


 

 

 
 
 

 
Radar and Multispectral Image Fusion Options for Improved Land Cover 

Classification 
 

A dissertation submitted in partial fulfillment of the requirements for the degree 
of Doctor of Philosophy at George Mason University 
 
 
 

By 
 
 
 

Erwin J. Villiger  
Master of Science 

George Mason University, 1996 
 
 
 
 

Director:  Barry N.  Haack, Professor 
Department of Geography 

 
 
 
 

Spring Semester 2008 
George Mason University 

Fairfax, VA 
 
 
 
 
 



 

ii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright 2008, Erwin J. Villiger 
All Rights Reserved 



 

iii 

 
 
 
 

ACKNOWLEDGEMENT 
 
 
 

I would like to thank my committee members for their guidance, wisdom, 
support, and most specifically their patience with me in pursuing this research.  
Dr. Barry Haack, a scholar and a gentleman, I consider my mentor and a model 
of professional and intellectual bearing. 
 
Neal Sealy with Media Enterprises Ltd, the citizens of Staniard Creek, North 
Andros Island, and the Bahamas Environmental Research Center, provided 
significant support and a base of operations for the field work portion of this 
project. Dr. Ted Bradley was instrumental in identifying appropriate study sites 
and his knowledge of the flora of Andros Island was invaluable.  
 
Data for this project was provided through funding from the United States 
National Aeronautical and Space Administration Application Development and 
Research Opportunity program under Grant Numbers NAGW 4970 and NAG5 
4140. 



 

iv 

 
 
 
 
 
 
 
 
 
 

TABLE OF CONTENTS 
 
 

                                                                                                                                   Page 
List of Tables..................................................................................................................vi 
List of Figures..............................................................................................................viii 
Abbreviations..................................................................................................................x 
Abstract..........................................................................................................................xii 
1. Introduction ..............................................................................................................1 
2. State of the Research..............................................................................................12 

Remote Sensing Concepts.....................................................................................12 
Multispectral Imagery (MSI) Land Cover Assessment ...................................17 
Radar (SAR) Remote Sensing Concepts..............................................................22 

SAR Wavelength ..............................................................................................24 
Incident Angle ..................................................................................................25 
Look Direction ..................................................................................................26 
Number of Looks .............................................................................................28 
Pixel Spacing and Resolution .........................................................................29 
Polarization .......................................................................................................30 

Vegetation Analysis with Radar ..........................................................................31 
Speckle Reduction..................................................................................................40 
Assessment of Texture in Radar Imagery ..........................................................48 
Analysis Using Angle of Incidence .....................................................................51 
Time-Series Analysis .............................................................................................54 
MSI and SAR Image Fusion..................................................................................61 
Discussion ...............................................................................................................77 

3. Methodology...........................................................................................................80 
Research Objectives ...............................................................................................80 
Study Site.................................................................................................................81 

Pinelands ...........................................................................................................83 
Coppice..............................................................................................................85 
Rockland............................................................................................................86 



 

v 

Saw Grass Marsh .............................................................................................87 
Mangrove ..........................................................................................................88 
Differentiation of Cover types........................................................................89 

Datasets ...................................................................................................................90 
Remotely Sensed Data.....................................................................................90 
Multispectral (MSI) Imagery ..........................................................................91 
Synthetic Aperture Radar (SAR) Imagery....................................................92 
Geocover Ortho Imagery ................................................................................95 
Ground Truth ...................................................................................................95 
Cartographic Datasets .....................................................................................96 

Analysis Process.....................................................................................................97 
TM Image Processing ......................................................................................98 
SAR Image Processing.....................................................................................99 
SAR Speckle Suppression Algorithms........................................................100 
SAR Processing Paths....................................................................................102 
TM Processing Paths......................................................................................104 

4. Results....................................................................................................................108 
Processing of Landsat TM...................................................................................108 
Processing of Unfiltered SAR.............................................................................113 
Collection Modes .................................................................................................119 
Seasonality ............................................................................................................123 
Seasonal and Multitemporal Combinations.....................................................124 
SAR Speckle Suppression ...................................................................................129 
SAR Texture ..........................................................................................................139 
SAR Texture in Speckle Suppressed Datasets .................................................149 
Landsat TM Fused with Unfiltered SAR ..........................................................156 
Landsat TM Fused with Speckle Suppressed SAR .........................................159 
Landsat TM Fused with SAR Texture...............................................................162 
Various Combinations.........................................................................................167 

5. Discussion and Future Research........................................................................181 
Discussion .............................................................................................................181 
Future Research....................................................................................................187 
Conclusion ............................................................................................................191 
References .............................................................................................................193 



 

vi 

 
 
 
 

LIST OF TABLES 
 
 
 
Table                                                                                                              Page 
2.1 SAR Bands.........................................................................................................24 
3.1  Acquired RADARSAT Standard Beam Modes ...........................................94 
3.2  Calibration and Validation Sites ...................................................................96 
4.1   Classification Results of Landsat TM..........................................................109 
4.2   Contingency Table for Wet TM Classification Results .............................110 
4.3   Contingency Table for Combined Dry TM and Wet TM .........................111 
4.4   Unfiltered SAR Classification Accuracy Results .......................................114 
4.5   Contingency Table SAR 0510 .......................................................................115 
4.6   Contingency Table SAR 0517 .......................................................................116 
4.7   Summary Statistics for 21 SAR datasets .....................................................118 
4.8   Classification Accuracy by Incident Angle ................................................120 
4.9   Classification Accuracy by Look Direction ................................................122 
4.10   Average Accuracy by Season .......................................................................123 
4.11  Best Scene Accuracy for Each Season..........................................................124 
4.12   Multitemporal Dataset Classification Accuracy........................................125 
4.13   Multitemporal Dry Season Contingency Table .........................................127 
4.14   Multitemporal Wet Season Contingency Table.........................................127 
4.15   Multitemporal Combined SAR Contingency Table..................................128 
4.16   Average Total Classification Accuracy by Speckle  

Suppression Filter ..........................................................................................130 
4.17   SAR 0418 Dataset Unfiltered ........................................................................133 
4.18   SAR 0418 Dataset Filtered with GM at 11x11 kernel ................................133 
4.19   SAR 0416 Frost 9x9.........................................................................................135 
4.20   SAR 0510 Frost 9x9.........................................................................................136 
4.21   Average Classification Results for Speckle Suppressed 

Multitemporal SAR (21 scenes) ...................................................................137 
4.22  Average Classification Accuracy of Variance Texture Measure.............140 
4.23   Multitemporal SAR Classification Accuracy by  

Variance (21 scenes) ......................................................................................146 
4.24   SAR 0418 Unfiltered ......................................................................................150 
4.25  Classification Accuracy for SAR 0418, Speckle Suppressed ....................150 
4.26   SAR 0418 Speckle Suppressed Gamma-MAP 7x7.....................................151 



 

vii 

4.27   Classification Accuracy for SAR 0418, Texture Measure .........................151 
4.28   SAR 0418 Variance Texture Measure with 9x9 kernel..............................152 
4.29   SAR 0418, Speckle Suppression followed by Variance Texture..............153 
4.30   SAR 0418 GM 7x7 followed by Variance Texture Measure at 9x9..........155 
4.31  TM and Unfiltered SAR Classification Results..........................................157 
4.32  Average Classification Accuracy by Season Combination .....................157 
4.33  Fused TM and Speckle Suppressed SAR Average Accuracy Results ...159 
4.34  Classification Results for Dry TM and SAR 1203 .....................................161 
4.35  Fused TM and SAR Texture Measure Average Accuracy Results ........163 
4.36  SAR 0418 as Three-banded Image (Unfiltered, GM7, VAR11) ...............169 
4.37  SAR 0418 Process Combinations with Dry TM ........................................170 
4.38  SAR 1203 as Three-banded Image (Unfiltered, GM7, VAR11) ...............173 
4.39  SAR 1203 Process Combinations with Dry TM ........................................174 
4.40  DryTM, and All SAR Processed at GM09 ..................................................180 



 

viii 

 
 
 
 

LIST OF FIGURES 
 
 
 
Figure                                                                                                                  Page 
2.1  Electromagnetic Spectrum..............................................................................13 
2.2  Spectral Curve for Green Vegetation ............................................................14 
2.3  Example Spectral Curves for Different Cover Types..................................15 
2.4  Example Sampling Regions for 5-banded MSI............................................15 
2.5  SAR Incident Angle .........................................................................................25 
2.6  The Multi-look Effect.......................................................................................28 
2.7  The Neighborhood Filter Process ..................................................................42 
3.1  Andros Island, The Bahamas..........................................................................81 
3.2  Pinelands Cover Type .....................................................................................84 
3.3 Coppice Cover Type ........................................................................................85 
3.4  Rockland Cover Type......................................................................................86 
3.5  Saw Grass Cover Type ....................................................................................87 
3.6  Mangrove Cover Type ....................................................................................88 
3.7  Landsat Thematic Mapper Imagery Bands 7,4,2 .........................................92 
3.8  RADARSAT Standard Beam Mode 3 Descending......................................94 
3.9  Image Processing Paths.................................................................................103 
4.1 Total Classification Accuracy for Unfiltered SAR.....................................117 
4.2  Average Classification Accuracy for Speckle Suppressed SAR ..............131 
4.3  Average Classification Results for Speckle Suppressed 

Multitemporal SAR (21 scenes)....................................................................138 
4.4  Average Classification Accuracy of Variance Texture Measure.............140 
4.5  SAR Classification Accuracy for Variance with a 15x15 Kernel .............142 
4.6  Comparative Average Texture Classification Accuracy by System 

Mode and Kernel Size ...................................................................................143 
4.7  Comparative Average Texture Classification Accuracy by Angle of 

Incidence and Kernel Size.............................................................................145 
4.8  Accuracy Results of Texture Measure for Multitemporal SAR (21 

scenes)..............................................................................................................146 
4.9  Classification Accuracy of Land Cover Classes for Multitemporal 

SAR by Texture Kernel (21 scenes)..............................................................148 
4.10  SAR 0418 Speckle Suppressed followed by Variance Texture 

Measure ...........................................................................................................154 



 

ix 

4.11  Fused TM and Speckle Suppressed SAR, Average Accuracy Results ...161 
4.12  Fused TM and SAR Texture Measure Average Accuracy Results .........163 
4.13  Fused TM and SAR Texture Measure by Collection Mode .....................164 
4.14  Fused TM and SAR Texture Measure by Incident Angle ........................165 
4.15  Comparative Average Classification of TM/SAR Texture......................166 
4.16  Unfiltered SAR 0418 and Filtered SAR 0418 Datasets ..............................168 
4.17  Unfiltered SAR 1203 Coupled with Filtered SAR 1203 Datasets ............171 
4.18  Multitemporal SAR GM09 Classified as Multiband Images ...................175 
4.19  DryTM B1-B4, Combined with SAR Couple (Unfiltered, GM09)...........177 
4.20  Dataset Selection Using Transformed Divergence....................................179 
 



 

x 

 
 
 
 

LIST OF ABBREVIATIONS 
 
 
 

AVHRR Advanced Very High Resolution Radiometer 
BERC Bahamas Environmental Research Center 
CCA Canonical correlation analysis 
DN Digital number 
EMS Electromagnetic Spectrum 
ERS European Remote Sensing 
ETM+ Enhanced Thematic Mapper + (Landsat) 
FR Frost speckle suppression filter 
GM Gamma-MAP speckle suppression filter 
GPS Global Positioning System 
GSD Ground sample distance 
HH Horizontal/Horizontal 
HV Horizontal/Vertical 
IR Infrared Imagery 
IHS Intensity, Hue, Saturation 
JERS Japanese Earth Resources Satellite 
LAI Leaf area index 
MAP Maximum A Posteriori 
MLC Maximum Likelihood Classifier 
MS Multispectral 
MSI Multispectral Imagery 
MSS Multispectral Scanner (Landsat) 
NDVI Normalized Difference Vegetation Index 
OPS Optical Sensor (JERS) 
Pan Panchromatic 
PCA Principal Components Analysis 
RGB Red, Green, Blue 
RMS Root Mean Square 
SAR Synthetic Aperture RADAR 
SIR-A Shuttle Imaging Radar-A 
SIR-B Shuttle Imaging Radar-B 
SIR-C Shuttle Imagine Radar-C 
SPOT Satellite pour l'Observation de la Terre 



 

xi 

ST Standard beam 
TC Tasseled Cap 
TM Thematic Mapper (Landsat) 
UTM Universal Transverse Mercator 
VAR Variance texture measure 
VH Vertical/horizontal 
VV Vertical/Vertical 
WGS World Geodetic System 
 



 

 

 
 

 
 

ABSTRACT 
 

RADAR AND MULTISPECTRAL IMAGE FUSION OPTIONS FOR IMPROVED 
LAND COVER CLASSIFICATION 
 
Erwin J. Villiger, Ph.D. 

George Mason University, 2008 

Dissertation Director: Dr.  Barry N.  Haack 

 

Investigators engaged in research utilizing remotely-sensed data are 

increasingly faced with a plethora of data sources and platforms that exploit 

different portions of the electromagnetic spectrum.  Considerable efforts have 

focused on the application of these sources to the development of a better 

understanding of lithosphere, biosphere, and atmospheric systems.  Many of 

these efforts have concentrated on the use of single sensors.  More recently, some 

research efforts have turned to the fusion of sources in an effort to determine if 

different sensors and platforms can be combined to more effectively analyze or 

model the systems in question. 

This study evaluates multisensor integration of Synthetic Aperture Radar 

(SAR) with Multispectral Imagery (MSI) data for land cover analysis and 



 

 

vegetation mapping.  Three principle analytical issues are addressed in this 

investigation: the value of SAR collected at different incident angles, 

preclassification processing alternatives to improve fusion classification results, 

and the value of cross-season (dry and wet) data integration in a subtropical 

climate.  

The study site for this research is Andros Island, the largest island in The 

Bahamas archipelago. Andros has a number of distinct plant communities 

ranging from saltwater marsh and mangroves to pine stands and hardwood 

coppices. Despite the island’s size and proximity to the United States, it is largely 

uninhabited and has large expanses of minimally disturbed landscapes.  

An empirical assessment of SAR filtering techniques, namely speckle 

suppression and texture analysis at various window sizes, is utilized to 

determine the most appropriate technique to apply when integrating SAR and 

MSI for land cover characterization.   Multiple RADARSAT-1 SAR images were 

collected at various incident angles for wet and dry season conditions over the 

region of interest.  Two Landsat Thematic Mapper-5 MSI datasets were also 

collected to coincide with the time periods of the SAR images. 

 A land cover classification process applied to the dry season and wet 

season MSI data achieved a total classification accuracy of 80.6% and 80.7% 

respectively.  When combined into a single multiseason dataset the MSI data 



 

 

resulted in a total classification accuracy of 87.3%.  SAR proved to be a valuable 

source of information especially when processed as a time series and with a 

speckle suppression algorithm applied.  A 21-scene multitemporal SAR dataset 

achieved a total classification accuracy of 65.8%.  When a classification was 

applied to the multitemporal dataset following speckle suppression, the resulting 

total classification accuracy was as high as 83.8% depending on the speckle 

algorithm and kernel applied.   

While texture measures have been successfully utilized for integrating 

SAR and MSI data, in this study speckle suppression proved to be significantly 

more valuable.  SAR collection parameters such as look direction (ascending or 

descending orbit) and incident angle did not prove to contain uniquely valuable 

characteristics.  The highest total classification accuracy achieved involved a 

combination of two MSI datasets and a multitemporal SAR dataset processed to 

suppress speckle using a Gamma- Maximum A Posteriori (MAP) filter with a 9x9 

kernel. 

 This study sought to investigate processing alternatives when fusing SAR 

and MSI data.  While not all of the results met with expectations, this study does 

determine that SAR and MSI are complementary data sources.  A combination of 

SAR and MSI provide unique and valuable results that can not be achieved by 

each variable used independently. 
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1.0  INTRODUCTION 
 
 
 
 

Land managers are often faced with the task of answering questions about 

our earth without having the most relevant or accurate information at hand.  The 

science of Remote Sensing has developed into a very important source of current 

and accurate data that can be used for improved analysis and understanding of 

land cover and natural processes related to it. 

Over the past three decades an increasing number of sources of remotely 

sensed data have become available.  This diversity of satellite and airborne 

sources has collected data using a variety of sensors obtaining information from 

different portions of the electromagnetic spectrum (EMS) and at a great variety of 

scales and resolutions.  Other sensor specific variables further contribute to a 

substantial volume of remotely sensed data much of which has not yet been fully 

evaluated.  One goal of current research is to evaluate specific datasets to 

improve our understanding of natural processes.  A further goal is to investigate 

the value of complementary data from different sources used in tandem to 

provide improved characterizations of land surface phenomena.  It is 

increasingly important to understand how data from different systems can be 
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used in a complementary, integrated, or in some instances as a surrogate for 

direct single sensor observation.  This allows us to characterize the earth’s 

surface in the most effective manner using integrated datasets to answer specific 

questions, problems, or issues for a given regions. 

There is a great volume of valuable research that has been published in 

scientific journals documenting the value and application of remotely sensed 

data to a wide variety of earth resource related issues.  However, much of this 

research has focused on a select number of individual sensors and data collected 

from specific portions of the EMS.  The results of many of these efforts have 

determined that remotely sensed data are a very valuable source of information 

about our earth and can be a very important tool for land managers under many 

circumstances (Jensen, 1996).  There are limitations to its value, however, 

depending on the application, geographic location, and specific sensor related 

issues such as spatial and spectral resolution.  Furthermore, research often 

identifies ideal conditions for a given application of remotely sensed data. 

Unfortunately, ideal conditions do not always translate into operational systems 

that can consistently provide expected results. 

Despite the great volume of data that is now available and the substantial 

research efforts applied against it, there are some very specific and potentially 

valuable issues regarding remotely sensed data that have not been thoroughly 
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investigated.  One specific area where further research is needed is in the 

integration of data from different sensors to derive new or improved information 

concerning a given area of the earth.   

Multispectral optical imagery collected by satellite has been successfully 

used for land cover analysis since the early 1970’s with the launch of what 

became known as Landsat-1.  This satellite was followed by a series of 

comparable, though improved upon, platforms that have provided a consistent 

source of multispectral data for over 30 years.  The subsequent launch of 

complementary platforms such as the French SPOT, Indian IRS, Japanese JERS 

and NASA EOS related satellites has resulted in the availability of a variety of 

high quality visible and near-visible, such as Infrared (IR), imagery.   

The advent of satellite based active microwave or Synthetic Aperture 

Radar (SAR) platforms has added a further dimension to the data available for 

characterizing surface phenomena.  SEASAT, ERS-1 and 2, JERS-1, and the 

Canadian RADARSAT platforms have provided consistent and valuable sources 

of information from portions of the EMS that are complementary to those imaged 

by multispectral imagery (MSI) platforms (Plaut, et al., 1999).  One significant 

benefit from these platforms is their all-weather and cloud penetration 

capabilities.  However, they are not simple data sources to use.  MSI imaging 

systems rely on principles that are similar to the functioning of the human eye, 
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with reflected energy measured by the imaging sensor.  While MSI platforms do 

extend into nonvisible wavelengths, such as the infrared, the principles remain 

largely the same, and they are therefore easier to understand and apply to 

specific problems.  The physics of active microwave, or radar (SAR), energy are 

much more complex, less easily understood, and by extension, more difficult to 

apply to traditional land resource issues (Rany, 1998). 

Unlike MSI remote-sensing systems, SAR are active imaging systems.  

Instead of relying in a passive sense on measurements of the sun’s reflected 

energy to develop a digital image of a region, as is the case with MSI sensors, a 

SAR system provides its own energy source.  The sensor emits microwave pulses 

and then measures the return signal. Depending on a number of factors peculiar 

to the platform, an image is constructed based upon the returning signal which 

has traveled to the surface of the earth, interacted in some fashion, and returned 

to the sensor.  Some of the factors that need to be considered with radar include 

wavelength, incident angle, and polarization (Lewis and Henderson, 1998).  

These and a number of additional variables combine to create added complexity 

to the use and application of microwave remote sensing or SAR. 

Understanding the utility of SAR imagery requires an understanding of 

these variables and their practical implications when applied to different types of 

land surface materials.  The complexity of the data does not detract from its 
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utility.  The goal of an image scientist is to use these variables and the unique 

qualities of SAR data to acquire a better characterization of the surface of the 

Earth. 

The purpose of this research was to investigate different processing 

alternatives and SAR image parameters to maximize the value of SAR when 

integrated with MSI imagery for land cover assessment over a subtropical 

landscape.  MSI imagery is well accepted as a tool for vegetation and land cover 

analysis.  As a result, the primary focus of this project is on SAR collection 

parameters and filtering alternatives to determine the utility of SAR when 

integrated with MSI.  The factors affecting SAR image collection impact the 

information content of the resulting image datasets.  Assessing the impact of 

these parameters on information content will provide a better appreciation of 

appropriate collection parameters for given applications.  How a SAR image is 

processed can also impact its usability.  Prior research identified two processes 

that can enhance the information content of SAR data and result in improved 

land cover characterization, namely texture analysis (Hsu, 1973) and speckle 

suppression (Schistad and Jain, 1992).   

One of the valuable attributes of SAR imagery is its reaction to the 

physical characteristics of materials and surfaces that it images.  Smoother 

surfaces will result in a different returned signal than rougher or irregular 
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surfaces.  This fact may be exploited for the purpose of discriminating land cover 

by allowing one to assess the relative smoothness or roughness of a particular 

land cover class through the analysis of SAR texture (Hsu, 1973).  Surface 

materials with similar physical characteristics and under similar conditions will 

have similar texture values, while those with different characteristics and under 

different conditions will result in different texture values.  One attribute of SAR 

imagery that can confound the measurement of texture is the presence of speckle 

(Schistad and Jain, 1992). 

Remote sensing SAR systems create a radar image with coherent radiation 

backscatter back from a given area on the ground, the ground sample distance or 

a resolution cell.  Multiple echoes of energy are returned from the same cell 

though slightly out of phase due to differences in surface conditions and the 

presence of scatterers such as buildings.  Speckle results from the fact that the 

returned echoes are measured collectively and, depending on the phase shift, the 

measured value may be higher or lower than a pure signal would return.  

Speckle could be considered to be a random field of artificial return signal that 

either enhances or suppresses the true return signal.  SAR imagery typically has 

a grainy appearance as a result of this phenomenon.  Speckle is essentially a false 

component of texture in SAR images that must be removed or suppressed to 

accurately assess the texture present in an image.  There is a balance required in 
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this process however.  Suppressing speckle too much may degrade underlying 

texture while insufficiently suppressing speckle results in artificial texture being 

present (Rany, 1998).  A number of processes have been developed to deal with 

this issue.  Increasing the number of samples, or number of looks, taken for each 

cell measured may mitigate this characteristic but such processing reduces the 

spatial resolution of the data in the process.  Speckle suppression is often still 

required for a variety of reasons to improve image interpretability.  When 

attempting to measure variations in texture in a SAR image, the goal of speckle 

suppression is to minimize the impact of speckle while preserving texture 

features across the image. 

A number of different algorithms have been developed to suppress 

speckle and to measure texture in an image.  The primary techniques involve 

looking at individual pixel values relative to their surrounding or neighboring 

pixels.  For speckle suppression, individual pixel values may be reduced or 

enhanced to more closely conform to the values found in surrounding pixels.  

This process reduces variation in pixel values across an image and will reduce 

texture, ideally false texture.  Texture measures use a similar technique to 

quantify variability in neighborhoods.  Areas that have greater variability are 

assessed as having greater texture and result from a rougher surface; lower 

variability results from a smoother surface.  Maximizing the value of texture in a 
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SAR dataset involves using appropriate processing techniques to suppress 

speckle while preserving and still being able to quantify texture. 

This project engages in an empirical investigation of speckle suppression 

and texture measure algorithms to assess the most appropriate combination to 

use when integrating MSI and SAR imagery for land cover classification.  Prior 

research has determined that the Variance measure of texture provides the 

greatest contribution for the purposes of discriminating different cover types 

(Anys and He, 1995; Pierce et al., 1998; Haack et al., 1998; 2000; Haack and 

Bechdol, 1999; and Herold et al., 2005).  As a result, this research will solely 

investigate the application of the Variance texture measure for integration with 

MSI for land cover assessment.  However, the most appropriate window size at 

which to apply the Variance measure, especially in the face of speckle 

suppression processing, has not been definitively determined.  A number of 

speckle suppression techniques have been developed and published in the 

literature.  The most appropriate algorithm to use for a given situation depends 

on the intended use of the SAR dataset.  Five speckle suppression algorithms 

were selected for this analysis ranging from a simple median, or pixel averaging, 

filter to more complex multi-zone neighborhood analysis filters.  These five are 

representative of the most common filter classes found in the literature (Durand 

et al., 1987). 
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A comprehensive image dataset was compiled for the purposes of this 

research.  It includes 21 SAR images from the Canadian RADARSAT-1 satellite 

and two MSI image datasets from the U.S. Landsat 5 satellite system.  The 

datasets span an extended period of time covering wet-season and dry-season 

periods for the study site and the SAR images represent multiple incident angles 

from two different look directions for each period.  This combination permitted 

the investigation of the impact of seasonality and SAR incident angle on land 

cover classification results as well as a basis for investigating combinations of 

filtering processes to maximize SAR’s contribution to the accuracy of land cover 

classification. 

The methodology for this study follows a model described by Pohl (1996) 

and is similar to that successfully employed by Haack et al. (1998) in East Africa.  

The basic procedure involved performing a digital classification using standard 

processing techniques applied to spatially coregistered sets of optical and radar 

spaceborne data, all resampled to the same pixel size.  Spectral signatures were 

extracted for the various land cover types using supervised training sites 

established during field visits.  After signature extraction, a Maximum 

Likelihood Classifier (MLC) was employed to classify the dataset and a 

contingency table compiled for accuracy assessment.  The contingency tables 



 

10 

were created from a separate set of validation sites also identified during field 

visits. 

The results of this study are a comparison of the accuracy assessments from 

various classifications for individual land cover types and for all types combined 

for overall classification accuracy.   Multiple data combinations and statistical 

manipulations of the data have been examined.  The processes implemented 

depended on the data source (SAR or TM) and included comparisons of the 

original sensor data independently and in combination.   

The study site selected for this project is the northern extent of Andros 

Island, the largest island in The Bahamas.  The island contains a variety of 

distinctive plant communities that have been minimally fragmented due to a low 

population density with most citizens concentrated in small communities along 

the east coast.  North Andros Island lies 24.5 degrees north of the equator and 

exhibits a classic tropical wet and dry season.  Plant communities range from 

coastal mudflat and dune communities to mangrove, scrub/brush, and pine 

stands or hardwood coppices in inland and highland regions. 

The structural differences and minimally disturbed state of these plant 

communities coupled with the systematic wet/dry seasonality of the region 

made this an ideal location for the pursuit of the variables investigated in this 

project.  While the results of this research are not independently conclusive, they 
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do support the thesis that a significant benefit is achieved by the integration of 

SAR and MSI imagery over most temperate and tropical landscapes with 

vegetation communities consisting of moderate biomass volumes. 

Chapter 2 discusses some basic principles of MSI and SAR imagery that 

provide important context for understanding the basis of this research.  There is 

also a thorough review of published research related to the different variables 

investigated in this study.  Chapter 3 describes the methodology applied as well 

as the principle datasets, land cover categories, and study site for this research.  

In Chapter 4 the results of the analysis are presented.  Chapter 5 contains a 

discussion of the results as well as suggestions for future research. 



 

12 

 

 

2.0  STATE OF THE RESEARCH 

 
 
 
 
2.1  REMOTE SENSING CONCEPTS 

Remote Sensing is essentially the process of observing and recording 

information concerning an object or phenomenon without being in direct contact 

with that object or phenomenon.  The human eye is an excellent example of a 

remote sensing instrument.  It collects reflected light from our surroundings 

allowing the brain to reconstruct an image of our environment.  The 

photographic process mimics this by actually capturing the level of reflected 

light on film, allowing for the recording of conditions at that moment in time.  

Both photographic film and the human optic nerves are sensitive to 

electromagnetic energy (Figure 2.1) in what has become known as the “visible” 

portion of the EMS.  While the visible portion of the EMS provides a great deal of 

information about ones surroundings there is even more value to be gained from 

information found outside of this region.  
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The science of Remote Sensing uses a variety of advanced instruments to 

measure energy from expanded portions of the EMS.  These instruments may be 

ground-based, on airborne platforms, or mounted on satellites in orbit.  The data 

 

they collect are very diverse and can be used for many different pursuits from 

meteorological analysis to natural resource exploration.  A significant research 

base has established the value of Remote Sensing for characterizing atmospheric 

and surface conditions and processes and these instruments prove to be one of 

the most cost effective means of recording quantitative information about our 

earth.  In recent decades the advent of satellite based sensors has extended our 

ability to record information remotely to the entire earth and beyond.   

The EMS proves to be so valuable because different portions of the EMS 

react consistently to surface or atmospheric phenomena in specific and 

 

 
 
 
 
 
 
 
 
 
 
 

Figure  2.1:  Electromagnetic Spectrum (after Saxby, 2002) 
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predictable ways.  A single surface material will exhibit a variable response 

across the EMS that is unique and is typically referred to as a spectral curve.  

Figure 2.2 provides an example of a typical EMS response to green vegetation.  In 

essence a particular object or material, such as vegetation, has a consistent EMS 

response that is different from that of another object of different material, 

composition, or surface character, such as water (Figure 2.3).  These consistent 

responses can be measured and used to develop a unique “signature” for their 

respective object or material. Essentially, an expected and measurable response 

to the EMS is obtained.  Remote Sensing capitalizes on this fact by measuring 

electromagnetic energy from different portions of the EMS and recording them, 

thus allowing for their comparison.   

 

Figure  2.2:  Spectral Curve for Green Vegetation (after Hoffer, 1978) 
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RS sensors typically sample a selection of specific wavelengths or portions 

of the EMS to collect a series of measurements of a single object or area across its 

spectrum.  The regions that are sampled are often referred to as bands (Figure 

2.4) since the sensors typically record energy in relatively narrow ranges of the 

EMS.  As an example, a sensor that collects data from the visible and infrared 

Figure  2.4:  Example Sampling Regions for 5-banded MSI 
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Figure  2.3:  Example Spectral Curves for Different Cover Types (Liew, 2001) 
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 portions (MSI or optical systems) of the EMS may have three bands that collect 

values from the blue, green, and red portions of the visible spectrum as well as a 

number of bands that record data from the infrared portion of the spectrum.  A 

greater number of bands mean that more portions of the spectrum are recorded 

and greater discrimination can be applied to determining what a particular 

surface material or object is.  Sensors that collect up to 16 bands of data are 

typically referred to as multispectral sensors while those that collect a greater 

number (typically up to 256) are referred to as hyperspectral.  

Interpreting the data collected by MSI or hyperspectral sensors is not a 

simple science.  There are considerable complicating factors that affect the type of 

information that can be collected and how it may be applied, from atmospheric 

interference, to sensor limitations and, most importantly, data volume.  One of 

the primary goals of research in Remote Sensing is to find the optimum sensor 

parameters and collection conditions to maximize the information content of the 

data collected.  One of the goals of this research is to identify some of these 

parameters and processing options to allow for more informed tasking and 

consistent results with regard to the application of remotely sensed data. 



 

17 

2.2  MULTISPECTRAL IMAGERY (MSI) LAND COVER ASSESSMENT 

The main objective of MSI remote sensing is the acquisition of information 

about surface materials or objects.  The information that can be collected is 

driven by the chemical composition, surface material and condition, and location 

of a target.  Depending on chemical composition and surface condition, different 

portions of energy in the EMS are transmitted, absorbed, or reflected.  The 

combinations of this phenomenon are largely unique to the materials’ 

composition.  A specific pattern of measured reflectance along the EMS can be 

used as a signature to identify the composition of a material without chemical 

testing or even coming into direct contact with it.   

 This phenomenon has been used in a number of ways to characterize the 

surface of the earth and the materials covering it.  Remote Sensing has become a 

critical tool for assessing conditions in natural environments and quantifying 

change over time.  One of the most prominent uses has been in mapping and 

monitoring of land cover and land use.  Land cover refers to the physical 

material covering the surface of the earth.  These are often collected into classes 

or categories such as grassland, forest, water, etc.  Land use pertains to the use 

for which an area of land may be designated and typically refers to some 

anthropogenically modified environment such as agricultural practices, or 

developed or urbanized areas.  Determining land cover and land use for broad 
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areas is most easily achieved using satellite imagery (Koeln et. al., 1999), though 

a precise understanding of land use often requires more detailed investigation of 

the region being assessed.  Unique spectral signatures for different land cover 

types can be applied to imagery collected over an area to differentiate between 

the land covers that exist there.  With MSI systems this translates to a set of 

observed or expected values measured in each band across the EMS.  Improved 

spectral discrimination found in more advanced sensors such as the Landsat 

Thematic Mapper (Landsat TM or just TM) sensor operated by the U.S. 

Government not only allows for separating different cover types such as water 

from vegetation but actually separating out different types of vegetation. 

Considerable research has gone into the use of remotely sensed data for 

vegetation analysis due to its promise for assessing commercially viable land 

cover such as forestry resources and land use in the form of agricultural activity.  

The Normalized Difference Vegetation Index (NDVI), derived by comparing 

recorded infrared and red light, is commonly used for surface characterization of 

vegetation.  Sader et al., (1989) determined that NDVI values calculated from 

Landsat TM data were valuable for determining total biomass of forest stands.  

The NDVI has been put to considerable use in monitoring phenological changes 

in vegetation by utilizing time series imagery over a growing season (Belward 

and Loveland, 1995).  Landsat TM spectral data along with biogeographical site 
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characteristics have been used in other similar studies estimating forest 

productivity (Lu, 2005).  Above-ground biomass can be assessed using 

innovative processing techniques and monitoring over time.  Using regression 

and classification techniques a high correlation was found between spectral and 

biogeographical variables of forest productivity proving that remotely sensed 

data provide a valid means of characterizing surface materials and land cover 

(Cook et al., 1989; Running et al., 1989).   

The variety of land cover types that multispectral imagery has been 

applied to is extensive.  In many instances these are focused on individual cover 

types or select groupings.  Vegetation analysis with particular focus on forestry 

or agriculture has been pursued by Bauer et al. (1978), Fang (1980), Wall et al. 

(1984), Gilruth et al. (1990), Mladenoff et al. (1997), Jurgens  (1997) and Stern et al. 

(2001).  Guo et al. (2003) demonstrates the use of seasonal Landsat TM for 

discriminating between grassland types by differentiating species and 

management regimes, an example of the detail possible with remotely sensed 

data.  Agricultural systems and productivity can be monitored particularly well 

when remotely sensed data collected over a growing season is available 

(Guerschman et al., 2003).  Forestry and forest productivity is of increasing 

interest in light of increased atmospheric CO2 concentrations and indications of 

global warming.  Monitoring changes in potential carbon sinks may be 
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invaluable for planning mitigation efforts.  Wu and Shao (2002), Chan et al. 

(2003), Tottrup (2004), and Lu et al. (2005), have engaged in research on 

techniques for improved assessment of forest resources especially in tropical 

ecosystems.  As with agricultural analysis, data collected and analyzed as a time 

series proves most valuable for understanding current conditions and change 

over time.   

Wetlands analysis has been equally robust due to the recognition of their 

important ecological and hydrological roles with Gilmer et al. (1980), Howman 

(1988), Lunetta and Balogh (1999), Kelly (2001), Proisy et al. (2002), and Grenier 

et al. (2007), providing excellent examples.  Examples of analysis of urban or 

developed land has been accomplished by Jackson et al. (1980), Haack et al. 

(1987), Jensen and Cowen (1999), Lu and Weng (2005), Cao and Jin (2007), and 

Amarsaikhan et al. (2007), though this type of land use is often difficult to assess 

with moderate spatial resolution imagery due to the complexity and fragmented 

nature of the phenomenon.  Texture has proven to be an important tool when 

investigating urban areas (Hsu, 1978; Dell’Acqua and Gamba, 2006).   

Developing techniques for discriminating individual land cover and land 

use provides the basis for assessing land cover in a broader sense, spanning 

many cover types and broad regions quantitatively (Anderson et al., 1976; Hill 

and Kelly, 1987; Mladenoff et al., 1997; Vogelmann et al., 1998; Lloyd et al., 2004; 
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and Xu and Gong, 2007).  As with forestry analysis, this process becomes 

increasingly relevant with regard to population growth, resource extraction, and 

other land cover changes and dynamics in the face of economic development and 

resulting global climate (Green et al., 1994; Foody et al., 1996; Baldocchi et al., 

1996; Guerschman et al., 2003; Lloyd et al., 2004; Linke and Franklin, 2006; and 

Muñoz-Villers and Lopez-Blanco, 2007).  The requirement for quantitative 

surface characterization data to feed global system models has led to the 

development of global land cover datasets at multiple scales (Belward and 

Loveland, 1995; Nemani and Running, 1996; DeFries et al., 1998; Koeln et al., 

1999; Thomlinson et al., 1999; Hollister et. al., 2004; and Durieux et al., 2007).  

Such massive undertakings are extremely expensive and data and resource 

intensive.  The prospect of maintaining such datasets is equally daunting.  These 

requirements provide support for the development of new and systematic 

techniques that will take advantage of all available sources of data and provide 

rigorous and consistent land cover characterization and change analysis 

techniques.  This research proposes that the integration of radar and 

multispectral imagery provides just such an opportunity. 
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2.3  RADAR (SAR) REMOTE SENSING CONCEPTS 

Whereas the most common imaging sensors are passive and rely on 

reflected solar energy for measurement, there are some that include their own 

energy source.  SAR utilizes an antenna to generate active energy to paint a 

portion of the earth’s surface with microwave energy and then measure the level 

of returned energy.  As with the visible and near visible wavelengths, 

microwaves interact with different materials in different ways.  The returned 

energy, referred to as backscatter, can therefore be used to characterize the 

surface with which it came into contact (Ahern et al., 1993).  SAR has some 

further unique attributes that extend its utility.  Having its own energy source 

allows sensors of this type to image irrespective of the presence of daylight.  

Radar sensors can ignore weather conditions, an issue for most sensor types, 

since certain types of microwave energy are not inhibited by water vapor.  

Microwaves of different wavelengths have other unusual qualities such as the 

penetration of vegetation or hyper-arid soils (Smith et al., 1995; Wang et al., 

1995).  This allows for the characterization of surface and sub-surface physical 

conditions that may otherwise be obscured.   

The microwave region of the EMS that SAR utilizes begins at wavelengths 

of 1000 µm (0.1 cm) and extends upward in wavelength to about 10 meters 

(Rany, 1998).  Radar differs from other imaging systems in that the information 
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collected is less a function of chemical composition and more a result of physical 

interaction with the material imaged.  Wavelength regions longer than the 

thermal infrared region yield little information about composition, but can yield 

much about physical characteristics such as temperature, surface roughness, or 

material particle size.  This has led to investigation of the use of SAR in land 

surface characterization and more pointedly soil analysis. 

A subset of the factors that need to be considered with radar are: 

1. Wavelength 

2. Incident angle 

3. Look direction 

4. Number of looks 

5. Pixel spacing/spatial resolution 

6. Polarization 

(Lewis and Henderson, 1998) 

These variables combine to provide added complexity to the use and application 

of microwave remote sensing or SAR. 
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2.3.1  SAR Wavelength 

Wavelength is an extension of optical systems and is often referred to as a 

radar band; the following table defines the most common bands at which SAR 

imagery is collected. 

 

Band Frequency (GHz) Wavelength (cm) 
X 9.6 3.1 
C 5.3 5.6 
L 1.25 23.5 
P 0.44 68 

 

A particular SAR platform may have more than one band that it operates 

in.  The current operational spaceborne systems typically have only one.  

Airborne platforms typically have between one and four.  Intermittent Space 

Shuttle missions have carried SAR systems with up to three operational bands.  

Variations in wavelength are a function of differences in the energy of the signal 

and correspond to different degrees of utility.  This makes different SAR bands 

useful for different applications and when combined provides utility that is 

similar to the bands and spectral signatures found with MSI systems (Saatchi and 

Rignot, 1997). 

 

Table 2.1: SAR Bands  
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2.3.2  Incident Angle 

The incident angle at which SAR imagery is collected refers to the angle of 

look of the sensor relative to the vertical with the ground (Figure 2.5).  Imaging 

straight down or near nadir as is desired with most MSI platforms would result 

in all of the energy of the microwave pulses being returned to the sensor and 

very little variation with which to analyze surface features or conditions.  

Looking off in an oblique fashion, or at an angle, provides for some energy being 

reflected back to the system while other energy is bounced away depending on 

the surface material illuminated.  In this fashion, variations in surface features 

and objects may be differentiated.  The angle of incidence can significantly affect 

the utility of data for specific applications (Cimino et al., 1986).  In general, 

smaller angles result in greater vegetation penetration and more return from 

A B

Figure 2.5:  SAR Incident Angle (after Rany, 1998) 
Scene width 
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surface materials.  Larger angles result in a greater return from vegetation with 

less contribution from surface materials such as soil and surface geology.  As 

depicted in Figure 2.5, the angle of incidence varies across any individual SAR 

scene. The portion of the image closest to the satellite track (A) is imaged at a 

slightly smaller angle than the portion of the surface farther from the satellite 

track (B).  Any moderate resolution SAR image has an in-scene variation in 

incident angle of 5°-7°. 

 

2.3.3  Look Direction 

Look direction or azimuth has more to do with the surface being imaged 

than with the sensor itself.  Due to the nature of SAR signals and wavelength the 

physical interaction with certain features will be affected by the orientation of the 

object relative to the path of the sensor.  For example, an agricultural field that 

has been plowed with rows perpendicular to the imaging path of a SAR sensor 

will result in a different return than one that has been plowed parallel to the 

sensor track.   

Aircraft-based SAR sensors provide greater control over look direction, it 

is determined by the aircraft flight path.   This is not the case with spaceborne 

platforms.  A satellite based SAR in a polar orbit will typically provide two 
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directions of imaging, one while the sensor is ascending in orbit from a southerly 

direction toward the north. The other while it is descending in orbit from north 

to south, these are typically referred to as ascending and descending mode.  This 

translates to a change in look direction depending on the design of the system.  

For example, if a SAR system is designed to image to the east in ascending orbit, 

then it images to the west as it passes over the pole into its descending orbit.  

Fundamentally, SAR data collection in ascending or descending mode should 

have little impact on the data especially in natural land covers, however, if 

physical conditions on the ground change between an ascending collection and a 

descending collection one could expect differences in backscatter.  Wood et al. 

(2002) investigated whether morning dew on vegetation would have a significant 

impact on the utility of data collected in ascending or descending orbit when 

assessing agricultural crops.  They did not identify a clear correlation.  While 

they did determine the image content was different between orbits this did not 

significantly affect the usability of the data for crop separation.  This issue of 

image content differences between ascending and descending orbit collection 

warrants further investigation. 
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2.3.4  Number of Looks 

SAR systems typically do not collect and process a single sample of 

returned microwave energy for each area of the ground imaged.  Doing so would 

typically result in imagery that was very grainy or speckled due to the additive 

nature of microwave energy.  One way to reduce this grainy appearance is to 

take multiple samples of energy from the same point on the ground and average 

them to establish a reasonable value for the area imaged.   

These samples are essentially repeated pulses of microwave energy and 

are referred to as the number of looks.  This multi-sampling procedure provides 

a better characterization for a given area (reducing speckle noise) and makes 

SAR imagery more useful (Rany, 1998).  However, taking more looks of an area 

Figure 2.6:  The Multi-look Effect 

1 Look
2 Looks

3 Looks
4 Looks

Pixel/Sensor 
Resolution 

Ground 
 Resolution 
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reduces the effective spatial resolution (Figure 2.6) of a SAR dataset as the 

individual samples are averaged.   

 

2.3.5  Pixel Spacing and Resolution  

Most users of MSI are familiar with the concept of spatial resolution or 

ground-sample-distance.  The resolving power of an imaging system defines the 

ability of the system to distinguish between two objects that are close together.  

With a lower resolution two objects may not be resolved and may appear as a 

single object on the imagery.  With higher resolution they may be distinguished 

separately.  Typically the concept of spatial resolution is closely tied to the 

number and spacing of actual sensors on the sensor array of the imaging 

platform.  This is not the case on a SAR imaging system.  Pixel spacing refers to 

the distance between samples taken on the ground but will not correspond to the 

resolving power of the sensor.  Samples on the ground may be spaced at 12.5 

meters but may each include a surface area of 30m (each pixel sample containing 

data that overlaps with surrounding pixels), providing a 30m resolution.  This 

issue is driven by the number-of-looks (Figure 2.6).  There is a direct trade-off 

between image resolution and number-of-looks, as number-of-looks increases 

the nominal ground-sample-distance of the SAR sensor also increases, reducing 

resolving power of features (Rany, 1998). 
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The subject of pixel spacing and ground resolution is an important one 

that warrants further investigation.  SAR imagery is typically delivered at system 

resolution (pixel spacing) and then processed into ground resolution.  For 

example, SAR data from the Canadian RADARSAT-1 system is collected at a 

12.5m pixel spacing but due to multi-look processing is deemed to provide a 25m 

ground sample distance.  Therefore, the data are processed into a coarser 

resolution.  Some research is going into processes that may be applied to single 

look data to maximize the value of data collected with a single look (resulting in 

higher speckle) without degrading the resolution as multi-look processing does 

in an effort to reduce speckle (Davidson et al., 2006). 

 

2.3.6  Polarization 

The final complicating factor when considering the utility of SAR imagery 

is the issue of polarization.  The orientation of the transmitted microwaves and 

those collected as a return can be controlled and measured.  This may provide a 

number of potential bands of data collected for each SAR band.  The 

combinations are HH, VV, HV, and VH, in either a vertical (V) or horizontal (H) 

orientation and corresponding to send and receive mode for each pair.  

Depending on the surface material illuminated, the orientation of the 

microwaves will be altered to differing degrees and this change in polarization 
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may be used to help characterize the surface.  Only a selected number of imaging 

platforms, primarily aircraft-based, record SAR imagery with varying 

polarization combinations.  Two recent systems, ALOS-PALSAR and 

RADARSAT-2, are collecting and more operational satellite systems are planned 

(Davidson et al., 2006). 

Multipolarization SAR imagery has been used in many projects to 

evaluate and discriminate surface materials.  It has proven valuable for land 

cover classification (Saatchi and Rignot, 1997), forest mapping (Dobson et al., 

1995), wetlands delineation (Proisy et al., 2002), agricultural applications 

Karjalainen et al., 2008), and coastal mapping (Baghdadi et al., 2007).  Planned 

SAR systems are incorporating multipolarization capabilities to expand the 

utility of SAR data collected. 

 

2.4  VEGETATION ANALYSIS WITH RADAR  

SAR has proven to be very effective as a compliment to MSI remote-sensing 

techniques in land cover mapping and terrestrial ecosystem assessment.  The fact 

that SAR is independent of solar irradiance and unaffected by cloud cover is one 

significant reason why it is effective for use in land cover classification.  This has 

proven especially true in northern latitude boreal forest and tropical rainforest 
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where the acquisition of multispectral imagery data is often hindered by frequent 

cloud cover and smoke from fires.  The sensitivity of the radar signal to moisture 

content is further complemented by its ability to discern the structural properties 

of vegetation and to assess stages of forest regrowth.  This often allows for the 

separation of forest types, particularly when optical sensors are saturated over 

dense vegetation.  A further value and differentiation from MSI systems is the 

fact that reflectance-based imagery only image the surface reflectance of 

materials while active microwaves in the form of SAR may penetrate the surface 

and interact with underlying structure.   

Several studies, using a variety of classification approaches, have used SAR 

images for land cover classification in forested regions (Saatchi et al., 1996; 

Rignot et al., 1994; Ranson and Sun, 1994; Ranson et al., 1995; Cimino et al., 1986; 

Baltzera et al., 2003).  The application of these data sources in process models is 

increasingly being explored.  For example, Bonan (1993) has used a SAR-derived 

land cover map over the boreal forest of interior Alaska to improve the 

estimation of forest assimilation.  Saatchi and Rignot (1997) developed land cover 

maps derived from multipolarization, multifrequency SAR systems and 

projected that they could become an important tool for terrestrial ecologists and 

process modelers.  Proisy et al. (2002) further demonstrated the value of 

multipolarization and multifrequency SAR for the mapping of mangroves 
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swamp and canopy structure. They determined it was possible to differentiate 

species and to analyze the decline in mangrove density using time series data.   

Collecting and integrating data over time proves to be particularly important 

for monitoring landscape change due to anthropogenic forces or climate change.  

Long-term stability in data sources and calibration of data between sources then 

becomes an issue.  Shimada (2005) investigated the stability of L-band SAR from 

the Japanese JERS-1 system to determine the consistency of collection and 

stability of datasets collected for the Amazon rainforest over the life of that 

system.   It was determined that the data collected were consistent as was 

vegetation (of undisturbed regions) such that the area could be used for 

calibration of other systems.  A similar, 19-year study using L-band data from 

multiple SAR systems confirmed consistency across platforms (Balztera et al., 

2003). 

Dobson et al. (1995) presents a three-step process for estimation of forest 

biophysical properties from orbital SIR-C (Shuttle Imagine Radar-C) polarimetric 

SAR data.  Direct estimation of total above-ground biomass based strictly upon 

land cover derivation was shown to be unreliable unless the specific effects of 

forest structure were explicitly taken into account.  Their process first involved 

classification using SAR data to identify terrain on the basis of structural 

categories.  Polarimetric SAR data at L- and C-bands were then used to estimate 
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basal area, height, and dry crown biomass for forested areas.  The estimation 

algorithms were empirically determined and were specific to each structural 

class.  The last step used a simple biophysical model to combine the estimates of 

basal area and height with ancillary information on trunk taper factor and wood 

density to estimate trunk biomass.  Total biomass was then estimated as the sum 

of crown and trunk biomass.  The results show that for the forest communities 

examined (sub Boreal) biophysical attributes can be estimated with relatively 

small RMS-errors (root mean square-errors).  The addition of X-SAR 

(multipolarization) data to SIR-C was found to yield substantial further 

improvement in estimates of crown biomass in particular.   

The prospect of discriminating forest structure with SAR has been further 

explored with regard to understanding how animal species diversity and 

population density are affected by edge effects, habitat heterogeneity, and 

landscape composition.  Imhoff et al. (1997) have investigated the ability of SAR 

to provide useful information on vegetation structure for the purpose of 

mapping bird habitats.  The approach exploits the apparent ability of SAR 

sensors to respond to vegetation structure.  In boreal and coniferous temperate 

forests, tree stand parameters such as height, stand density, and sometimes leaf 

area can be inferred using polarimetric radar and classification algorithms 

employed to map stands (Dobson et al., 1993; Ransom et al., 1995).   
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SAR sensor data have also been used to monitor gross vegetation habitat 

parameters for conservation purposes (Lawrence et al., 1995).  Using SAR data, it 

may be possible to distinguish among several different vegetation structures in 

predictable ways, based on wavelength and the degree of consolidation of living 

plant tissue.  Past research has shown that SAR backscatter is linked to 

vegetation structure, and that the ratio of vegetation surface area to volume may 

be a useful measure of structural consolidation (Imhoff, 1995a).  If SAR can 

discriminate among vegetation structural types, and this information is layered 

onto floristic data acquired from aerial photography, Landsat TM, and other 

sensors, the potential for high spatial resolution mapping of animal habitats, over 

large areas, is immense. 

Biomass mapping using SAR has also met with substantial success 

although the application and saturation level varies depending upon the forest 

type.  Research with temperate forest biomass derivation has been accomplished 

by  Dobson et al. (1992, 1995), Kasichke (1992), LeToan et al. (1992), Israelsson et 

al. (1994), Proisy (2002), Kuplich (2005), and Rauste (2005), .  Hoeckman et al. 

(1995), Pope et al. (1994) and Imhoff (1995b) have been successful with tropical 

forests and comparisons to temperate coniferous stands.  Monitoring biomass in 

tropical forests is deemed to be of considerable importance especially with the 

assessment of them as carbon sinks (Kuplich et al., 2005).  Ahern et al. (1993), 
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Kasischke et al. (1994), Beaudoin et al. (1994), and Wang et al., (1995) have 

compared a variety of forest biomes.  These collected works have shown that 

low-frequency (0.4-5 GHz) SAR measurements are very sensitive to forest 

biomass.  Kasischke et al. (1995) evaluated the correlation between above-ground 

biomass and coefficient of backscatter with SAR.  Using airborne SAR data they 

determined that SAR at different polarizations in the C-band were highly 

correlated with various components of biomass (e.g. bole biomass, stem biomass, 

and needle biomass) within stands of loblolly pines. 

Wigneron et al. (1997) investigated the response of P-band (~0.44 GHz) 

and L-band (~1.4 GHz) finding that the penetration depth of the measurements 

exceeded the crown layer.  The scattering processes that contribute to 

backscattering involve the crown layer (mostly branches), tree trunk, and the 

ground surface.  Since the trunk and branch components represent more than 90 

percent of the total above-ground biomass of mature forest canopy, a good 

correlation was found between backscattering and the total biomass.  

Conversely, for higher frequency measurements [C-band (~5 GHz) and X-band 

(~10 GHz)], the penetration depths did not exceed the crown layer thickness in 

most cases.  The scattering effects which contribute to backscattering occur 

mainly in the upper layer of the canopy; foliage (needles) and small branches are 

the dominant scatterers.  As a consequence, the sensitivity of C-band 
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backscattering to the total above-ground biomass diminishes significantly when 

biomass exceeds about 6-10 kg/m2 (60-100 tons/ha).  Therefore, C-band 

backscattering was found to be useful for providing discrimination between low-

biomass canopies (Dobson et al., 1992) and for monitoring biomass changes 

during early successional stages in temperate coniferous forests (Kasischke et al., 

1994).  Also C- and X-band backscattering data can be used in combination with 

P- and L-band data for retrieving forest characteristics (Dobson et al., 1995; 

Kasischke et al., 1995).  In particular, this addition was found to yield substantial 

improvements in estimates of crown biomass. 

Successful biomass mapping based on SAR classified vegetation has been 

effectively used in analysis of vegetation successional processes and prediction of 

future biomass accumulation (Williams et al., 1994).  Their study predicted 

successional stage, established existing measurements of biomass ranges within 

successional stages, and incorporated knowledge of the rates and processes 

influencing vegetation succession.  This model, used in conjunction with stage-

specific rates of successional change, displays both present and projected 

patterns of biomass on the landscape.  The resulting biomass projections 

demonstrate the importance of present-day distribution of vegetation types, and 

not just biomass distribution, for predictions of future distributions of biomass 

on the boreal landscape. 
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However, SAR has clear limits to its application.  As mentioned 

previously there are situations where canopy complexity and volume of biomass 

are such that backscatter saturation becomes a problem.  Imhoff et al. (1995a) 

have concentrated recent research efforts on evaluating the effects of saturation 

limits on making global biomass inventories with SAR sensors.  Applicability 

was assessed by comparing biomass saturation limits to a global vegetation type 

and biomass database.  C-band can be used to measure biomass in biomes 

covering 25 percent of the world’s total ice-free vegetated surface area (which 

accounts for 4 percent of the Earth’s store of terrestrial biomass).  L- and P- band 

can be used to measure biomass in biomes covering 37 percent and 62 percent of 

the total vegetated surface (accounting for 8 percent and 19 percent of total 

biomass). Tropical biomes occupying approximately 38 percent of Earth’s 

vegetated surface contain 81 percent of the estimated total terrestrial biomass 

and unfortunately have biomass densities above the saturation limit of current 

SAR systems.  Since P-band radar systems cannot currently operate effectively 

from orbital platforms, scientists are limited to the L-band threshold.  Emphasis 

should be shifted toward using SAR to characterize forest regeneration and 

development up to the saturation limits shown by Williams et al. (1994), rather 

than attempting to measure biomass directly in heavy forests.  The development 

of new and innovative technologies for measuring biomass in high-density 

vegetation was encouraged as a result of this study. 
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Wetlands mapping is another area of considerable interest due to the 

ability of SAR data to discriminate inundated land below a closed vegetation 

canopy.  Considerable work has been done on this issue in the Amazon basin as 

well as other forested wetland regions of the world (Townsend, 2002; Parmuchi 

et al., 2002).  Agricultural monitoring and analysis is also receiving a great 

amount of attention since SAR imagery is not beholden to local weather 

conditions and the timing of data collection can be very important when 

considering crop phenology (Wood et al., 2002; Karjalainen et al., 2008).  

The extensive body of research that exists with regards to SAR provides 

definitive evidence that SAR data are extremely valuable though difficult to 

understand and interpret.  SAR imaging assesses different qualities of surface 

materials than those measured by MSI systems and allows for more robust 

characterization of surface conditions and especially those associated with 

vegetation land cover types.  The complementary nature of SAR data to MSI data 

and analysis leads directly to the premise that the integration or fusion of these 

two unique datasets, as is the focus of this research, should provide for even 

more robust analysis of surface conditions and processes. 
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2.5  SPECKLE REDUCTION  

One of the most significant issues with the use of SAR data for land cover 

classification is the presence of speckle noise.  The speckle phenomenon is a 

direct result of the coherent nature of the radiation emitted by radar imaging 

systems.  Point scatterers within each sensor footprint impart either additive or 

subtractive strength to the signal measured by the sensor.  The effect of speckle is 

to provide erroneous digital number (DN) values that are of either greater or 

lesser magnitude than the “true” value expected.  The result of this is a dataset 

with a statistical distribution containing a large standard deviation over 

relatively small areas.  In effect, an area on the ground that is ostensibly 

homogenous will exhibit a granular or speckled appearance and will result in 

recorded values that are greater or lesser than warranted by the properties of the 

area imaged.  One way of considering a SAR image is as a composite of two 

fields of data.  One field of data comprises the pure radar return without the 

contribution of point scatterers, the second field of data consists of the additive 

and subtractive signal generated by point scatterers and is the source of the 

speckle phenomenon (Mejail et al., 2003).  

SAR images that are to be used for quantitative land cover assessment 

should be processed to remove or reduce the presence of speckle.  Ideally, 

removing the “speckle field” would provide a data layer consisting of pure SAR 
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return and the best source of information for characterizing surfaces.  

Unfortunately it is impossible to determine the precise impact of speckle on a 

pixel-by-pixel basis. As a result, the multi-look process was developed on the 

system side, and a number of filters have been developed on the data processing 

side in an effort to mitigate the impact of speckle on specific applications of SAR 

data.  Under most circumstances, speckle suppression should occur before other 

filters or processes are performed on SAR data or SAR data are integrated with 

other data sources (Hong et al., 2005). 

Two primary categories of filters have been used or developed for speckle 

suppression (Durand et al., 1987).  One group of filters relies on the assumption 

of a definable speckle model while a second and, more simplistic group, makes 

no assumptions concerning the nature of speckle.  All of these rely on the use of a 

moving window concept of convolution, or spatial filtering.  Mathematical 

calculations are performed on a collection of pixels in a moving window  

(Figure 2.7) of a user defined size (typically with an odd number of pixels on a 

side such as 3x3, 5x5,…NxN) that constitute a neighborhood for any specific pixel 

and that systematically scan an image dataset (Jensen, 1996).  The pixel (pc) 

falling at the center of the window is the pixel of interest.  Based upon the 
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characteristics of the sample of pixels contained by the moving window the value 

of pc may be replaced by a value that is deemed to be more appropriate.  An 

appropriate value is determined by defined statistical operation performed on 

the sample of pixels contained by the window. 

Of those filters that make no prior assumption regarding the nature of 

speckle the most common are the Median and Mean filter.  These replace pc with 

either the calculated mean or the median pixel value of the sample set defined by 

the window size.  Mean and median filters have proven to be effective at 

smoothing speckle noise and tend to make an image more visually pleasing but 

they cannot distinguish between useful information and speckle (Rany, 1998).  

Their application may have the consequence of further degrading the dataset by 

3x3 Kernel 

Figure 2.7:  The Neighborhood Filter Process 
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incorporating speckle values into the calculation of replacement values for pc.  A 

number of variations on these basic filters have been developed to varying effect 

but fundamentally they are insensitive to the nature of speckle. 

A more promising group of filters are those that take into consideration an 

assumptive model of speckle.  These are typically referred to as adaptive filters 

in that they compare the statistical characteristics of speckle pixels with the 

window defined sample to determine if pc is extraordinary and if so the 

magnitude of the value to replace it.  Again, a number of these filters exist with 

new variations being developed. 

The goal of filtering is to reduce the impact of speckle while maintaining 

useful information.  This is a delicate process since one of the attributes of SAR 

imagery that has proven to be highly useful is that of texture.  The variance of 

returns over an area can be assessed to determine relative surface texture and 

thereby differentiate between different surface types.  As an example, still water 

is considered a perfect reflector of microwave energy bouncing it away from a 

SAR sensor.  This results in a homogenous area of low DN values.  Forest on the 

other hand is a complex surface that may result in a return that has a great deal 

of variance over the forested surface area.  The difference in texture between 

these two surfaces may be assessed and used to differentiate between the two.  

Speckle suppression impacts the quantification of texture (Schistad and Jain, 
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1992).  Processing for speckle with a small window can smooth speckle while 

preserving texture information in local areas.  Adaptive filters have proven to be 

the most effective at distinguishing between useful information such as texture 

and speckle and are deemed to be most suitable for classification processes 

(Durand et al., 1987; Nyoungui et al., 2002; Xiao et al., 2003).   

A number of speckle suppression algorithms exist and have been 

evaluated for different applications (Durand et al., 1987).  Most of the evaluation 

projects have compared different speckle algorithms to determine if they 

preserve edges and features.  Two filters defined in the early 1980’s and often 

applied in speckle suppression processes are the Lee-Sigma and Frost 

algorithms.  These have been evaluated for their edge detection and preservation 

utility (Adair and Guindon, 1989).  In this instance the Frost filter was found to 

be most effective.  Smith (1996) proposed modifications to the standard Sigma 

filter that improves speckle suppression and preserves fine features.  This effort 

also determined that speckle suppression filters might be run iteratively and in 

different combinations with varying windows sizes to increase feature 

recognition.  The assumption is that as speckle is progressively reduced, the 

image approaches true feature representation.  Theoretically, iterative filtering 

should arrive at a dataset that achieves stability with further iterations becoming 

unnecessary.  Du et al. (2002) investigated this by applying the Lee filter 
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iteratively though they found that the dataset never did achieve a state of 

stability. Nevertheless, a speckle suppressed SAR dataset was found to be more 

valuable for land cover mapping in their study.  

The Gama-MAP (GM) filter has been one of the most successful with 

regard to classification results.  Zaitsev and Zaitsev (1996) evaluated the GM 

filter with airborne data.  Their analysis determined that the algorithm appeared 

to provide approximate microwave reflectance values and worked best as the 

number of looks increased for SAR data.  Based upon these results they felt this 

was the most appropriate filter for fusion with optical data.  Nezry et al. (1991) 

evaluated a number of filters including the GM and found it to be the most 

useful as it appeared to preserve texture and features in the SAR imagery.  This 

was later contested (Collins et al., 1998) when the filter was used in a study to 

evaluate forest parameters relative to texture measures.  In this study the GM 

filter was not found to preserve small-scale features.  An interesting result of this 

research was the determination that texture should be processed at the pixel 

spacing scale rather than the ground resolution of the image.  This implies that 

an appreciable amount of information is lost in the resampling step of the image 

fusion process.  Most examples of texture processing in the literature do not 

calculate texture at the pixel spacing but rather at the ground sample distance 

scale.  This is an area that warrants further investigation. 
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Alternative approaches to speckle reduction have been investigated with 

multifactor datasets.  Multifrequency and multipolarization SAR data may be 

combined to evaluate the impact of speckle and combined to reduce its effect 

(Lee et al., 1991).  New speckle suppression algorithms, as well as variations on 

existing ones, are being developed on an ongoing basis (Hagg and Sties, 1994; 

Wakabayashi and Arai, 1996; Lu et al., 1996; 1997; Dias et al., 1998; Nicholas et 

al., 2001; Belhadj and Jebara, 2002; Chunming et al., 2002; Xiao, 2003; and Vidal-

Pantaleoni and Martí, 2004).  The goal of most of these is to establish a feature 

preserving speckle suppression process.  Since recent ones are relatively new to 

the discipline they cannot be easily evaluated or compared until they are 

incorporated into operational software platforms. 

A variety of speckle suppression algorithms have been developed over the 

past three decades with none of them clearly distinguishing themselves as the 

ideal filter.  In recognition of this fact a number of projects have focused on the 

development of metrics for comparing alternatives.  In 1996, Sheng and Xia 

published a set of five metrics that were developed for evaluating the value of 

seven different radar filters.  These were application-based tools for evaluation of 

suppression success.  It was determined that some filters were better for certain 

applications than others.  None perform well for all applications and there was 

clearly a trade-off between edge/feature detection and speckle suppression.  A 
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set of statistical tools were published in 1999 (Xie et al.) to provided filter users 

an informative, and quantitative approach to choosing a suitable algorithm for 

specific applications.  A demonstration of the metrics again determined that the 

most suitable filter depended on the application at hand.  With regard to the 

specific preservation of texture in SAR images, Dong et al. (2000) evaluated a 

number of speckle filters using a defined set of criteria.  These included 1) 

preservation of the mean, 2) reduction of the standard deviation, 3) preservation 

of edges, and 4) preservation of textural information.  Among filters tested, a 

median filter was found to distort texture information the most and appeared not 

suitable for use with SAR data and texture analysis.  The Lee and Frost filters 

performed fairly well. 

Given the number of speckle suppression algorithms that exist and their 

apparent application specific value it is clear that no one filter is appropriate for 

all situations.  Different evaluations have resulted in conflicting results given 

similar circumstances and processing models.  It appears that the most 

appropriate means of assessing the value of individual filters is through an 

application specific empirical evaluation.  The literature does support the 

contention that adaptive filters, such as the Frost or GM, are the most 

appropriate for land cover classification projects (Nyoungui et al., 2002).  This 

research project applies a representative selection of speckle suppression 
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algorithms at a range of different window sizes in an empirical assessment to 

determine their value for improving the utility of SAR data for image fusion and 

land cover analysis. 

 

2.6  ASSESSMENT OF TEXTURE IN RADAR IMAGERY 

Texture is one of the two critical attributes of imagery that are leveraged 

for feature recognition and extraction; the second is tone (Haralick et al., 1973).  

As with tone, analysis of texture can be applied at virtually any scale from 

photomicrographs to broad area satellite imagery.  The two are inextricably 

related and are always present in an image though one may dominate over the 

other for any given spatial extent.  When a small sample of an image has little 

variation in DN values the dominant property of that area is tone.  If a similar 

small area has a wider variation in DN values, the dominant property is texture.  

Pixel classifiers rely on tone to segment an image while contextual classifiers take 

texture into account.  When using a pixel classifier such as Maximum Likelihood, 

texture must be incorporated through independent processing of and inclusion 

as an additional image layer.  This is achieved by incorporating a texture 

measure dataset and essentially aids in turning a pixel classifier into a contextual 

one. 
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Two major categories of texture analysis exist (Haralick, 1979).  A structural 

approach to texture characterization aims to identify and capitalize on basic 

primitive patterns that may be discernable and repeated throughout a dataset.  

This process can be very complicated especially when applied to an image dataset 

(Wang and He, 1990) and is not practical for land cover classification purposes.  

The second major approach to texture analysis is the statistical method.  This 

attempts to capture and characterize the variation of gray tones across an image 

dataset. 

As a key component of any individual image band, texture provides one 

of the elements that make objects or specific surface features recognizable.  It is a 

valuable tool for image interpretation and specifically for land cover 

classification.  With the advent of digital image processing, texture is now 

quantifiable with a variety of different algorithms and has been applied to a 

number of different problems.  Texture has been assessed for lineament extraction 

and quantification of change in tropical forests using SPOT data by Riou and 

Seyler (1997), for the separation of orchards from surrounding forest (Gordon 

and Philipson, 1986), for cartographic feature extraction (Duggin et al., 1988), and 

it has proven valuable for including spatial context in standard land cover 

classification operations (Hsu, 1978; Lee and Philpot, 1991).  The incorporation of 

texture information in the classification of high spatial resolution datasets has also 
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proven quite promising (Dikshit and Roy, 1996).  Coburn and Roberts (2004) 

investigated the multiscale dimension of texture by applying texture measure 

filters using different kernel sizes (the statistical window over which texture may 

be assessed).  Small kernels assess local texture and larger kernels assess broader 

texture patterns.  Their research determined that multiscale texture analysis with 

MSI was more valuable than that collected at a single scale but no definitive 

combination was determined to be consistently superior. 

Texture has developed into a particularly useful tool for the digital analysis 

of SAR imagery.  The interaction of the microwaves with surface materials is 

dominated by reflection involving surface discontinuity in relation to the 

wavelength of the SAR band.  In essence, smooth or rough surfaces are more 

quantifiable in SAR imagery than in MSI due to the nature of the interaction of 

SAR energy with the surface imaged. 

This fact has been leveraged for a wide variety of applications.  Land cover 

and terrain classification are prominent examples particularly in regions where 

MSI is not easily acquired due to weather conditions (Miranda et al., 1996; 

Luckman et al., 1997; Dobson et al., 1997; Pierce et al., 1998; Chan et al., 2003; and 

Lu, 2005).  Texture analysis has also been applied for agriculture studies (Anys and 

He, 1995; and Treitz et al., 2000), geologic analysis (Stomberg and Farr, 1986), and 

flood delineation (Chenghu, 1998).   
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A variety of texture analysis algorithms exist and new variations are 

developed on an ongoing basis (Wang and He, 1990; Dobson et al. 1997; Pierce et 

al. 1998; Myint, 2003; and Xiao et al., 2003).  Given the response of microwave 

energy to physical characteristics of the landscape, texture measures may provide 

the best means of integrating the texture element into the more traditional MSI 

land cover classification processes, which largely rely on tone.  This project focuses 

on SAR texture and how to maximize its value while minimizing the impact of 

speckle. 

 

2.7  ANALYSIS USING ANGLE OF INCIDENCE 

The angle of incidence with which a SAR system images a given region of 

the earth has a significant impact on the return signal and the utility of the data 

collected.  For some applications a given incident angle may be absolutely 

useless while for others it may be ideal. Most airborne platforms provide SAR 

data at varying incident angles while most operational spaceborne systems offer 

a single one.  The Canadian RADARSAT platform offers a number of options in 

this regard allowing it to be used for more diverse applications.  Fundamentally, 

the option to vary the angle of incident at which an area is imaged provides an 

opportunity to maximize the value of any individual dataset. 
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The value of different incident angles has been evaluated for a variety of 

applications.  Typically, projects investigating vegetation dynamics such as land 

cover discrimination find smaller incident angles more appropriate (Cimino et 

al., 1986; Hussin and Hoffer, 1990), aiding in the determination of plant 

community structure, canopy closure, and surface material. The later is 

particularly relevant for delineating forested wetlands.  However, for specific 

studies such as the mapping of clearcuts in forested regions, larger incident 

angles prove more effective (Banner and Ahern, 1995).  Ford and Casey (1988) 

found that while forested wetlands could be determined solely on the basis of 

variations in incident angle from SIR-B SAR data, three inland forest types could 

not be and they determined that cross-polarization data were necessary for such 

discrimination.  Karjalainen et al. (2008) looked at polarimetric data at different 

incident angles for discriminating crop types in an agricultural system.  While 

their research was successful, they determined that a time series of data collected 

at different incident angles can be problematic when trying to precisely 

discriminate detailed features such as crop type. 

Larger incident angles are also most desirable for geologic applications 

(Kaup et al. 1982).  Discrimination of surface structure is more easily achieved at 

greater angles.  The presence of vegetation has an impact on the appropriate 

angle for geologic analysis however.  More vegetation will require a lower 
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incident angle to gain more penetration of vegetation to resolve more surface 

features.  Most spaceborne SAR systems do not collect data at angles that are 

considered most appropriate for geologic applications.  The specific application 

and region of study will determine what is most appropriate.  As a case in point, 

if one wants to identify and monitor oil lakes such as those created in Kuwait 

after the Iraqi defeat in the Persian Gulf War, it appears that an incident angle of 

approximately 37 degrees is most appropriate (Kwarteng et al., 1999).  Moderate 

incident angle images are deemed most appropriate for urban feature analysis as 

well (Xia, 1996).  Weydal (2002) investigated the use of data from different 

incident angles applied to urban areas and found that variations did exist but 

were not consistent across angles and therefore could not be definitively valuable 

or leveraged for specific applications. 

As one of the controllable variables that increases the data dimension of 

SAR imagery, and presumably its value, incident angle is an important 

parameter to assess for improved analysis.  Microwaves striking the surface at an 

angle approaching the vertical will result in greater vegetation penetration and 

increased interaction with and reflection from ground surface material. 

Microwaves striking the surface at a shallower angle will result in less 

penetration and more interaction with vegetative cover in the respective 

backscatter.  Therefore, the type and density of vegetation will impact the 
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returned signal at any angle and some incident angles will provide better 

discrimination between specific vegetative surfaces.  This phenomenon will be 

assessed in this research project.  It is conceivable that SAR imagery from more 

than one incident angle may contribute significantly to a single classification 

operation.  Combined with the potential for unique texture features developing 

due to changes in incident angle this could prove to be a particularly interesting 

aspect of this study. 

 

2.8  TIME SERIES ANALYSIS 

The advent of satellite-based remote sensing systems provides repeat 

coverage of most areas of the earth.  This allows for temporal analysis of surface 

dynamics and more specifically change over time.  Due to the collection 

parameters of most imaging systems, images are collected in a systematic process 

using a specified grid for image footprints.  This provides significant 

opportunities to assess the value of combining imagery collected at different time 

periods for improved land cover mapping and surface characterization. 

The analysis of time series images has proven to be very valuable.  This is 

particularly the case for the analysis of vegetation where a series of images 

collected over time can be acquired in accordance with key phenological periods 
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of vegetation growth (Schriever and Congalton, 1995).  Images may be timed to 

correspond with seasonal changes such as green up and senescence in deciduous 

vegetation or biomass changes as a result of dry season/wet season variations in 

subtropical and tropical plant communities.  Time series analysis has also been 

successfully applied to wetlands mapping (Lunetta and Balogh, 1999).  Two 

Landsat 5 scenes were acquired; one during leaf-on conditions the second during 

leaf-off, and successfully used to map wetlands at an 88% accuracy.  The leaf-on 

image was used to map land cover and hydric soils that were identified with the 

leaf-off image. 

For many temporal applications the chief concern is change in land cover 

(Hayes and Sader, 2001).  A variety of techniques exist for analyzing temporal 

dynamics.  Henebry and Rieck (1996) applied Principle Components Analysis 

(PCA) to 30 Advanced Very High Resolution Radiometer (AVHRR) Normalized 

Difference Vegetation Index (NDVI) 10-day composites.  The project was aimed at 

evaluating different PCA outputs for their utility in classification.  They found that 

Principal Components of less than six were valuable while higher components 

tended to degrade finer features.  Texture measures have also been investigated 

for temporal analysis with Landsat data (Arai, 1991).  In this case, texture 

measures were extracted for Landsat TM and Landsat Multi Spectral Scanner 

(MSS) data.  A variety of processes were run to evaluate the possibility of 
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classifying Landsat imagery using texture values across multiple time periods.  

The inclusion of temporal texture data proved to be very useful.  Munez-Villiers 

and Lopez-Blanco (2007) utilized Landsat and ETM+ data spanning 13 years to 

assess land cover conversion from forest to pasture and agriculture land with 

significant success.   

Some research projects have focused on determining precisely how many 

time periods are necessary to maximize discrimination between land cover or 

vegetation classes.  Price et al. (2002) used a three date Landsat 5 TM dataset to 

determine the optimal number of spectral bands from individual dates as well as 

in multi date combinations to discriminate grassland types in a prairie 

ecosystem. Their research determined that data from different time periods was 

very valuable but there is a point of diminishing return and even diminishing 

accuracy as the number of spectral bands expands beyond 10-12.  These results 

would indicate that 2-3 MSI datasets are sufficient to accurately characterize 

similar plant communities.  A similar approach was pursued using a 4 date TM 

dataset collected over a single growing season to determine the ideal number 

and spacing of imagery over an agricultural region of Argentina (Guerschman et 

al., 2003).  Two dates were determined to be required for successful 

discrimination and if well spaced temporally provided the maximum amount of 

necessary information. 
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Due to the fact that many SAR systems provide single banded imagery, 

repeat coverage has become a critical tool for any analysis utilizing SAR.  

Multitemporal SAR has been successfully used in a number of cases for 

agricultural studies.  The utility of SAR imagery collection tied to crop calendar 

has been specifically evaluated (Brisco and Ulaby, 1984).  Crop discrimination 

was successful performed at 83 percent accuracy, a 10 percent improvement over 

temporal SAR data not tied to the crop calendar.  Ban and Howarth (1999) used a 

progressive classification and masking approach to classify a number of crop 

types over the course of a growing season.  ERS-1 data covering the entire 

growing season (9 dates) were used in this case.  Dates that were suitable for 

classifying specific crops were used and the areas classified were then masked 

for further discrimination of other crop types from other periods.  An overall 

accuracy of 88.5 percent was achieved.  Blaes et al. (2005) looked at the 

contribution of a multi date SAR dataset to compliment a single MSI dataset to 

determine the optimal number of SAR images required to monitor agriculture 

over a growing season. They determined that 3-5 SAR images were appropriate. 

Forestry applications are another area that has received a great amount of 

SAR multitemporal analysis because many forests of interest are in areas that 

pose problems for MSI systems as a result of the predominance of cloud cover.  

Drieman et al. (1989) demonstrate this with multiple dates of C-band SAR data.  
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Individual scenes did not allow the discrimination of individual forest 

communities but combining the different dates into false color composites was 

successful.  More complex combinations have used multifrequency, 

multipolarimetric, and multitemporal airborne SAR to demonstrate their utility 

in classifying hardwood species (Ranson and Sun, 1994).  Multiple bands were 

reduced using PCA and the data were classified using the MLC.  Hardwood and 

softwood stands could be differentiated, as could a number of other land cover 

classes, including clearings and regenerating forest.  A post-classification 5x5 

majority filter was used to achieve a hardwood classification accuracy of 95 

percent. 

As with MSI data from different dates, multitemporal SAR has proven 

particularly useful in wetlands classification.  Multi date RADARSAT imagery 

has been used for monitoring wetlands changes in northern Australia (Milne et 

al., 2000).  Images spaced throughout a year were registered to each other, 

smoothed using a median filter and differenced to create change images.  These 

were used to identify inundated areas and to differentiate saturated soils from 

vegetation.  A decision-based classifier applied to a multi date RADARSAT 

dataset achieved the highest accuracy when five dates of imagery were utilized 

in Parmuchi et al. (2002).  Wang et al. (1998) investigated a series of images 

collected over nine months and determines that 4-5 images from different time 
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periods were required for successful classification, more were not necessary 

while less were not adequate.  Compared to a single date of Landsat TM data, the 

SAR series provided higher classification results.  A similar time series was used 

to analyze inundation patterns using RADARSAT scenes (Townsend, 2001; 2002).  

Seasonal flooding in forested wetlands of North Carolina was successfully 

mapped.  Inundated areas could be discriminated despite leaf-on conditions 

though classification accuracy was somewhat lower (89.1 percent vs. 98 percent) 

than for leaf-off conditions.  Overall accuracy was 93 percent.  A Landsat derived 

mask was used to separate forest from non-forest land cover, and only forested 

regions were used in this analysis.   

Land cover analysis has also seen a successful use of multi date SAR 

imagery.  In one case combined ERS-1 and JERS-1 data were used to classify land 

cover (Kellndorfer et al., 1998).  An accuracy of 80 percent was achieved though 

the most significant value was deemed to come from the two SAR frequencies 

used by these two sensors.  Solaiman et al. (1999) have developed a fuzzy-based 

classifier to derive land cover from a multi-SAR dataset.  The fuzzy concept 

attempts to capture not only pixel information but contextual information as 

well.  This results in a classification that considers neighborhood values and 

incorporates the spatial domain when performing pixel categorization.  Two 

dates were used and classification accuracy for each class was over 90 percent.  
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Verhoeye and De Wulf (1999) demonstrate a process for the multitemporal 

classification of land cover using four ERS dates.  Extensive processing 

incorporating filtering, PCA transforms, pyramid generation for segmentation, 

texture filtering, and post-classification majority filtering resulted in a 

classification accuracy of 76 percent.  In this project, texture was not found to be 

useful (it was performed on a PCA band) and post-classification majority 

filtering did not improve classification accuracy.  Given the results of this project 

it is conceivable that there is a point at which additional processing and filtering 

produces negative results.  Running successive algorithms for their own sake 

progressively remove the dataset from its representation of reality. 

It is apparent that multi-date imagery provides another valuable 

dimension to analyzing land cover.  The simple fact of phenological changes over 

a growing season and the utility of imagery for assessing vegetation means the 

two go hand-in-hand.  One area of investigation that has not yet been assessed 

with regard to utilizing imagery from different time periods and particularly in 

conjunction with imagery from different systems is whether seasonality can be 

systematically leveraged for improved land cover assessment.  Zhu and Tateishi 

(2006) looked at SAR and MSI multi date datasets to compare their value 

individually and in combination and found that temporal datasets are equally 

valuable but the time interval between images was also important to consider 
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and integrate into the analytical process.  Incorporating a time span factor can 

allow for more change over longer spans between images and less change over 

shorter spans.  This is particularly important for plant communities that exhibit 

seasonal variations. 

This research investigates whether imagery collected during the dry 

season and the wet season in a subtropical landscape may be combined to 

improve land cover classification. 

  

2.9  MSI AND SAR IMAGE FUSION  

Datasets from different satellite and airborne-based systems have been 

integrated in a number of fashions for a variety of reasons.  Probably the most 

common reason is for the purpose of integrating high spatial resolution 

panchromatic data with lower spatial resolution MSI data resulting in a higher 

spatial resolution color composite (also known as a pan-sharpened dataset).  

Fusing data from different sensor systems aims to leverage the unique value of 

each system to gain more than either could provide alone.  A general definition 

of image fusion is given as ‘Image fusion is the combination of two or more 

different images to form a new image by using a certain algorithm (van 
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Genderen and Pohl, 1994).  Not all image fusion techniques involve complex 

algorithms. 

Since SAR systems first began collecting data in the 1960’s there has been 

interest in their value as a complementary data source to MSI systems.  Prior to 

digital imaging systems and the advent of cheaper computer processing power 

most of this work was performed using visual interpretation techniques or the 

creation of color composites that integrated SAR data with optical data as a 

printed color image.  MSI systems depend on the reflectivity of energy from the 

sun.  By collecting information in different wavelengths one can reconstruct an 

image of the ground and through processing characterize ground cover.  SAR 

systems provide information on surface roughness, geometry, and dielectric 

properties, also allowing some characterization of surface material. Both types of 

data are known to be independently valuable for land surface characterization.  

A respectable amount of research has gone into specifically comparing one data 

source to the other to assess their respective value (Aschbacher and 

Lichtenegger, 1990; Lawrence et al., 1998; Haack and Bechdol, 1999; Bin, 2003; 

Miles et al., 2003; Chust et al., 2004; UÇa et al., 2006; Shimabukuro et al., 2007). 

These comparisons are typically a precursor to assessing the value of utilizing 

these data in combination.  Combining data from different imaging sources 
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proves to provide an expanded means for accurately characterizing the surface of 

interest. 

Pohl and van Genderen (1998) provide a comprehensive review of image 

fusion literature and techniques.  They define the common objectives of image 

fusion as: 

− Image sharpening (Chavez et al., 1991) 

− Improve geometric corrections (Strobl et al., 1990) 

− Provide stereo-viewing capabilities for stereophotogrammetry (Bloom 

et al., 1988) 

− Enhance certain features not visible in either of the single data alone 

(Leckie, 1990) 

− Compliment data sets for improved classification (Schistad-Solberg et 

al., 1994) 

− Detect changes using multitemporal data (Duguay et al., 1987 

− Substitute missing information (e.g., clouds-MSI, shadows-SAR) in one 

image with signals from another sensor image (Aschbacher and 

Lichtenegger, 1990) 
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− Replace defective data (Suits et al., 1988). 

Image fusion is a tool to combine multisource imagery using advanced 

image processing techniques.  It aims at the integration of disparate and 

complementary data to enhance the information apparent in the images as well 

as to increase the reliability of the interpretation.  This leads to more accurate 

data (Keys et al., 1990) and increased utility (Rogers and Wood, 1990).  Rogers 

and Wood (1990) also determined that fused data provides for robust operational 

performance, i.e., increased confidence, reduced ambiguity, improved reliability, 

and improved classification.   

Fusion techniques may be applied to a variety of imagery types such as 

multi-scale MSI data.  This process combines datasets of different spatial 

resolution to improve the ability to discern features or cover-types.  The research 

performed in this project is primarily concerned with the fusion of MSI and SAR 

imagery.  The classification accuracy of MSI is improved when more than one 

MSI dataset is used.  This concept is well known from the use of multitemporal 

datasets for vegetation mapping or agricultural monitoring.  Images from SAR 

sensors contribute in a different fashion.  Working with MSI systems, interpreters 

typically develop a spectral signature for a feature of interest such as a particular 

agricultural crop.  Unfortunately different crops can have very similar spectral 

signatures resulting in an inability to differentiate between them using MSI.  SAR 
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data with their ability to provide an indication of the physical characteristics of a 

surface provides an added dimension for distinguishing between two cover 

types.  SAR and MSI data provide information from different portions of the 

EMS and have been proven to be valuable when combined for analysis especially 

with regard to land cover classification (Haack et al., 1998). 

A critical step in the fusion of remotely sensed imagery is the 

georectification process (Pohl and van Genderen, 1998).  Most fusion operations 

involve processing of information between bands collected from different 

imaging platforms.  Virtually all such procedures involve data of different spatial 

resolutions.  Matching datasets to allow integration and to maintain the highest 

scientific rigor is critical to follow-on steps in the process.  Ideally, registration 

should be pixel to pixel (for systems of equal spatial resolution) which is 

essentially impossible.  Image to image registration is typically possible within a 

one pixel root-mean square error (RMS).  Higher RMS’s will result in fused 

datasets that have a nominal spatial resolution that is lower quality than either of 

the two input datasets. 

A common process used for integrating SAR and MSI utilizes an Intensity-

Hue-Saturation (IHS) transformation.  This is typically performed with the goal of 

improving visual interpretation of the data.  An IHS transformation takes a three-

banded image from a Red-Green-Blue (RGB) color space and transforms it to IHS.  
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The goal of this process is to replace the intensity channel with a different data 

source such as a band of SAR data or SAR texture.  Welch and Ehlers (1988) used 

an IHS transformation to combine Landsat TM and SIR-B data for feature 

extraction.  The goal was to investigate this technique as a tool for visual extraction 

of features to update cartographic databases.  The IHS transformed SAR and MSI 

dataset increased feature recognition by up to 25 percent.  RADARSAT fine-beam 

data were also merged with Landsat TM using an IHS transform (Tanaka et al., 

1999).  The higher spatial resolution SAR data were well suited to enhancing 

cartographic features in Landsat TM to improve visual interpretation and allow 

for their extraction.  A further evaluation regarded the use of high spatial 

resolution SAR for fine feature change detection also had promising results.  

Another example of the IHS transformation being used to fuse data sources for 

effective visible interpretation involved a number of different geophysical datasets 

(Rheault et al., 1991).  This project evaluated the possibility and value of fusing 

image data with other data for geologic analysis.  The fusion of SAR and MSI data 

was found to be very useful for the enhancement of structural geology and 

subsequent interpretation.  The IHS process is common in geologic operations 

since it provides an output image that can be viewed in a standard RGB color 

space (Harris et al., 1990). 

The same process has been used for land cover evaluation (Raghavawamy 
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et al., 1996).  ERS SAR data were combined with IRS multispectral data to evaluate 

their usefulness for land cover interpretation.  The SAR datasets were processed 

with a 5x5 median filter to reduce speckle.  The combined datasets were processed 

in a number of ways including IHS transformation and PCA to create composite 

images for visual interpretation.  Land cover was visually interpreted and 

compared to validation datasets for assessment purposes.  The combined and 

processed images were deemed to be more valuable due to the ability to discern 

some features that were not directly observable in the individual datasets.  

Amarsaikhan and Douglas (2004) also utilized a PCA transformation and IHS 

fusion process to combine SPOT multispectral data and SAR.  The combination 

proved to provide the highest classification accuracy in their study especially 

when an expert system classifier was applied to the data. 

Dejhan et al. (2000) applied the process for flood delineation.  In this case, 

two dates of SAR data collected by the JERS-1 platform with a third date of 

multispectral data also from the JERS-1 platform (OPS) were combined.  The SAR 

data consisted of a pre-flood and during-flood image pair for a region of Thailand.  

A texture algorithm was run on the SAR scenes with the outputs differenced.  The 

resulting dataset was then integrated with the OPS data through an IHS 

transformation where the differenced SAR texture dataset was substituted for 

intensity.  This was then transformed back to an RGB color space and run through 
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a Neural Network classifier to determine land cover and inundation of land cover 

types during the flood event.  This process resulted in classification accuracies 

ranging from 86-90 percent depending on the cover type.  Miles et al. (2003) 

determined that wetlands could not be successfully discriminated in a boreal 

forest ecosystem without the inclusion of SAR data in their processing.  They were 

also able to more effectively delineate the degradation of forest resources due to 

air pollution for the study area with the fused data.  The value of a combined 

approach is further validated for wetlands mapping by Grenier et al. (2007) where 

SAR and Landsat 7 Enhanced Thematic Mapper + (ETM+) data were combined 

using a hierarchical multistage object-based classifier to delineate unique wetland 

classes.  

Digital classification is a common goal of data fusion.  The intent of such an 

operation is to gain more parameters for segmenting an image into classes of 

interest.  An early example of efforts to integrate SAR and MSI data (Ulaby et al., 

1982) used airborne SAR and Landsat MSS data in a classification process for crop 

identification.  The goal was to evaluate SAR data as an additional band to 

determine if it provided useful information.  Using a quadratic Bayes classifier 

each dataset was evaluated individually and then in combination.  Classification 

accuracy was raised from 75 percent for Landsat MSS alone to 89.4 percent for the 

MSS dataset combined with two SAR dates. 
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Image fusion has also been applied for crop discrimination.  Brisco et al. 

(1989) investigated the utility of integrating a single date of Landsat TM data 

with two dates of SIR-C HH data for the identification of agricultural crops.  A 

subset of TM data, bands 3, 4, and 5, and two SAR dates were layer stacked into a 

single dataset against which a MLC was run.  The combined dataset provided a 

classification accuracy of 77 percent, 30 percent points better than Landsat alone.  

Given the interest in agricultural crop identification, the authors concluded that 

an additional date of SAR imagery collected later in the growing season would 

have contributed significantly to discrimination between crop types that were 

otherwise confused.   

This research was later expanded on (Brisco and Brown, 1995) by 

evaluating multi date, multispectral (TM), and SAR data again for crop 

classification.  The authors determined that TM data were superior to SAR for 

direct classification but multi date SAR did bring classification accuracies up 

from 30 percent to 74 percent.  Multi date TM data using Landsat channels 2-5 

resulted in classification accuracies at 90 percent and the integration of SAR and 

TM resulted in a further improvement to 92 percent.  Another useful aspect of 

this project was the investigation of SAR data as a replacement for cloud 

obscured TM data for the classification process.  The synergism that exists 

between these sensors allows this replacement for small regions with a minimal 
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impact on classification accuracies.  One notable conclusion of this research was 

that one date of multispectral data combined with multiple SAR dates provides 

suitable classification accuracies.   

The Shuttle Imaging Radar (SIR-A/B/C) missions have provided a number 

of opportunities for additional studies.  SIR-B data were combined effectively with 

MSI data from the French SPOT system to perform a classification of tropical 

vegetation (Nezry et al., 1993).  This research gave close consideration to the 

nature of speckle and its impact on the usefulness of SAR imagery.  A GM speckle 

suppression filter was used to reduce the effect of speckle in the SAR data.  The 

data were then classified using a supervised classification method resulting in 

higher classification accuracies than the individual datasets alone.  A further 

analysis was performed using wet season SAR data and SPOT data collected in the 

dry season (22 months apart) to determine if the two sources could be used for 

land cover change detection, also to positive effect.   

Lozano-Garcia and Hoffer (1993) evaluated TM in combination with SIR-B 

SAR data at varying incident angles for land cover classification using a MLC and 

a contextual variation of the MLC.  Three sensor combinations were evaluated, 

Landsat TM, SIR-B, and the two combined.  All three combinations were deemed 

adequate for classification of general land cover type.  However, the combined 

sensor dataset proved much better at classifying detailed cover types.  The 
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combination of TM bands 2, 4, and 5 with SAR data at a 28 degree incident angle 

provided classification accuracies greater than 90 percent.   

The integration of SIR-B data with Landsat TM data has also proved 

effective in situations where neither system performed adequately alone (Haack 

and Slonecker, 1994).  The primary goal was to identify the location of villages in 

Sudan along with surrounding land cover.  Due to the nature of materials used in 

building construction, the location of villages was difficult to separate from 

surrounding natural materials using multispectral data alone.  SIR-B imagery was 

integrated as an additional band of data and signatures were evaluated for 

separability.  Due to clearly defined histograms in specific TM bands for 

vegetation and between multispectral and SAR data for urban land cover, a 

Parallelepiped classifier was used resulting in an overall classification accuracy of 

94.1 percent.  When only the TM data were run through a MLC, the results were 

only 69 percent. 

Merged data have also been investigated for forest type discrimination 

(Leckie, 1990).  Nine bands of airborne collected multispectral data (MS) and two 

radar bands (X and C each with four polarizations) were assessed individually 

and in every combination to determine their value for forest stand identification 

and attribution.  SAR data were included as panchromatic bands and the 

combined datasets were processed through a MLC.  Three MS bands provided 
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the most value, near-infrared, green, and midwave IR, particularly for 

establishing feature boundaries.  Combining the SAR and MS data provided the 

highest classification accuracy of 70 percent.  One notable finding regarding the 

SAR datasets was that frequency (or band) provided significantly more value 

than variables introduced through cross polarization.   

A number of projects have utilized innovative classification processes with 

multisensor data.  Schistad-Solberg et al. (1994) investigated a new method of 

statistical classification utilizing a Bayesian based decision rule to integrate TM 

data with multi date ERS SAR data.  One of the benefits of this method was the 

potential for inclusion of known changes in the region of coverage to aid in 

classification of imagery from multiple time periods.  This model successfully 

demonstrated the utility of fused imagery despite a time difference by providing 

improved accuracy rates compared to single-source classifiers. 

In another project a hybrid supervised/unsupervised classification process 

was used to combine ERS-1 and JERS-1 SAR data with SPOT multispectral data 

(Xie et al., 1998).  Each dataset was processed separately and then in different 

combinations to determine which data were most complementary.  The two SAR 

bands combined provided higher classification accuracy than the MSI data, 90.2 

percent vs. 84.8 percent for level 1 classification.  All data combined resulted in 

94.8 percent accuracy.  When level-II classification was sought, the combined SAR 
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with IR band from SPOT provided the highest accuracy at 83 percent, 7 percent 

higher than for SAR alone and 17 percent higher than for SPOT.   

When it comes to more complex processing models a number of projects 

have investigated numerous options for fusion of datasets.  Some of these have 

used more traditional approaches while others have investigated new fusion or 

classification techniques to find those that are more appropriate for given research 

questions or applications.  An early example of sensor fusion investigated the 

complimentarity of datasets to determine their value in classification of urban 

environs (Haack, 1984).  Airborne SAR and airborne MSI data were integrated into 

a common dataset and evaluated in different combinations for their utility in land 

cover classification of urban or near-urban environments.  Transformed 

divergence calculations were evaluated for inter-class variability and to determine 

the best channels for classification.  The study concluded that one band from each 

major portion of the EMS, including microwave, would result in the best 

classification results. 

Due to the ever-increasing interest in monitoring vegetation dynamics with 

satellite imagery there have been many innovative and more advanced 

approaches to system fusion and evaluation.  Vegetation parameters such as 

biomass, leaf area index (LAI), and percent ground cover have been extracted from 

an integrating TM and SIR-B SAR dataset (Paris and Kwong, 1988).  This project 
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concluded that the two datasets contribute valuable and unique information.  TM 

data responds to green biomass while SAR data responds to woody components.  

Principal Component Analysis (PCA) and Canonical Correlation Analysis (CCA) 

have been performed on a similar dataset by Lee and Hoffer (1990) to determine if 

correlations can be drawn between the datasets and forest stand parameters such 

as biomass.  Little correlation was found with individual PCA bands but a high 

correlation was found between the first band of CCA and forest stand biomass.   

Fusion of multiple imagery sources, ERS-1, airborne SAR, and Landsat TM, 

has been applied to agricultural areas to assess soil conservation practices (Smith 

et al., 1995).  A decision tree classifier utilized NDVI derived from TM and 

brightness values from SAR to assess presence of crops and bare fields or crop 

stubble to quantify post-cropping conservation in an agricultural area.  The value 

of SAR for providing texture information was critical to the assessment of crop 

stubble.  Finally, Zhu and Tateishi (2000) have developed two new fusion 

techniques to effectively integrate sensor data from multiple sources and multiple 

dates for successful agricultural monitoring and analysis.  These models take into 

account the temporal dependence of images and the valuable traits of each data 

source.  Classification accuracies were improved over a MLC especially when 

multiple sensors are integrated. 

One of the more extensive fusion projects to date has looked at many of the 
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variables associated with integrating SAR data with MSI.  L-Band and C-Band 

data from the third Shuttle Imaging Radar program (SIR-C) and Landsat TM data 

were evaluated for discrimination of land cover for a study area in Tanzania 

(Haack et al., 1998).  A number of statistical operations were performed on the 

SAR data to evaluate their impact on fusion and land cover classification.  Speckle 

suppression was performed using a 7x7 low-pass filter; a number of texture 

measures were evaluated at window sizes ranging from 3x3 to 17x17.  A post-

texture, pre-classification low-pass filter was evaluated to assess the value of 

smoothing texture values.  Post-classification filtering was also performed using a 

5x5 majority filter to evaluate the value of smoothing the classification results for 

the generation of thematic datasets.  

Each of these processes resulted in incremental improvements in 

classification results using the MLC.  A Variance texture measure at a 13x13 

window size was deemed the most valuable for processing the SAR data.  The 

low-pass filter for speckle suppression resulted in an increased classification 

accuracy of 4-6 percent.  The post-texture low-pass filter resulted in a 4 percent 

improvement in classification with the Variance texture measure.  Post-

classification majority filtering resulted in improvements of 1-4 percent.  Overall 

classification accuracies ranged from 79 percent for Landsat data alone to 85 

percent for combined datasets.  For discriminating between natural vegetation and 
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scattered agriculture the highest classification accuracy of 94 percent came from a 

combination of the SAR datasets with their texture processed data layers. 

 A further site was then investigated (Haack and Bechdol, 1999) with 

additional SAR data sources and similar processing.  The dataset in this 

investigation added JERS-1 SAR data and Radarsat SAR to Landsat TM 

multispectral and SIR-C SAR, multipolarization data.  In this instance speckle 

processing was not performed but was addressed to some degree with low-pass 

pre-classification filtering and post-classification majority filtering.  Results at this 

site were again promising as it was determined that pre- and post-classification 

filtering of SAR data resulted in improved classification accuracies.  Pre-

classification filtering improved land cover classification with SAR data by 

approximately 15 percent, from 62 to 77 percent accuracy.   

Another important result of the multisensor classification process was that 

a combination of two SAR data layers (SIR-C L-band and JERS-1, also an L-Band 

sensor) with their derived texture layers resulted in a classification of vegetation 

with 89.4 percent accuracy.  This result was comparable to that of four Landsat TM 

bands, which resulted in 93 percent accuracy.  This indicates that multisensor SAR 

datasets may be very valuable for land cover and vegetation characterization 

projects, and corroborates similar research (Xie et al., 1998), especially in areas with 

weather conditions not conducive to multispectral investigations.   



 

77 

This research was further expanded to investigate the effect of speckle 

suppression followed by texture extraction (Haack et al., 2000).  A 5x5 median 

filter was applied to reduce speckle yet maintain local feature structure.  The 

output was then processed with a Variance texture measure at a 21x21 window 

size.  The combination of such differing window sizes reduced speckle locally 

while providing for the assessment of texture regionally.  The resulting 

classification accuracy was 84 percent compared to 73 percent for Landsat TM 

alone.  A similar multi-window filtering approach was used for land cover 

mapping around St. Louis, Missouri with improved results when SAR data were 

combined with MSI (Huang et al., 2007).  The greatest value was achieved when 

multiple SAR statistical derivatives processed at different window sizes were 

combined. 

 

2.10  DISCUSSION 

 The natures of MSI and SAR imagery lend themselves to complementary 

integration.  The primary questions that remain are what are the best 

characteristics of each to leverage and what processing options provide the most 

accurate results when performing land cover classification.  MSI has a long and 

well-documented history in this regard.  However, there is a clear threshold in 

the area of 75-85 percent classification accuracy that is very difficult to exceed in 
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a systematic fashion.  Almost every published fusion of SAR and MSI has 

resulted in improved accuracy levels though a number of different techniques 

have been used.  Some of the most promising have involved the use of texture 

measures derived from SAR imagery.  It is important to investigate how some 

SAR collection parameters and additional processing techniques may be 

leveraged to provide a further improvement of classification accuracy. 

 Parameters such as incident angle and the impact they have on the SAR 

data collected are fairly intuitive.  Empirical assessments of land covers from 

different biomes could provide an index of appropriate assessment angles given 

specific goals and surface conditions.  This project assesses two sets of SAR 

imagery from different seasons consisting of three different incident angles from 

two look directions.  These should provide a fair appraisal of which incident 

angle provides the most value for dry season and wet season assessments of 

vegetation in a subtropical climate. 

 Processing options are clearly important considerations for making SAR 

imagery interpretable.  Texture is a valuable dimension of data but the nature of 

SAR imagery lends an element of texture to a scene that is driven by the nature 

of the microwave sensing system rather than the nature of the surface imaged.  

Speckle suppression aims to alleviate this situation.  However, the goal of 

speckle suppression is to minimize arbitrary texture while preserving 
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meaningful texture resulting from surface conditions.  By empirically assessing 

different texture and speckle algorithms and window sizes, this project will 

provide a filter combination that provides the greatest value as measured by 

classification accuracy. 

 An aspect of this research that is truly unique is the intent to combine 

imagery from specific seasons.  The general wisdom in the community, unless 

specific multi-temporal issues are being assessed, is that when image datasets 

from different systems are being fused one should endeavor to ensure that the 

datasets are collected as close together in time as possible.  This will minimize 

change on the ground that could affect analysis results.  Given the nature of SAR 

and MSI it is conceivable that co-temporal datasets do not provide the ideal 

combination of data for analysis.  This project will assess datasets specifically 

collected in a dry and wet season to determine if one or the other, or a 

combination of data from both, provide an ideal dataset for increased land cover 

classification accuracy.  The details of these datasets as well as the scientific 

methodology applied in the research are described in the next chapter (Chapter 

3). 
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3.0  METHODOLOGY 
 
 
 
 
3.1  RESEARCH OBJECTIVES 

This research investigates different processing alternatives and SAR image 

parameters to assess the value of SAR independent of MSI and integrated with 

MSI for land cover characterization over a subtropical landscape.  An empirical 

investigation of speckle suppression and texture measure algorithms is used in 

an effort to determine the most appropriate combination to apply when 

integrating MSI and SAR imagery.  Furthermore, this research investigates SAR 

image collection parameters such as incident angle to determine if appreciable 

gains in classification accuracy can be achieved with specific tasking settings.  

Finally, the impact of seasonality on MSI and SAR integration has been assessed 

by fusing wet and dry season datasets in different combinations to determine if 

cross-season integration improves classification accuracy.  The study site, 

dataset, and methodology are described in the following section.   
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3.2  STUDY SITE 

Andros Island (Figure 3.1) is the largest island in the Bahamas 

Archipelago.  It is located less than 150 km southeast of Miami, Florida and 50 

km west of Nassau, Bahamas at approximately 80° west and 24.5° north.  It is 

bounded to the east by the third longest barrier reef in the world and numerous 

patch reefs.  A transect from the ocean to terrestrial landscapes includes seagrass 

beds, mangroves, mudflats, tidal creeks, intertidal areas, and rocky, silty, and 

sandy coastlines.  Freshwater habitats are abundant, and range from creeks and 

Figure 3.1:  Andros Island, The Bahamas 



 

82 

tidal rivers to ponds and the famous blueholes, or flooded sinkholes, which are 

similar to cenotes of Central America. Terrestrial habitats include endemic pine 

forests, several types of hardwood coppices, wetland savannas, and swashes 

(Josse et al., 2003).  Most of these habitats are extremely diverse, readily 

accessible, and minimally disturbed. 

There are very few human inhabitants on Andros and most of those are 

concentrated in small settlements along the east coast.  Despite the small 

population size, much of the Island is easily accessible due to logging performed 

in the 1960's when stands of the endemic pine (Pinus caribaea var. bahamensis) 

were harvested.  This process left behind a series of interconnecting roads 

throughout much of the island. 

Andros Island includes over 60,000 hectares of undeveloped, largely 

unoccupied land.  Almost all of this land is Crown Land, or government 

property.  Aside from a few current, and a few failed, agricultural efforts, most of 

the Island remains wild.  The government recently promoted the Island as 

having one of the largest tracts of still unexplored land in the Western 

Hemisphere.  It is close to the United States, easily accessible, has a stable, 

democratic government and well-developed and reliable infrastructure, 

including roads, water, electric, and telephone services.   



 

83 

North Andros Island has been selected as the study site for this project 

due to its diversity of landscapes, easy accessibility, and limited ongoing human 

disturbance.  The classic seasonality of precipitation makes it an ideal site for 

investigating the impacts of wet/dry season variations in satellite data with 

intact natural landscapes.  Five land cover types have been selected for this study 

that are representative of the dominant terrestrial land covers found on Andros 

Island and have structural differences that make them ideal for investigation 

with SAR imagery. 

 

 3.2.1  Pineland 

Extensive areas of Andros Island are covered with pine forests.  The 

native Carribean pine (Pinus caribaea var. bahamensis) dominates this community, 

but a variety of understory plants define the characteristics of any particular 

stand including bracken fern (Pteridium aquilinum), poisonwood (Metopium 

toxiferum), thatch palm (Thrinax morrisii), orchids (Orchidacaea spp.), and a variety 

of other species (Ford, 1997).  The pinelands of Andros Island were harvested for 

lumber and pulpwood from the mid-1960’s to the early 1970’s.  The current 

stands consist of seed plants that were left standing and secondary growth.  As a 

result the pine forests are of approximately similar age, though there are 

intermittent stands that were left unharvested at the time and include trees of 
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greater age.  The pinelands appear to be maintained by a fire regime that has a 

considerable impact on the understory (Bergh et al., 2003).  The understory 

community consists of a variety of ferns and herbaceous plants in the early 

stages of fire recovery, and a mixture of woody shrubs in the later stages.  The 

thatch palm (Thrinax morrisii), a palmetto, is common in many stands.  Surface 

material is typified by very thin yet rich soil with exposed rough limestone 

common in many areas.   

 

 

Figure 3.2:  Pinelands Cover Type 



 

85 

3.2.2  Coppice 

Also known as the Blackland communities, coppices include a number of 

broadleaf evergreen trees in pocket communities distributed throughout the 

pinelands (Bergh et al., 2003).  The coppice cover type can be divided into two 

categories, high coppice and low coppice reflecting the relative topography on 

which they are found.  These communities are in a recovering state following the 

removal of valuable tree species during the prior era of logging activities.  

Despite this they constitute the highest plant biodiversity communities on the 

Figure 3.3:  Coppice Cover Type 
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island (Correll and Correll, 1982).  Broadleaf trees create a near closed canopy 

that provides a humid, shaded environment for a variety of herbaceous plants 

including a number of orchids, bromeliads, and ferns.  The coppice communities 

have a more developed and deeper soil structure than the pineland though in 

many instances they develop over soil pockets in the limestone strata (Ford, 

1997).  

 

3.2.4  Rockland  

The Rockland scrub community develops under some of the harshest 

conditions found on Andros Island.  These areas are typically very dry and 

Figure 3.4:  Rockland Cover Type 
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exposed to the sun with limited soil and surface material consisting of exposed 

limestone.  The availability of water is driven by the seasonality of Andros 

Island’s climate.  Most plants take hold in crevices and small pockets where soil 

may have accumulated and exhibit classic adaptation to extreme and arid 

environments.  The plant community typically does not exceed two meters in 

height and includes a wide range of often dwarfed species common in the 

pineland and coppice communities (Ford, 1997). 

 

3.2.5  Saw Grass Marsh 

Andros Island has extensive freshwater marsh communities especially 

across its western regions though smaller examples are found around freshwater 

Figure 3.5:  Saw grass Cover Type 
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basins and blue holes across the island.  These communities consist of a variety 

of freshwater plants dominated by Saw grass (Cladium jamaicensis) edged with 

Cattail (Typha domingensis) as well as sporadic Silvertop Palm (Coccothrinax 

argentata) and Pond Apple (Annona glabra) along the edges of deeper freshwater 

ponds.  Saw grass marsh regions will often have terrestrial islands in their midst 

consisting of Pineland communities (Ford, 1997). 

 

 

3.2.6  Mangrove  

Mangrove communities are common in protected coves along the coast of 

Andros Island as well as across extended expanses of the western lowlands 

Figure 3.6:  Mangrove Cover Type 
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region of the island.  There are four common mangrove species, each growing 

best in slightly different base material, elevation, and salinity conditions from the 

most prevalent Red Mangrove (Rhizophora mangle) along with less common Black 

Mangrove (Avicennia germinans) in shallow marine conditions, Buttonwood or 

silver mangrove (Conocarpus erecta) along the waters edge, to terrestrial White 

Mangrove (Laguncularia racemosa) (Sealey, 2003).   

 

3.2.7  Differentiation of Cover Types 

While all of these communities can be found in relative close proximity on 

Andros Island, the structural differences among them make them ideal for 

investigation using remote sensing techniques, especially those incorporating 

texture.  The Pineland communities have a well-developed structure with the 

native pine creating an upper canopy, a clear and open midstory, and a low 

(typically herbaceous or one to two meter high shrub) understory.  Coppices 

consist of a dense community with no clear canopy structure.  The Rockland 

scrub has limited biomass and a very rough surface material that is expected to 

result in a significant texture response in the SAR imagery though tempered by 

standing water in the wet season.  The Mangroves are relatively dense in 

biomass though of low to medium height and occupy a typically tidal inundated  
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surface condition.  The smoothness and consistency of the Saw grass marshes are 

also expected to be a distinguishing characteristic in the SAR imagery. 

 

3.3  DATASETS: 

Three basic categories of data were assembled and used in this project.  

These consist of spaceborne remotely sensed data, ground truth information based 

upon field visits, and existing cartographic products and reports. 

 

3.3.1  Remotely Sensed Data  

One of the common difficulties of remote sensing research is the acquisition 

of data at appropriate temporal windows.   This is further complicated when data 

from two different platforms are to be integrated.  One of the stated goals of this 

project is to investigate the utility of integrating data from different seasons to 

actually improve land cover classification accuracy.   

As a result, two multisensor datasets have been acquired for the study 

region, one during wet season conditions and a second during dry season 

conditions.  The primary datasets consist of MSI from the U.S. Landsat 5 Thematic 
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Mapper (TM) sensor, and SAR imagery from the Canadian RADARSAT-1 

platform.  

 

3.3.2  Multispectral (MSI) Imagery 

The Landsat 5 TM sensor is a multispectral scanner that collects imagery in 

visible and infrared wavelengths.  Seven channels or bands are collected as 

follows: 

1. 0.45-0.52 µm (visible blue) 

2. 0.52-0.60 µm (visible green) 

3. 0.63-0.69 µm (visible red) 

4. 0.76-0.90 µm (near IR) 

5. 1.55-1.75 µm (SWIR) 

6. 10.4-12.5 µm (thermal IR) 

7. 2.08-2.35 µm (SWIR) 

(Morain and Budge, 1997) 

 

Bands 1-5 and 7, the channels used in this study, have a nominal spatial 

resolution of 28.5 meters and a single image swath covers 185 km.  The thermal 

band (band 6) was not utilized due to its coarser spatial resolution 

(approximately 120 meters).  TM imagery (Path 13, Row 43) was collected on the 

27th of Nov 1999 (wet season) and on March 3rd 2000 (dry season).  Both dates of 



 

92 

Landsat imagery exhibit minimal cloud cover and cloud shadow, affecting less 

than 5 percent of the imaged area (see Fig. 3.7).  Calibration and validation sites 

were selected to avoid these clouded areas.  

 

3.3.3  Synthetic Aperture Radar (SAR) Imagery 

 The Canadian RADARSAT system is a single band SAR sensor operating 

at a frequency of 5.3 GHz (C-band), with a wavelength of 5.6 cm and HH 

Figure  3.7:  Landsat Thematic Mapper Imagery Bands 7,4,2 

March 2, 2000 
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polarization.  A wide variety of sensor modes are available providing a number 

of different products based on changing incident angle and spatial resolution.   

This sensor has proven useful for vegetation analysis.  However, its active 

wavelength has resulted in mixed success particularly in tropical and temperate 

zones with dense vegetative communities resulting in backscatter saturation.  This 

is not an anticipated problem in this application due to the relatively low biomass 

of Andros Island plant communities.   

For the purposes of this project, RADARSAT Standard Beam (ST) data 

(see Fig.  3.8) were collected at three principle incident angles in both ascending 

and descending mode.  ST modes 3, 5, and 7 were acquired for this project (a 

single ST2 dataset was also acquired and utilized in the analysis), the general 

parameters of which are defined in Table 3.1.   

Eight images were collected during the 1999 wet season representing each 

Standard Beam incident angle in ascending and descending mode.  An 

additional thirteen images were collected during the 2000 dry season 

representing each Standard Beam incident angle in ascending and descending 

mode.  
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Mode Looks Pixel Resolution (m) Ground Resolution (m) Incident Angle 

ST2 4 12.5 17.85-22.56 24.23-31.25 
ST3 4 12.5 22.99-27.25 30.47-36.94 
ST5 4 12.5 20.56-23.21 36.54-42.23 
ST7 4 12.5 18.19-19.58 44.87-49.42 

 

 

Table 3.1:  Acquired RADARSAT Standard Beam Modes 

Figure 3.8:  RADARSAT Standard Beam Mode 3 Descending 

April 18, 2000 
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3.3.4  GeoCover Ortho Imagery 

A final imagery dataset to be utilized in this project is the Landsat TM 

derived GeoCover Ortho product of Earth Satellite Corporation.  This dataset 

provides a consistent orthorectified image base for tying all related image datasets 

to and will provide a uniform analytical framework for the project (Koeln et al., 

1999). 

 

3.3.5  Ground Truth 

An important aspect of this project is the identification of representative 

plant community and land cover sites for evaluating the success of land cover 

classification and proposed image integration processes.  A dataset of calibration 

and validation sites was collected during fieldwork in November 1999 and May 

2000 for this purpose that encompasses the five primary vegetation categories 

being assessed in this research.  Available maps and georeferenced image maps 

were employed to locate and document sites in the field and precise geographic 

coordinates were obtained by use of a Trimble Global Positioning System (GPS) 

receiver.  GPS coordinates were differentially corrected using base station data 

collected in Ft. Lauderdale, Florida.  This processing resulted in ground truth 

geolocation well within the 25m RMS achieved during the coregistration process. 
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The field effort fully documented the location and characteristics of the 

selected sites for cover types of interest.  Sites used for calibration were randomly 

selected from the collective study sites in each cover type and the remaining sites 

were reserved for accuracy assessments.  One third of the sites were used in the 

calibration phase and the remaining two thirds were used in the accuracy 

assessment process.  Table 3.2 lists the collected calibration and validation sites: 

 

 

Cover Type Calibration Validation Site size (pixels) Total Pixels 

Pinelands 18 36 41 – 436 7157 

Coppice 10 20 16 – 344 3360 

Rockland Scrub 4 8 36 – 324 1302 

Mangrove 8 16 30 – 114 1930 

Saw grass  8 16 46 – 218 2330 
 

 

3.3.6  Cartographic Datasets 

 Existing topographic maps of Andros Island provided by the Bahamas' 

Environmental Research Center (BERC) were scanned into digital files and 

georeferenced to a common projection and coordinate system (UTM Zone 18 N, 

WGS 84).  They were used for fieldwork and to aid in the identification of 

appropriate calibration and validation sites for the image classification process.  

Table 3.2:  Calibration and Validation Sites 



 

97 

These maps are the result of a British aerial photography and topographic survey 

operation in the late 1960’s and early 1970’s to accurately map the entire island.  

Due to the small population on the island there has been little change in the past 

three decades as corroborated by field visits.  The map series consists of 24 

topographic reference maps at a scale of 1:25,000 and provide a very suitable 

base of surface information for use with the spatial resolution of imagery in this 

research project. 

 

3.4  ANALYSIS PROCESS 

The procedures used for this research entailed a digital classification 

using standard processing techniques applied to spatially coregistered sets of 

MSI and SAR spaceborne data, all resampled to the same pixel size.  Spectral 

signatures were extracted for the various land cover types using supervised 

calibration sites established during field visits.  After signature extraction, a MLC 

was employed to classify the dataset and a contingency table compiled for 

accuracy assessment.  The contingency tables were created from a separate set of 

validation sites also derived from the field efforts. 

The results from this study compare the accuracy assessments from 

various classifications for individual land cover types and for all types combined 



 

98 

for overall classification accuracy.  Multiple data combinations and statistical 

manipulations of the data were examined.  The specific processes implemented 

depended on the data source (SAR or TM) and include comparisons of the 

original sensor data independently and in combination.  The fundamental 

variables investigated by this research are: 

• SAR processing options for improved sensor fusion 

• SAR incident angle impact on fusion classification results 

• The value of cross-season datasets for improved land cover classification. 

 

3.4.1  TM Image Processing 

The TM imagery includes the two seasonal dates.  A preliminary 

classification process was performed to determine which bands are most valuable 

for the purposes of this project.  Prior research efforts have determined that 

selecting only a subset of Landsat TM bands may improve the results of 

classification (Crist and Cicone, 1984; Haack, 1984).  In fact, Price et al. (2002) 

determined that a single band (near-infrared TM band-4) of TM data was sufficient 

for discriminating six grassland types.  A vegetation index derived from a two or 

more band ratio was moderately more valuable.  As discussed in the following 
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results section of this research, all MSI bands are used in most of the classification 

processes.  When testing specific SAR-MSI combinations the number of MSI bands 

are occasionally reduced and in those cases the selected bands are duly noted.  

Limiting the number of multispectral bands increases the weighting or value of 

individual SAR bands added to the process.  Furthermore, the thermal band (Band 

6) for Landsat TM has been set aside for the purposes of this analysis.   

 

3.4.2  SAR Image Processing 

The SAR datasets include the selected 21 dates (13 dry and 8 wet season) 

and incident angle datasets.  Two primary operations were performed on the SAR 

datasets to evaluate their impact on classification accuracy.  Speckle suppression 

was performed using varying window sizes.  The literature review has indicated 

that window sizes for speckle suppression should be relatively small to maintain 

local area features (Schistad and Jain, 1992).  Initially the speckle suppression 

algorithms were therefore run with windows ranging from 3x3 to 11x11.  This was 

expanded to 13x13 and 15x15 due to early results in the processing phase which 

indicated a trend of improving classification accuracies as the window size 

approached the original upper limit of 11x11. 

Texture measures of varying window sizes were performed on original and 
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speckle-suppressed datasets to evaluate their combined impact.  Prior research has 

determined that the Variance texture measure contributes the most to successful 

land cover classification (Anys and He, 1995; Pierce et al., 1998; Haack et al., 1998; 

2000; Haack and Bechdol, 1999) and as a result is the sole texture measure applied 

in this research.  Window sizes ranging from 3x3 to 27x27 are evaluated.   

 

3.4.3  SAR Speckle Suppression Algorithms 

Five speckle suppression algorithms are evaluated in this analysis; two 

statistical and three adaptive.  Durand et al. (1987) determined that adaptive filters 

are the most appropriate for image classification processes.  Despite this finding, 

many subsequent research efforts continued to perform speckle suppression using 

median filtering (Pierce et al., 1998) even though it degrades texture information 

(Dong et al., 2000) and impedes feature separation (Sheng and Xia, 1996).  The 

following speckle suppression algorithms are assessed in this study: 

 

Median Filter:  The median filter replaces the pixel at the center (pc) of the sample 

window with the median value of the surrounding pixels.  Though this filter is 

deemed not suitable for image classification purposes it continues to be used in 

SAR processing efforts and is being included for comparison purposes. 

Local Region Filter:  This algorithm divides the sample window into eight sub-
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windows for which a variance value is calculated.  The region with the lowest 

variance is then averaged and this value replaces the value at pc.  This adaptive 

filter preserves texture over larger areas while ensuring uniform areas are 

maintained. 

Lee-Sigma Filter:  A variation of the Lee filter (Lee, 1983), the Lee-Sigma assumes 

a Gaussian distribution of speckle noise and uses the range of DN values 

within the sample window to estimate what the value of pc should be.     

Frost Filter:  The Frost filter is similar to the original Lee filter and uses local 

statistics to assign a value for pc..  The calculation of pc involves a convolution of 

sampled values to establish a likely reflectance value, making it a filter that 

adapts to the contents of the neighborhood being evaluated. 

Gamma-MAP Filter:  The MAP filter is an adaptive speckle filter based upon a 

Gaussian distribution that assumes the value of pc lies between the degraded 

(speckled) DN value and the local average.  The filter uses posteriori 

probabilities to calculate the new value. 

These filters are evaluated in an empirical fashion to determine their 

respective value as part of a standard land cover classification procedures.  Based 

upon the analytical process in Figure 3.9, including texture and speckle 

suppression filtering, there are four possible paths for each SAR dataset.  Each TM 
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dataset is processed independently and then combined with each of the possible 

SAR processes.  Finally, based upon the results of the earlier processing stages 

different combinations of SAR and TM are processed and tested to evaluate the 

value of different combinations. 

 

3.4.4  SAR Processing Paths 

SAR Path 1:  SAR datasets in the first path receive: 

1. Image resampling and image registration to the common dataset 

2. Image classification and accuracy assessment. 

This results in the SAR images being included in the classification process 

with no sensor specific processing to evaluate their value for direct classification 

synonymous with an additional channel of information in a multispectral system. 

SAR Path 2:  SAR datasets in the second path receive: 

1. Speckle suppression using the five described filters and range of window 

sizes 

2. Image resampling and image registration to the common dataset 

3. Image classification and accuracy assessment.  
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SAR Path 3:  SAR datasets in the third path receive: 

1. Image resampling and image registration to the common dataset 

2. Texture processing using a Variance filter and a range of window sizes 
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Figure 3.9:  Image Processing Paths 
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3. Image classification and accuracy assessment. 

SAR Path 4:  SAR datasets in the fourth path receive: 

1. Speckle suppression using the five described filters and range of window 

sizes 

2. Image resampling and image registration to the common dataset 

3. Texture processing using a Variance filter and a range of window sizes 

4. Image classification and accuracy assessment.  

 

3.4.5  TM Processing Paths 

TM Path 1:  TM datasets in the first path receive the following processing: 

1. Image resampling and image registration to the common dataset 

2. Image classification and accuracy assessment. 

The independent processing of the TM datasets provides a baseline for 

comparison of all of the other processing alternatives and combinations.   

TM Path 2:  TM datasets in the second path are processed as follows: 

1. Image resampling and image registration to the common dataset 
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2. Merge with SAR data from SAR Paths 1-4 

3. Image classification and accuracy assessment. 

Following the independent processing of TM data, the TM datasets are 

combined with the SAR datasets from SAR Paths 1-4 to assess processing 

alternatives and seasonal combinations.  The merge process involves combining 

the data (previously coregistered) from independent processing paths (SAR or 

TM) into a single multilayer image dataset upon which the classification and 

accuracy assessment processing is performed. 

Once the systematic processing and comparison of SAR and TM data and 

different processing alternatives are complete, a number of different combinations 

of SAR, processed SAR datasets, TM, and selected TM bands are tested in various 

combinations to determine if unique combinations of data provide valuable 

results.  Combinations of SAR processed layers, such as texture processed on raw 

SAR combined with a speckle suppressed layer, and with limited TM bands or 

multiseason TM combinations, may provide some interesting and valuable results. 

For all attempts at characterization of the land cover types, an accuracy 

assessment is performed.  This assessment utilizes the validation sites reserved 

from the field work.  A standard confusion matrix is generated for each 

classification process that provides results as percentage of correctly classified 
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pixels as well as a tally of misclassified pixels and the classes in which those fall 

(Foody, 1992; Congalton and Green, 1999).  For the purposes of this study and 

comparing processing alternatives, total classification accuracy and producer’s 

accuracies are calculated and presented.  Since the goal of this research is not the 

production of a finished land cover dataset for Andros Island (which a user may 

utilize for land management purposes), but to compare processing alternatives, a 

user’s accuracy is not calculated or discussed in the results section. 

The fusion of imagery from different sources often proves to be a very 

valuable means of assembling more robust datasets and, by extension, 

knowledge of physical landscapes and processes.  Determining the most suitable 

system parameters and fusion techniques in an empirical fashion provides a 

practical and application based assessment of the compatibility of different 

imaging systems for land cover characterization.  The spectral responses of 

multispectral satellite systems, which are chemically based, combined with the 

reflected microwaves of SAR systems, which are physically based, provide a 

more rigorous means for assessing plant communities.  In essence multispectral 

data provides a means for assessing the quality and health of vegetation while 

SAR imagery provides an assessment of complexity or structure.  A systematic 

and consistent method of processing and fusing them into a useable dataset may 
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provide a valuable tool for assessing land cover and plant communities 

worldwide. 
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4.0  RESULTS 
 
 
 
 
4.1   PROCESSING OF LANDSAT TM 

The seasonal Landsat Thematic Mapper (TM) datasets were processed in a 

standard supervised classification (Maximum Likelihood Classifier) approach 

using the same combination of calibration and validation sites (hereafter referred 

to as study sites) used in all of the analysis paths presented in Figure 3.9.  The 

results of the exclusively TM processing provides a foundation from which to 

discuss the results for exclusively RADARSAT (SAR), Landsat TM data fused 

with SAR data, and various combinations of SAR and TM datasets.  For 

discussion purposes the March 2000 Landsat 5 TM dataset will be referred to as 

Dry TM due to its correspondence with the dry season on Andros Island.  The 

November 1999 Landsat 5 TM dataset will be referred to as Wet TM.  

Furthermore, all classification values discussed are in the context of producers’ 

accuracy rather than user’s accuracy since this research is comparing relative 

classification accuracy of processing techniques and is not intended to produce a 

finished land dataset for the study area. 
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Individually, the TM scenes provided reasonable classification results 

with a total classification accuracy of 80.6% for Dry TM and a total classification 

accuracy of 80.7% for Wet TM.  The fact that these results are virtually identical is 

surprising considering the seasonality of the datasets.  However the similarity of 

the overall classification results obscures the fact that there are some notable 

seasonal differences when individual vegetation classes are considered. 

Looking in more detail at the results involves considering the 

classification accuracy of individual classes and comparing those.  Table 4.1 

presents the classification results for each dataset and provides the results for 

each land cover category considered. 

 

Table 4.1:  Classification Results of Landsat TM   

Producers’ Accuracy TM 
Dataset 

Total 
Accuracy Coppice  Pinelands Rockland  Saw grass Mangrove 

Dry TM  80.6% 89.2% 81.8% 70.5% 77.9% 70.7% 
Wet TM 80.7% 93.1% 84.5% 57.8% 77.9% 62.7% 

 

As can be seen, there are some seasonal differences exhibited by 

classification accuracies among vegetation classes.  The percentage of Coppice 

accurately classified was slightly higher with Wet TM than Dry TM, a difference 

of 3.9%.  The Pinelands class saw a similar difference with Wet TM exhibiting a 

slight improvement over the Dry TM dataset.  There was no difference in the 
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classification of Saw grass between the two time periods with each resulting in a 

77.9% classification accuracy. 

The major change in classification is found in the Rockland and Mangrove 

classes.  The classification accuracy for the Rockland class dropped 12.7% from 

the dry season to the wet season.  While the decline in accuracy in Mangrove is 

of a smaller magnitude at 8.0%, the result is still significant.  Reviewing the 

contingency table for the Wet TM (Table 4.2) dataset one finds that there is  

 

Table 4.2:  Contingency Table for Wet TM Classification Results 

 

increased confusion between the Rockland and Saw grass classes.  This may be 

due to an increase in chlorophyll activity in this community as well as increased 

standing surface water during the wet season.  For the Mangrove class, similar 

confusion is found with 14.3% and 48.8% of pixels being misclassified as Saw 

grass and Rockland respectively.  A similar dynamic may be at play here with 

 Coppice Pinelands Rockland Saw grass Mangrove  
Coppice 1213 265 2 0 0 1480 
Pinelands 83 2093 44 0 29 2249 
Rockland 6 69 283 35 130 523 
Saw grass 1 3 161 584 99 848 
Mangrove 0 47 0 131 433 611 

 1303 2477 490 750 691 5711 
Total Producer’s 

Accuracy 93.1% 84.5% 57.8% 77.9% 62.7% 
80.7% 



 

111 

differing levels of chlorophyll activity and changes in the surface matrix due to 

standing water and changes in the degree of exposed limestone. 

The collection of datasets from two different seasons provides the 

opportunity to assess the value of multitemporal datasets for effective land cover 

classification.  While each seasonal dataset provided virtually identical total 

classification accuracies, some differences were manifest in individual vegetation 

classes.  A combination of the two datasets captures some of the seasonal 

variability and presents the opportunity for an improved characterization of 

vegetation classes.  

Table 4.3 presents the results of a supervised classification of Dry TM and 

Wet TM in combination.  Including data from both time periods increased the 

 

Table 4.3:  Contingency Table for Combined Dry TM and Wet TM 

 Coppice  Pinelands Rockland  Saw grass Mangrove  
Coppice  1207 169 0 0 0 1376 
Pinelands 64 2179 22 0 2 2267 
Rockland  28 126 524 48 86 812 
Saw grass 0 2 22 633 92 749 
Mangrove 4 1 0 69 511 585 
 1303 2477 568 750 691 5789 

Total Producers 
Accuracy 92.6% 88.0% 92.3% 84.4% 74.0% 87.3% 
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total classification accuracy to 87.3%, a greater that 6% improvement over the 

individual seasonal dates with significant improvements in four of the five 

vegetation classes. 

Notably, there is no significant improvement in the classification of the 

Coppice class which was already in the area of 90%.  The Pinelands classification 

of the combined datasets is an improvement of 3.5% over Wet TM and 7.2% over 

Dry TM.  The improvement in the Saw grass category is 6.5% over the individual 

season datasets.  The combined season classification of Mangrove exhibits a 

nominal improvement of 3.3% over the Dry TM dataset and a more significant 

11.3% improvement over the Wet TM dataset.  It was in this latter dataset that 

there was greater confusion between the Rockland, Saw grass, and Mangrove 

classes.  A look at the contingency table (Table 4.3) indicates that there is still 

some confusion with the Saw grass and Rockland classes though it is 

significantly reduced. 

The class with the greatest improvement in the combined season dataset is 

the Rockland class.  This exhibits a 21.8% increase in classification accuracy over 

the Dry TM and a 34.5% improvement in classification over the Wet TM dataset.  

Reviewing the contingency table (Table 4.3) reveals that in this class there is no 

longer any confusion with the Mangrove class and a nominal confusion with 

Saw grass and the Pinelands class. 
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The results of the TM processing are promising in a number of areas.  The 

overall classification accuracy is respectable at approximately 80% for each 

seasonal dataset.  Structural differences between the Coppice and Pinelands 

classes easily differentiate them from the other classes which are characterized by 

low canopies, lower biomass volumes, and a greater similarity in surface matrix 

including a greater likelihood of being inundated during the wet season.  

Combining the seasonal datasets apparently captures this variability and 

provided the opportunity to further differentiate the classes resulting in 

improved classification accuracy. 

 

4.2  PROCESSING OF UNFILTERED SAR 

Each SAR dataset was processed with the standard supervised 

classification procedure used in this research effort to assess their individual 

value for discriminating land cover.  Each dataset represents a single instance of 

SAR data collected from the RADARSAT system on 21 different dates spanning 

the range of variables assessed in the study.  Table 4.4 presents the classification 

results of the individual datasets while Table 4.5 contains statistics on the 

collective results.  Note that five datasets did not adequately cover study sites for 

two categories (Coppice and Rockland) to utilize them in assessing their value 
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for those cover types.  They are shaded in the table and are excluded from the 

summary statistics for those classes. 

 

Table 4.4:  Unfiltered SAR Classification Accuracy Results 

 Producers Accuracy 
Dataset Tot. Accuracy Coppice Pinelands Rockland Saw grass Mangrove 

0330 33.3% 18.6% 43.3% 30.8% 22.0% 38.8% 
0401 33.6% 9.9% 50.7% 46.2% 0.0% 47.6% 
0415 26.6% 11.0% 35.7% 50.3% 19.5% 25.4% 
0416 34.1% 14.3% 58.1% 15.9% 23.6% 11.3% 
0418 40.7% 20.6% 66.3% 20.4% 26.0% 4.7% 
0430 26.9% 35.5% 20.3% 28.6% 27.6% 32.9% 
0509 37.3% 39.4% 46.8% 37.2% 0.0% 20.3% 
0510 32.4% 0.0% 54.5% 32.0% 19.1% 28.8% 
0512 43.7% NA 62.2% NA 15.5% 48.1% 
0517 34.3% 0.0% 61.4% 37.9% 24.9% 9.4% 
0602 35.8% 18.8% 59.8% 35.4% 30.7% 11.1% 
0603 36.2% 12.3% 53.7% 29.2% 36.4% 23.4% 
0612 32.7% 10.1% 45.5% 74.1% 11.1% 24.3% 
0923 36.3% NA 52.4% NA 18.8% 11.5% 
1017 44.7% NA 54.3% NA 53.1% 24.8% 
1201 42.0% 0.0% 76.1% 33.5% 28.9% 19.4% 
1203 35.4% 40.1% 37.5% 24.4% 27.1% 35.2% 
1204 35.6% NA 50.9% NA 27.5% 52.8% 
1217 32.1% 0.0% 53.4% 72.9% 7.3% 26.0% 
1218 32.9% 25.0% 42.4% 32.8% 23.1% 24.5% 
1220 46.2% NA 71.9% NA 17.2% 28.9% 

 

 

Datasets containing a single band of data commonly provide substantial 

variation in classification results.  This is clearly evident in the range of values in 

Table 4.4.  Total classification accuracy for all 21 datasets span values ranging 

from 26.6% to 46.2%.   
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In a number of instances classes are clearly not distinct enough to permit 

clear differentiation using a single radar band.  Of substantial note and concern is 

the number of cases (6) where zero pixels were assigned to a class.  This occurred 

with six different SAR images and was confined to the Coppice and Saw grass 

classes.  After thoroughly evaluating these instances and reprocessing the 

datasets these results were repeated.  It was concluded that on those dates the 

similarities between the Coppice and Pinelands classes, and the Saw grass and 

Rockland classes, were such that the later classes received a full assignment of 

pixels in the classification process.  An example of this is found with the SAR 

0510 and SAR 0517 datasets.  When perusing the contingency table (Table 4.5 and 

Table 4.6) of each of these it is clear that the Coppice class is not distinct from the 

Pinelands class.  The classification accuracy for Coppice is 0.0% for both while 

 

Table 4.5:  Contingency Table SAR 0510 

 Coppice  Pinelands Rockland  Saw grass Mangrove  
Coppice  0 0 0 0 0 0 
Pinelands 676 1351 154 277 166 2624 
Rockland  299 520 147 165 130 1261 
Saw grass 126 154 159 143 196 778 
Mangrove 202 452 0 165 199 1018 
 1303 2477 460 750 691 5681 

Total Producers 
Accuracy 0.0% 54.5% 32.0% 19.1% 28.8% 32.4% 
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the pixels misclassified as Pinelands are 51.9% (676/1303) and 62.1% (809/1303) 

respectively.  There are also two instances in Table 4.4 where the Saw grass class 

could not be discriminated (SAR 0401, SAR 0509) and a similar degree of 

 

Table 4.6:  Contingency Table SAR 0517  

 Coppice  Pinelands Rockland  Saw grass Mangrove  
Coppice  0 0 0 0 0 0 
Pinelands 809 1520 204 245 145 2923 
Rockland  299 569 212 274 210 1564 
Saw grass 49 87 143 187 271 737 
Mangrove 146 301 0 44 65 556 
 1303 2477 559 750 691 5780 

Total Producer’s 
Accuracy 0.0% 61.4% 37.9% 24.9% 9.4% 34.3% 

 

confusion is found with other classes.  In later stages of processing once speckle 

suppression or texture measure filters were applied to the data these events no 

longer occurred. 

These contingency tables are typical of the individual SAR datasets in that 

there is consistently a high degree of confusion between individual classes with 

substantial variation within each table and a great degree of variability across 

datasets.  

While discussion of individual datasets may not be valuable at this point, 

some interesting observations can be made regarding their overall accuracies and 
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collective statistics.  Figure 4.1 depicts the total accuracy of the classification 

results for each dataset, in this case ordered by date.  It is notable that a linear 

trend line applied to the data indicates a general increase in classification 

accuracy as the date increases, in this case moving from the Dry Season and 

through the Wet Season.  This trend is apparent even if the five datasets 

highlighted in Table 4.4 Unfiltered SAR Classification Accuracy Results (which 

resulted in higher total accuracy values but when only three classes were 

considered) are excluded from the chart.  This improvement spanning the time 

period of SAR collection may indicate that SAR data covering these vegetation 

classes provides improved discrimination under wetter conditions found during 

the wet season.  This possibility is investigated and discussed further in Section 

4.4 when seasonal variables are evaluated. 

 

 
Figure 4.1:  Total Classification Accuracy for Unfiltered SAR 

Total Accuracy, Time sequential
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Table 4.7 presents the summary statistics for the classification accuracies 

for all 21 SAR datasets.  Considering these values provides some interesting 

context.  First, the average total accuracy of 35.8% is a respectable result for an 

individual spectral band of data and is not in itself discouraging.  The average 

accuracies of individual bands are also noteworthy.  As a point of reference, 

consider that with five land cover classes, a random assignment of “accurate” 

pixels to individual classes would result in a classification accuracy of 20% per 

class.  Instances where the value is higher are a clear improvement on random 

assignment, instances where the result is close to or less than 20% the effort is no 

better than random assignment. 

 

Table 4.7:  Summary Statistics for 21 SAR datasets 

 Producers Accuracy 

 
Tot.  

Accuracy Coppice Pinelands Rockland Saw grass Mangrove 
Average 35.8% 16.0% 52.2% 37.6% 21.9% 26.2% 

Max 46.2% 40.1% 76.1% 74.1% 53.1% 52.8% 
Min 26.6% 0.0% 20.3% 15.9% 0.0% 4.7% 

St.  Dev 5.2% 13.6% 12.7% 16.4% 11.8% 13.1% 
Variance 0.269 1.842 1.603 2.685 1.403 1.726 

 

Given that fact, the results in Table 4.7 indicate that the SAR datasets may 

not individually provide value in discriminating Coppice or Saw grass from the 

other vegetation classes evaluated.  SAR data does successfully discriminate the 
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Pinelands category and to a lesser degree the Rockland category.  The Mangrove 

class has an average accuracy that is nominally higher than 20% but no clear 

conclusions can be drawn here.  

Attempting to classify vegetation categories using individual raw 

(unfiltered) SAR scenes will consistently result in a great deal of variability in 

results.  The presence of speckle in SAR scenes results in a significant variance in 

DN values across relatively small areas, including areas comparable in size to the 

study sites used in this analysis.  This fact alone can explain the classification 

accuracies achieved in this stage of this project.  The classification accuracy 

results of individual SAR scenes that have been processed to reduce speckle or 

assess texture are discussed in Sections 4.6 and 4.7. 

 

4.3  COLLECTION MODES 

Having processed the individual SAR datasets for their classification 

results presents the first opportunity to evaluate some of the SAR collection 

variables assessed in this study.  The angle of incidence should have a significant 

impact on classification accuracy due to the structural differences of the 

vegetation classes.  As discussed in Chapter 2, greater incident angles typically 

result in greater backscatter (signal returns) from vegetation while lesser incident 
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angles are expected to more readily penetrate vegetation and result in returns 

from the surface matrix.  

Table 4.8 compiles classification accuracy’s by RADARSAT ST mode (3, 5, 

and 7).  ST3 collects at lesser angles of incidence while ST7 collects at greater 

angles.  The average total classification accuracy result for these modes provides 

no clear indication of value or improvement in vegetation differentiation as 

incident angle increases.  If any trend is present it appears to indicate that the 

overall results are exactly the reverse of what was expected.  However, it should 

be noted that the classification accuracy for the ST3 Pinelands class is very high 

relative to its companion classes.  In fact, the other four values are lower than or 

equal to the values collected in mode ST5 and ST7.  This single value accounts for 

the higher total accuracy value for ST3. 

 

Table 4.8:  Classification Accuracy by Incident Angle  

Producers Accuracy RADARSAT 
Mode (# of 

scenes) 
Total 

Accuracy Coppice  Pinelands Rockland  Saw grass Mangrove 
ST3 (6) 40.0% 9.8% 63.5% 30.7% 22.4% 24.9% 
ST5 (7) 33.9% 16.0% 48.9% 36.4% 20.0% 27.9% 
ST7 (7) 35.5% 17.3% 50.5% 48.9% 22.4% 24.6% 

 

It is unclear why the ST3 Pinelands class has such a high classification 

accuracy.  The vegetation of the Pinelands class does contain a more complex 
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structure than the other categories assessed.  This result may indicate greater 

penetration of the upper canopy and interaction with the understory and surface 

matrix.   

The Coppice and Rockland classes do indicate some positive progression 

in classification accuracy as incident angle increases.  This is most pronounced 

with the Rockland class and less so with the Coppice class.  However, the Saw 

grass and Mangrove classes demonstrate no comparable progression. 

RADARSAT collection in ascending and descending orbit dictate the 

direction of look for SAR datasets.  While there are some known conditions 

under which look direction may be important, most specifically when imaging 

row crops, in assessing natural vegetation no significant difference in results 

would be expected from datasets collected in ascending or descending mode. 

Table 4.9 contains the average accuracy of the classified SAR datasets 

combined by look direction as defined by ascending or descending mode.  The 

numbers of scenes collected in ascending mode or descending mode (11 and 10 

respectively) are equal as are the incident angles of the scenes within each 

collection (with 3 or 4 scenes falling in each satellite mode for ascending or 

descending orbit).  The results in this table support the expectation that look 

direction provides no significant value when assessing natural vegetation over 

relatively flat terrain.  The accuracy results in each cover class are comparable 
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between collection orbit with the exception of the Rockland and Saw grass 

classes.  The differences in these classes cannot be explained by seasonal 

differences or incident angle as there are equal contributions of either factor in 

each category.   Surface topography can impact backscatter and may dictate 

preferable look directions depending on the slope or aspect of particular study 

sites (linear features or surface textures oriented in a specific direction relative to 

the satellite track) especially when considered in combination with incident 

angle.  There is no such systematic variation in these study sites, natural 

vegetation over flat surface topography, and the reason for these variations is 

unknown at this point.  It is notable that the classification accuracy of Saw grass 

and Rockland swap in magnitude. There is a 15% increase in Rockland accuracy 

and a 12.3% drop in Saw grass from ascending to descending orbit collections.  

With the exception of these classes, orbit of collection does not appear to provide 

any value for land cover differentiation. 

 

Table 4.9:  Classification Accuracy by Look Direction 
Producers Accuracy Orbit (# of 

scenes) 
Total 

Accuracy Coppice  Pinelands Rockland  Saw grass Mangrove 
Ascending (11) 35.3% 13.2% 51.6% 30.1% 27.7% 25.2% 
Descending (10) 36.4% 18.7% 53.0% 45.1% 15.4% 27.2% 
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4.4  SEASONALITY  

One of the principle goals of this research is to determine whether the 

season of collection provides value when combining SAR datasets with 

multispectral (MSI) datasets.  When evaluating the results of individual 

unfiltered SAR datasets in Section 4.2 there was an indication that classification 

accuracies tended to be higher for wet season dataset when compared to dry 

season datasets.  In Table 4.10 the individual SAR classification accuracy results 

are combined by season to determine if any significant difference exists in 

classification accuracy. 

 

Table 4.10: Average Accuracy by Season 

Producers Accuracy Season (# 
of scenes) 

Total 
Accuracy Coppice  Pinelands Rockland  Saw grass Mangrove 

   Dry (13) 34.4% 15.9% 50.6% 36.5% 19.7% 25.1% 
   Wet (8) 38.1% 16.3% 54.9% 40.9% 25.4% 27.9% 

 

The results in Table 4.10 are promising in that the average overall 

accuracy of wet season SAR datasets is 3.7% above that of the dry season 

datasets.  The advantage is present in every land cover category though to 

differing degrees, with the result in the Coppice class providing a nominal and 

perhaps insignificant improvement.  Whether this advantage can be leveraged 

when SAR and TM datasets are combined is evaluated and discussed in Section 
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4.9.  When looking at the best scene from each season (Table 4.11), the possible 

value gained from wet season SAR is readily apparent. Again, with the exception 

of the Coppice class a clear advantage is found in each of the other classes.  As 

was seen in Section 4.2, the Coppice class is not consistently separable from the 

Pinelands class when individual dates of SAR are utilized. 

 

Table 4.11: Best Scene Accuracy for each Season 

Producers Accuracy Season 
(scene) 

Total 
Accuracy Coppice  Pinelands Rockland  Saw grass Mangrove 

 Dry (0418) 40.7% 20.6% 66.3% 20.4% 26.0% 4.7% 
 Wet (1201) 42.0% 0.0% 76.1% 33.5% 28.9% 19.4% 

 

 

4.5  SEASONAL AND MULTITEMPORAL COMBINATIONS 

RADARSAT-1 only collects SAR data in a single microwave channel.  This 

approximates a panchromatic visible imaging system in that a single instance of 

data is collected at a given point in time.  One method of analysis used for such 

single band data is to combine datasets from different time periods to create a 

multi-band dataset for evaluating surface conditions.  The principle of change 

detection relies on evaluating differences over time.  With multitemporal 

datasets differences across time are captured rather than differences across 

spectral regions (as with a multispectral dataset).   



 

125 

The 21 SAR datasets were combined into a single multitemporal dataset to 

assess the value of combining SAR from different instances in time for 

characterizing surface conditions.  To further assess the value of seasonality, the 

datasets were also divided by season.  The classification accuracy results of the 

multitemporal SAR datasets are presented in Table 4.12.     

 

Table 4.12: Multitemporal Dataset Classification Accuracy 

Producers Accuracy Multitemporal 
Dataset (#) 

Total 
accuracy Coppice  Pinelands Rockland  Saw grass Mangrove 

Dry (13) 50.5% 39.1% 62.1% 54.2% 34.8% 44.9% 
Wet (8) 55.4% 45.9% 67.0% 43.9% 22.3% 75.7% 
All (21) 65.8% 65.4% 73.6% 67.6% 41.3% 63.8% 

 

The value of combining multiple instances of SAR data into a single 

multitemporal dataset for the purpose of characterizing land cover is clearly 

evident in the total accuracy results of this table.  A total accuracy of 65.8% is 30% 

better than the average accuracy of 35.8% experienced with individual SAR 

scenes as presented in Table 4.7 Summary Statistics for 21 SAR datasets.  The 

classification accuracy for each category of land cover exhibits significant 

improvement with the most notable being the accuracy of the Coppice 

classification which was four-times better (65.4% vs. 16.0%).  Note that the 

Coppice class was the most difficult to discriminate with individual SAR scenes.  

The combined SAR overcomes this difficulty.  The classification accuracy for 
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Rockland, Saw grass, and Mangrove effectively doubled while the Pinelands 

class improved 21.4% from an average accuracy of 52.2% to a classification 

accuracy for the combined datasets of 73.6%.   

Running a classification on the SAR dataset combined by season also 

provides interesting results.  The multitemporal datasets improved classification 

accuracy over the average of individual SAR datasets with a difference of greater 

than 15% in each season. 

Note that the value of wet season SAR data over dry season SAR is again 

borne out when the datasets are combined.  This is despite the fact that the 

number of SAR datasets differs for each season with 13 datasets being present for 

the Dry season dataset and 8 included in the Wet season dataset.  A greater 

number of wet season instances would likely improve classification accuracy 

further. 

The contingency tables for the multitemporal SAR datasets provide an 

opportunity to investigate in more detail the differences in classification between 

the two seasons as well as their relation to the combined dataset. Table 4.13 

provides the results for the dry season dataset.  The most notable observation 

here is that during the dry season there is significant confusion between the 

Coppice and Pinelands class such that a greater number of pixels have been 

assigned to the latter under the Coppice category.  A similar confusion exists in 
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the Saw grass category where a majority (though slim) of pixels have been 

assigned to the Mangrove class. 

 

Table 4.13: Multitemporal Dry Season Contingency Table 

 Coppice  Pinelands Rockland  Saw grass Mangrove  
Coppice  509 334 72 24 28 967 
Pinelands 719 1538 172 37 50 2516 
Rockland  38 222 301 161 161 883 
Saw grass 9 40 10 261 142 462 
Mangrove 28 343 0 267 310 948 
 1303 2477 555 750 691 5776 

Total Producers 
Accuracy 39.1% 62.1% 54.2% 34.8% 44.9% 50.5% 

 

During the wet season (Table 4.14) the classification of Coppice has 

improved yet a significant confusion with the Pinelands class still exists.  The 

confusion of Saw grass with Mangrove is more severe but the classification of  

 

Table 4.14: Multitemporal Wet Season Contingency Table 

 Coppice  Pinelands Rockland  Saw grass Mangrove  
Coppice  598 345 117 73 42 1175 
Pinelands 445 1659 33 193 45 2375 
Rockland  88 46 198 45 12 389 
Saw grass 61 180 103 167 69 580 
Mangrove 111 247 0 272 523 1153 
 1303 2477 451 750 691 5672 

Total Producers 
Accuracy 45.9% 67.0% 43.9% 22.3% 75.7% 55.4% 
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Mangrove has improved by 30.8%.  Note that the classification accuracy of the 

Rockland and Saw grass categories both declined in the wet season dataset 

relative to the dry season dataset.  In addition the mixture of cover types 

confused with Rocklands has also changed.  For example, in the dry season 

dataset the Rockland category was most significantly confused with the 

Pinelands class.  The same class in the wet season dataset was confused equally 

with the Coppice and Saw grass classes. 

With all of the data combined into a single multitemporal dataset, overall 

classification has improved significantly.  Table 4.15 provides the contingency  

 

Table 4.15:  Multitemporal Combined SAR Contingency Table 

 Coppice  Pinelands Rockland  Saw grass Mangrove  
Coppice  852 278 79 91 70 1370 
Pinelands 277 1822 29 77 19 2224 
Rockland  102 74 321 11 8 516 
Saw grass 9 31 46 310 153 549 
Mangrove 63 272 0 261 441 1037 
 1303 2477 475 750 691 5696 

Total Producers 
Accuracy 65.4% 73.6% 67.6% 41.3% 63.8% 65.8% 

 

table for the classification results.  Confusion in the Coppice class has been 

largely mitigated with a classification accuracy of 65.4% though 21.3% of pixels 

are still being misclassified as Pinelands.  The class with the least improvement is 
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the Saw grass category where a still significant proportion of pixels are being 

misclassified as Mangrove. 

The results of the multitemporal SAR classification demonstrate that 

multiple SAR datasets collected at different points in time can be used 

successfully to characterize surface materials with respectable accuracy.  Further 

investigation in this area could determine a minimum number of time periods 

required for reasonable results.  Selecting a sample with a good time distribution 

that best captures differences in surface conditions across time could provide 

comparable results with a limited number of datasets. 

 

4.6  SAR SPECKLE SUPPRESSION 

Speckle suppression attempts to reduce the impact of speckle noise by 

statistically normalizing a pixel value based upon the value of surrounding 

pixels.  Changing the kernel size varies the size of the neighborhood that is used 

for normalizing the central pixel.  In this analysis, five speckle suppression 

algorithms were used to assess the relative value of each of them and at seven 

different kernel sizes.  Initially five kernel sizes were planned but due to the 

increasing accuracies achieved as the kernel expanded to 11x11 further 

processing was initiated to determine if the trend continued as the kernel 
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expanded to 13x13 and 15x15.  The results of this process are presented as data 

values in Table 4.16 and graphically in Figure 4.2. 

Given the average classification accuracy for unprocessed single scene 

SAR of 35.8% the application of a speckle suppression filter has a clear and 

immediate positive impact on classification results.  Each of the five speckle 

filters results in significant improvements in classification accuracy.  Note that 

the values in Table 4.16 and Figure 4.2 are the average classification accuracy for 

the 21 SAR datasets each having been individually filtered for speckle and then 

processed using the standard supervised classification process performed in this 

study. 

 

Table 4.16:  Average Total Classification Accuracy by Speckle Suppression Filter 
 Kernel Size 
Filter 3 5 7 9 11 13 15 

Frost 39.9% 46.0% 48.9% 50.6% 50.9% 52.5% 52.6% 
Gamma-MAP 44.7% 48.7% 50.5% 51.3% 52.2% 52.3% 50.3% 
Local Region 39.2% 44.8% 46.5% 48.4% 50.4% 48.7% 49.9% 
Lee-Sigma 43.4% 47.2% 49.3% 49.9% 49.9% 50.2% 50.3% 
Median 43.3% 46.1% 48.1% 49.4% 50.5% 51.4% 49.7% 

 

The Frost filter and the Local Region filter provided comparable benefit 

with a 3x3 kernel providing an average accuracy of 39.9% and 39.2% 

respectively;  an approximately 4% improvement over the unfiltered SAR results.  
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The Lee-Sigma and Median filters also provided comparable results at a 3x3 

kernel with 43.4% and 43.3% accuracy results respectively.  The Gamma-MAP 

(GM) filter resulted in a 44.7% average accuracy which amounts to an increase in 

accuracy of 8.9% over unfiltered SAR. 

 

 

Figure 4.2:  Average Classification Accuracy for Speckle Suppressed SAR 

 

 

Looking across Table 4.16 one sees a steady increase in classification 

accuracy as the kernel size expands.  This trend is most readily apparent in 
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Figure 4.2 where classification accuracies are seen to improve dramatically as the 

kernel increases from 3x3 to 9x9 and then depending on the filter leveling off or 

in several cases declining. 

The GM filter appears to provide the best overall classification results in 

the early and middle kernel values but the Frost (FR) filter surpasses GM in the 

larger kernel windows.  With the exception of the FR filter, the general trend in 

classification values appears to reach a maximum and then taper off between the 

11x11 and 13x13 kernel sizes, but expanding the kernel values beyond 15 would 

be required to determine if this apparent decline continues.  The results 

presented in Table 4.16 and Figure 4.2 indicates that speckle suppression using 

any filter is beneficial while the GM filter appears to be most beneficial. 

Furthermore, kernels of between 9x9 and 13x13 appear to provide the greatest 

value. 

To further assess the value of speckle suppression filtering, the 

classification results of filtered datasets were compared to the results achieved 

with unfiltered datasets.  This permits the evaluation of the effect of speckle 

filtering on individual land cover classes.  Table 4.17 and Table 4.18 are 

contingency tables that present the results of a representative dataset, in this case 

SAR 0418. 
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Table 4.17:  SAR 0418 Dataset Unfiltered 

 Coppice  Pinelands Rockland  
Saw 
grass Mangrove  

Coppice  201 336 90 123 64 814 
Pinelands 518 1643 188 234 129 2712 
Rockland  146 168 116 144 113 687 
Saw grass 81 98 174 195 264 812 
Mangrove 28 232 0 54 28 342 
 974 2477 568 750 598 5367 

Total Producers 
Accuracy 20.6% 66.3% 20.4% 26.0% 4.7% 40.7% 

 

Table 4.17 provides a fairly typical example of the results experienced 

with the unfiltered SAR datasets.  The Total accuracy of 40.7% is somewhat 

higher than the average for the unfiltered SAR datasets.  The Coppice class  

 

Table 4.18:  SAR 0418 Dataset Filtered with GM at 11x11 kernel 

 Coppice  Pinelands Rockland  Saw grass Mangrove  
Coppice  400 374 78 80 12 944 
Pinelands 8 1789 0 62 44 1903 
Rockland  563 313 177 253 141 1447 
Saw grass 3 1 211 321 317 853 
Mangrove 0 0 0 34 84 118 
 974 2477 466 750 598 5265 

Total Producers 
Accuracy 41.1% 72.2% 38.0% 42.8% 14.0% 52.6% 

 

exhibits significant confusion with the Pinelands class as well as the Rockland 

class.  Its resulting accuracy of 20.6% reflects this confusion.  The result achieved 
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in the Pinelands class is high and fairly typical of the collective datasets.  The 

Rockland class demonstrates significant confusion across the Coppice, Pinelands, 

and Saw grass classes and the Mangrove class was effectively indecipherable 

from other cover types. 

Once the speckle suppression filter is applied, much of the confusion is 

reduced resulting in significant improvements in the classification results of all of 

the cover types.  The Coppice class accuracy has improved by 19.5%.  There is no 

longer confusion with the Pinelands class though there is now significant 

confusion with the Rockland category.  A similar situation is found in the 

Pinelands class where an overall improvement has occurred.  The Rockland 

accuracy has nearly doubled to 38.0% with the most prevalent confusion being 

with the Saw grass marsh.  The Saw grass class has improved by over 16% with 

the greatest confusion experienced with the Rockland class.  The accuracy of the 

Rockland class has seen the greatest relative improvement but is still a low value.  

The pattern of confusion across other classes is similar to that found in the 

unfiltered data. 

It should be noted that while the average results presented in Figure 4.2 

show consistent improvement with expanding windows, this consistency, and 

the presentation of results as averages, masks a great deal of variability in the 

underlying data.  One would expect that SAR data collected with similar 
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parameters would exhibit similar results in evaluating classes of land cover 

though this is not necessarily the case.  Table 4.19 and Table 4.20 are the results of 

the 0416 dataset and the 0510 dataset with the Frost filter and a 9x9 kernel size.  

They each were collected with identical system parameters and in the dry season 

with 24 days separating them. 

 

Table 4.19:  SAR 0416 Frost 9x9 

 Coppice  Pinelands Rockland  Saw grass Mangrove  
Coppice  630 1262 36 90 48 2066 
Pinelands 498 1016 78 119 74 1785 
Rockland  175 188 359 316 157 1195 
Saw grass 0 0 53 154 294 501 
Mangrove 0 11 0 71 118 200 
 1303 2477 526 750 691 5747 

Total Producers 
Accuracy 48.3% 41.0% 68.3% 20.5% 17.1% 39.6% 

 

Dataset SAR 0416 FR9 was relatively valuable for discerning the Coppice 

class and relatively poor for the Pinelands with significant confusion between it 

and the Coppice class.  The Rockland class achieved a high classification 

accuracy at a 68.3% and with no prominent confusion with any other individual 

class.  Saw grass was confused with Rockland and to a lesser extent Pinelands.  

Mangrove was confused with Saw grass and Rockland. 

The 0510 dataset (Table 4.20) with similar system parameters and the same 

processing filters presents some notable differences that are not readily  
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Table 4.20:  SAR 0510 Frost 9x9 

 Coppice  Pinelands Rockland  Saw grass Mangrove  
Coppice  299 330 20 78 18 745 
Pinelands 592 1589 91 205 159 2636 
Rockland  401 462 249 319 218 1649 
Saw grass 0 0 209 69 156 434 
Mangrove 11 96 0 79 140 326 
 1303 2477 569 750 691 5790 

Total Producers 
Accuracy 22.9% 64.2% 43.8% 9.2% 20.3% 40.5% 

 

explained.  The Coppice class exhibits a much lower accuracy value of 22.9% yet 

similar patterns of confusion with Pinelands and Rockland.  The Pinelands class 

is much more typical as is the Rockland class.  Saw grass was not discernable and 

the results of the Mangrove class are comparable though a slight swap in the 

degree of confusion between Saw grass and Rockland is present in the later.  The 

classification accuracy results for individual scenes demonstrate a great deal of 

variability as is typical when classification processes are applied to singular SAR 

data. 

When compared to the results for individual SAR data, it is clear that 

speckle suppression is a valuable filtering option for improving the value of SAR 

data for surface feature characterization.  To assess the value of speckle 

suppression when processing multiple datasets the multitemporal SAR dataset 

consisting of all of the SAR datasets was processed using the five speckle 
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suppression filter with each of the kernel sizes applied to them.  The results of 

this process are presented in Table 4.21 and Figure 4.3. 

 

Table 4.21:  Average Classification Results for Speckle Suppressed Multitemporal 
SAR (21 scenes)  

 Kernel Size 
Filter 3 5 7 9 11 13 15 

Frost 66.3% 72.6% 75.5% 73.3% 69.6% 64.6% 60.7% 
Gamma-MAP 72.6% 76.5% 80.7% 83.9% 82.3% 80.4% 75.6% 
Local Region 67.7% 73.3% 74.9% 75.2% 73.6% 71.5% 72.7% 
Lee-Sigma 73.0% 78.5% 79.4% 80.5% 80.9% 81.4% 82.3% 

Median 69.9% 75.1% 80.1% 81.6% 83.7% 83.6% 83.8% 
 

 

Once again, the classification accuracy achieved following the application 

of a speckle suppression filter demonstrates significant improvement over the 

accuracy achieved with unfiltered SAR data.  The multitemporal SAR dataset 

discussed in Section 4.5 achieved a classification accuracy of 65.8%.  The same 

dataset with speckle suppression filters applied achieved classification accuracies 

between 60.7% and 83.9%.  As with the averaged results, the general trend seen 

in Table 4.21, and graphically presented in Figure 4.3, is of improving accuracies 

as the kernel size expands until a peak is achieved in the middle kernel range of 

7x7 to 11x11 windows with a tapering off of accuracy values.  The two values 

(64.6% and 60.7%) that fell below the total classification accuracy (65.8%) of the  
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Figure 4.3:  Average Classification Results for Speckle Suppressed Multitemporal 
SAR (21 scenes) 

 

unfiltered multitemporal SAR dataset were from the Frost filter at its largest 

kernels (13x13 and 15x15); all other values surpassed that of the unfiltered 

multitemporal SAR.  It is notable that the Lee-Sigma and Median filters do not 

taper off as the others do and expanding the kernels on those filters would be 

required to determine at what point a maximum accuracy with those filters is 

achieved.   
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The combined filtered SAR datasets result in classification accuracies that 

are comparable to that achieved with multispectral imagery such as the Landsat 

TM data used in this study.  This is a significant result.  In Section 4.12 this issue 

is pursued further to determine the minimum number of datasets required to 

achieve such results by starting with a single date, adding progressive dates, and 

assessing classification accuracy for each combination.  

 

4.7  SAR TEXTURE 

SAR texture processing seeks to characterize differences in surfaces by 

quantifying the texture of DN values in an image.  These differences in texture 

can be used to differentiate or classify an image into categories of land cover.  To 

assess the value of texture for land cover classification, each SAR dataset was 

processed using the Variance texture measure with kernels ranging from 3x3 to 

27x27.  The larger the kernel the broader the area used to assess texture. 

The first set of results presented in Table 4.22 provides the average 

classification accuracy for individual SAR datasets with the Variance texture 

measure at each of the investigated kernel sizes.  The results of this process  
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Table 4.22: Average Classification Accuracy of Variance Texture Measure 

 

indicate that on average the value of texture increases as the kernel size increases 

until it reaches the 15x15 window size.  Texture assessed beyond that size 

appears to provide no further value.  This trend is further apparent in Figure 4.4. 

As was the case with speckle suppression processing, these results 

indicate that there is inherent value in using measures of texture in SAR for land 

cover classification.  The average classification accuracy achieved with unfiltered  

 

 
Figure 4.4:  Average Classification Accuracy of Variance Texture Measure 
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SAR data was 35.8%.  The Variance texture measure improved on this only 

nominally at the 3x3 kernel size but as the kernel expands the classification 

accuracy does as well until a maximum improvement of 16.1% is achieved with 

the 15x15 kernel.  With the spatial resolution of these data this amounts to the 

assessment of texture for surface areas up to 400m x 400m in this study site.  This 

may indicate that texture at this scale and below is meaningful for land cover 

characterization. The value then evens out beyond the 15x15 kernel. Texture 

beyond the 400m scale may not be meaningful for land cover purposes. 

As was the case with processing unfiltered SAR imagery and the speckle 

suppression datasets, averaging the classification accuracy values masks a 

significant amount of variability in the results achieved from any individual 

scene or process.  Figure 4.5 includes the classification accuracy of texture 

datasets at a 15x15 kernel ordered by date.  The accuracy values range between 

45.4% and 60.5% with a standard deviation of 5.1.  An interesting point to note 

regarding this chart is the trend in higher accuracy values toward the wet season 

SAR datasets.  This trend is present in the majority of Variance kernel datasets 

and parallels that seen in the unfiltered SAR processing results, indicating that 

the same phenomenon affecting SAR signal return by season is present in the 

texture of the returned data as well. 
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Figure 4.5:  SAR Classification Accuracy for Variance with a 15x15 Kernel 

 

Due to the variation in results for each dataset, it is not particularly 

valuable to discuss them individually.  However, looking at some of the 

variables discussed in Section 4.3, results from datasets collected with different 

processing parameters, does provide some very intriguing observations. 

No difference was apparent in classification accuracies achieved with 

unfiltered radar datasets when collection mode (ascending and descending) was 

considered (in Section 4.3).  Once a texture measure is applied to the dataset, a 

clear differentiation appears with the average classification accuracy for data 

collected in descending mode resulting in an improvement in accuracy of as 

much as 12.9% over those for ascending mode data (achieved with a 15x15 

Total Accuracy, Time sequential

40.0% 

45.0% 

50.0% 

55.0% 

60.0% 

65.0% 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Dataset Ordered by Date



 

143 

kernel).  Figure 4.6 graphs the average classification accuracy of datasets 

collected in each system mode for each Variance kernel.  There is only a nominal 

difference in accuracy as the kernel expands from 3x3 to 7x7 but beyond that 

point, data collected in descending mode appears to provide a higher 

classification accuracy of approximately 5%.  This trend continues though 

declining in magnitude until at the 27x27 kernel, it is no longer present.   

 

Figure 4.6: Comparative Average Texture Classification Accuracy by System Mode 
and Kernel Size 
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Ascending and descending mode determine the look direction of the 

sensor and the time of collection.  The differences exhibited in Figure 4.6 may be 

due to either of these factors.  With natural vegetation and limited topographic 

variation it is unlikely that look direction is resulting in a significant difference in 

return.  Ascending mode data are collected at approximately 6pm local time 

while descending mode data are collected at approximately 6am local time.  It is 

possible that these time differences may provide an explanation for the 

difference in return and resulting classification accuracy. It could be presumed 

that vegetation in the early morning hours has a higher moisture content then 

vegetation in the evening following a period of extended exposure to the sun. 

A similar differentiation exists when comparing the datasets according to 

angle of incidence (see Figure 4.7).  The differentiation is apparent throughout 

the series though becomes most pronounced when the kernel expands to 15x15 

and beyond.  As Figure 4.7 indicates, the difference between mode 3 and 5 for 

incidence angle is only nominal but beginning with a 5x5 kernel, mode 7 

consistently achieves a higher classification accuracy with a peak improvement 

of 7.2% at the 27x27 kernel.  Based upon these results, it would appear that the 

angle of incidence does impact the texture of an image.  With our understanding 

of the SAR signal returned from different angles of incidence this result is not 

surprising.  Vegetation is known to be a significant factor in SAR texture and 
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Figure 4.7: Comparative Average Texture Classification Accuracy by Angle of 
Incidence and Kernel Size 

 

mode 7 is expected to have a greater return from vegetation.  Whether this is a 

variable that can be consistently captured to accurately characterize land cover is 

the question.  These results indicate that it may be possible but only at greater 

texture window sizes. 

As with the speckle suppression processing of SAR data, all of the 

Variance texture measure SAR datasets were collected into a single 

multitemporal dataset and processed to determine what value texture measure 
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has when applied.  The results of this processing are presented in Table 4.23 and 

Figure 4.8.  The classification accuracies achieved with the multitemporal dataset  

 

Table 4.23:  Multitemporal SAR Classification Accuracy (%)Variance (21 scenes) 

 

 

 

 

Figure 4.8:  Accuracy Results of Texture Measure for Multitemporal SAR (21 scenes) 
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are an improvement over the average values of individual datasets.  However, 

given the classification accuracy of 65.8% achieved with the unfiltered 

multitemporal SAR dataset presented in Section 4.4, there does not appear to be a 

significant value achieved from multitemporal texture datasets.  The overall 

accuracy of multitemporal SAR dataset processed for texture results in a lower 

classification accuracy of 52.2% at a 3x3 kernel and improves as the kernel 

expands but only surpasses the unfiltered multitemporal SAR results when the 

kernel is 11x11 and 27x27 and not to a substantial degree.  The results of the 

speckle suppression processing provided a significant improvement by 

comparison. 

Perhaps more interesting is the variation in differentiation between cover 

types as the texture kernel expands (Figure 4.9).  When the individual land cover 

classes are compared, as opposed to total accuracy, an interesting pattern 

appears.  At the 3x3 kernel, all of the classes start with a classification accuracy 

ranging between 25.2% (Coppice) and 71.8% (Pinelands).  As the kernel expands, 

with the exception of the Mangrove class, all of the classes converge at the 9x9 

kernel with a range from 64.4% to 75.4%.  As the kernel window expands beyond 

9x9, the classification accuracy for the Coppice and Rockland classes improves to 

the upper 80’s and low 90’s while the Pinelands and Saw grass classes range 
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between 50% and 70%.  The classification accuracy of the Mangrove class 

declines from the 5x5 kernel and settles into a range between 20% and 40%. 

 

 
Figure 4.9:  Classification Accuracy of Land Cover Classes for Multitemporal SAR by 

Texture Kernel (21 scenes) 

 

While this clustering of results is not specifically valuable for directly 

classifying land cover relying solely on texture measures, they may provide a 

means for segmenting imagery into broad categories that then may be further 

divided using some other technique or imagery source. 

Classification Accuracy of Land Cover Classes

0.0%

10.0% 

20.0% 

30.0% 

40.0% 

50.0% 

60.0% 

70.0% 

80.0% 

90.0% 

100.0%

var
03

var
05

var
07

var
09

var
11

var
13

var
15

var
17

var
19

var
21

var
23

var
25

var
27

Texture Kernel

Coppice

Pinelands

Rockland Scrub

Sawgrass

Mangrove



 

149 

Based upon the results in this portion of the study, it is clear that texture 

measures provide a means of extracting meaningful information from SAR data 

beyond that which can be achieved directly from unfiltered SAR.  However, in 

this study, texture measures do not provide as valuable a dataset for land cover 

discrimination as speckle suppression does. 

 

 4.8  SAR TEXTURE IN SPECKLE SUPPRESSED DATASETS  

SAR data were then processed to determine the value of measuring 

texture on datasets that have been processed to suppress speckle.  A single 

dataset (SAR 0418) was selected for this operation.  The GM speckle suppression 

algorithm was applied at each kernel size (3x3 – 15x15) resulting in seven 

datasets.  Each was then processed for texture using the Variance texture 

measure at each texture kernel (3x3 – 27x27) resulting in a total of 91 datasets.  

Classification accuracy was then assessed and contingency tables compiled.  For 

comparative purposes the results achieved with SAR 0418 in each of the prior 

sections are included here.   

Table 4.24 presents the contingency table for supervised classification 

results of SAR 0418 as an unfiltered dataset.  The total classification accuracy of 

40.7% is nominally greater than the average achieved for individual unfiltered 
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Table 4.24:  SAR 0418 Unfiltered 

 Coppice  Pinelands Rockland  Saw grass Mangrove  
Coppice  201 336 90 123 64 814 
Pinelands 518 1643 188 234 129 2712 
Rockland  146 168 116 144 113 687 
Saw grass 81 98 174 195 264 812 
Mangrove 28 232 0 54 28 342 
 974 2477 568 750 598 5367 

Total Producers 
Accuracy 20.6% 66.3% 20.4% 26.0% 4.7% 40.7% 

 

SAR datasets.  The producers accuracy achieved in individual classes are 

representative with considerable confusion across classes but a relatively high 

accuracy achieved for the Pinelands class.  The Mangrove class resulted in very 

poor results with the majority of pixels being misclassified as Saw grass. 

The classification results for SAR 0418 with the GM speckle suppression 

filter applied at each kernel size are contained in Table 4.25.  As was the case for 

all of the SAR datasets, the GM filter significantly improved the value of SAR 

0418 for discrimination of land cover categories. 

 

Table 4.25: Classification Accuracy for SAR 0418, Speckle Suppressed 

 

 

Gamma-MAP Kernel Size 
3 5 7 9 11 13 15 

55.9% 53.2% 55.2% 52.7% 52.6% 55.2% 52.5% 
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The contingency table for SAR 0418 with a GM 7x7 kernel (Table 4.26) 

demonstrates considerable improvement in each land cover category except the 

Pinelands class which experienced a slight decline.  Confusion in the Mangrove 

class still exists with the Saw grass but confusion with other categories have been 

reduced resulting in a significant improvement in classification results. 

 
Table 4.26:  SAR 0418 Speckle Suppressed Gamma-MAP 7x7 

 
 

Table 4.27 provides the SAR 0418 texture measure results.  This individual 

dataset reflects the general results found with all of the SAR datasets as  

 

Table 4.27:  Classification Accuracy (%) for SAR 0418, Texture Measure 

 Coppice  Pinelands Rockland  Saw grass Mangrove  
Coppice  627 795 90 93 19 1624 
Pinelands 9 1566 3 57 45 1680 
Rockland  323 105 172 205 92 897 
Saw grass 15 1 150 311 242 719 
Mangrove 0 10 0 84 200 294 
 974 2477 415 750 598 5214 

Total Producers 
Accuracy 64.4% 63.2% 41.4% 41.5% 33.4% 55.2% 

Variance Kernel Size 
3 5 7 9 11 13 15 17 19 21 23 25 27 

27.4 47.3 57.5 59.3 62.1 57.3 58.9 59.0 59.3 60.5 53.1 51.6 49.2 
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discussed in Section 4.2.  The texture measure for SAR 0418 indicates improved 

classification accuracy at the 5x5 kernel and beyond, with a leveling off in the 9x9 

to 21x21 range and then declining as the kernel expands to 27x27.   

Results for SAR 0418 with a 9x9 Variance texture measure are presented in 

Table 4.28.  At this texture kernel, the total classification accuracy is respectable 

for a single dataset at 59.3%.  However, at this kernel size the texture values 

result in the Rockland class being confused with Coppice and Saw grass.  The 

Saw grass class is greatly confused with the Mangrove class. 

 

Table 4.28: SAR 0418 Variance Texture Measure with 9x9 kernel 

 Coppice  Pinelands Rockland  Saw grass Mangrove  
Coppice  605 534 139 74 28 1380 
Pinelands 266 1868 3 19 49 2205 
Rockland  20 23 3 2 2 50 
Saw grass 66 30 160 210 178 644 
Mangrove 17 22 0 445 341 825 
 974 2477 305 750 598 5104 

Total Producers 
Accuracy 62.1% 75.4% 1.0% 28.0% 57.0% 59.3% 

 

While it may be expected that measuring texture in SAR data corrected for 

speckle would provide a more accurate assessment of the texture of surface 

materials, the results of this study do not support this conclusion.  The 

classification accuracy results for every combination of SAR 0418 filtered to 

suppress speckle and then processed for texture are presented in Table 4.29.  In 
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general, classification accuracies achieved are significantly lower than those 

achieved with either speckle suppression or texture measure alone.  In many 

instances the accuracy results are lower than that achieved with the unfiltered 

SAR 0418 datasets. 

Table 4.29:  SAR 0418, Speckle Suppression followed by Variance Texture 

 

Graphing these results (Figure 4.10) reveals an interesting trend, the 

classification accuracy tends to improve as the texture kernel expands.  This 

parallels the results found with the datasets exclusively processed for texture in 

Section 4.7 and is the opposite of the results experienced once SAR texture 

measure data are fused with MSI data as discussed in Section 4.11.  The reason 

for this trend is unknown though it is possibly a function of study site size and is 

discussed more fully in Chapter 5.  The results presented in Figure 4.10 provide 

no indication of an optimum sequence of filtering operations that provides value 

in land cover classification processes. 

 Variance Kernel Size 
GM 3 5 7 9 11 13 15 17 19 21 23 25 27 
3 36.9% 42.5% 44.8% 39.8% 35.9% 37.5% 30.4% 35.6% 47.8% 42.2% 47.5% 50.7% 53.1% 
5 42.6% 40.6% 38.6% 33.5% 33.6% 30.2% 30.0% 36.0% 40.5% 42.7% 43.5% 41.7% 45.9% 
7 31.8% 30.5% 30.6% 36.9% 35.1% 31.8% 37.4% 39.1% 41.3% 44.7% 42.6% 39.7% 46.1% 
9 29.7% 48.0% 34.1% 35.5% 40.7% 42.4% 36.7% 46.0% 45.1% 43.2% 50.0% 44.0% 43.2% 

11 25.2% 41.5% 34.1% 36.9% 31.3% 33.8% 34.1% 37.0% 38.2% 50.4% 37.3% 52.6% 57.1% 
13 23.9% 12.6% 51.0% 51.0% 45.1% 35.2% 36.2% 32.3% 44.8% 46.5% 48.5% 48.5% 47.7% 
15 41.9% 22.9% 48.7% 31.3% 30.8% 33.0% 49.0% 51.3% 38.8% 28.1% 33.9% 45.8% 47.1% 
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Figure 4.10:  SAR 0418 Speckle Suppressed followed by Variance Texture Measure 

 

For the purpose of comparison, the contingency table for SAR 0418 processed to 

suppress speckle with a GM 7x7 filter, and then measured for texture using the a 

Variance 9x9 filter is included (Table 4.30).  Compared to the results presented in 

Table 4.24, Table 4.26, and Table 4.28, the results of a sequential processing 

operation are significantly lower.  The data in the sequentially processed version 

of SAR 0418 have been degraded to such a degree that it is less valuable than the 

original unfiltered SAR dataset. 
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Table 4.30:  SAR 0418 GM 7x7 followed by Variance Texture Measure at 9x9 

 Coppice  Pinelands Rockland  Saw grass Mangrove  
Coppice  320 777 123 101 82 1403 
Pinelands 407 1144 37 47 13 1648 
Rockland  204 482 165 234 150 1235 
Saw grass 29 51 180 153 177 590 
Mangrove 14 23 0 215 176 428 
 974 2477 505 750 598 5304 

Total Producers 
Accuracy 32.9% 46.2% 32.7% 20.4% 29.4% 36.9% 

 

When visually reviewing the image dataset resulting from the Variance 

texture measure following speckle suppression, it is clear that the Variance 

texture measure may not be an appropriate tool for assessing texture in speckle 

suppressed data.  While the GM filter suppresses speckle across broad regions of 

an image, variability is preserved in edges with significant change, such as land-

water boundaries.  In these areas speckle is not suppressed.  When the Variance 

texture measure is applied to a GM suppressed dataset, edges retain high 

variability (speckle) while core areas are homogenized.  As a result, edges 

produce a higher variance value while core areas elicit no variance or minimal 

variance.  The Variance texture measure following a GM speckle suppression 

filter produces a dataset similar in appearance to that produced by a high-pass 

filter.  It is possible that the Variance texture measure is an inappropriate filter to 

apply to speckle suppressed data as none of the speckle filters investigated in 
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this study provided worthwhile results when followed by a Variance texture 

process. 

 

4.9  LANDSAT TM FUSED WITH UNFILTERED SAR 

The first investigation of the efficacy of combining SAR data with 

multispectral data was performed using raw unfiltered SAR data with the 

Landsat TM dry season and wet season datasets.  Each SAR dataset was 

combined first with Dry TM then with Wet TM, the standard supervised 

classification processing was performed and an accuracy assessment determined.  

Given the number of datasets involved (21 SAR combined with each of 2 Landsat 

TM datasets for a total of 42) the results are presented here in aggregate and 

compared with the results of the exclusively TM or SAR datasets. 

Combining individual SAR datasets with each TM dataset resulted in a 

nominal improvement over the results of each TM dataset alone.  The values for 

the TM_SAR dataset presented in Table 4.31 constitute the average values for the 

42 combinations of SAR and TM data, the values for SAR are the average results 

for 21 SAR datasets while the results for Dry_TM and Wet_TM are for the 

individual scenes.  Adding TM data to SAR data significantly improves the 
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classification results while adding SAR data to TM only nominally improves 

results. 

 

Table 4.31:  TM and Unfiltered SAR Classification Results 

Producers Accuracy 
Dataset 

Total 
Accuracy Coppice  Pinelands Rockland  Saw grass Mangrove 

TM_SAR 82.9% 89.2% 84.1% 65.6% 77.1% 77.1% 
Dry_TM 80.6% 89.2% 81.8% 70.5% 77.9% 70.7% 
Wet_TM 80.7% 93.1% 84.5% 57.8% 77.9% 62.7% 

SAR 35.8% 16.0% 52.2% 37.6% 21.9% 26.2% 

 

By dividing the 42 combinations by season it is possible to discern any 

advantage from cross season data integration.  In Table 4.32 the results from the 

42 combined datasets are grouped according to data type and season, providing  

 

Table 4.32:  Average Classification Accuracy by Season Combination 

Producers Accuracy 
Dataset 

Total 
Accuracy Coppice  Pinelands Rockland  Saw grass Mangrove 

Dry_TM  
Dry_SAR 83.0% 91.8% 86.2% 83.2% 68.9% 73.0% 

Dry_TM  
Wet_SAR 84.0% 91.7% 86.6% 84.3% 69.0% 74.6% 

Wet_TM  
Dry_SAR 82.8% 93.3% 81.4% 82.4% 82.3% 77.4% 

Wet_TM 
Wet_SAR 82.2% 87.2% 83.0% 67.8% 85.5% 78.6% 

 

each seasonal combination as a set of averages for the corresponding datasets.  

The total accuracy for each combination is in line with the overall TM_SAR 
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accuracy in Table 4.31.  However, it is worthwhile noting that the combination of 

Dry_TM and Wet_SAR did result in a nominally higher classification accuracy.  

This is notable given the fact that the wet season SAR datasets when processed 

individually tended to result in higher classification accuracies than those 

collected in the dry season. Also notable is the fact that the SAR data when 

combined with Wet_TM provided a better means of discerning the Saw grass 

class than the SAR data combined with Dry_TM. 

While the results of combining unfiltered SAR with TM data provide only 

nominal improvement over the TM datasets exclusively, the speckle suppression 

and texture filtering of SAR data may improve on this.  The combination of 

Dry_TM and Wet_SAR resulting in a slightly higher classification accuracy may 

indicate that there is an advantage to cross-season integration.  Collecting MSI 

data when conditions are optimal (in the dry season) and SAR data when 

conditions are not optimal for MSI and combining the datasets may result in 

improved classification and improved discrimination of certain cover types over 

single date MSI data alone. 
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4.10  LANDSAT TM FUSED WITH SPECKLE SUPPRESSED SAR 

Speckle suppression processing of SAR data significantly improved its 

utility for land cover classification.  One of the principal goals of this project was 

to determine if this advantage can be leveraged in combination with MSI to 

improve on standard land cover results achieved with MSI. 

In Table 4.33, the classification results of combined speckle suppressed 

SAR data and the MSI data are presented.  As with the speckle suppressed SAR  

 

Table 4.33:  Fused TM and Speckle Suppressed SAR Average Accuracy Results 

 Kernel Size 
Filter 3 5 7 9 11 13 15 

Frost 84.7% 84.8% 85.0% 85.1% 85.2% 85.1% 85.2% 
Gamma-MAP 84.9% 85.2% 85.4% 85.5% 85.5% 85.3% 85.2% 
Local Region 84.8% 84.8% 85.0% 85.2% 85.2% 85.4% 85.3% 
Lee-Sigma 84.9% 84.9% 85.1% 85.2% 85.4% 85.4% 85.4% 
Median 84.9% 85.2% 85.2% 85.5% 85.5% 85.5% 85.2% 

 

results presented in Section 4.6, these results are averages of total classification 

accuracy results for all SAR date and TM date combinations by speckle 

suppression filter and kernel size. 

The most notable observation regarding these results is the marginal 

improvement in classification accuracy achieved when the Landsat TM and 

speckle suppressed SAR are processed as a fused dataset.  As presented in Table 
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4.1 in Section 4.1, processing of the Landsat scenes resulted in classification 

accuracy of at best 80.7%.  Landsat TM combined with unfiltered SAR provided 

an average classification accuracy of 82.9%.  Table 4.33 shows that in this study, 

speckle suppressed SAR combined with Landsat TM only improved on the 

unfiltered SAR by 2-3 percentage points.  As the kernel window expands from 

3x3 to 15x15 there is marginal improvement.   

There appears to be some minor though consistent differences between 

speckle suppression filters.  These become more apparent when presented in 

graph form (Figure 4.11).  The GM and Median filter provide the largest 

improvement in average classification accuracy in the smaller kernel window 

sizes before tapering off after the 11x11 and 13x13 kernel sizes.  The other three 

filters also provide improved classification accuracy as the kernel expands but 

level off at a lower accuracy and then decline at the largest windows. 

For comparative purposes, one of the datasets with the higher 

classification results was selected to assess how it differed from the purely SAR 

and purely TM results.  The fused dataset that contained Dry TM and SAR 1203 

(wet season) provided a total classification accuracy of 88.6%.  The results of all 

of the combinations of processing applied to this data combination are contained 
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Figure 4.11:  Fused TM and Speckle Suppressed SAR, Average Accuracy Results 

 

in Table 4.34 though only one of the 35 speckle suppression processes is included 

(Gamma-MAP, 9x9 (GM09)). 

 

Table 4.34: Classification Results for Dry TM and SAR 1203 

Producers Accuracy 
Dataset 

Total 
Accuracy Coppice  Pinelands Rockland  Saw grass Mangrove 

SAR 1203 35.8% 16.0% 52.2% 37.6% 21.9% 26.2% 
1203-GM09 56.2% 69.1% 60.7% 63.3% 46.7% 22.7% 

Dry_TM 80.6% 89.2% 81.8% 70.5% 77.9% 70.7% 
TM/SAR 85.2% 90.0% 87.7% 83.5% 79.3% 74.5% 
TM/SAR-

GM09 88.6% 93.2% 88.9% 84.6% 88.8% 81.2% 
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With each stage of processing classification results improve.  SAR filtered 

to suppress speckle improves on unfiltered SAR, SAR combined with TM 

improves on TM alone, speckle suppressed SAR combined with TM provides the 

best results.  A notable point regarding the TM/SAR-GM09 results concerns the 

accuracy results of the Saw grass and Mangrove classes.  For the most part, the 

speckle suppressed SAR dataset does not provide significant improvement over 

the unfiltered SAR combined with TM (Table 4.31) with the exception of the Saw 

grass and Mangrove classes.  In these two categories the filtered SAR combined 

with TM provide an improved discrimination of 9.5% for the Saw grass class and 

6.7% for Mangrove when compared to the unfiltered SAR dataset combined with 

TM.  Note that this value is only achieved when the SAR and TM are combined, 

the results for 1203-GM09 for those two classes were not particularly noteworthy 

in and of themselves. 

 

4.11  LANDSAT TM FUSED WITH SAR TEXTURE  

The averaged results of the TM datasets combined with SAR Variance 

texture measure datasets are presented in Table 4.35, and graphically in Figure 

4.12.  At small window sizes the SAR texture data provides a moderate 

improvement in classification accuracy when combined with Landsat TM.  The 
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 Table 4.35:  Fused TM and SAR Texture Measure Average Accuracy (%) Results 

 

improvement is comparable to that achieved with unfiltered SAR data.  

However, contrary to expectation, the value of a SAR texture measure dataset 

declines as the kernel expands.  At a 7x7 kernel the classification results are 

comparable to TM data with no accompanying SAR dataset and steadily declines 

through the 27x27 kernel.  This trend is the opposite of what was experienced  

 

 

Figure 4.12:  Fused TM and SAR Texture Measure Average Accuracy Results 
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with the exclusively SAR texture data discussed in Section 4.5.  Rather than 

improving and then leveling off as the kernel expands, based on these results the 

SAR texture data actually impairs the ability of the Landsat TM data to 

discriminate land cover. While these data in Figure 4.12 are averaged results, this 

downward trend is present regardless of the other variable investigated with no 

apparent difference in Collection Mode, Incident Angle, or Seasonality.  

When comparing the classifications results divided into ascending and 

descending collection mode, the same divergence that was apparent with the TM  

 

 
Figure 4.13:  Fused TM and SAR Texture Measure by Collection Mode 
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and unfiltered SAR results presented in Figure 4.13 is manifest in these results.  

There is limited difference in results until the kernel expands to 9x9 at which 

point the results for ascending mode data declines more rapidly than the results 

for descending mode data.  In Figure 4.6 where exclusively SAR data were 

processed, the descending mode data also exhibited higher results, though in an 

improving fashion as the kernel expanded. 

One set of results that are confounding regarding the comparative 

classification accuracy of TM and SAR texture measure are those divided by  

 

 
Figure 4.14:  Fused TM and SAR Texture Measure by Incident Angle 
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incident angle.  The results of individual SAR texture measure datasets indicated 

only a nominal difference between mode 3 and 5 while mode 7 diverged notably 

and in a positive sense beyond the 13x13 kernel (Figure 4.7).  With the fused TM 

and SAR data (Figure 4.14) mode 3 and 5 again provide comparable results but 

mode 7 diverge for the worse, and across the range of kernels.    

One area where an earlier trend is apparent that does perhaps prove meaningful 

is regarding the combination of data by season.  Though the overall classification 

results are declining as the kernel expands, the combination of dry season TM 

 

 

Figure 4.15:  Comparative Average Classification of TM/SAR Texture 
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data with wet season SAR texture measure (Figure 4.15) continues to provide the 

highest classification accuracy.  This again indicates that there may be value in 

combining SAR and TM data from different seasons to maximize their value. 

 

4.12:  VARIOUS COMBINATIONS 

MSI and SAR data were fused in different combinations to determine 

what value could be gained from integrating datasets.  The first set of processes 

performed was on SAR data to determine the efficacy of processing a single layer 

into multiple datasets, combining them, and using them to perform a 

classification of land cover.  In this case one dry season (SAR 0418) and one wet 

season (SAR 1203) dataset were selected.  Each was processed for every 

combination of speckle suppression and Variance (VAR) texture measure, 

combined into a single dataset, and classifications were run on combinations of 

the unfiltered dataset with different filters and kernel size.  Figure 4.16 presents 

the results of SAR 0418. 

As presented in Table 4.4, unfiltered SAR 0418 resulted in a classification 

accuracy of 40.7%.  When this dataset is combined with a version of itself that has 

been processed for speckle suppression with a GM filter, the results improve 

approximately 14%.  When SAR 0418 is combined with a texture measure filter, 
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Figure 4.16:  Unfiltered SAR 0418 and Filtered SAR 0418 Datasets 

 

the results improve as the kernel expands from 3x3 - 11x11 to a peak 

improvement of nearly 10% above the original data and then slowly decline as 

the kernel expands to 27x27.   

These results indicate that improved land cover classifications can be 

achieved by combining filtered versions of a dataset with its unfiltered version.  

To test this further, the SAR 0418 dataset was then combined with a single GM 

instance and a single texture instance to determine if the three collectively could 

further improve results.   
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Table 4.36 is the contingency table for SAR 0418 combined with GM 7x7 

and VAR 11x11.  The combination of three datasets generated from this single 

date has resulted in a total classification accuracy of 64.2%.  This is a 23.5% 

improvement over the unfiltered version of SAR 0418. 

 

Table 4.36:  SAR 0418 as Three-banded Image (Unfiltered, GM7, VAR11) 

 Coppice  Pinelands Rockland  Saw grass Mangrove  
Coppice  852 453 79 63 13 1460 
Pinelands 277 1782 29 24 4 2116 
Rockland  102 60 321 38 5 526 
Saw grass 9 163 46 564 500 1282 
Mangrove 63 19 0 61 76 219 
 1303 2477 475 750 598 5603 

Total Producers 
Accuracy 65.4% 71.9% 67.6% 75.2% 12.7% 64.2% 

 

Note that the selection of the Variance kernel size has a significant impact 

on the results of this combined dataset.  When the same process was performed 

with SAR 0418 combined with GM 7x7 and VAR 5x5, the total classification 

accuracy dropped to 49.0%.  The Variance filter in this case subtracted from the 

value of the unfiltered and GM combination. 

SAR 0418 filtered combinations were then fused with Dry TM to 

determine the value of combining multiple filtered instances of SAR data with 

TM data.  The results of these as well as the SAR combinations are contained in 

Table 4.37.  The combinations of datasets are as follows: 
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A) 3-band dataset (Unfiltered SAR, GM7, VAR11) 

B) 3-band dataset (Unfiltered SAR, GM7, VAR5) 

C) 9-band dataset (DryTM, Unfiltered SAR, GM7, VAR11) 

D) 8-band dataset (DryTM, GM7, VAR11) 

E) 8-band dataset (DryTM, Unfiltered SAR, GM7). 

 

Table 4.37:  SAR 0418 Process Combinations with Dry TM 

 Producers Accuracy 

Dataset 
Tot.  

Accuracy Coppice Pinelands Rockland Saw grass Mangrove 
A 64.2% 65.4% 71.9% 67.6% 75.2% 12.7% 
B 46.2% 40.1% 65.2% 12.2% 38.1% 33.6% 
C 80.6% 95.6% 91.8% 42.3% 81.7% 42.7% 
D 81.2% 95.5% 91.9% 47.5% 80.1% 44.7% 
E 87.1% 95.6% 91.0% 82.3% 75.5% 73.1% 

 

When combined with Dry TM, the SAR 0418 combination provides a total 

classification accuracy of 80.6%.  This is no better than the TM dataset when 

processed alone.  However, when the Variance texture measure dataset is 

dropped from the fused dataset, the classification improves to 87.1%.  Clearly, 

the Variance dataset is contributing confusion to the classification process, 

especially in the Rockland and Mangrove classes where the most significant gain 

is achieved by its exclusion.  The accuracy result with dataset E is comparable to 
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the results achieved from the combination of DryTM and WetTM as presented in 

Section 4.1, Table 4.3.  Essentially, a single TM date combined with a single SAR 

date (in unfiltered form coupled with a GM07 speckle suppressed form) provides 

a classification accuracy comparable to two TM datasets from different dates. 

To further investigate and validate these results, wet season SAR 1203 was 

processed in similar combinations as SAR 0418 just discussed.  Figure 4.17  

 

 

Figure 4.17:  Unfiltered SAR 1203 Coupled with Filtered SAR 1203 Datasets 

 

presents the results of unfiltered SAR 1203 coupled with each instance of SAR 

1203 processed to suppress speckle and processed to measure texture.   
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The results are closely in line with those experienced with SAR 0418 

(Figure 4.16).  Unfiltered SAR coupled with a GM speckle suppression version of 

itself improves classification accuracy and the results improve as the kernel 

expands to a peak at the 9x9 filter with a nominal decline out to the 15x15 kernel.  

When coupled with a Variance texture measure of itself, the classification results 

improve to the 11x11 kernel window and then steadily decline as the kernel 

expands to 27x27.  When processed as a single unfiltered SAR dataset, SAR 1203 

resulted in a classification accuracy of 35.4% (see Table 4.4).  When coupled with 

a speckle suppressed version of itself the accuracy of classification improves to 

47.1% at GM 3x3 and 57.0% at GM 9x9.  When coupled with Variance texture 

measure instances of itself, classification accuracy results actually decline at 3x3 

and 5x5 kernels before improving to 37.9% at a 7x7 kernel and peaking at 47.4% 

at an 11x11 kernel. 

SAR 1203 combined with  GM 7x7 and VAR 11x11 instances of itself result 

in a classification accuracy of 59.2% (Table 4.38) providing an improvement of 

23.8% over SAR 1203 unfiltered, a 4.6% improvement over SAR 1203 coupled 

with its GM 7x7 instance and an 11.8% improvement over SAR 1203 coupled 

with VAR 11x11.  As was demonstrated with the SAR 0418 dataset, combining an 

unfiltered SAR dataset with filtered version of itself appears to maximize the 

information content of the SAR dataset.   
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Table 4.38:  SAR 1203 as Three-banded Image (Unfiltered, GM7, VAR11) 

 Coppice  Pinelands Rockland  Saw grass Mangrove  
Coppice  852 370 79 59 16 1376 
Pinelands 277 1739 29 5 0 2050 
Rockland  102 172 321 200 108 903 
Saw grass 9 24 46 341 447 867 
Mangrove 63 172 0 145 120 500 
 1303 2477 475 750 691 5696 

Total Producers 
Accuracy 65.4% 70.2% 67.6% 45.5% 17.4% 59.2% 

 

When different instances of SAR 1203 are combined with Dry TM the 

results are again consistent with those experienced with SAR 0418 (Table 4.37).  

Dry TM combined with the 3-banded version of SAR 1203 or when combined 

with GM7 and VAR11 provides results no better than Dry TM alone (Table 4.1), 

but when the Variance texture dataset is dropped, Dry TM coupled with an 

unfiltered instance of SAR 1203 and its GM7 instance provides a classification 

accuracy of 87.8% comparable to two Landsat TM scenes combined.  These 

results again indicate that a single TM scene combined with a single SAR dataset 

can be used to generate results comparable to two TM scenes. 

One of the goals of this study is to assess the value of cross-season SAR 

and MSI combinations.  SAR 0418 was collected during the dry season and as 

such Table 4.36 provides an example of Dry TM combined with dry season SAR 

data.  SAR 1203 was collected during the wet season providing an example of 
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Dry TM combined with a wet season SAR dataset (Table 4.39).  Both 

combinations prove to be valuable in this case. 

 
Table 4.39:  SAR 1203 Process Combinations with Dry TM 

 Producers Accuracy 

 
Tot.  

Accuracy Coppice Pinelands Rockland Saw grass Mangrove 
Unfiltered+ 

GM7+VAR11 59.2% 65.4% 70.2% 67.6% 45.5% 17.4% 

Unfiltered+ 
GM7+VAR5 48.1% 47.9% 55.3% 68.6% 40.3% 14.6% 

DryTM+ 
Unfiltered+ 

GM7+VAR11 
80.6% 92.4% 89.1% 30.6% 78.7% 68.2% 

DryTM+  
GM7+VAR11 80.8% 92.6% 89.1% 32.1% 77.9% 69.6% 

DryTM+ 
Unfiltered+ 

GM7 
87.8% 93.0% 88.7% 83.2% 86.7% 79.0% 

 

The processing of multitemporal SAR classification results discussed in 

Section 4.3 and 4.4 demonstrated that SAR data collected from multiple instances 

in time can provide land cover classification results comparable to that achieved 

with multispectral MSI data, especially when a speckle suppression filter is 

applied to raw SAR data (Table 4.20).  One question that arises from this 

determination is how many SAR datasets are required to achieve results 

comparable to a single 6-banded MSI dataset. 

The multitemporal SAR dataset processed with a GM filter at a 9x9 kernel 

was used to determine at what point multitemporal SAR provides results 
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comparable to a single Landsat TM scene used in this study (classification 

accuracy of ~80%).  Two methods were used to select SAR dates to assess in this 

process.  Randomly selected SAR GM09 dates were accumulated and a 

classification process run against them in an effort to determine a value based on 

no control over contributing datasets.  Also, a separability process (Transformed 

Divergence) was applied to the entire SAR collection to determine the best 

datasets to use as a 1-date, 2-date, 3-date, …. 12-date, combination. 

As Figure 4.18 demonstrates, adding SAR dates as additional bands 

improves the accuracy of a land cover classification process.  In this case, the  

 

 

Figure 4.18: Multitemporal SAR GM09 Classified as Multiband Images 
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greatest improvement is found as the 4th and 5th dates are added either 

selection process and the greatest value is achieve at the 7th date with 

transformed divergence selection and the 8th date with random selection.  The 

classification results achieved are comparable to a single Landsat TM dataset 

with the 6th date when a band selection tool is used and the 8th date with 

random selection.  No further improvement is realized as additional dates 

beyond the 7th or 8th are added. 

The MSI data used in this analysis consisted of Landsat 5 TM data with 

three visible light bands and three infrared bands.  Many imaging systems, 

especially in the higher spatial resolution sector, have a limited number of 

spectral bands with three visible and one infrared being common.  To assess the 

value of adding SAR to a limited MSI dataset, DryTM was limited to bands 1-4 

and couplings of unfiltered and speckle suppressed (GM09) were added in 

random date assignments to see at what point multi date SAR images would 

bring the value of a MSI that consisted of visible plus one IR band up to that of a 

more comprehensive MSI dataset such as those collected by Landsat TM.  The 

results of this analysis are presented in Figure 4.19.  

A classification of DryTM bands 1-4 resulted in a total classification 

accuracy of 72.8%.  As presented in Figure 4.19, a single SAR date (as a 2-band 
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coupling of unfiltered and GM09 of the same date) brings a limited MSI dataset 

on par with a 6-band Landsat TM dataset (classification accuracy of ~80%).   

 

 

Figure 4.19:  DryTM B1-B4, Combined with SAR Couple (Unfiltered, GM09) 

 

Additional SAR dates added in cumulatively improve on the total classification 

accuracy with five dates providing a maximum benefit.  Beyond 11 dates the 

classification accuracy declines.  The additional SAR dates may add a confusion 

factor rather than an advantage in classification.  As presented in Figure 4.18, 

adding additional SAR scenes beyond eight provided no further value. 

 The Transformed Divergence separability tool was applied to the 

collection of unfiltered SAR, speckle suppressed SAR processed with a GM 9x9 

kernel, and DryTM and WetTM as a combined dataset.  The datasets/bands 
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identified as the best to use for these land cover categories were then processed 

as 1 – 12 band combinations.  In addition, a combination of the best TM and best 

GM09 bands were processed as couples to compare the value of the fused data 

sources.  This translates to 2-24 band data series and set of results.  Figure 4.20 

presents the results of this process.  Note that the SAR GM09 Best Dates series 

was already presented in Figure 4.18 and is repeated here. 

 The SAR Unfiltered datasets provides a typically low classification 

accuracy with a steady improvement as dates are added.  When processed to 

suppress speckle (in this case with a GM9x9 filter) the same trend is seen but 

with significantly better results.  The 6th date added provides classification 

accuracy results equivalent to a single 6-banded MSI dataset such as one 

provided by the Landsat TM sensor.  The TM best bands selection provides 

excellent results with a best 3-band combination (WetTM band 1(Blue), DryTM 

band 4(NIR), and DryTM band 5(SWIR)) from two TM dates providing results 

equivalent to a single 6-banded TM dataset.  The significant increase in water 

surface area in the WetTM scene may explain the value of band 1 from that date.  

As additional bands are added, the accuracy results improve to a peak of just 

over 87% for the full 12 bands. 

 When combining TM bands with speckle suppressed SAR the value of the 

combination is quickly apparent.  The TM SAR GM09 Best Bands data series 
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surpasses a single TM dataset with the inclusion of two TM bands (WetTM band 

4(NIR) and DryTM band 5(SWIR)), combined with two GM09 processed SAR 

(0401 and 0510, both dry season dates).  The peak accuracy is achieved with  
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Figure 4.20:  Dataset Selection Using Transformed Divergence 

 

between five and seven MSI and speckle suppressed best-band combinations 

with accuracy results in the area of 90%. The accuracy then tapers off slightly.  

These results reinforce the value of combining MSI and SAR datasets, especially 

when multiple datasets are available over an extended time period. 



 

180 

As a final point of investigation, both TM dates were combined with all 

SAR dates processed to reduce speckle with a GM09 filter and the results 

assessed.  Table 4.40 presents the contingency table of the accuracy assessment 

for this combination of data.  The total accuracy of 91.3% is the highest achieved 

in this project.  Note that the Mangrove class proves to be the most problematic 

with regards to successful classification.   

 

Table 4.40:  DryTM, and All SAR Processed at GM09 

 Coppice  Pinelands Rockland  
Saw 
grass Mangrove  

Coppice  1249 52 10 0 0 1311 
Pinelands 25 2377 2 0 0 2404 
Rockland  27 19 552 33 271 902 
Saw grass 1 19 0 710 28 758 
Mangrove 1 10 0 7 392 410 
 1303 2477 564 750 691 5785 

Total Producers 
Accuracy 95.9% 96.0% 97.9% 94.7% 56.7% 91.3% 
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5.0  DISCUSSION AND FUTURE RESEARCH 
 
 
 
 
5.1  DISCUSSION 

The value of MSI for land cover characterization is well documented 

throughout the scientific literature.  This study certainly reinforces this fact in 

that with MSI alone, a decent assessment of land cover was possible for the study 

site.  Multitemporal MSI is clearly even more valuable by providing a means for 

capturing and assessing phenological differences in vegetation across growing 

seasons or climate patterns.  If weather conditions were never a problem, multi 

date MSI provides the best source of information for characterizing the surface of 

the earth.  Unfortunately, weather is a significant issue in many regions of the 

world.  This research provides considerable evidence that MSI data can be 

suitably supplemented with SAR data to effectively assess land cover.  This 

proves to be most useful in instances where a single MSI dataset can be acquired 

and then fused with SAR datasets collected over time periods that include 

seasonal changes in vegetation.  The particular value of acquiring SAR is the 

opportunity to exclude issues related to weather conditions and cloud cover. 
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While this research did not focus on maximizing the value of MSI for land 

cover characterization, it is likely that improved classification accuracies could 

have been achieved solely utilizing MSI by applying some basic filtering 

techniques such as a majority filter to classification results.  Furthermore, the use 

of band ratioing techniques or other transformations may also improve the 

results of the MSI processing. 

Single date SAR datasets do not prove to be of much value for consistently 

discriminating vegetated land cover categories.  The variability in backscatter for 

similar land covers across individual scenes constitutes a significant barrier to 

achieving consistent homogenous land cover characterization.  This variability is 

largely due to the presence of speckle.  In this study there did appear to be some 

value to SAR data collected in wet season conditions over that collected in dry 

season conditions.  Whether this was due to the moisture content of vegetation or 

to a change in the surface matrix (moist soil or increased standing water) of the 

vegetation classes considered could not be determined and was not the focus of 

this research.  There was no clear value to varying the incident angle of SAR nor 

a clear difference derived from orbit (ascending collection vs. descending 

collection).  The orbit result was expected but the incident angle results are likely 

only applicable to this particular study site.   

There was a respectable value to SAR data combined into a multitemporal 

dataset.  Time series SAR data should be considered a worthwhile source of 
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information especially where growing season variations can be leveraged (such 

as crop calendars) and MSI data are of limited availability.  It should be noted 

that multitemporal data are similar to multispectral data in that individual 

datasets (bands) record changes in time rather than changes in spectral response.  

Discrimination may not be precisely as accurate as those achieved with MSI but 

faced with a data vacuum, multitemporal SAR certainly provides some value.  

Also of note in this study is the fact that a limited collection of wet season images 

(eight) proved more valuable than a more extensive set of dry season data 

(thirteen).  This may be because most vegetation growth occurs during the wet 

season and a sampling of points in time across that season capture appropriate 

magnitudes of change to characterize the land cover more effectively.  During 

the dry season vegetation senesces or is in a more dormant state so there is 

limited change over time to leverage. 

Processing SAR to suppress speckle is clearly essential to maximizing its 

value.  In this study, speckle suppression using moderate kernels (7x7and 9x9) 

proved most valuable.  While a number of speckle suppression techniques were 

tested and the GM was deemed most valuable, any of the five algorithms 

assessed increased the value of SAR for land cover classification over unfiltered 

SAR.  There was still a great deal of variation between scenes collected with 

different system parameters on different dates and this variation was not 

consistent.  As such, no conclusions could be drawn on the most appropriate 
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system parameters (incident angle and orbital path) utilizing speckle suppressed 

data as was the case with the unfiltered datasets.   

Similar to the findings with speckle suppression applied to SAR, texture 

measures also provide some value improving the classification accuracy of SAR 

data by utilizing its texture qualities.  What was not assessed here was the role of 

scale when integrating texture measures calculated from SAR.  Since texture is a 

fractal phenomenon, it is possible that more value could be gained by assessing 

texture at multiple scales (for example a local scale utilizing small kernels and a 

broader scale utilizing larger kernels).  The scale factor is a multidimensional 

problem that would be difficult to effectively assess due to the combination of 

scale factors.  SAR imagery has a pixel resolution that differs from its spatial 

resolution (ground sample distance or GSD).  Furthermore, the land cover types 

assessed have textures that manifest at different scales depending on the 

interaction of SAR GSD and land cover characteristics.  The texture of vegetation 

classes may vary across incident angles given these scale factors as well.  Finally, 

the size of calibration and validation sites factor into appropriate scales at which 

to assess texture. 

One factor that proved interesting though not readily understandable is 

the fact that a multitemporal speckle suppressed SAR dataset was more valuable 

than a multitemporal texture measure dataset.  This could indicate that for this 

study site backscatter changes over time (perhaps seasonal variation in 
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vegetation) while texture does not.  It may also indicate that the seasonal changes 

in SAR return were an indication of vegetation changes rather than surface 

matrix.  Moist soil and more surface pooling of water during the wet season 

would translate to a significant change in texture that should have permitted a 

greater discrimination of land cover classes, yet this did not prove to be the case.  

In any event, texture variations across land cover classes were not substantial 

enough to provide the degree of value that speckle suppression did. 

One of the goals of speckle suppression is to preserve the surface response 

of SAR data while suppressing the artificial speckle noise inherent in the system.  

In this study it was determined that while speckle suppressed SAR data are 

valuable, texture measures calculated on speckle suppressed SAR are definitely 

not.  A single texture measure was utilized in this study (Variance) and there are 

many others that have been developed and successfully applied to remotely-

sensed data.  It is possible that the Variance texture measure may not be applied 

appropriately following speckle suppression.  Testing other texture measures 

following speckle suppression is warranted. 

One factor that may contribute to this may be the simple fact of data 

degradation.  From an imagery purist perspective, there is a point at which 

sending data through a sequence of processes, ostensibly to improve its value, 

may have the opposite effect.  The greater the number of processes applied, the 

more removed the dataset becomes from its original (actually measured) 
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condition.  In this study data were speckle suppressed, resampled to the MSI 

spatial resolution, and a texture measure then applied.  Such multistage 

processing should be pursued with caution. 

Fusing MSI data with SAR sources does prove to offer some value when 

attempting to characterize land cover.  In this study, the greatest value was 

achieved using speckle suppressed SAR especially when multiple dates were 

included.  It does indicate that SAR can provide significant value to MSI 

especially in instances where limited MSI data are available or weather 

conditions consistently preclude their acquisition.  MSI fused with speckle 

suppressed SAR was consistently valuable while fusion with SAR texture 

measure was only nominally so and only at small kernel sizes (essentially local 

texture rather than regional texture).   

A notable and interesting discovery in this research was the value of SAR 

processed as couples.  Essentially, this constituted a single unfiltered date of SAR 

data coupled with a speckle suppressed version of itself as a two-banded dataset.  

The combination achieved respectable classification accuracies for SAR data 

when compared to either dataset individually.  This value was even more 

pronounced when the SAR couple was combined with an MSI dataset.  The SAR 

couple proved to be equal in value to a second MSI dataset from an opposing 

season. 
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5.2  FUTURE RESEARCH 

As is the case with many research projects, while this one has answered 

many questions it has equally raised a number of questions that warrant further 

investigation.  Chief amongst these is determining the impact of processing SAR 

data at the system resolution rather than the ground resolution.  This is an 

especially important issue when considered in conjunction with speckle 

suppression and texture processing.  Collins et al., (1998) indicated that texture 

processing should occur at the pixel spacing scale rather than the ground 

resolution.  It may prove to be more valuable to process SAR data at the pixel 

resolution and resampling MSI data to match rather than the other way around.  

The resampling of SAR data to match with a coarser spatial resolution MSI 

dataset results in a significant amount of data loss.  One consideration here may 

also be the possibility of fusing RADARSAT SAR at its pixel resolution (12.5m) 

with pan-sharpened Landsat 7 ETM+ datasets. 

Also worth pursuing is the relationship among calibration and validation 

site sizes and SAR filter kernel sizes.  It is possible that some of the classification 

results of filtered SAR datasets especially at broader kernel sizes were impacted 

by the dimensions of the study sites.  It is likely that the size of calibration and 

validation sites may significantly impact the results of this kind of analysis.  As 

the kernel size expands to be comparable to the size of calibration and validation 
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sites, any values resulting from a filter process incorporate data falling outside of 

the calibration/validation sites.  As a result, land cover outside of the study sites 

is impacting values arrived at inside of study sites.  This may account for the 

apparent leveling off of accuracies achieved with the SAR texture processes at 

greater kernel sizes, as well as the decline in classification results when those 

datasets were combined with TM data.  The hypothesis is that the classification 

results achieved for single SAR texture measure datasets reflected the smoothing 

effect of the large kernels and not an inherent texture assessed for the land cover 

categories.  When combined with TM data that retained information 

characteristic of the land cover categories, the filtered (smoothed) SAR data 

contradicted the unfiltered MSI and increased confusion between land cover 

classes resulting in lower classification accuracies as Variance texture measure 

kernels expanded beyond 13x13.  

Resolving this issue would involve ensuring that calibration/validation 

sites are collected in core areas of the cover type assessed (essentially selecting 

sites with a buffer of consistent land cover equal to one-half of the largest kernel 

window utilized), or by using a fully developed land cover dataset for the area of 

interest for both calibration and validation.  

The timing of imagery collection is a very important factor when assessing 

vegetation.  A more extensive dataset could determine precisely the sequence of 

SAR images and the time spacing that would provide the greatest value, 
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especially when combined with an MSI dataset as a baseline.  Selecting SAR 

dates tied to phenological patterns would likely be very valuable. 

This study focused on the Variance texture measure due to the success 

achieved applying it in SAR and MSI fusion research in prior studies.  

Appropriate combinations of speckle suppression and texture measure 

algorithms should be investigated more thoroughly to determine if an ideal 

combination can successfully suppress speckle while preserving inherent 

surface-related texture in SAR data.  Identifying such a combination would be a 

significant accomplishment especially if applicable to multiple land cover types 

and in multiple ecotones. 

Another aspect of texture that needs to be investigated further is the 

fractal aspect that may manifest itself at different spatial scales.  This could be 

investigated in a couple of different ways.  Data at a consistent spatial resolution 

could be assessed using texture measures applied at a local scale (smaller 

kernels) in combination with texture measures assessed at a regional scale (larger 

kernels).  This should also be investigated utilizing different texture measure 

algorithms to determine if texture at different landscape scales is best assessed 

using a consistent filter or combinations of different ones.  A second method for 

assessing the fractal dimension of texture is to measure texture across multiple 

scales of data and combine the results.  For example, using texture assessed at the 
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pixel resolution of SAR data or using a panchromatic band of MSI and 

combining the result with texture measured at a moderate spatial resolution. 

The spatial resolution of SAR and MSI datasets in combination should 

also be evaluated further.  SAR data are collected and delivered at a pixel 

resolution that is significantly different from its ground resolution.  Simply 

resampling the SAR to its GSD destroys a significant amount of information 

contained in the dataset.  The appropriateness of this process should be fully 

assessed.  Essentially, pixel resolution data contains overlapping samples at the 

GSD.  Appropriate processes applied to these data at the pixel resolution may 

preserve valuable information that would make these data more appropriately 

integrated with MSI at a similar scale.  For example, fusing SAR at a pixel 

resolution with pan-sharpened MSI data. 

Newer SAR imaging systems are collecting data with a greater diversity of 

system parameters such as different wavelengths and polarization combinations.  

As these sensors start collecting data systematically they provide a new and 

consistent source of data that needs to be fully evaluated.  The process used in 

this study lends itself to evaluation of the usability of these new sources and 

thoroughly investigating the value of their variables. 

Furthermore, this study was applied to a region where climate conditions 

(subtropical) lend themselves to a multi system approach to land cover 

assessment.  There are many other locations that should be evaluated and could 
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benefit from multi sensor integration.  Applying similar techniques to other 

biomes and land cover categories is recommended. 

Finally, this study focused on determining appropriate processing 

techniques for fusing SAR and MSI datasets and assessed results in a relative 

sense.  It did not focus on maximizing the information content of these data 

independently or in combination.  One technique that merits further 

investigation is the value of using band ratios such as NDVI calculations and 

transformations including PCA and Tasseled Cap (TC) processing to maximize 

the information content of imagery while minimizing the data volume required 

for processing.  A cursory application of these techniques performed during the 

early stages of this project provided promising results. 

 

5.3  CONCLUSION 

In general, the results of this study prove interesting and valuable.  They 

validate other studies that have tackled similar issues proving that speckle 

suppression and texture measures are valuable tools to apply when fusing SAR 

and MSI data.  Each incremental step in processing of SAR and MSI/SAR fusion 

nominally improves classification accuracy.  Texture or speckle suppressed SAR 

is more valuable than unfiltered SAR.  MSI fused with SAR is more valuable than 

MSI alone.  MSI fused with speckle suppressed SAR is more valuable than MSI 

and unfiltered SAR.  MSI fused with a single SAR couple is more valuable than 
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MSI fused with a speckle suppressed SAR and equal in value to a two-date MSI 

dataset.  Finally, multi date MSI combined with multi date SAR provides the 

greatest value.   
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