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ABSTRACT 

 

BIOTHREAT DETECTION BY RANDOM OLIGOMER-BASED MICROARRAY 

James C. Diggans, PhD 

George Mason University, 2008 

Dissertation Director: Dr. Jennifer Weller 

 

Current biosensors are primarily based upon previous observations: they detect 

organisms known to be pathogenic. Future biowarfare agents, however, are likely to 

contain completely novel or re-engineered proteins and nucleic acid sequences intended 

either to make previously harmless organisms pathogenic, to increase the pathenogenicity 

of existing agents or expressly to render the agent undetectable by conventional serotype- 

or PCR-based methods. The present work describes the creation and validation of a 

nucleic-acid microarray-based biosensor for the detection of putative biohazards present 

in environmental air samples. The prototype array consists of 15,200 pseudo-random 

25bp oligonucleotide probes whose sequences were generated using variable-length 

Markov chain models trained on sequence from pathogenic prokaryotic genomes. 

Classifiers constructed on organism-specific patterns of hybridization were then applied 

to unknown or mixed samples to determine a likelihood of detection. With this approach, 

the ability to estimate the presence of a novel or engineered threat then requires only the 



  

characterization of the binding pattern of the agent’s amplified genomic DNA to the 

array. 
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CHAPTER 1: INTRODUCTION 

 

The term ‘weapons of mass destruction’ is usually defined such that it includes 

nuclear, radiological, chemical and biological weapons. The ability to detect weaponized 

biological organisms and emerging naturally occurring pathogens is critical to the 

missions of military, public health and safety bureaucracies. Release of a biological 

weapon, infectious or not, in an urban center could cause thousands of casualties and 

overwhelm the normal emergency response system; the tactical use of biological 

weapons against military targets carries similar consequences1.  

Important factors to consider in such an event include: organism identification, 

infectious dose of the weaponized organism, rate of occurrence of critical illness in those 

exposed, incubation time, and time at which a patient is infectious prior to the occurrence 

of definitive symptoms, as well as the severity and type of symptoms. Unlike chemical 

and nuclear weapons, some bioweapons are contagious and thus the impact can grow and 

spread far beyond initial levels of exposure. Ideally the characterization of the agent upon 

detection would also suggest the best public health measures to take to limit the larger-

scale consequences of the event.  

Detection technologies must not only be sensitive to particular agents but be 

specific; even with a small rate of false positive detection, a technology can quickly be 

rendered useless if it constantly raises false alarms. While the cost of managing false 
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positives can be high both politically and economically, the danger of false negative 

results can be tragic. The trade-off faced by policy-makers is not unlike that for 

vaccination for smallpox – a vaccine which, while offering protection from disease, 

causes a fatal allergic reaction in a small percentage of cases. Until that rate of negative 

consequences is low enough to be politically acceptable, the positive effects cannot be 

realized on a wide scale. Striking an appropriate balance between Type I (false positive) 

and Type II (false negative) error rates poses a significant policy challenge in addition to 

the technical hurdle of detection. Within the scope of the current effort, characterization 

of error rates is of primary interest. 

Most biosensors can be considered closed systems; that is, they are built to 

respond to one or a small number of response elements and are unable to respond in the 

absence of those exact elements (whether the elements change by natural genetic drift or 

by intentional engineering of antigens2). While an effective approach when the threat 

remains static, this design is not particularly robust or efficient3, as it requires creation of 

new sensor capability whenever a novel weaponized organism or emerging infectious 

disease is discovered. An open system would provide data regardless of whether the 

particular measurement was expected, thus allowing new events to be recognized, 

characterized and managed in short order. The current work proposes the design and 

testing of a nucleic acid-based sensor that makes use of pseudo-random oligomer 

microarray probes paired with pattern recognition and classification algorithms, to 

provide likelihood estimates for the identity of putative biological agents within a sample. 

Using this approach, rapidly enabling a detection capability for a novel engineered- or 
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emerging infectious organism then requires only the characterization of that organism’s 

unique pattern of hybridization to the biosensor.  
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CHAPTER 2: BACKGROUND 

 

Biosensors require two primary components: a mechanism to detect and capture 

the biological species of interest in the local environment and a signal transduction 

method to communicate the occurrence of a detection event in a human-readable way. 

Much recent work has gone into developing increasingly exotic transduction approaches 

including microelectromechanical systems4, surface plasmon resonance5 and quantum dot 

phosphors6. These enhance the ability to detect rare events. Regardless of the signal 

transduction approach used, it is often the primary interaction in the detection mechanism 

that limits the utility of a biosensor. These detection strategies fall largely into one of 

three approaches: use of antibodies, aptamers or complementarity-based nucleic-acid 

approaches. 

 

Antibody Capture 

Antibodies have a long track record of use in binding assays and offer very high 

specificity to known targets of interest7. Antibody-based sensors are designed to detect 

particular agents based upon proteins, sugars or other molecules those agents 

manufacture. However, the epitope, the binding target for a given antibody, must 

maintain a particular conformation, charge distribution and chemical modification state in 
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order to be detected and, depending upon the assay, must also be located on the external 

cell membrane.  

Small changes to these epitopes, whether naturally-occurring or intentionally 

engineered, can result in diminished or complete absence of antibody binding. For 

example, a bad actor may seek to engineer a strain of Bacillus anthracis (the causative 

agent of Anthrax) to lack the surface molecule targeted by antibodies known to be used in 

deployed sensors2. Precedence exists in the natural world for just such an epitope 

alteration strategy in, e.g., the causative agent of malaria, Plasmodium falciparum8, as 

well as HIV9. If successful, such an engineered alteration would result in a strain of B. 

anthracis against which such sensors would be ‘blind’. Even in theoretical, highly-

parallel systems10, antibody-based approaches still rely on a single, binary (i.e. the target 

organisms of interest is either bound or unbound) event to detect an organism of interest. 

While suffering this single point of failure, antibody-based sensors do, however, 

show a high degree of sensitivity and specificity. The CANARY biosensor11 makes use 

of antibodies expressed by B-cell lines paired with a bioluminescent aequorin-based 

reporter derived from jellyfish. This strategy was shown to allow detection of Yersinia 

pestis (the causative agent of bubonic plague) down to 20 CFU/ml in less than three 

minutes with a true positive rate of 67%, ranging to 99% for 200+ CFU/ml. While the 

CANARY approach offers speed, accuracy and sensitivity, it relies upon a living reagent 

(the B-cells) thus limiting its potential for long-term field-deployed monitoring and 

raising requirements for size, weight and power of the device. 
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Approaches that do not rely upon fluorescent labeling and detection often offer 

better quantitation12 of detected species. By functionalizing the surface of a 

microcantilever with antibodies, recent work has shown that the resultant movement in 

the cantilever due to antibody binding can be measured using a metal-oxide 

semiconductor field-effect transistor (MOSFET)4. An additional family of label-free 

methods, surface acoustic wave (SAW) methods, makes use of the deformation caused by 

a generated acoustic wave on a substrate. If that substrate is functionalized with 

antibodies and those antibodies bind to an epitope, this binding event changes the nature 

of the surface deformation, which can then be measured13. 

Many label-free methods utilize reflective and refractive properties of incident 

light for detection including refractive index (RI) detection, in which a substrate is 

functionalized with antibodies and, upon binding of those antibodies to a pathogen of 

interest, a change in the refractive index of the substrate can be measured12. Other 

methods that exploit the impact of a binding event on the physical properties of a 

detection scaffold include surface plasmon resonance, waveguides, fiber gratings, ring 

resonators and even photonic crystals12. 

 

Aptamer Capture 

Aptamers are short nucleic acid sequences designed to bind to proteins or other 

biological molecules of interest due to the secondary structure assumed by the aptamer 

and the shape, charge distribution and so on of the target molecule. They are usually 

created via a laborious, iterative process known as SELEX (systematic evolution of 
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ligands by exponential enrichment) by which enormous pools of synthesized, random 

candidate aptamers sequences are screened against a target ligand of interest to determine 

binding capacity14. Aptamers show great promise for applications in which antibodies are 

traditionally difficult to create. For example, toxins or prions are harmful or even deadly 

to animals usually used to raise antibodies; creating aptamers via SELEX obviates this 

need for live animals. Aptamers, however, still suffer from the same lack of flexibility in 

the face of changing targets in the organisms of interest as do antibodies, due to their 

specificity. 

Signal transduction applications like those discussed above using antibodies have 

also been applied to aptamers e.g. surface plasmon resonance15, quartz crystal acoustic 

wave sensing14, and even aptamer-functionalized microcantilevers16. In some cases, 

aptamers can remain stable in ambient conditions longer than can antibodies but the 

increased overhead required by their evolutionary design and selection often outweighs 

this advantage. 

 

Nucleic Acid Complementarity 

Use of nucleic acids for their complementary binding properties (the predictable 

binding of A to T and G to C as opposed to their secondary structure used in aptamers) is 

the third common approach used in binding event-based biodetection. Nucleic-acid based 

sensors exploit the uniqueness of primary DNA or RNA sequences within organisms of 

interest6. If genomic DNA is targeted then the full, static genome of the organism is 

investigated resulting in reproducible hybridization regardless of the status of the 
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organism. If mRNA is analyzed, then only those genes dynamically expressed in the host 

at the time of sampling are queried. This can aid in determining whether an organism is 

actually actively producing a toxin at the time of capture.  

Several fielded biosensors make use of a PCR-based detection method using a 

small number of oligonucleotide probes designed to match specific regions of the 

genomic DNA of target organisms17 including the Autonomous Pathogen Detection 

System (APDS) from Lawrence Livermore National Labs18,19, and the JBAIDS system20, 

used by the Department of Defense for identification of putative bioweapons in the field. 

ADPS is a self-contained system capable of measuring the presence of up to 100 agents 

and controls in a single sample, using PCR to amplify targets from the sample milieu. 

JBAIDS, the Joint Biological Agent Identification and Diagnostic System, is a real-time 

PCR-based system, originally developed by Idaho Technology as the R.A.P.I.D. 

(Ruggedized Advanced Pathogen Identification Device) system. JBAIDS can identify up 

to 32 samples in one hour from a panel of PCR primers for known biowarfare agents. 

Signal transduction methods most often used in nucleic acid complementarity-

driven assays include dye fluorescence21 and molecular beacons21. A molecular beacon 

nucleotide probe has a photon-emitting fluorophore at one end and a photon-absorbing 

quencher at the other. Left to itself, it will form a stem and loop bringing the fluor into 

close proximity with the quencher resulting in very little detectable signal. In the 

presence of complementary sequence, the probe will hybridize, moving the two 

interacting ends away from one another, as a consequence of which the photon released 

by the fluor is emitted into the solutions and can be detected.  



 9 

Fluorescence resonance energy transfer (FRET) has also been applied to label-

free nucleic acid-based detection. FRET approaches make use of two separate dye 

molecules. The donor dye fluoresces in response to a laser and, when in close proximity 

to an acceptor dye (1 – 10nm), transfers energy to the acceptor dye which fluoresces, 

usually in a different color from that of the donor dye. One analytical approach22 

designed two separate probes per sequence of interest, one labeled with a donor dye and 

the other an acceptor. Both were mixed with the sample of interest in a microfluidics 

channel. If both probes hybridized to the sample, the two fluors were positioned close 

enough to one another for FRET to take place without any direct fluorescent labeling of 

the sample itself. 

PCR-based approaches, however, all require that probes be designed to be 

universally specific to a region of the DNA of a particular organism of interest, thus 

limiting the potential number of organisms detected by any one set of discrete assays. 

This approach also creates the same weakness as previous antibody- and aptamer-based 

approaches: a single point of failure, in which no signal is detected when there should be 

a novel signal indicating the presence of a novel substrate. That is, if the targeted 

sequence against which PCR primers are designed is changed, the assay will fail to detect 

the engineered organism.  

Microarray-Based Approaches 

The current work seeks to move beyond this single point of failure by leveraging 

cheap, highly-parallel oligonucleotide synthesis capabilities along with a high-density 

microarray platform. This permits deployment of many thousands of parallel sensors in a 
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format affordable enough for wide-scale deployment. With such a high-density sensing 

platform, engineering an organism to avoid detection would require a wholesale re-

engineering of the pathogen’s genome—a feat likely to remain beyond the capability of 

even the most advanced bioweapons development efforts. Under such an attempted 

sensor avoidance engineering effort, the very absence of signal from a few probes in the 

context of several positive signals may provide a warning that further investigation is 

warranted; i.e. that something very similar to a known pathogen hybridization pattern is 

present on the sensor and may represent an engineered threat. 

A microarray, in its most common form, consists of a glass or silicon substrate 

onto which nucleotide probes of uniform length are attached in a regular grid. Nucleic 

acid samples to be analyzed are prepared and labeled with, in most cases, a fluorescent 

dye. The sample is then applied to the array and allowed time to hybridize to 

complementary probes23. Sample that did not hybridize to any of the probes is then 

removed in a wash step. A laser is swept over the array and fluorescence resulting from a 

probe hybridized to labeled sample is recorded by a photomultiplier tube or a charge-

coupled device (CCD), akin to those found in commercially-available digital cameras. 

The resulting image can then be processed for spot location and fluorescent intensity 

estimations used subsequent analyses. Recent work24 has even attempted to integrate a 

CCD directly into the array, removing the need for complex optics in the detection step 

and increasing fluorescence detection sensitivity. While novel, the cost associated with 

this approach is likely prohibitive for use in a widely-deployed field biosensor. 
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Microarray-based detection and identification approaches often consist of a series 

of probes designed with particular genomes in mind, such that if a probe hybridizes, the 

analyst can be reasonably sure the organism represented by that probe is present in the 

original sample. In some cases, multiple probes can be used to create ‘fingerprints’ 

representative of particular organisms, but this requires a great deal of complex, up-front 

probe design effort25. This approach has been used previously26-28 to detect viruses; in 

one example by designing 70-mer probes unique to each of more than 100 viral species26. 

Microarrays with species- or strain-specific probes have also been designed to 

differentiate between strains of Staphylococcus aureus, by generating lists of 

thermodynamically-favorable probes from regions of sequence unique to particular 

strains29. Additional efforts have also constructed systems for the design of probes 

specific at the level of individual gene families30, recognizing that some of these families 

will be specific for related pathogens.  

A further series of microarray-based efforts has focused on detection and 

differentiation at the species level based upon ribosomal DNA (rDNA) or RNA (rRNA). 

rRNA is extremely abundant so pre-detection amplification is required although rRNA 

must be purified away from the protein component of the ribosome31. In most cases, 

rRNA and corresponding rDNA are distinct at the species or even the strain level 

allowing sets of probes to be designed to detect either rRNA or rDNA at various 

operational taxonomic unit (OTU) levels – i.e. family, genus, species or strain. Detection 

of organisms then is based upon which pattern of representative OTU probes 

hybridized32. 
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While these approaches achieve an increase in robustness by using multiple, 

parallel measurements for each target organism, they still rely upon a priori knowledge 

of agent sequence (which in a novel or heavily engineered agent is unlikely to be the 

case). They are also limited in the scope of intended detection capability to only those 

organisms for which the individual arrays have been explicitly designed. Direct analysis 

of probe hybridization on such arrays may enlarge the universe of detectable organisms. 

However, the constraints placed on probes generated to match unique regions of 

sequence in a family of organisms, by definition, limits the capacity for these probes to 

hybridize to distinct novel or engineered organisms. 

While, in a controlled laboratory setting, longer probes tailored to be specific to 

unique sequences in known genomes provide the specificity necessary for identification, 

the reality is more complex. As shown in Figure 1, in a sample consisting of a mixture of 

genomes, longer probes suffer from cross-hybridization to small regions of homology in 

organisms to which those probes were not designed to hybridize thus complicating 

sample analysis for complex mixtures. Tiling multiple probes per sequence of interest can 

help to address this issue but results in a tradeoff by reducing the total number of 

organisms any one array can be designed to detect. Nonetheless, this particular approach 

has already shown utility33 in a clinical setting, detecting the presence of a known but 

uncommon pathogenic virus in a seriously ill patient. 

To field a new detection capability for novel or engineered organisms, genome-

specific approaches like those above require design, validation, construction and 

deployment of a redesigned sensor to enable detection of new or newly significant variant 
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pathogens. This is in addition to the time required to acquire enough of the new species’ 

genome to enable analysis of unique sequence regions and concomitant array probe 

design. For an array using 70-mers, probe length sacrifices specificity for sensitivity, and 

may not allow detection of small but important sequence variations of interest.  

As an alternative to using specifically designed probes, a microarray was created 

containing all possible hexamers34 (46 or 4,096 probes), and fingerprints for organisms 

were created based upon the hybridization patterns of mRNA transcripts from pure 

isolates. While similar in spirit to the pseudo-random probe approach presented here, the 

use of hexamers limits the universe of probes available and the complexity of resulting 

hybridization patterns. Use of such short probes also increases the propensity for non-

specific hybridization, resulting in a decrease in the signal-to-noise ratio. While 

potentially useful for identification of organisms in pure culture, this approach certainly 

would quickly saturate in the presence of multiple genomes from e.g. an environmental 

air sample. 

A further n-mer microarray-based pathogen identification system was designed 

using only 391 9-mer probes, drawn at random from the genome of E. coli and screened 

for thermodynamic suitability35. These probes were found, on average, to appear in the 

genome of E. coli 35 times with “nearly equal probability of hybridizing to each strand of 

the genome.”36 A second group made use of this ‘universal’ microarray approach to 

characterize distinct hybridization patterns occurring between ten closely related Bacillus 

species and three non-Bacillus species, using a binary bar code approach37. This method 

was later improved upon by using pattern matching and classification techniques to 
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enable differentiation between closely-related strains of B. anthracis when using purified 

genomic DNA samples amplified by REP-PCR (use of repetitive extragenic palindromic 

consensus primers)38. This method too, however, is likely to be quickly overwhelmed by 

the presence of background genomic DNA in environmental sampling due to the reliance 

of the classification on only a very few discriminatory features (approximating the single 

point of failure found in antibody, aptamer and PCR-based assays).  

An effort to build a microarray with longer, carefully selected 12- and 13-mer 

probes from a pool of random sequences resulted in an array comprised of 14,283 probes, 

each selected to have roughly 50% GC content and to differ by at least 4-5 bases from 

any other probe in the set39. While constrained by the biophysical criteria mentioned, the 

resulting probe set is otherwise a random sampling of the remaining 12- and 13-mer 

probe space, without regard to sequences actually present in the target class of organisms. 

This array was capable of distinguishing between purified genomic DNA from Bacillus 

subtilis, Yersinia pestis, Streptococcus pneumonia, Bacillus anthracis and Homo sapiens 

by a simple comparison of differentially hybridizing probes between pairs of organisms. 

Comparison of the hybridization intensities from unknown samples to those from a 

reference database of known hybridization intensities was used to provide putative 

identity for the unknown.  

While similar in spirit to the current effort, this method was not tested against 

samples comprised of mixtures of purified genomic DNA from multiple organisms. 

Given the simplicity of the comparison method used to provide identity, mixtures of 
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hybridization patterns would not be unlikely to provide reliable direct similarity to 

individual known hybridization patterns in the reference database. 

Additional purely computational work40 has analyzed the potential for a 

‘universal’ n-mer array by studying the potential for degenerate hybridization to 

expressed genes in yeast and mice. The authors’ mathematical model determined that an 

array with all possible 13-bp probes (67,108,864 probes) should, given perfectly stringent 

hybridization conditions, be capable of differentiating the known universe of expressed 

mRNAs (assuming a particular, limited degree of degenerate hybridization). Little 

consideration, however, was taken for the effect on the resolution of the proportion of 

thermodynamically inappropriate probes that could not be legitimately used in an 

experimental array. As with previously discussed efforts, this array, with relatively few 

(after pruning for biophysical behavior), short probes, would be overwhelmed quickly by 

a mix of organisms in an environmental sample, making this approach inappropriate for 

biological threat monitoring applications. 

The array-based efforts discussed so far, while making use of varying degrees of 

probe density and probe length, all suffer from a similar shortcoming: in the presence of a 

single genome, the probes on the array are capable of providing detailed information on 

the unique pattern of hybridization of that genome. However, as a second or third genome 

is added to the hybridization mix, the amount of additional, novel information provided 

by a hexamer or nonamer array is limited. With each genome added, fewer and fewer 

probes fail to light up, reducing the overall information provided by any one probe on the 

array. In addition, extremely short probes, like those found on hexamer arrays, provide 
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less independent information. When tiling the universe of hexamer probes, the 

information about genomes present in the sample provided by ACTGTC is not 

particularly distinct in a helpful way from that provided by ACTGTA. When using longer 

probes, selection strategies can maximize the orthogonality of the sequences represented, 

thereby attempting to maximize the information content provided by the array.  

Further research into microarray platform optimization has sought to obviate the 

need to label samples with fluorescent dyes for assays, as this is a time- and reagent-

consuming process. One recent approach41, from Lawrence Berkeley National Lab, 

utilized charged silica microspheres. By covering a post-hybridization microarray with a 

layer of these microspheres, it was shown that, for probes hybridized to sample DNA 

compared to those without a complement, the increase in total negative charge (as single 

stranded DNA is negatively charged – hybridization occurs via hydrogen bonds) resulted 

in a repulsion of the negatively charged microspheres. This repulsion occurs to a much 

lesser degree for probes without hybridized sample. By imaging this array using only 

dark field microscopy, the investigators successfully related the relative height of the 

200-300 microspheres per spot on the array to the level of sample hybridization at that 

spot (confirmed by standard fluorescence). 

 

Alternative Detection Strategies 

In addition to those techniques discussed above, a flood of distinctly novel 

detection strategies for general biosensing of threat agents has emerged in recent years. 

These include simple, first-pass approaches like differentiation based upon spore size42 as 
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well as more complex methods including mass spectrometry43 and flow cytometry44. As 

the pace of advancement in high-speed genome sequencing increases, future sensors may 

in fact be able to simply sequence45 the entire set of microbial flora in the local 

environment and make sensing decisions based upon this much more complete picture of 

biological threat agent presence, rather than relying upon a minimal sampling of those 

genomes using probe-based approaches. 
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CHAPTER 3: METHODS 

 

In considering design of probes for a microarray-based biosensor, the search 

space, or set of available probes, for even a twenty-five base pair nucleotide probe is 

enormous (425 or 1,125,899,906,842,624 unique sequences from which we must select 

some useful minority). Given that creation of a truly comprehensive array is not 

achievable, array-based sensors must, by necessity, make trade-offs in selecting probes. 

Perhaps the simplest probe selection strategy, selection of purely random sequences from 

a pool of such a size, is far more likely to give rise to uninformative probes than not for 

any given set of target organisms. This strategy, then, can be viewed as an optimization 

problem, in which the set of selected probes of a given sequence length, given the 

constraint of a particular array size, provides optimal discrimination among the universe 

of organisms (and sequences) to be monitored. 

To address this shortcoming, and to maximize the value of probes on the array, 

popular selection strategies previously mentioned have included design of probes specific 

to a list of targeted organisms, or design of a series of probes specific to sequences shared 

within a phylogenetic tree of interest. These strategies, by their very definition, limit the 

number of species that fall within the detection purview of the resulting platform. 

As described above, other efforts have sought to limit the necessity of probe 

selection entirely by tiling all or most of a probe search space using shorter length probes 
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(in all cases < 13 base pairs). While this strategy allows the resulting array to hybridize to 

nearly any organism, the lack of relative probe specificity will result in any single 

organism hybridizing to many, if not most, of the probes. A mixture of genomes in a 

sample will very quickly exhaust the capacity for specificity of such an array. 

In general, for an array intended for application as a flexible, ‘universal’ human 

pathogen biosensor, probe sequences must be selected to maximize the amount of 

information that can be inferred from a positive signal (the presence of a pathogen) and 

minimize the amount of noise arising from non-specific or competitively hybridizing 

sequences (non-pathogenic, environmental organisms) in a sample.  

 

Probe Design 

The current work makes use of variable-length Markov chains46 (VLMCs), 

trained on bacterial sequences of interest, to generate probes. Like standard Markov chain 

models, VLMCs are trained on a set of sequences from organisms of interest, each 

containing a specific distribution of individual bases and codon utilization rules. Probes 

emitted by these models then share much of the sequence-space distributional 

characteristics of pathogenic genomic sequence. Given the clear distinction in sequence 

character of prokaryotic genomic DNA from that of random sequence47,48, this strategy 

seeks to reduce the total search space for probe selection to a useful subset generally 

capable of hybridizing to the universe of prokaryotic pathogens and distinct from other 

genomes present in environmental air samples, e.g. plants, fungi, etc. 
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VLMCs hold an advantage over standard Markov chains in that they are not 

constructed with a single ‘order,’ i.e. the number of previous bases the model considers 

when calculating probabilities for the next base is not fixed but rather depends upon 

context. This offers increased flexibility, in that many possible VLMC models exist 

between any two orders of classical Markov models applied to the same training data. For 

example, within the coding region for a protein, a second order Markov model is likely 

an appropriate model due to the codon-centric nature of RNA encoding in the genome. 

However, within intergenic or regulatory regions, lower or higher (respectively – 

intergenic sequence has few next-base constraints while bases within promoter sequences 

may be reliably predicted by some higher number of prior bases) order models may fit 

the local sequence character with greater accuracy. Fitting a second-order model to the 

entire sequence would likely result in a higher degree of overall model error than would 

fitting a variable-length model. 

We refer to the probes generated by these models as ‘pseudo-random’ in that no 

top-down design strategy was employed in their creation, yet they are far from random 

because constraints are applied and the entire space of possible sequences is not covered. 

In creating pseudo-random oligonucleotides, probes are intended to be capable of 

binding, to some degree, in aggregate, to any prokaryotic sequence found in a particular 

environmental sample. To address this challenge, full genomic sequence from a selected 

group of pathogenic prokaryotes drawn from previous work49, listed in Table 1, were 

collected from GenBank and loaded into R using seqinr50. 
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  Table 1: Sequences used to train prokaryotic VLMC models  

Species Pathogenicity Size GenBank ID 
Bacillus anthracis (Ames strain) Anthrax 5.2 Mb NC_003997 
Yersinia pestis (CO92) Bubonic plague 4.7Mb NC_003143 
Francisella tularensis (Schu 4) Tularemia 1.9 Mb NC_006570 
Brucella suis Brucellosis 2.1 Mb NC_004310 
Burkholderia mallei Glanders 3.5 Mb NC_006348 
Burkholderia pseudomallei Melioidosis 4.1 Mb NC_006350 
Escherichia coli O157 H7 str. 
Sakai 

Hemolytic uremic 
syndrome 

5.5 Mb NC_002695 

 

While VLMC models can be used to generate oligos of any length, a length of 

twenty-five bases was selected. Previous work40 has shown that, for yeast and mouse 

transcriptomes, theoretically complete coverage can be accomplished by use of all 

thermodynamically appropriate probes of length ten to sixteen bases. As we wish to 

address a much larger group of organisms, increasing the oligomer length above sixteen 

bases is required. However, if longer probes are used, the space of total probes available 

grows exponentially and our array samples less of the total available probe space. 

Additional work51, comparing yeast and human transcripts, showed 20-30bp as a ‘sweet 

spot’ of sorts (see Figure 1) in that these are long enough to minimize non-specific 

hybridization yet short enough to present a realistic probe selection search space from 

which to select probes to tile on an array. 

Combined with concerns for commercial availability of arrays in specific probe 

lengths, 25-mers were chosen to balance exploring the available probe space adequately 

with addressing a theoretically large universe of organisms. 
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Figure 1: Probe specificity by size. The number of database matches by BLAST by oligo 
length from CDSs in the respective species against databases of within-species sequence. 
Source: Rimour et al, 2005. 

 

Training a VLMC requires only a single parameter: the cutoff K, a threshold used 

to determine whether to prune a particular context branch by comparing the deviance 

between the pre- and post-trimmed trees. Larger values for K result in more pruning and 

smaller, less-complex trees. To determine an optimal value for K, a bootstrap-based 

validation approach, like that described in Mächler et al., was carried out. Five hundred 

base pair segments were selected at random from each organism in Table 1 and 

concatenated together to create a training sequence of length n = 3,500. This approach 
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assumes that interruptions in sequence character at the borders between individual 

sequence samples are overwhelmed by the total volume of sequence available in the 

training set. Under this assumption, the concatenated sequence selection was used to train 

a VLMC model at each of six initial values for K, termed K0 = 0, 0.5, 1.0, 1.6, 2.0, and 

2.6. 

Each of these initial, K0-pruned VLMC models was then used to emit n + 1 base 

pairs (after discarding the first 10,000 base pairs to allow the Markov chain simulation to 

stabilize). Subsequent VLMC models were then created for values of K ranging from 1 to 

3 in increments of 0.1 and used to predict the n + 1th base pair from the K0 VLMC output. 

This process was iterated 1,000 times for each value of K0 and the number of correct 

predictions recorded. A final value for K was chosen to be that K0 that maximized correct 

next-base prediction across a range of values for K. 

Once a value for K was selected, a final VLMC model was trained as above and 

used to generate 100,000 pseudo-random 25-mer oligonucleotides. For each oligomer, 

melting temperature was calculated using oligotm from Primer352 and eliminated if not 

found to be between 58°C and 68°C. Propensity for secondary structure was estimated by 

calculating ΔG for self-hybridization using UNAFold53. Probes with internal duplex ΔG ≤ 

-1.1, were removed as previous work has shown this level of self-hybridization to 

negatively impact probe hybridization54. 

Remaining probes were ranked in order of decreasing ΔG for self-hybridization 

and the top 12,600 were selected for inclusion on the array. Fifteen percent of the total 

real estate on the array was tiled in duplicate, resulting in 15,200 total probes on each 
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array, the maximum number of non-control probes allowed on the selected microarray 

platform and configuration. The probes were then synthesized and placed on substrate by 

Agilent Technologies on their 8 x 15k Custom DNA Microarray platform. In this form 

factor, each individual glass slide contains 8 identical sub-arrays per slide and all eight 

are hybridized concurrently to 8 distinct samples using a gasketed hybridization slip-

cover to maintain separation between individual samples. 

 

Reference Library Generation 

To enable identification of organisms against a complex environmental 

background, a reference library of hybridization patterns of purified genomic DNA from 

known organisms must first be generated. Pathogenic strains are not commonly available 

and, in fact, are tightly regulated under the United States government’s Critical Reagents 

Program. Accepting this, the technical goal in producing the reference set in the current 

work was to demonstrate discrimination between simulants (i.e. non-pathogenic 

organisms very similar to known pathogens) of the same genera (B. subtilis and B. cereus 

as within-genera stand-ins for B. anthracis) and across genera (using Pantoea 

agglomerans as a gram-negative stand-in for Yersinia pestis, the causative agent of 

bubonic plague, as both are members of the family Enterobacteriaceae). 

Use of genomic DNA is preferable in this application due to the temporal 

fluctuation of mRNA: by using genomic DNA, the assay is not dependent on an organism 

expressing a particular set of genes at the time of sampling. The result of interest is a 
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single hybridization pattern, consistent over time, for each organism in the reference 

library.  

Isolation of genomic DNA from spores is left for future work but is crucial to the 

utility of microarrays (and any other assay method) in biological threat identification. 

Past work has shown that spore disruption can be accomplished in a small, deployable 

form factor55, so this is not an insuperable problem; the intent of the current work is to 

demonstrate efficacy of pseudo-random probe-based identification strategy rather than to 

provide an end-to-end biosensing solution. 

While, in a worst case scenario, a biosensor would face very high concentrations 

of pathogens in the local environment for detection, a fielded sensor must be capable of 

detection at much lower total pathogen concentrations in environmental air samples. As 

microarrays normally require a large amount (~1µg) of DNA relative to that recovered 

from this type of environmental monitoring (~10 - 100 ng), amplification of the genomic 

DNA prior to hybridization on the array is essential if the sensor is to be reliable. 

Several methods are available for unbiased whole genome amplification. These 

include multiple displacement amplification (MDA), in which random hexamer primers 

are utilized, together with a highly processive polymerase derived from the bacteriophage 

φ29. This polymerase, once primed, can incorporate >70,000nt on average56 before 

dissociating from the template. It acts by displacing the non-template strand and is 

capable of starting a new copy from still-elongating copies, resulting in ‘hyperbranched’ 

amplification57 (hence ‘multiple displacement’). MDA has been applied to the 

identification of biodefense-relevant pathogens as an enabling technology for sequencing 
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such pathogens in the overwhelming presence of host DNA58. While this method is 

carried out isothermically (thus obviating the need for a thermocycler in a deployed 

system), it also requires 6 – 24 hours to generate suitable levels of amplified template 

(~250 ng), a time frame much too long for effective rapid response to some types of 

biological threats. 

An alternative to multiple displacement amplification, the fragmentation/PCR-

based GenomePlex® method (Sigma-Aldrich), carries out a random, non-enzymatic 

fragmentation of the input genomic DNA followed by ligation of adapter sequences onto 

each end of the resulting fragments, to construct a fragment library. This library is then 

amplified via standard PCR, using universal primers matching the ligated adapter 

sequences. The average length of individual sequences in the resulting library ranges 

from 200 to 1,000 base pairs. While the standard protocol used here requires 10ng of 

starting genomic DNA (roughly 1.8x106 copies for a 5.2Mb genome like B. anthracis), 

Sigma has demonstrated effective amplification from even single genome copies59. 

 
 
Table 2: Reference library experimental design 

Genomic DNA # Arrays gDNA 
B. subtilis gDNA 10 250 ng 
B. cereus gDNA 10 250 ng 
P. agglomerans gDNA 10 250 ng 
B. subtilis / B. cereus gDNA 4 125 ng/species 
B. subtilis / E. coli gDNA 4 125 ng/species 
B. cereus / E. coli gDNA 4 125 ng/species 
B. cereus / B. subtilis / P. agglomerans gDNA 4 84 ng/species 
Oligo spike-ins 2 2.5 ng and 25 ng 

 



 27 

Purified genomic DNA for reference library simulant organisms was obtained 

from the Biodefense and Emerging Infections Research Resource Repository (BEI), a 

Critical Reagents Program provider, and amplified via GenomePlex Whole Genome 

Amplification (WGA2) kit, as discussed above, using 10 ng of starting material for each 

genome and yielding 5-10 µg of resulting DNA after amplification and purification in 

Zeba spin columns (Thermo Scientific). This amplified genomic DNA was then labeled 

with ULYSIS™ Alexa Fluor® 546 (Invitrogen) and spun down in KREApure 

purification columns (Bioke) to remove excess dye. 

For each experiment in Table 2, 250 ng total of DNA was used in accordance with 

Agilent Technologies CGH microarray protocols60. While the current investigation is not 

making use of CGH arrays, its use of genomic DNA (instead of cDNA libraries produced 

via in vitro transcription) makes the CGH protocol more appropriate than the single 

channel mRNA gene expression array protocol. The oligomer spike-in experiment 

indicated in Table 2 consisted of a set of 20 complements to probes on the array, chosen 

at random and sent for synthesis by a commercial vendor. These synthesized oligos, 

known to hybridize perfectly to their matched probes on the array, were then mixed 

together, labeled and hybridized onto two separate arrays at two levels of total oligomer 

DNA, 1% and 10% of 250 ng total DNA. These arrays were then used as negative 

controls in the follow-on classification analysis as no classifier trained on reference 

simulant genomic DNA should classify these arrays as members of simulant classes. 

While the majority of dye was removed in the spin column, enough remained in 

the hybridization mix (due to the relatively high molecular weight of the dye used) to 
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result in near universal, non-specific dye intercalation by the probes themselves. While 

Agilent’s hybridization protocol does incorporate a blocking reagent, initial experiments 

using Agilent-recommended blocking reagent levels (4.5 μl) resulted in a high degree of 

non-specific dye incorporation on array probes (rendering the array useless). An 

additional aliquot of 11 μl of the blocking agent, KREAblock (Bioke), was added to 

ensure complete blockage of excess dye. 

Prepared samples were then applied to the previously described Agilent 8 x 15k 

Custom microarray, containing 15,200 pseudo-random oligomer probes, and hybridized 

for 17 hours at 42°C in the recommended hybridization solution. Array washing was 

carried out in accordance with standard Agilent protocols60. Slides were then scanned 

with a 532nm laser using a Molecular Devices GenePix Professional 4200A microarray 

scanner, and signal acquisition and integration was carried out with GenePix 6.0 

software, resulting in high-resolution TIFF images. 

 Image feature data was extracted using Agilent Feature Extraction software 

v9.5.3.1, without local or global background correction. Local background correction, 

calculated on a region surrounding each spot, has been shown for the Agilent platform to 

add noise to resulting data. Agilent protocols suggest, instead, making use of global 

negative control probes for background correction61. The current work does not perform 

any background correction, primarily due to the reliance of Agilent background methods 

on spike-in control probes. These probes, while tiled on the custom microarray, are not 

used in the current work, as they hybridize to RNA targets after in-vitro transcription and 

cDNA amplification, and are therefore not negative controls in this context. As the 
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GenomePlex® kit amplifies only genomic DNA, Agilent control probes were ignored in 

all downstream analysis. 

Resulting median spot intensities were then normalized via quantile normalization 

using the limma62 package in R from the Bioconductor project63. The advantage in 

selection of quantile normalization for creation of a reference database of array data lies 

in forcing the distributions of underlying probe intensities to be the same across arrays64 

allowing for direct comparison across arrays. While adjustment of probe intensities to 

quantiles may have a leveling effect on probes in the tails of intensity distributions, this is 

not of concern in the current application since it seeks only to recognize large-scale 

patterns of hybridization rather than to study detailed fold changes for individual probes 

between sample conditions (e.g. mRNA levels between normal vs. diseased tissue states). 

Data quality was assessed using the arrayQualityMetrics package65 in 

Bioconductor to produce MvA plots, to analyze probe density distributions and to explore 

sample-to-sample relationships using distance metric-based hierarchical clustering and 

visualization. 

In addition to the 30 simulant training arrays and 2 oligo spike-in experiments, a 

series of mixed-genome arrays was run, to serve as first-order test cases for constructed 

classifiers. All mixed-genome arrays listed in Table 2 were hybridized with equal ratios 

of constituent genomic DNA, where the mixture led to a total of 250 ng of total gDNA on 

each array. 
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Classifier Construction 

Once all training and preliminary test data had been generated, a series of 

classifiers was constructed using the CMA package66 in R. Each classifier was assessed 

under an iterative five-fold cross-validation to determine approaches resulting in the most 

robust reference array class prediction performance. Algorithm families evaluated for use 

included: linear discriminant analysis (with and without preliminary dimensional 

reduction by partial least squares), diagonal linear discriminant analysis, shrunken 

centroids discriminant analysis, support vector machines (making use of a linear kernel), 

random forests (again with and without preliminary dimensional reduction by partial least 

squares), penalized logistic regression and a component-wise boosting method. 

Due to the limited number of arrays available for analysis under each 

experimental condition, each classification technique was evaluated by an iterative 5-fold 

cross validation approach. For each simulant organism, two arrays (n = [N / fold] = 10 / 

5) from each class were set aside as test cases, the classifier was trained on the remaining 

data and then used to classify the holdout arrays. Test samples are then replaced and 

train/test sets redrawn. This processed was repeated ten times to generate stable 

performance statistics on classifier success. 

Once performance data was collected for classifiers on reference data, classifier 

instances were then trained on the entire reference set (n = 30) and tested against the 

mixed genome samples (n = 2 for each of four mixed-genome conditions as in Table 2), 

to determine whether classifiers trained on pure genomic DNA hybridization patterns 
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could classify unknown samples comprised of mixtures of genomic material, based upon 

whether those samples contained the target organism. 
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CHAPTER 4: RESULTS 

 

Selection of K for VLMC 

When determining a suitable value for K by bootstrap analysis, the first question 

presented is one of sample size: what is the ideal number of bases to sample from each 

genome to maximize prediction success? A series of analyses was carried out using 50, 

500 and 5,000 base pair selections from each of the seven test genomes in Table 1, using 

K0 = 0 to prevent passing premature judgment on model pruning. As seen in Figure 2, a 

sequence selection size of 500 base pairs consistently, though not dramatically, 

outperformed, on next-base prediction, smaller and larger orders of magnitude in 

selection size. For this reason, a selection size of 500 base pairs was used throughout the 

remainder of the analysis. Input and output files and code are included in Appendix A. 
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Figure 2: Sample size vs. next-base prediction for K0 = 0.  Bounding dots are 95% 
confidence intervals on 10 iterations of each sampling strategy. 

 

Once a selection size was chosen, bootstrapping was performed for K0 = 0, 0.5, 

1.0, 1.6, 2.0 and 2.6. For each value of K0, 1,000 VLMCs were constructed for each value 

of K, ranging from 0 to 3 by a step size of 0.1. Each of these VLMCs predicted the next 

base generated by the K0-trained VLMC, and success rates were calculated; the results 

are shown in Figure 3. 
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Figure 3: VLMC next-base prediction accuracy over a range of values for K. For each 
graph, a VLMC is trained on the value shown for K0. For each value of K along the x-
axis, 1,000 VLMCs are constructed and the number of correct next-base predictions (out 
of 1,000) graphed on the y-axis. 250 correct predictions would be expected by random 
chance. Error bars represent the 95% confidence interval around next-base prediction 
accuracy across five distinct iterations. 

 

In general, values for K0 less than 0.75 consistently resulted in much more 

coherent trending in the resulting number of correct next-base predictions. Since trending 

and overall next-base prediction accuracy falls off for higher values of K0, we can 
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interpret this to mean that higher degrees of model pruning result in a poorer fit, 

indicating that the appropriate model for pathogenic prokaryotic genomic DNA is quite 

complex. As any value from 0 ≤ K ≤ 0.75 performs at a similar next-base prediction 

level, 0.75 was selected to provide the most extensively trimmed, parsimonious model 

while maintaining performance. 

By random chance the emitted base would be expected to match 250 times (given 

an alphabet of four symbols, ATGC, all equally likely) in 1,000 trials. However, 

prediction accuracy rates during bootstrap analysis were on average 550 or more correct 

trials out of 1,000, indicating that, more than half of the time, the VLMC model correctly 

predicted the 3,501st base pair in a simulated sequence. 

It is this enrichment of probability over that of random sequence that the current 

effort seeks to exploit in using such models to emit 25 base pair oligomer probes. To 

demonstrate the impact of this effect on probe design, VLMCs were trained on random, 

500bp selections from the genomes of several pathogens. For each pathogen, a second 

VLMC was trained on the same total length of purely random sequence (with uniform 

base utilization).  

Both VLMCs were trained at K = 0.75 and the two VLMC models were then used 

to emit 100,000 25 bp oligos which were then aligned to the genomes of the respective 

organisms via mpiBLAST67. Any alignment of at least 16 contiguous base pairs was 

considered to be a 'hit' and hit rates per 1,000 bp were calculated for both sets of 

oligomers; the results are shown for each of the organisms in Figure 4. Note that, in 
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almost every case, enrichment in hit rate for the VLMC trained on genomic sequence 

over that trained on random sequence was at least two-fold. 

 

 

Figure 4: Enrichment in 'hit rate' in genomic vs. random sequences. VLMCs trained on 
genomic or random DNA. Here 'hit rate' is defined as a contiguous alignment greater 
than 16 bp to the named target genome. 

 

Also note that the overall 'hit rate' is not consistent across organisms and can 

differ quite significantly e.g. the genome of Burkholderia pseudomallei has a per-

kilobase hit rate less than a tenth that of Francisella tularensis even though both show 

relative enrichment between random and VLMC-derived probes. 
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Table 3: Genome sizes and GC content for genomes presented graphically in Figure 4 

Genome Size % GC 
B. anthracis (Ames) 5.23 Mb 35.37% 
B. cereus E33L 5.30 Mb 35.35% 
Y. pestis CO92 4.83 Mb 47.64% 
Y. pestis KIM 4.95 Mb 47.65% 
E. coli K12 4.63 Mb 50.78% 
B. cereus cytotoxis 4.09 Mb 36.50% 
C. botulinum str A 3.86 Mb 28.20% 
F. tularensis 1.90 Mb 32.15% 
E. coli CFT073 5.23 Mb 50.47% 
B. pseudomallei chr. 2 3.17 Mb 67.97% 
 

 

 

 

Figure 5: GC% versus hit/Kb rate for the species in Table 3 including calculated linear 
regression line. Correlation between the two data sets was 0.98. 
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A linear regression fit to the relationship between GC% and hits-per-kilobase of 

genomic sequence resulted in an R2 value of 0.98; this relationship is depicted in Figure 

5. The correlation can be explained by the Tm constraints on probes used on the array and 

concomitant limitation on maximum GC content. As genomes are not subject to such a 

constraint, the divergence in relative GC content results in the linear relationship shown. 

Even in the extreme case of B. pseudomallei, a hit rate of 1.5 hits/Kb still results in 

~4,800 locations in the genome that align to probes on the array with an alignment of at 

least 16 contiguous base pairs likely leaving plenty of capacity for hybridization to the 

array and pattern classification. 

 

Array Normalization 

MvA plots are a common technique68 used in the interpretation of bias in array 

data. This type of plot was originally used to analyze 2-color microarrays, in order to 

assess dye bias but can be repurposed for use in one-color microarrays by comparing 

individual probe intensity to the median probe intensity for that array, acting as a stand in 

for the second dye channel. 

The y-axis, M, is defined as: 

( ) ( ))intensity(logintensitylog 22 medianM −=  

representing, for a given value of M, roughly the relative fold change in intensity of a 

given probe compared to the median intensity of the array as a whole. 
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Table 4: Array IDs for specific reference species arrays 

Species/Class Array ID #s 

B. cereus 1,6,7,10,16,18,20,21,28,30 

B. subtilis 2,3,8,9,12,13,19,22,26,27 

P. agglomerans 4,5,11,14,15,17,23,24,25,29 

Oligomer spike-ins 31,32 
 

 

 

Figure 6: MvA plot of log-transformed, non-normalized data from the first eight 
reference arrays. M = log2(intensity) – log2(median intensity), A = 
1/2(log2(intensity)+log2(median intensity))) 
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Figure 7: MvA plot of the first eight (see Appendix for all 40 MvA plots) reference arrays 
after quantile normalization. Notice the improvement over plots in Figure 6 in linearity 
and symmetry around M=0. 

 

  

Figure 8: Probability densities (top) and cumulative distribution function plots (bottom) 
for log2(intensity) across all reference arrays pre- (left) and post-normalization (right). 
Note the increased overlap in intensity distributions after normalization. 
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The x-axis, A, is defined as: 

( ) ( )( )( )intensitylogintensitylog
2
1

2 medianA +=  

representing, for a given value of A, the intensity of a given probe relative to the median 

intensity of the array (as the log-transformed geometric mean of the two values). These 

projections into log space result in a plot along the horizontal M = 0 (as opposed to a plot 

along y = x in unlogged space) that, in the ideal case, is symmetric and linear along the 

length of M = 0. Any point density trending away from M = 0 can indicate yet-to-be 

addressed intensity-dependent bias. Array images, feature extraction results, normalized 

data and all MvA plots are available in Appendix B. 

MvA plots (see Figure 6 and Figure 7) of pre- and post-normalization show a 

marked improvement in linearity around M = 0 and symmetry when compared to non-

normalized, log-transformed data. Density and empirical cumulative distribution function 

plots (see Figure 8) also demonstrate dramatic improvement in the alignment of 

distributions between reference arrays due to normalization. 

Figure 9 and Figure 10 provide box-plot representations of the distribution of 

intensity values for individual arrays. Note again that for post-normalization plots the 

distributions have all been essentially homogenized. 



 42 

 

Figure 9: Log-transformed distributions for reference arrays. Samples 1-30 are reference 
database training arrays. Samples 31 and 32 are oligomer spike-in arrays. 
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Figure 10: Quantile normalized distributions for reference arrays. Samples 1-30 are 
reference database training arrays. Samples 31 and 32 are oligomer spike-in arrays. 

  

In preparation for construction of classifiers, and to explore global relationships 

between samples across all probes, a hierarchical clustering routine was performed using 

a simple distance metric, dxy = median|Mxi – Myi|, defined as the median difference 

between matched probes across any two arrays x and y. The resulting distance matrix was 

then used in arrayQualityMetrics to construct a heatmap with matched dendrograms (see 

Figure 11 and Figure 12 for pre- and post-normalization result graphs). 
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Figure 11: Sample/sample comparative heatmap and accompanying 
dendrogram for pre-normalization, log2 transformed intensity data. Visualization 
was constructed from a distance matrix as dxy = median|Mxi – Myi|. Classes for 
sample IDs are found in  

Table 4. 

 



 45 

 

Figure 12: Sample/sample comparative heatmap and accompanying 
dendrogram for post-normalization intensity data. Visualization was constructed 
from a distance matrix as dxy = median|Mxi – Myi|. Classes for sample IDs are 
found in  

Table 4. 

 

Note that in the pre-normalization visualization, only all ten B. cereus samples 

cluster together in an isolated way. All ten P. agglomerans samples cluster together but 

did so within the scattered B. subtilis samples. In the post-normalization visualization 

results, class members remain within clearly-defined class cluster boundaries and the two 
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oligomer spike-in arrays are clearly identified as significantly distinct from the simulant 

genome arrays. The dendrogram relationships parallel the visual representation of class 

membership in the heatmap. 

Of particular interest is the separability of samples even within closely-related 

species at this high level of analysis. Even without application of sophisticated clustering 

algorithms, the sample classes are clearly distinct from one another. 

 

Reproducibility of Whole Genome Amplification 

In building a reference database, a key assumption lies in the comparability of 

data in the reference database to that being compared against the reference data. As a 

source of potential variability, the whole genome amplification method used is of concern 

due to the random nature of the non-enzymatic digestion of precursor DNA. 

To explore this potential source of noise in the resulting system, four 

amplifications were carried out, all starting with 10 ng of B. subtilis genomic DNA. Each 

amplification reaction was run in duplicate, following the same labeling and array 

protocol as previously discussed. Spot intensities were estimated as described above, and 

Pearson’s correlation coefficients were calculated for all sample pairs (eight choose two, 

or 28 total correlations) and a distribution of resulting correlations was calculated. This 

distribution was compared with distributions of pair-wise correlations (ten choose two, or 

45 total correlations) calculated for each simulant in the reference database and graphed 

in Figure 13. The scanned array image, feature extraction results, normalized intensity 

matrix and all calculated correlation coefficients are available in Appendix C.  
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Figure 13 - Distributions of correlations calculated on pair-wise samples from three 
simulant classes in the reference database (n = 10 each) and for the WGA reproducibility 
study (n = 8). 

 

The distribution of pair-wise correlations for the WGA study samples falls well 

within that for the correlations for the reference simulants. As the reference database 

samples were each derived from a pool of 2-3 amplifications (depending upon total yield 

for individual simulants), the degree of sample similarity across both individual WGA 

and pooled WGA samples provides ample reassurance that the WGA process itself is not 

a source of significant error in the classification process and that, while randomly 
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fragmenting sample DNA, the stochastic nature of this fragmentation still leads to 

consistent hybridization patterning. 

 

Reference Classification 

As previously mentioned, classification was carried out using CMA, an R package 

wrapping various popular classifier implementations, cross-validation strategies, and 

methods for evaluation of classifier robustness. An initial broad survey of classifier 

performance on the post-normalization intensities from the reference simulant data was 

carried out to determine which families of methods to select for additional analysis by 

classification of mixed-genome samples. Results of this survey are depicted in Figure 14. 
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Figure 14: Cross-classifier comparison of predictive accuracy and class assignment 
probability across eight classifiers. From left to right, classifiers tested are diagonal 
linear discriminant analysis, shrunken centroids discriminant analysis, support vector 
machines, random forests, linear discriminant analysis after dimensional reduction via 
partial least squares, random forests after dimensional reduction with partial least 
squares, component-wise boosting and penalized logistic regression. 

 

Two measures of performance are indicated in Figure 14: misclassification and 
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classified as a class other than that sample's true class. In this case, no samples were 

misclassified by any of the classification methods. While encouraging, this gives no 

measure of how overfit the various models may be to the reference training data, which 

represents a best-case detection scenario (a lone pathogen genome, in a vacuum with 

respect to host DNA or other sources of competition) rather than the real-world 

complexity within which any fielded identification method must work. 

The average probability graph shows, for those methods that provide more detail 

than a simple 1/0 classification score, the distribution of scores representing how 'sure' 

each method was of the final classification of each sample calculated as66: 

( ) ( )∑∑
=

−

=

− ∈∈
n

i

K

k
ii xkyPkyIn

1

1

0

1 ˆ  

where n is the number of samples, K is the total number of classes, ( )kyI i ∈  is an 

indicator function as 1/0 depending upon whether the assigned class is correct and 

( )xkyP i ∈ˆ  is the probability that sample y is of class k, conditional on x, the vector of 

array intensity data for sample y. 

Ideal methods will show a high probability of classification for true positive 

results. Beyond the LDA-based methods (which do not provide probabilities of 

classification beyond a 1/0 indicator of predicted class), only the competitive boosting 

method showed relatively low confidence in predicted sample classes, with a median 

probability of classification of only 0.45. 
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Drilling down further into predictions on individual samples, voting plots were 

constructed for each classifier (see Figure 15 and Figure 16). In each plot, the 100 

observations on samples from each class (5-fold, 2 samples per test group, iterated 10 

times for 100 total observations per class) are grouped horizontally and divided by 

vertical lines while scores from each classifier for each predicted class are color-coded. 

For example, in Figure 15 for DLDA, the first 100 dots represent predictions on the 10 B. 

cereus samples, the second 100 dots on B. subtilis and the final 100 dots on P. 

agglomerans. 

The y-axis represents the probability associated by the classifier with membership 

of that sample in the predicted class. For LDA-based methods, this is a 0/1 value but for 

methods like SVM, penalized logistic regression, random forests or component-wise 

boosting, more information on the separation between predicted classes is provided. For 

example, in Figure 16 for the random forests classifier, there is some degree of variability 

in prediction probability from sample to sample; although at no time does any predicted 

score from any other class approach that of the correctly predicted class.  
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Figure 15: Voting plots across all class/cross-validation observations for the first four 
classifiers. Classifiers shown are diagonal linear discriminant analysis, shrunken 
centroids discriminant analysis, support vector machines and linear discriminant 
analysis after dimensional reduction with partial least squares. For each class, 100 total 
classifications (5-fold cross-validation x two test samples per fold x ten iterations) were 
made for each species. Observations are divided by true species horizontally with class-
specific voting probabilities plotting on the y-axis color-coded by predicted species. 
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Figure 16: Voting plots across all class/cross-validation observations for the second four 
classifiers. Classifiers shown are random forests, random forests after dimensional 
reduction with partial least squares, component-wise boosting and penalized logistic 
regression. 
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suggesting that component-wise boosting is not an appropriate method for the current 

application.   

 

Mixed-Genome Classification 

Correct classification of genomic DNA in isolation is certainly of interest but of 

no practical application for identification of bioweapons from environmental samples. As 

a next step, the same panel of classifier methods tested previously was trained on the 

entirety of the reference data set and the resulting classifiers used to predict the 

classification of two- and three-way mixed-genome samples, as described in Table 2. 

Escherichia coli (K12) was used as a possibly confounding background genome not 

represented in the classifier training set. 

For each mixed genome condition, arrays were subjected to the same panel of 

classifier methods, this time trained on all reference samples. In Figure 17and Figure 18, 

results from the eight classifiers are shown. In almost all cases (component boosting 

again the performance exception), the presence of B. cereus in a background of E. coli 

was correctly classified. The presence of B. subtilis in a background of E. coli was also 

correctly classified by all but two of the classifier methods (component boosting and 

random forests on dimensionally reduced data).  
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Figure 17:  Voting plots across mixed-genome samples for the first four classifiers. 
Classifiers shown are diagonal linear discriminant analysis, shrunken centroids 
discriminant analysis, support vector machines and linear discriminant analysis after 
dimensional reduction with partial least squares. Two samples were available for each 
mixed-genome condition. Observations are divided and labeled by genomes hybridized 
horizontally with class-specific voting probabilities plotted on the y-axis color-coded by 
predicted species. 
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Figure 18: Voting plots across mixed-genome samples for the second four classifiers. 
Classifiers shown are random forests, random forests after dimensional reduction with 
partial least squares, component-wise boosting and penalized logistic regression.   

 

This loss of fidelity likely represents the loss of information associated with 
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In all cases, whether against a background of E. coli or not, when both B. cereus 

and B. subtilis were mixed together in a sample, B. cereus was correctly classified but the 

corresponding B. subtilis signal was masked. This is likely due to several factors, 

including the overlap between reference hybridization patterns and the inability of many 

traditional classifier methods, often used in microarray analysis, to properly discriminate 

mixtures of training signals. 

The LDA-based methods and support vector machines all had false-positive 

classifications of the negative control oligo arrays as either B. subtilis or P. agglomerans. 

In the case of the LDA-based methods, this is unsurprising given their lack of suitability 

when the number of observations greatly outnumbers the number of samples 

observed69,70. The random forests-based methods did a better job at quieting this 

oversensitivity but did so in a way that traded true-positive performance for a decrease in 

false-positives. Only the penalized logistic regression classifier had a discernable gulf in 

probability between the true positives and the false positive oligo array classifications. 

This gap could be exploited, with additional rigorous validation, to set thresholds for 

classification based upon PLR-derived predicted class probabilities. 

Given these measures of relative performance, of the methods tested here, 

penalized logistic regression showed the most consistent separation of predicted classes 

and maintained high true-positive rates for B. cereus and B. subtilis (in isolation) 

although it, too, failed to correctly separate signals associated with B. cereus and B. 

subtilis when both are present in a sample.  
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CHAPTER 5: DISCUSSION 

 

Initial results are encouraging for the use of pseudo-random probe arrays as a 

biological threat identification platform. A survey of classifier techniques used frequently 

in analysis of mRNA expression profiles found clear success in discriminating between 

species using purified genomic DNA. However, classifier performance was confounded 

by similar, within-genera simulants, which would likely result in a high rate of false 

positive alerts in a fielded sensor. 

Classifier methods in microarray analysis normally look at individual up-and-

down comparative gene expression levels between training conditions; the current work 

is instead interested in the overlap of hybridization patterns globally across the array. 

This likely requires re-thinking the approach to classification for many overlapping 

genomes like those found in environmental monitoring applications. Future efforts may 

explore the potential for applying mixture models to account for the overlapping of 

trained signals in the test data. 

 

Fielding Sensors - Drawbacks 

The current effort focuses only on genomic DNA. Many viruses that pose a threat 

to human health make use of RNA as their genetic material, so any implementation of 

this technique for environmental monitoring must be coupled to a secondary, RNA-
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centric system useful in detecting the presence of such viruses. This paired system would 

lack the flexibility in detection of the pseudo-random oligomer array but monitoring the 

much-noisier realm of environmental RNA (including not just the ‘genomic’ RNA of 

viruses but the universe of active cellular mRNA as well) is a tall task. 

In addition, nucleic acid-based assays do not assess the viability or pathogenicity 

of a given organism; only that the genetic material of the organism is present in the 

environment. Since for many of the CDC Class A pathogens their presence alone is 

enough to cause concern, this may not be a significant issue. A front-line, tactical 

identification is still useful and follow-on, confirmatory secondary assays can be 

performed to assess viability and to inform larger-scale, high-cost decisions. 

 

Next Steps 

While the present work seeks only to demonstrate that model-driven probe design 

can result in effective classification of organisms of interest, addition of automated 

sample processing and a reagent-free approach to array readout represent excellent next 

steps. Micro-scale DNA isolation, amplification and separation by electrophoresis has 

been demonstrated in a single integrated unit71 and a previously-mentioned method41 has 

demonstrated label-free array hybridization detection. This confluence of technologies 

can greatly reduce the operational overhead burdening the current approach while 

maintaining the detection flexibility promised by the use of pseudo-random oligomer 

probes.   
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APPENDIX 

 

The data distribution accompanying this document contains the following files and 
folders: 
 
Appendix A - VLMC Training\ - Files and folders relating to the design of the 
pseudo-random oligo array including training and validation studies for variable-length 
Markov chain models. 
  

File Description 

arrayProbes-
Final.txt 

File of all 15,200 probe sequences tiled on the array (probes 
with a “_d” are duplicate probes) 

gc-hitskb-fit.emf  Plot of BLAST hits/kb for VLMC/random probes 
hits-per-kb.jpg Oligo alignments per kb of genomic sequence for several 

species, random vs. VLMC-derived 
k0-ranging.emf Plot of VLMC accuracy over a range of K0 and K values 
vlmc.R R code to generate and bootstrap VLMC models 
generateOligos.pl Perl script to generate random oligos based upon ACTG 

frequency 
screenOligos.pl Perl script to calculate Tm and secondary structure propensity 

for oligos from a VLMC model 
rankOligos.pl 
 

Perl script to rank output of screenOligos.pl by secondary 
structure propensity 

selectOligos.pl Perl script to take N oligos from rankOligos.pl and duplicate a 
percentage at random 

sample-size-
effects.jpg 

Graph of sequence sample size versus next-base accuracy for 
K0 = 0 
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Appendix B - Reference Arrays\ - Files and folders relating to the generation 
of single-genome reference arrays as well as mixed-genome arrays. Files include array 
TIFF images, extracted data, and normalized data. 

 

File Description 

Mixed-PhenoData.txt Mixed genome sample definitions 
mix-expr.txt Normalized mixed genome intensities 
Mixed-Targets.txt Mixed array definition file for limma methods 
norm-qc.R R code to read in, normalize and QC arrays 
PhenoData.txt Reference genome sample definitions 
ref-expr.txt Normalized reference genome intensities 
Targets.txt Reference array definition file for limma methods 
unnorm-expr.txt Unnormalized reference genome intensities 
data\ Feature extractions; see PhenoData.txt/Mixed-PhenoData.txt 
mix-qc\ Same file definitions as in ref-qc\ but for mixed samples 
ref-qc\ Output from arrayQualityMetrics 
ref-qc\boxplot.pdf Array intensity distribution boxplots 
ref-qc\boxplot.png Array intensity distribution boxplots (as PNG) 
ref-qc\density.pdf Array intensity densities 
ref-qc\density.png Array intensity densities (as PNG) 
ref-qc\heatmap.pdf Distance-based array comparison heatmap 
ref-qc\heatmap.png Distance-based array comparison heatmap (as PNG) 
ref-qc\MA1.pdf MvA plots for arrays 1-8 
ref-qc\MA1.png MvA plots for arrays 1-8 (as PNG) 
ref-qc\MA2.pdf MvA plots for arrays 9-16 
ref-qc\MA3.pdf MvA plots for arrays 17-24 
ref-qc\MA4.pdf MvA plots for arrays 25-32 
ref-qc\meanSd.pdf Mean vs. standard deviation of arrays 
ref-qc\meanSd.png Mean vs. standard deviation of arrays (as PNG) 
ref-qc\QMreport.html HTML report describing visualizations 
unnorm-qc\ Same files as ref-qc\ but for unnormalized ref. samples 
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Appendix C - WGA Replicate Study\ - Files and folders relating to the whole 
genome amplification (WGA) inter-amplification study. Files include array TIFF image, 
extracted data and normalized data. 

 

File Description 

array-corr.emf Visualization of reference and inter-WGA correlation 
PhenoData-WGA.txt Inter-WGA study sample definitions 
expr-WGA.txt Inter-WGA study sample normalized probe intensities 
Targets-WGA.txt Inter-WGA study array definition file for limma methods 
wga-corr.R R code to read in, normalize and QC arrays 
corr\ Files of raw correlation coefficients 
corr\BC-corr.txt B. cereus correlation coefficients 
corr\BS-corr.txt B. subtilis correlation coefficients 
corr\PA-corr.txt P. agglomerans correlation coefficients 
corr\Reference-Corr.txt All inter-WGA study sample correlations 
WGACorr.txt All inter-WGA study correlation coefficients 
data\ Feature extractions; see PhenoData-WGA.txt 
qc\ Output from arrayQualityMetrics 
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Appendix D – Classification\ - Files and folders relating to the classification 
of training and mixed genome arrays. Files include classification results and 
visualizations. 
 

File Description 

class-5-10-Comparison.emf Cross-classifier accuracy/prob. comparison 
classifiers.R R code to generate classifier results and visualizations 
mixed-voting-1.emf Voting plots for mixed genome classifiers part I 
mixed-voting-2.emf Voting plots for mixed genome classifiers part II 
reference-yhat.txt Predicted classes for all cross-validation observations 

on reference data 
votes-1-510-h.emf Voting plots for ref. genome classifiers part I 
votes-2-510-h.emf Voting plots for ref. genome classifiers part II 
Class Probabilities\ Directory of files, one per classifier method, of 

predicted class membership probabilities across all 
cross-validation observations 
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