493 | 3.307715 | 0.074829 | 4.732622 | 0.029596* | 0.83708 0.360233 | 149.92669 | 0.000000* | 718.72639
Lili 0.000376 | -0.023424 ] 0.015819 | 0.900512 | 0.081528 | 0.775237 | 0.024833 | 0.874783 | 619.12948 | 0.000000* | 489.7047

* Significant level at p = 0.05.

Table 14: Regression Scenarios 2 - OLS Model Results

Dependent variable: Total federal assistance per capita (TA_pcap)

Number of |Independent Robust Robust

Hurricane [Observations| Variable |Coefficient| StdError |t-Statistic |Probability | StdError |Robust_t |Probability
Bret 13 SOVI 16.201585 [ 5.511464 | 2.939615 | 0.013461* | 6.594566 |2.456808 | 0.031853*
Charley 69 SOVI 53.90682 | 26.84044 | 2.008418 | 0.048632* | 36.701693 | 1.468783| 0.146576
Claudette 18 SOVI -4.60126 |7.189025 | -0.64004 | 0.531206 | 5.308451 | -0.86678 | 0.398874
Floyd 182 SoVI 24.939132 | 8.411488 | 2.964889 | 0.003443* | 7.306296 |3.413376|0.000803*
Irene 18 SOVI -0.287484 | 2.625574 | -0.109494| 0.914169 | 1.40297 [-0.20491 | 0.840225
Isabel 158 SOVI 10.783885 | 6.34739 | 1.698948 | 0.09133 | 7.357239 | 1.465752 | 0.144739
Ivan 325 SOVI 4.081723 [7.236239 | 0.564067 | 0.573106 | 5.207528 |0.783812 | 0.433715
Jeanne 53 SOVI 24.849205 | 13.66307 | 1.818713 | 0.074831 | 11.422512 | 2.175459 | 0.034255*
Lili 44 SOVI -0.562794 | 4.474675|-0.125773| 0.900513 | 1.971038 | -0.28553 | 0.776642

* Significant level at p = 0.05.

The Jarque-Bera statistics were significant for all hurricanes indicating model bias;

the residuals are not normally distributed. This interpretation was confirmed by the

histograms depicted in figure 28 that reveal significant influence from outliers. The

scatterplots of the over and under predictions of residuals portrayed in figure 29 were not

randomly distributed, heteroskedastic, and likely non-linear. These scatterplots also

indicate structural problems with a systematic scale issue for 4 hurricanes. The Koenker
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(BP) statistic was significant for 3 hurricanes (Bret, Charley and Floyd) and insignificant
for the remaining 6 hurricanes. This suggests the data for hurricanes Bret, Charley, and
Floyd are non-stationary, and the robust probabilities were consulted to determine
coefficient significance. The coefficients for hurricanes Bret and Floyd were significant
based on the robust probabilities. For the remaining 6 hurricanes, the probabilities were
consulted. The coefficients were insignificant based on the probabilities. The scatterplots
from figure 27 show linear relationships for 6 hurricanes and narrowly linear
relationships for the remaining 3 hurricanes (Irene, Ivan, and Lili). The relationship
between dependent and independent variable was positive as expected for 6 of 9
hurricanes. The relationship was negative for hurricanes Claudette, Irene, and Lili. This

is anomalous as one expects when damages are high that vulnerability is high.
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Figure 27: Scatterplots of VVariable Relationships for Regression Scenario 2
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Figure 29: Scatterplots of Over/Under Predictions for Regression Scenario 2

Moran’s statistics were run to determine if spatial autocorrelation issues were
influencing model performance. These statistics are listed in Table 15 below. The
Moran’s I results indicate the presence of spatial autocorrelation in the OLS model runs
for 7 of the 9 hurricanes. This map shows residual clustering that is closely associated
with the hurricane storm tracks and points of landfall as depicted in figure 40 below.
While the histograms from figure 37 also showed significant outliers and removing these
outliers might boost model performance; it might introduce new bias by eliminating
significant geographic components from the analysis. By their nature, hurricane events

are spatially biased by their storm tracks and geophysical properties.
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Table 15: Regression Scenarios 2 — Spatial Autocorrelation (Moran’s I) Statistics

Hurricane| Index [Expected| Variance | P-value | Z-score | Pattemn
Bret 0.006792 (-0.08333| 0.031607 | 0.6122 | 0.506935 | Random
Charley | 0.322099 |-0.01471| 0.002821 |0.000000| 6.341552 |Clustered
Claudette | 0.272718 |-0.05882 | 0.024413 | 0.03384 | 2.12192 |Clustered
Floyd | 0.371938 [-0.00553 | 0.000685 |0.000000|14.420553Clustered
Irene 0.044825 [-0.05882 | 0.006309 |0.19192 | 1.304923 | Random
Isabel | 0.117097 |-0.00637| 0.000128 (0.00000010.914423|Clustered
Ivan 0.309543 [-0.00309 | 0.000285 |0.000000| 18.53457 |Clustered
Jeanne | 0.550929 |-0.01923| 0.008508 |0.000000| 6.181359 JClustered
Lili 0.226272 |-0.02326 | -0.023256 | 0.00095 | 3.303801 |Clustered

Legend
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Figure 30: Map of OLS Residuals and Hurricane Storm Tracks - Regression

Scenario 2
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Collectively, the results from OLS regression for scenario 3 suggest model bias is
a result of model mismatch or model mis-specification rather than data outliers. The
results also suggest there is a problem with skewness in the data based on the scatterplots

and spatial autocorrelation from the Moran’s I statistics.

REGRESSION SCENARIO 3 -OLS REGRESSION USING SOVI FACTORS

AS INDEPENDENT VARIABLES

Since the results from regression scenario 2, that tested the explanatory power of
the SoVI composite index, were dubious, it begs the question whether particular sub-
factors of SoVI are statistically more significant than others? If certain SoVI sub-factors
are significant, how does their significance in explaining disaster impacts compare to
their significance in explaining social vulnerability? For example, wealth (factor 2) is
able to explain 15.9% of the variance in SoVI and has a negative relationship.
Employment in services industries (factor 7) has a variance of 4.8% and has a positive
relationship with SoVI. Do these same relationships hold true in explaining disaster
impacts using total federal assistance per capita?

This model was run using the individual SoV1 factors as the independent

(explanatory) variables as depicted in figure 31 and total federal assistance per capita as
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the dependent variable. Table 16 shows the diagnostics for the OLS regression model

runs for each hurricane. Table 17 shows the results for those same OLS model runs.

Independent
Dependent (Explanatory)
Variable Variables

Factor 1: Race (Black and Class (Poverty)
Factor 2: Wealth
Total Federal Factor 3: Age (Old)
Assistance Per Capita|Factor 4: Ethnicity (Hispanic)
(TA_pcap) Factor 5: Nursing Home Residents
Factor 6: Ethnicity (Native American)
Factor 7: Employed in Service Industries

Figure 31: Regression Scenario 3 - Model Variables

Model diagnostics for the OLS regression model runs indicates poor model
performance for 8 of 9 hurricanes. The AIC scores varied widely across hurricanes from
182.9896 to 4588.9938 suggesting the model is miss-specified or not a good match. The
adjusted R-squared values show the model was able to explain less than 36.2% of the
variance for 8 of 9 hurricanes. The only model run to demonstrate significant
explanatory power was hurricane Bret, where SoVI factors were able to explain 54.7% of
the variance. To determine the reliability of the adjusted R-squared values, the other

model diagnostics and results were examined.
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Table 16: Regression Scenarios 3 - OLS Model Diagnostics

Joint Koenker Jarque- Akaike's
Multiple | Adjusted Joint Joint F- Wald (BP) Koenker Bera Informatio
R-Squared| R-Squared | F-Statistic | Statistic | Statistic [Joint Wald| Statistic (BP) Statistic [Jarque-Bera|n Criterion
Hurricane [d] [d] [e] Probability [e] Probability [f] Probability [a] Probability | (AlCc) [d]

Bret 0.811337 | 0.547209 | 3.071759 | 0.117449 | 30.07348 [ 0.000092* | 6.940101 | 0.435143 | 0.761536 | 0.635125 |[197.57481
Charley | 0.243238 | 0.156397 | 2.800948 | 0.013533* | 9.472276 | 0.220502 | 9.677897 | 0.207573 | 914.72088 | 0.000000* | 1044.7706
Claudette | 0.247376 ] -0.279461 ] 0.469549 | 0.836032 | 6.437539 | 0.489686 | 3.355406 | 0.850295 | 8.797751 | 0.012291* | 242.84324
Floyd 0.150531 | 0.116357 | 4.40484 | 0.000158* | 18.1237 | 0.011424*| 16.429522 | 0.021469* | 1992.8547 | 0.000000* | 2575.6883

Irene 0.62505 | 0.362584 | 2.381456 | 0.103372 |21.50377 [0.003092*| 8.672846 | 0.277005 | 0.33208 | 0.847012 | 182.9896

Isabel 0.123081 | 0.082158 | 3.00764 | 0.005517* | 21.0764 | 0.003659*| 19.2176 [0.007532* | 3748.8675 | 0.000000* | 2155.4392
Ivan 0.020751 | -0.000873 | 0.959624 | 0.460836 | 15.06514 [0.035173*| 3.61412 | 0.822994 | 133706.87 | 0.000000* | 4588.9938

Jeanne | 0.158187 | 0.027238 | 1.208008 | 0.31815 |12.33647 [ 0.090023 | 6.222075 | 0.514071 | 127.59663 | 0.000000* | 728.62673

Lili 0.443381 | 0.335149 | 4.096591 | 0.002119* | 11.12821 | 0.133123 | 10.20097 | 0.177468 | 189.67466 | 0.000000* | 480.63696

The Jarque-Bera statistics were significant for 7 of 9 hurricanes indicating model
bias; the residuals are not normally distributed. This interpretation was confirmed by the
histograms depicted in figure 33 that reveal significant influence from outliers. The
scatterplots of the over and under predictions of residuals portrayed in figure 46 were not
randomly distributed, heteroskedastic, and likely non-linear. These scatterplots also
indicate structural problems with a systematic scale issue for 4 hurricanes. The Koenker
(BP) statistic was significant for 3 hurricanes (Bret, Charley and Floyd) and insignificant
for the remaining 6 hurricanes. This suggests the data for hurricanes Bret, Charley, and
Floyd are non-stationary, and the robust probabilities were consulted to determine
coefficient significance. The coefficients for hurricanes Bret and Floyd were significant
based on the robust probabilities. For the remaining 6 hurricanes, the probabilities were
consulted. The coefficients were insignificant based on the probabilities. The scatterplots

from figure 32 show linear relationships for 6 hurricanes and narrowly linear
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relationships for the remaining 3 hurricanes (Irene, lvan, and Lili). The relationship
between dependent and independent variable was positive as expected for 6 of 9
hurricanes. The relationship was negative for hurricanes Claudette, Irene, and Lili. This

is anomalous as one expects when damages are high that vulnerability is high.

The relationships for the model coefficients also varied across hurricanes and
factors. In many cases, the type of relationship (positive or negative) contradicts the
cardinality of that factor to SoVI. For example, factor 2 (wealth) has a negative
cardinality to SoVI but has a positive relationship to the dependent variable for 4
hurricanes and a negative relationship for the other 5 hurricanes. The scatterplots in
figure 32 illustrate the varying type of relationship between the factors across the 9
hurricanes. Figure 32 also shows that the relationship between the SOVI factors and the
dependent variable are linear. The Jarque-Bera statistic was significant for 8 of 9
hurricanes. This indicates the residuals are not normally distributed. Histograms of the
model residuals shown in figure 33 illustrate this model bias. Scatterplots of the over and
under predictions of residuals portrayed in figure 35 suggest a systematic scale issue
likely a product of many the values in the data being close to zero. Patterns are not

strongly random indicating the model is mis-specified.
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Table 17: Regression Scenarios 3 - OLS Model Results

Model Coefficients

Inde pendent
Variable Bret Charley Claudette Floyd Irene Isabel lvan Jeanne Lili
FAC1_1 18.421029 | -158.756758 | -33.212513 | 84.829814 |-16.782261| 19.637034 | 26.443192 | -0.774155 | 2.317433
FAC2_1 -8.849103 | -113.01237 | -90.929078 | -16.438214 | 3.222512 | 17.481491 | 18.139109 | 42.301036 | -5.829686
FAC3_1 16.325053 | 58.865787 | -7.606049 | -18.350379 | 8.169451 | 65.379476 | 4.63209 | 23.237875 | -36.010008
FAC4 1 24.027707 | 186.957731 | -68.980873 | 8.479094 | -1.912594 | -2.367885 | -30.906939| 42.577833 | 36.713073
FACS5_1 70.287114 | 246.184739 | 21.370388 | -40.230295 | 4.047105 | -56.24415 |-56.303033| -41.763175 | 4.848822
FAC6_1 -20.197777| 133.316275 | 203.452726 | -114.565682 | 24.089884 | -19.565104| 4.793672 | -135.285238| 106.953853
FAC7_1 -3.155066 | -12.590206 | 12.602757 | -15.901496 | 13.590143 | 47.472229 | 13.024275 | -8.751855 | 6.704872

Model Probabilities

Inde pendent
Variable Bret Charley Claudette Floyd Irene Isabel lvan Jeanne Lili
FACL 1 0.560587 0.17482 0.429633 | 0.004087* | 0.457609 | 0.389727 | 0.111288 | 0.992405 | 0.863951
FAC2_1 0.890871 | 0.139641 | 0.317663 0.417856 | 0.590584 | 0.239713 | 0.329272 | 0.368435 | 0.676212
FAC3_1 0.338375 | 0.217729 | 0.773453 0.407736 | 0.152324 | 0.000447* | 0.796692 | 0.410784 | 0.036157*
FAC4_1 0.220224 | 0.000390* | 0.229369 0.81678 0.689714 | 0.945377 | 0.312372 | 0.107069 | 0.036267*
FAC5_1 0.044116* | 0.048495* | 0.741021 0.281386 | 0.804427 | 0.057848 | 0.043703* | 0.585471 | 0.743507
FAC6_1 0.838368 | 0.515042 | 0.274754 | 0.024827* | 0.479905 | 0.630734 | 0.908437 | 0.392983 | 0.001246*
FAC7_1 0.887142 | 0.804985 | 0.657391 0.545933 | 0.145208 | 0.028707* | 0.406433 | 0.802291 0.48078

Model Robust Probabilities

Inde pendent
Variable Bret Charley Claudette Floyd Irene Isabel lvan Jeanne Lili
FAC1_1 0.642006 | 0.047083* | 0.085274 | 0.002974* | 0.235542 | 0.164844 | 0.023599* | 0.986988 | 0.838012
FAC2_1 0.855597 | 0.079476 | 0.150334 0.262055 | 0.463509 | 0.195473 | 0.228806 | 0.341485 | 0.593075
FAC3_1 0.250159 | 0.394136 0.45734 0.354168 | 0.014836* | 0.001383* | 0.704236 | 0.226939 | 0.087434
FAC4_1 0.301822 | 0.050657 | 0.068954 0.760377 | 0.654468 | 0.936597 | 0.026165* | 0.044978* | 0.057852
FACS5_1 0.05731 | 0.045914* | 0.456348 0.104851 0.66509 | 0.036391* | 0.015449* | 0.502508 | 0.699344
FAC6_1 0.879104 | 0.360848 | 0.091158 | 0.009380* | 0.290162 | 0.351914 | 0.769574 | 0.130125 | 0.029151*
FAC7_1 0.875916 | 0.622743 | 0.354379 0.641626 | 0.042378* | 0.284255 | 0.340927 | 0.635379 | 0.407097

Model Variance Inflation Factors (VIF)

Inde pendent
Variable Bret Charley Claudette Floyd Irene Isabel lvan Jeanne Lili
FAC1_1 5.667387 1.673733 242134 1.752976 | 2.328867 | 1.72358 | 1.227935 | 2.032116 | 2.250987
FAC2_1 6.420104 2.65557 5.081819 1.818677 | 2.575472 | 1.438096 | 1.187365 | 3.207995 1.275695
FAC3_ 1 3.040694 | 1.330645 | 1.808037 1.059212 | 2.744101 | 1.082927 | 1.133501 1.864101 1.458473
FAC4_1 5.898662 1.127654 6.42164 1.48697 1.945152 | 1.156039 | 1.639683 1.223708 1.357111
FACS5_1 1.909903 | 3.425664 [ 2.201719 1557819 | 5.511911 | 1.604956 | 1.526155 | 4.500051 | 2.072715
FAC6_1 17.983911 | 1.449433 7.722353 1.449322 | 2.957143 | 1.337944 | 1.343235 | 2.301826 1.966009
FAC7_1 7.636859 1.513991 | 4.719912 1.240182 2.90036 | 1.232205 | 1.071997 | 2.125124 | 1.906039

* Significant level at p = 0.05.
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Figure 32: Scatterplots of VVariable Relationships for Regression Scenario 3
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Figure 34: Scatterplots of Over/Under Predictions for Regression Scenario 3

Moran’s I statistics were run to examine the effects of spatial autocorrelation.
Table 18 shows that 6 of 9 hurricanes had spatial autocorrelation. These results are
contrary to the Koenker statistic that was insignificant for 7 of 9 hurricanes. A composite
map of the OLS residuals displayed in figure 46 shows clustering is associated with the
hurricane storm tracks and points of landfall. These findings are consistent with findings

for regression scenarios 2-3.
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Table 18: Regression Scenarios 3 — Spatial Autocorrelation (Moran’s I) Statistics

Hurricane | Index | Expected [ Variance | P-value | Z-score | Pattern
Bret | 0.000275 |-0.083333|0.033732 | 0.648945 | 0.455228 | Random
Charley [0.138791 |-0.014706 | 0.002819 | 2.890929 | 0.003841 | Clustered
Claudette [ 0.206822 | -0.058824 [ 0.025406 | 1.666608 | 1.666608 | Clustered
Floyd [0.303788 |-0.005525 | 0.000692 | 11.75847 |0.000000 | Clustered
Irene | -0.03173 | -0.058824 | 0.010339 | 0.266423 [ 0.789913 | Random
Isabel | 0.109644 | -0.006369 | 0.000131 | 10.11899 | 0.000000 | Clustered
Ivan | 0.304275 | -0.003086 | 0.000284 | 18.23266 | 0.000000 |Clustered
Jeanne | 0.476162 |-0.019231 | 0.008567 | 5.352211 |0.000000 |Clustered
Lili 0.060925 | -0.023256 | 0.007428 | 0.976738 | 0.328699 | Random

Legend

==—== Hur. Storm tracks

B - 25 std Dev
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[ ]-15--055td Dev
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Figure 35: Map of OLS Residuals and Hurricane Storm Tracks — Regression

Scenario 3
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The results from OLS regression for scenario 3 also suggest model bias is a result
of model mismatch or model mis-specification rather than data outliers. These results
also suggest there is a problem with skewness in the data based on the scatterplots and

spatial autocorrelation from the Global Moran’s I statistics.

REGRESSION SCENARIO 4 —-OLS REGRESSION USING THE SIX

INDEPDENDENT VARIABLES

This model was run using the 6 independent (explanatory) variables from the
FEMA impact models as depicted in figure 36. OLS models were run for all 9 hurricanes
included in the research sample. This scenario examines the relationship between actual
damages and impact model data to determine, if there is a statistical basis for indexing
hazard vulnerability using a combination of these data rather than proxy measures of
susceptibility used to compile SoVI. To validate the efficacy of this approach, it attempts
to quantify the relationships between disaster operations practice and disaster
management policy using disaster costs and disaster impact model data. A key question
considered by regression scenario 4 is: if impact model variables have significant
explanatory power for total amount of federal assistance per capita as an expression of
actual damages, then could SoVI be refactored from these same variables to be a more
effective measure of vulnerability? This approach would directly link hazard
vulnerability across disaster operations policy and practice and provide a basis for

establishing common variables across disaster management that could be used to improve
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the reliability of hazard vulnerability indexes. This OLS model was able to explain over
57% of the variance in SoVI for 6 of 9 hurricanes when applied in regression scenario 1.
The question is will these 6 variables be able to produce similar results using the total

amount of federal assistance per capita as the dependent variable?

Dependent
Variable

Exploratory Regression Candidate
Indepdendent (Explanatory) Variables

Independent Variables for
OLS\GWR Model Runs

Total Federal
Assistance Per
Capita (TA_pcap)

HUNITS: Number of Housing Units in affected county tracks

POP2000: Total Population in affected county tracts

AREASQMI: Area of county

POPDENOO: Population 2000 Density

PERCAPINC: Per capita Income

PCTPOV: Percent Poverty

AVEDISTC: Average Distance to Coast

TREEVOL: Estimation of tree volume in tons

MAXSUSWIN: Sustained wind speed at the time of landfall
BLDGLOSS1K: Building loss as cost to re-build estimated number of structures damaged
CNTLOSS1K: Content/Interior damage estimated from number of structures damaged
NUMBRIDGE: Number of Bridges in affected area

ROADMI: Number of Roads miles in affected area

ERC_CNT: Count of affected Emergency Response Centers
FIRESTA_CT Count of affected Fire Stations

POLSTA_CT: Count of affected Police Stations

SCH_CT: Count of affected Schools

MEDFAC_CT: Count of affected Medical Facilities

ERC_PROB: Damage Probability to Emergency Response Centers
FIRE_PROB: Damage Probability to Fire Stations

POL_PROB: Damage Probability to Police Stations

SCH_PROB: Damage Probability to Schools

MED_PROB: Damage Probability to Medical Facilities

GRA_PROB: Damage Probability to Grade Schools

GOV_PROB: Damage Probability to Government Services
GOVE_PROB: Damage Probability to Government Emergency Services
NH_PROB: : Damage Probability to Nursing Homes

NONP_PROPB: : Damage Probability to Not for Profits
HOSP_PROB: : Damage Probability to Hospitals

POPDENO0:
PCTPOV:
AVEDISTC:
MAXSUSWIN:
BLDGLOSS1K
NUMBRIDGE:

Figure 36: Regression Scenario 4 - Model Variables

Model diagnostics for regression scenario 4 are shown in table 19 below. These
diagnostics indicate the model had low explanatory power for 8 of 9 hurricanes based on

the adjusted R-squared values. The model was able to explain 63.45% of the variance for
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hurricane Charley. It was able to explain less than 10% of the variance for 3 of 9
hurricanes. These results are much lower than those from regression scenario 1,
suggesting there are weak linkages between these variables and disaster management
policy. The other model diagnostics were examined to determine the reliability of the
adjusted R-squared values. The probabilities for the Koenker (BP) statistics were
insignificant for 7 of 9 hurricanes indicating the data are stationary. For these 7
hurricanes, the probabilities were consulted from table 20 to determine if the model
coefficients were statistically significant. For the other 2 hurricanes, the robust
probabilities were consulted to determine if the model coefficients were significant.
Results varied across hurricane run. Model coefficients for POPDENOO and AVEDISTC
were significant for only 1 hurricane. PCTPOV and NUMBRIDGE had significant
model coefficients for 2 hurricanes. BLDGLOSS1K had significant model coefficients
for 3 hurricanes; while MAXSUSWIN had significant model coefficients for 4
hurricanes. The variables representing hurricane intensity and damage to critical
facilities were significant in the most hurricanes. The Jarque-Bera probabilities were
significant for 6 of 9 hurricanes. This indicates there are problems with model bias, as
the residuals are not normally distributed. This is confirmed by the histograms depicted
in figure 38.

Scatterplots from figure 37 shows that the relationships between the dependent and
independent variables are linear. The types of relationships were mixed for some of the
variables and contradict current hazard vulnerability science. For example, figure 37

shows that POPDENOO has a negative linear relationship; when the dependent variable is
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high, POPDENOO is low. PCTPOV, AVEDISTC, and MAXSUSWIN also exhibited

negative linear relationships for several of the hurricanes. BLDGLOSS1K had a positive

linear relationship for 8 of 9 hurricanes, and NUMBRIDGE had a negative linear

relationship for 8 of 9 hurricanes. The type of relationship for BLDGLOSS1K is

expected but not for NUMBRIDGE. These results suggest the model is mis-specified.

The scatterplots of the over and under predictions of residuals shown in figure 39

substantiate this determination. The scatterplots from figure 39 indicate a systematic

scale issue and show that residuals are not randomly distributed. This indicates the

model indeed is not properly specified or that an external influence had not been

accounted for in the model design. It might also mean variable relationships are non-

linear.

Table 19: Regression Scenarios 4 - OLS Model Diagnostics

Joint Koenker Jarque- Akaike's

Multiple | Adjusted Joint Joint F- Wald (BP) Koenker Bera Informatio

R-Squared| R-Squared [ F-Statistic | Statistic | Statistic |Joint Wald| Statistic (BP) Statistic |Jarque-Bera|n Criterion
Hurricane [d] [d] [e] Probability [e] Probability [f] Probability [o] Probability | (AlCc) [d]
Bret 0.718711 | 0.437421 | 2.555058 | 0.139224 |13.51992 [ 0.035484* | 6.882315 | 0.331868 | 0.665478 | 0.716957 |[176.76731
Charley | 0.712898 [ 0.634597 | 9.104626 | 0.000046* | 214.6438 [ 0.000000*| 12.250175 | 0.056615 | 8.397654 | 0.015013* [ 447.29988
Claudette [ 0.381908 | 0.044767 | 1.132783 | 0.404808 |11.54688 | 0.072875 | 6.275699 | 0.393025 | 5.912837 | 0.052005 |230.79853
Floyd 0.097917 | 0.070302 | 3.545812 | 0.002349* [ 19.6831 [0.003153*| 9.282536 | 0.158301 | 3331.5419 | 0.000000* | 2861.263
Irene 0.562145 | 0.323316 | 2.353749 | 0.103727 | 15.09174 [0.019555* | 11.519109 | 0.073598 | 0.252104 | 0.881569 |[177.28128
Isabel 0.18542 | 0.153052 | 5.72859 | 0.000022* | 22.64386 | 0.000925* | 10.603784 | 0.101421 | 7165.6886 | 0.000000* | 2132.712
Ivan 0.371064 | 0.357823 | 28.02438 | 0.000000* | 34.47197 [ 0.000005* | 20.965804 | 0.001861* | 133715.78 | 0.000000* | 4023.0754
Jeanne [ 0.326322 | 0.238451 [ 3.713649 | 0.004295* | 25.96647 | 0.000226* | 15.529667 | 0.016514* | 92.837968 | 0.000000* | 713.90471
Lili 0.224036 | 0.098205 | 1.780442 | 0.130105 | 60.86973 [ 0.000000*| 2.103655 | 0.909923 | 1063.348 | 0.000000* |492.07497

* Significant level at p = 0.05.
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Table 20: Regression Scenarios 4 - OLS Model Results

Model Coefficients

Independent Variable Bret Charley Claudette Floyd Irene Isabel lvan Jeanne Lili
POPDENOO: -0.169416 | 0.199805 | -0.18772 | -0.000094 | 0.002421 | -0.039102 | 0.000059 | -0.013242 | -0.067539
PCTPOV: 12.644482 | 8412.269943 | -328.12532 | 1273.464874 -114.83103 | 404.920367 | 349.035795| 423.306072 | 162.177375
AVEDISTC: 0.14885 | -5.935837 | -0.730191 | -0.388654 | -0.020655 | -1.805775 | -0.437821 | -0.505849 | -0.706828
MAXSUSWIN: 0.024781 | -0.503677 | 0.011483 | -0.059964 | 1.407761 | -0.064575 | -0.074523 [ -0.141433 | -0.008643
BLDGLOSS1K 0.004691 | 0.000182 | 0.002779 | 0.000076 | -0.000003 | 0.000346 | 0.000311 | 0.000031 | 0.000022
NUMBRIDGE: -0.046161 | -0.956201 | -0.25616 | -0.049658 | -0.042378 | -0.212317 | -0.195738 | -0.413325 | 0.075673
Model Probabilities
Independent Variable Bret Charley | Claudette Floyd Irene Isabel lvan Jeanne Lili
POPDENOO: 0.532206 | 0.625208 | 0.353913 | 0.542141 | 0.899076 | 0.002092* | 0.597207 | 0.837232 | 0.083562
PCTPOV: 0.955273 | 0.000378* | 0.471171 | 0.000758* | 0.497878 | 0.173025 | 0.125641 | 0.506317 | 0.377184
AVEDISTC: 0.789959 | 0.094514 | 0.329334 | 0.467336 | 0.941003 | 0.000249* | 0.32402 0.647671 | 0.026913*
MAXSUSWIN: 0.751165 | 0.017870* | 0.855899 | 0.033715* | 0.053381 | 0.612935 | 0.111775 | 0.081185 | 0.817984
BLDGLOSS1K 0.038455* | 0.000034* | 0.334913 | 0.455397 | 0.470032 | 0.059763 | 0.000000* | 0.000218* | 0.080372
NUMBRIDGE: 0.886025 | 0.177379 | 0.331888 | 0.715497 0.26277 | 0.344648 | 0.08081 0.05673 0.344421
Model Robust Probabilities
Independent Variable Bret Charley Claudette Floyd Irene Isabel lvan Jeanne Lili
POPDENOO: 0.466301 0.38159 0.122727 | 0.102117 | 0.865208 | 0.001519* | 0.302015 0.40923 | 0.014286*
PCTPOV: 0.952869 | 0.014504* [ 0.241107 | 0.000669* | 0.380394 | 0.156213 | 0.144727 | 0.195671 | 0.075426
AVEDISTC: 0.660213 | 0.090997 | 0.193359 | 0.266395 | 0.921908 | 0.000187* | 0.517367 | 0.587015 | 0.022499*
MAXSUSWIN: 0.618265 | 0.026027* | 0.723466 0.06897 0.117232 | 0.137813 | 0.000163* | 0.000064* | 0.672183
BLDGLOSS1K 0.054716 | 0.000000* | 0.125452 | 0.136099 [ 0.333246 | 0.364391 | 0.012191* | 0.064324 | 0.000952*
NUMBRIDGE: 0.839677 | 0.055046 | 0.129626 | 0.425124 | 0.202482 | 0.089912 | 0.028920* | 0.013891* | 0.179462
Model Variance Inflation Factors (VIF)
Independent Variable Bret Charley Claudette Floyd Irene Isabel lvan Jeanne Lili
POPDENOO: 8.914447 | 2.546206 | 2.187917 1.26932 2.807564 | 1.133472 | 1.385762 | 1.683228 | 1.507882
PCTPOV: 1.730067 1.590533 2.705854 1.14749 2.225361 | 1.059329 | 1.256976 1.560114 1.227641
AVEDISTC: 2.246167 | 1.284819 2.06197 1.244665 | 3.437236 | 1.462683 | 1.183625 | 1.547705 | 1.564522
MAXSUSWIN: 2.373553 | 1.281939 | 2.018525 | 1.067006 3.29992 | 1.116614 | 1.214682 | 1.202655 1.05646
BLDGLOSS1K 1.951325 | 1.155562 | 1.296542 | 1.061165 3.44602 | 1.196571 | 1.078852 | 1.299882 | 1.086706
NUMBRIDGE: 9.507743 | 2.130976 | 1.667509 1.367457 | 2.652962 | 1.167186 | 1.434354 | 1.873098 [ 1.413117

* Significant level at p = 0.05.

132




133

M . - M -
& . . L] - - 3
[
HIL ~
w -
| T— - // ~
- T — T -
[} - — l = -Jz}. * . L] '
POPDENOOD PCTFOV AVEDISTC MAXSUSWIN BLDGLOSS51K NUMBRIDGE
Yo . * . . % .
h| L] - L] L] -
-4
1
I —
w L] - e - & "
s .t S L  T— e -
I wahm fem S L ‘- I dam'm o o T
POPDENOD PCTPOV AVEDISTC MAXSUSWIN BLDGLOSS1K NUMBRIDGE
. . - - . .
L - . L L -
B
w] ___ . — — - —
-. . e TTe— . R
e - .. - o-’d i _E !‘l' - 2tv -
POPDENOD PCTPOV AVEDISTC MAXS USWIN BLDGLOSS51K NUMBRIDGE
. . . - - .
E ] " . . * ; " s
. - .
EI i o " LI i S,
o . L L - F
2| 1 . h - l. o Y
[ SSRGS OV 5 £ g I T ESTN pal B L T C——
POPDENOO PCTPOV AVEDISTC MAXSUSWIN BLDGLOSS51K NUMBRIDGE
L - L L L -
F
=
E {"" - s. i "‘ *
= P - & & - -
— . - — N —
s - — e . = " . LR L =
POPDENOD PCTPOV AVEDISTC MAXSUSWIN BLDGLOSS51K NUMBRIDGE
- L] L - L] L]
. . . . . .
a - L] L L L -
=
m
< e ® .
L] .. " . -, “- — < -
i g g I _ a—
- B yor Huan-—- = H’ LT hh__gt_-_'
POPDENOO PCTPOV AVEDISTC MAXSUSWIN BLDGLOSS51K NUMBRIDGE




2 . * i . - = .
-9
g
ZI - -
o
E .,
L] |' s
L..,,H_ . . s
POPDENOQOD PCTPOV AVEDISTC MAXSUSWIN BLDGLOSS1K NUMBRIDGE
L] . . ~
- - -
a
z I. . - b.
I
2| o ., . "y v .
w
P —
- ﬁ"i?\.\- ~rr Ty e P
POPDENOOD PCTPOV AVEDISTC MAXSUSWIN BLDGLOSS1K NUMBRIDGE
L] L] L] L] L] -
F
=1 - ™ - ™ M M
- - . - L] LU . CLI T - - o
: P . | s .
‘;__-'__i- LT e F R ey . E— 4 e “n':':-lﬁ.- -
POPDENDOQ PCTROV AVEDISTC MAXSUSWIN BLDGLOSS1K NUMBRIDGE

Figure 37: Scatterplots of Variable Relationships for Regression Scenario 4
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Figure 38: Histograms of Residuals for Regression Scenario 4
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Figure 39: Scatterplots of Over/Under Predictions for Regression Scenario 4

Moran’s I statistics were computed using the residuals from the OLS model to
examine the effects of spatial autocorrelation. Table 21 shows that 5 of 9 hurricanes had

spatial autocorrelation. These results are contrary to the Koenker statistics for hurricanes
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Floyd, Isabel, and Lili. A composite map of the OLS residuals displayed in figure 40
shows clustering is associated with the hurricane storm tracks and points of landfall,

findings consistent with regression scenarios 2-3.

Table 21: Regression Scenario 4 — Spatial Autocorrelation (Moran’s 1) Statistics

Hurricane |  Index Expected | Variance | P-value Z-score | Pattern
Bret -0.18406 | -0.08333 | 0.03302 | 0.57933 | -0.55436 | Random
Charley -0.08521 | -0.03571 | 0.00645 | 0.53754 | -0.61653 [ Random
Claudette | -0.09083 | -0.05882 | 0.02521 | 0.84028 | -0.20154 | Random

Floyd 0.26961 | -0.00495 | 0.00051 | 0.00000 | 12.17089 |Clustered
Irene -0.08752 | -0.05882 | 0.00980 | 0.77188 | -0.28992 | Random
Isabel 0.09554 | -0.00637 | 0.00058 | 0.00002 | 4.24298 |Clustered
Ivan 0.16302 | -0.00344 | 0.00030 | 0.00000 | 9.54322 (Clustered
Jeanne 0.35236 | -0.01923 | 0.00870 | 0.00007 | 3.98417 [Clustered
Lili 0.10991 | -0.02326 | 0.00440 | 0.04476 2.00686 |Clustered

Legend

===== Hur. Storm Tracks
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Figure 40: Map of OLS Residuals & Hurricane Storm Tracks Regression Scenario 4
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The OLS regressions for this chapter suffered from three fundamental issues that
introduced bias into the OLS models: skewness in the data, model misspecification, and
spatial autocorrelation. The next two chapters are devoted to resolving these issues to

produce more meaningful results.
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CHAPTER 7: ADDRESSING MODEL BIAS IN THE OLS REGRESSION

LOG TRANSFORMATIONS OF MODEL VARIABLES

This chapter seeks to resolve the skewness issue affecting the OLS regression
models by applying log transformations to the model variables. Logarithmic
transformations will have the effect of compressing the high values of the transformed
variables, and expanding the low end values; thereby, linearizing the relationship
between the variables. To determine the effectiveness of the log transformations, the
descriptive statistics were consulted including the mean, median, skewness, and kurtosis
parameters. The Skewness measure indicates the level of non-symmetry; if the
distribution of the data is symmetric then skewness will be close to 0. Kurtosis is a
measure of the peakedness of the data; for normally distributed data the kurtosis is 0.
The Jarque-Bera statistics were used as the goodness-of-fit test to determine whether the
transformed data have skewness and kurtosis matching a normal distribution. The
Akaike’s Information Criteria (AICc) was used to assess the quality of the OLS model.
AlICc is a measure of the relative quality of the statistical models for a given set of data
and provides a relative estimate of the information lost when a given model is used to
represent the dependent variable. Low AICc scores indicate little data is lost.

Log transformations were performed on the following 6 variables: TA_PCAP

(total federal assistance per capita), POPDENNOO (population density 2000),
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AVEDISTC (average distance to coast), MAXSUSWIN (maximum sustained wind
speeds), BLDGLOSS1K (building loss in thousands of dollars), and NUMBRIDGE
(number of bridges). Histograms of these log transformations as well as the descriptive
statistics are provided in the appendix.

The OLS models for regression scenarios 2-4 were re-run using the log variables.
Table 22-24 shows a comparison of the Jarque-Bera statistics and Akaike’s Information
Criteria (AICc) scores for regression scenarios 2-4 as well as the adjusted R-squares for
each OLS model run. The model diagnostics for each regression scenario were updated
and interpreted as follows. Log transformation had positive effects on the OLS
regression models. First, the log transformations were able to resolve a majority of the
skewness issues experienced with the initial OLS models. For regression scenario 2,
depicted in Table 22, 8 of 9 hurricanes had issues with skewness in the data based on the
Jarque-Bera test of normality prior to the log transformation. After the log
transformations, 8 of 9 hurricanes had insignificant Jarque-Bera statistics indicating the
data was normally distributed for all but hurricane Jeanne. The AICc scores also showed
significant improvement indicating the OLS models using the log transformations are

better specified.
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Table 22: Regression Scenario 2 — Model Diagnostics using Log Transforms

Jarque-Bera | Akaike's
Jarque- Probability |Information| AlICc

Multiple | Adjusted Bera |Jarque-Bera| after Log Criterion | after Log

Hurricane | R-Squared [ R-Squared | Statistic | Probability | transform (AlCc) transform
Bret 0.460711 | 0.411685 | 0.303774 | 0.635125 0.859085 |142.386169| 49.096068
Charley | 0.006365 | -0.008465 | 5.314557 | 0.000000* | 0.070139 |]1045.28583]| 319.91205
Claudette | 0.005001 | -0.057186 [ 0.306689 | 0.001242* | 0.857834 |214.717872| 62.08617
Floyd 0.049851 | 0.044573 | 3.495747 | 0.000000* | 0.174144 |2583.79078| 812.84168
Irene 0.034394 | -0.025957 [ 1.19597 | 0.000000* | 0.549919 |167.847711] 87.945829
Isabel 0.000833 | -0.005572 | 3.431808 | 0.000000* | 0.179801 |?2160.23395| 679.8851
Ivan 0.004155 | 0.001072 | 0.921261 | 0.000000* | 0.630886 |4582.99211| 1434.6158
Jeanne 0.10119 | 0.083566 | 17.733077 | 0.000000* | 0.000141* |718.726391| 204.08667
Lili 0.03614 | 0.013191 | 0.064575 | 0.000000* | 0.968228 | 489.7047 | 171.028079

* Significant level at p = 0.05.

For regression scenario 3, depicted in Table 23, 7 of 9 hurricanes had issues with
skewness in the data based on the Jarque-Bera test of normality prior to the log
transformation. After the log transformations, all 9 hurricanes had insignificant Jarque-
Bera statistics after the log transformations, indicating the data was normally distributed.
The AICc scores also showed significant improvement indicating the OLS models using

the log transformations are better specified.
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Table 23: Regression Scenario 3 — Model Diagnostics using Log Transforms

Jarque-Bera| Akaike's
Jarque- | Probability | Information AlCc
Multiple | Adjusted Bera after Log Criterion after Log
Hurricane | R-Squared | R-Squared | Probability [ transform (AlCc) transform
Bret 0.878039 | 0.707294 | 0.635125 | 0.599275 | 197.574814 |99.104237
Charley 0.308227 | 0.228843 | 0.000000* | 0.407183 | 1044.770559| 309.6079
Claudette | 0.410446 |-0.002242| 0.012291* | 0.89722 | 242.843238 | 85.451124
Floyd 0.153525 | 0.119472 | 0.000000* | 0.525137 |2575.688267|804.72538
Irene 0.442073 | 0.051525 | 0.847012 | 0.564294 | 182.989604 | 110.85803
Isabel 0.203745 | 0.166586 | 0.000000* | 0.713352 |[2155.439167|657.07912
Ivan 0.050723 | 0.029761 | 0.000000* | 0.504556 | 4588.99382 | 1431.5481
Jeanne 0.210822 | 0.088061 | 0.000000* | 0.07555 | 728.626731 |212.88866
Lili 0.561286 | 0.475981 | 0.000000* | 0.125499 | 480.636957 | 153.08985

* Significant level at p = 0.05.

For regression scenario 4, depicted in Table 24, 6 of 9 hurricanes had issues with
skewness in the data based on the Jarque-Bera test of normality prior to the log
transformation. After the log transformations, 6 of 9 hurricanes had insignificant Jarque-
Bera statistics after the log transformations, indicating the data was normally distributed.
The AICc scores also showed significant improvement indicating the OLS models using
the log transformations are better specified. Even the 3 hurricanes with significant
Jarque-Bera statistics (lvan, Jeanne, and Lili) showed significant improvement in their

AICc scores after the log transformation also indicating improvement in the model fit.
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Table 24: Regression Scenario 4 — Model Diagnostics using Log Transforms

Jarque-Bera| Akaike's
Jarque- Jarque- | Probability | Informatio | AlCc
Multiple | Adjusted Bera Bera after Log |[n Criterion| after Log
Hurricane |R-Squared| R-Squared | Statistic | Probability [ transform (AlCc) |transform
Bret 0.833526 | 0.667051 | 0.814979 | 0.716957 | 0.665318 | 176.76731| 77.14907
Charley | 0.812877 | 0.761843 | 0.334743 | 0.015013* | 0.845885 | 447.29988] 99.02725
Claudette | 0.51137 | 0.244844 | 3.485527 | 0.052005 | 0.175036 | 230.79853| 226.568
Floyd 0.352909 | 0.3331 0.591506 | 0.000000* | 0.743971 | 2861.263 | 839.3799
Irene 0.785095 | 0.667874 | 0.096468 | 0.881569 | 0.952911 | 177.28128| 85.18548
Isabel 0.639705 | 0.625388 | 8.058707 | 0.000000* | 0.017786* | 2132.712 | 533.5655
Ivan 0.367562 | 0.354247 | 15.779169 | 0.000000* | 0.000375* | 4023.0754| 1162.85
Jeanne | 0.635223 | 0.587643 | 14.442282 | 0.000000* | 0.000731* | 713.90471] 169.0749
Lili 0.430938 | 0.338657 | 3.924639 | 0.000000* | 0.140532 | 492.07497| 161.3563

* Significant level at p = 0.05.

Generally, the log transformations had little effect on the adjusted R-squared
values for the updated regression models. SoVI1 still performs poorly in explaining the
dependent variable, total federal assistance per capita (regression scenarios 2-3) using
OLS regression. The FEMA impact model data (regression scenario 4) performs
markedly better in explaining the dependent variable. Those OLS models were able to
explain over 50% of the variance for 6 of 9 hurricanes and between 35-43% of the
variance for the remaining 3 hurricanes. SoVI, on the other hand, was only able to
explain a substantial amount of the variance for hurricane Bret, and the SoV| factors
(regression scenario 3) didn’t perform much better explaining considerable variance for

only 2 hurricanes (Bret and Lili).
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ADDING MISSING INDEPENDENT VARIABLES

The OLS regressions for scenarios 2-3 indicated model-misspecification due to
key explanatory variables missing. The results from the comparative analysis in chapter
3 also indicated SoVI was missing variables for the geophysical properties of the hazard.
To address this issue, variables for AVEDISTC and MAXSUSTWIN were combined
with SoVI for regression scenario 5. Figure 41 provides an illustration of the regression

model.

Independent
Dependent (Explanatory)
Variable Variables
Total Federal SOVI score
Assistance Per AVEDISTC:
Capita (TA_pcap) MAXSUSWIN:

Figure 41: Regression Scenario 5 - Model Variables

OLS models were run for all 9 hurricanes included in the research sample. Table
25 shows the diagnostics for the OLS regression model runs for each hurricane. Table 26
shows the results for those same OLS model runs. The model diagnostics for the OLS
regression model runs indicate some measure of improvement with the additional
geophysical variables; however, the model still performed poorly for 5 of 9 hurricanes.
The AIC scores still varied widely across hurricanes from 50.971792 to 1429.1043
suggesting the independent variables are not reliable predictors of the phenomena. The

adjusted R-squared values show the model was able to explain less than 13% of the
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variance for 5 of 9 hurricanes. Four model runs were able to demonstrate significant
explanatory power (hurricanes Bret, Charley, Irene, and Isabel), SoVI was able to explain
more than 39.8% of the variance. To determine the reliability of the adjusted R-squared
values, the other model diagnostics and results were examined.

Scatterplots of the variables relationships in figure 42 suggest that while the log
transformations improved the models, these transformations had limited effect in
linearizing the variables. The Jarque-Bera statistic was significant for only hurricane
Jeanne indicating the residuals are normally distributed. This interpretation was
confirmed by the histograms depicted in figure 43. The scatterplots of the over and under
predictions of residuals portrayed in figure 44 also show randomly distributed patterns
indicating good model specification.

The Koenker (BP) statistic was significant for 4 hurricanes (Charley, Isabel, Ivan
and Jeanne) and insignificant for the remaining 5 hurricanes. This suggests the data for
hurricanes Charley, Isabel, Ivan and Jeanne are non-stationary, and the robust
probabilities were consulted to determine coefficient significance. The all coefficients
for hurricane Isabel were significant based on the robust probabilities. Significant
coefficients varied for the remaining 8 hurricanes. Hurricanes Claudeette and Ivan had no
significant coefficients. The variables relationships depicted in the scatterplots from

figure 42 are dubious as results are inconsistent across the 9 hurricanes.
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Table 25: Reqg

ression Scenarios 5 - OLS Model Diagnostics

Akaike's
Joint F- Joint Koenker | Koenker | Jarque- Jarque- | Information
Multiple | Adjusted Joint Statistic Wald |Joint Wald (BP) (BP) Bera Bera Criterion
Hurricane |R-Squared| R-Squared | F-Statistic | Probability | Statistic |Probability| Statistic Probability | Statistic | Probability (AlCc)
Bret 0.709201 | 0.612268 | 7.316393 | 0.008705* | 38.20263 | 0.000000* | 0.850643 | 0.837319 | 0.243416 | 0.885407 | 50.971792
Charley [ 0.424543| 0.397984 | 15.98459 | 0.000000* | 44.32056 | 0.000000* | 10.932933 | 0.012094* | 1.924249 | 0.38208 | 286.806974
Claudette | 0.022418 | -0.187064 | 0.022418 | 0.9546 | 0.613896 | 0.893244 | 7.301925 | 0.062872 | 0.172165 | 0.917518 | 69.05402
Floyd 0.064219 [ 0.048447 | 4.071808 | 0.007924* | 13.29606 | 0.004038*| 6.708372 | 0.081797 | 3.769291 | 0.151883 | 814.274652
Irene 0.760445 | 0.709112 | 14.8139 [ 0.000126* | 57.55005 | 0.000000* | 1.591069 | 0.661417 | 0.542779 | 0.76232 | 70.140026
Isabel | 0.449037 | 0.438304 | 41.83687 | 0.000000* | 138.6425 | 0.000000* | 16.698923 [0.000815* | 2.260761 | 0.32291 |590.073759
Ivan 0.033215 | 0.024179 | 3.676071 | 0.012509* | 10.20795 | 0.016879*| 10.937571 | 0.012068* | 1.004799 | 0.605077 | 1429.1043
Jeanne | 0.183987 | 0.134027 | 3.682687 | 0.018046* | 17.96033 [ 0.000448* | 8.248262 | 0.041150* | 27.490687 | 0.000001* | 203.751457
Lili 0.140414 | 0.075945 | 2.178013 | 0.105634 |9.117218|0.027772*| 3.541809 | 0.31538 | 0.003536 | 0.998234 | 170.969214
* Significant level at p = 0.05.
Table 26: Regression Scenarios 5 - OLS Model Results
Model Coefficients
Independent Variable Bret Charley Claudette Floyd Irene Isabel lvan Jeanne Lili
SoVI: 0.649582 0.05465 -0.009117 [ 0.215138 | 0.512772 | 0.089231 | 0.042695 | 0.248105 | -0.052928
AVEDISTC: -0.98998 0.669204 | -0.062638 | -0.104114 | -1.379715 | -0.764183 | 0.147966 | 0.156971 | -0.660379
MAXSUSWIN: -0.711665 | 0.182995 -0.10497 | -0.069511 | 1.117839 | 0.464471 | 0.096403 | -0.441259 | 0.324228
Model Probabilities
Independent Variable Bret Charley Claudette Floyd Irene Isabel lvan Jeanne Lili
SoVI: 0.001258* | 0.616812 | 0.943055 | 0.001227* | 0.006416* | 0.045860* | 0.454584 | 0.025318* | 0.690334
AVEDISTC: 0.023076* | 0.008263* | 0.836887 0.39347 | 0.000488* | 0.000000* | 0.072052 0.46175 | 0.040133*
MAXSUSWIN: 0.19251 0.191044 | 0.661533 0.28771 0.666189 | 0.000000* [ 0.05235 | 0.042243* | 0.361363
Model Robust Probabilities
Independent Variable Bret Charley Claudette Floyd Irene Isabel lvan Jeanne Lili
SoVI: 0.000394* | 0.618939 | 0.940717 | 0.000775* | 0.001408* | 0.032582* | 0.39541 | 0.001005* | 0.643623
AVEDISTC: 0.004516* | 0.026502* | 0.880856 0.378696 | 0.000048* | 0.000000* | 0.07875 0.539719 | 0.014828*
MAXSUSWIN: 0.021746* | 0.276939 | 0.460464 0.229339 | 0.604263 | 0.000000* [ 0.073799 | 0.016273* | 0.358716
Model Variance Inflation Factors (VIF)
Independent Variable Bret Charley Claudette Floyd Irene Isabel lvan Jeanne Lili
SoVI: 1.287732 | 1.010332 | 1.304326 1.022274 | 1.112316 | 1.023593 | 1.024313 | 1.080767 1.296839
AVEDISTC: 2.020382 | 3.140456 | 1.283182 1.12556 2.001102 | 1.058808 | 1.081743 | 1.076117 | 1.292116
MAXSUSWIN: 1.715992 3.127213 1.027488 1.134944 1.849485 | 1.036331 | 1.104537 1.00484 1.102006

* Significant level at p = 0.05.
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Figure 42: Scatterplots of Variable Relationships for Regression Scenario 5
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Figure 44: Scatterplots of Over/Under Predictions for Regression Scenario 5

Moran’s statistics were run to determine if spatial autocorrelation issues were
influencing model performance for regression scenario 5. These statistics are listed in
Table 27 below. The Moran’s I results indicate the presence of spatial autocorrelation in

the OLS model runs for 6 of the 9 hurricanes.
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Table 27: Regression Scenarios 5 — Spatial Autocorrelation (Moran’s I) Statistics

Hurricane [ Index Expected | Variance | P-value Z-score | Pattern
Bret 0.166484 | -0.08333 | 0.032842 | 0.168047 | 1.378505 | Random
Charley 0.269884 | -0.014706 | 0.003725 | 0.000003 | 4.662683 |Clustered
Claudette | 0.037203 | -0.058824 | 0.029242 | 0.574424 | 0.561548 | Random

Floyd 0.506618 | -0.005525 | 0.000754 | 0.00000 | 18.650511 [Clustered
Irene 0.033397 | -0.058824 | 0.01044 | 0.366754 | 0.902571 | Random
Isabel 0.111404 | -0.006369 | 0.000151 | 0.00000 | 9.577545 |Clustered
Ivan 0.514572 | -0.003086 | 0.000406 | 0.00000 | 25.675267 |Clustered
Jeanne 0.274333 | -0.019231 | 0.00918 | 0.002184 | 3.06395 [Clustered
Lili 0.377364 | -0.023256 | 0.009482 | 0.000039 | 4.114154 |Clustered
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CHAPTER 8: RESOLVING SPATIAL AUTOCORRELATION

Model bias from data skewness and missing variables were resolved using
regression scenarios 4 and 5. Regression scenario 5 produced the best results in the OLS
regression analysis. It used 6 independent variables from the FEMA impact models of
which 5 variables had log transformations performed. Regression scenario 6 produced
the best results using SoV1 as the independent variable plus log transformations for 2
geophysical variables. This chapter seeks to resolve the third issue encountered in the
OLS regression that of spatial autocorrelation by applying spatial econometrics and
geographically weighted regression (GWR) to these same regression scenarios. This
approach is supported by the global Moran’s I statistics that indicate significant clustering
in a majority of the 9 hurricanes models examined. This allows for an “apples to apples”
comparison to determine if a modified SoVI model can produce better results or a model
based on FEMA impact model data can produce the best results.

For regression scenarios 4-5, spatial regression was run using queens-contiguity
spatial weights for each of the 9 hurricanes to determine the significance of the spatial
dependency identify in the global Moran’s I results. The Lagrange Multiplier (LM)
diagnostics were interpreted to decide if spatial regression is necessary and whether to
use spatial lag or error terms to account for the spatial effects. The LM diagnostics for

each regression scenario are presented in tables 53-54 below.
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For regression scenario 4, the LM diagnostics indicated that spatial dependency
was significant for hurricanes Floyd, Isabel, Ivan, and Jeanne. Spatial regression should
be run using both spatial lag for hurricanes Isabel and Ivan. Spatial error should be used

for hurricanes Floyd and Jeanne.

Table 28: Regression Scenarios 4 — Lagrange Multiplier Diagnostics

Hurricane
Diagnostic Bret Charley [ Claudette Floyd Irene Isabel lvan Jeanne Lili
Moran's | 0.1076 1.6911 -0.1242 | 10.7643 0.6397 5.7964 13.5463 5.7136 2.6778
Moran's | Probability 0.9143 0.09082 | 0.90113 | 0.00000 | 0.52237 0.00000 0.00000 0.00000 0.00741
Lagrange Multiplier (lag) 0.22160 0.0005 0.11570 | 95.0065 | 0.11580 33.6402 | 203.5972 13.7565 2.07440
Lagrange Multiplier (lag) Probability 0.63780 0.98156 | 0.73376 | 0.00000 | 0.73369 0.00000 0.00000 0.00021 0.14979
Robust LM (lag) 0.01000 1.4109 1.87750 1.2228 0.73140 8.1768 38.737 0.0772 0.09750
Robust LM (lag) Probability 0.92033 0.2349 0.17062 | 0.26881 | 0.39244 0.00424 0.00000 0.78111 0.75489
Lagrange Multiplier (error) 0.3222 1.3249 0.82820 97.645 0.02590 25.4876 | 164.8695 19.5393 2.06260
Lagrange Multiplier (error) Probability 0.5703 0.24971 | 0.36278 | 0.00000 | 0.87224 0.00000 0.00000 0.01549 0.15095
Robust LM (error) 0.1105 2.7353 2.59010 3.8613 0.64150 0.0242 0.0093 5.86 0.08570
Robust LM (error) Probability 0.73952 0.09815 0.10754 | 0.04941 | 0.42318 0.87647 0.92304 0.01549 0.76969

For regression scenario 5, the LM diagnostics indicated that spatial dependency
was significant for hurricanes Charley, Floyd, and Isabel. Spatial regression should be

run using spatial lag.

Table 29: Regression Scenarios 5 — Lagrange Multiplier Diagnostics

Hurricane
Diagnostic Bret Charley | Claudette Floyd Irene Isabel lvan Jeanne Lili
Moran's | 1.3528 3.4434 1.0197 11.7744 2.0170 7.1032 17.6306 6.5758 4.0338
Moran's | Probability 0.17613 0.00057 | 0.30787 | 0.00000 | 0.04370 0.00000 0.00000 0.00000 0.00005
Lagrange Multiplier (lag) 1.15160 17.774 0.06070 | 130.4274 | 0.02950 85.8121 | 295.9508 28.0861 8.26740
Lagrange Multiplier (lag) Probability 0.28322 0.00002 | 0.80538 | 0.00000 | 0.86371 0.00000 0.00000 0.00000 0.00404
Robust LM (lag) 1.45180 10.499 2.68090 4.9956 3.29520 45.6922 2.6786 0.0086 0.46410
Robust LM (lag) Probability 0.22824 0.00119 | 0.10156 | 0.02541 | 0.06948 0.00000 0.10170 0.92619 0.49572
Lagrange Multiplier (error) 0.1609 8.5752 0.00850 | 125.4459 | 0.64550 42.8047 294.2014 30.4693 9.57090
Lagrange Multiplier (error) Probability 0.68829 0.00341 | 0.92650 | 0.00000 | 0.42172 0.00000 0.00000 0.00000 0.00198
Robust LM (error) 0.4612 1.3002 2.62870 0.0141 3.91130 2.6849 0.9293 2.3917 1.76770
Robust LM (error) Probability 0.49708 0.25417 0.10495 [ 0.90540 0.04796 0.10131 0.33505 0.12198 0.18367
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Tables 55-56 compare the results from the OLS and spatial regression diagnostics
for regression scenario 4 and 5, respectively. The model results were interpreted by 1)
comparing the AIC and Schwarz criterion to determine if the spatial regression is a better
fit versus the OLS and 2) using the order of precedence per Anselin (2005, p. 209) to
determine if the model is properly specified which is W > LR > LM.

For regression scenario 4, the AIC and Schwarz criterion (SC) were lower in the
regression models versus the OLS models. For the order of precedence test, the results
were mixed. Hurricanes lvan and Jeanne satisfied this test indicating the spatial
regression is an improvement and the model is properly specified. Hurricanes Floyd and
Isabel failed this test. LR diagnostics were less than the LM diagnostics for these two
hurricanes. This suggests the models are missing a key explanatory variable or external

influence.

Table 30: Regression Scenarios 4 — Spatial Regression Diagnostics

Spatial Weights: Queens Contiguity
Hurricane
Floyd Isabel Ivan Jeanne Jeanne

Diagnostic Floyd OLS| Spatial Error |Isabel OLS| Spatial Lag |lvan OLS| Spatial Lag OLS Spatial Error
Multiple R-Squared 0.352909 0.65484 0.639705 0.714097 0.36756 0.737381 0.635223 0.786302
Adjusted R-Squared 0.3331 - 0.625388 - 0.354247 - 0.587643 -
Joint F-Statistic 17.8157 - 44.6835 - 27.6062 - 13.3507
Joint F-Statistic Probability 0.00000 - 0.000000 - 0.000000 - 0.00000 -
Joint Wald Statistic - 205.4592558 - 31.87090247 - 391.4470164 = 40.34307662
Koenker (BP) Statistic 24.2989 2.5723 19.3256 11.6106 18.2213 1029.0638 9.3593 8.6813
Koenker (BP) Probability 0.00046 0.86029 0.00365 0.07124 0.0057 0.00000 0.15436 0.19231
Jarque-Bera Statistic 0.5915 - 8.0587 - 15.7792 - 14.4423 -
Jarque-Bera Probability 0.74397 - 0.01779 - 0.00037 - 0.00073
Akaike's Information Criterion
(AlCc) 836.638 742.814 530.599 503.668 1160.34 957.202 163.802 143.234
Swartz Criterion 859.83 766.007 552.037 528.169 1186.08 986.616 177.594 157.026
Likelihood Ratio - 93.8236 - 28.9306 - 205.1391 - 20.5678
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For regression scenario 5, the AIC and Schwarz criterion (SC) were lower in the
regression models versus the OLS models for hurricanes Floyd and Isabel but not the
case for hurricane Charley. For the order of precedence test, the results were also mixed.
Hurricanes Charley and Isabel satisfied this test indicating the spatial regression is an
improvement and the model is properly specified. Hurricanes Floyd failed this test; the
LR diagnostic was less than the LM diagnostic. This suggests the model is missing a key

explanatory variables or external influence.

Table 31: Regression Scenarios 5 — Spatial Regression Diagnostics

Spatial Weights: Queens Contiguity
Hurricane
CharleyO Charley Floyd Isabel Isabel

Diagnostic LS Spatial Lag |Floyd OLS | Spatial Lag OLS Spatial Lag
Multiple R-Squared 0.424543 0.431873 0.064219 0.620315 0.44904 0.718823
Adjusted R-Squared 0.397984 - 0.048447 - 0.438304 -
Joint F-Statistic 15.9846 - 4.07181 41.8369 -
Joint F-Statistic Probability 0.00000 - 0.007924 - 0.000000 -
Joint Wald Statistic - 132.8728817 - 269.1607735 - 143.0341849
Koenker (BP) Statistic 8.0206 78.0027 4.1814 3.8411 13.8284 3.5381
Koenker (BP) Probability 0.04559 0.00000 0.24253 0.27915 0.00315 0.31586
Jarque-Bera Statistic 1.9242 - 3.7693 - 2.2608 -
Jarque-Bera Probability 0.38208 - 0.15188 0.32291 -
Akaike's Information Criterion
(AICc) 283.855 2793.02 811.934 687.152 587.679 503.581
Swartz Criterion 292.791 2819.52 824.75 703.173 599.929 518.894
Likelihood Ratio 67.5026 126.7813 86.0981

Given that the spatial regression results were inconclusive, the GWR models were
used to explore the spatial dependency and assess model fitness for the regression
scenarios. For regression scenario 4, GWR executed for 4 of 9 hurricanes; the remaining
hurricane models failed to execute due to a severe model design error in ArcGIS. This

type of error is usually due to global or local multicollinearity or non-linear relationships.
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Table 32 shows the Residual squares ranged from 61.15 to 799.79. Comparing the AIC
results between OLS and GWR models suggests there is modest benefit in moving from a
global regression model to a local regression model. Not a reliable indicator, but the
local R-squared values were slightly better for the GWR model indicating the local model
has better explanatory power. GWR calculates the R-squared values by normalizing the
numerator and denominator by their degrees of freedom; thereby, losing the interpretation
of the value as a proportion of the variance explained, because the effective number of
degrees of freedom in GWR is a function of the bandwidth rather than the number of
variables like in OLs. As a result, the GWR R-squared is not considered a reliable
indicator.

Additionally, examining the condition number, a diagnostic for local collinearity,
for each GWR model indicates there are no real issues with local collinearity. This
conclusion was confirmed by the coefficient standard error values for each model which
were also very low. GWR model results still exhibit spatial autocorrelation as shown in
table 33 below. Maps of the GWR residuals depicted in figure 45 shows clustering of
residuals consistent with the local Moran’s 1. This clustering also appears to be closely
associated with the hurricane storm tracks and points of landfall. Overall analysis of the
GWR results indicates that using a GWR approach yields a slight improvement over the

OLS global model.
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Table 32: Regression Scenario 4 - GWR Model Results

GWR - Local Regression OLS - Global Regression
Hurricane| Bandwidth | Residual Squares | Effective Number | Sigma AlCc R2 R2Adjusted AlC R2 R2Adjusted
Floyd 582,843.39 528.74 15.212884 1.67798 | 799.40 | 0.499681 | 0.461814 | 839.37989 | 0.35291 0.3331
Isabel | 215,757.20 181.42 20.076767 1.46893 | 507.43 | 0.731352 | 0.694194 | 533.56548 | 0.63971 | 0.625388
Ivan 1,338,256.39 799.79 10.084589 1.684334| 1143.17 | 0.416394 | 0.397587 | 1162.8503 | 0.36756 | 0.354247
Lili 601,684.65 61.15 7.830796 1.300209 | 160.80882 | 0.454943 | 0.352006 | 161.35629 | 0.43094 | 0.338657

Table 33: Regression Scenario 4 - GWR Moran’s I Results

Hurricane | Index Expected | Variance | P-value Z-score | Pattern
Floyd 0.183123 | -0.00495 | 0.000505 | 0.000000 | 8.367848 |Clustered
Isabel | 0.007733 | -0.006369 | 0.000555 | 0.549432 | 0.598612 | Random

Ivan 0.163014 | -0.003436 | 0.000304 | 0.000000 | 9.542683 |Clustered
Lili 0.109926 | -0.023256 | 0.004402 | 0.044705 | 2.007417 |Clustered
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Figure 45: Regression Scenario 4 - GWR Residual Maps

For regression scenario 5, GWR executed for 7 of 9 hurricanes; the remaining
hurricane models failed to execute due to a severe model design error in ArcGIS. This
type of error is usually due to global or local multicollinearity or non-linear relationships.
The Residual squares ranged from 61.15 to 879.21. Comparing the AIC results between
OLS and GWR models shown in table 34 suggests there is a benefit in moving from a
global regression model to a local regression model. Not a reliable indicator, but the
local R-squared values were better for the GWR model indicating the local model has
better explanatory power. Based on a review of the condition number, a diagnostic for
local collinearity, for each GWR model indicates there are no issues with local

collinearity. This conclusion was confirmed by the coefficient standard error values for
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each model which were also very low. Table 35 below and maps of the GWR residuals

depicted in figure 46 shows clustering of residuals consistent with the local Moran’s 1.

This clustering also appears to be closely associated with the hurricane storm tracks and

points of landfall. Overall analysis of the GWR results indicates that using a GWR

approach yields a modest improvement over the OLS global model for regression

scenario 5.

Table 34: Regression Scenario 5 - GWR Model Results

GWR - Local Regression OLS - Global Regression
Hurricane| Bandwidth | Residual Squares | Effective Number |  Sigma AICc R2 R2Adjusted AIC R2 R2Adjusted
Charley | 471,028.98 198.692760 7.078416 1.791307 | 284.324128 | 0.480534 | 0.429542 | 286.80697 | 0.42454 | 0.397984
Claudette | 4,615,665.04 21.227748 4.008216 1.231730 | 69.068143 [0.226000| -0.187540 | 69.05402 | 0.02242 | -0.187064
Floyd | 161,097.20 315.58 35.208039 1.466231| 686.46 |0.665566| 0.58763 | 814.27465 | 0.06422 | 0.048447
Isabel | 240,305.65 273.50 11.287251 1.365357| 555.61 |0.584533| 0.555401 | 590.07376 | 0.44904 | 0.438304
Ivan 374,776.87 879.21 20.107499 1.698133| 1281.11 [0.432551| 0.396989 | 1429.1043 | 0.03322 | 0.024179
Jeanne | 188,306.96 65.06 11.622222 1.253896 | 187.396716 | 0.547101 | 0.430836 | 203.75146 | 0.18399 | 0.134027
Lili 601,684.65 61.15 7.830796 1.300209 | 160.80882 [0.454943| 0.352006 | 170.96921 | 0.14041 | 0.075945

Table 35: Regression Scenario 5 - GWR Moran’s I Results

Hurricane |  Index Expected | Variance | P-value Z-score | Pattern
Floyd 0.183123 | -0.00495 | 0.000505 | 0.000000 | 8.367848 |Clustered
Isabel | 0.007733 | -0.006369 | 0.000555 | 0.549432 | 0.598612 | Random

Ivan 0.163014 | -0.003436 | 0.000304 | 0.000000 | 9.542683 |Clustered
Lili 0.109926 | -0.023256 | 0.004402 | 0.044705 | 2.007417 |Clustered
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Hur. Lili

Figure 46: Regression Scenario 5 - GWR Residual Maps
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CHAPTER 9: SUMMARY AND CONCLUSIONS

This dissertation explored the relationships between hazard vulnerability science,
disaster management policy, and disaster operations practice using a case study of 9
Atlantic hurricanes occurring between 1999 and 2004. Qualitative analysis was
conducted to establish common linkages and theoretical underpinnings between hazard
vulnerability indices and disaster management policy and practice. Exploratory
regression and spatial econometric methods were utilized to quantify relationships across

these disciplines. Five main questions guided this research:

1. Does vulnerability science have a nexus with disaster management?

2. Do hazard vulnerability indicators align with disaster operations variables?

3. Do hazard vulnerability indices accurately predict the exposure of a community
to a natural hazard and therefore its level of vulnerability or the level of
damages and serve as a good predictor for disaster management purposes?

4. Do hazard vulnerability indices account for the geography of the hazard across
space or inadvertently treat the units of measure as discrete locations?

5. Do hazard vulnerability indices provide an effective planning tool for building
disaster resiliency?

This chapter summarizes this research and discusses key findings. The
contribution and implications of this research, a critique of it, and opportunities for future

research are presented.
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SUMMARY OF RESEARCH FINDINGS

This dissertation was concerned with establishing the conceptual linkages between
hazard vulnerability science and disaster management policy and practice. This research
was able to establish common conceptual foundations and theoretical underpinnings
across these three disciplines, using a pedigree matrix and variable cross walk (Chapter
3). The pedigree matrix was used to compare and contrast three hazard vulnerability
indices (social vulnerability index, disaster risk index, and disaster preparedness index)
and to select the best one suited to test - if a hazard vulnerability index can accurately
predict the exposure of a community to a natural hazard and therefore its level of
vulnerability or the level of damages and serve as a good predictor for disaster
management purposes. The comparative analysis was based on a qualitative taxonomy
adopted from Gall (2007, p.33-34) that allowed for an “apples to oranges” comparison of
the scale and the composition of the indices. Results from the pedigree analysis
determined that SoVI was the best suited index for testing the predictive power of hazard

vulnerability indices.

The results from the comparative analysis also showed that there is general
alignment between the indicators used by hazard vulnerability science (SoV1), the
essential elements of information (EEIS) used by disaster management policy, and the
disaster impact model variables used by disaster response. EEls were grouped into four
main categories: disaster area, geophysical information, socio-economic information, and

critical infrastructure information. EEIs for geophysical information were not aligned
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with any hazard vulnerability indicators, but hazard vulnerability indicators were aligned

to the EEI groupings for disaster area, socio-economic, and critical infrastructure.

A correlation analysis of SoVI with the FEMA impact model variables that are
linked to disaster management policy substantiated the findings from the comparative
analysis. SoVI had strong statistical correlations with the socio-economic grouping of
EEIls and weak correlations with the critical infrastructure grouping. Additionally, the
correlation analysis showed that SoVI had few statistically significant correlations with
the geophysical information. There was conflicting information for several variables
across different storms, so the utility of the correlation matrices was limited. Exploratory
regression was used as a more manageable method to quantify the statistical relationships
between hazard vulnerability science and disaster management policy and practice. It also
provided a means to eliminate redundant variables and choose a good set of independent
variables. From the exploratory regression, six variables were chosen and analyzed for
effectiveness using OLS regression. The six variables were SoVI: POPDEN, PCTPOV,
AVEDISTC, MAXSUSTWIN, BLDGLOSS1K, and NUMBRIDGES. These variables
map to the four EEI groupings and allowed for an apple to apples comparison in the

subsequent OLS regressions.

Findings from the comparative and correlation analyses were consistent. Since
hazard vulnerability indices are usually general measures of susceptibility, they tend to be
weak in indicating the geophysical characteristics of the hazards they intend to measure.

The hazard vulnerability indices also placed more emphasis on population characteristics
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and less emphasis on critical infrastructure information. This is contrary to the central
tenants of hazard vulnerability science: vulnerability provides a conceptual link between
disasters, built environment, and people. Often, people are less at direct risk and critical
infrastructure is more at risk. People can be evacuated, but not critical infrastructure. In
other words, hazard vulnerability and disaster impacts are felt as more a function of the
built environment and not as a population. Therefore, it is reasonable to suggest that
hazard vulnerability science should include more infrastructure related indicators rather

than population related indicators.

A main purpose of this dissertation was to empirically validate SoVI as a reliable
measure of vulnerability and its capacity to predict the costs and level of damages for a
disaster using Atlantic hurricanes as the case study. Results from the empirical analysis
were dubious, varying widely across the 9 hurricanes included in the research sample.
SoVI had little predictive power in explaining disaster costs and damages based on OLS
regression and spatial econometrics performed for regression scenarios 2-5. The initial
OLS models suffered from skewness in the data and missing variables. To resolve these
issues, log transformations were performed on the variables and geophysical variables
(AVEDISTC and MAXSUSTWIN) were combined with SoVI to improve model
performance. Global Moran’s I statistics for the OLS regression indicated the presence
of spatial autocorrelation in a majority of the hurricane regression runs. Maps of the
residuals showed that spatial clustering was associated with the hurricane storm tracks
and points of landfall. Spatial econometric and GWR models were used as a means to

resolve the effects of spatial autocorrelation. However, spatial regression models were
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unable to capture the spatial autocorrelation effectively and provided only marginal

improvement over the OLS models.

Regression scenario 4 demonstrated that the disaster operations impact model data
had more predictive power in explaining disaster costs and damages than SoVI. While the
disaster impact model is constructed from variables that cross map with variables
associated with disaster management policy and practice, statistical relationships between
the disaster impact model variables and actual disaster costs and damages were not as
strong as expected. When using the 6 disaster impact model variables with statistically
significant correlations with SoVI and log transformations to address skewness,
regression scenario 4 produced solid results in predicting total amount of federal
assistance per capita. Adjusted R-squared values exceeded 58.7% for 5 of the 9 hurricane

regressions, and ranged from 24-35% for the remaining 4 models.

Regression scenario 5 did not fare as well despite the log transformation and
additional geophysical variables. SoVI still performed poorly compared to the disaster
impact model data in explaining the disaster costs and damages. Regression scenario 5
failed to validate that combining SoVI with missing variables for the specific hazard
could serve as a basis for constructing a more dependable, composite index for hazard
vulnerability. While the performance of SoVI did improve with the addition of the
missing variables, it still did not perform as well as the disaster impact model constructed
by FEMA. These findings indicate there is disconnectedness between hazard

vulnerability indices and disaster management policy.

174



This research found that there were stronger statistical relationships between SoVI
and the disaster operations impact model based on results from the exploratory
regression, but weaker relationships between SoVI and disaster outcomes using the
federal disaster assistance data. SoV|1 had little ability to explain disaster impact
expressed as total federal assistance per capita. These findings indicate disconnectedness
between hazard vulnerability science and disaster management policy. It appears that
how we link vulnerability to disaster response and recovery operations is not the same as
how we link those two domains to disaster policy. These findings in part substantiate the
hazards-of-place theory that vulnerability is a function of the interactions between hazard,
place, and society, but refute the claim by Emrich and Cutter (2016) that SoVI “has high
utility as a decision-support tool for emergency management” turning “historical disaster
impact measures into actionable information for emergency managers, recovery planners,
and decision makers because it empirically measures and visually depicts a population’s
(in)ability to adequately prepare for, respond to, and rebound from disaster events”
(Emrich and Cutter 2016, p.???). This research also question the claim by Cutter et al.
(2003) that SoVI provides the emergency management community and policy makers a
useful tool to illustrate the geographic variation in social vulnerability, to identify areas
where there is uneven capacity for preparedness and response, to target areas where
resources might be used more effectively to reduce pre-existing vulnerability and
promote risk mitigation measures, and as an indicator in determining the differential

recovery from disasters (Cutter et al 2003, HVRI SoVI webpage 2013). This research
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was unable to demonstrate the effectiveness of SoVI in explaining disaster impacts

expressed as total federal cost per capita.

Furthermore, SoVI is constructed from proxy measures for social vulnerability.
While SoVI was initially developed to include indicators for the built environment, it
does not adequately account for critical infrastructure and other key characteristics of the
built environment. More significantly, SoVI does not account for any of the geophysical
properties of the various natural hazards (i.e.; wind speed, rainfall amounts, etc.).
Developing a composite measure of vulnerability must factor in the diversity of place,
variation of the hazard, and complexity of the built environment or become too
homogenized. These results show that SoVI is an inconsistent measure of vulnerability
and that it is not able to reliably capture the complexity of regional and event specific
variation necessary to accurately predict the level of damages or costs for a hurricane

disaster.

CONTRIBUTIONS AND IMPLICATIONS
This dissertation examined the relationship between hazard vulnerability science,
disaster management policy, and disaster operations practice. It provided a quantitative
analysis of the reliability and utility of SoVI to accurately predict exposure of a
community to a disaster, therefore its level of vulnerability or the level of damages, and
serve as a good predictor for disaster management purposes using empirical data for 9

Atlantic hurricanes. It also provided the first cross mapping between the indicators used
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by hazard vulnerability science (SoV1), the essential elements of information (EEIs) used
by disaster management policy, and the disaster impact model variables used by disaster
response.

One of the main contributions of this research is that it improves our understanding
of the research policy nexus described by Cutter et al 2008 (p. 598). Since 1964, the US
has continuously pursued a research policy nexus to better understand hazards,
community vulnerability, and societal tolerance of risk and broad dissemination of this
knowledge to inform policy and improve decision making (Cutter et al. 2008, p. 598).
We have yet to design “robust and credible measures of vulnerability” that are accepted
by the research and practitioner communities (Adger 2006, p. 268, Gall 2007, p. 12). We
have yet to develop a proven vulnerability index that incorporates the components of
disaster response and recovery with mitigation and resiliency and that is more directly
integrated with disaster management policy. This research demonstrated that developing
a composite measure of vulnerability must include diversity of place, variation of the
hazard, and complexity of the built environment.

These contributions have implications for national disaster management policy by
increasing our understanding of how vulnerability indices correlate with actual exposure
and level of damage, and for developing a measure of community resiliency that is based
on a set of proven indicators that takes into account 1) potential exposure, 2) likely
impact to people, infrastructure, and environment, 3) capacity to cope, and 4) ability to
recover. This enhanced understanding may lead to more sustainable practices, more

effective policies, and actionable guidance and provide a means for comparing our
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disaster preparedness, practice, and resiliency across space and over time. It may also
help pivot the nation away from a disaster response focus toward one of preparedness,

with an emphasis on building resiliency.

FUTURE RESEARCH

“Measuring vulnerability — i.e. selecting vulnerability indicators and
determining their interactions — is [still] less empirical and more a leap of
faith” (Adger 2006, p. 275).

This dissertation has created many avenues for future research. First, hazard
vulnerability science should seek an alternative approach to the equation; Disaster =
Hazard * Vulnerability, by examining the “risk that people and communities are exposed
to with their social, economic, and cultural abilities to cope with the damages that
occurred” (Hilborst and Bankoff 2008, p. 2). Vulnerability should not be considered a
property of disaster or hazard, but an outcome. Hazards are natural, disasters are not.
Disasters are not just one-off phenomena; they represent the results of continuous social,
economic, and environmental processes over time. According to Lavell (2008, p.82), “as
long as disaster is seen as externally imposed, little advance will be achieved in” building
resiliency and reducing vulnerability. Subsequently, vulnerability provides a conceptual
link toward improving the understanding between disasters, built environment, and
people. According to Hilhorst and Bankoff, “vulnerability is the key to understanding

risk” (2008, p. 1) and “the ways in which human systems place people at risk in relation
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to each other and their environment” (Cannon 1994, p. 14). Petak and Atkisson (1982)
maintains that much of the scientific work on modeling, estimating, and forecasting
disaster impacts are examples of risk assessments applied to natural hazards. Hill and
Cutter (2002) contend that vulnerability assessments should include risk and exposure
and are more difficult to undertake than simple risk analyses because they require more
data, have more complex interactions, and involve more advanced and composite
techniques of statistical analysis.

Cutter (2002) argues that vulnerability science has not adequately developed an approach
to the “integration of natural sciences, engineering sciences, and social sciences to
produce credible vulnerability assessments at the local level” (p. 159). This suggests
more investigation in necessary toward understanding what characteristics or decisions
are occurring or present that could be modified or changed to reduce long term risk and
how these potential indicators relate to the actual costs/damages.

Another consideration for future work would be to develop a hazard vulnerability
index that integrates deterministic and probabilistic methods to incorporate results from
historical, hypothetical, and predicted events to produce a more dependable, composite
index for hazard vulnerability. This hazard vulnerability index would be based on impact
model simulations, calibrated by empirical data from historical events, rather than general
socio-economic indicators or national estimates of loss. This approach is very similar to
the one employed by the National Hurricane Center (NHC), and validated by the
meteorological community, to produce the Sea, Lake, and Overland Surges from

Hurricanes (SLOSH) model. The SLOSH model is a numerical model that uses a proven
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set of characteristics (indicators) run through a set of statistical equations several
thousand times to produce a composite measure of risk for an area based on estimated
storm surge heights from historical, hypothetical, and predicted hurricanes (NWS website
2016). This type of approach would provide a more useful, understood, and acceptable
metric of risk.

Future research should also consider experimenting with integrating hazard
vulnerability into an operational framework constructed from the premise that
vulnerability assessments will be assembled in part with the inputs from pre-impact
models and forecasts and these same models and forecasts would be used in near real-
time as part of the response and recovery. The fusion of vulnerability assessments and
impact model/forecasting would incorporate the likelihood of the hazard occurring, the
potential level of impact to the population and the potential damage to the infrastructure,
environment, and economy. A conceptual diagram of this framework is depicted in
Figure 47. The framework envisions that both sets of results would be continuously
calibrated with actual outcome data creating a regime similar to other first responder
approaches that encompasses training, exercising, executing, evaluating and correcting.
This would provide a basis for improving and refining the accuracy and performance of
all components of the framework (vulnerability assessment, mitigation planning, pre-
event forecast modeling for resource management, post disaster impact and recovery)
with the potential result of producing more common disaster operations practice. These
common practices could serve as the bases for determining capability maturity and

assessing community readiness and resiliency.
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APPENDIX A: List of Essential Elements of Information (EEISs)

Boundaries of the disaster area

Social, economic, and political impacts

Jurisdictional boundaries

Status of transportation systems and critical transportation facilities

Status of communications systems

Access points to the disaster area

Status of operating facilities

Hazard-specific information

Weather data affecting operations

Seismic or other geophysical information

Status of critical facilities and distribution systems

Status of remote sensing and reconnaissance activities

Status of key personnel

Status of ESF activation

Status of disaster or emergency declaration

Major issues and activities of ESFs

Resource shortfalls and status of critical resources

Overall priorities for response

Status of upcoming activities

Donations

Historical and demographic information

Status of energy systems

Estimates of potential impacts based on predictive modeling (as applicable)
Status (statistics) on recovery programs (human services, infrastructure, SBA)
Status and analysis of initial assessments (needs/damage assessments, PDAS)
Status of efforts under other Federal emergency operations plans

(Source: Section V11 B. of ESF#5 — Information and Planning Annex 2003)
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APPENDIX B: List of Variables from the Social Vulnerability Index 2006-2010

VARIABLE DESCRIPTION

QASIAN Percent Asian
QBLACK Percent Black
QHISP Percent Hispanic

QONATAM Percent Native American
OAGEDEPT Percent of Population Under 5 Years or 65 and Over

QFAMT Percent of Children Living in Married Couple Families

MEDAGE Median Age

QSSBEM Percent of Households Receiving Social Security

QPOVTY Percent Poverty

QRICH200K Percent of Households Earning Greater Than $200,000 Annually
PERCAP Per Capita Income

QESLT Percent Speaking English as a Second Language with Limited English Proficizncy
QFEMALE Percent Female

QFHH Percent Female Headed Households

CQMNRRES Percent of Population Living in Nursing and Skilled-Nursing Facilities
HOSPTPC Hospitals Per Capita (County Level ONLY)

ONQHLTHT | Percent of Population Without Health Insurance (County Level ONLY)
QEDI12LES Percent with Less Than 12* Grade Education

QCVLUN Percent Civilian Unemployment

PPUNIT People Per Unit

QORENTER Percent Renters

MDHSEVALT | Median House Value

MDGRENTT | Median Gross Rent

QMOHO Percent Mabile Homes
QEXTRCT Percent Employment in Extractive Industries
QSERV Percent Employment in Servica Industry

QFEMLER Percent Female Participation in Labor Force

QNOAUTOT | Percent of Housing Units with No Car

QUNOCCHU | Percent Unoccupiad Housing Units

*Note: QSPNEEDS (Percent of Population with a Disability) was included in SoVI® 2003-09 but
excluded from SoVI® 2006-10 because estimates were not available for all counties.

(Source: SoVI Webpage -- Hazards and Vulnerability Research Institute — University of
South Carolina 2013)
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APPENDIX C: List of VVariables from the Disaster Risk Index

Disaster Risk Index
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DRI Variables:

Variable Indicator Type
Urban Growth EQ
Exposed Population - Earthquake EQ
Local Population Density FR
GDP FR
Exposed Population — Flood FR
Arable Land HR
HDI  (ave. of (weighted ave of Adult Literacy rate (2) X Gross Enrollment (1) X GDP) HR
Exposed Population — Hurricane HR
Access to water DR
Exposed Population — Drought DR

(Source: Gall 2007, p. 55 — Structure of the Disaster Risk Index)
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APPENDIX D: List of Variables from the Disaster Preparedness Index

Disaster Indexing
Measurement Model Diagram

Collect ) )
Indicator type measurements Det_erm ine Plug into Determine
(Indicators) Weighting Formulae Score

[
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~
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Social Capital SC \ e
T ] Overall
Infrastructurels ystem Quality 150 Wf Pi EL:?]E;
Planning /,/
v
Socid Services /
Fopulation D emograhpics
DPI Variables:

Variable Indicator Type
Hazard -MMI with a 50 year return period HAZ
Hazard -MMI with a 500 year return period HAZ
Hazard - % of urbanized area with soft soil HAZ
Hazard - % of urbanized area with high liquefaction susceptibility HAZ
Hazard - % of buildings that are wood 1SQ
Hazard -Population density (people per sq km) PD
Hazard - Tsunami potential indicator PL
Exposure-Population PD
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Exposure-Per Capita GDP

Exposure-Number of Housing Units

Exposure-Urbanized land Area

Vulnerability -Seismic code indicator

Vulnerability -City wealth indicator

Vulnerability -City age indicator

Vulnerability -% of population aged 0-4 and 65+
Emergency Response-Avg growth in GDP over 10 years
Emergency Response-housing vacancy rate

Emergency Response-hospitals per 100,000 residents
Emergency Response-physicians per 100,000 residents
Exposure-average daily number of tourists
Exposure-median home value

Exposure-income generated from agriculture
Exposure-number of business units

Exposure-value of power lines

Vulnerability-%pop aged 1664 that has a mobility limitation
Vulnerability-Public education indicator (awareness about hurricanes)
Vulnerability- Avg BCEGS grade

Vulnerability- % of homes that are mobile

Vulnerability- businesses with less than 20 employees
Vulnerability- % of county land detached from mainland
Emergency Response-number of shelters available
Emergency Response-number of hospital beds per 100,000
Emergency Response-City layout (roads in grid -0, otherwise -1)
House Insurance

Income

Tenure Type

Age

Debt

Employment

Car Ownership

English Skills

Household Type

Health Insurance

Residence Type

Disability

Gender

Exposure-Population growth rate-average annual rate
Exposure-Urban growth- avg annual rate %
Exposure-people per 5km sq

Exposure-Poverty people living below poverty level
Exposure-Capital Stock in millions of $ per sq km
Exposure-Imports and Exports of Goods and Service as % of GDP
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1SQ
PL
CA
1SQ
PD
CA
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1SQ
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CA
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Exposure-Gross domestic fixed investment CA

Socioeconomic-dependents as % of working age population PD
Socioeconomic-unemployment rate PD
Socioeconomic-debt service burden EA
Socioeconomic-soil degradation CA
Resilience-Infrastructure and Housing Insurance as % of GDP CA/EA
Risk Identification-systematic inventory of disaster losses PL
Risk Identification-hazard monitoring and forecasting PL
Risk Identification-vulnerability and risk assessment PL
Risk Identification-public information and community participation SC
Risk Identification-risk management training and education PL
Disaster Management-Organization of EM operations PL
Disaster Management-emergency response planning and implementation of

warning system PL
Disaster Management-supply of tools, equipment, and infrastructure CA/ISQ
Disaster Management-Simulation-test and updating of response capability PL
Disaster Management -community preparedness and training SC
Disaster Management -rehabilitation and reconstruction planning PL
Government/Financial - multisector coordination SC/SS
Government/Financial - existence of social safety nets SC/ICA
Government/Financial -budget allocation and mobilization CA/PL
Government/Financial - Insurance Coverage and loss transfer strategies for

public assets EA/CA
Government/Financial - housing and private sector insurance and reinsurance

coverage EA
Per Capita Income CA
Median Age PD

# of commercial establishments/mile sq ISQ
single-sector economic --> % employed in extractive industries PD
Housing stock and tenancy--> % of homes that are mobile 1SQ
% African American PD

% Hispanic PD

% Native American PD

% Asian PD

% employed in service occupations PD

% employed in transportation communication and public utilities PD
Hazard-Change in vibration intensity HAZ
Hazard-Liquefaction (softening of subsoil) HAZ
Hazard-Tsunami HAZ
Hazard-Fire Following earthquake HAZ
Vulnerability -Preparedness (very good,good, average, below avg) PL
Vulnerability-Quality of Construction (very good, good, avg, below avg) 1SQ
Vulnerability- Building Density 1SQ
Vulnerability- Population Density PD
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Exposure-Average value of household for residential buildings CA

Exposure-GDP for commercial/industrial buildings CA
Number of earthquakes over last 50 years/10,0000 sq km >6.0 Richter HAZ
Number of tsunamis with run up 2m over last 50 years /10,000 sq km coast area HAZ
Number of nuclear facilities 1SQ
Number of shipping ports ISQ
Average number of tourists PD
FIRE response time SS

# of fire stations per 1000 SS
Number of personnel per 1000 pop SS
funding per 1000 pop SS/PL
vehicles per 1000 pop SS
EMS Response time SS

# of available hospital/clinic beds per 1000 SS

# of medical personnel per 1000 SS
POLICE avg response time SS

# of personnel per 1000 pop SS
funding per person SS/PL
Pre-existing emergency ordinances PL
Existing Special Area Zoning PL
Hazard maps PL
local funding for mitigation/planning PL
pre-existing recovery plan PL
existence of Emergency EMO yes/no PL/SS
staffing of EMO per 1000 PL/SS
existence of emergency plan yes/no PL
EOC activation plan PL
Age of EOC plan PL
training or simulation using plan yes/no SC
funding per capita PL
est. emergency ops center yes/no PL/SS
availability mass care sites yes/no SS
drills and exercises yes/no SC
existence of level of activity (LEPC) yes/no SS
existence of community based org. yes/no SS
disaster response designated yes/no SS
general social service yes/no SS
National Org Yes/No SS
volunteer org (yes/no) SS
daily newspapers yes/no SC

# of local radio stations SC
earthquake MM scale mult -10 HAZ
chemical facilities HAZ
railway facilities HAZ
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nuclear plant HAZ

existence of evacuation plan PL
warning system PL
Total city budget per person CA
cash reserves in general fund CA
cash reserves as % of annual budget CA
% of budget to debt service CA
city's bond rating CA
Unemployment PD
overcrowding - households with more than one person per room PD
long term sick PD
single parents PD
elderly over 75+ PD
Preexisting health problems PD

(Source: Simpson 2006, p. 14-18 — Disaster Preparedness Index Working Paper)
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APPENDIX E: List of Variables from the Disaster Operations Model

Source: FEMA, Mapping and Analysis Center 2012

Geography/Demographics

County_State_County_FIPS:

County and State name with corresponding State and County FIPS code
Calculation: Concatenation

Source: U.S. 2000 Census (SF1) Summary File

Housing units:

Summation of Housing Units (a house, an apartment, a mobile home or trailer, a group of
rooms, or a single room occupied as a separate living quarters, or if vacant, intended for
occupancy as separate living quarters) in the affected tracts

Calculation: None

Source: U.S. 2000 Census (SF1) Summary File

Total Population (2000):

2000 Population in affected census tracts
Calculation: None

Source: U.S. 2000 Census (SF1) Summary File

Total Population (Hurricane Year):

Population in affected census tracts

Calculation: Estimation of 2001, 2002, 2003, and 2004
Source: U.S. 2000 Census (SF1) Summary File

Total Area (sq mi):

Total area in square miles of each affected census county
Calculation: None

Source: U.S. 2000 Census (SF1) Summary File

Population Density (/sgmi) (2000):

Number of people per square mile
Calculation:Population of 2000 divided by the Total Area
Source: U.S. 2000 Census (SF1) Summary File
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Income per Capita ($):

The mean income computed for every man, woman, and child in a county
Calculation: None

Source: U.S. Census (SF3) Summary File

Poverty Percent:

Percent of Sample Population below Poverty

Calculation: Count of Population below poverty/Sample Population Count
Source: U.S. Census (SF3) Summary File

Average distance to coast:

Mean distance to coast from the centroid of the census county
Any distance greater than 100 miles will be reported as 100 miles
Calculation: Mean total when rolled up from the Tract Level
Source: HAZUS

Tree Volume:

Estimation of tree volume that is likely to be collected and discarded at public expense
Calculation: Summed when rolled up from the Tract level

Source: HAZUS

Max Sustained Winds:

HAZUS does not report if less than 50 mph. Null values are replaced with 999.
Sustained wind speed at the time of landfall (one minute average over water)
Calculation: Maximum when rolled up from the Tract Level

Source: HAZUS

Building Loss ($1K):

Building loss is calculated using the cost to re-build the structure.
Initially building loss is calculated categorically by material type. The category totals are
then manually summed to get a total of all building loss by county.
Calculation: Sum of Building Loss (Wood + Steel + Manufactured Homes + Masonry +
Concrete)

Source: National Institute of Building Sciences (NIBS), HAZUS

Content Loss ($1K):

Content/Interior damage is estimated using an implicit model. The economic damage to
the interior of the building is a function of the damage to the roof cover, roof sheathing,
roof structure and the windows and doors.

Calculation: Sum of Building Loss (Wood + Steel + Manufactured Homes + Masonry +
Concrete)

Source: National Institute of Building Sciences (NIBS), HAZUS
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Number of Bridges:

Number of Bridges in the affected counties

Calculation: Summed when rolled up from the Tract level
Source: National Institute of Building Sciences (NIBS), HAZUS

Miles of Road:
Miles of Nonfederal roadways in the affected counties

- (exclude Fed. Highways, Nat’l Park, Indian Land, Mining)
Calculation: Summed when rolled up from the Tract level
Source: NAVTEQ

Economic Facilities (EF)

Emergency Response Centers:
Moderate (M) - Moderate Damage Probability (0.0 - 1.0)
Calculation: Mean total when rolled up from the Tract Level
Severe (S) - Severe Damage Probability (0.0 - 1.0)
Calculation: Mean total when rolled up from the Tract Level
Complete (C) - Complete Damage Probability (0.0 - 1.0)
Calculation: Mean total when rolled up from the Tract Level
Count - Count of effected Emergency Response Centers
Calculation: Summed when rolled up from the Tract level
Source: HAZUS

Fire Stations:
Moderate (M) - Moderate Damage Probability (0.0 - 1.0)
Calculation: Mean total when rolled up from the Tract Level
Severe (S) - Severe Damage Probability (0.0 - 1.0)
Calculation: Mean total when rolled up from the Tract Level
Complete (C) - Complete Damage Probability (0.0 - 1.0)
Calculation: Mean total when rolled up from the Tract Level
Count - Count of effected Fire Stations
Calculation: Summed when rolled up from the Tract level
Source: HAZUS

Police Stations:
Moderate (M) - Moderate Damage Probability (0.0 - 1.0)
Calculation: Mean total when rolled up from the Tract Level
Severe (S) - Severe Damage Probability (0.0 - 1.0)
Calculation: Mean total when rolled up from the Tract Level
Complete (C) - Complete Damage Probability (0.0 - 1.0)
Calculation: Mean total when rolled up from the Tract Level
Count - Count of effected Police Stations
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Calculation: Summed when rolled up from the Tract level
Source: HAZUS

Schools: All schools - Private and public, High, middle, elementary.
Moderate (M) - Moderate Damage Probability (0.0 - 1.0)

Calculation: Mean total when rolled up from the Tract Level
Severe (S) - Severe Damage Probability (0.0 - 1.0)

Calculation: Mean total when rolled up from the Tract Level
Complete (C) - Complete Damage Probability (0.0 - 1.0)

Calculation: Mean total when rolled up from the Tract Level
Count - Count of effected Schools

Calculation: Summed when rolled up from the Tract level
Source: HAZUS

Medical Facilities: Medical Offices and Clinics
Moderate (M) - Moderate Damage Probability (0.0 - 1.0)
Calculation: Mean total when rolled up from the Tract Level
Severe (S) - Severe Damage Probability (0.0 - 1.0)
Calculation: Mean total when rolled up from the Tract Level
Complete (C) - Complete Damage Probability (0.0 - 1.0)
Calculation: Mean total when rolled up from the Tract Level
Count - Count of effected Medical Facilities
Calculation: Summed when rolled up from the Tract level
Source: HAZUS

Economic Loss (EL)
Grade Schools: Grade Schools and Libraries
Moderate (M) - Moderate Damage Probability (0.0 - 1.0)
Calculation: Mean total when rolled up from the Tract Level
Severe (S) - Severe Damage Probability (0.0 - 1.0)
Calculation: Mean total when rolled up from the Tract Level
Complete (C) - Complete Damage Probability (0.0 - 1.0)
Calculation: Mean total when rolled up from the Tract Level
Building - Total cost of Grade School building(s)
Calculation: Summed when rolled up from the Tract level
Content - Total cost of the contents in the Grade School building(s)
Calculation: Summed when rolled up from the Tract level
Source: HAZUS

Hospitals: Hospitals
Moderate (M) - Moderate Damage Probability (0.0 - 1.0)
Calculation: Mean total when rolled up from the Tract Level
Severe (S) - Severe Damage Probability (0.0 - 1.0)
Calculation: Mean total when rolled up from the Tract Level
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Complete (C) - Complete Damage Probability (0.0 - 1.0)
Calculation: Mean total when rolled up from the Tract Level
Building - Total cost of hospital building(s)
Calculation: Summed when rolled up from the Tract level
Content - Total cost of the contents in the hospital building(s)
Calculation: Summed when rolled up from the Tract level
Source: HAZUS

Nonprofits: Church / Membership Organizations
Moderate (M) - Moderate Damage Probability (0.0 - 1.0)
Calculation: Mean total when rolled up from the Tract Level
Severe (S) - Severe Damage Probability (0.0 - 1.0)
Calculation: Mean total when rolled up from the Tract Level
Complete (C) - Complete Damage Probability (0.0 - 1.0)
Calculation: Mean total when rolled up from the Tract Level
Building - Total cost of Nonprofit building(s)
Calculation: Summed when rolled up from the Tract level
Content - Total cost of the contents in the Nonprofit building(s)
Calculation: Summed when rolled up from the Tract level
Source: HAZUS

Nursing Homes: Nursing Homes and Eldercare Facilities
Moderate (M) - Moderate Damage Probability (0.0 - 1.0)
Calculation: Mean total when rolled up from the Tract Level
Severe (S) - Severe Damage Probability (0.0 - 1.0)
Calculation: Mean total when rolled up from the Tract Level
Complete (C) - Complete Damage Probability (0.0 - 1.0)
Calculation: Mean total when rolled up from the Tract Level
Building - Total cost of Nursing Home building(s)
Calculation: Summed when rolled up from the Tract level
Content - Total cost of the contents in the Nursing Home building(s)
Calculation: Summed when rolled up from the Tract level
Source: HAZUS

Government Emergency Response Centers:
Moderate (M) - Moderate Damage Probability (0.0 - 1.0)
Calculation: Mean total when rolled up from the Tract Level
Severe (S) - Severe Damage Probability (0.0 - 1.0)
Calculation: Mean total when rolled up from the Tract Level
Complete (C) - Complete Damage Probability (0.0 - 1.0)
Calculation: Mean total when rolled up from the Tract Level

Building - Total cost of Government Emergency Response Center building(s)

Calculation: Summed when rolled up from the Tract level
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Content - Total cost of the contents in the Government Emergency Response Center
building(s)

Calculation: Summed when rolled up from the Tract level
Source: HAZUS

Government General Services:
Moderate (M) - Moderate Damage Probability (0.0 - 1.0)
Calculation: Mean total when rolled up from the Tract Level
Severe (S) - Severe Damage Probability (0.0 - 1.0)
Calculation: Mean total when rolled up from the Tract Level
Complete (C) - Complete Damage Probability (0.0 - 1.0)
Calculation: Mean total when rolled up from the Tract Level
Building - Total cost of Government General Services building(s)
Calculation: Summed when rolled up from the Tract level
Content - Total cost of the contents in the Government General Services building(s)
Calculation: Summed when rolled up from the Tract level
Source: HAZUS

Colleges: All 2-yr, 4-yr Colleges and Universities
Moderate (M) - Moderate Damage Probability (0.0 - 1.0)
Calculation: Mean total when rolled up from the Tract Level
Severe (S) - Severe Damage Probability (0.0 - 1.0)
Calculation: Mean total when rolled up from the Tract Level
Complete (C) - Complete Damage Probability (0.0 - 1.0)
Calculation: Mean total when rolled up from the Tract Level
Building - Total cost of college building(s)
Calculation: Summed when rolled up from the Tract level
Content - Total cost of the contents in the college building(s)
Calculation: Summed when rolled up from the Tract level
Source: HAZUS

County — Name of county
State — State Abbreviation
FIPS — Federal Information Processing Standards

Declared — Y/N Indicating whether the county was declared a disaster (Boolean
identifier field)
Source: FEMA

Declaration — Disaster Declaration number (if declared)
Source: FEMA

Year — Year of storm
Source: FEMA
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APPENDIX F: List of Variables from the Disaster Assistance Data

Source: FEMA — National Emergency Management System, 2014

County Code (5-digit FIPS):
County and State name with corresponding State and County FIPS code

Disaster Title:
Name of incident assigned by the National Hurricane Center

Disaster Number:
Sequentially assigned number used to designate an event or incident declared as a
disaster.

Total Amount from Federal Assistance (1A, PA, MA, SBA):
Combined amount for Individual Assistance, Public Assistance, Mitigation Assistance,
and SBA disaster loans aggregated to the county level.

Sum of No Valid Registrations:

Count of FEMA registration owners within the state, county, zip where registration is
valid. In order to be a valid registration applicant must be in an Individual Assistance
declared state or county and registered within FEMA designated registration period.

Sum of Average Amount FEMA Inspected Damage:
The average inspected damage (based on FEMA's inspection guidelines) for valid
registration owners within the state, county, zip that had a completed inspection.

Sum of No. Total Inspected:
The total FEMA applicants who received an inspection.

Sum of Total Damage Amount:
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The total damage recorded by FEMA at the time of inspection.

Sum of No FEMA Inspected Damage:
The number of applicants who received an inspection but had no damage recorded by the
inspector.

Sum of FEMA Inspected Damage between $1 and $10,000:

A count of valid registration owners within the state, county, zip that had a completed
inspection (based on FEMA's guidelines) where the inspected damage fell between $1
and $10,000.

Sum of FEMA Inspected Damage between $10,001 and $20,000:

A count of valid registration owners within the state, county, zip that had a completed
inspection (based on FEMA's guidelines) where the inspected damage fell between
$10,001 and $20,000.

Sum of FEMA Inspected Damage between $20,001 and $30,000:

A count of valid registration owners within the state, county, zip that had a completed
inspection (based on FEMA's guidelines) where the inspected damage fell between
$20,001 and $30,000.

Sum of FEMA Inspected Damage > $30,000:

A count of valid registration owners within the state, county, zip that had a completed
inspection (based on FEMA's guidelines) where the inspected damage was greater than
$30,000.

Sum of No. Approved for FEMA Assistance:
The number of FEMA applicants who were approved for FEMA's IHP assistance.

Sum of Total Approved IHP Amount:
The total amount approved under FEMA's IHP program.

Sum of Repair/Replace Amount:

The total amount of Repair and/or Replacement approved for Housing Assistance (HA)
under FEMA's IHP program (note that renters are not eligible for this type of assistance
because they do not own the structure)
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Sum of Rental Amount:
The total amount of Rental Assistance approved for Housing Assistance (HA) under
FEMA's IHP program

Sum of Other Needs Amount:

The total amount of Other Needs (ONA) assistance approved under FEMA's IHP
program (this could include, personal property, transportation, medical, dental, funeral,
essential tools, moving/storage, miscellaneous and other needs).

Sum of No. Approved between $1 and $10,000:
A count of valid registration owners within the state, county, zip that received a financial
grant from FEMA that fell between $1 and $10,000.

Sum of No. Approved between $10,001 and $25,000:
A count of valid registration owners within the state, county, zip that received a financial
grant from FEMA that fell between $10,001 and $25,000.

Sum of Approved between $25,001 and Max:

A count of valid registration owners within the state, county, zip that received a financial
grant from FEMA that fell between $25,001 and the maximum financial grant from
FEMA.

Sum of No. Approved Total Max Grants:
A count of valid registration owners within the state, county, zip that received the
maximum financial grant from FEMA.

Sum of No Valid Registrations (Renters):

Count of FEMA registration renters within the state, county, zip where the registration is
valid. In order to be a valid registration the applicant must be in an Individual Assistance
declared state and county and have registered within the FEMA designated registration
period.

Sum of No. Total Inspected (Renters):
The total FEMA applicants who received an inspection.

Sum of No FEMA Inspected Damage (Renters):
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Renters do not receive a full home inspection as they are only eligible for the items that
they own. Instead a degree of damage is assigned. This is a count of valid registration
renters who were deemed to have had no damage that the time of inspection.

Sum of No. Approved for FEMA Assistance (Renters):
The number of FEMA applicants who were approved for FEMA's IHP assistance

Sum of Total Approved IHP Amount (Renters):
The total amount of Rental Assistance approved for Housing Assistance (HA) under
FEMA's IHP program

No. PA Projects:
Sum of the Number of PA projects aggregated to the county level.

Sum of PA Project Amount:
The estimated total cost of the Public Assistance grant project, without administrative
costs. This amount is based on the damage survey.

Sum of Federal Share Obligated:

The Public Assistance grant funding available to the grantee (State), for sub-grantee's

approved Project Worksheets.

Sum of Total Obligated:

The federal share of the Public Assistance grant eligible project amount, plus grantee
(State) and sub-grantee (applicant) administrative costs. The federal share is typically
75% of the total cost of the project.

No Projects Damage Category A-Debris Removal:
Project worksheets approved for debris removal.

Sum of Project Amount Damage Category A:
Amount approved for debris removal.

Sum of Federal Share Obligated Damage Category A:
Amount of Federal share for debris removal.
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Sum of Total Obligated Damage Category A:
Total amount obligated for debris removal.

No Projects Damage Category B—Protective Measures:
Project worksheets approved for protective measures.

Sum of Project Amount Damage Category B:
Amount approved for protective measures.

Sum of Federal Share Obligated Damage Category B:
Amount of Federal share for protective measures.

Sum of Total Obligated Damage Category B:
Total amount obligated for protective measures.

No Projects Damage Category C—Roads & Bridges:
Project worksheets approved for roads and bridges repairs.

Sum of Project Amount Damage Category C:
Amount approved for roads and bridges.

Sum of Federal Share Obligated Damage Category C:
Amount of Federal share for roads and bridges.

Sum of Total Obligated Damage Category C:
Total amount obligated for roads and bridges.

No Projects Damage Category D-Water Control Facilities:
Project worksheets approved for water control facility repairs.

Sum of Project Amount Damage Category D:
Amount approved for water control facilities.

Sum of Federal Share Obligated Damage Category D:
Amount of Federal share for water control facilities.

Sum of Total Obligated Damage Category D:
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Total amount obligated for water control facilities.

No Projects Damage Category E—Public Buildings:
Project worksheets approved for public building repairs.

Sum of Project Amount Damage Category E:
Amount approved for public buildings.

Sum of Federal Share Obligated Damage Category E:
Amount of Federal share for public buildings.

Sum of Total Obligated Damage Category E:
Total amount obligated for public buildings.

No Projects Damage Category F—Public Utilities:
Project worksheets approved for public utility repairs.

Sum of Project Amount Damage Category F:
Amount approved for public utilities.

Sum of Federal Share Obligated Damage Category F:
Amount of Federal share for public utilities.

Sum of Total Obligated Damage Category F:
Total amount obligated for public utilities.

No Projects Damage Category G—Recreational or Other:
Project worksheets approved for recreational or other community facility repairs.

Sum of Project Amount Damage Category G:
Amount approved for recreation or other.

Sum of Federal Share Obligated Damage Category G:
Amount of Federal share for recreation or other.

Sum of Total Obligated Damage Category G:
Total amount obligated for recreation or other.
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No Projects Damage Category Z-State Management:
Project worksheets approved for State Management.

Sum of Project Amount Damage Category Z:
Amount approved for state management.

Sum of Federal Share Obligated Damage Category Z:
Amount of Federal share for state management.

Sum of Total Obligated Damage Category Z:
Total amount obligated for state management.

No. of HM Projects:
Sum of the number of Hazard Mitigation projects at the county level.

Sum of HM Project Amount:
Total cost of a project as submitted in the project application.

No. HM Total Damage Cat 0_49%:
Amount of damage, expressed as a percentage, to a structure relative to the market value
of the structure before the damage occurred.

No. HM Total Damage Cat 50 _99%:
Amount of damage, expressed as a percentage, to a structure relative to the market value
of the structure before the damage occurred.

No. HM Total Damage Cat 100%:
Amount of damage, expressed as a percentage, to a structure relative to the market value

of the structure before the damage occurred.

Sum of HM Total Actual Amount Paid:
Total amount paid for the project.

No. HM Total Properties Acquired:
Sum of the number of properties acquired at the county level.
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Source: Small Business Administration 2012

No. Loans:
Sum of the number of disaster loans awarded by SBA at the county level.

Sum of Total Gross Amount:
The amount of the loan guaranteed by the SBA.

No. Paid in Full:
No of loans that were fully paid by the applicants.

Sum of Total Amount Paid in Full:
Sum of the total amount paid in full for the loan.

No. Charged Off:
Number of loans that were charged off.

Sum of Total Amount Charged Off:
Sum of the total amount paid in charged off for the loan.

County — Name of county
State — State Abbreviation
FIPS — Federal Information Processing Standards

Declared — Y/N Indicating whether the county was declared a disaster (Boolean
identifier field)
Source: FEMA

Declaration — Disaster Declaration number (if declared)
Source: FEMA

Year — Year of storm
Source: FEMA
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Correlation matrix (Pearson):

APPENDIX G: Correlation Matrices

Variables_SOVI___HUNITS _POP2000__AREASQMI__POPDENOD _PERCAPINC _PCTPOV__ AVEDISTC _TREEVOL _MAXSUSWIN _BIDGLOSSIK _CNTLOSSIK _NUMBRIDGE _ROADMI __ERC_CNT _FIRESTA CT__POLSTA CT__SCH CT __MEDFAC CT_ERC_prob_Fire prob _Pol prob__Sch_prob_ Med prob _Gra_prob__Gov_prob___GovE prob _NH_prob__Nonp_prob _Hosp_prob__Coll_prob
sovI 1
HUNITS  -0.428 1
0P 0413 099 1

AREASQM  -0.069  0.166 0234 1
POPDENO  -0.474 0939 0.906 -0.083 1
PERCAPIN  -0.481  -0174 0226 0352 0.008 1

TPOV 0554 0247 0.29 023 0,090 0893 1
AVEDISTC 0233 0,098 0162 [ 0.159 0642 04%0 1

EEVOL 0236 0255 0256 005 0272 0399 0334 -0267 1
MAXSUSW  -0.136  -0.174 0,19 0371 -0.061 053 0281 -0346 0117 1
BLOGLOSS 03322  00%9 0074 -01%0 0182 0070 0242 0284 0.495 030 1
CNTLOSST 0172 0.263 0229 -0.203 0366 -0.069 0215 0316 0370 0343 0.969 1
NUMBRID  -0513 089 0.886 0252 0.880 0172 019 oo 0.326 033 0.064 0.207 1
ROADMI  -0.440 0977 0.986 0.281 0870 0270 023 0197 0275 0276 0019 0176 0914 1
ERC.NT 0147 0730 072 -0.034 0.688 0201 024 o008 032 -0.267 -0.158 -0.036 onz 0.767 1
FIRESTA C  -0.419 0911 0.882 0.004 0.906 0,046 00 -0.028 0237 0237 007 0254 0.897 0882 079 1
POLSTAC  -0254 007 0927 0.209 0762 -0.406 042 0261 -0257 0277 0038 0153 o1 0349 0805 0791 1
SCHCT 0477 0965 0.967 0251 0.861 -0.165 020 0153 0.255 0245 0002 0.160 0.900 098 0726 0926 0.886 1
MEDFAC_( -0.495 0887 0.853 0057 0902 0.060 0003 -0073 -0.185 -0.203 0.147 0335 0884 0828 0609 0.955 0.668 0.907 1
ERCprob 0429 0247 0204 0.150 0269 0278 0102 0268 0144 0.109 -0304 032 -0108 0181 0277 0,079 0.105 0230 0264 1
Fire prob 0102 -0134 0142 o021 -0.107 0177 00% 0031 -0.108 0170 0052 0114 -0.100 012 002 0112 0,079 0184 0162 053%
Pol prob 0217 -0252 -0.248 0073 0273 0420 03 0219 0.980 0,055 0377 0.204 0332 0264 029 0.256 0.246 -0.263 0219 0129 1
Schprob 0332  -0.289 -0.284 0055 0313 0356 0264 -0.198 0980 0.069 0470 0315 -0376 0310 0330 0204 0271 0299 0253 0135 0983 1
Med prot 0.7 -0214 0218 -0.166 0218 0,000 0064 -023 0012 018 0172 028 0227 0201 0352 0202 0177 0174 0142 0158 0129 0,140
Graprob 0329  -0.289 -0.284 0.056 0312 0358 0268 -0.19 0.980 -0.069 0.466 [E -0376 030 -03%0 0,29 0271 0299 0253 -013% 0984 1.000 1
Govprob 0325  -0.287 0283 0,057 0311 0361 0273 0197 0.981 0.069 0.462 0308 -0375 0308 0328 0293 0271 0298 0252 0135 0.985 1000 1000 1
Goveprol 0325 0288 -0.283 0056 0311 0360 02 0197 0.981 -0.069 0.463 0309 -0375 0308 032 0203 0271 0298 0252 0135 0.985 1.000 1000 1.000 1
NHprob 0226  -0255 0251 007 0277 0417 0366 -0215 0.980 0,056 0380 0245 -0337 0268 0292 0.259 0,249 -0.266 022 012 1.000 0.985 0.98 0.987 0.987 1
Nonp_pro 0307 0282 0277 0,050 0305 0372 0291 0201 0.983 0.066 0448 0297 -0368 0301 0322 0.287 0.267 0293 0207 0133 0990 0999 099 1000 1000 0992 1
Hosp_prol 0358 -0.298 0293 0050 0322 0339 0239 -0189 0975 0073 0488 038 -0387 0321 0340 0303 0277 0308 0261 0137 0975 0.999 0.999 0.998 0.999 0977 0.99 1
Coll prob 0325 -0.288 -0.283 0,056 031 0.360 022 0197 0.981 -0.069 0.463 0.309 -0375 0308 0329 0,293 0271 0.298 0252 0135 0.985 1.000 1000 1.000 1.000 0.987 1.000 0.999

Valuesin
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Correlation matrix (Pearson):

Variables SOVI__HUNITS POP2000 AREASQMI POPDENOO PERCAPINC PCTPOV AVEDISTC TREEVOL MAXSUSWIN BLDGLOSS1K CNTLOSS1K NUMBRIDGE ROADMI ERC_CNT FIRESTA_CT POLSTA CT SCH_CT MEDFAC_CT ERC_prob FIRE_prob Pol_prob Sch_prob Med_prob Gra_prob Gov_prob GovE_prob NH_prob Nonp_prob Hosp_prob Coll_prob

sovi 1

HUNITS -0.567 1

POP2000  -0.577  0.989 1

AREASQV 0195  0.168 1

POPDENO! 0852 0869  -0.198 1

PERCAPIN 0332 0258 -0.008 0338 1

PCTPOV/ -0.364 0045  -0.456 -0.771 1

AVEDISTC -0.105 0282 -0.139 -0578  0.389 1

TREEVOL 0.29 0.053 0.278 0088 -0.254  0.001 1

MAXSUSV -0350  -0.169  -0.300 -0186 0239  -0109 -0.481 1

BLDGLOSS 0.081 -0.038 0.080 0079 -0.228 -0.120  0.860 -0.302 1

CNTLOSS1 -0.039 0.095 0084 -0.233 -0.117 0871 -0.310 1.000 1

NUMBRID 0.226 0.716 029 -0.263 -0.170  0.189 -0.215 0.079 0.088 1

ROADMI 0.302 0.684 0177 -0317  -0.106  0.361 -0.347 0.177 0.189 0.793 1

ERC_CNT 0.039 0.258 0118 -0120 -0.083 -0.025 0.084 -0.066 -0.067 0257 0.247 1

FIRESTA_C 0.411 0.071 0077 -0.220 -0.117  0.067 -0.056 -0.064 -0.061 0223 0458  0.43 1

POLSTA_C 0.555 0.300 0126 -0.234 0089 0273 -0.409 0.047 0.052 0344 0601 0341 0.548 1

SCH_CT 0.170 0.847 0200 -0317 -0.062  0.245 -0.310 0.049 0.061 0880 0831 0231 0.220 0.552 1

MEDFAC_! 0.097 0.759 0232 -0318 -0244 0154 -0.246 0.060 0.067 083 0797 0217 0.161 0419 0904 1

ERC_prob 0.350 0.168 -0.044 -0095 0273 0295 -0.205 0.147 0.148 0043 0238 0497 0.362 0741 0216 0.005 1

FIRE_prob -0.068  -0.220 -0384 052 0219 018 -0.316 0.143 0.139 -0153  -0214  -0.107 -0.136 0029  -0174 0207  0.092 1

Pol_prob 0152 -0.198 -0366 0561 0198 0049 -0.232 0.015 0.011 -0146  -0231 -0.104 -0.163 0074  -0176 -0.208 0015 0.964. 1

Sch_prob -0.098  -0.128 -0256 0238 0138 0543 -0.338 0.617 0.614 -0092 -0139  -0.121 -0.178 0091 -0.130 -0.158  0.059 0.805 0741 1

Med_prot 0151 -0.156 -0216 0326  -0053 0198 -0.215 0.254 0.250 -0156  -0208  -0.130 -0.203 0151 -0.154 -0.076  -0.048 0434 0302 0266 1

Gra_prob 0113 -0.140 -0.257 025 0075  0.606 -0.377 0.698 0.694 -0109  -0.142  -0.134 -0.199 -0.090  -0.139 0135 0078 0.775 0656 0926 0.590 1

Gov_prob 0110  -0.138 -0258 0257 0079  0.608 -0.380 0.695 0.691 -0108 -0.140  -0.133 -0.197 -0.087  -0.136 0134 0081 0.777 0657 0925 0592 1.000 1

GovE_prol 0110  -0.138 -0258 0257 0078  0.607 -0.380 0.69 0.692 -0108  -0.141  -0.133 -0.198 -0.088  -0.137 0134 0.080 0.777 0657 0925 0592 1000  1.000 1

NH_prob 0118 -0.142 -0255 0255 0069  0.604 -0.372 0.702 0.698 -0111  -0144  -0.135 -0.202 0004 -0.142 0135 0073 0771 0655 0927 0587 1000  1.000 1.000 1

Nonp_pro 0125 -0.147 -0251 0253 0059  0.600 -0.364 0.709 0.704 -0114  -0147  -0.136 -0.206 <0101  -0.148 0137 0.066 0.765 0653 0928 0580 099 0998 0999 1.000 1
Hosp_prol 0101 -0.128 -0261 025 0092 0617 -0.393 0.687 0.683 -0103  -0.134  -0.130 -0.191 0076 -0.126 0131 0092 0.782 0657 0922 0597 0999 0999 0999 0998 0.9% 1
Coll_prob 0108 -0.137 -0259 0257 0081 _ 0.608 -0.381 0.694 0.690 -0108  -0.140  -0.133 -0.196 -0.086 _ -0.135 0134 0.082 0.778 0657 0925 0593 1.000 1000 1.000  0.999 0.998 0.999 1

Values in bold are different from O with a significance level alpha=0.05

Claudette

Correlation matrix (Pearson):

Variables _SOVI___HUNITS POP2000 AREASQMI POPDENOO PERCAPINC PCTPOV_AVEDISTC TREEVOL MAXSUSWIN BLDGLOSSIK CNTLOSSIK NUMBRIDGE ROADMI ERC_CNT FIRESTA_CT POLSTA CT SCH_CT MEDFAC_CT ERC_prob FIRE prob Pol_prob Sch_prob Med_prob Gra_prob Gov_prob GovE_prob NH_prob Nonp_prob Coll_prob
sovi 1

HUNITS -0.765 1

POP2000 -0.768 0.994 1

AREASQM ~ 0.090  -0.083  -0.013 1

POPDENO  -0.590  0.890  0.839 -0.389 1

PERCAPIN  -0.660 0509  0.484 -0.218 0.485 1

PCTPOV 0.823  -0.467  -0.464 0.276 -0.349 -0.654 1

AVEDISTC 0564  -0.477  -0.450 0.574 -0.458 0413 0.609 1

TREEVOL ~ -0.306 0019  0.021 0.026 -0.109 0110 -0.380  -0.346 1

MAXSUSW 0.168 0.181 0.163 0.064 0.331 0.153 0.451 0224 -0.459 1

BLDGLOSS  -0.313 0.091 0.101 -0.019 -0.029 0175  -0.350 -0.317 0.943 -0.334 1

CNTLOSS1 ~ -0.313 0.093 0.103 -0.017 -0.028 0.174  -0.351 -0.311 0.938 -0.335 1.000 1

NUMBRID ~ -0.692  0.644  0.698 0.373 0.301 0213  -0.560 -0.235 0310 -0.265 0.208 0.302 1

ROADMI -0763 0803 0841 0.308 0.526 0254  -0469  -0.218  0.130 -0.052 0.134 0.136 0.886 1

ERCCNT  -0101 0229  0.281 0.337 -0.005 0115  -0174 0010 -0.154 -0.285 -0.127 -0.122 0482 0398 1

FIRESTAC -0.601  0.468  0.530 0.399 0.063 0176  -0438  -0.303 0378 -0.401 0.288 0.284 0755 0732 0376 1

POLSTAC  -0470 0332 0405 0.407 -0.077 0148 -0422 -0195  0.189 -0.503 0.136 0.136 0712 0646 0545 0.902 1

SCH_CT -0503 0366 0437 0.450 -0.023 0038 -0356 -0.139 0555 -0.433 0.563 0.567 079 0703 0351 0.821 0.777 1

MEDFAC_  -0.441 0.328 0.385 0.323 0.001 0160  -0.393 -0.217 0.737 -0.388 0.784 0.788 0.678  0.535 0.202 0.685 0.618 0.907 1

ERC_prob 0.087 -0118  -0.127 0.139 -0.108 -0033  -0.108 0159  -0.115 -0.156 -0.123 -0.122 0.114  0.004 0.542 -0.146 0.050  -0.132 -0.189 1

FIRE_prob  -0.164  -0.138  -0.164 -0.156 -0.142 0037 -0.201  -0426  0.581 -0.288 0.404 0.386. -0.076  -0.094 -0.214 0.261 0.083  0.050 0109  -0.116 1

Pol_prob  -0155  -0.169  -0.192 -0.227 -0.153 0057 -0.215  -0.421  0.467 -0.288 0.329 0.314 0129 -0162 -0.213 0.176 0054 -0.052 0018  -0.115 0.960 1

Sch_prob  -0203  -0.120  -0.140 -0.203 -0.132 0093 -0.265 -0.445 0726 -0.327 0.630 0.616 -0.037 -0109 -0.242 0.221 0051 0134 0271 -0.132 0942 0934 1

Med_prot  -0.176  -0.128  -0.154 -0.108 -0.140 0035 -0.208 -0434 0617 -0.287 0.420 0.402 -0.043 -0063 -0.214 0.281 0092 0089 0149  -0.116 098 0914  0.906 1

Gra_prob  -0226 -0.103  -0.121 -0.197 -0.124 0115 -0.291  -0.440  0.792 -0.336 0.725 0.713 -0.004 -0.097 -0.250 0.212 0038 0187 0354 -0.136 0893 0883  0.99 0.862 1

Gov_prob  -0227  -0.104  -0.122 -0.197 -0.124 0115 -0.291  -0440  0.791 -0.337 0.724 0.712 -0.005 -0.097  -0.250 0.212 0038 0186 0353 -0.136 0893 0884  0.99 0.862  1.000 1

GovE_prol  -0226  -0.104  -0.121 -0.197 -0.124 0115 -0.291  -0439 0792 -0.336 0.724 0.713 -0.005 -0.097  -0.250 0.212 0038 0186 0354 -0.136 0892 0883  0.99% 0.861 1000  1.000 1

NH_prob -0213  -0111  -0.128 -0.193 -0.128 0114  -0273 -0.417 0.777 -0.318 0.719 0.707 <0020 -0.105  -0.259 0.201 0.033 0.182 0.345 -0.142 0.885 0.881 0.989 0.847 0.998 0.998 0.998 1
Nonp_pro  -0226  -0.103  -0.121 -0.195 -0.123 0118  -0.290 -0.437 0.791 -0.333 0.727 0.715 -0.006 -0.097 -0.250 0.211 0.038 0.188 0.355 -0.136 0.890 0.881 0.990 0.858 1.000 1.000 1.000 0.999 1
Coll_prob  -0226  -0.104  -0.121 -0.197 -0.124 0115  -0.291  -0439 0792 -0337 0.724 0.712 -0.005  -0.097 _ -0.250 0.212 0038 0186 0353 -0.136 0893  0.883  0.990 0.862 1000 1.000 1.000  0.998 1.000 1

Values in bold are different from O with a significance level alpha=0.05



¥0¢

Floyd

Correlation matrix (Pearson):

Variables _SOVI

HUNITS _POP2000 AREASQMI POPDENOO PERCAPINC PCTPOV_AVEDISTC TREEVOL MAXSUSWIN BLDGLOSSIK CNTLOSSIK NUMBRIDGE ROADMI ERC_CNT FIRESTA CT POLSTA CT SCH_CT MEDFAC_CT ERC_prob FIRE_prob Pol_prob Sch_prob Med_prob Gra_prob Gov_prob GovE_prob NH_prob Nonp_prob Hosp_prob Coll_prob

SovI

HUNITS -0.288

POP2000 -0.326

AREASQM 0.101 1

POPDENO! -0.041 -0.034 1

PERCAPIN -0.702 -0.109 0.104 1

PCTPOV 0.815 0.050 -0.040 -0.767 1

AVEDISTC 0.211 0.278 -0.087 -0.343 0.227 1

TREEVOL 0.093 0.096 -0.061 -0.081 0.088 -0.279 1

MAXSUSW -0.014 0.009 -0.104 -0.044 -0.009 0.209 -0.152 1

BLDGLOSS 0.031 0.027 -0.035 -0.016 0.012 -0.215 0.899 -0.109 1

CNTLOSS1 0.035 0.023 -0.035 -0.020 0.010 -0.200 0.880 -0.099 0.996 1

NUMBRID -0.220 0.286 0.421 0.431 -0.210 0.139 -0.059 -0.049 -0.051 -0.063 1

ROADMI -0.228 0.435 0.290 0.436 -0.260 -0.187 -0.059 -0.035 -0.065 -0.078 0.690 1

ERC_CNT -0.230 -0.048 0.013 0.496 -0.217 -0.142 -0.046 -0.032 -0.017 -0.036 0.541 0.466 1

FIRESTA_( -0.303 0.185 0.282 0.511 -0.279 -0.042 0.051 0.045 0.059 0.042 0.764 0.701 0.618 1

POLSTA_C 0.119 0.379 0.553 -0.274 -0.121 0.031 -0.095 0.033 0.018 0.765 0.657 0.701 0.867 1

SCH_CT 0.082 0.482 0.483 -0.222 -0.106 0.018 -0.046 0.038 0.026 0.755 0.649 0.543 0.760 0.787 1

MEDFAC_t -0.122 0.144 0.318 -0.163 -0.225 -0.035 0.022 -0.022 -0.038 0.006 0.058 0.073 0.072 0.142 0.146 1

ERC_prob 0.035 -0.013 -0.024 0.008 -0.075 0.365 -0.037 0.310 0.320 -0.021 -0.037 0.009 -0.010 -0.004 -0.005 -0.018 1

FIRE_prob 0.010 -0.048 -0.131 0.120 -0.252 0.837 -0.139 0.795 0.805 -0.128 -0.165 -0.105 -0.057 -0.044 -0.053 -0.088 0.339 1

Pol_prob 0.009 -0.048 -0.135 0.121 -0.251 0.821 -0.140 0.776 0.786 -0.135 -0.175 -0.107 -0.064 -0.048 -0.057 -0.092 0.341 0.985 1

Sch_prob 0.004 -0.049 -0.144 0.134 -0.255 0.815 -0.142 0.768 0.779 -0.136 -0.171 -0.107 -0.068 -0.051 -0.060 -0.094 0.351 0.991 0.985 1

Med_prok 0.072 0.045 -0.037 -0.078 0.069 -0.203 0.884 -0.108 0.899 0.908 -0.076 -0.122 -0.073 -0.004 -0.007 -0.006 -0.059 0.447 0.835 0.823 0.808 1

Gra_prob 0.142 0.011 -0.048 -0.138 0.124 -0.253 0.829 -0.140 0.781 0.791 -0.132 -0.165 -0.105 -0.063 0.048 -0.057 -0.093 0.352 0.993 0.990 0.998 0.818 1

Gov_prob 0.143 0.010 -0.049 -0.139 0.126 -0.254 0.828 -0.141 0.778 0.788 -0.133 -0.167 -0.106 -0.064 0.049 -0.058 -0.093 0.350 0.993 0.990 0.998 0.816 1.000 1

GovE_prol 0.143 0.010 -0.049 -0.139 0.126 -0.254 0.828 -0.141 0.779 0.789 -0.133 -0.167 -0.106 -0.064 0.049 -0.057 -0.093 0.351 0.993 0.990 0.998 0.816 1.000 1.000 1

NH_prob 0.140 0.011 -0.048 -0.136 0.121 -0.251 0.828 -0.139 0.783 0.794 -0.132 -0.165 -0.104 -0.062 -0.047 -0.056 -0.092 0.353 0.993 0.990 0.997 0.820 1.000 1.000 1.000 1

Nonp_pro 0.136 0.011 -0.047 -0.132 0.116 -0.248 0.827 -0.136 0.789 0.801 -0.130 -0.163 -0.102 -0.059 -0.046 -0.054 -0.090 0.356 0.992 0.988 0.996 0.825 0.999 0.999 0.999 1.000 1
Hosp_prol 0.150 0.010 -0.050 -0.146 0.135 -0.259 0.830 -0.146 0.769 0.778 -0.137 -0.171 -0.109 -0.068 -0.051 -0.061 -0.096 0.344 0.992 0.991 0.997 0.809 0.999 0.999 0.999 0.998 0.99 1
Coll_prob 0.144 -0.103 0.009 -0.049 -0.140 0.127 -0.254 0.827 -0.141 0.777 0.787 -0.134 -0.168 -0.106 -0.065 -0.049 -0.058 -0.093 0.350 0.993 0.991 0.998 0.815 1.000 1.000 1.000 1.000 0.999 0.999
Values in bold are different from 0 with a significance level alpha=0.05

Irene

Correlation matrix (Pearson):

Variables  SOVI _ HUNITS POP2000 AREASQMI POPDENOO PERCAPINC PCTPOV AVEDISTC TREEVOL MAXSUSWIN BLDGLOSS1K CNTLOSS1IK NUMBRIDGE ROADMI ERC_CNT FIRESTA_CT POLSTA_CT SCH_CT MEDFAC_CT ERC_prob FIRE_prob Pol_prob Sch_prob Med_prob Gra_prob Gov_prob GovE_prob NH_prob Nonp_prob Hosp_prob Coll_prob
sovi

HUNITS

POP2000 1

AREASQM 0.129 0.378 1

POPDENOI ). 0.822 -0.084 1

PERCAPIN -0.493 0.263 0.109 0.244 1

PCTPOV 0.733 -0.230 0.127 -0.350 -0.737 1

AVEDISTC 0.432 -0.206 0.102 -0.145 -0.715 0.578 1

TREEVOL 0.896 0.324 0.669 0.334 -0.194 -0.374 1

MAXSUSW 0.368 0.197 0.181 0.590 ). . 0.633 1

BLDGLOSS 0.845 0.239 0.655 0.217 -0.106 -0.265 0.974 0.567 1

CNTLOSS1 0.849 0.249 0.654 0.225 -0.109 -0.270 0.978 0.572 1.000 1

NUMBRID 0.939 0.489 0.699 0.344 0.216 -0.198 0.799 0.390 0.726 0.732 1

ROADMI 0.917 0.558 0.674 0.170 0.178 -0.088 0.712 0.130 0.625 0.632 0.892 1

ERC_CNT 0.670 -0.004 0.699 0.127 0.140 -0.129 0.730 0.296 0.829 0.820 0.512 0.453 1

FIRESTA_C -0.493 0.770 0.446 0.554 0.216 -0.286 -0.256 0.688 0.235 0.646 0.647 0.641 0.773 0.601 1

POLSTA_C -0.412 0.763 0.635 0.480 0.216 -0.207 -0.152 0.621 0.169 0.546 0.553 0.704 0.876 0.475 0.866 1

SCH_CT 0.984 0.384 0.824 0.236 0.243 -0.164 0.813 0.272 0.746 0.751 0.932 0.950 0.597 0.793 0.800 1

MEDFAC_( 0.943 0.398 0.679 0.287 0.190 -0.325 0.964 0.521 0.903 0.910 0.863 0.838 0.630 0.722 0.720 0.895 1

ERC_prob 0.709 0.038 0.642 0.083 -0.046 -0.186 0.828 0.429 0.920 0.911 0.569 0.452 0.930 0.572 0.385 0.608 0.707 1

FIRE_prob 0.336 0.014 0.242 0.387 -0.203 -0.430 0.556 0.765 0.561 0.557 0.256 0.064 0.445 0.378 0.183 0.264 0.424 0.543 1

Pol_prob 0.619 0.182 0.433 0.385 ). -0.430 0.830 0.811 0.823 0.824 0.527 0.354 0.619 0.532 0.401 0.527 0.730 0.726 0.916 1

Sch_prob 0.690 0.181 0.502 0.355 0.178 -0.403 0.890 0.770 0.892 0.892 0.583 0.425 0.689 0.580 0.444 0.595 0.792 0.796 0.864 0.989 1

Med_prot 0.621 0.159 0.452 0.283 0.123 -0.386 0.824 0.771 0.830 0.829 0.518 0.356 0.648 0.516 0.393 0.530 0.733 0.753 0.888 0.987 0.976 1

Gra_prob 0.726 0.218 0.521 0.341 -0.161 -0.387 0.918 0.761 0.918 0.919 0.620 0.471 0.698 0.592 0.476 0.629 0.831 0.805 0.823 0.979 0.997 0.970 1

Gov_prob 0.726 0.218 0.521 0.342 -0.161 -0.388 0.919 0.762 0.917 0.918 0.620 0.471 0.697 0.592 0.476 0.629 0.831 0.804 0.822 0.979 0.997 0.969 1.000 1

GovE_prol 0.726 0.218 0.521 0.342 ). -0.388 0.919 0.761 0.917 0.919 0.620 0.471 0.697 0.592 0.476 0.629 0.831 0.805 0.822 0.979 0.997 0.970 1.000 1.000 1

NH_prob 0.726 0.216 0.522 0.340 -0.160 -0.387 0.918 0.760 0.918 0.919 0.619 0.470 0.700 0.592 0.475 0.629 0.830 0.807 0.823 0.979 0.997 0.970 1.000 1.000 1.000 1

Nonp_pro -0.236 0.726 0.215 0.523 0.337 0.159 -0.385 0.918 0.759 0.919 0.920 0.619 0.469 0.703 0.592 0.474 0.629 0.829 0.810 0.823 0.979 0.997 0.971 1.000 1.000 1.000 1.000 1
Hosp_prol -0.236 0.725 0.220 0.518 0.347 -0.162 -0.392 0.919 0.766 0.916 0.917 0.620 0.471 0.692 0.590 0.476 0.628 0.832 0.799 0.822 0.979 0.996 0.968 1.000 1.000 1.000 1.000 1.000 1
Coll_prob -0.237 0.726 0.219 0.521 0.343 -0.162. -0.388 0.919 0.762 0.917 0.918 0.620 0.471 0.697 0.592 0.476 0.629 0.831 0.804 0.822 0.979 0.997 0.969 1.000 1.000 1.000 1.000 1.000 1.000

Values in bold are different from O with a significance level alpha=0.05
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Isabel

Correlation matrix (Pearson):

Variables _SOVI___HUNITS POP2000 AREASQMI POPDENQO PERCAPINC PCTPOV_AVEDISTC TREEVOL MAXSUSWIN BLDGLOSSIK CNTLOSSIK NUMBRIDGE ROADMI ERC_CNT IRESTA_C OLSTA_Cl SCH_CNTVEDFAC_C ERC_prob FIRE_prob Pol_prob Sch_prob Med_prob Gra_prob Gov_prob GovE_prob NH_prob Nonp_prob Hosp_prob Coll_prob
sov! 1

HUNITS -0.284 1

POP2000  -0.318  0.994 1

AREASQM 0081 0075  0.073 1

POPDENO( -0.126 0472 0434  -0456 1

PERCAPIN  -0.750 0446 0456  -0.255 0.401 1

PCTPOV 0826 -0186 -0.212 0132 -0020 -0.729 1

AVEDISTC 0185  -0195  -0.185 0317 -025 0325 0162 1

TREEVOL 0018 0066 0069  -0.028 0016 0065  0.0% -0.38 1

MAXSUSW  -0.036 0145 0129 0067  -0001 0051 -0052  -0.246  0.063 1

BLDGLOSS -0.063 0204 0211  -0218 0264 0031 0338 0773 0040 1

CNTLOSS1  -0018 0102 0105  -0.219 0205 -0.035 0338 0772 0046 0977 1

NUMBRID  -0.203  0.606  0.609 0.498 0054 0171 0247 0018 0115 0021 -0.084 1

ROADMI  -0329 0761 0768 0502 0.022 0322 0021 -0.003 0195 0.026 -0.052 0.776

ERCCNT ~ -0.075 0321 0313  -0036 0175 0.156 0188 0141 0218 0.19% 0.161 0312 1

FIRESTAC  -0.184 0579 058 0360 0013 0217 0126 0030 -0.062 0002 -0.011 -0.035 0.465 0.105 1

POLSTA C  -0062 0727 0708 0244 0274 0214 0025 0102 0016 0.206 0.091 0021 0501 0285 0674 1

SCH.CNT  -0239 0979  0.969 0017 0525 0405 0138  -0207  0.040 0132 0.195 0095 0.567 0317 0500 0719 1

MEDFAC(  -0.090 0846 0812  -0029 0615 025 0030 -0.188  0.043 0112 0.206 0127 0.474 0383 039 065  0.882 1

ERC_prob 0013 0053 0056  -0.229 0280 0006 0007 -0171 0264 0017 0534 0.509 0015 0373 0102 0015 0076 0183 1

FIRE_prob 0160 -0.102  -0.104  -0.177 0,013 0167 0187  -0333 0519 0057 0.493 0575 0171 0025 0098 0102 -0093 -0.085 019 1

Polprob 0160 -0112 -0112  -0186 0024 0178 0194  -0364 0555 0061 0.499 0.567 -0.188 0003 -0154 -0.110 -0102 -0079 0269  0.809 1

Sch_prob 0151 0128 0127  -0.471  -0.021 0200 0231  -0365 0525 0063 0.463 0.556 -0.188 003 0152 -0132 -0.116 -009% 0178 0861 0884 1

Med prot 0139 0018 0023  -0248 0223 0137 0181  -0.251 0443 0038 0.661 0.668 -0.037 0132 0089 -0035 003 0142 0465 0415 0474  0.488 1

Gra_prob 0162 -0.131 -0.131  -0.163  -0.034 0214 0263  -0364 0553 0065 0472 0576 -0.195 0046 0147 0127 -0122 -0102 0156 0859 0888 0974 0457 1

Gov_prob 0162 0131 0131  -0.163  -0.035 0214 0203 -0363 0552 0.065 0471 0575 -0.195 0047 0147 0127 0122 0155 0859 0883 0974 0456  1.000 1

GovE_prol 0162 0131 -0.131  -0.163  -0.035 0214 0243 -0363 0551 0.065 0471 0575 -0.195 0047 0147 0127 0122 0155 0859 0883 0974 0456 1000 1,000 1

NHprob 0162 -0131 -0131  -0162  -0.036 0213 0243 -0361 0546 0064 0.467 0572 -0.194 0048 0146 0127 0122 0149 0859 0879 0974 0453 1000  1.000 1.000 1
Nonp_pro 0160 -0131 -0131  -0162  -0.038 0212 02602 -035%8 0541 0064 0.464 0570 -0.194 0049 0145 0127 -0.122 . 0145 0858 0874 0974 0451 0999  0.999 0999  1.000 1
Hosp_prol 0166 -0133 -0133  -0166  -0.032 0216 0245 -0371  0.569 0.066 0.482 0583 -0.19% 0043 0151 0129 -0.124 -0102 0168 081 082 0974 0467 099 0999 0999 0998 0.997 1
Collprob 0162 0131 0131  -0.163  -0.035 0214 0243 -0362  0.550 0.065 0470 0574 -0.195 0047 0146 0127 -0122 -0102 0153 0859 0882 0974 0455 1000  1.000 1000 1.000 1.000 0999

Values in bold are different from 0 with a significance level alpha=0.05

lvan

Correlation matrix (Pearson):

Variables_SOVI__HUNITS POP2000 AREASQMI POPDENCO PERCAPINC PCTPOV_AVEDISTC TREEVOL MAXSUSWIN BLDGLOSSIK CNTLOSS1K NUMBRIDGE ROADMI ERC_CNT FIRESTA_CT POLSTA_CT SCH_CT MEDFAC_CT ERC_prob FIRE_prob Pol_prob Sch_prob Med_prob Gra_prob Gov_prob GovE_prob NH_prob Nonp_prob Hosp_prob Coll_prob
sovi

HUNITS 1

POP2000 0.995 1

AREASQM 0214 0183

POPDENOI 0634 0655 1

PERCAPIN 0537 053 0246

PCTPOV 0285  -0.284 -0.185

AVEDISTC 0358 -0.347 -0.089 1

TREEVOL 0065 0069 -0.049 -0.256 1

MAXSUSW -0.149 -0.142 -0.111 0.224 -0.020 1

BLDGLOSS 0086 0089 -0.032 0244 0951 1

CNTLOSS1 0084 0087 -0.032 0244 0944 0.999 1

NUMBRID 0677 0697 0508 0039 0025 0036 0034 1

ROADMI 0751 0735 0.360 0254 0.148 0.150 0.149 0.662 1

ERC_CNT 018 0207 0191 0022 -0.040 0030  -0.028 0278 0151 1

FIRESTA_C 0601 0618 0611 0106 0.088 0093 0,092 0697 0616 0357 1

POLSTA_C 0710 o721 0710 0157 0038 0.049 0048 0681 0638 0343 0.887 1

SCH_CT 092 0937 0728 0318 0070 0.085 0.084 0705 0657 0266 0704 0.806 1

MEDFAC_ 0860 0865 0.730 0181 -0263 0084 0.080 0077 0700 059 0227 0652 0768 0924 1

ERC_prob  -0.025  0.005  -0.004 -0.020 002  -0098 0421 0.440 0.464 0008  0.09% 0060 0036 0017 -0.009 0031 1

FIRE_prob  -0.021 0022 0023 -0.046 0025 -0219 0905 0.79% 0792 0016 0100 -0058 0.049 0009 0016 0047 0429 1

Pol_prob  -0020 0024 0025 -0.046 002% -0213 0909 0.802 0.798 0015 0103 -0055 0052 0012 0018 0049 0439 0.9% 1

Sch_prob 0028 0026 0028 -0.047 0015 -0232 0920 0816 0.812 0014 0105 -0.058 0057 0013 0027 0050 0424 0992  099% 1

Med_prot  -0.017 0025 002 -0.046 0026  -0214 0909 0.801 0.795 0016 0103 -0057 0051 0010 0018 0052 0426 0994 0998 0993 1

Gra_prob  -0024 0023 0025 -0.048 0024  -0229 0915 0.806 0.802 0014 0101  -0059 0054 0010 0024 0048 0423  099% 0992 09% 0990 1

Gov_prob  -0024 0024 0025 -0.048 0024 -0229 0915 0.807 0.803 0014 0101 -0059 0054 0010 0024 0048 0424  09% 0993  09% 0991  1.000 1

GovE_prol 0024 0024 0025 -0.047 0024  -0229 0915 0.807 0.804 0014 0101  -0.059 0054 0010 0024 0048 0424  099% 0992 099% 0991 1000  1.000 1

NH_prob  -0022 0026 0027 -0.046 002 -0223 0916 0813 0.809 0013 0103 -0057 0053 0012 0022 0050 0428 0999 099% 099% 0994 0998 0998 0.998 1

Nonp_pro  -0.025 0026 0027 -0.046 0019 -0231 0918 0816 0813 0013 01038 -0057 0055 0012 002 0049 0428  099% 0992 0997 0990 099 0999 0999 0999 1
Hosp_prol  -0023 0020 002 -0.049 0030 -0228 0910 0.79 0.792 -0017 0098  -0.060 0052 0007 0023 0046 0420 099 0990 099 0988 099 099 0999 0.99% 0.997 1
Coll_prob 0024 0.024 0026 0047 0023  -0229 0916 0.809 0.805 0014 0102 -0.058 0054 0011 0025 0048 0424 099 0992 0997 0990 1000 _ 1.000 1000 0.998 0.999 0.999

Values in bold are different from O with a significance level alpha=0.05
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Jeanne

Correlation matrix (Pearson):

Variables SOVI___HUNITS POP2000 AREASQMI POPDENOO PERCAPINC PCTPOV AVEDISTC TREEVOL MAXSUSWIN BLDGLOSSIK CNTLOSS1K NUMBRIDGE ROADMI ERC_CNT FIRESTA_C®OLSTA C1 SCH_CT MEDFAC_CT ERC_prob FIRE prob Pol_prob Sch_prob Med_prob Gra_prob Gov_prob GovE_prob NH_prob Nonp_prob Hosp_prob Coll_prob
sovI 1

HUNITS -0.258 1

POP2000  -0.249  0.990 1

AREASQM 0019 0500  0.500 1

POPDENOI  -0.306  0.733  0.690 0.016 1

PERCAPIN  -0505 0418 0359 0.226 0382 1

PCTPOV 053 0247 -0197  -0.010  -0.304 -0.742

AVEDISTC 0305 -0.408 -0.369  -0.060  -0.370 -0.645 1

TREEVOL 1164 0.410 0365 0.398 0.306 0.343 -0.246 1

MAXSUSW 0014  -0.030 0018  -0.029  -0.115 -0.219 -0.002  -0.246 1

BLDGLOSS  -0.073 0300 0252 0373 0.075 0.405 -0.262  0.714 -0.119 1

CNTLOSS1 ~ -0.078 0307  0.259 0372 0.086 0.409 -0.268  0.724 1.000 1

NUMBRID  -0333 0726  0.677 0319 0571 0.440 -0331 0585 0.39% 0.406. 1

ROADMI  -0287  0.606 0537 0.428 0.472 0.350 -0.278  0.588 0.346 0.355 0.79

ERCCNT  -0274 0438  0.409 0.035 0.417 0.163 -0.087 0115 0.015 0.018 0.418 1

FIRESTALC  -0313 0515 0443 0364 0.433 0312 -0198 0452 0304 0.309 0.513 0.473

POLSTAC -0250 0622 0564 0.550 0.413 0.319 -0.165  0.666 0.497 0.503 0.625 0.442 1

SCH_CT 429 0783 0732 0.340 0.673 0.445 0319 0.605 0.369 0.379 0.948 0518 0.743 1

MEDFAC_( 300 0775 0703 0.269 0.707 0.410 -0.356  0.557 0.451 0.461 0.858 0.560 0706 0.907 1

ERC_prob  0.021 -0038  -0.057  -0.022 0.228 -0150 0198 0301 0.209 0.015 0.184 0054 -0.014 -0.001 1

FIRE_prob  0.247 -0.138 0.066 -0.152 0.109 0.027 0241 0320 0.316 -0.074 -0.055 0000  -0.109 0136 0307 1

Pol_prob 0278 117 -0.118 0.052 -0.143 -0.034 0041 0271 0319 0.316 -0.039 -0.039 0058  -0.084 -0.000 0324 0.772 1

Sch_prob 0213  -0075  -0.083 0088  -0.113 0.137 -0.048 0430 0.527 0.525 0.012 -0.036 0054  -0.028 -0.014 0422 0791 0785 1

Med prot 0313  -0.107  -0.109 0066  -0.122 -0.024 -0.028 0298 0372 0.371 -0.048 -0073 -0.118 -0.049 -0.075 -0015 0299 0403 0489 0774 1

Gra_prob  0.228 -0.071 0.112 -0.109 0.144 -0.070  0.470 0574 0.573 0.033 0008 008  -0.007 0012 0435 0783 0731 0979 0.789 1

Gov_prob  0.229 -0.070 0116  -0.109 0.141 -0.069 0474 0574 0.573 0.035 0011 009  -0.005 0014 0431 0.785 0735 0978 0.789  1.000 1

GovE_prol  0.229 .060  -0.070 0.115 -0.109 0.142 -0.069 0473 0574 0.573 0.035 0010 0089  -0.005 0013 0432 0784 0734 0978 0789 1000  1.000 1

NH_prob 0225 0062 -0.072 0106 -0.109 0.147 -0.073 0463 0.574 0.572 0.030 0005 0080 -0.010 0010 0440 0781 0725 0979 0790 1000  1.000 1.000 1

Nomp_pro 0221  -0.065  -0.075 0097  -0.109 0.153 -0.077 0451 0572 0.570 0.025 -0.002 0070 -0.016 0006  0.448 0777 0714 0979 0791 0999 0998 0998  1.000 1
Hosp_prol ~ 0.235 -0.065 0127 -0.107 0.134 -0.065  0.490 0575 0.574 0.043 -0035 0019 0103  0.004 0020 0421 0.788 0746 0976 0.787 0999 0999 0999 0998 0.995 1
Coll_prob__ 0.230 -0.069 0117 -0.109 0.140 -0.068 _ 0.476 -0.183 0.575 0.573 0.036 -0034 0012 0092 -0.004 0014 0430 0.785 0737 0978 0788 1.000  1.000 1000 0.999 0.998 0.999 1

Values in bold are different from Owith a significance level alpha=0.05

Lili

Correlation matrix (Pearson):

Variables _SOVI___HUNITS _POP2000 AREASQMI POPDENOO PERCAPINC PCTPOV_AVEDISTC TREEVOL MAXSUSWIN BLDGLOSS1K CNTLOSSIK NUMBRIDGE ROADMI ERC_CNT FIRESTA_CT POLSTA_CT MEDFAC_CT ERC_prob FIRE_prob Pol_prob Sch_prob Med_prob Gra_prob Gov_prob GovE_prob NH_prob Nonp_prob Hosp_prob Coll_prob
sov! 1

HUNITS -0.083 1

POP2000  -0.107  0.999 1

AREASQV ~ -0.023  -0.125  -0.122 1

POPDENOI  -0.060  0.944  0.936 -0.331 1

PERCAPIN  -0.672  0.605  0.625 -0.097 0.551 1

PCTPOV 0841 -0120 -0.145 -0.087 -0.074 -0.730 1

AVEDISTC 0502 -0.324  -0.330 0.015. -0.317 -0.421  0.400 1

TREEVOL 0081 0077  0.084 -0.007 0.125 -0.066 0187  -0.117 1

MAXSUSW 0215  -0.052  -0.056 -0.093 -0.062 -0.097 0130 0202 -0.106 1

BLDGLOSS ~ 0.003  0.099  0.104 -0.084. 0.213 0082 0054 -0.146  0.897 -0.055. 1

CNTLOSS1 ~ 0.000 0109  0.114 -0.086 0.222 0089 0051 -0.146  0.898 -0.057 1.000 1

NUMBRID 0.069 0.571 0.576 0.295 0.411 0.270 0.033 0.172 0.200 0.108 0.151 0.158 1

ROADMI 0118 0315 0312 0.229 0.207 0106 0122 0257 0227 0.168 0.180 0.780 1

ERC_CNT 0204 0214 0212 -0.083 0.214 -0119 0366 0144  0.091 -0.049 -0.051 0213 0.208 1

FIRESTA_C  -0.298 0393  0.415 0.466 0.181 0393  -0317 -0272 0163 -0.177 0.116 0.120 0585 0333 -0.123 1

POLSTAC 0113 0749  0.739 0.182 0.616 0300 0131  -0.162 0220 -0.087 0.108 0.114 0722 0588 0243 0.548 1

MEDFAC_' 0025  0.896  0.888 -0.059 0.842 0545 -0032 -0201  0.09 0.068 0.140 0.147 0678 0471  0.146 0.374 0.824 1

ERC_prob 0247 -0113  -0.114 -0.048 -0.115 -0339 0379 008 0263 -0.065 0.117 0.116 0100 0082  0.520 -0.020 0.129 1

FIRE_prob 0216 -0.124  -0.125 0.107 -0.114 -0.348 0.382 -0.073 0.795 -0.089 0.600 0.598 0.037 0115 0.171 0.053 0.174 0.549 1

Pol_prob 0193 -0115  -0.117 0.133 -0.113 -032 0341  -0.097 079 -0.081 0.586. 0.585. 0041 0114 0143 0.042 0.187 0.494 0.985 1

Sch_prob 0156 -0.079  -0.078 0.071 -0.050 -0246 0282  -0.163  0.900 -0.080 0.737 0.735 0042 0100 0,098 0.063 0.167 0.407 0953 0.960 1

Med_prot 0233  -0.083  -0.083 0.055. -0.055 -0298 0371  -0.064 0842 -0.081 0.703 0.702 0099 0162 0125 0.075 0.180 0.524 0975 0948 0948 1

Gra_prob 0155  -0.060  -0.059 0.034 -0.014 -0223 0284  -0.146 0935 -0.081 0.806. 0.804 0061 0120 0,091 0.070 0.158 0.415 0938 0932 099 0954 1

Gov_prob 0154  -0.060  -0.058 0.035 -0.013 -0222 0283 -0.148  0.935 -0.081 0.806 0.805. 0061 0120  0.088 0.071 0.158 0.412 0938 0932 099 0954  1.000 1

GovE_prol 0154  -0.060  -0.058 0.035 -0.013 -0222 0283 -0.148 0935 -0.081 0.806 0.805 0061 0120  0.083 0.071 0.158 0.412 0938 0932 099 0954 1000  1.000 1

NH_prob 0128 -0.044 -0.043 0.065 -0.005 -0.187 0.242 -0.182 0.925 -0.070 0.810 0.808 0.075 0126 0.028 0.091 0.163 0.319 0.919 0.922 0.987 0.942 0.989 0.990 0.989 1

Nonp_pro  0.150  -0.057  -0.056 0.040 -0.012 -0216 0276  -0.154  0.935 -0.079 0.808 0.807 0064 0121 0079 0.074 0.159 0.397 093 0931 0991 0953  1.000  1.000 1.000 0993 1
Hosp_prol 0161  -0.064  -0.063 0.029 -0.016 -0232 0293 -0.137 0933 -0.084 0.803 0.801 0057 0119  0.105 0.065. 0.156 0.436 0941 0932 0987 095 0999 0999 0999 0983 0.998 1
Coll_prob 0154  -0.060  -0.058 0.035 -0.013 -0222 0283  -0.148  0.935 -0.081 0.806 0.805 0061 0120  0.089 0.071 0.158 0.412 0938 0932 099 0954  1.000  1.000 1000 0.989 1.000 0.999 1

Values in bold are different from Owith a significance level alpha=0.05



APPENDIX H: Log Transformations for Model Variables

Hurricane Bret

Log transformation of Total Assistance per Capita (TA_PCAP)
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Hutricane Irene
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Histograms. Histograms
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Log Transformations for FEMA Impact Model Variables

Hurricans Brat
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APPENDIX I: Inventory of Spatial Regression Model Outputs

Regression Scenario 1

Hurricane Bret — OLS

SUMMARY OF QUTPUT: ORDINARY LEAST SQUARES ESTIMATION

Data set : Bret_im
Dependent variable : SOVI  Number of oObservations: 13
Mean dependent wvar 4.59171 Number of variables : 7
5.D. dependent var : 2.26675 Degrees of Freedom : 6
R-squared : 0.719110 F-statistic : 2.56012
Adjusted R-squared : 0.438221 Prob(F-statistic) : 0.138735
sum squared residual: 18.7623 Log likelihood : -20.831
Sigma-square : 3.12705 akaike info criterion : 55.8621
5.E. of regression : 1.76835 sSchwarz criterion : 59.6167
Sigma-square ML : 1.44325
5.E of regression ML: 1.20135
variable coefficient std.Error t-5tatistic  Probability
CONSTANT 1.298284 2.419608 0.536568 0.61087
POPDENOD 1.117766e-005 0.01046794 0.001067799 0.99921
PCTPOV 16. 39275 8. 801997 1.86239 0.11185
AVEDISTC 0.002656794 0.02185341 0.1215735 0.90721
MAXSUSWIN -0.001117758 0.003053671 -0. 32660375 0.72690
BLDGLOSS1K  5.254505e-005 7.279487e-005 0.7218236 0.49756
NUMBRIDGE -0.01207245 0.01259557 -0.9584678 0.37484

REGRESSION DIAGNOSTICS

MULTICOLLINEARITY CONDITION MNUMBER 15.687955

TEST ON NORMALITY OF ERRORS

TEST DF VALUE PROB
Jarque-gera 2 0.45386 0.79710

DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS

TEST DF VALUE PROB
Breusch-Pagan test ] 3. 8047 0.70308
Koenker-Bassett test ¥ 5.2221 0. 51565

DIAGNOSTICS FOR SPATIAL DEPEMDENCE
FOR WEIGHT MATRIX : Bret_im.gal
{row-standardized weightEg

TEST MI/DF VALUE PROB

Moran's I (error) -0.2490 -1.0214 0.30709
Lagraﬂge Multiplier (lag) 1 0.1429 0.70542
Robust LM (Tagg 1 1.5386 0.21482
Lagraﬂge Multiplier (error) 1 1.3347 0.24798
Robust LM (error) 1 2.7304 0.09845
Lagrange Multiplier (SARMA) 2 2.8733 0.2377

END OF REPORT
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Hurricane Charley — OLS
SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION

Data set : Char_im
Dependent variable : SOVI  Number of oObservations: 29
Mean dependent wvar : 0.695141 wNumber of wvariables : 7
5.D. dependent var : 2.05749 Degrees of Freedom : 22
R-squared : 0.665421 F-statistic : 7.29237
Adjusted R-squared : 0.574172 pProb(F-statistic) : 0.000220813
sum squared re51dua1 41.0744 Log likelihood : -46.1965
Sigma-square : 1.86702 Akaike info criterion : 106. 393
5.E. of regression 1.36639 sSchwarz criterion : 115. 964
Sigma-square ML : 1.416386
5.E of regression ML: 1.19011
variable coefficient std.Error T-statistic ProbabiTity
CONSTANT -1.045439 1.058318 -0.9878303 0.33398
POPDENOD -0.003504356 0.001323906 -2.646982 0.01473
PCTPOV 19, 82006 6. 590629 3.00731 0.00648
AVEDISTC 0.00630392 0.01115132 0.5653072 0.57758
MAXSUSWIN -0.0005056676 0.0006459602 -0.7828154 0.44208
BLDGLOSS1K 1.639e-007 1.154904e-007 1.419165 0.16986
NUMBRIDGE 0O.0005145664 0.002252511 0.2284413 0.82141

REGRES5ION DIAGMNOSTICS

MULTICOLLINEARITY CONDITION NUMBER 11.051014

TEST ON NORMALITY OF ERRORS

TEST DF VALUE PROB
Jarque-Bera 2 0.2497 0. 88262

DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS

TEST DF VALUE PROB
Breusch-Pagan test 6 5.6038 0.46900
Koenker-Bassett test 6 4,.7736 0.57316

DIAGNOSTICS FOR SPATIAL DEPEMDENCE
FOR WEIGHT MATRIX : Char_im.gal
{row-standardized weightEg

TEST MI/DF VALUE PROB
Moran's I (error) 0.2846 2.2112 0.02702
Lagraﬂge Multiplier (lag) 1 B.8333 0.00296
obust LM (1&95 1 6. 9780 0.00825
Lagraﬂge Multiplier (error) 1 2. 9850 0.08404
obust LM (error) 1 1.1298 0.28783
Lagrange Multiplier (SARMA) 2 9.9631 0.00686

END OF REPORT
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Hurricane Charley-Spatial Lag Model

SUMMARY OF OQUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION
Data set : Char_im

spatial weight : Char_im.gal
Dependent variable : SOVI  Number of oObservations: 29
Mean dependent wvar : 0.695141 wNumber of wvariables : 8
5.D. dependent var : 2.05749 Degrees of Freedom : 21
Lag coeff. (Rho) : 0.457716
R-squared : 0.781154 Log likelihood : -41. 3257
5g. Correlation I Akaike info criterion : 98.6514
Sigma-square : 0.926429 schwarz criterion : 109. 59
5.E of regression : 0.962512
variable Coefficient std.Error z-value Probability
W_50VI 0.4577186 0.1250493 3.6602E3 0.00025
CONSTANT -1.182848 0.7459256 -1. 585746 0.11280
POPDENOD -0.002614162 0.0009480151 -2.757511 0.00582
PCTPOV 15. 64864 4,821974 3.245276 0.00117
AVEDISTC 0.006707357 0.007866618 0.8526353 0.393E6
MAXSUSWIN  -0.0002761522 0.0004553456 -0.6064672 0. 54420
BLDGLOSS1K  5.627211e-008 8.266379e-008 0.6807 346 0.49604
NUMBRIDGE 0. 000908497 0.001587263 0.572367 0. 56707
REGRESSION DIAGNOSTICS
DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST DF VALUE PROB
Breusch-Pagan test 6 2.9192 0.81892
DIAGNOSTICS FOR SPATIAL DEPENDENCE
SPATIAL LAG DEPENDENCE FOR WEIGHT MATRIX : Char_im.gal
TEST DF VALUE PROB
Likelihood Ratio Test 1 99,7416 0.00180

END OF REPORT
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Hurricane Claudette — OLS
SUMMARY OF OQUTPUT: ORDIMNARY LEAST

Data set : Clau_im

Dependent variable
Mean dependent wvar

5.D. dependent wvar
R-squared : 0.
Adjusted R-squared 0.

Sum squared re51dua1
Sigma-square

5.E. of regression
Sigma-square ML

5.E of regression ML

CONSTANT 0.06801547
POPDENCO -0.004537018
PCTPOV 22.62535
AVEDISTC 0.002821272
MAXSUSWIN -0.000776367
BLDGLOSS1K  -1.900756e-0
NUMBRIDGE -0.008506885

REGRES5ION DIAGNOSTICS

SQUARES ESTIMATION

MULTICOLLINEARITY CONDITION NUMBER 14.966859
TEST ON NORMALITY OF ERRORS

TEST DF
Jarque-gBera 2

DIAGNOSTICS FOR HETEROSKEDASTICITY

RANDOM COEFFICIENTS

TEST DF
Breusch-Pagan test 6
Koenker-Bassett test G

DIAGNOSTICS FOR SPATIAL DEPENDENCE

FOR WEIGHT MATRIX : Clau_i

(row-standardized weights

TEST

Moran's I (error)

Lagraﬂge Multiplier (lag)
obust LM (1&95

Lagraﬂge Multiplier (error
obust M (error)

Lagrange Multiplier (SARMA)

SOVI  Number of Observations: 18
2.72255% Number of variables 7
2.64404 Degrees of Freedom 11

847958 F-statistic 10, 2247
765026 Prob(F-statistic) 0.000586619
19.1325 Log likelihood -26.09
1.73932 akaike info criterion 66.1801
1.31883 schwarz criterion 72.4127
1.06292
1.03098
std.Error t-5tatistic  Probability
1.669191 0.04074757 0.96823
0.003303207 -1.373519 0.19694
7.488673 3.021277 0.01163
0.01218392 0.231557 0.82113
i 0.001051869 -0.7380841 0.47592
05 4.693612e-005 -0. 4049666 0.69327
0.004297922 -1.979302 0.07336
VALUE PROB
0.0334 0.98345
VALUE PROB
5. 2861 0. 50768
4,60683 0.58701
m.ga1
MIfDF VALUE PROB
-0.1095 0.5010 0.6l636
1 0.1290 0.71947
1 0.0082 0.92777
)] 1 0.3113 0.57688
1 0.1905 0.66249
2 0. 3195 0.85235
EMD OF REPORT
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Hurricane Floyd — OLS
EUMMARY OF QUTPUT: ORDINARY LEAST SQUARES ESTIMATION

Data set : floy_im
Dependent variable : SOVI  Number of oObservations: 203
Mean dependent wvar : -1.34016 HNumber of wvariables : 7
5.D. dependent var : 2.53271 nDegrees of Freedom : 198
R-squared : 0.669643 F-statistic : 66.21862
Adjusted R-squared : 0.659530 Prob(F-statistic) :1.68156e-044
sum squared re51dua1 430.181 Log likelihood : -364.271
Sigma-square : 2.1948 akaike info criterion : 742.542
5.E. of regression : 1.48149 schwarz criterion : 765.734
Sigma-square ML : 2.11912
5.E of regression ML 1.45572
variable coefficient std.Error t-5tatistic  Probability
CONSTANT -5.961126 0.314324 -18.96491 0. 00000
POPDENOD 4.6110292-007 8. 378609e-007 0.5503335 0.58272
PCTPOV 36.3234 2.026812 7.92145 0. 00000
AVEDISTC 0.003438563 0.00290972 1.18175 0.23874
MAXSUSWIN -5.905575e-005 0.0001528845 -0. 3862769 0.69971
BLDGLOSS1K 3. 6484 5e-007 5.522471e-007 0.6606553 0. 50961
NUMBRIDGE -0.001111609 0.0007416911 -1.498749 0.13555

REGRES5ION DIAGNOSTICS

MULTICOLLINEARITY CONDITION MNUMBER 7.3799809

TEST ON NORMALITY OF ERRORS

TEST DF VALUE PROB
Jarque-gera 2 17.9805 0.00012

DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS

TEST DF VALUE PROB
Breusch-Pagan test ] 7.3112 0.29302
Koenker-Bassett test ¥ 5.2958 0. 50647

DIAGNOSTICS FOR SPATIAL DEPEMDENCE
FOR WEIGHT MATRIX : floy_im.gal
{row-standardized weightEg

TEST MI,/DF VALUE PROB
Moran's I (error) 0.3251 6.9974 0. 00000
Lagraﬂge Multiplier (lag) 1 11.0443 0.00089
obust LM (Tagg 1 2.3521 0.12511
Lagraﬂge Multiplier (error) 1 40.4238 0.00000
obust LM (error) 1 31.7316 0. 00000
Lagrange Multiplier (SARMA) 2 42.7759 0.00000

END OF REPORT
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Hurricane Floyd - Spatial Error Model
SUMMARY OF OUTPUT: SPATIAL ERROR MODEL - MAXIMUM LIKELIHOOD ESTIMATION

Data set : floy_im
spatial weight : floy_im.gal
Dependent variable : SOVI
Mean dependent wvar -1.3401863
5.D. dependent var : 2.532711
Lag coeff. (Lambda) : 0.515238
R-squared : 0.7476586
5g. Correlation I
Sigma-square 1.61869
5.E of regression 1.27228
variable Coefficient std.Error
COMNSTANT -6.099717 0.3892584
POPDENOD 9. 34297e-007 9. 804636e-007
PCTPOV 38. 83513 2.159049
AVEDISTC -0.001631156 0.004263879
MAXSUSWIN 3, 229757e-005 0.00014327053
BLDGLOSS1K 1. 569714e-007 5.578499e-007
NUMBRIDGE -0.0008499E803 0.0007766157
LAMBDA 0.5152376 0.06827846

REGRESSION DIAGNOSTICS

DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS

TEST

Breusch-Pagan test 6

DIAGNOSTICS FOR SPATIAL DEPENDENCE

SPATIAL ERROR DEFENDENCE FOR WEIGHT MATRIX :

TEST DF
Likelihood Ratio Test 1
EMD OF REPORT

Number of Observations:
Number of variables
Degrees of Freedom

R-squared (BUSE)

Log likelihood

Akaike info criterion
schwarz criterion

-15.6701
0.9529134
17.98715
-0.3825522
0.2247487
0.2813865
-1. 094467
70546122

VALUE
7.3445

floy_im.gal
VALUE
38.9060

203

196

-344, 817979
703,636
726,828

0. 00000
0.34063
0. 00000
0.70205%
0.82217
0.77841
0.27375
0. 00000

PROB
0.29016

PROB
0. 00000
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Hurricane Irene — OLS
SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION

Data set : Iren_im
Dependent variable : SOVI  Number of oObservations: 18
Mean dependent wvar : 0.645662 Number of wvariables : 7
5.D. dependent var : 1.96918 Degrees of Freedom : 11
R-squared : 0.846996 F-statistic : 10.1489
Adjusted R-squared : 0.763539 Prob(F-statistic) : 0.000606196
sum squared re51dua1 10.6793 Log likelihood : -20.8423
Sigma-square : 0.970848 akaike info criterion : 55.6847
5.E. of regression 0.985316 schwarz criterion : 61.9173
Sigma-square ML 0.593296
5.E of regression ML 0.770257
variable coefficient std.Error t-5tatistic  Probability
CONSTANT -1.040904 2.686476 -0. 3874608 0.70581
POPDENOD -0.004143175 0.00104943 -3.948023 0.00228
PCTPOV 19,73705 9.217274 2.141311 0.05548
AVEDISTC 0.01393379 0.01534799 0.9078578 0.38341
MAXSUSWIN 0.001436847 0.03661241 0.0392448 0.96940
BLDGLOSS1K  4.51363%92-007 2.588492e-007 1.743733 0.10905
NUMBRIDGE -0.0004742484 0.002020098 -0.234765 0. 81870

REGRES5ION DIAGNOSTICS

MULTICOLLINEARITY CONDITION MNUMBER 35.3326700

TEST ON NORMALITY OF ERRORS

TEST DF VALUE PROB
Jarque-gera 2 0.4967 0.78009

DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS

TEST DF VALUE PROB
Breusch-Pagan test ] 9.0168 0.17263
Koenker-Bassett test [ 12. 3757 0.05409

DIAGNOSTICS FOR SPATIAL DEPEMDENCE
FOR WEIGHT MATRIX : Iren_im.gal
{row-standardized weightEg

TEST MI,/DF VALUE PROB
Moran's I (error) -0.1585 0.0208 0.98338
Lagraﬂge Multiplier (lag) 1 0.1733 0.67723
obust LM (Tagg 1 1.4712 0.22515
Lagraﬂge Multiplier (error) 1 0.7062 0.4007
obust LM (error) 1 2.0042 0.15687
Lagrange Multiplier (SARMA) 2 2.177 0.33665

END OF REPORT
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Hurricane Isabel - OLS
EUMMARY OF QUTPUT: ORDINARY LEAST SQUARES ESTIMATION

Data set : Isab_im
Dependent variable : SOVI  Number of oObservations: 158
Mean dependent wvar : -1.4936 Number of wvariables : 7
5.D. dependent var : 2.789068 Degrees of Freedom 151
R-squared : 0.713583 F-statistic : 62.7005
Adjusted R-squared : 0.702202 Prob(F-statistic) l 53753e-038
sum squared re51dua1 352.025 Log Tikelihood : -287.48
Sigma-square : 2.33129 akaike info criterion : 588.959
5.E. of regression : 1.526868 sSchwarz criterion : 610. 398
Sigma-square ML : 2.228
5.E of regression ML 1.49265
variable coefficient std.Error t-5tatistic  Probability
CONSTANT -6, 282572 0. 3680467 -17.04226 0. 00000
POPDENOD -0.000157327 9.523184e-005 -1.652043 0.10060
PCTPOV 40.32391 2.25%6171 17. 87271 0. 00000
AVEDISTC 0.00495734 0.003661597 1.353E874 0.17780
MAXSUSWIN 0, 0008653678 0.0009716648 0.8906032 0.37456
BLDGLOSS1K -8.188883e-007 1.393156e-006 -0. 5877939 0.55755
NUMBRIDGE -0.005158693 0.001708481 -3.019462 0.00297

REGRES5ION DIAGMNOSTICS

MULTICOLLINEARITY CONDITION NUMBER 7.2099499

TEST ON NORMALITY OF ERRORS

TEST DF VALUE PROB
Jarque-gera 2 42,3016 0. 00000

DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS

TEST DF VALUE PROB
Breusch-Pagan test 6 19, 8051 0.00300
Koenker-Bassett test 6 8.7754 0.18a61

DIAGNOSTICS FOR SPATIAL DEPEMDENCE
FOR WEIGHT MATRIX : Isab_im.gal
{row-standardized weightEg

TEST MI,/DF VALUE PROB
Moran's I (error) 0.2217 4,6528 0. 00000
Lagraﬂge Multiplier (lag) 1 15.2732 0.00009
obust LM (1&95 1 2.8047 0.09399
Lagraﬂge Multiplier (error) 1 16.1145 0.00006
obust LM (error) 1 3.6459 0.05621
Lagrange Multiplier (SARMA) 2 18.9191 0.00008

END OF REPORT
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Hurricane lvan — OLS

SUMMARY OF OQUTPUT: ORDINARY LEAST SQUARES ESTIMATION

Data set : Ivan_im

Dependent variable :
Mean dependent wvar : -0
5.D. dependent wvar

R-squared : 0
Adjusted R-squared : 0
sum squared residual:
Sigma-square :

5.E. of regression
Sigma-square ML

5.E of regression ML:

CONSTANT -2.812156
POPDENOO 1.007793e-00
PCTPOV 19.47506

AVEDISTC -0.002141408
MAXSUSWIN -0.000662115
BLDGLOSS1K -9,484704e-0
NUMBRIDGE -0.002784582

REGRES5ION DIAGMNOSTICS
MULTICOLLINEARITY CONDITIO

TEST ON NORMALITY OF ERRORS

TEST DF
Jarque-gera 2

DIAGNOSTICS FOR HETEROSKEDASTICITY

RANDOM COEFFICIENTS

TEST DF
Breusch-Pagan test 6
Koenker-Bassett test 6

DIAGNOSTICS FOR SPATIAL DE

FOR WEIGHT MATRIX : Ivan_i
(row-standardized weigh

TEST

Moran's I (error)

Lagraﬂge Multiplier (lag)

Robust LM (1&95

Lagraﬂge Multiplier (error

Robust LM (error)

Lagrange Multiplier (SARMA)

SovI  Number of Obserwvations: 292
.478615 Number of variables 7
2.09067 Degrees of Freedom 285
417186 F-statistic : 34,0012
L404917  Prob(F-statistic) 17.12525e-031
743.849 Log likelihood : -550. 852

2.61 akaike info criterion 1115.7
1.6155% sSchwarz criterion 1141.44
2.54743
1. 59607

std.Error t-5tatistic  Probability
0.3554974 -7.910482 0. 00000

i 7.759867e-007 1.298724 0.19509
1.571234 12. 39475 0. 00000
0.003068451 -0.6987765 0.48526
7 0.0003230297 -2.049705 0.04131

08 1.792436e-007 -0, 5291517 0.59711

0.0007724331 -3.604949 0.00037

N NUMBER 8.832847
VALUE PROB
16. 2786 0.00029
VALUE PROB
20.9303 0.00189
13. 5499 0.03509
PENDENCE
m. gal
o
MIfDF VALUE PROB
0.4028 10.1713 0. 00000
1 51. 5357 0. 00000
1 5. 3409 0.02083
)] 1 93,0241 0. 00000
1 46, 8293 0. 00000
2 Q8. 3651 0. 00000
EMD OF REPORT
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Data set

Hurricane Ivan — Spatial Error Model
SUMMARY OF OUTPUT: S5PATIAL ERROR MODEL - MAXIMUM LIKELIHOOD ESTIMATION
Ivan_im

spatial weight

Ivan_im.gal

Dependent variable SOVI  Number of oObservations: 292
Mean dependent wvar -0.478615 Number of wvariables 7
5.D. dependent wvar 2.090673 Degrees of Freedom 285
Lag coeff. (Lambda) 0. 609900
R-squared 0.615454 R-squared (BUSE) -
5g. Correlation I Log likelihood -506. 379858
Sigma-square : 1.68082 Akaike info criterion 1026.78
5.E of regression : 1.29646 sSchwarz criterion 1052.5
variable Coefficient std.Error z-value ProbabiTlity
CONSTANT -4.106901 0.4505683 -9.114936 0. 00000
POPDENOD 1.4979B8e-006 7.902496e-007 1. 895578 0.05802
PCTPOV 24, 32447 1. 687685 14.41292 0. 00000
AVEDISTC -0.0002629353 0.004360726 -0.06029623 0.95192
MAXSUSWIN -0.0003257375 0.000393971 -0. 8268057 0.40835
BLDGLOSS1K  -1.84222e-008 1.663083e-007 -0.1107714 0.91180
NUMBRIDGE -0.001214147 0.0006157855 -1.971705 0.04864
LAMBDA 0. 6098998 0.05080827 12.00395 0. 00000
REGRESSION DIAGNOSTICS
DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST DF VALUE PROB
Breusch-Pagan test 6 20,7428 0.00204
DIAGNOSTICS FOR SPATIAL DEPENDENCE
SPATIAL ERROR DEPENDENCE FOR WEIGHT MATRIX : Ivan_im.gal
TEST DF VALUE PROB
Likelihood Ratio Test 1 88.9450 0.00000

END OF REPORT
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Hurricane Jeanne — OLS
EUMMARY OF QUTPUT: ORDINARY LEAST SQUARES ESTIMATION

Data set : Jean_im
Dependent variable : SOVI  Number of oObservations: 53
Mean dependent wvar : 0.583392 HNumber of wvariables : 7
5.D. dependent var : 2.05375 pDegrees of Freedom : 46
R-squared : 0.371697 F-statistic : 4.53551
Adjusted R-squared : 0.289744 Pprob(F-statistic) : 0.00108701
sum squared residual: 140.456 Log likelihood : -101.031
Sigma-square : 3.0534 akaike info criterion : 216. 0862
5.E. of regression : 1.7474 schwarz criterion : 229.854
Sigma-square ML : 2.65012
5.E of regression ML: 1.62792
variable coefficient std.Error t-5tatistic  Probability
CONSTANT -1.905861 0. 8746205 -2.179072 0.03449
POPDENOD -0.0001890389 0.0006147374 -0.32075116 0.75984
PCTPOV 23,28471 6.061421 3. 8414861 0.00037
AVEDISTC -0.002637679 0.01054695 -0.2500893 0.80363
MAXSUSWIN -0.001252838 0.0007608132 -1.64671 0.10643
BLDGLOSS1K 6.223465e-008 7.427859e-008 0.8378545 0.40645
NUMBRIDGE -0.003002511 0.002028262 -1.480337 0.14560

REGRES5ION DIAGNOSTICS

MULTICOLLINEARITY CONDITION MNUMBER 9.677308

TEST ON NORMALITY OF ERRORS

TEST DF VALUE PROB
Jarque-gera 2 0.55486 0.75784

DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS

TEST DF VALUE PROB
Breusch-rPagan test & 3.9282 0.068640
Koenker-Bassett test ¥ 4.1905 0.65091

DIAGNOSTICS FOR SPATIAL DEPEMDENCE
FOR WEIGHT MATRIX : Jean_im.gal
{row-standardized weightEg

TEST MI,/DF VALUE PROB

Moran's I {(error) 0. 2807 3.9264 0. 00009
Lagraﬂge Multiplier (lag) 1 11.7937 0.00059
Robust LM (Tagg 1 2.7847 0.09517
Lagraﬂge Multiplier (error) 1 9.0318 0.00265
Robust LM (error) 1 0.0228 0.88003
Lagrange Multiplier (SARMA) 2 11. 8165 0.0027

END OF REPORT
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Hurricane Lili — OLS
EUMMARY OF QUTPUT: ORDINARY LEAST SQUARES ESTIMATION

Data set o Liliiim
Dependent variable : SOVI  Number of oObservations: 44
Mean dependent wvar : -0.357499 Number of wvariables : 7
5.D. dependent var : 2.021068 Degrees of Freedom : 37
R-squared : 0.750893 F-statistic : 18.5884
Adjusted R-squared : 0.710497 Prob(F-statistic) 17.93991e-010
sum squared re51dua1 44,7709 Log likelihood : -62.8154
Sigma-square : 1.21002 akaike info criterion : 139.631
5.E. of regression : 1.10001 sSchwarz criterion : 152.12
Sigma-square ML : 1.01752
5.E of regression ML 1.00872
variable coefficient std.Error t-5tatistic  Probability
CONSTANT -7.081523 0.710707 -9.964054 0. 00000
POPDENOO 0. 000645677 0.0007418933 0.8703101 0.38974
PCTPOV 29,3148 3.544336 8. 270885 0. 00000
AVEDISTC 0.01266407 0.005991724 2.113593 0.04135
MAXSUSWIN 0, 0007010846 0.0007 284458 0.96243E8 0.34208
BLDGLOSS1K -4.,222182e-008 2.402032e-007 -0.1757754 0.86143
NUMBRIDGE -0.0005669207 0.001543501 -0.3672954 0.71549
REGRESSION DIAGNOSTICS
MULTICOLLINEARITY CONDITION MNUMBER 12.412321
TEST ON NORMALITY OF ERRORS
TEST DF VALUE PROB
Jarque-gera 2 0.0463 0.97710
DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST DF VALUE PROB
Breusch-Pagan test ] 6.2598 0.39475
Koenker-gassett test 6§ 6.4156 0.37828
DIAGNOSTICS FOR SPATIAL DEPENDENCE
FOR WEIGHT MATRIX : Lili_im.gal
{row-standardized weightEg
TEST MI,/DF VALUE PROB
Moran's I (error) 0.0346 1.2568 0.20881
Lagraﬂge Multiplier (lag) 1 0.0661 0.79705
obust LM (Tagg 1 0. 0000 0.99800
Lagraﬂge Multiplier (error) 1 0.1145 0.73508
obust LM (error) 1 0.0484 0.82593
Lagrange Multiplier (SARMA) 2 0.1145 0.94436

END OF REPORT
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Regression Scenario 3

Hurricane Bret — OLS

[EUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION

Data set

Dependent variable
Mean dependent wvar
5.D. dependent wvar

R-squared

Adjusted R-squared
sum squared residual:
Sigma-square :
S.E. of regression
Sigma-square ML

5.E of regression ML:

bret_sovi_tcap

Bret_TAP Number of obserwvations:
33.9131 Number of variables
55.3673 Degrees of Freedom

0.439954 F-statistic

0.389041 pProb(F-statistic)

22319 Log likelihood

2029 Akaike info criterion
45,0444 schwarz criterion
1716. 84
41.4348

13
2
11

8.64125
0.0134574
-66. 8598
137.72
138. 8490

variable cCoefficient std.Error t-5tatistic  Probability
CONSTANT -40.47932 28,2227 -1.434283 0.17930
Us_SOVI 16. 20146 5.51145 2.9396 0.01346
REGRESSION DIAGMOSTICS
MULTICOLLINEARITY COMDITION NUMBER 4. 284751
TEST OM NOEBMALITY OF ERRORS
TEST DF VALUE PROB
Jarque-Bera 2 0.9148 0.63294
DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST DF VALUE PROBE
Breusch-Pagan test 1 5.8078 0.01596
Koenker-Bassett test 1 6.5768 0.01033
DIAGNOSTICS FOR SPATIAL DEFENDENCE
FOR WEIGHT MATRIX : bret_sovi_tcap.qgal
(row-standardized weights)
TEST MI/DF VALUE PROB
Moran's I {(error) -0.0241 0.4889 0.62491
Lagrange Multiplier (lag) 1 0.0691 0.79265
Robust LM (1ag§ 1 0.0882 0.76644
Lagrange Multiplier (error) 1 0.0126 0.91080
Robust LM (error) 0.0317 0.85873
Lagrange Multiplier (SARMA) 2 0.1008 0.95086

ENMD OF REFORT
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Hurricane Charley — OLS
SUMMARY OF OUTPUT: ORDIMNARY LEAST SQUARES ESTIMATION

Data set : char_sovi_tcap
Dependent Vvariahle : Char_TaP Number of 0Observations: 69
Mean dependent wvar : 130.085 MNumber of variables : 2
5.D. dependent wvar 463.439 Degrees of Freedom : 67
R-squared : 0.056787 F-statistic : 4.03378
Adjusted R-squared : 0.042709 pProb(F-statistic) : 0.0486312
sum squared residual:l.39779e+007 Log likelihood : -519.458
Sigma-square : 208626 akaike info criterdion : 1042.92
5.E. of regression : 456.756 Schwarz criterion : 1047. 38
Sigma-square ML : 202579
5.E of regression ML: 450.088
variable  Coefficient std.Error t-5tatistic Probability
CONSTANT 91.09724 58.31293 1.562213 0.12295
Us_soVI 53.9069 26. 84036 2.008427 0.04863

REGRESS5TION DIAGNOSTICS

MULTICOLLINEARITY CONDITION NUMBER 1.413519

TEST ON NORMALITY OF ERRORS

TEST DF VALUE PROB
Jarque-Bera 2 954.1737 0. 00000

DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS

TEST DF VALUE PROB
Breusch-Pagan test 1 46,0704 0. 00000
Koenker-Bassett test 1 5.0125 0.02517

DIAGNOSTICS FOR SPATIAL DEPENDENCE
FOR WEIGHT MATRIX : char_sovi_tcap.gal
(row-standardized weights)

TEST MI/DF VALUE PROE

Moran's I (error) 0.2163 2.7908 0. 00526
Lagraﬂge Multiplier (lag) 1 7.4438 0.00837
Robust LM (1&95 1 2.9693 0. 084868
Lagraﬂge Multiplier (error) 1 6.1126 0.01342
Robust LM (error) 1 1.6381 0. 20059
Lagrange Multiplier (SARMA) 2 9.0819 0.01068

END OF REFORT
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Hurricane Claudette — OLS
SUMMARY OF OUTPUT: ORDIMNARY LEAST SQUARES ESTIMATION

Data set : clau_sovi_tcap
Dependent variable : Clau_TaF Number of Observations: 18
Mean dependent wvar 62.5502 Number of variables : 2
5.D. dependent var : 76.9997 Degrees of Freedom : 16
R-squared : 0.024964 F-statistic : 0.409658
Adjusted R-squared : -0.035975 Prob(F-statistic) : 0.531202
sum squared residual: 104057 Log likelihood : -103. 502
Sigma-square : 6503.56 Akaike info criterdion : 211. 004
5.E. of regression : 80.6446 sSchwarz criterion : 212.784
Sigma-square ML : 5780.94
5.E of regression ML: 76.0325
variable  Coefficient std.Error t-5tatistic  Probability
CONSTANT 75.07755 27.28358 2.751748 0.01418
Us_s0OVI -4,601316 7.189047 -0.6400453 0.53120

REGRES5ION DIAGNOSTICS

MULTICOLLINEARITY CONDITION NUMBER 2.465058

TEST ONM MNORMALITY OF ERRORS

TEST DF VALUE PROBE
Jarque-Bera 2 10.2135 0. 00606

DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS

TEST DF VALUE PROB
Breusch-Pagan test 1 3.8271 0.05043
Koenker-Bassett test 1 1.8113 0.17835

DIAGNOSTICS FOR SPATIAL DEPENDENCE
FOR WEIGHT MATRIX : clau_sovi_tcap.gal
(row-standardized weights)

TEST MI/DF VALUE PROB

Moran's I {(error) 0.2706 2.1372 0.03258
Lagrange Multiplier (lag) 1 1.8280 0.17637
Robust LM (1&95 1 0.0328 0.85633
Lagrange Multiplier (error) 1 1.9010 0.16797
Robust LM (error) 1 0.1058 0.74408
Lagrange Multiplier (SARMA) 2 1.9338 0.38027

END OF REFPORT

243



Hurricane Floyd — OLS
SUMMARY OF OUTPUT: ORDIMNARY LEAST SQUARES ESTIMATION

Data set : floy_sovi_tcap
Dependent variable Floy_TAP Number of oObserwvations: 182
Mean dependent wvar 106.509 Number of variables : 2
5.D. dependent wvar 294,823 Degrees of Freedom ;180
R-squared : 0.046563 F-statistic : B.79058
Adjusted R-squared : 0.041266 Prob(F-statistic) : 0.00343827
sum squared residual:1.50829e+007 Log likelihood : -1288.83
sigma-square : 83794.1 akaike info criterion : 2581.668
5.E. of regression : 289,472 schwarz criterion : 2588.06
Sigma-square ML : B2873.3
S.E of regression ML: 287.877
variable Coefficient Std.Error t-Statistic Probability
CONSTANT 144. 7687 25.03847 5.781849 0. 00000
Us_S0OVI 24.93917 B.411497 2.964891 0.00344

REGRES5I0N DIAGNOSTICS

MULTICOLLINEARITY CONDITION NUMBER 1.768304

TEST OM MNORMALITY OF ERRORS

TEST DF VALUE PROB
Jarque-Bera 2 2481.7667 0. 00000

DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS

TEST DF VALUE PROB
Breusch-Pagan test 1 30.7542 0. 00000
Koenker-gassett test 1 3. 3482 0.06728

DIAGNOSTICS FOR SPATIAL DEPENDENCE
FOR WEIGHT MATRIX : floy_sovi_tcap.gal
{row-standardized weights)

TEST MI/DF VALUE PROEB

Moran's I {(error) 0.4445 §.1813 0. 00000
Lagrange Multiplier (Tlag) 1 65.7819 0. 00000
Robust LM (1&95 1 3.2068 0. 06941
Lagrange Multiplier (error) 1 62.7938 0. 00000
Robust LM {(error) 1 0. 3087 0. 57849
Lagrange Multiplier (SARMA) 2 66. 0906 0. 00000

END OF REFORT
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Hurricane Floyd - Spatial Lag Model
EUMMARY OF QUTPUT: 5SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION

Data set : floy_sovi_tcap
Spatial weight : floy_sovi_tcap.gal
pependent variable Floy_TAP Number of observations: 182
Mean dependent wvar 106. 509 MNumber of wvariables : 3
5.D. dependent var 294,823 Degrees of Freedom 179
Lag coeff. {(Rho) 0.574307
R-squared : 0.379843 Log likelihood : -1259. 68
5g. Correlation . akaike info criterion : 2525.37
Sigma-square : 53904.3 sSchwarz criterion : 2534.98
5.E of regression : 232.173
variable Coefficient std.Error z-value Probability
W_Floy_Tap 0.5743071 0.06296652 9.120833 0. 00000
CONSTANT 61. 65289 21.49955 2.867636 0.00414
Us_S0OVI 12. 89008 6.811172 1.892491 0.05843

REGRES5ION DIAGMOSTICS

DIAGMNOSTICS FOR HETEROSKEDASTICITY

RANDOM COEFFICIENTS

TEST DF VALUE PROB
Breusch-Pagan test 1 27.7533 0. 00000

DIAGNOSTICS FOR SPATIAL DEPENDENCE
SPATIAL LAG DEPENDENCE FOR WEIGHT MATRIX : floy_sovi_tcap.gal

TEST DF VALUE PROB
Likelihood Ratio Test 1 58.2B62 0. 00000
END OF REPORT
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Hurricane Irene — OLS

FUMMARY OF OQUTPUT: ORDINARY LEAST SQUARES ESTIMATION

Data set

Dependent wvariable
Mean dependent wvar
5.D. dependent wvar

R-squared

Adjusted R-squared
sum squared re51dua1
Sigma-square

5.E. of regression
51gma square ML

S.E of regression ML

iren_sovi_tcap

Iren_TAP Number of Obserwvations:
13.8209 Number of variables :
20.6887 Degrees of Freedom

0.000749 F-statistic

-0.061704 Prob(F-statistic)
7698.62 Log likelihood
481.164 akaike info criterion
21.9354 schwarz criterion
427.701
20. 6809

18
2
16

0.0119916
0.914162
-80. 0667

164.1323
165.914

variable cCoefficient std.Error t-5tatistic  Probability
CONSTANT 14. 00658 3.441061 2.574238 0.02038
Us_SOVI -0. 2875174 2.625582 -0.1095061 0.91416
REGRES5ION DIAGNOSTICS
MULTICOLLINEARITY CONDITION MUMBER 1. 280266
TEST OM NOEMALITY OF ERRORS
TEST DF VALUE FROB
Jarque-Bera 2 34,0137 0. 00000
DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST DF VALUE FROE
Breusch-Fagan test 1 1.7960 0.18019
kKoenker-Bassett test 1 0.4479 0.50332
DIAGNOSTICS FOR SPATIAL DEPENDENCE
FOR WEIGHT MATRIX : iren_sovi_tcap.gal
(row-standardized weights)
TEST MI,/DF VALUE PROB
Moran's I {(error) -0.077 0.0443 0.96463
Lagrange Multiplier (lag) 1 0.1728 0.67768
Robust LM (1395 1 0.1877 0.66488
Lagrange Multiplier (error) 1 0.1667 0.68307
obust LM (error) 1 0.1818 0. 67000
Lagrange Multiplier (SARMA) 2 0.3544 0.83763

END OF REPORT
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Hurricane Isabel - OLS
SUMMARY OF QUTPUT: ORDINARY LEA$T SQUARES ESTIMATION

Data set : dsab_sowvi_tcap
Dependent variable : Isab_TaP Number of oObserwvations: 158
Mean dependent war 83.8355 Number of variables : 2
5.D. dependent wvar 222.946 Degrees of Freedom 1 158
R-squared : 0.018167 F-statistic : 2.88649
Adjusted R-squared 0.011872 prob(F-statistic) : 0.0913194
sum squared residual:7.71073e+006 Log likelihood : -1077.04
Sigma-square : 49427.8 akaike info criterion : 2158.08
5.E. of regression : 222.324 schwarz criterion : 2164.2
Sigma-square ML : 48802.1
5.E of regression ML: 220.912
variable Coefficient std.Error t-5tatistic  Probability
CONSTANT 101. 8204 20.61294 4,939635 0. 00000
Us_sS0VI 10.784 6.3473E9 1.698966 0.09132

REGRES5I0ON DIAGNOSTICS

MULTICOLLINEARITY CONDITION NUMBER 1.763927

TEST ONM MNORMALITY OF ERRORS

TEST DF VALUE PROB
Jarque-Bera 2 5171.9147 0. 00000

DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS

TEST DF VALUE PROB
Breusch-Pagan test 1 5.3530 0.02069
Koenker-Bassett test 1 0.3780 0.53869

DIAGNOSTICS FOR SPATIAL DEPENDENCE
FOR WEIGHT MATRIX : isab_sovi_tcap.gal
(row-standardized weights)

TEST MI/DF VALUE PROE

Moran's I {(error) 0.4268 8.9532 0. 00000
Lagrange Multiplier (lag) 1 76.4974 0. 00000
Robust LM (1&95 1 4,6790 0.03053
Lagrange Multiplier (error) 1 72.9342 0. 00000
Robust LM {error) 1 1.1159 0. 29081
Lagrange Multiplier (SARMA) 2 77.6133 0. 00000

END OF REFORT
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Hurricane Isabel — Spatial lag Model
SUMMARY OF QUTPUT: 5SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION

Data set : dsab_sovi_tcap
Spatial weight : disab_sovi_tcap.gal
Dependent variable : Isab_TAP Number of oObservations: 158
Mean dependent var 83.8355 HNumber of variables : 3
5.D. dependent wvar 222.946 Degrees of Freedom : 155
Lag coeff. (Rho) : 0.687356
R-squared : 0.404802 Log likelihood : -1046. 82
5£g. Correlation T - akaike info criterion : 2099. 64
Sigma-square : 29584.3 schwarz criterion : 2108.83
5.E of regression : 172.001
variable Coefficient std.Error z-value Probability
W_Isab_TAP 0.687356 0.06905727 9.953419 0. 00000
COMNSTANT 33.22245 17.13588 1.938765 0.05253
Us_S0OVI 4,663993 4,932469 0.9455697 0. 34437

REGRESS5ION DIAGNOSTICS

DIAGNOSTICS FOR HETEROSKEDASTICITY

RANDOM COEFFICIENTS

TEST DF VALUE FROE
BEreusch-Pagan test 1 4.5153 0.03359

DIAGNOSTICS FOR SPATIAL DEPENDENCE
SPATIAL LAG DEPENDENCE FOR WEIGHT MATRIX : isab_sowvi_tcap.gal

TEST DF VALUE PROB
Likelihood Ratio Test 1 60.4396 0. 00000
END OF REPORT
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Hurricane lvan — OLS
SUMMARY OF OQUTPUT: GRDINAR‘( LEAST SQUARES ESTIMATIOM

Data set : dvan_sovi_tcap
Dependent variable : Ivan_TAP MNumber of Observations: 325
Mean dependent wvar 68.645 Number of variables : 2
5.D. dependent var : 276.709 Degrees of Freedom 1 323
R-squared : 0.000984 F-statistic : 0.318148
adjusted R-squared : -0.002109 Prob(F-statistic) : 0.573113
sum squared residual: 2.486e+007 Log likelihood : -2288.48
Sigma-square : 76966 akaike info criterion : 4580.92
5.E. of regression : 277.427 schwarz criterion : 4588.49
Sigma-square ML : 76492.3
5.E of regression ML: 276.572
variable Coefficient std.Error t-5tatistic  Probability
CONSTANT 70.74037 15. 83095 4.468486 0. 00001
Us_SOVI 4. 0815786 7.236249 0. 5640458 0.57311

REGRESSION DIAGNOSTICS

MULTICOLLINEARITY CONDITION NUMBER 1.270127

TEST ON NORMALITY OF ERRORS

TEST DF VALUE PROB
Jarque-Bera 2 133056.4014 0. 00000

DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS

TEST DF VALUE PROB
Breusch-Pagan test 1 5.7597 0.01640
Koenker-gBassett test 1 0.1159 0.73348

DIAGNOSTICS FOR SPATIAL DEPENDENCE
FOR WEIGHT MATRIX : iwvan_sovi_tcap.gal
{row-standardized weights)

TEST MI,/DF VALUE FROB

Moran's I {(error) 0.5564 14.3813 0. 00000
Lagrange Multiplier (lag) 1 200.9100 0.00000
rRobust LM (1ag§ 1 0. 8764 0.34920
Lagrange Multiplier (error) 1 200. 2098 0.00000
rRobust LM (error) 1 0.1762 0.67465
Lagrange Multiplier (SARMA) 2 201. 0882 0.00000

END OF REPORT
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Hurricane Jeanne — OLS
SUMMARY OF OUTPUT: ORDINARY LEAST S5QUARES ESTIMATION

Data set : jean_sovi_tcap
Dependent Variable : Jean_TAP Number of Observations: 53
Mean dependent wvar : 139.047 MNumber of variables : 2
5.D. dependent var : 206.788 pDegrees of Freedom : 51
R-squared : 0.060907 F-statistic : 3.3077
Adjusted R-squared : 0.042493 pProb(F-statistic) : 0.0748298
sum squared residual:2.12832e+006 Log likelihood : -356.118
Sigma-square : 41731.7 akaike info criterion : 716.237
S.E. of regression : 204,283 schwarz criterion : 720.177
Sigma-square ML : 40156.9
S.E of regression ML: 200. 392
variable coefficient std.Error t-s5tatistic  Probability
CONSTANT 124, 5498 29.170863 4, 269698 0. 00009
US_SOVI 24. 84906 13.66302 1.818709 0.07483

REGRESSION DIAGNOSTICS
MULTICOLLIMEARITY CONDITION NUMBER 1.323625

(Extreme Multicollinearity)
TEST ON NORMALITY OF ERRORS
TEST DF VALUE PROB
Jarque-gera 2 149, 9266 0. 00000

DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS

TEST DF VALUE PROB
Breusch-Pagan test 1 0.0627 0.80228
Koenker-Bassett test 1 0.0149 0.90269

DIAGNOSTICS FOR 5PAT¥AL DEPENDENCE
FOR WEIGHT MATRIX : jean_sovi_tcap.gal
(row-standardized weights)

TEST ML/ DF VALUE PROB

Moran's I (error) 0.4882 5. 8302 0. 00000
Lagramge Multiplier (lag) 1 28.0792 0. 00000
rRobust LM (1ag§ 1 0.7623 0.38262
Lagrange Multiplier (error) 1 7.3229 0. 00000
Robust LM (error) 1 0. 0060 0. 93802
Lagrange Multiplier (SARMA) 2 28.0852 0. 00000

END OF REFORT
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Hurricane Lili — OLS

EUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION

Data set o 1ili_sovi_tcap
Dependent variable Lili_TaP Number of Obserwvations: 44
Mean dependent var 31.457 Number of variables : 2
5.D. dependent var 58.62 Degrees of Freedom : 42
R-squared : 0.000376 F-statistic : 0.0158134
Adjusted R-squared -0.023424 Prob(F-statistic) : 0.900532
sum squared residual: 151140 Log likelihood : -241.552
Sigma-square : 3598.58 Akaike info criterion : 487.105
5.E. of regression : 59,9882 schwarz criterion : 490.673
Sigma-sguare ML : 3435.01
5.E of regression ML: 58.609
variable cCoefficient Std.Error t-5tatistic Probability
CONSTANT 31. 25581 9.183952 3.403307 0.00147
Us_S0VI -0. 5626965 4.474669 -0.1257515 0.90053

REGRESSION DIAGNOSTICS

MULTICOLLINEARITY CONDITIOM NUMBER 1.192411

TEST ON NORMALITY OF ERRORS

TEST DF VALUE PROB
Jarque-Bera 2 619.1303 0. 00000

DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS

TEST DF VALUE PROB
Breusch-Fagan test 1 6.8699 0.00877
Koenker-gassett test 1 0.7337 0.39189

DIAGNOSTICS FOR SPATIAL DEPENDENCE
FOR WEIGHT MATRIX : 1ili_sovi_tcap.gal
(row-standardized weights)

TEST MI/DFE VALUE PROBE

Moran's I {error) 0.2427 2.8528 0.00433
Lagraﬂge Multiplier (lag) 1 5.6053 0.01791
Robust LM (la g 1 0.1696 0.68046
Lagraﬂge Multiplier (error) 1 5.6390 0.01757
Robust LM {(error) 1 0.2033 0.65207
Lagrange Multiplier (SARMA) 2 5. 8086 0.0547

END OF REPORT
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Regression Scenario 4

Hurricane Bret — OLS

FUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION

Data set ! bret_sovi_tcap
Dependent variable : BEret_TAP Number of Observations: 13
Mean dependent var 33.9131 Number of variables : 8
5.D. dependent wvar : 55.3673 Degrees of Freedom : 5
R-squared : 0.811337 F-statistic : 3.07176
Adjusted R-squared : 0.547209 Prob(F-statistic) : 0.117449
sum squared residual: 7518.6 Log likelihood : -59.7874
Sigma-square : 1503.72 Akaike info criterion : 135.575
S.E. of regression : 38.7778 schwarz criterion : 140,094
Sigma-square ML : 578.354
5.E of regression ML: 24.049
variable coefficient std.Error T-5tatistic Probability
CONSTANT -62. 5071 70. 88957 -0.8817531 0.41828
Facl_1 18.42103 29.60951 0.6221322 0.56112
FAC2_1 -8.849103 B61. 00827 -0.1450476 0.89034
Fac3_1 16. 32505 15.42014 1.058684 0.33819
Fac4_1 240277 7.13152 1.402544 0.21969
FACS_1 70. 28711 26.37743 2.664669 0.04463
FACE_1 -20.1977 93.7727 -0.2153908 0.83797
FAC7_1 -3.155066 21.03121 -0.1500183 0. 88661
REGRESS5ION DIAGNOSTICS
MULTICOLLINEARITY CONDITION NUMBER 16.198740
TEST ON NORMALITY OF ERRORS
TEST DF VALUE PROB
Jarque-Bera 2 0.8768 0.64506
DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST DF VALUE PROB
Breusch-FPagan test 7 4.3B86 0.73409
Koenker-Bassett test 7 7.9683 0.33540
DIAGNOSTICS FOR SPATIAL DEFENDENCE
FOR WELIGHT MATRIX : bret_sovi_tcap.qgal
(row-standardized weights)
TEST MI,/DF VALUE FROE
Moran's I (error) 0.0347 0.7798 0.43551
Lagrange Multiplier (lag) 1 1.1276 0.28829
Robust LM (1ag§ 1 2.6468 0.1037
Lagrange Multiplier (error) 1 0.0259 0.87227
Robust LM (error) 1 1.5451 0.213848
Lagrange Multiplier (SARMA) 2 2.6727 0.26281

END OF REFPORT
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Hurricane Charley — OLS

[FUMMARY OF OQOUTFUT: ORDINARY LEAST SQUARES ESTIMATION
Data set char_sovi_tcap
Dependent variable Char_Tap Number of Observations: 69

Mean dependent wvar 130.085 MNumber of wvariables : 8

5.D. dependent wvar 463.439 Degrees of Freedom : 61
R-squared 0.243238 F-statistic : 2. 80095
Adjusted R-squared : 0.156397 Prob(F-statistic) : 0.0135332
sum squared residual:1.12148e+007 Log Tikelihood : -511. 86
Sigma-square 183850 Akaike info criterion 1039.72
5.E. of regression 428.777 Schwarz criterion 1057.59
Sigma-square ML 162534

5.E of regression ML: 403.155

variable Coefficient std.Error t-5tatistic  Probability
CONSTANT 392.0524 183.7814 2.133254 0.03694
FAaCl 1 -158. 7568 115. 6382 -1.372875 0.17482
FaCZ2_1 -113.0124 75.5094 -1.496666 0.13964
Fac3_1 58.BB579 47.26453 1.245454 0.2177
FACA_1 186, 9577 49, 77168 3.756307 0.00039
FACS_1 246.1847 122. 2753 2.013365 0.04849
FaCce_1 123, 3163 203.5911 0.6548238 0.51504
FAC7_1 -12.59021 50.77 -0.2479803 0. 80498
REGRES5IOMN DIAGNOSTICS
MULTICOLLINEARITY CONDITION MNUMBER 9.115640
TEST ON MNORMALITY OF ERRORS
TEST DF VALUE PROB
Jarque-gera 2 914.7209 0. 00000
DIAGMNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST DF VALUE PROB
Breusch-Pagan test 7 120. 5393 0. 00000
kKoenker-Bassett test 7 13.0950 0.06983
DIAGNOSTICS FOR SPATIAL DEPEMDEMNCE
FOR WEIGHT MATRIX : char_sovi_tcap.gal
(row-standardized weights)
TEST MI/DF VALUE PROBE
Moran's I (error) 0.0695 1.3539 0.17576
Lagrange Multiplier (lag) 1 2.4108 0.12050
Robust LM (1agg 1 6.0028 0.01428
Lagrange Multiplier (error) 1 0.6308 0.42707
Robust LM (error) 1 4,2228 0.03988
Lagrange Multiplier (SARMA) 2 6.6336 0.03627

END OF REPORT
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Hurricane Claudette — OLS

SUMMARY OF OQUTPUT:. ORDINARY LEAST SQUARES ESTIMATION

Data set : clau_sovi_tcap
Dependent variable : Clau_TaP  Number of observations: 18
Mean dependent var 62.5502 MNumber of variables : 8
5.D. dependent var : 76.9997 Degrees of Freedom : 10
R-squared : 0.247376 F-statistic : 0.469549
Adjusted R-squared : -0.279481 Prob{F-statistic) : 0.836032
sum squared res1dua1 80320.9 Log likelihood : -101.172
Sigma-square : 8032.09 Akaike info criterdion : 218. 343
S.E. of regression : 89.622 schwarz criterion : 225.4866
Sigma-square ML : 4462.27
S.E of regression ML: 66. 8003
variable cCoefficient std.Error t-5tatistic  Probability
CONSTANT 220.9864 116.4032 1.898457 0.08684
Facl 1 -33.21251 40. 35069 -0. 8230965 0.42984
FaC2_ 1 -90. 92908 BE.4537E -1.0517865 0.31766
FaC2_ 1 -7.606049 25.71445 -0. 2957889 0.77344
Fac4_1 -68. 9B08Y 53. BBO35 -1. 28026 0.22935
FaCcs_1 21.37039 62. 88533 0.339831 0.74101
FaC6_1 203.4527 176.0714 1.155513 0.27474
FAC7_1 12. 60276 27.57346 0.4570611 0.65740
REGRESSION DIAGNOSTICS
MULTICOLLINEARITY CONDITION NUMBER  14.303334
TEST OM MNORMALITY OF ERRORS
TEST DF VALUE PROB
Jarque-Bera 2 6.6618 0.03576
DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST DF VALUE PROB
BEreusch-Pagan test 7 B.2130 0.31419
Koenker-gassett test 7 4.4616 0.72533
DIAGNOSTICS FOR SPATIAL DEPENDENCE
FOR WEIGHT MATRIX : clau_sovi_tcap.gal
{row-standardized weights)
TEST MI/DF VALUE PROBE
Moran's I {error) 0.1994 2.6054 0.00918
Lagrange Multiplier (lag) 1 2.2274 0.13558
Robust LM (1&95 1 4. 5088 0.03199
Lagraﬂge Multiplier (error) 1 1.0321 0. 309686
obust LM {error) 1 3.4035 0.06506
Lagrange Multiplier (SARMA) 2 5.6309 0.05988

END OF REFORT
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Hurricane Floyd — OLS

SUMMARY OF OUTPUT:. ORDINARY LEAST SQUARES ESTIMATION

Data set : floy_sovi_tcap

Dependent variable : Floy_Tar Number of Observations: 182

Mean dependent war 106. 509 Number of variables : B

5.D. dependent wvar 294,823 Degrees of Freedom 174

R-squared : 0.150531 F-statistic : 4.40484

Adjusted R-squared : 0.116357 Prob(F-statistic) : 0.000158171

sum squared residual:1.34382e+007 Log Tikelihood : -1278.32

sigma-square : 77231 Akaike info criterdion : 2572.64

5.E. of regression : 277.905 schwarz criterion : 2598.27

Sigma-square ML : 73836.3

5.E of regression ML: 271.728

variable cCoefficient std.Error t-5tatistic  Probability
CONSTANT 32.93055 52.24209 0.6303452 0.52930

FAC1_ 1 B4. B2081 29.14904 2.910209 0. 00408
Fac2_1 -16.43821 20.24254 -0.8120627 0.41787
Fac3_1 -18. 35038 22,1122 -0.8298758 0.4077
FAC4_ 1 8.479094 36. 54125 0.2320417 0.BlE7E
FACS_ 1 -40.2303 37.23126 -1.080552 0.28139
Faca_1 -114. 5657 50.61356 -2.263537 0.02484
FAC7_1 -15.9015 26. 28111 -0.6050541 0.54593

REGRESSION DIAGNOSTICS

MULTICOLLINEARITY CONDITION MNUMBER 5.324153

TEST ON NORMALITY OF ERRORS

TEST DF VALUE PROB
Jarque-gera 2 1992, 8547 0. 00000

DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS

TEST DF VALUE FPROB
Breusch-Pagan test 7 94,5985 0. 00000
Koenker-Bassett test 7 11. 3342 0.12469

DIAGNOSTICS FOR SPATIAL DEPENDENCE
FOR WEIGHT MATRIX : floy_sovi_tcap.gal
{row-standardized weights)

TEST MI/DF VALUE PROB

Moran's I (error) 0.3788 7.3463 0. 00000
Lagrange Multiplier (lag) 1 50.2299 0. 00000
Robust LM (1&95 1 4, 8850 0. 02709
Lagrange Multiplier (error) 1 45.5882 0. 00000
Robust LM {(error) 1 0. 2433 0. 62185
Lagrange Multiplier (SARMA) 2 50.4732 0. 00000

END OF REFORT
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Hurricane Floyd — Spatial Lag Model

SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION

Data set : floy_sovi_tcap
spatial weight : floy_sovi_tcap.gal
pependent variable Floy_TapP Number of observations: 182
Mean dependent var : 106. 509 Number of variables : 9
5.D. dependent wvar 294,823 Degrees of Freedom 173
Lag coeff. {Rho) : 0.527127
R-squared : 0.396760 Log likelihood : -1255. 35
5q. Correlation - Akaike info criterion : 2528.7
Sigma-square : 52433.9 schwarz criterion : 2557.53
5.E of regression : 228.984
variable Coefficient std.Error z-value Probability
W_Floy_TAP 0.5271268 0.06649425 7.927404 0. 00000
CONSTANT 8. 269609 43.11194 0.1918172 0.84789
Facl_1 47.89302 2439474 1.963252 0.04962
FAC2_1 -10.78034 16.72586 -0.6445313 0.51923
FAaCc3_1 -3.899944 18.24084 -0.2138029 0. 8307
FAC4_1 8.352444 30.13012 0.2772124 0.78162
FaCc5_1 -19.99205 30.94987 -0.6459492 0.51831
Face_1 -53. 95854 42.14066 -1.2804390 0.20039
FAC7_1 -17.11401 21.73219 -0.787495%6 0.432099
REGRESSION DIAGNOSTICS
DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST OF VALUE PROBE
Breusch-Pagan test 7 96. 2585 0. 00000
DIAGNOSTICS FOR SPATIAL DEPEMDENCE
SPATIAL LAG DEPENDENCE FOR WEIGHT MATRIX : fTloy_sowvi_tcap.gal
TEST DF VALUE PROBE
Likelihood ratio Test 1 45,9449 0. 00000

ENMD OF REFORT
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Hurricane Irene — OLS

SUMMARY OF OUTPUT: ORDIMNARY LEAST SQUARES ESTIMATION

Data set : dren_sovi_tcap
pependent variable Iren_TaP Number of observations: 18
Mean dependent var : 13.8209 wNumber of variables : 8
5.D. dependent wvar 20.6887 Degrees of Freedom : 10
R-squared : 0.625050 F-statistic : 2.38148
Adjusted R-squared 0.362584 PpProb(F-statistic) : 0.103372
sum squared res1dua1 2888.76 Log 1likelihood : -71.2448
Sigma-square : 288.876 Akaike info criterion : 158.49
5.E. of regression : 16.9964 schwarz criterion : 165.613
51gma square ML : 160.487
5.E of regression ML 12. 6683
variable Coefficient std.Error t-statistic Probability
CONSTANT 17.46534 20. 83455 0.8382875 0.42145
Facl_1 -16.78226 21.7214 -0.7726143 0.45762
Fac2_1 3.222512 5.798451 0.5557539 0. 59060
Fac3_1 8.169451 5.272423 1.549468 0.15231
Fac4_1 -1.912594 4,653061 -0.4110399 0.68971
FACS_1 4.047105 15.91444 0.2543039 0. 80441
Face_1 24, 0B9E8 32.B2886 0.7338021 0.47992
FAC7_1 13.59014 8.601604 1.57995%4 0.14520
REGRESSION DIAGMNOSTICS
MULTICOLLINEARITY CONDITION NUMBER  14.791849
TEST ON NORMALITY OF ERRORS
TEST DF VALUE PROBE
Jarque-Bera 2 0. 5449 0.76151
DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST DF VALUE PROBE
Breusch-Pagan test 7 5.5847 0.58899
Koenker-gassett test 7 7.1872 0.40965
DIAGNOSTICS FOR SPATIAL DEPENMDENCE
FOR WEIGHT MATRIX : iren_sovi_tcap.gal
{row-standardized weights)
TEST MI,/DF VALUE PROB
Moran's I (error) -0.2875 -0.9076 0. 36409
La Eraﬂge Multiplier (lag) 1 1.0848 0.29763
ust LM (1& g 1 0.9477 0.33031
La Erange Mu1t1p11er {error) 1 2.3247 0.12733
ust LM {error) 1 2.1876 0.13912
Lagrange Multiplier (SARMA) 2 3.2724 0.1947

END OF REPORT
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Hurricane Isabel - OLS

EUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION

Data set : disab_sovi_tcap
Dependent variable : Isab_TAP Number of Obserwvations: 158
Mean dependent wvar 83.8355 MNumber of variables : 8
5.D. dependent var : 222.946 Degrees of Freedom : 150
R-squared : 0.123081 F-statistic : 3. 00764
Adjusted R-squared 0.082158 Prob(F-statistic) : 0.00551747
sum squared residual: 6.886Be+006 Log Tikelihood : -1068.11
Sigma-square : 45912 akaike info criterion : 2152.22
5.E. of regression : 214.271 schwarz criterion : 21768.72
Sigma-square ML : 43587.3
5.E of regression ML: 208.77
variable coefficient std.Error t-5tatistic  Probability
CONSTANT 29.50832 40. 81962 0.7228955 0.47087
Facl_1 19.63703 22.76507 0.8625949 0.38974
FACZ_ 1 17.48149 14. 80994 1.180389 0.23971
FACZ_ 1 65. 37948 18.18147 3.595939 0.00044
Fac4_1 -2.367885 34, 50893 -0.0686166 0.94537
Facs_1 -56. 24415 29.42423 -1.911491 0.05785
FACG_1 -19. 5651 40, 61727 -0.4816942 0.63072
FACY_1 47.47223 21.4938 2. 208648 0.02872
REGRESSION DIAGNOSTICS
MULTICOLLINEARITY CONDITION MUMBER 4.974666
TEST OM NORMALITY OF ERRORS
TEST DF VALUE FPROBE
Jarque-Bera 2 3748, 8675 0. 00000
DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST DF VALUE PROB
Breusch-ragan test 7 133.1736 0. 00000
Koenker-Bassett tTest 7 10.9425 0.14115
DIAGNOSTICS FOR SPATIAL DEPENDENCE
FOR WEIGHT MATRIX : isab_sovi_tcap.qgal
(row-standardized weights)
TEST MI,/DF VALUE PROEB
Moran's I {(error) 0.3721 8. 2860 0. 00000
Lagrange Multiplier (lag) 1 65.2672 0. 00000
Robust LM (Wagg 1 10.9581 0.00093
Lagrange Multiplier (error) 1 55.4315 0. 00000
Robust LM (error) 1 1.1203 0.28985
Lagrange Multiplier (SARMA) 2 66. 3876 0. 00000

END OF REPORT
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Hurricane Isabel — Spatial lag Model

SUMMARY OF OUTPUT: 5PATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION

Data set : dsab_sovi_tcap
Spatial weight : isab_sovi_tcap.gal
Dependent variable Isab_TaP Number of Observations: 1538
Mean dependent var 83.8355 Number of wvariables : 9
5.D. dependent var 222.946 Degrees of Freedom 1 148
Lag coeff. (rRho) : 0.651686
R-squared : 0.435693 Log likelihood : -1041. 44
5g. Correlation To- akaike info criterion : 2100, 89
Sigma-square : 2B048.9 schwarz criterion : 2128.45
5.E of regression : 167.478
variable Coefficient std.Error z-value Probability
W_Isab_TaP 0.6516857 0.07214579 9.0329 0. 00000
CONSTANT 10.69585 32.40395 0.32300787 0.74134
Facl_1 2.12961 17. 80015 0.1758193 0. 86044
Fac2_1 11.71271 11. 58768 1.01079 0.31212
FAC3_ 1 37.09653 14.40984 2.574388 0.01004
Facd_1 7.00852 26.98443 0.2596505 0.79513
FACS_1 -29,17302 23,0005 -1.268365 0. 20467
Face_1 1. 048861 31.74735 0.0330377 0.97364
FAC7_1 34, 26034 16.933132 2.023273 0.04304
REGRES5ION DIAGNOSTICS
DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST DF VALUE FROE
Breusch-Pagan test 7 154. 3529 0.00000
DIAGNOSTICS: FOR SPATIAL DEFEMNDENCE
SPATIAL LAG DEPENDENCE FOR WEIGHT MATRIX : isab_sovi_tcap.qgal
TEST DF VALUE FROG
Likelihood Ratio Test 1 53.3335 0. 00000

END OF REPORT
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Hurricane lvan — OLS
EUMMARY OF QUTPUT: ORDIMARY LEAST SQUARES ESTIMATIONM

Data set I dvan_sovi_tcap

Dependent variable : Ivan_TaP Number of oObservations: 325

Mean dependent var 68.645 Number of variables : B

5.D. dependent var : 276.709 pDegrees of Freedom 1 317

R-squared : 0.020751 F-statistic : 0.959624

Adjusted R-squared : -0.000873 Prob(F-statistic) : 0.460836

sum squared residual:2.43681e+007 Log likelihood : -2285.21

Sigma-square : 76871 aAkaike info criterdion : 4586.42

S.E. of regression : 277.256 schwarz criterion : 4616. 69

Sigma-square ML : 74978.8

S.E of regression ML: 273.823

variable  Coefficient std.Error t-5tatistic  Probability
CONSTANT 24.16408 31.63938 0.7637343 0.44559

FACl_1 26.44319 16. 55868 1.596938 0.11128
FAaC2_1 18.13911 18. 56493 0.9770631 0.32928
Fac3_1 4.63200 7.95412 0.2578523 0.79669
Fac4_1 -30.90694 30. 54499 -1.01185 0.31238
FaCc5_1 -56.30303 7. 80467 -2.024949 0.04371
FaCce_1 4.793672 41. 6527 0.1150866 0.90845
FAC7_1 13.02428 15. 66784 0.8312742 0.40645

REGRESS5TION DIAGNOSTICS

MULTICOLLINEARITY CONDITION WNUMBER 4,175867

TEST ON NORMALITY OF ERRORS

TEST DF VALUE PROB
Jarque-Bera 2 133706, 8697 0. 00000

DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS

TEST DF VALUE PROE
Breusch-Pagan test 7 B85.677 0. 00000
Koenker-Bassett test 7 1.7202 0.97369

DIAGNOSTICS FOR SPAT;AL DEPENDENCE
FOR WEIGHT MATRIX : ivan_sovi_tcap.gal
(row-standardized weights)

TEST MI,/DF VALUE PROBE

Moran's I (error) 0.5477 14,5491 0. 00000
Lagrange Multiplier (lag) 1 197.2243 0. 00000
Robust LM (1ag§ 1 3.3234 0. 06830
Lagrange Multiplier (error) 1 193.9547 0. 00000
Robust LM (error) 1 0.0537 0. 81669
Lagrange Multiplier (SARMA) 2 197.2781 0. 00000

END OF REPORT
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Hurricane Jeanne — OLS

EUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION

Data set i jean_sovi_tcap
Dependent variable : Jean_TAP Number of Observations: 53
Mean dependent wvar 139.047 Number of variables : 8
5.D. dependent wvar : 206.788 Degrees of Freedom : 45
R-squared : 0.158187 F-statistic : 1.20801
Adjusted R-squared 0.027238 Prob(F-statistic) : 0.31815
sum squared residual: :1.90784e+006 Log Tikelihood : -353.22
Sigma-square : 42396.5 Akaike info criterdion : 722.441
5.E. of regression : 205.904 schwarz criterion : 738.203
Sigma-square ML : 35997.1
5.E of regression ML: 189.729
variable cCoefficient std.Error t-5tatistic  Probability
CONSTANT -20. 0877 114,9032 -0.1748229 0.86200
Facl_1 -0.7741545 B0.87974 -0.009571675 0.99242
FACZ_ 1 42,30104 46.55971 0.9085331 0. 36844
FAC3 1 23. 23788 27.9893 0.8302415 0.41079
Fac4_1 42 57783 25.89297 1.644378 0.10707
Facs_1 -41.76317 76.02075 -0.5493655 0.58547
FACG_1 -135.2852 156. 8521 -0. 8625018 0. 329298
FACY_1 -B. 751855 347477 -0.2518683 0. 80229
REGRESSION DIAGNOSTICS
MULTICOLLINEARITY COMDITION MUMBER 10.513313
TEST OM MNORMALITY OF ERRORS
TEST DF VALUE PROB
Jarque-Bera 2 127. 5966 0. 00000
DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST DF VALUE PROE
Breusch-rPagan test 7 9. 8604 0.19662
Koenker-gassett tTest 7 2.4380 0.93169
DIAGNOSTICS FOR SPATIAL DEPENDENCE
FOR WEIGHT MATRIX : jean_sovi_tcap.gal
{row-standardized weights)
TEST MI,/DF VALUE PROB
Moran's I (error) 0.4605 5. 9780 0. 00000
La grange Multiplier (Tlag) 1 25.2844 0. 00000
ust LM (1& g 1 1.0961 0.29511
La Erange Mu1t1p11er {errar) 1 24,3013 0. 00000
ust LM {error) 1 0.1131 0.73667
Lagrange Multiplier (SARMA) 2 25.3974 0. 00000

END OF REPORT
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Hurricane Lili — OLS

SUMMARY OF OQUTPUT: ORDIMARY LEAST SQUARES ESTIMATION

Data set : THili_sovi_tcap
Dependent variable : Li1i_TaP Number of obserwvations: 44
Mean dependent wvar : 31.457 Number of wvariables : 8
5.D. dependent wvar 58.62 Degrees of Freedom : 36
R-squared : 0.443381 F-statistic : 4.09659
Adjusted R-squared : 0.3235149 Prob{(F-statistic) : 0.00211858
Sum squared r951dua1 84159.4 Log likelihood : -228.671
Sigma-square : 2337.76 akaike info criterion : 473.343
5.E. of regression : 48.3504 sSchwarz criterion : 487.616
sigma-square ML : 1912.71
5.E of regression ML: 43.7346
variable cCoefficient std.Error T-5tatistic  Probability
CONSTANT 19.42739 23.00031 0. 8446578 0.40388
Facl_1 2.317433 13.42825 0.1725789 0.86395
Fac2_1 -5. 829686 13. 84514 -0.4210638 0.67621
FAaC3_1 -36. 01001 16. 54467 -2.176532 0.03616
Fac4_1 36. 71307 16. 87826 2.175169 0.03627
FaCc5_1 4,848822 14.70495 0.3297409 0.74351
FaCo_1 106.9539 30. 5277 3. 503495 0.00125
FaCc7_1 .T04872 9.411051 0. 7124467 0.48078
REGRESS5ION DIAGNOSTICS
MULTICOLLINEARITY CONDITION NUMEBER 6. 578687
TEST OM NORMALITY OF ERRORS
TEST DF VALUE PROB
Jarque-Bera 2 189. 6747 0. 00000
DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEEST DF VALUE PROB
Breusch-Pagan test 7 91.1314 0. 00000
Koenker-gassett Test 7 16.4129 0.02160
DIAGNOSTICS FOR SPATIAL DEPENDENCE
FOR WEIGHT MATRIX : 1ili_sovi_tcap.gal
(row-standardized weights)
TEST MI,/DF VALUE PROBE
Moran's I {(error) 0.0784 1.5633 0.11797
Lagrange Multiplier (Tlag) 1 0.9172 0.33821
obust LM (1ag§ 1 0. 3462 0.55630
Lagrange Multiplier (error) 1 0. 5888 0.44290
obust LM (error) 1 0.0177 0.894190
Lagrange Multiplier (SARMA) 2 0.9349 0.62659

END OF REFORT
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Regression Scenario 5

Hurricane Bret — OLS

FUMMARY OF OUTFUT: ORDINARY LEAST SQUARES ESTIMATION

Data set Eret_im

Dependent variable TA_pcap Number of observations: 13

Mean dependent wvar 33.9131 Number of wvariables 7

5.D. dependent wvar 55.3673 Degrees of Freedom 6
R-squared 0.718711 F-statistic 2.55508
Adjusted R-squared 0.437421 Prob{F-statistic) 0.139224
sum squared residual: 11210 Log likelihood -62.3837
Sigma-square 1868.33 Akaike info criterdion 138.767
5.E. of regression 43.2241 schwarz criterion 142,722
Sigma-square ML : 862.304

5.E of regression ML: 29. 385

variable coefficient std.Error T-statistic Probability
CONSTANT -5.246791 59.14311 -0.08871348 0.93220
POPDENOO -0.1694157 0. 2558707 -0.68621142 0.53249
PCTPOV 12. 64448 215.1496 0.053877066 0.95504
AVEDISTC 0.148E8498 0.5341 686 0.2786569 0.789E6
MAXSUSWIN 0.02478131 0.0746417 0.3320035 0.75118
BLDGLOSS1K 0.004690546 0.001779344 2.636109 0.03874
NUMBRIDGE -0.04616112 0.3078769 -0.1499337 0.88573
REGRESSION DIAGNOSTICS
MULTICOLLINEARITY CONDITION NUMBER  15.687955
TEST OM NORMALITY OF ERRORS
TEST DF VALUE FPROBE
Jarque-Bera 2 0. 8916 0.64032
DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST DF VALUE FROBE
BEreusch-Pagan test 6 3.7187 0.714868
Koenker-gassett test (5 5.6119 0.46804
DIAGNOSTICS FOR SPATIAL DEFPENDENCE
FOR WEIGHT MATRIX : Bret_im.gal
{row-standardized weightﬁg
TEST MI/DF VALUE PROE
Moran's I (error) -0.1459 -0.1450 0.8847
La Eraﬂge Multiplier (lag) 1 0.0010 0.97500
ust LM ('Ia 5] 1 0.8010 0. 37080
La Erange Mu1t1p11er (error) 1 0.4580 0.49856
ust LM {(error) 1 1.2580 0.26203
Lagrange Multiplier (SARMA) 2 1.2590 0.53287

END OF REPORT

263



Hurricane Charley — OLS

FUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION

Data set i Char_im
Dependent variable : TA_pcap Number of observations: 29
Mean dependent wvar 305.698 Number of variables : 7
5.D. dependent wvar : 676.604 Degrees of Freedom : 22
R-squared : 0.712898 F-statistic : 9.104863
Adjusted R-squared : 0.634597 Prob(F-statistic) :4.63031e-005
sum squared residual:3.81157e+006 Log likelihood : -212.05
Sigma-square : 173253 aAkaike info criterion : 438.1
5.E. of regression : 416.237 schwarz criterion : 447,671
sigma-square ML : 131434
5.E of regression ML: 362.538
variable Coefficient std.Error t-5tatistic  Probability
CONSTANT -44§. 9081 322.391 -1.392713 0.17762
POPDENOQ 0.1998049 0.403296 0.49543 0.62521
PCTPOV 8412, 27 2007.676 4.190054 0. 00038
AVEDISTC -5.935837 3.396979 -1.747387 0.09452
MAXSUSWIN -0.503677 0.1967762 -2.559647 0.01787
BLDGLOSS1EK  0.0001821471 3.518137e-005 5.177375 0.00003
NUMBRIDGE -0.9562007 0.6861729 -1.393527 0.17738
REGRESSION DIAGMWOSTICS
MULTICOLLINEARITY CONDITION MUMBER 11.051014
TEST ON NORMALITY OF ERRORS
TEST DF VALUE PROB
Jarque-Bera 2 6.6375 0.03620
DIAGNOSTICS FOR HETEROSKEDASTICITY
FRANDOM COEFFICIENTS
TEST DF VALUE PROB
Breusch-rPagan test 6 24.6944 0.00039
Koenker-Bassett Test 5] 12.8552 0.04539
DIAGNOSTICS FOR SPATIAL DEFPENDENCE
FOR WEIGHT MATRIX : Char_im.gal
{row-standardized weightsg
TEST MI,/DF WVALUE PROBE
Moran's I (error) 0.0765 0. 09489 0.34268
Lagrange Multiplier (lag) 1 0. 0004 0.98480
Robust LM (1ag§ 1 0.1974 0.65686
Lagrange Multiplier (error) 1 0.2157 0.64236
Robust LM (erraor) 1 0.4127 0.520862
Lagrange Multiplier (SARMA) 2 0.4130 0.81341
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Hurricane Claudette — OLS

SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION

Data set Clau_im
Dependent variable Ta_pcap Number of Observations: 18
Mean dependent wvar 62.5502 Number of variables 7
5.D. dependent wvar 76.9997 Degrees of Freedom 11
R-squared 0.381908 F-statistic 1.13278
Adjusted R-squared 0.044767 pProb{F-statistic) 0.404807
sum squared residual: 65963.5 Log likelihood -89, 3993
Sigma-square : 5006.68 Akaike info criterion 212.7949
S.E. of regression 77.4383 schwarz criterion 219.031
Sigma-square ML : 3064, 64
5.E of regression ML: 60.5363
variable  Coefficient std.Error t-Statistic Probability
CONSTANT 201.1681 9E. 01037 2.052518 0. 06469
POPDENOOD -0.1877198 0.1939554 -0. 9678503 0.35392
PCTPOV -328.1253 4329,7147 -0.7462233 0.47118
AVEDISTC -0.73019132 0.715407 -1.020666 0.32934
MANSUSWIN 0.01148286 0.0617629 0.1859184 0. 85589
BLDGLOSS1K 0.002779199 0.002755962 1.008432 0.33492
NUMBRIDGE -0.2561595 0.2523624 -1.015046 0.33189
REGRESZ5ION DIAGNOSTICS
MULTICOLLINEARITY CONDITIOM MUMEER 14, 966859
TEST ON NORMALITY OF ERRORS
TEST DF VALUE FROB
Jarque-Bera 2 4.1727 0.12414
DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENMTS
TEST DF VALUE PROBE
BEreusch-Pagan test 6 10,7050 0.09793
Koenker-Bassett Test 6 5.6528 0.46318
DIAGMNOSTICS FOR SPATIAL DEPEMDENCE
FOR WEIGHT MATRIX : Clau_im.gal
{row-standardized weightsg
TEST MI/DF VALUE PROB
Moran's I (error) -0.1441 0.2273 0.82021
Lagraﬂge Multiplier (lag) 1 0.0867 0.76846
Robust LM (1ag§ 1 2.5045 0.11352
Lagraﬂge Multiplier (error) 1 0.5395 0.46263
rRobust LM (error) 1 2.9574 0. 08549
Lagrange Multiplier (SARMA) 2 3.0440 0.21827

END OF REFORT
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Hurricane Floyd — OLS

EUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION

Data set : floy_im
Dependent variable : Ta_pcap Number of oObservations: 203
Mean dependent wvar 95. 2018 wNumber of wvariables : 7
5.D. dependent wvar : 281.124 Degrees of Freedom ;196
R-squared : 0.097917 F-statistic : 3. 54581
Adjusted R-squared : 0.070302 Prob(F-statistic) : 0.00234879
sum squared residual: l 44723e+007 Log likelihood : -1422.26
Sigma-square : 73838.2 Akaike info criterion : 2858.52
5.E. of regression : 271.732 schwarz criterion : 2881.71
Sigma-square ML : 71292.1
S.E of regression ML 267.006
variable cCoefficient std.Error t-statistic Frobability
CONSTANT -15. 89882 57.65284 -0.2757682 0.78302
POPDENOO -9, 384413e-005 0.00015326792 -0.6106496 0.54214
PCTPOV 1273.465 371.7548 3.42555 0.00075
AVEDISTC -0. 3886535 0.5336966 -0.7282294 0.46734
MAXSUSWIN -0.05996387 0.02804184 -2.138371 0.0337
BLDGLOSS1K 7. 57586e-005 0.0001012923 0.7479203 0.45540
NUMBRIDGE -0.049658086 0.13280399 -0. 3650258 0.71548
REGRESSION DIAGNOSTICS
MULTICOLLIMNEARITY CONDITION MUMBER 7.379989
TEST ON NORMALITY OF ERRORS
TEST DF VALUE PROB
Jargque-Bera 2 3331. 5419 0. 00000
DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST DF VALUE PROB
Breusch-Pagan test 5] 84,3248 0. 00000
Koenker-Bassett test @& 8.3583 0.21301
DIAGNOSTICS FOR SPATIAL DEPENDEMCE
FOR WEIGHT MATRIX : floy_im.gal
(row-standardized weights
TEST MI,/DF VALUE PROB
Moran's I {(error) 0. 3604 7.7093 0. 00000
La graﬂge Multiplier (lag) 1 63.7313 0. 00000
Ust LM (1& g 1 23.2758 0. 00000
La Eraﬂge Mu1t1p11er {error) 1 49,5501 0. 00000
ust LM {error) 1 9.2037 0.00242
Lagrange Multiplier (SARMA) 2 72.9350 0. 00000

END OF REFORT
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Hurricane Floyd — Spatial Lag Model

FUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION

Data set : floy_im
Spatial weight : floy_im.gal
Dependent variable : Ta_pcap Number of observations: 203
Mean dependent var : 95. 2018 Number of variables : 8
5.D. dependent wvar 281.124 Degrees of Freedom : 185
Lag coeff. {(rRho) : 0.639320
R-squared : 0.431873 Log likelihood : -1388.51
5g. Correlation D - Akaike info criterion : 2793.02
sigma-square : 44899.3 schwarz criterion : 2819, 52
5.E of regression : 211.885
variable Coefficient std.Error z-value Probability
W_TA_pcap 0.63932E88 0.05546335 11. 52705 0. 00000
CONSTANT -4.052111 45.13348 -0.08978061 0.92846
POPDENOD -5.149201e-005 0.0001199013 -0.4294534 0.66759
PCTPOV 605.1354 291.4276 2.076452 0.03785
AVEDISTC -0. 3154588 0.417109 -0.7562983 0.44047
MAXSUSWIN -0.02826436 0.02187917 -1.291839 0.19641
BLDGLOSS1K -0.0002168545 7.924997e-005 -2.736335 0.00621
NUMBRIDGE -0.01876017 0.1062033 -0.17664 39 0. 8597
REGRESSION DIAGNOSTICS
DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST DF VALUE PROB
Breusch-ragan test 6 78,0027 0. 00000
DIAGNOSTICS FOR SPATIAL DEPENDENCE
SPATIAL LAG DEPENDENCE FOR WEIGHT MATRIX : floy_im.gal
TEST DF VALUE PROB
Likelihood Ratio Test 1 67.5026 0. 00000

END OF REPORT
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Hurricane Irene — OLS

SUMMARY OF OQUTPUT: ORDINARY LEAST SQUARES ESTIMATION

Data set : Iren_im
Dependent variable : TA_pcap Number of Observations: 18
Mean dependent wvar 13.8209 mwNumber of wvariables : 7
5.D. dependent var 20.6887 Degrees of Freedom : 11
R-squared : 0.562145 F-statistic : 2.35375
Adjusted R-squared 0.323316 Prob(F-statistic) : 0.103727
sum squared re51dua1 3373.4 Log likelihood : -72.0406
Sigma-sqguare : 306.673 akaike info criterion : 159.281
5.E. of regression : 17.5121 sSchwarz criterion : 165. 514
51gma sguare ML : 187.411
5.E of regression ML 13.6898
variable Coefficient std.Error t-5tatistic  Probability
CONSTANT -60. 31108 47.74688 -1.263142 0.23266
POPDENOO 0.002420859 0. 01865158 0.1297937 0. 89907
PCTPOV -114.831 163, 8191 -0.7009624 0.49789
AVEDISTC -0.02065465 0.2727807 -0.07571889 0.94100
MAXSUSWIN 1.407761 0.65307143 2.163409 0.05339
BLDGLOSS1K  -3.442071e-006 4,600541e-006 -0.7481883 0.47004
NUMBRIDGE -0.04237766 0.035903232 -1.180327 0.2627
REGRES5ION DIAGNOSTICS
MULTICOLLINEARITY COMDITION NUMBER 35. 336700
TEST ON NORMALITY OF ERRORS
TEST DF VALUE PROB
Jargue-Bera 2 0.1009 0.95079
DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST DF VALUE PROB
Breusch-Fagan test 5] 13.7004 0.03317
Koenker-Bassett test 6 11.3034 0.07944
DIAGNOSTICS FOR SPATIAL DEPENDEMCE
FOR WEIGHT MATRIX : Iren_im.gal
{row-standardized weights
TEST MI,/DF VALUE PROBE
Moran's I (error) -0. 3908 -1.4300 0.1527
La Erange Multiplier (lag) 1 3.4064 0.06494
ust LM (1& g 1 0.5028 0.47827
La Erange Mu1t1p11er {error) 1 4,2048 0.03823
ust LM {(error) 1 1.3912 0.23820
Lagrange Multiplier (SARMA) 2 4.7977 0.09082

END OF REFORT
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Hurricane Isabel - OLS

SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION

Data set : Isab_im
Dependent variable : TA_pcap Number of Observations: 158
Mean dependent wvar 73.2376 Number of variables : 7
5.D. dependent var 216.805 Degrees of Freedom 151
R-squared : 0.185420 F-statistic : 5.72859
Adjusted R-squared 0.153052 pProb(F-statistic) :2.15526e-005
sum squared residual: E 04966e+006 Log likelihood : -1057.87
Sigma-square : 40064 Akaike info criterion : 2129.75
S.E. of regression : 200.16 schwarz criterion : 2151.18
51gma square ML : 382890
S.E of regression ML 195.676
variable cCoefficient std.Error t-5tatistic  Probability
CONSTANT 144, BE26 48. 32694 2.997967 0.00318
POPDENOO -0.03910202 0.01248421 -3.132118 0.00208
PCTPOV 404, 9204 295.7679 1.369048 0.17302
AVEDISTC -1. 80577 0.4800091 -3.76196 0.00024
MAXSUSWIN -0.06457486 0.1273783 -0.5069535 0.61293
BLDGLOSS1K 0.0003464189 0.0001826327 1. 896807 0.05976
NUMBRIDGE -0.2123174 0.2239696 -0.9479741 0. 34466
REGRESS5ION DIAGNOSTICS
MULTICOLLINEARITY CONDITION NUMBER 7.209999
TEST ON MWORMALITY OF ERRORS
TEST DF WVALUE PROB
Jarque-Bera 2 7165. 6886 0. 00000
DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST DF WVALUE PROB
Breusch-Pagan test 5] 113. 2788 0. 00000
Koenker-Bassett test 6§ 6.7856 0.34113
DIAGNOSTICS FOR SPATIAL DEPENDEMNCE
FOR WEIGHT MATRIX : Isab_im.qgal
{row-standardized weightﬁg
TEST MI,/DF WVALUE PROB
Moran's I (error) 0.3139 6.3943 0. 00000
La grange Multiplier (lag) 1 36.0616 0. 00000
ust LM (1& g 1 4,.6853 0.03042
La grange Mu1t1p11er (error) 1 32.2877 0. 00000
ust LM (error) 1 0.9114 0.33973
Lagrange Multiplier (SARMA) 2 36.9730 0. 00000

END OF REPORT
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Hurricane Isabel — Spatial lag Model

FUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION

Data set Isab_im

Spatial weight Isab_im.gal

Dependent variable TA_pcap MNumber of oObservations: 138

Mean dependent war 73.2376 MNumber of wvariables : 8

5.D. dependent wvar 216.805 Degrees of Freedom ;150

Lag coeff. {Rho) 0.615131

R-squared 0.427216 Log likelihood -1038. 27
5g. Correlation e Akaike info criterion 2092, 54
sigma-square 26923.4 schwarz criterion 2117.05
5.E of regression 164.084

variable Coefficient std.Error z-value Probability
W_TA_pcap 0.6151315 0.07067802 §.703292 0. 00000
CONSTANT 78.45225 40,7959 1.923042 0.05447
POPDENOO -0, 0187007 0.01037899 -1.B01785 0.07158
PCTPOV 40.37421 243.1927 0.1660173 0. 86814
AVEDISTC -0.7313487 0.4100859 -1.783404 0.07452
MAXSUSWIN -0.0511577 0.1044214 -0.4899168 0.62419
BLDGLOSS1K 0. 000180877 0.0001507928 1.199511 0.23033
NUMBRIDGE -0.1237791 0.1837432 -0. 6736526 0. 50053
REGRESS5ION DIAGMOSTICS
DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST DF VALUE PROB
Breusch-Pagan test 6 106.0217 0. 00000
DIAGNOSTICS FOR SPATIAL DEFPENDENCE
SPATIAL LAG DEPENDENCE FOR WEIGHT MATRIX : Isab_im.gal
TEST DF VALUE PROG
Likelihood Ratio Test 1 39. 2008 0. 00000

END OF REPORT
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Hurricane lvan — OLS
SUMMARY OF QUTPUT: ORDIMARY LEAST SQUARES ESTIMATIONM

Data set : Ivan_im
pependent variable Ta_pcap Number of Observations: 292
Mean dependent wvar 74.3802 Number of variables : 7
5.D. dependent wvar 291.047 Degrees of Freedom 1 285
R-squared : 0.3710684 F-statistic : 28.0244
Adjusted R-squared 0.357823 pProb{(F-statistic) 2 92593e-026
sum squared residual: 1. 55566e+007 Log 1ikelihood : -2003.28
Sigma-square : 54584.5 akaike info criterion : 4020. 57
5.E. of regression : 233.633 schwarz criterion : 4046. 3
Sigma-square ML : 53276
5.E of regression ML: 230. 816
variable cCoefficient std.Error t-5tatistic Probability
CONSTANT 7B.42662 51.41044 1.5255 0.12824
POPDENOO 5.936724e-005 0.0001122197 0.5290268 0.59720
PCTPOV 340, 0358 227.2249 1.526081 0.12563
AVEDISTC -0.4378213 0.4431757 -0. 9879181 0.32403
MAXSUSWIN -0.07452257 0.04671511 -1.595256 0.1117
BLDGLOSS1K  0.0003112918 2.59214e-005 12.00906 0. 00000
NUMBRIDGE -0.1957 384 0.1117058 -1.752267 0.08B0EQ
REGRESSION DIAGNOSTICS
MULTICOLLINEARITY CONDITION NUMBER 8. 832847
TEST ON NORMALITY OF ERRORS
TEST DF VALUE PROB
Jarque-gera 2 133715, 7818 0. 00000
DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST DF VALUE PROB
Breusch-Fagan test 7] 1093, 2477 0. 00000
Koenker-Bassett test 5] 20,6700 0.00210
DIAGNOSTICS FOR SPATIAL DEPEMDENCE
FOR WEIGHT MATRIX : Ivar_im.gal
{row-standardized weights
TEST MI,/DF VALUE PROB
Moran's I {error) 0. 3065 7.8203 0. 00000
La Eraﬂge Multiplier (lag) 1 121.6113 0. 00000
ust LM ('Ia S] 1 103. 2595 0. 00000
La range Mu1t1p11er {error) 1 53. 8657 0. 00000
Robust LM (error) 1 35. 5140 0. 00000
Lagrange Multiplier (SARMA) 2 157.1253 0. 00000
END OF REPORT
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Hurricane Ivan — Spatial Lag Model

SUMMARY OF QUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION

Data set Ivan_im
Spatial weight Ivan_im.gal
Dependent variable TAa_pcap Number of Observations: 292
Mean dependent wvar 74,3802 Number of variables : 8
5.D. dependent war 291.047 Degrees of Freedom 284
Lag coeff. {rho) 0.772217
R-squared 0.705622 Log likelihood -1922.42
5g. Correlation T o- akaike info criterion 38a60.83
Sigma-square 24836.2 schwarz criterion 3890. 24
S.E of regression 157.912
variable Coefficient std.Error Z-value Probability
W_TA_pcap 0.77221a7 0.03256317 23.71442 0. 00000
CONSTANT 31.11019 35. 08732 0. 8866506 0.37527
POPDENDO 3.796675e-005 7.585993e-005 0. 5004848 0.61673
PCTPOV 85.95267 154.2573 0.5572031 0.57739
AVEDISTC -0.2186342 0.3031962 -0.7210982 0.47085
MAXSUSWIN -0.01947949 0.03162208 -0.6180091 0.53789
BLDGLOSS1K 0.0001805805% 1.807024e-005 B.BBB459 0. 00000
NUMBRIDGE -0.08823713 0.0756257 -1.16676l1 0.24331
REGRESSION DIAGNOSTICS
DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST DF VALUE FROB
Breusch-Pagan test 6 1029. 0638 0. 00000
DIAGNOSTICS FOR SPATIAL DEPENDENCE
SPATIAL LAG DEPENDENCE FOR WEIGHT MATRIX : Ivan_im.gal
TEST DF VALUE PROB
Likelihood Ratio Test 1 161.7359 0.00000

END OF REPORT
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Hurricane Jeanne — OLS

SUMMARY OF OUTPUT: ORDIMARY LEAST SQUARES ESTIMATION

Data set : Jean_im
Dependent variable : Ta_pcap Number of oObservations: 53
Mean dependent wvar 139.047 MNumber of variables : 7
5.D. dependent wvar 206.788 Degrees of Freedom : 46
R-squared : 0.326322 F-statistic : 3.71365
Adjusted R-squared : 0.238451 pProb{F-statistic) : 0.00429527
Sum squared residual:1l.52679e+006 Log likelihood : -347. 3186
Sigma-square : 33191.1 Akaike info criterion : 708.632
5.E. of regression : 182.184 schwarz criterion : 722.424
Sigma-square ML : 2B8807.4
5.E of regression ML: 169.727
variable cCoefficient std.Error t-Statistic  Probability
CONSTANT 149, 38660 91.18821 1.640416 0.1077
POPDENDO -0.0132418 0.06409271 -0.2066039 0.83723
PCTPOV 423, 3061 631. 9656 0.6698245 0.50632
AVEDISTC -0. 5058492 1.099628 -0.4600185 0.64767
MAXSUSWIN -0.1414331 0.07932262 -1.783011 0.08118
BLDGLOSS1K  3.108941e-005 7.744309e-006 4,.014485 0.00022
NUMBRIDGE -0.4133252 0.2114672 -1.954559 0.05673
REGRESS5ION DIAGNOSTICS
MULTICOLLINEARITY CONDITION NUMEER 9.677308
TEST ON NORMALITY OF ERRORS
TEST DF VALUE FROB
Jargque-Bera 2 92,8380 0. 00000
DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST DF VALUE PROB
Breusch-Pagan test 7] 40,9463 0. 00000
Koenker-Bassett Test 7] 11.0414 0.08711
DIAGNOSTICS FOR SPATIAL DEPENDENCE
FOR WEIGHT MATRIX : Jean_im.gal
{row-standardized weightsg
TEST MI,/DF VALUE PROB
Moran's I {(error) 0.2258 3.2720 0. 00107
Lagrange multiplier (lag) 1 15.3195 0.00009
rRobust LM (1ag§ 1 16.1074 0. 00006
Lagrange Multiplier (error) 1 5.8431 0.01564
rRobust LM {(error) 1 6.6310 0.01002
Lagrange Multiplier (SARMA) 2 21.9505 0.00002

END OF REFORT
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Hurricane Jeanne — Spatial Lag Model

SUMMARY OF OUTPUT: S5PATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION
Data set : Jean_im

Spatial weight : Jean_im.gal
Dependent variable : Ta_pcap Number of observations: 53
Mean dependent var 139.047 MNumber of variables : 8
5.D. dependent var 206.788 Degrees of Freedom : 45
Lag coeff. {(rho) : 0.672155
R-squared : 0.581213 Log likelihood : -33B8.256
5g. Correlation D - akaike info criterion : 692.511
sigma-square : 17907.9 schwarz criterion : 708.274
5.E of regression : 133.82
variable Coefficient std.Error z-value Probability
W_TA_pcap 0.6721547 0.1058241 6. 35162 0. 00000
CONSTANT 32.72172 68.37008 0.4785971 0.63223
POPDENOO 0.002340384 0.0471014 0.04968819 0.96037
PCTPOV 272.4395 455.1199 0. 5857403 0.55805
AVEDISTC 0.01111171 0. 8078388 0.01375486 0.98903
MAXSUSWIN -0.06304514 0.05913031 -1.066207 0.28633
BLDGLOSS1K  1.698047e-005 5.780039e-006 2.93777 0.00331
NUMBRIDGE -0.2744275 0.1554972 -1.764838 0.07759
REGRESSION DIAGNOSTICS
DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST DF VALUE PROBE
BEreusch-rPagan test & 22.7640 0.00088
DIAGNOSTICS FOR SPATIAL DEPENDENCE
SPATIAL LAG DEPENDENCE FOR WEIGHT MATRIX : Jean_im.gal
TEST DF VALUE PROB
Likelihood Ratio Test 1 18.1206 0.00002

END OF REFORT

274



Hurricane Lili — OLS

EUMMARY OF OUTFPUT: ORDINARY LEAST SQUARES ESTIMATION

Data set ;o LiTi_im
Dependent vVariable TA_pcap Number of Observations: 44
Mean dependent wvar 31.457 MNumber of variables : 7
5.D. dependent var : 58.62 Degrees of Freedom : 37
R-squared : 0.224036 F-statistic : 1.78044
Adjusted R-squared 0.098205 Prob(F-statistic) : 0.130105
sum squared residual: 117324 Log likelihood : -235.98
Sigma-square : 3170.91 Akaike info criterion : 485.961
5.E. of regression : 56.3108 schwarz criterion : 498.45
Sigma-square ML : 2666.45
5.E of regression ML: 51.63786
variable Coefficient std.Error t-5tatistic  Probability
CONSTANT 31.02146 36. 38193 0.8526612 0.39933
POPDENOD -0.06753945 0.03797E39 -1.778366 0.08356
PCTPOV 162,177 181.4387 0.E893841 0.37718
AVEDISTC -0.7068278 0.3067234 -2.304447 0.02691
MAXSUSWIN -0,008643242 0.03729 -0.2317845 0.81798
BLDGLOSS1K 2. 210631e-005 1.229628e-005 1.797805 0.08037
NUMBRIDGE 0.07567288 0.07901361 0.9577195 0. 34442
REGRESSION DIAGNOSTICS
MULTICOLLINEARITY CONDITION NUMBER  12.412321
TEST ON MORMALITY OF ERRORS
TEST DF VALUE PROE
Jarque-gera 2 1063. 3480 0. 00000
DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST OF VALUE PROB
Breusch-Pagan test 7] 21. 2486 0.00166
Koenker-Bassett test 5 1.7359 0.94232
DIAGNOSTICS FOR SPATIAL DEPEMNDENCE
FOR WEIGHT MATRIX : Lili_im.gal
{row-standardized weightsg
TEST MI,/DF VALUE PROBE
Moran's I (error) 0.1032 2.0279 0.04257
Lagrange Multiplier (lag) 1 1.5854 0.20799
rRobust LM (1ag§ 1 1.0666 0.3017
Lagrange Multiplier (error) 1 1.02086 0.31239
rRobust LM (error) 1 0. 5018 0.4787
Lagrange Multiplier (SARMA) 2 2.0872 0.35219

END OF REPORT
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