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ABSTRACT 

RESPONSES OF BENTHIC MACROFAUNA TO ENVIRONMENTAL STRESSORS:  
A SYNTHESIS OF CHESAPEAKE BAY DATA 

Treda S. Grayson, Ph.D. 

George Mason University, 2019 

Dissertation Director: Dr. Kim de Mutsert 

 

Chesapeake Bay is the largest estuary in the United States, and is of ecological, historical, 

economic and cultural importance.  The pressures of increased population density, land 

development, and agricultural practices have resulted in a threatened bay ecosystem that 

needs ongoing restoration and protection.  There are a number of monitoring programs, 

research institutions, non-profit organizations, and local, state and federal agencies in the 

Chesapeake region that are dedicated to and focused on collecting, monitoring and 

analyzing data, as well as developing management practices and tools to preserve and 

protect the Bay.  Physical, chemical and biological data from these various research and 

assessment programs were used to identify specific individual taxa responses to specific 

stressors, first with correlation analysis followed by Generalized Additive Models 

(GAMs) to build models for amphipods Ampelisca abdita, Ampelisca verrilli, and 

polychaete Spiochaetopterus costarum. These three taxa were shown to have significant 
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relationships to environmental pollutants and water quality variables based on analyses 

performed.  The models were tested with Delaware Bay taxa and one model – A. verilli – 

performed well.  Some model fine-tuning is necessary to make the models broadly 

applicable to systems outside of Chesapeake Bay.  Once achieved, these models have the 

potential to complement benthic condition tools such as the Benthic Index of Biotic 

Integrity (B-IBI), to provide decision-makers with information to better manage and 

direct monitoring and assessment resources.   
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CHAPTER ONE: INTRODUCTION 

Estuaries are dynamic systems that are continuously subjected to stressors. 

Environmental (or naturally-occurring) abiotic stressors include floods, hurricanes, 

currents, hypoxia, and changes in climate, while biotic stressors include predation, 

competition, and the introduction of invasive species (Boesch & Rosenberg, 1981; 

Boesch, Wass, & Virnstein, 1976; Cairns, 2003; Sousa, 1984; Thrush, Hewitt, Hickey, & 

Kelly, 2008). Stress is defined as a “perturbation” applied to a system that is either 

foreign to that system or natural to that system, but applied at an excessive level (Barrett, 

van Dyne, & Odum, 1976). Similarly, Van Straalen (2003) defined organismal stress as a 

condition induced by one or more environmental factors that pushes the organism near or 

over the edges of its ecological niche. Stress is “usually transient, involves specific 

physiological response, and is accompanied by the induction of mechanisms that 

counteract its consequences” (Van Straalen, 2003).  

Traditionally, benthic macroinvertebrates are accepted as reliable indicators of 

disturbance or stress in estuarine environments. Given their limited mobility and 

considerable abundances, they are relatively easy to sample and cannot avoid exposure to 

contaminants; thus they are integrators of the biological and physical events in the 

sediments and the overlying water column (Weisberg et al., 1997; Pelletier, Gold, 

Heltshe, & Buffum, 2010a). Communities of benthic macroinvertebrates are comprised 
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of a variety of taxa with a wide range of living positions, feeding types, and physical 

adaptations, many of which make them ideal to reliably predict the presence of natural 

and anthropogenic stressors (Pearson & Rosenberg, 1978; Lenihan et al., 2003) and the 

resulting condition, or health, of aquatic systems such as estuaries. Understanding the 

relationships between benthic macroinvertebrates and how they respond to stressors is 

essential, in order to develop evaluation tools that properly assess ecosystem condition. 

 

Types of Stressors in Estuaries 

Benthic macroinvertebrates reside in complex systems and are subjected to a 

variety of environmental (abiotic and biotic) and anthropogenic stressors. At any given 

point in time, benthic macroinvertebrates are simultaneously exposed to stressors in 

estuaries at varying magnitudes and frequencies. Numerous studies have identified 

predictable responses to natural and anthropogenic stressors (Borja, Franco, & Perez, 

2000; Engle, Summers, & Gaston, 1994; Pearson & Rosenberg, 1978; Weisberg et al., 

1997). Previous work to describe benthic macroinvertebrate responses to general 

stressors, as well as information on responses to specific stressors, is critical in 

determining if responses characteristic of particular combinations of stressors in estuaries 

exist. The following is a summary of benthic macroinvertebrate responses to stressors in 

estuarine environments, which is the foundation of this dissertation research to identify 

characteristic patterns of benthic macroinvertebrate responses to multiple stressors. 
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Levels of Biological Organization and Stressor Response 

Biological responses to stressors can occur at all levels of biological organization, 

from cells all the way up to communities, ecosystems and landscapes (Adams, 2005; 

Cairns, 2003). Observed responses can manifest as changes in abundance, diversity and 

fitness as a result of both direct and indirect processes (Adams, 2005), and may vary 

markedly not only at different levels of organization (Breitburg, 1992; Odum, Finn, & 

Franz, 1979) but also between species of the same or different genus.  

 

Individual-level Stressor Responses 

For individuals, a variety of behavioral, physiological, and biochemical responses 

can be triggered in a direct response to stressors: changes in enzymatic and metabolic 

activity, alterations of protein and gene expression, avoidance behavior, decreased 

reproductive activity (Adams, 2005; Diaz & Rosenberg, 1995), reduced uptake, increased 

excretion, detoxification, sequestration, and repair (Maltby, 1999). Indirect responses to 

stressors include changes in the quantity and quality of available habitat, food sources, 

and competition and predation interactions (Adams, 2005; Preston & Shackelford, 2002).  

Benthic macroinvertebrate species do not always respond the same way to 

stressors, unless there is a severe event such as prolonged hypoxia/anoxia or dredging 

that cause mortality among all species present. Additionally, species can respond 

differently to stressors and disturbances due to individual species differences in relation 

to the physical, chemical, or biological environment, or autecology (Newman & 

Clements, 2008). Diaz and Rosenberg (1995) described significant differences in 
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responses of benthic genera to hypoxia. The polychaete Nereis diversicolor has higher 

blood sulphide oxidation activity than N. virens, N. succinea, and N. pelagica, in order to 

survive and cope with high concentrations of sulphide associated with hypoxic events. 

The brittle star Amphiura filiformis migrates to the sediment surface for oxygen well 

before A. chiajei appears, as dissolved oxygen concentrations in the sediment decrease; 

A. chiajei has a lower respiration rate than A. filiformis and can therefore tolerate hypoxic 

conditions at depth. The bivalve Abra alba extends many more siphons out into the water 

column than A. nitidia in search of oxygen. Adaptations to stress within genera have 

provided species a competitive advantage for survival over others in disturbed 

environments. 

Sensitivity or tolerance to a stressor, and the frequency of stress or disturbance 

often determines how an organism responds. Juveniles are a sensitive life stage and are 

subsequently more susceptible to stress than adults. This tolerance or intolerance to 

stressors can also be attributed to species’ life history traits: short-lived (r-selected) 

species tend to regenerate rapidly after disturbance as opposed to long-lived (k-selected) 

species that take longer to re-establish after a disturbance (Diaz & Rosenberg, 1995; 

Holland, 1985; Holland, Shaughnessy, & Hiegel, 1987; Marsh & Tenore, 1990; 

Newmann & Unger, 2003). Amphipods, compared to polychaetes, have shorter life spans 

and possess far fewer physiological adaptations that decrease sensitivity to stressors; this 

helps to explain why amphipods are more suitable for toxicity tests than polychaetes. 
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Population- and Community-level Responses 

Individual and species level responses to stressors are the nexus between ecology 

and toxicology (ecological and environmental), as ecology alone cannot explain 

relationships between organisms and stressors. Stressors can trigger physiological (direct) 

and physical (indirect) responses in individuals, which ultimately influence changes seen 

at the population and community levels (Chapman, 2002). Population-level responses to 

stressors and mortality-inducing disturbances are varied and can often be predicted from 

aforementioned individual-level responses that reduce susceptibility to stress. The major 

responses of populations are increased or reduced abundances, changes in age structure 

and alterations of the gene pool (Maltby, 1999; Marsh & Tenore, 1990). Individual- and 

population-level responses together are important in understanding how communities of 

benthic macroinvertebrates respond to stress, mainly expressed as changes in community 

structure. Various conceptual models exist that attempt to explain how communities 

respond to disturbance or stress, namely the Intermediate Disturbance Hypothesis 

(Connell 1978) and the Environmental Stress Model (Menge and Sutherland 1987). 

 

Community-level Stressor Response Models 

The Intermediate Disturbance Hypothesis (Connell, 1978) was originally 

developed to describe diversity patterns in tropical forests and coral reefs. It predicts that 

the maximum diversity in a system occurs at an intermediate level of disturbance, where 

disturbance is sufficient to limit the growth of competitive dominants, releasing 

previously excluded species and allowing other species to move in and increase diversity. 
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At a low level of disturbance, competitive exclusion takes place due to competition for 

space and a few species outcompete others. Conversely, mortality decreases diversity due 

to disturbance at a high level of disturbance. This model is appropriate and often used to 

explain benthic macroinvertebrate stressor response in estuarine soft-bottom benthic 

communities (Pearson & Rosenberg, 1978). 

The Environmental Stress Model (Menge & Sutherland, 1987) takes the 

Intermediate Disturbance Hypothesis model one step further by incorporating resource 

availability, driven by competitive exclusion and predation, to predict community 

structure. When environmental stress is low and food resources are high, the population 

of competitive dominants increases and excludes other species due to predation. Similar 

to the Intermediate Disturbance Hypothesis, populations are limited by high 

environmental stress. In the rocky intertidal, for which this model was developed, 

diversity increases as environmental stress increases, but diversity is then dampened due 

to competition for space. When this model is applied to soft-sediment communities, there 

is no competition for space, therefore the model follows the Intermediate Disturbance 

Hypothesis. There is an iteration of the Environmental Stress Model that focuses on both 

environmental and predator stress on prey (Prey Stress Model; (Menge & Olson, 1990). 

The Prey Stress Model is important in explaining observed benthic community responses 

to stressors, when environmental and predator stress dynamics are present in a system. 
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Single versus Multiple Stressors 

Generally, every level of organization in estuaries responds to multiple stressors 

at any given time (Adams, 2005; Hyland et al., 2005; Lenihan et al., 2003; Thrush et al., 

2008). The types and intensity of multiple stressors can determine whether multiple 

stressors have additive effects on individuals and populations (Folt, Chen, Moore, & 

Burnaford, 1999), although it is difficult to predict how communities, populations of 

different species in a given area, respond to multiple stressors. It is implicitly assumed 

that this response is additive, rather than antagonistic or synergistic (Newman & 

Clements, 2008), however, Thrush et al. (2008) found that responses to a single stressor 

or stressors acting additively were less apparent than multiplicative effects in regression-

based models.  

There are a multitude of stressors occurring simultaneously in estuaries that make 

it difficult to identify if stressors are additive or multiplicative, hence magnifying the 

response observed. In addition, there is a need to tease out what effects are due to internal 

patchiness and heterogeneity of natural systems versus anthropogenic influences. Elliot 

and Quintino (2007) coined this problem the Estuarine Quality Paradox. They 

recommend that to break out of this circularity, natural variability and stress should be 

fully quantified, and anthropogenic stress subtracted out, or a set of methods must be 

developed to detect anthropogenic stressors against a backdrop of natural stress. 

Likewise, Lenihan et al. (2003) noted that the presence of stressors are often confounded 

in space and time, which causes difficulty in detecting the effects of individual and 

multiple stressors, especially at the population and community levels. The logical point at 
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which to start understanding how stressors in estuaries affect benthic community 

structure is to focus on ecotoxicological principles of stressor responses for individuals 

and populations of species.  

Previous studies in the Chesapeake Bay provide information on macrobenthic 

community responses to single stressors: low dissolved oxygen events correlate with 

degraded benthic communities and lower benthic diversity (Breitburg, 1992; Daniel M. 

Dauer, Rodi, & Ranasinghe, 1992; Diaz & Rosenberg, 1995; Holland et al., 1987; Llansó, 

1992; Seitz, Dauer, Llansó, & Long, 2009), benthic community condition declines with 

exposure to sediment contaminants as sediment contaminants correlate with urbanization 

(Dauer et al., 1992; Dauer, 1993; Dauer et al., 1993; Kiddon et al., 2003), benthic 

community condition generally degrades as land use changes along a gradient from 

forested to urban (Bilkovic, Roggero, Hershner, & Havens, 2006), and overall degraded 

benthic community condition is associated with eutrophication (Kiddon et al., 2003). 

Many of these studies focus on biological responses to single stressors, but it is important 

to note that most benthic stressors do not occur one at a time, but rather in combination 

with other stressors, especially in estuarine environments. Benthic macroinvertebrate 

responses to single stressors will aid in discerning the response patterns exhibited by 

multiple stressors.  

 
 



 
 

9 
 

Dissertation Overview 

Chesapeake Bay is the largest estuary in the United States, and is of ecological, 

historical, economic and cultural importance. The pressures of increased population 

density, land development, and agricultural practices have resulted in a threatened bay 

ecosystem that is in need of ongoing restoration and protection. There is a multitude of 

data available that can be analyzed to assess stressor impacts, and to better manage them. 

This research draws on decades of previously collected data in the Chesapeake Bay 

region and provides a sound mechanism to evaluate actual and potential stressors to 

benthic communities, using datasets at hand. This is especially of importance in times of 

dwindling funds for monitoring and research programs. 

In Chapter 1, the current chapter, I presented a review of the relevant literature on 

stressor-response relationships at various levels of biological organization. In Chapter 2, I 

describe key relationships and benthic macroinvertebrate response patterns to specific 

stressors. In Chapter 3, I use previous and new species- and stressor-specific relationships 

to propose a model that assesses ecological condition and status in Chesapeake Bay. This 

new model also incorporates measures of stress tolerance and species autecology to 

further enhance the model’s capabilities. In Chapter 4, I demonstrate the performance of 

the model by comparing its output to existing health indices in Chesapeake Bay, and test 

its performance in nearby Delaware Bay, which is exposed to similar stressors as 

Chesapeake Bay. The overall goal of my dissertation research is to combine general and 

stressor-specific response information with ecological theory to build a model that 
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complements current assessment tools and allows resource managers to better protect, 

maintain and restore Chesapeake Bay’s aquatic ecosystem.  
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CHAPTER TWO: CHARACTERIZING RELATIONSHIPS BETWEEN 
BENTHIC MACROFAUNA AND SPECIFIC STRESSORS 

Introduction 

Estuaries, with the multitude of stressors that occur within, are ideal systems for 

the study of stressor and disturbance ecology.  Over 40% of the global human population 

lives within 100 km of the coast, making estuarine environments among the most heavily 

impacted systems in the world (Kenworthy et al., 2004).  It is in estuaries where natural 

stressors comingle with human-induced stressors and affect physical and biological 

systems.  Benthic macroinvertebrates are commonly used in stressor-response studies 

because they are integrators of biological and physical events in the sediments and the 

overlying water column. They have limited mobility, cannot avoid exposure to 

contaminants and are relatively easy to sample. Additionally, they possess a wide range 

of living positions and habitats, feeding types, and physical adaptations that make them 

sensitive to most stressors at the community level.   

Commonly found benthic macroinvertebrates include, amphipods, mollusks 

(bivalves and gastropods), chironomids, and worms (oligochaetes and polychaetes).  

Amphipods are commonly found in freshwater and marine systems and are critical 

components of aquatic food webs as major sources of food for predators (Holland et al., 

1987; Virnstein, 1979).  Given their opportunistic life history, direct contact with 

sediment, tolerance for a range of salinities and documented correlation between their 
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distribution and sediment contamination, amphipods are sensitive indicators of 

environmental disturbance and the most used organism for sediment toxicity testing 

(Schlekat, Mcgee, & Reinharz, 1992).  Ampelisca abita, Ampelisca verrilli (both tube-

dwelling species) and Leptocheirus. plumulosus (burrowing species) are dominant in the 

Chesapeake Bay.  While these species are sensitive to various environmental stressors, 

their ability to move deeper into the sediment to avoid stressors at the sediment-water 

interface provide a mechanism by which they can tolerate exposure to stressors.   

Bivalves and gastropods, like amphipods, are commonly found in aquatic systems 

and are important links between the benthos and higher trophic levels (Holland et al., 

1987; Virnstein, 1979). Many species of bivalves are suspension feeders and they 

influence the nutrient and organic coupling of benthic pelagic systems, accomplished by 

their ability to filter particles and biodeposit organic wastes on the benthic surface. The 

influence of benthic suspension-feeding bivalves, such as Mulinia lateralis and Macoma 

mitchelli, on benthic-pelagic coupling, sediment processes, deposition, and nutrient 

remineralization has been well studied (Diaz & Schaffner, 1990; Ocean Sciences Board 

& National Sciences Council, 2010). 

Chironomids or non-biting midges, are flies that are found all over the world.  

Nearly all of the larvae are aquatic (or sub-aquatic) and tend to be more dominate in 

freshwater systems although they can be found in tidal fresh to brackish portions of 

estuaries.  Chironomids are one of just a few aquatic insects that can span the entire 

salinity range of an estuary from freshwater to marine. 
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Polychaetes are common in marine environments worldwide and oligochaetes are 

common in freshwater environments, though they are still found in all aquatic 

environments globally.   Like other benthic macroinvertebrates mentioned, polychaetes 

and oligochaetes are important for nutrient remineralization and vertical sediment 

redistribution as a result of feeding and burrowing behaviors (Dauer et al., 1992; Diaz, 

1984), and also key links to between primary producers and higher trophic levels.  The 

feeding tubes and burrows they form increase the surface area over which substrate and 

nutrients exchange at the sediment-water interface (Diaz & Schaffner, 1990; Schaffner, 

1990).  Regardless of life history strategy, most estuarine polychaetes can survive in a 

wide range of environmental conditions until conditions degrade to the point that even 

juvenile stages of opportunistic species are affected by stress (Boesch, 1977; Boesch & 

Rosenberg, 1981).  Some polychaetes have the ability to produce detoxifying secondary 

metabolites and proteins in vivo that provide a relatively high tolerance to some 

contaminants (Lenihan et al., 2003; Marcano, Nusetti, Rodriguez-Grau, & Vilas, 1996). 

Previous studies have demonstrated predictable responses of macrobenthic 

organisms to both natural and anthropogenic stressors collectively (Pearson and 

Rosenberg, 1978; Bosch and Rosenberg, 1981; Lenihan et al., 2003), although stressor-

specific responses remain poorly known (Weisberg et al., 1997; Metcalfe, 2005).  Many 

of the stressor-specific studies that exist, often laboratory experiments, focus on 

responses of one or just a few taxa (Crain, Kroeker, & Halpern, 2008), as a means of 

extrapolating for larger scale application.  In this study, I attempt to utilize field 

monitoring data to identify general individual taxa response patterns to specific-stressors, 
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namely dissolved oxygen, sediment contaminants and excess nutrients.  I will then use 

the patterns detected to build a model that complements and enhances the performance of 

tools such as the Benthic Index of Biotic Integrity (B-IBI), which are designed to identify 

and assess the effects of anthropogenic stressors to aquatic systems.  

 

Methods 

Data collected non-continuously in Chesapeake Bay from 1990 to 2010 were 

obtained from EPA monitoring programs for this study- the Environmental Monitoring 

and Assessment Program (EMAP), the Mid-Atlantic Integrated Assessment (MAIA), the 

National Coastal Assessment (NCA) and the National Coastal Condition Assessment 

(NCCA; Table 1).  Monitoring data from these programs were collected by EPA staff, 

contractors and state monitoring crews during summer months (July – September).  A 

probabilistic sampling design was utilized, and similar field, laboratory and rigorous 

quality assurance methods were used by all participants for sample collection and 

analysis.  Sites were visited by boat or large research vessel and water column, sediment 

composition and quality, benthic macroinvertebrate and fish community and tissue data 

were collected at each site.  Samples were analyzed by national and state laboratories. 
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Table 1 Sources of Estuarine and Coastal Biological and Environmental Data from the U.S. Environmental 
Protection Agency 

Monitoring Program Years Covered Data Location 
Environmental 
Monitoring and 
Assessment (EMAP) 

1990 – 1993 https://archive.epa.gov/emap/archive-
emap/web/html/index-21.html 

Mid-Atlantic 
Integrated Assessment 
(MAIA) 

1997 – 1998 https://archive.epa.gov/emap/archive-
emap/web/html/index-21.html 

National Coastal 
Assessment (NCA) 

2001 – 2006 https://archive.epa.gov/emap/archive-
emap/web/html/index-78.html 

National Coastal 
Condition Assessment 
(NCCA) 

2010 https://www.epa.gov/national-
aquatic-resource-surveys/data-
national-aquatic-resource-surveys 

 
 

Chesapeake Bay data, located in the EMAP Virginian Province, were extracted 

and screened using the following criteria adapted from (D. M. Dauer, Lane, & Llansó, 

2002) to arrive at a dataset appropriate for analysis: 1) samples collected must be within 

the geographic boundaries of Chesapeake Bay and its tributaries, 2) benthic 

macroinvertebrate samples must be collected using a Young-modified van Veen or Small 

van Veen grab with a sampling area of 0.0440 m2, 3) benthic macroinvertebrate samples 

must be collected during the index period of July 15 to September 30, 4) dissolved 

oxygen measurements must be collected at the same time as benthic macroinvertebrate 

samples, and 5) sediment contaminant data must be collected in the same year as the 

benthic macroinvertebrate samples. A subset of sediment contaminant data was used for 

this study, based on the widespread and local occurrence and extent of contaminants in 

Chesapeake Bay (US Environmental Protection Agency, US Geological Survey, & US 
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Fish and Wildlife Service, 2012). Toxicity data were generated from 10-day static acute 

amphipod toxicity tests in state and contracted laboratories. Sediment total organic 

carbon (TOC) concentrations were used as a surrogate indicator of eutrophication. In 

addition, only bottom salinity measurements were used as they are the closest 

measurements taken in proximity to the benthos.  Data from the first of two site visits 

were used; triplicate benthic grabs were taken for MAIA and were averaged to represent 

one sample for analysis.  Applying the above screening criteria resulted in 702 stations 

with complete records for analysis in this study. 

 

 
Figure 1 Map of sampling sites (n=702) in Chesapeake Bay and tributaries used in this study. The sites were 
sampled for US EPA monitoring programs from 1990 to 2010 
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 Benthic macroinvertebrate samples were identified to the lowest practical 

identification level (LIPL) and for this study, only organisms identified to genus or 

species were included.  Taxonomic names were also checked and corrected according to 

the Integrated Taxonomic Information System (ITIS, http://www.itis.gov), the World 

Register of Marine Species (WoRMS, http://www.marinespecies.org), and the NCCA 

2010 Corrected Taxa List (U.S. Environmental Protection Agency, 2016).  The one 

exception was the inclusion of oligochaetes, which were identified to class.  Epifaunal 

and pelagic organisms were removed as they are not considered to be benthic organisms 

(Pelletier, Gold, Heltshe, & Buffum, 2010b; Ranasinghe et al., 1993).  Where information 

was available, taxa were classified as pollution tolerant or sensitive, as well as classified 

by life history traits (e.g., equilibrium or opportunistic). These characteristics are 

important because they can indicate the presence of stressors in the environment; stressed 

environments tend to be dominated by smaller, rapidly reproducing taxa that can 

withstand or repopulate stressed or polluted environments, while larger, longer-lived taxa 

are found in relatively unstressed or unpolluted environments. 

 

Data Manipulation for Analysis 

Prior to analysis, benthic macroinvertebrate raw abundances (or mean abundances 

for MAIA data) were converted to densities by dividing the abundances by the sediment 

grab area (0.0444 m2).  Sediment toxicity data were binned into Good-Fair-Poor 

categories of 5, 3 or 1 based on NCCA sediment toxicity thresholds (Table 2).  Total 
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DDT, PAH and PCB were calculated from individual class analytes for MAIA, NCA and 

NCCA sediment contaminant data.   

 

Table 2 Sediment toxicity thresholds from NCCA 2010 used to score toxicity results 
Rank Toxicity Threshold by Site Score 

Good Test results not significantly 
different from control (p>0.05) 
and ≥80% control-corrected 
survival  
 

5 

Fair Test results significantly different 
from control (p≤0.05) and ≥80% 
control-corrected survival or Test 
not significantly different from 
control (p>0.05) and <80% 
control-corrected survival 
 

3 

Poor Test results significantly different 
from control (p<0.05) and <80% 
control-corrected survival 
 

1 

 
 

Data	
  Reduction	
  
Data reduction techniques were used to make the dataset more manageable for 

subsequent interpretation, as well as to reduce collinearity and background noise in the 

data amongst the variables.  The benthic taxa data were first sorted by site and taxa 

occurring in less than 10 sites were removed (Llansó, Scott, Dauer, Hyland, & Russell, 

2002), reducing the number of taxa for analysis to 149. Next a correlation analysis was 

conducted in R (R Core Team, 2013) to identify whether any variables were correlated 

with each other that could subsequently be removed from the dataset, creating a set of 
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non-correlated variables to analyze.  The Spearman rank test, appropriate for non-linear 

data, was used for the analysis.  Figure 2 presents a hierarchical clustering of the 

environmental variables by correlation coefficients.  The physical parameters, sand, silt-

clay, total organic carbon (TOC), salinity and oxygen, are important variables that often 

define the life-history traits, habitat and feeding behaviors of benthic macroinvertebrates. 

Several chemical parameters were correlated (e.g., metals) and a subset of chemical 

parameters were selected that are listed as contaminants of localized (i.e., aldrin, DDT, 

dieldrin, heptachlor, iron, and lead) and widespread (i.e., PAHs, PCBs, and mercury) 

concern in Chesapeake Bay  (US Environmental Protection Agency et al., 2012).  Table 3 

summarizes the parameters selected for analysis.  
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Figure 2 Correlation analysis of environmental variables. Blue circles indicate positive correlation and red 
indicate negative correlation. The size of circle indicates significance.  Smaller circles are less significance. 
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Table 3 Environmental variables selected by correlation analysis for further analysis in this study 
Parameter Type Variable 

Physical  Sand 
 Silt-clay 
 Total Organic Carbon (TOC) 
 Salinity 
 Dissolved Oxygen (DO) 
 Toxicity 
Sediment Contaminants Polycylic Aromatic Hydrocarbons (PAH) 
 Polychlorinated Biphenyls (PCB) 
 Aldrin 
 Dichlorodiphenyaltrichloroethane (DDT) 
 Dieldrin 
 Heptachlor 
 Iron (Fe) 
 Mercury (Hg) 
 Manganese (Mn) 
 Lead (Pb) 

 
 
Individual	
  Taxa	
  Response	
  Patterns	
  
 

The relative abundances of each taxa were plotted against the selected 

environmental variables to examine response patterns in a series of scatterplot matrices (n 

= 298; 149 scatterplot matrices each for the suite of chemical and physical parameters). 

Every combination of taxa and stressor in the scatterplot matrices was reviewed by eye to 

discern what patterns emerged.  Potential response patterns of individual taxa to one or 

more environmental variables were observed with 34 taxa.  Correlation matrices were run 

for each taxa using the corr.test function in the R psych package (Revelle, 2018) and 

tested for significance (p < 0.05).  The Kendall tau-b test was used because it 1) is 

appropriate to test non-linear, non-parametric data, 2) allows for the presence of 
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concordant data, 3) is less sensitive to outliers in the data, and 4) is suitable for small 

sample sizes.   

 
Results  

There were 34 significant relationships observed between taxa relative abundance 

and environmental variables.  While the following relationships described were 

significant (α = 0.05), many of the relationships were weak to moderate, meaning the 

strength of the relationship was not strongly positive or negative but still passed the 

significance test.  For example, Mediomastus ambiseta was negatively correlated with 

Dichlorodiphenyaltrichloroethane (DDT) with a correlation coefficient of -0.09 (α = 

0.05) compared to the correlation between Owenia fusiformis and Hg which was -0.47.   

 

Sediment Contaminants 

Three taxa had significant correlations with DDT (Figure 3).  Negative 

correlations were observed with Glycinde solitaria and Mediomastus ambiseta, while a 

positive correlation was observed with Heteromastus filiformis.  Two taxa had significant 

positive correlations with dieldrin- H. filiformis and Sayella chesapeakea (Figure 4).  

Two taxa had significant positive correlations to iron (Fe)- Leptocheirus plumulosus and 

Spiophanes bombyx (Figure 5).  One taxon had a significant positive correlation with 

heptachlor- H. filiformis (Figure 6).  Three taxa had significant negative correlations with 

Mercury (Hg)- Macoma mitchelli, Owenia fusiformis, and Spiochaetopterus costarum 

(Figure 7).  Three taxa had significant correlations with Manganese (Mn) (Figure 8).  

Negative correlations were observed with G. solitaria and S. costarum, and a positive 
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correlation was seen with L. plumulosus.  One taxa had a significant correlation with 

Polycyclic Aromatic Hydrocarbons (PAH)- L. plumulosus (Figure 9).  Three taxa had 

significant correlations with Lead (Pb).  Positive correlations were observed with 

Ampelisca verrilli and L. plumulosus, and a negative correlation was observed with M. 

mitchelli (Figure 10). One taxon had a significant negative correlation with 

Polychlorinated Biphenyls  (PCB)- M. ambiseta (Figure 11Figure 11).  Table 4 provides 

a summary of these results. 

 



 
 

24 
 

 

 
Figure 3 Significant correlation of DDT concentrations with the relative abundances of G. solitaria, M. ambisetea 
and H. filiformis (α = 0.05) 
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Figure 4 Significant correlation of Dieldrin concentrations with the relative abundances of H. filiformis and S. 
chesapeakea (α = 0.05) 
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Figure 5 Significant correlation of Fe concentrations with the relative abundances of L. plumulosus and S. 
bombyx (α = 0.05) 
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Figure 6 Significant correlation of Heptachlor with the relative abundance of H. filiformis (α = 0.05) 
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Figure 7 Significant correlation of Hg with the relative abundances of M. mitchelli, O. fusiformis and S. costarum 
(α = 0.05) 
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Figure 8 Significant correlation of Mn concentrations with the relative abundances of G. solitaria, S. costarum 
and L. plumulosus (α = 0.05) 
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Figure 9 Significant correlation of PAH concentrations with the relative abundance of L. plumulosus (α = 0.05) 
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Figure 10 Significant correlation of Pb concentrations with the relative abundances of A. verrilli, L. plumulosus 
and M. mitchelli (α = 0.05) 
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Figure 11 Significant correlation of PCB concentration with the relative abundance of M. ambiseta (α = 0.05) 
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Table 4 Summary of significant correlations between taxa and sediment contaminants 

Contaminant Taxa Coefficient p-value 
DDT Glycinde solitaria -0.12 0.05 

 Heteromastus filformis 0.03 0.05 
 Mediomastus ambiseta -0.19 0.01 

Dieldrin Heteromastus filformis 0.18 0.01 
 Leptocheirus plumulous 0.20 0.02 
 Sayella chesapeaka 0.31 0.03 
 Spiophanes bombyx 0.27 0.04 

Heptachlor Heteromastus filformis 0.13 0.04 
Hg Macoma mitchelli -0.20 0.01 

 Owenia fusiformis -0.47 0.03 

 
Spiochaetopterus 
costarum -0.24 0.04 

Mn Glycinde solitaria -0.16 0.01 
 Leptocheirus plumulous 0.16 0.05 
 Spiochaetoterus costarum -0.26 0.03 

PAH Leptocheirus plumulous 0.20 0.02 
Pb Ampelisa verrilli 0.37 0.01 

 Leptocheirus plumulous 0.17 0.04 
 Macoma mitchelli -0.17 0.02 

PCB Mediomastus ambiseta -0.17 0.02 
 

 

Physical Variables 

Three taxa had significant correlations with dissolved oxygen (Figure 12).  

Negative correlations were observed with Ampelisca abdita and Mulinia lateralis.  A 

significant positive correlation was observed with Coelotanypus.  Nine taxa had 

significant correlations to bottom salinity (Figure 13 and Figure 14).  Negative 

correlations were observed with Hypereteone heteropoda, M. lateralis, and Polydora 
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cornuta.  Positive correlations were observed with M. ambiseta, O. fusiformis, Prionospio 

perkinsi, Sigambra tentaculata, S. bombyx), and Tharyx.  One taxon had a significant 

positive correlation to sand- G. solitaria (Figure 15).  Two taxa had significant negative 

correlations with silt-clay- M. mitchelli and Marenzelleria viridis (Figure 16).  Two taxa 

had significant negative correlations with toxicity- S. tentaculata and Tubificicoides  

Figure 17). Table 5 provides a summary of these results. 
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Figure 12 Correlation of dissolved oxygen (D.O) concentrations to the relative abundances of A. abdita, 
Coelotanypus and M. lateralis (p = 0.05) 
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Figure 13 Correlation of salinity concentration to the relative abundances of H. heteropoda, M. lateralis, P. 
cornuta, M. ambiseta, O. fusiformis and P. perkinsi (p = 0.05) 
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Figure 14 Correlation of salinity concentrations to the relative abundances of S. tentaculata, S. bombyx and 
Tharyx (p = 0.05) 
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Figure 15 Correlation percent sand to the relative abundance of G. solitaria (p = 0.05) 
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Figure 16 Correlation of percent silt-clay to the relative abundances of M. mitchelli and M. viridis (p = 0.05) 
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Figure 17 Correlation of Toxicity to the relative abundances of S. tentaculata and Tubificicoides (p = 0.05). 
Toxicity scale: 1.0 = Poor, 3.0 = Fair and 5.0 = Good. 
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Table 5 Summary of significant correlations between taxa and physical variables 

Physical Variable Taxa Coefficient p-value 
Dissolved Oxygen Ampelisca abdita -0.38 0.02 

 Mulinia lateralis -0.31 0.05 
 Coelotanypus 0.26 0.02 

Salinity Hypereteone heteropoda -0.22 0.03 
 Mulinia lateralis -0.17 0.04 
 Polydora cornuta -0.05 0.02 
 Mediomastus ambiseta 0.18 0.01 
 Owenia fusiformis 0.60 0.01 
 Prionospio perkinsi 0.38 0.04 
 Sigambra tentaculata 0.31 0.01 
 Spiophanes bombyx 0.32 0.01 
 Tharyx 0.39 0.01 

Sand Glycinde solitaria 0.13 0.04 
Silt-clay Macoma mitchelli -0.18 0.02 

 Marenzelleria viridis -0.15 0.04 
Toxicity Spiophanes bombyx -0.28 0.02 
  Tubificicoides -0.34 0.05 

 
 

Discussion 

A total of 34 of the 149 taxa met the selection criterion (i.e., occurred in at least 

10 sites) and 20 showed significant relationships with the specific environmental 

variables identified.  The taxa were three amphipods (A. abdita, A. verrilli, and L. 

plumulosus), one chironomid (Coelotanypus), twelve polychaetes (G. solitaria, H. 

filiformis, H. heteropoda, M. viridis, M. ambiseta, O. fusiformis, P. cornuta, P. perkinsi, 

S. tentaculata, S. costarum, S. bombyx and Tharyx), two bivalves (M. mitchelli and M. 

lateralis), one gastropod (S. chesapeakea) and one oligochaete (Tubificicoides).  Based 
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on available life history trait information for benthic macroinvertebrates found in 

Chesapeake Bay, twelve taxa (A. verrilli, A. abdita, Coelotanypus, G. solitaria, H. 

filiformis, H. heteropoda, L. plumulosus, M. ambiseta, M. lateralis, P. cornuta, S. 

bombyx, and Tubificoides) are categorized as opportunistic (i.e., small, relatively short-

lived and tolerant taxa with high reproductive and recruitment potential) while none are 

categorized as equilibrium (i.e., large, long-lived) (Dauer, 1993; Ranasinghe et al., 1993).  

Opportunistic taxa abundance and biomass tend to dominate disturbed and stressed areas 

therefore it is not surprising that many of the taxa with significant responses to stressors 

in this study are considered opportunistic, as I am seeking taxa that respond in some 

significant way to stress. The following discussion examines the individual taxa 

responses to stress observed in this study.  

Three tube-building amphipods- A. abdita, A. verrilli, and L. plumulosus- had 

significant relationships in this study:  A. abdita responded negatively to dissolved 

oxygen, A. verrilli positively to Pb, and L. plumulosus all positively to dieldrin, Mn, 

PAH, and Pb.  All three species are considered as pollution-sensitive according to 

Weisburg et al., (1997).  The response of A. abdita to dissolved oxygen is most likely 

attributed to the fact that A. abdita is a tube-dweller and it can withstand low oxygen 

concentrations by retreating into its tube.  Also, their abundances could be higher because 

predators are affected by low oxygen and either move away or die, leaving A. abdita free 

from predator pressure. (Cicchetti et al., 2006; Holland, 1985).  Similarly, A.verrilli has a 

positive relationship to Pb as its tube serves as a barrier to the surrounding sediments. 

Also, Pb could be bound to sediment or organic matter making it less bioavailable and 
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less toxic to the environment.  Similar to suspension feeding A. abdita, M. lateralis also 

responded negatively to dissolved oxygen in this study.  Again, this is most likely due to 

impacts to feeding behavior and physiology (Schaffner, 1990).  M. mitchelli prefer 

muddy habitats and had significant negative responses to Hg, Pb and silt-clay in this 

study.  In estuarine benthic environments, organic matter tends to be higher in silt-clay 

(muddy) environments with concomitant increased concentrations of heavy metals that 

bind to sediment particles (Weisburg et al., 1997; Pearson and Rosenberg, 1978).   

The chironomid Coelotanypus is commonly found in Chesapeake Bay and is 

classified as pollution-indicative in all salinity ranges by Weisburg et al. (1997) and 

Llanso and Dauer (2002).  In the current study, Coelotanypus exhibited a significant 

positive response to dissolved oxygen which could be due to the presence of elevated 

organic matter concentrations and potentially hypoxic events (Diaz & Schaffner, 1990).  

Over half of the 20 taxa analyzed in this study were annelids- twelve polychaetes 

and one oligochaete- as they were the most abundant taxa amongst all sites.  Four 

polychaetes- G. solitaria, M. ambiseta, O. fusiformis and S. costarum- are classified as 

pollution-sensitive taxa, and had significant response relationships to DDT, dieldrin, Hg, 

Mn, PCB, salinity and sand.  H. filiformis and S. bombyx, as well as the oligochaete 

Tubificicoides, are classified as pollution-indicative with significant responses to DDT, 

dieldrin heptachlor and salinity and toxicity.  The remaining polychaetes- H. heteropoda, 

P. cornuta, P. perkinsi, S. tentaculata, Tharyx and M. viridis had significant relationships 

most often to salinity, indicating the influence that habitat factors also have on benthic 

taxa stress response. 
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The aim of this study was to elucidate whether specific benthic macroinvertebrate 

responses to environmental stressors could be extracted from long-term datasets. Because 

I focused on stressor responses, it made logical sense that the taxa with responses were all 

opportunistic species and that equilibrium species, or larger, long-living species, were not 

present in the subset of taxa analyzed.  Opportunistic species thrive in disturbed 

environments where their life history traits result in high abundances, high reproductive 

rates and high mortality rates, all factors that allow them to exist in dynamic settings.  In 

addition, just over half of the taxa were opportunistic annelids that are common to and 

rapidly colonize disturbed aquatic environments. The inclusion of chironomids and 

oligochaetes, well-documented indicators of stress in freshwater environments, 

demonstrates that individual taxa stressor responses were detected along the complete 

range of Chesapeake Bay habitats. 

The stressors analyzed were a combination of anthropogenic (contaminants) and 

natural stressors (primarily salinity and grain size).  As expected, several taxa responded 

to various contaminants, whether it was just one or a few.  Many of these taxa also 

responded to grain size and salinity which have documented effects on the distribution of 

taxa in soft bottom sediments (Pearson and Rosenberg, 1978; Weisburg et al., 1997; 

Lenihan et al. 2003).  For the purposes of this study, I was interested in general stressor 

response patterns and therefore did not constrain by habitat parameters prior to analyses.  

Analyses of the stressor response patterns in future chapters will involve classifying the 

taxa by habitat to remove confounding factors in the observed responses, as well as to 

allow comparison of results to related studies.   
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Absent from this analysis were significant taxa responses to aldrin and total 

organic carbon (TOC).  Aldrin, along with dieldrin, heptachlor and DDT are considered 

to be of localized extent and severity in Chesapeake Bay (US Environmental Protection 

Agency et al., 2012), indicating that these pesticides are found in limited areas (primarily 

adjacent or in close proximity to areas of intense agricultural use) within the Bay.  

Significant taxa responses to dieldrin, heptachlor and DDT were observed in this study. It 

may be that the locations from which data were collected were not grossly affected by 

aldrin, the influence from the other pesticides were greater and masked the effects of 

aldrin, or aldrin had a greater effect on more sensitive taxa that were not captured in the 

sampling events.   

Unexpectedly, there were no significant responses observed to TOC.  Organic 

matter, usually expressed as TOC, in sediments serves as an important source of food for 

benthic animals.  An oversupply of organic matter can lead to decreases in benthic 

abundance, species richness and biomass caused by oxygen depletion and the buildup of 

ammonia and sulphide from the breakdown organic matter (Diaz & Rosenberg, 1995).  

Frequently, increases in organic matter concentrations in the sediment are accompanied 

by increased concentrations of contaminants, which is especially true in finer-grained 

(i.e., silt-clay or muddy) sediments where there is more surface are for the contaminants 

to adhere to (Hyland et al., 2005; Pearson & Rosenberg, 1978).  There were several 

instances where taxa had significant responses to both contaminants and silt-clay, and 

also instances where taxa had significant responses to dissolved oxygen.  While a direct 
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significant relationship between individual taxa and TOC was not observed, the direct 

and indirect effects of increased concentrations of organic matter were observed. 

The information provided by the individual taxa responses here will be useful in 

developing a tool that could enhance the Benthic Index of Biotic Integrity (B-IBI).  The 

B-IBI incorporates metrics of assemblages rather than metrics of individual species, 

because assemblage metrics are less sensitive to salinity and grain size changes.  Given 

my findings, I contend that there is value in utilizing individual taxa metrics.  They may 

provide a way to obtain results that serve as either an early warning sign of the presence 

of anthropogenic stressors, or to confirm that the ecosystem is not functioning as 

expected at a finer scale and with less effort to evaluate.  The relationships identified here 

will be used in the next chapter to build a model that incorporates the direction of the 

change (increasing or decreasing) in taxa abundance as a function of the stressor(s) in 

question. 

 

Conclusion 

Benthic community condition is a critical element in understanding overall 

estuarine condition or health.  Assessment tools often rely on various measures of benthic 

community structure to accomplish this, based on community-level metrics of stressor-

responses.  Here, I approached stressor-response from the bottom up to determine if there 

are characteristic patterns in how individual taxa respond to specific stressors.  A set of 

taxa emerged with significant responses to both natural and anthropogenic stressors, and 

once the types of these response are determined, they can be incorporated into a model 
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that will aid in discerning the types of stressors that may exist in a given area, where an 

IBI suggests that there is a disturbance.   The information that this model provides could 

be used to initiate a stressor identification process, target where more intense monitoring 

should be and help inform and guide management decisions on where limited resources 

should be directed for monitoring and assessment activities. 
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CHAPTER THREE:  STRESSOR-RESPONSE MODEL DEVELOPMENT 

Introduction 

Benthic indices are important and useful tools to better understand aquatic system 

health, structure and function.  Benthic systems are diverse and dynamic systems 

(Widdicombe & Spicer, 2008), making it difficult to clearly tease out benthic stressor 

response relationships as there are several present at any given time.  Assessment indices 

and the indicators selected are pivotal in understanding the degree of stressors at hand 

with some degree of uncertainty (Hyland et al., 2005).  There are a multitude of indices 

established with validated metrics that also consider diversity and biomass, as both relate 

to population and community level responses (e.g. Benthic Index of Biotic Integrity (B-

IBI; Weisberg et al. 1993) and AZTI Marine Biotic Index (AMBI; Borja et al. 2000, 

2003) and their component metrics). Many of these indices focus on assessing 

assemblages or communities, rather than individual species or taxa.  To understand how 

organisms handle stress, explain the mechanistic basis of stress tolerance, and predict 

effects on populations and communities, we must understand the effects of stress on 

individuals (Maltby 1999, Newman 2001, Newman and Clements 2008). 

There are various approaches to categorize species into tolerance groups, as a 

means of assessing biological condition. The B-IBI was developed to assess summer 

estuarine benthic ecological condition in the Chesapeake Bay. It is based on the multi-
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metric index of biotic integrity developed for freshwater habitats to integrate biological 

responses to stress and account for natural habitat variation. Metrics selected included 

species diversity, abundance, biomass, or abundance of pollution sensitive species, 

trophic composition, and presence/absence of pollution-indicative species. The 

presence/absence of pollution indicative species metric classifies individual species into 

pollution tolerance groups of sensitive, tolerant, or unclassified, based on whether a 

species exhibits an opportunistic or equilibrium life history and, primarily, expert 

opinion. Borja et al. (2003) and Eaton (2001) employ similar approaches in classifying 

pollution tolerance based on life-history characteristics. An implicit assumption in this 

approach to classify species into pollution tolerance groups is that tolerance responses are 

not stressor-specific, and are often ambiguous or inconsistent to pollution (Weisburg et 

al., 1997). This can lead to potential misclassification of a given area due to limited 

availability of life history and pollution sensitivity data.  

The misclassification of the capitellid polychaete Mediomastus ambiseta is a good 

example of this issue. Based on life history information of capitellids and expert 

knowledge, Mediomastus sp. was initially classified as a pollution-tolerant, opportunistic 

organism with a widespread distribution in estuaries. Distribution data obtained during B-

IBI development showed that M. ambiseta had the highest abundances at healthy 

reference sites and was rare at degraded (primarily eutrophic and/or low dissolved 

oxygen) reference sites, which is completely opposite to how experts classified the 

pollution sensitivity of this polychaete. It is unknown what stressor(s) M. ambiseta was 

reacting to in the system to result in an unexpected sensitive, rather than tolerant 
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response. Certain polychaete genera such as Mediomastus sp. and Capitella sp. have 

traditionally been categorized as pollution-tolerant, due to high tolerance to organic 

enrichment, metal-contaminated sediments and low dissolved oxygen concentrations 

(Pearson and Rosenberg 1978). A review by Dean (2008) explored the fact that many 

polychaetes like M. ambiseta are indeed misclassified, as polychaetes exhibit variability 

in sensitivities to specific metals and between different species.  

Baird and Van den Brink (2007) hypothesized that species biological traits, such 

as morphology, life history, physiology, and feeding ecology, could be used to predict an 

organism’s sensitivity to stress (toxic substances in particular) and develop species 

sensitivity distributions (SSD). Taxonomic group, body size, life cycle duration, mode of 

respiration, and feeding type were the major traits analyzed within a group of 12 species 

exposed to 15 chemicals. It was concluded that skin respiration, gill respiration, 

insect/crustacean taxa, and life-cycle duration were traits that explained 71% of the 

variability in sensitivity to toxic chemicals.  

Stressor-response relationships that are identified using species-specific biological 

traits and stressor sensitivity information, likeliness of exposure, and recovery potential 

are key determinants in identifying important stressor relationships to assess ecological 

condition.  I hypothesize that utilizing some of this information from benthic 

macroinvertebrate and stressor data will allow me to build a model that characterizes 

specific taxa responses to specific stressors, as a means to help further explain the results 

of benthic condition assessments currently used.  This model would be composed from 

the same data set that a B-IBI (or similar index) is built and would not require additional 
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time-consuming and costly data collection efforts develop.  Additionally, this model 

would be simple to use and could indicate where resources for more sampling and data 

are needed to address the presence of stressors or disturbances in a system that it 

highlights as a potential concern.   

 

Methods 

The taxa and the significant stressor relationships identified in Chapter 2 (Table 4 

and Table 5) were analyzed with Generalized Additive Models (GAM) in R, using the 

mgcv package (Wood, 2017).  GAM is a semi-parametric extension of Generalized 

Linear Models (GLM) that makes assumptions that relationships between individual 

predictors and the response variable are not restricted by any shape and is determined by 

the data.  Unlike GLM, the linear predictor is not forced to be linear but rather is the sum 

of smoothing functions.  Link (smoothing) functions are used to generalize data into 

smooth curves that are locally fit to data.  The data are essentially divided into sections 

and low order polynomials are fit to each section, combined by “knots” at the ends each 

section to smooth the curve.  Those sections are then added up resulting in an additive 

model with a goal to strike a balance between goodness-of-fit and parsimony.  The 

relationships are estimated simultaneously, and the response variable is predicted by 

adding the relationships up using the formula:   

 

𝑔"𝐸(𝑌)' =	
  ∝ 	
  +𝑠-(𝑥-) +⋯+ 𝑠0(𝑥0) 
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where Y is the dependent variable, E(Y) is the expected value, and g(Y) is the link 

function that links the expected value to the predictor variables x1….xp  (Hastie & 

Tibshirani, 1987).    

A model was constructed for each taxa and the associated predictor variables 

(covariates,) with identity-link function for a Gaussian error distribution (default) or a 

log-link function for Poisson error distributions.  The Poisson error distribution is 

appropriate for count data and therefore appropriate to use here.  Restricted maximum 

likelihood (REML) was selected as the smoothing function for both sets of models 

instead of the default Generalized Cross Validation (GCV), as GCV tends to underfit 

models.    

The default smoothing term s and default basis dimension k, which sets the upper 

limit of the degrees of freedom associated with a smooth s, was applied to each of the 

model covariates.  If the estimated degrees of freedom (e.d.f) of the model terms 

approach k’ (k-1), then k is considered to be too low and should be adjusted for a better 

fit, as k should be chosen to be sufficiently large or small enough to have enough degrees 

of freedom to represent the underlying data. In this study, the default k was used (k = 10) 

as to control factors of the models for comparison.   

Models were plotted to observe the shape of the response curve and identify the 

number of knots that form the shape of the curve.  Akaike Information Criterion (AIC), a 

log-likelihood measure, was used to select the best models amongst the two distribution 

types, and the shapes of the responses of the best models were identified.  Salinity, sand 

and silt-clay covariates were removed from the models to tease out the natural variation 



 
 

53 
 

and remove confounding driving factors of benthic macroinvertebrate abundance.  Taxa 

that only had significant relationships to salinity and/or silt clay were also removed, 

resulting in 11 taxa-stressor response relationships to analyze (Table 6).  

 

Table 6 Summary of the model covariates and number of knots to smooth the curves produced by the models 

Taxa Model Covariates 
# knots 
Gaussian 

# knots 
Poisson 

Ampelisca abdita Dissolved Oxygen 4.4 8.83 
Ampelisca verrilli Pb 1.43 8.8 
Coelotanypus spp. Dissolved Oxygen 3.23 8.98 
Glycinde solitara DDT 1.45 1.89 

   Mn 8.93 8.86 
Heteromastus filiformis DDT 2 8 

   Dieldrin 1 8 
   Heptachlor 1 8 

Leptochirous plumulosus Dieldrin 1 8.99 
   Mn 2.16 8.98 
   PAH 1 9 
   Pb 1 8.93 

Mediomastus ambiseta DDT 1.86 8.06 
   PCB 1 8.99 

Mulinia lateralis Dissolved Oxygen 1 1 
   Hg 1 8.78 

Macoma mitchelli Hg 1 2.37 
   Pb 8.76 8.74 

Sayella chesapeakea Dieldrin 1 8.99 
Spiochaetopterus costarum Hg 1.58 1 
     Mn 8.8 8.36 
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Results 

GAMs were calculated for each taxon.  The covariates as well as their responses 

were different among the taxa. Three taxa produced models that explained the highest 

percent deviance- A. abdita (59.1% Gaussian, 71.5% Poisson), S. costarum (50.9% 

Poisson) and A. verrilli (31% Poisson). The three taxa with the lowest percent deviance 

were S. chesapeakea (0.11 % Gaussian), M. lateralis (1.31 % Gaussian) and M. ambiseta 

(2.45 % Gaussian).  Of the models tested, nine models had estimated degrees of freedom 

(e.d.f) close to k’, indicating that k is too low and needed adjusting for better curve 

smoothing.  All but one of these nine models had e.d.f. close to k’ with the Poisson error 

distribution:  A.abdita, A verrilli, G. solitaria, H. filiformis, L. plumulosus, M. ambiseta, 

M. lateralis, and M. mitchelli; the e.d.f. for Coelotanypus spp. was close to k’ with the 

Gaussian error distribution.  

Figures 18 to 28 present the associated plots for each model tested.  Each plot 

includes the number of knots needed to connect and smooth the data sections into a curve 

and is summarized in Table 6.  Almost all models with the default Gaussian error 

distribution required less than half the number of knots than models with the Poisson 

error distribution.  Nearly every Poisson model had at least 8 knots fitted to the data, 

while most of the Gaussian models had 1 to 2 knots fitted to the data. All models were 

compared to determine the best models, based on AIC values for each model type (Table 

7).  The species with the lowest AIC values were A. abdita, A. verrilli and S. costarum for 

the Gaussian error distribution, and A. abdita, S. costarum and A. verrilli  for the Poisson 

error distribution.  It is not appropriate to mix distribution types and the AIC values for 
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the Poisson distribution models are higher, indicating that different combinations of 

smooths and basis functions for each model term are needed to improve the models fits.  

For these reasons and because the Gaussian models had the lowest AIC scores, only the 

Gaussian models will be used at this time to develop stressor-response models in this 

study. 

 

Stressor Response Models 

The shapes of the response curves for the top three models for each distribution 

type varied and none of the models contain the same covariates.  A non-linear response 

curve was observed for A. abdita to dissolved oxygen, and based on the 4.4 knots to 

smooth the curve, the equation for this model is a 4th degree polynomial.  The data points 

for dissolved oxygen range primarily from 2 to 8 mg/L, which is the linear portion of the 

response curve.  Given this, the equation of the response for A. abdita to dissolved 

oxygen can be written as a linear equation for purposes here (Equation I).  The A. verrilli 

model had a linear response curve to Pb,  with 1.4 knots to smooth the curve (Equation 

II).  Lastly, S. costarum had linear response curves to both Mn and Hg, with 1.58 and 1 

knots, respectively to smooth the curves (Equation III). 
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Figure 18 Modeled response of A. abdita to dissolved oxygen. Gaussian models on the left, Poisson on the right. 
The solid line is the predicted value of the predictive value as a function of x.  The dotted lines are +/- two 
standard errors, and the tick marks on x axis indicate the location of sample data. 

 
Figure 19 Modeled response of A. verrilli to Pb. Gaussian models on the left, Poisson on the right. The solid line 
is the predicted value of the predictive value as a function of x.  The dotted lines are +/- two standard errors, and 
the tick marks on x axis indicate the location of sample data. 
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Figure 20 Modeled response of Coelotanypus to dissolved oxygen. Gaussian models on the left, Poisson on the 
right. The solid line is the predicted value of the predictive value as a function of x.  The dotted lines are +/- two 
standard errors, and the tick marks on x axis indicate the location of sample data. 

 
Figure 21 Modeled response of S. chesapeakea to dieldrin. Gaussian models on the left, Poisson on the right. The 
solid line is the predicted value of the predictive value as a function of x.  The dotted lines are +/- two standard 
errors, and the tick marks on x axis indicate the location of sample data. 
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Figure 22 Modeled response of G. soliaria to DDT and Mn.  Gaussian models on top, Poisson on bottom.  The 
solid line is the predicted value of the predictive value as a function of x.  The dotted lines are +/- two standard 
errors, and the tick marks on x axis indicate the location of sample data. 
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Figure 23 Modeled response of M. ambiseta to DDT and PCB. Gaussian models on top Poisson on bottom. The 
solid line is the predicted value of the predictive value as a function of x.  The dotted lines are +/- two standard 
errors, and the tick marks on x axis indicate the location of sample data. 
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Figure 24 Modeled response of M.mitchelli to Hg an Pb. Gaussian models on top, Poisson on bottom. The solid 
line is the predicted value of the predictive value as a function of x.  The dotted lines are +/- two standard errors, 
and the tick marks on x axis indicate the location of sample data. 



 
 

61 
 

 

Figure 25 Modeled response of S. costarum to Mn and Hg. Gaussian models on the left, Poisson on the right. The 
solid line is the predicted value of the predictive value as a function of x.  The dotted lines are +/- two standard 
errors, and the tick marks on x axis indicate the location of sample data. 
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Figure 26 Modeled response of M. lateralis to dissolved oxygen and Hg. Gaussian models on the top, Poisson on 
the bottom. The solid line is the predicted value of the predictive value as a function of x.  The dotted lines are 
+/- two standard errors, and the tick marks on x axis indicate the location of sample data. 
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Figure 27 Modeled response of L. plumulosus to dieldrin, Mn, PAH and Pb, with Gaussian distribution. The 
solid line is the predicted value of the predictive value as a function of x.  The dotted lines are +/- two standard 
errors, and the tick marks on x axis indicate the location of sample data. 
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Figure 28 Modeled response of L. plumulosus to dieldrin, Mn, PAH and Pb, with Poisson distribution. The solid 
line is the predicted value of the predictive value as a function of x.  The dotted lines are +/- two standard errors, 
and the tick marks on x axis indicate the location of sample data. 
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Figure 29 Modeled response of H. filiformis to DDT, dieldrin and heptachlor, with Gaussian distribution. The 
solid line is the predicted value of the predictive value as a function of x.  The dotted lines are +/- two standard 
errors, and the tick marks on x axis indicate the location of sample data.  
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Figure 30 Modeled response of H. filiformis to DDT, dieldrin and heptachlor, with Poisson distribution. The 
solid line is the predicted value of the predictive value as a function of x.  The dotted lines are +/- two standard 
errors, and the tick marks on x axis 
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Table 7 Model selection based on AIC scores. The best models are those with the smallest AIC values for each 
distribution type in bold 
Distribution Taxa Model d.f. AIC 

Gaussian 

A. abdita Dissolved Oxygen 7.094199 369.8986 
A. verrilli Pb 3.73195 580.4993 
Coelotanypus 
spp. Dissolved Oxygen 6.036909 1106.2511 

G. solitaria DDT + Mn 6.120089 3321.4977 
H. filiformis DDt + Dieldrin 9.173446 3699.1265 

L. plumulosus Dieldrin + Mn + PAH + 
Pb 7.66053 2439.4015 

M.ambiseta DDT + PCB 5.157773 3268.3849 
M. mitchelli Hg + Pb 5.935504 2696.3279 
S. chesapeakea Dieldrin  3.004085 3715.6797 
S. costarum Hg+Mn 4.952518 738.0584 

Poisson 

A. abdita Dissolved Oxygen 9.962571 749.663 
A. verrilli Pb 9.934158 3138.66 
Coelotanypus 
spp. Dissolved Oxygen 9.9882 10871.933 

G. solitaria DDT + Mn 18.990131 31019.429 
H. filiformis DDt + Dieldrin 27.070288 119232.542 

L. plumulosus Dieldrin + Mn + PAH + 
Pb 36.995447 96190.533 

M.ambiseta DDT + PCB 18.07861 207128.041 
M. mitchelli Hg + Pb 18.559904 56300.613 
S. chesapeakea Dieldrin  9.999941 143880.696 
S. costarum Hg + Mn 18.720463 1463.363 

 

 
Equation I Model of A. abdita to dissolved oxygen, derived from Generalized Additive Models (GAMs) with 
Gaussian error distribution 
 

𝐴𝑚𝑝𝑒𝑙𝑖𝑠𝑐𝑎	
  𝑎𝑏𝑑𝑖𝑡𝑎 = 	
  𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 + 𝑓(𝐷𝑂 
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Equation II Model of A. verrilli to Pb, derived from Generalized Additive Models (GAMs) 
 

𝐴𝑚𝑝𝑒𝑙𝑖𝑠𝑐𝑎	
  𝑣𝑒𝑟𝑟𝑖𝑙𝑙𝑖 = 	
  𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 + 𝑓(𝑃𝑏) 
 

Equation III Model of S. costarum to Hg and Mn, derived from Generalized Additive Models (GAMs) 
 

𝑆𝑝𝑖𝑜𝑐ℎ𝑎𝑒𝑡𝑜𝑝𝑡𝑒𝑟𝑢𝑠	
  𝑐𝑜𝑠𝑡𝑎𝑟𝑢𝑚 = 	
  𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 + 𝑓(𝐻𝑔) + 𝑓(𝑀𝑛)  
 

 

Discussion 

Biological or ecological indices are useful to evaluate ecosystem health and 

condition and provide information to decisionmakers.  Many of these indices are based 

heavily on community-level metrics, while very few focus on species-level metrics.  In 

this study, my goal was to identify if useful species-level responses exist that could be 

incorporated into a new or revised index.  For example, Weisberg et al. (1997) chose 

assemblage measures over individual species metrics in the development of the 

Chesapeake Bay B-IBI because assemblages are less sensitive to small changes in 

habitat, even though assemblages and individual species are equally sensitive pollution 

effects.   

The GAM results applied to my dataset resulted in the identification of three taxa 

with significant response patterns to environmental parameters- the amphipod A. abdita 

to dissolved oxygen, the amphipod A. verrilli to Pb, and the polychaete S. costarum to Hg 

and Mn.  These three taxa are common in soft-bottom benthic habitats, making them 
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suitable indicators of stress (Llanso et al., 2002).  The shape of the response of A. abdita 

to dissolved oxygen appears to be a non-linear curve and resembles the shape of the 

curve observed in the correlation analysis in Chapter 2.  The data spread between 2 and 8 

mg/L and abundance peaked at lower dissolved oxygen concentrations after which the 

abundances began to decline.  A. abdita are tube-dwellers, rendering them more isolated 

from contaminants and able to withstand low dissolved oxygen concentrations.  As 

dissolved oxygen concentrations increase, predators return to the system and A. abdita 

abundance declines due to predation (Connell, 1978). 

The shape of the response of A. verrilli to Pb appears to be a positive linear curve.  

Like A. abdita, A. verrilli is a tube-dwelling amphipod that has much less exposure than 

burrowing organisms to sediment contaminants. Heavy metals such as Pb are complexed 

with organic ligands and sulfides in sediment, binding the metals as insoluble sulfide 

complexes that are no longer toxic nor bioavailable (Di Toro, 1989).  This phenomenon, 

along with the protection that the tubes provide allow A. verrilli abundances to increase 

as Pb (and other metals) concentrations increase. 

The shape of the response of S. costarum to both Hg and Mn appears to be a 

decreasing liner curve.  These curves also resemble the shape of the curves observed in 

the correlation analysis in Chapter 2.  S. costarum is a tube-dwelling, filter-feeding 

polychaete (Diaz, 1984) that feeds at the sediment-water interface.  While its tube 

provides some protection from sediment contaminants, it must extend its gills into the 

water column to trap food, making it more susceptible to contaminants.      
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The GAM provided a reasonable number of covariates to incorporate into a model 

for stressor identification in estuaries.  Explanatory models like this seek to provide 

insights into the ecological processes that produce the patterns observed from the model 

(Austin, 1987; Guisan, Edwards Jr, & Hastie, 2002).  Given the number of covariates 

available to test, I expected to see more significant response patterns to other 

environmental variables emerge.  There is no requirement that indices have a certain 

number of metrics to be useful.  Indices such as the Organism-Sediment Index (OSI; 

Rhoads & Germano, 1987), the Infaunal Trophic Index (ITI; Word, 1980), and the Gulf 

of Mexico Benthic Index (Engle and Summers, 1994) are all examples of benthic indices 

that did not require an abundance of metrics to be useful.  In fact, it is appropriate to 

complement indices to get a more holistic picture of the system in question (Dauer et al., 

2002; Weisberg et al., 1997).  Manipulation of GAM components (e.g., adjusting 

smoothing terms, basis dimensions, etc.) could result in more accurate models, and 

response patterns in future iterations.  By using GAM default terms for this study, I was 

able to demonstrate that this method is viable for characterizing stressor response 

patterns, that corresponded well with my correlation analysis results.   

 

Conclusion 

GAMs have proven to be a useful tool for identifying and understanding the 

patterns of benthic macroinvertebrate response to stressors, as data drive the shape of the 

patterns rather than forcing a preconceived fit on the data.  Here I demonstrated that there 

are significant responses of three specific taxa to specific environmental stressors, with 
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which I proposed a model to predict the presence of specific stressors in Chesapeake Bay.  

I suspect that additional models can be developed by analyzing some of the contaminants 

that proved to be collinear with the ones I selected for analysis, and by applying the 

various model fitting functions that GAMs can provide.  Individual stressor response data 

such as these can provide information that IBI tools do not necessarily provide.  

Combining my taxa-stressor specific model with B-IBI community-level results can 

provide a more holistic picture of what particular stressors are affecting the system and 

provide some insight to decisionmakers on what measures to take in addressing and 

managing ecosystem stressors, and in a way that is cost-effective.  Use and application of 

this model does not require any additional data collection as this model starts with 

already collected data; the same data to develop a B-IBI can be used for this model, and 

can help to direct what additional data may be necessary to help explain the results of 

benthic condition assessment tools that indicate that fair or poor conditions are present in 

a system.    
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CHAPTER FOUR: TESTING STRESSOR-RESPONSE MODELS 

Introduction 

 Both general and statistical ecological models are useful in 

comprehending what is going on in ecosystems.  General models are usually based on 

some type of theoretical or conceptual model (Austin, 1987) with which a statistical 

model can provide the mathematical basis interpreting the results of conceptual models.  

In ecology, one of the most widely used aspects of statistical models is understanding the 

relationship between explanatory and predictive variables (Guisan et al., 2002).  

Exploratory models seek to define the relationship between response and explanatory 

variables, using statistical methods to test and validate the strength of the relationship or 

describe how well the predictor variables explain or fit the response (Austin, 1987).  

Conversely, predictive models provide a statistical relationship between predictor 

variables and the response that predict the probabilities of occurrence or abundance of an 

organism in other locations given the predictor variables.   

Linear regression analyses are one of the most widely-used techniques to test the 

strength of a response to explanatory variables in ecology, though the predictive 

capability is low (Guisan et al., 2002; Pearce & Ferrier, 2000).  Linear regressions are 

bound by 3 main assumptions:  1) the errors are assumed to be identical and independent, 

2) the errors follow a normal or Gaussian distribution, and 3) the relationship between 
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predictor variables and response is linear.  Most ecological data are not normal and 

follow a Poisson, rather than a Gaussian distribution, so it is not appropriate to use linear 

regression, unless the data are transformed to meet the assumptions.  Interestingly, 

statistical validation is often not incorporated into the regression analysis methods.  The 

same can be said about the lack of field validation exercises, resulting in a high level of 

unexplainable uncertainty (Guisan and Zimmermann, 2000).     

Generalized Linear Models (GLM) provide an improvement to linear regressions.   

GLMs can manage a larger number of distributions beyond the Gaussian distribution and 

deal with more general qualitative response variables.  Link functions between the 

response variable and linear predictor are forced into linearity and has some measure of 

likelihood to deal with over dispersion (Davison, 2001; Austin, 1987).  Relatedly, 

Generalized Additive Models or GAMs are parameterized like GLMs, but GAMs can 

handle non-linear and polynomial terms for predictors.  Also unique to GAMs are the 

selection of ‘smoother’ to fit a curve to the data, which is fitted for every variable and 

then added up.  The assumptions of each of these tools must be met in order to be used in 

a broader context.   

In Chapter 3, a GAM was used in an exploratory manner to identify specific 

benthic response patterns to a small number of variables.  The response patterns from the 

GAM were then used to build a mathematical model to predict the presence of stressors 

based on the abundances of macroinvertebrates present in a particular environment.  The 

model developed was done so with Chesapeake Bay data obtained from several EPA 

monitoring programs.  Here, I will attempt to test the model I developed by applying it to 
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Delaware Bay data.  I expect that the model will work in Delaware Bay, as both estuaries 

have many of the same taxa and are subject to many of the same stressors.  

 

Methods 

The Delaware Bay is the tidal portion of the Delaware River Basin that spans over 

784 square miles, bounded by Delaware and New Jersey.  Like the Chesapeake Bay, it is 

subject to a multitude of anthropogenic stressors such as wastewater discharges, 

industrial pollution, and urban and rural non-point source pollution.  Data from 1990 to 

2010 were collected from the same EPA monitoring programs that Delaware Bay data 

were collected for in the previous chapters- the Environmental Monitoring and 

Assessment Program (EMAP), the Mid-Atlantic Integrated Assessment (MAIA), the 

National Coastal Assessment (NCA) and the National Coastal Condition Assessment.  

Monitoring data from these programs were collected by EPA staff, contractors and state 

monitoring crews during summer months (June – September).  A probabilistic sampling 

design was utilized, and similar field, laboratory and rigorous quality assurance methods 

were used by all participants for sample collection and analysis.  Sites were visited by 

boat or large research vessel and water column, sediment composition and quality, 

benthic macroinvertebrate and fish community and tissue data were collected at each site.  

Samples were analyzed by national and state laboratories. 

Data from Delaware Bay, located in the EMAP Virginian Province, were 

extracted and screened following criteria adapted from (D. M. Dauer et al., 2002) to 

arrive at a dataset appropriate for analysis: 1) samples collected must be within the 
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geographic boundaries of Delaware Bay and its tributaries, 2) benthic macroinvertebrate 

samples must be collected using a Young-modified van Veen or Small van Veen grab 

with a sampling area of 0.0440 m2, 3) benthic macroinvertebrate samples must be 

collected during the index period of July 15 to September 30, 4) dissolved oxygen 

measurements must be collected at the same time as benthic macroinvertebrate samples, 

and 5) sediment contaminant data must be collected in the same year as the benthic 

macroinvertebrate samples. The same subset of sediment contaminant data was used for 

this study, based on the widespread and local occurrence and extent of contaminants in 

Delaware. Toxicity data were generated from 10-day static acute amphipod toxicity tests. 

Sediment total organic carbon (TOC) concentrations were used as a surrogate indicator of 

eutrophication. In addition, only bottom salinity measurements were used as they are the 

closest measurements taken in proximity to the benthos.  Data from the first of two site 

visits were used; triplicate benthic grabs were taken for MAIA and were averaged to 

represent one sample for analysis.  Applying the above screening criteria resulted in 284 

stations with complete records for analysis in this study.  
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Figure 31 Locations of the 284 sites sampled with complete datasets for analysis in the Delaware Bay from 1990 
to 2010 

 

The benthic data were first classified into seven bins by grain size and salinity 

(tidal fresh, oligohaline, low mesohaline, high mesohaline sand, high mesohaline mud, 

polyhaline sand, polyhaline mud), to account for and remove the influence of grain size 

and salinity on benthic macroinvertebrates.  Next the three stressor response models 

created in Chapter 3 were evaluated in each habitat for Ampelisca abdita, Ampelisca 

verrilli and Spiochaetopeterus costarum by comparing respective abundances to the 

stressor of question  

1.   𝐴𝑚𝑝𝑒𝑙𝑖𝑠𝑐𝑎	
  𝑎𝑏𝑑𝑖𝑡𝑎 = 	
  𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 + 𝑓(𝐷𝑂) 
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2.   𝐴𝑚𝑝𝑒𝑙𝑖𝑠𝑐𝑎	
  𝑣𝑒𝑟𝑟𝑖𝑙𝑙𝑖 = 	
  𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 + 𝑓(𝑃𝑏) 
 
3.   𝑆𝑝𝑖𝑜𝑐ℎ𝑎𝑒𝑡𝑜𝑝𝑡𝑒𝑟𝑢𝑠	
  𝑐𝑜𝑠𝑡𝑎𝑟𝑢𝑚 = 	
  𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 + 𝑓(𝐻𝑔) + 𝑓(𝑀𝑛)  
 

using the mgcv package in R, to see if the same taxa-stressor response curve patterns 

were similar to those in Chesapeake Bay.  

 

Results 

The Delaware Bay data contained the three species in the models identified in 

Chapter 3 and GAMs were run for each of the three models. The model runs for A. abdita 

and S. costarum were unsuccessful because there were too zero values in the contaminant 

data set, and were dropped from the analysis.  The A. verrilli response model (n = 26) to 

Pb explained 6% of the deviance with an adjusted R2 of 0.0214.  The k-index was 0.758 

and less than 1, indicating that k should be adjusted to better fit the data.  The model 

presented just one knot, indicating that the response to Pb is linear, which aligns with the 

developed model (Figure 32).   
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Figure 32 Modeled response of A. verrilli to Pb.  The solid line is the predicted value of the predictive value as a 
function of x.  The dotted lines are +/- two standard errors, and the tick marks 
 

 

While the models tested were created with the Gaussian error distribution, the A. 

verrilli model was re-run with the Poisson error distribution for comparison, which is 

appropriate for count data.  This model explained 73.8% of the variance, with an R2 of 

0.552.  The k-index was 1.21 and the estimated degrees of freedom (e.d.f.) was 

approaching one at 8.98, indicating that k should be adjusted to better fit the data.  The 

model presented 8 knots, indicating that the response to Pb was non-linear (Figure 33), 

which contradicts the original model.   
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Figure 33 Modeled response of A. verrilli to Pb, with the Poisson error distribution.  The solid line is the 
predicted value of the predictive value as a function of x.  The dotted lines are +/- two standard errors, and the 
tick marks 
 

 

 
Discussion and Conclusion 

I hypothesized that the models that were created with Chesapeake Bay data were 

applicable to Delaware Bay data, given the many similarities that the two systems share, 

including many of the same benthic macroinvertebrate taxa.  Instead I found that only 

one model was applicable- the response of A. verrilli to Pb.  In building the models, the 

default values were applied across the board to control spurious effects from entering the 



 
 

80 
 

models.  It is necessary to adjust various aspects of the models, such as the basis 

functions, error distributions and link functions in order to come up with better fitting 

models.  This must be done in a methodical way to abstain from introducing or 

influencing the model outputs and thus making them more accurate.   

Delaware Bay is shallower than Chesapeake Bay, with an abundance of creeks 

and tidal marshes right up to the water’s edge, while Chesapeake Bay is deeper with 

marshes concentrated in the lower region (Fisher et al., 1988).  These physical aspects 

alone help to explain some of the differences in taxa observed.  Before conducting 

analysis, I reviewed the Delaware Bay dataset and noticed that while there are several 

taxa that are found in both Chesapeake and Delaware Bays, there were quite a few taxa 

that were distinct to each water body (Maurer et al., 1978; Kinner et al., 1974).  The taxa 

that were analyzed in this study are found in both systems and there was a difference in 

dominant taxa.  For example, S. costarum is found in both systems, but S. oculatus is 

more abundant in Delaware Bay.  I applied the S. costarum test to S. oculatus and the 

model did not to perform well. This could be because my Chesapeake model works only 

for S. costarum, or this could be because S. costarum and S. oculatus are not affected by 

Pb concentrations in Delaware Bay.  An in-depth review and analysis of my suite of 

contaminants may reveal that another suite of taxa and stressor may be identified and 

appropriate for both Chesapeake and Delaware Bays, and beyond. 

GAMs have proven to be useful tools in identifying taxa response patterns to 

stressors in estuaries.  Here, I tested a model developed from Chesapeake Bay data with 

Delaware Bay data.  While only one of the three models worked, there is some promise 
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that with some fine-tuning, finding the best models that function well in both systems is 

possible.  The contaminants should be reviewed and refined to determine a common suite 

among comparable estuaries, if possible.   
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CHAPTER FIVE:  SUMMARY AND FUTURE WORK 

Estuaries such as the Chesapeake Bay are complex and dynamic systems that are 

subjected to a variety of environmental (abiotic and biotic) and anthropogenic stressors 

simultaneously.  The pressures of increased population density, land development and 

agricultural practices have resulted in a threatened ecosystem in need of ongoing 

monitoring, restoration and protection.  Over that past 30-plus years, there has been a 

concerted effort to monitor and assess the health of the Bay with monitoring and 

assessment programs as well as indicator tool development (e.g. IBIs).  These tools often 

focus on the effects of disturbance on benthic macroinvertebrates, because they relatively 

sedentary, have short life-cycles and reflect the cumulative effect of stressors in the 

overlying water column. The majority of the tools developed focus primarily on effects at 

the community-level.  Stressors can and do impact estuary inhabitants at different levels 

of organization, yet the focus remains on community level assessments.  In this 

dissertation I chose to examine stressor response patterns at the individual, rather than the 

community or higher level, as there is much information to glean from understanding 

what is happening at lower levels of biological organization, which can be aggregated as 

necessary.   

In Chapter 1, I presented a literature review of the mechanisms of benthic 

macroinvertebrates stressor responses from the molecular to the community and 
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ecosystems levels. l described some of the physiological, chemical and behavioral traits 

that allow benthic organisms to cope with environmental stressors.  I also reviewed 

various tools that were designed to assess ecosystem health, based on benthic 

macroinvertebrates stressor response tactics, and provided evidence for the utility of a  

tool or model to conduct assessments at a finer scale, using existing long-term datasets. 

In Chapter 2, I conducted exploratory analysis to identify if there were any 

significant stressor-response patterns observed by benthic taxa.  I initiated the process by 

looking at scatterplots of various combinations of taxa and stressors  to see if any were 

detected by the naked eye.  Next I ran correlation analyses to determine what taxa-

stressor response patterns were significant.  There was a subset of amphipods, 

polychaetes, oligochaetes, bivalves, gastropods, and chironomids that exhibited 

significant response patterns to a variety of sediment contaminants and physical variables 

that I wanted to analyze further.   

In Chapter 3, I used Generalized Additive Models (GAMs) to further examine the 

significant patterns that were found in Chapter 2.  GAMs are a semi-parametric extension 

of Generalized Linear Models (GLM) that makes assumptions that link functions are 

additive, model components are smooth, and the Y predictor is non-linear, allowing the 

underlying data to do the work of highlighting emerging patterns.  Ultimately, three taxa- 

Ampelisca abdita, Ampelisca verrilli, and Spiochaetopterus costarum were identified as 

the most parsimonious models with significant stress response curves to dissolved 

oxygen, Pb, Hg, and Mn.   
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In Chapter 4, I attempted to test the aforementioned models with data from 

Delaware Bay, which is the next closest large estuary near Chesapeake Bay.  Both 

Chesapeake Bay and Delaware Bay have many of the same stressors in their respective 

watersheds that it made sense to test data from Delaware.   Only one of the three models 

worked with the Delaware Bay data, indicating that some fine-tuning of the models is 

needed in order to make this a tool that is widely applicable beyond the confines of the 

Chesapeake Bay region.   

The implications of the findings of this work are far-reaching.  Many of the 

assessment tool currently used do not take individual stressor responses into account.  

Here, I have shown that certain taxa are indicators of the presence and effects of certain 

pollutants.  This would be useful to use along with IBIs or other tools to add information 

on the possible sources of disturbance or stress that the IBIs pick up at the community 

and higher levels.  This technique could be operationalized in such a way that someone 

without full knowledge of benthic ecological principles could run data through a model 

like I used with GAM and be able to get results that could possibly be an early warning 

that something is amiss in the ecosystem.   

There are some refinements to this approach that could be made to enhance the 

functionality.  For sake of simplicity, I used the default setting for the GAM models, and 

for the next iteration of this work, I would like to manipulate basis, distribution and 

smoothing functions in subsequent model runs to see if better fitting and more models 

result.  I would also like to use this model to actually revise and test an established IBI to 

incorporate  individual stressor response information.  Lastly, one big lesson I learned is 
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that just because you have a lot of data to use, that is not an indication that it is all 

useable.  While I had 20-plus years of data at my disposal, I found that large amounts 

were not compatible for my purposes.  Much of the incompatibility had to do with 

discrepancies in how the data were collected and or stored.  There were many instances 

where I had to throw out whole sections of data because one value or parameter was 

missing, making the entire record invalid for my needs.   

Notwithstanding the fact that the models did not perform as expected in Delaware 

Bay, I was able to show that there are significant response patterns of particular taxa to 

specific stressors in estuarine systems.  With some adjustments I am confident that I will 

be able to refine the models presented and make them applicable to other estuaries, as 

well as become a useful ecosystem management tool.  
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