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Human breast ductal carcinoma in situ (DCIS) is categorized as Stage 0 because it is 

noninvasive and limited to the duct lining.  However, women diagnosed with DCIS 

have a 30-40% chance of developing invasive breast cancer (IBC) if it is left 

untreated.  The breast tissue microenvironment of the surrounding stroma plays an 

important role in the malignant invasion and migration of tumor cells across the 

basement membrane, which separates the epithelial cells from the stroma in the 

normal breast.  Far from being passive, the stroma plays an active role in 

invasiveness and perhaps throughout the entire progression of malignancy.  Complex 

signaling networks, both intracellular and extracellular, are activated along with 

dramatic extracellular matrix (ECM) remodeling and growth factor release, which in 

turn leads to significant changes in cellular gene expression profiles.  This study 

examines those gene expression profiles across the full range of breast cancer 

progression from normal to hyperplasia through DCIS and IBC, looking specifically at 

changes in gene expression between the cancerous epithelial tissue and the 



  

 

surrounding stroma, using the recent advancement of laser capture microdissection 

to obtain highly purified, cell type specific samples. 
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Introduction 
 

 

 

 

Background and Motivation 

 

Human breast cancer progresses through stages, forming a spectrum of 

classifications from normal (non-cancerous) to fully invasive (malignant), as shown 

in the figure below.  These classifications apply equally to ductal and lobular breast 

cancer.  The distinction between ductal versus lobular carcinomas is somewhat 

controversial because, strictly speaking, there are no anatomical grounds for the 

distinction.  That is, both carcinomas ultimately derive from the terminal duct lobular 

unit (TDLU).  The differences in carcinoma morphology are likely due to different 

mechanisms of carcinogenesis rather than to anatomical origin [1].  Nevertheless, 

the conventional terminology will be followed here, since these two types are the 

most common histological types of breast cancer.  This study considers only ductal 

carcinoma. 

 

 

Figure 1.  The progression of human female ductal breast cancer 
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Hyperplasia is an overactive growth of cells lining the breast ducts (ductal 

hyperplasia).  Hyperplasia is generally benign, unless it is diagnosed as “atypical,” 

which can progress into carcinoma.  For ductal hyperplasia, this is termed Atypical 

Ductal Hyperplasia (ADH).  Ductal carcinoma in situ (DCIS) is a proliferation of cells 

within the human breast ducts that appear malignant but have not breached the 

ductal basement membrane [2].  Once this barrier has been breached, the well 

known processes of invasion and metastasis generally follow. 

 

In the United States, between 1975 and 2003, 394,891 cases of invasive breast 

cancer were diagnosed in women over 40 years old, and 59,837 cases of in situ 

(benign) breast cancer cases were diagnosed [3].  Although recent downward trends 

are encouraging, due mainly to reduction in hormone replacement therapy [4], 

breast cancer remains the second leading cause of cancer deaths in women (lung 

cancer is first), and the sixth leading cause overall.  While DCIS is noninvasive and 

limited to surface cells, women diagnosed with DCIS have a 30-40% chance of 

developing invasive breast cancer (IBC) if left untreated [5].   

 

The study of gene expression in primary breast cancer tumors is complicated by two 

major factors [1].  First, breast cancer tissue consists of many different cell types 

(tumor, normal epithelial, stromal, adipose, and endothelial cells) and second, tumor 

cells are morphologically and genetically diverse [6].  For both of these reasons, 

laser capture microdissection (LCM) is crucial because it permits gene expression 

analyses from highly homogenous individual cell type populations [7,8].  All samples 

used in this study were obtained using LCM.  The applications of microarray 

techniques to the study of breast cancer are well established, and have led to gene 
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expression profiling predicting clinical outcomes [9] and for molecular classifications 

of various subtypes in situ [10, 11].  Most recently, microarray techniques have been 

combined with laser capture microdissection for “more targeted” gene expression 

profiling, molecular pathway modeling, and for determining novel biomarkers for 

differentiating lobular versus ductal invasive carcinomas [1].  Here, an extension of 

previous work using highly targeted microarrays (breast cancer specific), laser 

capture microdissection (LCM), and tissue samples from both tumor and normal 

tissue microenvironments is followed in order to gain further insights into the 

conditions that might be related to in situ carcinomas becoming invasive.  This work 

also broadens the scope of analysis by examining gene expression differences across 

the full range of mammary cancer progression, including atypical hyperplasia, while 

simultaneously considering both epithelial and stromal tissue types. 

Breast Cancer 

 

The majority of all human tumors arise from epithelial tissues [12].  In the human 

breast, the mammary gland contains numerous milk ducts lined with epithelial cells.  

These ducts are surrounded by mesenchymal tissue called stroma, which consists of 

fibroblasts, adipocytes, and collagen-based matrix (Figure 2, upper panel).  When 

ductal breast carcinoma invades the stroma (Figure 2, lower panel, and Figure 3), 

cancer cells arising from the epithelial cells lining the normal ducts display 

abnormally large nuclei, and no longer form properly structured ducts.  That is, they 

become much less differentiated, a hallmark of cancerous cells.  Normally, a 

basement membrane (or basal lamina) separates the epithelial cells from the 

underlying, supportive stromal tissue.  This basement membrane is a specialized 

type of extracellular matrix (ECM), formed largely from proteins secreted by the 
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epithelial cells.  For cancer cells to become invasive, this basement membrane 

barrier must be breached. 

 

 

Figure 2.  Normal tissue architecture in the human breast (upper panel) showing the 

milk duct lined with epithelial cells (dark purple nuclei) and the surrounding 

mesenchymal stromal tissue.  In invasive ductal breast carcinoma (lower panel), 

cells arising from the epithelial cells have invaded the stroma.  (Source: The Biology 

of Cancer, Robert A. Weinberg, Garland Science, 2007) 
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Figure 3.  Breast carcinoma cells invading the stroma (Source: The Biology of 

Cancer, Robert A. Weinberg, Garland Science, 2007) 

 

 

Understanding this transition from epithelial hyperplasia to dysplasia and to 

invasiveness is critical for the understanding of the progression to malignant breast 

carcinoma.  Figure 4 shows an advancing intraductal breast carcinoma where 

dysplastic epithelial cancer cells have almost completely filled a duct and have 

caused it to swell to an abnormally large size, but have not yet broken through the 

surrounding basement membrane to invade the stroma.  This leads to a question of 

what specific mechanisms can permit and facilitate the “tipping point” where the 

clearly abnormal, but not yet invasive, carcinoma crosses the line into invasiveness.  

For example, at the border of many carcinomas, epithelial cancer cells may change 

both shapes and gene expression profiles to take on attributes of nearby stromal 
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cells of mesenchymal origin.  This “transdifferentiation” is called the epithelial-

mesenchymal transition (EMT), and it enables the invasion by carcinoma cells 

through the basement membrane.  The major focus of this work is to characterize 

gene expression profiles in the microenvironments before and after this transition, in 

order to understand better the specific mechanisms involved in breast carcinomas. 

 

 

Figure 4.  Pre-invasive, intraductal breast carcinoma completely filling the duct but 

not yet penetrating the basement membrane to invade the stroma (Source: The 

Biology of Cancer, Robert A. Weinberg, Garland Science, 2007) 

 

Role of Stroma 

 

Far from being an innocent bystander, the stroma surrounding breast ducts, and 

stroma that becomes intermixed with invasive carcinoma, plays an active role in the 

progression and tumorigenesis of breast cancer [13, 14].  Invasion is facilitated by 

the exchange of growth factors and cytokines as complex signaling networks develop 
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between tumor cells and the host stroma that modify the ECM, stimulate motility and 

migration, and promote proliferation and survival [15, 16].   

 

Epithelial-mesenchymal interactions play a critical role in normal development and 

differentiation of the germ layers and organogenesis.  Specifically, fibroblasts 

regulate the proliferation and differentiation of epithelial tissues [17], and 

transformed stroma is known to induce malignancy in both lung and mammary 

epithelia [18, 19].  Cancer exploits the normal, and reversible, mechanisms of 

epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition 

(MET) to aid in its quest to become invasive and spread.  EMT is triggered by 

external signaling and is characterized by cytoskeletal reorganization, loss of contact 

inhibition, and significant phenotypic changes.  The major developmental signaling 

pathways mediated by, for example, RTK, Notch, Wnt, and TGF-β provide primary 

inputs that drive EMT, resulting in mesenchymal derivatives with enhanced migratory 

and differentiation capabilities, which is essential for both normal morphogenesis of 

organs and tissues, as well as wound healing, and for cancer progression [20]. 

 

TGF-β plays a particularly important and complex role, with carcinoma cells secreting 

abnormally high doses of bioactive TGF-β, which sensitizes both carcinoma and 

surrounding stroma cells in an autocrine and paracrine fashion, leading to escape 

from the primary growth suppressive and pro-apoptotic responses to TGF-β, but at 

the same time permitting the establishment of EMT [20].  Thus the current model of 

the role of TGF-β during cancer progression is that it suppresses normal epithelial 

and benign adenoma cell growth while simultaneously promoting aggressive 
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carcinoma EMT, invasiveness, and metastasis [21] leading to its characterization as a 

“double-edged sword.” 

 

Fibroblasts also seem to play a key role in the tumor microenvironment.  Once 

activated, they are referred to as tumor-associated fibroblasts or cancer-associated 

fibroblasts (CAFs).  The exact activation mechanism is not clear, but EMT of the 

associated cancer cells is likely involved.  Particularly in human breast cancer cells 

that undergo EMT, the cancer appears to form its own nonmalignant stroma that 

functions reciprocally as a “feeder” of other carcinoma cells, regulating their 

proliferation [22].  Tumor stroma also contains so-called “activated myofibroblasts,” 

which are proposed to provide migratory cues for the metastatic carcinoma cells, one 

of them being TGF-β [23] in a manner similar to wound healing. 

 

Perhaps most intriguing are studies that suggest the stroma may actually initiate the 

invasive process.  Invasion of stromal host cells, such as myofibroblasts, into the 

epithelial cancer compartment may precede epithelial cancer invasion into the 

stroma [23].  In a completely different vein, researchers also have shown that 

concurrent and independent genetic alterations (e.g., loss of heterozygosity (LOH) 

and genetic alterations on several chromosomes) in mammary stroma not only occur 

but that these changes may precede genotypic changes in the epithelial cells [24]. 

 

Clearly, the interactions between developing human breast cancer and its host 

microenvironment are significant and complex.  Yet, despite intense recent study, 

many of the specific mechanisms, both genomic and proteomic, are still poorly 

characterized and warrant further study using the latest technology and techniques. 
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Aims 
 

 

 

 

This study is part of a larger collaborative effort funded under a Grant from the 

Susan G. Komen for the Cure organization.  Participants include the George Mason 

University (GMU) Molecular and Microbiology Department, the GMU Center for 

Applied Proteomics and Molecular Medicine, and the INOVA Fairfax Hospital (Fairfax, 

VA).  The stated aim of the overall study is to use the latest Laser Capture 

Microdissection (LCM) technology to obtain highly purified cell type specific samples 

of both breast epithelial tissue and the surrounding stroma and analyze gene 

expression and signal pathways for several cellular compartments: 

 

 
• Ductal carcinoma in situ (DCIS)  

 

• Stroma adjacent to DCIS  

 

• Atypical ductal hyperplasia (ADH)  

 

• Stroma adjacent to ADH  

 

• DCIS accompanying invasive breast carcinoma  

 

• Stroma surrounding DCIS and invasive breast carcinoma  

 

 

The goal of the overall study is to analyze the disturbances in the local 

microenvironments surrounding ADH, DCIS, and DCIS accompanying invasive breast 

cancer using both genomic and proteomic microarray profiling with the specific aim 
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of distinguishing low grade, possibly non-progressive DCIS from DCIS that will likely 

progress into invasive cancer.  The study presented here is the genomic component 

of the overall study. 

 

Approximately 65 samples were obtained from INOVA Fairfax Hospital covering the 

cellular compartments listed above.  Table 1 below provides an overview of the 

specimens.  Each gray cell in the table represents a specimen.  The specimens are 

numbered by patient, and pairs of specimens (epithelial and stromal) are correlated 

by that number.  In four cases, two categories of epithelial tissue were obtained, 

along with stroma, so in these cases there are numbered triplets instead of pairs.  In 

the triplets, the stroma is classified according to the more advanced state of the 

associated breast tissue samples.  Note that some stromal samples do not have 

associated breast tissue samples; however, the associated disease states for these 

are known.  Also, not all epithelial samples have stromal partners, and not all 

stromal samples have the associated epithelial. 

 

The aim of the genomics portion is to analyze gene expression between pairs of 

sample sets representing conditions of interest, for example a disease state and the 

associated stoma, or progressive disease states, or progressive stroma states.  Many 

group pairings are possible, but not all make meaningful comparisons.  The specific 

pairings analyzed are discussed in the Results section below.   
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Table 1.  Specimens processed showing disease state and corresponding stroma 
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Figure 5 shows a general overview of the condition groupings and therefore the 

sample sets.  Arrows indicate comparisons of interest, including both adjacent and 

non-adjacent group pairings.  Further, as the main goal of the overall study is to 

focus on DCIS with and without associated IBC, this (re)grouping is also of interest 

(not shown on figure).  Refinements such as these are expanded upon and discussed 

further in the Results section. 

 

 

 
Figure 5.  Eight condition groups and possible comparisons of interest 

 

 

 

 

To achieve the goals of the genomics portion of the overall study presented here, 

state-of-the-art laser capture microdissection is used to obtain high purity RNA 

samples, and targeted microarrays are used that are optimized for breast cancer 

investigations.  Note that although gene expression comparisons between disease 
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states (e.g., DCIS versus IBC) have been investigated in many previous studies, 

most did not utilize laser capture microdissection (LCM), so these comparisons are 

worth examining as well, in addition to the main goal of epithelial versus stroma 

comparisons. 
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Materials and Methods 
 

 

 

 

Overview 

 

Figure 6 below shows an overview of the approach taken in this study.  Laser capture 

microdissections are used to obtain high quality samples for RNA extraction.  

TrueLabeling-PicoAMP™ 2.0 kits from SuperArray Bioscience Corporation are used for 

amplification and biotin labeling is used to prepare biotinylted cRNA target material.   

The SuperArray Oligo GEArray® microarray system is used to perform microarray 

studies.  The Oligo GEArray HybPlate Basic protocol is used for hybridization, and a 

CCD camera is used for chemoluminescent detection.  Finally, software tools from 

the SuperArray GEArray Expression Analysis Suite website are used for preliminary 

data analysis, followed by additional detailed analysis and study of the results.  Each 

step is described in further detail in this discussion. 

 

 

Figure 6.  High-level view of study approach 

 

 

Sample Generation 

 

The study approach begins with the isolation of high quality samples via laser 

capture microdissections (LCM) on all tissue specimens.  LCM is a method for 
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obtaining cell-level precision in isolating samples from tissue sections [25].  The LCM 

performed for this study is done according to a recently published protocol [26].  

Traditional sectioning approaches for obtaining cells for isolating total RNA can result 

in obtaining as little as 20% of the desired cell populations, introducing considerable 

noise into a microarray-based study.  A major problem, particularly in studies of 

disease pathologies, is that the cells of interest (e.g., invading carcinoma cells) may 

be surrounded by highly heterogeneous tissue elements.  In fact, the cells of interest 

may comprise a very small fraction of the total tissue biopsy sample, requiring 

careful extraction for testing to obtain low noise to signal results. 

 

In LCM, a transparent transfer film is applied to the surface of the tissue section.  

Under a microscope, the operator views the thin tissue section through the glass 

slide on which it is mounted and locates microscopic clusters of the desired cells for 

the particular study.  When the cells of choice are in the center of the field of view, 

the operator pushes a button which activates a near IR laser diode integrated with 

the microscope optics. The pulsed laser beam activates a precise spot on the transfer 

film immediately above the cells of interest. At this location, the film melts and fuses 

with the underlying cells.  When the film is removed, the chosen cells are tightly held 

by the expanded polymer, while the rest of the tissue is left behind.  Figure 7 below 

shows an example of the precision and resolution of samples achievable with this 

technology. 
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Figure 7.  Precision dissection of breast duct epithelial cells (left) and LCM transfer 

of cancer cell clusters (right).  (Source: NIH NCICGAP website, Introduction to Laser 

Capture Microdissection, http://dir.nichd.nih.gov/lcm) 

 

 

 

First, the tissue samples are processed with the HistoGene™ LCM Frozen Section 

Staining Kit (Arcturus Bioscience, Inc., Mountain View, CA, Catalog #KIT0401) to 

prepare sections for the LCM.  These stained sections are laser microdissected using 

an Arcturus ProCell IIe LCM device.  Typically, 600 – 700 shots are fired on a give 

sample.  The capture efficiency rate is on the order of 85%, so this number of shots 

conservatively captures approximately 500 cells of the tissue type of that sample.  

The actual capture is analyzed by eye, following the dissection to ensure this 

efficiency is achieved.   

 

The resulting LCM caps are processed for RNA extraction using the PicoPure™ RNA 

Isolation Kit (Arcturus Bioscience, Inc., Mountain View, CA, Catalog #KIT0202 / 

KIT0204) and the associated protocol [27].  For each cap, dispense Extraction Buffer 

(XB) and incubate as follows.  Pipette 50 µL Extraction Buffer (XB) into a 0.5 mL 

microcentrifuge tube (Applied BioSystems Catalog #N8010611).  Insert CapSure 
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Macro LCM Cap onto the microcentrifuge tube using an LCM Cap Insertion Tool.  

Invert the CapSure Cap–microcentrifuge tube assembly.  Tap the microcentrifuge 

tube to ensure all Extraction Buffer (XB) is covering the CapSure Macro LCM Cap. 

Incubate assembly for 30 minutes at 42°C.  Centrifuge assembly at 800 x g for two 

minutes to collect cell extract into the microcentrifuge tube.  After centrifugation, the 

microcentrifuge tube contains the cell extract required to complete the protocol.  

Remove the CapSure Macro LCM Cap and save the microcentrifuge tube with the cell 

extract in it.  

 

After extraction, the RNA is isolated as follows.  First, pre-condition the RNA 

Purification Column.  Pipette 250 µL Conditioning Buffer (CB) onto the purification 

column filter membrane.  Incubate the RNA Purification Column with Conditioning 

Buffer for 5 minutes at room temperature.  Centrifuge the purification column in the 

provided collection tube at 16,000 x g for one minute.  Pipette 50 µL of 70% Ethanol 

(EtOH) into the cell extract from the RNA Extraction.  Mix well by pipetting up and 

down, but do not centrifuge.  Pipette the cell extract and EtOH mixture into the 

preconditioned purification column.  The cell extract and EtOH will have a combined 

volume of approximately 100 µL. 

 

To bind RNA to the column, centrifuge for 2 minutes at 100 x g, immediately 

followed by a centrifugation at 16,000 x g for 30 seconds to remove flowthrough.  

Pipette 100 µL Wash Buffer (W1) into the purification column and centrifuge for one 

minute at 8,000 x g.  Pipette 100 µL Wash Buffer 2 (W2) into the purification column 

and centrifuge for one minute at 8,000 x g.  Pipette another 100 µL Wash Buffer 

(W2) into the purification column and centrifuge for two minutes at 16,000 x.  Check 
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the purification column for any residual wash buffer.  If wash buffer remains re-

centrifuge at 16,000 x g for one minute.  Transfer the purification column to a new 

0.5 mL microcentrifuge tube provided in the kit.  Pipette Elution Buffer (EB) directly 

onto the membrane of the purification column (Gently touch the tip of the pipette to 

the surface of the membrane while dispensing the elution buffer to ensure maximum 

absorption of EB into the membrane).   Incubate the purification column for one 

minute at room temperature.  Centrifuge the column for one minute at 1,000 x g to 

distribute EB in the column, then for one minute at 16,000 x g to elute RNA.  

 

The isolated RNA is now ready for amplification, labeling, and hybridization. 

 

RNA Amplification, Labeling, and Hybridization 

 

Following RNA preparation, the RNA is amplified from picogram quantities 

(approximately 500 cells) using the TrueLabeling-PicoAMP™ amplification and 

labeling kit from SuperArray Bioscience Corporation (Frederick, MD).  This kit is 

designed to amplify and label antisense RNA from picogram quantities of total RNA 

for hybridization to high-density genome-wide microarrays [28].  Very specific 

populations of cells are isolated through Laser Capture Microdissection (LCM), 

however for these samples traditional one-round amplification and labeling methods 

fail to yield enough target material for microarray applications, so the kit utilizes a 

two-round RNA amplification procedure (see Figure 8 below) to generate labeled 

antisense RNA (aRNA), also known as labeled cRNA target.  The kit is optimized for 

use with the Oligo GEArray® arrays (SuperArray Bioscience Corporation, Frederick, 

MD), which were used in the hybridization step. 
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Figure 8.  TrueLabeling-PicoAMP™ Kit Overview (Source: TrueLabeling-PicoAMP™ 

User Manual, Part#1021A, Version 1.3, July 9, 2007, SuperArray Bioscience 

Corporation, Frederick, MD.) 

 

 

The protocol used for amplification, labeling, and hybridization is discussed below 

[28].  All quantities are per RNA sample. 

First-Round RNA Amplification 

 

First, prepare the annealing mixture by mixing 50 – 500 pg of RNA in up to 2 µl of 

RNase-free H2O with 1.0 µl T7 Primer 1, followed by a brief centrifugation to collect 

the mixture at the bottom of the tube.  Incubate the mixture at 65°C for 5 min and 

then chill at 4°C or on ice for at least 1 minute.  Centrifuge the mixture briefly (~2 
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sec) to collect the sample at the bottom of the tube.  For the first strand cDNA 

synthesis, prepare the RT Master Mix using 1.75 µl of RT Buffer and 0.25 µl cDNA 

Synthesis Enzyme Mix per sample.  Add 2 µl of RT Master Mix 1 to each Annealing 

Mixture.  Mix well but gently with a pipettor up and down 2 to 3 times followed by a 

brief centrifugation to collect the mixture at the bottom of the tube. The final volume 

is 5 µl which is Incubated at 42 °C for 30 minutes. 

 

To synthesize the second strand of cDNA, add 5 µl of Second Strand Master Mix 1 to 

each completed First Strand cDNA Synthesis reaction (above).  Mix well but gently 

with a pipettor up and down 2 to 3 times followed by a brief centrifugation to collect 

the mixture at the bottom of the tube.  Incubate at 65 °C for 10 minutes followed by 

80 ºC for 3 minutes.  Chill at 4 ºC or on ice for least 1 minute.  For the side reaction 

reduction, add 1 µl of the Side Reaction Reducer to each completed Second Strand 

cDNA Synthesis reaction from the previous step.  Mix well but gently with a pipettor 

up and down 2 to 3 times followed by a brief centrifugation to collect the mixture at 

the bottom of the tube.  Incubate at 37 °C for 10 minutes followed by 80 ºC for 3 

minutes and allow the tubes to cool to room temperature. 

 

The actual RNA amplification is achieved by mixing 25 µl RNA Polymerase Buffer 1 

and 4 µl RNA Polymerase Enzyme to create the RNA Amplification Master Mix 1, and 

then adding this mix to each completed Side Reaction Reduced sample from the 

previous step.  Mix well but gently with a pipettor up and down 2 to 3 times followed 

by a brief centrifugation to collect the mixture at the bottom of the tube.  Incubate at 

37 °C for 8 hours followed by holding at 4 ºC. 
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To cleanup the DNA, add 1 µl of DNase I into each complete RNA Amplification 

reaction.  Mix well but gently with a pipettor up and down 2 to 3 times followed by a 

brief centrifugation to collect the mixture at the bottom of the tube.  Incubate at 37 

°C for 15 minutes and immediately continue to the First cRNA Purification. 

First cRNA Purification 

 

The first cRNA purification begins with binding the cRNA to the spin column.  Set up 

a spin column in a collection tube for each sample.  For each sample, prepare a 

separate cRNA Binding Mix in individual 1.5-ml RNase-free tubes by mixing 140 µl 

Lysis & Binding Buffer with 140 µl ACS-Grade 100% ethanol. 

 

Add each entire reaction mixture volume to its own cRNA Binding Mix.  Mix well with 

a pipettor up and down 5 to 6 times, but do not centrifuge, and immediately proceed 

to the next step for each sample.  Carefully load each sample onto the center of its 

own Spin Column, and avoid spilling the mixture onto the rim of the spin column.  

Centrifuge for ~ 30 sec at 10,000 x g.  Remove column from the tube, discard the 

flow-through, and put the column back into the Collection Tube. 

 

Next, wash the spin column.  Apply 200 µl of Washing Buffer to each spin column.  

Centrifuge for ~ 30 sec at 10,000 x g.  Apply 200 µl 80% ethanol to each spin 

column.  Prepare 80% ethanol by dilution of molecular-biology grade 100% ethanol 

with RNase-free H2O.  Centrifuge for ~ 30 sec at 10,000 x g.  Remove the column 

from the tube, discard the flow-through and put the column back into the Collection 

Tube.  Centrifuge for ~ 3 min at 16,000 x g.  Rotate the spin column 180º and 

centrifuge for another 1 min at 16,000 x g. 
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Finally, elute the cRNA from the spin column.  Transfer each Spin Column to a fresh 

Elution Tube.  To the center of each spin column, carefully add 12 µl of room 

temperature RNase-free H2O by gently touching the silica membrane with the 

pipette tip.  Evenly wet the membrane with a briefly vortex of the whole assembly.  

Incubate at room temperature for 2 min.  Centrifuge for ~ 1 min at 16,000 x g.  The 

eluted volume is around 11 µl.  Use the entire elution volume for Second Round 

Amplification or store the purified cRNA at -80 ºC. 

Second Round RNA Amplification 

 

Begin the second round of RNA amplification by preparing the annealing mixture.  

For each sample, combine the eluted cRNA from the previous step (~ 11.0 µl) with 

1.0 µl of the Random Primers solution in a sterile PCR tube.  Mix the contents well 

followed by a brief centrifugation to collect the mixture at the bottom of the tube. 

Incubate at 65°C for 5 min and chill at 4°C or on ice for at least 1 minute.  Quickly, 

centrifuge briefly (~2 sec) to collect the mixture at the bottom of the tube. 

 

To perform the first strand cDNA synthesis, prepare RT Master Mix 2 by adding 7 µl 

of RT Buffer and 1 µl of RNase H Minus Reverse Transcriptase to a fresh tube.  Add 8 

µl of RT Master Mix 2 to each Annealing Mixture.  Mix well but gently with a pipettor 

up and down 2 to 3 times followed by a brief centrifugation to collect the mixture at 

the bottom of the tube. Incubate at 25 °C for 10 minutes, then at 37 °C for 60 

minutes followed by 95 °C for 5 minutes. Chill at 4 °C or on ice for at least 1 minute. 

 

To perform the second strand cDNA synthesis, add 1 µl of T7 Primer 2 to each 

completed First Strand cDNA Synthesis reaction.  Mix well but gently with a pipettor 

up and down 2 to 3 times followed by a brief centrifugation to collect the mixture at 
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the bottom of the tube.  The final volume is now 21 µl.  Incubate at 70 °C for 5 

minutes followed by 42 ºC for 5 minutes.  Prepare Second Strand Master Mix 2 by 

adding into the tube 3 µl of Second Strand Buffer 2 and 1 µl DNA Polymerase Mix.  

Add 4 µl of Second Strand Master Mix 2 to each reaction. Mix well but gently with a 

pipettor up and down 2 to 3 times followed by a brief centrifugation to collect the 

mixture at the bottom of the tube.  Incubate at 60 °C for 10 minutes followed by 80 

ºC for 3 minutes.  Cool to room temperature. 

 

The actual RNA amplification is accomplished by first preparing the RNA Amplification 

Master Mix 2.  In a fresh tube, combine 18 µl RNA Polymerase Buffer 2, 7 µl RNase-

free H2O, 4 µl RNA Polymerase Enzyme, and 6 µl 10 mM Biotin-UTP.  Add this RNA 

Amplification Master Mix 2 to each reaction.  Mix well but gently with a pipettor up 

and down 2 to 3 times followed by a brief centrifugation to collect the mixture at the 

bottom of the tube.  Incubate at 37 °C for 16 hours followed by holding at 4 ºC. 

Second cRNA Purification 

 

The second cRNA purification starts with binding the cRNA to the spin column.  Set 

up a spin column in a collection tube for each sample.  For each sample, prepare a 

separate cRNA Binding Mix in individual 1.5 ml RNase-free tubes by mixing 210 µl 

Lysis & Binding Buffer and 210 µl ACS-Grade 100% ethanol.  Add each entire 

reaction mixture to its own cRNA Binding Mix.  Mix well with a pipettor up and down 

5 to 6 times and immediately proceed to the next step for each sample.  Carefully 

load each sample onto the center of its own Spin Column.  Centrifuge for ~ 30 sec at 

10,000 x g, remove column from the tube, discard the flow-through, and put the 

column back into the Collection Tube. 
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Next, wash the spin column.  Apply 200 µl Washing Buffer to each spin column.  

Centrifuge for ~ 30 sec at 10,000 x g.  Apply 200 µl 80% ethanol to each spin 

column.  Prepare 80% ethanol by dilution of molecular-biology grade 100% ethanol 

with RNase-free H2O.  Centrifuge for ~ 30 sec at 10,000 x g.  Remove column from 

the tube, discard the flow-through, and put the column back into the Collection Tube.  

Centrifuge for ~ 2 min at 16,000 x g. Rotate the spin column 180º and  centrifuge 

for another 30 sec at 16,000 x g. 

 

To elute the cRNA from the spin column, transfer each Spin Column to a fresh 

Elution Tube.  To the center of each spin column, carefully add 40 µl of room 

temperature RNase-free H2O.  Incubate at room temperature for 2 min.  Centrifuge 

for ~ 1 min at 16,000 x g, and store the eluted cRNA on ice. 

 

Finally, the cRNA quantification and quality assessment is performed using UV 

spectrophotometry.  Prepare a 1:20 dilution (Dilution Factor = 20) of the cRNA 

target by transferring a small aliquot (2 or 5 µl) of cRNA into an appropriate volume 

(38 or 95 µl) of RNase-free 10 mM Tris buffer pH 8.0. Determine the OD260.  

Calculate the concentration and yield using the following equations: 

 

Concentration (µg/µl) = (OD260) (40 µg/ml) (Dilution Factor) (1 ml / 1000 µl) 

 

Yield (µg) = Concentration (µg/µl) x 40 µl 

 

 

The quantification measurements are done using the GeneQuant pro 

spectrophotometer (Biochrom Ltd, Cambridge, UK).  This device provides RNA yield 

and uses A260/A280 and A260/A230 ratios for nucleic acid purity checks 
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Microarray Hybridization 

 

Approximately 4 µg of cRNA are required for each array to produce a strong enough 

signal for good chemiluminescent imaging.  An overview of the hybridization and 

array reading is shown in Figure 9 below. 
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Figure 9.  Overview of the Oligo GEArray® System process  (Source: Oligo 

GEArray® System User Manual, Part #1018A, Version 3.2, October 20, 2006, 

SuperArray Bioscience Corporation, Frederick, MD) 
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The microarray hybridization is done using the Oligo GEArray® System (SuperArray 

Bioscience Corporation, Frederick, MD, Part #1018A) using the following protocol 

[29] for HybPlate Basic.    

 

First, prepare the Wash Solution 1 by mixing 10 ml 20X SSC, 5 ml 20 % SDS, and 

85 ml ddH2O, and Wash Solution 2 by mixing 0.5 ml 20X SSC, 2.5 ml 20% SDS, and 

97 ml ddH2O.  Then perform the Buffer F dilution by diluting 5X Buffer F with ddH2O 

five-fold to prepare enough 1X Buffer F for at least one HybPlate.  Eight ml of 1X 

Buffer F are required for washing each GEArray, so prepare at least 70 ml.   

 

For pre-hybridation, place the GEArrays® into the GEArray® Multi-Chamber 

HybPlate using a pair of clean, flat forceps. Place only one GEArray® in each 

hybridization chamber with the bar code facing up along the right side of the array.  

Wet each GEArray® with 2 ml room temperature, RNase-free H2O, cover the 

HybPlate with the clear plastic cover and incubate for 3 minutes then remove the 

cover, pour off the water and gently tap the inverted HybPlate on paper towels.  Pre-

hybridize the array by adding 2 ml pre-warmed 60 °C GEAhyb Hybridization Solution 

(without target) then replace the plastic cover. Gently shake for a few seconds until 

the membranes are floating free in the buffer and incubate for 1 to 2 hours at 60 ºC.  

Pour off the prehyb buffer, and tap the inverted HybPlate on paper.  Carefully 

transfer the GEArrays to a new HybPlate making sure that no pre-hyb solution 

touches the tops of the new HybPlate walls.   

 

Now hybridize of the labeled target cRNA to the GEArray®.  First, prepare the target 

hybridization mix by adding 2 µg cRNA target to a 2.0 ml aliquot of warm GEAhyb 
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Hybridization Solution for each sample being analyzed, and keep this mixture at 60 

ºC.  Then carefully add the appropriate Target Hybridization Mix to each 

hybridization chamber containing a GEArray® making sure not to splash any buffer 

to the wall tops. Gently shake the plate until the GEArrays are floating free in the 

buffer.  Remove the clear backing film from the GEArray® Multi-Chamber Seal.  

Align the adhesive portion of the seal with the chamber walls and set the seal down 

onto the top of the HybPlate chambers. Press in place by running a finger over the 

top of all the chamber walls.  Using a tack or fine gauge needle, puncture one small 

vent hole over the middle of every chamber.  Keep the HybPlate level during 

handling and avoid tipping.  To insure a complete seal, carefully and firmly press the 

seal onto the HybPlate by running the blunt tip of a pen over the top of all the 

chamber walls and then folding the edges of the seal over the outside walls of the 

HybPlate.  Incubate the GEArrays overnight at 60 ºC. Hybridization time should be 

limited to 24 hours. 

 

To wash the array, carefully remove the Seal by peeling away from one corner of the 

HybPlate and pour off the Target Hybridization Mix.  Add 4 ml pre-warmed Wash 

Solution 1 to each chamber and gently swirl the HybPlate by hand until the 

membrane is floating freely.  Incubate the HybPlate at 60 ºC for 5 minutes, then 

pour off the buffer and tap the inverted HybPlate on paper towels.  Repeat this wash 

step two more times.  Add 4 ml pre-warmed Wash Solution 2 and gently swirl the 

HybPlate by hand until the membrane is floating freely.  Incubate the HybPlate at 60 

ºC for 5 min then pour off the buffer and tap the inverted HybPlate on paper towels.  

Repeat this wash step two more times.  Place the HybPlate on the lab bench at room 

temperature. 
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For detection, use the Chemiluminescent Detection Kit (D-01).  Dilute an aliquot of 

the AP-Streptavidin stock 1:8000 in GEAblocking Solution Q (2 µl into 16 ml) at room 

temperature.  Add 2 ml dilute AP-Streptavidin to each GEArray®, gently swirl the 

HybPlate by hand and incubate for incubate for exactly 10 minute on the bench top 

at room temperature.  Pour off the buffer and tap the inverted HybPlate on paper 

towels.  Add 4 ml room temperature 1X Buffer F to each chamber, gently swirl the 

HybPlate by hand until the membrane is floating freely and incubate for 5 min, then 

pour off buffer and tap the inverted HybPlate on paper towels. Repeat this wash step 

3 more times. 

 

Finally, add 4 ml room temperature Buffer G to each GEArray, and incubate for ~1 

min.  Pour off Buffer G, add 1.0 ml CDP-Star® and incubate for 5 min.  It is very 

important to have the membrane covered evenly with the CDP-Star substrate.  Pour 

off the CDP-Star®, tap the inverted tray on paper towels and immediately acquire 

the GEArray® chemiluminescent image. 

 

Array Reading 

 

The arrays are read using a Kodak 4000 MM Imager CCD camera.  The images are 

captured using the Kodak Molecular Imaging software (Version 4.04) running on an 

attached personal computer workstation.  A sample image is shown below.  A full 

HybPlate would contain eight of these images, in a grid four across by two down.  

Note the dark images on two of the corners.  These spots represent housekeeping 

genes for potential use as controls and to provide image orientation and alignment 

for the image conversion software. 
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Figure 10.  Sample image of a single Oligo GEArray® captured by a Kodak 4000 MM 

Imager CCD camera. 

 

 

Human Breast Cancer Biomarker Microarray 

 

The specific microarray used in the procedures described above is the Oligo 

GEArray® Human Breast Cancer Biomarker Microarray (HybPlate Format, Catalog 

Number EHS-402).  This array has a nylon membrane matrix and is manufactured 

using non-contact printing with 60-mer oligo probe sets [30].  The array profiles the 

expression of 264 genes useful as molecular markers in breast cancer diagnosis and 

prognosis.  The genes in the diagnosis markers group are highly associated with 

breast cancer [31].  The complete set of genes included on the array are 

summarized and functionally grouped below [32].  Note that for the purposes of this 
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listing, some genes may appear in more than on category/subcategory, and they are 

grouped overall by diagnostic versus prognostic potential. 

 

 

Potentially Diagnostic Markers 
 

Cell Cycle 

Cell Cycle Arrest and Checkpoint: MYC, RB1, TP53. 

Negative Regulation of the Cell Cycle: ATM, BAX, BRCA1, EGFR, ESR1, NME1, PTEN, 

RB1, TP53. 

Regulation of the Cell Cycle: BCL2, BRCA2, CCND1, CCNE1, CDK4, FGF3, FGF8, 

IGF2, MAPK3, PCNA, PRKCA, TGFA, TGFB1, TGFB2, TGFB3, VEGF. 

DNA Replication: CDK2, EGF, IGF1, PCNA. 

 

Cell Growth and Proliferation 

Growth Factors and Cytokines: BMP6, CSF1, CSF3, EGF, FGF18, FGF3, FGF8, IGF1, 

IGF2, TGFA, TGFB1, TGFB2, TGFB3, TNF, VEGF. 

Positive Regulation of Cell Proliferation: CDK2, CSF1, CSF3, EGF, FGF18, FGF3, IGF1, 

VEGF. 

Negative Regulation of Cell Proliferation: BCL2, NME1, ODZ1, PLG. 

Regulation of Cell Growth: ESR2, IGFBP3, TP53, TSG101,  

Other Genes Involved in Cell Growth and Proliferation: AR, BRCA1, CDK4, EGFR, 

ERBB2, ERBB4, ESR1, MYC, PCNA, PRKD1, PRL.  

 

Cell Differentiation 

CSF1, IGFBP3, TP53. 

 

Apoptosis 

Induction of Apoptosis: BAX, MX1, PRKCA, PRKCE, TP53. 

Anti-apoptosis: AKT1, BAG3, BCL2, BCL2L1, PRKCZ, TGFB1, TNF. 

Other Apoptosis Genes: BRCA1, IGFBP3, VEGF. 

 

DNA Repair 

ATM, BRCA1, BRCA2, PCNA, RAD51, TP53, XRCC3. 

 

Angiogenesis Factors 

FGF3, VEGF. 

 

Cell Adhesion Molecules 

CD34, CDH1, CTNNB1, ITGB3, PECAM1. 

 

Extracellular Matrix (ECM) Molecules 

ALB, BRCA1, BRCA2, COL4A2, CSF3, CTSD, EGF, ERBB2, FGF18, FGF3, FGF8, IGF1, 

IGF2, IGFBP3, INS, KLK13, MMP11, MMP9, ODZ1, PRL, SERPINE1, SHBG, TGFA, 

VEGF. 

 

Protein Kinases 
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AKT1, ATM, CDK2, CDK4, EGFR, ERBB2, ERBB3, ERBB4, MAPK3, PDPK1, PRKCA, 

PRKCB1, PRKCD, PRKCE, PRKCG, PRKCZ, PRKD1, PRKD2, SRC, TYK2. 

 

Protein Phosphatases 

IGFBP3, PTEN. 

 

Transcription Factors and Regulators 

AR, BRCA1, BRCA2, CTNNB1, EGR3, ESR1, ESR2, FOS, JUN, MYC, NR4A1, PCNA, 

PGR, RB1, SP1, TNF, TP53, TSG101. 

 

Proteases and Protease Inhibitors 

CTSB, CTSC, CTSD, CTSE, CTSL2, KLK13, MMP11, MMP9, PCSK6, PLG, SERPINE1. 

 

Other Potential Diagnostic Markers 

ABCB1, ABCG2, AKAP1, CEACAM5, CYB5, CYC1, CYP19A1, GSTM1, GSTM3, KRT18, 

KRT19, MIB1, MUC1, MUC19, PALM2-AKAP2, VIM. 

 

 

 

Potentially Prognostic Markers 
 

Cell Cycle 

Cell Cycle Arrest and Checkpoint: CCNE2. 

Negative Regulation of the Cell Cycle: ESR1, EXT1. 

Regulation of the Cell Cycle: BCL2, CCNB1, CCNB2, CDC25B, CENPF, MKI67, MYBL2, 

PCTK1, PSMD2, TGFB3, VEGF. 

DNA Replication: MCM6, ORC6L, RFC4, RRM2. 

Other Cell Cycle Genes: BIRC5, BUB1, CKS2, MAD2L1, SMC4L1, STK6. 

 

Cell Growth and Proliferation 

Growth Factors and Cytokines: ESM1, FGF18, TGFB3, VEGF. 

Positive Regulation of Cell Proliferation: CDC25B, FGF18, FLT1, VEGF. 

Negative Regulation of Cell Proliferation: BCL2, BTG2. 

Regulation of Cell Growth: CHPT1, ESM1, IGFBP5, WISP1. 

Other Genes Involved in Cell Growth and Proliferation: BUB1, CKS2, ESR1, MAPRE2, 

MKI67.  

 

Cell Differentiation 

NDRG1. 

 

Apoptosis 

Anti-Apoptosis: BAG1, BCL2, BIRC5, BNIP3, MYBL2. 

Other Apoptosis Genes: RAD21, STK3, VEGF. 

 

DNA Repair 

BTG2, RAD21. 

 

Angiogenesis Factors 

FLT1, VEGF. 
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Cell Adhesion Molecules 

WISP1. 

 

Extracellular Matrix (ECM) Molecules 

ADM, COL4A2, CP, ESM1, FGF18, FLT1, IGFBP5, MATN3, MMP11, MMP9, RBP3, TFRC, 

VEGF, WISP1. 

 

Protein Kinases 

BUB1, CCNE2, CDC42BPA, CKS2, FLT1, MELK, PCTK1, STK3, STK32B, STK6. 

 

Protein Phosphatases 

CDC25B, MTMR2. 

 

Transcription Factors and Regulators 

BTG2, ESR1, EZH2, HMGB3, IVNS1ABP, KIAA1442, MCM6, MLLT10, MYBL2, PGR, 

PIR, SEC14L2, TBX3, TRIP13. 

 

Proteases and Protease Inhibitors 

BIRC5, CTSL2, GGH, MMP11, MMP9, PCSK6, PITRM1, RBP3, TFRC, UCHL5. 

 

Other Potential Prognostic Markers 

ACADS, ALDH4A1, ALDH6A1, AP2B1, ASNS, ASPM, BBC3, BM039, C20orf103, 

C20orf28, C20orf46, CA9, CD68, CENPA, CIRBP, CTPS, DCK, DEGS, DEPDC1, 

DKFZP434B168, DKFZp762E1312, DLG7, ECT2, EGLN1, EIF2C2, ERP70, EVL, FBP1, 

FBXO31, FBXO5, FGD6, FLJ10134, FLJ10156, FLJ10511, FLJ10901, FLJ12150, 

FLJ21924, FLJ22341, FUT8, GBE1, GCN1L1, GMPS, GNAZ, GPR126, GPSM2, GRB7, 

GSTM1, GSTM3, HRASLS, HRB, IHPK2, ITR, KIAA0882, KIAA1181, KIAA1217, 

KIAA1324, KIAA1683, KIF14, KIF21A, KIF3B, KNTC2, KRT18, LCHN, LGP2, 

LOC388134, LOC56901, LYRIC, M160, MCCC1, MGAT4A, MIR, MLF1IP, MRPL13, 

MS4A7, MYRIP, NMB, NMU, NUSAP1, ODZ3, OXCT, PALM2-AKAP2, PAQR3, PECI, 

PEX12, PFKP, PGK1, PIB5PA, PLEKHA1, PRAME, PRC1, PRO2000, PSMD7, PTDSS1, 

PTPLB, QDPR, RAB27B, RAB6B, RAI2, RAMP, RASL11B, RPS4X, RRAGD, SACS, 

SCUBE2, SERF1A, SLC2A3, SLC7A1, Spc25, ST7, STMN1, STX1A, SYNCRIP, TK1, 

TMEFF1.  

 

 

Also on the array are controls, two blanks, and artificial sequences (e.g., four spots 

with BAS2C - Biotinylated Artificial Sequence 2 Complementary sequence).  The 

controls are (shown with number of spots): 

 

Controls 

RPS27A (3), GAPDH (3), B2M (3), 18SrRNA (1), HSP90AB1 (1), and ACTB (1) 
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Results 
 

 

 

 

For convenience, the table of specimens and condition groupings from the Aims 

section is given again here to set the stage for presenting the results (Table 2 

below).  The specimens are labeled (not shown in the table) according to the 

pattern:  AA##, where ‘AA’ is N for Normal, H for Hyperplasia, DC for DCIS, and I 

for IBC, and ## is the patient number.  For all stroma samples, ‘AA’ is S, regardless 

of the associated breast tissue category.  Thus, for Patient 1, which happens to be a 

triplet, there are three specimens: H1, DC1, and S1.  Note that the classification of 

stroma with its associated breast tissue type cannot be inferred simply from the 

stroma sample label.  

 

The specimens are split into condition groups for the purposes of analysis, resulting 

in eight distinct condition groups:  Normal, Hyperplasia, DCIS, IBC, Normal stroma, 

Hyperplasia stroma, DCIS stroma, and IBC stroma.  These groupings are used 

extensively throughout the analysis.  Consideration of these groups also leads to 

many possible group-to-group comparisons, as illustrated in the Figure 11 following 

the table, which is just Figure 5 in the Aims section shown again here for 

convenience. 
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Table 2.  Specimens processed showing disease state and corresponding stroma 
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Figure 11.  Eight condition groups and possible comparisons of interest 

 

 

 

Although more comparisons are possible, the sixteen comparisons indicated in Figure 

11 by the arrows are the main ones of interest.  Comparisons of adjacent groups are 

of highest interest, with the other non-adjacent comparisons done for completeness 

and possible insights.  Others, such as Normal breast tissue to DCIS stroma would 

not appear to add meaningful new information.  Of high interest are the pairs 

composed of a disease condition and the associated stroma (e.g., DCIS-to-DCIS 

stroma), and pairs of stroma groups, since the role played by the stroma is the 

central theme here.  

 

The specific arrays used and their groupings are as follows.  For Normal (epithelium), 

six arrays were obtained, denoted N36, N39, N41, N57, N59, and N62.  All but one 
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(N39) have an associated stromal pair, so the Normal Stroma group includes five 

arrays, denoted S36, S41, S57, S59, S62. 

 

The Hyperplasia group includes six arrays, denoted H1, H2, H6, H12, H22, and H25, 

and all but one (H12) have a corresponding stroma sample.  Also, Patent 1 is a 

triplet sample, comprised of Hyperplasia, DCIS, and Stroma samples.  Thus, the 

Stroma sample (S1) has to be classified as Hyperplasia Stroma or DCIS Stroma; it 

cannot be classified as both simultaneously for statistical independence reasons in 

group-wise comparisons.  The rule adopted for triplets is to classify the associated 

stroma sample as the more advanced or invasive type, so S1 is classified as DCIS 

Stroma, not Hyperplasia Stroma.  Thus, the Hyperplasia Stroma group includes S2, 

S6, S22, and S25, for a total of four arrays versus the Hyperplasia (epithelium) 

group, which has six. 

 

Ignoring the split out of DCIS samples in the three remaining triplets (Patients 28, 

43, and 50, which have DCIS, IBC, and Stroma samples), the DCIS group includes 

arrays denoted DC1, DC16, DC24, DC28, DC34, DC43, DC48, DC49, DC50, and 

DC63.  Following the rule of classifying associated stroma samples as the most 

advanced or invasive type, the stromal samples for triplets 28, 43, and 50 are 

classified as IBC Stroma, so the corresponding DCIS Stroma group is comprised of 

S1, S23, S24, S48, S49, S52, S54, and S56, which also reflects that DC16, DC34, 

and DC63 have no corresponding stromal sample.  This group also reflects that, just 

as there are three DCIS epithelium “solo” samples, some stromal samples have no 

corresponding epithelium samples, namely S23, S52, and S54.  These DCIS Stroma 

“solo” samples are known to be associated with DCIS from documentation 



  

 38 

established during sample gathering.  After accounting for all three of these factors, 

the DCIS Stroma group has a total of eight arrays with a relatively small intersection 

of patients in both epithelial and stromal groups.  However, this small intersection 

has no adverse effects on group-wise p-value statistical calculations, since all 

samples within a given group are independent and no sample appears in more that 

one group. 

 

The IBC epithelial group is the largest group with sixteen members.  They are: I10, 

I13, I14, I15, I18, I19, I28, I33, I35, I37, I38, I43, I45, I50, I55, and I64.  Several 

of these samples have no corresponding stromal samples, namely Patients 10, 13, 

14, 15, and 64.  The IBC Stroma group is composed of the remaining stromal pairs 

from the IBC samples, plus one additional solo stroma sample (Patient 30).  The 

resulting IBC Stroma group thus has twelve members:  S18, S19, S28, S30, S33, 

S35, S37, S38, S43, S45, S50, and S55. 

 

As discussed in the Aims section above, a variation of special interest on the 

groupings shown in Figure 11 is to split out the DCIS samples into two subgroups:  

those associated with IBC and those that are not associated with IBC.  With this 

refinement, the groupings and comparisons change as shown in Figure 12. 
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Figure 12.  Refined condition groupings, splitting out DCIS that occurs with IBC 

versus DCIS that does not occur with DCIS.  (All non-adjacent “leap frog” 

comparisons omitted for clarity) 

 

 

 

Careful inspection of Figure 12 reveals that while the epithelial split out is 

straightforward (a single DCIS group of 10 becomes two subgroups of 7 and 3), the 

stromal group split out is more subtle.  The DCIS With IBC Stroma group samples 

come out of the original IBS Stroma group, not the original DCIS Stroma group.  To 

see why, refer back to the specimen table (Table 2) above, and recall there were 

three “triplet” samples that included both DCIS and IBC epithelial samples with a 

corresponding (single) stromal sample, for a given patient.  Before splitting out DCIS 

With and Without IBC, these stromal samples were classified as IBC Stroma.  After 

the split out, these stromal samples are reclassified as DCIS With IBC Stroma and 
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must be removed from the IBC Stroma group.  The statistical requirement of 

independence requires that the same sample cannot be included in two groups that 

are compared against each other, so these stromal samples cannot be in both the 

DCIS With IBC Stroma and IBC Stroma groups. 

 

Thus, following the DCIS split out, the resulting new groups are: 

 

• DCIS Without IBC (DC1, DC16, DC24, DC34, DC48, DC49, DC63) 

• DCIS With IBC (DC28, DC43, DC50, from the DCIS-IBC-Stroma triplet 

specimens of Patients 28, 43, and 50) 

• DCIS Without IBC Stroma (unchanged) 

• DCIS With IBC Stroma (S28, S43, and S50, which were formerly in IBC 

Stroma). 

 

The net reduction in IBC Stroma samples, following reclassification, does not present 

a problem since this group was the second largest group. 

Raw Data Generation 

 

The analysis approach begins with converting the SuperArray hybridization array 

images to raw data.  The SuperArray Bioscience kits used are designed to be “read” 

by software specifically designed for this purpose and provided by the vendor (via its 

website).  The vendor tool is called the GEArray Expression Analysis Suite 2.0, and is 

available to SuperArray customers on a subscription basis at: 

 

http://geasuite.superarray.com/index.jsp 
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Each array image obtained from the CCD camera at the conclusion of the lab 

processes described above is uploaded to this website, and this step initiates the 

analysis phase of the study.  Once the project is established on the website, a screen 

such as the one below is used to upload images to the site. 

 

 

 
Figure 13.  Screenshot of SuperArray website used to process images 

 

 

The first step in converting images to data, following image upload, is to “read” the 

array using the automated vendor software to convert the images to raw data.  This 

step is accomplished using a screen such as the one below.  This screen can be used 

to adjust contrast and other image manipulations prior to the actual reading.  This 

screen is also used for the important step of cropping the image tightly around the 
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corner spots, shown by high signaling controls spots.  The image below shows the 

crop box before it has been used to crop down the image. 

 

 

 
Figure 14.  Preliminary image manipulation just before reading 

 

 

At this step, care must be taken to ensure the array is aligned correctly (top-bottom, 

left-right), because the software uses the corner spots to orient the reading and 

assign intensities to known array locations (genes).  Thus, if the array is reversed, 

either horizontally or vertically, the spot readings will be incorrectly assigned to the 

wrong genes.  The small pink circle on the upper left of the crop box shows the 

origin, and spot reading beginning at that corner will be assigned to Position 1, 2, 3, 
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and so forth reading left to right for 12 spots before wrapping around to the next 

row, and so on vertically down the array. 

 

Once the array image has been tightly cropped, the drop down control at the top of 

the screen is used to superimpose the grid, make adjustments (if needed), and 

generate the raw data as shown in the screenshot below.  This step is the actual 

reading of the array.  The screen below shows an array that has already been read 

(note “Readout in Database” to the right) but could be re-read if desired.  Clicking on 

a spot on the grid image selects the corresponding spot on the tabular layout on the 

right, and vice versa. 
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Figure 15.  Image ready to be (re)read 

 

 

Background Corrections 

 

Subtracting out background exposure (noise) correctly, consistently, and accurately 

is crucial to correct microarray analysis.  This step in the analysis can range from 

trivial to complex, depending on the quality and uniformity of the images obtained.  

The simplest case would be when the image has crisp, well-defined spots on a pure 

white background.  The spots would vary from pure white (no signal, not even 

background) to black at the various grid locations across the array.  In reality, most 

readings are a shade of gray with an intensity spanning the continuum from white to 

black.  The vendor’s software tools provide various means of performing the 
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background subtraction.  The results of working with these options will be discussed 

in the Results section below. 

 

One of the most difficult problems to deal with is misalignment of the probe itself on 

the array with respect to the rest of the array grid and how this impacts background 

corrections.  The figure below illustrates the misalignment background subtraction 

problem.  When a spot is skewed relative to the grid, not only is the overall (or local) 

background correction artificially inflated, but also the individual spot reading is 

under counted.  The misalignment has the effect of compounding the pixel-to-

numerical conversion error by subtracting too much background from too little true 

reading.  The vendor’s tools allow for manual touch up and realignment to correct for 

these problems, but the analyst is always bound to the confines of the (fixed) grid.  

That is, the spot reading is required to be done within the grid cell, but the circular 

reading target can be moved around within the cell. 

 

 

 
Figure 16.  Misalignment of spot on conversion grid leads to compound error 

 

 

When the spot is simply off center but still confined within the grid square, the 

vendor software permits spot-level adjustments to the reading by clicking and 
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dragging individual target reading circles within the grid square.  Adjustments of this 

type are shown in the figure below. 

 

 
 

Figure 17.  Making spot-level adjustments prior to image reading 

 

 

Another issue of concern in image-to-data conversion and the associated background 

correction is the issue of “bleeding.”  Bleeding refers to the situation where one spot 

location, typically a highly signaling control probe, has heavy hybridization and 

therefore a heavy signal.  Depending on exposure time, the signal may “bleed” out of 

the confines of its designated grid square.  The vendor software attempts to detect 

and flag these situations when they occur, but the background correction actions are 

still the responsibility of the user.  Figures 18 and 19 below show a notional sketch 

and actual bleeding examples, respectively.   

 

Time constraints prevented making spot-level adjustments to the data for bleeding 

situations in the results presented here.  These adjustments would have to be made 

in future work. 
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Figure 18.  Bleeding of high-signal spots (e.g., controls, housekeeping genes) 

 

 

 

 
Figure 19.  Actual examples of bleeding 

 

 

 

Once all the array images have been read, the raw data is stored in the website’s 

database and available for manipulation, online analysis, or download at any time.  

From the Home/Project List page (the homepage for the project), clicking on 

“Analysis” navigates to the main analysis page, as shown in Figure 20 below.  This 

page provides options for background correction, normalization, and (online) 

analysis.  Note the Dataset Parameters panel where various parameters related to 

background corrections and normalizations are specified.   
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Figure 20.  Main analysis page following array reading 

 

 

 

The vendor website provides four background corrections: Local, Global, Empty 

Spots, and Minimum Value.  The user may also forego any background correction  

and just work with the raw data.  Local background correction subtracts the intensity 

of the region outside the spot area within each grid cell from the spot intensity.  

Average density is used in all calculations.  Global background correction subtracts 

the average of all the local backgrounds from each spot.  Empty Spots background 

correction takes the average intensity of the two empty spots on the array, and 

subtracts this amount from each spot.  Minimum Value correction takes the minimum 

average intensity of all the spots and subtracts this amount from all the spots.  In all 

cases, with the checkboxes for Adjust to common mean and Minimum positive value 

selected, at least one spot (Minimum) and usually more (Local, Global, and Empty 
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Spots) will be reset to the minimum positive value following the background 

correction.  All four methods are examined across all arrays to determine the best 

array-level setting for each individual array.  The results are discussed in the 

Background Corrections Results section below. 

Normalization 

 

In addition to background corrections, normalization is also used to attempt to 

correct for systemic variation that naturally arises in microarray experiments from 

variations in sample preparation, hybridization, and array scanning.  While 

background corrections can be thought of as normalization within the arrays, 

normalization attempts to remove as much systemic variation across the arrays as 

possible to allow more accurate measurement of the “true” biological variations. 

 

Normalization is crucial to correct microarray analysis.  Unfortunately, the 

SuperArray website normalization features have some limitations.  In particular, the 

ability it provides to normalize a group of arrays with one subset of controls and 

another group with another subset of controls is a powerful way to account for 

control skew between different condition groups.  While this is possible on the 

vendor’s website, it is not practical for two reasons.   

 

First, the controls tend to be the highest signaling spots on the array, so normalizing 

against them has the effect of compressing the range of signals, which can easily be 

many orders of magnitude, into the range from zero to around one.  This 

compression results from the normalization process which divides all the readings on 

an array by what typically are the largest readings, namely the controls spots.  
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Secondly, when downloading the data from the website following such a group-wise 

normalization, the vendor’s tools exacerbate the compression problem by truncating 

all values at two decimal places.  Since all the data typically has been compressed 

into the range zero to one, this truncation results in significant information loss.  No 

setting could be found to increase the number of decimal places on downloading. 

 

For these reasons, a classical approach to normalizing across arrays was used 

whereby each array is scaled such that they all have a common mean.  This 

approach amounts to simple scaling to a common basis across all arrays.  The 

vendor website provides good tools for this approach, allowing the user to choose 

the common mean as well as (optionally) specifying an arbitrary lower bound to set 

all values to which would otherwise fall below this bound following the normalization.  

The minimum value setting was used (typically either one or ten), and the common 

mean was set to 100.  The minimum threshold setting helps prevent negative 

numbers, zeros, or arbitrarily small values that will only introduce noise into the 

statistics. 

Statistical Analysis Approach 

 

Before discussing statistical tests, it is important to distinguish between biological 

replicates and technical replicates.  For this study, biological replicates are RNA 

samples obtained from independent biological sources, for example DCIS samples 

from different patients.  Technical replicates represent repeated sampling of the 

same biological material and are useful for assessing random errors introduced by 

laboratory and image processing.  For statistical tests, biological replicates are ideal 

because they represent independent biological samples of a given condition (e.g., 
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stroma surrounding cancerous tissue).  Biological replicates are used for this study, 

but technical replicates are not, due mainly to the prohibitive cost of amplification 

kits.  However, good RNA amplification yields generally allow re-running arrays as 

needed. 

 

The statistical analysis approach used is the usual hypothesis testing and significance 

testing approach used in microarray analysis [33]: 

 

1. Generate a null and alternate hypothesis 

2. Choose a significance level 

3. Calculate an appropriate statistic based on the data, and calculate a p-

value based on it 

4. Apply a Multiple Test Correction to obtain the final (adjusted) p-values 

5. Compare these p-values with the significance level and either reject or 

not reject the null hypothesis 

 

Here, p-value has the usual meaning of the probability of drawing the wrong 

conclusion by rejecting a true null hypothesis, and choosing a significance level 

means choosing the maximum acceptable level for this probability.  The typical 

significance level of ≤ 5% (0.05) is used, which means that a gene expression 

measurement in a condition of interest has a 5% probability or less of having 

randomly occurred by chance from the normally distributed control condition’s gene 

expression distribution (the null hypothesis). 
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Choosing the appropriate statistic based on the data must be done with care.  

Statistical tests fall into two broad categories: parametric and non-parametric, 

depending on the number of samples.  Parametric tests such as the Student’s t-test 

for example, require about thirty samples minimum as a rule of thumb and assume a 

normal distribution.  As discussed in the Results below, most condition groups of 

interest here had far fewer that this minimum value.  Thus, non-parametric tests are 

more appropriate.  For non-parametric testing, the statistic used is the Mann-

Whitney U test [34], which is the Wilcoxon [35] rank-sum test extended to non-

equal samples sizes.  This statistic not only is appropriate for smaller sample sizes, 

but it also does not rely on the variable having a normal distribution. 

 

All genes on all arrays are compared, computing p-values for all.  Additional quality 

control checks are done to look for functional anomalies (biologically based trends 

going in the wrong direction, e.g., tumor-suppressor genes), typical fractions of 

genes up- or down-regulated out of the total, and symmetry of statistically 

significant gene differences (roughly the same up and down). 

 

Finally, to correct for type I errors, Multiple Test Correction techniques are applied.  

The multiple comparisons problem occurs when one subjects a number of 

independent observations to the same acceptance criterion that would be used when 

considering a single event [36].  Since the Bonferroni method is known to be overly 

strict, the Benjamini – Hochberg False Discovery Rate [37] correction is used 

instead. 
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Computational Analysis Approach 

 

The overall approach involves several tools.  Figure 21 below shows a high-level view 

of the specific computational analysis approach used. 

 

 

 
 

Figure 21.  High-level overview of the overall computational approach 
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The procedures performed on the SuperArray website were discussed in the previous 

section.  Picking up where the data are downloaded from the website, all data files 

come down as Microsoft® Excel® spreadsheets.  These spreadsheets contain several 

sheets of data for all arrays selected on the website (nominally, all of them).  The 

main sheet of interest is the listing of the spot readings, background corrected and 

normalized as specified on the website analysis page, and indexed by array position, 

which is in turn correlated to a gene list.  From the spreadsheet, the array readings 

are dumped to tab-delimited text files which are processed by custom Python scripts 

to extract and split up the array readings into separate files (to allow, for instance, 

mixing and matching the best individual background corrections at the array level).  

The individual groups of array-level data files are then read in user-determined 

combinations into a custom tool developed specifically for this analysis called Single 

Channel Microarray Analysis Tool (SinChMAT).  SinChMAT is a Microsoft Windows® 

application developed in C# (.NET). 

 

Although many microarray analysis tools exist in the public domain, most are geared 

towards dual-channel microarray analysis.  For maximum flexibility and for study-

specific features, SinChMAT was developed.  It performs two main functions.  First, it 

is used to generate multiple, side-by-side heat maps for a given array’s data files 

resulting from the various background corrections, for viewing along side the raw 

image.  This feature is useful for assessing which background correction is best for a 

given array, particularly since the raw image can be viewed concurrently to visually 

assess any smudging or background variations.  Secondly, SinChMAT allows rapid 

computation of all p-values, with and without multiple test corrections, for any 
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combination of the condition groups desired.  Many different pairs of condition 

groups are of interest as will be discussed in the Results section.   

 

SinChMAT uses an open source library from ALGLIB [38] to compute Mann-Whitney 

based p-values.  The Bonferroni and Benjamini – Hochberg False Discovery Rate 

implementations are taken from an Agilent Technologies White Paper [39].  Both are 

simple, conservative implementations as given below. 

 

Bonferroni Correction: 

 

 

Corrected P-value= p-value * n (number of genes in test) <0.05 

 
 
Benjamini – Hochberg Correction: 

 

 

1) The p-values of each gene are ranked from the smallest to the largest. 

2) The largest p-value remains as it is. 

3) The second largest p-value is multiplied by the total number of genes in 

gene list divided by its rank. If less than 0.05, it is significant. 

 

Corrected p-value = p-value*(n/n-1) < 0.05, if so, gene is significant. 

 

 

4) The third p-value is multiplied as in step 3: 

 

Corrected p-value = p-value*(n/n-2) < 0.05, if so, gene is significant. 

 

And so on. 

 
 

 

The statistical calculations from ALGLIB are validated by computing p-values 

independently in R using Bioconductor libraries (www.bioconductor.org).  

Specifically, the stats library is used. 
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Finally, fold change analysis is used as a “sanity check.”  Examining fold changes is 

simple and intuitive, and thus is frequently used in microarray gene expression 

analyses.  However, the fold change method has important disadvantages [33].  The 

most important drawback is that the fold change threshold is chosen arbitrarily, 

without the more rigorous significance level basis used in hypothesis testing with 

multiple test corrections.  Thresholds such as 1.2, 1.5, or 2.0 are frequently used, 

but these are merely rules of thumb.  If the arbitrarily chosen threshold is too high, 

there is poor sensitivity, and if the threshold is chosen too low, false positives creep 

in.  Another important disadvantage is that microarray technology tends to have 

poor signal to noise ratios for genes with low expression levels.  This fact results in 

genes with higher expression levels potentially being more reliable even though they 

have relatively lower fold change differences than genes with lower expression levels 

but higher fold changes that are actually less reliable.  Since the fold change 

technique uses a constant threshold, this distinction is lost.  Worse, this effect tends 

to introduce false positives at the low end, thus reducing specificity, while 

simultaneously missing true positives at the high end, thus reducing sensitivity. 

 

Nonetheless, the SuperArray website automatically computes fold changes and 

produces scatter plots with many user-controllable parameters, so these tools are 

used as yet another validation technique, albeit informal, on the results obtained 

from the more rigorous statistical techniques. 
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Raw Image Results 

 

Fgure 22 below shows a sampling of raw images obtained from the Kodak 4000 MM 

Imager CCD camera (see Materials and Methods section).  Due to the normal 

variability in laboratory processing, hybridization, and exposure and image capture, 

the raw images show a range of overall lightness or darkness, contrast, and local 

background variation.  A delicate balance must be struck, particularly in the face of 

low yielding or hybridizing samples, between increasing exposure times to detect low 

signals versus decreasing exposure times to reduce background.  Higher exposures 

reveal more (faint) signals, helping to reduce false negatives at the expense of 

possibly increasing background to the point of introducing false positives. 

 

Figure 22 also shows the two Empty Spot locations and the controls (corners).  

Unfortunately, as the figure indicates, the empty spots are directly adjacent to 

control locations, which tend to be the highest intensity locations and thus are the 

most likely to suffer bleeding. 

 

Arrays from two groups (Normal Stroma and Hyperplasia epithelium) had to be read 

using a ChemiDoc system by Bio-Rad Laboratories (www.bio-rad.com) instead of the 

Kodak CCD, due to the latter’s unavailability.  These samples produce lower quality 

images, due either to the different imager or perhaps low hybridization (or both), 

and thus these two groups had to be dropped out of the analysis. 
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Figure 22.  Raw image examples 
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Background Correction Results 

 

The SuperArray website can compute four possible background corrections for each 

individual array:  Local (L), Global (G), Empty Spots (E), and Minimum Value (M).  

Each was chosen successively, and the results were downloaded and preprocessed 

into individual array level files in separate file directories on a Microsoft Windows® 

workstation for use by the SinChMAT tool.  This tool permits viewing the raw array 

image side-by-side with up to three different background correction heat maps 

simultaneously, as shown in the screen shot below. 
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Figure 23.  Single-Channel Microarray Analysis Tool (SinChMAT) heat map viewer 

 

 

The specimen tree on the left is used to navigate and select the specimen of interest.  

This tree is built dynamically from an input file and is therefore configurable for other 

experiments.  Once selected, the specimen’s raw image appears in the upper left 

pane.  The dropdown controls in the remaining three panes are used to open and 

display heat maps for the various background corrections.  Each array in the 

experiment was analyzed using this tool in order to select the most appropriate 
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background correction for it.  The results of this analysis are captured in a SinChMAT 

input file that is used in the statistics calculations.  This input file acts as a switch 

which directs SinChMAT to choose the specific array level data file for all downstream 

computations.  The tool uses several internal data structures to keep track of group 

membership and the chosen array data vectors as well as intermediate and final 

results. 

 

The background correction results were consistent with common sense.  Empty Spot 

or Global background correction worked best for low background images with good 

signaling and contrast.  (Recall that Global correction subtracts the average of all 

Local (cell level) corrections equally from all spots.)  Empty correction did worse 

when there was obvious bleeding from the neighboring control locations, as would be 

expected.  Global correction worked best with arrays with heavy background, and 

Local correction worked best when noticeable local variations were apparent within 

the array, both consistent with what would be expected.  Minimum Value usually was 

not the best choice; however, this correction worked better for some low intensity or 

poorer contrasting images. 

 

Normalization Results 

 

As discussed in the previous section, limitations on the vendor’s website made 

group-wise or control based normalization across arrays difficult.  Thus, the classical 

approach of simply scaling all arrays to a common mean was used.  The common 

mean chosen was 100 with a minimum value cutoff of one.  This approach resulted 

in ranges typically on the order of one to several thousands for an individual array, 

allowing for reasonable statistics and many potential fold changes. 
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Statistical Analysis Results 

 

Following array-level background correction choices, and using the globally applied 

common mean normalization, the statistics are computed.  The SinChMAT tool was 

developed to facilitate these calculations, in particular to allow rapid calculations and 

recalculations of any arbitrary group-wise pair comparison.  SinChMAT uses an open 

source implementation of Mann-Whitney based p-values with both Bonferroni and 

Benjamini-Hochberg (False Discovery Rate) multiple test corrections.  The typical 5% 

(p ≤ 0.05) significance level is applied as a filter on the displayed results.  All 288 

array locations are considered, although blanks, controls, and artificial sequences are 

filtered from the results display. 
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Figure 24.  SinChMAT screen shot showing p-value results for DCIS Stroma-to-DCIS 

 

 

The screen shot in Figure 24 shows the results of a DCIS Stroma versus DCIS 

comparison, before application of the multiple test correction.  Figure 25 below 

shows the results after applying the Benjamini-Hochberg multiple test correction. 

 

 



  

 64 

 
 

Figure 25.  P-value results following Benjamini-Hochberg multiple test correction 

 

 

Another useful feature of SinChMAT (not shown) is that the results of most statistics 

calculations are dumped in tab delimited form to a window on the “Output / Log” tab 

for easy copy-and-paste operations into spreadsheets, which facilitates post-

processing, further analyses, and plotting. 
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Tables 3 and 4 below summarize the hypothesis testing results for the original 

groupings and for the groupings following the DCIS With and Without IBC break out. 

 

Table 3.  Summary of hypothesis testing results (p ≤ 0.05) 

 

Before Multi-test Correction After B-H (FDR) Corr.  

Condition 1 

 

Condition 2 Up Down Up Down 
Stroma Epithelium     

DCIS Stroma 
(N = 8) 

DCIS 
(N = 10) 

KRT19, ERBB2, 
KRT18, GRB7, 
PIB5PA 

GPR126, ARMC1, 
ALDH4A1, CD34, 
KIF21A, EGFR, 
GNAZ, IHPK2, 
CEACAM5, INS,  
ECT2, MIB1, 
PCSK6, PLG 

 
 
KRT19 

 
 
- 

IBC Stroma 
(N = 12) 

IBC 
(N = 15) 

KRT18, CYC1, 
ERBB2, KRT19, 
GRB7, TK1, BAX, 
ST7, BCL2L1, 
BAG3, BBC3 

PRAME, WISP1, … 
(32 total, see Note 
1) 

KRT18, CYC1, 
ERBB2, 
KRT19, GRB7, 
TK1 

PRAME, 
WISP1, 
IGFBP3 

Stroma Stroma     

Hyperplasia 
Stroma 
(N = 4) 

DCIS Stroma 
(N = 8) 

- ASNS - - 

Hyperplasia 
Stroma 
(N = 4) 

IBC Stroma 
(N = 12) 

CENPN, TNF, 
ERGIC1, TP53 

RPS4X  
- 

 
- 

DCIS Stroma 
(N = 8) 

IBC Stroma 
(N = 12) 

DCK, MYBL2, 
MKI67, CENPN, 
PLEKHA1, TK1, 
PCNA, CYC1, 
ERGIC1, PGK1, 
STMN1 

IGRBP5  
 
- 

 
 
- 

Epithelium Epithelium     

Normal  
(N = 5) 
 

DCIS 
(N = 15) 

CD68, DEGS, MX1, 
TMEM45A, NME1, 
CTSD, IGF2, AKT1 

TBX3, MAD2L1, … 
(14 total, see Note 
1) 

 - 

Normal  
(N = 5) 
 

IBC  
(N = 15) 

CD68, BRCA1, 
BAG3, CCNE1, 
CTSD, MX1, … (25 
total, see Note 1) 

RPS4X, MAD2L1, 
IGFBP5, KIF21A, 
MARCH8 

CD68 - 

DCIS 
(N = 10) 

IBC 
(N = 15) 

C20orf28, TBX3, 
CDC25B, BBC3, , 
MUC1, CSF1, 
ASNS, BTG2, CYC1 

RPS4X  
- 

 
- 

Note 1 – Several genes significant at p ≤ 0.05.  Only those with ≤ 0.01 are shown. 
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Table 4.  Summary of hypothesis testing results (p ≤ 0.05) following the DCIS With 

and Without IBC split out (both epithelia and stroma groups) 

 

Before Multi-test Correction After B-H (FDR) Corr.  

Condition 1 

 

Condition 2 Up Down Up Down 
Stroma Epithelium     

DCIS w/o IBC 
(N = 8) 

DCIS w/o IBC 
(N = 7) 

KRT19, ERBB2, 
PIB5PA, GRB7, 

KRT18, BAG3 

GPR126, CD34  
- 

 
- 

DCIS with IBC  
(N = 3) 

DCIS with IBC 
(N = 3) 

- - - - 

IBC 
(N = 9) 
 

IBC  
(N = 15) 

KRT18, KRT19, 
ERBB2, CYC1, 
GRB7, BAX, 
PRKCG, TK1 

MKI67, IGFBP3, 
PCNA, ESR2, … 
(~80 total, see 
Note 1) 

 
- 

 
- 

Stroma Stroma     

Hyperplasia  
(N = 4) 

DCIS w/o IBC 
(N = 8) 

- ASNS - - 

Hyperplasia  
(N = 4) 

DCIS with IBC 
(N = 3) 

ERGIC1, DEGS1 
 
(Note 2) 

FBXO31, ASNS ERGIC1, 
DEGS1 
(Note 2) 

FBXO31, 
ASNS 

Hyperplasia  
(N = 4) 

IBC 
(N = 9) 
 

TNF, TK1, BNIP3, 
CENPN, BIRC5, 
SP1, CTSD 

RPS4X  
- 

 
- 

DCIS w/o IBC 
(N = 8) 

DCIS with IBC 
(N = 3) 

ERGIC1 
 

GRB7 - - 

DCIS w/o IBC 
(N = 8) 
 

IBC 
(N = 9) 
 

MKI67, K1, 
STMN1, PCNA, 
MYBL2, …  
(15 total, see Note 
1) 

IGFBP5, RP5-
860F19.3, EGLN1 

 
- 

IGFBP5 

DCIS with IBC 
(N = 3) 

IBC 
(N = 9) 
 

ASNS, GRB7, 
MKI67, ERBB2, 
BIRC5, CDC25B, 
MYBL2, FBXO31 

RB1, HMGB3, 
EGLN1, RP5-
860F19.3, IGFBP5 

 
- 

 
- 

Epithelium Epithelium     

Normal  
(N = 5) 

DCIS w/o IBC 
(N = 7) 

CD68, NME1, 
DEGS1, BAG3, 
MX1, CTSD 

IGFBP5, TBX3 - - 

Normal  
(N = 5) 

DCIS w/ IBC 
(N = 3) 

CD68, BRCA1, 
DEGS1 

- - - 

DCIS w/o IBC 
(N = 7) 

DCIS w/ IBC 
(N = 3) 

HMGB3 
 

FBXO31 - - 

DCIS w/o IBC 
(N = 7) 

IBC  
(N = 15) 

C20orf28 PRAME - - 

DCIS w/ IBC 
(N = 3) 

IBC  
(N = 15) 

CYC1, ASNS, 
MTDH, BBC3, 
KRT18, BTG2, 
CDC25B, PDPK1 

 
- 

 
- 

 
- 

Note 1 – Several (> 10) genes significant at p ≤ 0.05.  Only those with ≤ 0.01 are shown. 
Note 2 – Only ≤ 0.05 and surviving the B-H correction in one of the two independent computational 
methods, and that method experienced difficulty on some sets with N < 4.  However, the second 
method found the same four genes as the top four with p just over 0.05, so they are reported with 
qualification. 
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Discussion 
 

 

 

 

The data and results of the hypothesis testing presented are discussed and 

rationalized in a biological context.  Due to the large number of group-wise 

comparisons and the resulting large numbers of genes of interest, the discussion will 

focus on a subset of genes that proved particularly significant, that appeared in 

multiple comparison results, or both.  Recall that the normalization method used for 

all arrays was basic scaling to a common mean.  Though this technique is simple and 

has known limitations, it does allow the analysis of a gene’s expression across all 

groups, representing both disease progression and epithelium versus stroma, 

simultaneously and on a common scale.  For these results, this common scaling 

technique proves quite valuable for gaining insights at a “systems” level. 

 

Figure 26 below is a graphical summary of the raw results in Table 3 above, before 

splitting out DCIS with and without IBC, and Figure 27 below provides the same 

“bird’s eye” view of Table 4 after the DCIS split out. 

 

Most samples in the Normal Stroma and Hyperplasia groups did not yield usable 

images, probably due to equipment unavailability issues that required reading these 

arrays on a ChemiDoc system instead of the Kodak CCD used for all other samples.  

These two groups are shown grayed out on the figures below, and subsequent plots 

reflect that these groups are missing.  Thus, for the stromal groups, the comparisons 
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begin with Hyperplasia Stroma instead of Normal Stroma.  Likewise, the missing 

Hyperplasia epithelial group is simply skipped over by making comparisons directly 

between the Normal and DCIS epithelial groups. 

 

 

Figure 26.  Overview of hypothesis testing results (p ≤ 0.05) with original 

groupings. 
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Stroma
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(6)
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Italics indicates either survival of Benjamini-Hochberg FDR or p ≤ 0.01
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IGFBP5,
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HMGB3

FBXO31
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PDPK1
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KRT19, 

ERBB2, 
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GRB7,
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--

--

MKI67,

IGFBP3,

PCNA,

ESR2, 

...

--

ASNS

ERGIC1

GRB7
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MKI67,

ERBB2,
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...

RB1,

HMGB3,

EGLN1,

IGFBP5,

RP5-860F19.3,

 

Figure 27.  Overview of hypothesis testing results (p ≤ 0.05) with DCIS With IBC 

and DCIS Without IBC split out. 
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Analysis of Selected Genes 

 

Due to the large number of group-wise comparisons, and the resulting significant 

gene lists, the following discussion will focus on individual gene expression across all 

groups simultaneously rather than group pair comparisons.  This is done not only for 

brevity and clarity but also to give a more comprehensive, high-level snapshot of 

gene expression in both tissue types and across all disease conditions.  Since many 

genes discussed appear across several groupings, the genes are presented simply in 

alphabetical order.  They are as follows: 

 

• ASNS - Asparagine synthetase 

• ERBB2 (NEU/HER-2) - V-erb-b2 erythroblastic leukemia viral oncogene 

homolog 2, neuro/glioblastoma derived oncogene homolog  

• GRB7 - Growth factor receptor-bound protein 7 

• HMGB3 - High-mobility group box 3 

• IGFBP3 and  IGFBP5 – Insulin-like growth factor binding proteins 3 and 5 

• KRT18 and KRT19 – Keratin 18 and Keratin 19 

• MKI67 – Antigen identified by monoclonal antibody Ki-67 

• MYBL2 - V-myb myeloblastosis viral oncogene homolog avian-like 2 

• WISP1 - WNT1 inducible signaling pathway protein 1 

 

Note that the “direction” of the group-wise comparisons follows the general notion 

and convention of a “control” condition versus a “treated” condition.  In the analysis 

space of interest here, the progression of disease from Normal to IBC (invasive, fully 

malignant) provides an obvious step-wise ordering of comparisons.  This ordering is 

parallel on both the epithelial and stromal sides (Figures 26 and 27 above) with each 
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step acting as a treated condition to the previous step’s control.  In addition, 

comparisons are made between epithelia and stroma at each disease progression 

step.  Again striving to follow convention, the stroma is treated as the “from” or 

control condition and the epithelial tissue is the “to” or treated condition.  In this 

case however, it may be more illustrative to view the stroma as the condition in 

some instances, since the stroma is of particular interest here.  Of course, in either 

case the direction is irrelevant, since reversing the direction of comparison simply 

reverses up regulation and down regulation. 

 

It is important to note that the plots in all of the following discussion are group 

means on a data set globally scaled to a common mean.  While convenient and 

illustrative, these plots must be used with care and cannot be used in isolation to 

draw conclusions about gene regulation.  Only when combined with the rigorous 

statistical hypothesis testing results in Tables 3 and 4 (summarized in Figures 26 and 

27), can conclusions be drawn about statistically significant up and down regulation 

of genes.  All other insights gained from these plots are necessarily speculative.  The 

following discussion will take care to clearly distinguish between the statistically 

significant findings, which can be found in Tables 3 and 4, versus general trends of 

the (universally scaled) group means.  For clarity, the plots have curves connecting 

the group mean bars for those pairs found to have changes in gene expression that 

are statistically significant. 

 

ASNS - Asparagine synthetase 

 

ASNS is asparagine synthetase and is listed under Other Prognostics Markers on the 

breast cancer biomarker array used for all specimens.  Its appearance in stromal 
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samples is not surprising as its use as a biomarker derives from its protective role in 

the microenvironments of certain cancers, particularly ovarian [40] and acute 

lymphoblastic leukemia (ALL) [41].  In the latter case, bone marrow-derived 

mesenchymal cells with high ASNS expression acted to form a protective 

microenvironment where leukemia cells could grow.  However, no such study was 

found for breast cancer, and ASNS’s utility seems to be mainly as a biomarker for 

pharmaceutical efficacy. 
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Figure 28.  ASNS normalized gene expression (lines indicate statistical significance, 

dashed lines indicate statistical significance with DCIS groups combined) 

 

In ALL, the leukemia cells are extremely sensitive to asparagine depletion because 

asparagine synthetase expression, and therefore asparagine biosynthesis, is low.  

Thus, asparaginase is a major component of ALL therapy.  For the breast cancer 

samples examined here, the results show a significant drop in ASNS expression in 
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breast epithelium right at the point of transformation, suggesting possible 

therapeutic application for asparaginase to breast cancer similar to ALL.  No 

reference to this could be found in the literature.   

 

Interestingly, as the disease progresses, ASNS expression is likewise suppressed in 

the corresponding stromal groups, falling steadily until the invasive point is reached 

and then rebounding to the same level as Hyperplasia.  As shown in Figure 27 and 

Table 4, ASNS was found significantly down regulated between the Hyperplasia 

Stroma versus DCIS (Without IBC) Stroma group and significantly up regulated 

moving from DCIS With IBC Stroma to IBC Stroma.  Also from Figure 27, ASNS is 

significantly up regulated moving from DCIS With IBC (epithelium) to IBC.   

 

It should be noted that the DCIS With IBC groups (both epithelium and stroma) are 

the smallest groups (N = 3), so the apparent drop at that disease progression step 

could be spurious despite the fact that the image quality for those six samples is 

quite good.  It turns out this possibility is irrelevant because even with the DCIS 

groups combined, the difference in ASNS expression between DCIS and IBC 

epithelial groups is still statistically significant, supporting the notion that ASNS 

expression is much lower in DCIS and may provide a therapeutic opportunity similar 

to ALL prior to the cancer becoming invasive. 

 

ERBB2 - V-erb-b2 erythroblastic leukemia viral oncogene homolog 2 

 

ERBB2, better known as NEU or HER-2, has been widely reported as over expressed 

or amplified in numerous cancers, certainly breast carcinomas included [42], so 

some up regulation (or amplification) of this gene in breast epithelium as disease 
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progresses is not surprising.  This gene encodes a member of the epidermal growth 

factor (EGF) receptor family of receptor tyrosine kinases.   
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Figure 29.  ERBB2 (NEU/HER-2) normalized gene expression (lines indicate 

statistical significance, dashed lines indicate statistical significance with DCIS groups 

combined) 

 

 

The apparent drop in ERBB2 at the DCIS split out may be due to the small sample 

size of DCIS With IBC (N = 3) mentioned above, although again image quality of 

these samples is actually quite good.  Indeed, if the DCIS groups are collapsed, the 

significance on the DCIS With IBC versus IBC stroma-to-stroma comparison (Figure 

27) disappears.  Also, the appearance of significant up regulation between multiple 

stroma-to-epithelia group pairs is consistent with this gene’s specific up regulation 

(or amplification) in the breast epithelium tissue proper, not the stroma.  Although 

ERBB2 up regulation is well established in certain subtypes of breast cancers, it is 



  

 75 

not a general biomarker for all breast cancers.  In fact, ERBB2 is amplified in only 

about 30% of all human breast cancers (and indicates a poor prognosis).  Thus the 

results presented here must be considered in a context in which the exact fractions 

of samples in the epithelial groups that are ERBB2 (NEU/HER-2) positive have not 

been established. 

 

GRB7 - Growth factor receptor-bound protein 7 

 

GRB7 encodes a gene whose product belongs to a small family of adapter proteins 

that interact with receptor tyrosine kinases and signaling molecules.  GRB7’s product 

specifically interacts with epidermal growth factor receptor (EGFR) receptors and 

contains a Src homology 2 (SH2) domain.  It is involved in integrin signaling and cell 

migration via binding to focal adhesion kinase (FAK), and its up regulation in breast 

cancer is well established [43]. 

 

As with ERBB2 (NEU/HER-2), we may discount the apparent drop at DCIS With IBC 

as possibly spurious due to low sample number (N = 3); however the significant 

differences between epithelial and stromal groups are as expected and lend 

additional confidence to successful laser capture microdissection of the distinct cell 

populations.  Of possible interest is the trend across epithelial groups during disease 

progression.  Unlike ERBB2, which monotonically ramps up with disease progression, 

GRB7 appears to rise sharply at DCIS Without IBC (epithelium) and remain high.   
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Figure 30.  GRB7 normalized gene expression (lines indicate statistical significance, 

dashed lines indicate statistical significance with DCIS groups combined) 

 

 

This finding is of potential interest for two reasons.  First, GRB7 is generally 

associated with invasiveness (motility, cell migration) and metastasis, yet its 

expression in epithelia seems to be quite high well before IBC is reached.  Second, 

GRB7 is a therapeutic target of significant interest, so again its elevation apparently 

earlier than expected is of interest.  No reference was found in the literature for 

elevated GRB7 in DCIS. 

 

Note also that GRB7 happens to lie very close to ERBB2 on chromosome 17q12, so 

the fact that Figures 29 and 30 have very similar overall trends is confirmatory and 

validating since the main mechanism of ERBB2 up regulation is thought to be gene 



  

 77 

amplification.  It would appear that GRB7, lying in close proximity to ERBB2 

chromosomally, is likewise amplified.   

 

HMGB3 - High-mobility group box 3 

 

HMBG3 regulates the balance between hematopoietic stem cell self-renewal and 

differentiation [44].  It is an X-linked member of a family of chromatin-binding 

proteins, and is listed under Prognostic – Transcription Factors and Regulators on the 

breast cancer biomarker array used for all samples.  The plot of HMGB3 expression 

across all groups is shown in Figure 31 below. 
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Figure 31.  HMGB3 normalized gene expression (lines indicate statistical 

significance, dashed lines indicate statistical significance with DCIS groups combined) 

 

 

HMGB3 shows an intriguing pattern of up regulation specifically in the DCIS With IBC 

groups, both epithelial and stromal.  With the DCIS samples separated according to 
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With and Without IBC, HMGB3 is the lone gene with statistically significant up 

regulation between DCIS With IBC and DCIS Without IBC (epithelial) groups.  The 

same pattern is evident in the corresponding stromal groups and indicates that the 

up regulation occurs in the stroma as well, with the statistical significance showing 

up when the gene’s expression falls sharply back down between DCIS With IBC 

Stroma and IBC Stroma.  Of the genes examined here, HMGB3 exhibits the most 

similar trends between epithelia and stroma groups across all disease conditions.  

The striking similarity of trends across the entire analysis space hints at, but 

certainly does not demonstrate, the possibility of a common mechanism up 

regulating this gene in lock step in both epithelia and stroma.   

 

Finally, note that in marked contrast to the previous three genes discussed, the 

expression level is highest in the DCIS With IBC groups (both epithelial and stromal), 

providing confidence that these groups are not simply biased towards low signals as 

the previous three plots may lead one to believe.  Inspection of the raw images also 

support these samples have strong, clean signals. 

 

IGFBP3 and  IGFBP5 – Insulin-like growth factor binding protein 3 

and 5 

 

Cancer cells use a variety of extracellular signaling strategies to protect against their 

apoptotic programs getting triggered [45].  Cancer cells may secrete abnormally 

high levels of insulin-like growth factors-1 and -2 (IGF-1 and IGF-2), which are 

trophic (survival) signals in the extrinsic apoptotic pathway, in an autocrine fashion 

to protect themselves from externally triggered apoptosis.  Another common 

strategy is to reduce the level of IGF-binding proteins (IGFBPs) in the extracellular 
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space, which bind and sequester IGFs, in order to reduce the threat to the cancer cell 

of losing trophic signaling.  Indeed, suppression of IGFBP serves multiple purposes 

for the cancer cell since expression of IGF-binding protein-3 (IGFBP-3) and IGFBP-5 

in human breast cancer cells may also induce apoptosis directly via modulations in 

Bcl-2 proteins, suggesting that these IGFBPs induce an intrinsic apoptotic pathway as 

well [46].  Also, a very recent proteomics study [47] has further established that 

IGFBP3 is expressed in the normal breast epithelial cells (not stroma) where it plays 

a paracrine inhibitory role in breast tumor development. 

 

From the current literature, the expected result of IGFBP3 and IGFBP5 gene 

expression would be down regulation in the epithelial groups.  Figures 32 and 33 

show the results obtained in this study. 
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Figure 32.  IGFBP3 normalized gene expression (line shows statistical significance) 
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Figure 33.  IGFBP5 normalized gene expression (lines indicate statistical 

significance, dashed lines indicate statistical significance with DCIS groups combined) 

 

In the case of IGFBP3 (Figure 32), gene expression across the spectrum of epithelial 

disease states appears flat, and certainly not down regulated relative to normal 

tissue.  Indeed, IGFBP3 expression is somewhat higher in the disease states versus 

Normal epithelium.  However, IGFBP3 down regulation in IBC relative to IBC Stroma 

is statistically significant, which is consistent with the carcinoma taking measure to 

protect itself from extrinsic apoptosis triggered by loss of IGF tophic factors.  Note 

that the group means in the IBC group pair and the DCIS Without IBC group pair 

shown in Figure look very similar, but only the IBC pair is statistically significant 

(Table 4), reinforcing the notion that these plots must be used with care and cannot 

be used in isolation to draw conclusions about gene regulation. 
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For IGFBP5 (Figure 33), the downward trend in group means is striking and clear in 

the stromal groups but less so in the epithelial groups.  Statistically, the down 

regulation of IGFBP5 in the stromal groups is only significant between the DCIS and 

IBC groups.  This statistical significance holds regardless of whether the DCIS With 

and Without IBC are split out or combined.  This result would be expected in the 

epithelial groups, but its finding in the stromal groups is surprising. 

 

In contrast to its irrelevance for stromal groups, the DCIS With and Without IBC split 

does make a difference in the results for the epithelial groups.  Down regulation in 

the epithelial groups would be expected and indeed is found, but only when DCIS is 

split into the two subgroups of DCIS With and Without IBC.  In this case, the IGFBP5 

down regulation is statistically significant between the Normal and DCIS Without IBC.  

However, combining the DCIS subgroups into one causes IGFBP5 to disappear from 

the significance list.  This result make sense intuitively from the plot of means 

(Figure 33) which would indicate combining these subgroups would blunt the sharp 

drop that otherwise appears when they are split out. 

 

With the DCIS With and Without IBC groups split out, an intriguing scenario becomes 

possible.  Recall that IGFBPs are released to the extracellular space where they bind 

to trophic IGFs and sequester them.  Thus, the cancer benefits no matter where the 

down regulation of IGFBPs occurs, that is, regardless of whether it occurs in the 

epithelial tissues or the nearby stroma.  With this and Figure 8 in mind, a possible 

scenario becomes clear where the statistically significant down regulation of IGFBP5 

occurs initially in the epithelial tissue (significant between Normal and DCIS Without 

IBC).  Then, through an undetermined mechanism, the stroma is induced to down 
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regulate IGFBP5 as the disease progresses from DCIS to IBC, which is significant 

with either grouping.  The findings here would support (but certainly not prove) just 

such a “hand off” scenario between the DCIS epithelium just before IBC and the 

stroma just after invasion, and it would be consistent with the well established 

intensifying of signaling activity between epithelial tissue and stroma as the cancer 

becomes invasive. 

 

KRT18 and KRT19 – Keratin 18 and 19 

 

The results for these two genes are presented here because they appear so 

frequently as significantly up regulated between the stromal and epithelial groups.  

They appear as consistently “up regulated,” statistically speaking, in epithelial groups 

mainly because these proteins are simply much more common in epithelial tissue 

than in stroma.  Recall that the same breast cancer biomarker array is used 

throughout on both breast cancer and stromal samples. 

 

KRT18 and KRT19 are cytokeratins (CKs), which have long been recognized as 

structural markers specific to epithelial cells.  Thus, when comparing epithelial 

groups to stromal groups, epithelial-specific genes should have noticeably higher 

expression.  The results bear this out with nearly order-of-magnitude differences in 

relative expression levels for some parallel group comparisons, when normalized 

across all groups, as shown in Figures 10 and 11 below. 
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Figure 34.  KRT18 normalized gene expression (lines indicate statistical significance, 

dashed lines indicate statistical significance with DCIS groups combined) 

 

Despite the apparently wide swings in gene expression in the epithelium-to-

epithelium comparisons, only one yielded statistically significant differences for 

KRT18 and KRT19, namely up regulation between DCIS With IBC and IBC for KRT18.  

All other significance was between epithelial and stromal group pairs, which would be 

expected due to the CKs being epithelial markers. 

 

KRT19 (also known CK19) has been identified as being highly expressed in HER-

2/neu-positive breast tumors [48].  The sample sets represented in Figures 34 and 

35 have not been classified with respect to HER-2/neu (ERBB2) status, although 

Figure 4 would suggest some degree of HER-2/neu positive status.  Note in Figure 35 

that mean KRT19 expression in the IBC epithelium group is essentially equal to the 
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Normal epithelium group.  Perhaps more interesting is the apparent dip in KRT19 

epithelial expression during the progression from Normal to IBC, although no 

epithelial group pair differences proved statistically significant. 
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Figure 35.  KRT19 normalized gene expression (lines indicate statistical significance, 

dashed lines indicate statistical significance with DCIS groups combined) 

 

Likewise, KRT18 shows a noticeable dip and a trend similar to KRT19.  Even with the 

DCIS groups combined, there would be a noticeable (roughly a full fold down) dip in 

the progression from Normal to IBC epithelia.  This trend may explain some apparent 

discrepancies in the literature.  Some recent investigators have suggested KRT18 

gene expression is down regulated in breast cancer [49, 50] while previous 

proteomic studies [51, 52] indicated that the reduction of KRT18 in cancer cells is a 

proteomic process involving cancer-associated cleavage and accelerated protein 
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degradation via a ubiquitin-dependent proteasome pathway in breast cancer, a 

reminder of the danger of ascribing too much causality to gene expression results.   

 

The results presented here certainly do not settle the issue, but they do show an 

interesting, and consistent, pattern for both genes across the epithelial groups’ 

disease spectrum.  The genes’ mean expression drops noticeably from Normal to 

DCIS, consistent with the down regulation of KRT18 reported in the literature, and 

then rises sharply to return very close to the Normal level in the IBC state.  This 

rebound between DCIS With IBC and IBC is statistically significant. 

 

MKI67 – Antigen identified by monoclonal antibody Ki-67 

 

MKI67, better known as Ki-67, is a well know proliferation marker in human breast 

and other cancers.  However, even very recent studies examining the role of breast 

tumor stroma have only reported correlations between the presence of stromal 

myofibroblasts in tumor stroma and expression of Ki-67 (and HER-2) “in breast 

cancer cells [53].”  The results presented in the figure below clarify that the strong 

correlation of up regulated (or amplified) MKI67 expression that has been in use for 

some time as a prognostic marker for advanced breast carcinoma is actually 

occurring in the stroma, not the carcinoma.  The up regulation is statistically 

significant between DCIS and IBC Stroma groups, regardless of the DCIS With and 

Without IBC split out.  Again, the precision of laser capture microdissection (LCM) 

reveals the specific tissue cell type responsible for the gene expression observed 

historically in homogenized sections.  As LCM comes into more routine use, this 

finding may be valuable to future investigators as it suggests MKI67 will not be as 

useful a prognostic indicator as it has been when dealing with highly purified 
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epithelial carcinoma cell samples, unless corresponding stromal samples are also 

examined. 
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Figure 36.  MKI67 normalized gene expression (lines indicate statistical significance, 

dashed lines indicate statistical significance with DCIS groups combined) 

 

 

MYBL2 - V-myb myeloblastosis viral oncogene homolog avian-like 2 

 

MYBL2 is also a well-established prognostic marker for breast and other types of 

carcinoma.  High levels of MYBL2 expression are generally associated with amplified 

20q12-q13 regions, which is common in breast cancer [54].  As Figure 37 below 

shows, the findings here agree with high levels of MYBL2 expression from DCIS 

through IBC epithelial groups as expected.  The drop at DCIS With IBC epithelium 

could be spurious, due to small sample size, but the same elevated levels are seen at 

DCIS generally, whether split out or not.  However, these results were not 
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statistically significant.  In contrast, the up regulation of MYBL2 in the stroma of IBC 

versus DCIS stroma was statistically significant, regardless of the DCIS With and 

Without IBC split out.  After staying relatively flat from Hyperplasia Stroma through 

DCIS With IBC Stroma, MYBL2 expression in IBC stroma rises sharply. 

 

Since high MYBL2 expression is generally associated with amplified 20q12-q13 

regions common in breast cancer, the findings here raise the question of what 

causes the sharply higher expression in IBC Stroma.  Further, since the 

measurements presented here are all RNA based, high transcript levels must result 

from either increased transcription of normal chromosomal DNA or amplified DNA (or 

both).  At least one study has shown that concurrent and independent genetic 

alterations (e.g., loss of heterozygosity (LOH) and genetic alterations on several 

chromosomes) in mammary stroma not only occur but that these changes may 

precede genotypic changes in the epithelial cells [55].  However, that study did not 

specifically examine 20q12-q13 amplification.  Instead, it focused on LOH at other 

chromosomal locations, and the findings here certainly do not suggest the stroma is 

leading the carcinoma with respect to MYBL2 expression levels.  Nonetheless, the 

findings do raise the interesting question of what is causing statistically significant 

higher levels of MYBL2 expression in the stroma (of IBC) when this gene’s over 

expression is generally associated with gene amplification, but gene amplification in 

turn is normally associated with the carcinoma, not the stroma. 
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Figure 37.  MYBL2 normalized gene expression (lines indicate statistical significance, 

dashed lines indicate statistical significance with DCIS groups combined) 

 

 

WISP1 - WNT1 inducible signaling pathway protein 1 

 

WISP1 encodes a protein that belongs to the connective tissue growth factor (CTGF) 

family and may be downstream in the WNT1 signaling pathway that is relevant to 

malignant transformation.  It is expressed in high levels in fibroblasts, which would 

be consistent with higher expression in stroma.  The encoded protein binds to 

proteoglycans in the ECM and possibly prevents their inhibitory activity in tumor cell 

proliferation.  It also attenuates p53-mediated apoptosis.  Two studies [56, 57] 

established the association of WISP1 with advanced features of breast carcinoma.  

However, neither of these studies (circa 2001) used LCM, and both refer to up 

regulation of WISP1 specifically in breast epithelial cells.  The results here show that 

the elevated WISP1 expression is actually occurring in the stroma, not the epithelium 
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(Figure 38).  Although the difference in the means looks more dramatic at DCIS With 

IBC, the statistically significant finding is actually at the IBC step.  Although not 

statistically significant, it is worth noting that rising WISP1 expression is not only 

occurring in the stroma, it appears to start rising noticeably during DCIS, peaking in 

relative terms just as DCIS transitions into IBC. 
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Figure 38.  WISP1 normalized gene expression (lines indicate statistical significance, 

dashed lines indicate statistical significance with DCIS groups combined) 

 

Transforming Growth Factors 

 

The absence of some genes from the significance lists may be as notable as those 

present.  Notably absent from the significance lists are the Transforming Growth 

Factors (TGFs).  The breast cancer biomarker array used includes the genes TGFα, 

TGFβ1, TGFβ2, and TGFβ3.  TGFβ is known to play a key role in breast cancer [58], 
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but its role is complex, often ambiguous, and even paradoxical [59, 60]  Further, its 

role does not necessarily translate into straightforward up or down regulation in one 

or the other tissue type examined here.  TGFβ is produced by many cell types in an 

inactive form that is released and subsequently resides in the ECM until it is liberated 

by matrix metalloproteinase (MMP) cleavage or other mechanisms. 

 

The measurements of the four TGF genes included on the breast cancer biomarker 

array did not yield any statistically significant up or down regulation results for any 

group-wise comparison examined.  Further, in absolute terms, the signals for these 

genes were very low.  These results suggest that either the TGFβ is being produced 

elsewhere or its main activation mechanism is driven more by proteomic or signaling 

effects, either intracellular, extracellular, or both, rather than by gene regulation.  

Further analyses of the samples using alternative techniques, such as Enzyme-Linked 

ImmunoSorbent Assay (ELISA) testing, would be required to investigate this issue 

further. 

 

Validation and Sensitivity Analyses 

 

Log Normalization 

 

Since the main results presented here all resulted from using non-log normalized 

data (albeit scaled to a common mean), several comparisons are recomputed using 

log2 transformed data.  This log normalization had no meaningful effect on the 

results, so using the non-log normalized data was deemed acceptable. 
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P-Value Computation 

 

All p-values are computed by two independent means, for validation purposes, as 

discussed in the Results section (see Figure 21).  The first method uses an open 

source C# (.NET) implementation of Mann-Whitney from ALGLIB, and the second 

uses the widely used Bioconductor stats library in R.  The R results are generally 

greater than (more conservative than) the ALGLIB results, thus genes are not 

reported as statistically significant (≤ 5%) unless both methods reported a value of 

≤ 0.05.  Thus, the R results tend to act as a filter on the ALGLIB results, reducing 

the set of significant genes in either direction (up or down regulation).  A simple and 

conservative implementation of the Benjamini – Hochberg False Discovery Rate is 

applied separately, following both computational methods.  For the ALGLIB method, 

SinChMAT applies the correction programmatically.  For the R results, the correction 

is applied via a simple spreadsheet manipulation.  Since the FDR (and the Bonferroni 

correction) tend to eliminate most genes from the significance list, if either p-value 

computational method generates values that survive the multi-test correction, it is 

retained and reported. 

 

Group-wise Normalization 

 

Since simple scaling is used across all arrays for normalization, a group-wise 

normalization is attempted as a sensitivity analysis, to assess the impact of using 

simple scaling.  As noted, the SuperArray (SA) website tools available to perform 

group-wise normalization have significant limitations.  Nevertheless, group-wise 

normalizations are attempted by first analyzing the statistical variability of the 

control spots, which would be used in a group-wise normalization, with respect to 

background corrections.  With simple scaling applied, the controls with the lowest 
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coefficient of variability (mean divided by standard deviation) across all background 

corrections are selected for each condition group (before the DCIS With and Without 

IBC split out, for simplicity).   

 

With the set of selected controls for each group, the SA website tools are used to 

perform normalization against the specified controls, and the results are downloaded 

and parsed to isolate the array results for just those members of the given condition 

group.  This process is repeated for each group.  Unfortunately, since the SA website 

tools artificially compress all values down to 2 significant digits, many values cluster 

around zero and 1.00, losing resolution at the important endpoints, particularly 

around 1.00.  Not surprisingly, this compression results in a much greater number of 

“significant” genes, many of which are likely false positives.  Also, the resulting sets 

of supposedly significant genes are much larger relative to total number of genes on 

the array, further calling into question their meaningfulness.  Finally, the results are 

much more asymmetrical (up versus down), which further indicates poor quality of 

these results.  Thus the group-wise normalization was rejected and not reported, and 

would likely have to be done manually as part of future work to produce meaningful 

results.   

 

Interestingly, despite these issues, the few genes surviving the FDR correction using 

the group-wise normalized data still matched very closely to the simple scaling 

results after FDR correction, with occasionally an addition gene or two, providing 

further confidence in those most significant findings using simple scaling. 

 

 

 



  

 93 

Background Corrections 

 

Careful background correction clearly affects the results of microarray analyses.  To 

assess the sensitivity of the results presented here to background correction, a 

simple sensitivity analysis is performed where a given background correction 

technique (e.g., Empty Spots, Minimum, Local, or Global) is applied uniformly to all 

arrays and the p-values recomputed.  The results are indeed sensitive to the 

background correction.  The numbers and identities of the genes reported as 

significant change noticeably when the same background correction is used for all 

arrays, confirming the importance of the array-level background corrections that are 

used in all results presented. 

 

Fold Changes with Absent / Present Threshold 

 

With the limitations of fold change analysis in mind (see Computational Analysis 

Approach section), the SuperArray website software was used to perform a 

confirmatory fold change check on the more rigorous statistical significance results.  

A fold change threshold of ≥ 1.5 is used along with an Absent / Present (AP) 

threshold of 1.2, as determined by the website software’s image analysis algorithm.  

A spot is considered "Present" if its average pixel density is greater then its local 

background, and the average density of the spot is greater than 1.5x of the mean 

value of the local backgrounds of the lower 75th percentile of all non-bleeding spots.  

The results are shown in the table below.  Note that the fold change analysis is 

performed using group means. 
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Table 5.  Fold change (≥ 1.5) with Absent/Present (AP) threshold (≥ 1.2) applied 

(Genes in italics had fold changes ≥ 2.0) 

 

Condition 1 Condition 2 Up Down 
Stroma Epithelium   

DCIS w/o IBC 
(N = 8) 

DCIS w/o IBC  
(N = 7) 

- EGLN1, IGFBP5, RP5-
860F19.3 

DCIS with IBC  
(N = 3) 

DCIS with IBC  
(N = 3) 

JUN, KRT18 CD68, CDC25B, PDPK1 

IBC 
(N = 9) 

IBC  
(N = 15) 

- - 

Stroma Stroma   

Hyperplasia  

(N = 4) 

DCIS w/o IBC  

(N = 8) 

EGLN1, IGFBP5, RP5-

860F19.3 

 

Hyperplasia  
(N = 4) 

DCIS with IBC  
(N = 3) 

EGLN1,  RB1, RP5-
860F19.3 

IGFBP3 

Hyperplasia  
(N = 4) 

IBC 
(N = 9) 
 

- IGFBP3, IGFBP5, RPS4X 

DCIS w/o IBC  
(N = 8) 

DCIS with IBC  
(N = 3) 

- IGFBP5 

DCIS w/o IBC  
(N = 8) 

IBC 
(N = 9) 

- EGLN1, IGFBP5, RP5-
860F19.3 

DCIS with IBC  
(N = 3) 

IBC 
(N = 9) 
 

CDK4, EVL, IGFBP3, 
PFKP 

BAX, EGLN1, HMGB3, 
IGFBP5, RP5-860F19.3 

Epithelium Epithelium   

Normal  
(N = 5) 

DCIS w/o IBC  
(N = 7) 

MAPK3 CIRBP, IGFBP5, KRT18, 
RPS4X 

Normal  
(N = 5) 

DCIS w/ IBC  
(N = 3) 

EGLN1, HMGB3, 
IGFBP5, MAPK3, RB1, 
RP5-860F19.3 

CIRBP, KRT18, RPS4X 

Normal  
(N = 5) 

IBC  
(N = 15) 

HMGB3 IGFBP5, RPS4X 

DCIS w/o IBC  
(N = 7) 

DCIS w/ IBC  
(N = 3) 

DEGS1, EGLN1, 
HMBG3, IGFBP5, RB1,  
RP5-860F19.3 

CDK4, KRT18 

DCIS w/o IBC 
(N = 7) 

IBC  
(N = 15) 

- - 

DCIS w/ IBC 
(N = 3) 

IBC  
(N = 15) 

CDK4, EVL, KRT18 EGLN1, HMGB3, IGFBP5, 
RB1, RP5-860F19.3, 
RPS4X 

 

 

Comparison of these results to Table 4 (summary of hypothesis testing results) and 

the gene-level results figures in the Discussion section shows generally confirmatory 

overlap.  Although fold change analysis lacks the statistical rigor of the formal 

hypothesis testing, the fold change results are consistent with the figures in the 

Discussion section, which show the corresponding changes up or down in group 

means.  However, the fact that there is significant disjointedness between the two 
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sets of results reinforces the danger of relying solely on fold change results without 

formal statistical analysis and reinforces the warnings in the Discussion section about 

drawing conclusions based solely on group mean trends.  Nonetheless, the fold 

change results make biological sense to first order and they are generally 

confirmatory of the p-value results where they overlap.  Further, the fold change 

results incorporate AP calls, which in turn adjust for bleeding.  Since these 

refinements are lacking in the p-value results presented, the fold change results are 

presented here without further discussion as possible leads for refinements and 

future work by other investigators. 
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Conclusions 
 

 

 

 

It is difficult to draw general conclusions using only gene expression results.  To do 

so would ignore complex and important proteomic and signaling effects.  

Nonetheless, it is possible to draw novel conclusions within the realm of gene 

expression by taking advantage of laser capture microdissection (LCM) to refine gene 

expression analysis using highly purified, cell-type-specific samples across a range of 

disease states and tissue types.  The results presented here are for single channel 

microarray experiments where a small, targeted set of genes, namely breast cancer 

biomarkers, are measured directly in groups of samples sharing a common biological 

condition and composed of cell type specific, highly homogeneous cell extracts 

(epithelium or stroma) relevant to breast cancer.  Various combinations of these 

condition-tissue type groups are then compared pair-wise for insights into changes in 

gene expression patterns in both epithelia and stroma in progressive breast 

carcinoma.   

 

The specific genes selected by the array manufacturer as breast cancer biomarkers 

are based on past studies that generally used breast cancer sections rather than 

LCM-derived samples and thus probably included stromal cells intermixed with 

cancerous epithelial cells.  The results presented here allow further resolution of 

which specific cell populations were responsible for the changes historically observed 

in “homogenized” samples.  The results also provide a more comprehensive or 
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“system level” view of both cell type populations of interest over a spectrum of 

progressive disease conditions. 

 

In summary, the findings are: 

 

1. Some breast cancer biomarker genes previously classified as up regulated in 

“breast carcinoma” are actually up regulated in the stroma, not the 

epithelium.  They are:  MKI67, MYBL2, and WISP1. 

2. The “system level” view suggests (but does not prove) some intriguing 

possibilities in the changes in gene expression patterns in a two dimensional 

space of disease progression and tissue type (epithelium versus stroma) that 

may warrant further investigation.  They are: 

a. Although GRB7 is generally associated with invasiveness (motility, cell 

migration), its expression in epithelia seems to be quite high well 

before IBC is reached.  Also, it appears to be up regulated in both 

epithelia and stroma. 

b. With DCIS sub-divided into With and Without IBC groups, HMGB3 

displays a pattern of expression where both epithelial and stromal 

groups move in nearly lock step across the entire disease progression 

spectrum, with a statistically significant peak at DCIS With IBC for 

both cell types. 

c. IGFBP5 trends across the entire space could be (speculatively) 

interpreted as exhibiting a “hand off” effect where the gene is initially 

down regulated in the epithelium from Normal through DCIS and then 

is somehow down regulated in the stroma from DCIS to IBC. 
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d. Both KRT18 and KRT19 (epithelial groups) display a noticeable and 

pronounced trough between Normal and IBC, with these endpoints 

providing the “walls” of the trough.  This pattern may explain why 

some studies report KRT19 up regulated while others report KRT18 

down regulated in breast cancer. 

3. More generally, the results presented here suggest that the gene sets used on 

targeted breast cancer biomarker arrays (and perhaps those of other cancer 

arrays) should be revised, or possibly split into pairs of arrays, to account for 

the now well-established role of tumor microenvironments and to facilitate 

the increasing use of LCM in microarray studies. 
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