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Vulnerability indices have been used extensively in disaster management, and the social 

vulnerability index (SoVI) has been regarded as the most popular despite its 

appropriateness and performance not being validated conceptually and empirically. 

A pedigree matrix and variable crosswalk were used to examine the conceptual 

relationships between hazard vulnerability science (three selected vulnerability indices, 

including SoVI) and disaster management (using disaster operations impact model data). 

The research indicates there are theoretical linkages between hazard vulnerability 

indicators and disaster management essential elements of information. The analysis also 

show that SoVI is conceptually the most appropriate among the three vulnerability index. 

Subsequently, I conducted an empirical study to assess the capability of SoVI to predict 

damages caused by natural disaster events. SoVI index scores were related to nine 

Atlantic hurricanes and their associated federal disaster costs and estimated damages at 



  

 

 

the county level. Ordinary least squares regression, spatial econometrics, and 

geographically weighted regression are used to evaluate their empirical relationships. The 

study demonstrates that SoVI has little explanatory power in explaining federal disaster 

costs per capita and that the disaster impact model variables are more effective in 

explaining the variation in federal disaster costs per capital rather than the SoVI. The 

results also show that these relationships varied tremendously across the nine hurricane 

events. Although using logarithmic transformation to reduce skewness in variables 

improved model performance marginally, no model involving SoVI performs reasonably 

well. The research recommends using the disaster impact model outputs for constructing 

a more reliable predictive model to support disaster operations. 
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CHAPTER 1: INTRODUCTION 

 

 

 

Disasters are not just one-off phenomena and represent the results of continuous 

social, economic, and environmental processes over time (Lavell 2008, p. 82).  

Vulnerability provides a conceptual link between disasters, built environment, and 

people.  This research applies exploratory regression methods and spatial econometric 

models to examine the relationships between hazard vulnerability science, disaster impact 

modeling, and disaster management practice in the context of Atlantic Hurricanes in the 

United States from 1999-2004.  It considers an operational framework that fuses those 

disciplines into an all-hazards, all-threats regime to provide a more practical mechanism 

for informing disaster management policy.   

Figure 1 shows a map of the storm tracks for the nine (9) hurricanes and Table 1 lists 

the disaster declaration numbers. These observations represent the hurricanes that made 

landfall and received presidential disaster declarations during the study period that data 

was made available for this research. FEMA registers presidential disaster declarations 

with a unique identification number in the National Emergency Management Information 

System (NEMIS), more commonly referred to as a DR#, to track and monitor activities 

relating to these events.  
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Figure 1: Map of Storm Tracks for Hurricanes included in Study 
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Table 1: List of Disaster Declarations for Hurricanes included in Study 

 

 

 

 

STATEMENT OF THE PROBLEM 

Hazard vulnerability is broadly defined as the potential for loss or capacity to suffer 

harm across social, economic and ecological dimensions (Kates 1985, Mitchell 1989, 

DR# State Year Hurricane

1287 Tx 1999 Bret

1292 NC 1999 Floyd

1293 Va 1999 Floyd

1294 Pa 1999 Floyd

1295 NJ 1999 Floyd

1296 NY 1999 Floyd

1297 De 1999 Floyd

1298 SC 1999 Floyd

1300 Fl 1999 Floyd

1302 Ct 1999 Floyd

1303 Md 1999 Floyd

1305 NH 1999 Floyd

1307 Vt 1999 Floyd

1308 Me 1999 Floyd

1306 Fl 1999 Irene

1437 La 2002 Lili

1479 Tx 2003 Claudette

1490 NC 2003 Isabel

1491 Va 2003 Isabel

1492 Md 2003 Isabel

1493 DC 2003 Isabel

1494 De 2003 Isabel

1496 WV 2003 Isabel

1539 Fl 2004 Charley

1543 SC 2004 Charley

1548 La 2004 Ivan

1549 Al 2004 Ivan

1550 Ms 2004 Ivan

1551 Fl 2004 Ivan

1553 NC 2004 Ivan

1554 Ga 2004 Ivan

1563 NJ 2003 Ivan

1565 NY 2004 Ivan

1557 Pa 2004 Ivan

1561 Fl 2004 Jeanne
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Gall 2007).  While the occurrence of natural disasters cannot be prevented, losses from 

their impacts can be minimized through better understanding of natural disaster losses 

and informed policies that are risk-based, linking disaster operations, preparedness, and 

mitigation. The United States government responds to more than 50 declared disasters or 

emergencies per year totaling more than $3 billion annually in relief and recovery 

expenditures (Garrett and Sobel 2003).  These facts are attributed in part to political 

motivations, as the Robert T. Stafford Disaster Relief and Emergency Assistance Act 

(Public Law 93-288) was amended in 1988 to provide the US president more discretion 

in declaring natural disasters (Garrett and Sobel 2002, Sobel et al. 2007).  A more holistic 

interpretation is that a variety of factors from settlement patterns, land-use practices, and 

global climate change have placed society increasingly in harm’s way. This perspective is 

underscored by the Gulf Coast hurricanes of Katrina and Wilma making landfall in 2005; 

in which, more than 1,500 people perished and initial direct losses covered by federal 

disaster assistance programs exceeded 25 billion dollars as these storms became the 

deadliest and costly hurricanes in United States history (FEMA 2013).  

One way to counter the upward trend in disaster losses is through mitigation and 

preparedness strategies to reduce risk as people continue to settle in more hazard prone 

areas. The United Nations identified comprehensive mitigation and preparedness planning 

as critical opportunities to reduce future losses and costs associated with disasters at the 

World Summit for Sustainable Development in 1992 (UN/ISDR 2004). The causes of risk 

must be identified in order to assess the effectiveness of both corrective and prospective 

mitigation measures to properly inform response and recovery plans and appropriately 
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influence disaster management policy (Cardona 2005).  Neal (1997) indicated that the 

disaster management lifecycle has been traditionally viewed as an over-simplified heuristic 

device due to the lack of holistic understanding of the four phases of mitigation, 

preparedness, response, and recovery. Geis (2000) reiterates this view noting that 

“everything is interconnected in [disasters and emergency management] and a holistic, 

integrated approach is required” (p. 152). The complexity of emergency management, as 

realized through the disaster management lifecycle, depicted in Figure 2, below is often 

misinterpreted as a sequential process of cascading activities where preparedness precedes 

response, followed by recovery, ending with mitigation.   

 

 

 

 

Figure 2: Disaster Lifecycle 

 

 

 

The United States government passed the Disaster Mitigation Act in 2000 to 

reinforce the importance of pre-disaster mitigation planning to reduce disaster losses 
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nationwide.  The Disaster Mitigation Act of 2000 signaled a trend away from this 

elementary interpretation of the disaster management lifecycle toward a more integrated 

view where mitigation is recognized as an on-going process whose assessment indicators 

should inform policy and preparedness activities rather than a finite activity necessitated 

by disaster. This intellectual shift in the disaster management community, while 

significant, belies linkages between pre-event mitigation planning envisioned through 

hazard vulnerability indices and the conduct of disaster operations supported through 

event-specific impact modeling. Those same indicators used to quantify community 

vulnerability as part of on-going mitigation planning activities are seldom validated against 

ground-truth data from real-world events nor aligned to impact modeling efforts used by 

disaster response teams to support critical life-saving, damage assessment and recovery 

missions.  

The difficulty in achieving effective disaster risk management has been partly the 

result of a lack of a comprehensive framework of disaster risk that facilitates 

multidisciplinary impact modeling and subsequent mitigation strategies (Cardona 2005). 

McEntire (2004) suggests that the concepts of hazard vulnerability “may help us to better 

describe and comprehend the true nature of disasters, since they deal with the goals of 

liability reduction and capability enhancement (i.e.: reducing risk and susceptibility and 

raising resistance and resilience)” (p.11).  Alexander (2006) argues that “the key problem 

of vulnerability” serves “as a far greater determinant of disaster risk than hazards 

themselves” (p.2).  Gall contends that hazard vulnerability, risk, and capacity assessments 

form the basis for effective mitigation and preparedness strategies (Gall 2007).  
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According to Cardona, these assessments are an unavoidable and necessary step in 

evaluating the performance of disaster management policy and risk reduction strategies 

(Cardona 2005b). ).  To avoid skewed vulnerability assessments and decision-making, 

hazard researchers need to take stock of existing indices (Gall 2007).  Without calibrated 

measures of vulnerability and risk, applied to impact models utilized across the disaster 

management lifecycle, mitigation cannot be effective and losses will be difficult to 

reduce over time (Cutter 2003 and Gall 2007, p. 4) as evidenced by the magnitude of 

federal disaster losses in the United States over the preceding decade.  

To date, substantial research has been conducted by social and physical scientists 

on disaster management with an emphasis toward hazard vulnerability and risk 

assessments to help focus efforts to strengthen communities and enhance their local 

resiliency. A multitude of hazard vulnerability and risk indices have been realized 

through this applied research. While this research has contributed to our understanding of 

vulnerability; it has done little to improve our ability to identify, measure, and reduce 

disaster risk (Birkmann 2007). These hazard indices often do not represent the true nature 

of a hazard or vulnerability as they are quantitative, subjective measures that act as 

proxies for natural hazard susceptibility (Cobb 2001, Cobb and Rixford 1998). Cardona 

states that “most existing indices and evaluation techniques do not adequately express 

risk and are not based on a holistic approach that invites intervention” (2005a p. i). In 

many cases, indices were defined based on the availability of data rather than the 

information that truly represents the hazard (King 2001).  Additionally, there is little 

research validating these indicators and no framework that integrates hazard 
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vulnerability assessments with disaster operations and associated impact modeling 

activities.  In other words, research needs to establish linkages between the factors of 

vulnerability and the elements of disaster impact using empirical data from federal 

disaster assistance programs.  Federal Operating procedures for Emergency Support 

Function #5 of the National Response Framework (NRF) compiles situational reports 

based on essential elements of information (EEIs) that cover population, infrastructure, 

and economic conditions. These EEIs are intended to serve as indicators for mobilizing 

federal assistance programs required to facilitate community recovery and rebuild.  This 

dissertation attempts to address Cardona’s concerns by examining hazard vulnerability 

based on disaster management policy and practice. It compares the social vulnerability 

index, a proxy measure of vulnerability, with ground-truth data that represents actual 

impacts from Atlantic hurricane disasters.    

Schmidtlein et al. (2008) suggests that the inability to assess the validity of 

vulnerability indices is due to “the complexity of factors contributing to vulnerability, no 

variable has yet been identified against which to validate such indices” (p 3-4).  Cutter et 

al. (2003) attempted to test the reliability and usefulness of the social vulnerability index 

(SoVI) to predict disaster impacts using the number of presidentially declared disasters at 

the county level. This examination yielded no statistically significant results. This lack of 

statistical correlation may be a reaffirmation of the theory about the political nature of 

disaster declarations. Downton and Pielke (2001) argue that disaster declarations are 

often treated as political rewards rather than as a result of disaster impacts.  An alternate 

interpretation of the finding from Cutter et al. (2003) may suggest a dissonance between 
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the concepts of vulnerability and the impacts of a disaster.  Or the lack of correlation may 

indicate that there is no single variable that can be used to authenticate vulnerability 

indices, but validation must come from a multivariate approach. Questions like these 

indicate a need for further research in this area and the validation of hazard vulnerability 

indexes as useful instruments for formulating effective disaster management policies. 

Without applied research that demonstrates a direct link between vulnerability science 

and disaster impact, vulnerability indexing will continue to be considered an academic 

exercise (theoretical endeavor) rather than a practical tool for mitigating disaster risk. 

Empirical based research on vulnerability indicators and indices will provide much 

needed insight into the validity of hazard vulnerability indicators to accurately assess the 

level of community susceptibility from Atlantic Hurricanes.  It also helps bridge the 

research policy nexus described by Cutter et al 2008 (p. 598) and improve our 

understanding of the components of vulnerability in the context of actual disasters based 

on empirical data. This will help progress vulnerability science past the “leap of faith” 

conundrum expressed by Adger (2006, p. 275) into a reliable metric based on proven 

indicators.   

Reliable hazard vulnerability indicators will go a long way toward understanding 

the predictors of hurricane disaster losses, thereby determining the factors most important 

in explaining the behavior of such losses. This knowledge will also help better enlighten 

decision-makers on the dimensions of hazard vulnerability to hurricanes and inform 

subsequent policies and mitigation strategies.  Additionally, an operational framework for 

impact modeling that applies validated hazard vulnerability indicators and incorporates 
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the geographic characteristics of hurricanes would be a crucial tool toward ensuring 

public safety and economic stability, given the heightened risk of future catastrophic 

hurricane disasters along the Atlantic-Gulf coast of the United States.  Aligning 

indicators used by mitigation planners to determine hazard vulnerability, to those 

indicators used by disaster operators to derive impact models should result in better 

community preparedness and resiliency, improve disaster response and recovery efforts, 

and produce more informed policies.  Such a model would help to expedite disaster 

recovery efforts, by ensuring appropriate resources are available to aid individuals and 

families and enable community rebuild. Theoretical contributions would likely serve as a 

grounding agent for many of the scholarly premises influencing disaster management 

research. McEntire (2004) suggests that disaster management theory grounded in reality 

is more likely to generate theories with practical implication; while theories based on 

faulty assumptions will produce conclusions that will inevitably be problematic. To put it 

more bluntly, “what gets measured, gets managed” and what the hazard research 

community attempts to measure and understand needs to be validated (Drucker 1954, 

Gall 2007, p. 11).  

 

RESEARCH OBJECTIVES 

The purpose of this dissertation is to examine the relationships between hazard 

vulnerability indicators, disaster impacts, and the essential elements of information (EEIs) 

that drive disaster operations with the objective of establishing an operational framework 

that integrates social vulnerability indicators with the modeling of community impacts to 
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serve as a proxy for estimating the likelihood of and magnitude of direct federal assistance 

(i.e., quantified losses from a declared disaster) expected for Atlantic hurricane disaster 

declarations. It uses the following definitions of hazard and social vulnerability as a 

conceptual anchor. These definitions are both widely recognized by the hazard science 

community and consistent with U.S. disaster preparedness policy.     

Hazard vulnerability or “vulnerability to environmental hazards means 

the potential for loss. Since losses vary geographically, over time, and among 

different social groups, vulnerability also varies over time and space.” (Cutter 

and Emrich 2006).  

 

“Social vulnerability to natural hazards is the potential for loss and the 

complex interaction among risk, mitigation, and the social fabric of a place” 

(Schmidlin et al. 2009) and “is defined as the susceptibility of social groups to 

the impacts of hazards, as well as their resiliency, or ability to adequately 

recover from them.” (Cutter and Emrich, 2006; Sapam Ranabir Singh, 

Mohammad Reza Eghdami and Sarbjeet Singh, 2014). 

 

This dissertation is informed by the following research questions: 

a) Does vulnerability science have a nexus with disaster management? 

b) Do hazard vulnerability indicators align with disaster operations variables?  

c) Do social vulnerability indices accurately predict the exposure of a community 

to a natural hazard and therefore its level of vulnerability or the level of 

damages and serve as a good predictor for disaster management purposes? 

d) Do hazard vulnerability indices account for the geography of the hazard across 

space or inadvertently treat the units of measure as discrete locations? 



  

12 

 

e) Do hazard vulnerability indices provide an effective planning tool for building 

disaster resiliency? 

Demonstrating linkages between disaster impacts and vulnerability indices 

provides a validation point for the use of risk-based vulnerability assessments as a 

practical tool for creating local strategies and prioritizing the efforts necessary for 

building more resilient communities. It also provides a starting point for considering a 

vulnerability indexing method comprised of impact model simulations calibrated by 

empirical data from historical events rather than general socio-economic indicators or 

national estimates of loss. This approach is very similar to that employed by the National 

Hurricane Center (NHC), and validated by the meteorological community, to produce the 

Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model. The SLOSH model is 

a numerical model that uses a proven set of characteristics (indicators) run through a set 

of statistical equations several thousand times to produce a composite measure of risk for 

an area based on estimated storm surge heights from historical, hypothetical, and 

predicted hurricanes (NHC website 2016).  

 

DISSERTATION STRUCTURE 

The remaining content of this dissertation is organized as follows. Chapter two 

provides a synthesis of hazard vulnerability science complemented by a review of disaster 

management policy and practice. It includes a discussion of existing weaknesses and gaps 

in the development, application, and validation of sound measures to support place 
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vulnerability, hazard assessment, and impact modeling activities. Chapter two also outlines 

current challenges moving beyond hazard vulnerability and impact modeling theory into 

applied research and toward operationalizing it to support the various facets of the disaster 

management lifecycle.  

Chapter three assesses the linkages between hazard vulnerability theory and disaster 

management policy and the selection of SoVI as the most applicable vulnerability index 

for evaluating whether hazard vulnerability indices can accurately predict exposure of a 

community to a hurricane disaster. It includes a comparative analysis of three hazard 

vulnerability indices (social vulnerability index, disaster risk index, and disaster 

preparedness index) and their underlying indicators to determine which variables are 

considered the most common elements of vulnerability. These vulnerability indices were 

chosen as representative of the three dimensions of hazard vulnerability: economic, social, 

and physical (UNDP / BCPR 2004).  The social vulnerability index focuses on the social 

dimensions of vulnerability. The disaster risk index is more exposure based with an 

emphasis on ecological conditions. The disaster preparedness index emphasizes economic 

dimensions with additional elements for measuring emergency management factors to 

account for policy shifts toward prevention and mitigation strategies. Many of the 

preparedness factors in the disaster preparedness index are expressed as fiduciary terms 

such as funding for emergency operations, local funding for mitigation/planning, funding 

per capita, and public debt (Simpson 2006). Each index has its own merits and subsequent 

shortcomings. These characteristics will be fully discussed in this dissertation. 
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Chapter four discusses the statistical analysis approach for analyzing the predictive 

power of SoVI with the Federal disaster assistance data and the FEMA Disaster Operations 

Impact Models for the selected hurricanes.  The chapter includes a discussion of the data 

sources and processing routines used to prepare the data for statistical analysis. Data used 

in this study differs from previous research such as Cutter et al. (2003) in that they include 

both frequency counts and financial totals for federal mitigation and disaster loan 

assistance programs for individuals and public, at the county unit for each presidentially 

declared hurricane disaster included in the research sample. Cutter (2003) only evaluated 

SoVI for correlation with the single variable of frequency of presidentially declared 

disasters at the county level. Chapter 4 also introduces the regression scenarios used for 

analyzing the relationships between hazard vulnerability science, disaster management 

policy, and disaster operations practice and for validating the accuracy of SoVI to serve as 

a good predictor of community vulnerability for disaster management purposes.  

Chapter 5 attempts to quantify the findings from the comparative analysis 

completed in chapter 3 using a correlation analysis.  It includes an exploratory regression 

to assist with variable selection for the OLS regression.  Chapter 6 presents findings from 

the regression analysis based on the OLS models constructed to analyze the relationships 

between hazard vulnerability science and disaster management, using SoVI, and the 

FEMA disaster impact models.   Chapter 7 addresses model bias in the OLS regression 

that includes skewness of data and missing variables.  Chapter 8 seeks to resolve issues 

with spatial autocorrelation in the OLS regression by applying spatial econometrics and 

geographically weighted regression (GWR) to the same regression scenarios.  
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Chapter 9 provides a summary of findings and implications for future research, 

reasoning for a conceptual framework for operationalizing hazard vulnerability into 

disaster management practice by fusing impact modeling and vulnerability indexing, that 

integrates deterministic and probabilistic methods to incorporate results from historical, 

hypothetical, and predicted events to produce a more dependable, composite index for 

hazard vulnerability.    
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CHAPTER 2: LITERATURE REVIEW 

 

 

 

DISASTER MANAGEMENT POLICY AND PRACTICE IN THE UNITED 

STATES: A BRIEF HISTORY 

From a historical perspective, an increasing federalization of disaster policy and 

emergency management in the United States has been happening during the past sixty 

years.  During this same period of federalization, disaster management practice has 

refocused from a reactive profession emphasizing preparedness (education and training) 

and response to a proactive emergency management approach emphasizing mitigation 

and protection measures (McEntire 2004, Sylves 2008).  Disaster policy has shifted from 

its roots in civil defense where disasters are viewed as one-off local events best managed 

by local resources toward an all-hazards emergency management perspective that 

involves all levels of government with exceedingly more federal bearing (Sylves 2008).  

This one-off attitude means events are not assessed in context to other similar events to 

identify weaknesses or lessons learned that could affect operations for future like events 

or other events that may have similar characteristics because there was no effort to 

connect the dots or draw commonalities stressed in an all-hazards emergency 

management approach.  Figure 3 illustrates these trends in disaster management and 

provides a timeline of key policy and legislation. 
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Figure 3: Timeline of Key Federal Disaster Policy and Legislation 

 

The Federal Disaster Relief Act of 1950 (DRA) set forth a framework and process 

that underscores most of the major federal disaster legislation to this day (Sylves 2008).  

The 1950 DRA introduced the notion that state governors could request federal disaster 

assistance from the president. It also recognized the “dual use” philosophy of civil 

defense, where federal support to civil defense units provided overlapping benefits to 

emergency management. The 1950 DRA served as a companion measure for the Federal 

Civil Defense Administration (Sylves 2008).  The Disaster Relief Act of 1966 furthered 

the “dual use” policy linking civil defense warning systems with natural disaster alerts; 

and that same year, Congress amended the 1950 Civil Defense Act to authorize funding 

on a “dual use basis to prepare for the threat of enemy attack and for natural disasters” 

(Sylves 2008, p. 50). These congressional attempts to unify disaster policy on the “dual 

use” premise did nothing to address the disjointed nature of federal disaster authorities 
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that were spread across several agencies, antecedents of the organic and reactionary 

developments of the preceding acts. 

Congress passed the Disaster Relief Act of 1974 to help remedy a series of 

presidential reorganizations of federal disaster functions across multiple agencies. This 

same law introduced three key concepts to federal disaster policy: 1) direct federal 

assistance to individuals and families affected by a disaster, 2) hazard mitigation as a 

precondition for federal disaster assistance, and 3) a multi-hazard approach to disasters 

(Sylves 2008).  In many ways, the 1974 DRA signaled the start of a new trend in disaster 

management toward mitigation and the transition away from civil defense toward all-

hazard emergency management. 

Despite the 1974 DRA, federal disaster policy remained fragmented and dispersed 

across several agencies. In 1978, President James Carter sought to consolidate federal 

disaster management programs within his five principle executive agencies through the 

establishment of the Federal Emergency Management Agency (FEMA website 2012).  

FEMA was created by executive order on April 1, 1979 following Congressional 

approval of presidential reorganization plan 3 of 1978.  Executive Order 12127 combined 

the Defense Civil Preparedness Agency, the Federal Insurance Administration, the 

National Fire Protection and Control Administration, the Federal Preparedness Agency 

within the General Services Administration, and the Federal Disaster Assistance 

Administration within the Department of Housing and Urban Development along with 

one hundred other federal disaster response programs reporting to twenty different 

congressional committees (Office of the President 1978, 1979). While the formation of 
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FEMA did not fully consolidate disaster policy under one agency; the Department of 

Agriculture retained primary responsibility for agricultural disasters. FEMA did 

incorporate hazard mitigation activities linked to preparedness and disaster assistance, 

introduce the notion of emergency support functions, and establish a single agency within 

the federal government dedicated to emergency management (Sylves 2008).  

During the next two decades, Congress passed or repealed key pieces of federal 

disaster legislation and continued the trend of establishing mitigation as a cornerstone of 

federal disaster policy.  It passed the Robert T. Stafford Disaster and Emergency 

Assistance Act in 1989, (Stafford Act) granting the president authority to declare 

disasters or emergencies.  In 1993, Congress repealed the Civil Defense Act of 1950 

transferring all civil defense emergency management functions under Title VI of the 

Stafford Act to be coordinated by FEMA.  It passed the Disaster Mitigation Act in 2000 

reinforcing the importance of pre-disaster mitigation planning to reduce disaster losses 

nationwide.   

Following the terrorist acts of September 9, 2001, Congress passed the Homeland 

Security Act of 2002 (P.L. 107-296), placing FEMA within the newly formed 

Department of Homeland Security (DHS) and reaffirming an all-hazards, all threats 

approach to federal disaster management. This act was followed by executive issuance of 

Homeland Security Presidential Directive Five (HSPD-5) in 2003 that established the 

National Incident Management System (NIMS) and the National Response Framework 

(NRF).  While citing an all-hazards and all-threats focus, the HSPD-5 policy lacked a 

risk-based perspective instead concentrating on threat scenario action plans and 
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provisioning of disaster relief.  That same year, the president issued Homeland Security 

Presidential Directive Eight (HSPD-8), intended to strengthen the policies to prevent, 

prepare for, respond to, and recover from terrorist attacks, major disasters, and other 

emergencies with an attention toward training, planning, equipment, and exercises for 

Federal incident management and asset preparedness.  

The Homeland Security Acts and Presidential Directives passed between 2002-

2011, coupled with enabling legislation passed by Congress in the preceding decades 

operationalized comprehensive emergency management (CEM) theory, incorporating all 

phases of disaster management within the encompassing federal policy and practice.  The 

Intelligence Reform and Prevention of Terrorism Act of 2004 (P.L. 108-458 or IRPTA) 

required the implementation of NIMS and renewed emphasis on disaster preparedness to 

include comprehensive risk assessments for terrorism related attacks, but not for natural 

hazard or non-terrorism related events. The focus in IRPTA was on law enforcement and 

prevention and protection measures based on findings from the 911 Commission Report. 

In response to federal response failures to Hurricane Katrina in 2005, Congress passed 

the Post-Katrina Emergency Management Reform Act in 2007 (PKEMRA) reaffirming 

FEMA’s placement as a distinct agency within DHS and placing certain functions 

transferred to the DHS preparedness directorate under the Homeland Security Act of 

2002 back within FEMA (US GAO 2008).   

In 2011, the National Preparedness System was established under the auspices of 

Presidential Policy Directive 8 (PPD-8). PPD-8 directed the development of a national 

preparedness goal implemented through a national preparedness system of integrated 
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planning guidance, programs, and processes and defined national preparedness as a 

shared responsibility aimed at facilitating an integrated, all-of-Nation, capabilities-based 

approach to preparedness. The national preparedness system under PPD-8 encompasses 

the whole community from Government, businesses, communities, and citizens. It also 

incorporates a risk component that was lacking in its predecessor HSPD-8.  Per 

Whitehouse policy memorandum 2011, “the national preparedness goal shall be informed 

by the risk of specific threats and vulnerabilities – taking into account regional variations 

- and include concrete, measurable, and prioritized objectives to mitigate that risk. The 

national preparedness goal shall define the core capabilities necessary to prepare for the 

specific types of incidents that pose the greatest risk to the security of the Nation, and 

shall emphasize actions aimed at achieving an integrated, layered, and all-of-Nation 

preparedness approach that optimizes the use of available resources.”  

 

 

 

 

 

 

The national preparedness system is intended to “allow the Nation to track the 

progress of our ability to build and improve the capabilities necessary to prevent, protect 

against, mitigate the effects of, respond to, and recover from those threats that pose the 

greatest risk to the security of the Nation” and capacity “for building and sustaining a 

cycle of preparedness activities over time” (Obama 2011).  PPD-8 signifies a further 

transition in disaster management policy from one of response and recovery to one of 

disaster risk management and vulnerability assessment.  
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“The national preparedness goal shall be informed by the risk of specific 

threats and vulnerabilities – taking into account regional variations - and include 

concrete, measurable, and prioritized objectives to mitigate that risk. The national 

preparedness goal shall define the core capabilities necessary to prepare for the 

specific types of incidents that pose the greatest risk to the security of the Nation, 

and shall emphasize actions aimed at achieving an integrated, layered, and all-of-

Nation preparedness approach that optimizes the use of available resources. The 

national preparedness goal shall reflect the policy direction outlined in the National 

Security Strategy (May 2010), applicable Presidential Policy Directives, Homeland 

Security Presidential Directives, National Security Presidential Directives, and 

national strategies, as well as guidance from the Interagency Policy Committee 

process. The goal shall be reviewed regularly to evaluate consistency with these 

policies, evolving conditions, and the National Incident Management System 

(Obama 2011).” 

 

 

DISASTER MANAGEMENT THEORY, PRINCIPLES, AND CONCEPTS 

During the period of federalization of disaster policy and practice, disaster 

management began to emerge as a field of study, coalescing around a handful of core 

principles and holistic theory.  Since 1950, the concept of CEM has become the 

traditional theory of disaster management (McEntire et al. 2001, McEntire 2004).  CEM 

organizes disaster management into disaster phases: preparedness, response, recovery, 

and mitigation that represent the full lifecycle of disaster (Sylves 2008, McEntire et al. 

2001, McEntire and Marshall 2003, McEntire 2004) as depicted in figure 2.  While CEM 

may represent the bedrock of federal emergency management theory, the concept has 

underlying weaknesses (McEntire and Marshall 2003).  Neal (1997) determined that the 

four phases recognized by CEM are useful, but CEM in general is an over-simplified 

heuristic device that does not recognize the complexity of disasters (McEntire 2004).  
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According to Britton, CEM fails to capture the wider political, economic, and cultural 

explanations of disaster (Britton 1999, McEntire and Marshall 2003, McEntire 2004).   

To address the weaknesses in CEM, several paradigms have emerged in the 

academic literature.  Some scholars have suggested a move toward the concepts of 

disaster resistant community (Geis 2000, Armstrong 2000).  Others have emphasized a 

need to focus on resiliency (Britton and Clarke 2000, Burby et al. 2000, and Buckle et al. 

2000).  Boulle et al. (1992), Berk et al. (1993) and Mileti (1999) championed the concept 

of sustainability or sustainable hazards mitigation.  Cutter (1996, 2001), Cutter et al. 

(2003), Blaikie et al. (1994), and Anderson (2000) recommended a focus on hazard 

vulnerability as a means to tie in all phases of disaster management.  

Regardless of its weaknesses, CEM attempts to provide a holistic view of the 

disaster lifecycle and its concomitant functions.  Geis (2001) notes that “everything is 

interconnected and a holistic, integrated approach [to disaster management] is required… 

(p. 152).” Mileti (1999) observes that “researchers have called for a broad view of the 

disaster problem… (p. 35).”  McEntire (2004) furthered this notion stating that 

“comprehensive perspectives should become more valued in future disaster scholarship 

and that maintaining a reliance on the phases of disasters should be a priority in 

emergency management theory” (p. 35). While it is clear more research on the 

complexities of disaster is required to better understand the disaster problem as described 

by Mileti (1999), scholars need to direct more research toward understanding and 

measuring the relationship between mitigation, recovery, preparedness and response 

(McEntire et al 2001, McEntire and Marshall 2003, McEntire 2004). 
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The disaster management community historically has placed more emphasis on 

emergency response rather than disaster mitigation and recovery. This preference for 

response over preparedness has done little to address rising disaster losses (McEntire 

2004). This is understandable given the limelight endeared by live video feeds of disaster 

victims, flooded homes, or streets filled with debris.  Mitigation is not the sexiest of 

endeavors and more often than not goes unnoticed by the public until local protective 

measures fail during times of need.   

Although disaster policy and operations remain largely event driven, a paradigm shift 

in emergency response practice has taken place over the past fifty years from simply 

responding to disasters and providing relief to victims toward emergency management as 

a discipline to better prepare for, respond to, mitigate for, and recover from disasters 

(McEntire et al 2001, McEntire and Marshall 2003, McEntire 2004, Sylves 2008).  This 

philosophical shift has been strengthened by enabling legislation passed by Congress 

incorporating mitigation into routine federal disaster operations and as a requirement for 

federal assistance for local preparedness activities and post-disaster relief.  This paradigm 

shift has also been reinforced by acknowledgement of several core principles that have 

invariably guided federal disaster policy and local emergency management practice during 

this period. These fundamental tenets of disaster management are:  

 emergency management is a shared responsibility across all levels of government 

 emergency response is primarily a local responsibility 

 policy and practice should represent the full life cycle of disaster 
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 all-hazards approach to disaster management instead of maintaining unique and 

separate capacities 

 

PPD-8 characterizes an evolution in national emergency management policy and 

application of CEM theory.  By joining the traditional pillars of the disaster lifecycle with 

the law enforcement and interdiction elements of Homeland Security through prevention 

and protection, PPD-8 represents a logical progression toward all hazards, all threats 

emergency management. Encapsulated by five mission frameworks: Prevention, 

Protection, Response, Recovery, and Mitigation and their supporting initial operating 

plans; PPD-8 engenders a culture of preparedness, bridging comprehensive emergency 

management with disaster risk management, recognizing that” risk unmanaged leads to 

the occurrence of disaster” (Yodmani 2001).  With its notions of risk, vulnerability, and 

regional variation, it is reasonable to assert that PPD-8 is largely based on a Hazards-of-

Place construct of vulnerability assessment. 

Other disaster management concepts also operate within the framework of CEM. 

Many of these concepts and operating models are encapsulated by the National Incident 

Management System (NIMS) that was established as federal emergency management 

doctrine under HSPD-5.  NIMS covers the emergency management concepts of incident 

command system, unified command, multiagency coordination and addresses common 

terminology, training and qualifications, and information and technology to name a few.  

The NIMS is linked to PPD-8 and the coordinating structures of the underlying national 

preparedness system. 



  

26 

 

 

DISASTER OPERATIONS, IMPACT MODELING, AND ESSENTIAL 

ELEMENTS OF INFORMATION 

The National Incident Management Systems (NIMS) serves as the foundation for 

disaster operations across all levels of government and community involved in 

emergency management. The NIMS unites the practice of emergency management and 

incident response throughout the country by focusing on five key areas or components 

(preparedness, communications and information management, resource management, 

command and management, and ongoing management and maintenance) and leveraging 

existing structures such as the incident command system to create a comprehensive and 

proactive system for those responding to incidents or planned events (FEMA NIMS Fact 

Sheet 2012).  Disaster operational units apply the principles of NIMS, Incident Command 

System (ICS), and the various frameworks under PPD-8 to manage the conduct and 

maneuvers necessary to assist in the response, recovery, mitigation, and future planning 

and preparedness activities related to an incident. Many of the functions necessary to 

support disaster operations are executed by emergency support functions (ESFs) per the 

National Response Framework that aligns to NIMS (NRF Fact Sheet 2012). FEMA 

serves as the federal lead for ESF #5: Emergency Management. ESF#5 operates at all 

levels of disaster operations, serving as the emergency support team for DHS and the 

information and planning section for the disaster field office.  ESF#5 facilitates the 

overall activities of the Federal Government in providing assistance to one or more 

affected States, coordinating with the local incident commander, as well as mission and 



  

27 

 

decision support elements through collection, analysis, processing, and dissemination of 

information about a potential or actual disaster or emergency to all parties involved (ESF 

5 – Information and Planning Annex 2003). 

Standard operating procedures require that ESF#5 provide the initial assessment of 

the incident, work across the emergency support functions and mission support partners 

to compile timely and appropriate information on the incident, and disseminate necessary 

information to emergency managers and first responders.  To achieve situational 

awareness, ESF#5 compiles situational reports based on essential elements of information 

(EEIs) from a variety of sources.  These EEIs serve as the basis for understanding disaster 

conditions, forecasting potential impacts and consequences, provisioning key resources, 

tracking progress and ground crews, conducting current and future planning, and 

maintaining overall situational awareness of the incident.  According to the ESF#5 - 

Information and Planning Annex, EEIs provide emergency managers early intelligence 

on the effect of a disaster on the population and infrastructure of an area and gage the 

resourcing requirements that might be required to support the incident response and 

recovery.  For hurricane events, ESF#5 and disaster field units leverage hurricane storm 

track information supplied through the NOAA subtropical weather advisories published 

from the National Weather Service, storm surge information derived from the sea, lake, 

and overland surge (SLOSH) model outputs generated by the NOAA Coastal Services 

Center, and damage and impact assessments produced using the FEMA HAZUS-MH 

program (HLS GeoCONOPS v5.0 2013; FEMA Geospatial Standard Operating 

Procedures 2012).  
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“This information [from the EEIs] facilitates accurate assessment of what response 

activities and materiel are required to save lives, relieve human suffering, and 

expedite response and recovery operations. During the early hours of a disaster and 

in the absence of “ground truth” information such as actual on-site surveys or 

imagery, GIS, computerized predictive modeling, and damage estimation software 

may be used to develop initial estimates of damage. As soon as possible, actual on-

site ground surveys will be performed. Sources may include a Federal-State 

Preliminary Damage Assessment (PDA) and information from Federal, State, and 

local government agencies, among others, to establish “ground truth”… (ESF#5 – 

Information and Planning Annex 2003). See appendix A. 

 

During the recovery and mitigation phases of disaster operations, public and 

individual assistance grant programs are initiated to support community rebuild and 

restoration and to provide citizens with housing and other needs. This direct federal 

assistance also includes grants issued through the hazard mitigation grants program to 

assist state and local governments with the development of hazard mitigation risk plans 

and with the implementation of long term mitigation measures to promote community 

resilience. The status of these projects and activities become EEIs within the situational 

reports produced by ESF#5. 

In many ways, EEIs act as indicators for assessing the scope and severity of a 

disaster and the ensuing actions required to support disaster operations and serve as 

outcomes measures for assessing the impact of the disaster and tracking progress toward 

recovery.  Since EEIs are intended to reflect ground-truth and the effects of a disaster on 

population and infrastructure, it begs a comparison with the indicators used to conduct 

hazard vulnerability assessments and derive the associated hazard vulnerability / risk 

indexes. This comparative analysis may reveal any potential relationships between the 
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practice of disaster operations and disaster risk management and help to validate if 

vulnerability indicators are true surrogates of exposure, susceptibility, and risk.  

 

HAZARD VULNERABILITY AND COMPREHENSIVE EMERGENCY 

MANAGEMENT 

Hazard assessment and vulnerability research offers one of the more promising 

approaches to CEM within disaster management research, fusing the science of 

mitigation with the practice of emergency response.  McEntire (2004) suggests that 

“vulnerability may [in fact] help us to understand the purpose of emergency management 

since it deals with the goals of liability reduction and capability enhancement (i.e., 

reducing risk and susceptibility and raising resistance and resilience (p. 11).”   

As Cuny postulated in his work titled, “Disaster and Development”, the rise in 

disasters is related to a rise in the vulnerability of people induced by the development of 

the built environment and that the increase in vulnerability is not uniform and varies 

across regions (Cuny 1983).  From this perspective, vulnerability is the only aspect 

emergency managers have control over in the disaster equation and may provide the best 

venue for accurately describing and understanding the true nature of disasters. Yodmani 

notes that within emergency management the “emphasis has shifted to using vulnerability 

analysis as a tool in disaster management” as part of a more comprehensive approach to 

disaster risk management that encompasses “three distinct but interrelated components: 

hazard assessment, vulnerability analysis, and enhancement of management capacity” 

and the ongoing development of disaster operations (Yodmani 2001, p. 2).  Taking this 
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one step further, hazard assessment and vulnerability thereby extends the practice of 

mitigation performed through risk indices into the realm of response operations often 

accomplished through the application of impact models. The fusion of impact modeling 

with vulnerability indexing may offer the best opportunity for studying the complexity of 

disasters and their associated response and recovery operations, and gaining a better 

understanding of disaster phenomena and how impact models relate to vulnerability 

assessments to complete the CEM feedback loop of the disaster lifecycle. This is 

especially true when considering the large number of variables involved in the two 

processes. 

 

HAZARD VULNERABILITY RESEARCH TRENDS AND CONCEPTS 

 

Hazard assessment and vulnerability research is a relatively new paradigm in the social 

sciences only materializing as an important theoretical topic in the 1980s (Bohle et al. 

1994, Rygel et al. 2005).  Alwang et al. conducted a multi-disciplinary review of 

vulnerability research and concluded that “practitioners from different disciplines use 

different meanings and concepts of vulnerability, which, in turn, have led to diverse 

methods of measuring vulnerability” (2001, p. 2).  Cutter et al (2003, p.1) also concluded 

that “vulnerability has many different connotations depending on the research orientation 

and perspective” (Dow 1992, Cutter 1996, 2001, 2003).  According to Cutter, 

vulnerability is broadly defined as the “potential for loss” (1996, p.529).  Balikie et al. 

define vulnerability as “the characteristics of a person or group in terms of their capacity 

to anticipate, cope with, resist, and recover from the impact of a natural hazard” 
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(Kumpulainen 2006, p. 67). Other researchers define vulnerability as the capacity to be 

wounded (Kates 1985, Dow 1992). The United Nations Development Project Bureau for 

Crisis Prevention and Recovery defines vulnerability as “a condition or process resulting 

from physical, social, economic, and environmental factors, which determines the 

likelihood and scale of damage from the impact of a given hazard” (UNDP 2004, p. 11). 

The European Union Spatial Program Observation Network (ESPON) Hazards Project 

defines “vulnerability as a set of conditions and processes resulting from physical, social, 

economic, and environmental factors that increase susceptibility of a community to the 

impact of hazards” (EPSON 2003, p. 12). Vulnerability encompasses the idea of response 

and coping, since it is determined by the potential for a community to react and withstand 

a disaster.   

Rygel et al. (2005) have determined that two main perspectives or camps on 

vulnerability have formed within the academic literature based on the difference 

conceptualizations of vulnerability (Dow 1992, Cutter 1996, 2001, Wu et al. 2002, Adger 

et al. 2004).  Cutter asserts that a third perspective exists based on “hazard of place” 

(Cutter 1996, 2003, Rygel 2005). The first perspective treats vulnerability as a pre-

existing condition with an emphasis on potential exposure to hazards (Cutter 1996, Rygel 

et al. 2005). Cutter brands this perspective as an exposure-based model (Burton et al. 

1993; Cutter 1996, 2001, 2003). Research from this perspective tends to assess the 

distribution of some hazardous conditions, the human occupancy of the hazard zone, and 

the degree of loss of life and property resulting from a particular event (Rygel et al. 

2005).  The second perspective on vulnerability advocates that not all individuals and 
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groups exposed to a hazard are equally vulnerable and affected people display patterns of 

differential loss (Wu et al. 2002).  This differential loss depends in part on the coping 

ability of those affected as well as exposure to the hazard (Anderson and Woodrow 1991, 

Dow 1992, Watts and Bohle 1993, Cutter 1996, Clark et al. 1998, Wu et al. 2002, Rygel 

et al. 2005). Coping ability in this context has been defined as a combination of resistance 

and resilience (Dow 1992, Cutter 1996, Clark et al. 1998, Wu et al. 2002). Resistance is 

expressed as the ability to absorb the damaging impacts of a hazard and continue 

functioning and resilience as the ability to recover from losses quickly (Rygel et al. 

2005). Cutter refers to this perspective as vulnerability as a social condition, a measure of 

societal resistance or resilience to hazards (Blaikie et al, 1994, Hewitt 1997, Cutter 2001, 

2003). The third perspective on vulnerability combines the elements of the first two 

perspectives and is referred to by Wu et al as the vulnerability of places framework (Wu 

et al. 2002, Rygel 2005).  This perspective treats vulnerability as a biophysical risk and a 

social response within a specific geographic domain (Rygel 2005). Cutter expresses this 

perspective as the integration of potential exposures and societal resilience with a specific 

focus on particular places or regions (Kasperson et al. 1995; Cutter, Mitchell, and Scott 

2000, Cutter 1996, 2001, 2003). This perspective attempts to address the “vulnerability 

paradox” described by Cutter to examine social and place inequalities – characteristics of 

community and the built environment. In this conceptualization, risk interacts with 

mitigation to produce hazard potential (Cutter 2003, p. 243). This construct is realized 

through the Hazards-of-Place model of vulnerability (Figure 4) as a means to understand 

the components of vulnerability (Cutter 1996, Cutter et al. 2000; Heinz Center 2002). 
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Figure 4: Hazards-of-Place Model (Cutter et al. 2003) 

 

 

MEASURING VULNERABILITY IN HAZARDS RESEARCH 

 

Vulnerability science is not nearly as advanced as risk estimation science (Hill and 

Cutter 2002, p. 25).  Measuring vulnerability is usually achieved by constructing a 

vulnerability index based on several indicators that are reflective of a phenomenon (Pine 

2009).  Gall (2007) characterizes a vulnerability index as “an abstract theoretical 

construct in which two or more indicators of the construct are combined to form a single 

summary score” (p. 13).  This construct requires a careful balance between simplifying 

the phenomenon and providing sufficient detail to detect characteristic differences 

(Deiner and Suh 1997).  The complexity of the quantitative analysis used to derive the 

vulnerability index increases as the number of indicators selected increases in order to 
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represent the phenomena. This yields a “complex measure [of vulnerability] that is 

almost impossible to verify, especially when the phenomena cannot be measured 

directly” (Gall 2007, p. 18). 

The selection of vulnerability indicators is often subjective and descriptive having 

been chosen based on a particular theoretical framework or functional relationship 

(Deiner and Suh 1997).  These indicators can be either direct variables of interest or 

proxy variables that serve as substitutes for the variables of interest (Gall 2007).  Hill and 

Cutter (2002) find that current indices of vulnerability differ in indicator selection, 

statistical downscaling and incorporation of scale.  Gall (2007) contends “there is no 

generally accepted set of indicators to assess social vulnerability nor is there empirical 

evidence for the connectivity or relative importance of those indicators” (p. 15-16).  For 

example, indicators for the disaster risk index (DRI) are based on best-fit linear 

regressions or statistical relationships; while, indicators for the social vulnerability index 

(SoVI) are based on a combination of theoretical framework and functional relationships 

(Gall 2007, p. 17). The disaster preparedness index (DPI) also employs a combination 

approach to choosing its indicators.  

Additionally, “vulnerability indices at all scales possess questionable reliability and 

explanatory power not only because of conceptual challenges but also because of the lack 

of empirical evidence, standards, and quality assessments in constructing these indices” 

(Gall 2007, p. 19). Deiner and Suh (1997) find that vulnerability science is plagued by 

significant amounts of subjective judgment in the research process.  Andrews et al. 

(1994) argue that many indices rarely have adequate scientific foundations to support 
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precise rankings.   Cash and Moser (2000) infer that vulnerability assessments are often 

conducted at geographic scales that differ from the scale at which management occurs. 

Clark et al. (2000) propose choosing a vulnerability assessment scale that is congruent 

with the level at which social-environmental interactions are particularly intense or 

problematic for that hazard and at which management occurs. Eakin and Luers (2006, p. 

381) suggests that “scale is not only a concern of the unit of analysis in research but also 

an issue of compatibility with decision making”.  According to Gall (2007), 

“implementation of theoretical knowledge in the form of vulnerability indices is currently 

subject to arbitrary choices by researchers” (p. 28).  This lack of transparency, empirical 

basis, and uncertainty poses a challenge to the reliability, voracity, and utility of 

vulnerability indices to deliver robust vulnerability metrics (Gall 2007). 

A brief discussion of the indices being examined by this research is provided in 

context to the aforementioned issues.  The disaster risk index (DRI) is an outcome-

oriented vulnerability index intended to “a) improve understanding of the relationship 

between development and disaster risk, b) enable the measurement and comparison of 

relative levels of physical exposure to hazard, vulnerability and risk, c) identify 

vulnerability indicators, and d) map international patterns of risk” (UNDP/BCPR 2004, p. 

2).  It is relevant to note that increased land-use and economic development are 

considered contributing factors to the increased susceptibility and vulnerability of the 

coastal United States to hurricane damage.  According to Gall (2007), “the selection of 

the DRI indicators was guided by correlations with proxy measures and not by theoretical 

framework or expert opinion” (p. 54). DRI is based on the methodology: Risk = Hazard * 
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Population * Vulnerability. The DRI is a backwards looking vulnerability index as it 

considers vulnerability from the context of past events rather than attempting to predict 

vulnerability through statistical modeling (Gall 2007).  “All indicators are aggregated 

averages over a 21-year period from 1980-2000 (Gall 2007, p. 55). In the DRI, risk is 

expressed as hazard-mortality with population representing biophysical factors and 

vulnerability representing physical conditions. It is comprised of four hazard-specific 

vulnerability sub-indices as noted in Appendix C. Hazard-mortality serves as the 

dependent variable; while the independent variables include exposed population and 

twenty-six socioeconomic indicators.  The DRI is derived from a stepwise linear 

regression used to determine the important indicators and produce the indicator weights 

(beta coefficients).  The final DRI score is the sum of the weighted aggregation for each 

hazard type sub-indices. (See Appendix C). DRI indicators are not normalized and the 

unit of measurement is not unit-less like other vulnerability indices. It is expressed as the 

number of killed per 21-year average.   

The disaster preparedness index (DPI) is based on the theoretical underpinnings of 

existing vulnerability science and applied research on vulnerability indicators. It 

leverages works from UNDP /BCPR (2004), Dwyer et al. (2004), Cutter et al. (2003), 

Simpson (2001), Tapsell et al. (2003), Cardona (2005a), and Davidson and Lambert 

(2001).  According to Simpson (2006), the disaster preparedness index (DPI) is a 

composite result of the presumed relationship between community preparedness 

measures and the derivation of the vulnerability score as depicted in Appendix D. It is 

based on the equation: Vulnerability = hazard * probability * frequency * Vulnerability 
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measures (VM).  Unlike the DRI, the selection of indicators for the disaster preparedness 

index was driven by expert opinion among identified experts in vulnerability science 

(Simpson 2006). The DPI considers 150 different indicators that are identified as 

functional measures of preparedness (FM) or vulnerability measures (VM).  Functional 

measures are construed as community assets and include factors such as the physical, 

economic, sociocultural, and ecological dimensions of capital. Vulnerability measures are 

interpreted as community liabilities and include factors such as frequency and probability 

of the hazard as well as socio-economic factors like public debt, housing vacancy rate, 

and age of emergency operations plans (See Appendix D).  DPI indicators are normalized 

and weighted based on statistical regression.  

The social vulnerability index (SoVI) is based on the Hazards-of-place model 

posited by Cutter (1996a). However, it does not utilize expert opinion to determine the 

vulnerability indicators. It defines vulnerability through the interaction of biophysical and 

social conditions with the integrating mechanism as place. From the perspective of Hill 

and Cutter (2002, p. 15), “understanding the social vulnerability of places is just as 

essential as knowing about the biophysical exposure.” This approach allows for more 

direct insertion of location as a factor of exposure and better understanding of the role of 

geography as a determinant of vulnerability.  It allows us a means to discern between 

disaster-prone and disaster-resilient communities and what factors influence both 

outcomes (Hill and Cutter 2002).  

In simple terms, “SoVI quantifies the social vulnerability of U.S. counties to 

environmental hazards and results in a comparative metric that facilitates the examination 
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of the differences in social vulnerability among them…” (HVRI SoVI® webpage 2013)1.  

SoVI is constructed based on an initial analysis of 250 variables of social vulnerability 

identified through a broader review of vulnerability research.  Cutter et al. (2003) tested 

these 250 variables for multicollinearity producing a subset of 42 normalized variables.  

Using principal component analysis, Cutter et al. (2003) reduced the 42 independent 

variables to 11 factors that represented 76.4% of the variance.  The 11 factors, depicted in 

Table 2 below, consist of personal wealth, age, density of the built environment, single-

sector economic dependence, housing stock and tenancy, race, ethnicity, occupation, and 

infrastructure dependence.  Schmidtlein et al. (2008, p. 1110) suggests that the “SoVI 

algorithm does not appear to be substantially influenced by scalar changes, [and] it is 

sensitive to variations in construction.” This highlights the need to validate SoVI using 

disaster outcome data to provide an empirical analysis of its ability to characterize 

community vulnerability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Hazards Vulnerability Research Institute 2013. Social Vulnerability Index 

webpage. http://webra.cas.sc.edu/hvri/products/sovi.aspx. HVRI, University of 

South Carolina website. Accessed on multiple occasions in production of this 

research between January, 2012 to May, 2016. 

http://webra.cas.sc.edu/hvri/products/sovi.aspx
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Table 2: Dimensions of Social Vulnerability 

US County Level 42-variable Component Summary 

Factor Name Dominant Variable 

Percent of 

Variation 

Explained 

Cardinality 

1 Personal Wealth Per capita income 12.4 + 

2 Age Median age 11.9 - 

3 
Density of the Built 

Environment 

No. Commercial establishments/sq. 

mile 
11.2 + 

4 

Single-sector 

Economic 

Dependence 

% employed in extractive industries 8.6 + 

5 
Housing Stock and 

Tenancy 
% housing units that are mobile homes 7.0 - 

6 
Race – African 

American 
% African American 6.9 + 

7 Ethnicity – Hispanic % Hispanic 4.2 + 

8 
Ethnicity – Native 

American 
% Native American 4.1 + 

9 Race – Asian % Asian 3.9 + 

10 Occupation % Employed in service occupations 3.2 + 

11 
Infrastructure 

Dependence 

% Employed in transportation, 

communication, and public utilities 
2.9 + 

(Source: Cutter et al. 2003, p. 252) 
 

 

 

The objectives of this dissertation are to examine the relationships between hazard 

vulnerability science and disaster management policy and practice and to analyze the 

explanatory power of the social vulnerability index (SoVI) to accurately predict the federal 

costs and level of damages for a hurricane disaster using empirical data and model data for 

9 Atlantic hurricanes.  The first step involves conducting a comparative analysis of three 

hazard vulnerability indices (social vulnerability index, disaster risk index, and disaster 

preparedness index) and their underlying indicators to determine which variables are 

considered the most common elements of vulnerability. The second step involves 

performing a statistical analysis using exploratory OLS regression and spatial econometrics 
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and geographically weighted regression.  The statistical analysis encompasses five 

regression scenarios: scenarios 1-2 attempt to quantify the theoretical relationships 

between hazard vulnerability science and disaster management policy and practice; 

scenarios 3-4 attempt to analyze the explanatory power of hazard vulnerability science to 

accurately predict costs and damages; and scenario 5 attempts to quantify the relationships 

between disaster operations practice and disaster management policy.  
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CHAPTER 3: COMPARATIVE ANALYSIS OF HAZARD VULNERABILITY 

THEORY AND DISASTER MANAGEMENT POLICY 

 

 

This research seeks to substantiate the following a) hazard vulnerability theory and 

disaster management policy share common foundations and b) the use of the social 

vulnerability index (SoVI) - to test the hypothesis that hazard vulnerability indices can be 

used to accurately predict the exposure of a community to a hurricane hazard or the level 

of damages in the community if a hurricane disaster of similar size and magnitude did 

occur.  First, the study performs a qualitative analysis of hazard vulnerability indices using 

a pedigree matrix based on a qualitative taxonomy adopted from Gall (2007, p.33-34). This 

approach is widely used for critical analysis of indices and indicators (Gall 2007, Booysen 

2002; Eyles and Furgal 2002, von Schirnding 2002) and allows for an “apples to oranges” 

comparison of the scale and the composition of the social vulnerability, disaster risk, and 

disaster preparedness indices. These vulnerability indices were chosen as representative 

of the leading concepts in hazard vulnerability science considering the three dimensions of 

hazard vulnerability: economic, social, and physical (UNDP / BCPR 2004).  The social 

vulnerability index focuses on the social dimensions of vulnerability. The disaster risk 

index is more exposure based with an emphasis on ecological conditions. The disaster 

preparedness index emphasizes economic dimensions with additional elements for 

measuring emergency management factors to account for policy shifts toward prevention 
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and mitigation strategies. Many of the preparedness factors in the disaster preparedness 

index are expressed as fiduciary terms such as funding for emergency operations, local 

funding for mitigation/planning, funding per capita, and public debt (Simpson 2006). 

Hazard vulnerability indicators and disaster data are not free from bias regardless of 

the data source.  Each hazard vulnerability index examined is based on certain theoretical 

aspects that emphasize different elements or components of vulnerability just as disaster 

management policy is influenced by currents of ideology. Cobb and Rixford (1998) 

contend that all indicator work has some political aspects that are value oriented and 

subjective in nature. Carly (1981) argues that all social indicators can and will be used to 

advocate particular political stances, and Cobb (2000, p. 20) claims that government data 

are subtly motivated by ideology.  King (2001) suggests bias arises more from the 

misapplication of data based on availability rather than the applicability of the data to 

vulnerability.  The goal is to compare and contrast the indices to understand the theoretical 

frameworks, structures, merits, and shortcomings of the vulnerability indices. The findings 

from this analysis answer the question regarding the most suitable vulnerability index for 

testing the hypothesis that hazard vulnerability indices can be used to accurately predict 

the exposure of a community to a hurricane hazard or the level of damages in the 

community if a hurricane disaster of similar size and magnitude did occur.   

The first step in the qualitative assessment is to input the characteristics for each 

vulnerability index into a pedigree matrix using the scoring criteria and ratings listed in 

Table 3.  Based on the pedigree matrix scoring system, an index is ranked from poor to 

excellent by averaging the results for each characteristic.  Table 3 shows that SoVI received 
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the highest qualitative score amongst the three indices.  SoVI received an average score of 

good (3.1) on the pedigree matrix.  It received a score of good or excellent on 7 of 9 

dimensions.  SoVI is based on well-established theory in hazard vulnerability science and 

uses a composite approach to selecting indicators that relies on expert opinion and 

statistical relationships.  The data used to produce SoVI is public domain and regularly 

maintained. However, SoVI uses proxy indicators to determine vulnerability rather than 

direct measurements. This resulted in a medium score for technique.  There has also been 

limited empirical validation of SoVI with independent measurements warranting a score 

of 2 for validity.  Overall, SoVI scored 27 out of a possible 36 points or 75% on the pedigree 

matrix.  This is 36 percentage points higher than the next closest candidate index.  The 

other 2 indices each scored below 50% with average scores of 1.6 and 1.1.  The DRI scored 

14 points out of a possible 36 or 39%.  It achieved low scores for conceptual framework, 

representativeness, reliability, and validity.  Previous research suggests the DRI has issues 

with documentation, repeatability of results, very weak and low validation of results, and 

methodological limitations (Gall 2007, Openshaw and Alvanides 2005; Wrigley et al. 

1997). Gall (2007) found that “bias related to hazard mortality ultimately diminishes the 

explanatory power of the DRI” (p. 107), and that the DRI is “contestable due to its implicit 

acceptance of ecological fallacy and/or modifiable areal unit problem since it neglects the 

socio-economic characteristics of its population at risk in demarcated zones” (p. 110).     

The DPI received the lowest score of the indices included in the pedigree matrix receiving 

10 points out of a possible 36 or 28%.  This is partly due to limited application of the DPI.  

Research was scarce on the actual implementation of the DPI based on the conceptual 
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framework developed by Simpson 2006.  It was also not clear if the data required to support 

the DPI were publicly available and maintained.  The DPI received a score of 0 for 

sensitivity and reliability due to those factors.  The theory behind the DPI was considered 

preliminary due to the limited availability of supporting research and many of the indicators 

used to comprise the DPI are based on survey or imputed data.  These qualitative analysis 

findings indicate that SoVI is the most viable candidate index for testing the hypothesis. 
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Table 3: Results of Functional Analysis for Vulnerability Indices using Pedigree 

Matrix (Adapted from Gall 2007) 

 

 

 

Score Matrix Description

4 - Excellent

3 - Good

2 - Medium

1 - Low

0 - Poor

Criteria Disaster Risk Index Disaster Preparedness Index Social Vulnerability Index

Conceptual Framework 1 1 4

Is the approach methods or data driven? Both Data driven Methods

Purpose 3 3 4

Is the purpose of the index to inform policy-

making, assess impact/damage, or capture 

trends?

Yes - Policy/Trends Yes - Policy Yes - Policy/Impact/Trends

Representativeness 1 1 3

How are indicators selected? Statistical Relationship Expert Opinion Expert Opinion/Statistical Relationship

How many indicators are selected? 26 regressed to 10 150 regressed to 7 250 regressed to 29

Data 2 1 3

What are the data sources? UN- Country mortality estimates US census and survey data US census socio-economic data

Are the data readily available? Yes No Yes

What is the quality of the data? Low Unknown Good

Technique 2 1 2

What are the indicators’ levels of measurement 

(ordinal, ratio, interval)?
Ratio Unitless Unitless

Are indicators scaled/adjusted? No No No

Are sub-indices used and if so how many? Yes - 4 Yes - 7 Yes - 7

How are indicators combined statistically? Best Fit Linear Regression Best Fit Linear Regression Principal Component

Are indicators/sub-indices weighted? Yes Yes Yes

What is the index’s level of measurement?
Country County County

Is the index scaled/adjusted? Yes Yes Yes

Are spatial techniques used (mapping, spatial 

analysis, spatial statistics)?

Yes No Yes

Sensitivity 2 0 3

Are indicators sensitive of capturing variations No Unknown Yes

Does the index capture longitudinal changes? Yes No Yes

Feasibility 1 2 3

Do the authors provide sufficient information 

so that other users can replicate the approach?
No Yes Yes

Reliability 1 0 3

Does the index produce similar results after 

numerous repetitions?
No Unknown Yes

Validity 1 1 2

What elements of vulnerability are measured 

by the selected indicators?

physical/social vulnerability - hazard 

specific
physical/social/economic vulnerability social/economic vulnerability

Does the index capture the phenomena in 

question?

Low - Weak and very indirect 

validation
Poor-no validation available

Medium - Compared with previous 

measurements not independent

Total 14 10 27

Average Score 1.6 1.1 3.0

Well established theory, readily available data, empirical measurements, method is best practice in community, validation by 

comparing to independent measurements same variable, easily reproduced

Accepted theory, public domain data regular maintenance, historical data direct measurements, reliable method common in 

discipline, compared with independent measurements related variable, method require few transformations

Partial theory, public domain irregular maintenance, model derived data, accepted limited consensus, compared with 

measurements not independent, model specific data

Preliminary theory, limited data access, educated guess measurements, preliminary methods, weak or indirect validation, 

modelled parameters

Speculation, proprietary data, specalutive measurements, method is unproven, no validation, not transferable

Hazard Vulnerability Index
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Since it has been established that SoVI is the most viable hazard vulnerability index 

for testing if a hazard vulnerability index can accurately predict the impact or level of 

damages from a hurricane, the next step in the comparative analysis is to examine the 

relationship between hazard vulnerability theory and disaster management policy that 

employs the practice of impact modeling to generate the essential elements of information 

(EEIs) used to estimate the size and magnitude of a disaster.  This is done by constructing 

a crosswalk matrix to cross referencing social vulnerability indicators (representing the 

science), essential elements of information (representing the disaster management policy), 

and disaster operations impact model variables (representing the disaster operations 

practice). FEMA produces the impact model variables using HAZUS-MH software and 

spatial algorithms that are consistent with ESF#5 operating procedures and the best 

practices described in the Homeland Security Geospatial Concept of Operations. The 

findings from this analysis answer the question whether hazard vulnerability theory and 

disaster management policy and practice share common foundations.  

Figure 5 below indicates strong linkages exist between disaster management policy, 

practice, and hazard vulnerability science.  SoVI includes variables that align with 3 of the 

4 groupings of EEIs: disaster boundary areas, socio-economic/political, critical 

infrastructure information. The only EEI group omitted by SoVI is geophysical 

information. From the perspective of Hill and Cutter (2002, p. 15), “understanding the 

social vulnerability of places is just as essential as knowing about the biophysical 

exposure” as it allows for more direct insertion of location as a factor of exposure and better 

understanding of the role of geography as a determinant of vulnerability.   
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Figure 5: Crosswalk matrix of Variables for Disaster Management Policy (EEIs), 

Disaster Response Practice (Impact Model), and Vulnerability Science (SoVI). 

 

 

Figure 5 also depicts linkages between SoVI and the disaster operations impact 

model variables. These linkages are consistent with the theoretical underpinnings of SoVI 

and suggest hazard vulnerability science and disaster management policy and practice 
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share common foundations.  As SoVI is based on the hazards-of-place model posited by 

Cutter et al. (1996a), it defines vulnerability through the interaction of biophysical and 

social conditions using place as the integrating mechanism.  SoVI was initially comprised 

of 11 factors, depicted previously in Table 2, personal wealth, age, density of the built 

environment, single-sector economic dependence, housing stock and tenancy, race, 

ethnicity, occupation, and infrastructure dependence.  SoVI was updated by the authors 

following the 2010 Decennial census and release of the American Community Survey to 

one based on 29-variables representing 7 factors that account for 72.5% of the variance as 

compared to earlier versions that utilized 11 factors that made up 74.6% of the variance.  

The 7 factors included in the current version of SoVI are: personal wealth, race and class, 

age, Hispanic ethnicity, nursing home residents, gender, and Native American ethnicity. 

These factors are essentially a more calibrated subset of the previous 11 factors.  This 

dissertation uses the more current 7 factors versions of SoVI as those were the data 

provided by the HVRI for this dissertation.  

Figure 5 above shows theoretical linkages between disaster management EEIs and 

disaster operations impact model variables.  This is not surprising given that the disaster 

operations impact model was constructed to provide FEMA with initial estimates on the 

potential impact to life, property, and community disruption for a projected hurricane.    It 

was developed to operationalize EEIs into an impact model based on HAZUS-MH and 

National Weather Service subtropical storm advisories.  The impact model variables align 

with all 4 groupings of EEIs.  EEIs provide FEMA a means “to assess quickly and 

accurately the effect of a disaster on the population and infrastructure of an area” and 
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“facilitates accurate assessment of what response activities and materiel are required to 

save lives, relieve human suffering, and expedite response and recovery operations” (ESF 

#5 - Information and Planning Annex 2003, p. 11).   

‘During the early hours of a disaster and in the absence of “ground truth” 

information such as actual on-site surveys or imagery, GIS, computerized 

predictive modeling, and damage estimation software may be used to develop 

initial estimates of damage.’ (ESF #5 - Information and Planning Annex 2003, 

p. 11) 

 

The comparative analysis conducted for this dissertation utilized a two-tiered 

approach using a pedigree matrix and variable crosswalk matrix. The pedigree matrix 

was used to compare the various dimensions of vulnerability indices to determine that 

SoVI was the most applicable candidate index for testing the predictive power of hazard 

vulnerability indices. The crosswalk matrix was used to demonstrate that hazard 

vulnerability science and disaster management policy and practice have common 

foundations and share similar theoretical underpinnings.    To examine the empirical 

relationship between hazard vulnerability science and disaster management policy and 

practice, depicted in Figure 5, this dissertation used exploratory OLS regression and 

correlation analysis. 
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CHAPTER 4: STATISTICAL REGRESSION ANALYSIS: DATA, METHODS, AND 

APPROACH 

 

 

The findings from Chapter 3 of this research demonstrated common theoretical 

foundations between hazard vulnerability science and disaster management and practice.  

This was accomplished using a comparative analysis based on a pedigree assessment of 

hazard vulnerability indices and a crosswalk mapping of variables across these 

disciplines.  The pedigree matrix results argue that SoVI has the best pedigree compared 

with two other leading composite vulnerability indices.  It also argues that SoVI was 

constructed to serve as a reliable metric for disaster preparedness and mitigation 

planning.   

According to Cutter et al (2003), SoVI provides the emergency management 

community and policy makers a useful tool to illustrate the geographic variation in social 

vulnerability, to identify areas where there is uneven capacities for preparedness and 

response, to target areas where resources might be used more effectively to reduce pre-

existing vulnerability and promote risk mitigation measures, and as an indicator in 

determining the differential recovery from disasters (Cutter et al 2003, HVRI SoVI 

webpage 2013).  Today, SoVI is actively being used in hazard mitigation planning and 

disaster response and recovery by states and federal agencies (Emrich and Cutter 2016).  

SoVI was used in support of Hurricane Sandy along the Mississippi coast and New Jersey 
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Shore and for the 2015 floods in South Carolina.  Emrich and Cutter (2016) claim that  

SoVI “has high utility as a decision-support tool for emergency management” turning 

“historical disaster impact measures into actionable information for emergency managers, 

recovery planners, and decision makers because it empirically measures and visually 

depicts a population’s (in)ability to adequately prepare for, respond to, and rebound from 

disaster events” (Emrich and Cutter 2016).     

This chapter expands upon the findings from the comparative analysis conducted in 

chapter 3 and the work from Cutter et al. (2003) and Gall (2007) to quantify the 

theoretical foundations and to test the reliability and usefulness of SoVI to predict 

disaster impacts and form the basis for effective mitigation and preparedness strategies. It 

applies exploratory regression using ordinary least squares combined with spatial 

econometrics and geographically weighted regression to examine the relationship 

between the SoVI scores, federal disaster assistance outcome data, and impact model runs 

for nine (9) Atlantic hurricanes that occurred between the years 1999-2004.  The 

hurricane disasters were selected based on the following criteria: a) geographic position 

along the Atlantic coastline, b) storm intensity between categories 1-5 on the Saffir-

Simpson scale, and c) access to the micro-level disaster outcome data.  

The statistical approach proposed in this research provides a means to determine: a) 

if SoVI is a reliable metric for disaster management based on empirical data, b) quantify 

the relationship between the determinants of vulnerability and disaster policy and c) 

improve our understanding of the spatial dimensions of vulnerability.   
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DATA SOURCES AND PROCESSING ROUTINES 

Statistical analysis was conducted at the county level – unit of geography - using three 

types of data: social vulnerability index, disaster outcome, and FEMA impact model data. 

A complete list of data sources incorporated into this research is listed in table 4 below 

including those that served as inputs for the FEMA impact models.  

 

 

Table 4: Data Sources 

 

 
 

 

 

The disaster outcome data are based on a sample of disaster declarations for nine 

hurricanes spread along the Atlantic seaboard representing 1037 county level 

observations. An observation is a county that received a disaster declaration (604) or was 

captured in the impact model (1037 unique). Each observation includes a SoVI score that 

was computed using the complete SoVI dataset of counties and county equivalents. Table 

5 below lists the total number of observations for each hurricane. The frequency counts 

for those counties declared that were included in the analysis are depicted in Figure 6 

below.  There were 214 counties declared under multiple hurricane events included in the 

analysis. The breakdown is as follows: 8 counties were declared under 5 hurricanes, 9 

counties were declared under 4 hurricanes, 20 counties were declared under 3 hurricanes, 

Type Author Source Dataset Year

Vulnerability data Univ. of South Carolina HVRI SoVI - county level index using 29 variables 2009

Outcome data FEMA NEMIS Disaster Assistance database 1999-2004

Outcome data SBA NICAR SBA Disaster Loans data 1999-2004

Model Outputs FEMA HAZUS-MH Impact Model data 2009

Model Outputs NOAA Hurrevac NWS Hurricane Forecast Advisory data 1999-2004

Model Outputs Census Bureau Census 2000 TIGER 2000 data w/ SF3 demographic tables 2002

Model Outputs NGA HSIP HSIP infrastructure data 2009
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and 177 counties were declared under 2 hurricanes. The remaining 390 counties were 

declared under a single hurricane event. Of the 214 counties declared under multiple 

hurricane events, the distribution by SoVI classification was as follows: 84 had a low 

SoVI score, 81 had a medium SoVI score, and 49 had a high SoVI score using the 3-

classification scheme provided by the Univ. of South Carolina Hazards Vulnerability 

Research Institute.  

 

 

 

Table 5: Number of Observations per Hurricane 

 
  

Hurricane

Presidentially 

Declared

Projected by 

Impact Model 

Pct. Declared 

indentified by 

Impact Model

Notes on Difference 

between Declared and Impact Model

Bret 13 20 100% Overestimated by 7 counties or 35%

Charley 69 32 42% Underestimated by 40 counties or 68%; identifed 3 counties not declared

Claudette 18 29 100% Overestimated by 11 counties or 38%

Floyd 182 263 96% Underestimated by 8 counties or 4%; identified 89 counties not declared

Irene 18 43 100% Overestimated by 25 counties or 58%

Isabel 158 193 100% Overestimated by 35 counties or 18%

Ivan 325 348 90% Underestimated by 32 counties or 10%; identified 55 counties not declared

Jeanne 53 55 100% Overestimated by 2 counties or 4%

Lili 44 54 100% Overestimated by 10 counties or 19%

Totals 880 1037 -

604 unique  - number of counties declared for a single hurricane

203 duplicates  - number of counties declared under mutiple hurricanes

Number of Counties

(Observations)
Accuracy of Impact Model
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Figure 6: Map of Frequency Counts for Counties Declared under Multiple 

Hurricanes 

 

 

 

The social vulnerability index data was supplied by the Hazard Vulnerability 

Research Institute at the University of South Carolina (HVRI). The HVRI also provides a 

complete county-level dataset of the social vulnerability index (SoVI) developed by 

Cutter et al. (2003). The version of the SoVI dataset represented in this analysis is based 

on a more current iteration of SoVI that relies on statistical analysis from 29 of the 

original 42 variables of economic, demographic, and housing characteristics that hazard 

vulnerability research suggests influence a county’s ability to prepare for, respond to, and 

recover from a natural hazard (Cutter et al. 2003). This updated version of SoVI is based 
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on 7 factors that account for 72.5% of the variance.  Table 6 below provides the complete 

list of SoVI variables with component loadings for each of the 7 factors used to generate 

the county level SoVI index.   

 

 

 

Table 6: SoVI variables and Component Loadings  

 
 

 

 

Component Name
% Variance 

Explained

Dominant 

Variables

Component 

Loading

QFHH 0.863

QBLACK 0.752

QPOVTY 0.715

QNOAUTO 0.615

QCVLUN 0.612

QED12LES 0.547

QFAM 0.547

MEHSEVAL 0.891

QRICH200K 0.854

MDGRENT 0.85

PERCAP 0.805

QASIAN 0.681

MEDAGE 0.889

QAGEDEP 0.767

QSSBEN 0.763

QUNOCCHU 0.718

PPUNIT ‐0.596

QRENTER ‐0.669

QNOHLTH 0.744

QHISP 0.725

QEXTRCT 0.545

QED12LES 0.532

QFEMLBR ‐0.621

QNRRES 0.666

HOSPTPC 0.643

6 Ethnicity (Native American) 5.042 QNATAM 0.892

QSERV 0.739

QFHH ‐0.660

Cumulative Variance 

Explained 72.501

1 Race (Black) and Class (Poverty) 16.599

2 Wealth 15.905

3 Age (Old) 13.196

4 Ethnicity (Hispanic) 9.479

5 Nursing Home Residents 7.471

7 Employment in Service Industries 4.809
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The SoVI dataset includes the following core data elements: County, State, 

individual variables, component loadings, 7-factors, SoVI Score, 5 and 3-level 

classifications, and National Percentile (where the county score ranks in comparison to 

the rest of the nation). (HVRI SoVI webpage 2012).  See Appendix B for the complete 

list of variables included in the SoVI data schema. The composite index scores are 

mapped in Figure 7 using a 3-level classification scheme. It is worthwhile to note that a 

number of counties within coastal states have low SoVI scores coded in blue in map 

below. Figure 8 maps an extract of just those counties declared that were included in the 

analysis using the same classification scheme. Of the 604 counties declared that were 

included in the analysis, 177 or 19.4% had high SoVI scores, 266 or 44% had medium 

SoVI scores, and 221 or 36.6% had low SoVI scores. 

 

 

 
 

Figure 7: Map of SoVI Index Scores at County Level 
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Figure 8: Map of SoVI Index Scores for Declared Counties included in Analysis 

 

 

The federal disaster outcome data were supplied by FEMA based on an extract 

from the National Emergency Management System (NEMIS) and from the SBA through 

the National Institute for Computer-Assisted Reporting database.  NEMIS is the system 

of record for managing disaster assistance issued under the provisions of the Robert T. 

Stafford Act.  The FEMA Disaster assistance grant programs fall into three main 

categories: individual assistance, public assistance, and hazard mitigation assistance. 

Individual assistance (IA) grants provide financial assistance as a direct result of a major 

disaster for temporary housing, home repairs, replacement of a home, or permanent or 

semi-permanent housing construction and for other expenses or serious needs resulting 

from the disaster such as medical, funeral and burial, household items, cleaning, storage, 

heating, ventilation, and air condition, or other needs determined by FEMA (FEMA 
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website 2012). The Public Assistance (PA) grants provide supplemental Federal disaster 

grant assistance to state, tribal, and local government including eligible Private Nonprofit 

organizations for debris removal, emergency protective measures, and the repair, 

replacement, or restoration of disaster-damaged, publicly owned facilities and the 

facilities of eligible Private Non-Profit organizations (FEMA website 2012).  The Hazard 

mitigation (HM) grant program provides assistance for long-term hazard mitigation 

measures to be implemented during the initial community recovery to encourage 

protection of the damaged infrastructure from future events to end the cycle of repetitive 

damage and loss. The dataset compiled for this effort includes grant information 

aggregated at the county-level for disaster declarations issued for the selected hurricanes. 

It includes the following data elements:   disaster number, disaster name, year, State, 

place name, place code, number of grants, and total amount in dollars.  This dataset 

provides a tool for examining vulnerability indices using metrics based on direct federal 

assistance resulting from the impact of a natural hazard (i.e., hurricane).  

SBA disaster loan program is managed by the Small Business Administration in 

coordination with FEMA. The U.S. Small Business Administration (SBA) provides 

disaster loans under the provisions of the Small Business Act, 15 U.S.C. 636(b), (c), and 

(f).   The SBA offers these low interest disaster loans to homeowners, renters, businesses 

of all sizes and private, nonprofit organizations to repair or replace real estate, personal 

property, machinery and equipment, inventory and business assets that have been 

damaged or destroyed in a declared disaster (SBA website 2012). The National Institute 

for Computer-Assisted Reporting (NICAR) maintains a national level database of the 
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SBA disaster loan issued between 1980 and 2010. This dataset includes information on 

the borrower, disaster, location and amount of each loan issued by the SBA as well as the 

North American Industry Classification Codes (NAICS). There are a few limitations with 

the data. The SBA includes data on loans that were not fully dispersed. This is due to the 

fact that the SBA distributes loans as a series of payments not as a lump sum. SBA 

reports that occasionally borrowers decide not to accept the entire loan amount after 

getting an installment or two, this introduces some error in cost figures (IRE website 

2013). The data also contains the mailing address of the borrower and not the location of 

the damaged property.  This may skew financial calculations based on locations 

depending on the level of data aggregation.  Regardless of these reporting issues, the 

SBA disaster loan dataset provides a useful tool for examining the effects of a particular 

disaster on small businesses and various sectors of the economy using the NAICS codes.   

The disaster assistance data was aggregated to the county level using the 5-digit 

county FIPS code.  To remove the duplicate records for hurricane events that 

encompassed multiple disaster declarations, the county records were unduplicated using a 

composite key based on event name and 5-digit county FIPS code.  The amounts of 

federal assistance were then standardized per capita using Census 2000 population to 

control for county size and population variance.  The SoVI scores were appended to the 

composite dataset for each county.  The disaster outcome data was down selected to the 

18 most meaningful variables. Data elements with little or no applicability to a statistical 

regression analysis were disregarded.    Figure 9 below provides a visual representation 

of the data schema with the standardized variables highlighted in yellow: total amount of 
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federal assistance per capita (TA_pcap), total amount of individual assistance per capita 

(IA_pcap), total amount of public assistance per capita (PA_pcap), total amount of hazard 

mitigation assistance per capita (HM_pcap), and total amount of SBA disaster loans 

assistance per capita (SBA_pcap).  In total, there are nine federal disaster outcome 

datasets; one for each hurricane event included in the analysis. A complete list of 

variables for the disaster assistance data is enumerated in Appendix F.   
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Figure 9: Schema for Disaster Assistance Outcome Datasets 
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The impact model data were also provided by FEMA and are based on their 

ESF#5 operating procedures. FEMA generates the impact models by loading the National 

Weather Service Advisories forecasts published through the Hurrevac software, Census 

2000 socio-demographic data, and HSIP foundational data into the HAZUS-MH.  The 

impact model data supplied represents the final run executed based on the last hurricane 

forecast advisory issued subsequent to hurricane landfall. HAZUS-MH provides the 

ability to generate empirical-based damage and impact assessments for hurricanes based 

on field tested fragility and loss estimation algorithms supported by the National Institute 

of Building Sciences (HAZUS-MH User Guide 2009). HAZUS-MH includes an 

extensive database of land-use, critical infrastructure, and population data.  The National 

Oceanic and Atmospheric Administration (NOAA) publishes historical data in a GIS-

ready format for sub-tropical storms based on the official National Hurricane 

Center(NHC) public warnings and forecast advisories. This dataset includes storm tracks, 

cones of uncertainty, and wind speed probabilities for each storm dating back to 1848 and 

is available for public download from the NOAA National Climatic Data Center.  

The U.S. Census Bureau offers a comprehensive database of population and 

demographic data based on the Summary File 3 (SF3) and the Topologically Integrated 

Geographic Encoding Referencing system (TIGER) for all jurisdictions. The TIGER 

dataset provides for geographic representation of the SF3 data variables. The SF3 

includes data from the “long form” of the census questionnaire that encompasses 

statistically adjusted variables for populations, race, gender, socio-economic, and other 

variables (US Census Bureau Fact Sheet 2000). This study utilizes the 2000 Decennial 
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census data as a best representation of local population and demographics. The Decennial 

Census is a snapshot in time of the night-time population of the United States produced to 

assist with the reapportionment and redistricting of Congressional seats in the US House 

of Representatives. Use of the 2000 Decennial Census data also reduces the time 

differential between the hurricane disasters selected for study and the fixed-population 

and demographic data enumerated during the 2000 Census. This data was also used by 

Cutter et al. (2003) in the construction of the social vulnerability index (SoVI). These two 

factors will allow for more consistency in the analysis based on common data sources. 

The National Geospatial-Intelligence Agency (NGA) in partnership with the Departments 

of Homeland Security and Interior compiles the Homeland Security Infrastructure 

Protection (HSIP) Gold Data Product on an annual basis (since 2004) to provide a unified 

database of mission-critical geospatial information for use by Homeland Security and 

Homeland Defense (HLS/HD) partners to fill common operating data requirements in 

support of operational needs for preparedness, response, and recovery efforts to natural 

and man-made disasters. The HSIP Gold database encompasses more than 450 layers of 

critical information and key resources (CIKR) comprised of the best available Federal 

and commercial-proprietary data sets. HSIP Gold provides a comprehensive national 

level dataset of structural elements of the built environment including the LANSCAN 

Day/Night population dataset developed by Oak Ridge National Lab, the NAVTEQ 

national transportation dataset, and various facilities and public assets (NGA HSIP Fact 

Sheet 2012). Since SF3 data was discontinued by the US Census Bureau following the 

2000 decennial census; hence, SoVI was updated in 2010 to uses the American 
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Community Survey data.  FEMA will also need to update their operating procedures to 

include a replacement dataset for Census SF3 variables.  Figure 10 below provides a 

visual representation of the data schema for the impact model data.  The data elements 

that were duplicates or had little or no applicability to a statistical regression analysis 

were removed from the dataset. SoVI scores and total assistance per capita variables 

(TA_pcap) were appended to the composite dataset for each county.   In total, there are 

nine federal impact model datasets; one for each hurricane event included in the analysis. 

A complete list of variables for the impact model data is enumerated in Appendix E.   
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Figure 10: Schema for the Impact Model Datasets 
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The FEMA impact model accurately forecasted the declared counties for 8 of the 9 

hurricane events used in the analysis (see table 5). The model only identified 42% of the 

declared counties for hurricane Charley. The model achieved 90% or higher accuracy for 

the remaining hurricanes of which it was 100% accurate for 6 of those hurricanes.  While 

the FEMA impact model appears to be reliable in identifying counties that end up 

meeting requirements for presidential declaration (being declared), it has a tendency to 

over forecast the number of counties for consideration.  Analyzing the causes of the 

model over forecasting are beyond the scope of this dissertation but should be examined 

in future research. Figure 11 below provides a comparison of the declared counties and 

the impact model counties included in the analysis. Counties shown in orange were over 

forecasted by the FEMA impact model.   

 

 

 

Figure 11: Map of Declared Counties and Impact Model Counties 
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Figures 12-20 provide detailed maps of the storm tracks, declared counties, impact 

model counties, and SoVI scores for each hurricane included in the analysis followed by 

a brief narrative explaining the accuracy of each model forecast and the related SoVI 

scores. 



  

 

 

 

 

Figure 12: Map of Hurricane Bret Storm Track, Declared Counties, Impact Model Counties, and SoVI Scores 

 

 

Hurricane Bret was the first hurricane of the 1999 Atlantic hurricane season and strengthened to a category 4 on the 

Saffir-Simpson scale prior to landfall (peaks winds of 145 mph). All the counties forecasted by the FEMA impact model and 

included in the disaster declaration are categorized as highly vulnerable in the SoVI index.  The impact model over forecasted 

the number of counties for Hurricane Bret by 35%, but accurately predicted all 13 counties included in the disaster declaration.  

The impact model over forecast occurred in the northeastern and southwestern quadrants of the hurricane storm track.   
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Figure 13: Map of Hurricane Charley Storm Track, Declared Counties, Impact Model Counties, and SoVI Scores 

 

 

Hurricane Charley was the second hurricane of the 2004 Atlantic hurricane season making landfall as a category 4 on the 

Saffir-Simpson scale (peak winds of 150 mph). The FEMA impact model significantly under forecast the number of counties 

for Hurricane Charley by 68%, missing counties to the northwestern and southeastern quadrants of the hurricane storm track.  

The impact model also identified 3 counties that were not included in the declaration. For counties included in the Hurricane 

Charley impact model and disaster declaration, the SoVI index scores are a blend of low, medium, and high vulnerability.  
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Figure 14: Map of Hurricane Claudette Storm Track, Declared Counties, Impact Model Counties, and SoVI Scores 

 

 

Hurricane Claudette was the first hurricane of the 2003 Atlantic hurricane season making landfall as a strong category 1 

on the Saffir-Simpson scale (peaks winds of 90 mph).  The FEMA impact model over forecasted the number of counties for 

Hurricane Claudette by 38%, but accurately predicted all 18 counties included in the disaster declaration.  The impact model 

over forecast occurred in the northeastern and northwestern quadrants of the hurricane storm track.  The counties forecasted by 

the FEMA impact model and included in the disaster declaration were mostly categorized as highly vulnerable in the SoVI 

index as well as 2 counties with low and 3 counties with high SoVI scores.  
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Figure 15: Map of Hurricane Floyd Storm Track, Declared Counties, Impact Model Counties, and SoVI Scores 

 

 

Hurricane Floyd was the third hurricane of the 1999 Atlantic hurricane season making landfall as a strong category 4 on 

the Saffir-Simpson scale (peak winds of 155 mph). The FEMA impact model accurately forecast 96% of the counties declared 

for Hurricane Floyd; however, it significantly over forecast counties to the west of the hurricane storm track as Hurricane 

Floyd moved its way northward along the US coastline.  The impact model missed 8 declared counties and forecast 89 more 

counties that were not included in the declaration. For counties included in the Hurricane Floyd impact model and disaster 

declaration, the SoVI index scores are a blend of low, medium, and high vulnerability.   
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Figure 16: Map of Hurricane Irene Storm Track, Declared Counties, Impact Model Counties, and SoVI Scores 

 

 

Hurricane Irene was the sixth hurricane of the 1999 Atlantic hurricane season making landfall in the US as a strong 

category 1 on the Saffir-Simpson scale (peaks winds of 110 mph).  The FEMA impact model over forecasted the number of 

counties for Hurricane Irene by 58%, but accurately predicted all 18 counties included in the disaster declaration.  The impact 

model over forecast occurred in the northwestern and southeastern quadrants of the hurricane storm track.  For counties 

included in the Hurricane Irene impact model and disaster declaration, the SoVI index scores are a blend of low, medium, and 

high vulnerability. 
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Figure 17: Map of Hurricane Isabel Storm Track, Declared Counties, Impact Model Counties, and SoVI Scores 

 

 

Hurricane Isabel was the second hurricane of the 2003 Atlantic hurricane season making landfall as a strong category 1 

on the Saffir-Simpson scale (peaks winds of 105 mph).  The FEMA impact model over forecasted the number of counties for 

Hurricane Isabel by 18%, but accurately predicted all 158 counties included in the disaster declaration.  The impact model over 

forecast occurred in the western and eastern quadrants of the hurricane storm track.  For counties included in the Hurricane 

Isabel impact model and disaster declaration, the SoVI index scores are a blend of low, medium, and high vulnerability with a 

concentration of low vulnerability counties along the northeastern portion of the storm track.  
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Figure 18: Map of Hurricane Ivan Storm Track, Declared Counties, Impact Model Counties, and SoVI Scores 

 

 

Hurricane Ivan was the sixth hurricane of the 2004 Atlantic hurricane season making landfall in the US as a strong 

category 3 on the Saffir-Simpson scale (peaks winds of 125 mph).  The FEMA impact model accurately forecast 90% of the 

counties declared for Hurricane Ivan; however, it significantly over forecast counties to the east as Hurricane Ivan moved 

northward into Alabama and to the west in Louisiana during a second landfall.  The impact model missed 12 declared counties 

and forecast 55 more counties that were not included in the declaration. For counties included in the Hurricane Floyd impact 

model and disaster declaration, the SoVI index scores are a blend of low, medium, and high vulnerability.   
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Figure 19: Map of Hurricane Jeanne Storm Track, Declared Counties, Impact Model Counties, and SoVI Scores 

 

 

Hurricane Jeanne was the fifth hurricane of the 2004 Atlantic hurricane season making landfall in the US as a strong 

category 2 on the Saffir-Simpson scale (peaks winds of 120 mph).  The FEMA impact model was highly accurately in the 

forecast for Hurricane Jeanne identifying 100% of the counties declared and over forecasting by just 2 counties in the western 

edge of the Florida pan handle. For counties included in the Hurricane Jeanne impact model and disaster declaration, the SoVI 

index scores are a blend of low, medium, and high vulnerability.   
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Figure 20: Map of Hurricane Lili Storm Track, Declared Counties, Impact Model Counties, and SoVI Scores 

 

 

Hurricane Lili was the sixth hurricane of the 2002 Atlantic hurricane season making landfall in the US as a category 2 on 

the Saffir-Simpson scale (peaks winds of 75 mph).  The FEMA impact model accurately forecast 100% of the counties 

declared for Hurricane Lili, identifying all 44 counties included in the disaster declaration. The impact model over forecasted 

the number of counties for Hurricane Lili by 19%. The impact model over forecast occurred in the northeastern and 

northwestern quadrants of the hurricane storm track.  For counties included in the Hurricane Lili impact model and disaster 

declaration, the SoVI index scores are a blend of low, medium, and high vulnerability. 
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EXPLORATORY REGRESSION AND SPATIAL ECONOMETRICS 

APPROACH 

Hazard vulnerability is perceived as a spatial varying phenomenon based on the 

hazards-of-place model.  Vulnerability does not occur in isolation to each community.  

Statistical regression analysis has been used effectively to evaluate the relationship 

between human and environmental factors in climate vulnerability studies (Samson et al. 

2011, p.2), forest management studies on modeling of forest growth factors (Shi et al. 

2006, p. 996), and hazard vulnerability studies related to the spatial distribution of 

consent forms for individual requiring assistance during disaster in Japan (Arima et al. 

2014, p.2), the analysis of vulnerability assessments (Emrich 2005, p.53), and in 

quantifying urban vulnerability to terrorist incidents (Piegorsch et al 2007, p.1417).  

Schmidtlein et al. 2008 infers that “there is no obvious avenue through which indices of 

social vulnerability may be validated” and hazard researchers “must strive at least to 

understand the limitations of [sic] their methodologies” (p. 1111).   

While statistical regression analysis is often used to understand and explain 

complex phenomena like hazard vulnerability; it is not always easy to find a set of 

independent variables to explain or predict the phenomenon in question.  Exploratory 

spatial regression is an iterative approach that applies ordinary least squares (OLS) 

regression and spatial autocorrelation (Moran’s I) to a set of candidate independent 

(explanatory) variables to identify if there is a viable model for answering the research 

question.  The exploratory regression tool in ArcGIS was used to evaluate multiple 
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models and combinations of candidate variables for the regression scenarios. This tool 

considers the following search criteria when evaluating potential models:  minimum and 

maximum number of explanatory variables, minimum acceptable adjusted R-squared, 

maximum acceptable coefficient p-value, maximum variance inflation factor, minimum 

Jarque-Bera P-value, and minimum spatial autocorrelation (Moran’s I) P-value.  The Esri 

ArGIS software documentation defines a properly specified model as meeting the 

following criteria:   

1) Coefficients are statistically significant for all independent variables. 

2) Coefficients match the expected relationships between dependent and 

independent variables. 

3) No multicollinearity exists.  

4) Jarque-Bera is not statistically significant and residuals are normally 

distributed. 

5) Spatial autocorrelation p-value is not statistically significant and residuals are 

randomly distributed, or exhibit no systematic patterns in the attribute space 

and geographical space. 

Ordinary least squares (OLS) regression was used to determine the relationship 

between the variables, assess the goodness of fit, and derive the beta estimates to test for 

spatial dependence. The adjusted R-squared values were used to evaluate the 

performance of a model – how well it was able to explain the dependent variable.  The P-

values were used to identify the independent variables that are significant predictors. The 
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variance inflation factors (VIF) were used to identify variable redundancy or 

multicollinearity.  If there is a presence of multicollinearity, which is highly likely given 

that mulitcollinearity was discovered in the construction of SoVI, then exploratory 

regression analysis was used as a way to identify and eliminate variables causing 

multicollinearity. According to O’Brien (2007), the rule of thumb most commonly used 

as a sign of severe multicollinearity is 10.  Menard (1995) suggests using a rule of 5 to 

indicate concern for serious multicollinearity. For this dissertation, Menard’s rule of 5 

was used as the parameter for the exploratory OLS regression. 

The Jarque-Bera diagnostics, combined with a scatterplot review, were used to 

identify bias and outliers.  Regression coefficients were analyzed to understand the 

strength and sign of the relationship between dependent and independent variables used 

in a model.   

The Moran’s I statistic was used to examine the regression residuals from model 

inputs to reveal any underlying spatial dimensions that may bias the data (Smith et al. 

2007, Wong and Lee 2005) including spatial autocorrelation.  Observations made at 

different locations may not be independent.  For example, measurements made at nearby 

locations may be closer in value than measurements made at locations farther apart.  This 

phenomenon is called spatial autocorrelation and was essentially defined by Tobler’s 

First Law of Geography (Brent Hecht and Emily Moxley 2009, p. 1). Calculation of 

Moran’s I involves the construction of a spatial weights matrix used to quantify the 

spatial relationships among the observations in the dataset.  A statistically significant 
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Moran’s I value would reaffirm Tobler’s first law of geography in the context of hazard 

vulnerability as well as the relationship between spatial frequency, geophysical 

characteristics, and location to the hazard.  Hazards-of-place theory considers hazard 

vulnerability to be unevenly distributed across space with place serving as the integrating 

mechanism. A statistically significant Moran’s I would raise questions regarding the 

applicability of Cutter’s Hazards-of-place theory to discreet phenomena and the spatial 

variation of hazard vulnerability.   Is hazard vulnerability more a product of the existence 

of the hazard or of the presence of human and the built environment? 

Standard regression models such as OLS can be inefficient as standard errors are 

often underestimated and spatial dimensions are often “treated as noise rather than 

informative patterns” (Samson et al. 2011, p. 2). There may be a mismatch between the 

spatial unit of observation and the spatial extent of the phenomena. This mismatch will 

result in spatial measurement errors and spatial autocorrelation between these errors and 

will bias the model (Anselin and Bera 1998). Since OLS regression is unable to 

discriminate spatial variation when geographical heteroscedasticity or local 

multicollinearity exists, a spatial econometrics approach is required.  If the relationship 

varies as we move across the spatial data sample or the variance changes, alternative 

estimation procedures are needed to successfully model this variation and draw 

appropriate inferences (LeSage 1999, p. 2).  Spatial econometrics models were 

constructed to deal with these types of spatial effects, specifically spatial autocorrelation 

and spatial heterogeneity. “Spatial autocorrelation (dependence) violates the Gauss-
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Markov assumptions in regression modeling that explanatory variables are fixed in 

repeated sampling; and spatial heterogeneity violates the Gauss-Markov assumptions that 

a single linear relationship with constant variance exists across the sample data 

observations” (LeSage 1999, p. 2).  The Lagrange Multiplier (LM) diagnostic was used to 

detect the presence and type of spatial dependence in the data and determine which 

spatial regression method to use: spatial error or spatial lag.  The null hypothesis of the 

LM test is that there is no spatial dependence in the residuals. For this research, the 

spatial weights for the spatial regression models were based on queens-contiguity.   

Additionally, geographically weighted regression (GWR), a local regression model 

that allows for the depiction of spatial heterogeneity in a regression context and the 

description of spatial non-stationarity through a spatial weighting function using the local 

estimate of model coefficients (Shi et al. 2006, p. 997), was also employed.  Spatial non-

stationarity refers to variations in relationships over space between some sets of variables 

because the “rates of change are not universal but determined by local culture or local 

knowledge, rather than a global utility assumed for each commodity” (Brunsdon 1996, p. 

283). The spatial weights matrix serves as an expression of spatial dependence between 

observations (Fotheringham et al. 2002, p. 44).   

Model results from OLS, spatial regression, and GWR were compared using 

goodness of fit measures: Akaike Information criterion (AIC), Schwarz criteria (SC), 

Likelihood ratio (LR), Lagrange Multiplier (LM), and the Joint Wald statistic (W) 

(Anselin 2005, p. 207). The LR, LM, and W tests address the same basic question, does 



  

 

82 

 

leaving out explanatory variables reduce the fit of the model. When the model is linear, 

according to Johnston and DiNardo (1997 p. 150), these three test statistics have the 

following relationship W > LR > LM.  To determine if the model is a better fit than OLS 

and if it is properly specified, these diagnostics were compared in the expected order per 

Anselin 2005 (p. 209): W > LR > LM. If the model is not compatible with the expected 

order, the model is likely mis-specified (missing a key explanatory variable) or under the 

influence of other factors not represented by the model.   

 

SPATIAL REGRESSION SCENARIOS 

Using the exploratory regression and spatial econometrics approach described in 

the preceding section, this research sought to evaluate if the theoretical relationships 

between SoVI and disaster management policy and practice are supported by the 

empirical evidence, using the selected 9 hurricanes. It also investigates the ability of 

SoVI and the FEMA impact models to accurately predict disaster impacts (expressed as 

costs per capita).  It is intended to shed light on the voracity of SoVI to adequately 

measure and predict potential exposure and risk to a hurricane hazard.  The statistical 

analysis was based on five regression scenarios listed in table 7 below.  The dependent 

variables used in the analysis were the total federal assistance per capita and the SoVI 

score. Total federal assistance per capita was used as an expression of the overall impact 

of each event defined as the costs of federal programs for public assistance (PA), 

individual assistance (IA), mitigation (MA), and small business disaster assistance loans 
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(SBA). These data account for the majority of public (federal) hurricane disaster 

expenditures and represent the federal components of actual damage and cost of a 

disaster.  Rygel et al. 2005 (p. 761) suggests that cost might be an important 

consideration when constructing vulnerability indices and for validating their utility to 

mitigation planning. SoVI was used as a dependent variable to better understand the 

relationship between social vulnerability, federal disaster outcomes, and impact model 

data elements.  

The independent (explanatory) variables used in the statistical analysis are 

comprised of the federal disaster outcome data subset, the disaster impact model data 

subset, and the SoVI component factors.  The disaster impact model data (demographic, 

socio-economic, infrastructure, and storm track data) represent the essential elements of 

information defined in disaster management policy (characteristics of impact and 

damage) discussed in the previous chapter.   Essential elements of information are 

intended to serve as indicators for mobilizing federal assistance programs required to 

facilitate community recovery and rebuild.  The SoVI data subset includes the component 

factors that make up the composite index score.  The federal disaster outcome data subset 

includes costs and counts for each federal assistance program.  

 Regression scenario 1 seeks to quantify the theoretical relationships between 

hazard vulnerability science and disaster management policy and practice advanced in 

chapter 3.  Regression scenarios 2 and 3 seek to quantify the predictive power of SoVI 

and its sub-factor components to predict disaster impact and costs.  Regression scenario 4 
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seeks to offer a new approach to hazard vulnerability indexing based on disaster impact 

modeling. It examines the relationship between disaster costs and impact results to 

demonstrate a statistical basis for this approach. Regression scenario 5 seeks to improve 

upon SOVI by incorporating variables representing the geophysical properties of the 

hazard (average distance to coast and max sustained winds). SoVI did not have linkages 

to this group of disaster management EEIs as depicted in Figure 5. 

To determine if spatial econometrics is able to produce a better fit model, the 

results of OLS, spatial regression, and GWR are compared using the AIC, Schwarz 

criterion, R-squared values, and model coefficients.    

 

 

 

Table 7: Regression Scenarios used in the Statistical Analysis 

  

Dependent 

Variable

Independent (Explanatory) 

Variables
Objective

Regression 

Scenario 1
SoVI score Disaster Impact Model Data Subset

How do disaster impact model data elements relate to SoVI? 

Which disaster impact model data elements have the strongest 

relationships to SoVI?

Regression 

Scenario 2

Total Federal Assistance per Capita 

(TA_pcap)
SoVI Score

Can SoVI accurately predict disaster impacts as expressed by 

total federal assistance per capita? 

Regression 

Scenario 3

Total Federal Assistance per Capita 

(TA_pcap)
SoVI Factors

How do  SoVI Component factors relate to disaster impacts as 

expressed by total federal assistance per capita?

Regression 

Scenario 4

Total Federal Assistance per Capita 

(TA_pcap)
Disaster Impact Model Data Subset

Can the disaster impact model data accurately predict disaster 

impacts as expressed by total federal assistance per capita?

Regression 

Scenario 5

Total Federal Assistance per Capita 

(TA_pcap)
SOVI + AveDistC + MaxSustWin

Can the performance of SoVI be improved by adding missing 

variables for the hazard?

*Each regression scenario was run for every hurricane included in the analysis.  A total of 45 regressions 5 scenarios times 9 hurricanes.
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CHAPTER 5: RESULTS OF CORRELATION ANALYSIS AND EXPLORATORY 

REGRESSION 

 

 

Findings from chapter 3 demonstrated the conceptual alignment of SoVI with the 

disaster management policy EEI groupings for disaster boundary areas, socio-economic, 

and critical infrastructure information but not with the grouping for geophysical 

information. It also demonstrated alignment of SoVI and FEMA impact model data 

variables. These conceptual relationships were demonstrated in the crosswalk matrix 

depicted in Chapter 3, Figure 5.  Based on these conclusions and hazard vulnerability 

theory, one expects to find strong statistical correlations between SoVI scores and key 

disaster impact variables. 

This chapter attempts to quantify these conceptual linkages using a combination 

of correlation analysis and exploratory OLS regression with SoVI as the dependent 

variable and disaster impact model data elements as the independent (explanatory) 

variables. These are the same variable sets used in the crosswalk matrix depicted in 

Chapter 3, Figure 5.  Correlation analysis provides a means for determining the degree of 

linear association between the variables. Exploratory regression analysis provides a 

means to assess the statistical relationships between the variables, to eliminate redundant 
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variables, and find a potential set of variables able to explain the dependent variable.  

Statistically significant results would substantiate the conclusions from chapter 3. 

 

CORRELATION ANALYSIS 

By way of comparison with Cutter et al. 2003a, the Pearson Product-Moment 

Correlation Coefficient was calculated for the 604 declared counties using two sets of 

values: actual SoVI index score and the frequency count of hurricane events. The Pearson 

coefficient was 0.028714. Just as Cutter et al. 2003a found, there was no statistical 

correlation between the frequency counts and SoVI index score for the declared counties 

included in the analysis.  However, this correlation analysis does not consider us of soVI 

in a disaster operation context.  It is a gross assessment of the correlation between the 

number of hurricane events and the SoVI score for a county over the sample period.   

To examine the utility of SoVI in disaster operations as claimed by Cutter and 

Emrich 2016, Pearson correlation coefficients were generated for each set of variables for 

the 9 hurricanes.  The complete correlation matrixes are provided in the appendix.  Table 

8 below provides a consolidated view that shows the correlation of SoVI with the 

independent variables for each of the 9 hurricanes.  This table indicates that there are 

strong statistical correlations between SoVI and the variables linked to the socio-

economic information grouping.  Each variable was statistically significant at the 95% 

confidence level for 5 or more hurricanes. PCTPOV (percent poverty) was significant for 

all 9 hurricanes.  SoVI had few statistically significant correlations with the variables 
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linked to the geophysical information grouping.  One exception was AVEDISTC 

(average distance to coast) that was significant for 5 hurricanes.  Additionally, SoVI was 

not significantly correlated with most of the variables linked to critical infrastructure 

information. A few exceptions include NUMBRIDGE (number of bridges), ROADMI 

(miles of road), FIRESTA_CNT (number of fire stations), and SCH_CNT (number of 

schools).  These findings are consistent with the conclusions from chapter 3.  This table 

also shows conflicting information for some variables (ie; both positive and negative 

correlations for the same variables across different storms); as result, the correlation 

matrixes were not helpful in variable selection.   Exploratory OLS regression was used as 

a more manageable method given the difficulty in synthesizing the information from the 

correlation matrixes.   
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Table 8: Pearson Correlation Coefficients for SoVI and FEMA Impact Model Data 

 

 

 

 

EXPLORATORY OLS REGRESSION 

The ARCGIS exploratory regression tool was used to build OLS models using all 

possible combinations of explanatory variables included in the FEMA impact model 

datasets (30 potential variables).  The regression scenario is illustrated in Figure 21 

below.  

Bret Charley Claudette Floyd Irene Isabel Ivan Jeanne Lili

Disaster Mgmt. Policy

EEI Groupings Variables SOVI SOVI SOVI SOVI SOVI SOVI SOVI SOVI SOVI

Boundary Information
AREASQMI -0.069 0.095 0.090 0.101 0.129 0.081 0.015 0.019 -0.023

HUNITS -0.428 -0.567 -0.765 -0.288 -0.476 -0.284 -0.177 -0.258 -0.083

POP2000 -0.413 -0.577 -0.768 -0.326 -0.500 -0.318 -0.209 -0.249 -0.107

POPDEN00 -0.474 -0.668 -0.590 -0.041 -0.721 -0.126 -0.131 -0.306 -0.060

PERCAPINC -0.481 -0.455 -0.660 -0.702 -0.493 -0.750 -0.538 -0.505 -0.672

PCTPOV 0.554 0.656 0.823 0.815 0.733 0.826 0.615 0.536 0.841

AVEDISTC 0.233 0.316 0.564 0.211 0.432 0.185 0.073 0.305 0.502

TREEVOL 0.236 -0.073 -0.306 0.093 -0.330 0.018 -0.054 -0.164 0.081

MAXSUSWIN -0.136 0.084 0.168 -0.014 -0.115 -0.036 0.154 0.014 0.215

BLDGLOSS1K 0.332 0.067 -0.313 0.031 -0.250 -0.063 -0.041 -0.073 0.003

CNTLOSS1K 0.172 0.059 -0.313 0.035 -0.252 -0.018 -0.040 -0.078 0.000

NUMBRIDGE -0.513 -0.430 -0.692 -0.220 -0.431 -0.203 -0.293 -0.333 0.069

ROADMI -0.440 -0.464 -0.763 -0.228 -0.440 -0.329 -0.221 -0.287 0.118

ERC_CNT -0.147 -0.268 -0.101 -0.230 -0.343 -0.075 -0.259 -0.274 0.204

FIRESTA_CT -0.419 -0.282 -0.601 -0.303 -0.493 -0.184 -0.356 -0.313 -0.298

POLSTA_CT -0.254 -0.354 -0.470 -0.275 -0.412 -0.062 -0.263 -0.250 0.113

SCH_CT -0.477 -0.584 -0.503 -0.247 -0.550 -0.239 -0.192 -0.429 -0.069

MEDFAC_CT -0.495 -0.443 -0.441 -0.244 -0.358 -0.090 -0.131 -0.300 0.025

ERC_prob 0.429 -0.238 0.087 0.027 -0.213 0.013 -0.025 0.021 0.247

Fire_prob 0.102 0.337 -0.164 0.142 -0.175 0.160 -0.021 0.247 0.216

Pol_prob 0.217 0.318 -0.155 0.134 -0.220 0.160 -0.020 0.278 0.193

Sch_prob 0.332 0.228 -0.203 0.149 -0.240 0.151 -0.028 0.213 0.156

Med_prob -0.174 0.386 -0.176 0.072 -0.201 0.139 -0.017 0.313 0.233

Gra_prob 0.329 0.313 -0.226 0.142 -0.236 0.162 -0.024 0.228 0.155

Gov_prob 0.325 0.311 -0.227 0.143 -0.236 0.162 -0.024 0.229 0.154

GovE_prob 0.325 0.311 -0.226 0.143 -0.236 0.162 -0.024 0.229 0.154

NH_prob 0.226 0.315 -0.213 0.140 -0.236 0.162 -0.022 0.225 0.128

Nonp_prob 0.307 0.318 -0.226 0.136 -0.236 0.160 -0.025 0.221 0.150

Hosp_prob 0.358 0.302 -0.227 0.150 -0.236 0.166 -0.023 0.235 0.161

Coll_prob 0.325 0.310 -0.226 0.144 -0.237 0.162 -0.024 0.230 0.154

Values in bold are different from 0 with a significance level alpha=0.05

Hurricane

Geophysical 

Information

Socio-Economic 

Information

Critical Infrastructure 

Information
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Figure 21: Exploratory Regression - Model Variables 

 

 

The parameter settings for the exploratory OLS regression are depicted in Figure 

22, and these settings were consistent for all 9 hurricanes. The objective was to identify a 

consistent set of variables that would be effective for all 9 hurricanes. The output reports, 

produced by ArcGIS for the exploratory OLS regression, include 6 sections: passing 

models (by number of independent variables), summary of global model diagnostics, 

summary of variable significance, summary of multicollinearity, summary for residual 

normality, and summary for spatial autocorrelation. At this stage, it is reasonable to focus 

Dependent 

Variable

Exploratory Regression Candidate

Indepdendent (Explanatory) Variables

Independent Variables for 

OLS\GWR Model Runs

HUNITS: Number of Housing Units in affected county tracks

POP2000: Total Population in affected county tracts

AREASQMI: Area of county 

POPDEN00: Population 2000 Density

PERCAPINC: Per capita Income

PCTPOV: Percent Poverty

AVEDISTC: Average Distance to Coast

TREEVOL: Estimation of tree volume in tons

MAXSUSWIN: Sustained wind speed at the time of landfall 

BLDGLOSS1K: Building loss as cost to re-build estimated number of structures damaged 

CNTLOSS1K: Content/Interior damage estimated from number of structures damaged POPDEN00: 

NUMBRIDGE: Number of Bridges in affected area PCTPOV: 

ROADMI: Number of Roads miles in affected area AVEDISTC: 

ERC_CNT: Count of affected Emergency Response Centers MAXSUSWIN: 

FIRESTA_CT Count of affected Fire Stations BLDGLOSS1K

POLSTA_CT: Count of affected Police Stations NUMBRIDGE: 

SCH_CT: Count of affected Schools

MEDFAC_CT: Count of affected Medical Facilities

ERC_PROB: Damage Probability to Emergency Response Centers

FIRE_PROB: Damage Probability to Fire Stations

POL_PROB: Damage Probability to Police Stations

SCH_PROB: Damage Probability to Schools

MED_PROB: Damage Probability to Medical Facilities

GRA_PROB: Damage Probability to Grade Schools

GOV_PROB: Damage Probability to Government Services

GOVE_PROB: Damage Probability to Government Emergency Services

NH_PROB: : Damage Probability to Nursing Homes

NONP_PROPB: : Damage Probability to Not for Profits

HOSP_PROB: : Damage Probability to Hospitals

SoVI score
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on 3 key outputs from the exploratory OLS regression: passing models, summary of 

global model diagnostics, and summary of multicollinearity.  

 

 

 

 

Figure 22: Exploratory OLS Parameter Settings 

 

Bret, Claudette, Irene, and Lili each had passing models, while the remaining 5 

hurricanes had no passing models. Analyzing the passing models was unable to identify a 

consistent set of variables that could be used across all 9 hurricanes.  For example, both 

Bret and Claudette had passing models with 4 variables; however, the combination of 

variables was different for the 2 hurricanes as shown in Figure 23 below.    
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Figure 23: Sample of Passing Models for Bret and Claudette 

 

 

Analysis of the OLS model diagnostics summary depicted in table 9 also indicated 

there are severe issues of multicollinearity between many of the variables across all the 

hurricane model runs based on the percentage of model combinations passing with VIF 

scores of less than 5.0.   This indicates there are a number of redundant variables 

measuring the same aspect of the dependent variable.  The Jarque-Bera statistic was 

insignificant in 8 of the 9 hurricanes at percentages of 61.03 or higher, suggesting the 

residuals are normally distributed with linear relationships.  And hurricanes Bret, 

Claudette, Irene, and Lili had essentially no issues with spatial autocorrelation with over 

71% of model combinations passing the Moran’s I test. However, these diagnostics have 

little meaning until the multicollinearity issues are resolved and a good set of independent 

variables have been identified.   
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Table 9: Exploratory Regression Model Diagnostics 

 

1) No multicollinearity exists (VIF less than 5). 

2) Jarque-Bera is not statistically significant and residuals are normally distributed. 

3) Spatial autocorrelation p-value is not statistically significant and residuals are randomly distributed, or exhibit no 

systematic patterns in the attribute space and geographical space. 
 

 

  

The next step of the exploratory OLS regression analysis was to examine the 

summaries of multicollinearity to eliminate redundant variables based on the VIF score, 

number of violations, and covariates for each hurricane run.  The results of this 

examination were that six variables were selected for inclusion in the OLS regression 

model to eliminate issues of multicollinearity.  Population density (POPDen00) was 

chosen as an indicator of individual assistance; even though, it had mixed significance 

across the 9 hurricanes.  Percent poverty (PctPOV) was highly significant for all the 

hurricanes and was selected as an indicator of disadvantaged at risk population.  Average 

distance to coast (AVEDISTC) and maximum sustained wind speed (MAXSUSWIN) 

were chosen to represent the geophysical properties of hurricanes.  The variables for 

probability of damage for the different facility types (police, fire, medical, etc.) had 

collinearity with total building loss (BldLoss1k) for all facilities, so that variable was 

chosen to represent those elements of public assistance from the impact model data.  The 

facility probabilities and facility counts were also highly collinear amongst one another, 

so it made sense to remove these variables from the final selection. Number of bridges 

Diagnostic Bret Charley Claudette Floyd Irene Isabel Ivan Jeanne Lili

Min Jarque-Bera p-value > 0.10 93.33 68.66 96.27 61.03 91.94 65.22 0.00 99.25 99.66

Min Spatial Autocorrelation p-value > 0.10 98.68 25.00 98.75 0.00 97.87 0.00 0.00 25.00 71.43

Max VIF Value < 5.0 5.75 22.06 11.41 21.35 2.01 43.48 11.62 43.03 9.80

Percentage of Passing Models
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(NUMBRIDGE) was collinear with road mileage affected and was chosen to represent 

public infrastructure damaged. HUNITS and POP2000 were routinely correlated with 

each other as well as with the variables for facility probabilities and facilities counts, so 

they were also eliminated from the selection.  5 of these 6 selected variables had 

significant correlations with SOVI based on the correlation analysis depicted in Table 8.   

 

REGRESSION SCENARIO 1 – ANALYSIS OF VARIABLE SELECTION USING 

OLS REGRESSION  

 The final step is to run classic OLS regression for each of the 9 hurricanes to 

demonstrate the effectiveness of those six variables and if this model will produce more 

consistent results.   This will help quantify the conceptual relationships from chapter 3 

and provide the benchmark variables for regression scenario 4.  Model diagnostics for the 

OLS model are shown in table 10 below. The adjusted R-squared values indicate the 

model was able to explain 57% or above of the variance in SoVI for 6 of 9 hurricanes and 

approximately 40% for 2 of the remaining 3 hurricanes.  Adjusted R-squared values were 

lowest for hurricane Jeanne at 28.9%. The other model diagnostics and results were 

examined to determine the reliability of the adjusted R-squared values.  The probabilities 

for the Koenker (BP) statistics were insignificant for all the hurricanes, suggesting the 

data is generally stationary with little regional variation.  Since the Koenker (BP) 

statistics were insignificant, we consult the probabilities from table 11 to determine if the 

model coefficients were statistically significant.  Results varied across hurricane run.  
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Model coefficients for PCTPOV were significant for 7 of 9 hurricanes, while the model 

coefficients for the remaining variables were significant in 2 or less hurricanes. The 

Jarque-Bera probabilities were also insignificant indicating the residuals are normally 

distributed and confirmed by the histograms depicted in figure 25.     The scatterplots 

from figure 24 suggests the relationships are linear. POPDEN00, BLDGLOSS1K, and 

NUMBRIDGE have a surprisingly negative relationship to SoVI.  When vulnerability is 

high, building loss and number of bridges are low.  AVEDISTC has an anomalous, 

positive relationship to SoVI.  When SoVI is high, average distance to the coast is high.  

MAXSUSWIN has a mixed relationship with SoVI. PCTPOV has the expected positive 

relationship with SoVI.  When SoVI is high, percent poverty is high. Over and under 

predictions for the residuals displayed in figure 26 exhibit a random pattern, indicating 

the models are properly specified. However, a more critical review of the scatterplots 

from figure 24 and the variable coefficients listed in Table 11 suggests that the OLS 

models may be suffering from skewness in the data.  This skewness issue will be 

examined further in the remaining regression analysis. 

The results from the chapter 5 analysis identified 6 variables for inclusion in an 

OLS regression model.  These 6 variables addressed the following issues critical to 

performing a meaningful OLS regression: a) eliminate multicollinerity, b) significant 

correlation with SoVI, c) theoretical basis in disaster management and hazard 

vulnerability, and d) best able to explain the most variance across the 9 hurricanes.    
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Table 10: Regression Scenario 1 - OLS Model Diagnostics 

 

 
* Significant level at p = 0.05. 

 

 

Table 11: Regression Scenario 1 - OLS Model Results 

 

 
* Significant level at p = 0.05. 

Hurricane

Multiple 

R-Squared 

[d]

Adjusted 

R-Squared 

[d]

Joint 

F-Statistic 

[e]

Joint F-

Statistic 

Probability

Joint 

Wald 

Statistic 

[e]

Joint Wald 

Probability

Koenker 

(BP) 

Statistic 

[f]

Koenker 

(BP) 

Probability

Jarque-

Bera 

Statistic 

[g]

Jarque-Bera 

Probability

Akaike's 

Informatio

n Criterion 

(AICc) [d]

Bret 0.71911 0.438221 2.560117 0.138735 75.89167 0.000000* 5.281359 0.508266 0.170562 0.918254 93.662086

Charley 0.665421 0.574172 7.292369 0.000221* 219.211 0.000000* 4.866328 0.561069 0.404 0.817095 115.593

Claudette 0.847958 0.765026 10.22475 0.000587* 438.2385 0.000000* 5.073021 0.534482 0.085261 0.958265 84.180085

Floyd 0.669643 0.65953 66.21622 0.000000* 441.5511 0.000000* 6.211095 0.399964 17.98053 0.000125* 745.28418

Irene 0.846996 0.763539 10.14893 0.000606* 225.6268 0.000000* 11.794519 0.066713 0.228974 0.891823 73.684669

Isabel 0.713583 0.702202 62.70047 0.000000* 257.6172 0.000000* 7.0328 0.317824 42.301629 0.000000* 591.92581

Ivan 0.417186 0.404917 34.00117 0.000000* 182.3723 0.000000* 17.400173 0.007920* 16.278567 0.000292* 1118.2135

Jeanne 0.371697 0.289744 4.535514 0.001087* 51.85256 0.000000* 6.215869 0.399448 0.554575 0.757837 221.33428

Lili 0.750893 0.710497 18.58843 0.000000* 159.2947 0.000000* 7.253086 0.298075 0.046342 0.977096 145.74506

Independent Variable Bret Charley Claudette Floyd Irene Isabel Ivan Jeanne Lili

POPDEN00: 0.000011 -0.003504 -0.004537 0.000000 -0.004143 -0.000157 0.000001 -0.000189 0.000646

PCTPOV: 16.392748 19.820064 22.625353 36.323401 19.737047 40.323905 19.475065 23.284709 29.314799

AVEDISTC: 0.002657 0.006304 0.002821 0.003439 0.013934 0.004957 -0.002141 -0.002638 0.012664

MAXSUSWIN: -0.001118 -0.000506 -0.000776 -0.000059 0.001437 0.000865 -0.000662 -0.001253 0.000701

BLDGLOSS1K 0.000053 0.000000 -0.000019 0.000000 0.000000 -0.000001 0.000000 0.000000 0.000000

NUMBRIDGE: -0.012072 0.000515 -0.008507 -0.001112 -0.000474 -0.005159 -0.002785 -0.003003 -0.000567

Independent Variable Bret Charley Claudette Floyd Irene Isabel Ivan Jeanne Lili

POPDEN00: 0.999189 0.014726* 0.196946 0.582723 0.002290* 0.100613 0.195095 0.759844 0.389742

PCTPOV: 0.111868 0.006485* 0.011634* 0.000000* 0.055473 0.000000* 0.000000* 0.000374* 0.000000*

AVEDISTC: 0.907508 0.577584 0.821141 0.238736 0.383405 0.177807 0.485257 0.803634 0.041355*

MAXSUSWIN: 0.726819 0.442082 0.475906 0.699722 0.969398 0.374549 0.041300* 0.106435 0.342077

BLDGLOSS1K 0.497314 0.169864 0.693271 0.509607 0.109052 0.557552 0.59712 0.406443 0.86143

NUMBRIDGE: 0.374873 0.821413 0.073354 0.135559 0.818712 0.002979* 0.000380* 0.145602 0.715491

Independent Variable Bret Charley Claudette Floyd Irene Isabel Ivan Jeanne Lili

POPDEN00: 0.998926 0.000119* 0.027702* 0.420366 0.000092* 0.113326 0.209458 0.684542 0.254987

PCTPOV: 0.113082 0.003724* 0.000030* 0.000000* 0.011637* 0.000000* 0.000000* 0.000378* 0.000000*

AVEDISTC: 0.920517 0.570285 0.810349 0.18692 0.258171 0.177941 0.537879 0.778056 0.026447*

MAXSUSWIN: 0.684772 0.373162 0.247845 0.61361 0.949765 0.178313 0.025012* 0.086945 0.334765

BLDGLOSS1K 0.471809 0.000337* 0.525283 0.412378 0.010589* 0.332087 0.352089 0.056875 0.629357

NUMBRIDGE: 0.297528 0.659353 0.006394* 0.095866 0.694323 0.003385* 0.000087* 0.008832* 0.636639

Independent Variable Bret Charley Claudette Floyd Irene Isabel Ivan Jeanne Lili

POPDEN00: 8.914447 2.546206 2.187917 1.26932 2.807564 1.133472 1.385762 1.683228 1.507882

PCTPOV: 1.730067 1.590533 2.705854 1.14749 2.225361 1.059329 1.256976 1.560114 1.227641

AVEDISTC: 2.246167 1.284819 2.06197 1.244665 3.437236 1.462683 1.183625 1.547705 1.564522

MAXSUSWIN: 2.373553 1.281939 2.018525 1.067006 3.29992 1.116614 1.214682 1.202655 1.05646

BLDGLOSS1K 1.951325 1.155562 1.296542 1.061165 3.44602 1.196571 1.078852 1.299882 1.086706

NUMBRIDGE: 9.507743 2.130976 1.667509 1.367457 2.652962 1.167186 1.434354 1.873098 1.413117

Model Coefficients

Model Probabilities

Model Robust Probabilities

Model Variance Inflation Factors (VIF)
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Figure 24: Scatterplots of Variable Relationships for Regression Scenario 1 
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Hurricane Ivan    Hurricane Jeanne 

 

  Hurricane Lili  

 

 

 

Figure 25: Histograms of Residuals for Regression Scenario 1 
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Hurricane Lili  

 

Figure 26: Scatterplots of Over/Under Predictions for Regression Scenario 1 
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CHAPTER 6: RESULTS OF INITIAL OLS REGRESSION  

 

 

This chapter attempts to analyze the relationships between hazard vulnerability 

science and disaster management, using SoVI, and the FEMA disaster impact models. 

The OLS models are constructed using the six independent variables identified in chapter 

5, to accurately predict the level of damages in the community -- expressed as total cost 

of federal assistance.  It involved running 3 scenarios using OLS regression where total 

amount of federal assistance per capita (TA_pcap) serves as the dependent variable. 

 

 

 

Table 12: Scenarios used for the Initial OLS Regressions 

 

 

 

 

Dependent 

Variable

Independent (Explanatory) 

Variables
Objective

Regression 

Scenario 1
SoVI score Disaster Impact Model Data Subset

How do disaster impact model data elements relate to SoVI? 

Which disaster impact model data elements have the strongest 

relationships to SoVI?

Regression 

Scenario 2

Total Federal Assistance per Capita 

(TA_pcap)
SoVI Score

Can SoVI accurately predict disaster impacts as expressed by 

total federal assistance per capita? 

Regression 

Scenario 3

Total Federal Assistance per Capita 

(TA_pcap)
SoVI Factors

How do  SoVI Component factors relate to disaster impacts as 

expressed by total federal assistance per capita?

Regression 

Scenario 4

Total Federal Assistance per Capita 

(TA_pcap)
Disaster Impact Model Data Subset

Can the disaster impact model data accurately predict disaster 

impacts as expressed by total federal assistance per capita?

Regression 

Scenario 5

Total Federal Assistance per Capita 

(TA_pcap)
SOVI + AveDistC + MaxSustWin

Can the performance of SoVI be improved by adding missing 

variables for the hazard?

*Each regression scenario was run for every hurricane included in the analysis.  A total of 45 regressions 5 scenarios times 9 hurricanes.
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REGRESSION SCENARIO 2 - OLS REGRESSION USING SOVI AS THE 

INDEPENDENT VARIABLE 

 

 

This model was run using the SoVI score as the independent (explanatory) variable. 

OLS models were run for all 9 hurricanes included in the research sample.  Based on this 

scenario, one expects to find a positive relationship between the dependent and 

independent variables, where a county with a larger amount of federal assistance would 

have a high SoVI score compared to a county with a lower SoVI score for each hurricane 

event.   Table 13 shows the diagnostics for the OLS regression model runs for each 

hurricane. Table 14 shows the results for those same OLS model runs.   

Model diagnostics for the OLS regression model runs indicates poor model 

performance for 8 of 9 hurricanes.  The AIC scores varied widely across hurricanes from 

142.386169 to 4582.9921 suggesting the model is miss-specified or not a good match.  

The adjusted R-squared values show the model was able to explain less than 5% of the 

variance for 8 of 9 hurricanes.  The only model run to demonstrate significant 

explanatory power was hurricane Bret, where SoVI was able to explain 38% of the 

variance.  To determine the reliability of the adjusted R-squared values, the other model 

diagnostics and results were examined.  
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Table 13: Regression Scenarios 2 - OLS Model Diagnostics 

 
* Significant level at p = 0.05. 

 

 

Table 14: Regression Scenarios 2 - OLS Model Results 

 
* Significant level at p = 0.05. 

 

 

 

 

The Jarque-Bera statistics were significant for all hurricanes indicating model bias; 

the residuals are not normally distributed.  This interpretation was confirmed by the 

histograms depicted in figure 28 that reveal significant influence from outliers.  The 

scatterplots of the over and under predictions of residuals portrayed in figure 29 were not 

randomly distributed, heteroskedastic, and likely non-linear. These scatterplots also 

indicate structural problems with a systematic scale issue for 4 hurricanes. The Koenker 

Hurricane

Multiple 

R-Squared 

[d]

Adjusted 

R-Squared 

[d]

Joint 

F-Statistic 

[e]

Joint F-

Statistic 

Probability

Joint 

Wald 

Statistic 

[e]

Joint Wald 

Probability

Koenker 

(BP) 

Statistic 

[f]

Koenker 

(BP) 

Probability

Jarque-

Bera 

Statistic 

[g]

Jarque-Bera 

Probability

Akaike's 

Informatio

n Criterion 

(AICc) [d]

Bret 0.439957 0.389044 8.641339 0.013457* 6.035907 0.014018* 6.762961 0.009307* 0.907866 0.635125 142.38617

Charley 0.056786 0.042708 4.033743 0.048632* 2.157323 0.141892 5.085072 0.024133* 954.17522 0.000000* 1045.2858

Claudette 0.024964 -0.035976 0.409651 0.531206 0.751308 0.386062 1.201044 0.273113 13.382542 0.001242* 214.71787

Floyd 0.046563 0.041266 8.790569 0.003438* 11.65113 0.000642* 4.598464 0.032001* 2481.7665 0.000000* 2583.7908

Irene 0.000749 -0.061704 0.011989 0.914173 0.041988 0.837642 0.011583 0.914293 44.890553 0.000000* 167.84771

Isabel 0.018167 0.011873 2.886423 0.091322 2.148428 0.142716 2.67614 0.101862 5171.9218 0.000000* 2160.234

Ivan 0.000984 -0.002109 0.318171 0.5731 0.614361 0.43315 0.191101 0.662002 133056.45 0.000000* 4582.9921

Jeanne 0.060907 0.042493 3.307715 0.074829 4.732622 0.029596* 0.83708 0.360233 149.92669 0.000000* 718.72639

Lili 0.000376 -0.023424 0.015819 0.900512 0.081528 0.775237 0.024833 0.874783 619.12948 0.000000* 489.7047

Hurricane

Number of 

Observations

Independent 

Variable Coefficient StdError t-Statistic Probability 

Robust 

StdError Robust_t

Robust 

Probability 

Bret 13 SOVI 16.201585 5.511464 2.939615 0.013461* 6.594566 2.456808 0.031853*

Charley 69 SOVI 53.90682 26.84044 2.008418 0.048632* 36.701693 1.468783 0.146576

Claudette 18 SOVI -4.60126 7.189025 -0.64004 0.531206 5.308451 -0.86678 0.398874

Floyd 182 SOVI 24.939132 8.411488 2.964889 0.003443* 7.306296 3.413376 0.000803*

Irene 18 SOVI -0.287484 2.625574 -0.109494 0.914169 1.40297 -0.20491 0.840225

Isabel 158 SOVI 10.783885 6.34739 1.698948 0.09133 7.357239 1.465752 0.144739

Ivan 325 SOVI 4.081723 7.236239 0.564067 0.573106 5.207528 0.783812 0.433715

Jeanne 53 SOVI 24.849205 13.66307 1.818713 0.074831 11.422512 2.175459 0.034255*

Lili 44 SOVI -0.562794 4.474675 -0.125773 0.900513 1.971038 -0.28553 0.776642

Dependent variable: Total federal assistance per capita (TA_pcap)
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(BP) statistic was significant for 3 hurricanes (Bret, Charley and Floyd) and insignificant 

for the remaining 6 hurricanes.  This suggests the data for hurricanes Bret, Charley, and 

Floyd are non-stationary, and the robust probabilities were consulted to determine 

coefficient significance.  The coefficients for hurricanes Bret and Floyd were significant 

based on the robust probabilities.  For the remaining 6 hurricanes, the probabilities were 

consulted.  The coefficients were insignificant based on the probabilities. The scatterplots 

from figure 27 show linear relationships for 6 hurricanes and narrowly linear 

relationships for the remaining 3 hurricanes (Irene, Ivan, and Lili).  The relationship 

between dependent and independent variable was positive as expected for 6 of 9 

hurricanes.  The relationship was negative for hurricanes Claudette, Irene, and Lili.  This 

is anomalous as one expects when damages are high that vulnerability is high.  
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Figure 27: Scatterplots of Variable Relationships for Regression Scenario 2 
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Figure 28: Histograms of Residuals for Regression Scenario 2 
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Hurricane Lili  

     

 

Figure 29: Scatterplots of Over/Under Predictions for Regression Scenario 2 

 

 

 

Moran’s statistics were run to determine if spatial autocorrelation issues were 

influencing model performance.  These statistics are listed in Table 15 below.  The 

Moran’s I results indicate the presence of spatial autocorrelation in the OLS model runs 

for 7 of the 9 hurricanes. This map shows residual clustering that is closely associated 

with the hurricane storm tracks and points of landfall as depicted in figure 40 below. 

While the histograms from figure 37 also showed significant outliers and removing these 

outliers might boost model performance; it might introduce new bias by eliminating 

significant geographic components from the analysis. By their nature, hurricane events 

are spatially biased by their storm tracks and geophysical properties.   
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Table 15: Regression Scenarios 2 – Spatial Autocorrelation (Moran’s I) Statistics 

 

 

 

 
Figure 30:  Map of OLS Residuals and Hurricane Storm Tracks - Regression 

Scenario 2 

 

 

Hurricane Index Expected Variance P-value Z-score Pattern

Bret 0.006792 -0.08333 0.031607 0.6122 0.506935 Random

Charley 0.322099 -0.01471 0.002821 0.000000 6.341552 Clustered

Claudette 0.272718 -0.05882 0.024413 0.03384 2.12192 Clustered

Floyd 0.371938 -0.00553 0.000685 0.000000 14.420553 Clustered

Irene 0.044825 -0.05882 0.006309 0.19192 1.304923 Random

Isabel 0.117097 -0.00637 0.000128 0.000000 10.914423 Clustered

Ivan 0.309543 -0.00309 0.000285 0.000000 18.53457 Clustered

Jeanne 0.550929 -0.01923 0.008508 0.000000 6.181359 Clustered

Lili 0.226272 -0.02326 -0.023256 0.00095 3.303801 Clustered
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Collectively, the results from OLS regression for scenario 3 suggest model bias is 

a result of model mismatch or model mis-specification rather than data outliers. The 

results also suggest there is a problem with skewness in the data based on the scatterplots 

and spatial autocorrelation from the Moran’s I statistics. 

 

 

 

REGRESSION SCENARIO 3 –OLS REGRESSION USING SOVI FACTORS 

AS INDEPENDENT VARIABLES 

 

 

 

Since the results from regression scenario 2, that tested the explanatory power of 

the SoVI composite index, were dubious, it begs the question whether particular sub-

factors of SoVI are statistically more significant than others?  If certain SoVI sub-factors 

are significant, how does their significance in explaining disaster impacts compare to 

their significance in explaining social vulnerability? For example, wealth (factor 2) is 

able to explain 15.9% of the variance in SoVI and has a negative relationship. 

Employment in services industries (factor 7) has a variance of 4.8% and has a positive 

relationship with SoVI.  Do these same relationships hold true in explaining disaster 

impacts using total federal assistance per capita?  

This model was run using the individual SoVI factors as the independent 

(explanatory) variables as depicted in figure 31 and total federal assistance per capita as 
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the dependent variable.  Table 16 shows the diagnostics for the OLS regression model 

runs for each hurricane. Table 17 shows the results for those same OLS model runs.   

 

 

Figure 31: Regression Scenario 3 - Model Variables 

 

Model diagnostics for the OLS regression model runs indicates poor model 

performance for 8 of 9 hurricanes.  The AIC scores varied widely across hurricanes from 

182.9896 to 4588.9938 suggesting the model is miss-specified or not a good match.  The 

adjusted R-squared values show the model was able to explain less than 36.2% of the 

variance for 8 of 9 hurricanes.  The only model run to demonstrate significant 

explanatory power was hurricane Bret, where SoVI factors were able to explain 54.7% of 

the variance.  To determine the reliability of the adjusted R-squared values, the other 

model diagnostics and results were examined.  

 

 

 

 

 

 

 

Dependent 

Variable

Independent 

(Explanatory) 

Variables

Factor 1: Race (Black and Class (Poverty)

Factor 2: Wealth

Factor 3: Age (Old)

Factor 4: Ethnicity (Hispanic)

Factor 5: Nursing Home Residents

Factor 6: Ethnicity (Native American)

Factor 7: Employed in Service Industries

Total Federal 

Assistance Per Capita 

(TA_pcap)
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Table 16: Regression Scenarios 3 - OLS Model Diagnostics 

 

 

 

 

 

The Jarque-Bera statistics were significant for 7 of 9 hurricanes indicating model 

bias; the residuals are not normally distributed.  This interpretation was confirmed by the 

histograms depicted in figure 33 that reveal significant influence from outliers.  The 

scatterplots of the over and under predictions of residuals portrayed in figure 46 were not 

randomly distributed, heteroskedastic, and likely non-linear. These scatterplots also 

indicate structural problems with a systematic scale issue for 4 hurricanes. The Koenker 

(BP) statistic was significant for 3 hurricanes (Bret, Charley and Floyd) and insignificant 

for the remaining 6 hurricanes.  This suggests the data for hurricanes Bret, Charley, and 

Floyd are non-stationary, and the robust probabilities were consulted to determine 

coefficient significance.  The coefficients for hurricanes Bret and Floyd were significant 

based on the robust probabilities.  For the remaining 6 hurricanes, the probabilities were 

consulted.  The coefficients were insignificant based on the probabilities. The scatterplots 

from figure 32 show linear relationships for 6 hurricanes and narrowly linear 

Hurricane

Multiple 

R-Squared 

[d]

Adjusted 

R-Squared 

[d]

Joint 

F-Statistic 

[e]

Joint F-

Statistic 

Probability

Joint 

Wald 

Statistic 

[e]

Joint Wald 

Probability

Koenker 

(BP) 

Statistic 

[f]

Koenker 

(BP) 

Probability

Jarque-

Bera 

Statistic 

[g]

Jarque-Bera 

Probability

Akaike's 

Informatio

n Criterion 

(AICc) [d]

Bret 0.811337 0.547209 3.071759 0.117449 30.07348 0.000092* 6.940101 0.435143 0.761536 0.635125 197.57481

Charley 0.243238 0.156397 2.800948 0.013533* 9.472276 0.220502 9.677897 0.207573 914.72088 0.000000* 1044.7706

Claudette 0.247376 -0.279461 0.469549 0.836032 6.437539 0.489686 3.355406 0.850295 8.797751 0.012291* 242.84324

Floyd 0.150531 0.116357 4.40484 0.000158* 18.1237 0.011424* 16.429522 0.021469* 1992.8547 0.000000* 2575.6883

Irene 0.62505 0.362584 2.381456 0.103372 21.50377 0.003092* 8.672846 0.277005 0.33208 0.847012 182.9896

Isabel 0.123081 0.082158 3.00764 0.005517* 21.0764 0.003659* 19.2176 0.007532* 3748.8675 0.000000* 2155.4392

Ivan 0.020751 -0.000873 0.959624 0.460836 15.06514 0.035173* 3.61412 0.822994 133706.87 0.000000* 4588.9938

Jeanne 0.158187 0.027238 1.208008 0.31815 12.33647 0.090023 6.222075 0.514071 127.59663 0.000000* 728.62673

Lili 0.443381 0.335149 4.096591 0.002119* 11.12821 0.133123 10.20097 0.177468 189.67466 0.000000* 480.63696
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relationships for the remaining 3 hurricanes (Irene, Ivan, and Lili).  The relationship 

between dependent and independent variable was positive as expected for 6 of 9 

hurricanes.  The relationship was negative for hurricanes Claudette, Irene, and Lili.  This 

is anomalous as one expects when damages are high that vulnerability is high.  

 

The relationships for the model coefficients also varied across hurricanes and 

factors.  In many cases, the type of relationship (positive or negative) contradicts the 

cardinality of that factor to SoVI.  For example, factor 2 (wealth) has a negative 

cardinality to SoVI but has a positive relationship to the dependent variable for 4 

hurricanes and a negative relationship for the other 5 hurricanes. The scatterplots in 

figure 32 illustrate the varying type of relationship between the factors across the 9 

hurricanes.  Figure 32 also shows that the relationship between the SOVI factors and the 

dependent variable are linear.   The Jarque-Bera statistic was significant for 8 of 9 

hurricanes.  This indicates the residuals are not normally distributed.  Histograms of the 

model residuals shown in figure 33 illustrate this model bias. Scatterplots of the over and 

under predictions of residuals portrayed in figure 35 suggest a systematic scale issue 

likely a product of many the values in the data being close to zero. Patterns are not 

strongly random indicating the model is mis-specified. 
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Table 17: Regression Scenarios 3 - OLS Model Results 

 
* Significant level at p = 0.05. 

Independent 

Variable Bret Charley Claudette Floyd Irene Isabel Ivan Jeanne Lili

FAC1_1 18.421029 -158.756758 -33.212513 84.829814 -16.782261 19.637034 26.443192 -0.774155 2.317433

FAC2_1 -8.849103 -113.01237 -90.929078 -16.438214 3.222512 17.481491 18.139109 42.301036 -5.829686

FAC3_1 16.325053 58.865787 -7.606049 -18.350379 8.169451 65.379476 4.63209 23.237875 -36.010008

FAC4_1 24.027707 186.957731 -68.980873 8.479094 -1.912594 -2.367885 -30.906939 42.577833 36.713073

FAC5_1 70.287114 246.184739 21.370388 -40.230295 4.047105 -56.24415 -56.303033 -41.763175 4.848822

FAC6_1 -20.197777 133.316275 203.452726 -114.565682 24.089884 -19.565104 4.793672 -135.285238 106.953853

FAC7_1 -3.155066 -12.590206 12.602757 -15.901496 13.590143 47.472229 13.024275 -8.751855 6.704872

Independent 

Variable Bret Charley Claudette Floyd Irene Isabel Ivan Jeanne Lili

FAC1_1 0.560587 0.17482 0.429633 0.004087* 0.457609 0.389727 0.111288 0.992405 0.863951

FAC2_1 0.890871 0.139641 0.317663 0.417856 0.590584 0.239713 0.329272 0.368435 0.676212

FAC3_1 0.338375 0.217729 0.773453 0.407736 0.152324 0.000447* 0.796692 0.410784 0.036157*

FAC4_1 0.220224 0.000390* 0.229369 0.81678 0.689714 0.945377 0.312372 0.107069 0.036267*

FAC5_1 0.044116* 0.048495* 0.741021 0.281386 0.804427 0.057848 0.043703* 0.585471 0.743507

FAC6_1 0.838368 0.515042 0.274754 0.024827* 0.479905 0.630734 0.908437 0.392983 0.001246*

FAC7_1 0.887142 0.804985 0.657391 0.545933 0.145208 0.028707* 0.406433 0.802291 0.48078

Independent 

Variable Bret Charley Claudette Floyd Irene Isabel Ivan Jeanne Lili

FAC1_1 0.642006 0.047083* 0.085274 0.002974* 0.235542 0.164844 0.023599* 0.986988 0.838012

FAC2_1 0.855597 0.079476 0.150334 0.262055 0.463509 0.195473 0.228806 0.341485 0.593075

FAC3_1 0.250159 0.394136 0.45734 0.354168 0.014836* 0.001383* 0.704236 0.226939 0.087434

FAC4_1 0.301822 0.050657 0.068954 0.760377 0.654468 0.936597 0.026165* 0.044978* 0.057852

FAC5_1 0.05731 0.045914* 0.456348 0.104851 0.66509 0.036391* 0.015449* 0.502508 0.699344

FAC6_1 0.879104 0.360848 0.091158 0.009380* 0.290162 0.351914 0.769574 0.130125 0.029151*

FAC7_1 0.875916 0.622743 0.354379 0.641626 0.042378* 0.284255 0.340927 0.635379 0.407097

Independent 

Variable Bret Charley Claudette Floyd Irene Isabel Ivan Jeanne Lili

FAC1_1 5.667387 1.673733 2.42134 1.752976 2.328867 1.72358 1.227935 2.032116 2.250987

FAC2_1 6.420104 2.65557 5.081819 1.818677 2.575472 1.438096 1.187365 3.207995 1.275695

FAC3_1 3.040694 1.330645 1.808037 1.059212 2.744101 1.082927 1.133501 1.864101 1.458473

FAC4_1 5.898662 1.127654 6.42164 1.48697 1.945152 1.156039 1.639683 1.223708 1.357111

FAC5_1 1.909903 3.425664 2.201719 1.557819 5.511911 1.604956 1.526155 4.500051 2.072715

FAC6_1 17.983911 1.449433 7.722353 1.449322 2.957143 1.337944 1.343235 2.301826 1.966009

FAC7_1 7.636859 1.513991 4.719912 1.240182 2.90036 1.232205 1.071997 2.125124 1.906039

Model Coefficients

Model Probabilities

Model Robust Probabilities

Model Variance Inflation Factors (VIF)
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Figure 32: Scatterplots of Variable Relationships for Regression Scenario 3 
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Figure 33: Histograms of Residuals for Regression Scenario 3 
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Hurricane Lili  

 

Figure 34: Scatterplots of Over/Under Predictions for Regression Scenario 3 

 

 

 

Moran’s I statistics were run to examine the effects of spatial autocorrelation. 

Table 18 shows that 6 of 9 hurricanes had spatial autocorrelation. These results are 

contrary to the Koenker statistic that was insignificant for 7 of 9 hurricanes.  A composite 

map of the OLS residuals displayed in figure 46 shows clustering is associated with the 

hurricane storm tracks and points of landfall. These findings are consistent with findings 

for regression scenarios 2-3.   
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Table 18: Regression Scenarios 3 – Spatial Autocorrelation (Moran’s I) Statistics 

 

 

 

 

 

Figure 35: Map of OLS Residuals and Hurricane Storm Tracks –  Regression 

Scenario 3 

 

Hurricane Index Expected Variance P-value Z-score Pattern

Bret 0.000275 -0.083333 0.033732 0.648945 0.455228 Random

Charley 0.138791 -0.014706 0.002819 2.890929 0.003841 Clustered

Claudette 0.206822 -0.058824 0.025406 1.666608 1.666608 Clustered

Floyd 0.303788 -0.005525 0.000692 11.75847 0.000000 Clustered

Irene -0.03173 -0.058824 0.010339 0.266423 0.789913 Random

Isabel 0.109644 -0.006369 0.000131 10.11899 0.000000 Clustered

Ivan 0.304275 -0.003086 0.000284 18.23266 0.000000 Clustered

Jeanne 0.476162 -0.019231 0.008567 5.352211 0.000000 Clustered

Lili 0.060925 -0.023256 0.007428 0.976738 0.328699 Random
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The results from OLS regression for scenario 3 also suggest model bias is a result 

of model mismatch or model mis-specification rather than data outliers. These results 

also suggest there is a problem with skewness in the data based on the scatterplots and 

spatial autocorrelation from the Global Moran’s I statistics. 

 

 

REGRESSION SCENARIO 4 –OLS REGRESSION USING THE SIX 

INDEPDENDENT VARIABLES  

 

 

 

This model was run using the 6 independent (explanatory) variables from the 

FEMA impact models as depicted in figure 36. OLS models were run for all 9 hurricanes 

included in the research sample.  This scenario examines the relationship between actual 

damages and impact model data to determine, if there is a statistical basis for indexing 

hazard vulnerability using a combination of these data rather than proxy measures of 

susceptibility used to compile SoVI.  To validate the efficacy of this approach, it attempts 

to quantify the relationships between disaster operations practice and disaster 

management policy using disaster costs and disaster impact model data. A key question 

considered by regression scenario 4 is: if impact model variables have significant 

explanatory power for total amount of federal assistance per capita as an expression of 

actual damages, then could SoVI be refactored from these same variables to be a more 

effective measure of vulnerability? This approach would directly link hazard 

vulnerability across disaster operations policy and practice and provide a basis for 

establishing common variables across disaster management that could be used to improve 
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the reliability of hazard vulnerability indexes.  This OLS model was able to explain over 

57% of the variance in SoVI for 6 of 9 hurricanes when applied in regression scenario 1.  

The question is will these 6 variables be able to produce similar results using the total 

amount of federal assistance per capita as the dependent variable?   

 

 

 

Figure 36: Regression Scenario 4 - Model Variables 

 

 Model diagnostics for regression scenario 4 are shown in table 19 below.  These 

diagnostics indicate the model had low explanatory power for 8 of 9 hurricanes based on 

the adjusted R-squared values.  The model was able to explain 63.45% of the variance for 

Dependent 

Variable

Exploratory Regression Candidate

Indepdendent (Explanatory) Variables

Independent Variables for 

OLS\GWR Model Runs

HUNITS: Number of Housing Units in affected county tracks

POP2000: Total Population in affected county tracts

AREASQMI: Area of county 

POPDEN00: Population 2000 Density

PERCAPINC: Per capita Income

PCTPOV: Percent Poverty

AVEDISTC: Average Distance to Coast

TREEVOL: Estimation of tree volume in tons

MAXSUSWIN: Sustained wind speed at the time of landfall 

BLDGLOSS1K: Building loss as cost to re-build estimated number of structures damaged 

CNTLOSS1K: Content/Interior damage estimated from number of structures damaged POPDEN00: 

NUMBRIDGE: Number of Bridges in affected area PCTPOV: 

ROADMI: Number of Roads miles in affected area AVEDISTC: 

ERC_CNT: Count of affected Emergency Response Centers MAXSUSWIN: 

FIRESTA_CT Count of affected Fire Stations BLDGLOSS1K

POLSTA_CT: Count of affected Police Stations NUMBRIDGE: 

SCH_CT: Count of affected Schools

MEDFAC_CT: Count of affected Medical Facilities

ERC_PROB: Damage Probability to Emergency Response Centers

FIRE_PROB: Damage Probability to Fire Stations

POL_PROB: Damage Probability to Police Stations

SCH_PROB: Damage Probability to Schools

MED_PROB: Damage Probability to Medical Facilities

GRA_PROB: Damage Probability to Grade Schools

GOV_PROB: Damage Probability to Government Services

GOVE_PROB: Damage Probability to Government Emergency Services

NH_PROB: : Damage Probability to Nursing Homes

NONP_PROPB: : Damage Probability to Not for Profits

HOSP_PROB: : Damage Probability to Hospitals

Total Federal 

Assistance Per 

Capita (TA_pcap)
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hurricane Charley.  It was able to explain less than 10% of the variance for 3 of 9 

hurricanes.  These results are much lower than those from regression scenario 1, 

suggesting there are weak linkages between these variables and disaster management 

policy.  The other model diagnostics were examined to determine the reliability of the 

adjusted R-squared values.  The probabilities for the Koenker (BP) statistics were 

insignificant for 7 of 9 hurricanes indicating the data are stationary.  For these 7 

hurricanes, the probabilities were consulted from table 20 to determine if the model 

coefficients were statistically significant.  For the other 2 hurricanes, the robust 

probabilities were consulted to determine if the model coefficients were significant.  

Results varied across hurricane run.  Model coefficients for POPDEN00 and AVEDISTC 

were significant for only 1 hurricane.  PCTPOV and NUMBRIDGE had significant 

model coefficients for 2 hurricanes.  BLDGLOSS1K had significant model coefficients 

for 3 hurricanes; while MAXSUSWIN had significant model coefficients for 4 

hurricanes.  The variables representing hurricane intensity and damage to critical 

facilities were significant in the most hurricanes.  The Jarque-Bera probabilities were 

significant for 6 of 9 hurricanes.  This indicates there are problems with model bias, as 

the residuals are not normally distributed.  This is confirmed by the histograms depicted 

in figure 38.   

Scatterplots from figure 37 shows that the relationships between the dependent and 

independent variables are linear.  The types of relationships were mixed for some of the 

variables and contradict current hazard vulnerability science.  For example, figure 37 

shows that POPDEN00 has a negative linear relationship; when the dependent variable is 
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high, POPDEN00 is low.  PCTPOV, AVEDISTC, and MAXSUSWIN also exhibited 

negative linear relationships for several of the hurricanes.  BLDGLOSS1K had a positive 

linear relationship for 8 of 9 hurricanes, and NUMBRIDGE had a negative linear 

relationship for 8 of 9 hurricanes.  The type of relationship for BLDGLOSS1K is 

expected but not for NUMBRIDGE.  These results suggest the model is mis-specified.  

The scatterplots of the over and under predictions of residuals shown in figure 39 

substantiate this determination.  The scatterplots from figure 39 indicate a systematic 

scale issue and show that residuals are not randomly distributed.  This indicates the 

model indeed is not properly specified or that an external influence had not been 

accounted for in the model design.  It might also mean variable relationships are non-

linear.   

 

 

Table 19: Regression Scenarios 4 - OLS Model Diagnostics 

 
* Significant level at p = 0.05. 

 

 

 

 

 

Hurricane

Multiple 

R-Squared 

[d]

Adjusted 

R-Squared 

[d]

Joint 

F-Statistic 

[e]

Joint F-

Statistic 

Probability

Joint 

Wald 

Statistic 

[e]

Joint Wald 

Probability

Koenker 

(BP) 

Statistic 

[f]

Koenker 

(BP) 

Probability

Jarque-

Bera 

Statistic 

[g]

Jarque-Bera 

Probability

Akaike's 

Informatio

n Criterion 

(AICc) [d]

Bret 0.718711 0.437421 2.555058 0.139224 13.51992 0.035484* 6.882315 0.331868 0.665478 0.716957 176.76731

Charley 0.712898 0.634597 9.104626 0.000046* 214.6438 0.000000* 12.250175 0.056615 8.397654 0.015013* 447.29988

Claudette 0.381908 0.044767 1.132783 0.404808 11.54688 0.072875 6.275699 0.393025 5.912837 0.052005 230.79853

Floyd 0.097917 0.070302 3.545812 0.002349* 19.6831 0.003153* 9.282536 0.158301 3331.5419 0.000000* 2861.263

Irene 0.562145 0.323316 2.353749 0.103727 15.09174 0.019555* 11.519109 0.073598 0.252104 0.881569 177.28128

Isabel 0.18542 0.153052 5.72859 0.000022* 22.64386 0.000925* 10.603784 0.101421 7165.6886 0.000000* 2132.712

Ivan 0.371064 0.357823 28.02438 0.000000* 34.47197 0.000005* 20.965804 0.001861* 133715.78 0.000000* 4023.0754

Jeanne 0.326322 0.238451 3.713649 0.004295* 25.96647 0.000226* 15.529667 0.016514* 92.837968 0.000000* 713.90471

Lili 0.224036 0.098205 1.780442 0.130105 60.86973 0.000000* 2.103655 0.909923 1063.348 0.000000* 492.07497
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Table 20: Regression Scenarios 4 - OLS Model Results 

 
* Significant level at p = 0.05. 

 

 

Independent Variable Bret Charley Claudette Floyd Irene Isabel Ivan Jeanne Lili

POPDEN00: -0.169416 0.199805 -0.18772 -0.000094 0.002421 -0.039102 0.000059 -0.013242 -0.067539

PCTPOV: 12.644482 8412.269943 -328.12532 1273.464874 -114.83103 404.920367 349.035795 423.306072 162.177375

AVEDISTC: 0.14885 -5.935837 -0.730191 -0.388654 -0.020655 -1.805775 -0.437821 -0.505849 -0.706828

MAXSUSWIN: 0.024781 -0.503677 0.011483 -0.059964 1.407761 -0.064575 -0.074523 -0.141433 -0.008643

BLDGLOSS1K 0.004691 0.000182 0.002779 0.000076 -0.000003 0.000346 0.000311 0.000031 0.000022

NUMBRIDGE: -0.046161 -0.956201 -0.25616 -0.049658 -0.042378 -0.212317 -0.195738 -0.413325 0.075673

Independent Variable Bret Charley Claudette Floyd Irene Isabel Ivan Jeanne Lili

POPDEN00: 0.532206 0.625208 0.353913 0.542141 0.899076 0.002092* 0.597207 0.837232 0.083562

PCTPOV: 0.955273 0.000378* 0.471171 0.000758* 0.497878 0.173025 0.125641 0.506317 0.377184

AVEDISTC: 0.789959 0.094514 0.329334 0.467336 0.941003 0.000249* 0.32402 0.647671 0.026913*

MAXSUSWIN: 0.751165 0.017870* 0.855899 0.033715* 0.053381 0.612935 0.111775 0.081185 0.817984

BLDGLOSS1K 0.038455* 0.000034* 0.334913 0.455397 0.470032 0.059763 0.000000* 0.000218* 0.080372

NUMBRIDGE: 0.886025 0.177379 0.331888 0.715497 0.26277 0.344648 0.08081 0.05673 0.344421

Independent Variable Bret Charley Claudette Floyd Irene Isabel Ivan Jeanne Lili

POPDEN00: 0.466301 0.38159 0.122727 0.102117 0.865208 0.001519* 0.302015 0.40923 0.014286*

PCTPOV: 0.952869 0.014504* 0.241107 0.000669* 0.380394 0.156213 0.144727 0.195671 0.075426

AVEDISTC: 0.660213 0.090997 0.193359 0.266395 0.921908 0.000187* 0.517367 0.587015 0.022499*

MAXSUSWIN: 0.618265 0.026027* 0.723466 0.06897 0.117232 0.137813 0.000163* 0.000064* 0.672183

BLDGLOSS1K 0.054716 0.000000* 0.125452 0.136099 0.333246 0.364391 0.012191* 0.064324 0.000952*

NUMBRIDGE: 0.839677 0.055046 0.129626 0.425124 0.202482 0.089912 0.028920* 0.013891* 0.179462

Independent Variable Bret Charley Claudette Floyd Irene Isabel Ivan Jeanne Lili

POPDEN00: 8.914447 2.546206 2.187917 1.26932 2.807564 1.133472 1.385762 1.683228 1.507882

PCTPOV: 1.730067 1.590533 2.705854 1.14749 2.225361 1.059329 1.256976 1.560114 1.227641

AVEDISTC: 2.246167 1.284819 2.06197 1.244665 3.437236 1.462683 1.183625 1.547705 1.564522

MAXSUSWIN: 2.373553 1.281939 2.018525 1.067006 3.29992 1.116614 1.214682 1.202655 1.05646

BLDGLOSS1K 1.951325 1.155562 1.296542 1.061165 3.44602 1.196571 1.078852 1.299882 1.086706

NUMBRIDGE: 9.507743 2.130976 1.667509 1.367457 2.652962 1.167186 1.434354 1.873098 1.413117

Model Coefficients

Model Probabilities

Model Robust Probabilities

Model Variance Inflation Factors (VIF)
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Figure 37: Scatterplots of Variable Relationships for Regression Scenario 4 
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Hurricane Lili  

 

 

Figure 38: Histograms of Residuals for Regression Scenario 4 
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Hurricane Claudette   Hurricane Floyd 
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Hurricane Ivan    Hurricane Jeanne 

  

  

Hurricane Lili  

 

Figure 39: Scatterplots of Over/Under Predictions for Regression Scenario 4 

 

Moran’s I statistics were computed using the residuals from the OLS model to 

examine the effects of spatial autocorrelation. Table 21 shows that 5 of 9 hurricanes had 

spatial autocorrelation. These results are contrary to the Koenker statistics for hurricanes 
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Floyd, Isabel, and Lili.  A composite map of the OLS residuals displayed in figure 40 

shows clustering is associated with the hurricane storm tracks and points of landfall, 

findings consistent with regression scenarios 2-3.   

 

 

Table 21: Regression Scenario 4 – Spatial Autocorrelation (Moran’s I) Statistics 

 

 

 

Figure 40: Map of OLS Residuals & Hurricane Storm Tracks Regression Scenario 4 

Hurricane Index Expected Variance P-value Z-score Pattern

Bret -0.18406 -0.08333 0.03302 0.57933 -0.55436 Random

Charley -0.08521 -0.03571 0.00645 0.53754 -0.61653 Random

Claudette -0.09083 -0.05882 0.02521 0.84028 -0.20154 Random

Floyd 0.26961 -0.00495 0.00051 0.00000 12.17089 Clustered

Irene -0.08752 -0.05882 0.00980 0.77188 -0.28992 Random

Isabel 0.09554 -0.00637 0.00058 0.00002 4.24298 Clustered

Ivan 0.16302 -0.00344 0.00030 0.00000 9.54322 Clustered

Jeanne 0.35236 -0.01923 0.00870 0.00007 3.98417 Clustered

Lili 0.10991 -0.02326 0.00440 0.04476 2.00686 Clustered
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The OLS regressions for this chapter suffered from three fundamental issues that 

introduced bias into the OLS models: skewness in the data, model misspecification, and 

spatial autocorrelation.  The next two chapters are devoted to resolving these issues to 

produce more meaningful results. 
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CHAPTER 7: ADDRESSING MODEL BIAS IN THE OLS REGRESSION  

 

 

LOG TRANSFORMATIONS OF MODEL VARIABLES 

This chapter seeks to resolve the skewness issue affecting the OLS regression 

models by applying log transformations to the model variables. Logarithmic 

transformations will have the effect of compressing the high values of the transformed 

variables, and expanding the low end values; thereby, linearizing the relationship 

between the variables. To determine the effectiveness of the log transformations, the 

descriptive statistics were consulted including the mean, median, skewness, and kurtosis 

parameters. The Skewness measure indicates the level of non-symmetry; if the 

distribution of the data is symmetric then skewness will be close to 0.  Kurtosis is a 

measure of the peakedness of the data; for normally distributed data the kurtosis is 0.  

The Jarque-Bera statistics were used as the goodness-of-fit test to determine whether the 

transformed data have skewness and kurtosis matching a normal distribution. The 

Akaike’s Information Criteria (AICc) was used to assess the quality of the OLS model. 

AICc is a measure of the relative quality of the statistical models for a given set of data 

and provides a relative estimate of the information lost when a given model is used to 

represent the dependent variable. Low AICc scores indicate little data is lost. 

Log transformations were performed on the following 6 variables: TA_PCAP 

(total federal assistance per capita), POPDENN00 (population density 2000), 
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AVEDISTC (average distance to coast), MAXSUSWIN (maximum sustained wind 

speeds), BLDGLOSS1K (building loss in thousands of dollars), and NUMBRIDGE 

(number of bridges). Histograms of these log transformations as well as the descriptive 

statistics are provided in the appendix.   

The OLS models for regression scenarios 2-4 were re-run using the log variables.   

Table 22-24 shows a comparison of the Jarque-Bera statistics and Akaike’s Information 

Criteria (AICc) scores for regression scenarios 2-4 as well as the adjusted R-squares for 

each OLS model run.  The model diagnostics for each regression scenario were updated 

and interpreted as follows.  Log transformation had positive effects on the OLS 

regression models.  First, the log transformations were able to resolve a majority of the 

skewness issues experienced with the initial OLS models.  For regression scenario 2, 

depicted in Table 22, 8 of 9 hurricanes had issues with skewness in the data based on the 

Jarque-Bera test of normality prior to the log transformation. After the log 

transformations, 8 of 9 hurricanes had insignificant Jarque-Bera statistics indicating the 

data was normally distributed for all but hurricane Jeanne. The AICc scores also showed 

significant improvement indicating the OLS models using the log transformations are 

better specified.   
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Table 22: Regression Scenario 2 – Model Diagnostics using Log Transforms 

 

 
* Significant level at p = 0.05. 

 

 

 

For regression scenario 3, depicted in Table 23, 7 of 9 hurricanes had issues with 

skewness in the data based on the Jarque-Bera test of normality prior to the log 

transformation. After the log transformations, all 9 hurricanes had insignificant Jarque-

Bera statistics after the log transformations, indicating the data was normally distributed. 

The AICc scores also showed significant improvement indicating the OLS models using 

the log transformations are better specified.   

  

Hurricane

Multiple 

R-Squared

Adjusted 

R-Squared

Jarque-

Bera 

Statistic 

Jarque-Bera 

Probability

Jarque-Bera 

Probability 

after Log 

transform

Akaike's 

Information 

Criterion 

(AICc)

AICc 

after Log 

transform

Bret 0.460711 0.411685 0.303774 0.635125 0.859085 142.386169 49.096068

Charley 0.006365 -0.008465 5.314557 0.000000* 0.070139 1045.28583 319.91205

Claudette 0.005001 -0.057186 0.306689 0.001242* 0.857834 214.717872 62.08617

Floyd 0.049851 0.044573 3.495747 0.000000* 0.174144 2583.79078 812.84168

Irene 0.034394 -0.025957 1.19597 0.000000* 0.549919 167.847711 87.945829

Isabel 0.000833 -0.005572 3.431808 0.000000* 0.179801 2160.23395 679.8851

Ivan 0.004155 0.001072 0.921261 0.000000* 0.630886 4582.99211 1434.6158

Jeanne 0.10119 0.083566 17.733077 0.000000* 0.000141* 718.726391 204.08667

Lili 0.03614 0.013191 0.064575 0.000000* 0.968228 489.7047 171.028079
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Table 23: Regression Scenario 3 – Model Diagnostics using Log Transforms 

 
* Significant level at p = 0.05. 

 

 

For regression scenario 4, depicted in Table 24, 6 of 9 hurricanes had issues with 

skewness in the data based on the Jarque-Bera test of normality prior to the log 

transformation. After the log transformations, 6 of 9 hurricanes had insignificant Jarque-

Bera statistics after the log transformations, indicating the data was normally distributed. 

The AICc scores also showed significant improvement indicating the OLS models using 

the log transformations are better specified.  Even the 3 hurricanes with significant 

Jarque-Bera statistics (Ivan, Jeanne, and Lili) showed significant improvement in their 

AICc scores after the log transformation also indicating improvement in the model fit.  

  

Hurricane

Multiple 

R-Squared

Adjusted 

R-Squared

Jarque-

Bera 

Probability

Jarque-Bera 

Probability 

after Log 

transform

Akaike's 

Information 

Criterion 

(AICc)

AICc 

after Log 

transform

Bret 0.878039 0.707294 0.635125 0.599275 197.574814 99.104237

Charley 0.308227 0.228843 0.000000* 0.407183 1044.770559 309.6079

Claudette 0.410446 -0.002242 0.012291* 0.89722 242.843238 85.451124

Floyd 0.153525 0.119472 0.000000* 0.525137 2575.688267 804.72538

Irene 0.442073 0.051525 0.847012 0.564294 182.989604 110.85803

Isabel 0.203745 0.166586 0.000000* 0.713352 2155.439167 657.07912

Ivan 0.050723 0.029761 0.000000* 0.504556 4588.99382 1431.5481

Jeanne 0.210822 0.088061 0.000000* 0.07555 728.626731 212.88866

Lili 0.561286 0.475981 0.000000* 0.125499 480.636957 153.08985
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Table 24: Regression Scenario 4 – Model Diagnostics using Log Transforms 

 
* Significant level at p = 0.05. 

 

 

 

Generally, the log transformations had little effect on the adjusted R-squared 

values for the updated regression models.  SoVI still performs poorly in explaining the 

dependent variable, total federal assistance per capita (regression scenarios 2-3) using 

OLS regression.  The FEMA impact model data (regression scenario 4) performs 

markedly better in explaining the dependent variable. Those OLS models were able to 

explain over 50% of the variance for 6 of 9 hurricanes and between 35-43% of the 

variance for the remaining 3 hurricanes. SoVI, on the other hand, was only able to 

explain a substantial amount of the variance for hurricane Bret, and the SoVI factors 

(regression scenario 3) didn’t perform much better explaining considerable variance for 

only 2 hurricanes (Bret and Lili). 

 

 

 

 

Hurricane

Multiple 

R-Squared

Adjusted 

R-Squared

Jarque-

Bera 

Statistic 

Jarque-

Bera 

Probability

Jarque-Bera 

Probability 

after Log 

transform

Akaike's 

Informatio

n Criterion 

(AICc)

AICc 

after Log 

transform

Bret 0.833526 0.667051 0.814979 0.716957 0.665318 176.76731 77.14907

Charley 0.812877 0.761843 0.334743 0.015013* 0.845885 447.29988 99.02725

Claudette 0.51137 0.244844 3.485527 0.052005 0.175036 230.79853 226.568

Floyd 0.352909 0.3331 0.591506 0.000000* 0.743971 2861.263 839.3799

Irene 0.785095 0.667874 0.096468 0.881569 0.952911 177.28128 85.18548

Isabel 0.639705 0.625388 8.058707 0.000000* 0.017786* 2132.712 533.5655

Ivan 0.367562 0.354247 15.779169 0.000000* 0.000375* 4023.0754 1162.85

Jeanne 0.635223 0.587643 14.442282 0.000000* 0.000731* 713.90471 169.0749

Lili 0.430938 0.338657 3.924639 0.000000* 0.140532 492.07497 161.3563
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ADDING MISSING INDEPENDENT VARIABLES 

 

 The OLS regressions for scenarios 2-3 indicated model-misspecification due to 

key explanatory variables missing.  The results from the comparative analysis in chapter 

3 also indicated SoVI was missing variables for the geophysical properties of the hazard.  

To address this issue, variables for AVEDISTC and MAXSUSTWIN were combined 

with SoVI for regression scenario 5.  Figure 41 provides an illustration of the regression 

model. 

 

 

 

Figure 41: Regression Scenario 5 - Model Variables 

 

OLS models were run for all 9 hurricanes included in the research sample.  Table 

25 shows the diagnostics for the OLS regression model runs for each hurricane. Table 26 

shows the results for those same OLS model runs.  The model diagnostics for the OLS 

regression model runs indicate some measure of improvement with the additional 

geophysical variables; however, the model still performed poorly for 5 of 9 hurricanes.  

The AIC scores still varied widely across hurricanes from 50.971792 to 1429.1043 

suggesting the independent variables are not reliable predictors of the phenomena.  The 

adjusted R-squared values show the model was able to explain less than 13% of the 

Dependent 

Variable

Independent 

(Explanatory) 

Variables

SOVI score

AVEDISTC: 

MAXSUSWIN: 

Total Federal 

Assistance Per 

Capita (TA_pcap)
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variance for 5 of 9 hurricanes.  Four model runs were able to demonstrate significant 

explanatory power (hurricanes Bret, Charley, Irene, and Isabel), SoVI was able to explain 

more than 39.8% of the variance.  To determine the reliability of the adjusted R-squared 

values, the other model diagnostics and results were examined.  

Scatterplots of the variables relationships in figure 42 suggest that while the log 

transformations improved the models, these transformations had limited effect in 

linearizing the variables.  The Jarque-Bera statistic was significant for only hurricane 

Jeanne indicating the residuals are normally distributed.  This interpretation was 

confirmed by the histograms depicted in figure 43.  The scatterplots of the over and under 

predictions of residuals portrayed in figure 44 also show randomly distributed patterns 

indicating good model specification. 

The Koenker (BP) statistic was significant for 4 hurricanes (Charley, Isabel, Ivan 

and Jeanne) and insignificant for the remaining 5 hurricanes.  This suggests the data for 

hurricanes Charley, Isabel, Ivan and Jeanne are non-stationary, and the robust 

probabilities were consulted to determine coefficient significance.  The all coefficients 

for hurricane Isabel were significant based on the robust probabilities.  Significant 

coefficients varied for the remaining 8 hurricanes. Hurricanes Claudeette and Ivan had no 

significant coefficients.  The variables relationships depicted in the scatterplots from 

figure 42 are dubious as results are inconsistent across the 9 hurricanes.  
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Table 25: Regression Scenarios 5 - OLS Model Diagnostics 

 
* Significant level at p = 0.05. 

 

 

 

Table 26: Regression Scenarios 5 - OLS Model Results 

 

 
* Significant level at p = 0.05. 

 

 

 

Hurricane

Multiple 

R-Squared

Adjusted 

R-Squared

Joint 

F-Statistic

Joint F-

Statistic 

Probability

Joint 

Wald 

Statistic 

Joint Wald 

Probability

Koenker 

(BP) 

Statistic 

Koenker 

(BP) 

Probability

Jarque-

Bera 

Statistic 

Jarque-

Bera 

Probability

Akaike's 

Information 

Criterion 

(AICc)

Bret 0.709201 0.612268 7.316393 0.008705* 38.20263 0.000000* 0.850643 0.837319 0.243416 0.885407 50.971792

Charley 0.424543 0.397984 15.98459 0.000000* 44.32056 0.000000* 10.932933 0.012094* 1.924249 0.38208 286.806974

Claudette 0.022418 -0.187064 0.022418 0.9546 0.613896 0.893244 7.301925 0.062872 0.172165 0.917518 69.05402

Floyd 0.064219 0.048447 4.071808 0.007924* 13.29606 0.004038* 6.708372 0.081797 3.769291 0.151883 814.274652

Irene 0.760445 0.709112 14.8139 0.000126* 57.55005 0.000000* 1.591069 0.661417 0.542779 0.76232 70.140026

Isabel 0.449037 0.438304 41.83687 0.000000* 138.6425 0.000000* 16.698923 0.000815* 2.260761 0.32291 590.073759

Ivan 0.033215 0.024179 3.676071 0.012509* 10.20795 0.016879* 10.937571 0.012068* 1.004799 0.605077 1429.1043

Jeanne 0.183987 0.134027 3.682687 0.018046* 17.96033 0.000448* 8.248262 0.041150* 27.490687 0.000001* 203.751457

Lili 0.140414 0.075945 2.178013 0.105634 9.117218 0.027772* 3.541809 0.31538 0.003536 0.998234 170.969214

Independent Variable Bret Charley Claudette Floyd Irene Isabel Ivan Jeanne Lili

SoVI: 0.649582 0.05465 -0.009117 0.215138 0.512772 0.089231 0.042695 0.248105 -0.052928

AVEDISTC: -0.98998 0.669204 -0.062638 -0.104114 -1.379715 -0.764183 0.147966 0.156971 -0.660379

MAXSUSWIN: -0.711665 0.182995 -0.10497 -0.069511 1.117839 0.464471 0.096403 -0.441259 0.324228

Independent Variable Bret Charley Claudette Floyd Irene Isabel Ivan Jeanne Lili

SoVI: 0.001258* 0.616812 0.943055 0.001227* 0.006416* 0.045860* 0.454584 0.025318* 0.690334

AVEDISTC: 0.023076* 0.008263* 0.836887 0.39347 0.000488* 0.000000* 0.072052 0.46175 0.040133*

MAXSUSWIN: 0.19251 0.191044 0.661533 0.28771 0.666189 0.000000* 0.05235 0.042243* 0.361363

Independent Variable Bret Charley Claudette Floyd Irene Isabel Ivan Jeanne Lili

SoVI: 0.000394* 0.618939 0.940717 0.000775* 0.001408* 0.032582* 0.39541 0.001005* 0.643623

AVEDISTC: 0.004516* 0.026502* 0.880856 0.378696 0.000048* 0.000000* 0.07875 0.539719 0.014828*

MAXSUSWIN: 0.021746* 0.276939 0.460464 0.229339 0.604263 0.000000* 0.073799 0.016273* 0.358716

Independent Variable Bret Charley Claudette Floyd Irene Isabel Ivan Jeanne Lili

SoVI: 1.287732 1.010332 1.304326 1.022274 1.112316 1.023593 1.024313 1.080767 1.296839

AVEDISTC: 2.020382 3.140456 1.283182 1.12556 2.001102 1.058808 1.081743 1.076117 1.292116

MAXSUSWIN: 1.715992 3.127213 1.027488 1.134944 1.849485 1.036331 1.104537 1.00484 1.102006

Model Coefficients

Model Probabilities

Model Robust Probabilities

Model Variance Inflation Factors (VIF)
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Figure 42: Scatterplots of Variable Relationships for Regression Scenario 5 
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Hurricane Ivan     Hurricane Jeanne 

  

  Hurricane Lili  

 

 

Figure 43: Histograms of Residuals for Regression Scenario 5 
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Hurricane Irene    Hurricane Isabel 
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  Hurricane Lili  

     

 

Figure 44: Scatterplots of Over/Under Predictions for Regression Scenario 5 

 

 

 

 

Moran’s statistics were run to determine if spatial autocorrelation issues were 

influencing model performance for regression scenario 5.  These statistics are listed in 

Table 27 below.  The Moran’s I results indicate the presence of spatial autocorrelation in 

the OLS model runs for 6 of the 9 hurricanes.  
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Table 27: Regression Scenarios 5 – Spatial Autocorrelation (Moran’s I) Statistics 

  

Hurricane Index Expected Variance P-value Z-score Pattern

Bret 0.166484 -0.08333 0.032842 0.168047 1.378505 Random

Charley 0.269884 -0.014706 0.003725 0.000003 4.662683 Clustered

Claudette 0.037203 -0.058824 0.029242 0.574424 0.561548 Random

Floyd 0.506618 -0.005525 0.000754 0.00000 18.650511 Clustered

Irene 0.033397 -0.058824 0.01044 0.366754 0.902571 Random

Isabel 0.111404 -0.006369 0.000151 0.00000 9.577545 Clustered

Ivan 0.514572 -0.003086 0.000406 0.00000 25.675267 Clustered

Jeanne 0.274333 -0.019231 0.00918 0.002184 3.06395 Clustered

Lili 0.377364 -0.023256 0.009482 0.000039 4.114154 Clustered
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CHAPTER 8: RESOLVING SPATIAL AUTOCORRELATION  

 

 

Model bias from data skewness and missing variables were resolved using 

regression scenarios 4 and 5.  Regression scenario 5 produced the best results in the OLS 

regression analysis. It used 6 independent variables from the FEMA impact models of 

which 5 variables had log transformations performed.  Regression scenario 6 produced 

the best results using SoVI as the independent variable plus log transformations for 2 

geophysical variables. This chapter seeks to resolve the third issue encountered in the 

OLS regression that of spatial autocorrelation by applying spatial econometrics and 

geographically weighted regression (GWR) to these same regression scenarios. This 

approach is supported by the global Moran’s I statistics that indicate significant clustering 

in a majority of the 9 hurricanes models examined.  This allows for an “apples to apples” 

comparison to determine if a modified SoVI model can produce better results or a model 

based on FEMA impact model data can produce the best results.   

 For regression scenarios 4-5, spatial regression was run using queens-contiguity 

spatial weights for each of the 9 hurricanes to determine the significance of the spatial 

dependency identify in the global Moran’s I results.  The Lagrange Multiplier (LM) 

diagnostics were interpreted to decide if spatial regression is necessary and whether to 

use spatial lag or error terms to account for the spatial effects. The LM diagnostics for 

each regression scenario are presented in tables 53-54 below.  
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For regression scenario 4, the LM diagnostics indicated that spatial dependency 

was significant for hurricanes Floyd, Isabel, Ivan, and Jeanne.  Spatial regression should 

be run using both spatial lag for hurricanes Isabel and Ivan. Spatial error should be used 

for hurricanes Floyd and Jeanne. 

 

Table 28: Regression Scenarios 4 – Lagrange Multiplier Diagnostics 

 

 

For regression scenario 5, the LM diagnostics indicated that spatial dependency 

was significant for hurricanes Charley, Floyd, and Isabel.  Spatial regression should be 

run using spatial lag. 

 

Table 29: Regression Scenarios 5 – Lagrange Multiplier Diagnostics 

 

 

Diagnostic Bret Charley Claudette Floyd Irene Isabel Ivan Jeanne Lili

Moran's I 0.1076 1.6911 -0.1242 10.7643 0.6397 5.7964 13.5463 5.7136 2.6778

Moran's I Probability 0.9143 0.09082 0.90113 0.00000 0.52237 0.00000 0.00000 0.00000 0.00741

Lagrange Multiplier (lag) 0.22160 0.0005 0.11570 95.0065 0.11580 33.6402 203.5972 13.7565 2.07440

Lagrange Multiplier (lag) Probability 0.63780 0.98156 0.73376 0.00000 0.73369 0.00000 0.00000 0.00021 0.14979

Robust LM (lag) 0.01000 1.4109 1.87750 1.2228 0.73140 8.1768 38.737 0.0772 0.09750

Robust LM (lag) Probability 0.92033 0.2349 0.17062 0.26881 0.39244 0.00424 0.00000 0.78111 0.75489

Lagrange Multiplier (error) 0.3222 1.3249 0.82820 97.645 0.02590 25.4876 164.8695 19.5393 2.06260

Lagrange Multiplier (error) Probability 0.5703 0.24971 0.36278 0.00000 0.87224 0.00000 0.00000 0.01549 0.15095

Robust LM (error) 0.1105 2.7353 2.59010 3.8613 0.64150 0.0242 0.0093 5.86 0.08570

Robust LM (error) Probability 0.73952 0.09815 0.10754 0.04941 0.42318 0.87647 0.92304 0.01549 0.76969

Hurricane

Diagnostic Bret Charley Claudette Floyd Irene Isabel Ivan Jeanne Lili

Moran's I 1.3528 3.4434 1.0197 11.7744 2.0170 7.1032 17.6306 6.5758 4.0338

Moran's I Probability 0.17613 0.00057 0.30787 0.00000 0.04370 0.00000 0.00000 0.00000 0.00005

Lagrange Multiplier (lag) 1.15160 17.774 0.06070 130.4274 0.02950 85.8121 295.9508 28.0861 8.26740

Lagrange Multiplier (lag) Probability 0.28322 0.00002 0.80538 0.00000 0.86371 0.00000 0.00000 0.00000 0.00404

Robust LM (lag) 1.45180 10.499 2.68090 4.9956 3.29520 45.6922 2.6786 0.0086 0.46410

Robust LM (lag) Probability 0.22824 0.00119 0.10156 0.02541 0.06948 0.00000 0.10170 0.92619 0.49572

Lagrange Multiplier (error) 0.1609 8.5752 0.00850 125.4459 0.64550 42.8047 294.2014 30.4693 9.57090

Lagrange Multiplier (error) Probability 0.68829 0.00341 0.92650 0.00000 0.42172 0.00000 0.00000 0.00000 0.00198

Robust LM (error) 0.4612 1.3002 2.62870 0.0141 3.91130 2.6849 0.9293 2.3917 1.76770

Robust LM (error) Probability 0.49708 0.25417 0.10495 0.90540 0.04796 0.10131 0.33505 0.12198 0.18367

Hurricane
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Tables 55-56 compare the results from the OLS and spatial regression diagnostics 

for regression scenario 4 and 5, respectively. The model results were interpreted by 1) 

comparing the AIC and Schwarz criterion to determine if the spatial regression is a better 

fit versus the OLS and 2) using the order of precedence per Anselin (2005, p. 209) to 

determine if the model is properly specified which is W > LR > LM.   

For regression scenario 4, the AIC and Schwarz criterion (SC) were lower in the 

regression models versus the OLS models. For the order of precedence test, the results 

were mixed. Hurricanes Ivan and Jeanne satisfied this test indicating the spatial 

regression is an improvement and the model is properly specified.  Hurricanes Floyd and 

Isabel failed this test.  LR diagnostics were less than the LM diagnostics for these two 

hurricanes.  This suggests the models are missing a key explanatory variable or external 

influence.   

 

 Table 30: Regression Scenarios 4 – Spatial Regression Diagnostics 

 

 

Floyd OLS

Floyd 

Spatial Error Isabel OLS

Isabel 

Spatial Lag Ivan OLS

Ivan 

Spatial Lag

Jeanne 

OLS

Jeanne 

Spatial Error

Multiple R-Squared 0.352909 0.65484 0.639705 0.714097 0.36756 0.737381 0.635223 0.786302

Adjusted R-Squared 0.3331 - 0.625388 - 0.354247 - 0.587643 -

Joint F-Statistic 17.8157 - 44.6835 - 27.6062 - 13.3507 -

Joint F-Statistic Probability 0.00000 - 0.000000 - 0.000000 - 0.00000 -

Joint Wald Statistic - 205.4592558 - 31.87090247 - 391.4470164 - 40.34307662

Koenker (BP) Statistic 24.2989 2.5723 19.3256 11.6106 18.2213 1029.0638 9.3593 8.6813

Koenker (BP) Probability 0.00046 0.86029 0.00365 0.07124 0.0057 0.00000 0.15436 0.19231

Jarque-Bera Statistic 0.5915 - 8.0587 - 15.7792 - 14.4423 -

Jarque-Bera Probability 0.74397 - 0.01779 - 0.00037 - 0.00073 -

Akaike's Information Criterion 

(AICc) 836.638 742.814 530.599 503.668 1160.34 957.202 163.802 143.234

Swartz Criterion 859.83 766.007 552.037 528.169 1186.08 986.616 177.594 157.026

Likelihood Ratio - 93.8236 - 28.9306 - 205.1391 - 20.5678

Spatial Weights: Queens Contiguity

Diagnostic

Hurricane
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For regression scenario 5, the AIC and Schwarz criterion (SC) were lower in the 

regression models versus the OLS models for hurricanes Floyd and Isabel but not the 

case for hurricane Charley. For the order of precedence test, the results were also mixed. 

Hurricanes Charley and Isabel satisfied this test indicating the spatial regression is an 

improvement and the model is properly specified.  Hurricanes Floyd failed this test; the 

LR diagnostic was less than the LM diagnostic.  This suggests the model is missing a key 

explanatory variables or external influence.   

 

Table 31: Regression Scenarios 5 – Spatial Regression Diagnostics 

 

 

 

Given that the spatial regression results were inconclusive, the GWR models were 

used to explore the spatial dependency and assess model fitness for the regression 

scenarios.  For regression scenario 4, GWR executed for 4 of 9 hurricanes; the remaining 

hurricane models failed to execute due to a severe model design error in ArcGIS.  This 

type of error is usually due to global or local multicollinearity or non-linear relationships. 

CharleyO

LS

Charley 

Spatial Lag Floyd OLS

Floyd 

Spatial Lag

Isabel 

OLS

Isabel 

Spatial Lag

Multiple R-Squared 0.424543 0.431873 0.064219 0.620315 0.44904 0.718823

Adjusted R-Squared 0.397984 - 0.048447 - 0.438304 -

Joint F-Statistic 15.9846 - 4.07181 - 41.8369 -

Joint F-Statistic Probability 0.00000 - 0.007924 - 0.000000 -

Joint Wald Statistic - 132.8728817 - 269.1607735 - 143.0341849

Koenker (BP) Statistic 8.0206 78.0027 4.1814 3.8411 13.8284 3.5381

Koenker (BP) Probability 0.04559 0.00000 0.24253 0.27915 0.00315 0.31586

Jarque-Bera Statistic 1.9242 - 3.7693 - 2.2608 -

Jarque-Bera Probability 0.38208 - 0.15188 - 0.32291 -

Akaike's Information Criterion 

(AICc) 283.855 2793.02 811.934 687.152 587.679 503.581

Swartz Criterion 292.791 2819.52 824.75 703.173 599.929 518.894

Likelihood Ratio - 67.5026 - 126.7813 - 86.0981

Spatial Weights: Queens Contiguity

Diagnostic

Hurricane
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Table 32 shows the Residual squares ranged from 61.15 to 799.79.  Comparing the AIC 

results between OLS and GWR models suggests there is modest benefit in moving from a 

global regression model to a local regression model.  Not a reliable indicator, but the 

local R-squared values were slightly better for the GWR model indicating the local model 

has better explanatory power. GWR calculates the R-squared values by normalizing the 

numerator and denominator by their degrees of freedom; thereby, losing the interpretation 

of the value as a proportion of the variance explained, because the effective number of 

degrees of freedom in GWR is a function of the bandwidth rather than the number of 

variables like in OLs. As a result, the GWR R-squared is not considered a reliable 

indicator.   

Additionally, examining the condition number, a diagnostic for local collinearity, 

for each GWR model indicates there are no real issues with local collinearity.  This 

conclusion was confirmed by the coefficient standard error values for each model which 

were also very low.  GWR model results still exhibit spatial autocorrelation as shown in 

table 33 below. Maps of the GWR residuals depicted in figure 45 shows clustering of 

residuals consistent with the local Moran’s I. This clustering also appears to be closely 

associated with the hurricane storm tracks and points of landfall.  Overall analysis of the 

GWR results indicates that using a GWR approach yields a slight improvement over the 

OLS global model.  
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Table 32: Regression Scenario 4 - GWR Model Results 

 

 
 

 

 

 

Table 33: Regression Scenario 4 - GWR Moran’s I Results 

 

 
 

 

 

 

Hur. Floyd 

 
 

 

 

 

 

 

 

Hurricane Bandwidth Residual Squares Effective Number Sigma AICc R2 R2Adjusted AIC R2 R2Adjusted

Floyd 582,843.39 528.74 15.212884 1.67798 799.40 0.499681 0.461814 839.37989 0.35291 0.3331

Isabel 215,757.20 181.42 20.076767 1.46893 507.43 0.731352 0.694194 533.56548 0.63971 0.625388

Ivan 1,338,256.39 799.79 10.084589 1.684334 1143.17 0.416394 0.397587 1162.8503 0.36756 0.354247

Lili 601,684.65 61.15 7.830796 1.300209 160.80882 0.454943 0.352006 161.35629 0.43094 0.338657

GWR - Local Regression OLS - Global Regression

Hurricane Index Expected Variance P-value Z-score Pattern

Floyd 0.183123 -0.00495 0.000505 0.000000 8.367848 Clustered

Isabel 0.007733 -0.006369 0.000555 0.549432 0.598612 Random

Ivan 0.163014 -0.003436 0.000304 0.000000 9.542683 Clustered

Lili 0.109926 -0.023256 0.004402 0.044705 2.007417 Clustered
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Hur. Isabel 

 
 

 

 

Hur. Ivan 
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Hur. Lili 

 
 

 

Figure 45: Regression Scenario 4 - GWR Residual Maps 

 

 

 

For regression scenario 5, GWR executed for 7 of 9 hurricanes; the remaining 

hurricane models failed to execute due to a severe model design error in ArcGIS.  This 

type of error is usually due to global or local multicollinearity or non-linear relationships. 

The Residual squares ranged from 61.15 to 879.21.  Comparing the AIC results between 

OLS and GWR models shown in table 34 suggests there is a benefit in moving from a 

global regression model to a local regression model.  Not a reliable indicator, but the 

local R-squared values were better for the GWR model indicating the local model has 

better explanatory power. Based on a review of the condition number, a diagnostic for 

local collinearity, for each GWR model indicates there are no issues with local 

collinearity.  This conclusion was confirmed by the coefficient standard error values for 
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each model which were also very low.  Table 35 below and maps of the GWR residuals 

depicted in figure 46 shows clustering of residuals consistent with the local Moran’s I. 

This clustering also appears to be closely associated with the hurricane storm tracks and 

points of landfall.  Overall analysis of the GWR results indicates that using a GWR 

approach yields a modest improvement over the OLS global model for regression 

scenario 5.  

 

 

Table 34: Regression Scenario 5 - GWR Model Results 

 

 

 

Table 35: Regression Scenario 5 - GWR Moran’s I Results 

 

 
 

 

 

 

 

 

 

 

 

 

Hurricane Bandwidth Residual Squares Effective Number Sigma AICc R2 R2Adjusted AIC R2 R2Adjusted

Charley 471,028.98 198.692760 7.078416 1.791307 284.324128 0.480534 0.429542 286.80697 0.42454 0.397984

Claudette 4,615,665.04 21.227748 4.008216 1.231730 69.068143 0.226000 -0.187540 69.05402 0.02242 -0.187064

Floyd 161,097.20 315.58 35.208039 1.466231 686.46 0.665566 0.58763 814.27465 0.06422 0.048447

Isabel 240,305.65 273.50 11.287251 1.365357 555.61 0.584533 0.555401 590.07376 0.44904 0.438304

Ivan 374,776.87 879.21 20.107499 1.698133 1281.11 0.432551 0.396989 1429.1043 0.03322 0.024179

Jeanne 188,306.96 65.06 11.622222 1.253896 187.396716 0.547101 0.430836 203.75146 0.18399 0.134027

Lili 601,684.65 61.15 7.830796 1.300209 160.80882 0.454943 0.352006 170.96921 0.14041 0.075945

GWR - Local Regression OLS - Global Regression

Hurricane Index Expected Variance P-value Z-score Pattern

Floyd 0.183123 -0.00495 0.000505 0.000000 8.367848 Clustered

Isabel 0.007733 -0.006369 0.000555 0.549432 0.598612 Random

Ivan 0.163014 -0.003436 0.000304 0.000000 9.542683 Clustered

Lili 0.109926 -0.023256 0.004402 0.044705 2.007417 Clustered
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Hur. Charley 

 
 

 

 

 

 

 

Hur. Claudette 
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Hur. Floyd 

 
 

Hur. Isabel 
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Hur. Ivan 

 
 

 

Hur. Jeanne 
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Hur. Lili 

 

 

Figure 46: Regression Scenario 5 - GWR Residual Maps 
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CHAPTER 9: SUMMARY AND CONCLUSIONS 

 

This dissertation explored the relationships between hazard vulnerability science, 

disaster management policy, and disaster operations practice using a case study of 9 

Atlantic hurricanes occurring between 1999 and 2004. Qualitative analysis was 

conducted to establish common linkages and theoretical underpinnings between hazard 

vulnerability indices and disaster management policy and practice. Exploratory 

regression and spatial econometric methods were utilized to quantify relationships across 

these disciplines. Five main questions guided this research:  

1. Does vulnerability science have a nexus with disaster management? 

2. Do hazard vulnerability indicators align with disaster operations variables?  

3. Do hazard vulnerability indices accurately predict the exposure of a community 

to a natural hazard and therefore its level of vulnerability or the level of 

damages and serve as a good predictor for disaster management purposes?  

4. Do hazard vulnerability indices account for the geography of the hazard across 

space or inadvertently treat the units of measure as discrete locations? 

5. Do hazard vulnerability indices provide an effective planning tool for building 

disaster resiliency? 

 

This chapter summarizes this research and discusses key findings.  The 

contribution and implications of this research, a critique of it, and opportunities for future 

research are presented. 
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SUMMARY OF RESEARCH FINDINGS 

This dissertation was concerned with establishing the conceptual linkages between 

hazard vulnerability science and disaster management policy and practice. This research 

was able to establish common conceptual foundations and theoretical underpinnings 

across these three disciplines, using a pedigree matrix and variable cross walk (Chapter 

3).  The pedigree matrix was used to compare and contrast three hazard vulnerability 

indices (social vulnerability index, disaster risk index, and disaster preparedness index) 

and to select the best one suited to test - if a hazard vulnerability index can accurately 

predict the exposure of a community to a natural hazard and therefore its level of 

vulnerability or the level of damages and serve as a good predictor for disaster 

management purposes.  The comparative analysis was based on a qualitative taxonomy 

adopted from Gall (2007, p.33-34) that allowed for an “apples to oranges” comparison of 

the scale and the composition of the indices. Results from the pedigree analysis 

determined that SoVI was the best suited index for testing the predictive power of hazard 

vulnerability indices.   

The results from the comparative analysis also showed that there is general 

alignment between the indicators used by hazard vulnerability science (SoVI), the 

essential elements of information (EEIs) used by disaster management policy, and the 

disaster impact model variables used by disaster response. EEIs were grouped into four 

main categories: disaster area, geophysical information, socio-economic information, and 

critical infrastructure information. EEIs for geophysical information were not aligned 
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with any hazard vulnerability indicators, but hazard vulnerability indicators were aligned 

to the EEI groupings for disaster area, socio-economic, and critical infrastructure.   

A correlation analysis of SoVI with the FEMA impact model variables that are 

linked to disaster management policy substantiated the findings from the comparative 

analysis.  SoVI had strong statistical correlations with the socio-economic grouping of 

EEIs and weak correlations with the critical infrastructure grouping.  Additionally, the 

correlation analysis showed that SoVI had few statistically significant correlations with 

the geophysical information.  There was conflicting information for several variables 

across different storms, so the utility of the correlation matrices was limited.  Exploratory 

regression was used as a more manageable method to quantify the statistical relationships 

between hazard vulnerability science and disaster management policy and practice. It also 

provided a means to eliminate redundant variables and choose a good set of independent 

variables.  From the exploratory regression, six variables were chosen and analyzed for 

effectiveness using OLS regression. The six variables were SoVI: POPDEN, PCTPOV, 

AVEDISTC, MAXSUSTWIN, BLDGLOSS1K, and NUMBRIDGES.  These variables 

map to the four EEI groupings and allowed for an apple to apples comparison in the 

subsequent OLS regressions. 

Findings from the comparative and correlation analyses were consistent. Since 

hazard vulnerability indices are usually general measures of susceptibility, they tend to be 

weak in indicating the geophysical characteristics of the hazards they intend to measure.  

The hazard vulnerability indices also placed more emphasis on population characteristics 
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and less emphasis on critical infrastructure information.  This is contrary to the central 

tenants of hazard vulnerability science: vulnerability provides a conceptual link between 

disasters, built environment, and people.  Often, people are less at direct risk and critical 

infrastructure is more at risk. People can be evacuated, but not critical infrastructure.  In 

other words, hazard vulnerability and disaster impacts are felt as more a function of the 

built environment and not as a population. Therefore, it is reasonable to suggest that 

hazard vulnerability science should include more infrastructure related indicators rather 

than population related indicators.  

  A main purpose of this dissertation was to empirically validate SoVI as a reliable 

measure of vulnerability and its capacity to predict the costs and level of damages for a 

disaster using Atlantic hurricanes as the case study.  Results from the empirical analysis 

were dubious, varying widely across the 9 hurricanes included in the research sample. 

SoVI had little predictive power in explaining disaster costs and damages based on OLS 

regression and spatial econometrics performed for regression scenarios 2-5.  The initial 

OLS models suffered from skewness in the data and missing variables. To resolve these 

issues, log transformations were performed on the variables and geophysical variables 

(AVEDISTC and MAXSUSTWIN) were combined with SoVI to improve model 

performance.  Global Moran’s I statistics for the OLS regression indicated the presence 

of spatial autocorrelation in a majority of the hurricane regression runs.  Maps of the 

residuals showed that spatial clustering was associated with the hurricane storm tracks 

and points of landfall.  Spatial econometric and GWR models were used as a means to 

resolve the effects of spatial autocorrelation.  However, spatial regression models were 



  

174 

unable to capture the spatial autocorrelation effectively and provided only marginal 

improvement over the OLS models.   

Regression scenario 4 demonstrated that the disaster operations impact model data 

had more predictive power in explaining disaster costs and damages than SoVI. While the 

disaster impact model is constructed from variables that cross map with variables 

associated with disaster management policy and practice, statistical relationships between 

the disaster impact model variables and actual disaster costs and damages were not as 

strong as expected.  When using the 6 disaster impact model variables with statistically 

significant correlations with SoVI and log transformations to address skewness, 

regression scenario 4 produced solid results in predicting total amount of federal 

assistance per capita.  Adjusted R-squared values exceeded 58.7% for 5 of the 9 hurricane 

regressions, and ranged from 24-35% for the remaining 4 models.  

Regression scenario 5 did not fare as well despite the log transformation and 

additional geophysical variables.  SoVI still performed poorly compared to the disaster 

impact model data in explaining the disaster costs and damages.  Regression scenario 5 

failed to validate that combining SoVI with missing variables for the specific hazard 

could serve as a basis for constructing a more dependable, composite index for hazard 

vulnerability. While the performance of SoVI did improve with the addition of the 

missing variables, it still did not perform as well as the disaster impact model constructed 

by FEMA. These findings indicate there is disconnectedness between hazard 

vulnerability indices and disaster management policy. 
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This research found that there were stronger statistical relationships between SoVI 

and the disaster operations impact model based on results from the exploratory 

regression, but weaker relationships between SoVI and disaster outcomes using the 

federal disaster assistance data.  SoVI had little ability to explain disaster impact 

expressed as total federal assistance per capita. These findings indicate disconnectedness 

between hazard vulnerability science and disaster management policy. It appears that 

how we link vulnerability to disaster response and recovery operations is not the same as 

how we link those two domains to disaster policy. These findings in part substantiate the 

hazards-of-place theory that vulnerability is a function of the interactions between hazard, 

place, and society, but refute the claim by Emrich and Cutter (2016) that SoVI “has high 

utility as a decision-support tool for emergency management” turning “historical disaster 

impact measures into actionable information for emergency managers, recovery planners, 

and decision makers because it empirically measures and visually depicts a population’s 

(in)ability to adequately prepare for, respond to, and rebound from disaster events” 

(Emrich and Cutter 2016, p.???).    This research also question the claim by Cutter et al. 

(2003) that SoVI provides the emergency management community and policy makers a 

useful tool to illustrate the geographic variation in social vulnerability, to identify areas 

where there is uneven capacity for preparedness and response, to target areas where 

resources might be used more effectively to reduce pre-existing vulnerability and 

promote risk mitigation measures, and as an indicator in determining the differential 

recovery from disasters (Cutter et al 2003, HVRI SoVI webpage 2013).   This research 
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was unable to demonstrate the effectiveness of SoVI in explaining disaster impacts 

expressed as total federal cost per capita. 

Furthermore, SoVI is constructed from proxy measures for social vulnerability. 

While SoVI was initially developed to include indicators for the built environment, it 

does not adequately account for critical infrastructure and other key characteristics of the 

built environment.   More significantly, SoVI does not account for any of the geophysical 

properties of the various natural hazards (i.e.; wind speed, rainfall amounts, etc.).  

Developing a composite measure of vulnerability must factor in the diversity of place, 

variation of the hazard, and complexity of the built environment or become too 

homogenized. These results show that SoVI is an inconsistent measure of vulnerability 

and that it is not able to reliably capture the complexity of regional and event specific 

variation necessary to accurately predict the level of damages or costs for a hurricane 

disaster.  

 

CONTRIBUTIONS AND IMPLICATIONS 

This dissertation examined the relationship between hazard vulnerability science, 

disaster management policy, and disaster operations practice. It provided a quantitative 

analysis of the reliability and utility of SoVI to accurately predict exposure of a 

community to a disaster, therefore its level of vulnerability or the level of damages, and 

serve as a good predictor for disaster management purposes using empirical data for 9 

Atlantic hurricanes. It also provided the first cross mapping between the indicators used 
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by hazard vulnerability science (SoVI), the essential elements of information (EEIs) used 

by disaster management policy, and the disaster impact model variables used by disaster 

response.  

One of the main contributions of this research is that it improves our understanding 

of the research policy nexus described by Cutter et al 2008 (p. 598).  Since 1964, the US 

has continuously pursued a research policy nexus to better understand hazards, 

community vulnerability, and societal tolerance of risk and broad dissemination of this 

knowledge to inform policy and improve decision making (Cutter et al. 2008, p. 598).  

We have yet to design “robust and credible measures of vulnerability” that are accepted 

by the research and practitioner communities (Adger 2006, p. 268, Gall 2007, p. 12).  We 

have yet to develop a proven vulnerability index that incorporates the components of 

disaster response and recovery with mitigation and resiliency and that is more directly 

integrated with disaster management policy. This research demonstrated that developing 

a composite measure of vulnerability must include diversity of place, variation of the 

hazard, and complexity of the built environment.   

These contributions have implications for national disaster management policy by 

increasing our understanding of how vulnerability indices correlate with actual exposure 

and level of damage, and for developing a measure of community resiliency that is based 

on a set of proven indicators that takes into account 1) potential exposure, 2) likely 

impact to people, infrastructure, and environment, 3) capacity to cope, and 4) ability to 

recover.  This enhanced understanding may lead to more sustainable practices, more 

effective policies, and actionable guidance and provide a means for comparing our 
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disaster preparedness, practice, and resiliency across space and over time. It may also 

help pivot the nation away from a disaster response focus toward one of preparedness, 

with an emphasis on building resiliency.   

 

 

FUTURE RESEARCH 

 

“Measuring vulnerability – i.e. selecting vulnerability indicators and 

determining their interactions – is [still] less empirical and more a leap of 

faith” (Adger 2006, p. 275). 

 

This dissertation has created many avenues for future research. First, hazard 

vulnerability science should seek an alternative approach to the equation; Disaster = 

Hazard * Vulnerability, by examining the “risk that people and communities are exposed 

to with their social, economic, and cultural abilities to cope with the damages that 

occurred” (Hilborst and Bankoff 2008, p. 2).   Vulnerability should not be considered a 

property of disaster or hazard, but an outcome. Hazards are natural, disasters are not. 

Disasters are not just one-off phenomena; they represent the results of continuous social, 

economic, and environmental processes over time.  According to Lavell (2008, p.82), “as 

long as disaster is seen as externally imposed, little advance will be achieved in” building 

resiliency and reducing vulnerability. Subsequently, vulnerability provides a conceptual 

link toward improving the understanding between disasters, built environment, and 

people.  According to Hilhorst and Bankoff, “vulnerability is the key to understanding 

risk” (2008, p. 1) and “the ways in which human systems place people at risk in relation 
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to each other and their environment” (Cannon 1994, p. 14).  Petak and Atkisson (1982) 

maintains that much of the scientific work on modeling, estimating, and forecasting 

disaster impacts are examples of risk assessments applied to natural hazards. Hill and 

Cutter (2002) contend that vulnerability assessments should include risk and exposure 

and are more difficult to undertake than simple risk analyses because they require more 

data, have more complex interactions, and involve more advanced and composite 

techniques of statistical analysis.  

Cutter (2002) argues that vulnerability science has not adequately developed an approach 

to the “integration of natural sciences, engineering sciences, and social sciences to 

produce credible vulnerability assessments at the local level” (p. 159).   This suggests 

more investigation in necessary toward understanding what characteristics or decisions 

are occurring or present that could be modified or changed to reduce long term risk and 

how these potential indicators relate to the actual costs/damages. 

Another consideration for future work would be to develop a hazard vulnerability 

index that integrates deterministic and probabilistic methods to incorporate results from 

historical, hypothetical, and predicted events to produce a more dependable, composite 

index for hazard vulnerability.  This hazard vulnerability index would be based on impact 

model simulations, calibrated by empirical data from historical events, rather than general 

socio-economic indicators or national estimates of loss. This approach is very similar to 

the one employed by the National Hurricane Center (NHC), and validated by the 

meteorological community, to produce the Sea, Lake, and Overland Surges from 

Hurricanes (SLOSH) model. The SLOSH model is a numerical model that uses a proven 



  

180 

set of characteristics (indicators) run through a set of statistical equations several 

thousand times to produce a composite measure of risk for an area based on estimated 

storm surge heights from historical, hypothetical, and predicted hurricanes (NWS website 

2016).  This type of approach would provide a more useful, understood, and acceptable 

metric of risk.   

Future research should also consider experimenting with integrating hazard 

vulnerability into an operational framework constructed from the premise that 

vulnerability assessments will be assembled in part with the inputs from pre-impact 

models and forecasts and these same models and forecasts would be used in near real-

time as part of the response and recovery. The fusion of vulnerability assessments and 

impact model/forecasting would incorporate the likelihood of the hazard occurring, the 

potential level of impact to the population and the potential damage to the infrastructure, 

environment, and economy. A conceptual diagram of this framework is depicted in 

Figure 47.  The framework envisions that both sets of results would be continuously 

calibrated with actual outcome data creating a regime similar to other first responder 

approaches that encompasses training, exercising, executing, evaluating and correcting. 

This would provide a basis for improving and refining the accuracy and performance of 

all components of the framework (vulnerability assessment, mitigation planning, pre-

event forecast modeling for resource management, post disaster impact and recovery) 

with the potential result of producing more common disaster operations practice. These 

common practices could serve as the bases for determining capability maturity and 

assessing community readiness and resiliency.   
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Figure 47: Conceptual Diagraph of Disaster Operations Framework 
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APPENDIX A: List of Essential Elements of Information (EEIs) 

 

 

 

 Boundaries of the disaster area 

 Social, economic, and political impacts 

 Jurisdictional boundaries 

 Status of transportation systems and critical transportation facilities 

 Status of communications systems 

 Access points to the disaster area 

 Status of operating facilities 

 Hazard-specific information 

 Weather data affecting operations 

 Seismic or other geophysical information 

 Status of critical facilities and distribution systems 

 Status of remote sensing and reconnaissance activities 

 Status of key personnel 

 Status of ESF activation 

 Status of disaster or emergency declaration 

 Major issues and activities of ESFs 

 Resource shortfalls and status of critical resources 

 Overall priorities for response 

 Status of upcoming activities 

 Donations 

 Historical and demographic information 

 Status of energy systems 

 Estimates of potential impacts based on predictive modeling (as applicable) 

 Status (statistics) on recovery programs (human services, infrastructure, SBA) 

 Status and analysis of initial assessments (needs/damage assessments, PDAs) 

 Status of efforts under other Federal emergency operations plans 

 
(Source: Section VII B. of ESF#5 – Information and Planning Annex 2003)  
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APPENDIX B: List of Variables from the Social Vulnerability Index 2006-2010 

 

 

 
 

(Source: SoVI Webpage -- Hazards and Vulnerability Research Institute – University of 

South Carolina 2013)  
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APPENDIX C: List of Variables from the Disaster Risk Index 

 

 

 

 
 

 

 

DRI Variables: 

 

Variable         Indicator Type 

Urban Growth          EQ 

Exposed Population - Earthquake       EQ 

Local Population Density        FR 

GDP           FR 

Exposed Population – Flood        FR 

Arable Land          HR 

HDI (ave. of (weighted ave of Adult Literacy rate (2) X Gross Enrollment (1) X GDP)  HR 

Exposed Population – Hurricane       HR 

Access to water         DR 

Exposed Population – Drought       DR 

 
(Source: Gall 2007, p. 55 – Structure of the Disaster Risk Index)  
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APPENDIX D: List of Variables from the Disaster Preparedness Index 

 

 

 

 
 

 

 

DPI Variables: 

 

Variable         Indicator Type 

Hazard -MMI with a 50 year return period       HAZ  

Hazard -MMI with a 500 year return period       HAZ  

Hazard - % of urbanized area with soft soil       HAZ  

Hazard - % of urbanized area with high liquefaction susceptibility    HAZ  

Hazard - % of buildings that are wood       ISQ  

Hazard -Population density (people per sq km)      PD  

Hazard - Tsunami potential indicator       PL  

Exposure-Population          PD  
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Exposure-Per Capita GDP         CA  

Exposure-Number of Housing Units        ISQ  

Exposure-Urbanized land Area        ISQ  

Vulnerability -Seismic code indicator       PL  

Vulnerability -City wealth indicator        CA  

Vulnerability -City age indicator        ISQ  

Vulnerability -% of population aged 0-4 and 65+      PD 

Emergency Response-Avg growth in GDP over 10 years     CA  

Emergency Response-housing vacancy rate      PD/ISQ  

Emergency Response-hospitals per 100,000 residents     SS  

Emergency Response-physicians per 100,000 residents     SS  

Exposure-average daily number of tourists       PD  

Exposure-median home value        CA  

Exposure-income generated from agriculture      CA  

Exposure-number of business units       CA/ISQ  

Exposure-value of power lines        ISQ  

Vulnerability-%pop aged 16–64 that has a mobility limitation    PD  

Vulnerability-Public education indicator (awareness about hurricanes)   SC  

Vulnerability- Avg BCEGS grade        PL  

Vulnerability- % of homes that are mobile       ISQ  

Vulnerability- businesses with less than 20 employees    PD/ISQ  

Vulnerability- % of county land detached from mainland     CA  

Emergency Response-number of shelters available      SS  

Emergency Response-number of hospital beds per 100,000     SS  

Emergency Response-City layout (roads in grid -0, otherwise -1)    ISQ  

House Insurance          EA  

Income           CA  

Tenure Type           CA 

Age            PD 

Debt            EA  

Employment           PD/SC  

Car Ownership          CA  

English Skills           PD/SC  

Household Type          PD/CA  

Health Insurance          EA  

Residence Type          CA  

Disability           PD  

Gender           PD  

Exposure-Population growth rate-average annual rate     PD  

Exposure-Urban growth- avg annual rate %       ISQ  

Exposure-people per 5km sq         PD  

Exposure-Poverty people living below poverty level     PD  

Exposure-Capital Stock in millions of $ per sq km      EA  

Exposure-Imports and Exports of Goods and Service as % of GDP    CA/EA  
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Exposure-Gross domestic fixed investment       CA  

Socioeconomic-dependents as % of working age population    PD  

Socioeconomic-unemployment rate        PD 

Socioeconomic-debt service burden        EA  

Socioeconomic-soil degradation        CA  

Resilience-Infrastructure and Housing Insurance as % of GDP    CA/EA  

Risk Identification-systematic inventory of disaster losses     PL  

Risk Identification-hazard monitoring and forecasting     PL  

Risk Identification-vulnerability and risk assessment     PL  

Risk Identification-public information and community participation   SC  

Risk Identification-risk management training and education    PL  

Disaster Management-Organization of EM operations     PL  

Disaster Management-emergency response planning and implementation of 

warning system         PL  

Disaster Management-supply of tools, equipment, and infrastructure  CA/ISQ  

Disaster Management-Simulation-test and updating of response capability   PL  

Disaster Management -community preparedness and training    SC  

Disaster Management -rehabilitation and reconstruction planning    PL  

Government/Financial - multisector coordination      SC/SS  

Government/Financial - existence of social safety nets     SC/CA  

Government/Financial -budget allocation and mobilization     CA/PL  

Government/Financial - Insurance Coverage and loss transfer strategies for 

public assets          EA/CA  

Government/Financial - housing and private sector insurance and reinsurance  

coverage          EA  

Per Capita Income          CA  

Median Age           PD  

# of commercial establishments/mile sq       ISQ 

single-sector economic --> % employed in extractive industries    PD  

Housing stock and tenancy--> % of homes that are mobile     ISQ  

% African American          PD  

% Hispanic           PD  

% Native American          PD  

% Asian           PD  

% employed in service occupations        PD  

% employed in transportation communication and public utilities    PD  

Hazard-Change in vibration intensity       HAZ  

Hazard-Liquefaction (softening of subsoil)       HAZ  

Hazard-Tsunami          HAZ  

Hazard-Fire Following earthquake        HAZ  

Vulnerability -Preparedness (very good,good, average, below avg)    PL  

Vulnerability-Quality of Construction (very good, good, avg, below avg)   ISQ  

Vulnerability- Building Density        ISQ  

Vulnerability- Population Density        PD  
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Exposure-Average value of household for residential buildings    CA  

Exposure-GDP for commercial/industrial buildings      CA  

Number of earthquakes over last 50 years/10,0000 sq km >6.0 Richter   HAZ  

Number of tsunamis with run up 2m over last 50 years /10,000 sq km coast area  HAZ  

Number of nuclear facilities         ISQ  

Number of shipping ports         ISQ  

Average number of tourists         PD  

FIRE response time          SS 

# of fire stations per 1000         SS  

Number of personnel per 1000 pop        SS  

funding per 1000 pop          SS/PL  

vehicles per 1000 pop         SS  

EMS Response time          SS 

# of available hospital/clinic beds per 1000       SS  

# of medical personnel per 1000        SS  

POLICE avg response time         SS 

# of personnel per 1000 pop         SS  

funding per person          SS/PL  

Pre-existing emergency ordinances        PL  

Existing Special Area Zoning        PL  

Hazard maps           PL  

local funding for mitigation/planning       PL  

pre-existing recovery plan         PL  

existence of Emergency EMO yes/no       PL/SS  

staffing of EMO per 1000         PL/SS  

existence of emergency plan yes/no        PL  

EOC activation plan          PL  

Age of EOC plan          PL  

training or simulation using plan yes/no       SC  

funding per capita          PL  

est. emergency ops center yes/no        PL/SS  

availability mass care sites yes/no        SS  

drills and exercises yes/no         SC  

existence of level of activity (LEPC) yes/no       SS  

existence of community based org. yes/no       SS  

disaster response designated yes/no        SS  

general social service yes/no         SS  

National Org Yes/No          SS  

volunteer org (yes/no)         SS  

daily newspapers yes/no         SC  

# of local radio stations         SC  

earthquake MM scale mult -10        HAZ  

chemical facilities          HAZ  

railway facilities          HAZ  
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nuclear plant           HAZ  

existence of evacuation plan         PL  

warning system          PL  

Total city budget per person         CA  

cash reserves in general fund         CA  

cash reserves as % of annual budget        CA  

% of budget to debt service         CA  

city's bond rating          CA  

Unemployment          PD 

overcrowding - households with more than one person per room    PD  

long term sick           PD  

single parents           PD  

elderly over 75+          PD  

Preexisting health problems         PD  

 
(Source: Simpson 2006, p. 14-18 – Disaster Preparedness Index Working Paper) 

 

  



  

190 

 

 

 

 

APPENDIX E: List of Variables from the Disaster Operations Model 

 

 

 

Source: FEMA, Mapping and Analysis Center 2012 

 

 

Geography/Demographics 

 

County_State_County_FIPS: 

County and State name with corresponding State and County FIPS code 

Calculation:  Concatenation 

Source: U.S. 2000 Census (SF1) Summary File 

 

Housing units: 

Summation of Housing Units (a house, an apartment, a mobile home or trailer, a group of 

rooms, or a single room occupied as a separate living quarters, or if vacant, intended for 

occupancy as separate living quarters) in the affected tracts 

Calculation:  None 

Source: U.S. 2000 Census (SF1) Summary File 

 

Total Population (2000): 

2000 Population in affected census tracts 

Calculation:  None 

Source: U.S. 2000 Census (SF1) Summary File 

 

Total Population (Hurricane Year): 

Population in affected census tracts 

Calculation:  Estimation of 2001, 2002, 2003, and 2004 

Source: U.S. 2000 Census (SF1) Summary File  

 

Total Area (sq mi): 

Total area in square miles of each affected census county 

Calculation:  None 

Source: U.S. 2000 Census (SF1) Summary File 

 

Population Density (/sqmi) (2000): 

Number of people per square mile 

Calculation:Population of 2000 divided by the Total Area 

Source: U.S. 2000 Census (SF1) Summary File 
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Income per Capita ($): 

The mean income computed for every man, woman, and child in a county 

Calculation:  None 

Source: U.S. Census (SF3) Summary File 

 

Poverty Percent: 

Percent of Sample Population below Poverty 

Calculation:  Count of Population below poverty/Sample Population Count 

Source: U.S. Census (SF3) Summary File 

 

Average distance to coast: 

Mean distance to coast from the centroid of the census county 

Any distance greater than 100 miles will be reported as 100 miles  

Calculation:  Mean total when rolled up from the Tract Level 

Source: HAZUS 

 

Tree Volume: 

Estimation of tree volume that is likely to be collected and discarded at public expense 

Calculation:  Summed when rolled up from the Tract level 

Source:  HAZUS 

 

Max Sustained Winds: 

HAZUS does not report if less than 50 mph. Null values are replaced with 999.  

Sustained wind speed at the time of landfall (one minute average over water) 

Calculation:  Maximum when rolled up from the Tract Level 

Source: HAZUS 

 

Building Loss ($1K): 

Building loss is calculated using the cost to re-build the structure.  

Initially building loss is calculated categorically by material type. The category totals are 

then manually summed to get a total of all building loss by county.  

Calculation:  Sum of Building Loss (Wood + Steel + Manufactured Homes + Masonry + 

Concrete) 

Source: National Institute of Building Sciences (NIBS), HAZUS 

 

Content Loss ($1K): 

Content/Interior damage is estimated using an implicit model.  The economic damage to 

the interior of the building is a function of the damage to the roof cover, roof sheathing, 

roof structure and the windows and doors. 

Calculation:  Sum of Building Loss (Wood + Steel + Manufactured Homes + Masonry + 

Concrete) 

Source:  National Institute of Building Sciences (NIBS), HAZUS 
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Number of Bridges: 

Number of Bridges in the affected counties 

Calculation:  Summed when rolled up from the Tract level 

Source: National Institute of Building Sciences (NIBS), HAZUS 

 

Miles of Road: 

Miles of Nonfederal roadways in the affected counties 

- (exclude Fed. Highways, Nat’l Park, Indian Land, Mining) 

Calculation:  Summed when rolled up from the Tract level 

Source: NAVTEQ 

 

 

Economic Facilities (EF) 

 

Emergency Response Centers: 

Moderate (M) - Moderate Damage Probability (0.0 - 1.0) 

 Calculation:  Mean total when rolled up from the Tract Level 

Severe (S) - Severe Damage Probability (0.0 - 1.0) 

 Calculation:  Mean total when rolled up from the Tract Level 

Complete (C) - Complete Damage Probability (0.0 - 1.0) 

 Calculation:  Mean total when rolled up from the Tract Level 

Count - Count of effected Emergency Response Centers 

 Calculation:  Summed when rolled up from the Tract level 

Source: HAZUS 

 

Fire Stations: 

Moderate (M) - Moderate Damage Probability (0.0 - 1.0) 

 Calculation:  Mean total when rolled up from the Tract Level 

Severe (S) - Severe Damage Probability (0.0 - 1.0) 

 Calculation:  Mean total when rolled up from the Tract Level 

Complete (C) - Complete Damage Probability (0.0 - 1.0) 

 Calculation:  Mean total when rolled up from the Tract Level 

Count - Count of effected Fire Stations 

 Calculation:  Summed when rolled up from the Tract level 

Source: HAZUS 

 

Police Stations: 

Moderate (M) - Moderate Damage Probability (0.0 - 1.0) 

 Calculation:  Mean total when rolled up from the Tract Level 

Severe (S) - Severe Damage Probability (0.0 - 1.0) 

 Calculation:  Mean total when rolled up from the Tract Level 

Complete (C) - Complete Damage Probability (0.0 - 1.0) 

 Calculation:  Mean total when rolled up from the Tract Level 

Count - Count of effected Police Stations 
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 Calculation:  Summed when rolled up from the Tract level 

Source: HAZUS 

 

Schools:  All schools - Private and public, High, middle, elementary.   

Moderate (M) - Moderate Damage Probability (0.0 - 1.0) 

 Calculation:  Mean total when rolled up from the Tract Level 

Severe (S) - Severe Damage Probability (0.0 - 1.0) 

 Calculation:  Mean total when rolled up from the Tract Level 

Complete (C) - Complete Damage Probability (0.0 - 1.0) 

 Calculation:  Mean total when rolled up from the Tract Level 

Count - Count of effected Schools 

 Calculation:  Summed when rolled up from the Tract level 

Source: HAZUS 

 

Medical Facilities:  Medical Offices and Clinics 

Moderate (M) - Moderate Damage Probability (0.0 - 1.0) 

 Calculation:  Mean total when rolled up from the Tract Level 

Severe (S) - Severe Damage Probability (0.0 - 1.0) 

 Calculation:  Mean total when rolled up from the Tract Level 

Complete (C) - Complete Damage Probability (0.0 - 1.0) 

 Calculation:  Mean total when rolled up from the Tract Level 

Count - Count of effected Medical Facilities 

 Calculation:  Summed when rolled up from the Tract level 

Source: HAZUS 

 

Economic Loss (EL) 

Grade Schools:  Grade Schools and Libraries 

Moderate (M) - Moderate Damage Probability (0.0 - 1.0) 

 Calculation:  Mean total when rolled up from the Tract Level 

Severe (S) - Severe Damage Probability (0.0 - 1.0) 

 Calculation:  Mean total when rolled up from the Tract Level 

Complete (C) - Complete Damage Probability (0.0 - 1.0) 

 Calculation:  Mean total when rolled up from the Tract Level 

Building - Total cost of Grade School building(s)  

 Calculation:  Summed when rolled up from the Tract level 

Content - Total cost of the contents in the Grade School building(s) 

 Calculation:  Summed when rolled up from the Tract level 

Source: HAZUS 

 

Hospitals:  Hospitals 

Moderate (M) - Moderate Damage Probability (0.0 - 1.0) 

 Calculation:  Mean total when rolled up from the Tract Level 

Severe (S) - Severe Damage Probability (0.0 - 1.0) 

 Calculation:  Mean total when rolled up from the Tract Level 
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Complete (C) - Complete Damage Probability (0.0 - 1.0) 

 Calculation:  Mean total when rolled up from the Tract Level 

Building - Total cost of hospital building(s)  

 Calculation:  Summed when rolled up from the Tract level 

Content - Total cost of the contents in the hospital building(s) 

 Calculation:  Summed when rolled up from the Tract level 

Source: HAZUS 

 

Nonprofits: Church / Membership Organizations 

Moderate (M) - Moderate Damage Probability (0.0 - 1.0) 

 Calculation:  Mean total when rolled up from the Tract Level 

Severe (S) - Severe Damage Probability (0.0 - 1.0) 

 Calculation:  Mean total when rolled up from the Tract Level 

Complete (C) - Complete Damage Probability (0.0 - 1.0) 

 Calculation:  Mean total when rolled up from the Tract Level 

Building - Total cost of Nonprofit building(s) 

 Calculation:  Summed when rolled up from the Tract level 

Content - Total cost of the contents in the Nonprofit building(s) 

 Calculation:  Summed when rolled up from the Tract level 

Source: HAZUS 

 

Nursing Homes: Nursing Homes and Eldercare Facilities 

Moderate (M) - Moderate Damage Probability (0.0 - 1.0) 

 Calculation:  Mean total when rolled up from the Tract Level 

Severe (S) - Severe Damage Probability (0.0 - 1.0) 

 Calculation:  Mean total when rolled up from the Tract Level 

Complete (C) - Complete Damage Probability (0.0 - 1.0) 

 Calculation:  Mean total when rolled up from the Tract Level 

Building - Total cost of Nursing Home building(s) 

 Calculation:  Summed when rolled up from the Tract level 

Content - Total cost of the contents in the Nursing Home building(s) 

 Calculation:  Summed when rolled up from the Tract level 

Source: HAZUS 

 

Government Emergency Response Centers: 

Moderate (M) - Moderate Damage Probability (0.0 - 1.0) 

 Calculation:  Mean total when rolled up from the Tract Level 

Severe (S) - Severe Damage Probability (0.0 - 1.0) 

 Calculation:  Mean total when rolled up from the Tract Level 

Complete (C) - Complete Damage Probability (0.0 - 1.0) 

 Calculation:  Mean total when rolled up from the Tract Level 

Building - Total cost of Government Emergency Response Center building(s) 

 Calculation:  Summed when rolled up from the Tract level 
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Content - Total cost of the contents in the Government Emergency Response Center 

building(s) 

 Calculation:  Summed when rolled up from the Tract level 

Source: HAZUS 

 

Government General Services: 

Moderate (M) - Moderate Damage Probability (0.0 - 1.0) 

 Calculation:  Mean total when rolled up from the Tract Level 

Severe (S) - Severe Damage Probability (0.0 - 1.0) 

 Calculation:  Mean total when rolled up from the Tract Level 

Complete (C) - Complete Damage Probability (0.0 - 1.0) 

 Calculation:  Mean total when rolled up from the Tract Level 

Building - Total cost of Government General Services building(s) 

 Calculation:  Summed when rolled up from the Tract level 

Content - Total cost of the contents in the Government General Services building(s) 

 Calculation:  Summed when rolled up from the Tract level 

Source: HAZUS 

 

Colleges: All 2-yr, 4-yr Colleges and Universities 

Moderate (M) - Moderate Damage Probability (0.0 - 1.0) 

 Calculation:  Mean total when rolled up from the Tract Level 

Severe (S) - Severe Damage Probability (0.0 - 1.0) 

 Calculation:  Mean total when rolled up from the Tract Level 

Complete (C) - Complete Damage Probability (0.0 - 1.0) 

 Calculation:  Mean total when rolled up from the Tract Level 

Building - Total cost of college building(s) 

 Calculation:  Summed when rolled up from the Tract level 

Content - Total cost of the contents in the college building(s) 

 Calculation:  Summed when rolled up from the Tract level 

Source: HAZUS 

 

County – Name of county 

State – State Abbreviation 

FIPS – Federal Information Processing Standards 

 

Declared – Y/N Indicating whether the county was declared a disaster (Boolean 

identifier field) 

Source: FEMA 

 

Declaration – Disaster Declaration number (if declared) 

Source: FEMA 

 

Year – Year of storm 

Source: FEMA  
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APPENDIX F: List of Variables from the Disaster Assistance Data 

 

 

 

Source: FEMA – National Emergency Management System, 2014  

 

 

County Code (5-digit FIPS):  

County and State name with corresponding State and County FIPS code 

 

Disaster Title:  

Name of incident assigned by the National Hurricane Center 

 

Disaster Number:  

Sequentially assigned number used to designate an event or incident declared as a 

disaster. 

 

Total Amount from Federal Assistance (IA, PA, MA, SBA): 

Combined amount for Individual Assistance, Public Assistance, Mitigation Assistance, 

and SBA disaster loans aggregated to the county level. 

 

Sum of No Valid Registrations: 

Count of FEMA registration owners within the state, county, zip where registration is 

valid. In order to be a valid registration applicant must be in an Individual Assistance 

declared state or county and registered within FEMA designated registration period. 

 

Sum of Average Amount FEMA Inspected Damage: 

The average inspected damage (based on FEMA's inspection guidelines) for valid 

registration owners within the state, county, zip that had a completed inspection. 

 

Sum of No. Total Inspected: 

The total FEMA applicants who received an inspection. 

 

Sum of Total Damage Amount: 
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The total damage recorded by FEMA at the time of inspection. 

 

Sum of No FEMA Inspected Damage: 

The number of applicants who received an inspection but had no damage recorded by the 

inspector. 

 

Sum of FEMA Inspected Damage between $1 and $10,000: 

A count of valid registration owners within the state, county, zip that had a completed 

inspection (based on FEMA's guidelines) where the inspected damage fell between $1 

and $10,000. 

 

Sum of FEMA Inspected Damage between $10,001 and $20,000: 

A count of valid registration owners within the state, county, zip that had a completed 

inspection (based on FEMA's guidelines) where the inspected damage fell between 

$10,001 and $20,000. 

 

Sum of FEMA Inspected Damage between $20,001 and $30,000: 

A count of valid registration owners within the state, county, zip that had a completed 

inspection (based on FEMA's guidelines) where the inspected damage fell between 

$20,001 and $30,000. 

 

Sum of FEMA Inspected Damage > $30,000: 

A count of valid registration owners within the state, county, zip that had a completed 

inspection (based on FEMA's guidelines) where the inspected damage was greater than 

$30,000. 

 

Sum of No. Approved for FEMA Assistance: 

The number of FEMA applicants who were approved for FEMA's IHP assistance. 

 

Sum of Total Approved IHP Amount: 

The total amount approved under FEMA's IHP program. 

 

Sum of Repair/Replace Amount: 

The total amount of Repair and/or Replacement approved for Housing Assistance (HA) 

under FEMA's IHP program (note that renters are not eligible for this type of assistance 

because they do not own the structure) 
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Sum of Rental Amount: 

The total amount of Rental Assistance approved for Housing Assistance (HA) under 

FEMA's IHP program 

 

Sum of Other Needs Amount: 

The total amount of Other Needs (ONA) assistance approved under FEMA's IHP 

program (this could include, personal property, transportation, medical, dental, funeral, 

essential tools, moving/storage, miscellaneous and other needs). 

 

Sum of No. Approved between $1 and $10,000: 

A count of valid registration owners within the state, county, zip that received a financial 

grant from FEMA that fell between $1 and $10,000. 

 

Sum of No. Approved between $10,001 and $25,000: 

A count of valid registration owners within the state, county, zip that received a financial 

grant from FEMA that fell between $10,001 and $25,000. 

 

Sum of Approved between $25,001 and Max: 

A count of valid registration owners within the state, county, zip that received a financial 

grant from FEMA that fell between $25,001 and the maximum financial grant from 

FEMA. 

 

Sum of No. Approved Total Max Grants: 

A count of valid registration owners within the state, county, zip that received the 

maximum financial grant from FEMA. 

 

Sum of No Valid Registrations (Renters): 

Count of FEMA registration renters within the state, county, zip where the registration is 

valid. In order to be a valid registration the applicant must be in an Individual Assistance 

declared state and county and have registered within the FEMA designated registration 

period. 

 

Sum of No. Total Inspected (Renters): 

The total FEMA applicants who received an inspection. 

 

Sum of No FEMA Inspected Damage (Renters): 
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Renters do not receive a full home inspection as they are only eligible for the items that 

they own. Instead a degree of damage is assigned. This is a count of valid registration 

renters who were deemed to have had no damage that the time of inspection. 

 

Sum of No. Approved for FEMA Assistance (Renters): 

The number of FEMA applicants who were approved for FEMA's IHP assistance 

 

Sum of Total Approved IHP Amount (Renters): 

The total amount of Rental Assistance approved for Housing Assistance (HA) under 

FEMA's IHP program 

 

No. PA Projects: 

Sum of the Number of PA projects aggregated to the county level. 

 

Sum of PA Project Amount: 

The estimated total cost of the Public Assistance grant project, without administrative 

costs. This amount is based on the damage survey. 

 

Sum of Federal Share Obligated: 

The Public Assistance grant funding available to the grantee (State), for sub-grantee's 

approved Project Worksheets. 

 

Sum of Total Obligated: 

The federal share of the Public Assistance grant eligible project amount, plus grantee 

(State) and sub-grantee (applicant) administrative costs. The federal share is typically 

75% of the total cost of the project. 

 

No Projects Damage Category A–Debris Removal: 

Project worksheets approved for debris removal. 

 

Sum of Project Amount Damage Category A: 

Amount approved for debris removal. 

 

Sum of Federal Share Obligated Damage Category A: 

Amount of Federal share for debris removal. 

 



  

200 

Sum of Total Obligated Damage Category A: 

Total amount obligated for debris removal. 

 

No Projects Damage Category B–Protective Measures: 

Project worksheets approved for protective measures. 

 

Sum of Project Amount Damage Category B: 

Amount approved for protective measures. 

 

Sum of Federal Share Obligated Damage Category B: 

Amount of Federal share for protective measures. 

 

Sum of Total Obligated Damage Category B: 

Total amount obligated for protective measures. 

 

No Projects Damage Category C–Roads & Bridges: 

Project worksheets approved for roads and bridges repairs. 

 

Sum of Project Amount Damage Category C: 

Amount approved for roads and bridges. 

 

Sum of Federal Share Obligated Damage Category C: 

Amount of Federal share for roads and bridges. 

 

Sum of Total Obligated Damage Category C: 

Total amount obligated for roads and bridges. 

 

No Projects Damage Category D–Water Control Facilities: 

Project worksheets approved for water control facility repairs. 

 

Sum of Project Amount Damage Category D: 

Amount approved for water control facilities. 

 

Sum of Federal Share Obligated Damage Category D: 

Amount of Federal share for water control facilities. 

 

Sum of Total Obligated Damage Category D: 
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Total amount obligated for water control facilities. 

 

No Projects Damage Category E–Public Buildings: 

Project worksheets approved for public building repairs. 

 

Sum of Project Amount Damage Category E: 

Amount approved for public buildings. 

 

Sum of Federal Share Obligated Damage Category E: 

Amount of Federal share for public buildings. 

 

Sum of Total Obligated Damage Category E: 

Total amount obligated for public buildings. 

 

No Projects Damage Category F–Public Utilities: 

Project worksheets approved for public utility repairs. 

 

Sum of Project Amount Damage Category F: 

Amount approved for public utilities. 

 

Sum of Federal Share Obligated Damage Category F: 

Amount of Federal share for public utilities. 

 

Sum of Total Obligated Damage Category F: 

Total amount obligated for public utilities. 

 

No Projects Damage Category G–Recreational or Other: 

Project worksheets approved for recreational or other community facility repairs. 

 

Sum of Project Amount Damage Category G: 

Amount approved for recreation or other. 

 

Sum of Federal Share Obligated Damage Category G: 

Amount of Federal share for recreation or other. 

 

Sum of Total Obligated Damage Category G: 

Total amount obligated for recreation or other. 
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No Projects Damage Category Z–State Management: 

Project worksheets approved for State Management. 

 

Sum of Project Amount Damage Category Z: 

Amount approved for state management. 

 

Sum of Federal Share Obligated Damage Category Z: 

Amount of Federal share for state management. 

 

Sum of Total Obligated Damage Category Z: 

Total amount obligated for state management. 

 

No. of HM Projects: 

Sum of the number of Hazard Mitigation projects at the county level. 

 

Sum of HM Project Amount: 

Total cost of a project as submitted in the project application. 

 

No. HM Total Damage Cat 0_49%: 

Amount of damage, expressed as a percentage, to a structure relative to the market value 

of the structure before the damage occurred. 

 

No. HM Total Damage Cat 50_99%: 

Amount of damage, expressed as a percentage, to a structure relative to the market value 

of the structure before the damage occurred. 

 

No. HM Total Damage Cat 100%: 

Amount of damage, expressed as a percentage, to a structure relative to the market value 

of the structure before the damage occurred. 

 

Sum of HM Total Actual Amount Paid: 

Total amount paid for the project. 

 

No. HM Total Properties Acquired: 

Sum of the number of properties acquired at the county level. 
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Source: Small Business Administration 2012 

 

No. Loans: 

Sum of the number of disaster loans awarded by SBA at the county level. 

 

Sum of Total Gross Amount: 

The amount of the loan guaranteed by the SBA. 

 

No. Paid in Full: 

No of loans that were fully paid by the applicants. 

 

Sum of Total Amount Paid in Full: 

Sum of the total amount paid in full for the loan. 

 

No. Charged Off: 

Number of loans that were charged off. 

 

Sum of Total Amount Charged Off: 

Sum of the total amount paid in charged off for the loan. 

 

County – Name of county 

State – State Abbreviation 

FIPS – Federal Information Processing Standards 

 

Declared – Y/N Indicating whether the county was declared a disaster (Boolean 

identifier field) 

Source: FEMA 

 

Declaration – Disaster Declaration number (if declared) 

Source: FEMA 

 

Year – Year of storm 

Source: FEMA 

 

   



  

 

 

 

 

 

 

 

APPENDIX G: Correlation Matrices 

 

 

 

Bret 

 
  

Correlation matrix (Pearson):

Variables SOVI HUNITS POP2000 AREASQMI POPDEN00 PERCAPINC PCTPOV AVEDISTC TREEVOL MAXSUSWIN BLDGLOSS1K CNTLOSS1K NUMBRIDGE ROADMI ERC_CNT FIRESTA_CT POLSTA_CT SCH_CT MEDFAC_CT ERC_prob Fire_prob Pol_prob Sch_prob Med_prob Gra_prob Gov_prob GovE_prob NH_prob Nonp_prob Hosp_prob Coll_prob

SOVI 1

HUNITS -0.428 1

POP2000 -0.413 0.996 1

AREASQMI -0.069 0.166 0.234 1

POPDEN00 -0.474 0.939 0.906 -0.083 1

PERCAPINC -0.481 -0.174 -0.226 -0.352 0.008 1

PCTPOV 0.554 0.247 0.290 0.236 0.090 -0.893 1

AVEDISTC 0.233 0.098 0.162 0.734 -0.159 -0.642 0.490 1

TREEVOL 0.236 -0.255 -0.256 0.045 -0.272 0.399 -0.334 -0.267 1

MAXSUSWIN -0.136 -0.174 -0.194 -0.371 -0.061 0.534 -0.281 -0.346 -0.117 1

BLDGLOSS1K 0.332 0.099 0.074 -0.190 0.182 -0.070 0.242 -0.284 0.495 -0.304 1

CNTLOSS1K 0.172 0.263 0.229 -0.203 0.366 -0.069 0.215 -0.316 0.370 -0.343 0.969 1

NUMBRIDGE -0.513 0.896 0.886 0.252 0.880 -0.172 0.129 0.072 -0.326 -0.336 0.064 0.247 1

ROADMI -0.440 0.977 0.986 0.281 0.870 -0.270 0.273 0.197 -0.275 -0.276 0.019 0.176 0.914 1

ERC_CNT -0.147 0.730 0.722 -0.034 0.688 -0.291 0.224 0.048 -0.324 -0.267 -0.158 -0.036 0.717 0.767 1

FIRESTA_CT -0.419 0.911 0.882 0.004 0.906 -0.046 0.056 -0.028 -0.237 -0.237 0.074 0.254 0.897 0.882 0.799 1

POLSTA_CT -0.254 0.907 0.927 0.209 0.762 -0.406 0.412 0.261 -0.257 -0.277 0.038 0.153 0.777 0.949 0.805 0.791 1

SCH_CT -0.477 0.965 0.967 0.251 0.861 -0.165 0.200 0.153 -0.255 -0.245 -0.002 0.160 0.900 0.968 0.726 0.926 0.886 1

MEDFAC_CT -0.495 0.887 0.853 0.057 0.902 0.060 -0.003 -0.073 -0.185 -0.203 0.147 0.335 0.884 0.828 0.609 0.955 0.668 0.907 1

ERC_prob 0.429 -0.247 -0.244 0.150 -0.269 -0.278 0.102 0.268 -0.144 -0.109 -0.304 -0.322 -0.108 -0.181 0.277 -0.079 -0.105 -0.230 -0.244 1

Fire_prob 0.102 -0.134 -0.142 0.021 -0.107 -0.177 0.094 -0.031 -0.108 -0.170 0.052 0.114 -0.100 -0.122 0.025 -0.112 -0.079 -0.184 -0.162 0.536 1

Pol_prob 0.217 -0.252 -0.248 0.073 -0.273 0.420 -0.372 -0.219 0.980 -0.055 0.377 0.244 -0.332 -0.264 -0.290 -0.256 -0.246 -0.263 -0.219 -0.129 -0.197 1

Sch_prob 0.332 -0.289 -0.284 0.055 -0.313 0.356 -0.264 -0.198 0.980 -0.069 0.470 0.315 -0.376 -0.310 -0.330 -0.294 -0.271 -0.299 -0.253 -0.135 -0.211 0.983 1

Med_prob -0.174 -0.214 -0.218 -0.166 -0.218 0.000 -0.064 -0.234 0.012 -0.118 0.172 0.228 -0.227 -0.201 -0.352 -0.202 -0.177 -0.174 -0.142 -0.158 0.554 -0.129 -0.140 1

Gra_prob 0.329 -0.289 -0.284 0.056 -0.312 0.358 -0.268 -0.196 0.980 -0.069 0.466 0.311 -0.376 -0.310 -0.330 -0.294 -0.271 -0.299 -0.253 -0.136 -0.211 0.984 1.000 -0.141 1

Gov_prob 0.325 -0.287 -0.283 0.057 -0.311 0.361 -0.273 -0.197 0.981 -0.069 0.462 0.308 -0.375 -0.308 -0.328 -0.293 -0.271 -0.298 -0.252 -0.135 -0.210 0.985 1.000 -0.140 1.000 1

GovE_prob 0.325 -0.288 -0.283 0.056 -0.311 0.360 -0.272 -0.197 0.981 -0.069 0.463 0.309 -0.375 -0.308 -0.329 -0.293 -0.271 -0.298 -0.252 -0.135 -0.210 0.985 1.000 -0.140 1.000 1.000 1

NH_prob 0.226 -0.255 -0.251 0.074 -0.277 0.417 -0.366 -0.215 0.980 -0.056 0.380 0.245 -0.337 -0.268 -0.292 -0.259 -0.249 -0.266 -0.222 -0.125 -0.194 1.000 0.985 -0.133 0.986 0.987 0.987 1

Nonp_prob 0.307 -0.282 -0.277 0.060 -0.305 0.372 -0.291 -0.201 0.983 -0.066 0.448 0.297 -0.368 -0.301 -0.322 -0.287 -0.267 -0.293 -0.247 -0.133 -0.208 0.990 0.999 -0.139 0.999 1.000 1.000 0.992 1

Hosp_prob 0.358 -0.298 -0.293 0.050 -0.322 0.339 -0.239 -0.189 0.975 -0.073 0.488 0.328 -0.387 -0.321 -0.340 -0.303 -0.277 -0.308 -0.261 -0.137 -0.214 0.975 0.999 -0.141 0.999 0.998 0.999 0.977 0.996 1

Coll_prob 0.325 -0.288 -0.283 0.056 -0.311 0.360 -0.272 -0.197 0.981 -0.069 0.463 0.309 -0.375 -0.308 -0.329 -0.293 -0.271 -0.298 -0.252 -0.135 -0.210 0.985 1.000 -0.140 1.000 1.000 1.000 0.987 1.000 0.999 1

Values in bold are different from 0 with a significance level alpha=0.05

2
0
2

 



  

 

Charley 

 
 

Claudette 

 
 

Correlation matrix (Pearson):

Variables SOVI HUNITS POP2000 AREASQMI POPDEN00 PERCAPINC PCTPOV AVEDISTC TREEVOL MAXSUSWIN BLDGLOSS1K CNTLOSS1K NUMBRIDGE ROADMI ERC_CNT FIRESTA_CT POLSTA_CT SCH_CT MEDFAC_CT ERC_prob FIRE_prob Pol_prob Sch_prob Med_prob Gra_prob Gov_prob GovE_prob NH_prob Nonp_prob Hosp_prob Coll_prob

SOVI 1

HUNITS -0.567 1

POP2000 -0.577 0.989 1

AREASQMI 0.095 0.195 0.168 1

POPDEN00 -0.668 0.852 0.869 -0.198 1

PERCAPINC -0.455 0.332 0.258 -0.008 0.338 1

PCTPOV 0.656 -0.422 -0.364 0.045 -0.456 -0.771 1

AVEDISTC 0.316 -0.177 -0.105 0.282 -0.139 -0.578 0.389 1

TREEVOL -0.073 0.304 0.290 0.053 0.278 0.088 -0.254 0.001 1

MAXSUSWIN 0.084 -0.369 -0.350 -0.169 -0.300 -0.186 0.239 -0.109 -0.481 1

BLDGLOSS1K 0.067 0.106 0.081 -0.038 0.080 0.079 -0.228 -0.120 0.860 -0.302 1

CNTLOSS1K 0.059 0.119 0.094 -0.039 0.095 0.084 -0.233 -0.117 0.871 -0.310 1.000 1

NUMBRIDGE -0.430 0.890 0.893 0.226 0.716 0.296 -0.263 -0.170 0.189 -0.215 0.079 0.088 1

ROADMI -0.464 0.905 0.874 0.302 0.684 0.177 -0.317 -0.106 0.361 -0.347 0.177 0.189 0.793 1

ERC_CNT -0.268 0.208 0.215 0.039 0.258 0.118 -0.120 -0.083 -0.025 0.084 -0.066 -0.067 0.257 0.247 1

FIRESTA_CT -0.282 0.290 0.236 0.411 0.071 0.077 -0.220 -0.117 0.067 -0.056 -0.064 -0.061 0.223 0.458 0.443 1

POLSTA_CT -0.354 0.557 0.538 0.555 0.300 0.126 -0.234 0.089 0.273 -0.409 0.047 0.052 0.344 0.601 0.341 0.548 1

SCH_CT -0.584 0.959 0.986 0.170 0.847 0.200 -0.317 -0.062 0.245 -0.310 0.049 0.061 0.880 0.831 0.231 0.220 0.552 1

MEDFAC_CT -0.443 0.914 0.913 0.097 0.759 0.232 -0.318 -0.244 0.154 -0.246 0.060 0.067 0.836 0.797 0.217 0.161 0.419 0.904 1

ERC_prob -0.238 0.179 0.182 0.350 0.168 -0.044 -0.095 0.273 0.295 -0.205 0.147 0.148 0.043 0.238 0.497 0.362 0.741 0.216 0.005 1

FIRE_prob 0.337 -0.217 -0.194 -0.068 -0.220 -0.384 0.523 0.219 0.186 -0.316 0.143 0.139 -0.153 -0.214 -0.107 -0.136 -0.029 -0.174 -0.207 0.092 1

Pol_prob 0.318 -0.221 -0.196 -0.152 -0.198 -0.366 0.561 0.198 0.049 -0.232 0.015 0.011 -0.146 -0.231 -0.104 -0.163 -0.074 -0.176 -0.208 0.015 0.964 1

Sch_prob 0.228 -0.151 -0.134 -0.098 -0.128 -0.256 0.238 0.138 0.543 -0.338 0.617 0.614 -0.092 -0.139 -0.121 -0.178 -0.091 -0.130 -0.158 0.059 0.805 0.741 1

Med_prob 0.386 -0.184 -0.168 -0.151 -0.156 -0.216 0.326 -0.053 0.198 -0.215 0.254 0.250 -0.156 -0.208 -0.130 -0.203 -0.151 -0.154 -0.076 -0.048 0.434 0.302 0.266 1

Gra_prob 0.313 -0.157 -0.143 -0.113 -0.140 -0.257 0.256 0.075 0.606 -0.377 0.698 0.694 -0.109 -0.142 -0.134 -0.199 -0.090 -0.139 -0.135 0.078 0.775 0.656 0.926 0.590 1

Gov_prob 0.311 -0.155 -0.140 -0.110 -0.138 -0.258 0.257 0.079 0.608 -0.380 0.695 0.691 -0.108 -0.140 -0.133 -0.197 -0.087 -0.136 -0.134 0.081 0.777 0.657 0.925 0.592 1.000 1

GovE_prob 0.311 -0.155 -0.141 -0.110 -0.138 -0.258 0.257 0.078 0.607 -0.380 0.696 0.692 -0.108 -0.141 -0.133 -0.198 -0.088 -0.137 -0.134 0.080 0.777 0.657 0.925 0.592 1.000 1.000 1

NH_prob 0.315 -0.159 -0.146 -0.118 -0.142 -0.255 0.255 0.069 0.604 -0.372 0.702 0.698 -0.111 -0.144 -0.135 -0.202 -0.094 -0.142 -0.135 0.073 0.771 0.655 0.927 0.587 1.000 1.000 1.000 1

Nonp_prob 0.318 -0.164 -0.152 -0.125 -0.147 -0.251 0.253 0.059 0.600 -0.364 0.709 0.704 -0.114 -0.147 -0.136 -0.206 -0.101 -0.148 -0.137 0.066 0.765 0.653 0.928 0.580 0.999 0.998 0.999 1.000 1

Hosp_prob 0.302 -0.146 -0.130 -0.101 -0.128 -0.261 0.256 0.092 0.617 -0.393 0.687 0.683 -0.103 -0.134 -0.130 -0.191 -0.076 -0.126 -0.131 0.092 0.782 0.657 0.922 0.597 0.999 0.999 0.999 0.998 0.996 1

Coll_prob 0.310 -0.154 -0.139 -0.108 -0.137 -0.259 0.257 0.081 0.608 -0.381 0.694 0.690 -0.108 -0.140 -0.133 -0.196 -0.086 -0.135 -0.134 0.082 0.778 0.657 0.925 0.593 1.000 1.000 1.000 0.999 0.998 0.999 1

Values in bold are different from 0 with a significance level alpha=0.05

Correlation matrix (Pearson):

Variables SOVI HUNITS POP2000 AREASQMI POPDEN00 PERCAPINC PCTPOV AVEDISTC TREEVOL MAXSUSWIN BLDGLOSS1K CNTLOSS1K NUMBRIDGE ROADMI ERC_CNT FIRESTA_CT POLSTA_CT SCH_CT MEDFAC_CT ERC_prob FIRE_prob Pol_prob Sch_prob Med_prob Gra_prob Gov_prob GovE_prob NH_prob Nonp_prob Coll_prob

SOVI 1

HUNITS -0.765 1

POP2000 -0.768 0.994 1

AREASQMI 0.090 -0.083 -0.013 1

POPDEN00 -0.590 0.890 0.839 -0.389 1

PERCAPINC -0.660 0.509 0.484 -0.218 0.485 1

PCTPOV 0.823 -0.467 -0.464 0.276 -0.349 -0.654 1

AVEDISTC 0.564 -0.477 -0.450 0.574 -0.458 -0.413 0.609 1

TREEVOL -0.306 0.019 0.021 0.026 -0.109 0.110 -0.380 -0.346 1

MAXSUSWIN 0.168 0.181 0.163 0.064 0.331 0.153 0.451 0.224 -0.459 1

BLDGLOSS1K -0.313 0.091 0.101 -0.019 -0.029 0.175 -0.350 -0.317 0.943 -0.334 1

CNTLOSS1K -0.313 0.093 0.103 -0.017 -0.028 0.174 -0.351 -0.311 0.938 -0.335 1.000 1

NUMBRIDGE -0.692 0.644 0.698 0.373 0.301 0.213 -0.560 -0.235 0.310 -0.265 0.298 0.302 1

ROADMI -0.763 0.803 0.841 0.308 0.526 0.254 -0.469 -0.218 0.130 -0.052 0.134 0.136 0.886 1

ERC_CNT -0.101 0.229 0.281 0.337 -0.005 -0.115 -0.174 0.010 -0.154 -0.285 -0.127 -0.122 0.482 0.398 1

FIRESTA_CT -0.601 0.468 0.530 0.399 0.063 0.176 -0.438 -0.303 0.378 -0.401 0.288 0.284 0.755 0.732 0.376 1

POLSTA_CT -0.470 0.332 0.405 0.407 -0.077 0.148 -0.422 -0.195 0.189 -0.503 0.136 0.136 0.712 0.646 0.545 0.902 1

SCH_CT -0.503 0.366 0.437 0.450 -0.023 0.038 -0.356 -0.139 0.555 -0.433 0.563 0.567 0.790 0.703 0.351 0.821 0.777 1

MEDFAC_CT -0.441 0.328 0.385 0.323 0.001 0.160 -0.393 -0.217 0.737 -0.388 0.784 0.788 0.678 0.535 0.202 0.685 0.618 0.907 1

ERC_prob 0.087 -0.118 -0.127 0.139 -0.108 -0.033 -0.108 0.159 -0.115 -0.156 -0.123 -0.122 0.114 0.004 0.542 -0.146 0.050 -0.132 -0.189 1

FIRE_prob -0.164 -0.138 -0.164 -0.156 -0.142 0.037 -0.201 -0.426 0.581 -0.288 0.404 0.386 -0.076 -0.094 -0.214 0.261 0.083 0.050 0.109 -0.116 1

Pol_prob -0.155 -0.169 -0.192 -0.227 -0.153 0.057 -0.215 -0.421 0.467 -0.288 0.329 0.314 -0.129 -0.162 -0.213 0.176 0.054 -0.052 0.018 -0.115 0.960 1

Sch_prob -0.203 -0.120 -0.140 -0.203 -0.132 0.093 -0.265 -0.445 0.726 -0.327 0.630 0.616 -0.037 -0.109 -0.242 0.221 0.051 0.134 0.271 -0.132 0.942 0.934 1

Med_prob -0.176 -0.128 -0.154 -0.108 -0.140 0.035 -0.208 -0.434 0.617 -0.287 0.420 0.402 -0.043 -0.063 -0.214 0.281 0.092 0.089 0.149 -0.116 0.986 0.914 0.906 1

Gra_prob -0.226 -0.103 -0.121 -0.197 -0.124 0.115 -0.291 -0.440 0.792 -0.336 0.725 0.713 -0.004 -0.097 -0.250 0.212 0.038 0.187 0.354 -0.136 0.893 0.883 0.990 0.862 1

Gov_prob -0.227 -0.104 -0.122 -0.197 -0.124 0.115 -0.291 -0.440 0.791 -0.337 0.724 0.712 -0.005 -0.097 -0.250 0.212 0.038 0.186 0.353 -0.136 0.893 0.884 0.990 0.862 1.000 1

GovE_prob -0.226 -0.104 -0.121 -0.197 -0.124 0.115 -0.291 -0.439 0.792 -0.336 0.724 0.713 -0.005 -0.097 -0.250 0.212 0.038 0.186 0.354 -0.136 0.892 0.883 0.990 0.861 1.000 1.000 1

NH_prob -0.213 -0.111 -0.128 -0.193 -0.128 0.114 -0.273 -0.417 0.777 -0.318 0.719 0.707 -0.020 -0.105 -0.259 0.201 0.033 0.182 0.345 -0.142 0.885 0.881 0.989 0.847 0.998 0.998 0.998 1

Nonp_prob -0.226 -0.103 -0.121 -0.195 -0.123 0.118 -0.290 -0.437 0.791 -0.333 0.727 0.715 -0.006 -0.097 -0.250 0.211 0.038 0.188 0.355 -0.136 0.890 0.881 0.990 0.858 1.000 1.000 1.000 0.999 1

Coll_prob -0.226 -0.104 -0.121 -0.197 -0.124 0.115 -0.291 -0.439 0.792 -0.337 0.724 0.712 -0.005 -0.097 -0.250 0.212 0.038 0.186 0.353 -0.136 0.893 0.883 0.990 0.862 1.000 1.000 1.000 0.998 1.000 1

Values in bold are different from 0 with a significance level alpha=0.05
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Floyd 

 
 

Irene 

 
 

Correlation matrix (Pearson):

Variables SOVI HUNITS POP2000 AREASQMI POPDEN00 PERCAPINC PCTPOV AVEDISTC TREEVOL MAXSUSWIN BLDGLOSS1K CNTLOSS1K NUMBRIDGE ROADMI ERC_CNT FIRESTA_CT POLSTA_CT SCH_CT MEDFAC_CT ERC_prob FIRE_prob Pol_prob Sch_prob Med_prob Gra_prob Gov_prob GovE_prob NH_prob Nonp_prob Hosp_prob Coll_prob

SOVI 1

HUNITS -0.288 1

POP2000 -0.326 0.992 1

AREASQMI 0.101 0.107 0.065 1

POPDEN00 -0.041 0.480 0.457 -0.034 1

PERCAPINC -0.702 0.551 0.571 -0.109 0.104 1

PCTPOV 0.815 -0.287 -0.305 0.050 -0.040 -0.767 1

AVEDISTC 0.211 -0.229 -0.233 0.278 -0.087 -0.343 0.227 1

TREEVOL 0.093 -0.004 -0.027 0.096 -0.061 -0.081 0.088 -0.279 1

MAXSUSWIN -0.014 -0.049 -0.034 0.009 -0.104 -0.044 -0.009 0.209 -0.152 1

BLDGLOSS1K 0.031 0.008 -0.009 0.027 -0.035 -0.016 0.012 -0.215 0.899 -0.109 1

CNTLOSS1K 0.035 -0.010 -0.026 0.023 -0.035 -0.020 0.010 -0.200 0.880 -0.099 0.996 1

NUMBRIDGE -0.220 0.685 0.680 0.286 0.421 0.431 -0.210 0.139 -0.059 -0.049 -0.051 -0.063 1

ROADMI -0.228 0.718 0.708 0.435 0.290 0.436 -0.260 -0.187 -0.059 -0.035 -0.065 -0.078 0.690 1

ERC_CNT -0.230 0.492 0.532 -0.048 0.013 0.496 -0.217 -0.142 -0.046 -0.032 -0.017 -0.036 0.541 0.466 1

FIRESTA_CT -0.303 0.668 0.691 0.185 0.282 0.511 -0.279 -0.042 0.051 0.045 0.059 0.042 0.764 0.701 0.618 1

POLSTA_CT -0.275 0.736 0.748 0.119 0.379 0.553 -0.274 -0.121 0.031 -0.095 0.033 0.018 0.765 0.657 0.701 0.867 1

SCH_CT -0.247 0.912 0.916 0.082 0.482 0.483 -0.222 -0.106 0.018 -0.046 0.038 0.026 0.755 0.649 0.543 0.760 0.787 1

MEDFAC_CT -0.244 0.433 0.445 -0.122 0.144 0.318 -0.163 -0.225 -0.035 0.022 -0.022 -0.038 0.006 0.058 0.073 0.072 0.142 0.146 1

ERC_prob 0.027 -0.020 -0.020 0.035 -0.013 -0.024 0.008 -0.075 0.365 -0.037 0.310 0.320 -0.021 -0.037 0.009 -0.010 -0.004 -0.005 -0.018 1

FIRE_prob 0.142 -0.097 -0.109 0.010 -0.048 -0.131 0.120 -0.252 0.837 -0.139 0.795 0.805 -0.128 -0.165 -0.105 -0.057 -0.044 -0.053 -0.088 0.339 1

Pol_prob 0.134 -0.103 -0.113 0.009 -0.048 -0.135 0.121 -0.251 0.821 -0.140 0.776 0.786 -0.135 -0.175 -0.107 -0.064 -0.048 -0.057 -0.092 0.341 0.985 1

Sch_prob 0.149 -0.105 -0.115 0.004 -0.049 -0.144 0.134 -0.255 0.815 -0.142 0.768 0.779 -0.136 -0.171 -0.107 -0.068 -0.051 -0.060 -0.094 0.351 0.991 0.985 1

Med_prob 0.072 -0.052 -0.064 0.045 -0.037 -0.078 0.069 -0.203 0.884 -0.108 0.899 0.908 -0.076 -0.122 -0.073 -0.004 -0.007 -0.006 -0.059 0.447 0.835 0.823 0.808 1

Gra_prob 0.142 -0.102 -0.112 0.011 -0.048 -0.138 0.124 -0.253 0.829 -0.140 0.781 0.791 -0.132 -0.165 -0.105 -0.063 -0.048 -0.057 -0.093 0.352 0.993 0.990 0.998 0.818 1

Gov_prob 0.143 -0.102 -0.113 0.010 -0.049 -0.139 0.126 -0.254 0.828 -0.141 0.778 0.788 -0.133 -0.167 -0.106 -0.064 -0.049 -0.058 -0.093 0.350 0.993 0.990 0.998 0.816 1.000 1

GovE_prob 0.143 -0.102 -0.113 0.010 -0.049 -0.139 0.126 -0.254 0.828 -0.141 0.779 0.789 -0.133 -0.167 -0.106 -0.064 -0.049 -0.057 -0.093 0.351 0.993 0.990 0.998 0.816 1.000 1.000 1

NH_prob 0.140 -0.101 -0.111 0.011 -0.048 -0.136 0.121 -0.251 0.828 -0.139 0.783 0.794 -0.132 -0.165 -0.104 -0.062 -0.047 -0.056 -0.092 0.353 0.993 0.990 0.997 0.820 1.000 1.000 1.000 1

Nonp_prob 0.136 -0.098 -0.109 0.011 -0.047 -0.132 0.116 -0.248 0.827 -0.136 0.789 0.801 -0.130 -0.163 -0.102 -0.059 -0.046 -0.054 -0.090 0.356 0.992 0.988 0.996 0.825 0.999 0.999 0.999 1.000 1

Hosp_prob 0.150 -0.107 -0.117 0.010 -0.050 -0.146 0.135 -0.259 0.830 -0.146 0.769 0.778 -0.137 -0.171 -0.109 -0.068 -0.051 -0.061 -0.096 0.344 0.992 0.991 0.997 0.809 0.999 0.999 0.999 0.998 0.996 1

Coll_prob 0.144 -0.103 -0.113 0.009 -0.049 -0.140 0.127 -0.254 0.827 -0.141 0.777 0.787 -0.134 -0.168 -0.106 -0.065 -0.049 -0.058 -0.093 0.350 0.993 0.991 0.998 0.815 1.000 1.000 1.000 1.000 0.999 0.999 1

Values in bold are different from 0 with a significance level alpha=0.05

Correlation matrix (Pearson):

Variables SOVI HUNITS POP2000 AREASQMI POPDEN00 PERCAPINC PCTPOV AVEDISTC TREEVOL MAXSUSWIN BLDGLOSS1K CNTLOSS1K NUMBRIDGE ROADMI ERC_CNT FIRESTA_CT POLSTA_CT SCH_CT MEDFAC_CT ERC_prob FIRE_prob Pol_prob Sch_prob Med_prob Gra_prob Gov_prob GovE_prob NH_prob Nonp_prob Hosp_prob Coll_prob

SOVI 1

HUNITS -0.476 1

POP2000 -0.500 0.996 1

AREASQMI 0.129 0.422 0.378 1

POPDEN00 -0.721 0.787 0.822 -0.084 1

PERCAPINC -0.493 0.301 0.263 0.109 0.244 1

PCTPOV 0.733 -0.241 -0.230 0.127 -0.350 -0.737 1

AVEDISTC 0.432 -0.248 -0.206 0.102 -0.145 -0.715 0.578 1

TREEVOL -0.330 0.918 0.896 0.324 0.669 0.334 -0.194 -0.374 1

MAXSUSWIN -0.115 0.412 0.368 0.197 0.181 0.590 -0.133 -0.659 0.633 1

BLDGLOSS1K -0.250 0.859 0.845 0.239 0.655 0.217 -0.106 -0.265 0.974 0.567 1

CNTLOSS1K -0.252 0.865 0.849 0.249 0.654 0.225 -0.109 -0.270 0.978 0.572 1.000 1

NUMBRIDGE -0.431 0.936 0.939 0.489 0.699 0.344 -0.216 -0.198 0.799 0.390 0.726 0.732 1

ROADMI -0.440 0.918 0.917 0.558 0.674 0.170 -0.178 -0.088 0.712 0.130 0.625 0.632 0.892 1

ERC_CNT -0.343 0.661 0.670 -0.004 0.699 0.127 -0.140 -0.129 0.730 0.296 0.829 0.820 0.512 0.453 1

FIRESTA_CT -0.493 0.781 0.770 0.446 0.554 0.216 -0.286 -0.256 0.688 0.235 0.646 0.647 0.641 0.773 0.601 1

POLSTA_CT -0.412 0.784 0.763 0.635 0.480 0.216 -0.207 -0.152 0.621 0.169 0.546 0.553 0.704 0.876 0.475 0.866 1

SCH_CT -0.550 0.973 0.984 0.384 0.824 0.236 -0.243 -0.164 0.813 0.272 0.746 0.751 0.932 0.950 0.597 0.793 0.800 1

MEDFAC_CT -0.358 0.961 0.943 0.398 0.679 0.287 -0.190 -0.325 0.964 0.521 0.903 0.910 0.863 0.838 0.630 0.722 0.720 0.895 1

ERC_prob -0.213 0.705 0.709 0.038 0.642 0.083 -0.046 -0.186 0.828 0.429 0.920 0.911 0.569 0.452 0.930 0.572 0.385 0.608 0.707 1

FIRE_prob -0.175 0.356 0.336 0.014 0.242 0.387 -0.203 -0.430 0.556 0.765 0.561 0.557 0.256 0.064 0.445 0.378 0.183 0.264 0.424 0.543 1

Pol_prob -0.220 0.645 0.619 0.182 0.433 0.385 -0.185 -0.430 0.830 0.811 0.823 0.824 0.527 0.354 0.619 0.532 0.401 0.527 0.730 0.726 0.916 1

Sch_prob -0.240 0.714 0.690 0.181 0.502 0.355 -0.178 -0.403 0.890 0.770 0.892 0.892 0.583 0.425 0.689 0.580 0.444 0.595 0.792 0.796 0.864 0.989 1

Med_prob -0.201 0.643 0.621 0.159 0.452 0.283 -0.123 -0.386 0.824 0.771 0.830 0.829 0.518 0.356 0.648 0.516 0.393 0.530 0.733 0.753 0.888 0.987 0.976 1

Gra_prob -0.236 0.750 0.726 0.218 0.521 0.341 -0.161 -0.387 0.918 0.761 0.918 0.919 0.620 0.471 0.698 0.592 0.476 0.629 0.831 0.805 0.823 0.979 0.997 0.970 1

Gov_prob -0.236 0.750 0.726 0.218 0.521 0.342 -0.161 -0.388 0.919 0.762 0.917 0.918 0.620 0.471 0.697 0.592 0.476 0.629 0.831 0.804 0.822 0.979 0.997 0.969 1.000 1

GovE_prob -0.236 0.751 0.726 0.218 0.521 0.342 -0.161 -0.388 0.919 0.761 0.917 0.919 0.620 0.471 0.697 0.592 0.476 0.629 0.831 0.805 0.822 0.979 0.997 0.970 1.000 1.000 1

NH_prob -0.236 0.750 0.726 0.216 0.522 0.340 -0.160 -0.387 0.918 0.760 0.918 0.919 0.619 0.470 0.700 0.592 0.475 0.629 0.830 0.807 0.823 0.979 0.997 0.970 1.000 1.000 1.000 1

Nonp_prob -0.236 0.750 0.726 0.215 0.523 0.337 -0.159 -0.385 0.918 0.759 0.919 0.920 0.619 0.469 0.703 0.592 0.474 0.629 0.829 0.810 0.823 0.979 0.997 0.971 1.000 1.000 1.000 1.000 1

Hosp_prob -0.236 0.750 0.725 0.220 0.518 0.347 -0.162 -0.392 0.919 0.766 0.916 0.917 0.620 0.471 0.692 0.590 0.476 0.628 0.832 0.799 0.822 0.979 0.996 0.968 1.000 1.000 1.000 1.000 1.000 1

Coll_prob -0.237 0.751 0.726 0.219 0.521 0.343 -0.162 -0.388 0.919 0.762 0.917 0.918 0.620 0.471 0.697 0.592 0.476 0.629 0.831 0.804 0.822 0.979 0.997 0.969 1.000 1.000 1.000 1.000 1.000 1.000 1

Values in bold are different from 0 with a significance level alpha=0.05
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Correlation matrix (Pearson):

Variables SOVI HUNITS POP2000 AREASQMI POPDEN00 PERCAPINC PCTPOV AVEDISTC TREEVOL MAXSUSWIN BLDGLOSS1K CNTLOSS1K NUMBRIDGE ROADMI ERC_CNTFIRESTA_CTPOLSTA_CT SCH_CNTMEDFAC_CTERC_prob FIRE_prob Pol_prob Sch_prob Med_prob Gra_prob Gov_prob GovE_prob NH_prob Nonp_prob Hosp_prob Coll_prob

SOVI 1

HUNITS -0.284 1

POP2000 -0.318 0.994 1

AREASQMI 0.081 0.075 0.073 1

POPDEN00 -0.126 0.472 0.434 -0.456 1

PERCAPINC -0.750 0.446 0.456 -0.255 0.401 1

PCTPOV 0.826 -0.186 -0.212 0.132 -0.020 -0.729 1

AVEDISTC 0.185 -0.195 -0.185 0.317 -0.256 -0.325 0.162 1

TREEVOL 0.018 0.066 0.069 -0.028 0.016 -0.065 0.096 -0.386 1

MAXSUSWIN -0.036 0.145 0.129 0.067 -0.001 0.051 -0.052 -0.246 0.063 1

BLDGLOSS1K -0.063 0.204 0.211 -0.218 0.264 0.031 0.013 -0.338 0.773 0.040 1

CNTLOSS1K -0.018 0.102 0.105 -0.219 0.205 -0.035 0.050 -0.338 0.772 0.046 0.977 1

NUMBRIDGE -0.203 0.606 0.609 0.498 0.054 0.171 -0.099 0.247 -0.018 0.115 0.021 -0.044 1

ROADMI -0.329 0.761 0.768 0.502 0.022 0.322 -0.224 0.021 -0.003 0.195 0.026 -0.052 0.776 1

ERC_CNT -0.075 0.321 0.313 -0.036 0.175 0.156 -0.075 -0.188 0.141 0.218 0.196 0.161 0.312 0.285 1

FIRESTA_CT -0.184 0.579 0.585 0.360 0.013 0.217 -0.126 0.030 -0.062 0.092 -0.011 -0.035 0.465 0.672 0.105 1

POLSTA_CT -0.062 0.727 0.708 0.244 0.274 0.214 0.025 -0.102 0.016 0.206 0.091 0.021 0.501 0.633 0.285 0.674 1

SCH_CNT -0.239 0.979 0.969 0.017 0.525 0.405 -0.138 -0.207 0.040 0.132 0.195 0.095 0.567 0.683 0.317 0.540 0.719 1

MEDFAC_CT -0.090 0.846 0.812 -0.029 0.615 0.259 0.030 -0.188 0.043 0.112 0.206 0.127 0.474 0.520 0.383 0.396 0.656 0.882 1

ERC_prob 0.013 0.053 0.056 -0.229 0.280 -0.006 0.007 -0.171 0.264 0.017 0.534 0.509 0.015 -0.083 0.373 -0.102 0.015 0.076 0.183 1

FIRE_prob 0.160 -0.102 -0.104 -0.177 0.013 -0.167 0.187 -0.333 0.519 0.057 0.493 0.575 -0.171 -0.209 -0.025 -0.098 -0.102 -0.093 -0.085 0.196 1

Pol_prob 0.160 -0.112 -0.112 -0.186 0.024 -0.178 0.194 -0.364 0.555 0.061 0.499 0.567 -0.188 -0.251 0.003 -0.154 -0.110 -0.102 -0.079 0.269 0.809 1

Sch_prob 0.151 -0.128 -0.127 -0.171 -0.021 -0.209 0.231 -0.365 0.525 0.063 0.463 0.556 -0.188 -0.233 -0.036 -0.152 -0.132 -0.116 -0.096 0.178 0.861 0.884 1

Med_prob 0.139 0.018 0.023 -0.248 0.223 -0.137 0.181 -0.251 0.443 0.038 0.661 0.668 -0.037 -0.122 0.132 -0.089 -0.035 0.036 0.142 0.465 0.415 0.474 0.488 1

Gra_prob 0.162 -0.131 -0.131 -0.163 -0.034 -0.214 0.243 -0.364 0.553 0.065 0.472 0.576 -0.195 -0.241 -0.046 -0.147 -0.127 -0.122 -0.102 0.156 0.859 0.884 0.974 0.457 1

Gov_prob 0.162 -0.131 -0.131 -0.163 -0.035 -0.214 0.243 -0.363 0.552 0.065 0.471 0.575 -0.195 -0.240 -0.047 -0.147 -0.127 -0.122 -0.102 0.155 0.859 0.883 0.974 0.456 1.000 1

GovE_prob 0.162 -0.131 -0.131 -0.163 -0.035 -0.214 0.243 -0.363 0.551 0.065 0.471 0.575 -0.195 -0.240 -0.047 -0.147 -0.127 -0.122 -0.102 0.155 0.859 0.883 0.974 0.456 1.000 1.000 1

NH_prob 0.162 -0.131 -0.131 -0.162 -0.036 -0.213 0.243 -0.361 0.546 0.064 0.467 0.572 -0.194 -0.239 -0.048 -0.146 -0.127 -0.122 -0.103 0.149 0.859 0.879 0.974 0.453 1.000 1.000 1.000 1

Nonp_prob 0.160 -0.131 -0.131 -0.162 -0.038 -0.212 0.242 -0.358 0.541 0.064 0.464 0.570 -0.194 -0.237 -0.049 -0.145 -0.127 -0.122 -0.103 0.145 0.858 0.874 0.974 0.451 0.999 0.999 0.999 1.000 1

Hosp_prob 0.166 -0.133 -0.133 -0.166 -0.032 -0.216 0.245 -0.371 0.569 0.066 0.482 0.583 -0.196 -0.245 -0.043 -0.151 -0.129 -0.124 -0.102 0.168 0.861 0.892 0.974 0.467 0.999 0.999 0.999 0.998 0.997 1

Coll_prob 0.162 -0.131 -0.131 -0.163 -0.035 -0.214 0.243 -0.362 0.550 0.065 0.470 0.574 -0.195 -0.240 -0.047 -0.146 -0.127 -0.122 -0.102 0.153 0.859 0.882 0.974 0.455 1.000 1.000 1.000 1.000 1.000 0.999 1

Values in bold are different from 0 with a significance level alpha=0.05

Correlation matrix (Pearson):

Variables SOVI HUNITS POP2000 AREASQMI POPDEN00 PERCAPINC PCTPOV AVEDISTC TREEVOL MAXSUSWIN BLDGLOSS1K CNTLOSS1K NUMBRIDGE ROADMI ERC_CNT FIRESTA_CT POLSTA_CT SCH_CT MEDFAC_CT ERC_prob FIRE_prob Pol_prob Sch_prob Med_prob Gra_prob Gov_prob GovE_prob NH_prob Nonp_prob Hosp_prob Coll_prob

SOVI 1

HUNITS -0.177 1

POP2000 -0.209 0.995 1

AREASQMI 0.015 0.214 0.183 1

POPDEN00 -0.131 0.634 0.655 -0.088 1

PERCAPINC -0.538 0.537 0.536 0.068 0.246 1

PCTPOV 0.615 -0.285 -0.284 -0.015 -0.185 -0.720 1

AVEDISTC 0.073 -0.358 -0.347 -0.170 -0.089 -0.389 0.220 1

TREEVOL -0.054 0.065 0.069 0.217 -0.049 0.025 -0.003 -0.256 1

MAXSUSWIN 0.154 -0.149 -0.142 -0.186 -0.111 -0.232 0.385 0.224 -0.020 1

BLDGLOSS1K -0.041 0.086 0.089 0.169 -0.032 0.043 -0.026 -0.244 0.951 -0.010 1

CNTLOSS1K -0.040 0.084 0.087 0.169 -0.032 0.042 -0.026 -0.244 0.944 -0.010 0.999 1

NUMBRIDGE -0.293 0.677 0.697 0.270 0.508 0.408 -0.232 0.039 0.025 -0.152 0.036 0.034 1

ROADMI -0.221 0.751 0.735 0.529 0.360 0.477 -0.365 -0.254 0.148 -0.247 0.150 0.149 0.662 1

ERC_CNT -0.259 0.180 0.207 -0.082 0.191 0.277 -0.103 -0.022 -0.040 0.006 -0.030 -0.028 0.278 0.151 1

FIRESTA_CT -0.356 0.601 0.618 0.198 0.611 0.450 -0.367 -0.106 0.088 -0.200 0.093 0.092 0.697 0.616 0.357 1

POLSTA_CT -0.263 0.710 0.721 0.190 0.710 0.431 -0.297 -0.157 0.038 -0.164 0.049 0.048 0.681 0.634 0.343 0.887 1

SCH_CT -0.192 0.926 0.937 0.128 0.728 0.446 -0.233 -0.318 0.070 -0.160 0.085 0.084 0.705 0.657 0.266 0.704 0.806 1

MEDFAC_CT -0.131 0.860 0.865 0.149 0.730 0.371 -0.181 -0.263 0.084 -0.166 0.080 0.077 0.700 0.599 0.227 0.652 0.768 0.924 1

ERC_prob -0.025 0.005 -0.004 0.209 -0.020 0.033 -0.026 -0.098 0.421 -0.006 0.440 0.464 -0.008 0.096 0.060 0.036 0.017 -0.009 0.031 1

FIRE_prob -0.021 0.022 0.023 0.220 -0.046 -0.006 0.025 -0.219 0.905 -0.016 0.796 0.792 -0.016 0.100 -0.058 0.049 0.009 0.016 0.047 0.429 1

Pol_prob -0.020 0.024 0.025 0.224 -0.046 -0.007 0.026 -0.213 0.909 -0.016 0.802 0.798 -0.015 0.103 -0.055 0.052 0.012 0.018 0.049 0.439 0.996 1

Sch_prob -0.028 0.026 0.028 0.218 -0.047 -0.001 0.015 -0.232 0.920 -0.017 0.816 0.812 -0.014 0.105 -0.058 0.057 0.013 0.027 0.050 0.424 0.992 0.994 1

Med_prob -0.017 0.025 0.026 0.223 -0.046 -0.004 0.026 -0.214 0.909 -0.016 0.801 0.795 -0.016 0.103 -0.057 0.051 0.010 0.018 0.052 0.426 0.994 0.998 0.993 1

Gra_prob -0.024 0.023 0.025 0.220 -0.048 -0.007 0.024 -0.229 0.915 -0.017 0.806 0.802 -0.014 0.101 -0.059 0.054 0.010 0.024 0.048 0.423 0.996 0.992 0.996 0.990 1

Gov_prob -0.024 0.024 0.025 0.220 -0.048 -0.007 0.024 -0.229 0.915 -0.017 0.807 0.803 -0.014 0.101 -0.059 0.054 0.010 0.024 0.048 0.424 0.996 0.993 0.996 0.991 1.000 1

GovE_prob -0.024 0.024 0.025 0.220 -0.047 -0.007 0.024 -0.229 0.915 -0.017 0.807 0.804 -0.014 0.101 -0.059 0.054 0.010 0.024 0.048 0.424 0.996 0.992 0.996 0.991 1.000 1.000 1

NH_prob -0.022 0.026 0.027 0.218 -0.046 -0.004 0.022 -0.223 0.916 -0.016 0.813 0.809 -0.013 0.103 -0.057 0.053 0.012 0.022 0.050 0.428 0.999 0.996 0.996 0.994 0.998 0.998 0.998 1

Nonp_prob -0.025 0.026 0.027 0.216 -0.046 -0.003 0.019 -0.231 0.918 -0.016 0.816 0.813 -0.013 0.103 -0.057 0.055 0.012 0.026 0.049 0.428 0.996 0.992 0.997 0.990 0.999 0.999 0.999 0.999 1

Hosp_prob -0.023 0.020 0.022 0.224 -0.049 -0.012 0.030 -0.228 0.910 -0.018 0.796 0.792 -0.017 0.098 -0.060 0.052 0.007 0.023 0.046 0.420 0.994 0.990 0.994 0.988 0.999 0.999 0.999 0.996 0.997 1

Coll_prob -0.024 0.024 0.026 0.219 -0.047 -0.006 0.023 -0.229 0.916 -0.017 0.809 0.805 -0.014 0.102 -0.058 0.054 0.011 0.025 0.048 0.424 0.996 0.992 0.997 0.990 1.000 1.000 1.000 0.998 0.999 0.999 1

Values in bold are different from 0 with a significance level alpha=0.05
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Correlation matrix (Pearson):

Variables SOVI HUNITS POP2000 AREASQMI POPDEN00 PERCAPINC PCTPOV AVEDISTC TREEVOL MAXSUSWIN BLDGLOSS1K CNTLOSS1K NUMBRIDGE ROADMI ERC_CNTFIRESTA_CTPOLSTA_CT SCH_CT MEDFAC_CT ERC_prob FIRE_prob Pol_prob Sch_prob Med_prob Gra_prob Gov_prob GovE_prob NH_prob Nonp_prob Hosp_prob Coll_prob

SOVI 1

HUNITS -0.258 1

POP2000 -0.249 0.990 1

AREASQMI 0.019 0.500 0.500 1

POPDEN00 -0.306 0.733 0.690 0.016 1

PERCAPINC -0.505 0.418 0.359 0.226 0.382 1

PCTPOV 0.536 -0.247 -0.197 -0.010 -0.304 -0.742 1

AVEDISTC 0.305 -0.408 -0.369 -0.060 -0.370 -0.645 0.490 1

TREEVOL -0.164 0.410 0.365 0.398 0.306 0.343 -0.294 -0.246 1

MAXSUSWIN 0.014 -0.030 0.018 -0.029 -0.115 -0.219 0.326 -0.002 -0.246 1

BLDGLOSS1K -0.073 0.300 0.252 0.373 0.075 0.405 -0.218 -0.262 0.714 -0.119 1

CNTLOSS1K -0.078 0.307 0.259 0.372 0.086 0.409 -0.223 -0.268 0.724 -0.122 1.000 1

NUMBRIDGE -0.333 0.726 0.677 0.319 0.571 0.440 -0.306 -0.331 0.585 -0.214 0.396 0.406 1

ROADMI -0.287 0.606 0.537 0.428 0.472 0.350 -0.301 -0.278 0.588 -0.269 0.346 0.355 0.796 1

ERC_CNT -0.274 0.438 0.409 0.035 0.417 0.163 -0.054 -0.087 0.115 0.047 0.015 0.018 0.418 0.338 1

FIRESTA_CT -0.313 0.515 0.443 0.364 0.433 0.312 -0.284 -0.198 0.452 -0.251 0.304 0.309 0.513 0.666 0.473 1

POLSTA_CT -0.250 0.622 0.564 0.550 0.413 0.319 -0.263 -0.165 0.666 -0.239 0.497 0.503 0.625 0.774 0.442 0.829 1

SCH_CT -0.429 0.783 0.732 0.340 0.673 0.445 -0.331 -0.319 0.605 -0.227 0.369 0.379 0.948 0.844 0.518 0.653 0.743 1

MEDFAC_CT -0.300 0.775 0.703 0.269 0.707 0.410 -0.291 -0.356 0.557 -0.218 0.451 0.461 0.858 0.772 0.560 0.637 0.706 0.907 1

ERC_prob 0.021 -0.035 -0.038 -0.057 -0.022 0.228 -0.136 -0.150 0.198 -0.050 0.301 0.299 0.015 -0.053 0.184 0.018 0.054 -0.014 -0.001 1

FIRE_prob 0.247 -0.138 -0.138 0.066 -0.152 0.109 0.015 0.027 0.241 -0.155 0.320 0.316 -0.074 -0.185 -0.055 0.040 0.000 -0.109 -0.136 0.307 1

Pol_prob 0.278 -0.117 -0.118 0.052 -0.143 -0.034 0.191 0.041 0.271 -0.155 0.319 0.316 -0.039 -0.129 -0.039 -0.012 0.058 -0.084 -0.090 0.324 0.772 1

Sch_prob 0.213 -0.075 -0.083 0.088 -0.113 0.137 -0.040 -0.048 0.430 -0.170 0.527 0.525 0.012 -0.083 -0.036 -0.003 0.054 -0.028 -0.014 0.422 0.791 0.785 1

Med_prob 0.313 -0.107 -0.109 0.066 -0.122 -0.024 0.097 -0.028 0.298 -0.157 0.372 0.371 -0.048 -0.123 -0.073 -0.118 -0.049 -0.075 -0.015 0.299 0.403 0.489 0.774 1

Gra_prob 0.228 -0.061 -0.071 0.112 -0.109 0.144 -0.049 -0.070 0.470 -0.181 0.574 0.573 0.033 -0.068 -0.034 0.008 0.086 -0.007 0.012 0.435 0.783 0.731 0.979 0.789 1

Gov_prob 0.229 -0.059 -0.070 0.116 -0.109 0.141 -0.047 -0.069 0.474 -0.182 0.574 0.573 0.035 -0.066 -0.034 0.011 0.090 -0.005 0.014 0.431 0.785 0.735 0.978 0.789 1.000 1

GovE_prob 0.229 -0.060 -0.070 0.115 -0.109 0.142 -0.047 -0.069 0.473 -0.182 0.574 0.573 0.035 -0.066 -0.034 0.010 0.089 -0.005 0.013 0.432 0.784 0.734 0.978 0.789 1.000 1.000 1

NH_prob 0.225 -0.062 -0.072 0.106 -0.109 0.147 -0.053 -0.073 0.463 -0.178 0.574 0.572 0.030 -0.072 -0.033 0.005 0.080 -0.010 0.010 0.440 0.781 0.725 0.979 0.790 1.000 1.000 1.000 1

Nonp_prob 0.221 -0.065 -0.075 0.097 -0.109 0.153 -0.059 -0.077 0.451 -0.175 0.572 0.570 0.025 -0.078 -0.032 -0.002 0.070 -0.016 0.006 0.448 0.777 0.714 0.979 0.791 0.999 0.998 0.998 1.000 1

Hosp_prob 0.235 -0.055 -0.065 0.127 -0.107 0.134 -0.041 -0.065 0.490 -0.188 0.575 0.574 0.043 -0.057 -0.035 0.019 0.103 0.004 0.020 0.421 0.788 0.746 0.976 0.787 0.999 0.999 0.999 0.998 0.995 1

Coll_prob 0.230 -0.059 -0.069 0.117 -0.109 0.140 -0.046 -0.068 0.476 -0.183 0.575 0.573 0.036 -0.065 -0.034 0.012 0.092 -0.004 0.014 0.430 0.785 0.737 0.978 0.788 1.000 1.000 1.000 0.999 0.998 0.999 1

Values in bold are different from 0 with a significance level alpha=0.05

Correlation matrix (Pearson):

Variables SOVI HUNITS POP2000 AREASQMI POPDEN00 PERCAPINC PCTPOV AVEDISTC TREEVOL MAXSUSWIN BLDGLOSS1K CNTLOSS1K NUMBRIDGE ROADMI ERC_CNT FIRESTA_CT POLSTA_CT MEDFAC_CT ERC_prob FIRE_prob Pol_prob Sch_prob Med_prob Gra_prob Gov_prob GovE_prob NH_prob Nonp_prob Hosp_prob Coll_prob

SOVI 1

HUNITS -0.083 1

POP2000 -0.107 0.999 1

AREASQMI -0.023 -0.125 -0.122 1

POPDEN00 -0.060 0.944 0.936 -0.331 1

PERCAPINC -0.672 0.605 0.625 -0.097 0.551 1

PCTPOV 0.841 -0.120 -0.145 -0.087 -0.074 -0.730 1

AVEDISTC 0.502 -0.324 -0.330 0.015 -0.317 -0.421 0.400 1

TREEVOL 0.081 0.077 0.084 -0.007 0.125 -0.066 0.187 -0.117 1

MAXSUSWIN 0.215 -0.052 -0.056 -0.093 -0.062 -0.097 0.130 0.202 -0.106 1

BLDGLOSS1K 0.003 0.099 0.104 -0.084 0.213 0.082 0.054 -0.146 0.897 -0.055 1

CNTLOSS1K 0.000 0.109 0.114 -0.086 0.222 0.089 0.051 -0.146 0.898 -0.057 1.000 1

NUMBRIDGE 0.069 0.571 0.576 0.295 0.411 0.270 0.033 0.172 0.200 0.108 0.151 0.158 1

ROADMI 0.118 0.315 0.312 0.229 0.207 0.106 0.122 0.257 0.227 0.168 0.176 0.180 0.780 1

ERC_CNT 0.204 0.214 0.212 -0.083 0.214 -0.119 0.366 0.144 0.091 -0.049 -0.060 -0.051 0.213 0.208 1

FIRESTA_CT -0.298 0.393 0.415 0.466 0.181 0.393 -0.317 -0.272 0.163 -0.177 0.116 0.120 0.585 0.333 -0.123 1

POLSTA_CT 0.113 0.749 0.739 0.182 0.616 0.300 0.131 -0.162 0.220 -0.087 0.108 0.114 0.722 0.588 0.243 0.548 1

MEDFAC_CT 0.025 0.896 0.888 -0.059 0.842 0.545 -0.032 -0.201 0.096 0.068 0.140 0.147 0.678 0.471 0.146 0.374 0.824 1

ERC_prob 0.247 -0.113 -0.114 -0.048 -0.115 -0.339 0.379 0.089 0.263 -0.065 0.117 0.116 0.100 0.082 0.520 -0.020 0.129 -0.106 1

FIRE_prob 0.216 -0.124 -0.125 0.107 -0.114 -0.348 0.382 -0.073 0.795 -0.089 0.600 0.598 0.037 0.115 0.171 0.053 0.174 -0.119 0.549 1

Pol_prob 0.193 -0.115 -0.117 0.133 -0.113 -0.322 0.341 -0.097 0.794 -0.081 0.586 0.585 0.041 0.114 0.143 0.042 0.187 -0.114 0.494 0.985 1

Sch_prob 0.156 -0.079 -0.078 0.071 -0.050 -0.246 0.282 -0.163 0.900 -0.080 0.737 0.735 0.042 0.100 0.098 0.063 0.167 -0.075 0.407 0.953 0.960 1

Med_prob 0.233 -0.083 -0.083 0.055 -0.055 -0.298 0.371 -0.064 0.842 -0.081 0.703 0.702 0.099 0.162 0.125 0.075 0.180 -0.062 0.524 0.975 0.948 0.948 1

Gra_prob 0.155 -0.060 -0.059 0.034 -0.014 -0.223 0.284 -0.146 0.935 -0.081 0.806 0.804 0.061 0.120 0.091 0.070 0.158 -0.047 0.415 0.938 0.932 0.990 0.954 1

Gov_prob 0.154 -0.060 -0.058 0.035 -0.013 -0.222 0.283 -0.148 0.935 -0.081 0.806 0.805 0.061 0.120 0.088 0.071 0.158 -0.047 0.412 0.938 0.932 0.990 0.954 1.000 1

GovE_prob 0.154 -0.060 -0.058 0.035 -0.013 -0.222 0.283 -0.148 0.935 -0.081 0.806 0.805 0.061 0.120 0.089 0.071 0.158 -0.047 0.412 0.938 0.932 0.990 0.954 1.000 1.000 1

NH_prob 0.128 -0.044 -0.043 0.065 -0.005 -0.187 0.242 -0.182 0.925 -0.070 0.810 0.808 0.075 0.126 0.028 0.091 0.163 -0.032 0.319 0.919 0.922 0.987 0.942 0.989 0.990 0.989 1

Nonp_prob 0.150 -0.057 -0.056 0.040 -0.012 -0.216 0.276 -0.154 0.935 -0.079 0.808 0.807 0.064 0.121 0.079 0.074 0.159 -0.044 0.397 0.936 0.931 0.991 0.953 1.000 1.000 1.000 0.993 1

Hosp_prob 0.161 -0.064 -0.063 0.029 -0.016 -0.232 0.293 -0.137 0.933 -0.084 0.803 0.801 0.057 0.119 0.105 0.065 0.156 -0.051 0.436 0.941 0.932 0.987 0.955 0.999 0.999 0.999 0.983 0.998 1

Coll_prob 0.154 -0.060 -0.058 0.035 -0.013 -0.222 0.283 -0.148 0.935 -0.081 0.806 0.805 0.061 0.120 0.089 0.071 0.158 -0.047 0.412 0.938 0.932 0.990 0.954 1.000 1.000 1.000 0.989 1.000 0.999 1

Values in bold are different from 0 with a significance level alpha=0.05
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APPENDIX H: Log Transformations for Model Variables 

 

 

 

Log transformation of Total Assistance per Capita (TA_PCAP) 
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Log Transformations for FEMA Impact Model Variables 
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Hurricane Jeanne 
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APPENDIX I: Inventory of Spatial Regression Model Outputs 

 

 

 

Regression Scenario 1 

 

 

Hurricane Bret – OLS 
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Hurricane Charley – OLS 
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Hurricane Charley-Spatial Lag Model 
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Hurricane Claudette  – OLS 
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Hurricane Floyd  – OLS 
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Hurricane Floyd  – Spatial Error Model 
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Hurricane Irene – OLS 
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Hurricane Isabel – OLS 
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Hurricane Ivan – OLS 
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Hurricane Ivan – Spatial Error Model 
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Hurricane Jeanne – OLS 
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Hurricane Lili – OLS 

 



  

241 

Regression Scenario 3 
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244 

Hurricane Floyd  – OLS 
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Hurricane Floyd  – Spatial Lag Model 

  
 

 

 

 

 

 

  



  

246 

Hurricane Irene – OLS 
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Hurricane Isabel – OLS 
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Hurricane Isabel – Spatial lag Model 
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Hurricane Ivan – OLS 
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Hurricane Jeanne – OLS 
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Hurricane Lili – OLS 
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Regression Scenario 4 
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Hurricane Floyd  – OLS 
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Hurricane Floyd  – Spatial Lag Model 
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Hurricane Irene – OLS 
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Hurricane Isabel – OLS 
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Hurricane Isabel – Spatial lag Model 
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Hurricane Ivan – OLS 
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Hurricane Jeanne – OLS 
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Hurricane Lili – OLS 
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Regression Scenario 5 
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Hurricane Floyd  – OLS 
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Hurricane Floyd  – Spatial Lag Model 
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Hurricane Irene – OLS 
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Hurricane Isabel – OLS 
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Hurricane Isabel – Spatial lag Model 
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Hurricane Ivan – OLS 
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Hurricane Ivan – Spatial Lag Model 
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Hurricane Jeanne – OLS 
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Hurricane Jeanne – Spatial Lag Model 
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Hurricane Lili – OLS 
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