
INDIVIDUAL AND SOCIAL LEARNING:
AN IMPLEMENTATION OF BOUNDED RATIONALITY FROM FIRST PRINCIPLES

by

Nathan M. Palmer
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
In Partial fulfillment of

The Requirements for the Degree
of

Doctor of Philosophy
Computational Social Science

Committee:

Dr. Robert Axtell, Dissertation Director

Dr. Christopher Carroll, Committee Member

Dr. Andrew Crooks, Committee Member

Dr. Daniel Houser, Committee Member

Dr. Kevin Curtin, Department Chairperson

Dr. Donna M. Fox, Associate Dean, Office
of Student Affairs & Special Programs,
College of Science

Dr. Peggy Agouris, Dean, College of
Science

Date: Fall Semester 2015
George Mason University
Fairfax, VA

Individual and Social Learning: An Implementation of Bounded Rationality from First
Principles

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Nathan M. Palmer
Master of Arts

Boston University, 2011
Bachelor of Science

Trinity University, 2005

Director: Dr. Robert Axtell, Professor
Department of Computational and Data Sciences

Fall Semester 2015
George Mason University

Fairfax, VA

Copyright c© 2015 by Nathan M. Palmer
All Rights Reserved

ii

Dedication

I dedicate this dissertation to my wife, who is my best friend and biggest supporter.

iii

Acknowledgments

I would like to thank my committee – Rob Axtell, Chris Carroll, Dan Houser, and Andrew
Crooks, for their exceptional insight and guidance through the process. I would not be the
researcher I am now without them or my colleagues and classmates at George Mason and
other research organizations. I have too many to thank, and hesitate to list all here as I
will certainly leave some off by pure oversight.

iv

Table of Contents

Page

List of Tables . viii

List of Figures . ix

Abstract . xiii

1 Introduction . 1

1.1 Motivation . 1

1.2 My Contribution . 1

1.3 Background . 3

1.4 What Has Been Accomplished . 5

1.4.1 Welfare Costs of Non-Optimal Behavior 7

1.5 Related Literature and Alternative Approaches 8

1.5.1 Literature in Computer Science and Applied Math 9

1.5.2 Literature and Alternative Approaches in Economics 11

1.6 Verification and Validation . 15

1.7 Organization . 15

2 Regret Learning . 16

2.1 Introduction . 16

2.1.1 Regret Learning . 21

2.1.2 Preview of Results . 23

2.2 The Consumer Problem . 29

2.2.1 Infinite Horizon Consumer Problem 30

2.2.2 Buffer Stock Solution Form . 35

2.2.3 Welfare Cost of Approximate Solutions 36

2.3 Policy Iteration Solution Method . 41

2.3.1 An Intuitive Description . 44

2.3.2 Policy Iteration Framework . 45

2.3.3 Policy Iteration and Optimistic Policy Iteration 50

2.4 Regret Learning Solution Method . 52

2.4.1 Inherent Difficulty of Learning to Optimize from Experience 53

v

2.4.2 Determining the State-Space Partition 57

2.4.3 Single-Stream Estimation of vθk . 62

2.4.4 Identifying Regret Choices . 65

2.4.5 Improving cθ by Minimizing Regret 69

2.4.6 Regret Learning . 73

2.4.7 Need for an Agent-Based Simulation 74

2.5 Results . 74

2.5.1 Aggregate Regret-Learning Behavior 75

2.5.2 Individual-Level Results . 96

2.5.3 Individual-Level Results: Summarized 115

2.5.4 Individual-Level Results: Welfare Analysis 115

2.6 Summary, Conclusion, and Next Steps . 116

3 Social Learning . 123

3.1 Introduction . 123

3.2 Individual Learning . 125

3.2.1 The Model . 125

3.2.2 Approximating a Solution with Experience-based Learning 127

3.2.3 Original Model Results . 134

3.3 The First Extension: Social Learning . 136

3.3.1 Implementation of Full Information Sharing 138

3.3.2 Algorithm for Full Information Sharing 139

3.3.3 Results for Full Information Sharing 139

3.4 The Second Extension: A Relative-Value Estimator 141

3.4.1 Implementation of the Relative-Value Estimator 143

3.4.2 Algorithm for Relative-Value Information Sharing 144

3.4.3 Results for the Relative-Value Estimator 145

3.5 A Closer Look at Model Output . 145

3.5.1 Examining Distributional Output . 145

3.5.2 Examining the ε̄θ Cutoff Value . 148

3.6 Conclusions and Future Work . 150

3.6.1 Summary and Conclusions . 150

3.6.2 Future Work . 153

4 The Heterogeneous-Agent Computational toolKit 156

4.1 Introduction . 156

4.2 Tools from Software Development . 158

vi

4.2.1 An Aside on Speed . 159

4.2.2 Documentation . 160

4.2.3 Unit Testing . 162

4.2.4 Language-agnostic, Human-Readable Data Serialization 165

4.2.5 Application Programming Interface (API) 166

4.2.6 Version Control . 168

4.2.7 Bringing It Together: Reproducible Research 169

4.3 Methodological Framework . 172

4.3.1 A Basic Partial-Equilibrium Example 173

4.3.2 The Solution Method . 175

4.3.3 The Estimation Method . 176

4.3.4 Modular Solution and Estimation in HACK 178

4.4 Summary and Conclusion . 190

5 Conclusion . 192

5.1 Results . 193

5.2 Weaknesses and Future Work . 194

A Policy Iteration and Optimistic Policy Iteration Proofs 196

A.1 Proof that T and Tµ are Contraction Mappings 198

A.1.1 Background Review . 198

A.1.2 T and Tµ are Contraction Mappings 199

A.2 Proof of Convergence of Policy Iteration . 203

A.2.1 Policy Iteration Algorithm . 203

A.2.2 Policy Iteration Convergence . 204

A.3 Proof of Convergence of Optimistic Policy Iteration 208

A.3.1 Optimistic Policy Iteration Algorithm 208

B Allen and Carroll’s Individual Learning Algorithm 220

C Appendix: Extended Household Problem . 224

C.0.2 Finite Horizon Consumer Problem 224

C.0.3 Infinite Horizon Consumer Problem 229

D Figures for Social Learning . 231

Bibliography . 236

vii

List of Tables

Table Page

2.1 Parameters and Sources . 32

2.2 Parameter Sweep Values . 77

2.3 Distribution of ε̄θ Over Time, N = 3,5,7,11, D = 13, 24, 48, 72, 101, 201, 301 93

2.4 Distribution of ε̄θ Over Time, N = 25,55,95, D = 101, 201, 301 94

3.1 Allen and Carroll’s Individual Search Results 135

3.2 Individual Learning versus Full Connection Absolute-Value Learning versus

Relative-Value Learning . 155

viii

List of Figures

Figure Page

2.1 Learning the value of the optimal policy c∗ using 11 bins and 10,000-period

experience . 25

2.2 Bias in learned optimal value function v̂∗(.) using 11 bins and 10,000-period

experience . 25

2.3 Average v̂∗(.) results over 400 agents, using 11 bins for 500 periods 26

2.4 Average v̂∗(.) results over 400 agents, using 11 bins for 500 periods examined

closely . 27

2.5 Learning an Improved Policy From Regret: 11 bins, D = 6 learning periods,

K = 1st Learning Episode . 28

2.6 Learning an Improved Policy From Regret: 11 bins, D = 20 learning periods,

K = 1st Learning Episode . 28

2.7 Sacrifice Values for Approximate Consumption Functions 38

2.8 Example of a “Bad” Consumption Function 39

2.9 True vs Approximate Optimal Consumption Functions 40

2.10 Partitioning the m Space: 5 bins, D = 25 learning periods 63

2.11 Improving the Consumption Function by Minimizing Regret. Agent using 11

bins, D = 25 learning periods . 72

2.12 Distribution of ε̄θ Over Time, N = 3, D = 13, 24, 48, 72 78

2.13 Distribution of ε̄θ Over Time, N = 3, D = 101, 201, 301 79

2.14 Distribution of ε̄θ Over Time, N = 5, D = 13, 24, 48, 72 80

2.15 Distribution of ε̄θ Over Time, N = 5, D = 101, 201, 301 81

2.16 Distribution of ε̄θ Over Time, N = 7, D = 13, 24, 48, 72 82

2.17 Distribution of ε̄θ Over Time, N = 7, D = 101, 201, 301 83

2.18 Distribution of ε̄θ Over Time, N = 11, D = 13, 24, 48, 72 84

2.19 Distribution of ε̄θ Over Time, N = 11, D = 101, 201, 301 85

2.20 Distribution of ε̄θ Over Time, N = 25, D = 101, 201, 301 86

ix

2.21 Distribution of ε̄θ Over Time, N = 55, D = 101, 201, 301 87

2.22 Distribution of ε̄θ Over Time, N = 95, D = 101, 201, 301 88

2.23 Mean of ε̄θ Distribution for all N x D values 90

2.24 Median of ε̄θ Distribution for all N x D values 90

2.25 90th Percentile of ε̄θ Distribution for all N x D values 91

2.26 10th Percentile of ε̄θ Distribution for all N x D values 91

2.27 90th − 10th Inter-Percentile Range for ε̄θ Distribution for all N x D values . 92

2.28 Welfare Cost . 98

2.29 Paired Plots: Theoretical Value Functions (Top) and Learned cθ Functions

(Bottom) . 98

2.30 Welfare Cost . 99

2.31 Paired Plots: Theoretical Value Functions (Top) and Learned cθ Functions

(Bottom) . 99

2.32 Welfare Cost . 100

2.33 Paired Plots: Theoretical Value Functions (Top) and Learned cθ Functions

(Bottom) . 100

2.34 Welfare Cost . 101

2.35 Paired Plots: Theoretical Value Functions (Top) and Learned cθ Functions

(Bottom) . 101

2.36 Welfare Cost . 102

2.37 Paired Plots: Theoretical Value Functions (Top) and Learned cθ Functions

(Bottom) . 102

2.38 Welfare Cost . 103

2.39 Paired Plots: Theoretical Value Functions (Top) and Learned cθ Functions

(Bottom) . 103

2.40 Welfare Cost . 104

2.41 Paired Plots: Theoretical Value Functions (Top) and Learned cθ Functions

(Bottom) . 104

2.42 Welfare Cost . 105

2.43 Paired Plots: Theoretical Value Functions (Top) and Learned cθ Functions

(Bottom) . 105

2.44 Welfare Cost . 106

x

2.45 Paired Plots: Theoretical Value Functions (Top) and Learned cθ Functions

(Bottom) . 106

2.46 Welfare Cost . 107

2.47 Paired Plots: Theoretical Value Functions (Top) and Learned cθ Functions

(Bottom) . 107

2.48 Welfare Cost . 108

2.49 Paired Plots: Theoretical Value Functions (Top) and Learned cθ Functions

(Bottom) . 108

2.50 Welfare Cost . 109

2.51 Paired Plots: Theoretical Value Functions (Top) and Learned cθ Functions

(Bottom) . 109

2.52 Welfare Cost . 110

2.53 Paired Plots: Theoretical Value Functions (Top) and Learned cθ Functions

(Bottom) . 110

2.54 Welfare Cost . 111

2.55 Paired Plots: Theoretical Value Functions (Top) and Learned cθ Functions

(Bottom) . 111

2.56 Welfare Cost . 112

2.57 Paired Plots: Theoretical Value Functions (Top) and Learned cθ Functions

(Bottom) . 112

2.58 Welfare Cost . 113

2.59 Paired Plots: Theoretical Value Functions (Top) and Learned cθ Functions

(Bottom) . 113

2.60 Summarized Sacrifice Value Experience . 119

2.61 Learning from Regret: N = 5, D = 25 . 119

2.62 . 120

2.63 . 120

2.64 . 121

2.65 . 121

2.66 . 122

3.1 The Exact Consumption Rule (solid) and the Best Approximation (dashed) 131

3.2 Sacrifice Values For Approximate Linear Consumption Rules 132

3.3 Allen and Carroll Results vs Full Connection and Relative-Value Learning . 142

4.1 Jupyter Browser-Based Notebook . 163

xi

4.2 Apache Math Commons API Excerpt for Brent Solver 167

4.3 Ram and Hadany (2015) Notebook Excerpt 1 169

4.4 Ram and Hadany (2015) Notebook Excerpt 2 170

4.5 Ram and Hadany (2015) Notebook Excerpt 3 171

4.6 Simple Simulated Method of Moments Estimation User Interface 182

4.7 Simple Simulated Method of Moments Estimation Contour Plot 183

xii

Abstract

INDIVIDUAL AND SOCIAL LEARNING: AN IMPLEMENTATION OF BOUNDED RA-
TIONALITY FROM FIRST PRINCIPLES

Nathan M. Palmer, PhD

George Mason University, 2015

Dissertation Director: Dr. Robert Axtell

This dissertation expands upon a growing economic literature that uses tools from rein-

forcement learning and approximate dynamic programming to impose bounded rationality

in intertemporal choice problems. My dissertation contributes to the literature by applying

these tools to the canonical household consumption under uncertainty problem. The three

essays explore individual and social approaches to learning-to-optimize and how these may

be brought to data.

The first chapter unveils a novel learning-to-optimize algorithm which functions at the

individual level: agents learn a near-optimal consumption rule from their own experience

by using regret. This approach is new in the literature; it is closest to Q-learning but

avoids the difficulties associated with applying Q-learning to economic problems. Numerical

results demonstrate convergence to a stable neighborhood around the optimal policy. The

second chapter extends the Allen and Carroll (2001) model in an alternative direction by

incorporating social learning and introducing an new intuitively motivated estimator of the

value function. Each extension individually reduces the time required for agents to learn

near-optimal rules by an orders of magnitude while remaining simple to implement.

My final chapter outlines a general-purpose modeling toolkit: the Heterogeneous-Agent

Computational toolKit (HACK). This chapter highlights the similarities between method-

ologies in agent-based modeling and more traditional heterogeneous-agent modeling and

brings the dissertation full circle: the empirical methods employed in HACK will be used

in future work to estimate agent-based models employing regret learning from the earlier

chapter.

Chapter 1: Introduction

1.1 Motivation

Sims (1980) famously stated that non-rational behavior is a “wilderness:” there is only one

way for economic agents to be “rational” but infinitely many ways to be non-rational. While

this may be strictly true, some paths through the wilderness are more familiar and well-trod

than others. Specifically, the economics literature has long employed the tools of optimal

control, and particularly dynamic programming, to model agents as fully optimizing beings

in dynamic and uncertain environments. However this optimizing behavior, particularly

combined with “rational expectations,” imposes extensive limits on the types of models

which may be built to explain economic phenomena. This creates a tension: if structurally

complex models are important for describing complicated economic behavior, agents cannot

be given rational expectations with traditional tools. They may be given various ad-hoc

behavior, but as Sims (1980) notes, the range of possible ad-hoc decision rules for dynamic

behavior is infinitely wide.

1.2 My Contribution

This dissertation introduces a middle ground between optimization and boundedly rational

behavior. Agents use a non-optimal rules to make decisions in a dynamic and uncertain

environment, and after gaining enough experience they learn new rules. Learning is struc-

tured such that under enough experience, agents will learn rules which are in a neighborhood

around the true optimal rule for the problem they are trying to solve. Even when their

experience is short, however, they are always moving in a direction that appears best to

them conditional on their experience.

1

To make this effort concrete, this dissertation focuses on the basic problem at the core

of modern macroeconomics and finance: the household consumption-savings problem under

uncertainty. Households have an uncertain income and can either save money at a risk-free

return rate or spend it immediately on consumption. Consumption produces rewards for

the household via a utility function; this utility function is used to create a lifetime ob-

jective function. Households are modeled by agents who seek to maximize the traditional

objective function for this problem, but they are assumed to be incapable of finding the

optimal solution instantaneously every period. Instead the agents use simple, non-optimal

consumption rules to make decisions period-by-period. At particular intervals the house-

holds re-evaluate their rules: they reflect on their experiences thus far and then learn a

better rules from experience. This can includes their own experience (Chapter 2) and the

experiences of others.

On a technical level this learning is modeled after the most recent developments from

the mathematical dynamic programming literature. These new methods are referred to as

“approximate dynamic programming” in applied mathematics, and “reinforcement learn-

ing” in the computer science literatures (to be discussed further below). These tools have

made slow headway in the economics literature in part because they have been formulated

for problems with a structure different than those modeled by economists. Specifically they

are often employed for dynamic problems with discrete state and action spaces, while many

foundational problems in macroeconomics and finance require continuous state and action

spaces. This dissertation addresses this concern by introducing a version of learning-to-

optimize explicitly created for continuous state and action spaces and exploring how similar

methods may be used in a social learning context.

This work is explicitly intended to provide a theoretical foundation for non-optimal

agent behavior in both agent-based models and in more traditional macroeconomic models.

I particularly want to capture the idea that economic agents would like to behave optimally,

but they cannot for any number of reasons – perhaps they simply do not know how, or they

do not have enough information, or the optimal solution is simply intractable because

2

the problem is too complex. I provide a rigorous description of agent behavior which is

“stumbling towards the optimum;” with enough experience and time they can obtain near-

optimal rules, but even without extensive time they settle into a stable distribution of

rules near the optimal behavior. By using the same optimization framework as traditional

models, I can directly calculate the welfare costs of this non-optimal behavior with respect

to the optimal behavior.

1.3 Background

An agent displays rational expectations if they both optimize a well-stated objective func-

tions derived from assumptions about their preferences and the expectations components

of their behavior is in fact the true mathematical expectations over all states of their world.

Alternatively, the agents’ forecasting errors are white noise – their forecasts are never sys-

tematically wrong. The assumptions associated with rational expectations may seem ex-

cessive, but there are a number of good reasons they achieved widespread usage; Woodford

(1999) is an excellent overview of the development of rational expectations and the histori-

cal context which gave rise to the idea. Very briefly, a “crisis of methodologies” occurred in

the 1960s and 1970s during the period of the “great inflation” (Woodford, 1999). Among

other things, macroeconomic models of the time modeled people as following very simple

“rules of thumb” for behavior, which did not react sufficiently to changes in the structure of

the macroeconomy. Problems inherent with these assumptions were revealed dramatically

during the “great inflation” period, including deep technical problems which these assump-

tions implied for how macroeconomic models were estimated at the time. The interview

Evans and Honkapohja (2005) in particular discusses a number of these technical issues

and provides insight into the historical context behind the birth of rational expectations.

Rational expectations arose as a promising solution to multiple problems at once, both the-

oretical and econometric and slowly dominated much of the literature; see Sheffrin (1996)

and Mankiw (2006) for additional perspectives on this history. Sheffrin (1996) provides a

3

longer exploration of the topic including examples of the problems that gave rise to ra-

tional expectations (and as a bonus, Sheffrin (1996) provides historical details about the

individuals behind the rational expectations revolution which is quite interesting in its own

right.)

There are at least two difficulties encountered when using rational expectations to model

agent behavior in a macroeconomy. The first is that human behavior may be captured quite

poorly by an optimizing agent with correctly formed expectations. I will not focus on this

first difficulty because many have discussed it at length; see for example Colander et al.

(2008) and references therein. Instead I focus on the second difficulty: imposing rational

expectations severely constrains size and complexity of general-equilibrium models, where

general-equilibrium models are those in which agent behaviors affect the state of the model

itself. Under various sets of stringent assumptions, so-called representative-agent models can

be solved easily under rational expectations, particularly with the use of pre-built toolkits

such as Dynare (Adjemian et al., 2011). Rational expectations heterogeneous-agent models,

however, are very difficult to solve: extensive human capital accumulation is required on

the part of the researcher and even then complete rationality in a complicated model may

still be intractable (Allen and Carroll, 2001).

The solution proposed by agent-based modeling is to set up detailed models of markets

and economies and give agents behavioral rules of thumb; see for example Colander et al.

(2008) and Geanakoplos et al. (2012). Simon (1996) discusses at length how a complicated,

difficult problem may be broken up into smaller, simpler problems by the environment in

which the problem is solved – thus, the details and structure of a model may be such that

agents following simple behavior easily find near-optimal or “satisficing” solutions which

are “good enough.”

The specter of the Lucas Critique, however, haunts modern research. The famous

quote from Sims (1980) regarding the wilderness of bounded rationality is cited almost

immediately by any macroeconomist who encounters non-rational agent behavior. The key

question is always, “but where does that behavior come from? What objective does the

4

agent want to maximize?” A close second question is, “how do you bring these models to

the data?” This dissertation aims to answer these questions in three essays, in ways which

satisfy both the economist and the agent-based modeler.

1.4 What Has Been Accomplished

The dissertation contributes to the current literature by providing a rigorous description

of plausible mechanisms by which an agent can learn the solution to a dynamic stochastic

optimization problem from experience. This dissertation offers three analogies regarding

how agents might learn from their own experience and the experiences of others. These

analogies are then made rigorous by casting them in the framework of approximate dynamic

programming. Numerical simulation results then show that these mechanisms converge

towards the optimal solution in distribution as experience is taken to the infinite limit.

The first two essays expand upon Allen and Carroll (2001), an early model from the

economic literature on learning to optimize in dynamic optimization problems. In particular

agents learn by using a fixed, non-optimal consumption rule for a number of periods (denoted

“D”) before stopping to “take stock” of their experience and update their consumption rule

based on their own experience or the experiences of others. I do not take a stance on why

agents stop and re-evaluate their consumption function after D periods. Instead in this

preliminary examination I simply analyze what effect different lengths of D will have on

their ability to learn a new rule, and leave the choice of D exogenous for now. In future

work I intend to expand the algorithm to make D endogenous.

Chapter 2 introduces a novel learning-to-optimize algorithm which functions at the

individual level: agents learn a near-optimal consumption rule from their own experience by

using “regret.” This approach is new in the literature; it is closest to Q-learning but avoids

the difficulties associated with applying Q-learning to economic problems (See Section (2.1)

for a discussion of differences between Q-learning and Regret Learning). Numerical results

demonstrate convergence to a stable neighborhood around the optimal policy. Chapter 3

extends the Allen and Carroll (2001) model in an alternative direction by incorporating

5

social learning and introducing an new intuitively motived estimator of the value function.

Each extension individually reduces the time required for agents to learn near-optimal rules

by an orders of magnitude while remaining simple to implement.

The surprising results of these two chapters are that learning a near-optimal rule can

be accomplished with explicitly biased estimates derived from a single agent’s experience.

As described in greater detail in Section (2.4.1) below, it is straightforward to formulate

a simple Monte Carlo estimator for the optimization problem faced by an agent. However

as discovered by Allen and Carroll (2001), being able to form this estimator is not enough

– without a highly efficient search or learning method, it can take millions of periods to

approach a near-optimal rule. Regret learning demonstrates that a highly efficient search

method does in fact emerge from a single agent’s experience that is highly biased (as a

single time-series draw from the data generating process). This is discussed further in

Section (2.1.2) and Chapter (2) as a whole.

Finally, the Heterogeneous-Agent Computational toolKit (HACK) is joint work devel-

oped with Chris Carroll and is discussed in Chapter 4. It aims to bring structured code

to the world of heterogeneous-agent economic computation. Heterogeneous-agent economic

models, in particular as discussed in Chapter 3, are one of the classes of models in tradi-

tional economics which are close to agent-based models. It is the hope of this author that

this toolkit can act as a bridge between the disciplines.

The contribution of the learning-to-optimize literature in general and this dissertation

in particular is the note that agents can obtain optimal solutions from learning in real time.

This is not a result which is clear from observing the first principles of dynamic optimization

theory. Even when an agent only has access to a single stream of experience, as in Chapter

2 in this dissertation, and thus their own learning is highly correlated, they can nonetheless

find an near-optimal policy function. To say it another way, estimating a value function from

very little experience produces a highly biased value function – and yet learning a highly

biased value function can still lead to learning a nearly correct consumption function.

Finally, the solution method presented in this dissertation is explicitly intended to be an

6

engine to drive development of both agent-based models such as Geanakoplos et al. (2012)

and large-scale heterogeneous-agent macroeconomic models such as Peterman et al. (2015).

1.4.1 Welfare Costs of Non-Optimal Behavior

As soon as an economic agent follows non-optimal behavior, the immediate question arises:

what are the welfare costs of this behavior with respect to following the optimal solution? In

this way, optimization can act as a benchmark or a metric for measuring “distances” between

different sets of non-optimal behavior. If a non-optimizing behavior can be formulated

such that it produces a value function, the welfare costs of this non-optimal behavior can

be measured. This is one additional reason the learning presented here formulated as

approximations in the dynamic programming framework – it provides an immediate way to

create measures of welfare costs related to this behavior.

I use the welfare costs described by Allen and Carroll (2001): the “sacrifice value” of

following any non-optimal rule for the rest of one’s life. This is described in greater detail in

the Chapters 2 and 4, specifically Section (2.2.3) as well as in Allen and Carroll (2001) but

I will briefly describe it here as well. Assume an agent is perfectly rational and using the

optimal rule. The sacrifice value for a particular non-optimal rule is the amount of money

the rational agent would be willing to pay to not switch from the true optimal rule to that

particular non-optimal rule. This is expressed in fractions of expected annual income and

acts as a metric to measure distances from any non-optimal rule the agent learns to the

optimal rule.

There is actually a deeper question at hand when one asks the welfare cost of a learning

algorithm. The sacrifice value noted above is a value that assumes an agent follows the

non-optimal rule for the rest of their lives – this is what the value function represents,

and the value functions are used to calculate the sacrifice value. This is an important and

reasonable first pass. However in learning agents are likely not using the same rule for the

rest of their lives. The value function associated with the entire learning process is almost

certainly different form that of following a specific rule. This “meta” value function of

7

learning may not even be monotone, which is a requirement for measuring unique sacrifice

values. At the intuitive level, if it takes a non-trivial set of periods in a finite life to try

another policy, the opportunity cost of agent time is the best policy the agent has seen so

far – presumably the current one. How does the agent decide when experimenting with a

new policy is not worth it? There’s a risk aversion decision buried in this decision which has

not been explored extensively in the economic literature, in part because it requires agents

to be using non-optimal rules to guide their behavior.

This is a question has been understood for a long time in the reinforcement learning

literature, to be discussed below. In that literature this question is known as the “exploita-

tion/exploration trade-off,” and is most cleanly illustrated by a set of simple problems called

“bandit” problems. See Sutton and Barto (1998) and Auer et al. (2002) for an excellent

description of both the exploration/exploitation trade-off and its illustration in bandit prob-

lems. I do not deal with this deeper question of the welfare costs of learning here, instead

leaving this to future work. I will simply note that the exploration / exploitation trade-off

is a key fundamental question as soon as one moves away from instantaneous optimization.

I strongly suspect that many behaviors, such as satisficing, have a basis in this trade-off.

1.5 Related Literature and Alternative Approaches

There is a tremendous literature on “learning” in economics, much too broad to be reviewed

here. The specific type of learning which this dissertation addresses is learning the optimal

solution to a dynamic optimization problem. This learning can take at least two forms:

statistical learning about distributions followed by optimization conditional on beliefs from

learning, such as in Chamley (2004), or at the macroeconomic scale as in ordinary least

squares (OLS) learning in Evans and Honkapohja (2001). An alternative is learning to

optimize directly by searching a space of non-optimal policy function for something near

the optimal solution. Three of the best examples of this latter type of learning can be

found in Allen and Carroll (2001), Howitt and Özak (2014), and Özak (2014). Allen and

8

Carroll (2001) lays out the basic consumption-savings problem under uncertainty, which

is at the core of all modern macroeconomic and finance models. They observe that a

first-order linear approximation to the form of the true optimal rule produces a simple

and intuitive consumption function, which agents can learn about from experience. Their

work produces a positive and negative result: agents can learn a near-optimal consumption

function from averaging over enough experience, but enough experience must be in the

hundreds of thousands or millions of periods. Since their model is parameterized such that

a period is a year, this is very far from appearing practical for use in any model, either

traditional or agent-based. Howitt and Özak (2014) and Özak (2014) address the same

problem introduced by Allen and Carroll (2001), but employ learning based on the Euler

equation. Their agents must be somewhat more sophisticated than those of Allen and

Carroll (2001), specifically in the sense of being able to solve envelope conditions of their

optimization problem, but the payoff is much faster learning, closer to 50-100 periods.

1.5.1 Literature in Computer Science and Applied Math

The algorithms used by both Allen and Carroll (2001) and Howitt and Özak (2014) are ex-

amples of what is known as “reinforcement learning” in the computer science literature, or

“approximate dynamic programming” in the operations research and applied mathematics

literature. Both names communicate important aspects of this methodology: “approximate

dynamic programming” emphasizes that this is a generalization of dynamic programming,

employing much of the same theoretical framework to find optimal policy and value func-

tions associated with a given Markov Decision Process (MDP). Bertsekas (2012) and Pow-

ell (2007) explicitly outline the relationship between reinforcement learning and traditional

dynamic programming. More recently, Bertsekas (2013) casts traditional and approximate

dynamic programming under a single unifying analytical framework. Bertsekas and Tsitsik-

lis (1996) outline much of the foundational theory which ties online optimization methods

to dynamic programming. Approximate dynamic programming, however, does not require

9

information about the transition probabilities of the MDP to achieve the same results. Ini-

tial arbitrary policy and value functions are incrementally updated by a decision-maker

based on experience; in a stationary environment, these functions converge to the optimal

policy and value for the given MDP. The key insight is that (a) optimization programs

can be solved asynchronously, that is, with an appropriately random order of value and

policy function updates during the dynamic program iterations itself (that is, the fixed-

point calculation steps, discussed in greater detail below), and (b) “online” experience can

act as a type of Monte Carlo implementation of the asynchronous dynamic programming

optimization. Thus agents can, quite literally, learn to optimize from experience alone, in

a well-understood analytical sense. This broad description also underlines the reasoning

behind the term reinforcement learning: the optimal policy and value function are learned,

incrementally, from experiences which “reinforce” the values of the best actions. Finally,

Sutton and Barto (1998) outlines much of the foundational results and literature from the

computer science perspective.

The differences between the approximate dynamic programming literatures and the re-

inforcement learning literatures extends further than the names alone. They use different

proof methods as well. The approximate dynamic programming framework as described by

Bertsekas (2012) and Powell (2007) use contraction mapping as main proof method, similar

to the traditional dynamic programming literature. This yields useful analytical results for

some of the basic methods, such as bounds on error and convergence times. This analyt-

ical framework is Lucas Jr and Stokey (1989). The reinforcement learning framework, as

described in Sutton and Barto (1998), uses the stochastic approximation methods originat-

ing from Robbins and Monro (1951) as the main analytical tool, which can be difficult to

interpret from a traditional economic perspective.

Finally, in the computer science literature, different formulations of “regret” are used to

judge how well an online reinforcement learning algorithm accomplishes a task of learning-

to-optimize. Some definitions and theoretical results related to “regret” and “regret bounds”

can be found in a number of papers in this literature, including Jaksch et al. (2010), Auer

10

et al. (2002), and Mannor and Tsitsiklis (2004). I use the term “regret” to describe a

different process than the one used in these literatures. Namely, I use it to describe the way

in which agents in my model reflect on their own past experience and make better choices

(in a utility-maximizing sense) once they have learned the value of their previous choices.

1.5.2 Literature and Alternative Approaches in Economics

There is a rich history behind the development of reinforcement learning and approximate

dynamic programming. Sutton and Barto (1998) trace out a number of parallel threads

of this history, running through psychology, biology, computer science, operations research,

and even neuroscience. Tesfatsion and Judd (2006) provides an excellent outline of early uses

of reinforcement learning in economics. More recently, a handful of authors have explored

reinforcement learning applied to intertemporal consumption-savings problems. Learning

about intertemporal choice poses a particular challenge: obtaining enough information to

estimate value and policy functions accurately requires many draws of time series. Since the

time series are generated by agent experience, it can be quite difficult to obtain the number

of draws needed. Lettau and Uhlig (1999) is one of the earliest such efforts; the authors use a

classifier system (an early form of reinforcement learning) which chooses between an optimal

rule and a version of the spendthrift (“consume everything”) rule. Their model learns the

non-optimal rule under a wide range of conditions, and the authors caution readers that

households in practice may not learn optimal rules for similar reasons. Interestingly, Başçı

and Orhan (2000) revisit Lettau and Uhlig (1999) results and find that agents are once

again able to distinguish the optimal rule from non-optimal rules when “trembling hand”

experimentation is allowed.

As noted above, Allen and Carroll (2001) use a clever parameterization of the consump-

tion function for a simple consumption-savings problem and employ a Monte Carlo learning

estimator to chose the best policy on a fixed grid of policies. They find that (a) agents can

find a near-optimal rule given enough time, but (b) enough time can be millions of periods,

rendering the learning not useful for practical time parameterizations. They suggest that

11

one solution to this may be social learning, which is explored further below. Howitt and

Özak (2014) and Özak (2014) address the same consumption problem as Allen and Carroll

(2001), but using a clever form of policy-gradient learning which utilizes marginal utili-

ties to update a consumption function. Policy-gradient learning is a form of reinforcement

learning which attempts hill-climbing on an appropriately specified value function surface;

see Sutton and Barto (1998) for an intuitive overview. As noted above, Howitt and Özak

(2014) and Özak (2014) obtain agents who can find a near-optimal rule quickly but must

know more about the structure of the problem than agents of Allen and Carroll (2001).

The above models are largely cast in a partial-equilibrium framework, in which agents

actions do not affect the aggregate states of their models. One of the main reasons that

learning-to-optimize is interesting is that it may influence aggregate dynamics. One of the

original papers related to this is Krusell and Smith (1996), which predates their famous

Krusell and Smith Jr (1998) paper. In Krusell and Smith (1996), they examine the general

equilibrium effects of agents choosing between using the true optimal solution and various

rules of thumb, when the true optimal solution has some small cost. They find that very

small costs to optimization, less than a tenth of a percent of per-period consumption,

can cause agents to choose to use rules of thumb, which in turn change the statistical

dynamics of the aggregate system in non-trivial ways. Evans and McGough (2014) address

a similar problem as that of Allen and Carroll (2001), but in a general equilibrium context.

Like Howitt and Özak (2014), their agents must know something about the first-order

conditions of their optimization problem, and use these to learn about the shadow process

of their choices. As with Krusell and Smith (1996), they find that the aggregate dynamics,

particularly the transition dynamics, are greatly affected by learning.

An alternative application of learning-to-optimize is finding optimal solutions when tra-

ditional techniques are intractable. Examples of this include Hull (2012) and Jirnyi and

Lepetyuk (2011). Hull (2012) constructs an overlapping generation model with 60 rolling

cohorts of agents, a housing market, housing and non-housing production sectors, a financial

12

intermediary sector, and a central bank. He solves this for optimal agent behavior and ex-

plores a number of policy questions. Jirnyi and Lepetyuk (2011) exactly solve a traditional

Krusell and Smith Jr (1998) macroeconomic model with aggregate uncertainty, without

needing to rely on abbreviations of agent information sets or of aggregate dynamics. While

the author finds this approach impressive, I am interested in the additional dynamics which

may be introduced by bounded rationality via learning. Yıldızoğlu et al. (2014) explicitly

examines the same problem as Allen and Carroll (2001) and Howitt and Özak (2014), but

Yıldızoğlu et al. (2014) use a neural network as part of their learning scheme and their

agents successfully learn the optimal rule. This is an example of what might be called

“artificial intelligence” learning, of which there is an extensive literature. Sargent (1993)

outlines much of the early literature in this sub-field.

Recently, Gabaix (2014) developed a sparsity-based dynamic programming model which

seeks to capture the idea that agents do not re-evaluate their behavior unless they are

prompted by “big enough” events in their world. In his model these “big” events cause

agents to re-optimize to find new behavior. This is somewhat similar to the ”sticky expec-

tations” of Carroll et al. (2011b) and Carroll et al. (2011a), wherein agents are slow to adjust

the expectations they use to determine optimal behavior. These models have agents form-

ing optimal behavior conditional on their current beliefs, where the learning-to-optimize

behavior has agents acting non-optimally in nearly all periods, but in a way that they are

moving in a direction of conditional optimality. To use an analogy, the learning-to-optimize

behavior may be described as something like an intoxicated person stumbling home: they

know where they want to go, and are heard roughly in that direction, but are stumbling to

and fro on their way.

There is an older literature on ”regret” in economics, which did not gain the foothold it

might have. An early work in this literature is Loomes and Sugden (1982). This theoretical

paper offers an alternate set of axioms for foundational choice theory, versus the traditional

von Neumann-Morgenstern expected utility as described in Mas-Colell et al. (1995), based

on comparing two outcomes for “regret” or “rejoicing” in a choice made. Loomes and Sugden

13

(1982) offer their theory as a simplification of the prospect theory of Kahneman and Tversky

(1979). My current usage of regret is different than the one employed by Loomes and Sugden

(1982). My usage of “regret” is a description of how agents might approximately attempt

to maximize a von Neumann-Morgenstern expected utility objective function using a small

sample of experience, while their regret-based theory sought to supplant von Neumann-

Morgenstern expected utility entirely.

In the experimental literature, a number of authors have examined the role that learning

plays in dynamic optimization problems. This includes Ballinger et al. (2003), Brown et al.

(2009), and Carbone and Duffy (2014). Results of experiments have been mixed. In Chua

and Camerer (2011), for example agents could find the optimal solution, but only after many

“lifetimes.” Ballinger et al. (2003) use multiple overlapping “generations” of subjects, to

simulate what learning from predecessors may look like. They find that all their agents –

including the best-performing third wave – do not get very close to learning the optimal

rule. Brown et al. (2009) find that agents learn a near-optimal solution individually withing

roughly four “life cycles,” or roughly two when there is social learning.

Finally, Houser et al. (2004) sets up a difficult to solve intertemporal optimization prob-

lem and estimates the number of types of learners which appear in experimental laboratory

data. They find three distinct and clearly identified types of learners, which they label

“near rational,” “fatalist,” and “confused.” This is a striking result, which sheds light on

potential confounding factors in the previous experiments (different fractions of learning-

types may not have been controlled) and motivates the search for agents which can learn a

near-optimal rule from experience. This dissertation can be understood as examining one

potential path by which the “near rational” learners found above may be modeled rigorously

for quantitative macroeconomic and financial models.

14

1.6 Verification and Validation

All code will be open and published to a public repository. Verification ad validation are

achieved in a number of ways. First, known results were replicated by each codebase. Specif-

ically, the results of Allen and Carroll (2001) and Carroll (2012b) were each replicated a

number of times independently. Second, each codebase has been independently constructed

from scratch a minimum of two times and results compared against one another to con-

firm that they agree; all results have replicated appropriately. Finally, a number of simple

“assert” tests have been used throughout the codebase to test code against known results.

For example, when approximating a continuous distribution, test code asserts that the nu-

merical mean agrees with the known analytical mean of the distribution. This has been

repeated whenever possible.

1.7 Organization

The dissertation is arranged as follows: Chapter 2 introduces and explores regret learning,

an individual-level model of learning to optimize. Chapter 3 introduces social learning and a

novel relative-value estimator of the value of a consumption function. Chapter 4 introduces

the Heterogeneous-Agent Computational toolKit (HACK) and the final chapter concludes.

15

Chapter 2: Regret Learning: Learning to Optimize from

Individual Experience

2.1 Introduction

Economics has inherited an extensive toolset from applied mathematics. In their famous

macroeconomic graduate text, Ljungqvist and Sargent (2012) title their introductory sec-

tion “The Imperialism of Recursive Methods” – that is, models which can be described as

dynamic stochastic optimization problems. The title is apt: nearly all theoretical economic

models are centered around the optimization of a well-stated objective function, typically

a discounted expected utility maximization problem, with a set of constraints and shocks

such that the problem has a unique and tractable solution (either analytically, or more

commonly, numerically tractable). The dynamic stochastic optimization problem is meant

to represent the best ideal of economic agent behavior, and recursive methods are the prime

solution method.

After adopting their methods, however, economics has not kept up with the mathemat-

ical dynamic programming literature. Beginning in the early and mid 1990s, the dynamic

programming literature began to dabble in “learning-to-optimize” methods from the com-

puter science literatures, searching for the underlying analytical reasons for those methods’

success in practice. Bertsekas and Tsitsiklis (1996), “Neuro-Dynamic Programming,” took

a first pass at formalizing the relationship between dynamic programming methods and

learning-to-optimize methods, and the dynamic programming literature exploded from that

point forward with variations on that theme. The field is now extensive and fast-growing,

and “approximate dynamic programming” and “reinforcement learning” – the terms from

16

applied mathematics and computer science, respectively – have firmly established them-

selves as the next wave of mathematical technology in solving large-scale dynamic opti-

mization problems. One of the most popular texts, Powell (2007), “Approximate Dynamic

Programming,” is not subtle regarding the purpose of these methods. The full text title is,

“Approximate Dynamic Programming: Solving the Curses of Dimensionality.”1

The curse of dimensionality, of course, is the bane of the researcher using dynamic

optimization methods. The curse goes like this: assume you want to represent a state

space which has N dimensions. You represent this space with a grid with D points per

dimension. The problem, of course, is that as N grows, the number of points in the space

increase exponentially. If one has N=10 dimensions and D=5 points per dimension, this

equates to 510 = 9, 765, 625 points. Now assume you must do an expensive calculation at

each point – the time required to solve the entire problem can quickly becomes longer than

the expected lifetime of our sun. This is one version of the curse of dimensionality. Powell

(2007) outlines a number of different curses of dimensionality before happily explaining how

the new methods can address many of them.

These new methods are true to both names mentioned above, “approximate dynamic

programming” and “reinforcement learning:” they do, in fact, often approximate well known

and well-understood dynamic programming methods such as value iteration or policy iter-

ation. Portions of the traditional solution methods are approximated in ways which can be

shown to still converge, or alternatively, are observed to converge frequently in practice. The

other name, “reinforcement learning,” is also indicative of the function of these methods:

they are learning algorithms in the sense that they actively learn and take action while time

is moving forward – there is no instantaneous attainment of the optimal behavior at time 0,

which is then used for the rest of time. Rather the reinforcement learning algorithm pursues

the optimal solution “online,” while the model or real-life experience is underway. As the

name suggests, the algorithms work by “reinforcing” values experiences. When constructed

carefully, these methods reinforce their own behavior in such a way that it resembles the

1After publication in 2007, it has nearly 1600 citations on Google scholar as of the time of this writing.

17

solution methods in dynamic programming, only the reinforcement algorithms solve the

problem by moving forward in time rather than backward as is often the case with dynamic

programming.

These approximate dynamic programming and reinforcement learning methods largely

function by using the same two pillars of computation that dynamic programming em-

ploys: the value function and the policy function.2 Thus their methods solve the same

basic problems that economists solve using the same core mathematical structure; only,

the approximate dynamic programming approaches can solve much larger and more com-

plex problems. One imagines that economists, largely taken with solving agent behavior as

stochastic optimization problems, would welcome these developments.

It may be the case that the Great Moderation, the period of roughly the mid-1980s

through around 2007 of low volatility in GDP growth and inflation, did not put much

pressure on models and modelers to incorporate extensive detail and complexity in their

models (see Bernanke (2004)). The abrupt end of the Great Moderation in the Great

Recession put an end to that, however, and greatly raised awareness that, for example,

representing heterogeneity in economic models is incredibly important (Carroll, 2012a). Or

as Mankiw (2006) presciently observed, “There is nothing like a crisis to focus the mind.”

Since the Financial Crisis and the Great Recession, there has been a flurry of activ-

ity and discussion about the vast differences between representative agent frameworks and

other options. Heterogeneous-agent models, including agent-based modeling, which aims

in particular to capture the details and complexity of the environment in which agents

operate, has seen quite a bit of growth in the years since the Financial Crisis and Great

Recession. See for example the special issues in the Journal of Economic Dynamics and Con-

trol: Anufriev and Branch (2009) and Assenza et al. (2013), or the invited talk Geanakoplos

2Assume that the agent solving a problem has a utility function or reward function which communicates
how happy the agent is in any particular state. The value function is a form of “meta futility function” – it
communicates to the agent how happy they can expect to be for the rest of their lives when they start in a
particular state. It usually, but not always, contains discounting of future utility, and includes a measurement
of the uncertainty the agent will face in the future. The policy function is essentially a behavior function:
given a state, it tells what action an agent will take. The value function and policy function are related, as
will be discussed further below.

18

et al. (2012) at the annual meeting of the American Economic Association. Heterogeneity

and complexity are increasingly being recognized as important, but both features come at

a cost – a complex model is difficult to solve for an optimal solution because of the curse

of dimensionality, and some other alternative must be employed. What this alternative is

has not yet been widely agreed upon. The discussion of the presentation Howitt (2013) at

the Macro Financial Modeling Meeting in Spring 2013 is an insightful example. (See the

reference in the Bibliography for excellent discussion.)

This again returns us to the question of why economists have not taken up the advances

in ADP from the applied mathematics literatures. These methods address both the above

concerns at the same time: ADP methods are explicitly intended to be used in complicated

environments, where little may be known about the dynamics of the system or the stochastic

process driving the system, and the methods are tied to an extensive, familiar, and widely

accepted analytical framework for solving dynamic optimization problems.

The answer is likely multifaceted: first, as will be discussed in a moment, some economists

have caught on, and there is a small but growing literature which is nipping around the

edges of reinforcement learning and approximate dynamic programming methods. Second,

there is a barrier to using much of the tools developed in the approximate dynamic program-

ming (ADP) and reinforcement learning literatures. Because of the many lineages of ADP,

the terminology and even notation can change significantly from one literature to another.

Powell (2007) makes an explicit point of this difficulty in his introductory chapters, setting

aside space specifically to work out a common-enough notation to communicate to multiple

audiences. In addition, many of the solution methods are designed for problems which are

less appealing for economists. For example Q-learning, one of the oldest and most popular

methods of reinforcement learning, was designed explicitly for finite state and choice spaces,

while many economic problems are stated in continuous terms. In addition, the convergence

properties of Q-learning are often related to stochastic approximation techniques as in Rob-

bins and Monro (1951) which are not popular in many economic literatures – the exception

being least-squares macroeconomic learning, as described in Evans and Honkapohja (2001).

19

Agent-based computational economic (ACE) modelers are among the economists who

have caught on to ADP techniques. For example, Sinitskaya and Tesfatsion (2014) use a

variation on these methods for an agent-based macroeconomic model.Tesfatsion and Judd

(2006) provides an excellent outline of early uses of reinforcement learning in economics.

More recently, a handful of authors have explored reinforcement learning applied to in-

tertemporal consumption-savings problems. Learning about intertemporal choice poses a

particular challenge: obtaining enough information to estimate value and policy functions

accurately requires many draws of time series. Since the time series are generated by agent

experience, it can be quite difficult to obtain the number of draws needed. Lettau and

Uhlig (1999) is one of the earliest such efforts; the authors use a classifier system (an early

form of reinforcement learning) which chooses between an optimal rule and a version of the

spendthrift (“consume everything”) rule. Their model learns the non-optimal rule under a

wide range of conditions, and the authors caution readers that households in practice may

not learn optimal rules for similar reasons. Interestingly, Başçı and Orhan (2000) revisit the

Lettau and Uhlig (1999) results and find that agents are once again able to distinguish the

optimal rule from non-optimal rules when “trembling hand” experimentation is allowed.

Allen and Carroll (2001) use a clever parametrization of the consumption function for a

simple consumption-savings problem and employ a first visit Monte Carlo reinforcement

learning estimator3 to chose the best policy on a fixed grid of policies. They find that

(a) agents can find a near-optimal rule given enough time, but (b) enough time can be

millions of periods, rendering the learning not useful for practical time parameterizations.

They suggest that one solution to this may be social learning, which is explored in Chapter

3. Howitt and Özak (2014) and Özak (2014) address the same consumption problem as

Allen and Carroll (2001), but using a clever form of policy gradient learning, a form of

reinforcement learning4 which utilizes marginal utilities to update a consumption function.

3The two basic paradigms for reinforcement learning use either Monte Carlo estimators or Temporal
Difference estimators, or some combination of the two. See Sutton and Barto (1998), Chapter 5, for an
intuitive overview of Monte Carlo reinforcement learning.

4See Sutton and Barto (1998) for an intuitive overview.

20

They obtain agents who can find a near-optimal rule quickly but must know more about

the structure of the problem than the Allen and Carroll (2001) agents.

An alternative application of reinforcement learning is finding optimal solutions when

traditional techniques are intractable. Since I am interested in reinforcement learning as

a description of bounded rationality, I will not explore this usage extensively in my own

work. Examples of this include Hull (2012) and Jirnyi and Lepetyuk (2011). Hull (2012)

constructs an overlapping generation model with 60 rolling cohorts of agents, a housing

market, housing and non-housing production sectors, a financial intermediary sector, and

a central bank. He solves this for optimal agent behavior and explores a number of policy

questions. Jirnyi and Lepetyuk (2011) exactly solve a traditional Krusell and Smith Jr

(1998) macroeconomic model with aggregate uncertainty, without needing to rely on ab-

breviations of agent information sets or of aggregate dynamics. While the author finds this

approach impressive, we are interested in the additional dynamics which may be introduced

by bounded rationality via learning. Yıldızoğlu et al. (2014) explicitly examines the same

problem as Allen and Carroll (2001) and Howitt and Özak (2014). Yıldızoğlu et al. (2014)

use a neural network as part of their learning scheme and their agents successfully learn the

optimal rule. This is an example of what might be called “artificial intelligence” learning,

which will not be discussed in great depth.

2.1.1 Regret Learning

The dynamic stochastic learning algorithms noted above required either extensive knowledge

of the problem to be solved, high memory, or both. Regret learning is a low-cost dynamic

stochastic learning method which requires relatively minimal memory and knowledge of the

problem structure. As the name indicates, the central idea is “regret” on the agent’s part

– having gained some experience, the agent looks back and says, “if I knew then what I

know now, I would have acted differently. . . ” and then uses how he/she should have acted

differently to inform future action.

The key is that the agent is learning a very rough value function from experience (as

21

in Allen and Carroll (2001) and Chapter 3). Value functions for dynamic consumption-

savings problems are typically continuous functions of the state space. When one solves for

the optimal value function in dynamic programming, interpolation over a grid on the state

space is used to capture the fact that the true function is continuous.

Regret-learning agents, however, perceive the value of their states one period ahead in

coarse terms: they partition the state space into a set of contiguous “bins” such that they

view the value of being in a bin the following period as the same for all states in that bin.

Agents are capable of understanding that their current state will influence how conditionally

likely they are to land in one of the state partitions the following period; this knowledge is

entirely gathered from experience. The coarse partitioning of next-period states attempts

to capture the idea that agents in practice don’t think about an infinite number of plans

tomorrow, but rather make plans based on a handful of broad possible states of the world

– for example, “good”, “average,” or “bad,” or a similar categorization.

An agent starts with an arbitrary consumption function and arbitrary partition of the

state space for forming the next-period conditional value function. For my purposes here

all agents will begin with the spendthrift (“consume everything”) consumption function.5

Agents then experience random income shocks and simply follow their consumption rule

for D periods. Agents take a weighted average of their experience and this produces the

“value bins.” After D periods, the agent has new knowledge he/she didn’t know before, in

terms of the value estimates. The agent has also learned a little about the income process.

The rough knowledge of the value function at a few points coupled with the observed

income process and knowledge of the law of motion of one’s own state variables allows

the agent to look back and say, “if I knew then what I know now, I would have made

different choices. . . ” Call these the agent’s “regret choices.” The agent then chooses a

new consumption function which comes as close as possible to these ”regret” choices – this

provides a new consumption function to be used for the next episode in the agent’s life.

The agent can repeat this process indefinitely – use a function for a while, pause and learn

5The spendthrift consumption rule is intuitively appealing and simple to implement, as well as close to
a “worst case” consumption function in a world where agents cannot go into debt.

22

a new consumption function from mistakes, repeated until the end of life.

To summarize, regret learning is a two-step learning process: in the “value estimation”

step, agents first estimate the value function associated with a particular consumption

function using their experience. In the “policy improvement” step, agents then use the

estimated value function to improve their consumption function. The policy function which

emerges produces the best choices (in a minimized squared errors sense) conditional on the

values learned thus far from experience. A key insight is that restricting agents to only

the value estimation step of this process gives the appearance of significantly slow learning,

because value estimation from limited experience is an extremely slow process. However

when the agent can learn an improved policy from even a poorly estimated value functions,

the agent can leap through the policy space quickly. This is particularly true when the value

function estimate maintains specific qualities, namely the when it maintains the curvature

related to the true value function. Thus agents can make exceptional progress in improving

their consumption choices even in a very noisy world with poor estimates of the true value of

each state. Importantly, the current formulation of agent learning does not protect agents

from learning a “bad” value function from a stream of not-representative experiences. I

explore this feature of the model in more detail in Section (2.5) below.

2.1.2 Preview of Results

The number of partitions an agent uses to value next-period states is a simple and intuitive

lever by which I can change the sophistication of an agent. An agent with three or five

partitions, for example, may be categorized as less sophisticated as an agent with, say, 25

partitions. A sophisticated agent, with 25 or 55 bins, for example, can learn a good value

function rather quickly. However even a not terribly sophisticated agent, with perhaps 3 or

5 bins, may learn a passable policy rather quickly.

Regardless, both sophisticated and non-sophisticated agents are prone to “learn the

wrong thing” if they get a series of particularly good or particularly bad shocks. Agents

can still re-learn a good policy when the next set of shocks is more representative of the

23

underlying distribution; this characteristic is a feature rather than a bug when explaining

human behavior in practice.

All of this occurs without the regret learning agents knowing anything about their

income process except their own experience. As discussed below, all features of the agent’s

solution-by-learning are constructed from agent experience. This is key for the learning

process to the usable in large-scale agent-based models. If the researcher must inform the

agent about extensive details about the nature of the optimization solution, the hydra of

computational intractability quickly raises its multi-dimensional heads.

Figures (2.1) and (2.2) displays the convergence of a value function estimate for an agent

who has been handed the optimal consumption function and is only estimating the value

of this function from experience (not attempting to improve the policy). The purpose of

these figures is to demonstrate the difficulty of estimating value functions from experience,

even when the agent has been given the true optimal policy, a moderate sophistication

level (in terms of number of partitions of the state space) of 11 bins, and an extensive

amount of time to learn learn, 10,000 periods. Figure (2.1) shows that learning a value

function from experience does converge in a traditional-looking sense. However figure (2.2)

demonstrates that even under high sophistication and extensive learning time, this function

has not converged to the true value function but is rather a biased function offset from the

true function. (The two estimates displayed are for two alternative ways of sampling from

the shock space – either using a true continuous random sample drawn from the continuous

distribution, or a sample drawn from a discretized version of the shocks space.)

The bias, however, is only for a single realization of learning from experience. Figure

(2.3) shows that the value functions learned by many agents are still correct in the aggregate.

When I average the value function estimates from a large number of agents learning the

value function from experience, we can see that the mean value function is an extremely

close match to the true value function. Figure (2.4) highlights this be stripping out the

distribution of functions and only displaying the mean value function. The difference in

utility terms between this value function and the true value function is trivial and nearly

24

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Cash-on-hand m

10

8

6

4

2

0

V
a
lu

e
:

E
x
p
e
ct

e
d
 L

if
e
ti

m
e
 U

ti
lit

y
 v

(m
)

Value Functions Estimated from a Single 10000-length Episode
Using Optimal Policy

Estimates shown for periods 1,3,5,7,10,15,20,27,37,50,70, 90,
115, 400, and 10,000.

Figure 2.1: Learning the value of the optimal policy c∗ using
11 bins and 10,000-period experience

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Cash-on-hand m

11.0

10.5

10.0

9.5

9.0

8.5

8.0

V
a
lu

e
:

E
x
p
e
ct

e
d
 L

if
e
ti

m
e
 U

ti
lit

y
 v

(m
)

Values Estimated from a Single 10000-length Episode vs Optimal Value
Using Optimal Policy

Estimated
True optimal value

Figure 2.2: Bias in learned optimal value function v̂∗(.)
using 11 bins and 10,000-period experience

25

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Cash-on-hand m

13

12

11

10

9

8

7

V
a
lu

e
:

E
x
p
e
ct

e
d
 L

if
e
ti

m
e
 U

ti
lit

y
 v

(m
)

400 Agents for 500 Periods, with N = 11
Using Optimal Policy

Individual experience estimates
Average of 400 experiences
True optimal value

Figure 2.3: Average v̂∗(.) results over 400 agents, using
11 bins for 500 periods

nonexistent.6 Agents are capable of learning about the true value function from experience,

but only in a distributional sense – this idea is the motivation behind the social learning

scheme discussed in Chapter 3, but I will not explore social learning further in this chapter

except as an extended application of regret learning.

Figures (2.1), (2.2), (2.3) and (2.4) illustrate how much time is required to get a high-

quality estimate of the value function purely from experience. As noted above, however, an

agent can learn a policy function from even a poorly estimated value function. I leave the

details of how an agent creates this policy function until the methods sections; suffice it to

say that the agent estimates a value function following D periods of experience (where this

is a parameter I can vary) and then looks back, decides which consumption choices would

have optimized the value function they just learned (which is perhaps very poorly estimated

in absolute terms) at each state they experienced – call these the “regret choices,” and then

forms a new policy function which minimizes the squared errors between the new policy

6Note that this precision arises from 400 agents learning for 500 periods, each with 11 bins partitioning
the next-period state-space. These numbers were chosen because the accuracy of the mean value function
improves only marginally more as either number of agents, number of periods, or number of partitions is
raised further.

26

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Cash-on-hand m

10.6

10.4

10.2

10.0

9.8

9.6

9.4

9.2

9.0

V
a
lu

e
:

E
x
p
e
ct

e
d
 L

if
e
ti

m
e
 U

ti
lit

y
 v

(m
)

Examine Closely:
400 Agents for 500 Periods, with N = 11. Using Optimal Policy

Average of 400 experiences
True optimal value

Figure 2.4: Average v̂∗(.) results over 400 agents, using
11 bins for 500 periods examined closely

function and the regret choices. Then the process is repeated.

Figures (2.5) and (2.6) demonstrate what the first step in this process looks like for an

agent with 11 bins and D = 6 and D = 20 periods of learning, respectively. The red dashed

line represents the true optimal solution to this consumption problem, the stars represent

the “regret choices” of the agent, and the solid blue line is the new consumption function the

agent has just learned from their “regret” choices. The vertical dotted lines indicate the 5th

and 95th percentile cutoffs of the state variable’s ergodic distribution under the optimal rule

– this gives us a rough estimate of how far this particular set of “regret values” falls from

the those under the optimal distribution. It will be demonstrated that when experiences

are particularly high or low with respect to the ergodic distribution of the state variable,

the agent is more likely to learn a less-optimal consumption function. That is, as one would

expect, if an agent is learning from experience, when the experience is highly unusual the

agent learns to “make mistakes” from the perspective of the rational solution – however for

the agent, the “incorrect” policy function simply represents the conditional-on-experience,

approximately rational, improved consumption function.

27

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

1.5

2.0
Learning Policy From Regret

d = 6
d = 6
True policy
5th, 95th percentile

Figure 2.5: Learning an Improved Policy From Regret:
11 bins, D = 6 learning periods, K = 1st Learning
Episode

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

1.5

2.0
Learning Policy From Regret

d = 20
d = 20
True policy
5th, 95th percentile

Figure 2.6: Learning an Improved Policy From Regret:
11 bins, D = 20 learning periods, K = 1st Learning
Episode

28

Finally, note that the learned consumption function in figures (2.5) and (2.6) are the

agent’s first learning steps for each value of D – the agent started with the spendthrift

“consume everything” policy function at period zero, and these are their first improved

functions. It can be seen that this “sophisticated” agent gets close to the optimal policy

function quite quickly. Agents will depart from the optimal policy function, however, for at

least two reasons: because the agent is “less sophisticated” (i.e. has less bins), or as noted

above, because the agent experiences a set of states which are low probability with respect

to those under the true optimal rule.

I now turn to a more formal discussion of regret learning. The following sections first

outline the problem the consumer desires to solve optimally (Section 2.2) before discussing

one class of solution method for solving the optimization problem “instantaneously” from

the consumer perspective (Section 2.3). With those preliminaries in place, Regret Learn-

ing is introduced and described in detail in Section (2.4), and important theoretical and

practical questions are raised concerning its performance. These questions are immediately

answered in the Results, Section (2.5). Finally, Section (2.6) concludes with a summary

and a description of many next steps in this research program.

2.2 The Consumer Problem

The learning-to-optimize behavior I discuss will be explicitly applied to a stationary, infinite-

horizon dynamic optimization problem. Appendix C outlines an extended finite-horizon

problem which can be transformed into the infinite-horizon problem by adding a simple

Poisson probability of death each period, providing a simple justification for using an

infinite-horizon problem as a learning target. Additionally, both Gourinchas and Parker

(2002) and Cagetti (2003) note that households in the data appear to act as though they

are solving infinite-horizon problems until around age 45-55, at which point they apparently

realize that retirement is fast approaching and begin to save as though they are solving a

finite-horizon problem as in Appendix C).

29

2.2.1 Infinite Horizon Consumer Problem

The basic household consumption-savings problem under uncertainty can be stated as fol-

lows. Households have an uncertain income and may either save money at a risk-free rate

of return or spend it immediately on consumption. Consumption produces rewards for

the household via a utility function; this utility function is used to create a lifetime objec-

tive function. Savings produce rewards only in so far as they represent the ability of the

household to eventually consume in the future.

The objective is to maximize total expected lifetime utility. The household problem,

then, can be stated as follows:

max
{ct}∞t=0

E0

[∞∑
t=0

βtu(ct)

]
(2.1)

s.t.

mt+1 = R(mt − ct) + yt+1 the law of motion,

ct ≥ 0

mt ≥ 0

m0 given.

Where:

• yt is a random income shock each period, normalized and distributed as an IID

lognormal random variable with mean 1 and σy = 0.2,

• ct is consumption in period t,

• mt is “cash-on-hand,” the total monetary resources under control of the household

after interest accrues on savings and wages yt are paid,

30

• at ≡ (mt − ct) is savings,

• R = 1.03 is deterministic, risk-free return on savings every period,

• β = 0.95 is the discount factor, and

• u(.) is a Constant Relative Risk Aversion (CRRA) utility function with risk aversion

ρ = 3.

The calibrated parameter values are summarized in Table (2.1). Utility takes the CRRA

form:

u(c) =
c(1− ρ)

1− ρ
.

Carroll (1997) and Carroll (2001b) provide excellent background for the usage of this

functional form for this problem (and related difficulties).

The solution to the discounted dynamic optimization problem (C.6) is the infinite

sequence of consumption choices {ct}∞t=0 which maximizes the problem’s expected dis-

counted utility stream. Regularity conditions on both u(.) and the law of motion mt+1 =

R(mt − ct) + yt+1 guarantee that a solution exists for this problem, and in addition, the

optimal consumption vector {c∗t }∞t=0 can be produced by an optimal policy (consumption)

function c∗t = c∗(mt) which is a function of the state space. Thus the apparently intractable

problem of choosing an infinite-length vector becomes a simpler problem of choosing a func-

tion which maps an infinite stream of states provided by the law of motion into a stream

of consumption choices.

31

Table 2.1: Parameters and Sources

Parameter Value Description Source

β 0.95 Geometric discount factor Allen and Carroll (2001)

ρ 3.0 Risk aversion Allen and Carroll (2001)

σy 0.2 Shock to income Carroll (1992)

R 1.03 Return factor, savings U.S. Treasury returns 1990s

32

If I denote the optimal consumption policy function c∗ then the optimal value function

v∗(m) is simply the value of starting in state m = m0 in the expected discounted infinite

sum in problem (C.6):

v∗(m) = E0

[∞∑
t=0

βtu(c∗(mt))

]
(2.2)

s.t.

mt+1 = R(mt − ct) + yt+1

ct,mt ≥ 0; m = m0 given.

Note that the above relationship holds not only for the optimal consumption function c∗,

but also any arbitrary consumption function such that the appropriate Blackwell Sufficiency

Conditions hold for the problem.7 Let an arbitrary consumption function be parameterized

by a set of parameters, which I will collectively denote θ, and define such a consumption

function as cθ. Then under the appropriate conditions, the associated value function can

be derived from cθ as follows:

vθ(m0) = E0

[∞∑
t=0

βtu(cθ(mt))

]
(2.3)

s.t.

mt+1 = R(mt − ct) + yt+1

ct,mt ≥ 0; m0 given.

7See Appendix A for a full discussion of the requirements on the structure of the problem for there to
exist a unique fixed-point value and policy function solution. Unless otherwise noted, the assumptions will
be made for all proceeding discussion.

33

As discussed below, given an arbitrary value function varb1 , I can derive an associated

policy function carb1 , and given an arbitrary policy function carb1 I can derive an associated

value function varb2 . However this process will not produce varb1 = varb2 unless I have

discovered the optimal policy and value functions.8 This property is key for the policy iter-

ation dynamic programming solution and will provide key intuition for the regret learning

algorithm to be defined below.

When the solution as described above exists, the problem can be re-written in Bellman

form:

v(mt) = max
ct

u(ct) + βEt [v(mt+1)] (2.4)

s.t.

mt+1 = R(mt − ct) + yt+1

ct ≥ 0

mt ≥ 0

m0 given.

The following section will discuss when the solution to this problem exists. (See Ap-

pendix A, Carroll (2012c) for a lengthy discussion of when the solution for this problem

exists.)

This form breaks down the consumer problem into a much simpler form: the agent is sim-

ply trading off between the utility of consumption today, denoted by u(ct), and the expected

future lifetime utility of the consequence of the choice today, denoted by βEt [v(mt+1].

8Or rather, |varb1 − varb2 | ≤ δ for some tolerance δ.

34

2.2.2 Buffer Stock Solution Form

I have discussed an approximate policy function cθ; now we outline the specific paramet-

ric form of this approximation. Under mild conditions and the parameterization of this

problem,9 the optimal consumption function takes the form:

c∗(mt) = E[yt] + g(mt − m̄∗),

where g is a nonlinear function resulting from optimizing problem (C.6) and m̄∗ is the

target buffer stock savings level for liquid wealth which exists under my conditions. I abuse

notation slightly by denoting both the consumption in period t as a function of the cash-

on-hand state variable mt: ct = c∗(mt) in the case of the optimal consumption function, or

ct = cθ(mt) in the case of an arbitrary approximate consumption function parameterized

by θ, to be described further below.

When a consumer experiences a shock which pushes mt away from m̄∗ he/she will

consume such that in expectation next period, E [mt+1] will move towards m̄∗. As noted in

Carroll (2012c), the exact form of the function g is highly nonlinear and difficult to describe

analytically. Allen and Carroll (2001) propose a simple piecewise linear approximation to

this function which has extremely low welfare cost and an intuitive parameterization, which

will be used for the learning algorithm outlined in this paper. A more extensive discussion

of the properties of this approximation can be found in Allen and Carroll (2001), Özak

(2014), and Chapter 3. A first-order Taylor approximation taken around m̄∗ gives us a

linear consumption function with an intuitive interpretation:

c̃θ(mt) = E[yt] + κ [mt − m̄] , (2.5)

9The condition in this version of the model is Rβ < 1. Intuitively, this is a statement about the “patience”
level of the consumer versus potential growth in savings. See Carroll and Samwick (1997) and Carroll (2012c)
for detailed discussion regarding this condition.

35

where θ ≡ (κ, m̄) and the tilde “c̃” denotes that this is an intermediate step to the final

form cθ. κ is the marginal propensity to consume out of wealth10, and m̄ has the same

interpretation as before as the buffer-stock savings target. To obtain the final piecewise

linear consumption-function form, I simply impose the liquidity constraint as follows:

cθ(mt) =

mt if c̃θ(mt) ≥ mt

c̃θ(mt) otherwise.

(2.6)

This complete restriction on borrowing is imposed here for simplicity of exposition.

However note that the imposition of the borrowing constraint is not as restrictive as it may

first seem. Carroll et al. (1992) outlines evidence for consumers facing a low but non-zero

probability of a zero-income shock occurring at the annual frequency, which differs from

the distribution of shocks typically faced by the consumer. Any rational consumer who

faces such a process would self-impose a borrowing constraint each period alive and with a

positive probability of a zero-income even each period this collapses to a complete liquidity

constraint used here. Even if the consumer did not rationally self-impose this constraint,

a rational lender may do so. Regardless, a straightforward extension is to implement a

borrowing constraint which is linear in mt.

2.2.3 Welfare Cost of Approximate Solutions

As noted in the discussion following expression (2.3), for an approximate policy function

cθ I can obtain an associated value function vθ. If I have also solved for the optimal value

function v∗ for this problem, I can calculate a measure of welfare cost implied by following

the approximate policy function cθ. Following Allen and Carroll (2001), I call this value

a “sacrifice value.” For a consumer following the optimal consumption rule, the sacrifice

value represents the maximum amount the consumer would be willing to pay to to avoid

10To see this, take the derivative of cθ(mt) with respect to mt.

36

switching permanently to the non-optimal rule. For a parameter θ, denote this value εθ and

derive it as follows:

v∗(m− εθ) = vθ(m) ∀m

⇔ m− εθ = v∗−1(vθ(m)) ∀m

⇒ εθ(m) = m− v∗−1(vθ(m)) ∀m,

and, using the ergodic distribution Fm of m under the optimal policy c∗11, calculate the

expected sacrifice value as:

ε̄θ =

∫ ∞
q̄

εθdFm.

I use ε̄θ to identify the expected sacrifice value for any given approximate rule cθ. This

provides an explicit way to compare non-optimal rules with the optimal solution, allowing

us to map the effectiveness of learning and rules directly to more traditional methodology.

Since ε̄θ can be calculated for any approximate function cθ, it is simple to construct the

surface of welfare costs over any given range of consumption function parameters. Figure

(2.7) displays the contour plot of this surface for m̄ ∈ [0, 3] along the y-axis and κ ∈ [0, 1]

along the x-axis. This should be read like a contour map – each line denotes approximate

consumption rules which have equal sacrifice values. A few things can be quickly observed.

The cθ function with minimal sacrifice value – that is, the cθ which is closest to c∗ in utility

terms – occurs at m̄ ≈ 1.4, κ ≈ 0.15 and has a sacrifice value of ε̄θ = 0.0055. I will denote

the best approximate consumption function cθ∗. That is slightly more than one half of one

percent of expected annual income, very close to the true optimal rule. Since each line has

11See Carroll (2001a) for a discussion of the ergodic distribution of cash-on-hand following an optimal
buffer-stock rule, as well as the methodology used to generate the ergodic distribution.

37

0.0 0.2 0.4 0.6 0.8 1.0
Marginal propensity to consume

0.0

0.5

1.0

1.5

2.0

2.5

3.0

B
u
ff

e
r

st
o
ck

 t
a
rg

e
t
m̄

0.0055

0.050
0
.1

0
0

0
.2

0
0

0
.4

0
0

0.400

0.500

0.750

0.
87

8

0.900

Figure 2.7: Sacrifice Values for Approximate Consumption Functions

the associated sacrifice value value printed on it, the inner-most ring around the minimal

sacrifice point indicates a sacrifice value of 0.05, or 5 percent of expected annual income.

The point which represents the ”consume everything” consumption rule is at (1.0, 1.0); the

sacrifice contour which intersects here has a value of 0.878.

The large ”empty” region in the upper right-hand portion of Figure (2.7) is due to the

fact that the parameters in this area produce consumption functions which tell a consumer

to consume zero for a non-trivial number of m-values. For example, Figure (2.8) displays

one such consumption function, with m̄ = 2.5 and κ = 0.8. It is clear that for some values of

cash-on-hand, about m ≤ 1.25, the consumption function tells the consumer to eat nothing.

This is a particular problem for the consumer, because the CRRA utility function used here

goes to infinity as consumption goes to zero: u(c)→∞ as c→ 0. Thus the boundary of the

empty region in Figure (2.7) is simply those rules which would force an agent to consume

zero over a non-trivial portion of the state space.

The reason for the small welfare cost of the best approximate consumption rule cθ∗ can

be quickly seen when examining the function against the true nonlinear optimal rule c∗.

38

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Cash-on-Hand m

0.5

0.0

0.5

1.0

1.5

2.0

2.5

C
o
n
su

m
p
ti

o
n
 c

Consumption Function with m̄=2.5, =0.8

Figure 2.8: Example of a “Bad” Consumption Function

These are both displayed in Figure (2.9). Also displayed are the 5th and 95th cutoffs for

the ergodic distribution of cash-on-hand m when following the optimal policy c∗, denoted

Fm. Between the 5th and 95th percentiles, the best approximate policy is extremely close to

the true optimal policy. Thus, for about 90% of the time, an agent using the approximate

optimal rule cθ∗ will be extremely close to the true optimal rule in welfare terms.

There is actually a deeper question at hand when one asks the welfare cost of a learning

algorithm. The sacrifice value noted above is a value that assumes an agent follows the

non-optimal rule for the rest of their lives – this is what the value function represents,

and the value functions are used to calculate the sacrifice value. This is an important and

reasonable first pass. However in learning agents are likely not using the same rule for the

rest of their lives. The value function associated with the entire learning process is almost

certainly different form that of following a specific rule. This “meta” value function of

learning may not even be monotone, which is a requirement for measuring unique sacrifice

values. At the intuitive level, if it takes a non-trivial set of periods in a finite life to try

another policy, the opportunity cost of agent time is the best policy the agent has seen so

39

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Cash-on-hand m

0.0

0.5

1.0

1.5

2.0

C
o
n
su

m
p
ti

o
n
 c

True Optimal Policy versus Approximate Optimal Policy
m̄= 1.4, = 0.15

Approximate optimal policy, ̄εθ ∗ = 0.0055

True optimal policy

5th ,95th percentile of ergodic Fm distrib under c ∗

Figure 2.9: True vs Approximate Optimal Consumption Functions

far – presumably the current one. How does the agent decide when experimenting with a

new policy is not worth it? There’s a risk aversion decision buried in this decision which has

not been explored extensively in the economic literature, in part because it requires agents

to be using non-optimal rules to guide their behavior.

This is a question has been understood for a long time in the reinforcement learning

literature, to be discussed below. In that literature this question is known as the “exploita-

tion/exploration trade-off,” and is most cleanly illustrated by a set of simple problems called

“bandit” problems. See Sutton and Barto (1998) and Auer et al. (2002) for an excellent

description of both the exploration/exploitation trade-off and its illustration in bandit prob-

lems. I do not deal with this deeper question of the welfare costs of learning here, instead

leaving this to future work. I will simply note that the exploration / exploitation trade-off

is a key fundamental question as soon as one moves away from instantaneous optimization.

I strongly suspect that many behaviors, such as satisficing, have a basis in this trade-off.

40

2.3 Policy Iteration Solution Method

Economic agents generally function under what might be called “instantaneous optimiza-

tion” – in any period, the optimal solution (2.2) is obtained instantaneously and handed

to the agent, who then proceeds to enact this optimal behavior. Note that solving for this

optimal behavior may be very computationally intensive, particularly in general equilibrium

with heterogeneous agents. In this case, the true distribution for expectations may be a very

high-dimensional object. Even aside from behavioral evidence that cast human abilities to

solve complex dynamic optimization problems into doubt,12 the requirement that agents

solve a program such as (2.2) optimally and rationally13 imposes extreme computational

burden on the agent and thus the researcher as a model becomes more heterogeneous (in

terms of agent attributes and behavior) and complex (in terms of both model structure and

dynamical properties). Large-scale models such as Geanakoplos et al. (2012) are intractable

if rational optimizing behavior is imposed on agents. None-the-less, the opposite alternative

– agents who have completely fixed behavioral rules, which do not change as their world

changes – is also unattractive. Such a solution immediately re-raises the specter of the

Lucas (1976) Critique, ready to be restated for a new generation:

“This essay has been devoted to an exposition and elaboration of a single syl-

logism: given that the structure of an econometric model consists of optimal

decision rules of economic agents, and that optimal decision rules vary system-

atically with changes in the structure of series relevant to the decision maker,

it follows that any change in policy will systematically alter the structure of

econometric models.”

Even if the argument is made that agents should not be modeled as optimizing decision-

makers, and thus the structure of econometric models need not be bound to this, it is

12See Houser et al. (2004) study which clearly outlines a spread in human ability to solve dynamic programs
optimally.

13That is, the expectations under which the agent solves (2.2) are the true and correct mathematical
expectations for the environment in which the agent functions.

41

hard to argue that all agents should have fixed rules which do not adapt to changing

environments. In his excellent “Micromotives and Macrobehavior,” Schelling (2006) notes

both the importance of modeling purposive problem-solving as well as the difficulty of

capturing this in practice:

“With people . . . we usually believe we are dealing with conscious decisions

or adaptations in the pursuit of goals, immediate or remote, within the limits

of their information and their comprehension of how to navigate through their

environment towards whatever their objectives are. In fact, we can often as-

cribe to people some capacity to solve problems – to calculate or to perceive

intuitively how to get from here to there. . . . [However] we can get carried

away with our image of goal seeking and problem solving. We can forget that

people pursue misguided goals or don’t know their goals, and that they enjoy

or suffer subconscious processes that deceive them about their goals. And we

can exaggerate how much good is accomplished when people achieve the goals

we think they think they have been pursuing.”

Like Allen and Carroll (2001), Howitt and Özak (2014), and others mentioned in the

introduction, I propose that learning-to-optimize is a reasonable middle ground between

agents who fully optimize and agents who have fixed behavioral rules. Similar to Allen and

Carroll (2001) my regret-learning agents estimate the value of a current approximate policy

cθ by forming a noisy estimate of the discounted sum in expression (2.3). In Allen and

Carroll (2001), agents took a coarse discretization of the state space, identified their “bin”

in this discretization, and then formed an estimate of the value function vθ in equation

(2.3).14 By necessity, these agents only estimate a portion of the value function vθ; namely

the conditional value of starting experience in their “bin” in the state space. Under strict

assumptions – for example, agents must always “restart” each draw of their experience

in the same “bin” as their initial draw – the portion of the value function estimated by

14See Appendix B for a more extensive discussion of the solution method of Allen and Carroll (2001).

42

an agent can be shown to converge to the equivalent portion of the true value function.

Chapter 3 exploits this structure to allow agents to socially learn about consumption rules

from “similar types” of agents – that is, agents who began their estimation process in the

same partition of the state space as themselves.

While agent learning in Allen and Carroll (2001) and Chapter 3 can be shown to converge

to the point-estimate of the value function associated with each bin, each agent individually

knows nothing about the rest of the value function and thus is restricted in two important

ways: first, agents cannot learn from the broader members of the population who are of

different “bin types,” and second, agents cannot directly learn about potentially better

choices from their own value function estimate because it only covers a small portion of

the state space. To explore the parameter space governing their consumption function

they must effectively grope blindly, or talk to other agents who are potentially also groping

blindly through the policy space.

Regret learning seeks to alleviate both these points via a simple extension of the Monte

Carlo-style value function estimator in Allen and Carroll (2001) and Chapter 3. This

extension allows agents to learn about the entirety of the value function across the state

space from their own experience. They learn a biased version of their value function, but

none-the-less this value function provides them enough information to learn from their own

mistakes in a such a way as to quickly settle into a stable and well-defined space around

the optimal solution, as demonstrated by numerical results below.

Furthermore, the extension is conducted in such a way as to create a “convergence rich”

environment. As will be discussed in more detail below, each component of the learning

program has been constructed such that individually it will converge to its appropriate

target were it to function alone. Convergence has not yet been proved for the system as

a whole, but the simulation results to be described below are extremely promising in this

regard and it is only a matter of time before the full analytical description is complete.15

15Singh and Sutton (1996) prove that a similar idea, “every-visit” Monte Carlo value function estimation,
is a biased estimator in finite experience, with bias going to zero as experience goes to infinity. The regret-
learning estimator is biased in a similar was as the every-visit estimator. In particular see the setup and
proofs in Section 3.3 of Singh and Sutton (1996). The perpetual-youth Poisson probability of death employed

43

2.3.1 An Intuitive Description

Consider the agent problem presented in expression (C.6), restated here for convenience:

max
{ct}∞t=0

E0

[∞∑
t=0

βtu(ct)

]

s.t.

mt+1 = R(mt − ct) + yt+1 the law of motion,

ct ≥ 0

mt ≥ 0

m0 given.

An agent i begins with an initial policy cθk=0 . Although I will refer to agent i, all

subscripts denoting agent i are dropped from the following discussion to reduce notational

clutter. The agent experiences an indefinitely long income stream ~y, subdivided into D-

length episodes, each episode denoted by the subscript k. For example, the first k = 1

episode would be denoted ~yk ≡ [y0, y1, ..., yt, ..., yD−1]. For the duration of the episode, the

agent simply follows the current consumption policy and records a rolling sum of discounted

utility of the consumption experienced. At the end of the D-length episode k, the agent

has formed a rough approximation, v̂θk , to the true value function vθ associated with cθ.

Using this newly generated value function v̂θk , which the agent did not have at the

beginning of the episode, the agent can look back on the shocks experienced and ask, “if I

knew then what I know now” – namely the v̂θk function – “what optimizing consumption

choices should I have made?” This provides the agent with a set of choices that would

to motivate the infinite horizon version of the problem allows regret learning to fit the abstract two-state
Markov chain framework Singh and Sutton (1996) employ, and the parallel application of the update across
states in regret learning somewhat mirrors the every-visit state update. The similarities are not enough for
a direct application of their proof, but points to one possible direction for analytical results.

44

have been optimal under the v̂θk value function. Call these consumption choices the “regret

choices” – what the agent should have done, if they’d only known what they know now.

The agent then finds the consumption function of the form in equation (2.6) which is closest

to the regret choices in a sum of squared errors sense. This produces the next consumption

function to employ, cθk+1 , and the process is repeated.

Thus in a specific, technical sense, the agent is using “regret” – the act of looking

back on past choices and determining what they should have done given knowledge learned

from experience – to ascertain the next best course of action. As will be described in the

Section (2.5), this can provide agents with a relatively rapid convergence in expectation to

a well-defined neighborhood around the optimal solution.

I will use policy iteration as described below as a framework for regret learning. I will

first set up the analytical framework of the policy iteration algorithm and then simplify

various points of operation dramatically. The resulting process is lightweight, requiring

little in the way of agent memory or computation and drawing update steps entirely from

agent experience. The simplification process points to a number of possible “intermediate”

steps between optimistic policy iteration and regret learning proposed. These are discussed

briefly but not explored in detail. Selecting between variations of a model of dynamic

learning is an empirical question, and although I discuss the method which can address this

in the conclusion I leave the actual estimation and model selection for future work. For

purposes of exposition this paper instead explores the simplest version of regret learning

which contains all elements which are key to capturing both passive, backward-looking

behavior, the potential for forward-looking behavior, and which allow agents to eventually

engage in social learning of the type described in Chapter 3.

2.3.2 Policy Iteration Framework

The traditional method of finding the optimal policy and value functions for a dynamic

stochastic optimization problem such as (C.5) in dynamic programming16. There are two

16See Bertsekas (2012) for a thorough discussion of this topic.

45

major practical methods of applying dynamic programming: value iteration, which con-

structs a sequence of value functions which converge to the optimal value function (from

which an optimal policy function can be obtained) by iteratively applying the mapping

(2.13) to an arbitrary initial value function, and policy iteration, which iteratively applies

a two-step process: from an initial arbitrary policy function, find the associated value

function, and from that value function, find the associated policy function. This leap-frog

algorithm produces a sequence of policy functions and a sequence of value functions, both

of which converge to their optimal counterparts. There are a number of extensions to both

value and policy iteration; I will discuss one particular extension to policy iteration which

will provide intuition and motivation for an aspect of regret learning below.

Requisite Notation

Before proceeding I define some necessary notation. If the readers is comfortable with the

concepts behind dynamic programming and policy iteration in particular, he/she may skip

straight to section (2.3.3) below, and reference back here as needed. Appendix A defines

the mathematical context of these ideas fully and rigorously and derives detailed multi-

step proofs for convergence of policy iteration and optimistic policy iteration. For sake of

exposition the following discussion will eschew the full proof-based style of Appendix A

while retaining the mathematical rigor; the reader is encouraged to reference Appendix A

if any clarification is needed.

Define the transition function f as the function which maps statemt, choice ct, and shock

yt+1 to the next-period state mt+1. Then the right-hand side of the Bellman equation in

problem (C.5) prior to applying the optimization step may be defined as:

H(m, c, v) = u(c) + βE [v(f(m, c, y))] . (2.7)

To avoid notational overload on the letter “c” when discussing policy iteration, I will

replace the “c” function with a more broadly defined “µ” function, as is also done in

46

Appendix A. After finishing discussion of policy iteration I will switch back to the specific

notation of cθ which pertains to my particular problem. The policy (consumption) function

µ maps the state m to a consumption choice: ct = µ(mt), and I define C(m) as the set of

acceptable values implied by the law of motion:

C(m) ≡
{
c s.t. 0 ≤ c ≤

(
y′ + q̄

R
+m

)}
. (2.8)

This is a general statement of the acceptable choice set C(m); note that it includes the

next-period income shock y′ and the borrowing constraint q̄. If I impose the assumed zero

borrowing limit and minimum possible income shock, I arrive at the simplified borrowing

constraint which I employ in this paper:

C(m) ≡ {c s.t. 0 ≤ c ≤ m}. (2.9)

I can now define two mappings which take an arbitrary value function v and map it into

a new value function. Given a policy µ17 and a value function v, define the policy-specific

mapping Tµ as:

(Tµv)(m) = H(m,µ(m), v) ∀m. (2.10)

I can also define the optimal mapping T which is independent of a particular policy

function and once again maps a value function v into a new value function:

(Tv)(m) = max
c∈C(m)

H(m, c, v) ∀m. (2.11)

17As noted in the appendix, I assume this policy is consistent with C(m); that is, µ(m) ∈ C(m) ∀ m.

47

As can be seen, both mappings T and Tµ produce new value functions denoted Tv and

Tµv, respectively. As above I denote the optimal policy and value functions as c∗ and v∗,

respectively; I can now re-write problem (C.5) as:

v∗(mt) = (Tv∗)(mt) = max
ct∈C(mt)

H(mt, ct, v
∗) ∀m. (2.12)

This is the familiar result that the optimal value function v∗ is the fixed point of the

optimal mapping Tv∗, which may be expressed succinctly as

v∗ = Tv∗, (2.13)

where ∀m is assumed for simplification of notation. This result also follows from the

fact that T is a contraction mapping on a complete space; as such a sequence constructed

by applying the mapping T to an arbitrary initial value function v0, k times will produce

the sequence
{
T kv0

}
, which converges to the optimal fixed point value function v∗:

lim
k→∞

T kv0 = v∗. (2.14)

Given the optimal value function v∗ I can construct the expression H(m,µm, v∗) for any

policy function µ; then the optimal policy function is simply the function µ∗ which solves:

H(m,µ∗(m), v∗) = max
ct∈C(m)

H(m, c, v∗) (2.15)

⇒ µ∗(m) = argmax
ct∈C(m)

H(m, c, v∗) ∀m.

The definition of mu∗ in equations (2.15) can be succinctly expressed as

48

Tµ∗v
∗ = Tv∗. (2.16)

Note that the relationship in (2.15) can be constructed for any arbitrary value function

w, not only for the optimal value function v∗. This produces a not-necessarily-optimal

policy function µw which is associated with the arbitrary function w:

H(m,µw(m), w) = max
ct∈C(m)

H(m, c,w) (2.17)

⇒ µw(m) = argmax
ct∈C(m)

H(m, c,w) ∀m.

Like T , Tµ is also a contraction mapping on a complete space18 and like T each has a

unique fixed point, denoted vµ. That is, for a given policy µ there is a unique fixed point

value function vµ which fulfills,

vµ = Tµv
µ, (2.18)

which can be found be repeatedly applying the mapping Tµ to an arbitrary initial value

function to produce a convergent sequence
{
T kµv0

}
such that:

lim
k→∞

T kµv0 = vµ. (2.19)

Again, this follows from the contraction mapping properties of T and Tµ in these con-

texts. Equations (2.18) and (2.19) provide a way to construct the fixed points associated

with the optimal mapping T and policy-specific mapping Tµ.

18See Appendix A for the requisite assumptions and proofs for both statements.

49

2.3.3 Policy Iteration and Optimistic Policy Iteration

Policy iteration is an intuitive process which “ratchets” the value function associated with

an arbitrary initial policy function to the optimal value and policy functions. I can define

the policy iteration algorithm using equations (2.18) and (2.16) from above. Start with an

arbitrary initial policy function µ0 then iteratively apply the following two steps:

Policy Iteration (PI):

• Step (1) Policy Evaluation: Given policy µk, find the unique value function vµk

which is the fixed point of Tµk as in equation (2.18):

vµk = Tµkvµk .

• Step (2) Policy Improvement: Given value function vµk , obtain the new policy µk+1

which is optimal with respect to vµk . I can state the definition of µk+1 explicitly as the

“greedy” solution with respect toH(x, u, vµk), as µk+1(x) = argmax
c∈C(x)

H(x, c, vµk) ∀ x ∈

X, and I can express the implicit definition of µk+1 succinctly as:

Tµk+1vµk = Tvµk

Repeat this process until the distance between vµk+1 and vµk falls within some acceptable

tolerance, or in the case of a finite state and action space, vµk+1 = vµk .

The key step is the policy improvement step: defining the next policy function as optimal

with respect to the previous value function. In a technical sense, as described in Appendix

A, this acts as a sort of “utility ratchet” which guarantees that the next value function

iterate will be ever closer to the true value function.

The following section outlines a variation of policy iteration from dynamic programming

called “optimistic policy iteration”, a version of policy iteration which employs only partial

50

fixed-point iterations on the policy improvement step. Remarkably, executing the policy

evaluation step incompletely still guarantees convergence. As noted in Ljungqvist and Sar-

gent (2012)19, policy iteration and optimistic policy iteration are often much faster than

the equivalent value iteration solution for the same problem. As described in Appendix

A, the reason for this falls out of the proofs of convergence: the value functions associated

with each step in the or both policy iteration and optimistic policy iteration algorithms are

bounded between those of the value iteration algorithm and the true optimal value function.

That is, only in the worst case are policy iteration and optimistic policy iteration are as far

from the true value function as is value iteration. I turn to that result briefly now.

Optimistic Policy Iteration (OPI):

The optimistic policy iteration algorithm is extremely similar, only slightly modifying the

policy evaluation step. The steps occur in the opposite order20 and notation differs slightly.

Start with an arbitrary initial value function v0, then iteratively apply the following two

steps:

• Step 1 - Policy Improvement: Obtain policy µk which solves H(x, µk(x), vk) =

max
c∈C(x)

H(x, c, Jk). That is, given vk, find the policy µk consistent with

Tµkvk = Tvk.

• Step 2 - Optimistic Policy Evaluation: Given value function vk and policy µk,

execute the optimistic value function update to obtain vk+1, which results from the

application of mapping Tµk to vk mk times. That is:

vk+1 = Tmk
µk
vk.

19Ljungqvist and Sargent (2012) use the term “modified policy iteration.” I prefer the Bertsekas (2013)
term “optimistic policy iteration” and use it here.

20However see Appendix A for a derivation of conditions on v0 such that either order of steps can be
proved to converge

51

Repeat the process at step 1 using the new value function vk until convergence.

Note that as with policy iteration above, the policy improvement step can be satisfied

by constructing µk as the “greedy” policy with respect to H(x, c, vk):

µk(x) = argmax
c∈C(x)

H(x, c, vk) ∀ x ∈ X.

Optimistic policy iteration algorithm differs from policy iteration in the policy evaluation

step: instead of iterating to the fixed point of mapping (2.18), only a finite number of

mappings, mk, are applied to the value function at the beginning of each policy evaluation

step k. Surprisingly, this process still produces a sequence of value and policy functions

which converge to the optimal functions. As with policy iteration, the optimistic policy

value function created at each step k is squeezed to the optimal value function by the

equivalent steps in value iteration – once again value iteration is a worst-case bound on

convergence.

This variation on policy iteration is highlighted for two reasons: first, to show that

variations on policy iteration which do not fully estimate vθ at each step can none-the-less

converge to the optimal solution (an intuitive motivation for the value estimation step of

regret learning), and second, as an outline for future extensions of regret learning along

lines similar to optimistic policy iteration, to be discussed further in the conclusion.

2.4 Regret Learning Solution Method

Regret learning is a form of policy iteration which replaces both the fixed-point calculation

in the policy evaluation step, expression (2.3.3), and the policy update step, expression

(2.3.3), with approximations constructed from a single agent’s experience. In doing so, I

impose on the agent the need to optimize over time. Rather than optimizing instantaneous

each period, the regret learning agent will optimize eventually, meandering about in a well-

defined neighborhood around the optimal solution, but the agent will not in fact attain this

52

solution immediately.

2.4.1 Inherent Difficulty of Learning to Optimize from Experience

Before diving into the details of the approximations, I take a moment to think about the

difficulties facing an agent attempting to form these estimations from experience. As noted

by Allen and Carroll (2001) and Sutton and Barto (1998), the simplest way to approximate

the value function associated with a given policy is via Monte Carlo estimation of the sum

in expression (2.3), repeated here for convenience:

vθ(m0) = E0

[∞∑
t=0

βtu(cθ(mt))

]
(2.20)

s.t.

mt+1 = R(mt − ct) + yt+1

ct,mt ≥ 0; m0 given.

As luck would have it, agents have access to a data-generating process for the yt process:

their own income experience.21

However there are two immediate problems with agents using own experience to estimate

vθ as a step in policy iteration. First, agents clearly cannot estimate vθ(m) for infinite

periods – this would preclude them from ever advancing past the first policy evaluation

step to the first policy improvement step. Second, agents cannot possibly hope to form an

unbiased estimator of the expectation in problem (2.20) in a traditional Monte Carlo sense.

To see why, first consider what an ideal method of moments Monte Carlo estimator based

on agent experience would look like.

Denote the entire income experience of an agent i as

21In the simplest version of regret learning presented here, I restrict agents to only have access to their
own income streams – they can learn nothing from other agents who may experience similar shocks.

53

~y = [y0, y1, ..., yt, ...] ⊂ R∞,

and denote a kth subset of this income experience, which I will call an “episode,” as

~yk =
[
ytk , ytk+1, ..., ytk+1−1

]
,

where a subset of equidistantly-spaced time indices tau = {tk}∞k=0, k ∈ N define the

borders of subsets of time experience and D ≡ (tk+1 − tk) ∀k. Form a “single stream”

estimate of vθ in expression (2.20) using one of these kth subsets:

wθk(m) =
D−1∑
t=0

βtu(cθ(mt)), (2.21)

s.t.

mt+1 = R(mt − ct) + yt+1

ct,mt ≥ 0; m0 = m given.

To form a method of moments estimate of the expectation in expression (2.20), ideally

the agent would be able to repeat this experience independently many times, for many

different starting values of m – say, K times for every m ∈M . Then the agent i could form

the following Monte Carlo estimator for vtheta:

w̄θ(m) =
1

D

K∑
k=0

wθk(m0) ∀m ∈M. (2.22)

Note that there are three dimensions which the agent needs to send to infinity to have

the w̄θ expression be a consistent and unbiased estimator for vθ(m). It is clear that I need

54

both D → ∞ and K → ∞ – that is, I need the length of each episode to go to infinity,

as well as the number of episodes per state m to go to infinity as well. In addition, since

m ∈ R, I need the number of starting values of m, Nm, to go to infinity as well.

The problem here is somewhat analogous to the “curse of dimensionality” in traditional

dynamic programming, only here it is a “curse of temporality” – the agent who uses own

experience as a Monte Carlo data generating process simply does not have enough time to

form a “good” estimate of the value function vθ. Finally, even if the agent had the time

to do this, there is an additional difficulty. To achieve a consistent and unbiased Monte

Carlo estimator of vθ(m) I need some iid properties. I need the initial m0 values at which

each episodic estimate of wθk(m0) is estimated to be iid.22 I also need the income episodes

themselves, ~yk, to be iid in k; while this property is fulfilled for my current problem it will

not be fulfilled in general.

Importantly, all of these considerations are only for the first step in the first iteration

of policy iteration. If I want to execute policy iteration using agent experience as the data

generating process, I must be able to repeat the above steps indefinitely until the sequence of

policy and value functions converge. The curse of temporality for estimating value functions

from an agent’s experience appears unavoidably intractable.

There is hope, however; each of the points above is not as insurmountable as they first

appear. First, optimistic policy iteration tells us that the exact estimation of vθ is not needed

at each iteration of the policy iteration algorithm – in fact the fixed point calculation in step

1 can be curtailed far short of achieving the estimate of vθ and convergence is still assured!

The key here is that the policy improvement step “ratchets” the next-period policy towards

the optimal policy in utility terms, conditional on the current value function, regardless of

what that current value function is.

The first-pass regret-learning agents presented here will rely on a similar mechanism.

Instead of the partial fixed-point calculation of optimistic policy iteration seen in equation

22Ideally the initial m values are distributed as the ergodic distribution of m under the rule θ, presuming
that distribution exists

55

(2.3.3) for OPI, regret learning agents will implement a noisy estimation of the fixed point

value calculation in vanilla PI, equation (2.3.3), following a process similar to the one

described in equation (2.21).

In order to implement the second policy improvement step, equation (2.3.3), the agent

will need to estimate the value function for the entire state space of m. Fortunately the

agent will not need to implement estimation (2.3.3) for an infinite number of points to

obtain an effective representation of the function vθ(m) ∀m; instead the agent will simply

estimate a version of this for a grid of points over the state space, and interpolate between

these points. As noted in Pál and Stachurski (2013) and Stachurski (2009), it is known that

a non-expansive function approximation, such as linear interpolation or nearest neighbor

interpolation, will preserve the contraction properties of the T mapping, and thus can pre-

serve convergence properties as well.23 The agent using regret learning will use a form of

linear approximation which is constructed to be convergent in expectation to the function

vθ, employing the law of total probability. This form of approximation is motivated by

the observation that human decision-makers often divide the state-space of dynamic opti-

mization problems into discrete “chunks” to make the problem tractable, and then proceed

with solution (Vanderbilt, 2013). Informally, this “chunking” process can be seen in many

economic papers, macroeconomic papers in particular, wherein the dynamic process for,

say, the employment matching technology, or house prices, is divided into a discrete set of

states, usually an odd number, and usually given labels such as “Good, Average, Bad” (for

three states) or “Good, Medium-Good, Average, Medium-Bad, Bad”.24

The next sections describe the key approximations needed to implement regret learning’s

experience-based version of policy iteration. The four approximations which will make it

possible to solve an approximate version of policy iteration are as follows:

23This formal result has been demonstrated in practice for some time. As noted in Carroll (2012b) however,
one must be very cautious about errors growing outside of the approximation grid defined by the researcher.
The interpolation procedure proposed here in part seeks to address these concerns via an endogenous selection
of the grid such that the highest-probability observations as determined from experience occur in exactly
the most well-approximated locations.

24See for example the aggregate shock process to income in Krusell and Smith Jr (1998).

56

• determining the state-space partition,

• single-stream estimation of vθ,

• identifying regret choices, and

• updating the consumption function by minimizing regret.

These will each be discussed in turn in the following sections, before a complete definition

of regret learning is finally provided.

Finally, observe that the actually experienced set of states for an episode k can be

expressed,

~mk =
[
mtk ,mtk+1, ...,mtk+1−1

]
,

These values are the actual cash-on-hand values produced by the law of motion for

episode k under a consumption function cθ; that is:

~mk
t+1 = R(~mk

t − cθ(~mk
t)) + yt+1,

yt+1 ∈ ~yk.

This vector of experienced states will be essential to the construction of the state-space

partition in the following section.

2.4.2 Determining the State-Space Partition

A key element to regret learning is determining a equiprobable partition of the state space

at the end of an episode k of agent experience. The agent will actually use this in two

distinct ways.

First, the agent will create a partition of the state space which he/she will use to

represent a conditional estimate of the value function for their episode of experience, arriving

at an expression like the following, defined for each partition bk,n:

57

v̂θ(m | bk,n).

The set bk,n is an element of the partition set to be discussed in this section. Importantly,

each partition set is constructed to have an equal probability of occurring as seen from

agent experience. The condition value function above (defined for each partition) will be

constructed in detail in Section (2.4.3). Its primary purpose is to represent the value of

falling into each of the possible partitions as seen from experience, which is shaped both by

the current shocks as well as the current consumption function. The coarse, equiprobable

partition is key to this value function construction.

In the second usage, the agent will use this partition along with:

• the distribution of income experiences in an episode,

• the law of motion of cash-on-hand mt+1, which includes the current consumption

choice ct, and

• the current-period mt value,

to form a conditional probability of each partition occurring in a following period. That

is, the probability

prob(mt+1 ∈ bk,n | ct,mt).

This is a true conditional distribution based on the current state mt, as I will see in

Section ({sec:forming-the-condition-next-period-partition-prob}). The explicit purpose of

forming this probability, the full vector of which will be denoted P̂ km, is to be able to form

a real-valued empirical estimate of the conditional value function arising at state mt under

choice ct. I am forming an experienced-based version of the H function defined in expression

(2.7) above. The H function is key for policy iteration, and its empirical counterpart will

be key for regret learning.

I want to end up with an expected conditional value function which is dependent on the

58

current state and agent choices:

v̂θ(ct,mt) = v̂θ(mt+1 | bk) • P̂ km =

N∑
n=1

(
v̂θ(mt+1 | bk,n)prob(mt+1 ∈ bk,n | ct,mt)

)
.

Those familiar with Q-learning will recognize the left-hand side of the this expression as

appearing surprisingly similar to the traditional two-state “Q factors” used in Q-learning.

Q-learning is an online learning-top-optimize solution to dynamic programming problems in

reinforcement learning and approximate dynamic programming, with a long history and a

successful application to many practical real-world problems (see Powell (2007) and Sutton

and Barto (1998) and references therein). A difficulty with Q-learning is that it is most easily

employed over a finite state and action space – something encountered in only a subset of

economic problems. Properly interpolating over the space of Q-factors to bring Q-learning

into continuous space problems is difficult, and in addition, the choice of stepsize25 for the

Q-factor update is not straightforward. Regret learning sidesteps both the finite space issue

and the stepsize issue entirely via the partitioning to be discussed in this section.

This expression (2.4.2) uses the law of total probability to form the final conditional

value function estimate. As can be seen, this function varies by changing the conditional

probabilities of arriving at each partition tomorrow, which itself varies with the choice of ct.

Thus I use a carefully constructed fixed estimate of the value function over a set of parti-

tions with a variable conditional distribution function to produce to full variable conditional

value function. The law of total probability motivates this step, and the key important jus-

tification for employing the law of total probability here is the usage of the fixed partition

over the state space. As will become evident, even slight amounts of agent experience, ex-

cluding any externally acquired information, can emulate the entire policy iteration process

effectively, providing quick convergence to a well-defined function space around the optimal

25Roughly equivalent to a “gain” parameter in the more traditional macroeconomic learning literature,
see Evans and Honkapohja (2001) for more detail.

59

solution (in utility terms), while still maintaining an intuitively appealing process of the

agent being “pushed around” the function space by streams of good or bad experience.

All of this, however, is yet to be discussed in the results, Section (2.5). I must first work

through the construction of the state-space partition and a few other concepts.

The coarse partitioning is motivated by the idea that human behavior, in attempting to

solve complex optimization problems, appears to involve “chunking” of the problem space

into self-similar partitions to offer more efficient solution of these approximate problems

(Vanderbilt, 2013). This approach is also widely taken in approximate dynamic program-

ming and reinforcement learning in computer science; see Powell (2007) and Sutton and

Barto (1998) for discussion and references. The partitioning I use here is a simple imple-

mentation of this idea for a consumption-savings problem.

The second related motivation behind partitioning the state space is the idea that the

agents need to capture the shape of their value function, but by necessity they have few

observations to use for this estimation. Or rather, the cost of obtaining additional observa-

tions is very high. There is a need for efficient use of the few points of experience the agent

obtains because there is a tradeoff between a very fine partition, which requires extensive

amounts of experience simply to populate much less achieve a good estimate, and a very

course partition, which is populated quickly but may form a more poor approximation to

the true function.

In addition, I want the partition system, and the points chosen to represent each parti-

tion, to endogenously reflect the experience the agent has had – for better or for worse. If

the agent encounters an unusual set of income shocks, I want the partition of the state space

to endogenously reflect this. This is achieved via the simple equiprobable partitioning of

the state space based on the agent’s experience. As with all steps, this partition is construct

from experience in such a way that it will converge to an appropriate object as learning

time goes to infinity.

Denote the cumulative density function of the state variables m under a particular

consumption function cθ (and under a particular income process) as Fθm, and denote its

60

inverse, the quantile function, as Qθm ≡ F
−1, θ
m . Denote the empirical counterparts to both

of these, constructed with sample size D, as F̂θm,D, and Q̂θm,D, respectively. Both empirical

counterparts converge to the true functions as D →∞.26

I can now use the D-length vector of cash-on-hand states experienced in episode k, ~mk,

to find an equiprobable partition of the state space. Given N , the number of partitions,

simply find the partition boundaries for episode k as follows:

Bk ≡ [Bk,0, Bk,1, ..., Bk,n, ..., Bk,N] ,with elements defined,

Bk,n = Q̂θm,D
(n
N

)
, for n = 0, 1, ..., N.

In addition, denote the partitions defined by the boundaries B {k} as follows:

bk,n = [Bk,n−1, Bk,n) for n = 1, 2, ..., N.

The number of boundary elements in Bk is N+1, and the number of partitions bounded

by Bk is N . For convenience, denote the finite sets which are defined by bk,n and ~mk as

Ak ≡ [Ak,1, ..., Ak,n, ..., Ak,N] , where,

Ak,n ≡ {m s.t. m ∈ ~mk,m ∈ bk,n] .

Because of the discrete nature of the empirical density used, the probability that each

partition occurs is not exactly 1
N but rather,

pk = [pk,1, ..., pk,n, ...pk,N] , where

pk,n =
#Ak,n
D

.

26While the empirical cumulative density function (ECDF) has a unique form, there are a number of way
to construct its inverse, the empirical quantile function, due to the step-function nature of the ECDF. I
employ the median-unbiased quantile function estimator recommended by Hyndman and Fan (1996).

61

The operator # denotes the number of elements in set Ak,n. Now the key question is

how to choose the point to represent each partition. The straightforward answer is to define

the grid M̂k as the empirical conditional expected value of each partition Ak,n:

M̂k = [Mk,1, ...,Mk,n, ...,Mk,N] , where,

Mk,n =
1

#Ak,n

∑
m∈Ak,n

m.

where each Mk,n converges to the conditional expectation E [m | m ∈ Ak,n] as D →∞.

Figure (2.10) provides a visualization of this process for a hypothetical agent who has

experienced 25 states in an episode (D = 25) and who has 5 coarse partitions to summarize

experience (N = 5). The solid red vertical lines represent the boundaries of the partitions,

Bk; the dashed blue lines indicate the conditional means of each bin, M̂k. The dotted

red lines demonstrate that the space has indeed been partitioned into sections with equal

probability of occur according to the empirical quantile function Q̂θm,D.

Note that, by construction,

1

N

∑
m∈~mk

m = Mk,n • pk,n,

which is the empirical counterpart to one simple application of the law of total proba-

bility.

2.4.3 Single-Stream Estimation of vθk

Consider again a single “episode” k of income experience for agent i, with episode length

D as described above:

~yk =
[
ytk , ytk+1, ..., ytk+1−1

]
.

62

Figure 2.10: Partitioning the m Space: 5 bins, D = 25
learning periods

Assume that the agent would like to execute the estimator of vθk presented in expression

(2.21) using this income experience ~yk for a grid of points in the state space. The agent

does not calculate this estimate for just any set of points in the state space, but rather very

specifically on the grid defined by M̂k.

The agent is in fact attempting to calculate the empirical equivalent to the following:

vθ(m | bk,n) ≡ [E]
[
vθ(m) | m ∈ bk,n

]
,

where I will denote the empirical equivalent:

v̂θ(m | bk,n) ≡ ˆ[E]
[
vθ(m) | m ∈ bk,n

]
,

abusing notation slightly by using “v(m | bk,n)” as shorthand for “v(m | m ∈ bk,n).”

I estimate this conditional expectation version of the value function to take advantage

of the law of total probability later, to allow agents to calculate a dynamic estimate of

63

next-period value when learning about regret choices.

Executing the single-stream estimate for each point in the grid is now deceptively

straightforward. The agent simply maintains a vector of state variables, ~mk
N,t, which is

of length N and initially set to the grid for episode k:

~mk
N,0 ≡ M̂k.

The N subscript acts to remind us that this particular vector has dimensions N × 1,

that is, it is the length of the grid on which I am estimating the value function, instead of

D × 1, which is the time-series length of the current episode k.

This vector of m-values is then updated following the law of motion implied by the

current policy function cθ and the shocks ~yk

~mk
N,t+1 = R(~mk

N,t − cθ(~mk
N,t)) + yt+1,

yt+1 ∈ ~yk.

The agent also maintains a rolling summation of discounted utility experienced following

policy ctheta(.). Let ~wk,θt denote the vector of value function estimates, updated similarly

each period:

~wk,θt+1 = ~wk,θt + betatu(cθ(~mk
N,t))

~wk,θ0 = u(cθ(~mk
0)),

which produces the final vector

~wθk ≡ ~wtk+1−1.

64

This final vector ~wθk has been constructed to represent v̂θ(m | bk,n). Importantly, be-

cause of the nature of its construction in equations (2.4.3), the monotonicity of the original

utility function is preserved as the estimation progresses. As discussed in the appendix,

monotonicity plays a key role in the convergence properties of policy iteration, and I strive

to maintain the monotonicity of elements of the regret-learning value function whenever

possible.

Note that this conditional value function vector can be dotted with the empirical prob-

abilities of each partition occurring, to arrive at an unconditional point estimate of the ex-

pected value of following the consumption function ĉθ. This will be important for combining

this individual-level learning of this paper with the social learning suggested in Chapter 3.

This important advancement will be discussed further in the conclusion.

2.4.4 Identifying Regret Choices

Once an agent has experienced D periods in an episode k, determined the state-space

partition M̂k and formed a conditional value function estimate v̂θ(m | bk,n) for that episode,

it’s time to look back and think about what consumption choices the agent should have made

conditional on v̂θ(m | bk,n).

Forming Conditional Distribution prob(mt+1 ∈ bk,n | ct,mt)

I must first outline a key element: forming the one-period-ahead distribution of the occur-

rence of each partition. Recall the partition boundaries for this episode k:

Bk ≡ [Bk,0, Bk,1, ..., Bk,n, ..., Bk,N] ,with elements defined,

Bk,n = Q̂θm,D(
n

N
),

and recall that these boundaries denote the partitions:

65

bk,n = [Bk,n−1, Bk,n) for n = 1, 2, ..., N.

As with the state variables m, denote the cumulative density function of the income

shock as Fy, and denote its empirical counterpart, constructed with sample size D, as F̂y,D.

For an episode k I will construct an empirical cumulative (ECDF)for income using ~yk;

denote this specific empirical density function F̂ky,D.

For each partition bk,n, denote the probability that next-period cash-on-hand mt+1 will

fall in that partition, conditional on current-period cash-on-hand mt, as:

q(bk,n | ct,mt) ≡ prob(mt+1 ∈ bk,n | mt).

I can define this as follows. Consider the problem for a single partition

bk,n = [Bk,n−1, Bk,n) ,

and recall the law of motion for m under the consumption choice ct is

mt+1 = R(mt − ct) + yt+1.

Then,

prob(mt + 1 ∈ bk,n | mt) ≡ prob(Bk,n−1 ≤ mt+1 < Bk,n)

= Fθm(Bk,n | mt)−Fθm(Bk,n−1Bk,n | mt).

66

Note that:

Fθm(Bk,n | mt) = prob(R(mt − ct) + yt+1 ≤ Bk,n)

= prob(yt+1 ≤ Bk,n − R(mt − ct))

= Fy(Bk,n − R(mt − ct)),

Define zn(ct | mt) ≡ Bk,n − R(mt − ct). Now,

q(bk,n | ct,mt) ≡ prob(mt+1 ∈ bk,n | ct,mt)

= prob(Bk,n−1 ≤ mt+1 < Bk,n)

= Fθm(Bk,n | mt)−Fθm(Bk,n−1Bk,n | mt)

= Fy(zn(ct | mt))−Fy(zn−1(ct | mt))

≈ F̂y,D(zn(ct | mt))− F̂y,D(zn−1(ct | mt)).

Thus I can construct the probability that mt+1 falls into the partition bk,n as

q(bk,n | ct,mt) = Fy(zn(ct | mt))−Fy(zn−1(ct | mt)),

and the empirical equivalent estimated from experience as,

q̂(mt+1 ∈ bk,n | ct,mt) = F̂y,D(zn(ct | mt))− F̂y,D(zn−1(ct | mt)),

a straightforward calculation. I will abbreviate this expression

q̂(bk,n | ct,mt)

for notational convenience. Denote the full partitioned probability mass function for

67

episode k, which uses F̂ky,D, as

P̂ km(ct | mt) = [q̂(bk,1 | ct,mt), ..., q̂(bk,n | ct,mt), ..., q̂(bk,N | ct,mt)] .

The notation “(ct | mt)” is intended to communicate the idea that mt will given by

nature, while ct is chosen. This distinction will become apparent in the next section.

Next, construct the empirical, learned-from-experience version of expression (2.7) above:

Ĥ(m, c, v̂θ) = u(c) + β(v̂θ(m | bk,n) • P̂ km(c | m))

= u(c) + β
N∑
n=1

(
v̂θ(m | bk,n)× q̂(bk,n

)

= u(c) + β
N∑
n=1

(
ˆ[E]
[
vθ(m) | m ∈ bk,n

]
× q̂(bk,n

)
.

The goal of this expression is to come as close as possible to constructing an empirical

expression for E
{
vθ(mt+1) | ct,mt

}
using an empirical equivalent to the law of total prob-

ability. This provides a rigorous framework for expressing the idea that the agent learns

imperfectly about both the value of states as well as the dynamics of their environment

from experience.

I am now ready to formalize “regret” and “learning from regret.”

Identifying Regret Choices

The agent can now identify “what they should have done” conditional on the learned value

function v̂θ(m | bk,n). Assume that the agent has been following consumption function cθ

for episode k. Recall that the agent’s experience in episode k is formalized in the following

two vectors,

68

~yk =
[
ytk , ytk+1, ..., ytk+1−1

]
, income shocks, and

~mk =
[
mtk ,mtk+1, ...,mtk+1−1

]
, cash-on-hand states from following cθ.

For each period t in episode k, the agent determines the regret choice čt:

čt = argmax
c∈[0,mt]

Ĥ(mt, c, v̂
θ),

where the full vector of these choices for episode k is defined,

~̌ck ≡
[
čtk , čtk+1, ..., čtk+1−1

]
.

Note that each of the čtk values directly corresponds to a mtk value. Now with the regret

choices in hand, the agent simply needs to find the consumption function which is closest

to these values in a mean squared errors sense.

2.4.5 Improving cθ by Minimizing Regret

Once the regret choices ~̌ck are in hand for episode k, the agent needs to determine the policy

function to use in the next period, k + 1. Recall the structure of the consumption function

the agent is using, parameterized by θ = (κ, m̄):

c̃θ(mt) = E[yt] + κ [mt − m̄] , and

cθ(mt) =

mt if c̃θ(mt) ≥ mt

c̃θ(mt) otherwise.

where as before κ is the marginal propensity to consume out of wealth, m̄ is the buffer-

stock savings target, and the piecewise linear form of cθ imposes the liquidity constraint.

69

The problem facing the consumer is to find the parameters θ̂ = (κ̂, ˆ̄m) such that the sum of

squared errors between the parametric portion of the consumption function applied to the

experienced states, c̃θ̂(~mk), and the regret choices at each of those states, ~̌ck, is minimized.27

Mathematically, the agent wants to solve:

θ̂ = argmin
θ

tk+1−1∑
t=tk

(
c̃θ̂(mt)− čt

)2
,

where each mt ∈ ~mk and čt ∈ ~̌ck as defined in the above section. Implementing this error

minimization for the c̃θ portion of the consumption function via OLS is straightforward;

run the OLS estimate on:

~̌ck = α0 + α1 ~mk

to obtain estimates of the constant α0 and slope α1, respectively, and simply back out

the (κ̂k, ˆ̄mk) values as

κ̂k = α1, and

ˆ̄mk =
E[y]− α0

κ̂k
,

which can be seen by simply rearranging the definition of c̃θ:

27The decision whether to use c̃θ versus cθ to minimize distance to the regret choices is simply due to
computational convenience and reduction in programming error. Future versions will include a restricted
regression form which imposes the liquidity constraint directly. Initial experiments with versions of both
forms indicates that the outcomes of either approach are extremely similar.

70

c̃θ(m) = E[y] + κ [m− m̄] ,

= (E[y]− κm̄) + (κm)

= α0 + α1.

Note that technically the value E[yt] is a parameter of the consumption function in

equation (2.4.5), unless the agent knows this value perfectly. Since the agent must learn

everything from experience, the agent learns this value as well. Instead of estimating E[yt]

in the same way that θ̂ is estimated, the agent simply “calibrates” E[yt]:

E[y] =
1

D

∑
y∈~yk

y.

The resulting consumption function can be denoted cθk+1 , and is set as the consumption

function for the following episode:

c̃θk+1(mt) = E[yt] + κk [mt − m̄k] , and

cθk+1(mt) =

mt if c̃θk+1(mt) ≥ mt

c̃θk+1(mt) otherwise.

Figure (2.11) displays a single step of this process for an agent who is learning from

regret. The dashed blue line represents the agent’s previous-episode consumption function

cθk . The blue stars represent the regret choices identified above, and the solid blue line rep-

resents the new regret-minimizing consumption function cθ̂. The red dashed line represents

the true optimal consumption function.

71

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

1.5

2.0

Learning Policy From Regret, period 25
Length of learning: 25 periods. Number of bins = 11

previous cons
new cons
regret choices
True policy
5th, 95th percentile

Figure 2.11: Improving the Consumption Function by
Minimizing Regret. Agent using 11 bins, D = 25 learn-
ing periods

72

One final important note: agents are restricted from learning consumption functions

with either an unattainable m̄ buffer-stock savings targets (namely, a buffer-stock target

outside the borrowing constraint) or a negative slope on the MPC, κ. Without this re-

striction, an agent may occasionally learn a rule with either property, with the consequence

that the agents takes a large step away from the optimal rule, essentially “starting over” the

learning process in utility term. However the agent quickly returns to learning appropriate

rules in the following episodes; however this brief departure obscures “regular” agent be-

havior when examining the entire distribution (this will be discussed further below). Both

restrictions on m̄ and κ seem to be common-sense, and in addition both are supported by

theoretical restrictions on these parameters.

2.4.6 Regret Learning

I can now finally concisely outline the regret learning algorithm. Recall the two steps

of policy iteration, policy evaluation (2.3.3) and policy improvement (2.3.3), respectively,

repeated here for convenience:

vµk = Tµkvµk , policy evaluation, and,

Tµk+1vµk = Tvµk policy improvement.

Regret learning also has a policy evaluation step and a policy improvement step. These

rely on the approximations discussed in the previous sections, which empirically approxi-

mate various components of both steps above using experience. They are as follows.

Start with an arbitrary initial consumption function cθ0, then iteratively apply the fol-

lowing two steps for D-length episodes of experience, each episode denoted k:

Regret Learning:

• Step (1) Policy Evaluation: Given policy cθk , estimate vθk from experience as de-

scribed in Section (2.4.3), as a noisy, single-stream, curvature retaining Monte Carlo

73

estimate of vθ.

• Step (2) Policy Improvement: Given the conditional value function vθk , find the

regret choices ~̌ck as described in Section (2.4.4). Using these regret choices, find the

new policy function cθ
′
k+1 which minimizes the regret choices in a mean-square errors

sense, as described in Section (2.4.5).

These steps are repeated indefinitely.

2.4.7 Need for an Agent-Based Simulation

Naturally, there are a number of important questions to ask. Although the approximating

components of regret learning have been largely written such that they individually converge

to their theoretical counterparts, full convergence to the theoretical optimal policy and value

functions has not been proved, nor will it be proved in this paper.28 I can, however, say

quite a bit about the behavior of regret learning through an agent-based simulation. I use

this method to sketch out the qualities of regret learning in the following section.

2.5 Results

While the analytical properties of regret learning have yet to be thoroughly explored, I can

say quite a bit with numerical simulation. The broad questions I would like to answer are

the following:

• Can regret learning attain a near-optimal policy?

• How long does this take, and what does it look like?

• How is behavior affected by the parameters D and N?

To address these questions, 1,000 agents were simulated for 10,000 periods for a vari-

ety of combinations of the N , D parameters: the number of partitions used to model the

28Completing the analytical foundations for regret learning is a continuing task to be completed in future
work.

74

following period, and the number of periods used to estimate a value function before up-

dating, respectively. The agent’s behavioral parameters, risk aversion (ρ), discounting (β),

and variance of shocks to income (σy), are calibrated to common values estimated from

microeconomic data. The specific parameters used are expressed in Table (2.1).

The results of the simulation experiment is largely positive. Agents start with a spendthrift

consumption function which has a sacrifice value of roughly 0.9, which can be interpreted

as equal to a one-time payment of ˜90% of expected annual income. Within one learning

episode, this sacrifice value can be cut in half, and within three to five episodes it can be cut

to less than a tenth of the original sacrifice value. These improvements are only partially

permanent, however. As I will demonstrate below, agents spend a short time improving per-

manently over their initial, worst-case spendthrift consumption functions, but then spend

the rest of their lives buffeted around a well-defined distribution of distances from the op-

timal rule. The reasons for agent indecision about their learning rules is intuitive – they

forget their distant past as they continue to live, and their most recent set of experiences

can deceive them about the effectiveness of a consumption rule. As the researchers I a aware

of this deception, but to the agent, acting on their conditional and limited information, it

appears to be the best choice. I argue that this is a feature, not a bug – while agents can

be forced very close to the optimal solution, it is intuitively appealing to have a rigorous

model of agent learning, which strives for optimal behavior (and in fact explicitly has opti-

mal behavior as its target) but none-the-less falls prey to whatever sets of shocks the agent

has most recently experienced. After examining the characteristics of this behavior I will

discuss the particular structural reasons which drive it, and outline extensions which can

extend these results.

2.5.1 Aggregate Regret-Learning Behavior

I will examine agent behavior first from a bird-eye view, outlining distributional effects

before diving into specific examples to explore the details of the mechanics. I will primarily

focus on the differences in behavior which derive from different N and D values. For a given

75

(N,D) parameter pair, agents converge to a distribution of distances from the optimal rule

fairly quickly, within 5-10 episodes (recall that each episode is of length D). This is displayed

in Figures (2.12) through (2.22), which show the time series of sacrifice values from start of

a simulation through a total of 10,000 periods.

The figures are organized by N -value, the number of partitions the agents use to create

the value function estimate. For each N value, the values for a number of lengths of learning

period, denoted D, are displayed.

For N ∈ [3, 5, 7, 11], there is a figure displaying the distribution of sacrifice values ε̄θ over

time for D ∈ [13, 24, 48, 72] and another figure displaying the distribution of ε̄θ over time

for D ∈ [101, 201, 301]. For N ∈ [25, 55, 95], there are only figures for D ∈ [101, 201, 301].29

The choice of N ∈ [3, 5, 7, 11] is to demonstrate the high gains agents experience for

increasing N even a little. The choice of N ∈ [25, 55, 95] demonstrates that these gains

quickly start to tail off as N increases, if D is being held constant.

The choices for D ∈ [13, 24, 48, 72] correspond to roughly the decade after late teens,

the two decades after late teens, four decades after late teens, and lastly an entire lifetime

after late teens.

Finally, the choices for D ∈ [101, 201, 301] are again to demonstrate how the marginal

gains from an increase in learning lengths drop off as D increases for a fixed N .

The parameters used for plots (2.12) through (2.22) are summarized in Table 2.2.

29Note that N < D in all circumstances; if this is not the case, agents cannot populate their probability
mass function in expression (2.4.4).

76

Table 2.2: Parameter Sweep Values

Plots in Figures (2.12) through (2.22)

Number of partitions, N

Length of learning episode D 3 5 7 11 25 55 95

13 periods x x x x

24 x x x x

48 x x x x

72 x x x x

101 x x x x x x x

201 x x x x x x x

301 x x x x x x x

77

Distribution of ε̄θ for N = 3, D = 13 Distribution of ε̄θ for N = 3, D = 24

ε̄θ

min 0.10 0.25 0.50 mean 0.75 0.90 max
mean, 25 obs 0.016 0.166 0.227 0.305 0.321 0.4 0.5 0.797

0 2000 4000 6000 8000 10000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distribution of ̄ε for 1000 Agents; (N,K) = (3,13)

min
0.10
0.25
0.50
mean
0.75
0.90
max

ε̄θ

min 0.10 0.25 0.50 mean 0.75 0.90 max
mean, 25 obs 0.041 0.178 0.225 0.284 0.297 0.355 0.436 0.735

0 5000 10000 15000 20000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distribution of ̄ε for 1000 Agents; (N,K) = (3,24)

min
0.10
0.25
0.50
mean
0.75
0.90
max

Time Time

Distribution of ε̄θ for N = 3, D = 48 Distribution of ε̄θ for N = 3, D = 72

ε̄θ

min 0.10 0.25 0.50 mean 0.75 0.90 max
mean, 25 obs 0.06 0.178 0.218 0.266 0.276 0.322 0.389 0.646

0 5000 10000 15000 20000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distribution of ̄ε for 1000 Agents; (N,K) = (3,48)

min
0.10
0.25
0.50
mean
0.75
0.90
max

ε̄θ

min 0.10 0.25 0.50 mean 0.75 0.90 max
mean, 25 obs 0.056 0.177 0.218 0.265 0.274 0.32 0.382 0.611

0 5000 10000 15000 20000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distribution of ̄ε for 1000 Agents; (N,K) = (3,72)

min
0.10
0.25
0.50
mean
0.75
0.90
max

Time Time

Figure 2.12: Distribution of ε̄θ Over Time, N = 3, D = 13, 24, 48, 72

78

N = 3, D = 101 N = 3, D = 201

ε̄θ

min 0.10 0.25 0.50 mean 0.75 0.90 max
mean, 25 obs 0.065 0.185 0.225 0.273 0.281 0.328 0.389 0.6

0 2000 4000 6000 8000 10000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distribution of ̄ε for 1000 Agents; (N,K) = (3,101)

min
0.10
0.25
0.50
mean
0.75
0.90
max

ε̄θ

min 0.10 0.25 0.50 mean 0.75 0.90 max
mean, 25 obs 0.061 0.188 0.232 0.286 0.292 0.346 0.405 0.588

0 2000 4000 6000 8000 10000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distribution of ̄ε for 1000 Agents; (N,K) = (3,201)

min
0.10
0.25
0.50
mean
0.75
0.90
max

Time Time

N = 3, D = 301

ε̄θ

min 0.10 0.25 0.50 mean 0.75 0.90 max
mean, 25 obs 0.069 0.194 0.238 0.299 0.302 0.361 0.418 0.576

0 2000 4000 6000 8000 10000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distribution of ̄ε for 1000 Agents; (N,K) = (3,301)

min
0.10
0.25
0.50
mean
0.75
0.90
max

Time

Figure 2.13: Distribution of ε̄θ Over Time, N = 3, D = 101, 201, 301

79

N = 5, D = 13 N = 5, D = 24

ε̄θ

min 0.10 0.25 0.50 mean 0.75 0.90 max
mean, 25 obs 0.011 0.13 0.184 0.254 0.271 0.339 0.436 0.777

0 2000 4000 6000 8000 10000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distribution of ̄ε for 1000 Agents; (N,K) = (5,13)

min
0.10
0.25
0.50
mean
0.75
0.90
max

ε̄θ

min 0.10 0.25 0.50 mean 0.75 0.90 max
mean, 25 obs 0.02 0.131 0.176 0.229 0.242 0.294 0.368 0.685

0 5000 10000 15000 20000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distribution of ̄ε for 1000 Agents; (N,K) = (5,24)

min
0.10
0.25
0.50
mean
0.75
0.90
max

Time Time

N = 5, D = 48 N = 5, D = 72

ε̄θ

min 0.10 0.25 0.50 mean 0.75 0.90 max
mean, 25 obs 0.013 0.098 0.138 0.186 0.194 0.239 0.299 0.59

0 5000 10000 15000 20000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distribution of ̄ε for 1000 Agents; (N,K) = (5,48)

min
0.10
0.25
0.50
mean
0.75
0.90
max

ε̄θ

min 0.10 0.25 0.50 mean 0.75 0.90 max
mean, 25 obs 0.013 0.093 0.132 0.178 0.186 0.231 0.288 0.539

0 5000 10000 15000 20000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distribution of ̄ε for 1000 Agents; (N,K) = (5,72)

min
0.10
0.25
0.50
mean
0.75
0.90
max

Time Time

Figure 2.14: Distribution of ε̄θ Over Time, N = 5, D = 13, 24, 48, 72

80

N = 5, D = 101 N = 5, D = 201

ε̄θ

min 0.10 0.25 0.50 mean 0.75 0.90 max
mean, 25 obs 0.015 0.092 0.13 0.176 0.184 0.228 0.286 0.517

0 2000 4000 6000 8000 10000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distribution of ̄ε for 1000 Agents; (N,K) = (5,101)

min
0.10
0.25
0.50
mean
0.75
0.90
max

ε̄θ

min 0.10 0.25 0.50 mean 0.75 0.90 max
mean, 25 obs 0.015 0.09 0.127 0.173 0.182 0.228 0.288 0.501

0 2000 4000 6000 8000 10000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distribution of ̄ε for 1000 Agents; (N,K) = (5,201)

min
0.10
0.25
0.50
mean
0.75
0.90
max

Time Time

N = 5, D = 301

ε̄θ

min 0.10 0.25 0.50 mean 0.75 0.90 max
mean, 25 obs 0.012 0.09 0.126 0.173 0.183 0.232 0.292 0.494

0 2000 4000 6000 8000 10000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distribution of ̄ε for 1000 Agents; (N,K) = (5,301)

min
0.10
0.25
0.50
mean
0.75
0.90
max

Time

Figure 2.15: Distribution of ε̄θ Over Time, N = 5, D = 101, 201, 301

81

N = 7, D = 13 N = 7, D = 24

ε̄θ

min 0.10 0.25 0.50 mean 0.75 0.90 max
mean, 25 obs 0.015 0.132 0.187 0.255 0.274 0.342 0.442 0.786

0 2000 4000 6000 8000 10000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distribution of ̄ε for 1000 Agents; (N,K) = (7,13)

min
0.10
0.25
0.50
mean
0.75
0.90
max

ε̄θ

min 0.10 0.25 0.50 mean 0.75 0.90 max
mean, 25 obs 0.009 0.079 0.12 0.172 0.186 0.235 0.308 0.624

0 5000 10000 15000 20000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distribution of ̄ε for 1000 Agents; (N,K) = (7,24)

min
0.10
0.25
0.50
mean
0.75
0.90
max

Time Time

N = 7, D = 48 N = 7, D = 72

ε̄θ

min 0.10 0.25 0.50 mean 0.75 0.90 max
mean, 25 obs 0.011 0.083 0.12 0.166 0.178 0.223 0.285 0.554

0 5000 10000 15000 20000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distribution of ̄ε for 1000 Agents; (N,K) = (7,48)

min
0.10
0.25
0.50
mean
0.75
0.90
max

ε̄θ

min 0.10 0.25 0.50 mean 0.75 0.90 max
mean, 25 obs 0.008 0.064 0.096 0.14 0.151 0.192 0.252 0.497

0 5000 10000 15000 20000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distribution of ̄ε for 1000 Agents; (N,K) = (7,72)

min
0.10
0.25
0.50
mean
0.75
0.90
max

Time Time

Figure 2.16: Distribution of ε̄θ Over Time, N = 7, D = 13, 24, 48, 72

82

N = 7, D = 101 N = 7, D = 201

ε̄θ

min 0.10 0.25 0.50 mean 0.75 0.90 max
mean, 25 obs 0.008 0.06 0.091 0.133 0.143 0.183 0.241 0.491

0 2000 4000 6000 8000 10000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distribution of ̄ε for 1000 Agents; (N,K) = (7,101)

min
0.10
0.25
0.50
mean
0.75
0.90
max

ε̄θ

min 0.10 0.25 0.50 mean 0.75 0.90 max
mean, 25 obs 0.007 0.059 0.09 0.131 0.142 0.183 0.241 0.455

0 2000 4000 6000 8000 10000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distribution of ̄ε for 1000 Agents; (N,K) = (7,201)

min
0.10
0.25
0.50
mean
0.75
0.90
max

Time Time

N = 7, D = 301

ε̄θ

min 0.10 0.25 0.50 mean 0.75 0.90 max
mean, 25 obs 0.008 0.055 0.086 0.126 0.138 0.18 0.237 0.446

0 2000 4000 6000 8000 10000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distribution of ̄ε for 1000 Agents; (N,K) = (7,301)

min
0.10
0.25
0.50
mean
0.75
0.90
max

Time

Figure 2.17: Distribution of ε̄θ Over Time, N = 7, D = 101, 201, 301

83

N = 11, D = 13 N = 11, D = 24

ε̄θ

min 0.10 0.25 0.50 mean 0.75 0.90 max
mean, 25 obs 0.007 0.082 0.129 0.191 0.212 0.27 0.371 0.779

0 2000 4000 6000 8000 10000
0.0

0.2

0.4

0.6

0.8

1.0

Distribution of ̄ε for 1000 Agents; (N,K) = (11,13)

min
0.10
0.25
0.50
mean
0.75
0.90
max

ε̄θ

min 0.10 0.25 0.50 mean 0.75 0.90 max
mean, 25 obs 0.008 0.064 0.101 0.149 0.164 0.208 0.281 0.609

0 5000 10000 15000 20000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distribution of ̄ε for 1000 Agents; (N,K) = (11,24)

min
0.10
0.25
0.50
mean
0.75
0.90
max

Time Time

N = 11, D = 48 N = 11, D = 72

ε̄θ

min 0.10 0.25 0.50 mean 0.75 0.90 max
mean, 25 obs 0.007 0.051 0.08 0.12 0.134 0.173 0.234 0.513

0 5000 10000 15000 20000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distribution of ̄ε for 1000 Agents; (N,K) = (11,48)

min
0.10
0.25
0.50
mean
0.75
0.90
max

ε̄θ

min 0.10 0.25 0.50 mean 0.75 0.90 max
mean, 25 obs 0.007 0.043 0.068 0.105 0.118 0.153 0.21 0.463

0 5000 10000 15000 20000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distribution of ̄ε for 1000 Agents; (N,K) = (11,72)

min
0.10
0.25
0.50
mean
0.75
0.90
max

Time Time

Figure 2.18: Distribution of ε̄θ Over Time, N = 11, D = 13, 24, 48, 72

84

N = 11, D = 101 N = 11, D = 201

ε̄θ

min 0.10 0.25 0.50 mean 0.75 0.90 max
mean, 25 obs 0.006 0.041 0.065 0.101 0.114 0.148 0.203 0.443

0 2000 4000 6000 8000 10000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distribution of ̄ε for 1000 Agents; (N,K) = (11,101)

min
0.10
0.25
0.50
mean
0.75
0.90
max

ε̄θ

min 0.10 0.25 0.50 mean 0.75 0.90 max
mean, 25 obs 0.006 0.034 0.057 0.091 0.104 0.135 0.19 0.419

0 2000 4000 6000 8000 10000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distribution of ̄ε for 1000 Agents; (N,K) = (11,201)

min
0.10
0.25
0.50
mean
0.75
0.90
max

Time Time

N = 11, D = 301

ε̄θ

min 0.10 0.25 0.50 mean 0.75 0.90 max
mean, 25 obs 0.006 0.031 0.054 0.088 0.1 0.132 0.186 0.402

0 2000 4000 6000 8000 10000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distribution of ̄ε for 1000 Agents; (N,K) = (11,301)

min
0.10
0.25
0.50
mean
0.75
0.90
max

Time

Figure 2.19: Distribution of ε̄θ Over Time, N = 11, D = 101, 201, 301

85

N = 25, D = 101 N = 25, D = 201

ε̄θ

min 0.10 0.25 0.50 mean 0.75 0.90 max
mean, 25 obs 0.006 0.026 0.046 0.077 0.091 0.12 0.173 0.421

0 2000 4000 6000 8000 10000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distribution of ̄ε for 1000 Agents; (N,K) = (25,101)

min
0.10
0.25
0.50
mean
0.75
0.90
max

ε̄θ

min 0.10 0.25 0.50 mean 0.75 0.90 max
mean, 25 obs 0.006 0.02 0.038 0.065 0.079 0.106 0.155 0.397

0 2000 4000 6000 8000 10000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distribution of ̄ε for 1000 Agents; (N,K) = (25,201)

min
0.10
0.25
0.50
mean
0.75
0.90
max

Time Time

N = 25, D = 301

ε̄θ

min 0.10 0.25 0.50 mean 0.75 0.90 max
mean, 25 obs 0.006 0.018 0.035 0.062 0.075 0.101 0.151 0.365

0 2000 4000 6000 8000 10000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distribution of ̄ε for 1000 Agents; (N,K) = (25,301)

min
0.10
0.25
0.50
mean
0.75
0.90
max

Time

Figure 2.20: Distribution of ε̄θ Over Time, N = 25, D = 101, 201, 301

86

N = 55, D = 101 N = 55, D = 201

ε̄θ

min 0.10 0.25 0.50 mean 0.75 0.90 max
mean, 25 obs 0.006 0.022 0.041 0.071 0.086 0.115 0.17 0.417

0 2000 4000 6000 8000 10000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distribution of ̄ε for 1000 Agents; (N,K) = (55,101)

min
0.10
0.25
0.50
mean
0.75
0.90
max

ε̄θ

min 0.10 0.25 0.50 mean 0.75 0.90 max
mean, 25 obs 0.006 0.015 0.028 0.052 0.067 0.088 0.137 0.422

0 2000 4000 6000 8000 10000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distribution of ̄ε for 1000 Agents; (N,K) = (55,201)

min
0.10
0.25
0.50
mean
0.75
0.90
max

Time Time

N = 55, D = 301

ε̄θ

min 0.10 0.25 0.50 mean 0.75 0.90 max
mean, 25 obs 0.006 0.014 0.028 0.052 0.066 0.089 0.136 0.417

0 2000 4000 6000 8000 10000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distribution of ̄ε for 1000 Agents; (N,K) = (55,301)

min
0.10
0.25
0.50
mean
0.75
0.90
max

Time

Figure 2.21: Distribution of ε̄θ Over Time, N = 55, D = 101, 201, 301

87

N = 95, D = 101 N = 95, D = 201

ε̄θ

min 0.10 0.25 0.50 mean 0.75 0.90 max
mean, 25 obs 0.006 0.018 0.035 0.063 0.079 0.106 0.159 0.44

0 2000 4000 6000 8000 10000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distribution of ̄ε for 1000 Agents; (N,K) = (95,101)

min
0.10
0.25
0.50
mean
0.75
0.90
max

ε̄θ

min 0.10 0.25 0.50 mean 0.75 0.90 max
mean, 25 obs 0.006 0.015 0.028 0.053 0.068 0.091 0.141 0.487

0 2000 4000 6000 8000 10000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distribution of ̄ε for 1000 Agents; (N,K) = (95,201)

min
0.10
0.25
0.50
mean
0.75
0.90
max

Time Time

N = 95, D = 301

ε̄θ

min 0.10 0.25 0.50 mean 0.75 0.90 max
mean, 25 obs 0.006 0.013 0.027 0.05 0.066 0.088 0.136 0.511

0 2000 4000 6000 8000 10000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distribution of ̄ε for 1000 Agents; (N,K) = (95,301)

min
0.10
0.25
0.50
mean
0.75
0.90
max

Time

Figure 2.22: Distribution of ε̄θ Over Time, N = 95, D = 101, 201, 301

88

Each plot in Figures (2.12) through (2.22) display the average of the distributional

characteristics – min, median, mean , max, and 10th, 25th, 75th, and 90th percentiles –

for the final 25 periods. There are displayed in each plot, and additionally are recored in

agonizing detail in Tables (2.3) and (2.4).

Somewhat easier on the eyes, the mean, median, 90th and 10th percentiles rows from

Tables (2.3) and (2.4) are displayed in Figures (2.23) through (2.26), along with the 90th−

10th inter-percentile range, a measure of distribution dispersion, displayed in Figure (2.27).

89

0 50 100 150 200 250 300

0.
1

0.
2

0.
3

0.
4

0.
5

Learning Length, D

S
ac

rif
ic

e
va

lu
e

N = 3
N = 5
N = 7
N = 11
N = 25
N = 55
N = 95

Figure 2.23: Mean of ε̄θ Distribution for all N x D values

0 50 100 150 200 250 300

0.
1

0.
2

0.
3

0.
4

0.
5

Learning Length, D

S
ac

rif
ic

e
va

lu
e

N = 3
N = 5
N = 7
N = 11
N = 25
N = 55
N = 95

Figure 2.24: Median of ε̄θ Distribution for all N x D values

90

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

Learning Length, D

S
ac

rif
ic

e
va

lu
e

N = 3
N = 5
N = 7
N = 11
N = 25
N = 55
N = 95

Figure 2.25: 90th Percentile of ε̄θ Distribution for all N x D values

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

Learning Length, D

S
ac

rif
ic

e
va

lu
e

N = 3
N = 5
N = 7
N = 11
N = 25
N = 55
N = 95

Figure 2.26: 10th Percentile of ε̄θ Distribution for all N x D values

91

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

Learning Length, D

S
ac

rif
ic

e
va

lu
e

N = 3
N = 5
N = 7
N = 11
N = 25
N = 55
N = 95

Figure 2.27: 90th − 10th Inter-Percentile Range for ε̄θ Distribution for all N x D
values

92

Table 2.3: Distribution of ε̄θ Over Time, N = 3,5,7,11, D = 13, 24, 48, 72, 101,
201, 301

93

Table 2.4: Distribution of ε̄θ Over Time, N = 25,55,95, D = 101, 201, 301

94

There are a number of observations one can take from Figures (2.12) through (2.22),

Tables (2.3) and (2.4), and particularly Figures (2.23) through (2.26).

Agents converge to a fairly stable distribution of sacrifice values relatively quickly, well

within 5-10 episodes of beginning with a spendthrift “consumer everything” consumption

function. This can be difficult to see for low-D Figures, such as Figure (2.12), but can be

seen much more clearly for higher-D values such as Figure (2.13).

To discuss the effectiveness of regret learning, I focus on the mean and median sacrifice

values, averaged over the last 25 learning episodes from each simulation.30 While the mean

and median values can be observed in the full distribution plots or tables, these summary

values are most easily seen in Figures (2.23) and (2.24). Here it is readily clear that for a

fixed partition N value, the mean and median sacrifice value are nearly flat past a learning-

length of roughly 75-100 periods – this can literally be seen as the flat portions of the blue,

green, and red lines in each plot.31 In addition, it can also be seen that there are smaller

and smaller improvements in learning when increasing N for a fixed D. For example, for

D = 100, there is a large improvement in moving from N = 3 to N = 5, a slightly smaller

improvement for N = 5 to N = 7, somewhat smaller again from N = 7 to N = 11, and

even smaller again from N = 11 to N = 25, a the largest increase in N for the smallest

improvement thus seen. From N = 25 to N = 55, a nearly doubling of the number of

partitions, the improvement is almost indistinguishable. The same is true for the next

near-doubling of N -values, from N = 55 to N = 95.

For the highest N,D combinations, for example N = 95, D = 301, is to possible to push

the median sacrifice value to 5%. This can be clearly seen in Table (2.4). Even the 90th

percentile achieves a sacrifice value of ˜15% across all episode lengths. This is a more than

80% decrease from the original sacrifice value of 90% under the spendthrift consumption

function.

30Recall that a learning episode is D periods long – so for example, 25 episodes of D = 25 periods each
totals to 625 periods.

31The slight upward trend for the N = 3 plot is unusual, and there is not yet a good explanation for this.

95

2.5.2 Individual-Level Results

I now turn to the experience of the individual. An important question is whether or not an

agent’s position in the distribution of sacrifice values is persistent. That is, does an agent

learn a relatively bad rule and “get stuck there,” or vice versa, learn a relatively good rule

and forever reap the associated rewards?

The answer is no – once past the first few episodes, agents move freely throughout their

distribution. There are a number of was to examine this: directly estimate an AR process on

the time series of each agent’s position in the distribution of sacrifice values the persistence

in an AR process, or examine the distribution of consecutive periods spent in deciles of

the sacrifice distribution, or look at the distribution of longest streaks for all agents. All

measurements, however, indicate that there is very little persistence of an agent’s relative

position in the distribution of sacrifice values over time. In fact the distribution of sacrifice

values over time appears to be an excellent description of what the agent can expect one

period ahead. For example, an agent with N = 5 and D = 24 has a roughly 10% chance

of attaining a sacrifice value ≤ 0.13 in a following episode, and a roughly 90% change of

attaining a consumption rule with a sacrifice value ≤ 0.3.

The reason for the lack of persistence in agent experience is straightforward. Regret

learning takes a stark approach to all information prior to the learning episode: it is forgot-

ten completely. If the regret learning algorithm described in Section (2.4.6) (and requisite

foundational sections) is examined closely, it can be seen that no information is used from

prior episodes when forming both the value function estimate, the regret choices, or the

regret-minimizing consumption function. Importantly, the prior value functions learned

from previous periods are forgotten entirely. This is also departure from the algorithms for

policy iteration and optimistic policy iteration, specifically in the policy evaluation step.32

32It is not, however, complete departure, because much of the mechanism by which policy iteration is
shown to converge relies on the monotonicity of T and Tµ in transforming v. This monotonicity is largely
preserved in the parallel approximating steps in regret learning, particularly the single-stream estimation of
v discussed in Section (2.4.3). I have yet to show the monotonicity of policy improvement step for regret
learning; this is currently underway as as part of future work.

96

The reason for this omission is straightforward: if agents are to remember all past in-

formation, one must take a stance on how this is incorporated into agent behavior. The

single-stream Monte Carlo estimator has no simple way to incorporate previous value func-

tions. A number of different potential approaches each raise important methodological

questions. If one were to simply attempt to average in previous experience, even aside from

issues raised by the shifting partitions, one must take a stance on whether much earlier

information should be treated differently than very recent information – that is, one needs

to take a stance on the “gains” which may be used.33 Having agents forget information

completely when starting each new episode is a clean, simple first step in exploring the

behavior of regret learning.

The upside of this stark stance on previous information is that interesting dynamics in

agent learning are clearly highlighted. For example, Figures (2.29) through (2.59) display

a single run for an individual agent with N = 11 partitions and D = 25 learning periods.34

I will use this sequence of plots trace out a typical path through the consumption space.

The plots are paired, a value function plot followed by a consumption function plot. The

value function plot displays two theoretical value functions: the true optimal value function

in black and in red, the theoretical value function associated with the consumption function

cθk employed by the agent in episode k. The purpose of this plot is to give us an idea about

how far, in theoretical terms, the agent is from the true optimal solution; this is crystallized

by the sacrifice value for the consumption function cθk displayed in the legend of this plot.

33See LeBaron (2012) for an excellent examination of related questions in agent-based models generally,

and see Evans and Honkapohja (2001) for a broad discussion of the topic in macroeconomic learning.
34To avoid biased selection of results, this agent was accepted as the first result which emerged from

randomly selecting the starting seed for the random number generator which produced this agent’s shocks.

97

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Cash-on-hand m

11.5

11.0

10.5

10.0

9.5

9.0

V
a
lu

e
:

E
x
p
e
ct

e
d
 L

if
e
ti

m
e
 U

ti
lit

y

v(
m

)

Two value functions, period 25
Length of learning: 25 periods. Number of bins = 11

Learned value; sacrifice = 0.865
True optimal value

Figure 2.28: Welfare Cost

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

1.5

2.0

Learning Policy From Regret, period 25
Length of learning: 25 periods. Number of bins = 11

previous cons
new cons
regret choices
True policy
5th, 95th percentile

Figure 2.29: Paired Plots: Theoretical Value Functions (Top) and Learned cθ

Functions (Bottom)

98

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Cash-on-hand m

11.0

10.5

10.0

9.5

9.0

V
a
lu

e
:

E
x
p
e
ct

e
d
 L

if
e
ti

m
e
 U

ti
lit

y

v(
m

)

Two value functions, period 50
Length of learning: 25 periods. Number of bins = 11

Learned value; sacrifice = 0.38
True optimal value

Figure 2.30: Welfare Cost

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Cash-on-hand m

0.0

0.5

1.0

1.5

2.0

C
o
n
su

m
p
ti

o
n

c

Learning Policy From Regret, Period 50
N = 11 bins. D = 25 episode length.

Previous cons
New cons
Regret choices
True optimal policy
5th, 95th percentile

Figure 2.31: Paired Plots: Theoretical Value Functions (Top) and Learned cθ

Functions (Bottom)

99

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Cash-on-hand m

11.5

11.0

10.5

10.0

9.5

9.0

V
a
lu

e
:

E
x
p
e
ct

e
d
 L

if
e
ti

m
e
 U

ti
lit

y

v(
m

)

Two value functions, period 75
Length of learning: 25 periods. Number of bins = 11

Learned value; sacrifice = 0.535
True optimal value

Figure 2.32: Welfare Cost

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Cash-on-hand m

0.0

0.5

1.0

1.5

2.0

C
o
n
su

m
p
ti

o
n

c

Learning Policy From Regret, Period 75
N = 11 bins. D = 25 episode length.

Previous cons
New cons
Regret choices
True optimal policy
5th, 95th percentile

Figure 2.33: Paired Plots: Theoretical Value Functions (Top) and Learned cθ

Functions (Bottom)

100

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Cash-on-hand m

10.5

10.0

9.5

9.0

V
a
lu

e
:

E
x
p
e
ct

e
d
 L

if
e
ti

m
e
 U

ti
lit

y

v(
m

)

Two value functions, period 100
Length of learning: 25 periods. Number of bins = 11

Learned value; sacrifice = 0.273
True optimal value

Figure 2.34: Welfare Cost

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Cash-on-hand m

0.0

0.5

1.0

1.5

2.0

C
o
n
su

m
p
ti

o
n

c

Learning Policy From Regret, Period 100
N = 11 bins. D = 25 episode length.

Previous cons
New cons
Regret choices
True optimal policy
5th, 95th percentile

Figure 2.35: Paired Plots: Theoretical Value Functions (Top) and Learned cθ

Functions (Bottom)

101

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Cash-on-hand m

10.5

10.0

9.5

9.0

V
a
lu

e
:

E
x
p
e
ct

e
d
 L

if
e
ti

m
e
 U

ti
lit

y

v(
m

)

Two value functions, period 125
Length of learning: 25 periods. Number of bins = 11

Learned value; sacrifice = 0.142
True optimal value

Figure 2.36: Welfare Cost

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Cash-on-hand m

0.0

0.5

1.0

1.5

2.0

C
o
n
su

m
p
ti

o
n

c

Learning Policy From Regret, Period 125
N = 11 bins. D = 25 episode length.

Previous cons
New cons
Regret choices
True optimal policy
5th, 95th percentile

Figure 2.37: Paired Plots: Theoretical Value Functions (Top) and Learned cθ

Functions (Bottom)

102

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Cash-on-hand m

10.5

10.0

9.5

9.0

V
a
lu

e
:

E
x
p
e
ct

e
d
 L

if
e
ti

m
e
 U

ti
lit

y

v(
m

)

Two value functions, period 150
Length of learning: 25 periods. Number of bins = 11

Learned value; sacrifice = 0.072
True optimal value

Figure 2.38: Welfare Cost

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Cash-on-hand m

0.0

0.5

1.0

1.5

2.0

C
o
n
su

m
p
ti

o
n

c

Learning Policy From Regret, Period 150
N = 11 bins. D = 25 episode length.

Previous cons
New cons
Regret choices
True optimal policy
5th, 95th percentile

Figure 2.39: Paired Plots: Theoretical Value Functions (Top) and Learned cθ

Functions (Bottom)

103

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Cash-on-hand m

10.6

10.4

10.2

10.0

9.8

9.6

9.4

9.2

9.0

V
a
lu

e
:

E
x
p
e
ct

e
d
 L

if
e
ti

m
e
 U

ti
lit

y

v(
m

)

Two value functions, period 175
Length of learning: 25 periods. Number of bins = 11

Learned value; sacrifice = 0.09
True optimal value

Figure 2.40: Welfare Cost

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Cash-on-hand m

0.0

0.5

1.0

1.5

2.0

C
o
n
su

m
p
ti

o
n

c

Learning Policy From Regret, Period 175
N = 11 bins. D = 25 episode length.

Previous cons
New cons
Regret choices
True optimal policy
5th, 95th percentile

Figure 2.41: Paired Plots: Theoretical Value Functions (Top) and Learned cθ

Functions (Bottom)

104

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Cash-on-hand m

10.5

10.0

9.5

9.0

V
a
lu

e
:

E
x
p
e
ct

e
d
 L

if
e
ti

m
e
 U

ti
lit

y

v(
m

)

Two value functions, period 200
Length of learning: 25 periods. Number of bins = 11

Learned value; sacrifice = 0.154
True optimal value

Figure 2.42: Welfare Cost

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Cash-on-hand m

0.0

0.5

1.0

1.5

2.0

C
o
n
su

m
p
ti

o
n

c

Learning Policy From Regret, Period 200
N = 11 bins. D = 25 episode length.

Previous cons
New cons
Regret choices
True optimal policy
5th, 95th percentile

Figure 2.43: Paired Plots: Theoretical Value Functions (Top) and Learned cθ

Functions (Bottom)

105

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Cash-on-hand m

11.0

10.5

10.0

9.5

9.0

V
a
lu

e
:

E
x
p
e
ct

e
d
 L

if
e
ti

m
e
 U

ti
lit

y

v(
m

)

Two value functions, period 225
Length of learning: 25 periods. Number of bins = 11

Learned value; sacrifice = 0.221
True optimal value

Figure 2.44: Welfare Cost

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Cash-on-hand m

0.0

0.5

1.0

1.5

2.0

C
o
n
su

m
p
ti

o
n

c

Learning Policy From Regret, Period 225
N = 11 bins. D = 25 episode length.

Previous cons
New cons
Regret choices
True optimal policy
5th, 95th percentile

Figure 2.45: Paired Plots: Theoretical Value Functions (Top) and Learned cθ

Functions (Bottom)

106

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Cash-on-hand m

10.6

10.4

10.2

10.0

9.8

9.6

9.4

9.2

9.0

V
a
lu

e
:

E
x
p
e
ct

e
d
 L

if
e
ti

m
e
 U

ti
lit

y

v(
m

)

Two value functions, period 250
Length of learning: 25 periods. Number of bins = 11

Learned value; sacrifice = 0.085
True optimal value

Figure 2.46: Welfare Cost

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Cash-on-hand m

0.0

0.5

1.0

1.5

2.0

C
o
n
su

m
p
ti

o
n

c

Learning Policy From Regret, Period 250
N = 11 bins. D = 25 episode length.

Previous cons
New cons
Regret choices
True optimal policy
5th, 95th percentile

Figure 2.47: Paired Plots: Theoretical Value Functions (Top) and Learned cθ

Functions (Bottom)

107

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Cash-on-hand m

10.5

10.0

9.5

9.0

V
a
lu

e
:

E
x
p
e
ct

e
d
 L

if
e
ti

m
e
 U

ti
lit

y

v(
m

)

Two value functions, period 275
Length of learning: 25 periods. Number of bins = 11

Learned value; sacrifice = 0.151
True optimal value

Figure 2.48: Welfare Cost

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Cash-on-hand m

0.0

0.5

1.0

1.5

2.0

C
o
n
su

m
p
ti

o
n

c

Learning Policy From Regret, Period 275
N = 11 bins. D = 25 episode length.

Previous cons
New cons
Regret choices
True optimal policy
5th, 95th percentile

Figure 2.49: Paired Plots: Theoretical Value Functions (Top) and Learned cθ

Functions (Bottom)

108

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Cash-on-hand m

10.5

10.0

9.5

9.0

V
a
lu

e
:

E
x
p
e
ct

e
d
 L

if
e
ti

m
e
 U

ti
lit

y

v(
m

)

Two value functions, period 300
Length of learning: 25 periods. Number of bins = 11

Learned value; sacrifice = 0.128
True optimal value

Figure 2.50: Welfare Cost

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Cash-on-hand m

0.0

0.5

1.0

1.5

2.0

C
o
n
su

m
p
ti

o
n

c

Learning Policy From Regret, Period 300
N = 11 bins. D = 25 episode length.

Previous cons
New cons
Regret choices
True optimal policy
5th, 95th percentile

Figure 2.51: Paired Plots: Theoretical Value Functions (Top) and Learned cθ

Functions (Bottom)

109

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Cash-on-hand m

10.5

10.0

9.5

9.0

V
a
lu

e
:

E
x
p
e
ct

e
d
 L

if
e
ti

m
e
 U

ti
lit

y

v(
m

)

Two value functions, period 325
Length of learning: 25 periods. Number of bins = 11

Learned value; sacrifice = 0.122
True optimal value

Figure 2.52: Welfare Cost

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Cash-on-hand m

0.0

0.5

1.0

1.5

2.0

C
o
n
su

m
p
ti

o
n

c

Learning Policy From Regret, Period 325
N = 11 bins. D = 25 episode length.

Previous cons
New cons
Regret choices
True optimal policy
5th, 95th percentile

Figure 2.53: Paired Plots: Theoretical Value Functions (Top) and Learned cθ

Functions (Bottom)

110

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Cash-on-hand m

10.6

10.4

10.2

10.0

9.8

9.6

9.4

9.2

9.0

V
a
lu

e
:

E
x
p
e
ct

e
d
 L

if
e
ti

m
e
 U

ti
lit

y

v(
m

)

Two value functions, period 350
Length of learning: 25 periods. Number of bins = 11

Learned value; sacrifice = 0.063
True optimal value

Figure 2.54: Welfare Cost

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Cash-on-hand m

0.0

0.5

1.0

1.5

2.0

C
o
n
su

m
p
ti

o
n

c

Learning Policy From Regret, Period 350
N = 11 bins. D = 25 episode length.

Previous cons
New cons
Regret choices
True optimal policy
5th, 95th percentile

Figure 2.55: Paired Plots: Theoretical Value Functions (Top) and Learned cθ

Functions (Bottom)

111

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Cash-on-hand m

10.5

10.0

9.5

9.0

V
a
lu

e
:

E
x
p
e
ct

e
d
 L

if
e
ti

m
e
 U

ti
lit

y

v(
m

)

Two value functions, period 375
Length of learning: 25 periods. Number of bins = 11

Learned value; sacrifice = 0.133
True optimal value

Figure 2.56: Welfare Cost

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Cash-on-hand m

0.0

0.5

1.0

1.5

2.0

C
o
n
su

m
p
ti

o
n

c

Learning Policy From Regret, Period 375
N = 11 bins. D = 25 episode length.

Previous cons
New cons
Regret choices
True optimal policy
5th, 95th percentile

Figure 2.57: Paired Plots: Theoretical Value Functions (Top) and Learned cθ

Functions (Bottom)

112

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Cash-on-hand m

11.0

10.5

10.0

9.5

9.0

V
a
lu

e
:

E
x
p
e
ct

e
d
 L

if
e
ti

m
e
 U

ti
lit

y

v(
m

)

Two value functions, period 400
Length of learning: 25 periods. Number of bins = 11

Learned value; sacrifice = 0.281
True optimal value

Figure 2.58: Welfare Cost

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Cash-on-hand m

0.0

0.5

1.0

1.5

2.0

C
o
n
su

m
p
ti

o
n

c

Learning Policy From Regret, Period 400
N = 11 bins. D = 25 episode length.

Previous cons
New cons
Regret choices
True optimal policy
5th, 95th percentile

Figure 2.59: Paired Plots: Theoretical Value Functions (Top) and Learned cθ

Functions (Bottom)

113

The consumption plot in each pair of plots displays the theoretical optimal consump-

tion function in a red dashed line, the previous-episode cθk function in dashed blue line, the

regret choices learned after following that function as blue stars, and finally the updated

consumption function cθ
′
k+1 which minimizes distance between the regret choices. The verti-

cal dashed lines in each consumption plot outline the 5th and 95th percentiles of the ergodic

distribution of cash-on-hand , m, following the true optimal rule. These are included to

provide a rough indication of how “out of the ordinary” a set of consumption experiences

may be with respect to the target optimal policy. When experiences stray outside these

boundaries, the agent tends to learn a poor consumption function.

In the plot-pairing of Figure (2.29), the sacrifice value of the initial spendthrift con-

sumption function is quite high, 0.865, or roughly 90% of expected annual income. In the

following consumption figure, the dashed blue line is the 45∗ line – the initial spendthrift

consumption function, cθ0 . The blue stars represent the regret choices – the choices the

agent wishes he/she made, after following the spendthrift rule and then the estimated value

function is not shown in any plots). The solid blue line is the first improved policy function

cθ
′

1 which the agent learns from these regret choices – it is already bending towards the

optimal policy.

The following paired plots, Figure (2.31), show the theoretical value function and sac-

rifice value for the previously learned consumption function, cθ
′

1 . The first value function

is already a dramatic improvement over the original spendthrift rule: 0.38 is less than half

of the original sacrifice value. Once again, the stars indicate the regret choices which arise

from the value function estimated from experience following the cθ
′

1 function. Note that the

regret values are concentrated around the lower 5th percentile – when the agent minimizes

regret through these choices, the resulting consumption function, the solid blue line, visually

moves slightly away from the true optimal policy. As a result, this episode is less impressive

for agent learning. Looking ahead to Figure (2.33) the agent actually retreats slightly in

utility terms; the learned function has a sacrifice value of ˜0.54.

114

There is no need for despair, however – the next updated consumption function, the

solid blue line in the bottom plot of Figure (2.33), is moving back on track. Figures (2.35),

(2.37) and (2.39) show the agent making solid progress to a consumption function with a

7% sacrifice value.

Continue this examination from (2.39) through the end of the agents recorded experience

in Figure (2.59). Conveniently these last figures demonstrate the agent being deceived by

experience one final time by a set of regret experiences on the low end of experience – see

the consumption update in Figure (2.57) and the subsequent sacrifice value increase in the

value portion of Figure (2.59).

2.5.3 Individual-Level Results: Summarized

Finally, the agent’s experience as described is summarized in Figure (2.60), which displays

the sacrifice values in levels and as a fraction of the spendthrift sacrifice value. It can be

seen that the agent experiences improve quickly and then settle into the distribution of

sacrifice values appropriate to their D and N parameters, which may be read off of Table

(2.3). Note that this agent’s uptick in sacrifice value in the final period is essentially right

at the 90th percentile cutoff.

2.5.4 Individual-Level Results: Welfare Analysis

One last way to visualize the agent results for different N , D parameter values is to examine

what an agent’s learning path through the welfare surface depicted in Figure (2.7) looks

like. I create two separate agent learning experiences and map their progress through the

welfare space (the sacrifice value surface) in Figures (2.61) through (2.66). These plots look

“messy” because they only display the experiences of two agents – they are meant only as

a stylistic demonstration and not as a description of the distributional characteristics of

learning, as the multi-agent simulation above capture.

The first figure demonstrates the two agents learning, one denoted by the connected blue

dots, and one denoted by the connected green dots. As in all examples, agents start at the

115

“consume everything” spendthrift rule on the far right side of the plots where m̄ = κ = 1.0

and learn for 10 episodes. Because episodes will vary in length, the total time will vary,

but each plot will display 10 episodes of learning experience for two agents. In the first

learning plot, Figure (2.61), the two agents have a sophistication of N = 5 and episode

length D = 25. Their first learning episode takes them directly inside the contour line for

ε̄θ = 0.4, and they quickly fall into a rough distribution here. This experience is consistent

with that seen in Table (2.3).

The next three Figures, (2.62) through (2.64), demonstrate what learning looks like as

we incrementally increase N or D. The central tendency of the learning ”clusters” shift

closer towards the least-welfare-loss rule as N and D increase.

Figures (2.65) and (2.66) push agent experience to higher extremes, and demonstrate

that as sophistication N and episode length D increase, agents tend to learn rules closer

and closer to the true optimal rule. The few wild swings seen also illustrate that agents can

still be “deceived” by their experience, and learn rules which are not monotonically in the

direction of the true optimal rule. Note, for example, the blue agent jumping out of the

0.05 sacrifice ring in Figure (2.64). Importantly, the agents in all plots endogenously avoid

the “danger region” in the upper right-hand side of the welfare surface.

2.6 Summary, Conclusion, and Next Steps

The research goal of regret learning is to capture the simplest possible fully modular method

of learning, which allows agents to converge to a stable, well-defined neighborhood around

the true policy in with minimal external information from the modeler. It is meant to

be easy to understand and immediately implementable for the economist and agent-based

modeler who is familiar with dynamic programming. Furthermore, it has been designed

from the ground up to be nearly trivial to take to data – this is a natural result of being

closely tied to the dynamic programming framework and use to solve the same problem

as are popular in the consumption under uncertainty literature. The Heterogeneous-Agent

116

Computational toolKit (HACK), presented in Chapter 3, makes the estimation of regret

learning almost instantaneous, using the same data and estimation methods (Simulated

Method of Moments, SMM, with bootstrapped standard errors) as the traditional frame-

work. The extensive effort presented in the Consumer Problem section aims to make this

model compatible with the consumer problem as presented in HACK. The fact that the

HACK framework estimates a finite-horizon consumption savings buffer-stock problem does

not present a problem; as has been often observed35 households do not seem to accumulate

liquid savings for retirement until roughly 45-50 years old. This leaves at least 20-30 years

of data against which the infinite-horizon model above can be estimated without fear of

structural mismatch.

There are a number of possible extensions and next steps for regret learning. These

include:

• Estimating the model against data to establish a fit for risk aversion, the discount

factor, and N and D parameters, if so desired.

• Implementing variations of the regret learning algorithm:

– regret learning using simpler alternative value estimators, such as nearest neigh-

bor approximations, which allow flexibility in choosing D < N parameters,

– regret learning in an optimistic policy iteration framework, which would update

the value function each time step instead of each episode; in such a case the

policy update would still occur each episode but the value function would evolve

more quickly, or

– regret learning which carries the value function forward from one episode to the

next.

• Use simulation-based model selection, as discussed in Shalizi (2015), to distinguish

between different possible variations of the regret-learning framework as suggested

above.

35See, for example, Cagetti (2003), Carroll and Samwick (1997), and Gourinchas and Parker (2002).

117

• Continue to work out the convergence properties of the current model.

• Continue to work out the analytical parallel between regret learning and Q-learning.

• Continue to explore the analytical foundations of regent leaning, including application

of non-expansive transformations in an approximate policy iteration framework.

• Construct an empirical “horse race” between various versions of the learning algo-

rithms in the small but growing “learning to optimize” literature.

The original motivation for developing regret learning was to provide agents in Chapter

3 with a robust method of local exploration. This has been archived, and in addition regret

learning presents an immediate option to include social learning into the model. Because

agents estimate the full distribution and full value function in regret learning, they can

communicate their unconditional expectation of the value of using their function, and can

thus socially share information as in Chapter 3 with any agent in their population.

Finally, this model is explicitly intended to be used in large-scale agent-based models

such as Geanakoplos et al. (2012) or the CRISIS model (Hommes and Iori, 2015).

The core of the CRISIS model is an agent-based model with households who explicit act

as Allen and Carroll (2001) consumers, using the same linearized form of the consumption

function has I use here, but without the learning element. This is a prime example of the

appropriate application of regret learning to agent-based models, and the type of application

for which it is very well suited.

118

0 100 200 300

0.
2

0.
4

0.
6

0.
8

1.
0

Periods

S
ac

rif
ic

e
V

al
ue

s

Levels
Fraction of spendthrift value

Figure 2.60: Summarized Sacrifice Value Experience

0.0 0.2 0.4 0.6 0.8 1.0
Marginal propensity to consume

0.0

0.5

1.0

1.5

2.0

2.5

3.0

B
u
ff

e
r

st
o
ck

 t
a
rg

e
t
m̄

0.0055

0.050

0
.1

0
0

0
.2

0
0

0
.4

0
0

0.400

0.500

0.750

0.
87

8

0.900

Two Agents Learning on Sacrifice Contour: N = 5, D = 25
10 Episodes = 250 Periods

Figure 2.61: Learning from Regret: N = 5, D = 25

119

0.0 0.2 0.4 0.6 0.8 1.0
Marginal propensity to consume

0.0

0.5

1.0

1.5

2.0

2.5

3.0

B
u
ff

e
r

st
o
ck

 t
a
rg

e
t
m̄

0.0055

0.050

0
.1

0
0

0
.2

0
0

0
.4

0
0

0.400

0.500

0.750

0.
87

8

0.900

Two Agents Learning on Sacrifice Contour: N = 5, D = 40
10 Episodes = 400 Periods

Figure 2.62

0.0 0.2 0.4 0.6 0.8 1.0
Marginal propensity to consume

0.0

0.5

1.0

1.5

2.0

2.5

3.0

B
u
ff

e
r

st
o
ck

 t
a
rg

e
t
m̄

0.0055

0.050

0
.1

0
0

0
.2

0
0

0
.4

0
0

0.400

0.500

0.750

0.
87

8

0.900

Two Agents Learning on Sacrifice Contour: N = 11, D = 25
10 Episodes = 250 Periods

Figure 2.63

120

0.0 0.2 0.4 0.6 0.8 1.0
Marginal propensity to consume

0.0

0.5

1.0

1.5

2.0

2.5

3.0

B
u
ff

e
r

st
o
ck

 t
a
rg

e
t
m̄

0.0055

0.050

0
.1

0
0

0
.2

0
0

0
.4

0
0

0.400

0.500

0.750

0.
87

8

0.900

Two Agents Learning on Sacrifice Contour: N = 11, D = 40
10 Episodes = 400 Periods

Figure 2.64

0.0 0.2 0.4 0.6 0.8 1.0
Marginal propensity to consume

0.0

0.5

1.0

1.5

2.0

2.5

3.0

B
u
ff

e
r

st
o
ck

 t
a
rg

e
t
m̄

0.0055

0.050

0
.1

0
0

0
.2

0
0

0
.4

0
0

0.400

0.500

0.750

0.
87

8

0.900

Two Agents Learning on Sacrifice Contour: N = 21, D = 50
10 Episodes = 500 Periods

Figure 2.65

121

0.0 0.2 0.4 0.6 0.8 1.0
Marginal propensity to consume

0.0

0.5

1.0

1.5

2.0

2.5

3.0

B
u
ff

e
r

st
o
ck

 t
a
rg

e
t
m̄

0.0055

0.050

0
.1

0
0

0
.2

0
0

0
.4

0
0

0.400

0.500

0.750

0.
87

8
0.900

Two Agents Learning on Sacrifice Contour: N = 55, D = 201
10 Episodes = 2010 Periods

Figure 2.66

122

Chapter 3: Social Learning from Experience

3.1 Introduction

Buffer-stock savings is an intuitive and empirically grounded result to emerge from the lit-

erature on consumption under uncertainty (Carroll et al. (1992), Carroll (2012c)). Even

though buffer-stock savings behavior may be both intuitive and observed, it is difficult to

imagine a household coming to this solution via the theory and computation employed by

researchers. Allen and Carroll (2001) note this explicitly, and as an alternative, propose

that households may learn near-optimal consumption behavior by trial and error. Essen-

tially, they propose that households run a Monte Carlo experiment using their own lifetime

experience to estimate the value function associated with a simplified linear consumption

rule. They implement this model, and their results are both exciting and discouraging. On

the positive side, they show that a simple linear consumption rule can closely approximate

the true consumption function. Furthermore, given enough time, consumers using trial and

error learning over a set of linear rules can consistently find a near-optimal rule. Their

negative result is that“enough time” is anywhere from 200,000 to 4 million years in their

model’s parameterization. As the authors note, even with a highly efficient search algo-

rithm, the time required to consistently find a near-optimal rule is well outside a human

lifetime. The trouble is that the Monte Carlo style estimation relies on random variables

which are temporal in nature – a single draw requires agents to literally live through a

number of periods.

This paper presents preliminary results for two extensions to the framework of Allen

and Carroll (2001) which seek to address the negative result. First, agents are placed on

a network and allowed to share their experiences with one another. This greatly reduces

the amount of time required for a population of agents to find a near-optimal rule. With

123

full information sharing among agents, I find it possible to push the number of periods

necessary to find a near-optimal consumption rule arbitrarily close to the lowest bound on

finding such rules, well within the lifetime of an agent.

The second extension introduces a modified learning rule, such that agents share (and

employ) a measure of welfare which is relative to welfare experienced under a“baseline”

consumption rule. A natural candidate for the baseline rule is the“consume everything”

rule. This extension intends to eventually allow agents with different initial endowments

to share information, which is not possible under the original formulation. This is one

attempt to make the solution method usable in a larger simulation setting: if endowments

can vary, agents can share information freely both across endowments in a single period,

and potentially“across generations.” Initial results indicate that this modified learning rule

performs as well as – and often better than – the original rule in original homogeneous initial

endowment setting. In a heterogeneous initial endowment setting, tentative results suggest

that the modified rule performs comparably to the original rule in the original setting.

An extensive literature spanning nearly a century exists for the modern formulation of

the consumption under uncertainty model. Although Keynes (1936) famously discussed the

consumption function in terms of the marginal propensity to consume, it was Friedman

(1957) who did much to develop and popularize the idea of the consumption function in

its current form, along with the idea that agents acted dynamically and intelligently when

making consumption decisions. Due to many technical difficulties, for many years models of

the consumption process were bound away from dealing with the issue of income uncertainty

– see Hall (1978) for a particularly famous example of this, and Deaton (1992) for an

overview of the difficulties this era of models encountered. It wasn’t until Zeldes (1989)

that the first work on consumption under income uncertainty began to develop. Since then,

there has been an explosion of research in this area; Carroll (2001b) offers an excellent

overview of this history.

With respect to the particular model extended here, two recent papers have addressed

the question of household learning about consumption. Howitt and Ozak (2009) implement

124

an adaptive consumption rule based on the Euler equation, which does not require extensive

memory on the part of the agent. Yildizoglu et al. (2012) explicitly seek to address the

same negative results this paper addresses, by expanding agent cognition and learning.

Their methods included learning through imitation and learning which employs genetic

algorithms and artificial neural networks to form outlooks. My approach differs from both

by simply extending the original Allen and Carroll (2001) framework to include social

learning without introducing much new cognitive architecture.

The rest of the paper is organized as follows: Section 2 reviews the original Allen and

Carroll (2001) model and explains why agent-based modeling (ABM) is the best approach

here. Sections 3 and 4 discusses the first and second extensions to the model, respectively,

and algorithmic details of their implementation. Section 5 explores the results, and Section

6 concludes with a discussion of work in progress and directions for future research.

3.2 Individual Learning

3.2.1 The Model

Allen and Carroll (2001) construct a simple model of buffer stock savings, as in Carroll

et al. (1992). The consumer1 solves,

max
{Ct}∞0

U = E0

[∞∑
t=0

βtu(Ct)

]
(3.1)

1The terms“consumer” and“agent” are used interchangeably to refer to the agents in this model.

125

s.t.

Xt+1 = R [Xt − Ct] + Yt+1

Ct ≤ Xt

X0 = S0 + Y0

S0 given

where S0 is initial savings, Xt is“cash-on-hand” available to a consumer at time t, Ct

is consumption in period t, and R is the interest rate. Here, R = 1 for simplicity. Yt is

a simple random income process, (3.2), chosen to roughly match the properties of income

explored in Carroll et al. (1992):

Yt =

0.7 with prob 0.2

1.0 with prob 0.6

1.3 with prob 0.2.

(3.2)

The instantaneous utility function will be the standard Constant Relative Risk Aversion

(CRRA) form,

u(C) =
C(1−α)

(1− α)

withα = 3 in this model.

The solution to the problem is the sequence of consumption choices {Ct}∞0 , which may

be represented as the optimal consumption function is denoted C∗(X).2General properties

of the function C∗ are known. As discussed in Allen and Carroll (2001), when consumers

2I will denote the rule C∗(X) as C∗ for brevity.

126

are impatient enough,3 C∗ can be stated in the form:

C∗(Xt) = 1 + f(Xt − X̄∗). (3.3)

where X̄∗ is a target buffer stock of liquid wealth. When an agent experiences low income,

he/she will consume some of the buffer; when income returns to normal, the consumer

will attempt to save back to the target level X̄∗. The consumption function (3.3), then, is

stated as the average expected income (here, 1) plus a function of thedifference between

current cash-on-hand, Xt, and the target buffer stock level, X̄∗. Thus if the agent’s current

cash-on-hand is below the target savings level, f tells the agent how much to consume (and

thus how much to save) to move back towards the target savings level.

3.2.2 Approximating a Solution with Experience-based Learning

The function f , and thusC∗, is non-linear and very difficult to find. As Allen and Carroll

(2001) note,

“Despite its heuristic simplicity, the exact mathematical specification of op-

timal behavior is given by a thoroughly nonlinear consumption rule [C∗] for

which there is no analytical formula. While certain analytical characteristics

of the rule can be proven, it is hard to see how a consumer without a super-

computer and a Ph.D. could be expected to determine the exact shape of the

nonlinear and non-analytical decision rule.”

Anecdotal evidence, however, suggests that many people do behave stylistically similarly

to the optimal consumption rule – they save some fixed level of income for“rainy days,”

consume it in bad times, and build it back up in better times. Allen and Carroll (2001) ask

a very natural question: if C∗ is so difficult to find, how could anyone expect the average

household to ever discover it? Certainly the fact that it took casts a dim light on the

3The condition in this version of the model is Rβ < 1. Intuitively, this is a statement is that consumers
are impatient; see Carroll (2012c) for a thorough discussion of this problem.

127

prospects of the average household ever finding such a rule. Allen and Carroll (2001) offer

a novel hypothesis in the literature: if a simple linear version of the rule could be created,

perhaps households could get close to the optimal rule by trial and error. To get a simple

linear version of (3.3) to use in such a process, Allen and Carroll (2001) take a first-order

Taylor approximation around the target buffer-stock wealth, X̄, which yielded a function

of the form

Cθ(Xt) = 1 + κ[Xt − X̄], (3.4)

and implementing the liquidity constraint,

Cθ(Xt) =

1 + κ(X − X̄) if 1 + κ(X − X̄) ≤ X

X if 1 + κ(X − X̄) > X

. (3.5)

where now f has been replaced with a simple linear function κx. For convenience, let

θ := (κ, X̄) be the pair of parameters which define this rule; the superscript θ indicates

thatCθ4 uses rule θ. I can find the“optimal approximate” rule θ∗ = (κ∗, X̄∗) by taking κ∗

from the linearizion process applied to (3.3); the optimal value for X̄ is already know from

the optimal solution (3.3). As noted in Allen and Carroll (2001), this optimal rule (to three

decimal places) is

θ∗ = (κ∗, X̄) = (0.233, 1.243).

Denote the approximate consumption rule that uses these optimal values Cθ∗.

Both Cθ and C∗ are possible solutions to the consumption problem (3.1). To discuss

consumer welfare, construct the value function associated with each by plugging them into

4Because the linear consumption rule Cθ is associated with one and only with one parameter-pair (κ, X̄),

I will refer to the linear consumption rule that uses the parameters θ = (κ, X̄) interchangeably as both “Cθ”
and the shorthand, “θ.”

128

(3.1):

V θ(X0) = E0

[∞∑
t=0

βtu(Cθ(Xt))

]
(3.6)

V ∗(X0) = E0

[∞∑
t=0

βtu(C∗(Xt))

]
, (3.7)

with constraints omitted for brevity. By the optimality of C∗ for the problem (3.1), I

know that (3.7) must be greater than all possible (3.6) values:

V ∗(X0) ≥ V θ(X0) for each X0 and ∀θ.

The question is then which value of V θ is closest to the optimalV ∗. One may be tempted to

examine simple Euclidean distance to choose the closest rule – that is, for each θ, determine

δθ(X0) = |V ∗(X0)− V θ(X0)|

and then simply choose the θ for which δθ is smallest. This approach, however, is dissatis-

fying from a theoretical perspective. Technically, the left-hand sides of (3.6) and (3.7) are

in terms of“utility,” which is actually a reflection ofordinal preferences, and therefore the

cardinality of (3.6) and (3.7) have no natural value. The cardinality is relevant insofar as

it implies an ordinality, but the distances δθ(X0) have no meaningful value beyond that.

The way around this conundrum is to ask the question“which is better?” in terms of

something that is naturally a cardinal value. The approach Allen and Carroll (2001) take

is to ask the following:“Assume a consumer is using the optimal consumption rule. How

much cash-on-hand would he/she be willing to pay tonot switch from using the optimal

rule C∗ to some non-optimal rule Cθ?”

129

Call this value the“sacrifice value,” denoted ε and defined as,

V ∗(X0 − ε) = V θ(X0)

⇔ ε = X0 − V ∗(−1)(V θ(X0))

⇔ εθ(X0) = X0 − V ∗(−1)(V θ(X0)),

where εθ indicates that this sacrifice value is for rule θ. Note that V ∗(−1) is the inverse of

V ∗. Because the sacrifice value clearly depends on the level of wealth that a consumer has

at the moment of the decision ,X0, Allen and Carroll (2001) opt for one additional step.

They construct theaverage of the sacrifice value for each rule θ, which they call ε̄θ:

ε̄θ = E[εθ(X0)].

To find this expectation, Allen and Carroll (2001) need a distribution over the X-values.

They use the ergodic distribution of cash-on-hand values constructed via simulation as

described in Carroll (2001a). They construct a large number of agents with utility and a

budget as in (3.1) and an income as in (3.2), and hand them the optimal consumption rule

C∗. Then they simply run all these consumers forward through time; after a very short

time, the distribution settles down to the ergodic distribution of cash-on-hand wealth.

This brings us to Allen and Carroll (2001)’s first positive results. With ε̄θ in hand,

a very natural first question is,“what is the sacrifice value of the rule θ∗? Surprisingly

enough, they find the answer to be ε̄θ∗ = 0.003. This is a very small value. Recall that ε̄θ is

in terms of expected cash-on-hand. Recall also the calibration of annual income in equation

(3.2) implies that average annual income is normalized to 1. Thus a sacrifice value of 0.003

corresponds to 0.3% of average annual income for an agent in this model – less than one

half of one percent. If, for example, average annual income was instead $50,000, ε̄∗ would be

$150. To state this differently, if it cost a consumer more than a one-time payment of $150

130

Author’s replication of Allen and Carroll (2001) Figure 2.

Figure 3.1: The Exact Consumption Rule (solid) and the Best Approximation
(dashed)

to find the“thoroughly nonlinear ... and non-analytical decision rule ”C∗, the consumer

would be better off using the simple linear consumption rule Cθ∗ for the rest of their lives.

Figure (3.1) reveals why ε̄θ∗ is so low: between the 5th and 95th percentiles of the

ergodic cash-on-hand distribution, denoted by the vertical dotted lines, the best linear rule

is incredibly close to the exact nonlinear rule. Above the95th percentile the approximation

grows much worse, but the majority of the time consumers will not encounter this region.5

Of course, the optimal approximate ruleθ∗ is only one of many possible rules. To get an

idea of what the sacrifice value looks like over a wider range of rules, Figure (3.2) displays a

contour map ofε̄θ over a grid of (κ, X̄) values. The grid is discussed further below. The grid

point closest in utility terms to the exact rule is (0.25, 1.2). Call this ruleθgrid := (0.25, 1.2).

The sacrifice value forθgrid is 0.007, slightly more than half a percent of average annual

income. That is, for a $50,000 annual income, this would be $350. Figure (3.2) will provide

5The 45◦ line is due to the fact that over a certain region of cash-on-hand, the optimal consumption
choice is actually higher than the agent’s income, and thus the agent consumes everything. This is the“credit
constrained” region.

131

Author’s replication of Allen and Carroll (2001) Figure 1.

Figure 3.2: Sacrifice Values For Approximate Linear Consumption Rules

important insight into results below, so it is worthwhile to spend a moment exploring it.

Note that the highest-valued contour line, at 0.575, corresponds to the rule(1, 1). Plug-

ging this into (3.4), we get

C(1,1)(Xt) = 1 + (1)[Xt − 1]

= Xt.

That is, I get the“consume everything” rule. This rule, in which agents save nothing and

always consume their full income each period, has a sacrifice value of 0.575 – for an average

income of $50,000, about $29,000 dollars. This is significantly higher than the lowest sacrifice

rule, whether I consider θ∗ or θgrid. The other contour lines are at intermediate values – 5%,

20%, and 40% of average annual income. For an average income of $50,000, these would

correspond to one-time payments of $2,500, $10,000, and $20,000, respectively.

132

Finding the Approximate Rules

To model trial-and-error learning, Allen and Carroll (2001) propose a statistically consistent

estimator of (3.6) by definingW̄ θ as follows. Let

W θ
i (X0) =

N∑
t=0

βtu(Cθ(Xt)), and (3.8)

W̄ θ = 1
M

M∑
i=1

W θ
i (X0). (3.9)

Let us unpack this statement a little. EachXt is produced by a different realization of a

random income process, starting from the sameS0.6 As N in (3.8) goes to∞, (3.8) clearly

approaches a single-Xt-realization of the summation inside the expectation in equation (3.6).

What I want, of course, is the full expectation in equation (3.6). Now I employ equation

(3.9). This is the average over M independent“runs” of (3.8), so as M → ∞,W̄ will yield

a consistent estimator of (3.6).

Thus asN andM jointly go to infinity,W̄ yields an accurate estimate the value of a

particular consumption rule for a consumer. This can now easily be translated into agents’

trial-and-error exploration of consumption rules. Assume that the consumer has some

number of different consumption rules to try and compare, say, {θ1, θ2, θ3, ..., θK}. Given

some ruleθ, the household can try it forN periods,M times, and get an estimate of (3.6)

for that rule. Repeat this for each rule; then at the end of this procedure, simply compare

the values attained by each rule. Pick the highest valued rule and go with that. Since

the household clearly cannot letN andM go to infinity, the household will have some noisy

estimate of the true value ofV θ – itself an approximation ofV ∗ – for some finite values ofN

andM . The question, then, is“whatN andM will give consumers a reasonable chance of

finding the optimal consumption rule?”

6Which produced anX0 value, as described for the problem (3.1).

133

To answer this question, Allen and Carroll (2001) create a discrete grid for the consump-

tion rules and instantiate 100 artificial consumers, who explore the space individually with

a grid search (discussed further below) for a given(N,M) pair. Specifically, letκ ∈ (0, 1]

with steps of 0.05, andX̄ ∈ [1, 3) by steps of 0.1, for a total of 20x20 = 400 possible rules.

Formally, the rule spaceΘ which Allen and Carroll (2001) employ is

Θ :=
{

(κ, X̄) s.t. κ = {0.05, ... , 1.0} in 0.05 steps; X̄ = {1.0, ... , 2.9} in 0.1 steps
}
. (3.10)

Allen and Carroll (2001) sweep over a parameter space ofN andM , repeating the above

process for each(N,M) pair in the space:

L := {(N,M) s.t. N ∈ {10, 20, 50} and M ∈ {1, 10, 50, 200}} .

Lastly, because the process of (3.8) and (3.9) requires the same value of initial cash-

on-hand forXt, Allen and Carroll (2001) restrict their consumers to repeated searches from

the same initial savings value,S0 (recalling the budget constraint in equation (3.1) above);

this ensures that (3.9) is a consistent estimator of (3.6).7 To see whether differentS0 values

influence how well a consumer can find an optimal rule, Allen and Carroll (2001) include

S0 as a parameter over which to sweep.

3.2.3 Original Model Results

The results of Allen and Carroll (2001)’s parameter sweeps across N and M are displayed in

Table3.1, an excerpt of the original results.8“Mean Sacrifice” is ε̄θ.“Success Rate” measures

the fraction of the 100 consumers who have chosen a rule with a sacrifice value ≤ 0.05 by

the end of the simulation – that is, the consumers who fall within the 0.05 contour in Figure

3.2.“Total periods” is the number of periods it takes a consumer to obtain the solution.

7They useS0 instead ofX0 to make some technical computations easier.
8The full results include tables for S0 = 0 and S0 = 2 as well. These results are largely in line with those

shown, and are excluded in this paper for the sake of space and clarity.

134

Table 3.1: Allen and Carroll’s Individual Search Results

Source: Allen and Carroll (2001)

It is immediately clear that for consumers to find a near-optimal linear rulereliably

– greater than 67% of the time, for example – they must spend hundreds of thousands of

years exploring the parameter space. The lowest (N,M) pair which achieves this is (50, 50),

which takes 1,000,000 years for each agent to undertake individually. This result turns more

negative when I recall that these outcomes apply for only a single value of S0 – if consumers

wanted to look for a best rule across multiple values of S0, they need to roughly triple their

search time. Clearly, part of this time is the inefficient grid search – the fact that each

consumer must try out each of the 400 rules immediately implies that the time spent for a

given (N,M) combination is N ∗M ∗ 400. Note, however, that a more efficient search will

not solve the problem. As Allen and Carroll (2001) state,

“...even if the search could be reduced so that only, say, 4 different rules

needed to be evaluated, it would still be necessary to use values of (M, N)

large enough to distinguish good rules from bad. Given that the minimum

(M, N) combination that appears capable of producing the necessary accuracy

is (50,50), even [a] highly efficient hill climbing routine could not reduce the

number of periods required to less than 10,000 = 50 ∗ 50 ∗ 4.”

The key is really what values of (N,M) provide an acceptablesuccess rate; which (N,M)

135

pair allows the consumer to distinguish good rules from bad rules using W̄ θ. The top

panel of Table3.2 shows that, for aminimumsuccess rate greater than 67%, we still need

an (N,M) pair of at least (50, 20).9 Even if agents only need to explore 4 rules, this still

implies that an agent would need to take 10,000 years to find an adequate rule. The story

is broadly the same for S0 = 0 and S0 = 2 (not shown).

Thus Allen and Carroll (2001) arrive at two strong positive results and one strong

negative result:

1. A linear approximation to the optimal consumption function can get negligibly close

to the optimal rule in utility terms;

2. given enough time, consumers can reliably find a near-optimal rule with simple trial-

and-error learning, and

3. unfortunately,“enough time” is prohibitively high – anywhere from 400,000 to 4 million

years.

3.3 The First Extension: Social Learning

It is clear that the trouble faced by agents in this model is akin to that of a programmer

completing a large number of independent tasks in serial on a single machine. If there are

50 independent, identical tasks and 50 available processors for parallel computation, the

job could be done in 1/50th the time. This relies, of course, on the fact that the 50 tasks

9The replication of the model shown in the middle panel of Table3.2 disagrees slightly with the original
results in the top panel (and Table3.1) regarding which (N,M) pair is needed to achieve a minimum success

rate of 67%. The model of Allen and Carroll (2001) required (50, 50), while the replication only required

(20, 50). It is clear in their results that (20, 50) is right on the edge of the 67% success rate, and Figure D3

(discussed further in Section 5) makes it clear why these numbers may easily vary: the slope of the“Success

Rate” line for (20, 50) is incredibly steep at the cutoff value of 0.05. One can see that even slight differences
due to the randomness inherent in the experiment could shift this line around. For the sake of consistency,
from here forward I will refer to the replication results of (N,M) = (20, 50) as the parameter pair at which

agents can expect to achieve a 67% success rate.

136

are independent of one another. Recall the estimation problem:

W θ
i (X0) =

N∑
t=0

βtu(Cθ(Xt)), and

W̄ θ =
1

M

M∑
i=1

W θ
i (X0).

Estimating W θ
i is an“embarrassingly parallel” problem if each experience of W θ

i is inde-

pendent. Fortunately, independence of the W θ
i experience is a requirement of the original

model, for W̄ θ to be a consistent estimator. Furthermore, the“lifetime experience” of the

100 agents occurs in parallel (in“agent time”). The problem is perfectly suited to be paral-

lelized among the agents.

To do so, I need to specify a method of sharing information between agents. I will need

to answer the question of which information is shared, whether any is lost in the process,

and with whom agents will share their information – that is, the network of information

sharing. As a first pass, I consider and implement the simplest possible case: agents share

information perfectly with all other agents.While this may seem unrealistic, it allows us to

create an“upper bound” on what may be achieved in this model with information sharing.

The information the agents share is the value W θ
i , which they simply hand off to their

neighbors (i.e. all other agents) as soon as they finish estimating it. As it would be a waste

of time to explore a rule that has already been explored M times, I need to implement a

mechanism for coordination among agents. The next section explains the implementation

of the information-sharing system, which is written to be flexible and allow immediate

computational exploration of alternate behaviors.

The difference between this and the original model is that now agents aresocial agents,

as well as being intelligent agents. Their interactions with one another materially affect the

outcomes of the experiment in very positive ways, as will be shown.

137

3.3.1 Implementation of Full Information Sharing

The general mechanism I use to achieve coordination among agents, on any network topol-

ogy, is a“bulletin board” and a list of neighbors. The bulletin board is essentially a hash

table with an entry for each rule θ; each rule’s entry contains an array of W θ
i values. Each

agent owns a bulletin board, which is initially empty, a list of neighbors, and an income

process. When a given agent,k, finishes a single N -length estimation of a value W θ
i , he

stores that value under the appropriate rule in his own bulletin board, then pushes the

value to all of his neighbors, who store it in their bulletin board. In a not-fully-connected

network of agents, there is a question of whether the neighboring agents then pass that

information along. In a fully connected network, this is not a concern.

When selecting the next rule, agent k simply chooses a random rule off his board which

does not yet have M values in its array. Thus coordination is automatically obtained.If

agents are exploring the rule-space in a synchronized fashion, coordination could be cost-

lessly obtained by simply choosing the next rule after all agents update their neighbors.

In an asynchronous world, there is a trade-off between waiting to hear from a neighbor

(and perhaps saving oneself N periods of rule exploration) and simply starting to explore

a random uncompleted rule. This trade off, however, is beyond the scope of this paper to

consider.The model terminates when all agents have obtained the number of W θ
i experiences

necessary to estimate all W̄ θ values.

The above applies in the general case, where the network of agents is neither degenerate

(“individual learning”) nor fully connected. In the special cases of individual learning and

fully connected social learning, agents do not need to use their list of neighbors. This is

obvious in the individual learning case; in the fully connected case, it is simpler to assign

each agent an empty neighbor list and a reference to a global bulletin board. Coordination

and full information sharing then occurs automatically as the algorithm executes.

This model is constructed in Python, employing the NumPy and SciPy scientific libraries

when necessary. The object-oriented framework provided by Python is well suited for

138

constructing the bulletin boards each agent uses, and each agent encapsulates their own

information and behavior, allowing alternate behaviors to to be quickly introduced. This is

aspect of the code is exploited in the second extension, below. Lastly, the language allows

the model to be easily run on“cloud” parallel computing platforms, greatly decreasing final

execution time.

3.3.2 Algorithm for Full Information Sharing

To run the model, 100 Consumer agents, a Bulletin Board object, and 100 Income Process

objects are created. Each agent is handed an income process and a bulletin board. Each

period, the following process occurs:

1. Agents are selected in a random order to try out a rule.

2. Upon selection, each agent chooses a random rule and checks their bulletin board to

see if it has already been triedM times.

(a) If so, another rule is selected until one is found which hasn’t been tried M times.

If such a rule can’t be found, the simulation terminates for that agent.

(b) If an undepleted rule can be found, the consumer tries the rule for N periods

and posts the resulting W θ
i value to his bulletin board.

3. Repeat the process until all agents terminate their efforts.

3.3.3 Results for Full Information Sharing

In the full information sharing setup, once every rule has been tried M times, the entire

population of agents will choose the same highest-value rule, as they all share the same

bulletin board. To learn how well this“full connection” social learning process can be

expected to work, and in order to compare these results to those in Table3.1, I run the“full

connection” experiment 100 times for each M , N pair. Thus I can make a statement

about what fraction of the time a population using this process can be expected to fall

139

within ε̄θ ≤ 0.05 of the optimal rule, analogous to the information expressed in Table

3.1. In fact, besides changing the number of periods it takes an individual consumer to to

determine an optimal rule, this should be mathematically identical (accounting for some

random variation) to the“individual learning” process outlined in the original study. This is

because the“full information sharing” version of the model described above nests the original

Allen and Carroll (2001) model as a special case. If we instantiate the social learning model

with only one agent (instead of a population of agents) and run the model to completion

100 times, the single agent will clearly be forced to explore the entire parameter space alone

in each of 100 runs. This replicates the structure of the original Allen and Carroll (2001)

model entirely.

The results of the full information sharing extension are displayed in the middle panel

of Table3.2 and as the green line with triangles in Figure 3.2the y-axis plots the success

rate and the x-axis plots theM -values from the table. For ease of reference, the original

results from Allen and Carroll (2001) are displayed in the top panel of Table 3.2 and as the

black line in Figure 3.2. As is expected, the success rate for Full Connection Social Learning

model is very close to the success rate of the original Allen and Carroll (2001) model – this

is illustrated in Figure 3.2. The main difference arises in the number of periods necessary to

obtain these near-identical success rates. These can be observed in the“Total Periods” row

in the top and middle panels of Table 3.2. Consider the pair (N,M) = (20, 50). The original

model took 400,000 periods of agent search time to distinguish good rules from bad rules at

least 67% of the time. For the full connection model, the equivalent time was 10,000 periods

– reduced by a factor of 100. This is entirely due to the fact that 100 agents worked together,

in parallel, to explore the parameter space. Note that, with 100 agents and 400 rules, if the

agents split up the rules evenly, each would have on average only 4 rules to explore – thus

achieving a similar result to the Allen and Carroll (2001) quote above, only using social

learning instead of a“highly efficient hill climbing routine.” In fact, if more agents were

added to the full-connection model, this number can be reduced further. If one agent were

added to the model for each possible run-trial – (N,M) = (20, 50) =⇒ 50 ∗ 400 = 20, 000

140

agents – then the time required to search the entire space would only be bounded by the

time it took to complete a single W θ
i trial: 20 periods.

This result hinges on the fact that all agents are sharing information fully with all other

agents – essentially, that all agents are in a fully connected social network. In practice, of

course, it is hard to imagine that 20,000 agents all know each of the other 19,999 agents in

a population. The discussions and case studies cited in texts such as Tsvetovat (2011) and

Newman (2010) clearly indicate that common human social networks are nowhere near fully

connected graphs. The purpose of this full connection model, however, should be viewed as

constructing a“ceiling” on how well agents can do if they can share information amongst

themselves. The original Allen and Carroll (2001) model sets something of a“floor” on

how poorly agents can do if they share no information whatsoever. If it was the case that

the full connection model was unable to bring agent search time within some reasonable

limit, then clearly there would be nothing left to explore of any of the myriad of possible

network topologies or information transmission mechanisms. As it stands, however, the full

information sharing experiment strongly indicates that social learning can greatly improve

individual agent learning. Some combination of network structures and information sharing

mechanisms may very well bring agent search efficiency very close to the full connection

model. For example, a few highly connected agents with a high transmission rate may pro-

duce very similar results; such a network may very well represent a world in which“financial

experts” specialize in gathering, analyzing, and disseminating such information.

Before I discuss further possible research along network lines, however, I turn my at-

tention to my second extension to Allen and Carroll (2001)’s original framework: consider-

ing“relative” rather than“absolute” happiness.

3.4 The Second Extension: A Relative-Value Estimator

Returning to the general model setup, recall that agents are estimating an approximation

to the value function V θ in equation (3.6). This value function is a measurement of the

141

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Success Rate, N = 10
Fraction Runs with Sacrifice < 0.05

Values of M

1 10 50 200

Original
Full connection
Relative value

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Success Rate, N = 20
Fraction Runs with Sacrifice < 0.05

Values of M

1 10 50 200

Original
Full connection
Relative value

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Success Rate, N = 50
Fraction Runs with Sacrifice < 0.05

Values of M

1 10 50 200

Original
Full connection
Relative value

Figure 3.3: Allen and Carroll Results vs Full Connection and Relative-Value Learn-
ing

agent’s“happiness” with units of this“happiness” are in terms of expected utility. There is,

however, another way to think about“how well” a rule works. Instead of asking“how happy

does this rule make me,” agents might instead ask,“how happy does this rule make meabove

and beyond how happy (or unhappy) I would have been using some other rule?” This

entails choosing some baseline rule against which agents compare their current experience.

I will refer to this as a“relative-value” measure of well being.

142

3.4.1 Implementation of the Relative-Value Estimator

A natural baseline rule is the“consume everything” rule. Thus instead of estimating the

“absolute” value function,

V θ(X0) = E0

[∞∑
t=0

βtu(Cθ(Xt))

]

agents instead employ a relative-value estimator, which simply subtracts off the value an

agent would have obtained had he/she employed the“consumer everything” baseline rule:

Ṽ θ(X) = E0

[∞∑
t=0

βtu(Cθ(Xt))−
∞∑
t=0

βtu(CBase(Xt))

]
.

As before, the agent estimates this function by experiencing income streams and record-

ing the results. Each consumer will now estimate the following value:

W̃ θ
i (X0) =

N∑
t=0

βtu(Cθ(Xt))−
N∑
t=0

βtu(CBase(Xt)), (3.11)

=
N∑
t=0

βt
[
u(Cθ(Xt))− u(CBase(Xt))

]
, and

W̄ θ =
1

M

M∑
i=1

W̃ θ
i (X0). (3.12)

with W̄ θ calculated as before in equation (3.9). CBase(Xt) is the baseline“consume every-

thing” consumption rule. Thus W̃ θ
i is the relative-value estimator, and the original W θ

i is

the absolute-value estimator.

143

An additional intended benefit of this relative-value consumption rule is that it may allow

for heterogeneous S0 values at the beginning of each estimation o fW̃ θ
i . Recall from our dis-

cussion of equation (3.8) that each estimation run restarts with the same initial S0, as in the

original model. As it stands, for an agent exploring some rule θ in an {N,M,S0}={50, 10, 1}

experiment, I must think of the agent as“re-setting” his/her savings to the same S0 value

every 50 periods. If I want agents to carry savings from one N -period stream to the next, as

I might imagine an agent doing in practice, I must somehow normalize the initial endowment

at the beginning of each estimation of a W θ
i (X). If I don’t normalize for heterogeneous S0,

a high initial value may skew results in favor of whichever rule just so happened to enjoy

the“high S0.” Observe that βt is a larger number when t is small – that is, early on in the

trial of W̃ θ
i , when S0 matters the most. If an agent just so happens to have a high value

of S0 for a“bad” rule, but a low value for a“good” rule, the good rule may appear to be

be bad, simply because of the discounting of βt over the N periods.10 If the selection of S0

is random, this may not be a problem at higher values of M , but if S0 is not random this

may bias results. The relative-value estimator, W̃ θ
i , seeks to address this by subtracting

off the“consume everything” utility and thus normalize agent experience due to initial S0

values.

3.4.2 Algorithm for Relative-Value Information Sharing

As a first step towards using the relative-value estimator for experiments with heterogeneous

S0, this procedure is first implemented in the same homogeneous S0 setting as the absolute-

value estimator with full information sharing. If the results of this implementation are

much better (or much worse) in the homogeneous-S0 setting, this can indicate of how well

the estimator can be expected to perform when used in a heterogeneous-S0 setting. Thus

algorithmic implementation of the the relative-value estimator is exactly the same as Section

3.3.2, except that the relative-value measure W̃ θ
i is used instead of W θ

i .

10Note that even if S0 is held constant across all runs, the fact that X0 is the sum of both S0 and a random
Y0 means this dynamic may still play out, albeit to a lesser extent.

144

HERE HERE

3.4.3 Results for the Relative-Value Estimator

The results of the relative-value process are displayed in the third panel in Table 3.2, and

in the red line with plus signs in Figure 3.3. The the“Total Periods” values in Table

3.2 are the same for both the absolute-value and relative-value estimators; this is to be

expected, as both of those experiments have been run in the full-connection social learning

setting. What is remarkable, however, is that the relative-value estimator has actually

made it easier for consumers to distinguish good rules from bad rule. Previously, in the

absolute-value experiment (the second panel in Table3.2), consumers needed at least an

(N,M) = (20, 50) pair to achieve a minimum 67% success rate. This corresponded to 4,000

periods of search. In the relative-value experiment, however, consumers have improved their

rule-finding capabilities by a full order of magnitude: now they can achieve a minimum

success rate of 67% at either (N,M) = (10, 20) =⇒ 800 periods. This is less than half

that experienced using the absolute-value rule.

The results are more striking when observed in Figure3.3. Without fail, the relative-

value success rate is above the success rates of the original model and the social learning

extension. That is, for every possible (N,M) pair, the relative-value estimator allows more

experiments to fall within the ε̄θ ≤ 0.05 cutoff range. To state it differently, this estimator

allows the consumers to consistently distinguish“good” rules from“bad” rules, at every

(N,M) value.

3.5 A Closer Look at Model Output

3.5.1 Examining Distributional Output

To understand why the relative-value estimator works so well, I need to dive deeper into

the functioning of the model. Fortunately my model is a computational simulation, and

thus it may be run many times to generate distributions of output. I do this in Figures D1

145

and D2, in Appendix D. These figures are representations of two-dimensional histograms:

each dot represents a number of agents that settled on a given rule θ := (κ, X̄) in the Θ

space described in equation (3.10); the area of the dot is proportional to the number of

agents at a particular rule on the grid.11 This is overlaid on the contour plot displayed in

Figure3.2. Thus I have a non-parametric way to examine the entire space of results, instead

of only a slice of the results, as displayed in Table3.2. In all of the histograms, the optimal

approximate rule, θ∗ = (0.233, 1.243), is represented by a red“+,” and the optimal point on

the grid, θgrid = (0.25, 1.2), is represented by a black“x.”

In Table3.2, the success rate refers to the fraction of agents which fall within the 0.05-

contour in Figures D1 and D2. A few stylistic facts emerge as I examine these histograms.

In Figure D1, start at the panel corresponding to (N,M) = (10, 1). It is clear that as I move

to the right, examining panels (10, 10), (10, 50), and (10, 200), the agents are choosing rules

in a tighter groups – the problem is that the rules they are converging on arejust outside

the 0.05-contour. The fact that the agents converge on a location that is not quite the

optimal target is stylistically similar to the idea that an estimator can have high bias but

low variance. As M increases, the variance drops but the bias does not. If, however, I

again start at the upper-left panel (10, 1) in Figure D1 and move down, examining panels

(20, 1) and (50, 1), a different story emerges – the cluster of rules the agents arrive at may

not tighten as it did along the top row, but it does shift to center around the optimal θ

values. This is more apparent when the agents’ final choices are less diffuse, for example in

the rows corresponding to M = 50 or M = 200. For the row M = 50, it almost appears

that the diffusion may increase slightly. The main difference, however, between (10, 50) and

(50, 50) is that at N = 50, the histogram is centered around the optimal value, instead of a

nearby value as at N = 10. This makes a significant difference for the success rate. This is

11These Figures are arranges to correspond in layout to the tables of output in Table3.2. Although analysis
may be run with a high number of agents and model runs, the results shown here are for 100 runs of 100
agents with full information-sharing. Recall that the time spent examining the rule space is only difference
between the original Allen and Carroll (2001) model and the version employing full information sharing
and the absolute-value estimator. Thus the histograms in Figure D1 represent both the original Allen and
Carroll (2001) model as well as the absolute-value estimator version of the model.

146

stylistically similar to the idea that an estimator can have low variance but high bias. Of

course, as both N and M increase, both the bias and the variance decrease. These dynamics

are all entirely hidden when I only examine the Fraction Success rows in Table3.2.

Given that I can generate distributions from the model, these ideas of bias and variance

in the histograms may be examined more rigorously statistically. This is left for future

work, however. For current purposes, this initial stylistic understanding is enough to reveal

some important first-order questions. It is clear from the discussion above that there is

a trade-off occurring in between“bias” and“variance” in the model results. The choice of

the ε̄θ cutoff of 0.05, which I use to determine the success rate in Table3.2, appears to be

significant when I consider the histograms in Figure D1. I might ask whether the choice of

cutoff value makes a significant difference in my results. If so, I need to carefully consider

how the choice of cutoff value is made. For panel (20, 1) in Figure D1 a cutoff value of 0.05

instead of 0.075 or 0.1 may not make a significant difference. For panel (20, 10) in the same

Figure, however, it may make a large difference.

Before continuing, observe that examining Figure D2 provides an initial indication re-

garding why the relative-value estimator preforms better than the absolute-value estimator.

Broadly speaking, for the absolute-value estimator, the histograms tend to“spread” more

along the the horizontal κ axis – this is most apparent in the first two rows of Figure D1,

for example. For the relative-value rule, however, the histograms have been shifted – they

tend to“spread” along the vertical X̄ axis. The practical result of this is that the“teardrop”

shape of the ε̄θ ≤ 0.05-cutoff region captures more of the relative-value histograms earlier

than it captures the absolute-value histograms for a given (N,M) pair. The relative-value

histograms in Figure D2 cluster more around the ε̄θ ≤ 0.05-cutoff region’s wide“base,” while

the absolute-value histograms in Figure D1 cluster around its narrow“top.” As with the

bias-variance trade-off above, this complicated relation ship may very well be explored more

rigorously, either statistically or analytically, but this is left for future work. The stylistic

impressions these histograms and contour plots provide are sufficient to motivate the next

step in exploring the model. Furthermore, it is not clear that any simple or informative

147

closed-form analytical expression exists which may describe either the bias-variance trade-

off or the relationship between the histograms and the contour plots in Figures D1 and

D2.

3.5.2 Examining the ε̄θ Cutoff Value

A first-order question that arises from considering the histograms in Figures D1 and D2 is

whether the choice of cutoff value 0.05 for ε̄θ is significant for the success rates displayed

in Table3.2. The histograms cannot supply any further answers with more precision so

the question must be taken to another representation of the data. Figures D3 and D4

in Appendix D display the success rate along the vertical axis as a function of possible

cutoff values along the horizontal axis. From Figures D1 and D2, it is clear that very few

agents choose rules outside of the cutoff value ε̄θ = 0.575, the value corresponding to the

consume-everything rule.12 Thus the horizontal axes only extends to 0.5.

The dotted gray line at the bottom of the legend in each plot indicates the original cutoff

value of 0.05 employed to determine the success rates in Table3.2. The red dash-dotted line

above the 0.05 line in each plot illustrates what the success rate would be if the cutoff were

instead 0.075, and the dashed line indicates what the success rate would be if the cutoff was

0.1. These correspond to 7.5% and 10% of average annual income. In the earlier example of

a $50,000 average income, these values would be $3,750 and $5,000, receptively. The solid

horizontal line with stars on it indicates the cutoff value that is associated with a success

rate of 0.5 across all (N,M) pairs. Thus in Figure D3, in panel (10, 1), agents would need a

cutoff value of 0.31, roughly 1
3 of average annual income, to achieve a success rate of 67%.

It is clear from Figure D3 that the curvature of the“success rate” line is important. Each

increase in the cutoff value“buys” additional“success,” and the nonlinearity in the success

rate function determines how big this marginal increase will be. As noted above, for panel

(20, 1) in Figure D3 a cutoff value of 0.075 or 0.1 instead of 0.05 does not significantly shift

12It is apparently possible to doworse than simply consuming everything and saving nothing, but agents
rarely select one of these worse rules in practice.

148

the success rate greater than 67%. However, for panel (20, 10) in the same Figure, a cutoff

value of 0.075 or 0.1 brings the success rate right to 67%. This does change the results of

Table3.2. Looking at Figure D3, it is clear that if I were to consider the cutoff value of

0.075 for the absolute-value estimator consumers would be able to achieve a 67% success

rate at (N,M) = (20, 10) instead of (20, 50) – in 800 periods instead of 4,000 periods, if

each consumer only had to explore 4 rules (either through a“highly efficient hill-climbing

routine,” or through fully connected social learning with 100 agents in parallel). This is a

significant improvement in the success rate of the algorithm, simply by considering a slightly

increased cutoff value.

What I would like to see, of course, is a 67% success rate for a parameter pair such as

(N,M) = (10, 1), (20, 1), or (50, 1). Such values would imply that consumers could reliably

find“good” consumption rules within 1 to 3 generations, if a generation lasted roughly 70

periods. This brings us to the results of the relative-value estimator, displayed in Figure

D4. A difference which is immediately clear between the absolute-value estimator and the

relative-value estimator in Figures D3 and D4, respectively, is the shape of the“success rate”

line for the parameter-pairs (N,M) = (10, 1), (20, 1), and (50, 1). In Figure D3, (10, 1) and

(20, 1) are almost linear, which is why increasing the cutoff value does not much improve

agents’ ability to distinguish good rules from bad rules. In Figure D4, however, all three

curves in the first column of panels gain a lot of curvature over their their counterparts from

the absolute-value estimator. Now increasing the cutoff value has a significant impact on

how well the agents distinguish good rules from bad rules. In fact, if I am willing to choose

a cutoff of 0.16, I can obtain a success rate of 67% at the lowest possible (N,M) : (10, 1).

If I choose a cutoff of 0.12, I can obtain the desired success rate at (20, 1). If an agent only

needs to explore 4 rules (either via efficient search or social learning), this translates into

agent time of only 40 and 80 years, respectively.

There is a clear trade-off between obtaining an acceptable success rate with less agent

effort by raising the cutoff value, and the value lost to the consumers which is directly

represented by the subsequently higher cutoff value. An agent who“succeeds” because the

149

cutoff value has been raised to 0.12 is potentially sacrificing 7% more of an average annual

income than an agent who simply“explores longer” and“succeeds” with the original cutoff

value of 0.05. There may very well be some optimal cutoff value to choose. The simulation

code allows many possible experiments to be conducted with this model; this is one possible

question that may be addressed in future research. Regardless of whether or not an optimal

cutoff value exists the important takeaway is that the choice of cutoff value matters for the

results of the model, and needs to be considered a parameter of the model alongside the

others. Figures D3 and D4 are an attempt to sweep over this parameter as well; the reader

may examine Figures D3 and D4 and see for himself or herself what the influence of the

cutoff value is on model results.

3.6 Conclusions and Future Work

3.6.1 Summary and Conclusions

Allen and Carroll (2001) uncovered both striking positive and striking negative results.

Using a simple linear approximation to the optimal consumption rule,they found that agents

can get negligibly close (in utility terms) to the highly non-linear optimal solution. In

addition, given enough time, agents could consistently find a near-optimal linear rule via

simple trial-and-error search. Unfortunately,“enough time” proved to be prohibitively long

– as Table3.2 indicates, to reliably find a near-optimal rule – that is, achieve a success rate

of at least 67%13 – agents need to spent 400,000 years searching the parameter space.

This paper addresses the final negative result in two separate steps, each of which

greatly reduces the time required to reliably find a near-optimal rule. The first step takes

its inspiration from Allen and Carroll (2001) themselves. In their 2001 paper, they state

that

“If it takes an individual agent a million periods, ...a population of a million

13Or very near 67%; see the footnote at the end of Section 2.3.

150

consumers... should collectively obtain essentially the same amount of informa-

tion in a single period.”

In addition they note that,

“More intriguing [than efficient search algorithms] is the possibility that con-

sumers come by their behavior by a process of social learning, in which rules of

thumb that are successful in utility terms are passed along from one consumer

to another, or through other mechanisms such as the advice of personal finance

experts or advice in personal finance books. ... Elucidating the circumstances

under which a process of social learning can be expected to lead the population

to reasonably optimal behavior will be an interesting task for future work.”

Here and elsewhere, Allen and Carroll (2001) suggest two possible extensions to their origi-

nal model: (1) implementing a more efficient search algorithm over the grid space of possible

rules (alluded to above), and (2) some form of social learning. Taking inspiration from the

second of these suggestions, I first observed that the agent estimation problem is an em-

barrassingly parallel computation. I then constructed artificial agents in code and provided

them with a bulletin board to store the results of rule-trials, and a network of neighbors

with which to share their experiences. When an agent tries a rule, he/she stores it in his

own board, and also passes it to all his neighbors. As a first-pass exploration, and in order

to have results mathematically comparable to the original model, I instantiated 100 con-

sumers and placed them all on a fully connected social network; the model is then run 100

times and results recorded. This extreme network structure nests the original Allen and

Carroll (2001) model as a special case (obtained when there is only 1 consumer on the fully

connected network) and allows us to explicitly discuss the improvement provided by social

information sharing.

The result is that the“Total Periods” in the middle table of Table3.2 are reduced by

a factor of 100 from those of the Allen and Carroll (2001) experiment. Where once it

took a minimum of 400,000 years to get a success rate greater than (or very near) 67%, in

151

the full connection experiment it takes only 4,000 periods. The reduction of total periods

follows immediately once similar success rates are obtained between the original and the full

information sharing procedures. In fact, this result confirms that the“total periods” could

by pushed arbitrarily close to the lowest bound for each M , N pair by simply adding more

consumers. The lowest bound is simply the N -value, since a rule must be tried at least

this many years. This is an encouraging result, and the first step in a multitude of possible

research directions. Real networks, of course, do not have anything near a fully connected

structure; strategies for addressing this, however, will be discussed further below.

The second step in addressing the Allen and Carroll (2001)’s negative results was to

create an estimator of the consumer’s value functionrelative to a baseline consumption

rule. This estimator takes its inspiration from the idea that an agent is likely to think of

his happiness not in some absolute terms, but rather in relation to some baseline course of

action. Furthermore, in a technical sense, the relative-to-baseline value function is also an

attempt to normalize the estimator in the face of heterogeneous initial wealth conditions.

If successful, this would allow agents to be instantiated with heterogeneous wealth levels

during the experiment. An encouraging result is that this estimator not only works as well

as the original absolute-value estimator, but also improves upon its performance. Agents’

ability to distinguish“good” rules from“bad” rules improved when they used the relative-

value estimator to explored the parameter space.

In addition, the improvement provided by the relative-value estimator is orthogonal to

the improvement provided by the social learning mechanism. As discussed in Section 3, the

improvement provided by the social learning mechanism was entirely in the“Total Periods”

rows of Table3.2. The“Success Rate” between the top table and middle table of Table3.2

was determined by the same fundamental process, in particular because the experiment

that produced the middle table nested the original results as a special case. They only

appear different due to random variation. For the relative-value estimator, however, the

fundamental estimation process has changed, resulting in a higher success rate for each

(N,M) pair. This is reflected in Figure3.3, and can be seen more explicitly in Figures D2

152

and D4. The new estimator has improved properties over the absolute-value estimator.

Lastly, I touched upon the idea that the cutoff value used to determine the success rate

of a given (N,M) pair should itself be considered a parameter in the model, and care should

be taken to sweep over this as well. I provide one such set of parameter sweeps in Figures

D3 and D4.

3.6.2 Future Work

An extension suggested by Allen and Carroll (2001) not yet undertaken is exploring more

efficient search algorithms for the grid space Θ. In part this is because I already know what

a more efficient search can give us. As stated by Allen and Carroll (2001) at the end of

Section 2 above, if I know which (N,M) pair provides an acceptable success rate, then I

can set limits on what a more efficient search algorithm can do. If a more efficient search

could allow agents to only need to examine four rules, and I know the minimum (N,M)

pair which provides an acceptable success rate is (10, 10), then I know it must take 10*10*4

= 400 periods to search this space. Of course, if I cancombine highly efficient search with

social learning – which I did not do here – then those rule-explorations could be spread out

over the population of agents and solved in parallel.

This, then, is are some of the immediate next steps in this research program:

1. Explore the possibility of a search algorithm even more efficient than that of Chapter

2,

2. Explore different network topologies beyond the fully connected network, and

3. Work to more fully thoroughly understand the relative-value estimator.

I am optimistic that bringing these three elements together can result in a more realistic

social network structure which still allows consumers to estimate a near-optimal linear

consumption rule in reasonable time. In addition to standard optimization routines such

as hill-climbing, I am interested in using the Particle Swarm Optimization (PSO) as a

means of consumer exploration of theΘ space, as I believe it may have an attractive and

153

intuitive interpretation with agents as the particles. With respect to network topologies

and information transmission, Carroll (2005) explores some preliminary models of inflation-

expectation transmission on a network. Additional extensions include allowing the S0 values

to be heterogeneous across consumers; allowing agents to only communicate their values in

a statistically noisy way as in Chamley (2004), exploring wider ranges of social learning in

groups (Young, 2009), easing the credit constraint, and introducing more assets (such as

housing) into the consumer’s problem.

These are exciting results, and I look forward to exploring them in future research.

154

Table 3.2: Individual Learning versus Full Connection Absolute-Value Learning
versus Relative-Value Learning

155

Chapter 4: The Heterogeneous-Agent Computational

toolKit: An Extensible Framework for Solving and

Estimating Heterogeneous-Agent Models

4.1 Introduction

The Heterogeneous-Agent Computation toolKit (HACK) is a modular programming frame-

work for solving and estimating macroeconomic and macro-financial models in which eco-

nomic agents can be heterogeneous in a large number of ways. Models with extensive

heterogeneity among agents can be extremely useful for policy and research purposes. For

example, Carroll (2012a), Carroll (2014b), Carroll (2014a), and Carroll et al. (2015) demon-

strate how aggregate consumption and output can be heavily influenced by heterogeneity.

Geanakoplos (2010) outlines how heterogeneity drives the leverage cycle, and Geanakoplos

et al. (2012) applies these insights to large-scale model of the housing and mortgage mar-

kets. However the most commonly published macroeconomic and macro-finance models

have very limited heterogeneity or none at all (this includes the large class of representative

agent models), in large part because these are the only models which can be easily solved

with existing toolkits.1 In contrast, models with extensive heterogeneity among agents

have no central toolkit and must be solved in a bespoke way. This requires a significant

investment of time and human capital before a researcher can produce publishable or usable

work. This results in needless code duplication, increasing the chance for error and wasting

valuable research time.

The HACK project addresses these concerns by providing a set of well-documented code

modules which can be composed together to solve a range of heterogeneous-agent models.

1Dynare is the most popular toolkit for representative-agent models. For more details see Adjemian et al.
(2011).

156

Methodological advances in the computational literature allow many types of models to be

solved using similar approaches – the HACK toolkit simply brings these together in one

place. The key is identifying methodologies which are both “modular” (in a sense to be

described below) as well as robust to model misspecification. These include both solution

methods as well as estimation methods.

In addition to these methodological advances, the HACK project adopts modern prac-

tices from the field of software development to ease the burden of code review, code sharing,

and programming collaboration for researchers dealing in computational methods. Re-

searchers who must review the scientific and technical code written by others are keenly

aware that the time required to review and understand another’s code can easily dwarf the

time required to simply re-write the code from scratch (conditional on understanding the

underlying concepts). This can be particularly important when multiple researchers may

need to work on parts of the same codebase, either across time or distance. This problem

is not confined to scientific computing alone. Fortunately the software development com-

munity, and particularly the open-source community, has spent decades perfecting tools for

programmers to quickly consume and understand code written by others, verify that it is

correct, and proceed to contribute back to a large and diverse codebase without fear of

introducing bugs. The tools used by these professional developers include formal code doc-

umentation, unit testing structures, modern versioning systems for automatically tracking

changes to code and content, and low-cost systems of communicating ideas, such as interac-

tive programming notebooks which combine formatted mathematics with executable code

and descriptive content. These tools often operate in concert with one another, forming a

powerful infrastructure which can greatly accelerate project development for both individu-

als and collaborative teams. These technical tools are not new – the HACK project simply

aims to apply the best of them to scientific code in a structured way to increase researcher

productivity, particularly when interacting with other researchers’ code.

The project presented here is not an attempt to create new methodology either on the

software development front or the research front (although I expect new methodological

157

contributions to emerge from the effort). Rather the HACK project brings together many

well-understood and proven methodologies to bear in an easily used and extended toolkit.

The rest of this paper will first outline the useful concepts I adopt from software develop-

ment, with examples of each, and then demonstrate how these concepts are applied in turn

to the key solution and estimation methods required to solve general heterogeneous-agent

models. If the reader is a practiced and experienced programmer, he or she may wish to skip

directly to Section 3 to see how these ideas are applied to the specific consumer problem

employed.

The sections are organized as follows: Section 2 outlines key tools from professional soft-

ware development. Section 3 discusses the theoretical problem which provides the frame-

work for the HACK project and outline of the first example model under development in

the HACK framework. Section 4 outlines key next steps and concludes.

4.2 Tools from Software Development

Before progressing to a specific example, this section provides background about the spe-

cific software tools HACK leverages. The breadth and history of software development is

extensive and review of it is beyond the scope of this document. One of the most striking

practices to emerge from this history, however, is open-source software development: the

decentralized collaboration of many independent programmers on a single project, often

with little or no immediate monetary reward. Along with fascinating theoretical questions

about incentive structures, the open-source movement has spurred the development of a

wide array of excellent utilities which make decentralized code development robust and

efficient. These utilities are closely intertwined with those from the traditional software

development world; this section briefly overviews a number of these tools from both. The

next section outlines how the solution to a basic economic problem can be developed using

these utilities.

There are a number of resources which delve deeply into the topics discussed in this sec-

tion. For an excellent review of many of these topics from an economists perspective, see the

158

unparalleled set of lectures by Sargent and Stachurski (2015), which can be accessed at the

time of this writing at the Quant-Econ webpage. The Python programming language is the

primary language used for development of HACK; many resources related to this language

can be found on the primary Python webpage. Quant-Econ is an excellent introduction

to Python for economists, as is Sheppard (2014). Aruoba and Fernández-Villaverde (2014)

provide a nice comparison of many programming languages for computational economics,

including Python.

4.2.1 An Aside on Speed

Python is an interpreted scripting language and at inception was many hundreds or thou-

sands of times slower than compiled languages such as C++. As the scientific community

adopts Python, a number of projects have emerged which allow Python to be compiled.

At the time of this writing, there are a number of options for accelerating Python code.

This is reflected in Aruoba and Fernández-Villaverde (2014), specifically their Table 1. The

authors compares a number of programming languages against C++ for a loop-intensive

task. When sorted by relative time against the fastest C++ implementation, Python occu-

pies the fastest two spots which are not other C++ or FORTRAN.2 This is not a definitive

illustration of the speed capabilities of Python, as there are many caveats which must be

considered in the problem setup and execution (as noted by the authors themselves). How-

ever it does serve to illustrate that Python is capable of very high speeds when compiled.

Furthermore, even aside from compilation, when Python is vectorized using the major nu-

merical libraries, NumPy and SciPy, all vectorized calculations are executed in optimized,

compiled C and FORTRAN.

The one caveat in in order regarding Python speed. Object-oriented programming

structures in Python may prove difficult to compile easily, and extensive computations on

2The first five spots in the relative ranking are occupied by different compiler implementations of C++
and FORTRAN. The 6th and 7th ranks are occupied by two of the most popular Python compilers, Cython
and Numba, respectively, which are 1.41 and 1.65 times slower than the fastest C++ implementation.
Notably, two C++ implementations are 1.38 times slower than the fastest, and one of the two FORTRAN
implementations is 1.30 times slower than the fastest C++ implementation. That is, the fastest Python
implementation is only about 3% slower than two of the three C++ implementations.

159

http://www.quant-econ.net
https://www.python.org/

class-based objects may impose significant speed penalties. There are a number of ways

around this. The simplest is to write code which does not require class structure: simple

functional libraries. This is the approach HACK takes. This allows individual functions

to be accelerated via vectorization or compilation, maximizing speed potential. If a class

structure cannot be avoided, the accelerated functions can be called directly by members

of the class, inheriting much of the speed advantages for the compiled code.3 Finally,

the HACK library written as a functional library versus a class-based system allows easy

translation into additional languages if desired. Julia is a promising target for such an effort;

see Sargent and Stachurski (2015) and their accompanying website for more information on

the Julia language applied to economic problems.

4.2.2 Documentation

Good documentation is the key to communication between two programmers, whether

between two distinct individuals or with oneself over time. In Python, as in many scripting

languages, strings written on the first line after a function declaration are automatically

employed as system documentation. Two popular style guide for Python documentation

are found in the Google Style Guide and the Python Enhancement Proposals (PEP) system:

PEP 8 and PEP 257. HACK currently uses a slight variation on the PEP 257 style guide.

We illustrate this with a trivial example of a Python documentation string for a CRRA

utility function. The special function documentation here is enclosed in triple quotes, which

in Python sets off a multi-line string. This special function documentation is called the

“docstring:”

3Note that if the speed advantage of the individual function comes from vectorization versus compilation,
the most gain may actually be achieved by simply copy-and-pasting the function contents into the class
method. See Sheppard (2014), Chapter 23, for an excellent overview of Python performance and code
optimization.

160

http://google-styleguide.googlecode.com/svn/trunk/pyguide.html
https://www.python.org/dev/peps/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0257/

More traditional in-line code comments may of course still be employed using the hash

symbol (“#”), as can be seen in the final two lines of code above. The normal in-line

comments seen above will not be included in the special function documentation, as they

do not occur on the first line after the function declaration.

The special function documentation in the docstring is now employed in the formal

language help system. If I query the language help files for this function I will get the

following results. Note that my documentation written above now appears under the label

“Docstring:”

161

In addition to traditional code documentation described above, which is included directly

in the code rile, notebook-style interfaces similar to those in Mathematica and Maple have

been developed for Python and a number of other languages. Programmers, including

scientific programmers, have begun using these notebooks to directly communicate the ideas

behind executable code to one another via html output from these notebooks, displayed in

webpages. The HACK project uses Jupyter, a language-agnostic, browser-based notebook

system spun off of the the IPython project. An example from the Jupyter homepage can

be seen in Figure 4.1.

These notebooks can embed TeX-style mathematics typesetting alongside text and code

for highly expressing scientific programming vignettes.

4.2.3 Unit Testing

Many programs are composed of a number of small functions which accomplish specific

tasks. Testing at the individual function level is key to ensuring that the overall program

executes correctly. This is all the more important for scientific computing, where a mistake

deep in the code (eg. with a numerical approximation function) may be extremely difficult to

162

https://jupyter.org/

Figure 4.1: Jupyter Browser-Based Notebook

track down. Unit testing is the formal practice whereby each individual function is directly

bundled with a set of tests. Each test tests a specific input and output pair, examining both

“success” and “failure” states. For example, a log utility function should return a specific

known value for a particular risk aversion and consumption value, and should fail with a

particular error if it is presented a negative consumption value. Unit tests serve multiple

purposes in code: they cover a wide range of “reasonable and representative” input and

output values, and also act to conceptually illustrate when a bit of code is very complex.

If it is very difficult to test a “small unit” of code, that code may be best decomposed into

smaller and more specific-purpose functions.4

In scientific programming, this can serve an additional purpose: peer review of code.

Uncovering bugs in code, even one’s own code, can be notoriously difficult. This is many

times more true when one is examining the code written by another. Thus scientific peer

4Note that there is a tradeoff between performance and decomposition of code into smaller and smaller
units. This is discussed in Sheppard (2014).

163

review of code is nearly prohibitively costly, and very difficult to undertaken in a structured

fashion. Unit testing can ease the burden of scientific code review in at least two ways.

First, it can aid documentation in immediately outlining simple examples of code execution.

Second, it can outline the pitfalls and testing procedures a reviewer may want to undertake

to ensure that the code is correct. Instead of starting with a “blank page,” a reviewer can

take the unit tests written by the original author, run them, and then (assuming they all

pass), examine the tests to see if any particular cases appear to be excluded. If so, the

reviewer can use the unit tests as a template to quickly write another test case and run

that as well. This can greatly accelerate both the verification of work done, as well as new

testing of the code, all in a well-established and minimally costly framework.

In Python there are two built-in ways to write tests for a function: internally to the

documentation, in a “doctest,” and externally in a more formal unit testing framework,

“unittest.” Using the utility function defined earlier above, I add a doctest to the end

of the function documentation (removing earlier documentation for brevity). The tests

are denoted by the triple right-caret under the heading denoted “Tests.” The appropriate

output of the test is denoted in the line directly below the caretted line, and I will use the

doctest library to run these tests. First the code definition:

I save this code in a file called “utility.py.” The code file now constitutes a Python

module, and we use the doctest library to execute the tests embedded in the doctring. I

164

https://docs.python.org/2/library/doctest.html
https://docs.python.org/2/library/unittest.html
https://docs.python.org/2/tutorial/modules.html

execute the following code:

The two tests passed. A contributor or a reviewer can quickly run these tests on new

code, and quickly add new tests if needed. More complicated tests can be executed with

the unittest framework, which is not discussed here in depth.

4.2.4 Language-agnostic, Human-Readable Data Serialization

Consider the following scenario: a researcher wants to replicate a computational model.

After endless work and testing, the results between two codebases simply cannot be recon-

ciled. Many hours are spent hunting for bugs until it is finally discovered that the problem

is not in the code, but rather in a small mistake transcribing parameter settings. For some

(most?) this can be an all-too-familiar experience.

One way to avoid this is using the exact same parameter settings file for all possible

code-bases. One language-independent file is used to store all parameters and calibration

settings for a model.5 A replication of a particular model can use that single parameter

file to confidently reproduce results across implementations. The parameter file should be

easily readable by a human, as this is one more place mistakes may occur and the easier

5Not including the data for fitting the model – this may easily be very large and is stored separately.

165

to double-check, the better. Calibration of course may require many different types of data

objects contained together in a single setting – floating point numbers, strings, booleans,

even vectors or arrays of values. Flat-file data formats such as CSV are not flexible enough to

handle all these types well. Fortunately, modern software developers have already addressed

this problem with a number of options. The HACK project uses JSON (JavaScript Object

Notation), a data structure somewhat analogous to simplified XML. The contents of a

small JSON file may look like the following. Note the ability to include vectors, strings,

and boolean values in the same file:6

The HACK project uses a single JSON file to store parameters and calibration values

which can be used across multiple implementations of a model, even in multiple languages.

For example, the same JSON file can be read by both a MATLAB and Python implemen-

tation of the same model.7

4.2.5 Application Programming Interface (API)

When contributing a module or a function to a larger code library, a programmer needs to

know how this function or module fits into the overall framework of the codebase. A strict

specification of variable inputs and outputs for a function communicates this information.

Any large computational project with multiple developers can benefit from such a descrip-

tion, formally termed the the Application Programming Interface (API). This is in fact

6The values used in the examples in this paper are illustrative and not used for a particular estimation
exercise, unless otherwise noted.

7A file which reads in the parameters and sets up the environment will of course be required for each
language, and the researcher must be careful to treat parameters equivalently in this setup step.

166

http://json.org/

simply another form of language documentation, but one that is aimed at programmers for

extending or using a codebase. A clear example of a programming API for a large library of

scientific code can be seen in the documentation for the Apache Math Commons Library.8

Figure 4.2 displays an excerpt of an example API for the Brent Solver optimization routine.

Figure 4.2: Apache Math Commons API Excerpt for Brent Solver

The API for this Java implementation of the Brent Solver serves two purposes: first, it

communicates the basic requirements for the methods inputs and outputs. Second, however,

it also instructs any programmers who wish to extend the code as to the structure similar

code must take.9

In Python an API can be formally or informally defined in a number of ways, as de-

termined by the needs of a project. The HACK project forms a very simple API for the

codebase, organized around the modules required to run a partial-equilibrium or general-

equilibrium estimation. Specifically, the simple API employed by the HACK defined by the

8Apache Commons Math is a library of lightweight, self-contained mathematics and statistics meth-
ods addressing common problems and solutions not available in the Java programming language. See
http://commons.apache.org/proper/commons-math/ for more information.

9For this particular example, there are more extensive details in the
BaseUnivariateSolver API, here: https://commons.apache.org/proper/commons-

math/apidocs/org/apache/commons/math3/analysis/solvers/BaseUnivariateSolver.html

167

main functions and data structures employed in the Estimation module, which is displayed

and discussed in greater detail below. To extend the HACK library the user must replace

or otherwise replicate these main functions in the Estimation module.

An further use of APIs is to define an interface between a programming language and

a particular dataset. This second use of APIs, the database use, is just as important as its

usage in organizing code.10 Given the vast differences in different microeconomic database

structures, this is very difficult utility to create for broad use. A preliminary version is

created in the SetupEmpirical HACK module, also discussed below. This module both

organizes the empirical data against which the synthetic simulation data is to be compared,

and defines a function which takes raw synthetic simulation data and organizes it to be

directly comparable to the empirical data.

4.2.6 Version Control

An essential tool in distributed software development is a system which can automatically

archive versions of code, as well as allow the merging of changes to a document by two

different programmers. Such a system is known as a version control system. The HACK

project uses the Git version control system, and uses the popular online repository service

Github to archive its codebase. Chacon and Straub (2014) is an excellent reference for

version control in general and Git and Github in particular. Github allows code to be posted

to a single online repository which tracks previous versions. A repository is copied to the

computer of each contributor, and the central code source on Github may be kept private,

accessible only to select users, or made widely available to the general public. Github

provides a number of services on top of the pure repository service, including a simple wiki

space, a space for a static website, and simple one-off repositories called “Gists,” which allow

the quick public or private posting of a variety of content, including Jupyter notebooks.11

10Organizations such as the Open Economics Working Group may provide a unified approach for public
economic datasets.

11See this Github blogpost, “GitHub + Jupyter Notebooks = <3”, which explicitly outlines the use of
Github for sharing notebooks.

168

http://openeconomics.net/
https://github.com/blog/1995-github-jupyter-notebooks-3

4.2.7 Bringing It Together: Reproducible Research

Many of the tools above are used to create research which can be immediately reproduced,

even entirely in a web browser. This gallery of interesting IPython Notebooks outlines a

number of research projects which combine code, discussion, data visualization, and descrip-

tive mathematics to make science as transparent and reproducible as possible. For example

Ram and Hadany (2015) reproduce a section of their work in an IPython notebook, which

can be found here, and excerpt of which can be seen in Figures 4.3, 4.4, 4.5.

Figure 4.3: Ram and Hadany (2015) Notebook Excerpt 1

Many additional examples of reproducible research are available in the gallery noted

above.

169

https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
http://nbviewer.ipython.org/url/www.sciencedirect.com/science/MiamiMultiMediaURL/1-s2.0-S0040580914000811/1-s2.0-S0040580914000811-mmc1.txt/272364/FULL/S0040580914000811/471cf02085a52c248dc76ae65ad4409d/mmc1.txt

Figure 4.4: Ram and Hadany (2015) Notebook Excerpt 2

170

Figure 4.5: Ram and Hadany (2015) Notebook Excerpt 3

171

4.3 Methodological Framework

The foundational agent for the HACK toolkit is the microeconomic rational consumer.

The agent’s problem is stated as a dynamic stochastic optimization problem which is

solved via dynamic programming. Given the solution method and appropriate data, the

model is then estimated via Simulated Method of Moments (SMM), with standard errors

obtained via the bootstrap. The key is to write the code such that there is a logical

division between elements of the solution method. The ideal solution method decomposition

should allow the various modules of the code to be agnostic to one another – if one module

is replaced by a different module, which simply takes the same appropriate inputs and

outputs, the solution works as before. To use a software term, the HACK project defines an

API (Application Programming Interface) which instructs the user in how different solution

modules communicate with one another, regardless of what they do internally. I call an

element of the solution method “modular” is this is particularly easy to do. For example,

as described further below, the Simulated Method of Moments estimation procedure can

be robust in this way – under broad conditions, it can be applied to a very wide range of

dynamic decision models12.

One final note before proceeding. This modular approach aligns well with the authors’

strategy of implementing non-optimal behavior as a departure from an already-established

optimizing framework. If agents are to learn, the first straightforward extension is to learn

in about some element of the solution method – eg. learn expectations or learn the optimal

policy. If an agent makes mistakes, there are clear places to implement these mistakes in

the optimizing framework: in the expectation function, in the law of motion, in following

the optimal policy. In the codebase of HACK, the optimal problem is developed first as

the framework upon which further extensions are hung. Implementing a non-optimizing

solution thus involves augmenting or extending a bit of the baseline code.

This rest of this section outlines the basic optimization problem and solution method

12The choices represented in HACK are not the only modular solution methods which may be used,
but rather a baseline. If you have a favorite solution method which you believe is robust and modular as
described here, you are encouraged to contribute!

172

which forms the foundation of the HACK framework. The solution method is decomposed

into a few major conceptual parts, which are implemented as modular libraries in HACK.

Additional unimplemented solution methods are discussed. At each stage, the modular

nature of the methods are noted.

4.3.1 A Basic Partial-Equilibrium Example

Consider the following finite-horizon consumption-under-uncertainty problem.13 At time

T + 1, the consumer dies with certainty. The problem is to allocate consumption appropri-

ately from t = 0 to t = T . The full problem from Carroll (2012b) is:

max
{ct+j}∞j=0

Et

T−t∑
j=0

βju(ct+j)

s.t.

at = mt − ct

bt+1 = atR

pt+1 = ptΓψt+1 = ptΓt+1

mt+1 = bt+1 + pt+1ξt+1

m0 given

where

• at is end-of-period assets,

• mt is beginning-of-period total market resources (“cash on hand”),

• ct is consumption in period t,

• R is a constant return factor on assets, R = (1 + r),

13See Carroll (2012c) for much more detail on this style of problem.

173

• pt is permanent non-asset income,

• Γ is a constant permanent income growth factor,

• ψt is a mean-1 iid permanent shock to income, and

• ξt is a mean-1 iid transitory shock income, composed as

ξt =

0 with prob ℘t > 0

θt
6℘t with prob 6 ℘t ≡ (1− ℘t)

,where

• ℘t is a small probability that income will be zero

• θt is a mean-1 iid shock transitory to income

This setup can describe a wide range of consumer circumstances, including retirement

and fixed income over final years of life.

The utility function u(.) is of the Constant Relative Risk Aversion (CRRA) form with

risk-aversion parameter rho:

u(c) =
c(1−ρ)

1− ρ
.

As in Carroll (2012b), this problem can be normalized by permanent income pt to

produce a simplified version of the full problem, with a reduced number of state variable.

The bold symbols used above indicate non-normalized variables, while the regular non-bold

symbols used below indicate variables normalized by permanent income. The normalized

problem can be written in Bellman form:

174

vt(mt) = max
ct

u(ct) + βEt
[
Γ1−ρ
t+1 vt+1(mt+1)

]
s.t.

at = mt − ct

bt+1 =

(
R

Γt+1

)
at = Rt+1at

mt+1 = bt+1 + ξt+1

m0 given

or simplified further:

vt(mt) = max
ct

u(ct) + βEt
[
Γ1−ρ
t+1 vt+1(mt+1)

]
s.t.

mt+1 = Rt+1(mt − ct) + ξt+1

m0 given

4.3.2 The Solution Method

The general solution method is as follows: in the final period T , the value function in

the following period is vT+1(m) = 0 ∀m, and the value function in period T is simply

vT (m) = u(m). This makes the problem in period T−1 straightforward to solve numerically

for both the consumption function and value functions c∗T−1(m) and v∗T−1(m):

175

c∗T−1(m) = argmax
c∈[0,m̄]

u(c) + βET−1

[
Γ1−ρ
T u(RT (m− c) + ξt+1)

]

and

v∗T−1(m) = u(c∗T−1(m)) + βET−1

[
Γ1−ρ
T u(Ru(c∗T−1(m))

]

where m̄ is a self-imposed liquidity constraint.14

With these numerical solutions in hand, the solution method is now simply recursive:

step back one more period to T − 2 and solve for optimal consumption and value functions

using c∗T−1(m) and v∗T−1(m). This process can be continued back until the first period t = 0.

This solution process is outlined in greater detail in Carroll (2012b).

4.3.3 The Estimation Method

Denote the behavioral parameters β, ρ, (discounting and risk aversion, respectively) as

φ = {β, ρ}

and denote the structural problem parameters as

% = {%t}Tt=0,where

%t = {Γ, ψt, ξt, ℘t, θt},∀t.

Given an arbitrary behavioral parameter set φ = {β, ρ}, and choosing the values and

data-generating processes for the structural problem parameters % to match consumer ex-

periences in the PSID, I can solve for the set of consumption functions which are optimal

under these conditions, {c∗t (m)}Tt=0.

14Carroll (2012b) demonstrates the reasoning behind this derivation. In a model with positive probability
of a zero-income event, m̄ = m.

176

With these consumption functions now in hand, I can use the calibrated parameters

% to generate N different simulated consumer experiences (vectors of income shocks) from

t = 0, 1, ..., T . Applying the consumption functions {c∗t (m)}Tt=0 to this set of simulated expe-

riences generates a N -sized distribution of simulated wealth holdings for all t. The moments

of these cross-sectional distributions of wealth can then be compared to the equivalent mo-

ments in appropriately constructed empirical data from the Survey of Consumer Finance

(SCF). I form the following objective function, which compares population median between

empirical wealth-to-income ratio from the SCF and its simulated equivalent:

$%(φ) ≡
N∑
i=1

ωi|ζτi − sτ%(φ)|.

Here $%(φ) represents the objective value for the distance between medians of the two

populations, the synthetic population variables represented by (s) and the empirical popu-

lation variables represented by ζ (see Carroll (2012b) for more discussion of the form of this

objective function for population moments). The index i indicates individual observations

in the empirical data, each of which has a population weight ωi (required in the SCF due

to oversampling of particular sub-populations). Each individual i in the empirical data

has observations at the age-group frequency, τ . The variable sτ%(φ) is the median of the

simulated data for age group τ , under calibration %, using the parameters φ = {β, ρ}. Once

this value has been constructed as a function of φ, the estimation occurs by simply finding

the minimal φ value numerically:

min
φ

$%(φ).

This is accomplished in code by simply handing the expression $%(φ) to a numerical

minimization process. The standard error on the resulting estimation of {β∗, ρ∗} is found

by bootstrapping the empirical data and repeating the above estimation process a number

177

of times, Nbootstrap.

4.3.4 Modular Solution and Estimation in HACK

The solution and estimation method described for the basic problem above can be decom-

posed into the following steps, each of which is written as a module in Python. Each

module is documented, tested, and brought together in IPython notebook “vignettes” to

demonstrate their use, and finally brought together in a simple interface to effect model

solution and estimation. Extending the partial-equilibrium toolkit corresponds to writing

a new version of a specific set of functions in each of the basic modules, using the exiting

code and vignettes as examples and guides.

The major conceptual solution and estimation components for the partial-equilibrium

problem are:

• parameter definition

• setup of data and data/simulation comparison

• expectations formation and calculation

• value and policy formation

• simulation of population experience under a particular policy

• estimation of parameters using SMM and bootstrapping

These parts together form the basis of the partial-equilibrium portion of HACK. Code

is divided into the following primary modules, corresponding to the solution method break-

down noted above:

• SetupParameters.py

• SetupEmpirical.py

• HACKUtilities.py

• SolutionLibrary.py

• SimulationLibrary.py

178

• Estimation.py

This section examines these basic modules and outlines the process by which the library

can be expanded to include additional models. Work is underway to build out the general-

equilibrium portion using the approach implemented in Carroll et al. (2015). Namely, the

following additions will be made:

• price-finding via market clearing

• rational expectations via the Krusell-Smith (1998) algorithm.

The rest of this section outlines the main contents of the five modules noted above.

Each is illustrated with pseudo-code headers and content as needed. For each module, the

primary functions which need to be modified to extend the baseline model are identified

and discussed.

The module discussion begins with the final Estimation module listed above, as this

module clearly outlines the specific functions and intermediate data structures which must

be overwritten to extended the basic HACK framework to solve and estimate another model.

Estimation.py

The final and central module in HACK is the Estimation module. This brings all the

others together to solve, simulate, and estimate the preference parameters for the basic

consumption-under-uncertainty problem outlined above. In the pseudo-code below, all the

major functions which are necessary for the operation of the HACK project are outlined.

To change the baseline model, one only needs to change the five major functions imported

from other modules and used in the Estimation module. These five functions and their

definitions comprise the programming API for the HACK framework:

• SimulationLibrary:

– create income shocks experience

– find wealth hist matrix

179

• SolutionLibrary:

– init consumer problem

– solve consumption problem

• SetupParameters:

– find simulated medians

The module first imports all necessary HACK modules, executes the primary functions

from each, creates the SMM objective function $%(φ), and executes a single minimization:

min
φ

$%(φ).

Also included in this module is a bootstrap function which repeats the minimization for

a bootstrap sample of data, Nbootstrap times.

A special note for the pseudo-code for Estimation.py that follows: the Python operator

“**” acts to unpack a dictionary (a hash-table data storage object in Python) and use

its key to associate the dictionary values with the appropriate function calls. Thus the

definitions of the dictionaries “unpacked” by the ** symbols below act to keep the code

clean and readable.

This code excerpt includes the pseudo-code for the calculation of the SMM objective

function, smm objective fxn, which is almost entirely complete code:

180

The beauty of the modular HACK structure emerges in this Estimation module. To

start an extension of the baseline model, the user first identifies which of the functions in the

above process must be overwritten or extended. Once this is established, the user simply

walks through the codebase and makes the appropriate adjustments. Once that work is

done, only minor changes are required for Estimation.py. Furthermore, the documentation,

testing, and organization of all other methods are outlined in the baseline example, easing

the process for the new user.

Figure 4.6 displays a screen shot from the simple command-line interface to the esti-

mation process. The estimation module prompts the user for a selection from numerical

optimization options, then asks for initial conditions. After the initial estimation, the option

to bootstrap the standard errors is provided.

181

Figure 4.6: Simple Simulated Method of Moments Estimation User Interface

182

The brute force optimization option “c” will search a fixed grid for the optimal point,

and produce a contour plot over the grid as part of the output. The surface for the particular

parameterization used for this paper can be seen in Figure 4.7.

Figure 4.7: Simple Simulated Method of Moments Estimation Contour Plot

SetupParameters.py

This module is coupled with an input JSON file, which specifies the full set of calibrated

values required to solve the model. The JSON file, as noted previously, is language-

independent, and can be read and used by nearly any modern programming language. The

HACK project has used this in particular to validate multiple-language versions of the same

model, eg. between MATLAB and Python. This setup allows calibration parameters to be

specified once, in a separate, easily human-readable file. Importantly, the SetupParameters

also executes a key function for the estimation step: it brings in and organizes the empirical

183

data to be used in the estimation process,15 and it defines a function find simulated medians

which will take in simulated wealth data and organizes it to be comparable to the empirical

data as stated in the SMM objective expression,

N∑
i=1

ωi|ζτi − sτ%(φ)|.

When the user desires to change the estimation procedure (eg. change the empirical

data or moments compared), the SetupParamters file must be changed appropriately.

This SetupParameters file is imported into any subsequent module which needs to ac-

cess the parameters using the following line of code. Note that particular parameters are

immediately accessible:

Note that the JSON file includes initial guesses for the parameters to be estimated by

the Simulated Method of Moments routine. To extend the baseline HACK model, new

calibrated parameter values will need to be added to this file.

SetupEmpirical.py

This module sets up empirical data, along with functions which allow moments of the

empirical data to be matched to moments of the simulated data. The main functions are:

15This data is usually stored in a separate format than the parameters in the JSON file.

184

The first function constructs mapping functions between the empirical and simulated

data moments. The second function uses these mappings to organize simulated data mo-

ments to map to empirical data moments, and the final function implements data resampling

procedures required for the bootstrap estimates of variance.

HACKUtilities.py

This module contains a number of utilities used by the HACK framework, including the

code to implement agent expectations. Agent expectations here are implemented as a

discretization of the shock-space, achieved by choosing the size of discrete points to represent

the distribution, Ndiscrete, creating an equiprobably-spaced partition over the support, and

selecting the representative point in each partition as the conditional mean of values in

the partition. Each resultant point is then assigned the probability 1
Ndiscrete

. See Carroll

(2012b) for a detailed discussion of this approach.

An example of the code which implements a mean-1 lognormal shock space is as follows:

185

Note the embedded doctest, which runs “sanity checks” on the discretization process.

Tests such as these identified initial numerical errors in the discretization process due to

loose default integration tolerances – a key contribution of unit testing which can help avoid

many hours of bug hunting in incorrect portions of the codebase.

The key modular feature of the HACKUtilities library is that it produces, finally, a single

discrete representation of the probability space faced by the consumer. As long as shocks

are iid, the number of dimensions of shocks does not matter – each distribution is discretized

and the joint distribution is create combinatorially from the individual discrete marginal

186

distributions. To create expectations, the HACKUtilities library finally produces a set of

combinations of all discrete points as the support, and the corresponding combination of

all discrete probabilities as the distribution. Expectations of a function f are then formed

simply by the dot product of f applied to each point with the probabilities associated with

all points.

If additional methods of expectations formation are desired, this is the correct module

in which to develop them.

SolutionLibrary.py

The solution library contains the main definitions used in the solution method. The HACK

project uses dynamic programming to determine the solution to the consumer problem,

and in particular uses the endogenous gridpoints method to greatly accelerate solving for

the policy function. The endogenous gridpoints method is discussed in extensive detail in

Carroll (2006). This solution method takes advantage of the end of period consumption

and value functions,

c(at) and v(at)

which map end-of-period wealth at to consumption and expected value. The endoge-

nous gridpoints method is not required for the HACK project, but it greatly accelerates

the solution method and is used in the baseline HACK model. This is one example of in-

cluding concrete examples of non-trivial computational “tricks” which may greatly improve

a solution method. The endogenous gridpoints method may not be easy to understand

upon first encounter. Thus the HACK toolkit includes it along with an IPython notebook

which quickly illustrates how the process works – an interactive and executable summary

of Carroll (2012b).

The key methods in the SolutionLibrary module are the following, shown only with

their function headers – documentation and code details are excluded for brevity. The

main functions are:

187

Utility functions: The CRRA utility function is defined with its first and second

derivative:

The end-of-period consumption function for period T−1 and all other t < T−1

These are the key functions used in the endogenous gridpoints backwards induction method:

Initialize the consumer problem: A consumer’s problem must be set up before it

can be solved: the expectations support and probability mass function must be created for

each period:

Solve the consumer problem: The recursive solution method is implemented by two

functions: the first solves a single period in the problem (“one step back”), while the second

implements the full backwards recursion, from period T − 1 to 0:

The final function, “solve total consumption problem,” returns a list of consumption

188

function objects, ordered in reverse chronology (index 0 is the consumption function for pe-

riod T , index 1 is consumption function for T −1, etc.). All other functions in the Solution-

Library module can be thought of as supporting the final solve total consumption problem

function.

The baseline model can be extended by overwriting the solve total consumption problem

function, as well as creating/overwriting whatever additional functions are needed to sup-

port the new implementation. For example, if a model is extended with respect to solution

methods – for example, if Bayesian learning is added to the agent solution method – this

module is the correct place to include that extension.

SimulationLibrary.py

The simulation library implements the simulation step of the estimation process – given a

reverse-chronology list of consumption functions, the functions in this library will draw an

appropriate panel of shocks of size {T,Nsimulate}, where T is total periods and Nsimulate is

the total number of agents for which to simulate experiences (eg. T = 60 and Nsimulate =

10, 000).

The key methods in the SimulationLibrary module are the following, again shown only

with function headers for brevity:

Main two functions: The main two functions in the SimulationLibrary module first

create the complete set of shocks required to simulate agent experiences and, second, apply

the consumption solution from the SolutionLibrary to this set of shocks to produce the

simulated wealth panel. To extend the baseline model, these are the two major functions

to overwrite, as well as the requisite helper functions. The two major functions appear as

follows:

Helper functions: There are a number of “helper” functions in the SimulationLibrary

189

which support create income shocks experience and find wealth history matrix. The single

task of creating and simulating the shocks is split across a number of helper functions to

aid in both clarity and unit testing. Together they are used to create the final matrices of

shocks needed to simulate consumption:

4.4 Summary and Conclusion

The HACK project is a modular code library for constructing macroeconomic and macro-

financial models with heterogeneous agents solving portfolio decisions under uncertainty.

Portfolio choice under uncertainty is central to nearly all academic models, including modern

DSGE models (with and without financial sectors), models of asset pricing (eg. CAPM and

C-CAPM), models of financial frictions (Bernanke et al., 1999), and many more. Under the

right assumptions many of these models can be solved by aggregating agent decision-making

and employing the representative agent, with standardized computational frameworks for

solving these models. However when individual agents look very different from one another

- for example, different wealth levels, preferences, or exposures to different types of shocks

- assumptions required for aggregation can quickly fail and a representative agent may no

190

longer be appropriate. Code to solve these models tends to be bespoke and idiosyncratic,

often reinvented by different researchers working on similar problems. This needless code

duplication increases the chance for errors and wastes valuable researcher time.

Researchers should spend their valuable time producing research, not reinventing the

wheel when it comes to computational tools. The goal of the HACK toolkit is to ease

this burden by providing a simple and easily extensible framework in which a few common

models are solved, and clear documentation, testing, and estimation frameworks provide

guidance for new researchers to develop their own work in a robust and replicable manner.

The final goals of the project are to create a collaborative codebase which can serve both

researchers and policymakers alike, employing the best of modern software development

tools to accelerate understanding and implementation of cutting edge research tools. The

solution methods employed in HACK are not the only methods available, and those who

have additional methodological suggestions are strongly encouraged to contribute! Increas-

ing returns to production is one of the few “non-dismal” possibilities in economic thought –

I hope to capture this feature of code production in the HACK framework. Key next steps

include finalizing the general-equilibrium HACK modules, identifying additional baseline

models to replicate in HACK, and encouraging a new generation of students to learn from,

use, and contribute to the collaborative construction of heterogeneous-agent models.

191

Chapter 5: Conclusion

Economics has encountered a crisis of methodologies following the Financial Crisis and Great

Recession. As awareness grows of the need for increased heterogeneity and complexity in

models, there is a countervailing push to maintain some form of dynamic optimizing behav-

ior, which is generally intractable as heterogeneity and complexity increase. Agent-based

modeling has only offered a partial solution – the ability to model complex environments

and situations is there, but a widely accepted method of tractable bounded rationality has

not appeared. In the past two decades, however, the dynamic programming literature has

developed learning-to-optimize methods which generalize dynamic programming by easing

the information requirement on decision makers. Agents instead learn near-optimal behav-

ior from trial-and-error experience. This behavior produces a bounded rationality from first

principles: agents still maximize familiar preferences under uncertainty, but are simply re-

stricted from solving the fixed-point value-function calculation each period. Instead agents

solve the fixed-point calculation over time, via experience.

Chapter 2 in this dissertation introduces regret learning, which is a simple learning-

to-optimize algorithm which allows agents to solving their consumption-under-uncertainty

problem by minimizing “regret:” after learning a value function over a set of periods, agents

look back over that experience and calculate the choices which would have maximized the

per-period Bellman, “given what they know now,” i.e. the learned value function. This

produces a new consumption function, and the process is repeated. Simulations are used

to show that this converges to a neighborhood around the optimal solution, and there is

extensive discussion of the theoretical framework on which regret learning is based.

Chapter 3 extends Allen and Carroll (2001)’s original agent-based model in two ways:

first, I incorporate social learning into the process, and second, I introduce an new, intu-

itively motived estimator of the value of a simple linear consumption rule. Social learning

192

occurs through a simple form of information sharing. This addition retains the original

model’s results that consumers can consistently find an optimal rule, but lowers the time

required to find such a rule arbitrarily close to the lowest possible bound. The time required

to find a rule is now a function of the number of agents in the model. Furthermore, the new

estimator I identify further decreases the amount of time required to find a near-optimal

rule by a full order of magnitude. This estimator also opens the door for the social learning

process to incorporate heterogeneous initial endowment values across agents, a welcome

extension to the original model.

In Chapter 4, I present initial work on a modular and extensible toolkit for solving and

estimating heterogeneous-agent partial- and general-equilibrium models. Heterogeneous-

agent models have grown increasingly valuable for both policy and research purposes, but

code to solve such models can be difficult to penetrate for researchers new to the topic.

As a result it may take years of human capital development for researchers to become

proficient in these methods and contribute to the literature. The goal of the HACK toolkit

is to ease this burden by providing a simple and easily extensible framework in which a

few common models are solved, and clear documentation, testing, and estimation examples

provide guidance for new researchers to develop their own work in a robust and replicable

manner. Using two examples, I outline key elements of the toolkit which ease the burden

of learning, using, and contributing to the codebase. This includes a simple API for model

solution and an API for estimation via simulation, as well as methods for bundling working

code with interactive documentation. The foundational solution method I employ is Carroll

(2012b), Solution Methods for Microeconomic Dynamic Stochastic Optimization Problems,

written in a modular Python framework.

All code will be open and published to a public repository.

5.1 Results

The dissertation contributes to the current literature by providing a rigorous description

of plausible mechanisms by which an agent can learn the solution to a dynamic stochastic

193

optimization problem from experience. This dissertation offers three analogies regarding

how agents might learn from their own experience and the experience of others. These

analogies are then made rigorous by casting them in the framework of approximate dynamic

programming. Numerical simulation results then show that these mechanisms converge

towards the optimal solution in distribution as experience is taken to the infinite limit.

The contribution of the learning-to-optimize literature in general and this dissertation

in particular is the surprising note that agents can obtain optimal solutions from learning in

real time. This is not a result which is clear from observing the first principles of dynamic

optimization theory. Even when an agent only has access to a single stream of experience,

as in Chapter 2 in this dissertation, and thus their own learning is highly correlated, they

can nonetheless find an near-optimal policy function. To say it another way, estimating a

value function from very little experience produces a highly biased value function – and yet

learning a highly biased value function can still lead to learning a nearly correct consumption

function.

Finally, the solution method presented in this dissertation is explicitly intended to be an

engine to drive development of both agent-based models such as Geanakoplos et al. (2012)

and large-scale heterogeneous-agent macroeconomic models such as Peterman et al. (2015).

5.2 Weaknesses and Future Work

The learning to optimize work described above for Allen and Carroll (2001) and others

is not without potential criticism. From a more traditional economic learning perspective

in which agents learn beliefs but still optimize conditional on beliefs, such as in Chamley

(2004) or Evans and Honkapohja (2001), the criticism may be leveled that agents who learn

to optimize are taking learning too far – essentially, there are no good reasons to carry

bounded rationality beyond expectation formation and into the optimization process itself.

I have personally heard this in one-on-one conversation, but even Evans and McGough

(2014) observes that learning only about expectations is likely not enough.

From the agent-based side of research, the opposite charge may be made: that bounded

194

rationality which only approximately optimizes is still too much usage of the optimization

framework. This is a balance that must always be struck carefully. One future extension

of the regret learning framework takes this criticism to heart; a much simpler mechanism

than the one presented here may achieve nearly the same results. That work is underway.

Finally, there are a number of limitations to the models to be presented in the preceding

essays: agents learn faster than in the original Allen and Carroll (2001) setup, but still learn

slowly. Agents do not take into account large one-time decisions such as buying a house or

retiring, and agents do not trade assets with one another, or save money in other savings

vehicles, such as the stock market or mutual funds. Thus there is no immediate way to

examine general equilibrium effects. All of these shortcomings indicate future directions

of research. In particular, the results of the first two chapters can be combined into a

single social and individual learning model. This is the immediate next step in this research

stream.

195

Appendix A: Policy Iteration and Optimistic Policy Iteration

Proofs

The proofs in this appendix closely follow the conventions and notation in Bertsekas (2012).

These are largely re-derivations of his proofs for policy iteration and optimistic policy itera-

tion, although a number of the lemmas are proved for a more general case than he presented

and following a stricter expositional style when proving by induction. The final extension

of the proofs to the alternate ordering of the optimistic policy iteration steps is simple but

necessary for determining the conditions under which the initial policy and value functions

employed by agents will be known to converge to their optimal counterparts.

I begin by defining important notation and reviewing the mathematical essentials re-

quired for the following proofs. As noted above, the notation here differs slightly from that

in the text.

Define the following. Let:

• X be a set of states with elements x ∈ X,

• U be a set of controls with elements u ∈ U ,

• U(x) ⊂ U be a “feasible set” of controls ∀ x ∈ X

• M be the set of all policy functions with elements

µ ∈M ≡ {µ : X → U s.t. µ(x) ∈ U(x)}

• r : U → R is the real-valued “reward” function,

• J : X → R is the real-valued “value” function, J ∈ R(X)

• H : X × U × R(X)→ R is a mapping

• w ∼W be a random shock distributed as distrbution W ,

• f : X × U ×W → X be a transition function, and

• β ∈ (0, 1) be a discount factor.

196

Define the mapping T as:

(TJ)(x) = sup
u∈U(x)

H(x, u, J) ∀x ∈ X

where we use the shorthand (TJ)(x) ≡ (T ◦ J)(x). If for simplicity we assume that

(TJ)(x) 6= ±∞ then T : R(X)→ R(X).

Likewise define the mapping Tµ as

(TµJ)(x) = H(x, µ(x), J) ∀x ∈ X

Our goal is to find J∗ ∈ R(X) such that:

J∗(x) = sup
u∈U(x)

H(x, u, J∗) ∀x ∈ X,

which can be expressed compactly as

J∗ = TJ∗,

Corresponding with J∗ we wish to find a µ∗ which fulfills:

H(x, µ∗(x), J∗) = sup
u∈U(x)

H(x, u, J∗) ∀x ∈ X

⇒ µ∗(x) = argsup
u∈U(x)

H(x, u, J∗) ∀x ∈ X

We can express the relationship between µ∗ and J∗ compactly as

Tµ∗J
∗ = TJ∗.

For our problem we will define H as:

197

H(x, u, J) = r(x) + βE [J(f(x, u, w))]

where the expectation is taken with respect to the random variable w.

A.1 Proof that T and Tµ are Contraction Mappings

A.1.1 Background Review

Before proving that T and Tµ are contraction mappings, we review some key concepts.

Define a metric space (B(X), ρ∞) where B(X) is the set of all continuous, bounded

functions f : X → R and ρ∞ is the sup norm:

ρ∞(f, g) = sup
x∈X
| f(x)− g(x) | ∀ f, g ∈ B(X).

Define the operation ≤ on B(X) as follows: ∀f, g ∈ B(X), f ≤ g ⇐⇒ f(x) ≤

g(x) ∀ x ∈ X.

Thus (B(X), ρ∞) is a complete metric space. Let T : B(X) → B(X) be a mapping.

Recall that T is a contraction mapping if ∃β ∈ (0, 1] such that

ρ∞(Tf, Tg) ≤ βρ∞(f, g) ∀f, g ∈ B(X),

where we use the shorthand Tf ≡ T (f).

Recall that Blackwell’s Sufficiency Conditions provide a flexible and powerful set

of conditions under which T is a contraction. These are:

• monotonicity: ∀f, g ∈ B(X), f ≤ g → Tf ≤ Tg, and

• discounting: define c : X → c̄ for c̄ ∈ R+; then T discounts if

T (f + c) ≤ Tf + βc̄ for any β ∈ (0, 1].

198

If T fulfills monotonicity and discounting, then T is a contraction mapping on (B(X), ρ∞).

We care about Blackwell’s Sufficiency Conditions because if some mapping: T : B(X)→

B(X). can be shown to be a contration on a complete metric space (such as (B(X), ρ∞)),

then we know that

• there is a unique fixed point g∗ ∈ B(X) s.t. g∗ = Tg∗, and

• we can construct a sequence {gk} which converges to g∗ as follows: let gk =

T kg0, where the notation T k indicates that the mapping has been recursively applied

to g0. point can be constructed as the limit lim
k→∞

gk = g∗, where gk = T kg0, and g0 is

any point in B(X).

We are now ready to show that T and Tµ are contraction mappings in (B(X), ρ∞).

A.1.2 T and Tµ are Contraction Mappings

Consider the complete metric space (B(X), ρ∞) where B(X) is the set of all continuous,

bounded functions f : X → R and ρ∞ is the sup norm.

We start with two lemmas:

Monotonicity of H:

Let H be defined as above and let J, J
′ ∈ B(X), where J ≤ J ′ . Observe that:

H(x, u, J) = r(x) + βE [J(f(x, u, w))] ∀ x ∈ X,u ∈ U

≤ r(x) + βE
[
J
′
(f(x, u, w))

]
∀ x ∈ X,u ∈ U

= H(x, u, J ′) ∀ x ∈ X,u ∈ U, u ∈ U

Thus J ≤ J ′ → H(x, u, J) ≤ H(x, u, J
′
) ∀ x ∈ X,u ∈ U . �

Discounting of H:

199

Let H be defined as above and let J, c ∈ B(X), where c : X → c̄, and c̄ ∈ R+ is some

constant. Observe that:

H(x, u, J + c) = r(x) + βE [J(f(x, u, w)) + c(x)] ∀ x ∈ X,u ∈ U

= r(x) + βE [J(f(x, u, w))] + βc(x) ∀ x ∈ X,u ∈ U

= H(x, u, J) + βc̄ ∀ x ∈ X,u ∈ U.

Thus for all J, c ∈ B(X) s.t. c : X → c̄ ∈ R, we have that H(x, u, J + c) = H(x, u, J) +

βc̄ ∀ x ∈ X,u ∈ U . �

Now consider T and Tµ as defined above. We can see that both are contraction mappings

as follows:

Monotonicity:

Let J, J
′ ∈ B(X), where J ≤ J ′ . Observe that:

200

TµJ = H(x, µ(x), J) ∀ x ∈ X

≤ H(x, µ(x), J) ∀ x ∈ X

= TµJ
′

and

TJ = sup
u∈U(x)

H(x, u, J) ∀ x ∈ X

≤ sup
u∈U(x)

H(x, u, J
′
) ∀ x ∈ X

= TJ
′

Thus J ≤ J ′ → TµJ ≤ TµJ
′

and TJ ≤ TJ ′ . �

Discounting:

Let J, c ∈ B(X), where c : X → c̄, and c̄ ∈ R+ is some constant. Observe that:

201

Tµ(J + c) = H(x, µ(x), J + c) ∀ x ∈ X

= H(x, µ(x), J) + βc̄ ∀ x ∈ X

= TµJ + βc̄

and

T (J + c) = sup
u∈U(x)

H(x, u, J + c) ∀ x ∈ X

= sup
u∈U(x)

{H(x, µ(x), J) + βc̄} ∀ x ∈ X

= sup
u∈U(x)

{H(x, µ(x), J)}+ βc̄ ∀ x ∈ X

= TJ + βc̄

Thus for all J, c ∈ B(X) s.t. c : X → c̄ ∈ R, we have that Tµ(J + c) = TµJ + βc̄ and

T (J + c) = TJ + βc̄. �

For a given policy µ we can define Tµ = H(x, µ(x)

By Blackwell’s Sufficiency Conditions, we have that both Tµ and T are contraction

mappings on the complete space (B(X), ρ∞), and thus each have a unique fixed point

which is attainable by an appropriately constructed sequence in B(X).

202

A.2 Proof of Convergence of Policy Iteration

A.2.1 Policy Iteration Algorithm

Define the Policy Iteration algorithm as follows:

• Step (0) - Initialization: Choose an arbitrary initial policy µ0 ∈M

• Step (1) - Policy Evaluation: Given policy µk, find value function Jµk which is the

fixed point of Tµk ; that is:

Jµk = TµkJµk

.

• Step (2) - Policy Improvement: Obtain new policy µk+1 which solvesH(x, µk+1(x), Jµk) =

sup
u∈U(x)

H(x, u, Jµk). That is, given Jµk , find the new policy µk+1 consistent with

Tµk+1Jµk = TJµk .

Note that the policy improvement step can be satisfied by constructing µk+1 as the

“greedy” policy with respect to H(x, u, Jµk):

µk+1(x) = argsup
u∈U(x)

H(x, u, Jµk) ∀ x ∈ X.

Repeat the process at step 1 using the new policy µk+1.

Before proceeding we prove the following lemma:

Optimal Mapping Upper Bound (OMUB) Lemma:

Let µ be any continuous policy function and J ∈ B(X) be any continuous value function

such that the following relationship holds:

203

TJ ≥ J.

We want to show that

TnJ ≥ J ∀ n ∈ N

We proceed by standard induction:

• Base case: the hypothesis holds for n = 1 by assumption: TJ ≥ J.

• General case assumption: assume the relationship holds for arbitrary n = i: TnJ ≥ J.

• Induction step: We can now see that n = i+ 1 holds as well:

T iJ ≥ J by induction step

⇒ T (T iJ) ≥ TJ by monotonicity of T

⇒ T i+1J ≥ TJ ≥ J. by initial assumption

Thus TnJ ≥ J ∀ n ∈ N.�

A.2.2 Policy Iteration Convergence

For an arbitrary k, the policy iteration step implies the following equivalences:

Tµk+1Jµk = TJµk by the policy improvement step,

≥ TµkJµk by the optimality of T,

= Jµk by the policy evaluation step,

or more compactly:

204

Tµk+1Jµk = TJµk ≥ TµkJµk = Jµk .

We get two useful inequalities out of this:

TJµk ≥ Jµk and (A.1)

Tµk+1Jµk ≥ Jµk (A.2)

Using lemma (OMUB) and equation (A.1) immediately produces the following result:

TnJµk ≥ Jµk∀ n, ∀ k. (A.3)

By (A.3) and the fact that lim
n→∞

TnJ0 = J∗, where J0 ∈ B(X) is any initial function, we

know that

J∗ ≥ Jµk∀ k..

Using equation (A.2) we can prove an intermediate result. Observe that

Tµk+1Jµk ≥ Jµk

⇒ T 2
µk+1Jµk ≥ Tµk+1Jµk by monotonicity of T

We can show, again by induction, that Tn
µk+1Jµk ≥ Tµk+1Jµk∀ n ≥ 2:

• The hypothesis holds for n = 2 by equation (A.2.2)

• Assume it holds for arbitrary n = i : T i
µk+1Jµk ≥ Tµk+1Jµk .

• We can now see that the steps n = i+ 1 holds as well:

205

T iµk+1Jµk ≥ Tµk+1Jµk by induction step,

⇒ T i+1
µk+1Jµk ≥ T 2

µk+1Jµk by monotonicity of Tµk+1 ,

≥ Tµk+1Jµk ,

where the final inequality holds by equation (A.2.2). Thus Tn
µk+1Jµk ≥ Tµk+1Jµk∀ n ≥ 2

by induction, and since lim
n→∞

Tn
µk+1J0 = Jµk+1 , where J0 is any initial function in B(X)$, we

know that

Jµk+1 ≥ Tµk+1Jµk .

We can combine this with equation (A.2.2) to get the following key inequality:

Jµk+1 ≥ TJµk ≥ Jµk .

For the sake of the following proof, restate this as:

Jµk ≥ TJµk−1 ≥ Jµk−1 .

We will use induction to show that Jµn ≥ TnJµ0 ∀ n:

• The hypothesis holds for n = 1 by equation (A.2.2)

• Assume it holds for arbitrary n = i : Jµi ≥ T iJµ0 .

• We can now see that the steps n = i+ 1 holds as well:

TJµi ≥ T i+1Jµ0 by inductive step and monotonicity of T

⇒ Jµi+1 ≥ TJµi ≥ T i+1Jµ0 .

206

Thus by induction

Jµk ≥ T kJµ0 ∀ k.

Together equations (A.2.2) and (A.2.2) imply

J∗ ≥ Jµk ≥ T kJµ0 ∀ k.

By the fact that T is a contraction mapping on (B(X), ρ∞), we know that for any

J0 ∈ B(X),

lim
k→∞

ρ∞(T kJ0 − J∗) = 0

⇒ lim
k→∞

ρ∞(T kJµ0 − J∗) = 0

This limit along with inequality (A.2.2) implies that

lim
k→∞

ρ∞(Jµk − J∗) = 0,

and thus the policy iteration algorithm is squeezed to converged to the optimal policy

by the value iteration iterates.

Note that the step (A.2.2) is a proof for the convergence of value iteration, which is

simply attained by the repeated application of T to an arbitrary intial value function.

Interestingly enough, this final step in the proof gives us analytical intuition for the

reduced convergence times experienced by practitioners using policy iteration: for each

iteration step k, the policy iteration algorithm produces a value function Jµk which in the

worst case is as far from the optimal value function J∗ as the equivalent kth-iterate of value

iteration.

207

A.3 Proof of Convergence of Optimistic Policy Iteration

A.3.1 Optimistic Policy Iteration Algorithm

Define the Optimistic Policy Iteration (OPI) algorithm as follows:

Algorithm I:

• Step 0 - Initialization: Choose an arbitrary initial value function J0 such that TJ0 ≥

J0.1. Choose a sequence of integers {mk}∞k=0, where mk ∈ N ∀ k ∈ N.

• Step 1 - Policy Improvement: Obtain policy µk which solves H(x, µk(x), Jk) =

sup
u∈U(x)

H(x, u, Jk). That is, given Jk, find the policy µk consistent with

TµkJk = TJk.

Note that the policy improvement step can be satisfied by constructing µk as the

“greedy” policy with respect to H(x, u, Jk):

µk(x) = argsup
u∈U(x)

H(x, u, Jk) ∀ x ∈ X.

• Step 2 - Optimistic Policy Evaluation: Given value function Jk and policy µk,

execute the optimistic value function update to obtain Jk+1, which results from the

application of mapping Tµk to Jk mk times. That is:

Jk+1 = Tmk
µk
Jk.

Repeat the process at step 1 using the new value function Jk.

1Note that such an initial function can always be constructed from any arbitrary function J̃ as follows.

Choose a constant c = max
x∈X

ρ∞(T J̃ − J̃), then define J0 = J̃ + c.

208

Note that an alternative statement of this process can be outlined in a slightly different

order. If both µ0 and J0 are choosen, we can proceed as follows:

Algorithm II:

• Step 0 - Initialization: Choose an arbitrary initial value and policy function, J0 and

µ0, and a sequence of integers {mk}∞k=0, where mk ∈ N ∀ k ∈ N.

• Step 1 - Optimistic Policy Evaluation: Given value function Jk−1 and policy µk−1,

find the optimistic value associated with the policy function Jk which results from the

application of mapping Tµk−1 to Jk−1 mk times. That is:

Jk = T
mk−1

µk−1 Jk−1

.

• Step 2 - Policy Improvement: Obtain new policy µk which solves H(x, µk(x), Jk) =

sup
u∈U(x)

H(x, u, Jk). That is, given Jk, find the policy µk consistent with

TµkJk = TJk.

Note that the policy improvement step can be satisfied by constructing µk as the

“greedy” policy with respect to H(x, u, Jk):

µk(x) = argsup
u∈U(x)

H(x, u, Jk) ∀ x ∈ X.

We will first prove convergence for the more-traditional Optimistic Policy Iteration

Algorithm I. The proof will follow a very similar pattern to that of the Policy Iteration

algorithm.

As with policy iteration, we want to prove the following inequality holds, which will

allow us to “squeeze” the optimistic policy iterates to the optimal function:

209

J∗ ≥ Jk ≥ T kJ0 ∀ k ∈ N.

That is, we want to show that the equivalent value function iteration at step k is al-

ways at best as far from the optimal value function as the equivalent value function from

optimistic policy iteration.

Before proceeding we state the following lemmas:

Multistep Policy Mapping I Lemma (MPM I):

Let µ be any continuous policy function and J ∈ B(X) be any continuous value function

such that the following relationship holds: TµJ ≥ J.

We want to show that for any m ∈ N,

Tm+1
µ J ≥ Tmµ J.

For consistency we define T 0
µ as simply no application of the mapping Tµ. As always we

proceed by induction.

• Base case: we consider two steps for completeness:

– m = 0: This holds by the lemma assumption: T 1
µJ ≥ T 0

µJ = TµJ ≥ J

– m = 1: This holds by the lemma assumption and monotonicity of Tµ: T 2
µJ ≥ TµJ

• General case assumption: Assume the general case holds for m = i:

T i+1
µ J ≥ T iµJ

• Induction step: we can see now that the general case for m = i implies that the

relationship continues to hold for m = i+ 1:

210

T i+1
µ J ≥ T iµJ by the general case assumption,

⇒ Tµ(T i+1
µ J) ≥ Tµ(T iµJ) by applying Tµ mapping to both sides;

inequality holds by monotonicity of Tµ,

⇒ T i+2
µ J ≥ T i+1

µ J and achieve the induction result.

Thus by induction we know that

TµJ ≥ J ⇒ Tm+1
µ J ≥ Tmµ J ∀ m ∈ N.�

Multistep Policy Mapping II Lemma (MPM II):

Let µ be any continuous policy function and J ∈ B(X) be any continuous value function

such that the following relationship holds: TµJ ≥ J.

We want to show that for any m ∈ N,

Tmµ J ≥ TµJ.

For consistency we define T 0
µ as simply no application of the mapping Tµ. We again

proceed by induction on m:

• Base cases:

– m = 1: This holds by definition: TµJ = TµJ.

– m = 2: This holds by the assumption TµJ ≥ J and monotonicity of Tµ: T 2
µJ ≥

TµJ.

• General case: Assume the general case holds for m = i:

T iµJ ≥ TµJ

211

• Induction step: the general case for m = i implies that the relationship holds for

m = i+ 1:

T iµJ ≥ J

⇒ T (T iµJ) ≥ TµJ by general case assumption, monotonicity of Tµ

⇔ T i+1
µ J ≥ TµJ.

Thus by induction we know that

TµJ ≥ J ⇒ Tmµ J ≥ TµJ ∀ m ∈ N.�

Multistep Policy Mapping III Lemma (MPM III):

Consider a sequence of policy functions {µk} and value functions {Jk} generated by

the Optimistic Policy Iteration algorithm using sequence {mk}∞k=0. Then the following

relationship must hold for all m ∈ N:

T 1+m
µk

Jk ≥ TmµkJk.

Once this is demonstrated for all m, it is clear that it will hold for the specific case

T 1+mk
µk

Jk ≥ Tmkµk
Jk, where m is replaced with the values mk ∈ {mk} defined above.

We will prove (A.3.1) by a nested induction argument.

First consider induction on m. We first show that, for k = 0, the relationship Tm+1
µ0

J0 ≥

Tmµ0J0 holds for all m > 0,m ∈ N:

• Initial steps:

– m = 0 and we define T 0 as no transformation; this holds by the initial assumption

and the policy improvement step: Tµ0J0 = TJ0 ≥ J0

212

– m = 1 holds by them = 0 case above and the monotonicity of Tµ0 : T 2
µ0J0 ≥ Tµ0J0

• Assume the relationship holds for general m = i: T i+1
µ0

J0 ≥ T iµ0J0

• Induction step: we can now immediately see that this holds for m = i+ 1 as well:

T i+1
µ0

J0 ≥ T iµ0J0

⇒ Tµ0(T i+1
µ0

J0) ≥ Tµ0(T iµ0J0) by assumption and monotonicity of Tµ0

⇔ T i+2
µ0

J0 ≥ T i+1
µ0

J0

⇒ Tm+1
µ0

J0 ≥ Tmµ0J0, ∀ m ∈ N.�

Thus by induction it must be the case that for all m > 0,m ∈ N, Tm+1
µ0

J0 ≥ Tmµ0J0, so

the specific case of m = m0 holds as well.

Note that this conveniently defines for us the first step in an induction proof for demon-

strating that, for all k, T 1+m
µk

Jk ≥ TmµkJk:

• Initial step, k = 0: T 1+m
µ0

J0 ≥ Tmµ0J0 was proved above ∀ m.

• We assume the relationship holds for general k = i:

T 1+m
µi

Ji ≥ TmµiJi ∀ m

• Inductive step: the general case above implies that relationship continues to hold for

k = i+ 1. We can see that:

213

Tµi+1Ji+1 = TJi+1 by OPI Policy Improvement step

≥ TµiJi+1 by definition of µi in OPI

= T 1+mi
µi

Ji by OPI policy evaluation step and monotonicity of Tµi

≥ Tmi
µi
Ji by general case assumption for k = i,m = mi

= Ji+1 by OPI policy evaluation step

⇒ Tµi+1Ji+1 ≥ Ji+1

⇒ Tm+1
µi+1 Ji+1 ≥ Tmµi+1Ji+1∀ m ∈ N by the (MPM II) Lemma

⇒ Tm+1
µk

Jk ≥ TmµkJk ∀ k ∈ N and ∀ m ∈ N.�

Since this holds for all m, it is clear that it also holds for the sequence {mk}. Note that

the general-m result is imporant in its own right.

We use this result to immediately write another lemma and solidify an important in-

equality:

Multistep Policy Mapping IV Lemma (MPM IV):

Consider a sequence of policy functions {µk} and value functions {Jk} generated by the

Optimistic Policy Iteration algorithm. Then the following relationship must hold for all

k ∈ N:

214

TµkJk ≥ Jk.

This can be show directly as follows. For all k, the following inequalities hold:

TµkJk = TJk by OPI policy improvement step

≥ Tµk−1Jk by definition of Tµk−1 in OPI

= T
1+mk−1

µk−1 Jk−1 by OPI policy evaluation (Jk = T
mk−1

µk−1 Jk−1), monotonicity of Tµk−1

≥ Tmk−1

µk−1 Jk−1 by Lemma (MPM III)

= Jk by OPI policy evaluation step

⇒ TµkJk ≥ Jk ∀k ∈ N.�

Multistep Policy Mapping V Lemma (MPM V):

Consider a sequence of policy functions {µk} and value functions {Jk} generated by the

Optimistic Policy Iteration algorithm. Then the following relationship must hold for all

k ∈ N:

Jk+1 ≥ TJk.

This can be show directly as follows:

215

Jk+1 = Tmk
µk
Jk by OPI policy evaluation step

≥ TµkJk by (MPM IV) and (MPM II)

= TJk by OPI policy improvement step.

⇒ Jk+1 ≥ TJk ∀k ∈ N.�

Multistep Policy Mapping VI Lemma (MPM VI):

Consider a sequence of policy functions {µk} and value functions {Jk} generated by the

Optimistic Policy Iteration algorithm. Then the following relationship must hold for all

k ∈ N:

Jk ≥ T kJ0.

This can be show by induction as follows:

• Base case k = 1: J1 ≥ TJ0 holds by lemma (MPM-V).

• General case assumed for k = n:

Jn ≥ TnJ0.

• Inductive step: the general case implies the k = n+ 1 case:

Jn ≥ TnJ0

⇒ TJn ≥ Tn+1J0 by general case and monotonicity of T

⇒ Jn+1 ≥ TJn ≥ Tn+1J0 by lemma (MPM-V).

Thus by induction,

216

Jk ≥ T kJ0 ∀k ∈ N.�

Multistep Policy Mapping VII Lemma (MPM VII):

Consider a sequence of policy functions {µk} and value functions {Jk} generated by the

Optimistic Policy Iteration algorithm. Then the following relationship must hold for all

k ∈ N:

TJk ≥ Jk.

This can be show directly as follows. For all k, the following inequalities hold:

TµkJk = TJk by OPI policy improvement step

≥ Tµk−1Jk by definition of Tµk−1 in OPI

= T
1+mk−1

µk−1 Jk−1 by OPI policy evaluation (Jk = T
mk−1

µk−1 Jk−1), monotonicity of Tµk−1

≥ Tmk−1

µk−1 Jk−1 by Lemma (MPM III)

= Jk by OPI policy evaluation step

⇒ TJk ≥ Jk ∀k ∈ N.�

Multistep Inequality Property (MIP) and convergence of OPI:

We are now in a position to prove the convergence of Optimistic Policy Iteration. Lem-

mas (MPM VII) and (OMUB) immediately give us TnJk ≥ Jk ∀ n, k ∈ N. The fact that

lim
n→∞

TnJ0 = J∗, where J0 ∈ B(X) is any initial function produces the following useful

217

result:

J∗ ≥ Jk∀ k,

This together with lemma (MPM VI) produces the key inequality:

J∗ ≥ Jk ≥ T kJ0 ∀k ∈ N.

That is, sequence of value functions produced by the optimistic policy iteration algo-

rithm, {Jk}∞k=0, is bounded above by the optimal value function, and below by the sequence

of value functions produced by applying the optimal mapping T to J0 k times.

By the fact that T is a contraction mapping on (B(X), ρ∞), we know that for any

J0 ∈ B(X),

lim
k→∞

ρ∞(T kJ0 − J∗) = 0,

This limit along with inequality (A.3.1) implies that

lim
k→∞

ρ∞(Jk − J∗) = 0.

Thus, just as with the policy iteration algorithm, the optimistic policy iteration algo-

rithm is squeezed to converged to the optimal policy by the value iteration iterates.

Convergence of OPI, Alternative Formulation:

The alternative formulation of Optimistic Policy Iteration, “Algorithm II,” in which both

initial policy and value functions are chosen and the policy evaluation step is executed first,

can be shown to converge to the optimal policy under the same conditions as “Algorithm

I,” after one initial issue is addressed. The convergence of OPI, algorithm I, shown above,

relies on the fact that the intial function starts “below” the optimal function. That is,

TJ0 ≥ J0.

218

For the OPI algorithm II to converge, all we need to demonstrate is that the chosen µ0

and J0 produce a J1 in the first policy evaluation step such that

TJ1 ≥ J1;

in which case the rest of the proofs above follow exactly as before, with J1 taking the

place of J0 (and indices all shifted forward by 1 as needed). We will prove directly that

TJ1 ≥ J1 under particular conditions for µ0 and J0.

Let µ0 and J0 be defined such that Tµ0J0 ≥ J0. Then it is clear that

TJ1 = T (Tm0

µ0
J0) by the first policy evaluation step and monotonicity of T

≥ T (Tm0−1
µ0

J0) by assumption Tµ0J0 ≥ J0, lemma (MPM I), and monotonicity of T

≥ Tµ0(Tm0−1
µ0

J0) by the optimality of T

= Tm0

µ0
J0

= J1.�

Thus Tµ0J0 ≥ J0 and the first policy evaluation step imply that

TJ1 ≥ J1,

and the convergence of OPI Algorithm II follows from the proof for convergence of OPI

Algorithm I.

219

Appendix B: Allen and Carroll’s Individual Learning

Algorithm

Allen and Carroll’s “individual learning” (IL) algorithm is an excellent starting point for

framing regret learning (RL). Consider the agent problem presented in expression (C.6),

restated here for convenience:

max
{ct}∞t=0

E0

[∞∑
t=0

βtu(ct)

]
(B.1)

s.t.

mt+1 = R(mt − ct) + yt+1 the law of motion,

ct ≥ 0

mt ≥ 0

m0 given.

Allen and Carroll begin by discretizing the state space into N representative points.

Their original parameterization choose a discrete space:1

Mdiscrete ≈ {1, 2, 3} . (B.2)

Individual-learning agents were then assigned assigned two learning parameters – NT ,

the number of time periods from which to learn, and NJ , the number of experiences of

1The approximation is due to the fact that each agent i was started with initial savings of s0 ≡ R(m−1−
c−1) ∈ {0, 1, 2} which in the simulation was then immediately turned into cash-on-hand by the addition of
the initial income shock: m0 = y0 for each agent i. This was employed due to technical constraints on the
original simulation.

220

length NT to generate per rule – and a set of 400 parameterized consumption functions

cθ where θ ∈ Θ; #{Θ} = 400. The particular parameterized form of the consumption

function is described in the main paper but is not important for our purposes here.

For a given policy rule parameter θ, each agent estimates a “single run” value wθj (m) as

wθj (m0) =

NT∑
t=0

βtu(cθ(mt)), (B.3)

where the vector ~mi = [m0,m1, ...,mNT] for each agent would be generated by a draw

of income shocks for each agent ~yi = [y0, y1, ..., yNT], their initial value of m0 as described

above, and the law of motion indicated in their problem (2.3). Each agent would generate

NJ sets of experiences; that is, NJ single run values wθj (m0). Importantly, each “single

run” must be experienced by the agent as a sort of “groundhog day” – each experience

began with the agent restating at their initial savings level, which provided for a consistent

estimator.2 These would together be used to constructw̄θi (m0):

w̄θi (m0) =
1

NJ

NJ∑
j=1

wθm(m0). (B.4)

Jointly sending (NT , NJ)→ (∞,∞) implies that w̄θi (m0) is a consistent estimator of

E[V θ | X0] = E0

[∞∑
t=0

βtu(Cθ(Xt))

]
. (B.5)

The question becomes the following: what values of NT and NJ will allow a large

2Allen and Carroll’s learning algorithm is in fact almost exactly identical to so-called “first-visit” Monte
Carlo learning in the Reinforcement Learning literature in computer science. An excellent early paper which
oulines the basic theoretical properties of first-visit estimators is Singh and Sutton (1996).

221

fraction of consumers to find a rule within some utility-distance of the true optimal rule?

An excerpt of Allen and Carroll’s initial results are displayed in table (B). 100 consumers

were instantiated and execute a grid search of the Θ parameter space, implementing the

estimation in equations (B.3) and (B.4). A “sacrifice value,” which indicates the one-time

payment required for an agent currently using the optimal rule c∗ to be convinced to switch

to the approximate rule cθ indefinitely, can be calculated for each policy θ and is stated in

terms of a fraction of annual income. The “success rate” in Table (B) refers to the fraction

of the 100 consumers which choose a rule with a sacrifice value ≤ 0.05. A higher “success

rate” for a given (NT , NJ) pair means that agents are finding the near-optimal rule more

consistently.

The positive result is that high enough (NT , NJ) means that > 90% of the time, in-

dividual agents arrive at a near-optimal consumption policy. The negative result is that

this takes 4 million periods. If we lower the requirement to > 50% of agents obtaining a

near-optimal policy, we still need at least 200,000 periods to obtain this.3 Much of this

time is spent on the grid search – explicitly exploring rules which are of low value. How-

ever even if agents were particularly good or lucky in exploring the space and could find a

near-optimal rule in say, 5 rule-trials, this still implies that a > 50% success rate requires

50× 10× 5 = 2, 500 periods – still ˜96 years even if the periods are biweekly versus annual.

Palmer (2015) demonstrates a simple extension to the agent problem which greatly

reduces learning time, by roughly an order of magnitude. This improves the situation

somewhat; the addition of a simple form of social learning in that paper helps bridge the gap

further. Mechanically, however, agents in the model are still restricted to whatever initial

set of rules, Θ, the researcher provides the agents to explore. While a simple exploration

options might involve random search inside some parameter radius, or using some sampling

distribution centered around the current parameter location (for example, a multivariate

normal), this quickly begins to add parameters which do not have a simple or intuitive

interpretation.For example, one might ask what the sampling radius should be, or what

3Even at a biweekly frequency, this implies roughly 8,000 years in agent time.

222

the variance on a sampling distribution would be. An economically intutive answer might

look to normalize the radius in each parameter direction to be “one in utility terms” –

however this would now require agents to either estimate the quantity themselves, or have

the researcher solve for this quantity properly and hand it to the agent. This may raise

even more quetions – if the agents have access to the ability to solve for this information,

shouldn’t they simply use that directly vs employing the learning scheme? Questions such

as these motivated a search for a more intuitively appealing way to generate candidate

consumption functions using knowledge already obtained by the agent. Of course, if the

agent is to use his/her own experience, that is, the value function estimated from experience,

it must inform the agent about a much greater selection of the state space. This quickly

led to the regret-based learning which is the primary contribution of this paper.

Excerpt of Original Allen and Carroll Results

m0 ≈ 2

NJ = 1 NJ = 10 NJ = 50 NJ = 200

NT = 10 Mean sacrifice: 0.269 0.122 0.100 0.102

Success rate: 0.09 0.23 0.29 0.24

Total periods: 4,000 40,000 200,000 800,000

NT = 20 Mean sacrifice: 0.226 0.079 0.053 0.047

Success rate: 0.18 0.45 0.62 0.68

Total periods: 8,000 80,000 400,000 1.60E+06

NT = 50 Mean sacrifice: 0.187 0.058 0.036 0.024

Success rate: 0.26 0.58 0.76 0.91

Total periods: 20,000 200,000 1.00E+06 4.00E+06

223

Appendix C: Extended Household Problem

The learning-to-optimize behavior I discuss in the main text is explicitly applied to a sta-

tionary, infinite-horizon dynamic optimization problem. In this appendix I describe a re-

lated finite-horizon problem. With minor modifications, this finite horizon problem may be

transformed into an infinite-horizon problem which will serve as the learning target. Both

problems are set up in the following section to anticipate estimation efforts which adopt

elements of both problems.

C.0.2 Finite Horizon Consumer Problem

Consider the following finite-horizon consumption-under-uncertainty problem. At time T +

1, the consumer dies with certainty. The problem is to allocate consumption appropriately

from t = 0 to t = T . The full problem can be described as follows, with the notation

closely follows that of Carroll (2012c). This setup can describe a wide range of consumer

circumstances, including retirement and fixed income over final years of life, by properly

defining the members of Γt, ψt, and ξt discussed below:

224

max
{ct}Tt=0

E0

[
T∑
t=0

β̂t 6 Dtu(ct)

]
(C.1)

s.t.

at = mt − ct

bt+1 = atR

pt+1 = ptΓt+1ψt+1 = ptΓ̃t+1

mt+1 = bt+1 + yt+1

yt+1 = pt+1ξt+1

ct ≥ 0

mt ≥ −q̄t

m0 given

where

• β̂ is the discount rate,

• 6 Dt is the independently distributed probability of staying alive through period t, with

6 DT+1 = 0.0

• at is end-of-period assets,

• mt is beginning-of-period total market resources (“cash on hand”), m ∈M ⊂ R,

• ct is consumption in period t,

• R is a constant return factor on assets, R = (1 + r),

• yt is income in period t,

225

• pt is permanent non-asset income,

• Γt is deterministic permanent income growth factor,

• Γ̃t is a combination of Γt and ψt for notational convenience,

• −q̄t is a borrowing constraint, −q̄t ∈ [0,∞) ∀t,

• ψt is a mean-1 iid permanent shock to income, and

• ξt is a mean-1 iid transitory shock income, composed as

ξt =

0 with prob ℘t > 0

φt
6℘t with prob 6 ℘t ≡ (1− ℘t)

,where

• ℘t is a small probability that income will be zero

• φt is a mean-1 iid transitory shock to income

The utility function u(.) if the objective function (C.1) is of the Constant Relative Risk

Aversion (CRRA) form with risk-aversion parameter ρ:

u(c) =
c(1−ρ)

1− ρ
.

The consumer dies with certainty at period T but may die with probability Dt in any

other period t, where we assume that the arrival of death is independent each period. This

implies that the probability of being alive in a period s can be calculated:

6 Ds = Πs
j=0(1− Dj)

or when Dj = D ∀j , we can restate the expression in simpler terms:

226

6 D ≡ (1− D)

→6 Ds = (1− D)s ∀s.

When death occurs, all subsequent period utility functions are 0. Note that the finite-

horizon problem could be equivalently re-written with an infinite horizon but a utility

function defined as

u(ct) =

c(1−ρ)

1−ρ for t ≤ T

0 for t > T.

This also indicates why 6 Ds shows up in a clean form in the objective function: the

expectation each period can be decomposed into the convex combination of expectations

under either staying alive or dying in the following period. However the summation of

payoffs following death is 0. This term falls out of the expression leaving only 6 Ds in the

objective.

As in Carroll (2012b), this problem can be normalized by permanent income pt to

produce a simplified version of the full problem with a reduced number of state variables.

The bold symbols used above indicate non-normalized variables, while the regular non-bold

symbols used below indicate variables normalized by permanent income. The normalized

problem can be written in Bellman form:

227

vt(mt) = max
ct

u(ct) + β̂ 6 Dt+1Et
[
Γ̃1−ρ
t+1 vt+1(mt+1)

]
(C.2)

s.t.

at = mt − ct

bt+1 =

(
R

Γ̃t+1

)
at = Rt+1at

mt+1 = bt+1 + ξt+1

ct ≥ 0

mt ≥ −q̄

m0 given,

or simplified further:

vt(mt) = max
ct

u(ct) + β̂ 6 Dt+1Et
[
Γ̃1−ρ
t+1 vt+1(mt+1)

]
(C.3)

s.t.

mt+1 = Rt+1(mt − ct) + ξt+1

ct ≥ 0

mt ≥ −q̄

m0 given.

228

C.0.3 Infinite Horizon Consumer Problem

Extending the above to a stationary infinite-horizon problem is straightforward. Intuitively,

we must remove the elements which are not stationary. One simple way to obtain this is by

setting the following:

• Dt = D ∀t

• σψ,t = 0 ∀t (or equivalently, ψt = 1 ∀t)

• Γt = 1 ∀t

• q̄t = q̄ = 0 ∀t.

The income process is now stationary with only iid transitory shocks each period.1 The

probability of death now follows a Poisson process. We state the consumers problem in

Bellman form as the following:

v(mt) = max
ct

u(ct)+ 6 Dβ̂Et [v(mt+1)] (C.4)

s.t.

at = mt − ct

bt+1 = Rat

mt+1 = bt+1 + yt+1

ct ≥ 0

mt ≥ 0

m0 given,

1Stationarity can be achieved with less restrictive assumptions; these are used to simplify exposition.
Observe that under these conditions yt ≡ ξt; we will use yt for the duration of the paper. The conclusion
discusses future work which retains the permanent shocks to income and Γt = Γ ∀t so the learning model
may be matched against empirical data.

229

or simplified further:

v(mt) = max
ct

u(ct) + βEt [v(mt+1)] (C.5)

s.t.

mt+1 = R(mt − ct) + yt+1

ct ≥ 0

mt ≥ 0

m0 given,

where the discount factor absorbs the probability of remaining alive β ≡6 Dβ̂. Note that

we can restate the summation form of this simplified problem as:

max
{ct}∞t=0

E0

[∞∑
t=0

βtu(ct)

]
(C.6)

s.t.

mt+1 = R(mt − ct) + yt+1 the law of motion,

ct ≥ 0

mt ≥ 0

m0 given.

.

230

Appendix D: Figures for Social Learning

231

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

γ

1.
0

1.
5

2.
0

2.
5

3.
0

X̄

0.
57

5

0.400

0.
20

0
0.

05
0

(N
,M

)=
(1

0,
1)

R
ul

es
C

ho
os

en
O

pt
im

al
C

lo
se

st
O

pt
im

al
G

ri
d

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

γ

1.
0

1.
5

2.
0

2.
5

3.
0

X̄

0.
57

5

0.400

0.
20

0
0.

05
0

(N
,M

)=
(1

0,
10

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

γ

1.
0

1.
5

2.
0

2.
5

3.
0

X̄

0.
57

5

0.400

0.
20

0
0.

05
0

(N
,M

)=
(1

0,
50

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

γ

1.
0

1.
5

2.
0

2.
5

3.
0

X̄

0.
57

5

0.400

0.
20

0
0.

05
0

(N
,M

)=
(1

0,
20

0)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

γ

1.
0

1.
5

2.
0

2.
5

3.
0

X̄

0.
57

5

0.400

0.
20

0
0.

05
0

(N
,M

)=
(2

0,
1)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

γ

1.
0

1.
5

2.
0

2.
5

3.
0

X̄

0.
57

5

0.400

0.
20

0
0.

05
0

(N
,M

)=
(2

0,
10

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

γ

1.
0

1.
5

2.
0

2.
5

3.
0

X̄

0.
57

5

0.400

0.
20

0
0.

05
0

(N
,M

)=
(2

0,
50

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

γ

1.
0

1.
5

2.
0

2.
5

3.
0

X̄

0.
57

5

0.400

0.
20

0
0.

05
0

(N
,M

)=
(2

0,
20

0)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

γ

1.
0

1.
5

2.
0

2.
5

3.
0

X̄

0.
57

5

0.400

0.
20

0
0.

05
0

(N
,M

)=
(5

0,
1)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

γ

1.
0

1.
5

2.
0

2.
5

3.
0

X̄

0.
57

5

0.400

0.
20

0
0.

05
0

(N
,M

)=
(5

0,
10

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

γ

1.
0

1.
5

2.
0

2.
5

3.
0

X̄

0.
57

5

0.400

0.
20

0
0.

05
0

(N
,M

)=
(5

0,
50

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

γ

1.
0

1.
5

2.
0

2.
5

3.
0

X̄

0.
57

5

0.400

0.
20

0
0.

05
0

(N
,M

)=
(5

0,
20

0)

F
ig

u
re

D
1
:

D
is

tr
ib

u
ti

on
of

R
u

le
s

S
el

ec
te

d
b
y

A
ge

n
ts

,
O

ri
gi

n
al

M
o
d

el
.

D
ot

si
ze

P
ro

p
or

ti
on

al
to
N
a
g
en
ts

C
h

o
os

in
g

(γ
,X̄

).

232

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

γ

1.
0

1.
5

2.
0

2.
5

3.
0

X̄

0.
57

5

0.400

0.
20

0
0.

05
0

(N
,M

)=
(1

0,
1)

R
ul

es
C

ho
os

en
O

pt
im

al
C

lo
se

st
O

pt
im

al
G

ri
d

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

γ

1.
0

1.
5

2.
0

2.
5

3.
0

X̄

0.
57

5

0.400

0.
20

0
0.

05
0

(N
,M

)=
(1

0,
10

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

γ

1.
0

1.
5

2.
0

2.
5

3.
0

X̄

0.
57

5

0.400

0.
20

0
0.

05
0

(N
,M

)=
(1

0,
50

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

γ

1.
0

1.
5

2.
0

2.
5

3.
0

X̄

0.
57

5
0.400

0.
20

0
0.

05
0

(N
,M

)=
(1

0,
20

0)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

γ

1.
0

1.
5

2.
0

2.
5

3.
0

X̄

0.
57

5

0.400

0.
20

0
0.

05
0

(N
,M

)=
(2

0,
1)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

γ

1.
0

1.
5

2.
0

2.
5

3.
0

X̄

0.
57

5

0.400

0.
20

0
0.

05
0

(N
,M

)=
(2

0,
10

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

γ

1.
0

1.
5

2.
0

2.
5

3.
0

X̄

0.
57

5

0.400

0.
20

0
0.

05
0

(N
,M

)=
(2

0,
50

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

γ

1.
0

1.
5

2.
0

2.
5

3.
0

X̄

0.
57

5

0.400

0.
20

0
0.

05
0

(N
,M

)=
(2

0,
20

0)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

γ

1.
0

1.
5

2.
0

2.
5

3.
0

X̄

0.
57

5

0.400

0.
20

0
0.

05
0

(N
,M

)=
(5

0,
1)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

γ

1.
0

1.
5

2.
0

2.
5

3.
0

X̄

0.
57

5

0.400

0.
20

0
0.

05
0

(N
,M

)=
(5

0,
10

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

γ

1.
0

1.
5

2.
0

2.
5

3.
0

X̄

0.
57

5

0.400

0.
20

0
0.

05
0

(N
,M

)=
(5

0,
50

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

γ

1.
0

1.
5

2.
0

2.
5

3.
0

X̄

0.
57

5

0.400

0.
20

0
0.

05
0

(N
,M

)=
(5

0,
20

0)

F
ig

u
re

D
2:

D
is

tr
ib

u
ti

o
n

o
f

R
u

le
s

C
h

os
en

,
R

el
at

iv
e-

V
al

u
e

M
o
d

el
.

D
ot

W
id

th
P

ro
p

or
ti

on
al

to
N
so
ci
a
l

ch
o
os

in
g

(γ
,X̄

).

233

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

ε̄θ
C

ut
of

fV
al

ue

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SuccessRate

(N
,M

)=
(1

0,
1)

C
ut

of
f:

Su
cc

es
s

0.
31

:0
.6

7
0.

1:
0.

26
0.

07
5:

0.
24

0.
05

:0
.1

1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

ε̄θ
C

ut
of

fV
al

ue

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SuccessRate

(N
,M

)=
(1

0,
10

) 0.
13

:0
.6

7
0.

1:
0.

55
0.

07
5:

0.
5

0.
05

:0
.3

1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

ε̄θ
C

ut
of

fV
al

ue

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SuccessRate

(N
,M

)=
(1

0,
50

) 0.
14

:0
.6

7
0.

1:
0.

49
0.

07
5:

0.
46

0.
05

:0
.2

3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

ε̄θ
C

ut
of

fV
al

ue

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SuccessRate

(N
,M

)=
(1

0,
20

0) 0.
14

:0
.6

7
0.

1:
0.

35
0.

07
5:

0.
34

0.
05

:0
.1

9

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

ε̄θ
C

ut
of

fV
al

ue

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SuccessRate

(N
,M

)=
(2

0,
1) 0.

31
:0

.6
7

0.
1:

0.
24

0.
07

5:
0.

21
0.

05
:0

.1
5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

ε̄θ
C

ut
of

fV
al

ue

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SuccessRate

(N
,M

)=
(2

0,
10

) 0.
09

:0
.6

7
0.

1:
0.

69
0.

07
5:

0.
66

0.
05

:0
.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

ε̄θ
C

ut
of

fV
al

ue

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SuccessRate

(N
,M

)=
(2

0,
50

) 0.
05

:0
.6

7
0.

1:
0.

88
0.

07
5:

0.
87

0.
05

:0
.6

7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

ε̄θ
C

ut
of

fV
al

ue

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SuccessRate

(N
,M

)=
(2

0,
20

0) 0.
05

:0
.6

7
0.

1:
0.

9
0.

07
5:

0.
9

0.
05

:0
.7

4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

ε̄θ
C

ut
of

fV
al

ue

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SuccessRate

(N
,M

)=
(5

0,
1) 0.

19
:0

.6
7

0.
1:

0.
41

0.
07

5:
0.

37
0.

05
:0

.2
8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

ε̄θ
C

ut
of

fV
al

ue

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SuccessRate

(N
,M

)=
(5

0,
10

) 0.
06

:0
.6

7
0.

1:
0.

83
0.

07
5:

0.
77

0.
05

:0
.6

1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

ε̄θ
C

ut
of

fV
al

ue

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SuccessRate

(N
,M

)=
(5

0,
50

) 0.
04

:0
.6

7
0.

1:
0.

98
0.

07
5:

0.
97

0.
05

:0
.8

5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

ε̄θ
C

ut
of

fV
al

ue

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SuccessRate

(N
,M

)=
(5

0,
20

0) 0.
03

:0
.6

7
0.

1:
1.

0
0.

07
5:

1.
0

0.
05

:0
.9

4

F
ig

u
re

D
3:

F
ra

ct
io

n
S

u
cc

es
sf

u
l,

O
ri

gi
n

al
M

o
d

el

234

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

ε̄θ
C

ut
of

fV
al

ue

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SuccessRate

(N
,M

)=
(1

0,
1)

C
ut

of
f:

Su
cc

es
s

0.
16

:0
.6

7
0.

1:
0.

51
0.

07
5:

0.
36

0.
05

:0
.2

7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

ε̄θ
C

ut
of

fV
al

ue

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SuccessRate

(N
,M

)=
(1

0,
10

) 0.
08

:0
.6

7
0.

1:
0.

76
0.

07
5:

0.
74

0.
05

:0
.4

8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

ε̄θ
C

ut
of

fV
al

ue

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SuccessRate

(N
,M

)=
(1

0,
50

) 0.
11

:0
.6

7
0.

1:
0.

62
0.

07
5:

0.
61

0.
05

:0
.3

5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

ε̄θ
C

ut
of

fV
al

ue

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SuccessRate

(N
,M

)=
(1

0,
20

0) 0.
11

:0
.6

7
0.

1:
0.

48
0.

07
5:

0.
48

0.
05

:0
.2

8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

ε̄θ
C

ut
of

fV
al

ue

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SuccessRate

(N
,M

)=
(2

0,
1) 0.

12
:0

.6
7

0.
1:

0.
63

0.
07

5:
0.

52
0.

05
:0

.3
4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

ε̄θ
C

ut
of

fV
al

ue

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SuccessRate

(N
,M

)=
(2

0,
10

) 0.
05

:0
.6

7
0.

1:
0.

88
0.

07
5:

0.
87

0.
05

:0
.6

8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

ε̄θ
C

ut
of

fV
al

ue

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SuccessRate

(N
,M

)=
(2

0,
50

) 0.
05

:0
.6

7
0.

1:
0.

95
0.

07
5:

0.
95

0.
05

:0
.7

6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

ε̄θ
C

ut
of

fV
al

ue

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SuccessRate

(N
,M

)=
(2

0,
20

0) 0.
04

:0
.6

7
0.

1:
0.

97
0.

07
5:

0.
97

0.
05

:0
.8

1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

ε̄θ
C

ut
of

fV
al

ue

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SuccessRate

(N
,M

)=
(5

0,
1) 0.

12
:0

.6
7

0.
1:

0.
54

0.
07

5:
0.

41
0.

05
:0

.3
5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

ε̄θ
C

ut
of

fV
al

ue

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SuccessRate

(N
,M

)=
(5

0,
10

) 0.
05

:0
.6

7
0.

1:
0.

94
0.

07
5:

0.
84

0.
05

:0
.7

5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

ε̄θ
C

ut
of

fV
al

ue

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SuccessRate

(N
,M

)=
(5

0,
50

) 0.
03

:0
.6

7
0.

1:
1.

0
0.

07
5:

1.
0

0.
05

:0
.9

8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

ε̄θ
C

ut
of

fV
al

ue

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SuccessRate

(N
,M

)=
(5

0,
20

0) 0.
02

:0
.6

7
0.

1:
1.

0
0.

07
5:

1.
0

0.
05

:1
.0

F
ig

u
re

D
4:

F
ra

ct
io

n
S

u
cc

es
sf

u
l:

R
el

at
iv

e-
V

al
u

e
M

o
d

el

235

Bibliography

Adjemian, S., Bastani, H., Juillard, M., Mihoubi, F., Perendia, G., Ratto, M., and Villemot,

S. (2011). Dynare: Reference manual, version 4. Technical report, Dynare Working Papers

1, CEPREMAP.

Allen, T. W. and Carroll, C. D. (2001). Individual learning about consumption. Macroeco-

nomic Dynamics, 5(02):255–271.

Anufriev, M. and Branch, W. A. (2009). Introduction to special issue on complexity in

economics and finance. Journal of Economic Dynamics and Control, 33(5):1019–1022.

Aruoba, S. B. and Fernández-Villaverde, J. (2014). A comparison of programming languages

in economics. Technical report, National Bureau of Economic Research.

Assenza, T., Gatti, D. D., and Semmler, W. (2013). Introduction to the special issue

on rethinking policies when heterogeneity matters. Journal of Economic Dynamics and

Control, 8(37):1401–1402.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the multiarmed

bandit problem. Machine learning, 47(2-3):235–256.

Ballinger, T. P., Palumbo, M. G., and Wilcox, N. T. (2003). Precautionary saving and social

learning across generations: an experiment*. The Economic Journal, 113(490):920–947.

Başçı, E. and Orhan, M. (2000). Reinforcement learning and dynamic optimization. Journal

of Economic and Social Research, 2(1):39–57.

236

Bernanke, B. (2004). The great moderation. In The Taylor Rule and the Transformation

of Monetary Policy. Institutions Press Publication Hoover.

Bernanke, B. S., Gertler, M., and Gilchrist, S. (1999). The financial accelerator in a quan-

titative business cycle framework. Handbook of macroeconomics, 1:1341–1393.

Bertsekas, D. P. (2012). Dynamic Programming and Optimal Control, Vol. II, 4th Edition:

Approximate Dynamic Programming. Athena Scientific.

Bertsekas, D. P. (2013). Abstract dynamic programming. Athena Scientific, Belmont, MA.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-dynamic programming (optimization

and neural computation series, 3). Athena Scientific, 7:15–23.

Brown, A. L., Chua, Z. E., and Camerer, C. (2009). Learning and visceral temptation in

dynamic savings experiments. Quarterly Journal of Economics, 124(1):197–231.

Cagetti, M. (2003). Wealth accumulation over the life cycle and precautionary savings.

Journal of Business & Economic Statistics, 21(3):339–353.

Carbone, E. and Duffy, J. (2014). Lifecycle consumption plans, social learning and external

habits: Experimental evidence. Journal of Economic Behavior & Organization, 106:413–

427.

Carroll, C. D. (1997). Buffer-stock saving and the life cycle/permanent income hypothesis*.

The Quarterly journal of economics, 112(1):1–55.

Carroll, C. D. (2001a). Death to the log-linearized consumption euler equation!(and very

poor health to the second-order approximation). Advances in Macroeconomics, 1(1).

Carroll, C. D. (2001b). A theory of the consumption function, with and without liquidity

constraints (expanded version). Technical report, National Bureau of Economic Research.

Carroll, C. D. (2005). The epidemiology of macroeconomic expectations. The Economy As

an Evolving Complex System, III: Current Perspectives and Future Directions, page 5.

237

Carroll, C. D. (2006). The method of endogenous gridpoints for solving dynamic stochastic

optimization problems. Economics letters, 91(3):312–320.

Carroll, C. D. (2012a). Implications of wealth heterogeneity for macroeconomics. Technical

report, Working Papers, The Johns Hopkins University, Department of Economics.

Carroll, C. D. (2012b). Solving microeconomic dynamic stochastic optimization problems.

Technical report, Lecture Notes, The Johns Hopkins University, Department of Eco-

nomics.

Carroll, C. D. (2012c). Theoretical foundations of buffer stock saving. Technical report,

Mimeo, The Johns Hopkins University, Department of Economics.

Carroll, C. D. (2014a). Heterogeneous agent macroeconomics: an example and an agenda.

Technical report, Presentation at IMF Workshop on Computational Macroeconomics.

Carroll, C. D. (2014b). Representing consumption and saving without a representative con-

sumer, volume 72 of Measuring Economic Sustainability and Progress Studies in Income

and Wealth. National Bureau of Economic Research.

Carroll, C. D., Hall, R. E., and Zeldes, S. P. (1992). The buffer-stock theory of saving:

Some macroeconomic evidence. Brookings papers on economic activity, pages 61–156.

Carroll, C. D., Otsuka, M., and Slacalek, J. (2011a). How large are housing and financial

wealth effects? a new approach. Journal of Money, Credit and Banking, 43(1):55–79.

Carroll, C. D. and Samwick, A. A. (1997). The nature of precautionary wealth. Journal of

monetary Economics, 40(1):41–71.

Carroll, C. D., Slacalek, J., and Sommer, M. (2011b). International evidence on sticky

consumption growth. Review of Economics and Statistics, 93(4):1135–1145.

Carroll, C. D., Slacalek, J., Tokuoka, K., and White, M. N. (2015). The distribution of

wealth and the marginal propensity to consume.

238

Chacon, S. and Straub, B. (2014). Pro git. Apress.

Chamley, C. (2004). Rational herds: Economic models of social learning. Cambridge Uni-

versity Press.

Chua, Z. and Camerer, C. F. (2011). Experiments on intertemporal consumption with habit

formation and social learning.

Colander, D., Howitt, P., Kirman, A., Leijonhufvud, A., and Mehrling, P. (2008). Beyond

dsge models: toward an empirically based macroeconomics. The American Economic

Review, pages 236–240.

Evans, G. W. and Honkapohja, S. (2001). Learning and expectations in macroeconomics.

Princeton University Press.

Evans, G. W. and Honkapohja, S. (2005). An interview with thomas j. sargent. Macroeco-

nomic Dynamics, 9(04):561–583.

Evans, G. W. and McGough, B. (2014). Learning to optimize.

Gabaix, X. (2014). A sparsity-based model of bounded rationality. The Quarterly Journal

of Economics, 129(4):1661–1710.

Geanakoplos, J. (2010). The leverage cycle. In NBER Macroeconomics Annual 2009, Volume

24, pages 1–65. University of Chicago Press.

Geanakoplos, J., Axtell, R., Farmer, D. J., Howitt, P., Conlee, B., Goldstein, J., Hendrey,

M., Palmer, N. M., and Yang, C.-Y. (2012). Getting at systemic risk via an agent-based

model of the housing market. The American Economic Review, 102(3):53–58.

Gourinchas, P.-O. and Parker, J. A. (2002). Consumption over the life cycle. Econometrica,

70(1):47–89.

239

Hommes, C. and Iori, G. (2015). Introduction special issue crises and complexity. Journal of

Economic Dynamics and Control, 50:1 – 4. Crises and Complexity Complexity Research

Initiative for Systemic InstabilitieS (CRISIS) Workshop 2013.

Houser, D., Keane, M., and McCabe, K. (2004). Behavior in a dynamic decision prob-

lem: An analysis of experimental evidence using a bayesian type classification algorithm.

Econometrica, 72(3):781–822.

Howitt, P. (2013). Getting at systemic risk via an agent-based model of the housing market.

Technical report, Presentation at Macro Financial Modeling Meeting May 2-3.

Howitt, P. and Özak, Ö. (2014). Adaptive consumption behavior. Journal of Economic

Dynamics and Control, 39:37–61.

Hull, I. (2012). Interest rate rules and mortgage default.

Hyndman, R. J. and Fan, Y. (1996). Sample quantiles in statistical packages. The American

Statistician, 50(4):361–365.

Jaksch, T., Ortner, R., and Auer, P. (2010). Near-optimal regret bounds for reinforcement

learning. Journal of Machine Learning Research, 11:1563–1600.

Jirnyi, A. and Lepetyuk, V. (2011). A reinforcement learning approach to solving incomplete

market models with aggregate uncertainty. Available at SSRN 1832745.

Kahneman, D. and Tversky, A. (1979). Prospect theory: An analysis of decision under risk.

Econometrica: Journal of the Econometric Society, pages 263–291.

Krusell, P. and Smith, A. A. (1996). Rules of thumb in macroeconomic equilibrium a

quantitative analysis. Journal of Economic Dynamics and Control, 20(4):527–558.

Krusell, P. and Smith Jr, A. (1998). Income and wealth heterogeneity in the macroeconomy.

Journal of Political Economy, 106(5):867–896.

240

LeBaron, B. (2012). Heterogeneous gain learning and the dynamics of asset prices. Journal

of Economic Behavior & Organization, 83(3):424–445.

Lettau, M. and Uhlig, H. (1999). Rules of thumb versus dynamic programming. American

Economic Review, pages 148–174.

Ljungqvist, L. and Sargent, T. (2012). Recursive macroeconomic theory.

Loomes, G. and Sugden, R. (1982). Regret theory: An alternative theory of rational choice

under uncertainty. The economic journal, pages 805–824.

Lucas, R. E. (1976). Econometric policy evaluation: A critique. In Carnegie-Rochester

conference series on public policy, volume 1, pages 19–46. Elsevier.

Lucas Jr, R. E. and Stokey, N. L. (1989). Recursive methods in economic dynamics. Harvard

University Press.

Mankiw, N. G. (2006). The macroeconomist as scientist and engineer. Journal of Economic

Perspectives, 20(4):29–46.

Mannor, S. and Tsitsiklis, J. N. (2004). The sample complexity of exploration in the multi-

armed bandit problem. The Journal of Machine Learning Research, 5:623–648.

Mas-Colell, A., Whinston, M. D., and Gibbons, R. (1995). Microeconomic theory.

Özak, Ö. (2014). Optimal consumption under uncertainty, liquidity constraints, and

bounded rationality. Journal of Economic Dynamics and Control, 39:237–254.

Pál, J. and Stachurski, J. (2013). Fitted value function iteration with probability one

contractions. Journal of Economic Dynamics and Control, 37(1):251–264.

Peterman, W., Lakdawala, A., and Cwik, T. (2015). The distributional effects of monetary

policy in a life cycle model. Technical report, Presentation, Computing in Economics and

Finance Conference, Society of Computational Economics, Taipei, Taiwan.

241

Powell, W. B. (2007). Approximate Dynamic Programming: Solving the curses of dimen-

sionality, volume 703. John Wiley & Sons.

Ram, Y. and Hadany, L. (2015). The probability of improvement in fishers geometric model:

A probabilistic approach. Theoretical population biology, 99:1–6.

Robbins, H. and Monro, S. (1951). A stochastic approximation method. The annals of

mathematical statistics, pages 400–407.

Sargent, T. and Stachurski, J. (2015). Quantitative economics with python. Technical

report, Lecture Notes.

Sargent, T. J. (1993). Bounded rationality in macroeconomics: The arne ryde memorial

lectures. OUP Catalogue.

Schelling, T. C. (2006). Micromotives and macrobehavior. WW Norton & Company.

Shalizi, C. R. (2015). Advanced data analysis from an elementary point of view. Technical

report.

Sheffrin, S. M. (1996). Rational expectations. Cambridge University Press.

Sheppard, K. (2014). Introduction to python for econometrics, statistics and numerical

analysis: Second edition. Technical report, Mimeo, University of Oxford, Department of

Economics.

Simon, H. A. (1996). The sciences of the artificial, volume 136. MIT press.

Sims, C. A. (1980). Macroeconomics and reality. Econometrica, pages 1–48.

Singh, S. P. and Sutton, R. S. (1996). Reinforcement learning with replacing eligibility

traces. Machine learning, 22(1-3):123–158.

Sinitskaya, E. and Tesfatsion, L. (2014). Macroeconomies as constructively rational games.

Technical report, Mimeo, Iowa State University, Department of Economics.

242

Stachurski, J. (2009). Economic dynamics: theory and computation. MIT Press.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning: An introduction. MIT press

Cambridge.

Tesfatsion, L. and Judd, K. L. (2006). Handbook of computational economics: agent-based

computational economics, volume 2. Elsevier.

Vanderbilt, T. (2013). Unhappy truckers and other algorithmic problems. Nautilus. [Online;

posted 18-July-2013].

Woodford, M. (1999). Revolution and evolution in twentieth-century macroeconomics. In

Conference paper: Frontiers of the Mind in the Twentieth-First Century, US Library of

Congress, Washington DC.

Yıldızoğlu, M., Sénégas, M.-A., Salle, I., and Zumpe, M. (2014). Learning the optimal

buffer-stock consumption rule of carroll. Macroeconomic Dynamics, 18(04):727–752.

Young, H. P. (2009). Innovation diffusion in heterogeneous populations: Contagion, social

influence, and social learning. The American economic review, pages 1899–1924.

243

Curriculum Vitae

Nathan Palmer is a Ph.D candidate in the department of Computational Social Science at
George Mason University. He was employed there as a Research Assistant building agent-
based models of the economy, the financial market and the housing market and is currently
employed as a Research Intern at the Office of Financial Research. He earned a M.A. in
Economics from Boston University in 2011 where he specialized in macroeconomics and
macro-finance. Before that he worked as a Research Assistant at the Federal Reserve Board
of Governors in Washington, DC. He received his Bachelor in Computer Science from Trinity
University in San Antonio, Texas in 2005.

244

	List of Tables
	List of Figures
	Abstract
	 Introduction
	Motivation
	My Contribution
	Background
	What Has Been Accomplished
	Welfare Costs of Non-Optimal Behavior

	Related Literature and Alternative Approaches
	Literature in Computer Science and Applied Math
	Literature and Alternative Approaches in Economics

	Verification and Validation
	Organization

	 Regret Learning
	Introduction
	Regret Learning
	Preview of Results

	The Consumer Problem
	Infinite Horizon Consumer Problem
	Buffer Stock Solution Form
	Welfare Cost of Approximate Solutions

	Policy Iteration Solution Method
	An Intuitive Description
	Policy Iteration Framework
	Policy Iteration and Optimistic Policy Iteration

	Regret Learning Solution Method
	Inherent Difficulty of Learning to Optimize from Experience
	Determining the State-Space Partition
	Single-Stream Estimation of vk
	Identifying Regret Choices
	Improving c by Minimizing Regret
	Regret Learning
	Need for an Agent-Based Simulation

	Results
	Aggregate Regret-Learning Behavior
	Individual-Level Results
	Individual-Level Results: Summarized
	Individual-Level Results: Welfare Analysis

	Summary, Conclusion, and Next Steps

	 Social Learning
	Introduction
	Individual Learning
	The Model
	Approximating a Solution with Experience-based Learning
	Original Model Results

	The First Extension: Social Learning
	Implementation of Full Information Sharing
	Algorithm for Full Information Sharing
	Results for Full Information Sharing

	The Second Extension: A Relative-Value Estimator
	Implementation of the Relative-Value Estimator
	Algorithm for Relative-Value Information Sharing
	Results for the Relative-Value Estimator

	A Closer Look at Model Output
	Examining Distributional Output
	Examining the Cutoff Value

	Conclusions and Future Work
	Summary and Conclusions
	Future Work

	 The Heterogeneous-Agent Computational toolKit
	Introduction
	Tools from Software Development
	An Aside on Speed
	Documentation
	Unit Testing
	Language-agnostic, Human-Readable Data Serialization
	Application Programming Interface (API)
	Version Control
	Bringing It Together: Reproducible Research

	Methodological Framework
	A Basic Partial-Equilibrium Example
	The Solution Method
	The Estimation Method
	Modular Solution and Estimation in HACK

	Summary and Conclusion

	 Conclusion
	Results
	Weaknesses and Future Work

	 Policy Iteration and Optimistic Policy Iteration Proofs
	Proof that T and T are Contraction Mappings
	Background Review
	T and T are Contraction Mappings

	Proof of Convergence of Policy Iteration
	Policy Iteration Algorithm
	Policy Iteration Convergence

	Proof of Convergence of Optimistic Policy Iteration
	Optimistic Policy Iteration Algorithm

	 Allen and Carroll's Individual Learning Algorithm
	 Appendix: Extended Household Problem
	Finite Horizon Consumer Problem
	Infinite Horizon Consumer Problem

	 Figures for Social Learning
	Bibliography

