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Abstract

THREE ESSAYS ON STATISTICAL METHODS FOR COMPLEXITY ECONOMICS

John S. Schuler, PhD

George Mason University, 2020

Dissertation Director: Richard E. Wagner

The research program commenced in this dissertation has three pillars: economics,

complexity science, and statistics. Notwithstanding the frequency with which the three

interact, they have very different foundations and thus are often in methodological tension.

It is the goal of this research program to study concrete problems at the intersection of

these fields with the goal of both their partial solution and also a better explication of their

foundations.

Economics is, above all, the science of interdependence. The “division of labor is limited

by the extent of the market” as Adam Smith famously said. Even in a simplified general

equilibrium setting, a change in the extent of the market alters the situation immensely.

Statistics, on the other hand, is the science of independence. Even exchangeability, a

concept basic to practically all of statistics, is at its core, conditional independence; which

is to say, structured independence. Complexity science provides the framework that can

bridge this gap. All scientific theories ultimately involve the arrangement of facts within a

set of counterfactuals; distinguishing realizations, or data, from other possible realizations

and also those regarded to be impossible. Complex systems display a history. Different

historical trajectories of complex systems then, can be considered independent. In order



to build an economic science that is aware of complexity then, the scope of existing economic

models must be broadened.

This is where the basic tension comes to the fore. Statistics does have a tool set for

dealing with data that has history through the use of exchangeability. What is needed is a

richer class of models such that the agent-based concepts map onto the statistical constructs

easily with explicit modeling of the counterfactuals. For this sort of work, more flexible

statistical methods are necessary. Leo Brieman famously distinguished “two cultures” in

data analysis: traditional statistical data modeling and predictive modeling. Traditional

statistical modeling allows for ease of interpretation while statistical learning is optimized

for prediction. It seems though that a good data model ought to be good at predicting as

well. Thus, a logical line of inquiry is whether the two cultures may be bridged. I believe

the answer is yes.

The key is attempt to use statistical learning techniques to estimate not the data itself

but rather a model that could have generated it. Thus, the outcome of such a modeling

exercise is not a series of point estimates but rather a joint probability distribution that al-

lows for simulation. The strength of such an approach is that all the traditional econometric

tools defined in terms of conditional moments may be easily adapted to this more flexible

modeling framework. An additional advantage is that the concepts of Judea Pearl’s Causal

Inference map very easily onto such a model as they are expressed in terms of Bayesian

networks and conditional independence.

These advantages together allow such methods to be powerful tools for the statistical

emulation of agent-based models. If we have shown that such a model works well as a

reduction of a more complex agent-based model, we can describe the properties of the

agent-based model in terms of the joint probability distribution or the Bayesian network.

This also makes calibration of the agent-based model to data a more straightforward task.

To this end, this dissertation offers three chapters: first, I attempt to adapt traditional time

series methods to the study of the Cantillon Effect and articulate the several reasons why

this does not work well. In the second chapter, I offer a possible solution to this problem:



a novel statistical method of the sort described above. Finally, I argue that a bottom up

/ agent-based economics enhanced with Austrian ideas, is actually more faithful to Ragnar

Frisch’s original vision for econometrics than the developmental path that it actually took.

Of course, a great deal remains to be done. This dissertation raises many more ques-

tions than it solves. Of particular interest is the ontic and epistemic status of so-called

“heavy-tailed” distributions in economics. The first chapter demonstrates that, as was

well-known to Benoit Mandelbrot, price changes exhibit heavy-tailed distributions, render-

ing traditional regression techniques unreliable for the study of price dynamics. An open

question is to what extent these heavy-tailed distributions bear on the Hayekian notion of

spontaneous order. Clearly prices convey information and yet, this information does not

wish to yield traditional statistical treatments. An interesting question for further research

will be whether complexity science can give an account of this.

A final theme of this dissertation is the universality of recursion as a basic intellectual

construct. Much of traditional science was based instead on classical set theoretic mathe-

matics. If we wish economics to be a process-oriented science, then perhaps the modeling

framework ought to proceed according to procedural rather than class-based notions of

abstractions. Thus, constructive mathematics and theoretical computer science are the

mathematical sciences to which we must appeal.



Introduction

Economics has long been criticized for both the strength of its assumptions and their lack of

realism. Their status as tractability assumptions accounts for their staying power but these

criticisms will persist until they are weakened. Common assumptions in economic models

are differentiability / smoothness, linearity, equal probability of interaction and equilibrium.

These assumptions are likely impossible to relax within classical mathematical economics. A

new approach is needed. This dissertation is a contribution to the development of complex-

ity economics, an emerging paradigm with foundations in constant flux. In spite of this flux,

certain themes reliably come up: non-linearity, far from equilibrium systems, and interac-

tions through networks of various kinds. These properties generalize standard assumptions;

and in many cases are precisely those required to generate rich economic behavior such as

Cantillon effects and realistic market movements.

New mathematical, computational and statistical methods are needed to build out this

complexity economics. The following chapters focus on relaxing the assumptions of equi-

librium and equal probability of interaction and showing that classical statistical methods

fail. An alternative is then offered based on newer techniques.

1



Chapter 1: The Econometrics of Prices in a Network

Economy

1.1 Introduction

The quantity theory of money ΠY = MV predicts that a fall in circulating money will

cause prices to fall. As a long run matter, there is very little dispute about this. There is,

however, some evidence of so-called Cantillon effects where some prices move, in the short

run, in the “wrong” direction and further, that in the aftermath of a monetary shock, the

overall variation among prices increases. This is of interest because disruption in relative

prices may reduce the efficiency of economic activity. There are several questions:

1. What is the evidence that Cantillon effects exist?

2. If they exist, what is a mechanism?

3. Is there evidence for this mechanism?

4. Are the statistical methods used to answer these questions appropriate to both the

purpose and the data?

[1] provides a theoretically plausible mechanism. Our goal is to study the extent to which

this model agrees with the data. This paper has nine sections. We begin with a literature

review to determine what the literature has to say about these questions. Following that is

a description of the data. We then state the econometric problem and offer two attempted

solutions to it. The first of these attempts to estimate directed network information. The

second attempts to attack the multivariate dependency. Finally, there is a conclusion.
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1.2 Literature Review

So what is the empirical evidence of Cantillon effects? Most importantly for our purposes

is [2] which gives evidence for both of the effects. They do this with a vector autoregression

following ideas in [3]. According to [2], some 50% of prices change in the “wrong” direction

and monetary shocks are followed with an increase in the coefficient of variation. [1] gives

an agent-based model that produces both of these effects. So far, it would seem we have no

issue. However, a closer look reveals some difficulties.

At the core of [1] is the idea that money circulates through an economic network of

suppliers. There is then a path dependence of the effects of that money. [2] must deal with

a challenging statistical problem. A market price vector is a very high dimensional system.

Further, these time series have many gaps and these gaps are themselves not statistically

independent. As always, simplifying assumptions must be made. In brief, [2] assumes

that having conditioned the price series on macroeconomic or aggregate variables assumed

to be important, the individual price series are orthogonal and many be estimated using

univariate methods and then stacked; following a method introduced in [3]. They defend

this decision as a standard assumption for macroeconomic models, ie. the causation runs

from the aggregate to the individual but not the other way. Also relevant is [4] which makes

a similar assumption. Indeed, this assumption may be reasonable in many situations. In

this paper, I aim to show that here, it is questionable on both theoretical and empirical

grounds and further, if the network model of [1] is true, the simplifying assumption cannot

well-approximate reality. In other words, the theoretical model is at loggerheads with

its empirical basis. Thus, the question is whether we can render this statistical problem

tractable and examine the reasonability of the theoretical model in light of this alternative

statistical model.

This paper draws from several strands of literature. Firstly, there is the Cantillon effect

literature just mentioned, both theoretical and empirical. It also bears a relationship to

the developing use of statistical learning in economics as I find that traditional regression

3



methods are ill-suited to this purpose. See [5], [6], [7] for examples.

1.3 A Simple Economic Model

In Human Action, von Mises introduced the idea of an evenly rotating economy as an heuris-

tic device [8, p 246]. It will prove useful here. In an evenly-rotating economy, technology

and population are fixed and there is no growth. Thus, relative prices ~P are fixed. If we

allow money to vary in such an economy, then we also have a concept of a price level Π and

thus, nominal prices are Π~P for positive Pi. As is traditional, we represent the logarithm of

a value with a lower case letter. Thus, pi = logPi. Thus, in an economy of n commodities

we have n prices where

pi,t = πt + ri

where ri is the real price and does not depend on time. Now, since output and velocity are

fixed: πt = mt − y + v. Therefore, we can write the series as:

pi,t = ri +mt − y + v.

By assumptions, the nominal price is a function of the real price and the relevant macroe-

conomic variables. In such a situation, any observed variation in prices is due either to a

failure to distinguish subtly different goods, for example, grocery store milk available most

of the day vs convenience store milk available all the time at a premium or the simple fact

that some price differentials are smaller than the cost of arbitrage and thus, even in equilib-

rium, we do not expect the law of one price to hold exactly. In any case, it is obvious that in

this case, it is quite reasonable to assume as [2] does that controlling for the macroeconomic

variables is sufficient to render the error term orthogonal. Obviously, this is a toy model.

It is introduced as a basis on which to build.

We now, consider a slightly more complex economy. We add growth and allow velocity

4



to vary. All this does is render the equations:

pi,t = ri +mt − yt + vt.

The same logic applies. The macroeconomic variables and real prices contain all relevant

information. We can even allow technology to change, resulting in changes of real prices:

pi,t = ri,t +mt − yt + vt.

This is the simplest model that requires something not directly observable. Now, consider

the first difference:

∆pi,t = ∆ri,t + ∆mt −∆yt + ∆vt.

It is true that changes in real prices must be correlated, sometimes positively and sometimes

negatively. Nonetheless, so long as real prices do not change much or change quickly, the

term ∆ri,t is going to account for a small portion of the variance and thus any covariances it

induces will remain small. Thus, we come to the core assumption: so long as the economy

is in equilibrium, the orthogonality assumption should be expected to hold approximately.

This means that we expect it to hold best for “medium term” time series which we define

circularly as those that sample with a lag longer than the economy takes to equilibrate but

shorter than which there are changes in real prices. What time frame this is and whether

these even exist is a potentially empirical question.

The basic concern should now be evident. Cantillon effects are a monetary disequilib-

rium. If the network hypothesis offered in [1] is true then, even for fixed real prices, output,

and velocity, the partial correlation matrix of current prices, regressed on their lags will

differ, perhaps substantially, from the proposed identity matrix. Therefore, if the model is

true, the empirical inspiration for the model is suspect. This is particularly problematic

because the point is made on the basis of coefficient of variation. The empirical coefficient

of variation is defined as: 1
p̄t(n−1)

√∑n
i=1 (pi,t − p̄t)2 Recall that in general, where εi is the

5



error term for pi, Var [
∑n

i=1 εi] =
∑n

i=1

∑n
j=1 Cov [εi, εj ]. Under the orthogonality assump-

tion, Cov [εi, εj ] = 0 where i 6= j. If this is false, there is the potential for the correlations

to introduce bias into the estimator of the coefficient of variation and further, this bias may

grow with respect to the number of series modeled.

1.4 The Data

We use the producer price series provided by the Bureau of Labor Statistics. We make use

of the price series for which we have at least three years of data and which are at least

95% populated. The producer price indices come in varying levels of granularity indicated

by the length of the code. We make use only of the most granular 8 digit codes. Also, we

use the series that are not seasonally adjusted. This leaves us with 379 price series. The

BLS also provides an overall price index which we use in the model. These data are all

reported monthly. The Federal Reserve also reports M2 monthly. The tricky part is the

Federal Funds rate which is reported more than monthly. We use the reported rate closest

but prior to the beginning of the month as the rate for that month.

1.5 The Statistical Problem

Fortunately, the question of the dependence structure of the error term is empirical. My

tool will be so called “energy statistics” introduced in [9]. In particular, I will use distance

correlation, a statistic with a support on (0, 1). It has the property that it is zero asymptot-

ically if and only if the two random variables are independent [9]. The statistic is derived

from the concept of energy distance which is a true metric between probability distribu-

tions. Distance correlation can be used as the basis of a nonparametric T-test analogue for

independence [10]. This test relies on the existence only of first moments. Thus, I begin by

fitting the univariate models. We use Lk =
∑k

i=1 L
i where L is the lag operator.

To ensure stationarity, I take the first difference of the logarithm of the BLS price series.

6



I fit the following model:

(1− L12) pi,t = (1 + L12) (1− L1) (Mt + Ft + Πt)

where pi,t is the logarithm of the price index i at time t, Mt is the M2 measure of the

money supply at t, Ft is the last reported federal funds rate prior to time t, and Πt is

the overall price index at time t. As the purpose of this is heuristic rather than to build

the best possible model, I do not consider seasonal effects or attempt to orthogonalize the

macroeconomic variables. Thus, this is a somewhat simplified version of the model used

in [2] with the exception that they do not take the first difference. I chose to model the

first difference because it gave the best performance. A few series failed to converge and

were thrown out. Plots of these series showed them to be extremely erratic and thus not

easily modeled in this way. These turned out to be merely particularly extreme examples

of a broader problem to be discussed later. Given the number of series, it was not possible

to test all of them for stationarity but for those tested, it was possible to reject the null

hypothesis of integration of order 1 using the Perron-Philips test.

1.5.1 An Empirical Test of Assumptions

I then fit 379 models using univariate time series methods. These models yield residuals.

Thus, I calculate statistics on these residuals to test the independence of the correspond-

ing innovation terms and thus the validity of assuming them to be independent and thus

uncorrelated. I build what one might call a partial distance correlation matrix using the

univariate residuals. For sparsity, I test the significance of each coefficient at the 0.01 level.

This matrix is sparse but it is far from identically 0. I set the entries where I fail to reject

the null hypothesis of independence to 0. The distance correlogram is pictured in figure

1.1. If one applies the rule that a distance correlation of 0 means disconnected nodes and

a positive one means connected nodes, one may think of this as the adjacency matrix of a

network and as a very crude statistical reduction of the network of monetary flow. Figure

1.2, displays the corresponding network diagram. While most nodes are not connected to

7



most other nodes, no two nodes are more than a few hops apart and in this sense, the

network is highly connected. This makes the multivariate process very difficult to model.

Figure 1.1: Distance Correlation of VAR Residuals (significant at ≤ 0.01)

1.5.2 The Statistical Power of the Test

There is an additional issue to be concerned about. The null hypothesis of the T-test is

independence, that is, a distance correlation of 0. The null hypothesis lies at the boundary

8



Figure 1.2: Network Diagram of the Adjacency Matrix

of the support of the statistic and thus, the estimator is necessarily biased upward. Is this

is driving the rejection of independence and therefore orthogonality. Since the distance

correlation is not a parameter of a statistical model, it is not possible to perform explicit

power calculations. It is, however, possible to simulate independent time series and repeat

the exercise many times using a bootstrapping approach. Bootstrap each series of residuals

independently. Thus, the new series will have identical univariate statistical properties

but will be independent by construction. If the upward bias in the estimator of distance

9



correlation is resulting in many type 2 errors at these sample sizes, we expect the resulting

partial distance correlation matrix to strongly depart from being identically 0. As expected,

while there are a few estimates that pass the rejection threshold, they are only very few as

displayed in figure 1.3. Therefore, biased estimators are not driving these results.

Figure 1.3: Partial Distance Correlation of Bootstrapped Residuals

10



1.6 An Alternative Model

The distance correlation matrix estimate gives us explicit information on the dependency

structure among the various price series. This is still too crude as a model of the supplier

network or even a statistical reduction thereof since this network is an undirected graph.

Can we possibly model a directed graph? In order for this to work, it is necessary for price

dependencies to be able to exist in only one direction. Given the limited granularity of the

price indices, it is not obvious that rich directional information is discoverable. This is an

empirical question. Again, the idea is to attempt to leverage our independence information

to assemble univariate models into multivariate models. Consider the following assumptions:

1. I assume the same basic VAR framework on the first difference as before.

2. Each price is potentially a function of its own lags.

3. Each price is potentially a function of the lags of those prices it depends on but not

on the contemporary prices.

4. Each price is potentially a function of contemporary or lagged macroeconomic vari-

ables.

5. Finally, once we have controlled for all relevant prices, then the resulting series are

orthogonal.

There is another statistical problem to solve. Traditional regression models do not

perform variable selection and thus, simply regressing a price difference on its own lags and

the lags of all price differences on which it depends will result, at best, in a very complex

model with many small coefficients. Further, the fact that the series are of different lengths

and there is missing data poses a greater challenge. This is where this paper links up with

the statistical learning literature. I make use of a LASSO regression to perform variable

selection. For a description of the LASSO, see [11]. The basic idea is that I minimize the

sum of squared errors subject to a penalty term of some quantity λ multiplied by the sum

11



of the absolute values of the β’s. The greater the λ parameter, the greater the penalty and

the simpler the model. This technique will force many slope parameters to 0. The question

is, how do we choose λ?

It is common in statistical learning to choose λ based on the data and I follow this

approach here using a technique called cross-validation. I reserve a portion of the data as a

testing set, in this case, 30% of the available data. The remainder of the data is the so called

training set used to fit the model. A possible vulnerability of this technique is temporal

effects for which I have not accounted. This does lean somewhat heavily on the admittedly

strong assumption of multivariate stationarity in arbitrary dimensions. This vulnerability

is reduced though insofar as I choose the λ where the model fit from the training data best

predicts the validation data. In other words, I take (1 − L)pi,t to depend on its own lags,

other lags, or macroeconomic variables, if and only if it improves predictions of (1−L)pi,t.

Where it does, its marginal effect is represented by a non-zero β parameter. This has

the further advantage of giving us information that is directional and therefore potentially

causal. As I have modeled prices on the basis of lags of other prices, I have directional

information which is better than before. Further, the dependency information above was

merely bivariate. Since the lasso model takes into account all possible dependencies and

rejects those that are not useful for prediction, I can address some of these issues. This

allows the estimation of statistical reduction of the producer network. In figures 1.4 and

1.5, I display the in and out-degree distributions of the network reduction.

The difficulty with the LASSO model is that it remains a collection of univariate models.

It is suitable for multivariate modeling if and only if the final assumption is approximately

true. Even a simple covariance matrix shows that it is not. Thus, the question remains:

how to build a model that potentially contains the full set of effects when the dimensionality

is too high for traditional methods to be tractable?
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Figure 1.4: Histogram of In-Degrees

Figure 1.5: Histogram of Out-Degrees

1.7 A Simulation Model

The goal is to simulate a stochastic process and see if shocking the federal funds rate gives

us Cantillon effects. For this purpose, I again begin with the collection of univariate VAR
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models from the first section. We can now consider this as a vector:

(1− L12) (1− L1) ~pt = (1 + L12) (1− L1) (Mt + Πt + Ft) + ε (Mt,Πt, Ft)

There are two terms that need to be modeled in order to simulate the stochastic process:

the macroeconomic process of [Mt,Πt, Ft] and the innovation term ε. For reasons given

above, this innovation term is very far from a white noise process. I also allow it to depend

on the macroeconomics variables. Thus, while I model each price only on its own lags and

the macroeconomic variables, I also explicitly model how the innovation term tends to move

certain ways. A complex innovation term is consistent with a network model. The difficulty

I must solve again is that the dimension of this problem is high relative to the data. How

can I model the innovation term in a way that respects its complex interdependencies?

One way to proceed is to attempt to take advantage of the network structure rather

than be defeated by it. The partial distance correlation matrix on the residuals gives us

a dependency structure. I can use this network structure to model the error term while

only considering a subset of the dependent dimensions at once. My technique for doing

this is quasi-agent-based. This sort of technique may be the basis for something reasonably

called agent-based estimation; possibly worth exploring. The idea is to let a small number

of agents walk around the dependency network, fit a model for each node depending on a

subset of the nodes connected to it and then calculate an estimate. Now, since each node

is regressed on a subset of the other nodes, this will introduce bias. The hope is that the

randomization the starting nodes at each realization of the innovation process will reduce

this bias. The algorithm in more detail is:

1. Select a row at random from the residuals of the VAR models.

2. Choose some k % of the nodes to value with the residuals from the chosen row.

3. Now, randomly assign n agents to nodes adjacent to some of the previously valued

nodes.
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4. Each agent takes stock of the connected nodes which are valued and fits a model for

its current node based on the valued nodes connected to it. The model has the current

residual as its y-variable and the current and lagged values of the connected nodes as

x-variables along with the current and lagged values of the macroeconomic variables

where the distance correlation indicates dependence. Thus, we allow the error term

to depend directly on macroeconomic conditions and its own lagged values but only

when the data supports it.

5. This model is stored in case we want to use it later. This model spits out a prediction

for the current node and the node is valued with this.

6. The agents jump to an adjacent unvalued node. If there isn’t such a node, they can

“teleport” to a disconnected node.

7. When all nodes are valued, terminate the process. This gives a realization of the error

term.

These models are fit using projection pursuit regression. This technique is potentially

a universal estimator. For details, see [11, p 389]. Now that I have a model for the error

term, I can focus on modeling the macroeconomic variables. The federal funds rate, when

considered as a time series fails tests of stationarity even when differenced many times.

This is consistent both with the federal funds rate being considered crudely as an exogenous

control variable, and also with the outcome of a complex system whereby it is determined by

private agents working in concert with the central bank. In any case, the lack of stationarity

is likely due to a variety of institutional conditions through the history of our data. I will

not attempt to model it as random but rather as simply given. In the simulation, which is

120 time steps, I begin with the lowest recorded federal funds rate and gradually build up

to the highest at the final time step while following a roughly sigmoidal function. The step

to step differences are actual month to month observed changes in the rate so these changes

are realistic. This addresses, in part, some concerns about the non-linearity of Cantillon

effects and therefore, the inappropriateness of classical impulse response techniques.
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Given the fixed federal funds rate path, I need to determine a reasonable path for M2

and the price index. Now, the joint probability distribution of the macroeconomic variables

can be factored.

P
(
~M2, ~Π

∣∣∣ ~FF ) = P (Π |M2, FF )P (M2 |FF )

Analogously, I can estimate the joint probability distribution of Π and M2 conditional on

their lagged values and on current and past values of the federal funds rate by fitting two

autoregressive models:

Mt = AML12Mt +BM (1 + L12)Ft + ε

Πt = AΠL12Πt + (1 + L12)Mt + (1 + L12)Ft + ε

where Mt is M2, πt is the BLS price index, and Ft is the federal funds rate and making

standard white noise assumptions on the error term. Then, I can simulate the M2 process

by plugging in 12 actual values of M2 along with our hypothetical federal funds path and

sampling from the residuals. Given the simulated path for M2, the price index may be

simulated in a similar manner. Thus, I simulate the joint probability distribution from

the conditional marginals. Now, I have a representation of both the multivariate innovation

term and the path of the macroeconomic variables. As the federal funds rate is increasing by

construction, I can simulate the stochastic process of the prices and see how their coefficient

of variation responds to an increase in the federal funds rate.

This simulation is consistent with the existence of Cantillon effects though the large

jump suggests the model could use some additional calibration. It is also interesting that

the coefficient of variation actually flattens out at higher federal funds rates. It is important

to note that the simulation is of differenced values which are then concerted back into levels

by simply summing them. It is also interesting that this outcome is consistent with Cantillon

effects that are non-linear with respect to the federal funds rate. How reliable this is remains

a question of model calibration. It does seem that whatever Cantillon effects that exist are
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Figure 1.6: Simulated Coefficient of Variation

usually subtle. A potential avenue for future research is similar analysis done in countries

that have recently experienced rapid inflation.

1.8 The Statistical Validity of the Model

Both multiple time series methods and projection pursuit regression rely on the efficient

estimation of covariances and therefore cross-moments. Thus, it is necessary to ask whether

these very common statistical assumptions hold. As it turns out, they do not. Using the

BLS pulp price indices as an example, consider two of them and examine their histograms,

the scatter plot and the histogram of the raw second moment. These are plotted in 1.7.

Like a correlogram, the diagonal contains the histograms. The off-diagonal histogram plots

the raw cross-moment. Thus, commodity prices too display heavy tails. Heavy-tailed
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phenomena has been noted in a financial context in [12]. To drive the point home better,

consider a bootstrapping to estimate the distribution of means. An analogous plot is given

in 1.8. Now, the diagonal histograms may be interpreted as sampling distributions of the

mean. The off-diagonal histogram is the sampling distribution of the raw cross moment and

the plot is the sampling distribution of the bivariate mean.

Figure 1.7: Two Pulp Prices

The raw cross moment has several modes which suggests that our estimators of covari-

ances will be highly unstable. Even the first moment displays great variation considering

the sample size. An easy way to see the extent to which the tails are super-Gaussian is to

define the deleted sample mean Di(~x) = 1
n

∑n
j 6=i xj . Now, let X(i) represent the ith order

statistic of a given variable. Standardize the pulp price log difference and plot its deleted
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Figure 1.8: Sampling Distributions of Two Pulp Prices

sample mean against the ordinal position of the deletion. Plotting, as in figure 1.9 the

other pulp prices this way reveals the same pattern. In red is the deleted sample mean

of the month on month difference of logarithms. In blue is the sample calculation from

simulated standard normal data. As this data is standardized, the deviation between the

two shows deviation from a Gaussian model. Judging by these samples, not all of these

distributions are necessarily symmetrical though spurious imbalance is expected behavior

from such heavy tailed distributions.
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1.9 Conclusion

Some consideration of what this all means is necessary. Practically all classical economet-

rics has been based on regression and therefore on cross-moments. These results suggest

the necessity of developing techniques that do not depend on cross-moments, or second

moments. Better yet would be the development of techniques that do not depend on first

moments. One possible line of inquiry would involve the feasibility of adapting statistical

learning methods for the purpose of modeling rather than simple prediction. This is the

purpose of the next chapter.
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Figure 1.9: All Pulp Prices
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Chapter 2: Statistical Learning for Non-Parametric Copula

Estimation

Introduction

Leo Breiman famously distinguished “two cultures” of reaching conclusions from modeling

data: data models and algorithmic models [13]. With the rise of statistical learning, this has

developed into a culture of prediction in contradistinction to a culture of data modeling. As

data sets grow larger, it is ever easier to find ways in which traditional parametric models

do not fit well. On the other hand, some questions are inherently probabilistic. As useful

as it is to have an algorithm that accurately makes predictions, often it is our goal to model

the uncertainty. For this purpose, traditional tools such as conditional moments retain their

value. This raises the question of whether the two cultures can be bridged.

This paper presents not a general attempt to model the two cultures but rather a

technique to use statistical learning to build a data model. The basic probabilistic tool

is the copula. The use of copulas, while common in finance for some time, is fairly new

in statistics and econometrics. For examples see [14] and [15]. The basic idea behind a

copula is that it allows us to model the univariate marginal distributions separately from

their dependence. Stated very briefly, the univariate marginal distributions can be modeled

using any technique the generates a cumulative distribution function. Applying this CDF

to the data will map it into the unit interval and thus, if we apply each CDF to its column,

our transformed dataset lies within the unit d-cube. Then, the joint CDF can be modeled

as a function from this unit d-cube to the unit interval. I begin with a technical description

of copulas and their advantages. I then propose a statistical learning method to fit a copula

model. Finally, I apply the method to pulp price indices from the Bureau of Labor Statistics

before concluding the paper.
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2.1 Technical Preliminaries

2.1.1 Copulas

Following [16, p9], a d-dimensional copula C : [0, 1]d → [0, 1] is a function such that:

1. C (1, 1, . . . , ui, . . . , 1) = ui.

2. C is isotonic; that is C(u1, u2, . . . , ud) ≤ C(v1, v2, . . . , vd) provided ui ≤ vi for i ∈

{1, 2, . . . , d}.

3. C is d-indecreasing within each hyper-rectangle.

From this, it follows that if any single entry is 0, the entire copula is 0. There are many

known parametric copulas. For my present purposes, it suffices to consider the simplest;

the independence copula. Cind :=
∏d
i ui. We will use this as a foundation on which to build

our technique.

An additional necessary concept is the empirical copula. For a data set with n indepen-

dent observations and d dimensions, it is defined as:

Cemp :=
1

n

n∑
i=1

I (U1 ≤ ui, U2 ≤ u2, . . . , Ud ≤ ud)

where I is the indicator function. The law of large numbers implies that the empirical

copula will converge pointwise to the true copula.

2.1.2 Sklar’s Theorem

The considerable modeling flexibility of copulas is due to Sklar’s Theorem. Briefly, Sklar’s

theorem states that any multivariate CDF may be represented using a copula. I will adapt

the statement given in [16, p12]. More formally:

Let F be a d-dimensional CDF with univariate marginals Fi for i ∈ {1, 2, . . . , d}. For each

marginal, let Ai ⊂ [0, 1] = Fi(R) be the range of Fi. Then, there exists a copula C such

23



that:

F (x1, x2, . . . , xd) = C (F1 (x1) , F2 (x2) , . . . , Fd (xd)) .

C is unique when the univariate marginal CDFs are continuous. It is also desirable that

the univariate CDFs be differentiable since this can then be differentiated to yield a joint

density.

2.1.3 Advantages of Copula Models

Copula-based models have many advantages. Obviously, they are extremely flexible and

work well in high dimensions [15, Preface]. Another important advantage is how seamlessly

they handle missing data. Since the univariate and multivariate estimation problems are

separated, a missing value in one column does not render the entire row unusable. Fur-

ther, when calculating empirical copulas, a missing value can be plugged with a 1 and the

empirical copula calculated from the remaining columns. This is equivalent to plugging in

the maximal possible value of Xi into the joint CDF. Additionally, if the researcher has

any knowledge of independence in the data or is willing to assume it, then copulas can be

used strategically in concert with the probability chain rule. The independence information

reduces the number random variables on which each random variable depends. Then, as

each conditional random variable can be represented as a quotient of joint distributions,

the problem of estimating a high-dimensional random variable can be reduced to that of

fitting much lower dimensional copulas. The Vines approach is related to this. See [15] for

more details. Finally, given an estimate of F ( ~X), simply plugging in a 1 integrates out a

dimension. In much the same way, when estimating empirical copulas, we can re-use rows of

data by calculating the empirical copula in some smaller dimension and pluggins in 1’s for

the dimensions left out. Of course, given that these rows are not statistically independent,

this may pose some inferential challenges.
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2.2 The Model

We begin my calculating the empirical copula. We denote it Cemp. In addition, it is

necessary to estimate the univariate CDFs somehow. For illustrative purposes, an empir-

ical CDF for each is simple and sufficient. In actual modeling applications, it is highly

desirable that the univariate CDFs be differentiable as this allows the calculation of a

joint density. Let F̂i be the empirical CDF for Xi. Now, our goal is to model Cemp from

~U =
[
F̂1 (X1) , F̂2 (X2) , . . . , F̂d (Xd)

]
. Ideally, our model will be constrained to follow all of

the mathematical requirements of a copula. This poses a bit of a mathematical challenge

as not all of these constraints may be represented as convex constraints.

2.2.1 Model Preliminaries

The basic building block for the model will be Kumaraswamy cumulative distribution func-

tions. This distribution is useful here not for probabilistic but rather for geometric pur-

poses. For present purposes, it can be thought of as an alternative parametrization of

the β-distribution to which it is closely related. The Kumaraswamy CDF is defined as:

K (x;α, γ) = 1 − (1− xα)γ where α and γ are in R+. Thus, considered as functions, they

map [0, 1] into [0, 1] where for all α and γ, K(0) = 0 and K(1) = 1.

Rather than modeling a copula directly, it is useful to model a multiplicative “correction”

on the independence copula Cemp =
∏d
i=1 ui. Call this correction Ψ (~u). Then:

Cemp = (Cind)W (~u) (Ψ (~u))1−W (~u)

where W (~u) is a weighting function which is 1 on the boundaries (where all copulas behave

identically) and tends toward 1 as we move to the center. The purpose of this weighting

function is to force our model to obey the boundary requirements of the copula so as to

remove constraints on the correction term. W is actually a function on the order statistics of

~u. Without loss of generality, relabel the dimensions such that 0 ≤ u1 ≤ u2 ≤ . . . ≤ ud ≤ 1.
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Now, W (~u) =
(∏d

i=2 ui

)2
. Notice that if all but one entries are 1, this function is 1. It

falls quickly in any direction toward the interior of the set. The idea here is that at the

boundary, our model is the independence copula. In the interior of the set, we correct the

indendence copula to better fit the empirical copula.

2.2.2 Model Statement

The basic idea is to model the correction as a product of exponents of kumaraswamy CDFs.

Required are three tuning parameters k ∈ N, ν0 ∈ R+ and δ ∈ R+. The parameters k and

δ together decide how finely we explore the space of these CDFs. The primary constraint

here is memory as I will add in sparsity constraints later. ν0 must be positive but should

be small and can be arbitrarily close to 0. Let T = ν0 + jδ for j ∈ {1, 2, . . . , k}. Form the

set B = T 2 where this is a Cartesian product. Then, denote:

Kb (u) = K (u, b)

where b is one of the ordered pairs of which B consists. The first and second parameter in

the Kumaraswamy CDF come from this ordered pair. The idea is to approximately span

the space of Kumaraswamy CDFs.

Next, I must decide the depth of our model. By this I mean that we have to decide

how many interaction terms to consider. For instance, if D = 1, I consider u1, u2, . . . , ud.

If D = 2, I consider the all products of two of these and so on. Greater depth might make

sense for large data sets but so long as sparse estimation techniques are used, memory is

the primary constraint. To simplify the notation, I will re-index using t. The set I am

ranging over is the set of Kumaraswamy CDFs Kb evaluated at each n-way product up to

the depth. Thus, each b element corresponds to D t-elements.

Thus, the model:
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C = [Cind (~u)]W (~u)

(∏
t

[Kb (~u)]βt

)1−W (~u)

for all ~u where no ui = 0. If any ui = 0, the model is 0.

2.2.3 Estimation

The form of the model above can be made highly tractable by taking the logarithm of both

sides and isolating the correction and then estimating a model of that.

log C = W (~u) log [Cind] + (1−W (~u))

[∑
t

βt log (Kb (~u))

]
.

So substituting Ĉ in for C and solving for the rightmost term we get:

ŷ =
Ĉ (~u)−W (~u) log [Cind]

1−W (~u)
=
∑
t

βt log [Kb (~u)] .

As the left hand side of this can be easily calculated from data, we can estimate the

right hand side using constrained optimization. The approach is similar to the LASSO.

min
β

[
y −

∑
t

βt log [Kb (~u)]2
]

subject to: ∑
t

β2
t ≤ m

∑
t

βt log [Kb (~u)] ≤ 0.

The constraints are both convex. The parameter m controls sparsity. This parameter is,
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in some sense, more important than the previously mentioned ones as so long as sparsity

is controlled, it is tractable to consider a finer mesh of the space of Kumaraswamy CDFs.

The second constraint forces the entire quantity to be negative which means it ranges from

0 to 1 when exponentiated. I can plug this model for the correction back into the initial

equation and this yields a true copula and thus a model of the joint CDF.

2.2.4 Derivations from the Model

Further, we can represent the joint density using the Kumaraswamy pdfs along with the

derivatives of the estimated CDFs of the univariate marginals. Thus, finding a joint density

is tractable even in high dimensions. While the formula admits of a closed form, it is too

complex to be usefully displayed but is tractable in a computational setting. Logarithmic

differentiation is necessary here. As mentioned above, integrating variables out can be

performed by simply entering a one into the copula. Thus, it is straight forward to build

conditional pdfs and simulate conditional moments. Here, it is useful to think about the

tuning parameter m. There are two desirable properties of a model based on m. As

is traditional, model fit as represented by the sum of squared errors is useful and so m

could be chosen using cross-validation. An additional consideration is the behavior of the

estimated density. Greater sparsity should smooth the estimated density, possibly at the

cost of model fit.

2.3 Modeling Pulp Price Indices

2.3.1 The Data

To test the formalism, I have fitted this model on an actual data set. I am using some pulp

price indices supplied by the Bureau of Labor Statistics. The data product is the producer

price index which has been produced since the early 20th century. In general, this is a

challenging data set to work with. It changes dimension over time as price series are added or

discontinued. In addition, the price series themselves tend to fail tests of stationarity while
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the first difference displays moments large enough to render the finite sample properties of

all techniques depending on cross-moments suspect. It is especially in these heavy-tailed

situations where it is useful to separate out the modeling of the univariate marginals from

the modeling of the dependence structure. Further, given the changing dimensionality of

the data, the robustness of this technique to missing data is valuable.

2.3.2 Estimating the Univariate Marginals

As my present purpose is to estimate the copula, I can simply use empirical CDF’s to

estimate the univariate marginals. This is not ideal since these are not differentiable and

thus I cannot produce densities. Further, given the heavy-tailed aspect of the data, extreme

values are not well-modeled. Modeling the heavy-tailed univariate aspects is a distinct

problem that is beyond my present score.

2.3.3 Model Performance

To check the model performance, I compare the empirical copula to the model copula in a

plot. The closer to the 45-degree line the plot falls, the better the fit. In figure 2.1, we see

the performance in sample. The out-of-sample performance is in figure 2.2. The model fits

well but, as expected, it does somewhat less well at higher values of the response variable

where data is scarce.

2.4 Conclusion

This technique may turn out to be a powerful complement to more traditional parametric

copula methods; especially on larger data sets. What is lacking so far is a means of perform-

ing inference on these models. In addition, this technique makes no use of the asymptotic

results available in empirical process theory. Another substantial unanswered question has

to do with the importance of distributional assumptions as against structural ones. This

technique makes no distributional assumptions at all but it does make some structural ones.

Further, any error modeling must be worked out separately for the joint CDF and the joint
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Figure 2.1: In-Sample Fit

Figure 2.2: Out-of-Sample Fit
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density. There are likely trade offs here that affect the choice of the tuning parameter m.

Overall though, combined with dimension reduction techniques, this technique may allow

the building of high dimensional probability models and thus bridge the “two cultures”. In

addition, the capacity to calculate conditional moments rather than mere predictions allows

this technique to work seamlessly in scientific contexts where the common language is based

around regression models; as is the case, for instance, in much of econometrics.

31



Chapter 3: Recursion, Praxeology, and the Redemption of

Econometrics

3.1 Introduction

Economics always seems to be in some kind of methodological crisis. While it might seem

that methodological crises are common to all sciences and indeed they are, it is difficult

to avoid the impression that in the human sciences, they seem to be more frequent and

more acute. Economists have long taken pride in what they consider the greater rigor and

precision of our own science in comparison to the other human sciences even if we are not

always sure what we mean by this. Rigor, after all, is only the Latin for rigidity. It is

a good thing only when we are sure of the end of our science and sure of the path. All

too often, models, though perhaps deductively rigorous have no simple relationship to the

phenomenon under study. If we are proud of our accomplishments, it is nonetheless equally

obvious that the accomplishments of economics never seem to match up to the hopes placed

in it. Models are initially oversold as having greater predictive power than they do. Further,

there seems to be no agreement on the precise use to which economic models are put. This

is exacerbated by the fact that within any given economic model, the actions open to an

agent are ad hoc. The arbitrary long run- short run distinction as taught in introductory

microeconomics is a simple example of this. Proper accounting for this fact should remove

the dogmatism from a great many policy arguments.

It is likely due to this continual disappointment that efforts to make economics more

like physics have remained popular for a century. Whatever interpretive quandaries physics

may have, and it has many, there seems to be agreement on the end of physics and that

which it intends. Weve come a long way from Marshalls famous dictum though whether our

core formalism has advanced beyond his remains an open question. Thus, in determining

32



the way forward, it is necessary to have a conversation with the past. Thus, the questions

requiring at least the beginnings of an answer are broad and I will be forced to paint in broad

strokes. The basic questions are: I) what is and ought to be the relationship of economic

science to the physical sciences, II) what is the place of quantification within economics,

and III) what is a tentative way forward for economic science?

Economists take the scientific status of economics for granted. It is useful to pose

the question as to what sorts of human reasoning are scientific notwithstanding the rarity

with which this, often polemically intended, question is asked in good faith. A science

is a set of propositions with meaning only in relationship to each other and further, a

means of distinguishing some observable fact from some set of counterfactuals. In other

words, in the context of a science, as currently understood, truth is the same thing correct

predictions by means of a validated method. Those concerns the philosopher of science

calls “methodological” involve this means of validation. Therefore, the rules of scientific

reasoning ultimately reduce to rules for validation of relationships among propositions.

Science requires basic objects as logical atoms and these atoms must be somehow self-similar.

Thus, scientific theorizing involves compression of the immense complexity of the world. In

modern economics, the atom is generally the neoclassical agent complete with an endowment

and a utility function representing some preferences. Thus, this agent is a parametric

atom. Given such an atom, it is clear enough that economics models itself ultimately on

mathematics though filtered through statistics and physics. The understanding and critique

of the philosophy and history of this filtration process is the primary end of this paper.

Before we go on, though, it is useful to raise the question: is this rootedness in mathemat-

ics inevitable? Is it not the case that mathematics is the king of sciences? It is certainly the

case that mathematics is the oldest independent discipline having already been separated

from philosophy by the time of Plato. We shall find out that the answer to this question

is by no means simple. Any economic science will have strong mathematical elements but

there is reason to believe that in order to exploit gains from trade with mathematicians,

mathematics itself will have to change. Indeed, there is some work in this direction as the
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rise of computation incentivizes mathematicians to reexamine fundamental assumptions and

reopen old debates thought long settled.

The rise of computation, ironically a side effect of a failed effort at a universal ax-

iomatization is of prime importance here. Computation poses questions of interpretation

to scientists and philosophers and is both a tremendous opportunity and a philosophical

burden. For now, it suffices to emphasize that the theory of computation has an entirely

different mode of abstraction than classical mathematics. I believe that this mode of ab-

straction is ultimately the more fruitful one for economic science but defending this will take

time. For now, it suffices to mention Abelson and Sussmans understanding of computation

as outlined in the Structure and Interpretation of Computer Programs.

Underlying our approach to this subject is our conviction that “computer sci-

ence” is not a science and that its significance has little to do with computers.

The computer revolution in the way we think and the way we express what

we think. The essence of this change is the emergence of what might best be

called procedural epistemology —the study of the structure of knowledge from

an imperative point of view, as opposed to the more declarative view taken by

classical mathematical subjects. Mathematics provides a framework for deal-

ing precisely with notions of “what is.” Computation provides a framework for

dealing precisely with “How to” [17].

The essentially imperative nature of computation will concern us later. Indeed, it is this

structure that dovetails nicely with the very procedural theory of market processes.

To place the shift from the existential logic of mathematics to the imperative logic of

computation, it is necessary to travel back in time long before the rise of modern science.

We must first examine the notion of a science from the point of view of the ancient Greeks.
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3.2 Klein and the Transition from Ancient to Modern Sci-

ence

Our guide on this brief tour of ancient science will be Jacob Klein through his magnificent

Greek Mathematical Thought and the Origin of Algebra. We find already in Greek antiq-

uity a highly developed system of geometry and number theory much of it with largely

Pythagorean roots. The Greek conception of the world was intimately related to the Greek

conception of number especially though geometry, the manifestation of number in space.

Indeed, geometry formed the basic language of Greek mathematics which had as its ambi-

tion the reduction of all other concepts to geometrical ones. This is exemplified in the fact

that more algebraic notions were overlaid on equivalent but originally geometrical notions

[18, p 373].

As developed as these sciences were, they differed substantially from the science of

high modernism in a fundamental way. Often in the course of the historical study of

Greek mathematics, the fact of symbolic mathematics was taken for granted and “far too

much as a matter of course” [19, p 5]. The Greek concept of “arithmos” only ever means

a define number of definite things [19, p 7]. Number, the basis of geometry, was not an

abstraction. Generality was not ascribed to the mathematical objects themselves but rather

the procedure for their construction. Thus, the mathematical objects in themselves were

not logical atoms of the sense of modern symbolic mathematics. It is in this way that

the basic mode of abstraction was fundamentally different in ancient science. A triangle

was not a general triangle but rather a particular triangle constructed using the recipe for

such constructions of triangles. As geometrical reason was the basis for Greek mathematics

and geometry is a constructive science, its mode of generality was one of the variety of

circumstances leading to the construction, not the abstraction of the thing constructed [20,

p 17].

We see the beginnings of algebra in the work of the Greek mathematician Diophantus. In

terms of its purely mathematical content, it expresses things known much earlier. [19, p 126]
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What is of primary interest is rather its form which was symbolic rather than literary [19,

p 126]. This formalism filtered down to Arabic sources before being rediscovered in the early

modern period by, Francois Vieta among others. Klein tells us that Vietas elaboration of the

mathematical language of Diophantus amounted to nothing less than the creation of a formal

mathematical language and thereby rendered Vieta the father of modern mathematics [19,

p 5]. The treatment of number not as a definite number of definite things but rather as a

symbol with an arbitrary referent allowed mathematicians and thus scientists the use of a

new and powerful mode of abstraction; the abstraction of objects rather than of procedures

and thereby the ability to make use of logical deduction within the confines of a formal

model that had not necessarily been constructed.

Descartes adapted the algebra of Vieta to create his analytic geometry which paved the

way for the creation of mathematical physics as it gave a formalism for relations of measure-

ments in space. Descartes himself was interested in work in the physical sciences and clearly

intended his analytic geometry as precisely a tool for this project. Nonetheless, Descartes

does not appear to have believed in his geometry, he had advanced beyond the ancient

sources in any fundamental way. Indeed, Descartes did not realize that the intentionality of

his mathematics was fundamentally different from that of the ancient mathematicians [20,

p 13]. Now that entire relationships could be encapsulated in a symbol, mathematicians

over time grew interested in formal symmetries in the symbolism itself. This led to an

explosion of mathematical research that still continues to this day.

If Descartes was one of the founders of modernity, Francis Bacon was the other; though,

to Hayek’s point his qualifications are not above suspicion [21]. Bacon bequeathed a par-

ticular attitude to all following generations of scientists. The notion of a science for the

“relief of mans estate”. He also advocated the use of experimentation in contradistinction

to Cartesian a priorism. The very process of experimentation gave us a new kind of data of

a not-necessarily periodic sort and therefore very different from the astronomical data that

had been the subject of scientific reasoning since long before the Greeks.
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It turned out that the calculus of Newton and Leibniz could be used to express mathe-

matical relationships among physical measurements, indeed calculus, the science of the real

number system, appeared to be the natural formalism for physics and thus the basis of an

authentically natural science of nature. Given that mathematical physics had its root in

deductive mathematics, it was acceptable to the Cartesians. Given that it was a relation-

ship among measurable, it was acceptable to the Baconians. [20] This dual interpretation

was sufficient to make mathematical physics the queen of the modern sciences and thus

the foundation of modernism. As the various sciences declared their independence from

philosophy, they turned their attention to mathematical physics as an exemplar. None of

this would have been possible without the symbolic art of algebra and its capacity for the

symbolic as opposed to the procedural encapsulation of the unknowns in the expression of a

problem. Nonetheless, this power came at a cost which was only beginning to be understood

when Klein was writing.

The calculus of Newton and Leibniz, monumental though it was, struck many as a logical

mess. Indeed, the classical presentation of the calculus did not stabilize for centuries;

the process was completed by 19th century mathematicians. An important step in this

clarification process was the science of the real number system studied through the set

theory of Geor Cantor. The creation of set theory and the notion of a function as a mapping

between two sets gave us the calculus now taught but it presented certain problems for the

treatment of infinite sets which were clearly necessary as the real numbers are just such a

set. This set in motion a line of research ultimately culminating in Godels Incompleteness

Theorem and the invention of computer science. Bertrand Russell demonstrated that a

universal set could not be an internal construct within set theory. Thus, there were two

options. The one followed by what is now called “naive set theory” assumes a particular

concrete set and expresses only propositions about sets of subsets of this postulated sets.

This is sufficient for most mathematical purposes. Alternatively, several axiomatic set

theories was developed which came with odd consequences. In particular, mathematicians

became aware of the existence of classes of objects where it can be proven impossible to
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construct a concrete example of any of them [22, p xvi]. If this sounds paradoxical, recall

that for an object to be “constructible”, there must exist some algorithm or procedure that

can generate it. On the other hand, an existence proof can deal with the entailments of

abstract classes. Thus, modern mathematics as founded by Vieta and elaborated by Cantor

and others contains pathological objects which cannot be visualized.

Klein originally wrote this during the war when a number of sciences of now immense

importance to contemporary sciences were in their infancy and not widely known. Those

of primary interest to us are statistics and computer science. These relationship of these

“data sciences” with mathematical physics is not clear. Indeed, while mathematical physics

required ideas that were later understood as probabilistic or statistical, their development

within physics was informal. Explicit statistical reasoning was not needed for the develop-

ment of what is not called statistical mechanics. Rather, it was biology and economics that

could not do without statistical reasoning.

Statistics traditionally uses a probability distribution to model data; that is, statistical

models are data models. Machine learning does not fit into this paradigm but is still

fundamentally based on probability. If machine learning values predictive accuracy above

all else, the relatively simple data models of mathematical statistics are instead interpretable

at the cost of simplicity. In any case, the notion of probability is the fundamental means of

organizing facts with respect to counter-factuals. Indeed, it seems that both biological and

economic systems work by a kind of bounded randomness; in other words, we do not need

to know every detail of the situation to make sense of it. Thus, probabilistic or stochastic

ideas are at the core of economics. Thus, the economic interpretation of probability and

therefore of the relationship between facts and counterfactuals are germane to the present

question. Unfortunately, the economic interpretation of probability has never been decided

on. This will be central to our commentary on the econometric revolution. First, it will be

useful to review various interpretations of probability. This will inform later commentary

on the semantics of statistics and econometrics.

Computer science is the other fundamental science of great importance nowadays but
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nascent when Klein was writing. It is effectively an offshoot of mathematics in the sense

that it is an elaboration of recursion theory. It is of interest to us in that it utilizes a

different mode of abstraction than classical mathematics. Like ancient mathematics, its

abstraction is procedural. It takes as given not a set of principles but rather a set of rules

and a data structure. This language for “how to” in Sussmans words may prove to be a

natural logic for social science insofar as social scientific questions are frequently questions

of how to.

3.3 Notions of Probability

The interpretation of probability has always been controversial. Since statistics is nothing

more than an application of probability theory, this semantic uncertainty has permeated

statistics as well and led to much confusion. Formally, a probability distribution is a possibly

infinite set of events where to every subset of that set, one can attach a real number

between 0 and 1. This mathematical definition gives no guide to its relationship to actual

measurement which is the critical thing if it is to serve as a scientific tool. There are

effectively three offered interpretations of probability: frequentist/ classical, Bayesian, and

necessary. A brief description of each should suffice.

The classical or frequentist notion of probability conceives of probability as the quantity

to which some ratio limiting process converges. If we consider an experiment that could

hypothetically be repeated many times, then the probability of a specific outcome is the

limit of the number of times it obtains divided by the number of experiments run. While

empirically, these long run rates do appear to converge, as a purely logical matter, the

assumption that this is a well-defined limiting process is ad hoc. Nonetheless, even ignoring

this issue, this implies that probabilities can only correctly be assigned to repeatable events.

In other words, to use a classical notion of probability is to put a restriction on precisely

the set of counterfactuals you consider and to assume that the event under study is not

the only one that can exist in principle and indeed not uniquely defined by its generation

process.
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The terms “classical” and “frequentist” must be used carefully in reference to a notion

of probability since they are also used to refer to the related topic of Neyman-Pearson sta-

tistical inference which is also based on the control of long run error rates. While Neyman-

Pearson inference requires it be possible to express long run error rates in terms of a proba-

bility, it does not require that we restrict our notion of probability to these. In other words,

Neyman-Pearson does not depend on the adoption of a frequentist stance on probability

but it does require that one consider the plausible counterfactuals in a particular scientific

situation to be outcomes of a repeated or repeatable experiment and thus has important

consequences for the interpretation of any models based on it. We will meet this issue again

in the course of considering a dispute between Ragnar Frisch and Tryg Haavelmoe.

The frequentist approach to probability and inference was dominant for a long time

though other notions have always coexisted with it; rarely peacefully. Now popular is

the Bayesian approach to both. Bruno DeFinetti, among others, pioneered this notion of

probability that was then popularized in the English speaking world through LJ Savages The

Foundation of Statistics [23, p 3]. Obviously, Savage sought a new basis on which to build

statistics in this notion of probability and used it to construct statistics as a special case

of decision theory. According to a Bayesian point of view, probability is a degree of belief

and is subjective and therefore applicable to anything about which there is uncertainty.

Critically, to this way of thinking, probability is never a property of any physical system.

Like in the previous case, the relationship between the foundational view of probability

and the mode of inference based on it is not as tight as is sometimes represented. Savage

himself regarded probability as an extension of logic in the case of uncertainty [23, p 7].

This is related to a rather old notion of probability as a generalization of binary logic that

goes back at least to George Booles book on the laws of thought [24].

It is interesting that Savage thought of probability as an extension of logic since this

is most associated with a third school of probability that Savage himself refers to as the

“necessary view”. To this way of thinking, probabilities are necessary logical objects and

thus are not subjective but they are also not the outcome of a physical process. This notion
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of a probability distribution as containing information was championed by the physicist

turned statistician ET Jaynes in his book Probability: the Logic of Science. While Jaynes

considered himself a Bayesian, he gave rise to the heterodox school of maximum entropy

methods [25, p xxii]. This concept of probability was elaborated on, altered, and, in my

view, completed by WM Briggs in his recent [26]. According to Briggs, all probabilities are

conditional; that is once specific things are assumed then probabilities may be deducible

from these assumptions. In other words, probabilities are neither ontic nor subjective [26,

p 40]. This has a natural affinity with the maximum entropy methods which then relates it

to complexity science. It is the correct notion of probability in the sense that the inevitably

conditional nature of probability forces the modeler to be explicit in the assignment of

probabilities to counterfactuals and therefore explicit about the counterfactuals. This will

enforce modeling discipline. His presentation is very new and one can hope it permeates

econometrics. In any case, it is the only notion of probability acceptable to complexity

economics.

These differing notions of probability matter because they give a probability model

rather different semantics. Any scientific model that makes use of that probability model

will inherit these semantics and thus, restrict its attention to the set of counterfactuals and

facts comprehended in the probability model. It was precisely over this notion of probability

that there was a disagreement between Ragnar Frisch and Tryg Haavelmoe.

3.4 Ragnar Frisch and the Vision of Econometrics

Ragnar Frisch was motivated to develop econometrics by his experience of the depres-

sion. Thus, econometrics had a central planning flavor to it even from the very beginning.

Nonetheless, even if the science Frisch was trying to build may have been vulnerable to

Hayekian knowledge problems, there are nonetheless Hayekian elements to Frischs own

thinking; likely symptomatic of the fact that these ideas were much closer to the core of

economics in the 30s. Frisch, like many of his era, believed that the key to a truly scientific

economics was the emulation of physics at least along certain margins. Thus, he began a
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search for an analogy. It is useful to recall that Frisch would not have recognized the now

observed distinction between mathematical economics and econometrics [27]. A qualitative

science of economics and the attendent methods of data analysis were for Frisch one and

the same. The meaning of the contemporary seperation of these two things is well worth

pondering.

If Frisch desired to borrow the methods of physics, he needed an analogy. Force is a core

physical concept. If you conceive of an agent maximizing utility in a specific action space,

there is a clear analogy to the principle of least action and Hamiltonian mechanics. Thus,

utility or “ophelimity” as Frisch called it in his first Poincaré lecture is the force analogue in

Frischian econophysics to use an anachronistic term. The concept of force is thus the basic

organizing concept in Frischian economics. The agent impeled by opehlimity is the logical

atom. Given these logical atoms, Frisch wishes to build models using structural equations.

Ideally, these models have microfoundations. Indeed, from the first of Frisch’s Poincare

lectures, it is clear that there is agent heterogeneity. In other words, not only does Ragnar

Frisch have microfoundations but he also anticipated agent-based modeling [27, p 23-26].

This is not all Frisch anticipated. His final Poincare lecture contains reflections on the

philosophy of chaos [27]. Again showing the influence of physics, in particular, thermo-

dynamics and the existence of information destroying processes, Frisch highlights some of

the considerable drawbacks to the mathematical approach he nonetheless champions. He

correctly articulates the notion that what is required is a philosophy of chaos [27, p 129].

This understanding of the complexity aspects of economics is critical and, indeed, I have

found no indication the same caution was present in later generations of econometricians.

This understanding of complexity is likely related to Frisch’s rejection of the statistical

methods of Ronald Aylmer Fisher. These methods are similar but also distinct from those

developed by Egon Pearson and Jerzy Neyman. Fisher relied on experimental control to

establish causation. From Fisher comes the traditional statistical attitude that without

such experimental control, no causal claims may be made. As this was not feasible, clearly,

the R A Fisher paradigm is not suited for economic research. For related reasons, Frisch

42



ultimately rejected the use of probability in econometrics at all as introduced by Tryg

Haavelmoe [28, p 222] [28, p 98] .

3.5 Tryg Haavelmoe and the Structure of Econometric Coun-

terfactuals

It is in the work of Tryg Haavelmoe that we begin to see recognizably modern econometrics

emerge [29]. The leveraging of probability theory provides a justification for the use of

regression methods in terms of mathematical relations among random variables. The trouble

came from Haavelmoe’s acceptance of the Neyman-Pearson framework of inference; the only

one widely known at the time aside from the related system of R A Fisher. To understand

the problem, it is useful to recall the precise meaning of the result of Neyman-Pearson

inference. First, the data is supposed to follow a given probability distribution determined

up to a parameter. The data is used to estimate the value of that parameter. If, given a

specific null hypothesis referring to a particular parameter value, we require a 5% or lower p-

value for rejection of the null hypothesis, this means that given the same mechanism of data

generation, under the assumption that the null hypothesis is true, fewer than 5% of actual

instances of generated data would produce results extreme enough to pass this threshold.

The Neyman-Pearson method of inference controls long run error rates. In other words, the

p-value rule establishes a property not of the data but of that data generating process. This

is the only interpretation of these methods that is strictly correct. The common follow up

assumption: something like the current data set was drawn at random from the infinite set

of possible data sets requires additional assumptions which are hard to state explicitly and

anyway do not accurate represent the research process.

So what then is the problem? If Neyman-Pearson controls long run error rates, then

the particular set of counterfactuals it deals with involves the possible outcomes of some

abstract data generating procedure which can only be made concrete with some sort of

“many worlds” construct. In order to be made applicable, one must relate the observations
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at hand to the set of counter-factuals by means of some random mechanism. In other

words, an econometrician is forced to adopt the additional ad hoc assumption in order to

anchor the Neyman-Pearson inferential results in the context of an actual economic model.

As the results of the test at hand are not drawn at random from some hypothetical set of

many worlds, we expect to see more or less what we see which is econometric estimates

pointing every which way. The problem is exacerbated by the fact that even if one allows

that each successful test statistic was drawn at random from a hypothetical population, it

is never the case that the various tests treated jointly are drawn from such a hypothetical

population precisely because research is not done at random. In other words, the application

of Neyman-Pearson in support of particular propositions completely loses its validity with

respect to joint propositions tested separately. Problems such as these bedevil econometric

research to this day.

3.6 Judea Pearl and Haavelmoe’s Idea of Causality

Haavelmoe was aware of these issues and did take steps to mitigate them [30]. Unfortu-

nately, the aspect of his work that really stuck was the importation of Neyman-Pearson into

econometrics and thus the aping by econometricians of statistical methods intended for the

laboratory sciences. For reasons discussed above, the version of econometrics that caught

on was in fact vulnerable precisely to the problems of which Ragner Frisch (and Haavel-

moe) were aware of from the beginning [31]. It is also likely due to this importation that

econometrics turned into merely statistics applied to economics and thus was introduced a

division of labor between the econometrician and the mathematical economist that persists

to this day and is strongly at variance with Frisch’s original vision.

Judea Pearl points out the extent to which Haavelmoe anticipated his own work:

Haavelmo introduced three revolutionary insights in 1943. First, when an

economist sits down to write a structural equation he/she envisions, not statis-

tical relationships but a set of hypothetical experiments, qualitative aspects of
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which are then encoded in the system of equations. Second, an economic model

thus constructed is capable of answering policy intervention questions, with no

further assistance from the modeler. Finally, to demonstrate the feature above,

Haavelmo presented a mathematical procedure that takes an arbitrary model

and produces quantitative answers to policy questions [31].

Haavelmoe again has the experimental sciences in mind here.

What makes a piece of mathematical economics not only mathematics but also

economics is, I believe, this: When we set up a system of theoretical relationships

and use economic names for the otherwise purely theoretical variables involved,

we have in mind some actual experiment, or some design of an experiment, which

we could at least imagine arranging, in order to measure those quantities in real

economic life that we think might obey the laws imposed on their theoretical

namesakes [30].

Haavelmoe is explicitly reckoning in terms of the set of counterfactuals, understood now

to be manipulable variables. He shows that given a set of structural equations: for instance:

y = ax+ ε1

x = by + ε2

it is not the case that E [y|x|] 6= ax [31]. In other words, a regression is not an unbiased

estimator of the causal mechanism. Additionally, no amount of purely statistical controls

will fix this contrary to the impression gathered from a great deal of econometric work.

The problem is that economic data records measurable coincidences in the strict sense of

that term. Such coincidences involve things that occur together but it is precisely when

a variable is “controlled” that whatever laws more usually driving the coincidences are

suspended. When considering controls, it matters who is doing the controlling. Haavelmoe

rejected the statistical interpretation of the parameter in favor of the causal interpretation
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[31]. This requires a set of counterfactual assumptions again involving some hypothetical

experiments but if it matters who is doing the controlling and what is being controlled, then

any properly causal econometric model must be not a statistical model but rather an agent-

based model. Haavelmoe’s intuition was brilliant but it was too far ahead of its time and

Ragnar Frisch’s reservations were sound as well. The many worlds notion required to make

Haavelmoe’s causal models compatible with Neyman-Pearson inference was too vague and

indeed completely invalidated any broader model of a sampling distribution of statistical

models. Its independence assumptions alone often ensure this. The often contradictory

nature of the available estimates in econometric literature is symptomatic of this problem;

which stands in addition to the bias introduced by using Neyman-Pearson derived results

as an estimator of some effect size in the presence of a publication filter.

Haavelmoe’s many worlds notion needs to be sharpened into something Ragnar Frisch

could accept. The current state of econometrics is symptomatic of the fact that rather than

try to improve Haavelmoe’s modeling of causation, the very notion of separating causal

modeling from economic modeling was ignored in favor of hoping economic a priorism

could determine cause and endow the merely coincidental results of traditional statistical

methods with causal content. The irony here is that the a prioristic approach is on the right

track and does not doom economics to anti-empiricism.

The problem rather is the notion that the joint probability distribution is the basic

model. Indeed Fumio Hayashi actually defines an econometric model as a set of restrictions

on a joint probability distribution [32]. This is a purely statistical notion. The difficulty

is the very process of control actually invalidates the data model. To Judea Pearl’s point,

there is information contained in a causal model represented by structural equations that

is not contained in a joint probability distribution even if the causal model does limit the

number of compatible joint probability distributions.

The important thing to realize is that a causal theory may be tested only once it has

already been assumed. The very process of estimation must follow from an assumption

not only of a form of a probability distribution defined by a parametric family but also
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from a structural model but a structural model with microfoundations. In other words, the

redemption of econometrics is a job for Austrian economists. In order to do this, a new

scientific paradigm, a new notion of probability, and a more generalized notion of inference

is required.

3.7 History, Praxeology, and Fixed Points

In Human Action, Ludwig von Mises famously distinguished between a prioristic praxeology

and observable history. [33] A great many of the debates and mutual misunderstandings

between self-styled Austrian economists and others involve this distinction. It is, of course

true, that there is no reason to expect particular economic relationships to be quantitatively

similar across time. They are part of history. On the other hand, certain relationships do

seem to last over time. Urban hierarchies remain stable, in some cases, for centuries. While

these are part of history, that does not make them evanescent and the stability of these

hierarchies is a proper subject of economic study precisely because stability is a desideratum

for the construction and maintenance of institutions; not to say the design thereof.

Austrian economics has room within it for evolutionary phenomena which is why, while

it can explain change, it can also legitimately explain stasis. This would be a welcome

generalization over the ad hoc assumption of instantaneous determination between vari-

ables made by the Cowles commission. Those phenomena that last for a long time must

themselves be driven by relatively fixed factors which themselves are heavily insulated from

many influences. Indeed, it is one of the great accomplishments of the modern market econ-

omy that existing hierarchies may be so easily overturned without overturning more basic

constitutional principles. An economics with an internal theory of institutions must have

an evolutionary and praxeological theory of institutional stasis. Thus, it needs an explicit

account of evolutionary counterfactuals. In other words, an Austrian inspired economics

that takes up the project begun by Ragner Frisch will inevitably be a complexity economics.

Its explicit micro foundations requires it be agent-based.
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3.8 The Place of Such a Science in the History of Science

Now, at long last, we return to where we began. The initial descriptions of the scientific

method had no place for probability which anyway was developed centuries later and well-

understood only very late. Further, probability itself provides examples of some of the

more bizarre things to fall out of mathematical analysis; in particular, the consideration of

infinite sets without a well-defined limiting process leads down dark alley ways [25, p 672].

Since any economic model with microfoundations should produce a mechanism by which

some change is accomplished, mathematical existence proofs are empty of economic content

since they reflect symbolic rather than procedural generality. Thus, we need to make use of

constructive mathematics. The way forward is a step “backward”, we must recover some the

sensibilities and the wisdom of ancient science which was as obscured by modern interpre-

tation as it was by scholastic systematizing. A concrete example will help here. F A Hayek

made no secret of his reservations with the style of mathematical economics that culmi-

nated in the Arrow-Debreu theorem. It seemed to him that it gave a misleading impression

of how markets work. More recently, [34] showed that the computational complexity of an

Arrow-Debreu general equilibrium is exponential with respect to the number of goods in the

economy. In less technical language, no computer could ever possible solve such a problem

even given all the data. This result actually casts doubt on whether this Arrow-Debreu

model is a true characterization of how markets actually clear. This example is instructive

because it is based on Brauer’s fixed point theorem which is notably a non-constructive re-

sult. It is not necessarily a non-constructible result but given its computational complexity,

it is not practically constructible and thus has no economic content.

3.9 Conclusion: Recursive vs Logical Atomism

The way forward for economic sciences is to combine the best aspects of modern and an-

cient science. We must replace set theoretic mathematics with constructive mathematics so

even static models may hint at an account of how they came to be there. We need a richer
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probability theory; that provided by Briggs and inspired by E T Jaynes. This alternative

notion of probability resolves the tension between Haavelmoe’s causal models and tradi-

tional limiting frequency definitions of probability and in the process, allows truly causal

models to coexist with data uncertainty. In other words, the conditions on which Briggsian

probabilities are defined can themselves contain the additional causal assumptions required

to build and render testable causal models. This is because the causal models represented as

directed acyclic graphs do constrain the compatible probability distributions and therefore

can be included in the conditions of the probability.

So long as we are considering hypothetical experiments, we do not need to discard

Neyman-Pearson. Indeed, there are circumstances where it is valid. It is not true, as

seems widely believed that Neyman-Pearson depends on the limiting frequency definition

of probability. This means that the best of both the contemporary econometrics and the

original econometrics would remain a special case of the new econometrics. In particular,

there is no reason to dismiss the physics analogy that Frisch entertained so long as its

validity is not justified in positivist terms.

A combination of Pearl- Haavelmoe style causal models and the Jaynes-Briggs notion

of probability is necessary but not sufficient. Indeed, if we want to build macroeconomic

models, we must have an economically meaningful, and therefore, algorithmic, means of

aggregation. The models must be agent-based because causal models require manipulation

of the underlying situation but it matters who manipulates what. Manipulation is subjec-

tive. I mentioned earlier that Ragnar Frisch in his remarks in Paris anticipated agent-based

modeling. It is my contention that, after all these years, Austrian inspired agent-based

modeling is the rightful inheritor of his project for understanding if not for control.
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Appendix 4: Network Information

Table 4.1: Network Node In-Degrees

Code In Degree Description

WPUSI089011 103 Special indexes-Machinery and equip-

ment, except electrical

WPU10230205 81 Metals and metal products-Used beverage

can scrap

WPUIP231000 75 Net inputs to new construction, excluding

capital investment, labor, and imports

WPUSI019011 73 Special indexes-Copper and copper prod-

ucts

WPU10260314 72 Metals and metal products-Copper wire

and cable

WPU12670141 71 Furniture and household durables-

Cutlery, scissors, shears, trimmers, and

snips

WPU11621201 70 Machinery and equipment-Textile ma-
chinery (except parts, attachments, and
accessories)

WPU09150216 69 Pulp, paper, and allied products-Specialty

bags, pouches and liners

WPU11840103 68 Machinery and equipment-Counting de-

vices

WPU13950111 68 Nonmetallic mineral products-Dressed di-
mension granite (including gneiss, syenite,
diorite, and cut granite)

Continued on next page
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Table 4.1 – Continued from previous page

Code In Degree Description

WPU11440378 66 Machinery and equipment-Parts and at-

tachments for industrial trucks and trac-

tors

WPU03830351 63 Textile products and apparel-All other

fabricated textile products, excluding

trimming and findings

WPU03940101 63 Textile products and apparel-Textile

fibers, yarns, and fabrics, n.e.c.

WPU12410220 63 Furniture and household durables-

Household laundry equipment and parts

WPU10230201 61 Metals and metal products-Solids and

clippings, new aluminum base scrap

WPUIP230000 61 Net inputs to construction industries, ex-

cluding capital investment, labor, and im-

ports

WPUIP231100 61 Net inputs to new residential construction,

excluding capital investment, labor, and

imports

WPUSI012011 60 Special indexes-Construction materials

WPUSI017011 58 Special indexes-Fabricated metal products

WPU09470102 57 Pulp, paper, and allied products-
Magazine and periodical printing (litho-
graphic)

WPU11840102 57 Machinery and equipment-Integrating

and totalizing meters for gases or liquids

Continued on next page
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WPU11440602 56 Machinery and equipment-Parts and ac-

cessories for bulk material handling con-

veyors and conveying systems

WPU10230206 54 Metals and metal products-Other old alu-

minum base scrap

WPU11411911 54 Machinery and equipment-Parts and at-

tachments for pumps

WPU13210121 54 Nonmetallic mineral products-Crushed

and broken stone

WPU03830321 53 Textile products and apparel-Rope,

cordage, and twine

WPU10540211 53 Metals and metal products-Bath and

shower fittings

WPU11382631 53 Machinery and equipment-Metalworking
presses (except forging and die-stamping
presses)

WPU10740803 52 Metals and metal products-Iron, steel,

and aluminum stairs, staircases and fire

escapes

WPU13990211 52 Nonmetallic mineral products-Dimension

stone mining and quarrying

WPU11470143 51 Machinery and equipment-Dust collection

and other air purification equipment for

cleaning incoming air
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52



Table 4.1 – Continued from previous page

Code In Degree Description

WPU11490538 51 Machinery and equipment-Other roller

bearings, unmounted

WPU09471101 50 Pulp, paper, and allied products-

Commercial screen printing, excluding on

garments, apparel accessories, and other

fabric articles

WPU12210112 50 Furniture and household durables-Wood

office seating, including upholstered

WPU11490201 49 Machinery and equipment-Gates, globes,

angles, and checks

WPU11490202 49 Machinery and equipment-Industrial ball

valves, incl. manual and power operated

WPU13440131 49 Nonmetallic mineral products-Clay floor
and wall tile, glazed and unglazed (includ-
ing quarry tile and ceramic mosaic tile)

WPU13990101 49 Nonmetallic mineral products-Industrial

glass sand

WPUIP232100 49 Net inputs to residential maintenance and

repair, excluding capital investment, la-

bor, and imports

WPU10270111 48 Metals and metal products-Nonferrous

forge shop products

WPU10890811 48 Metals and metal products-Flexible pack-

aging foil

Continued on next page
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WPUIP232200 48 Net inputs to nonresidential maintenance

and repair, excl. capital investment, la-

bor, and imports

WPU09220125 47 Pulp, paper, and allied products-

Particleboard made from particleboard

produced at the same location

WPU10230104 47 Metals and metal products-Other copper

and brass scrap

WPU10890564 47 Metals and metal products-Metal pow-

ders, paste, and flake

WPUIP232000 47 Net inputs to maintenance and repair con-

struction, excluding capital investment,

labor, and imports

WPUSI134011 47 Special indexes-Selected textile mill prod-

ucts

WPU10260301 46 Metals and metal products-Electronic

wire and cable

WPU11350243 46 Machinery and equipment-Precision mea-

suring tools

WPU10230102 45 Metals and metal products-No. 2 copper

scrap, including wire

WPU10810231 45 Metals and metal products-Cap, set, ma-

chine, lag, flange, and self-locking screws,

except aircraft types
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WPU11790103 45 Machinery and equipment-Storage batter-

ies, lead acid type, BCI dimensional group

8D or smaller

WPU13620121 45 Nonmetallic mineral products-Roofing as-

phalts, pitches, coatings, and cement

WPU13920201 44 Nonmetallic mineral products-Mineral

wool for industrial, equipment, and

appliance insulation

WPU11350501 43 Machinery and equipment-Other machine

tool attachments and accessories

WPU13312101 43 Nonmetallic mineral products-Decorative
concrete block (including screen, split,
slump, shadowal block, etc.)

WPU13450199 43 Nonmetallic mineral products-All other

structural clay products, excluding clay

refractories

WPU09150301 42 Pulp, paper, and allied products-

Corrugated shipping containers

WPU09470506 42 Pulp, paper, and allied products-
Advertising printing (lithographic)

WPU10170710 42 Metals and metal products-Cold rolled

steel sheet and strip

WPU11140611 41 Machinery and equipment-Harvesting ma-
chinery (except hay and straw) and at-
tachments

WPU11784901 41 Machinery and equipment-Bare printed

circuit boards
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WPU11790512 41 Machinery and equipment-Irradiation

equipment

WPU11450201 40 Machinery and equipment-Plain bearings

and bushings

WPU11730901 40 Machinery and equipment-Parts and sup-

plies for motors and generators

WPU13130117 40 Nonmetallic mineral products-All other

machine-made pressed and blown glass-

ware

WPUSI006111 40 Special indexes-All commodities except

farm products

WPU11410701 39 Machinery and equipment-Parts and at-

tachments for air and gas compressors and

vacuum pumps

WPU10230101 38 Metals and metal products-No. 1 copper

scrap, including wire

WPUFD413121 38 Final demand-Private capital equipment

for manufacturing industries

WPUSI018011 38 Special indexes-Special metals and metal

products

WPU10260333 37 Metals and metal products-Fiber optic ca-

ble

WPU12210114 37 Furniture and household durables-Wood

office files, storage units, and tables
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WPUSISTEEL2 37 Special indexes-Finished steel mill prod-

ucts, excluding fabricated wire products

WPU09150218 36 Pulp, paper, and allied products-Shipping

sacks and multiwall bags, all materials, ex-

cpet textiles

WPU113A0101 36 Machinery and equipment-Metalworking

assembly machines

WPU13330101 36 Nonmetallic mineral products-Ready-mix

concrete

WPUSI070011 36 Special indexes-Pharmaceutical prepara-

tions for human and veterinary use

WPUSI094011 36 Special indexes-Underwear and nightwear

WPU09150441 35 Pulp, paper, and allied products-Other

corrugated and solid fiber products, in-

cluding containers, pallets, pads, etc.

WPU10720122 35 Metals and metal products-Gas cylinders

WPU11440485 35 Machinery and equipment-Overhead trav-

eling cranes and monorail systems

WPU11490534 35 Machinery and equipment-Mounted bear-

ings, except plain

WPU11760302 35 Machinery and equipment-Radio station

and wireless communication equipment

WPU15110154 35 Miscellaneous products-Other nonelec-

tronic toys, including parts
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WPU10750103 34 Metals and metal products-Heat exchang-
ers and steam condensers (except for nu-
clear applications)

WPU10880101 34 Metals and metal products-Ferrous wire

rope, cable, forms and strand

WPU10890522 34 Metals and metal products-Precision

turned products, except automotive

WPU11941301 34 Machinery and equipment-Parts and ac-

cessories for internal combustion engines,

ex. aircraft and gasoline automotive en-

gines

WPU12680101 34 Furniture and household durables-

Stamped and spun kitchen utensils,

aluminum

WPUSI095011 34 Special indexes-Processed foods

WPU09150337 33 Pulp, paper, and allied products-

Paperboard fiber drums with ends of any

material

WPU10890521 33 Metals and metal products-Precision

turned products, automotive

WPU10890701 33 Metals and metal products-Metal job

stampings, except automotive

WPU11490203 33 Machinery and equipment-Industrial but-

terfly valves, incl. manual and power op-

erated

Continued on next page
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WPU12220409 33 Furniture and household durables-

Fixtures (bank, office, and store) except
wood

WPU03THRU15 32 Industrial Commodities-Industrial com-

modities

WPU09220131 32 Pulp, paper, and allied products-Medium
density fiberboard (MDF) made from
MDF produced at the same location

WPU09470402 32 Pulp, paper, and allied products-Financial
and legal printing (lithographic)

WPU11490537 32 Machinery and equipment-Tapered roller
bearings (including cups and cones), un-
mounted

WPU15110155 32 Miscellaneous products-Models, science
and craft kits/supply, and collectors
miniatures

WPU10810206 31 Metals and metal products-Hex bolts, in-

cluding heavy, tap-and-joint

WPU11382611 31 Machinery and equipment-Metal punch-
ing and shearing (power and manual),
and bending and forming machines (power
only)

WPU11440212 31 Machinery and equipment-Unit handling

conveyors and conveying systems

WPU10150211 30 Metals and metal products-Pressure pipe

and fittings, ductile iron

WPU10890424 30 Metals and metal products-Precision me-

chanical wire springs
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59



Table 4.1 – Continued from previous page

Code In Degree Description

WPU12150112 30 Furniture and household durables-Metal

porch, lawn, outdoor and casual furniture

WPU13314101 30 Nonmetallic mineral products-Concrete
pavers (including grid, interlocking, etc.)

WPUSI092011 30 Special indexes-Hosiery

WPU09470609 29 Pulp, paper, and allied products-Other

commercial and general job printing

WPU10830524 29 Metals and metal products-All other mis-

cellaneous electric and nonelectric lighting

equipment, incl parts and accessories

WPU11490535 29 Machinery and equipment-Parts and com-

ponents for ball and roller bearings, incl.

balls and rollers

WPU10710515 28 Metals and metal products-Metal com-

bination screen, storm sash, and storm

doors

WPU11382651 28 Machinery and equipment-Other metal-
forming machine tools (except presses)

WPU11420221 28 Machinery and equipment-Parts and at-

tachments for elevators and moving stairs
(sold separately)

WPU11430406 28 Machinery and equipment-Fluid power

hose and tube fittings

WPUSI023012 28 Special indexes-Farm and garden tractors,

less parts

Continued on next page

60



Table 4.1 – Continued from previous page

Code In Degree Description

WPUSI024012 28 Special indexes-Agricultural machinery,

excluding tractors

WPU04410132 27 Hides, skins, leather, and related
products-Personal leather goods (exclud-
ing womens handbags and purses,sacks

and variety and shopping bags

WPU09150636 27 Pulp, paper, and allied products-

Envelopes

WPU11490204 27 Machinery and equipment-Industrial plug

valves

WPUSI020011 27 Special indexes-Chemicals and allied

products, including synthetic rubber and

synthetic fibers and yarns

WPU11440601 26 Machinery and equipment-Parts and ac-

cessories for unit handling conveyors and

conveying systems

WPU11782890 26 Machinery and equipment-Filters, crys-

tals, and transducers

WPU09150999 25 Pulp, paper, and allied products-Other

sanitary paper products and misc. con-

verted paper and paperboard products

WPU09470302 25 Pulp, paper, and allied products-Catalog
and directory printing (lithographic)

WPU10890425 25 Metals and metal products-Other light

gauge wire springs
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WPU11450108 25 Machinery and equipment-Loose gear,

pinions and racks

WPU11470144 25 Machinery and equipment-Dust collection

and other air purification equipment for

industrial gas cleaning systems

WPU11760121 25 Machinery and equipment-Telephone

switching and switchboard equipment

WPU13990121 25 Nonmetallic mineral products-Hydraulic

fracturing sand and all other industrial

sand

WPUSISTEEL1 25 Special indexes-Steel mill products, in-

cluding fabricated wire products

WPU09480104 24 Pulp, paper, and allied products-

Blankbooks, looseleaf binders, and

devices

WPU10790354 24 Metals and metal products-Panels, parts,

and sections for prefabricated buildings,

steel and aluminum

WPU11792902 24 Machinery and equipment-Rectifying ap-

paratus

WPU11930700 24 Machinery and equipment-Office machin-

ery, including mailing, letter handling,

and addressing machines and parts
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WPU12110102 24 Furniture and household durables-Metal

household dining room and kitchen furni-

ture

WPU13130116 24 Nonmetallic mineral products-Machine-

made pressed and blown table, kitchen,

art, and novelty glassware

WPU10410311 23 Metals and metal products-Motor vehicle

hardware

WPUSI023011 23 Special indexes-Total tractors

WPU11140711 22 Machinery and equipment-Haying ma-

chinery and attachments

WPU11670502 22 Machinery and equipment-Parts for pack-

ing, packaging, and bottling machinery

WPU11760301 22 Machinery and equipment-Broadcast, stu-

dio, and related electronic equipment

WPU12220407 22 Furniture and household durables-Storage

racks and accessories, except wood

WPU09470202 21 Pulp, paper, and allied products-Label
and wrapper printing (lithographic)

WPUFD413111 21 Final demand-Nondurable consumer

goods less foods and energy

WPUSI024011 21 Special indexes-Agricultural machinery,

including tractors

WPUSI093011 21 Special indexes-Machinery amd motive

products
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WPU03810441 20 Textile products and apparel-Apparel and

accessories, n.e.c.

WPU10150501 20 Metals and metal products-Standard and

pearlitic malleable iron castings

WPU11950501 20 Machinery and equipment-Other machine

shop products

WPUSI004011 20 Special indexes-Lumber and plywood

WPU10280207 19 Metals and metal products-Aluminum

die-castings

WPU12690101 19 Furniture and household durables-

Window shades and window shade

accessories and rollers

WPU12690102 19 Furniture and household durables-

Venetian blinds

WPU13450101 19 Nonmetallic mineral products-Vitrified

clay sewer pipe and fittings

WPU10890589 18 Metals and metal products-Other fabri-

cated metal products

WPU11760303 18 Machinery and equipment-

Intercommunications, alarm and traffic

control systems

WPU11790551 18 Machinery and equipment-Electronic

hearing aids

WPU13990209 18 Nonmetallic mineral products-Ground or

treated minerals and earths

Continued on next page
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WPU04410112 17 Hides, skins, leather, and related
products-Luggage (including suitcases,
travel bags, backpacks, and other types)

WPU09470203 17 Pulp, paper, and allied products-Label
and wrapper printing (gravure)

WPU11490209 17 Machinery and equipment-Other indus-

trial valves, including nuclear

WPU11720501 17 Machinery and equipment-Test equipment

for electrical, radio, and communication

circuits and motors

WPU12680102 17 Furniture and household durables-

Stamped and spun kitchen utensils,

except aluminum

WPUFD413112 17 Final demand-Durable consumer goods

WPU11490205 16 Machinery and equipment-Plumbing and
heating valves (low pressure)

WPU12310101 16 Furniture and household durables-Carpet

and rugs

WPUSI021012 16 Special indexes-Agriculture machinery

and equipment, less parts

WPUFD413122 15 Final demand-Private capital equipment

for nonmanufacturing industries

WPUSISTEEL3 15 Special indexes-Finished steel mill prod-

ucts, including fabricated wire products,

WPU09150322 14 Pulp, paper, and allied products-Setup
(rigid) paperboard boxes

Continued on next page
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WPU11410801 14 Machinery and equipment-Industrial

spraying equipment

WPU12140114 14 Furniture and household durables-

Mattresses, other types, including crib,

foam, waterbed mattresses and mattress

inserts

WPU12210113 14 Furniture and household durables-Wood

office desks and extensions

WPU10880701 13 Metals and metal products-Ferrous wire

cloth, other woven wire products

WPU13990111 13 Nonmetallic mineral products-Industrial

molding sand

WPU09470603 12 Pulp, paper, and allied products-Other

commercial and general job printing
(gravure)

WPU11490208 12 Machinery and equipment-Solenoid valves

WPU11627701 12 Machinery and equipment-Textile ma-

chinery parts and attachments

WPU12220325 12 Furniture and household durables-

Nonwood office seating

WPU09150901 10 Pulp, paper, and allied products-Pasted,

lined, laminated, or surface-coated paper-

board
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WPU09480201 10 Pulp, paper, and allied products-Edition,

library, and other hardcover binding of

books printed elsewhere

WPU10830522 10 Metals and metal products-Outdoor light-
ing equipment (including parts and acces-
sories)

WPU113A0201 10 Machinery and equipment-Other metal-

working machinery

WPU12210116 8 Furniture and household durables-Wood

office furniture, other types (incl. pan-
el/desking systems)

WPU10890507 7 Metals and metal products-Automotive

job stampings

Table 4.2: Network Node Out-Degrees

Code In Degree Description

WPUSI089011 110 Special indexes-Machinery and equip-

ment, except electrical

WPU12670141 84 Furniture and household durables-

Cutlery, scissors, shears, trimmers, and

snips

WPUSI017011 77 Special indexes-Fabricated metal products

WPU11440378 73 Machinery and equipment-Parts and at-

tachments for industrial trucks and trac-

tors
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WPU10260314 72 Metals and metal products-Copper wire

and cable

WPU10230205 70 Metals and metal products-Used beverage

can scrap

WPU11621201 67 Machinery and equipment-Textile ma-
chinery (except parts, attachments, and
accessories)

WPUSI019011 64 Special indexes-Copper and copper prod-

ucts

WPUIP231100 63 Net inputs to new residential construction,

excluding capital investment, labor, and

imports

WPU11840103 61 Machinery and equipment-Counting de-

vices

WPU03830351 59 Textile products and apparel-All other

fabricated textile products, excluding

trimming and findings

WPU10890564 59 Metals and metal products-Metal pow-

ders, paste, and flake

WPU12410220 59 Furniture and household durables-

Household laundry equipment and parts

WPUSI012011 59 Special indexes-Construction materials

WPU11440602 58 Machinery and equipment-Parts and ac-

cessories for bulk material handling con-

veyors and conveying systems
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WPU13950111 58 Nonmetallic mineral products-Dressed di-
mension granite (including gneiss, syenite,
diorite, and cut granite)

WPU09150216 57 Pulp, paper, and allied products-Specialty

bags, pouches and liners

WPU03940101 56 Textile products and apparel-Textile

fibers, yarns, and fabrics, n.e.c.

WPU09470102 55 Pulp, paper, and allied products-
Magazine and periodical printing (litho-
graphic)

WPU10540211 55 Metals and metal products-Bath and

shower fittings

WPU13990101 54 Nonmetallic mineral products-Industrial

glass sand

WPUFD413121 54 Final demand-Private capital equipment

for manufacturing industries

WPU11840102 53 Machinery and equipment-Integrating

and totalizing meters for gases or liquids

WPU09150301 52 Pulp, paper, and allied products-

Corrugated shipping containers

WPU10230201 52 Metals and metal products-Solids and

clippings, new aluminum base scrap

WPUIP232100 52 Net inputs to residential maintenance and

repair, excluding capital investment, la-

bor, and imports

WPU12210112 51 Furniture and household durables-Wood

office seating, including upholstered
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WPUIP231000 51 Net inputs to new construction, excluding

capital investment, labor, and imports

WPU13130117 50 Nonmetallic mineral products-All other

machine-made pressed and blown glass-

ware

WPU10740803 49 Metals and metal products-Iron, steel,

and aluminum stairs, staircases and fire

escapes

WPU11382631 49 Machinery and equipment-Metalworking
presses (except forging and die-stamping
presses)

WPU10260333 48 Metals and metal products-Fiber optic ca-

ble

WPU10810231 48 Metals and metal products-Cap, set, ma-

chine, lag, flange, and self-locking screws,

except aircraft types

WPU09471101 47 Pulp, paper, and allied products-

Commercial screen printing, excluding on

garments, apparel accessories, and other

fabric articles

WPU10890811 47 Metals and metal products-Flexible pack-

aging foil

WPU11790103 47 Machinery and equipment-Storage batter-

ies, lead acid type, BCI dimensional group

8D or smaller
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WPU11790512 47 Machinery and equipment-Irradiation

equipment

WPU09220125 46 Pulp, paper, and allied products-

Particleboard made from particleboard

produced at the same location

WPU10260301 46 Metals and metal products-Electronic

wire and cable

WPU11490538 46 Machinery and equipment-Other roller

bearings, unmounted

WPU13312101 46 Nonmetallic mineral products-Decorative
concrete block (including screen, split,
slump, shadowal block, etc.)

WPUSISTEEL1 46 Special indexes-Steel mill products, in-

cluding fabricated wire products

WPU10230101 45 Metals and metal products-No. 1 copper

scrap, including wire

WPU10890521 45 Metals and metal products-Precision

turned products, automotive

WPU13210121 45 Nonmetallic mineral products-Crushed

and broken stone

WPUIP232200 45 Net inputs to nonresidential maintenance

and repair, excl. capital investment, la-

bor, and imports

WPUSI020011 45 Special indexes-Chemicals and allied

products, including synthetic rubber and

synthetic fibers and yarns
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WPU10170710 44 Metals and metal products-Cold rolled

steel sheet and strip

WPU11760302 44 Machinery and equipment-Radio station

and wireless communication equipment

WPU12220409 44 Furniture and household durables-

Fixtures (bank, office, and store) except
wood

WPU13314101 44 Nonmetallic mineral products-Concrete
pavers (including grid, interlocking, etc.)

WPUSI134011 44 Special indexes-Selected textile mill prod-

ucts

WPU10230102 43 Metals and metal products-No. 2 copper

scrap, including wire

WPU10230206 43 Metals and metal products-Other old alu-

minum base scrap

WPU11730901 43 Machinery and equipment-Parts and sup-

plies for motors and generators

WPU09150337 42 Pulp, paper, and allied products-

Paperboard fiber drums with ends of any

material

WPU10270111 42 Metals and metal products-Nonferrous

forge shop products

WPU10890522 42 Metals and metal products-Precision

turned products, except automotive

WPU11350243 42 Machinery and equipment-Precision mea-

suring tools
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WPU11470143 42 Machinery and equipment-Dust collection

and other air purification equipment for

cleaning incoming air

WPU11490201 42 Machinery and equipment-Gates, globes,

angles, and checks

WPUSI018011 42 Special indexes-Special metals and metal

products

WPU13330101 41 Nonmetallic mineral products-Ready-mix

concrete

WPU13920201 41 Nonmetallic mineral products-Mineral

wool for industrial, equipment, and

appliance insulation

WPUSISTEEL2 41 Special indexes-Finished steel mill prod-

ucts, excluding fabricated wire products

WPU09150441 40 Pulp, paper, and allied products-Other

corrugated and solid fiber products, in-

cluding containers, pallets, pads, etc.

WPU11760121 40 Machinery and equipment-Telephone

switching and switchboard equipment

WPU09470506 39 Pulp, paper, and allied products-
Advertising printing (lithographic)

WPU10230104 39 Metals and metal products-Other copper

and brass scrap

WPU10890701 39 Metals and metal products-Metal job

stampings, except automotive
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WPU11490202 39 Machinery and equipment-Industrial ball

valves, incl. manual and power operated

WPU11784901 39 Machinery and equipment-Bare printed

circuit boards

WPU13440131 39 Nonmetallic mineral products-Clay floor
and wall tile, glazed and unglazed (includ-
ing quarry tile and ceramic mosaic tile)

WPU13990211 39 Nonmetallic mineral products-Dimension

stone mining and quarrying

WPU15110154 39 Miscellaneous products-Other nonelec-

tronic toys, including parts

WPU11140611 38 Machinery and equipment-Harvesting ma-
chinery (except hay and straw) and at-
tachments

WPU11450201 38 Machinery and equipment-Plain bearings

and bushings

WPU11941301 38 Machinery and equipment-Parts and ac-

cessories for internal combustion engines,

ex. aircraft and gasoline automotive en-

gines

WPU12210114 38 Furniture and household durables-Wood

office files, storage units, and tables

WPU09150218 37 Pulp, paper, and allied products-Shipping

sacks and multiwall bags, all materials, ex-

cpet textiles
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WPU09480104 37 Pulp, paper, and allied products-

Blankbooks, looseleaf binders, and

devices

WPU12680101 37 Furniture and household durables-

Stamped and spun kitchen utensils,

aluminum

WPU11420221 36 Machinery and equipment-Parts and at-

tachments for elevators and moving stairs
(sold separately)

WPU13990121 36 Nonmetallic mineral products-Hydraulic

fracturing sand and all other industrial

sand

WPUSI095011 36 Special indexes-Processed foods

WPU03830321 35 Textile products and apparel-Rope,

cordage, and twine

WPU10150211 35 Metals and metal products-Pressure pipe

and fittings, ductile iron

WPU10710515 35 Metals and metal products-Metal com-

bination screen, storm sash, and storm

doors

WPU11411911 35 Machinery and equipment-Parts and at-

tachments for pumps

WPU11440212 35 Machinery and equipment-Unit handling

conveyors and conveying systems
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WPU13450199 35 Nonmetallic mineral products-All other

structural clay products, excluding clay

refractories

WPUIP230000 35 Net inputs to construction industries, ex-

cluding capital investment, labor, and im-

ports

WPUIP232000 35 Net inputs to maintenance and repair con-

struction, excluding capital investment,

labor, and imports

WPUSI094011 35 Special indexes-Underwear and nightwear

WPU09220131 34 Pulp, paper, and allied products-Medium
density fiberboard (MDF) made from
MDF produced at the same location

WPU09470402 34 Pulp, paper, and allied products-Financial
and legal printing (lithographic)

WPU10750103 34 Metals and metal products-Heat exchang-
ers and steam condensers (except for nu-
clear applications)

WPU11350501 34 Machinery and equipment-Other machine

tool attachments and accessories

WPU11382651 34 Machinery and equipment-Other metal-
forming machine tools (except presses)

WPU13620121 34 Nonmetallic mineral products-Roofing as-

phalts, pitches, coatings, and cement

WPU11430406 33 Machinery and equipment-Fluid power

hose and tube fittings
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Table 4.2 – Continued from previous page

Code In Degree Description

WPU11490535 33 Machinery and equipment-Parts and com-

ponents for ball and roller bearings, incl.

balls and rollers

WPU10810206 32 Metals and metal products-Hex bolts, in-

cluding heavy, tap-and-joint

WPU11410701 32 Machinery and equipment-Parts and at-

tachments for air and gas compressors and

vacuum pumps

WPU09150636 31 Pulp, paper, and allied products-

Envelopes

WPU10880101 31 Metals and metal products-Ferrous wire

rope, cable, forms and strand

WPU11382611 31 Machinery and equipment-Metal punch-
ing and shearing (power and manual),
and bending and forming machines (power
only)

WPU11950501 31 Machinery and equipment-Other machine

shop products

WPU15110155 31 Miscellaneous products-Models, science
and craft kits/supply, and collectors
miniatures

WPUSI023011 31 Special indexes-Total tractors

WPUSI070011 31 Special indexes-Pharmaceutical prepara-

tions for human and veterinary use

WPU04410132 30 Hides, skins, leather, and related
products-Personal leather goods (ex-
cluding womens handbags and purses)
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Table 4.2 – Continued from previous page

Code In Degree Description

WPU11490203 30 Machinery and equipment-Industrial but-

terfly valves, incl. manual and power op-

erated

WPU13130116 30 Nonmetallic mineral products-Machine-

made pressed and blown table, kitchen,

art, and novelty glassware

WPUSI006111 30 Special indexes-All commodities except

farm products

WPU10280207 29 Metals and metal products-Aluminum

die-castings

WPU10720122 29 Metals and metal products-Gas cylinders

WPU10830524 29 Metals and metal products-All other mis-

cellaneous electric and nonelectric lighting

equipment, incl parts and accessories

WPU11490204 29 Machinery and equipment-Industrial plug

valves

WPU11490534 29 Machinery and equipment-Mounted bear-

ings, except plain

WPU12150112 29 Furniture and household durables-Metal

porch, lawn, outdoor and casual furniture

WPUSI023012 29 Special indexes-Farm and garden tractors,

less parts

WPU09470609 28 Pulp, paper, and allied products-Other

commercial and general job printing
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Table 4.2 – Continued from previous page

Code In Degree Description

WPU10890424 28 Metals and metal products-Precision me-

chanical wire springs

WPU10890589 28 Metals and metal products-Other fabri-

cated metal products

WPU113A0101 28 Machinery and equipment-Metalworking

assembly machines

WPU11440485 28 Machinery and equipment-Overhead trav-

eling cranes and monorail systems

WPU11440601 28 Machinery and equipment-Parts and ac-

cessories for unit handling conveyors and

conveying systems

WPU12220407 28 Furniture and household durables-Storage

racks and accessories, except wood

WPU12680102 28 Furniture and household durables-

Stamped and spun kitchen utensils,

except aluminum

WPUSI024011 28 Special indexes-Agricultural machinery,

including tractors

WPUFD413111 27 Final demand-Nondurable consumer

goods less foods and energy

WPU11792902 26 Machinery and equipment-Rectifying ap-

paratus

WPU11930700 26 Machinery and equipment-Office machin-

ery, including mailing, letter handling,

and addressing machines and parts

79



Table 4.2 – Continued from previous page

Code In Degree Description

WPU03THRU15 24 Industrial Commodities-Industrial com-

modities

WPU11470144 24 Machinery and equipment-Dust collection

and other air purification equipment for

industrial gas cleaning systems

WPU11670502 24 Machinery and equipment-Parts for pack-

ing, packaging, and bottling machinery

WPU11782890 24 Machinery and equipment-Filters, crys-

tals, and transducers

WPUSI024012 24 Special indexes-Agricultural machinery,

excluding tractors

WPUSI092011 24 Special indexes-Hosiery

WPU10790354 23 Metals and metal products-Panels, parts,

and sections for prefabricated buildings,

steel and aluminum

WPU11490537 23 Machinery and equipment-Tapered roller
bearings (including cups and cones), un-
mounted

WPUSI021012 23 Special indexes-Agriculture machinery

and equipment, less parts

WPU03810441 22 Textile products and apparel-Apparel and

accessories, n.e.c.

WPU09150999 22 Pulp, paper, and allied products-Other

sanitary paper products and misc. con-

verted paper and paperboard products

WPU09470202 22 Pulp, paper, and allied products-Label
and wrapper printing (lithographic)
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Table 4.2 – Continued from previous page

Code In Degree Description

WPU09470302 22 Pulp, paper, and allied products-Catalog
and directory printing (lithographic)

WPU12110102 22 Furniture and household durables-Metal

household dining room and kitchen furni-

ture

WPU12690101 22 Furniture and household durables-

Window shades and window shade

accessories and rollers

WPU12690102 22 Furniture and household durables-

Venetian blinds

WPUSI093011 22 Special indexes-Machinery amd motive

products

WPU13990209 21 Nonmetallic mineral products-Ground or

treated minerals and earths

WPU09150322 20 Pulp, paper, and allied products-Setup
(rigid) paperboard boxes

WPU09470203 20 Pulp, paper, and allied products-Label
and wrapper printing (gravure)

WPU11140711 20 Machinery and equipment-Haying ma-

chinery and attachments

WPU11450108 20 Machinery and equipment-Loose gear,

pinions and racks

WPU11490205 20 Machinery and equipment-Plumbing and
heating valves (low pressure)

WPU11490209 20 Machinery and equipment-Other indus-

trial valves, including nuclear
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Table 4.2 – Continued from previous page

Code In Degree Description

WPU13450101 20 Nonmetallic mineral products-Vitrified

clay sewer pipe and fittings

WPU09470603 19 Pulp, paper, and allied products-Other

commercial and general job printing
(gravure)

WPU10150501 19 Metals and metal products-Standard and

pearlitic malleable iron castings

WPU10410311 19 Metals and metal products-Motor vehicle

hardware

WPU10890425 19 Metals and metal products-Other light

gauge wire springs

WPUFD413112 19 Final demand-Durable consumer goods

WPU09480201 18 Pulp, paper, and allied products-Edition,

library, and other hardcover binding of

books printed elsewhere

WPU12140114 18 Furniture and household durables-

Mattresses, other types, including crib,

foam, waterbed mattresses and mattress

inserts

WPUSI004011 18 Special indexes-Lumber and plywood

WPU113A0201 17 Machinery and equipment-Other metal-

working machinery

WPU11410801 17 Machinery and equipment-Industrial

spraying equipment
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Table 4.2 – Continued from previous page

Code In Degree Description

WPU11760303 17 Machinery and equipment-

Intercommunications, alarm and traffic

control systems

WPU12210113 17 Furniture and household durables-Wood

office desks and extensions

WPUFD413122 17 Final demand-Private capital equipment

for nonmanufacturing industries

WPUSISTEEL3 17 Special indexes-Finished steel mill prod-

ucts, including fabricated wire products,

WPU11627701 16 Machinery and equipment-Textile ma-

chinery parts and attachments

WPU11790551 16 Machinery and equipment-Electronic

hearing aids

WPU04410112 15 Hides, skins, leather, and related
products-Luggage (including suitcases,
travel bags, backpacks, and other types)

WPU09150901 15 Pulp, paper, and allied products-Pasted,

lined, laminated, or surface-coated paper-

board

WPU10880701 15 Metals and metal products-Ferrous wire

cloth, other woven wire products

WPU12310101 15 Furniture and household durables-Carpet

and rugs

WPU11490208 14 Machinery and equipment-Solenoid valves
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Table 4.2 – Continued from previous page

Code In Degree Description

WPU11720501 14 Machinery and equipment-Test equipment

for electrical, radio, and communication

circuits and motors

WPU11760301 14 Machinery and equipment-Broadcast, stu-

dio, and related electronic equipment

WPU12220325 14 Furniture and household durables-

Nonwood office seating

WPU12210116 13 Furniture and household durables-Wood

office furniture, other types (incl. pan-
el/desking systems)

WPU13990111 13 Nonmetallic mineral products-Industrial

molding sand

WPU10830522 12 Metals and metal products-Outdoor light-
ing equipment (including parts and acces-
sories)

WPU10890507 10 Metals and metal products-Automotive

job stampings

Continued on next page
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Appendix 5: R Code for Distance Correlation

setwd ( ”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/” )

# f o r t e s t i n g purposes , s u b s e t the data

# load l i b r a r i e s

l ibrary ( vct r s , l i b=”/ s c ra t ch/ j s c h u l e 4/rpkg” )

l ibrary ( withr , l i b=”/ s c ra t ch/ j s c h u l e 4/rpkg” )

l ibrary ( ggplot2 , l i b=”/ s c ra t ch/ j s c h u l e 4/rpkg” )

l ibrary ( energy , l i b=”/ s c ra t ch/ j s c h u l e 4/rpkg” )

l ibrary ( p a r a l l e l )

l ibrary ( matr ixStats , l i b=”/ s c ra t ch/ j s c h u l e 4/rpkg” )

l ibrary ( co r rp l o t , l i b=”/ s c ra t ch/ j s c h u l e 4/rpkg” )

l ibrary ( r e t i c u l a t e , l i b=”/ s c ra t ch/ j s c h u l e 4/rpkg” )

#l i b r a r y ( corrgram )

# Detect # o f machine cores

co r e s <− detectCores ( )

# we need two parameters , the data and the output f i l e

args = commandArgs( t r a i l i n g O n l y=TRUE)

alpha <− 0 .01

sparmat <− c ( )

d i s t c o r r <− function ( l s t )
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{

rows1 <− i s .na( l s t [ [ 1 ] ] )

rows2 <− i s .na( l s t [ [ 2 ] ] )

rows <− rows1 | rows2

table ( rows ) −> absence

i f ( i s .na( absence [ ”FALSE” ] ) ) { absence [ ”FALSE” ] <− 0}

i f ( absence [ ”FALSE” ] < 30) {return (NA)} else

{

#p r i n t (” C a l c u l a t e Distance C o r r e l a t i o n ”)

#p r i n t ( l e n g t h ( l s t [ [ 1 ] ] [ ! rows ] ) )

#p r i n t ( l e n g t h ( l s t [ [ 2 ] ] [ ! rows ] ) )

d c o r e l <− dcor ( l s t [ [ 1 ] ] [ ! rows ] , l s t [ [ 2 ] ] [ ! rows ] )

#p r i n t ( d c o r e l )

}

dcorT . t e s t ( l s t [ [ 1 ] ] [ ! rows ] , l s t [ [ 2 ] ] [ ! rows])−> c o r t e s t

i f ( c o r t e s t$p . va lue > alpha ){ outcor r <−0 } else

{ outcor r <− d c o r e l }

return ( outcor r )

}

d a t a l s t<− l i s t ( )

# Now, read in the data

r e s <− read . csv ( args [ 1 ] ,na . s t r i n g s = c ( ’ . ’ ) )

# s u b s e t data f o r rap id t e s t i n g

#res <− re s [ , 1 : 2 5 ]

nco l s <− ncol ( r e s )

for ( i in 1 : n co l s )
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{

for ( j in i : n co l s )

{ i f ( j != i ){ d a t a l s t [ [ length ( d a t a l s t )+1 ] ]

<− l i s t ( r e s [ , i ] , r e s [ , j ] , i , j )}}

}

# Now app ly the d i s t a n c e c o r r e l a t i o n f u n c t i o n

Dcorrs <− mclapply ( da ta l s t , d i s t c o r r ,mc . co r e s=co r e s )

t <−0

matrix ( rep (0 , n co l s∗∗2) , ncol=nco l s ) −> dcormat

rownames( dcormat ) <− names( r e s )

colnames ( dcormat ) <− names( r e s )

for ( i in 1 : n co l s )

{

for ( j in i : n co l s ){

i f ( j != i )

{

t <− t+1

currCorr <− Dcorrs [ [ t ] ]

dcormat [ i , j ] <− currCorr

dcormat [ j , i ] <− currCorr

}

}

}

# Now t h a t we have the d i s t a n c e c o r r e l a t i o n matrix ,

# we can beg in f i g u r i n g out what depends on what

# Now, l e t ’ s genera te a c o r r e l e l o g r a m

c o l o b j <− c ( ” red ” , ” white ” , ” b lack ” )

c o l o b j=colorRampPalette ( c o l o b j ) ( 2 0 )
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png ( f i l ename = paste ( ”/ s c ra t ch/ j s c h u l e 4/p l o t s/cgram” , args [ 3 ] ,

” . png” , sep=”” ) ,

width = 1000 , he ight = 1000 ,

un i t s = ”px” , p o i n t s i z e = 12 ,

bg = ” white ” )

c o r r p l o t (data . matrix ( dcormat ) ,

method=” c o l o r ” , col=co lob j , t l . pos=’n ’ ,

c l . l im=c ( 0 , 1 ) )

dev . of f ( )

boolmat <− ( dcormat==0)

rownames( boolmat ) <− names( r e s )

colnames ( boolmat ) <− names( r e s )

print ( dcormat )

print ( boolmat )

# Check i f t h e r e are no remaining dependencies

i f ( a l l ( boolmat ) )

{ print (paste ( ” Halt ing on i t e r a t i o n : ” , args [ 3 ] ) )

system ( ’ echo ” ha l t ” >> / s c ra t ch/ j s c h u l e 4/ c t r l . csv ’ )

quit ( )

} else

{print (paste ( ”Running : i t e r a t i o n : ” , args [ 3 ] ) )

system ( ’ echo ”run” >> / s c ra t ch/ j s c h u l e 4/ c t r l . csv ’ )

}

# Now, f i n d the column dependent on the most o t h e r s
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c ( ) −> degvec

#p r i n t (”Chk”)

for ( j in 1 : ncol ( boolmat ) )

{ table ( boolmat ) −> degree

i f ( i s .na( degree [ ”FALSE” ] ) ) { degree [ ”FALSE” ] <− 0}

degvec <− c ( degvec , degree [ ”FALSE” ] )

}

names( degvec ) <− names( r e s )

# Now, s o r t t h i s descending

sort ( degvec ,TRUE) −> degvec

r e tu rn reg <− names( degvec ) [ 1 ]

dependency <− data . frame ( boolmat [ re turnreg , ] )

dependency$X <− r e tu rn reg

dependency$Y <− rownames( dependency )

names( dependency ) <− c ( ”Bool” , ”X” , ”Y” )

write . csv ( dependency , f i l e=args [ 2 ] ,na=’ . ’ ,row .names=FALSE)

# Now, we need to g e t a l i s t o f dependencies f o r the LASSO models

# We can s t o r e t h i s in a l i s t o f l i s t s

dep <− l i s t ( )

for ( i in 1 :nrow( boolmat ) )

{dep [ [ i ] ]<− l i s t (rownames( boolmat ) [ i ] , c ( ) )

for ( j in 1 : ncol ( boolmat ) )

{

i f ( ! boolmat [ i , j ] ) { dep [ [ i ] ] [ [ 2 ] ]

<− c ( dep [ [ i ] ] [ [ 2 ] ] , colnames ( boolmat ) [ j ] ) }
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}

}

# Now, we need to output t h e s e dependencies

yvar <− c ( )

xvar <− c ( )

for ( i in 1 : length ( dep ) )

{

yvar <− c ( yvar , dep [ [ i ] ] [ [ 1 ] ] )

xvar <− c ( xvar , paste ( unlist ( dep [ [ i ] ] [ [ 2 ] ] ) , sep=”” , c o l l a p s e=” ” ) )

print ( xvar )

print ( yvar )

}

outdep <− data . frame ( yvar , xvar )

write . csv ( outdep , f i l e=args [ 2 ] ,na=’ . ’ ,row .names=FALSE)

# Now, we can beg in b u i l d i n g a copula model

# We need to b u i l d the dependency s t r u c t u r e f o r the sampling

c ( l i s t ( col ( boolmat ) [ ncol ( boolmat ) ] ,NA) ) −> dep2

for ( i in (ncol ( boolmat )−1):1)

{

dep2 <− c ( dep2 , l i s t (colnames ( boolmat ) [ i ] ,

colnames ( boolmat ) [ i : ncol ( boolmat ) ] [ ! boolmat [ i : ncol ( boolmat ) ] ] ) )

}

print ( ”Second Dependencies ” )

print ( dep2 )

# we need nonparametric CDFs

or igresnames <− names( r e s )

for (nm in names( r e s ) )
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{

eCDF( r e s [nm] ) −> func

r e s [ paste0 ( ’U ’ ,nm) ] <− func ( r e s [nm] )

}

normres <− r e s [− or igresnames ]

# We need a f u n c t i o n t h a t c a l c u l a t e s the

# percent o f the data l e s s than the curren t row

jCDF <− function (x , dt )

{vec <− c ( )

for ( i in 1 :nrow(dt ) ){ vec <− c ( vec , as .numeric ( a l l (x>=dt [ i , ] ) ) ) }

return (mean( vec ) )

}

vjCDF <− function (dt )

{hld <− c ( )

for ( i in 1 :nrow(dt ) ){ hld <− c ( hld , jCDF(dt [ i , ] , dt ) )}

return ( hld )

}

# Now, we can e s t i m a t e c o n d i t i o n a l p r o b a b i l i t i e s

for ( i in dep2 )

{

j v e c <− c ( paste0 ( ’U ’ , i [ [ 1 ] ] ) , paste0 ( ’U ’ , unlist ( i [ [ 2 ] ] ) )

cvec <− paste0 ( ’U ’ , unlist ( i [ [ 2 ] ] ) )

Fu l ldat <− normres [ j v e c ]

Partdat <− normres [ cvec ]

FCDF <− vjCDF( Ful ldat )
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PCDF <− vjCDF( Partdat )

P hat bar <− FCDF / PCDF

}
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Appendix 6: SAS Code for Network Linkages

/∗

Code to Estimate Mu l t i va r i a t e Density

March 2020 .

John S . Schu ler

This Program a l s o depends on R

∗/

∗OPTIONS COMPRESS=YES;

LIBNAME DOCS ”/ s c ra t ch/ j s c h u l e 4/DATA/DOCS” ;

LIBNAME PERM ”/ s c ra t ch/ j s c h u l e 4/DATA/PERM/ ” ;

LIBNAME SDOCS ”/ s c ra t ch/ j s c h u l e 4/DATASDOCS/ ” ;

LIBNAME MDOCS ”/ s c ra t ch/ j s c h u l e 4/DATA/MDOCS/ ” ;

∗OPTIONS MACROGEN SYMBOLGEN MLOGIC;

∗ parameters ;

∗ Now, s e t a minimum number o f ob s e rva t i on s ;

∗to use a time s e r i e s , l e t ’ s t ry 30 years ;

%LET CTHRES=360;

∗ and s e t a min percentage populated ;

%LET PTHRES=.95;

∗ Set a parameter f o r the number o f s imulated time s e r i e s ;

%LET SIMUL=1000;

∗ Step 1 ;

∗ Read in the raw data ;

DATA FILOC;
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LENGTH URL $ 5 0 0 . ;

INPUT URL;

DATALINES;

wp . data . 1 . AllCommodities

wp . data . 1 0 . Pulp

wp . data .11 a . Metals10−103

wp . data .11 b . Metals104−109

wp . data .12 a . Machinery11−113

wp . data .12 b . Machinery114−116

wp . data .12 c . Machinery117−119

wp . data .12 i . MachineryInputs

wp . data . 1 3 . Furni ture

wp . data . 1 4 . Minera l s

wp . data .14 i . TransportEqInputs

wp . data . 1 5 . Transportat ion

wp . data . 1 6 . Mi sce l l aneous

wp . data . 1 7 . TotalDurables

wp . data . 1 8 . Spec i a l Indexe s

wp . data . 1 9 . S t e e l M i l l

wp . data . 2 . FarmProducts

wp . data . 2 1 . Aggregates

wp . data . 2 2 .FD−ID

wp . data . 3 . ProcessedFoods

wp . data . 3 0 . S e r v i c e s

wp . data .30 i . TransportServInputs

wp . data . 4 . T e x t i l e

wp . data . 5 . Leather

wp . data .51 i . HealthServInputs
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wp. data .56 i . EntertnOtherInputs

wp . data . 6 . Fuels

wp . data . 7 . Chemicals

wp . data . 7 i . ChemicalsInputs

wp . data . 8 . Rubber

wp . data . 8 0 . Construct ion

wp . data .80 i . ConstructnInputs

wp . data . 8 i . RubberInputs

wp . data . 9 . Lumber

;

RUN;

PROC PRINT DATA=FILOC; RUN;

X ’

cd / s c ra t ch/ j s c h u l e 4/DATA/RAW/ ;

rm wp . ∗ ;

rm M2. csv ;

rm FEDFUNDS. csv ;

l e t path=https : //download . b l s . gov/pub/time . s e r i e s /wp/

wget wp . s e r i e s ;

wget $path/wp. data . 1 . AllCommodities ;

wget $path/wp. data . 1 0 . Pulp ;

wget $path/wp. data .11 a . Metals10 −103;

wget $path/wp. data .11 b . Metals104 −109;

wget $path/wp. data .12 a . Machinery11−113;

wget $path/wp. data .12 b . Machinery114−116;

wget $path/wp. data .12 c . Machinery117−119;
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wget $path/wp. data .12 i . MachineryInputs ;

wget $path/wp. data . 1 3 . Furni ture ;

wget $path/wp. data . 1 4 . Minera l s ;

wget $path/wp. data .14 i . TransportEqInputs ;

wget $path/wp. data . 1 5 . Transportat ion ;

wget $path/wp. data . 1 6 . Mi sce l l aneous ;

wget $path/wp. data . 1 7 . TotalDurables ;

wget $path/wp. data . 1 8 . Spec i a l Indexe s ;

wget $path/wp. data . 1 9 . S t e e l M i l l ;

wget $path/wp. data . 2 . FarmProducts ;

wget $path/wp. data . 2 1 . Aggregates ;

wget $path/wp. data . 2 2 .FD−ID ;

wget $path/wp. data . 3 . ProcessedFoods ;

wget $path/wp. data . 3 0 . S e r v i c e s ;

wget $path/wp. data .30 i . TransportServInputs ;

wget $path/wp. data . 4 . T e x t i l e ;

wget $path/wp. data . 5 . Leather ;

wget $path/wp. data .51 i . HealthServInputs ;

wget $path/wp. data .56 i . EntertnOtherInputs ;

wget $path/wp. data . 6 . Fuels ;

wget $path/wp. data . 7 . Chemicals ;

wget $path/wp. data . 7 i . ChemicalsInputs ;

wget $path/wp. data . 8 . Rubber ;

wget $path/wp. data . 8 0 . Construct ion ;

wget $path/wp. data .80 i . ConstructnInputs ;

wget $path/wp. data . 8 i . RubberInputs ;

wget $path/wp. data . 9 . Lumber ;

wget https : //dl . dropbox . com/s/0 sh5ol483bq5315/M2. csv ;
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wget https : //dl . dropbox . com/s/3dhhy87pkwdyj5d/FEDFUNDS. csv ;

’ ;

FILENAME DAT

(

”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/wp. data . 1 . AllCommodities ” ,

”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/wp. data . 1 0 . Pulp ” ,

”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/wp. data .11 a . Metals10 −103” ,

”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/wp. data .11 b . Metals104 −109” ,

”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/wp. data .12 a . Machinery11−113” ,

”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/wp. data .12 b . Machinery114−116” ,

”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/wp. data .12 c . Machinery117−119” ,

”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/wp. data .12 i . MachineryInputs ” ,

”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/wp. data . 1 3 . Furni ture ” ,

”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/wp. data . 1 4 . Minera l s ” ,

”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/wp. data .14 i . TransportEqInputs ” ,

”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/wp. data . 1 5 . Transportat ion ” ,

”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/wp. data . 1 6 . Mi sce l l aneous ” ,

”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/wp. data . 1 7 . TotalDurables ” ,

”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/wp. data . 1 8 . Spec i a l Indexe s ” ,

”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/wp. data . 1 9 . S t e e l M i l l ” ,

”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/wp. data . 2 . FarmProducts ” ,

”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/wp. data . 2 1 . Aggregates ” ,

”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/wp. data . 2 2 .FD−ID” ,

”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/wp. data . 3 . ProcessedFoods ” ,

”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/wp. data . 3 0 . S e r v i c e s ” ,
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”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/wp. data .30 i . TransportServInputs ”

”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/wp. data . 4 . T e x t i l e ” ,

”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/wp. data . 5 . Leather ” ,

”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/wp. data .51 i . HealthServInputs ” ,

”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/wp. data .56 i . EntertnOtherInputs ” ,

”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/wp. data . 6 . Fuels ” ,

”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/wp. data . 7 . Chemicals ” ,

”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/wp. data . 7 i . ChemicalsInputs ” ,

”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/wp. data . 8 . Rubber ” ,

”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/wp. data . 8 0 . Construct ion ” ,

”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/wp. data .80 i . ConstructnInputs ” ,

”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/wp. data . 8 i . RubberInputs ” ,

”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/wp. data . 9 . Lumber”

) ;

DATA DOCS.COMMODITIES(DROP=PERIOD MONTH YEAR FLAG SEASONAL)

DOCS.PLEVEL(DROP=PERIOD MONTH YEAR FLAG SEASONAL) ;

INFILE DAT DLM=’ 09 ’X DSD

LRECL=4096 MISSOVER

FIRSTOBS=1

TERMSTR=LF;

LENGTH CODE $11 .

YEAR 3 .

PERIOD $ 3 .
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VALUE 8 .

FLAG $ 1 . ;

INPUT CODE $ YEAR PERIOD $ VALUE FLAG $ ;

∗ Clean up the data a b i t ;

IF PERIOD=’M13 ’ THEN DELETE;

MONTH=INPUT(COMPRESS(PERIOD, , ’ kd ’ ) , 2 . ) ;

IF SUBSTR(CODE, 1 , 3 ) NOT IN ( ’WPS’ , ’WPU’ ) THEN DELETE;

IF SUBSTR(CODE,1 ,3)= ’WPS’ THEN SEASONAL=1;

ELSE SEASONAL=0;

GRANULARITY=LENGTH(COMPRESS(SUBSTR(CODE, 4 ) ) ) ;

DATE=MDY(MONTH, 1 ,YEAR) ;

IF SEASONAL THEN DELETE;

IF GRANULARITY NE 8 THEN DELETE;

IF COMPRESS(CODE)=”WPU00000000” THEN OUTPUT DOCS.PLEVEL;

ELSE OUTPUT DOCS.COMMODITIES;

RUN;

PROC SORT DATA=DOCS.COMMODITIES NODUPKEY;

BY CODE DATE;

RUN;

PROC SORT DATA=DOCS.PLEVEL NODUPKEY;

BY CODE DATE;

RUN;
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∗ now , d i a g n o s t i c f r e q ;

PROC FREQ DATA=DOCS.COMMODITIES;

TITLE ” G r a n u l a r i t i e s ” ;

TABLES GRANULARITY;

RUN;

TITLE ”” ;

∗ Now, p u l l down the d e s c r i p t i o n data ;

FILENAME DESCNAME

”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/wp. s e r i e s ” ;

DATA DOCS.DESCRDAT(RENAME=(CODE=SERIES LINK ) ) ;

INFILE DESCNAME dlm=’ 09 ’ x

dsd l r e c l =4096 MISSOVER f i r s t o b s =2 termstr=LF;

LENGTH

CODE $11 .

GROUP CODE $ 2 .

ITEM CODE $ 6 .

SEASONAL $ 1 .

BASE DATE $ 6 .

SERIES TITLE $500 .

FOOTNOTE CODES $10 .

BEGIN YEAR $ 4 .

BEGIN PERIOD $ 3 .
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END YEAR $ 4 .

END PERIOD $ 3 . ;

INPUT

CODE $

GROUP CODE $

ITEM CODE $

SEASONAL $

BASE DATE $

SERIES TITLE $

FOOTNOTE CODES $

BEGIN YEAR $

BEGIN PERIOD $

END YEAR $

END PERIOD $ ;

IF BEGIN PERIOD=’M13 ’ THEN BEGIN PERIOD=’M12 ’ ;

IF END PERIOD=’M13 ’ THEN END PERIOD=’M12 ’ ;

BEGDATE=MDY(INPUT(SUBSTR(BEGIN PERIOD, 2 , 2 ) , 2 . ) ,

1 ,INPUT(BEGIN YEAR, 2 . ) ) ;

ENDDATE=MDY(INPUT(SUBSTR(END PERIOD, 2 , 2 ) , 2 . ) ,

1 ,INPUT(END YEAR, 2 . ) ) ;

RUN;

∗ Now, we need the macro data ;
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FILENAME M2 ”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/M2. csv ” ;

FILENAME FF ”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/FEDFUNDS. csv ” ;

PROC IMPORT DATAFILE=FF DBMS=CSV REPLACE OUT=DOCS.FF;

GETNAMES=NO;

RUN;

PROC CONTENTS DATA=DOCS.FF;

TITLE ”FF Contents ” ;

RUN;

TITLE ”” ;

DATA DOCS.FF(KEEP=DATE VALUE) ;

SET DOCS.FF;

VALUE=INPUT(VAR2, 8 . 2 ) ;

DATE=INPUT(VAR1,YYMMDD10. ) ;

RUN;

PROC PRINT DATA=DOCS.FF(OBS=25);

TITLE ” Federa l Funds ” ;

RUN;
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TITLE ”” ;

PROC IMPORT DATAFILE=M2 DBMS=CSV REPLACE OUT=DOCS.M2;

GETNAMES=NO;

RUN;

DATA DOCS.M2(KEEP=DATE VALUE) ;

SET DOCS.M2;

VALUE=INPUT(VAR2, 8 . 2 ) ;

DATE=INPUT(VAR1,YYMMDD10. ) ;

RUN;

PROC CONTENTS DATA=DOCS.M2;

RUN;

PROC PRINT DATA=DOCS.M2(OBS=25);

TITLE ”M2” ;

RUN;

TITLE ”” ;

PROC CONTENTS DATA=DOCS.FF; RUN;

PROC CONTENTS DATA=DOCS.M2; RUN;

∗ Step 2 ;
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∗ Prep that data f o r a n a l y s i s ;

∗ We have four data f i l e s , the o v e r a l l p r i c e index , ;

∗ the granu lar p r i c e s i n d i c e s , MS and Federa l funds ;

∗ Dedupl icate ;

PROC SORT DATA=DOCS.FF NODUPKEY; BY DATE; RUN;

PROC SORT DATA=DOCS.M2 NODUPKEY; BY DATE; RUN;

PROC SORT DATA=DOCS.PLEVEL NODUPKEY; BY DATE; RUN;

∗ This i s s l i g h t l y more complex as

i t has both a code and a date ;

PROC SORT DATA=DOCS.COMMODITIES NODUPKEY;

BY CODE DATE;

RUN;

∗ Now, s i n c e the M2 v a r i a b l e i s more than monthly ;

∗ we w i l l need to f i n d the repor ted M2 c l o s e s t

to the beg inning o f the next month ;

DATA DOCS.M2;

SET DOCS.M2;

NEXTMON=INTNX(”month” ,DATE, 1 , ”B” ) ;

∗ Now, how many days i s between the

beg inning o f the next month and t h i s r epor t date ;

LAGVAL=INTCK(”DAY” ,DATE,NEXTMON, ”D” ) ;

RUN;

PROC CONTENTS DATA=DOCS.M2; RUN;
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PROC MEANS DATA=DOCS.M2 NOPRINT;

CLASS NEXTMON;

OUTPUT OUT=DOCS.M2 DT FIX MIN(LAGVAL)=LAGVAL;

RUN;

PROC SORT DATA=DOCS.M2 DT FIX(WHERE=( TYPE =1)

KEEP=NEXTMON LAGVAL TYPE ) ;

BY NEXTMON LAGVAL;

RUN;

PROC SORT DATA=DOCS.M2(DROP=DATE) ;

BY NEXTMON LAGVAL;

RUN;

PROC CONTENTS DATA=DOCS.M2; RUN;

PROC CONTENTS DATA=DOCS.M2 DT FIX ; RUN;

DATA DOCS.M2(KEEP=DATE VALUE) ;

MERGE DOCS.M2

DOCS.M2 DT FIX( IN=A DROP= TYPE ) ;

BY NEXTMON LAGVAL;

IF A;

DATE=NEXTMON;

RUN;

∗ Now, we need miss ing va lue s f o r gaps ;

PROC MEANS DATA=DOCS.FF NOPRINT;

OUTPUT OUT=DOCS.FF SMRY
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MIN(DATE)=MN DT

MAX(DATE)=MX DT;

RUN;

PROC MEANS DATA=DOCS.M2 NOPRINT;

OUTPUT OUT=DOCS.M2 SMRY

MIN(DATE)=MN DT

MAX(DATE)=MX DT;

RUN;

PROC MEANS DATA=DOCS.PLEVEL NOPRINT;

OUTPUT OUT=DOCS.PLEVEL SMRY

MIN(DATE)=MN DT

MAX(DATE)=MX DT;

RUN;

PROC MEANS DATA=DOCS.COMMODITIES NOPRINT;

CLASS CODE;

OUTPUT OUT=DOCS.COMM SMRY

MIN(DATE)=MN DT

MAX(DATE)=MX DT;

RUN;

∗ i d e n t i f y gaps ;

DATA DOCS.FF SMRY(KEEP=DATE) ;

SET DOCS.FF SMRY;

INTV=INTCK(”month” ,MN DT,MX DT, ”D” ) ;

DO J=0 TO INTV;
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DATE=INTNX(”MONTH” ,MN DT, J , ”B” ) ;

OUTPUT;

END;

RUN;

DATA DOCS.M2 SMRY(KEEP=DATE) ;

SET DOCS.M2 SMRY;

INTV=INTCK(”month” ,MN DT,MX DT, ”D” ) ;

DO J=0 TO INTV;

DATE=INTNX(”MONTH” ,MN DT, J , ”B” ) ;

OUTPUT;

END;

RUN;

DATA DOCS.PLEVEL SMRY(KEEP=DATE) ;

SET DOCS.PLEVEL SMRY;

INTV=INTCK(”month” ,MN DT,MX DT, ”D” ) ;

DO J=0 TO INTV;

DATE=INTNX(”MONTH” ,MN DT, J , ”B” ) ;

OUTPUT;

END;

RUN;

DATA DOCS.COMM SMRY(KEEP=CODE DATE) ;

SET DOCS.COMM SMRY(WHERE=( TYPE =1)) ;

INTV=INTCK(”month” ,MN DT,MX DT, ”D” ) ;

DO J=0 TO INTV;

DATE=INTNX(”MONTH” ,MN DT, J , ”B” ) ;
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OUTPUT;

END;

RUN;

∗ Now that we have a l i s t o f dates ,

we can merge these in to y i e l d miss ing

va lue s with no date gaps ;

PROC SORT DATA=DOCS.FF SMRY; BY DATE; RUN;

PROC SORT DATA=DOCS.M2 SMRY; BY DATE; RUN;

PROC SORT DATA=DOCS.PLEVEL SMRY; BY DATE; RUN;

PROC SORT DATA=DOCS.COMM SMRY; BY CODE DATE; RUN;

PROC SORT DATA=DOCS.FF; BY DATE; RUN;

PROC SORT DATA=DOCS.M2; BY DATE; RUN;

PROC SORT DATA=DOCS.PLEVEL; BY DATE; RUN;

PROC SORT DATA=DOCS.COMMODITIES; BY CODE DATE; RUN;

DATA DOCS.FF;

MERGE DOCS.FF

DOCS.FF SMRY(IN=A) ;

BY DATE;

IF A;

RUN;

∗ Now, shock FF sometimes ;

DATA DOCS.M2;

MERGE DOCS.M2
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DOCS.M2 SMRY(IN=A) ;

BY DATE;

IF A;

RUN;

DATA DOCS.PLEVEL;

MERGE DOCS.PLEVEL

DOCS.PLEVEL SMRY(IN=A) ;

BY DATE;

IF A;

RUN;

DATA DOCS.COMMODITIES;

MERGE DOCS.COMMODITIES

DOCS.COMM SMRY(IN=A) ;

BY CODE DATE;

IF A;

RUN;

DATA DOCS.STACK(KEEP=CODE DATE VALUE DESC VAL POP) ;

SET DOCS.COMMODITIES( IN=A)

DOCS.PLEVEL( IN=B)

DOCS.M2( IN=C)

DOCS.FF( IN=D) ;

IF B THEN DO;
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CODE=”Index ” ;

DESC=”Pr i ce Index ” ;

END;

IF C THEN DO;

CODE=”M2” ;

DESC=”M2” ;

END;

IF D THEN DO;

CODE=”FEDFUNDS” ;

DESC=”Federa l Funds Rate ” ;

END;

VAL POP=NOT MISSING(VALUE) ;

RUN;

∗ Now, we w i l l t ranspose and output to R

to analyze coverage ;

PROC SORT DATA=DOCS.STACK; BY DATE; RUN;

PROC TRANSPOSE DATA=DOCS.STACK

OUT=DOCS.TRANS STACK(DROP= NAME INDEX) ;

VAR VALUE;

BY DATE;

ID CODE;

RUN;
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ODS CSV FILE=”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/ t r an s s t a ck . csv ” ;

PROC PRINT DATA=DOCS.TRANS STACK NOOBS;

RUN;

ODS CSV CLOSE;

PROC FORMAT;

VALUE BOOL

.=” Miss ing ”

OTHER=”Present ” ;

RUN;

PROC MEANS DATA=DOCS.STACK NOPRINT;

CLASS CODE;

OUTPUT OUT=DOCS.STACK SMRY

MIN(DATE)=MN DT

MAX(DATE)=MX DT

N=CNT

MEAN(VAL POP)=PCTPOP;

RUN;

DATA DOCS.STACK SMRY;

SET DOCS.STACK SMRY(WHERE=( TYPE =1)) ;

DIFF=INTCK(”MONTH” ,MN DT,MX DT, ”D” ) ;

RUN;
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PROC SORT DATA=DOCS.STACK SMRY;

BY DESCENDING CNT;

RUN;

ODS PDF FILE=”DataReport . pdf ” STYLE=MINIMAL;

PROC SORT DATA=DOCS.STACK SMRY;

BY DESCENDING CNT;

RUN;

PROC PRINT DATA=DOCS.STACK SMRY;

TITLE ”By Total Count ” ;

VAR CODE MN DT MX DT CNT PCTPOP;

LABEL CODE=”Commodity”

MN DT=”F i r s t Appearance”

MX DT=”Last Appearance”

DIFF=”Elapsed Time”

CNT=”Count”

PCTPOP=”% Populated ” ;

FORMAT MN DT MX DT MONYY.

PCTPOP PERCENT8 . ;

RUN;

PROC SORT DATA=DOCS.STACK SMRY;

BY DESCENDING PCTPOP;

RUN;
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PROC PRINT DATA=DOCS.STACK SMRY;

TITLE”By % Populated ” ;

VAR CODE MN DT MX DT CNT PCTPOP;

LABEL CODE=”Commodity”

MN DT=”F i r s t Appearance”

MX DT=”Last Appearance”

DIFF=”Elapsed Time”

CNT=”Count”

PCTPOP=”% Populated ” ;

FORMAT MN DT MX DT MONYY.

PCTPOP PERCENT8 . ;

RUN;

TITLE ”” ;

ODS PDF CLOSE;

PROC SORT DATA=DOCS.STACK SMRY(WHERE=(PCTPOP >=&PTHRES AND

CNT >= &CTHRES) )

OUT=DOCS.KEEPERS(KEEP=CODE) ;

BY CODE;

RUN;

∗ Now, we add a step to l i m i t the

data to 50 obs e rva t i on s f o r t e s t i n g purposes ;
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∗ This should be commented out f o r r e a l runs ;

DATA DOCS.KEEPERS;

SET DOCS.KEEPERS;

∗ IF N > 50 THEN DELETE;

RUN;

∗ Now, drop the s e r i e s with i n s u f f i c i e n t data ;

PROC SORT DATA=DOCS.STACK;

BY CODE;

RUN;

DATA DOCS.STACK;

MERGE DOCS.KEEPERS( IN=A)

DOCS.STACK(DROP=VAL POP) ;

BY CODE;

IF A;

RUN;

PROC SORT DATA=DOCS.STACK;

BY CODE DATE;

RUN;

∗ Now, log trans form everyth ing but FF;

PROC EXPAND DATA=DOCS.STACK(WHERE=(CODE NE ”FEDFUNDS”))

OUT=DOCS.LOGSERIES(DROP=TIME) ;

BY CODE;
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CONVERT VALUE=VALUE / TRANSFORMOUT=(LOG) ;

RUN;

∗ We w i l l need l a g s o f the macro v a r i a b l e s

f o r l a t e r modeling ;

PROC EXPAND DATA=DOCS.STACK(WHERE=(CODE = ”FEDFUNDS”))

OUT=DOCS.LAGFED(KEEP=DATE FEDFUNDS L : ) ;

BY CODE;

CONVERT VALUE=FEDFUNDS L 1 / TRANSFORMOUT=(LAG 1 ) ;

CONVERT VALUE=FEDFUNDS L 2 / TRANSFORMOUT=(LAG 2 ) ;

CONVERT VALUE=FEDFUNDS L 3 / TRANSFORMOUT=(LAG 3 ) ;

CONVERT VALUE=FEDFUNDS L 4 / TRANSFORMOUT=(LAG 4 ) ;

CONVERT VALUE=FEDFUNDS L 5 / TRANSFORMOUT=(LAG 5 ) ;

CONVERT VALUE=FEDFUNDS L 6 / TRANSFORMOUT=(LAG 6 ) ;

CONVERT VALUE=FEDFUNDS L 7 / TRANSFORMOUT=(LAG 7 ) ;

CONVERT VALUE=FEDFUNDS L 8 / TRANSFORMOUT=(LAG 8 ) ;

CONVERT VALUE=FEDFUNDS L 9 / TRANSFORMOUT=(LAG 9 ) ;

CONVERT VALUE=FEDFUNDS L 10 / TRANSFORMOUT=(LAG 1 0 ) ;

CONVERT VALUE=FEDFUNDS L 11 / TRANSFORMOUT=(LAG 1 1 ) ;

CONVERT VALUE=FEDFUNDS L 12 / TRANSFORMOUT=(LAG 1 2 ) ;

CONVERT VALUE=D FEDFUNDS L 0

/ TRANSFORMOUT=(DIF 1 ) ;

CONVERT VALUE=D FEDFUNDS L 1

/ TRANSFORMOUT=(DIF 1 LAG 1 ) ;

CONVERT VALUE=D FEDFUNDS L 2

/ TRANSFORMOUT=(DIF 1 LAG 2 ) ;

CONVERT VALUE=D FEDFUNDS L 3
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/ TRANSFORMOUT=(DIF 1 LAG 3 ) ;

CONVERT VALUE=D FEDFUNDS L 4

/ TRANSFORMOUT=(DIF 1 LAG 4 ) ;

CONVERT VALUE=D FEDFUNDS L 5

/ TRANSFORMOUT=(DIF 1 LAG 5 ) ;

CONVERT VALUE=D FEDFUNDS L 6

/ TRANSFORMOUT=(DIF 1 LAG 6 ) ;

CONVERT VALUE=D FEDFUNDS L 7

/ TRANSFORMOUT=(DIF 1 LAG 7 ) ;

CONVERT VALUE=D FEDFUNDS L 8

/ TRANSFORMOUT=(DIF 1 LAG 8 ) ;

CONVERT VALUE=D FEDFUNDS L 9

/ TRANSFORMOUT=(DIF 1 LAG 9 ) ;

CONVERT VALUE=D FEDFUNDS L 10

/ TRANSFORMOUT=(DIF 1 LAG 1 0 ) ;

CONVERT VALUE=D FEDFUNDS L 11

/ TRANSFORMOUT=(DIF 1 LAG 1 1 ) ;

CONVERT VALUE=D FEDFUNDS L 12

/ TRANSFORMOUT=(DIF 1 LAG 1 2 ) ;

RUN;

PROC EXPAND DATA=DOCS.STACK(WHERE=(COMPRESS(CODE) = ”M2”) )

OUT=DOCS.LAGM2(KEEP=DATE M2 L : ) ;

BY CODE;

CONVERT VALUE=M2 L 1 / TRANSFORMOUT=(LOG LAG 1 ) ;

CONVERT VALUE=M2 L 2 / TRANSFORMOUT=(LOG LAG 2 ) ;

CONVERT VALUE=M2 L 3 / TRANSFORMOUT=(LOG LAG 3 ) ;
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CONVERT VALUE=M2 L 4 / TRANSFORMOUT=(LOG LAG 4 ) ;

CONVERT VALUE=M2 L 5 / TRANSFORMOUT=(LOG LAG 5 ) ;

CONVERT VALUE=M2 L 6 / TRANSFORMOUT=(LOG LAG 6 ) ;

CONVERT VALUE=M2 L 7 / TRANSFORMOUT=(LOG LAG 7 ) ;

CONVERT VALUE=M2 L 8 / TRANSFORMOUT=(LOG LAG 8 ) ;

CONVERT VALUE=M2 L 9 / TRANSFORMOUT=(LOG LAG 9 ) ;

CONVERT VALUE=M2 L 10 / TRANSFORMOUT=(LOG LAG 1 0 ) ;

CONVERT VALUE=M2 L 11 / TRANSFORMOUT=(LOG LAG 1 1 ) ;

CONVERT VALUE=M2 L 12 / TRANSFORMOUT=(LOG LAG 1 2 ) ;

CONVERT VALUE=D M2 L 0 / TRANSFORMOUT=(LOG DIF 1 ) ;

CONVERT VALUE=D M2 L 1

/ TRANSFORMOUT=(LOG DIF 1 LAG 1 ) ;

CONVERT VALUE=D M2 L 1

/ TRANSFORMOUT=(LOG DIF 1 LAG 1 ) ;

CONVERT VALUE=D M2 L 2

/ TRANSFORMOUT=(LOG DIF 1 LAG 2 ) ;

CONVERT VALUE=D M2 L 3

/ TRANSFORMOUT=(LOG DIF 1 LAG 3 ) ;

CONVERT VALUE=D M2 L 4

/ TRANSFORMOUT=(LOG DIF 1 LAG 4 ) ;

CONVERT VALUE=D M2 L 5

/ TRANSFORMOUT=(LOG DIF 1 LAG 5 ) ;

CONVERT VALUE=D M2 L 6

/ TRANSFORMOUT=(LOG DIF 1 LAG 6 ) ;

CONVERT VALUE=D M2 L 7

/ TRANSFORMOUT=(LOG DIF 1 LAG 7 ) ;

CONVERT VALUE=D M2 L 8
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/ TRANSFORMOUT=(LOG DIF 1 LAG 8 ) ;

CONVERT VALUE=D M2 L 9

/ TRANSFORMOUT=(LOG DIF 1 LAG 9 ) ;

CONVERT VALUE=D M2 L 10

/ TRANSFORMOUT=(LOG DIF 1 LAG 1 0 ) ;

CONVERT VALUE=D M2 L 11

/ TRANSFORMOUT=(LOG DIF 1 LAG 1 1 ) ;

CONVERT VALUE=D M2 L 12

/ TRANSFORMOUT=(LOG DIF 1 LAG 1 2 ) ;

RUN;

PROC EXPAND DATA=DOCS.STACK(WHERE=

(COMPRESS(CODE) = ” Index ”) )

OUT=DOCS.LAGPDEX(KEEP=DATE PDEX L : ) ;

BY CODE;

CONVERT VALUE=PDEX L 1 / TRANSFORMOUT=(LOG LAG 1 ) ;

CONVERT VALUE=PDEX L 2 / TRANSFORMOUT=(LOG LAG 2 ) ;

CONVERT VALUE=PDEX L 3 / TRANSFORMOUT=(LOG LAG 3 ) ;

CONVERT VALUE=PDEX L 4 / TRANSFORMOUT=(LOG LAG 4 ) ;

CONVERT VALUE=PDEX L 5 / TRANSFORMOUT=(LOG LAG 5 ) ;

CONVERT VALUE=PDEX L 6 / TRANSFORMOUT=(LOG LAG 6 ) ;

CONVERT VALUE=PDEX L 7 / TRANSFORMOUT=(LOG LAG 7 ) ;

CONVERT VALUE=PDEX L 8 / TRANSFORMOUT=(LOG LAG 8 ) ;

CONVERT VALUE=PDEX L 9 / TRANSFORMOUT=(LOG LAG 9 ) ;

CONVERT VALUE=PDEX L 10 / TRANSFORMOUT=(LOG LAG 1 0 ) ;

CONVERT VALUE=PDEX L 11 / TRANSFORMOUT=(LOG LAG 1 1 ) ;

CONVERT VALUE=PDEX L 12 / TRANSFORMOUT=(LOG LAG 1 2 ) ;
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CONVERT VALUE=D PDEX L 0 / TRANSFORMOUT=(LOG DIF 1 ) ;

CONVERT VALUE=D PDEX L 1

/ TRANSFORMOUT=(LOG DIF 1 LAG 1 ) ;

CONVERT VALUE=D PDEX L 2

/ TRANSFORMOUT=(LOG DIF 1 LAG 2 ) ;

CONVERT VALUE=D PDEX L 3

/ TRANSFORMOUT=(LOG DIF 1 LAG 3 ) ;

CONVERT VALUE=D PDEX L 4

/ TRANSFORMOUT=(LOG DIF 1 LAG 4 ) ;

CONVERT VALUE=D PDEX L 5

/ TRANSFORMOUT=(LOG DIF 1 LAG 5 ) ;

CONVERT VALUE=D PDEX L 6

/ TRANSFORMOUT=(LOG DIF 1 LAG 6 ) ;

CONVERT VALUE=D PDEX L 7

/ TRANSFORMOUT=(LOG DIF 1 LAG 7 ) ;

CONVERT VALUE=D PDEX L 8

/ TRANSFORMOUT=(LOG DIF 1 LAG 8 ) ;

CONVERT VALUE=D PDEX L 9

/ TRANSFORMOUT=(LOG DIF 1 LAG 9 ) ;

CONVERT VALUE=D PDEX L 10

/ TRANSFORMOUT=(LOG DIF 1 LAG 1 0 ) ;

CONVERT VALUE=D PDEX L 11

/ TRANSFORMOUT=(LOG DIF 1 LAG 1 1 ) ;

CONVERT VALUE=D PDEX L 12

/ TRANSFORMOUT=(LOG DIF 1 LAG 1 2 ) ;

RUN;
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∗ Now, combine these toge the r f o r l a t e r use ;

PROC SORT DATA=DOCS.LAGFED; BY DATE; RUN;

PROC SORT DATA=DOCS.LAGM2; BY DATE; RUN;

PROC SORT DATA=DOCS.LAGPDEX; BY DATE; RUN;

DATA DOCS.LAGMACROS;

MERGE DOCS.LAGFED

DOCS.LAGM2

DOCS.LAGPDEX;

BY DATE;

RUN;

PROC SORT DATA=DOCS.STACK(WHERE=(COMPRESS(CODE) =”FEDFUNDS”)

KEEP=DATE CODE VALUE) OUT=DOCS.FF;

BY DATE;

RUN;

DATA DOCS.M2(KEEP=DATE VALUE) ;

SET DOCS.LOGSERIES(WHERE=(COMPRESS(CODE) IN (”M2” ) ) ) ;

RUN;

DATA DOCS.INDEX(KEEP=DATE VALUE) ;

SET DOCS.LOGSERIES(WHERE=(COMPRESS(CODE) IN (” Index ” ) ) ) ;

RUN;

PROC SORT DATA=DOCS.INDEX;
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BY DATE;

RUN;

PROC SORT DATA=DOCS.MACROS;

BY DATE;

RUN;

PROC SORT DATA=DOCS.LOGSERIES;

BY DATE;

RUN;

DATA PERM.AUTO;

MERGE DOCS.M2(RENAME=(VALUE=M2) IN=A)

DOCS.LOGSERIES(WHERE=(COMPRESS(CODE)

NOT IN (”M2” ,”FEDFUNDS” ,” Index ”) ) IN=B)

DOCS.FF(RENAME=(VALUE=FEDFUNDS) DROP=CODE IN=C)

DOCS.INDEX(RENAME=(VALUE=PDEX) IN=D) ;

BY DATE;

IF A AND B AND C AND D;

RUN;

%MACRO REDUCE;

PROC SQL;

CREATE TABLE DOCS.SUBSET AS

SELECT DISTINCT CODE FROM PERM.AUTO;
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DATA DOCS.SUBSET;

SET DOCS.SUBSET(OBS=50);

RUN;

PROC SORT DATA=PERM.AUTO; BY CODE; RUN;

PROC SORT DATA=DOCS.SUBSET; BY CODE; RUN;

DATA PERM.AUTO;

MERGE PERM.AUTO

DOCS.SUBSET( IN=A) ;

BY CODE;

IF A;

RUN;

PROC SORT DATA=PERM.AUTO; BY CODE DATE; RUN;

%MEND REDUCE;

∗%REDUCE;

PROC SORT DATA=PERM.AUTO; BY CODE; RUN;

TITLE ”ARIMA with No D i f f e r e n c e in Macro−v a r i a b l e s ” ;

ODS PDF FILE=”/ s c ra t ch/ j s c h u l e 4/arima repor t . pdf ”

STYLE=STATISTICAL ;

PROC ARIMA DATA=PERM.AUTO;
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BY CODE;

IDENTIFY VAR=VALUE(1) CROSSCORR=(FEDFUNDS(0 1)

M2(0 1) PDEX(0 1) )

OUTCOV=SDOCS.OCOVAR NLAG=12

STATIONARITY=(PP=12);

ESTIMATE P=12 Q=0 INPUT=(

0 $ FEDFUNDS

1 $ FEDFUNDS

2 $ FEDFUNDS

3 $ FEDFUNDS

4 $ FEDFUNDS

5 $ FEDFUNDS

6 $ FEDFUNDS

7 $ FEDFUNDS

8 $ FEDFUNDS

9 $ FEDFUNDS

10 $ FEDFUNDS

11 $ FEDFUNDS

12 $ FEDFUNDS

0 $ M2

1 $ M2

2 $ M2

3 $ M2

4 $ M2

5 $ M2

6 $ M2
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7 $ M2

8 $ M2

9 $ M2

10 $ M2

11 $ M2

12 $ M2

0 $ PDEX

1 $ PDEX

2 $ PDEX

3 $ PDEX

4 $ PDEX

5 $ PDEX

6 $ PDEX

7 $ PDEX

8 $ PDEX

9 $ PDEX

10 $ PDEX

11 $ PDEX

12 $ PDEX )

oute s t=DOCS.ESTS OUTMODEL=SDOCS.MODS OUTSTAT=SDOCS.STATS;

FORECAST LEAD=0 INTERVAL=MONTH ID=DATE OUT=SDOCS.RESULT;

RUN;

QUIT;

ODS PDF CLOSE;

PROC SORT DATA=SDOCS.RESULT; BY DATE; RUN;
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PROC TRANSPOSE DATA=SDOCS.RESULT(KEEP=CODE DATE RESIDUAL)

OUT=MDOCS.RESTRANS(DROP= NAME LABEL ) ;

BY DATE;

ID CODE;

VAR RESIDUAL;

RUN;

∗ Now, we want to merge the

macro v a r i a b l e s in with the r e s i d u a l s ;

PROC SORT DATA=DOCS.LAGFED; BY DATE; RUN;

PROC SORT DATA=DOCS.LAGM2; BY DATE; RUN;

PROC SORT DATA=DOCS.LAGPDEX; BY DATE; RUN;

PROC SORT DATA=MDOCS.RESTRANS; BY DATE; RUN;

DATA PERM.RESLAGALL;

MERGE DOCS.LAGFED

DOCS.LAGM2

DOCS.LAGPDEX

DOCS.FF(RENAME=(VALUE=FEDFUNDS) DROP=CODE)

DOCS.M2(RENAME=(VALUE=M2) )

DOCS.INDEX(RENAME=(VALUE=PDEX) )

MDOCS.RESTRANS;

BY DATE;

RUN;

ODS CSV FILE=”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/ r e s i d s 1 . csv ” ;
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PROC PRINT DATA=PERM.RESLAGALL(DROP=DATE) NOOBS;

RUN;

ODS CSV CLOSE;

X ” Rscr ip t dcorr ana lys t004 .R r e s i d s 1 . csv output2 . csv 0 ”

−XSYNC;

∗ Now prepare the BETAS;

DATA SDOCS.MODS;

SET SDOCS.MODS(WHERE=(COMPRESS( PARM )

IN (”MU” ,”AR” ,”NUM” ) ) ) ;

LAG=MAX( LAG , SHIFT ) ;

LENGTH BYGRP $ 5 0 . ;

RUN;

PROC SORT DATA=SDOCS.MODS; BY NAME LAG; RUN;

PROC TRANSPOSE DATA=SDOCS.MODS OUT=SDOCS.BETA;

BY NAME LAG;

ID CODE;

VAR VALUE ;

RUN;

ODS CSV FILE=”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/betas . csv ” ;

PROC PRINT DATA=SDOCS.BETA

NOOBS;
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RUN;

ODS CSV CLOSE;

PROC SORT DATA=PERM.AUTO; BY CODE; RUN;

PROC EXPAND DATA=PERM.AUTO(WHERE=(COMPRESS(CODE)

NOT IN (”M2” ,”FEDFUNDS” ,” Index ” ) ) )

OUT=PERM.AUTOLAG;

BY CODE;

CONVERT VALUE=VALUE / TRANSFORMOUT=(LOG DIF1 ) ;

CONVERT VALUE=L1 / TRANSFORMOUT=(LOG DIF1 LAG 1 ) ;

CONVERT VALUE=L2 / TRANSFORMOUT=(LOG DIF1 LAG 2 ) ;

CONVERT VALUE=L3 / TRANSFORMOUT=(LOG DIF1 LAG 3 ) ;

CONVERT VALUE=L4 / TRANSFORMOUT=(LOG DIF1 LAG 4 ) ;

CONVERT VALUE=L5 / TRANSFORMOUT=(LOG DIF1 LAG 5 ) ;

CONVERT VALUE=L6 / TRANSFORMOUT=(LOG DIF1 LAG 6 ) ;

CONVERT VALUE=L7 / TRANSFORMOUT=(LOG DIF1 LAG 7 ) ;

CONVERT VALUE=L8 / TRANSFORMOUT=(LOG DIF1 LAG 8 ) ;

CONVERT VALUE=L9 / TRANSFORMOUT=(LOG DIF1 LAG 9 ) ;

CONVERT VALUE=L10 / TRANSFORMOUT=(LOG DIF1 LAG 1 0 ) ;

CONVERT VALUE=L11 / TRANSFORMOUT=(LOG DIF1 LAG 1 1 ) ;

CONVERT VALUE=L12 / TRANSFORMOUT=(LOG DIF1 LAG 1 2 ) ;

RUN;

PROC SORT DATA=PERM.AUTOLAG; BY DATE; RUN;

PROC SORT DATA=DOCS.LAGMACROS; BY DATE; RUN;
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PROC SORT DATA=DOCS.M2(RENAME=(VALUE=M2) )

OUT=DOCS.FM2; BY DATE; RUN;

PROC SORT DATA=DOCS.FF(RENAME=(VALUE=FEDFUNDS) DROP=CODE)

OUT=DOCS.FFF; BY DATE; RUN;

PROC SORT DATA=DOCS.INDEX(RENAME=(VALUE=PDEX) )

OUT=DOCS.FPDEX; BY DATE; RUN;

DATA PERM.LAGFIN(DROP=TIME) ;

MERGE PERM.AUTOLAG

DOCS.LAGMACROS

DOCS.FM2

DOCS.FFF

DOCS.FPDEX;

BY DATE;

IF MISSING(FEDFUNDS) THEN DELETE;

RUN;

PROC SORT DATA=PERM.LAGFIN(DROP=DESC) ;

BY DESCENDING DATE CODE; RUN;

∗ Now, r eo rde r the data ;

DATA PERM.LAGFIN;

ARRAY VARBS{∗} FEDFUNDS

FEDFUNDS L :

M2

M2 L :
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PDEX

PDEX L :

VALUE

L : ;

SET PERM.LAGFIN;

RUN;

∗ Now, make sure that a l l dates and codes

are r epr e s ent ed in each date , even i f blank ;

PROC SQL;

CREATE TABLE PERM.CODE DT AS

SELECT A.CODE, B.DATE FROM

(SELECT DISTINCT CODE FROM PERM.LAGFIN) A,

(SELECT DISTINCT DATE FROM PERM.LAGFIN) B

;

QUIT;

PROC SORT DATA=PERM.CODE DT; BY DESCENDING DATE CODE; RUN;

DATA PERM.LAGFIN;

MERGE PERM.LAGFIN

PERM.CODE DT;

BY DESCENDING DATE CODE;

RUN;

PROC DATASETS l i b=PERM;

MODIFY LAGFIN;

FORMAT a l l ;

INFORMAT a l l ;
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RUN;

QUIT;

ODS CSV FILE=”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/X. csv ” ;

PROC PRINT DATA=PERM.LAGFIN NOOBS;

RUN;

ODS CSV CLOSE;

∗ Now, get the dependency s t r u c t u r e o f the e r r o r term ;

X ” Rscr ip t l a s s o dcorr ana lys t001 .R\

l a s s o r e s . csv output3 . csv 0 ” −XSYNC;

∗ Now, we can begin the s imu la t i on ;

∗ Fir s t , study the d i f f e r e n c e in Federa l funds ra t e ;

PROC EXPAND DATA=DOCS.STACK(WHERE=(CODE = ”FEDFUNDS”))

OUT=DOCS.FDELTA(KEEP=DATE D FEDFUNDS L 0 ) ;

BY CODE;

CONVERT VALUE=D FEDFUNDS L 0 / TRANSFORMOUT=(DIF 1 ) ;

RUN;

ODS PDF FILE=”/ s c ra t ch/ j s c h u l e 4/ f ed funds . pdf ”

STYLE=STATISTICAL ;

PROC SGPLOT DATA=DOCS.FDELTA;

HISTOGRAM D FEDFUNDS L 0 ;

RUN;
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ODS PDF CLOSE;

∗ Now, we w i l l s t a r t with the lowest

observed f e d e r a l funds ra t e f o r T=0;

PROC MEANS DATA=DOCS.FF NOPRINT;

OUTPUT OUT=DOCS.FF SMRY

MIN(VALUE)=FED MIN

MAX(VALUE)=FED MAX ;

RUN;

DATA PERM.SIMU;

SET DOCS.FF SMRY(KEEP=FED MIN) ;

T=0;

RUN;

PROC RANK DATA=DOCS.FDELTA OUT=DOCS.F RANKS;

VAR D FEDFUNDS L 0 ;

RANKS D RANK;

RUN;

DATA DOCS.QUANT(KEEP=CNT) ;

SET DOCS.F RANKS END=EOF;

IF EOF THEN DO;

CNT= N ;

END;

IF CNT= N THEN OUTPUT;

RUN;
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PROC SQL; CREATE TABLE DOCS.PCT AS SELECT A. ∗ ,B.CNT

FROM DOCS.F RANKS A,DOCS.QUANT B; QUIT; RUN;

DATA DOCS.PCT;

SET DOCS.PCT;

PCT=D RANK/ CNT;

RUN;

PROC MEANS DATA=DOCS.PCT;

VAR PCT;

RUN;

∗ Now, we want a smooth path f o r the f e d e r a l funds ra t e from

the lowest to the h i ghe s t observed

over a per iod o f 100 t i c k s ;

∗ We need a sigmoid func t i on f o r which

we can use the normal CDF.

We w i l l arrange t h i s such that the min

and max observed f e d e r a l

funds ra t e are 4 sds from the mean ;

DATA DOCS.FF SMRY;

SET DOCS.FF SMRY;

DELTA=FED MAX−FED MIN;

SD=DELTA/16 ;

MN=FED MIN+DELTA/ 2 ;

DO T=0 TO 119 ;

X=FED MIN+ DELTA∗

CDF(”NORMAL” ,FED MIN+(T/119)∗DELTA,MN,SD) ;
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OUTPUT;

END;

RUN;

ODS PDF FILE=”/ s c ra t ch/ j s c h u l e 4/ f f p a t h . pdf ”

STYLE=STATISTICAL ;

PROC SGPLOT DATA=DOCS.FF SMRY;

SERIES X=T Y=X;

RUN;

ODS PDF CLOSE;

DATA DOCS.FDELTA;

SET DOCS.FDELTA;

IF MISSING(D FEDFUNDS L 0) THEN DELETE;

RUN;

∗ Now, we can assemble an approximation o f t h i s s igmoid

func t i on out o f ac tua l observed d i f f e r e n c e s

in the FF ra t e month to month ;

PROC SQL; CREATE TABLE DOCS.SIGMOID

AS SELECT A.FED MIN, A.X, A.T,

B.D FEDFUNDS L 0 FROM DOCS.FF SMRY A,

DOCS.FDELTA B

ORDER BY T; QUIT; RUN;

DATA DOCS.SIGMOID;

SET DOCS.SIGMOID;
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BY T;

IF T=0 THEN CURR VAL=FED MIN;

RETAIN CURR VAL CLOSE DIF ;

IF FIRST .T THEN CLOSE DIF=D FEDFUNDS L 0 ;

LR=ABS(X−(CURR VAL+D FEDFUNDS L 0 ) ) ;

GR=ABS(X−(CURR VAL+CLOSE DIF ) ) ;

IF ABS(X−(CURR VAL+D FEDFUNDS L 0)) <

ABS(X−(CURR VAL+CLOSE DIF ) )

THEN CLOSE DIF=D FEDFUNDS L 0 ;

IF LAST.T THEN DO;

CURR VAL=CURR VAL+CLOSE DIF ;

END;

RUN;

DATA DOCS.SIGMOID;

SET DOCS.SIGMOID;

BY T;

IF LAST.T THEN OUTPUT;

RUN;

ODS PDF FILE=”/ s c ra t ch/ j s c h u l e 4/ f f p a t h emp . pdf ”

STYLE=STATISTICAL ;

PROC SGPLOT DATA=DOCS.SIGMOID;
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SERIES X=T Y=X;

SERIES X=T Y=CURR VAL;

RUN;

ODS PDF CLOSE;

∗ Now that we have a p l a u s i b l e FF path ,

we can s imulate the other macro v a r i a b l e s ;

∗ Fir s t , we need to model the s t o c h a s t i c

p r o c e s s e s f o r the u n i v a r i a t e macro v a r i a b l e s ;

PROC SORT DATA=DOCS.LAGMACROS; BY DATE; RUN;

DATA PERM.COPMACROS;

MERGE DOCS.FF(RENAME=(VALUE=FEDFUNDS) DROP=CODE)

DOCS.M2(RENAME=(VALUE=M2) )

DOCS.INDEX(RENAME=(VALUE=PDEX) )

DOCS.LAGMACROS;

BY DATE;

RUN;

ODS CSV

FILE=”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/macro copula varbs . csv ” ;

PROC PRINT DATA=PERM.COPMACROS NOOBS;

RUN;

ODS CSV CLOSE;

∗ Now, we can p r e d i c t the M2 and the Pr i ce

index from the Federa l funds ra t e ;

∗We need to prepare the macroeconomics data s e t by
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adding the s imulated per iod ;

DATA DOCS.SIMFED;

SET DOCS.SIGMOID(RENAME=(X=FEDFUNDS) KEEP=X) ;

RUN;

PROC MEANS DATA=PERM.COPMACROS NOPRINT;

OUTPUT OUT=DOCS.FINALDATE MAX(DATE)=DATE;

RUN;

PROC SQL; CREATE TABLE PERM.SIMMACROS AS SELECT A. ∗ ,

B.DATE AS FIRDT

FROM DOCS.SIMFED A, DOCS.FINALDATE B; QUIT; RUN;

DATA PERM.SIMMACROS(DROP=FIRDT) ;

SET PERM.SIMMACROS;

DATE=INTNX(”MONTH” ,FIRDT, ( N −1) ,”SAME” ) ;

SIM=1;

RUN;

DATA PERM.COPMACROS;

SET PERM.COPMACROS(WHERE=(DATE NE 21975))

PERM.SIMMACROS;

RUN;

PROC ARIMA DATA=PERM.COPMACROS;

TITLE ”M2 1 s t D i f f e r e n c e ” ;
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IDENTIFY VAR=M2(1) CROSSCORR=(FEDFUNDS(0 1) )

OUTCOV=DOCS.M2 COVAR 1 NLAG=12 STATIONARITY=(PP=12);

ESTIMATE P=12 Q=0 INPUT=(

0 $ FEDFUNDS

1 $ FEDFUNDS

2 $ FEDFUNDS

3 $ FEDFUNDS

4 $ FEDFUNDS

5 $ FEDFUNDS

6 $ FEDFUNDS

7 $ FEDFUNDS

8 $ FEDFUNDS

9 $ FEDFUNDS

10 $ FEDFUNDS

11 $ FEDFUNDS

12 $ FEDFUNDS

)

OUTEST=DOCS.M2 ESTS 1 OUTMODEL=DOCS.M2 MODS 1

OUTSTAT=DOCS.M2 STATS 1 ;

FORECAST LEAD=120

INTERVAL=MONTH ID=DATE OUT=DOCS.M2 RESULTS 1 ;

RUN;

QUIT;

∗ Now we have an es t imate f o r M2,

we can use t h i s e s t imate to f o r e c a s t PDEX;
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DATA DOCS.M2 CAST(DROP=FORECAST) ;

SET DOCS.M2 RESULTS 1(KEEP=DATE M2 FORECAST) ;

M2=COALESCE(M2,FORECAST) ;

RUN;

DATA PERM.COPMACROS;

MERGE PERM.COPMACROS(DROP=M2)

DOCS.M2 CAST;

BY DATE;

RUN;

PROC ARIMA DATA=PERM.COPMACROS;

TITLE ”PDEX 1 s t D i f f e r ence− no t a r g e t ” ;

IDENTIFY VAR=PDEX(1) CROSSCORR=(M2(1) FEDFUNDS(1) )

OUTCOV=DOCS.PDEX COVAR 1 NLAG=24 STATIONARITY=(PP=12);

ESTIMATE P=12 Q=0 INPUT=(

0 $ M2

1 $ M2

2 $ M2

3 $ M2

4 $ M2

5 $ M2

6 $ M2

7 $ M2

8 $ M2

9 $ M2

10 $ M2

11 $ M2
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12 $ M2

0 $ FEDFUNDS

1 $ FEDFUNDS

2 $ FEDFUNDS

3 $ FEDFUNDS

4 $ FEDFUNDS

5 $ FEDFUNDS

6 $ FEDFUNDS

7 $ FEDFUNDS

8 $ FEDFUNDS

9 $ FEDFUNDS

10 $ FEDFUNDS

11 $ FEDFUNDS

12 $ FEDFUNDS

)

oute s t=DOCS.PDEX ESTS 1 OUTMODEL=DOCS.PDEX MODS 1

OUTSTAT=DOCS.PDEX STATS 1 ;

FORECAST LEAD=120 INTERVAL=MONTH ID=DATE

OUT=DOCS.PDEX RESULTS 1 ;

RUN;

QUIT;

DATA DOCS.PDEX CAST(RENAME=(FORECAST=PDEX) ) ;

SET DOCS.PDEX RESULTS 1(KEEP=DATE FORECAST) ;

RUN;
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∗ Now, we have p r e d i c t i o n s o f a l l the macro v a r i a b l e s ;

DATA PERM.COPMACROS(KEEP=DATE FEDFUNDS M2 PDEX) ;

MERGE PERM.COPMACROS(WHERE=(SIM=1) IN=A)

DOCS.PDEX CAST;

BY DATE;

IF A;

RUN;

PROC EXPAND DATA=PERM.COPMACROS OUT=PERM.DIFFCOP;

CONVERT FEDFUNDS=FEDFUNDS / TRANSFORMOUT=(DIF1 ) ;

CONVERT M2=M2 / TRANSFORMOUT=(DIF1 ) ;

CONVERT PDEX=PDEX / TRANSFORMOUT=(DIF1 ) ;

RUN;

DATA PERM.DIFFCOP;

SET PERM.DIFFCOP;

IF N =1 THEN DELETE;

RUN;

ODS CSV FILE=”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/ f ins immacro . csv ” ;

PROC PRINT DATA=PERM.DIFFCOP(DROP=TIME DATE) NOOBS;

RUN;

ODS CSV CLOSE;
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ODS CSV FILE=”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/ p r i c e s . csv ” ;

PROC PRINT DATA=PERM.AUTO NOOBS;

VAR DATE CODE VALUE ;

RUN;

ODS CSV CLOSE;

∗ Now that have have the s imulated data ,

we can begin prepping the s imu la t i on code ;

∗ We need to run the e r r o r term program once per round ;

FILENAME DELTAS

”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/p r e d i c t i o n s . csv ” ;

FILENAME START ”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/beg inn ings . csv ” ;

DATA PERM.DELTA;

INFILE DELTAS dlm=’ , ’ dsd l r e c l =4096 MISSOVER

f i r s t o b s =1 termstr=LF;

LENGTH IDX 8 .

VALUE 8 . ;

INPUT IDX VALUE;

K=0;

TIME=FLOOR( N / 3 8 1 ) ;

RUN;

DATA PERM. XINIT(KEEP=IDX VALUE K TIME) ;

INFILE START dlm=’ , ’ dsd l r e c l =4096 MISSOVER

f i r s t o b s =1 termstr=LF;
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LENGTH IDX 8 .

VALUE 8 .

L1 8 .

L2 8 .

L3 8 .

L4 8 .

L5 8 .

L6 8 .

L7 8 .

L8 8 .

L9 8 .

L10 8 .

L11 8 .

L12 8 . ;

K= N ;

TIME=0;

RUN;

DATA PERM.XSTACK;

SET PERM. XINIT

PERM.DELTA;

RUN;

PROC EXPAND DATA=PERM.XSTACK OUT=PERM.FDELTA;

BY TIME;

CONVERT VALUE=CUMSUM / TRANSFORMOUT=(CUSUM) ;
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RUN;

PROC MEANS DATA=PERM.FDELTA NOPRINT;

CLASS TIME;

OUTPUT OUT=PERM.COV MEAN(CUMSUM)=MN STD(CUMSUM)=STDV;

RUN;

DATA PERM.COV;

SET PERM.COV;

COV=STDV/ABS(MN) ;

RUN;

TITLE ” C o e f f i c i e n t o f Var ia t ion ” ;

ODS PDF FILE=”/ s c ra t ch/ j s c h u l e 4/p lo t . pdf ”

STYLE=STATISTICAL ;

ODS HTML FILE=”/ s c ra t ch/ j s c h u l e 4/p lo t . html”

STYLE=STATISTICAL ;

PROC SGPLOT DATA=PERM.COV;

LABEL TIME=”Time Step ”

COV=”C o e f f i c i e n t ” ;

SERIES X=TIME Y=COV;

RUN;

ODS HTML CLOSE;

ODS PDF CLOSE;

TITLE ”” ;

ODS CSV FILE=”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/cov . cvs ” ;

PROC PRINT DATA=PERM.COV NOOBS; RUN;
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ODS CSV CLOSE;

PROC TRANSPOSE DATA=PERM.FDELTA OUT=PERM.TDELT;

BY TIME;

VAR CUMSUM;

ID IDX ;

RUN;

ODS CSV FILE=”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/simsum . cvs ” ;

PROC PRINT DATA=PERM.TDELT NOOBS; RUN;

ODS CSV CLOSE;Appendix 7: Python Code for Full Model

# Code to Model the Error Term

# February 2020

# John S . Schu ler .

# Import l i b r a r y s

import networkx as nx

import numpy as np

import s c ipy as sp

import skpp

import pandas as pd

import random as R

import mul t i p ro c e s s i ng
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import p i c k l e as PK

import sys

import copy

import datet ime

reps=1

R. seed (78)

cmdargs = sys . argv

# Now conver t t h i s i n t o a number . We s t a r t the s i m u l a t i o n

# at the 13 th p l a c e and the s imu la ted macro data i s 120 long

s t a r t=0

end=13

varbs=382

R. seed (525)

# M u l t i t h r e a d i n g note : The main pr oces s i s s i n g l e−threaded .

# The p r o j e c t i o n p u r s u i t e s t i m a t i o n may be farmed

# out to another thread .

# now import r e s i d u a l s

r e sda t=\

pd . read csv ( ”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/ r e s i d s 1 . csv ” ,\

na va lue s =[ ’ . ’ ] )

# and import the d i s t a n c e c o r r e l a t i o n matrix

dcor=\
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pd . read csv ( ”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/dependenc ies . csv ” )

# and import the dependency in format ion

# of the macroeconomic | v a r i a b l e s

mvars=\

pd . read csv ( ”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/macrobool . csv ” )

# We a l s o need the s imu la ted macro data

simmacro=\

pd . read csv ( ”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/ f ins immacro . csv ” )

p r i c e s=pd . read csv ( ”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/ p r i c e s . csv ” )

# Now, t e s t import

r e sda t=re sdat [\

[ ’WPU01110104 ’ ,\

’WPU01130113 ’ ,\

’WPU01130211 ’ ,\

’WPU01130212 ’ ,\

’WPU01130213 ’ ,\

’WPU01130214 ’ ,\

’WPU01130215 ’ ,\

’WPU01130216 ’ ,\

’WPU01130217 ’ ,\

’WPU01130218 ’ ,\

’WPU01210101 ’ ,\
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’WPU01210102 ’ ,\

’WPU01210103 ’ ,\

’WPU01210104 ’ ,\

’WPU01220101 ’ ,\

’WPU01220205 ’ ,\

’WPU01510101 ’ ,\

’WPU01610102 ’ ,\

’WPU01710703 ’ ,\

’WPU01810101 ’ ,\

’WPU01830131 ’ ,\

’WPU01PLUS02 ’ ,\

’WPU02230101 ’ ,\

’WPU02450202 ’ ,\

’WPU02550201 ’ ,\

’WPU02610101 ’ ,\

’WPU02610103 ’ ,\

’WPU02630103 ’ ,\

’WPU02640101 ’ ,\

’WPU02780109 ’ ,\

’WPU02940301 ’ ,\

’WPU03810623 ’ ,\

’WPU03810645 ’ ,\

’WPU03810646 ’ ,\

’WPU03T15M05 ’ ,\

’WPU03THRU15 ’ ,\

’WPU05320104 ’ ,\

’WPU05320105 ’ ,\

’WPU05720201 ’ ,\
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’WPU05720301 ’ ,\

’WPU05730201 ’ ,\

’WPU06130213 ’ ,\

’WPU06220209 ’ ,\

’WPU06220407 ’ ,\

’WPU06371801 ’ ,\

’WPU06380202 ’ ,\

’WPU0652013A ’ ,\

’WPU06710402 ’ ,\

’WPU07120105 ’ ,\

’WPU09130291 ’ ,\

’WPU09140551 ’ ,\

’WPU09150337 ’ ,\

’WPU09150441 ’ ,\

’WPU10720122 ’ ,\

’WPU10750103 ’ ,\

’WPU10810231 ’ ,\

’WPU10890424 ’ ,\

’WPU10890507 ’ ,\

’WPU10890701 ’ ,\

’WPU11382611 ’ ,\

’WPU11382631 ’ ,\

’WPU11382651 ’ ,\

’WPU11430406 ’ ,\

’WPU11720501 ’ ,\

’WPU11790551 ’ ,\

’WPU11930700 ’ ,\

’WPU11941301 ’ ,\
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’WPU12220325 ’ ,\

’WPU12310101 ’ ,\

’WPU12410220 ’ ,\

’WPU12680101 ’ ,\

’WPU13210121 ’ ,\

’WPU13330101 ’ ,\

’WPU13440131 ’ ,\

’WPU13450101 ’ ,\

’WPU14120514 ’ ,\

’WPU30160107 ’ ,\

’WPU33110402 ’ ,\

’WPUFD413111 ’ ,\

’WPUFD413112 ’ ,\

’WPUFD413121 ’ ,\

’WPUFD413122 ’ ,\

’WPUSI004011 ’ ,\

’WPUSI006111 ’ ,\

’WPUSI012011 ’ ,\

’WPUSI013011 ’ ,\

’WPUSI017011 ’ ,\

’WPUSI018011 ’ ,\

’WPUSI019011 ’ ,\

’WPUSI020011 ’ ,\

’WPUSI021011 ’ ,\

’WPUSI021012 ’ ,\

’WPUSI023011 ’ ,\

’WPUSI023012 ’ ,\

’WPUSI024011 ’ ,\
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’WPUSI024012 ’ ,\

’WPUSI070011 ’ ,\

’WPUSI089011 ’ ,\

’WPUSI092011 ’ ,\

’WPUSI093011 ’ ,\

’WPUSI094011 ’ ,\

’WPUSI095011 ’ ,\

’WPUSI134011 ’ ,\

’WPUSISTEEL1 ’ ,\

’WPUSISTEEL2 ’ ,\

’WPUSISTEEL3 ’ ,\

’WPU10150211 ’ ,\

’WPU02420305 ’ ,\

’WPU02620609 ’ ,\

’WPU06790302 ’ ,\

’WPU10150501 ’ ,\

’WPU11420221 ’ ,\

’WPU13312101 ’ ,\

’WPU13313101 ’ ,\

’WPU03380301 ’ ,\

’WPU10790354 ’ ,\

’WPU13920201 ’ ,\

’WPU13314101 ’ ,\

’WPU02610105 ’ ,\

’WPU04410132 ’ ,\

’WPU09470102 ’ ,\

’WPU09470202 ’ ,\

’WPU09470203 ’ ,\
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’WPU09470302 ’ ,\

’WPU09470402 ’ ,\

’WPU09470506 ’ ,\

’WPU09470603 ’ ,\

’WPU09470609 ’ ,\

’WPU09471101 ’ ,\

’WPU10170710 ’ ,\

’WPU10810206 ’ ,\

’WPU10880101 ’ ,\

’WPU10880701 ’ ,\

’WPU11680111 ’ ,\

’WPU11782890 ’ ,\

’WPU11784901 ’ ,\

’WPU13990101 ’ ,\

’WPU13990111 ’ ,\

’WPU13990121 ’ ,\

’WPU02310301 ’ ,\

’WPU14120513 ’ ,\

’WPU02310302 ’ ,\

’WPU02310303 ’ ,\

’WPU02310304 ’ ,\

’WPU02310401 ’ ,\

’WPU02310501 ’ ,\

’WPU02840102 ’ ,\

’WPU02840104 ’ ,\

’WPU02850109 ’ ,\

’WPU02850111 ’ ,\

’WPU02850113 ’ ,\
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’WPU09141104 ’ ,\

’WPU09141105 ’ ,\

’WPU09220125 ’ ,\

’WPU10260301 ’ ,\

’WPU10890425 ’ ,\

’WPU11140611 ’ ,\

’WPU11140711 ’ ,\

’WPU11490201 ’ ,\

’WPU11490202 ’ ,\

’WPU11490203 ’ ,\

’WPU11490204 ’ ,\

’WPU11490205 ’ ,\

’WPU11490209 ’ ,\

’WPU07210606 ’ ,\

’WPU02112103 ’ ,\

’WPU02112104 ’ ,\

’WPU02120301 ’ ,\

’WPU02340201 ’ ,\

’WPU02540104 ’ ,\

’WPU02540105 ’ ,\

’WPU02550301 ’ ,\

’WPU02550302 ’ ,\

’WPU06210201 ’ ,\

’WPU06210301 ’ ,\

’WPU06220206 ’ ,\

’WPU06220299 ’ ,\

’WPU06710401 ’ ,\

’WPU06710403 ’ ,\
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’WPU06720103 ’ ,\

’WPU07130604 ’ ,\

’WPU07130606 ’ ,\

’WPU07130608 ’ ,\

’WPU08210112 ’ ,\

’WPU08210132 ’ ,\

’WPU08210142 ’ ,\

’WPU08210152 ’ ,\

’WPU08210162 ’ ,\

’WPU08210183 ’ ,\

’WPU10280207 ’ ,\

’WPU10540211 ’ ,\

’WPU10710515 ’ ,\

’WPU11350243 ’ ,\

’WPU11350501 ’ ,\

’WPU113A0201 ’ ,\

’WPU11490208 ’ ,\

’WPU11490534 ’ ,\

’WPU11490535 ’ ,\

’WPU11490537 ’ ,\

’WPU11490538 ’ ,\

’WPU13130116 ’ ,\

’WPU13130117 ’ ,\

’WPU11730901 ’ ,\

’WPU02350201 ’ ,\

’WPU03810407 ’ ,\

’WPU06790402 ’ ,\

’WPU06790501 ’ ,\
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’WPU06790502 ’ ,\

’WPU06790918 ’ ,\

’WPU09150216 ’ ,\

’WPU09150218 ’ ,\

’WPU09150322 ’ ,\

’WPU10270111 ’ ,\

’WPU10740803 ’ ,\

’WPU10890521 ’ ,\

’WPU10890522 ’ ,\

’WPU11411911 ’ ,\

’WPU11450108 ’ ,\

’WPU11470143 ’ ,\

’WPU11470144 ’ ,\

’WPU11670502 ’ ,\

’WPU12220407 ’ ,\

’WPU12220409 ’ ,\

’WPU12670141 ’ ,\

’WPU15410701 ’ ,\

’WPU15420601 ’ ,\

’WPU113A0101 ’ ,\

’WPU02350301 ’ ,\

’WPU02350303 ’ ,\

’WPU02130201 ’ ,\

’WPU03390101 ’ ,\

’WPU06790919 ’ ,\

’WPU08120311 ’ ,\

’WPU08120401 ’ ,\

’WPU08490901 ’ ,\
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’WPU11410701 ’ ,\

’WPU11440212 ’ ,\

’WPU11440216 ’ ,\

’WPU11440601 ’ ,\

’WPU11440602 ’ ,\

’WPU11950501 ’ ,\

’WPU12110102 ’ ,\

’WPU12110104 ’ ,\

’WPU12150112 ’ ,\

’WPU12690101 ’ ,\

’WPU12690102 ’ ,\

’WPU13620121 ’ ,\

’WPU14150101 ’ ,\

’WPU14160101 ’ ,\

’WPU14160201 ’ ,\

’WPU12680102 ’ ,\

’WPU01710701 ’ ,\

’WPU01710702 ’ ,\

’WPU01710704 ’ ,\

’WPU01710705 ’ ,\

’WPU04410112 ’ ,\

’WPU06130271 ’ ,\

’WPU08610103 ’ ,\

’WPU08610104 ’ ,\

’WPU09150636 ’ ,\

’WPU09150999 ’ ,\

’WPU10890811 ’ ,\

’WPU11410801 ’ ,\
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’WPU11440485 ’ ,\

’WPU11450201 ’ ,\

’WPU11790103 ’ ,\

’WPU11790104 ’ ,\

’WPU12230102 ’ ,\

’WPU13950111 ’ ,\

’WPU15120182 ’ ,\

’WPU08610102 ’ ,\

’WPU09150901 ’ ,\

’WPU09220131 ’ ,\

’WPU02140907 ’ ,\

’WPU02540107 ’ ,\

’WPU03460102 ’ ,\

’WPU03460103 ’ ,\

’WPU03470105 ’ ,\

’WPU03830321 ’ ,\

’WPU03940101 ’ ,\

’WPU04450101 ’ ,\

’WPU04450111 ’ ,\

’WPU05760303 ’ ,\

’WPU05760401 ’ ,\

’WPU06790904 ’ ,\

’WPU06790961 ’ ,\

’WPU06790999 ’ ,\

’WPU08420101 ’ ,\

’WPU08710101 ’ ,\

’WPU08710102 ’ ,\

’WPU09480104 ’ ,\
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’WPU10410311 ’ ,\

’WPU10830522 ’ ,\

’WPU10830524 ’ ,\

’WPU10890564 ’ ,\

’WPU10890589 ’ ,\

’WPU11790512 ’ ,\

’WPU12210112 ’ ,\

’WPU12210113 ’ ,\

’WPU12210114 ’ ,\

’WPU12210116 ’ ,\

’WPU13990209 ’ ,\

’WPU13990211 ’ ,\

’WPU13990299 ’ ,\

’WPU14911105 ’ ,\

’WPU15110152 ’ ,\

’WPU15110154 ’ ,\

’WPU15110155 ’ ,\

’WPU15930113 ’ ,\

’WPU15930117 ’ ,\

’WPU60110501 ’ ,\

’WPU02120401 ’ ,\

’WPU05810319 ’ ,\

’WPU02890151 ’ ,\

’WPU02890161 ’ ,\

’WPU02890172 ’ ,\

’WPU02890175 ’ ,\

’WPU02940202 ’ ,\

’WPU03470108 ’ ,\
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’WPU03810441 ’ ,\

’WPU03830351 ’ ,\

’WPU09480201 ’ ,\

’WPU11760121 ’ ,\

’WPU11760141 ’ ,\

’WPU11760301 ’ ,\

’WPU11760302 ’ ,\

’WPU11760303 ’ ,\

’WPU11792902 ’ ,\

’WPU11840102 ’ ,\

’WPU11840103 ’ ,\

’WPU13450199 ’ ,\

’WPU15120103 ’ ,\

’WPU15120127 ’ ,\

’WPU15120193 ’ ,\

’WPU15950210 ’ ,\

’WPU15950307 ’ ,\

’WPU15970501 ’ ,\

’WPU15970502 ’ ,\

’WPU15970503 ’ ,\

’WPU159A0402 ’ ,\

’WPU159A0404 ’ ,\

’WPU33310101 ’ ,\

’WPU15320100 ’ ,\

’WPU02630313 ’ ,\

’WPU02940203 ’ ,\

’WPU08210122 ’ ,\

’WPU11621201 ’ ,\
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’WPU11627701 ’ ,\

’WPUIP230000 ’ ,\

’WPUIP231000 ’ ,\

’WPUIP231100 ’ ,\

’WPUIP232000 ’ ,\

’WPUIP232100 ’ ,\

’WPUIP232200 ’ ,\

’WPU02890102 ’ ,\

’WPU02930102 ’ ,\

’WPU02930118 ’ ,\

’WPU10230101 ’ ,\

’WPU10230102 ’ ,\

’WPU10230104 ’ ,\

’WPU10230201 ’ ,\

’WPU10230205 ’ ,\

’WPU10230206 ’ ,\

’WPU10260314 ’ ,\

’WPU11440378 ’ ,\

’WPU08110503 ’ ,\

’WPU0613020T ’ ,\

’WPU06140399 ’ ,\

’WPU06220298 ’ ,\

’WPU09150301 ’ ,\

’WPU61110201 ’ ,\

’WPU02440102 ’ ,\

’WPU02440127 ’ ,\

’WPU02440139 ’ ,\

’WPU09130321 ’ ,\
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’WPU09130322 ’ ,\

’WPU02630104 ’ ,\

’WPU02210579 ’ ,\

’WPU10260333 ’ ,\

’WPU12140114 ’ ,\

’WPU33410101 ’ ,\

’WPU08610101 ’ ,\

’FEDFUNDS’ ,\

’FEDFUNDS L 1 ’ ,\

’FEDFUNDS L 2 ’ ,\

’FEDFUNDS L 3 ’ ,\

’FEDFUNDS L 4 ’ ,\

’FEDFUNDS L 5 ’ ,\

’FEDFUNDS L 6 ’ ,\

’FEDFUNDS L 7 ’ ,\

’FEDFUNDS L 8 ’ ,\

’FEDFUNDS L 9 ’ ,\

’FEDFUNDS L 10 ’ ,\

’FEDFUNDS L 11 ’ ,\

’FEDFUNDS L 12 ’ ,\

’M2 ’ ,\

’M2 L 1 ’ ,\

’M2 L 2 ’ ,\

’M2 L 3 ’ ,\

’M2 L 4 ’ ,\

’M2 L 5 ’ ,\

’M2 L 6 ’ ,\

’M2 L 7 ’ ,\
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’M2 L 8 ’ ,\

’M2 L 9 ’ ,\

’M2 L 10 ’ ,\

’M2 L 11 ’ ,\

’M2 L 12 ’ ,\

’PDEX’ ,\

’PDEX L 1 ’ ,\

’PDEX L 2 ’ ,\

’PDEX L 3 ’ ,\

’PDEX L 4 ’ ,\

’PDEX L 5 ’ ,\

’PDEX L 6 ’ ,\

’PDEX L 7 ’ ,\

’PDEX L 8 ’ ,\

’PDEX L 9 ’ ,\

’PDEX L 10 ’ ,\

’PDEX L 11 ’ ,\

’PDEX L 12 ’ ] ]

f u l l d a t=re sdat

mvars . rename ( columns={”Unnamed : 0” : ”VARB” } , i n p l a c e=True )

macrodat=re sdat . i l o c [ : ,−1:−39]

r e sda t=re sdat . i l o c [ : , 0 : 3 8 2 ]

print ( ” Simulated Data” )

print ( simmacro )
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# We w i l l use o b j e c t s c o n t a i n i n g the column name as nodes

class co lnode :

’ ’ ’

An o b j e c t to r e p r e s e n t each column .

’ ’ ’

node obj l i s t =[]

def i n i t ( s e l f , name , macrodeps ) :

s e l f . name=name

s e l f . deg=None

s e l f . macrodeps=macrodeps

# We s e t a l o c k on each node so the

# agents cannot run i n t o each o the r .

# We a l s o l o c k the node once we pro v id e i t a v a l u e .

s e l f . l o ck=False

s e l f . va lue=None

s e l f . models =[ ]

co lnode . node obj l i s t . append ( s e l f )

Depgraph=nx . Graph ( )

namedict={}

revnamedict={}

for c o l in r e sda t . columns :

#f o r c o l in r e s d a t . columns [ 0 : 1 3 9 ] :

deps=mvars [ mvars [ ’VARB’]==c o l ]

namedict [ c o l ]= colnode ( co l , deps )
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revnamedict [ namedict [ c o l ] ]= c o l

for node in co lnode . node obj l i s t :

Depgraph . add node ( node )

# Now, we can add nodes

for i in range ( dcor . shape [ 0 ] ) :

for j in range ( i , dcor . shape [ 0 ] ) :

i f i !=j :

i f dcor . i l o c [ i , j ] !=0 :

Depgraph . add edge (\

namedict [ r e sda t . columns [ i ] ] , namedict [ r e sda t . columns [ j ] ] , \

dcor=dcor . i l o c [ i , j ] )

# Now t h a t the graph i s complete ,

# we can add to each node some in format ion

for node in nx . nodes ( Depgraph ) :

node . deg=Depgraph . degree ( node ) /\

Depgraph . number o f nodes ( )

# Now, we need to make some d e c i s i o n s r e g a r d i n g the agents

# Do they t r y to add v a l u e s to the

# h i g h e s t degree nodes f i r s t ?
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# or to the ones wi th the h i g h e s t d i s t a n c e c o r r e l a t i o n wi th

# the curren t node?

# we can g i v e each agent a u t i l i t y a lpha where i t goes f o r

# the node t h a t maximizes the weigh ted average

# of t h e s e q u a n t i t i e s

# Now, l e t ’ s p la y wi th edges

class agent :

’ ’ ’

These agents walk around the network d e c i d i n g what

models to run and what p r e d i c t i o n s to make

’ ’ ’

agt l i s t =[]

r e t i r e d l i s t =[]

def i n i t ( s e l f , alpha , node ) :

s e l f . a lpha=alpha

s e l f . node=node

s e l f . h i s t =[ ]

s e l f . backs =[ ]

agent . agt l i s t . append ( s e l f )

def u t i l ( s e l f ) :

’ ’ ’

Have the agent determine how much

i t wants to jump to each node .

’ ’ ’

# What are the n e i g h b o r s o f the curren t node?

edges=Depgraph . edges ( s e l f . node )
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a d j d i c t ={}

for e in edges :

# The agent does not c o n s i d e r l o c k e d nodes

i f not e [ 1 ] . l o ck :

a d j d i c t [ e [ 1 ] ] =\

s e l f . a lpha∗Depgraph . edges [ e ] [ ’ dcor ’ ]+\

(1− s e l f . a lpha )∗e [ 1 ] . deg

return ( a d j d i c t )

def jump( s e l f ) :

’ ’ ’

Now, have the agent jump to the unlocked node

i t most p r e f e r s . I f t h e r e i s no unlocked node ,

i t t e l e p o r t s to an unlocked node

’ ’ ’

mx=0

cho i c e=None

opt ions=s e l f . u t i l ( )

i f len ( opt ions . keys ())==0:

# f i n d a l i s t o f un locked nodes

unlocked =[ ]

for n in co lnode . node obj l i s t :

i f n . l ock==False :

unlocked . append (n)

# Firs t , i f we f a i l e d to s e t a va lue ,

# then unloc | k the node

i f s e l f . node . va lue==None :

s e l f . node . l o ck=False
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i f len ( unlocked ) > 0 :

s e l e c t=R. cho i c e ( l i s t ( range ( len ( unlocked ) ) ) )

s e l f . h i s t . append ( s e l e c t )

s e l f . node=unlocked [ s e l e c t ]

s e l f . node . l o ck=True

else :

agent . r e t i r e d l i s t . append ( s e l f )

agent . agt l i s t . remove ( s e l f )

else :

i f s e l f . node . va lue==None :

s e l f . node . l o ck=False

for k in opt ions . keys ( ) :

i f opt ions [ k ] > mx:

mx=opt ions [ k ]

cho i c e=k

s e l f . h i s t . append ( cho i c e )

s e l f . node=cho i c e

cho i c e . l o ck=True

def eval ( s e l f ) :

’ ’ ’

Now, the agent checks to see i f t h e r e are va lued

nodes ad jace n t to i t s curren t node .

’ ’ ’

ne ighbors=Depgraph . ne ighbors ( s e l f . node )

v l i s t =[ ]

for n in ne ighbors :

i f n . va lue != None :
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v l i s t . append (n)

i f len ( v l i s t ) > 0 :

return True

else :

return False

# Now, we want a f u n c t i o n t h a t e s t i m a t e s a g iven node in

# terms o f the v a l u e s o f o t her nodes . This i s the par t

# t h a t shou ld e v e n t u a l l y be p a r a l l e l i z e d

# We a l s o need a d i c t i o n a r y o f d i c t i o n a r i e s to s t o r e

# t h e s e models f o r re−use

model dict={}

# Now we need a model o b j e c t

class model :

’ ’ ’

This o b j e c t e n c a p s u l a t e s the model a long wi th i t s data .

’ ’ ’

mod l i s t =[]

def i n i t ( s e l f , node , r , degree ) :

s e l f . node=node

s e l f . r=r

s e l f . degree=degree

s e l f . mod ne ighbors =[ ]

# Now we can prepare the data .

# What nodes are we connected to ?

model . mod l i s t . append ( s e l f )
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ne ighbors=Depgraph . ne ighbors ( s e l f . node )

# Now, which have v a l u e s ?

s e l f . valued =[ ]

for n in ne ighbors :

i f n . va lue != None :

s e l f . valued . append (n)

# Now, turn t h e s e i n t o columns

c o l s =[ ]

for n in s e l f . valued :

c o l s . append ( revnamedict [ n ] )

yco l=revnamedict [ s e l f . node ]

# Now, we have to d e a l wi th the

# p o s s i b i l i t y o f miss ing data

# Now, f i n a l l y , we need the macro columns

mcols =[ ]

i f l i s t ( s e l f . node . macrodeps [ ”FEDFUNDS” ] ) [ 0 ] :

mcols=mcols +[ ’FEDFUNDS’ , ’FEDFUNDS L 1 ’ ,\

’FEDFUNDS L 2 ’ , ’FEDFUNDS L 3 ’ ,\

’FEDFUNDS L 4 ’ , ’FEDFUNDS L 5 ’ ,\

’FEDFUNDS L 6 ’ , ’FE |DFUNDS L 7 ’ ,\

’FEDFUNDS L 8 ’ , ’FEDFUNDS L 9 ’ ,\

’FEDFUNDS L 10 ’ , ’FEDFUNDS L 11 ’ ,\

’FEDFUNDS L 12 ’ ]

i f l i s t ( s e l f . node . macrodeps [ ”M2” ] ) [ 0 ] :

mcols=mcols +[ ’M2 ’ , ’M2 L 1 ’ , ’M2 L 2 ’ , ’M2 L 3 ’ ,\

’M2 L 4 ’ , ’M2 L 5 ’ , ’M2 L 6 ’ ,\

’M2 L 7 ’ , ’M2 L 8 ’ , ’M2 L 9 ’ ,\

’M2 L 10 ’ , ’M2 L 11 ’ , ’M2 L 12 ’ ]
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i f l i s t ( s e l f . node . macrodeps [ ”PDEX” ] ) [ 0 ] :

mcols=mcols +[ ’PDEX’ , ’PDEX L 1 ’ , ’PDEX L 2 ’ ,\

’PDEX L 3 ’ , ’PDEX L 4 ’ , ’PDEX L 5 ’ ,\

’PDEX L 6 ’ ,\

’PDEX L 7 ’ , ’PDEX L 8 ’ ,\

’PDEX L 9 ’ , | ’PDEX L 10 ’ ,\

’PDEX L 11 ’ , ’PDEX L 12 ’ ]

while True :

working dat=f u l l d a t [ [ y co l ]+ c o l s+mcols ]

popdat=working dat . dropna (0 , ’ any ’ , i n p l a c e=False )

i f popdat . shape [ 0 ] >= 50 :

break

else :

for c o l in c o l s :

reduce dt=working dat [ c o l ]

popcol=reduce dt . dropna (0 , ’ any ’ ,\

i n p l a c e=False )

i f popcol . shape [ 0 ] < 50 :

c o l s . remove ( c o l )

break

# Now, we can genera te the l i s t o f nodes

# on which t h i s model depends

for c in c o l s :

s e l f . mod ne ighbors . append ( namedict [ c ] )

# Now, we can s p l i t i t

ydat=popdat . i l o c [ : , 0 : 1 ]

xdat=popdat . i l o c [ : , 1 : popdat . shape [ 1 ] ]
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try :

s e l f . mod=skpp . Pro j e c t i onPur su i tReg r e s so r (\

r=s e l f . r , f i t type=’ s p l i n e ’ ,\

show p l o t s=False , out dim weights=” uniform ” ,\

degree=s e l f . degree , s tage maxiter =100 ,\

b a c k f i t maxiter =25)

s e l f . f i t=s e l f . mod . f i t ( xdat , ydat )

s e l f . preds=s e l f . f i t . p r e d i c t ( xdat )

ydat=np . array ( ydat ) . reshape ( s e l f . preds . shape )

model . r e s=ydat−s e l f . preds

s e l f . r e t v a l=True

except :

s e l f . r e t v a l=Fal se

def p r e d i c t ( s e l f ,X) :

’ ’ ’

P r e d i c t a Y

’ ’ ’

#p r i n t (”X”)

#p r i n t (X)

y hat=s e l f . f i t . p r e d i c t (X)

Rdex=R. cho i c e ( l i s t ( range (X. shape [ 0 ] ) ) )

r e s=s e l f . r e s [ Rdex ]

outp=y hat

return ( outp [ 0 ] , y hat [ 0 ] , r e s )

def ObjPredict ( s e l f , s t a r t , end ) :

’ ’ ’

170



This f u n c t i o n wraps around the p r e d i c t f u n c t i o n

# to ta ke in the ne ighbor o b j e c t s in t h i s model

and turn them i n t o a numpy array

’ ’ ’

nva l s =[ ]

for n in s e l f . mod ne ighbors :

nva l s . append (n . va lue )

# We a l s o need to add the macrovar iab l e s

deps=np . array ( s e l f . node . macrodeps . i l o c [ 0 , 1 : 4 ] )

# Now, turn deps i n t o a l i s t o f numbers

# We can p u l l a parameter from the s h e l l i n s t r u c t i n g

# the program what row to use in the

# macro−v a r i a b l e data

macros=simmacro . i l o c [ s t a r t : end , deps ]

f l a t=l i s t (np . array ( macros ) . f l a t t e n ( ’F ’ ) )

return ( s e l f . p r e d i c t (np . array ( [ nva l s+f l a t ] ) ) )

# Now, we need a few tuning parameters

# What percentage o f the data do we seed ?

seedpct =.05

def SeedRand ( ) :

’ ’ ’

S e l e c t random columns and seed nodes wi th the v a l u e s .

’ ’ ’

cnt=int ( seedpct∗len ( co lnode . node obj l i s t ) )
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sampnodes=R. sample ( co lnode . node obj l i s t , cnt )

# Now genera te a l i s t o f columns

c o l s =[ ]

for node in sampnodes :

c o l s . append ( revnamedict [ node ] )

cur rdt=re sdat [ c o l s ]

# Now remove miss ing data

popdat=currdt . dropna (0 , ’ any ’ , i n p l a c e=False )

idx=R. cho i c e ( l i s t ( range ( popdat . shape [ 0 ] ) ) )

for j in range ( len ( popdat . columns ) ) :

namedict [ popdat . columns [ j ] ] . va lue=popdat . i l o c [ idx , j ]

namedict [ popdat . columns [ j ] ] . l o ck=True

def AgtRand( agt cnt ) :

’ ’ ’

This f u n c t i o n randomly g e n e r a t e s agents and a s s i g n s

agents to nodes . Agents on ly go to

nodes ad j ace n t to va lued nodes .

’ ’ ’

# We f i r s t need a l i s t o f the va lued nodes

a v a i l i s t =[ ]
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for node in co lnode . node obj l i s t :

i f not node . va lue==None :

a v a i l i s t . append ( node )

# and then a l i s t o f l i s t s o f the unvalued n e i g h b o r s

# of the va lued nodes

n e i g h b o r l i s t =[ ]

for node in a v a i l i s t :

l s t =[ ]

for n in Depgraph . ne ighbors ( node ) :

i f n . va lue == None :

l s t . append (n)

n e i g h b o r l i s t . append ( l s t )

# Now, turn t h i s l i s t o f l i s t s i n t o a deduped l i s t

base=set ( )

for l s t in n e i g h b o r l i s t :

base=base . union ( l s t )

base=l i s t ( base )

targnodes=R. sample ( a v a i l i s t , agt cnt )

for i in range ( agt cnt ) :

agent (R. uniform ( 0 , 1 ) , base [ i ] )

base [ i ] . l o ck=True

# Now we beg in the main p roc ess
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def Process ( ) :

’ ’ ’

This f u n c t i o n g e n e r a t e s a r e a l i z a t i o n o f the e rro r term .

I t r e q u i r e s in format ion on where in the input

macro p roce s s we are .

’ ’ ’

unva lh i s t =[ ]

# Step 1 : i n i t i a l i z e

SeedRand ( )

AgtRand (10)

t s t l i s t =[ ]

for n in co lnode . node obj l i s t :

i f n . va lue != None :

t s t l i s t . append (n)

t=0

while True :

t=t+1

# Find any nodes t h a t are unvalued but l o c k e d

unvalued =[ ]

for node in co lnode . node obj l i s t :

i f node . va lue==None :

unvalued . append ( node )

unva lh i s t . append ( len ( unvalued ) )

i f t >=3:

i f unva lh i s t [−1]== unva lh i s t [ −2 ] :

# f i n d the columns we can ’ t v a l u e and

# p u l l a random e rro r from the data

for node in unvalued :
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# Find the non−n u l l r e s i d u a l s

node . va lue=re sdat [\

r e sda t [ revnamedict [ node ] ] . notna ( ) ] [ \

revnamedict [ node ] ] . sample ( 1 ) . i l o c [ 0 ]

break

i f len ( unvalued )==0:

break

for agt in agent . agt l i s t :

# each agents checks whether i t wants to jump

i f not agt . eval ( ) :

# I f we cou ld not f i t a model , jump

agt . jump ( )

else :

# e l s e , i f we did f i t a model , we s e t

# the node v a l u e to i t s p r e d i c t i o n

# jump , and l e a v e the node l o c k e d .

M=model ( agt . node , 1 0 , 1 )

i f M. r e t v a l :

out=M. ObjPredict ( s ta r t , end )

agt . node . va lue=out [ 0 ]

agt . jump ( )

# Now, we g a t h e r up the e s t i m a t e s and output them .

n o d e l i s t =[ ]

for node in co lnode . node obj l i s t :

n o d e l i s t . append ( node . va lue )
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return np . array ( n o d e l i s t )

# Now, we can run the s i m u l a t i o n

# Firs t , l oad X

t imeln=50

R. seed (25252)

Beta=pd . read csv ( ”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/betas . csv ” )

X=pd . read csv (\

”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/X. csv ” , na va lue s =[ ’ . ’ ] ) ;

# Now, we rearrange them

X=X [ [ ”FEDFUNDS” ,\

”FEDFUNDS L 1” ,\

”FEDFUNDS L 2” ,\

”FEDFUNDS L 3” ,\

”FEDFUNDS L 4” ,\

”FEDFUNDS L 5” ,\

”FEDFUNDS L 6” ,\

”FEDFUNDS L 7” ,\

”FEDFUNDS L 8” ,\

”FEDFUNDS L 9” ,\

”FEDFUNDS L 10” ,\

”FEDFUNDS L 11” ,\

”FEDFUNDS L 12” ,\

”M2” ,\

”M2 L 1” ,\

”M2 L 2” ,\

”M2 L 3” ,\
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”M2 L 4” ,\

”M2 L 5” ,\

”M2 L 6” ,\

”M2 L 7” ,\

”M2 L 8” ,\

”M2 L 9” ,\

”M2 L 10” ,\

”M2 L 11” ,\

”M2 L 12” ,\

”PDEX” ,\

”PDEX L 1” ,\

”PDEX L 2” ,\

”PDEX L 3” ,\

”PDEX L 4” ,\

”PDEX L 5” ,\

”PDEX L 6” ,\

”PDEX L 7” ,\

”PDEX L 8” ,\

”PDEX L 9” ,\

”PDEX L 10” ,\

”PDEX L 11” ,\

”PDEX L 12” ,\

”VALUE” ,\

”L1” ,\

”L2” ,\

”L3” ,\

”L4” ,\

”L5” ,\
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”L6” ,\

”L7” ,\

”L8” ,\

”L9” ,\

”L10” ,\

”L11” ,\

”L12” ,\

”DATE” ,\

”CODE” ] ]

X=X[X[ ’CODE’ ] !=np . nan ]

Beta=Beta . i l o c [ : , 3 : ]

X=X [ [ ”VALUE” , ”L1” , ”L2” , ”L3” , ”L4” , ”L5” , ”L6” , ”L7” , ”L8” , ”L9” ,\

”L10” , ”L11” , ”L12” , ”DATE” , ”CODE” ] ]

# Now, we need to s e l e c t a beg inn ing p o i n t .

# Let ’ s j u s t s t a r t a t the f i r s t X and tak e

# the f i r s t 13 d i f f e r e n c e s

sa sbase=datet ime . date (1960 , 1 , 1)

def intnx ( dt , d e l t a ) :

’ ’ ’

This f u n c t i o n t a k e s a Python date t ime o b j e c t and

emulates advances i t k months in a manner

s i m i l a r to the SAS

INTNX f u n c t i o n .

’ ’ ’

# Firs t , what month are we c u r r e n t l y at ?
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newdt=dt

i f d e l t a >= 0 :

for j in range ( d e l t a ) :

i f newdt . month==12:

newdt=\

newdt . r e p l a c e (month=1, year=newdt . year +1)

else :

newdt=newdt . r e p l a c e (month=newdt . month+1)

else :

d e l t a=12+d e l t a

newdt=newdt . r e p l a c e ( year=newdt . year−1)

for j in range ( d e l t a ) :

i f newdt . month==12:

newdt=\

newdt . r e p l a c e (month=1, year=newdt . year +1)

else :

newdt=newdt . r e p l a c e (month=newdt . month+1)

return newdt

# Now, l e t ’ s t e s t t h i s

t s t d a t e=datet ime . date (2020 ,1 ,1 )

t s t 2=intnx ( t s tdate , 4 )

def SASDate ( dt ) :

’ ’ ’

This f u n c t i o n c o n v e r t s a SAS date i n t o a python date .

’ ’ ’
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print ( ”SASDATE” )

print ( dt )

return datet ime . date (1960 , 1 , 1)+\

datet ime . t imede l ta ( days=int ( dt ) )

def invSASDate ( sdt ) :

’ ’ ’

This f u n c t i o n i s the i n v e r s e o f the above .

’ ’ ’

return ( sdt−datet ime . date ( 1 9 6 0 , 1 , 1 ) ) . days

t s t 2=SASDate(−2010)

t s t 3=SASDate (21946)

# Now, we need a unique l i s t o f d a t e s

dates=pd . unique (X[ ”DATE” ] )

begdt=R. cho i c e ( dates . astype ( int ) )

# Now, we need the p r e v i o u s 12 d a t e s a l s o ;

# Now t h a t we have a date range , we can s u b s e t the data

X=X[X.DATE. i s i n ( [ begdt ] ) ]

X=X[X[ ”CODE” ] . notna ( ) ]
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# Now, we need to j o i n in the s y n t h e t i c macro v a r i a b l e s

# Now, we r e v e r s e i t

simmacro=simmacro . i l o c [ : : − 1 ]

# Now, we need the l a s t 13 rows

l a s t=simmacro . i l o c [ −1 3 : , : ]

l a s t=l a s t [ [ ”FEDFUNDS” , ”M2” , ”PDEX” ] ]

f l a t=np . array ( l a s t ) . f l a t t e n ( ’F ’ )

# Now, we need the number o f codes so

# we can combine them i n t o a dataframe

codes=pd . unique (X[ ”CODE” ] )

mac l i s t =[ ]

for i in range ( len ( codes ) ) :

mac l i s t . append ( f l a t )

macarray=np . array ( mac l i s t )

# Now we need a numpy array o f our s t a r t i n g data

X=X [ [ ”VALUE” , ”L1” , ”L2” , ”L3” , ”L4” , ”L5” , ”L6” , ”L7” , ”L8” , ”L9” ,\

”L10” , ”L11” , ”L12” ] ]

X. to csv ( ”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/beg inn ings . csv ” ,\

mode=’ a ’ , header=False )

Xsum=np .sum(np . array (X) , 1 )
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# Now, l e t ’ s j o i n t the numpy arrays

Z=np . concatenate ( ( macarray , np . array (X) ) , 1 )

NBeta=np . array ( Beta )

def NAmult(x , b ) :

’ ’ ’

This implements matrix m u l t i p l i c a t i o n wi th a the

s p e c i a l r u l e t h a t 0 ∗ NA=0.

# ’ ’ ’

hld =[ ]

for i in range ( x . shape [ 0 ] ) :

#p r i n t (” I ”)

#p r i n t ( i )

i f b [ i ]==0 and x [ i ]==np . nan :

hld . append (0)

e l i f b [ i ] != 0 and x [ i ]==np . nan :

hld . append (np . nan )

else :

hld . append ( x [ i ] ∗b [ i ] )

return (np .sum(np . array ( hld ) ) )

# Now, f o r each code , f i n d a dot product

r e s =[ ]

p r i c e s=p r i c e s [ p r i c e s .DATE. i s i n (\

[ invSASDate ( intnx (SASDate ( begdt ) , −1 ) ) ] ) ]
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s v a l=np . array ( p r i c e s [ ”VALUE” ] )

i n i t=Xsum+s v a l

p r e d l i s t =[np . array (X[ ’VALUE’ ] ) ]

for t in range ( 1 2 0 ) :

# second , g e t the range o f s imu la ted macro v a r i a b l e s

l a s t=simmacro . i l o c [−( t +14):−( t +1) , : ]

f l a t=np . array ( l a s t ) . f l a t t e n ( ’F ’ )

print ( f l a t )

print ( f l a t . shape )

mac l i s t =[ ]

for i in range ( len ( codes ) ) :

mac l i s t . append ( f l a t )

macarray=np . array ( mac l i s t )

Z=np . concatenate ( ( macarray , np . array (X) ) , 1 )

r e s =[ ]

for i in range (Z . shape [ 0 ] ) :
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#p r i n t ( i )

r e s . append (NAmult(Z [ i , : ] , NBeta [ : , i ] ) )

r e s=np . array ( r e s )

# Now genera te the e rror term

e r r=Process ( )

#p r i n t (” P r e d i c t i o n ”)

pred=r e s+e r r

# Now w r i t e t h i s out to a f i l e

pd . DataFrame ( pred ) . to csv (\

”/ s c ra t ch/ j s c h u l e 4/DATA/RAW/p r e d i c t i o n s . csv ” ,\

mode=’ a ’ , header=False )

# Now, what i s too b i g ?

p r e d l i s t . append ( pred )

# Now t h a t we have the p r e d i c t i o n ,

# l e t ’ s g e t the new d i f f e r e n c e

new d e l t a=p r e d l i s t [−1]− p r e d l i s t [−2]

#p r i n t (new d e l t a )

i n i t=pred

184



# Now, add the p r e d i c t i o n to X

X[ ’ L12 ’ ]=X[ ’ L11 ’ ]

X[ ’ L11 ’ ]=X[ ’ L10 ’ ]

X[ ’ L10 ’ ]=X[ ’L9 ’ ]

X[ ’L9 ’ ]=X[ ’L8 ’ ]

X[ ’L8 ’ ]=X[ ’L7 ’ ]

X[ ’L7 ’ ]=X[ ’L6 ’ ]

X[ ’L6 ’ ]=X[ ’L5 ’ ]

X[ ’L5 ’ ]=X[ ’L4 ’ ]

X[ ’L4 ’ ]=X[ ’L3 ’ ]

X[ ’L3 ’ ]=X[ ’L2 ’ ]

X[ ’L2 ’ ]=X[ ’L1 ’ ]

X[ ’L1 ’ ]=X[ ’VALUE’ ]

X[ ’VALUE’ ]=pd . S e r i e s (new de l ta , index=X. index )

#p r i n t (” Index ”)

#p r i n t (X. index )

#p r i n t ( pd . S e r i e s ( pred ) . index )

#p r i n t ( pd . S e r i e s ( pred ))

#p r i n t (”New X”)

#p r i n t (X)

# c l e a r the nodes and agents

# Now, we c l e a r the nodes

for node in co lnode . node obj l i s t :

node . va lue=None

node . l o ck=False

## and c l e a r the agents
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agent . agt l i s t =[]Appendix 8: R Code for Copula Estimator

# LEt ’ s beg in wi th a s i m p l i f i e d model

# again , we beg in wi th u n i f d a t

# But we w i l l add the margina ls

for ( i in 1 :nrow( un i fda t ) )

{

}

# c ont inu i ng to use the same RV’ s

t r a n s l i s t <− l i s t ( )

for ( a in seq ( . 1 , 3 , . 2 5 ) )

{

for (b in seq ( . 1 , 3 , . 2 5 ) )

{

for ( j in 1 : ( ncol ( un i fda t )−1))

{

for ( k in 1 : ( ncol ( un i fda t )−1))

{

i f ( j==k ){ t r a n s l i s t [ [ length ( t r a n s l i s t )+1 ] ]

<− pkumar ( un i fda t [ , j ] , a , b )} else

{ t r a n s l i s t [ [ length ( t r a n s l i s t )+1 ] ]

<− pkumar ( un i fda t [ , j ] ∗un i fda t [ , k ] , a , b )}

}

}
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}

}

tdat <− log (data . frame ( t r a n s l i s t ) )

logy <− log ( un i fda t$y )

beta <− Var iab le (ncol ( tdat ) )

obj <− sum( ( logy− tdat %∗% beta )∗∗2)

prob <− Problem ( Minimize ( obj ) , l i s t (sum(beta∗∗2) <= . 5 ) )

r e s u l t <− solve ( prob )

beta hat <− r e s u l t [ [ 1 ] ]

y hat <− data . matrix ( tdat ) %∗% beta hat

data . frame (exp( y hat ) , un i fda t$y ) −> wrk

plot ( wrk$exp . y hat . , wrk$un i fda t . y )

names( wrk ) <− c ( ’mod y ’ , ’emp y ’ )

ggp lot (wrk , aes ( x=mod y , y=emp y ) ) + geom point ( ) +

xlab ( ”Model Ps i ” ) + ylab ( ” Empir ica l Ps i ” )

# Now, l e t ’ s a c t u a l l y i n c o r p o r a t e the we igh t f u n c t i o n

subfunc <− function ( x )

{

vec <− c ( )

for ( i in 1 : length ( x ) )

{

idx <− rep (TRUE, length ( x ) )
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idx [ i ] <− FALSE

vec <− c ( vec ,prod ( x [ idx ] ) )

}

return (max( vec )∗∗4)

}

WeightFunc <− function ( dat )

{

return (apply ( dat , 1 , subfunc ) )

}

un i fda t$y −> y

un i fda t [ , 1 : 5 ] −> X

y trans <− log ( y )

X trans <− X

logy <− y t rans

t r a n s l i s t <− l i s t ( )

for ( a in seq ( . 1 , 3 , . 2 5 ) )

{

for (b in seq ( . 1 , 3 , . 2 5 ) )

{

for ( j in 1 : ( ncol ( un i fda t )−1))

{

for ( k in 1 : ( ncol ( un i fda t )−1))
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{

i f ( j==k ){ t r a n s l i s t [ [ length ( t r a n s l i s t )+1 ] ]

<− pkumar ( un i fda t [ , j ] , a , b )} else

{ t r a n s l i s t [ [ length ( t r a n s l i s t )+1 ] ]

<− pkumar ( un i fda t [ , j ] ∗un i fda t [ , k ] , a , b )}

}

}

}

}

plot (y , y t rans )

set . seed (5 )

tdat <− log (data . frame ( t r a n s l i s t ) )

# Now, l e t ’ s remove the v a l i d a t i o n s e t

n f i t <− round ( . 8∗nrow( tdat ) , 0 )

nsave <− nrow( tdat)− n f i t

sample ( 1 :nrow( tdat ) , n f i t ) −> f i t s

saves <− setd i f f ( 1 :nrow( tdat ) , f i t s )

fda t <− tdat [ f i t s , ]

sdat <− tdat [ saves , ]

y f i t <− l ogy [ f i t s ]

y t rue save <− un i fda t$y [ saves ]

y t rue f i t <− un i fda t$y [ f i t s ]

beta <− Var iab le (ncol ( tdat ) )
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obj <− sum( ( y f i t− f da t %∗% beta )∗∗2)

prob <− Problem ( Minimize ( obj ) , l i s t (sum(beta∗∗2) <= 5))

r e s u l t <− solve ( prob )

beta hat <− r e s u l t [ [ 1 ] ]

#y hat <− exp ( data . matrix ( t d a t ) %∗% be ta hat −

WeightFunc (X)∗log (apply (X, 1 ,prod ) ) )

y hat in <− exp(data . matrix ( fda t ) %∗% beta hat )

y hat out <− exp(data . matrix ( sdat ) %∗% beta hat )

data . frame ( y hat in , y t rue f i t ) −> wrkin

data . frame ( y hat out , y t rue save ) −> wrkout

names( wrkin ) <− c ( ’mod y ’ , ’emp y ’ )

names( wrkout ) <− c ( ’mod y ’ , ’emp y ’ )

ggp lot ( wrkin , aes ( x=mod y , y=emp y ) ) + geom point ( ) +

xlab (TeX( ’ Model $\\hat{C}$ ’ ) ) +

ylab (TeX( ’ Empir ica l $\\hat{C}$ ’ ) ) +

geom segment ( aes ( x = 0 , y = 0 , xend = 1 , yend = 1 ) ,

co l ou r = ” red ” ) + g g t i t l e ( ” In Sample Fit ” )

ggp lot ( wrkout , aes ( x=mod y , y=emp y ) ) + geom point ( ) +

xlab (TeX( ’ Model $\\hat{C}$ ’ ) ) +

ylab (TeX( ’ Empir ica l $\\hat{C}$ ’ ) ) +

geom segment ( aes ( x = 0 , y = 0 , xend = 1 , yend = 1 ) ,

co l ou r = ” red ” ) + g g t i t l e ( ”Out o f Sample Fit ” )
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[9] G. J. Székely and M. L. Rizzo, “Energy statistics: A class of statistics based on dis-
tances,” Journal of statistical planning and inference, vol. 143, no. 8, pp. 1249–1272,
2013.

[10] ——, “The distance correlation t-test of independence in high dimension,” Journal of
Multivariate Analysis, vol. 117, pp. 193–213, 2013.

[11] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to statistical
learning. Springer, 2013, vol. 112.

[12] B. B. Mandelbrot, “Heavy tails in finance for independent or multifractal price in-
crements,” in Handbook of heavy tailed distributions in finance. Elsevier, 2003, pp.
1–34.

[13] L. Breiman et al., “Statistical modeling: The two cultures (with comments and a
rejoinder by the author),” Statistical science, vol. 16, no. 3, pp. 199–231, 2001.

cxcii



[14] Y. Fan and A. J. Patton, “Copulas in econometrics,” Annu. Rev. Econ., vol. 6, no. 1,
pp. 179–200, 2014.

[15] C. Czado, “Analyzing dependent data with vine copulas,” Lecture Notes in Statistics,
Springer, 2019.

[16] P. Jaworski, F. Durante, W. K. Hardle, and T. Rychlik, Copula theory and its appli-
cations. Springer, 2010, vol. 198.

[17] H. Abelson, G. J. Sussman, and J. Sussman, Structure and interpretation of computer
programs. Justin Kelly, 1996.

[18] T. L. Heath et al., The thirteen books of Euclid’s Elements. Courier Corporation,
1956.

[19] J. Klein, Greek Mathematical Thought and the Origin of Algebra. Dover, 1992.

[20] ——, Lectures and Essays. St. John’s College Press, 1985.

[21] F. v. Hayek, “Scientism and the study of society. part ii,” Economica, vol. 10, no. 37,
pp. 34–63, 1943.

[22] E. Schechter, Handbook of Analysis and its Foundations. Academic Press, 1996.

[23] L. J. Savage, The foundations of statistics. Courier Corporation, 1972.

[24] G. Boole, An investigation of the laws of thought: on which are founded the mathemat-
ical theories of logic and probabilities. Dover Publications, 1854.

[25] E. T. Jaynes, Probability theory: The logic of science. Cambridge university press,
2003.

[26] W. Briggs, Uncertainty: the soul of modeling, probability & statistics. Springer, 2016.

[27] R. Frisch, Problems and Methods of Econometrics: The Poincaré Lectures of Ragnar
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