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Abstract

INVESTIGATIONS OF INTERFACE PHENOMENA VIA ATOMISTIC SIMULATION

James Francis Hickman, PhD

George Mason University, 2017

Dissertation Director: Dr. Yuri Mishin

In the first section of the thesis we examine a phenomenon known as grain boundary

(GB) pre-melting in binary systems. Many GBs develop highly disordered, liquid-like struc-

tures at high temperatures. In alloys, this e↵ect is less understood as it can be fueled by

solute segregation to the boundary. In single component systems, pre-melted GBs are often

modeled by a thin liquid layer located between two solid-liquid interfaces interacting via

a disjoining potential. We have extended this formalism to binary systems and proposed

a single analytical form of the disjoining potential that describes repulsive, attractive and

intermediate interactions. The potential is verified by Monte Carlo simulations of three

di↵erent GBs in Cu-Ag alloys modeled using an embedded atom potential. The proposed

approach is generic and can be applied to other alloys in the future.

In section two we introduce a new thermodynamic parameter to the standard description

of GBs. Traditionally, GBs are described by five crystallographic angles, which are assumed

to fully define the GB structure and energy. Recently, it was realized that variations in a

GB’s atomic density � can drastically alter its structure and can cause transformations

between di↵erent GB phases. Our work extends the previous studies by computing the

structures and energies of a large set of [001] symmetrical tilt GBs by allowing arbitrary

variations in �.



In the final section we apply theoretical analysis and molecular dynamics (MD) to

elucidate the meaning of temperature fluctuations in canonical systems. We validate a

well-known but frequently contested thermodynamic equation predicting the variance of

temperature fluctuations. The results clearly demonstrate the existence of quasi-equilibrium

states in which a canonical system can be characterized by a well-defined temperature and

obeys the aforementioned fluctuation equation.



Chapter 1: Introduction

This dissertation contains three separate projects focusing on grain boundary (GB) pre-

melting in binary systems, the addition of a new variable to the standard description of a

grain boundary, and finally a discussion of a novel interpretation of temperature fluctua-

tions in canonical systems. These projects are all unified by their use of a general simulation

methodology, a focus on solid state metallic systems, an emphasis on crystalline defects,

and the use thermodynamic fluctuation theory. The first chapter introduces relevant gen-

eral concepts and discusses the scientific and practical significance of the various projects.

In the second chapter we provide an overview of the general methods and techniques which

are common to all three projects. The third and fourth chapters focus on GB structures,

properties and thermodynamic behaviors. Finally in the fifth chapter we address canonical

temperature fluctuations.

1.1 Atomistic simulations

The research described in this thesis relies heavily on atomistic simulations as a primary

tool for analyzing the phenomena in question. Simulations of this kind are useful for mod-

eling a wide range of materials including amorphous structures, liquids, 2D materials, bulk

crystalline phases, and crystals containing defects.

Broadly speaking atomic simulations fall into two methodological categories. The first

category corresponds to quantum mechanical (QM) methods such as density functional the-

ory (DFT) and quantum chemical calculations. The QM methods are highly accurate but

computationally slow, system size limited, and are often restricted to zero Kelvin simula-

tions. The second category corresponds to faster but less accurate classical methods such

as molecular dynamics (MD) or Monte Carlo (MC) simulations. These methods describe
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atoms as discrete point particles confined to a box which constitutes the simulation do-

main. The classical methods facilitate investigations of phenomena which are inaccessible

to QM simulations, for instance, many mechanical processes such as nano-indentation, and

dislocation nucleation. They also permit a direct treatment of temperature e↵ects and thus

enable the modeling many kinetics-dominated processes such as crystal growth and ther-

mal conductivity. In the present work we work exclusively with the classical MC and MD

methods which will be discussed more throughly in Sec. 2.

1.2 Thermodynamics

When carrying out either MD or MC simulations the user must specify how the system

interacts with the outside world. This is achieved by running the simulations using dif-

ferent choices of thermodynamics ensembles. The various ensembles, e.g. micro-canonical,

canonical, isothermal–isobaric, grand-canonical...etc, are defined based on how the system

in question interacts with the outside world. To begin we will address the micro-canonical

case.

1.2.1 The micro-canonical ensemble

The micro-canonical ensemble describes a system which is completely isolated with no ex-

ternal interactions. As an example consider a completely isolated simple monoatomic fluid,

for this system, the equilibrium state is fully defined by the following extensive variables:

energy E, volume V , and number of particles N . The entropy S of an isolated equilibrium

system is a function of E, V , and N . This function can be established by equilibrating the

isolated system with di↵erent values of E, V , and N and then measuring or computing S

for each set of these parameters. The function S = S(E, V,N) is called the fundamental

equation [19, 47, 93] and it incapsulates all thermodynamic properties of the substance. It

is important to note that, because of the isolation, the variables E, V , and N are fixed

by conservation laws and therefore do not fluctuate in time. For the simple fluid the
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intensive parameters are temperature T , pressure p and chemical potential µ. These quan-

tities are defined by the fundamental equation as the partial derivatives T = 1/(@S/@E),

p = T (@S/@V ), and µ = �T (@S/@N). It is also common to see the fundamental equation

written so that E plays the role of the dependent variable, i.e. E(S, V,N), which has the

di↵erential given by Eq.(1.1)

dE =

✓
@E

@S

◆

V,N

dS +

✓
@E

@V

◆

S,N

dV +

✓
@E

@N

◆

V,S

dN (1.1)

= TdS � pdV + µdN.

Finally, the di↵erent types of internal equilibrium within the system, i.e. thermal, mechan-

ical, and chemical, are defined by the uniformity of the respective intensive variable across

the entirety of the system.

1.2.2 Generalized canonical ensembles

The rest of the thermodynamic ensembles can be are referred to as generalized canonical

ensembles [93]. These ensembles describe systems which are not isolated but interact with a

so called “reservoir” through the exchange of one or more extensive variables. This exchange

facilitates equilibration with the reservoir and therefore the reservoir in e↵ect regulates one

or more of the system’s intensive variables.

To make the concept more concrete we will address the standard canonical ensemble

as an example. For reasons discussed below this ensemble is also referred to as the NVT

ensemble. Consider a large isolated equilibrium system with fixed parameters ET , VT , and

NT . This system will be referred to as the “total system”. Assume the total system is

composed of two parts, first a small sub-system with a fixed volume V and a fixed number

of particles N . Assume that this subsystem can exchange energy with the rest of the system

but only through heat exchange. Next assume that the remainder of the total system,

referred to as the reservoir or thermostat, is much much larger than the sub-system. We
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will denote quantities corresponding to the reservoir by the subscript R and properties of

the subsystem with the absence of subscript. A physical example of a canonical system is

a gas trapped in a rigid box with chemically inert but heat conducting walls in a sealed

room which has a constant and uniform temperature. In this example the room plays the

role of the reservoir while the gas in the box is the canonical subsystem. Because of the

conservation laws the reservoir will also have a fixed number of particles NR = NT � N

and a fixed volume VR = VT � V . Returning to the subsystem, it is clear that its energy

will fluctuate with time, i.e E = E(t) where ET = cnst = ER(t) + E(t). Because of these

fluctuations it is necessary to introduce average values for any subsystem quantity which is

a function of the energy E. For a general property x(E), the average can be computed in

two ways. First it can be calculated by integrating the product of x(E) and the probability

density function P (E) as shown in Eq. 1.2

hxi =
ˆ 1

�1
x(E)P (E)dE. (1.2)

The quantity hxi is known as the ensemble average and the probability distribution depends

on the choice of ensemble. For the NVT ensemble the probability distribution it the well

known Gibbs-Boltzmann distribution [70]. Alternatively the averages can also be computed

by measuring the quantity for a long enough time that it completely explores all possible

states and then taking the time average as given by Eq. 1.3

x = lim
T!1

ˆ T

0
x(t)dt. (1.3)

For an ergodic system the time average is equivalent the ensemble average, this is the case

for all of the various thermodynamic ensembles. The equilibrium states for the subsystem

and the reservoir are denoted with a subscript ‘o’ and correspond their average values, i.e.

Eo = hEi. A given fluctuation �E of the subsystem is quantified by the system’s “distance”
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from equilibrium which is given by �E = E(t)� Eo. The magnitude of these fluctuations

are quantified by the mean square deviation
D
(�E)2

E
which is also known as the variance.

Finally because the total system is assumed to be in thermal equilibrium we have hT i = hTRi

and therefore the reservoir can be viewed as a heat bath which regulates the temperature of

the subsystem via the heat exchange [18, 93]. A schematic of the canonical (NVT) system

is shown in Fig. 1.1.

Isolated System

ET=0 TV =0 TN =0

TR

T=

N=0
Canonical Subsystem

V=0

RE= E =0
TR

Figure 1.1: Schematic of the canonical system defined in the context of an isolated system
decomposed into a reservoir and a canonical subsystem

Generally the most common thermodynamic ensembles are denoted by three letter ab-

breviations which specify the extensive parameters which are fixed by conservation laws and

the intensive variable which are regulated by the reservoir. This is summarized in Tab. 1.1

for several common ensembles. The first column in the table is the name of the ensemble,

the second column is the extensive variables which are fixed by conservation laws, the third

column is the extensive properties which “flow” between the reservoir and the subsystem,

the fourth column is the intensive properties which are regulated by the reservoir, and

finally the fifth column is the common abbreviation for the ensemble.
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Table 1.1: Abbreviations for common thermodynamic ensembles

Ensemble Fixed Exchanged Regulated Abbreviation
Name extensive extensive intensive

micro-canonical NVE — — NVE
canonical NV E T NVT

grand-canonical V NE µT µVT
isothermal–isobaric N VE pT NPT
isoenthalpic-isobaric H NV µp NPH

1.3 Grain boundaries

A grain boundary is an internal interface separating homogeneous crystalline regions (grains)

with di↵erent crystallographic orientations [117]. GBs are found in metallic materials, ce-

ramics, and less conventional systems such as colloidal crystals [2], ice [124], solid helium

[10, 108], graphene [59, 83] and organic crystals such as molecular semiconductors [111] and

benzene [26]. The presence of GBs has a strong impact on a material’s properties. These

e↵ects include changes in mechanical strength, thermal and electric conductivity, and the

timescale associated with the onset of corrosion, just to name a few. Because of their prac-

tical importance GBs have been extensively studied by experiments [117] and simulations

[94] over the past decades.

Crystallographically, a general GB has traditionally been characterized by five angles

describing the lattice mis-orientation between the grains and the GB plane. Two com-

monly studied categories of GB are planar tilt [Fig. 1.2.(a)] and planar twist [Fig. 1.2.(b)]

boundaries. These two categories are simplified cases of more realistic GBs which can be

non-planar and have a mixed character exhibiting features from both categories. The tilt

and twist GBs di↵er from one another with regard to how the grains are rotated relative to

one another as demonstrated in Fig. 1.2. Some tilt GBs have mirror symmetry across their

GB planes, GBs with this property are referred to as symmetrical tilt GBs. Finally in the

present study we work exclusively with GBs in the face centered cubic (FCC) crystalline
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system. In Fig. 1.2.(c) we show the conventional unit cell for this system and include the

cubic Miller directions as well as an example of a crystallographic plane as a refresher of

the Miller notation for the reader.

Figure 1.2: Schematic showing two common classes of grain boundaries (a) a tilt grain
boundary (b) a twist grain boundary and (c) the conventional unit cell of the FCC crystal
system with cubic Miller directions and an example of the (100) plane depicted (image
source: [24, 25])

The various GBs analyzed in this work are all planar tilt GBs with a [001] tilt axis

and a GB plane with the Miller indices (hk0) where h, k are integers. For such boundaries

the tilt angle is given by ✓ = 2tan�1
�
k
h

�
which takes on values in the range [0, 90o]. GBs

are also often specified by a quantity known as the reciprocal density of coincident lattice

sites which is denoted ⌃. To understand the notation ⌃X or ⌃ = X consider the sub-

lattice formed when the grains are rotated about the tilt axis and are allowed to fictitiously

interpenetrate. In this interpenetrating lattice some lattice points from the two grains will

coincide while other will not. The sub-lattice formed by the overlapping lattice points is

used to characterize a given GB and is known as the coincident site lattice. The number S

is the ratio of coincident to non-coincident sites, e.g. S17 means that 1 cite in 17 belongs to

both lattices. Thus ⌃X(hk0)[001] would be a complete description of a tilt GB of the form

discussed here. For the boundaries in the present work the quantity ⌃ was obtained from
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the relations h2 + k
2 = ⌃ or h2 + k

2 = 2⌃ [17, 117]. Because we focus on boundaries with

a fixed tilt axis and a relatively simple geometry we can refer to the various boundaries

by the Miller indices of their respective GB planes, e.g. we can refer to the ⌃5(210)[001]

(✓ = 53.1o) boundary simply as the (210) boundary. Even though we focus on FCC tilt

GBs, the theories and methods described below could be extended to non-FCC systems and

other types of GBs.

So far we have only discussed the crystallographic description of the GB however the

local structure within a given GB core is also very important [46]. This is because di↵erent

local atomic configurations can result in significantly di↵erent physical properties [31, 35,

37, 46]. Two of the chapters in this work focus on local GB structure and how it is e↵ected

by variations in density, temperature and chemical composition [53, 55]. In addition to the

crystallographic description, a GB can also be described thermodynamically by its excess

free energy �. This quantity is generally a function of grain temperature and composition,

however, for a single component system at T = 0K it is expressed by the simple formula

given in Eq.(1.4),

� =
EGB �N✏G

A
, (1.4)

where EGB is the total energy of a system of N atoms containing a planar GB of area A

and ✏G is the per-atom energy of the bulk phase making up the grains.

1.4 Grain boundary pre-melting

A typical GB in a polycrystalline material has an atomically ordered structure at low tem-

peratures but becomes increasingly disordered as temperature approaches the bulk melting

point Tm [94, 117]. Very near Tm, many GBs develop liquid-like structures and become

wider, often turning into a liquid film. The formation of equilibrium liquid-like GB struc-

tures near Tm is referred to as GB premelting . In alloys, this premelting e↵ect can be fueled
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by solute segregation and can occur at lower temperatures than in single-component sys-

tems. Premelting can drastically change GB properties, which in turn can impact properties

of the material. The phenomenon of GB premelting is also relevant to grain coalescence

during solidification of crystalline materials. As di↵erently oriented crystallites growing

from the melt merge together during late stages of solidification, they are separated by a

layer of the liquid phase bounded by two solid-liquid interfaces. Depending on the nature

of interactions between these interfaces, they can close the liquid gap and create a rela-

tively ordered GB structure, or retain a thin (on the order of a nm) liquid layer, forming

a premelted GB. Depending on this, the solidified material can exhibit significantly dif-

ferent properties. Despite many years of research, fundamental understanding of the GB

premelting e↵ect remains very incomplete.

Direct experimental information about GB premelting is very limited [4, 21, 50, 57, 80,

117]. Most experimental studies report indirect evidence based on unusual behavior of GB

di↵usion, mobility, sliding resistance, contact angles or other GB properties [21, 29, 48, 60,

86, 117, 127, 129]. The phenomenon has been studied by several computational approaches,

such as molecular dynamics [11, 12, 23, 31, 49, 56, 62, 78, 81, 82, 100, 120] and Monte Carlo

[8, 9, 130] simulations, phase-field modeling [77, 95, 121, 122, 128], and more recently by

the phase field crystal method [1, 3, 7, 79, 91, 112, 116]. A number of possible premelting

scenarios were found in the simulations. These ranged from continuous premelting as the

temperature approached Tm from below to a thin-to-thick transition below Tm followed

by abrupt melting of the entire material at some temperature above Tm. In this work we

address the Cu-Ag system by systematic atomistic simulations. The work focuses on three

di↵erent GBs in an attempt to probe the e↵ect of grain misalignment and GB energy of

alloy premelting.
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1.5 Variation in local grain boundary density

As mentioned in Sec. 1.3, GBs are traditionally described by five crystallographic angles.

These angles were previously assumed to fully define the GB structure and energy. It has

recently been realized that variations in the local atomic density � in the GB region can

drastically alter the GB structure and cause transformations between di↵erent GB phases

[36–38, 46, 89, 90, 106]. The variation in � is achieved by either removing or adding atoms

to the GB core. Some of the newly discovered GB structures behave like two-dimensional

phases [21, 45], existing in certain temperature intervals and reversibly transforming to

each other by first-order phase transformations. Such phases and transformations among

them have been studied by atomistic simulations for two ⌃5 [001] symmetrical tilt GBs

in Cu [37, 46]. In this work, we extend the previous studies of Cu ⌃5 GBs by computing

the structures and energies of a large set of GBs over the entire angular range by allowing

arbitrary variations in �. The results confirm the existence of stable or metastable phases

in all GBs studied here. We show that there are three types of structural unit that can

describe all GB structures seen in the our study. This work demonstrates that � should be

added to the standard description of GBs as an extra thermodynamic parameter that helps

predict the GB phases and transformations among them.

1.6 Canonical temperature fluctuations

Fluctuations of thermodynamic properties play an important role in phase transformations

and many other physical phenomena and diverse applications. While fluctuations of energy

E, volume V , number of particles N and other extensive parameters are well-understood,

controversies remain in the literature regarding the nature, or even existence [63–65], of

fluctuations of intensive parameters such as temperature, pressure, and chemical potentials.

The question of temperature fluctuations in canonical systems has been the subject of

discussions for over a century (see e.g. van Hemmen and Longtin [126] for a historical

overview of the subject). A number of di↵erent views on temperature fluctuations can be
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found in the literature, including the following:

1. Temperature fluctuations in canonical systems is a real physical phenomenon and can

be measured experimentally [22] .

2. Temperature of a canonical system is defined as the temperature of the thermostat.

Thus, T ⌘ T0 by definition and the very notion of temperature fluctuations is mean-

ingless [63–65].

3. While fluctuations of the system energy E are well-defined, non-equilibrium temper-

ature T is ill-defined [64, 126].

4. Even for an equilibrium isolated system, temperature is not a well-defined parame-

ter. It can be evaluated by measuring the system energy and trying to estimate the

temperature of the thermostat with which the system was in equilibrium before being

disconnected [30, 84].

Recently, thermodynamics-based arguments for the viewpoint (1) have been put forward

as part of a more general thermodynamic fluctuation theory [93]. The goal of the present

work [54, 97] is to provide additional insights into the nature of temperature fluctuations

by conducting molecular dynamics simulations of a quasi-harmonic crystalline solid.
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Chapter 2: Methodology

2.1 Interatomic potentials

Generally the potential energy of a system with N atoms is given by the function U(r1...rN )

where r1...rN is the position vectors of the atoms. This function is known as the potential

energy surface (PES) and all classical methods rely heavily on some approximate representa-

tion of it. In practice a given approximation is simply referred to as an interatomic potential.

In the literature there are many interatomic potential paradigms which represent U(r1...rN )

in di↵erent ways depending on the nature of the system’s atomic interactions. Some popular

examples of interatomic potential paradigms include the embedded atom method (EAM)

potential [27], Terso↵ potentials [123], angular dependent potentials (ADP) [98], charge-

optimized many-body (COMB) potentials [73], and reactive force fields (REAX) [125]. The

various paradigms have di↵erent strengths and weaknesses, for example, the EAM potential

is computationally fast and particularly good at describing metallic systems whereas the

Terso↵ format is more commonly used for covalent systems such as Silicon or Germanium.

In most paradigms the PES is approximated by a relatively simple collection of physically

inspired functions which are “tuned” to properties of a particular material by adjusting a set

of fitting parameters pi (i ⇡ 10� 20). These parameters are optimized by fitting to a small

training set of experimental and first-principles DFT data. When an optimal fit of the data

is obtained, the parameters are fixed once and for all and the potential parameterization

is published for use by other researches. Therefore when an individual refers to a specific

interatomic potential they are referring a particular parameterization made in the context

of one of the various paradigms. For example there are many EAM potentials of varying

qualities available for di↵erent elemental and multicomponent systems. The quality of the
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potential depends on how carefully it was optimized during its development. The poten-

tials used in this work, along with many others describing a wide range of materials, can be

found at the National Institute for Standards and Technology (NIST) interatomic poten-

tial repository [6]. The choice of potential format and parameterization is very important

because the accuracy of predictions made by MD or MC simulations is directly correlated

with the quality of the potential being used. Depending on the potential, the predictions

can range from being in very close agreement with experiment to results that have little

or no connection with reality. For our analysis we exclusively utilize EAM type potentials.

Furthermore to ensure that our results are realistic we work with potentials which are rec-

ognized by the atomistic community as being highly robust and accurate. Because we rely

so heavily on the EAM formate we will provide a brief description of the method, see [99]

for a more detailed discussion.

In the EAM format the total potential energy of the system is expressed as a sum over

the individual atomic energies as given by Eq.(2.1)

Utot =
X

i

Ui =
1

2

X

ij

V (rij) +
X

i

F (⇢i). (2.1)

In this expression the function V (rij) is a pair potential, rij is the distance between the

i
th and j

th atoms, ⇢i is the host electron density around atom-i, and F (⇢) is known as the

embedding function [99]. In this model the pair potential describes the interactions between

bonded atoms. Textbook examples of pair potentials include the well known Lennard

Jones potential and the Morse type potential [34]. In the EAM format the pair potential

is typically more complicated containing combinations of di↵erent Morse functions. In a

classical simulation there are no actual electrons present however their e↵ect is accounted for

in the EAM model by the second term in Eq.(2.1). This term gives the energy associated

with inserting atom-i into the host electron density created by its neighbors. The host

electron density at atom-i is calculated by summing over the atom’s neighbors as shown in
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Eq.(2.2)

⇢i =
X

j 6=i

⇢(rij). (2.2)

In Eq.(2.2) the function ⇢(r) is the electron density function. This function is expressed as

the sum of a repulsive exponential term and a gaussian type function. Finally the embedding

function F (⇢) is a polynomial and its exact form can be found in the literature [99].

2.2 The molecular dynamics Method

Molecular dynamics is a classical method for simulating the motion of a relatively large

number of atoms or molecules (N ⇡ 101 to 107). It allows the user to simulate materials at

any desired temperature or pressure and can produce results consistent with the thermo-

dynamic ensembles mentioned in Sec. 1.2. From a classical point of view a system with N

atoms is defined at any instance in time by a collection of position vectors ri (i = 1, 2, . . . N)

and velocity vectors vi (i = 1, 2, . . . N). Assume that these atoms are treated as point parti-

cles and are confined to a box of volume V . As time progresses the 6N components making

up ri and vi all vary with time [34]. A schematic showing a classical system at a fixed

instant in time, i.e. a snapshot, is depicted in Fig. 2.1.

The atoms in the system may or may not interact with external world through the

boundary. If the system is isolated then its total internal energy E is simply the sum of

the various atom’s kinetic and potential contributions. The kinetic term is easily calculated

from the instantaneous velocity vectors (K =
P

im |vi|2 /2 ). The potential term on the

other hand is more complex and depends on how the particles in the system interact with

one another as discussed in the pervious section. This classical description maps directly

onto the scenario realized in an MD simulation where the vectors ri and vi are known at

every time-step. Notice that many extensive thermodynamics variables are readily available

from the simulation data including E, V and N . Furthermore many intensive parameters
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Figure 2.1: Schematic example of a classical atomic system

can be obtained from the knowledge of ri and vi, for example, the time average temperature

can be obtained using the equipartition theorem as

hT i = 2 hKi
3Nk

=
1

3Nk

*
X

i

m |vi|2
+

where k is the Boltzmann constant. Additionally in the case of a simple fluid the pressure can

be calculated from the ideal gas law. For a solid state systems there are more complicated

expressions to calculate the stress tensor however the idea is similar [34]. There are several

software package available for carrying out MD simulations however for the present work we

utilize the molecular dynamics package LAMMPS (Large-scale Atomic/Molecular Massively

Parallel Simulator) developed at Sandia National Lab [107]. One drawback of MD is that

there is no way to vary the system’s chemical composition throughout the simulation. This

makes modeling chemical equilibration via MD impractical.
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2.2.1 NVE molecular dynamics

For simplicity we will discuss the MD algorithm in the context of the NVE ensemble;

however, the ideas extend to simulating the other ensembles. The basic premise behind the

MD algorithm is that the forces felt by a given atom can be calculated based on its position

relative to the other atoms using Eq.(2.3)

F i = �@U(r1...rN )

@ri
. (2.3)

From this force, the acceleration on that atom can be calculated using Newton’s law.

Using the atom’s current velocity and acceleration one can predict the future position after

some time-step �t (⇡ 10�12 sec) using the Verlet algorithm (see [34]). There are also many

details concerning how boundary conditions are enforced as well as techniques to improve

computational e�ciency, these however will not be addressed here. For simplicity, we just

provide the general outline of the algorithm [34].

1. First the positions and velocities of the N atom are initialized. For the atomic loca-

tions it is best to choose positions as close to equilibrium as possible. For solids this

can be obtained from knowledge of the material’s crystal structure, lattice constant

and thermal expansion behavior. The velocities can then be initialized by sampling

the Maxwell-Boltzmann velocity distribution.

2. Loop through time

• At each time step the code loops over all atoms, for each atom (ri) in this loop a

second loop over all other atoms (rj) is carried out which calculates the distances

(rij) between atom i and all other atoms. From the distances the force on ri can

be computed. Once both loops are finished the forces on all atoms are know at

that time-step, from this the position and velocities of all atoms can be calculated
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at the next time-step. The process is then repeated at successive time-steps for

as long as is necessary.

2.2.2 NVT molecular dynamics

We will also discuss the MD algorithm in the context of the NVT ensemble because this

ensemble is the central focus of the fifth chapter of this work. There are multiple ways

to mimic a heat reservoir in MD. These methods typically add additional artificial forces

to the atoms in such a way that the collective motion of the atoms is consistent with a

canonical system with an average temperature hT i. One method commonly used to achieve

this is known as the Langevin thermostat [34]. In this algorithm the atoms are treated as

though they are immersed in a sea of much smaller fictitious particles which have a fixed

temperature T . These fictitious particles exert a drag force as well as a stochastic noise

force R that constantly perturbs the actual atoms in the simulation. Using this method

the total force on atom i, with mass mi is

F i = �@U(r1...rN )

@ri
�mi�vi +Ri. (2.4)

The drag term depends on the damping constant �, the inverse of which controls the

timescale ⌧r of the energy exchanges between the system and the thermostat. During

the simulation, the noise Ri is randomly sampled from a normal or uniform distribution at

time intervals much shorter than ⌧r = 1/�. The variance of the noise defines the thermostat

temperature T0 via the standard fluctuation-dissipation relation [34].

2.3 The Monte Carlo method

To begin our discussion of the MC method we will discuss it in the context of simulating

atomic motion at a fixed temperature. In this context the temperature is an input pa-

rameter which controls the extent to which the atoms are allowed to deviate via thermal

fluctuations away from their equilibrium positions. When modeling motion the MC and MD
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methods produce similar results however their implementation is very di↵erent. The first

notable di↵erence is that the MC procedure doesn’t have any concept of time inherent in the

method. It is instead an iterative statistical procedure where the system progresses forward

by randomly displacing atoms and determining whether the new location is energetically

favorable. To determine if a position is favorable the method utilizes the Boltzmann factor

exp(�U(r1...rN )
kT ) from statistical mechanics [34]. To be more specific on how MC models

motion, we give a brief outline of the Metropolis algorithm which can be summarized as

follows:

• Select a particle with location ri and calculate the current energy U = U(r1...rN ) .

• randomly displace the atoms by some amount �ri and recompute the energy U
0 =

U(r1 . . . ri +�ri...rN )

• Accept the move with the probably min(1, exp(� U 0

kT )/exp(�
U
kT ))

This algorithm is looped over all atoms, which constitutes one “MC step”. The process

is repeated as many times as is needed to meet the user’s needs. Using MC in this way

e↵ectively reproduces the NVT ensemble discussed above.

One of the most important advantages of the MC method is that it can also be used to

vary the chemical composition of the simulation block. This is done by artificially switching

the chemical species of a given atom and deciding whether to keep the chemical swap based

on the resultant energy di↵erence. In this way the code can model a thermodynamically

open system and establish chemical equilibrium which, as previously mentioned, is not pos-

sible using MD [34]. The exact details of how compositionally variable MC is implemented

will be discussed in chapter-3 which is the only section of the thesis which utilizes this

method.
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Chapter 3: Grain boundary premelting

The simplest and most productive model of GB premelting is one that represents the GB by

a uniform liquid layer between two solid-liquid interfaces interacting by a thermodynamic

potential  (w) depending on the GB width w [74, 75]. This model [74] and it’s subsequent

detailed analysis [33, 75] were transferred from the theory of wetting of substrates by thin

liquid films, in which the wetting behavior depends on the interaction potential between the

two interfaces. This model is capable of predicting a number of GB premelting scenarios,

depending on the form of the interaction potential. In this work we refer to this model as

the “liquid layer model” of GB premelting.1 In addition to simplicity, the advantage of this

model is that it puts the GB premelting e↵ect in the context of phase transitions theory

and critical phenomena [33, 105].

The focus of this work is on GB premelting in binary alloys. This case is more com-

plex and less studied than premelting in single-component systems. Rappaz et al. [110]

performed multiphase-field simulations of a binary alloy system in the context of late-stage

solidification. The emergence of “dry” or “wet” GBs observed in their simulations was

explained by di↵erent solid-liquid interaction potentials  (w). The latter were modeled by

exponential functions  (w) = C exp(�w/�), which could be made repulsive or attractive by

choosing the sign of C. Rappaz et al. [110] related their solid-liquid interaction potential

to the disjoining e↵ect known from the field of thin liquid films. Following their paper,

the interaction potential  (w) employed in GB premelting models came to be called the

“disjoining potential”. Tang et al. [122] developed a phase-field model of GB premelting in

binary systems and analyzed possible premelting behaviors in an abstract eutectic system

1Rappaz et al. [110] refer to this model as the “sharp interface model” since the solid-liquid interfaces
are treated as sharp. We find this term somewhat ambiguous since it might suggest that the entire GB is
treated as a sharp interface as it is done in many other theories. The term “liquid layer model” avoids this
potential confusion and, we believe, better represents the main idea.
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A–B. GB premelting was also studied [95] by a multiphase-field method with realistic model

parameters reproducing the eutectic Cu-Ag system. This study revealed that the disjoining

potential can have a variety of shapes intermediate between purely repulsive and purely

attractive. The simulations have demonstrated that, under certain conditions, first-order

thin-to-thick GB phase transitions can occur near the solidus line. Such transitions can

be represented by a transition line on the Cu-Ag phase diagram starting at a GB prewet-

ting point and ending at a critical point near the melting point of pure Cu. A similar

multiphase-field model was analyzed by Wang et al. [128], who additionally developed an

analytical approach to calculations of interaction forces between solid-liquid interfaces. Al-

though their work was primarily focused on a single-component system, they did consider

the case of a dilute binary alloy and were able to reproduce the thin-to-thick transition. On

the other hand, Rowan [112] performed phase field crystal simulations of GB premelting in

binary alloys and did not see such transitions. The disjoining potentials extracted from her

simulations were either purely repulsive or purely attractive.

As far as atomistic simulations are concerned, the MD timescale is too short to reach

chemical equilibrium with today’s computer capabilities. Consequently, MC remains the

only feasible approach to simulate binary systems [94]. Williams et al. [130] applied the

semi-grand canonical MC method with an embedded atom potential to study premelting in

a high-energy ⌃5 GB in Cu–Ag alloys. It was found that Ag segregation strongly favors GB

premelting, which commences at temperatures significantly lower than in pure Cu. As the

chemical composition of the grains approached the solidus line from below, the boundary

developed a relatively thick layer of the liquid solution whose composition approached the

liquidus composition on the phase diagram. Because of the statistical scatter of the data,

it was not possible in that work to detect thin-to-thick transitions or extract the disjoining

potential.

In this work we revisit the Cu-Ag system [130] by more accurate and systematic atomistic

simulations. Three di↵erent GBs are included in order to probe the e↵ect of GB energy. The

disjoining potential has been calculated for all three boundaries by analyzing their width
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fluctuations. Depending on the chemical composition, the boundaries exhibit repulsive,

attractive or intermediate cases of the disjoining potential. An analytical form of disjoining

potential is proposed that describes all these cases. Among a number of di↵erent premelting

scenarios predicted by this potential, the simulations do reveal the thin-to-thick transition

that has not been reported in atomistic simulations previously.

In Sec. 3.1 of the chapter, we discuss di↵erent forms of disjoining potentials and propose

a new analytical form. We also derive expressions for the equilibrium disjoining pressure

near a solidus line, which is one of the ingredients of the liquid layer model. To enable

calculations of the disjoining potential from simulation data, we present an equation relating

the disjoining potential to equilibrium fluctuations of the GB width in a binary system.

After describing our simulation methodology in Sec. 3.2, we report the results for GB

premelting in pure Cu (Sec. 3.3.1) and Cu-Ag alloys (Sec. 3.3.2). For completeness, we also

apply the thermodynamic integration method to compute GB free energies as functions

of temperature and/or grain composition. Extrapolation of the computed free energies to

the premelting region allows us to validate the disjoining potential calculations and, by

extension, the liquid-layer model itself. In Sec. 3.4 we summarize our findings and draw

conclusions.

3.1 Theory

3.1.1 The liquid layer model of grain boundary premelting

Consider a chemically closed binary system containing a liquid layer between two solid

regions (Fig. 3.1). The cross-section of the system is fixed once and for all. We will

assume that the system always remains in thermal equilibrium with a thermostat at a given

temperature T .

Calculations that do not take thermal equilibrium for granted and solve the problem in

terms of energy and entropy can be found in Ref. Mishin:2015ab. The present derivation is

simpler and adapted to the context of atomistic simulations reported later in the chapter.

21



Solid

Solid

w

z

zzσ

zzσ

Liquid

Figure 3.1: Premelted GB subject to a normal stress �zz. The GB region is modeled by a
uniform liquid layer of width w bounded by interacting solid-liquid interfaces.

Before discussing the solid-liquid equilibrium, we need to specify thermodynamic prop-

erties of the bulk phases. The solid (S) and liquid (L) phases are described by the equations

of state

FL(T,NL, N2L, VL), (3.1)

FS(T,NS , N2S , VS), (3.2)

where F is Helmholtz free energy, N total number of atoms in the phase, N2 the number

of solute atoms (component 2), and V is volume. The derivatives of the free energy are

@FL/@NL = 'L, @FS/@NS = 'S , @FL/@N2L = µ2�µ1 ⌘ �µ, @FS/@N2S = M , @FL/@VL =

�pL, @FS/@VS = �zz, where µ1 and µ2 are the chemical potentials in the liquid phase, M

is the di↵usion potential [71] of the solute relative to the solvent in the solid phase, pL

is pressure in the liquid, and �zz is the stress component normal to the interfaces. The

functions 'L and 'S are thermodynamic potentials of the phases (per atom) that will be

used below.
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Applying the Euler theorem to the homogeneous first degree functions (3.1) and (3.2),

we obtain

FL � (�µ)N2L + pLVL = NL'L,

FS �MN2S � �zzVS = NS'S .

The left-hand sides are Legendre transforms of the free energy with respect to N2 and V .

Accordingly, 'L and 'S are functions of the variables conjugate to N2 and V :

'L = 'L(T,�µ, pL),

'S = 'S(T,M,�zz),

with the derivatives @'L/@�µ = �cL, @'S/@M = �cS , @'L/@pL = vL and @'S/@�zz =

�vS , where cL = N2L/NL and cS = N2S/NS are solute concentrations (atomic fractions)

in the phases and vL and vS are the respective atomic volumes. Note that each phase is

specified by three independent variables (three degrees of freedom).

The equations of thermodynamic equilibrium between the phases are obtained from the

condition �FL + �FS = 0 under the constraints of fixed volume and fixed number of atoms

of each component. This gives

p
⇤
L = ��zz, (3.3)

�µ
⇤ = M

⇤
, (3.4)

'L(T,M
⇤
,��zz) = 'S(T,M

⇤
,�zz). (3.5)

Here and everywhere below, the asterisk marks properties related to thermodynamic equi-

librium between the bulk phases. Equation (3.3) is the condition of mechanical equilibrium

while Eqs.(3.4) and (3.5) are the conditions of chemical equilibrium and equilibrium with

respect to the phase transformation, respectively. T and �zz play the role of control param-

eters. For each pair (T,�zz), Eqs.(3.3)-(3.5) can be solved for M
⇤, �µ

⇤ and p
⇤
L. Knowing
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these, c⇤L = �(@'L/@�µ)⇤ and c
⇤
S = �(@'S/@M)⇤ give the equilibrium chemical composi-

tions of the phases. These compositions define two points on the solidus and liquidus lines

of the equilibrium phase diagram.

Next, we consider a solid-liquid interface between the equilibrium phases. Following

Gibbs’ interface thermodynamics, we choose a geometric dividing surface inside the interface

region. Suppose the precise position of this surface is adjusted so that the Gibbsian excess

of the total number of atoms relative to this surface be zero: Ñ = 0. We will use tilde

to indicate excess quantities relative to this choice of the dividing surface. Generally, the

free energy �SL (reversible work of formation) of a solid-liquid interface is the excess of the

potential [39]

� = F + pV � µ1N �MN2. (3.6)

In the present case we obtain2

�SLA = F̃ �M
⇤
Ñ2 (3.7)

since the terms with Ñ and Ṽ vanish. Note that �SL is defined only in the state of phase

equilibrium and is a function of two independent variables, e.g., T and �zz.

Now return to the liquid layer embedded between two grains (Fig. 3.1). Suppose the

layer is so thin that the inhomogeneous regions of the solid-liquid interfaces overlap. Thus,

the liquid layer is no longer homogeneous. In the model discussed here, the liquid is still

treated as homogeneous and the solid-liquid interfaces are attributed the same properties as

those of an isolated interface at the given T and �zz. The di↵erence between this idealized

picture and the real system is accounted for by introducing a coupling between the two

interfaces called the disjoining interaction. The position of each interface is defined by

the dividing surface for which Ñ = 0. This choice of dividing surfaces ensures that, as

the distance w between them increases, we eventually obtain two non-interacting interfaces

discussed in the previous paragraph. In this limit, the liquid layer model becomes exact.

2In a more general treatment [39], �SL is expressed in terms of generalized excesses introduced by
Cahn.[15] In this work, it will su�ce to use one particular type of excess, namely [X]NV , where X is

any extensive property. To simplify the notations we denote this excess X̃.
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According to this model, the free energy of the system is

F = FL(T,NL, N2L, VL) + FS(T,NS , N2S , VS) + 2f̃(T,�zz)A+ (T,�zz, w)A.

Here, FL and FS are the free energies of the phases computed assuming that they remain

homogeneous all the way to the dividing surfaces, f̃ is the excess free energy (per unit area)

at each interface, and  is called the disjoining potential. Note that, due to our choice of

the dividing surfaces, the total number of atoms in the system is N = NL +NS . Similarly,

the �-potential of the system is

� = 'LNL + 'SNS � µ1(NL +NS) + 2�SLA+ [ � (@ /@w)w]A. (3.8)

The derivative

pd =
@ 

@w
(3.9)

is called the disjoining pressure. By definition,  ! 0 and pd ! 0 at w ! 1.

It is easy to derive the conditions of thermodynamic equilibrium in this system from

the requirement that �F = 0 under the constraints �NL + �NS = 0, �N2L + �N2S = 0,

�VL + �VS = 0 and �VL = A�w. Eliminating these constraints,

�F = ('L � 'S)�NL + (�µ�M)�N2L + (pd � pL � �zz)�VL = 0

with three independent variations �NL, �N2L and �VL. The equilibrium conditions become

pd = pL + �zz, (3.10)

�µ = M, (3.11)

'L(T,M, pd � �zz) = 'S(T,M,�zz). (3.12)
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Equation (3.10) shows that the liquid layer is subject to the disjoining pressure pd in addition

to the pressure ��zz exerted by the solid. For each set of control parameters (T,M,�zz)

defining the state of the solid, Eqs.(3.10)-(3.12) can be solved for the liquid properties �µ,

pL and pd. The equilibrium width w is then the found from Eq.(3.9). The equilibrium

compositions of the phases can be calculated from the relations @'L/@�µ = �cL and

@'S/@M = �cS .

3.1.2 Disjoining potential near the solidus line

If the liquid layer is thin, the phase compositions are di↵erent from the liquidus and solidus

compositions at the same T and �zz. They only approach c
⇤
L and c

⇤
S if the liquid layer is thick

enough to neglect the disjoining e↵ect. Suppose T and �zz are fixed and M approaches M⇤.

The disjoining pressure is small and, to the leading order, is expected to be proportional

to the undersaturation �M ⌘ M �M
⇤. Indeed, linearizing equation (3.12) with respect to

the small parameters �M and pd we obtain

'L(T,M
⇤
,��zz)� c

⇤
L�M + v

⇤
Lpd = 'S(T,M

⇤
,�zz)� c

⇤
S�M.

The zeroth order terms cancel by Eq.(3.5) and we arrive at the equation relating the dis-

joining pressure to �M :

pd =
c
⇤
L � c

⇤
S

v
⇤
L

�M. (3.13)

Similarly, for a single-component system close to the bulk melting point Tm, pd is small

and is expected to be proportional to the undercooling �T ⌘ T � Tm. In this case, the

phase equilibrium conditions at and below Tm are, respectively,

'L(Tm,��zz) = 'S(Tm,�zz) (3.14)
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and

'L(T, pd � �zz) = 'S(T,�zz). (3.15)

Linearizing Eq.(3.15) with respect to �T and pd and using Eq.(3.14) we obtain

pd =
Hm

v
⇤
LTm

�T, (3.16)

where Hm = (s⇤L � s
⇤
S)Tm is the heat of melting per atom, s⇤L and s

⇤
S being the entropies of

the equilibrium phases per atom.

3.1.3 Fluctuations of grain boundary width

We now return to the liquid layer model of GB premelting. The equilibrium GB free energy

� is the excess of the �-potential given by Eq.(3.8). Thus,

�0 = 2�SL + (w0)� p
0
dw0, (3.17)

where index 0 is a reminder that the relevant quantities are computed in the state of

equilibrium described by Eqs.(3.10)-(3.12).

We should also consider the non-equilibrium GB free energy

�̂(w) = 2�SL + (w)� p
0
dw. (3.18)

For brevity, we have suppressed T and �zz as parameters of the disjoining potential and of

p
0
d. This free energy is obtained by allowing the GB width to vary while keeping the phases

in the same equilibrium state. The equilibrium GB free energy � = �̂(w0) can be found by

minimizing �̂ with respect to w.

A premelted GB fluctuates around its equilibrium state. To describe fluctuations of the

GB width w, we consider only fluctuations of the disjoining interaction while treating all

other thermodynamic parameters as properties of a large reservoir. Using the generalized
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canonical distribution [93], the probability of finding w in an interval dw is

P (w)dw = Pm exp

2

664�A

 (w)� (w0)�
✓
@ 

@w

◆

0

(w � w0)

kBT

3

775 dw, (3.19)

where kB is Boltzmann’s constant and Pm is the maximum value of the probability density

P (w). According to this equation, w0 is the most probable value of the GB width, i.e., the

position of the peak of P (w). Equation (3.19) can be rewritten in the form

P (w) = C exp

✓
�A

 (w)� p
0
dw

kBT

◆
, (3.20)

where the pre-exponential coe�cient C can be found from the normalization condition
´1
0 P (w)dw = 1. A similar equation was employed in previous studies of single-component

systems [1, 31, 56]. Here, it has been extended to a binary system. Recall that for a binary

system, p0d is given by Eq.(3.13).

Equation (3.20) is the main equation used for the calculation of disjoining potentials

from GB width fluctuations. It can be written in the alternative form [1, 31, 56]

P (w) = C
0 exp

✓
� �̂(w)A

kBT

◆
, (3.21)

where C
0 is a normalization factor.

3.1.4 Types of disjoining potentials

Two categories of disjoining potentials have been discussed in the literature: repulsive and

attractive [1, 31, 56, 77, 112, 116, 128] [Fig. 3.2(a)].

For metallic systems, both the repulsive and attractive interactions are short-range and
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(a) (b)

Figure 3.2: Traditional classification of disjoining potentials into repulsive and attractive.
(a) Potential shapes. (b) Equilibrium GB width as a function of undercooling �T or
undersaturation�M for the two types of potentials. The vertical line marks the equilibrium
melting point (respectively, solidus line). The dashed curve represents unstable GB states.

have a structural character: the attraction is due to the overlap of density perturbations

near the solid-liquid interfaces and the repulsion arises from the orientation mismatch of

the merging crystal lattices [1, 31, 56, 116, 128]. The repulsion and attraction are usually

modeled by exponential functions. Both the repulsion and attraction can be described by

a single functional form [112, 128]

 (w) = C1e
�w/�1 � C2e

�w/�2 , (3.22)

where the four coe�cients C1, C2, �1 and �2 depend on the thermodynamic state of the

grains. This functional form predicts two premelting scenarios: either continuous premelting

with a logarithmic divergence of the GB width at the melting point (or solidus line), or a

relatively narrow boundary that can be overheated above the melting point (respectively,

oversaturated above the solidus line) until an instability point at which it abruptly melts

[Fig. 3.2(b)].

A limitation of Eq.(3.22) is that it does not predict the thin-to-thick premelting tran-

sitions that were observed in phase field simulations [95, 128] and the atomistic study
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described later in this chapter. It was suggested [95] that such transitions require a non-

exponential potential. Namely, that the potential shape have a concave region between

two convex regions [Fig. 3.3(a)], so that a common tangent could be constructed with two

di↵erent touching points.

(a) (b) (c)

Figure 3.3: Disjoining potentials proposed in this work: repulsive, attractive and interme-
diate. (a) Potential shapes. Note that the attractive and intermediate potentials have a
shallow maximum in the tail region. (b) Non-equilibrium GB free energy �̂ relative to 2�SL
as a function of GB width for the three potential types. The red dashed line represents the
term �p

0
dw. The minima of �̂ correspond to equilibrium GB states. Note that the interme-

diate potential creates two local minima corresponding to GB states with widths w0 and w
0
0.

(c) Equilibrium GB width as a function of undercooling �T or undersaturation �M for the
intermediate disjoining potential. The green vertical line shows the thin-to-thick transition
in the GB. The long vertical line marks the equilibrium melting point (respectively, solidus
line). The dashed curve represents unstable GB states.

We call this type of a disjoining potential intermediate. The plot of �̂ versus w can

then have two local minima giving rise to stable and metastable states of the boundary

[Fig. 3.3(b)]. At an appropriate undercooling (undersaturation), the minima have an equal

depth. This situation corresponds to equilibrium between two GB phases and is the point of

a thin-to-thick transition [Fig. 3.3(c)]. Above this point, the GB width continues to increase

and eventually diverges at the melting point (respectively, solidus line). In a binary system,

such transitions can be represented by a thin/thick coexistence line below the solidus line

on the equilibrium phase diagram [95].

As the state of the grains varies, the disjoining potential can evolve from repulsive

to intermediate to attractive. To describe this evolution, it is desirable to have a single
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analytical form of  (w) that describes all three cases, depending on the choice of the

parameters. In this work we propose the following functional form:

 (w) = c1e
�c2w � c3e

�c4w sin(c5w + c6), (3.23)

with six coe�cients ci. This form is a generalization of Eq.(3.22) and can be shown to

capture all three cases. The first term describes exponential repulsion at small w. The sine

in the second (attractive) term creates the intermediate shape mentioned above that leads

to the thin-to-thick transition.

An additional e↵ect captured by Eq.(3.23) is the presence of damped oscillations in the

tail part of the disjoining potential. The incorporation of such oscillations is motivated by

the existence of composition patterning near solid-liquid interfaces. Compositional oscilla-

tions in the liquid phase near solid-liquid interfaces were found in several alloy systems in

both experiments [5, 61, 102] and simulations [39, 51, 52, 88]. This e↵ect was also found in

the present work as illustrated in Fig. 3.4.
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Figure 3.4: Chemical composition profiles across the (210) solid-liquid interface in the Cu-
Ag system at several temperatures. The interface position was determined from the order
parameter profile as explained in the text. The inset shows the relevant portion of the phase
diagram with the solid and liquid compositions marked by the points.
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The methodology of the simulations shown in this figure will be explained later. At

this point, it is important to notice the compositional oscillations in the liquid near the

solid-liquid interface. The peak of Ag concentration closest to the interface, which we call

the principal peak, is followed by a set of local minima and maxima with fast decreasing

amplitude until the composition levels out at c⇤L.

Similar compositional oscillations were found near the (110) oriented interface in the

same system [39], pointing to the generality of the e↵ect. In fact, simulations show that any

static perturbation of chemical composition in this system produces a relaxation zone with

oscillatory behavior of the chemical composition. For example, compositional oscillations

were observed under an open surface of Cu-Ag melt [39]: underneath the topmost layer

enriched in Ag relative to the bulk, there is a layer depleted in Ag, followed by a layer

slightly enriched in Ag, and so on until the composition become practically uniform deeper

in the bulk. In a premelted GB, the solid-liquid interfaces create a superposition of such

compositional oscillations in a manner similar to wave interference. Since it is this overlap

that gives rise to the disjoining attraction, we expect that the disjoining potential may

display rapidly decaying oscillations in the tail region. The concave region mentioned above,

and thus the thin-to-thick transition, are associated with the overlap of depletion zones. In

principle, the higher-order peaks may create an entire cascade of additional thin-to-thick

transitions closer to the solidus line. The situation is similar to the layering transitions [105]

in surface adsorption and would give rise to a set of tightly spaced transition lines on the

phase diagram, each ending at a critical point.

3.2 Methodology of simulations

3.2.1 Simulation of bulk phases

Atomic interactions in the Cu-Ag system were described by the embedded-atom method

(EAM) [27] potential [131] that accurately predicts a large number of properties of Cu

and Ag and was fitted to a first-principles database of Cu-Ag compounds. The potential
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reproduces the Cu-Ag phase diagram in reasonable agreement with experiment (Fig. 3.5).

Although MD was the main simulation method in the previous GB premelting studies

in pure metals [31, 56], this method is not well suited for alloy systems. As mentioned

above, the accessible MD simulation times are too short to achieve chemical equilibrium

of the premelted GB structure by atomic di↵usion through the solid solution. Hence, MC

simulations were chosen as the main simulation method, as was done in the previous work

[131]. For consistency of methodology, MC was also used in premelting simulations of pure

Cu, even though MD could have been applied. We utilized the parallel MC code developed

by V. Yamakov at NASA [58, 109, 132]. Two MC modes were implemented in this work:

the semi-grand canonical ensemble and the composition-controlled algorithm.

In semi-grand canonical MC simulations [34, 69], the temperature T and the di↵usion

potentialsM of Ag relative to Cu are fixed while the chemical composition is allowed to vary.

In this work, the chemical composition was measured as a fraction of Ag atoms. Depending

on the goal of the simulation, some or all of the system dimensions were allowed to vary.

The trial moves of the MC process included displacements of randomly selected atoms by a

small random amount in a random direction with simultaneous random re-assignment of the

chemical species of the chosen atom to either Cu or Ag. The number of trial moves equal

to the number of atoms in the system constitutes one MC step. After each MC step, the

dimensions of the simulation block in all or some of the x, y and z directions were altered by

random amounts with appropriate re-scaling of atomic coordinates. Such fluctuations of the

system dimensions ensure zero normal stresses �ii in the respective directions (i = x, y, z).

The trial moves were accepted or rejected by the Metropolis algorithm [34, 69]. Namely,

a move was accepted with the probability exp(�⌦/kBT ) if ⌦ > 0 and unconditionally if

⌦  0, where [13, 14, 92]

⌦ ⌘ �E ±M ± 3

2
kBT ln

mCu

mAg
. (3.24)

Here, mCu and mAg are atomic masses of Cu and Ag and �E is the energy change due to

the trial move. The positive sign applies when Cu is replaced by Ag and negative when Ag
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is replaced by Cu. The logarithmic term with atomic masses comes from the integration

of the state probability over the linear momenta of atoms, giving a pre-exponential factor

proportional to the product of masses of all atoms to the power of 3/2. In the probability

ratio of two atomic configurations, all masses cancel out except for the masses of the atom

whose species changes, giving rise to the pre-exponential factor of either (mCu/mAg)3/2

or (mAg/mCu)3/2. The MC simulations bring the system to thermodynamic equilibrium

under the imposed boundary conditions. Since the redistribution of chemical species is im-

plemented by an artificial procedure that does not require di↵usion, chemical equilibrium is

achieved much faster than in MD. Once equilibrium is reached, a long MC run was imple-

mented to compute expectation values of thermodynamic properties in the given statistical

ensemble. In the case of pure Cu, the canonical ensemble was implemented, which included

all of the foregoing steps except that the chemical species of the atoms remained unaltered.

The composition-controlled MC simulations [92, 109, 132] impose a desired average

chemical composition c of the simulation block and let the system adjust the di↵usion

potential M to achieve this composition. To reach the preset composition c, a feedback loop

is created between the current value of c and the imposed di↵usion potential M according

to the iteration scheme

M
(n) = M

(n�1) � a

 
c
(n�1) + c

(n�2)

2
� c

!
, (3.25)

where index n labels MC steps and a is an adjustable parameter that controls the compu-

tational e�ciency of the simulation without a↵ecting the result. After the system reaches

equilibrium, both the composition and di↵usion potential slightly fluctuate around their

equilibrium values. It can be shown [92] that the feedback algorithm is similar to the

variance constrained MC method proposed by Sadigh et al [114].

The study of GB premelting required the knowledge of thermodynamic properties of the

bulk solid and liquid phases and the exact positions of the solidus and liquidus lines on the
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phase diagram. To compute thermodynamic properties of the solid solution, we used a cubic

simulation block containing 5324 perfect lattice cites with periodic boundary conditions.

Stress-free (�xx = �yy = �zz = 0) semi-grand canonical MC simulations were executed for

a set of temperature-composition pairs (T, c) with the desired compositions achieved by

properly choosing the di↵usion potential. Typically, the system was equilibrated by 3⇥ 104

MC steps followed by 2 ⇥ 105 production steps to gather statistics. The pairs (T, c) were

chosen to sample the regions of interest on the phase diagram for both GB premelting

simulations and thermodynamic integration as will be discussed later. For each (T, c), a set

of properties was computed including the di↵usion potential, the average potential energy

per atom, and the thermo-chemical expansion factor of the lattice relative to pure Cu at 0

K. Similar calculations were conducted for pure Cu (c = 0) for a chosen set of temperatures.

Although the approximate positions of the solidus and liquidus lines predicted by this

interatomic potential were known from previous calculations [131] (Fig. 3.5), the premelting

simulations required a more precise knowledge of the solidus and liquidus compositions, c⇤S

and c
⇤
L, at temperatures of interest.
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Figure 3.5: Right: Phase diagram of the Cu-Ag system calculated with the EAM potential
[131] utilized in this work. Left: Zoomed-in view of the Cu rich side of the phase diagram
showing the sampling method of temperatures and compositions studied in this work.
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They were calculated at the temperatures of 1000 K, 1100 K and 1200 K by the following

phase-coexistence procedure. A rectangular periodic simulation block was prepared with

dimensions of approximately 4⇥ 4⇥ 16 nm containing 22,000 atoms. The block contained

two regions filled with the solid and liquid phases separated by a (210)-oriented solid-

liquid interface normal to the long direction z. The lattice of the solid phase was pre-

expanded according to the equilibrium lattice parameter at the chosen temperature and

the equilibrium di↵usion potential M⇤ estimated in the previous work [131]. Since the final

values ofM⇤ were close to the initial estimates, the solid phase remained virtually stress-free.

Next, a composition-controlled MC simulation run was executed at a fixed cross-section of

the simulation block and zero-stress condition imposed in the z direction. Knowing the

previously estimated c
⇤
S and c

⇤
L values, the imposed chemical composition c was selected by

the lever rule so as to give an approximately 50:50 volume fraction of both phases. After

equilibration, a 3⇥106 MC step simulation was performed to compute refined values of M⇤,

c
⇤
S and c

⇤
L. The latter were obtained by averaging the compositions of bulk regions inside

each phase una↵ected by the interface. The results are summarized in Tab. 3.1, which also

includes the computed atomic volume v
⇤
L of the liquid phase.

Table 3.1: Solid-liquid coexistence properties on the Cu-rich side of the Cu-Ag system: The
di↵usion potential M⇤, the solidus and liquidus compositions c

⇤
S and c

⇤
L, and the volume

per atom in the liquid phase v
⇤
L. 1325.25 K is the estimated melting point of pure Cu.

T (K) M
⇤ �

eV
atom

�
c
⇤
S (%Ag) c

⇤
L (%Ag) v

⇤
L

⇣
nm3

atom

⌘

1000 0.5692 39.83 3.69 .01552
1100 0.5194 28.06 3.36 .01493
1200 0.4437 15.66 2.26 .01426

1325.25 — 0 0 .01339

Similar calculations were performed for solid-liquid coexistence in pure Cu, excepts that

the MC ensemble was canonical. While our previous calculations[131] and work by other

authors suggested that the melting temperature predicted by the present EAM potential is
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between 1326 and 1327 K, in this work we find that Tm = 1325.25 K provides more consistent

results for GB premelting (see details below). The 1 K scatter of the temperatures may

reflect system size e↵ects and/or limitations of di↵erent calculation methods. At 1325.25

K, there was no discernible growth of either phase during the longest MC simulation runs

that we could a↵ord. The melting enthalpy Hm was calculated from the energy di↵erence

between the phases at 1325.25 K. The obtained Hm = 0.1239 eV/atom is in good agreement

with 0.1244 eV/atom reported previously [131].

3.2.2 Grain boundary simulations

Three symmetric tilt GBs were studied in this work: ⌃5(210)[001], ⌃17(530)[001] and

⌃13(320)[001]. Here, ⌃ is the reciprocal density of coincident sites, [001] is the tilt axis, and

the symbols in parentheses indicate the GB plane. In the remainder of the chapter, these

boundaries will be refereed to as ⌃5, ⌃17 and ⌃13, respectively. Their 0 K structures were

obtained by applying standard geometric constructions and minimizing the total energy

with respect to local atomic displacements and rigid translations of the grains relative to

each other [119]. The GB structures obtained are in agreement with previous simulations

[17] as shown in Fig. 3.6.

Figure 3.6: Atomic structures of three GBs studied in this work. The tilt axis [001] is
normal to the page and the kite-shaped structural units are outlined. The red and black
atoms belong to alternating (002) atomic planes.

Their 0 K energies, misorientation angles and dimensions of the periodic simulation
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blocks are listed in Table 3.2. Note that the GB energy decreases in the order ⌃5, ⌃17 and

⌃13.

Table 3.2: Properties of the three symmetrical tilt GBs studied in this work: the lattice
rotation angle around the [001] tilt axis, the 0 K GB energy �, the number of atoms in the
simulation block N , and the block dimensions. The GB plane is normal to the z-axis.

Boundary Tilt angle � (J/m2) N Lx (nm) Ly(nm) Lz(nm)
⌃5(210) 53.13� 0.951061 22000 4.04 3.98 16.17
⌃17(530) 61.93� 0.856302 21216 4.23 4.69 12.63
⌃13(320) 67.38� 0.790050 29120 5.21 5.06 13.03

For pure Cu GBs, canonical MC simulations were performed at several temperatures

from 100 K to 1324 K (1 K below the melting point). As with bulk simulations, the

system was pre-expanded by the known thermal expansion factor of the lattice. The (x, y)

cross-section of the simulation block was then fixed while the z-dimension (normal to the

GB plane) was allowed to fluctuate to maintain the �zz = 0 condition. These boundary

conditions ensured zero stress inside the grains while allowing the thermal expansion of the

GB region to be di↵erent from that of the lattice.

At temperatures below 1280 K, the GB structures were relatively ordered and premelting

was not a consideration. Simulations at these temperature were carried out solely to obtain

data needed for the subsequent thermodynamic integration (see Secs. 3.2.5 and 3.3.1.2).

At each temperature, the system was equilibrated by 105 MC steps before a production

run for 5 ⇥ 105 MC steps. Snapshots were saved every 2000 steps. Above 1280 K, the

simulations were run much longer (typically, between 4 ⇥ 106 and 3 ⇥ 107 MC steps) in

order to obtain su�cient statistics of GB width fluctuations. The temperature step was

reduced as temperature increased. The temperatures closest to the melting point were 1300

K, 1310 K, 1315 K, 1320 K and 1324 K.

For binary alloys, the simulation block was similarly pre-expanded according to the

lattice parameter at the chosen temperature and grain composition. Semi-grand canonical

38



MC simulations were carried out with a fixed GB cross-section and fluctuating z-dimension

maintaining the �zz = 0 condition. At each of the three temperatures studied (1000 K,

1100 K and 1200 K), the simulations were run for two sets of di↵usion potentials. The first

set started with dilute alloys and sampled grain composition far away from the solidus line.

Such simulations were only needed for thermodynamic integration as will be discussed later.

The second set included grain compositions very close to the solidus line and was designed

for the fluctuation analysis of the GB width. The numbers of MC steps implemented in both

sets were similar to those for pure Cu far away and close to the melting point, respectively.

To verify that the scaling of the lattice indeed ensured zero stress conditions inside the

grains, multiple snapshots containing local stress data were averaged to compute the stress

profiles �ij(z). For both pure Cu and Cu-Ag alloys, such profiles showed a nearly perfect

zero stress inside the grains and a sharp spike of �xx and �yy caused by the interface stress

in the GB regions.

3.2.3 Calculation of the grain boundary width distribution

The width w of a premelted GB was identified with the width of the liquid layer formed

inside the boundary. The first step in calculating w was to construct an order parameter

profile across the boundary. As such, we chose the parameter characterizing the periodic

order of the (002) crystal planes normal to the tilt axis [001] (y-direction) [39, 40, 120].

This order parameter is the modulus of the structure factor S(k) computed for a set of bins

parallel to the GB plane:

|Si(k)| =

vuuuut

0

B@

P
j
cos(k · rj)

Ni

1

CA

2

+

0

B@

P
j
sin(k · rj)

Ni

1

CA

2

, (3.26)

where k = 2⇡(0, 2/a, 0) is the reciprocal lattice vector, rj is the position of atom j in bin

i, a is the cubic lattice parameter in the grains, and the summation runs over all Ni atoms

in the bin. This order parameter is unity in the perfect crystal at 0 K, has a positive value
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smaller than 1 in the grains at finite temperatures, and is zero in the liquid phase. An

example of an order parameter profile |Si|(zi) computed from a single snapshot is shown in

Fig. 3.7, zi being the center of bin i and the bin width was 0.0615 nm. The scatter of the

points is due to thermal noise.

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8

O
rd

er
 p

ar
am

et
er

z (nm)

φmid
GB width

φmax

z1 z2

Figure 3.7: Typical order parameter profile used to calculate the GB width in a single
snapshot. The blue points are raw values of the structure factor |Si|(zi) and the red curve
is the smoothed profile �i(zi). The simulation was for the ⌃5 GB at 1200 K with the grain
composition of 2.23 at.%Ag. The upper image shows the atomic positions projected along
the [001] tilt axis normal to the page, with yellow points representing Cu atoms and blue
points Ag atoms.

To mitigate the noise e↵ect, a smoothing procedure was applied where each of the |Si|

values was averaged with two neighboring points on either side. This resulted in a smoothed

profile that we denote �i(zi) and show as a red curve in Fig. 3.7 (the discrete points are

connected by line segments).

The grain value �max was computed by averaging over regions far away from the GB.

Next, two locations z1 and z2 were found at which the order parameter was equal to �mid=
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�max/2. Because the function �i(zi) is discrete, linear interpolation of �i was applied to

find z1 and z2. The GB width was then defined as the di↵erence w = |z1 � z2|. Note that,

due to the periodic boundary conditions, each snapshot e↵ectively contained two GBs,

both of which were used to calculate w. For the alloy system, the chemical composition

profile could be alternatively used to calculate w. However, we chose to use the structural

order parameter throughout this work to ensure consistency between the alloy and pure Cu

simulations.3

The described calculation of w was repeated for all Np snapshots saved in each sim-

ulation. The number of snapshots increased as the simulation condition approached the

solidus line. From the entire set of GB widths obtained in a simulation, a histogram was

constructed using the number of bins 2(Np)1/3 (Rice rule). The histogram was then scaled

by the bin width and divided by Np to obtain a discrete probability density function Pi(wi)

normalized to unity of its midpoint Riemann sum. As an example, Fig. 3.8 shows a set

of probability functions for the ⌃5 boundary at 1000 K. In total, twelve such sets were

generated in this work (three GBs, three temperatures for the alloys, and one temperature

set for pure Cu).

3.2.4 Calculation of the disjoining potential

As discussed in Sec. 3.1.3, the GB width distribution P (w) is related to the disjoining

potential  (w) by Eq.(3.20). Inverting this equation,

 (w) = �kBT

A
lnP (w) + p

0
dw +D, (3.27)

whereD is the logarithm of the normalization coe�cient. Recall that p0d is given by Eq.(3.16)

for pure Cu and by Eq.(3.13) for a Cu-Ag alloy, the superscript 0 being a reminder that

3As indicated in Sec. 3.1.1, the GB width w is defined as the distance between two dividing surfaces in

the solid-liquid interfaces satisfying the condition Ñ = 0. The described practical definition of w through
the order parameter profile need not satisfy this condition and constitutes an approximation. The larger w,
the more accurate this approximation becomes.
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Figure 3.8: Probability density functions Pi(wi) for di↵erent values of�M (in eV) computed
for the ⌃5 GB at the temperature of 1000 K. The inset shows the segments of the disjoin-
ing potential extracted from these functions. The curves are the normalized distributions
predicted by the analytical disjoining potential.

this disjoining pressure is computed at the bulk solid-liquid equilibrium. The undercooling

temperature �T and undersaturation potential �M are known in each simulation.

Ideally, if the function P (w) could be computed accurately over the entire range 0  w <

1, the coe�cientD could be determined from the normalization condition
´1
0 P (w)dw = 1.

The entire disjoining potential  (w) could be then obtained from a single simulation. In

reality, a reliable calculation of P (w) is limited to a certain interval around the peak and

accurate normalization is unfeasible. Since D remains unknown, a single simulation recovers

only a segment of  (w) up to an arbitrary vertical shift D. Examples of such segments are

shown in Fig. 3.8. In this work, each segment was obtained from the probability distribution

function in the interval w̄±1.5�, where w̄ is the average GB width estimated from the given

distribution and � is the standard deviation of the distribution.4 The points outside this

interval had relatively small probabilities and were usually not fully converged. Accordingly,

4For bimodal distributions, the segment of  (w) was calculated in the interval 0.8  w  2.2 nm that
encompassed both peaks. The rest of the distribution consisted of very small probabilities and was excluded.
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they were not included in the calculation. Note that the segments calculated at di↵erent

undercoolings (respectively, undersaturations) were defined in overlapping width intervals.

The next step was to join the segments together into a single continuous curve. This

was accomplished by shifting the segments relative to each other so as to minimize the

mean-square deviation between neighboring segments in the overlap intervals. Since the

segments did not generally share the same mesh, they had to be remapped onto a common

mesh in the overlap region using a linear interpolation scheme. The minimization was then

implemented on this common mesh. Once the shifts were optimized, the values of  (w)

in the overlap regions were obtained by averaging over the two segments on the common

mesh.

This procedure resulted in a continuous curve defined up to a rigid shift that remained

an unknown parameter. The postulated analytical potential given by Eq.(3.23) was then

fitted to this curve. To this end, the mean-square deviation between the curve and the

function was minimized with respect to six fitting parameters ci plus the rigid shift.5

3.2.5 Calculation of properties for thermodynamic integration

Calculations of the GB free energy by thermodynamic integration required the knowledge of

certain GB and bulk properties as functions of temperature and/or grain composition. Such

properties include Ũ , Ñ2, Lx, Ly, ⌧ii, (@eii/@T )c=0, (@eii/@c)T (i = 1, 2) and (@M/@c)T .

Here c is the grain composition (it was earlier denoted cS in the context of solid-liquid

coexistence; we can now simplify the notation).

For GBs, the tilde sign denotes the Gibbsian excesses computed at a fixed number of

5Formally, extrapolation of  (w) to w ! 0 gives (�dry � 2�SL), where �dry is the free energy of a
hypothetical “dry” GB in which the two solid-liquid interfaces are infinitely close to each other. Clearly, in
this limit the entire liquid layer model loses its physical meaning. On the other hand, since the simulations
only sampled GB widths larger than several Angstroms, the function fitted in this width interval could
display totally unreasonable behavior when extrapolated to the w ! 0 limit. Therefore, we chose to impose
the boundary condition  (w) ! (�dry � 2�SL) at w ! 0 with a small weight during the curve fitting. We
approximated �dry by the GB energy at 0 K and used the �SL values obtained by forcing the liquid layer
model to match the thermodynamic integration result at the last point of the simulations (see text for more
detail). This condition did not practically a↵ect the quality of the fit in the physically meaningful width
interval but gave a reasonable order of magnitude of  (w) at w ! 0.
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atoms (Ñ = 0).6 In pure Cu, the excess energy Ũ was first computed in each snapshot by the

following procedure. Knowing the locations of the two GBs from the order parameter profile,

a layer containing each boundary together with surrounding grain regions was selected.

Let the total energy and total number of atoms in both layers together be UI and NI ,

respectively. The rest of the simulation block was comprised of lattice regions unperturbed

by the GBs. Their total energy Ug and number of atoms Ng represented a reference grain

system. The excess Ũ was computed from the equation

2Ũ = UI �NI
Ug

Ng
, (3.28)

where the factor of 2 takes into account that the right-hand side represents two GBs. This

Ũ was then averaged over all snapshots saved during the simulation. In alloys simulations,

the excess Ag amount was computed in a similar manner using the equation

2Ñ2 = N2I �NI
N2g

Ng
. (3.29)

The cross-sectional dimensions of the GB, Lx and Ly, were known as functions of tem-

perature and grain composition from the perfect-lattice simulations described in Sec. 3.2.1.

From these data, the derivatives
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were calculated by numerical di↵erentiation using polynomial fits through the relevant sets

6In terms of generalized excesses describing GBs [43, 44], X̃ is equivalent to [X]N , X being any extensive
property.
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of temperatures or compositions. The GB area A = LxLy was also calculated as a function

of temperature and/or composition.

The di↵usion potentials and the respective grain compositions were known from the MC

simulations of bulk phases discussed in Sec. 3.2.1. The derivative (@M/@c)T was computed

from a polynomial fit through the set of points (M, c) at a fixed temperature.

The interface stress was calculated from the relation [39–42, 44]

⌧ii =
�iiV

A
, , i = 1, 2, (3.32)

V being the system volume. This equation assumes zero stress outside the GB region, which

was ensured in the present simulations. The work term �iiV was computed by summing

up the virial stress tensors over all atoms inside the interface layer (containing the GB and

grain regions) and averaging over all snapshots.

Finally, thermodynamic integration required the knowledge of one reference value �ref

of the GB free energy. To obtain it, the free energy of each GB in pure Cu was calculated in

the quasi-harmonic approximation at the reference temperature Tref = 300 K as in previous

work [32, 40, 44]. The values obtained were 0.888 J/m2, 0.798 J/m2 and 0.737 J/m2 for the

⌃5, ⌃17 and ⌃13 GBs, respectively.

3.3 Simulation results and interpretation

3.3.1 Grain boundary premelting in pure Cu

3.3.1.1 Premelting behavior and disjoining potentials

In all three GBs studied, the formation of a liquid layer was observed as the bulk melting

point was approached from below; however, the extent of premelting was di↵erent. Fig. 3.9

illustrates the gradual accumulation of disorder in the ⌃5 GB with increasing temperature

culminating in the formation of a thick liquid layer a few degrees below Tm.

To demonstrate the di↵erences between the GBs, Fig. 3.10 shows typical snapshots at
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T=1100 K (-225.25 K) T=1300 K (-25.25 K) T=1324 K (-1.25 K)

Figure 3.9: Premelting of the Cu ⌃5 GB at three di↵erent temperatures below the bulk
melting point. The atomic positions are projected along the [001] tilt axis normal to the
page. The number in parentheses is the undercooling �T .

�T = �15.25 K together with the width probability distributions. While the ⌃5 and ⌃17

GBs are strongly premelted at this temperature, the ⌃13 GB is disordered but not to the

extent that it could be described as a liquid layer. These di↵erent behaviors are reflected

in di↵erent positions of the peak of the GB width distribution.

The plots of the average (over the probability distribution) GB width w̄ as a function

of undercooling �T (Fig. 3.11) indicate that, in all three GBs, the liquid layer thickness

diverges to infinity at the bulk melting point. As discussed in Sec. 3.1, this behavior is

indicative of a repulsive disjoining potential.

As mentioned above, the disjoining potentials reconstructed from individual segments

(Fig. 3.12) were initially defined up to an unknown rigid shift.

They were then fitted by the analytical function in Eq.(3.23) with six parameters plus the

rigid shift as the seventh fitting parameter. Fig. 3.13 summarizes the disjoining potentials

for the three GBs with optimized rigid shifts. By its physical meaning,  (w) must approach

zero in the limit of w ! 1 (no interaction between isolated solid-liquid interfaces). Note,

however, that at the largest GB widths sampled in the simulations, some of the obtained

 (w) points are slightly above or slightly below zero due to statistical errors. Such deviations

from zero are especially pronounced for the ⌃13 GB at w > 3.5 nm. For this boundary,
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Figure 3.10: Width probability distributions P (w) for three GBs in Cu at 1310 K (�T =
�15.25 K) with snapshots of the premelted structures. The points represent the original
histograms while the curves are the normalized distributions predicted by the analytical
disjoining potential. The atomic positions are projected along the [001] tilt axis normal to
the page. The numbers indicate the GB widths in the snapshots.

the deviations could represent a combined e↵ect of statistical errors and systematic factors.

Indeed, the ⌃13 boundary remains rather narrow and displays only slight premelting until

a few degrees below the melting point. Under such conditions, modeling this boundary by

a liquid layer is a more drastic approximation than for the ⌃5 and ⌃17 GBs.

As evident from Figs. 3.10-3.13, the ⌃5 GB exhibits the most extensive premelting

and can be represented by a liquid layer most accurately. Accordingly, we expect that its

disjoining potential must be exponentially repulsive and become practically zero at w > 3.5

nm. It was found that to meet this condition, a precise adjustment of the bulk melting

point of Cu was necessary. As already mentioned, Tm = 1325.25 K was found to give the

most accurate agreement with zero  at w > 3.5 nm. With this melting temperature, the

disjoining potential of the ⌃5 GB could be fitted by a purely exponential function [c3 = 0

in Eq.(3.23)]. By contrast, accurate fitting for the ⌃17 and ⌃13 GBs required all terms
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Figure 3.11: Average GB width w̄ as a function of undercooling �T for the pure Cu GBs.

in Eq.(3.23). Note that for the ⌃13 GB, the disjoining potential below 1.5 nm exhibits a

characteristic shape suggestive of a developing shoulder.

As a consistency check, the analytical disjoining potentials obtained by the fitting were

inserted in Eq.(3.20) and the width probability distributions were normalized to unity by

numerical integration. The probability distributions obtained are shown by solid curves in

Figs. 3.8, 3.10 and 3.12. At temperatures close to the melting point, these curves reproduce

the individual distributions quite well. At larger undercoolings, the agreement becomes less

accurate, which is not surprising given that the GBs become nearly dry and their description

as a liquid layer is a crude approximation.
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3.3.1.2 Free energy of premelted grain boundaries

The GB free energies were computed by thermodynamic integration. We used the integra-

tion scheme [44]

�(T ) =
ArefT

ATref
�ref +

T

A

T̂

Tref

 
2X

i=1

A⌧ii

T

@eii

@T
� Ũ

T 2

!
dT, (3.33)

where the excess energy Ũ and the interface stress ⌧ii were discussed in Sec. 3.2.5. The

quantities with index “ref” must be computed in the reference state. The term with the
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Figure 3.13: Disjoining potentials for three GBs in pure Cu. The points represent simulation
results from the GB width fluctuations. The solid lines are analytical disjoining potentials
fitted to the points as discussed in the text.

excess energy makes the leading contribution to the integral. Fig. 3.14 shows the excess

energy per unit GB area as a function of temperature.

This energy remains nearly constant at low temperatures and sharply increases in the

premelting region. It is interesting to note that the ranking of the GB energies at 0 K (�⌃5 >

�⌃17 > �⌃13) persists all the way to the melting point. This trend suggests that high/low

energy GBs at 0 K are likely to remain high/low energy boundaries at all temperatures.

Accordingly, the 0 K GB energy can be a reasonably good predictor of premelting behavior.

This correlation was also noted in the previous phase field studies on GB premelting [95].

The reference temperature Tref was 300 K and the integration in Eq.(3.33) was carried out

numerically.

The functions �(T ) for the three GBs are plotted in Fig. 3.15.

The plots include the GB energies at 0 K and the free energies at 100 K and 200 K

computed in the quasi-harmonic approximation. These extra points demonstrate a smooth
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continuation of the curves below the temperature range 300 K  T  1324 K of thermody-

namic integration. Although this method becomes less accurate as we deviate further away

from the reference state, it was interesting to examine the values of � at the bulk melting

point. In the liquid layer model with a repulsive disjoining potential, these � are expected

to give 2�SL. Thus, �SL could be obtained by linear extrapolation of the plots from 1324

K to 1325.25 K. Instead, we used a slightly more refined procedure explained below. The

calculation gives the �SL values of 0.196 J/m2, 0.194 J/m2 and 0.192 J/m2 for the ⌃5, ⌃17

and ⌃13 GBs, respectively. These numbers refer to the solid-liquid interface orientations

of (210), (320) and (520), respectively. The orientation dependence of �SL suggested by

these numbers is small. All three numbers are in close agreement with �SL = 0.199 J/m2

obtained in the previous work [39, 40] for the (110) interface orientation using the same

interatomic potential.

The GB free energy can also be calculated within the liquid layer model using the

analytical disjoining potentials  (w) and the normalized width probability distributions
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Figure 3.15: GB free energy as a function of temperature for three GBs in pure Cu. The
main plot shows the results of thermodynamic integration. The inset compares these results
with predictions of the liquid layer model near the melting point (points).

P (w). Note that thermodynamic integration naturally includes the e↵ect of GB width

fluctuations. Thus, the quantity that should be compared with the results of thermodynamic

integration is the GB free energy �̄ averaged over the width distribution. Using Eq.(3.18)

we obtain

�̄ = 2�SL + (w)� p
0
dw̄, (3.34)

where the bar denotes averaging over the width probability distribution:7

w̄ =

1̂

0

wP (w)dw, (3.35)

 (w) =

1̂

0

 (w)P (w)dw. (3.36)

7Note the di↵erence between the average values, such as w̄ and �̄, and the previously introduced most
probable values w0, �0, etc. For highly asymmetric distributions, especially those with two local maxima,
they can be numerically di↵erent.
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These integrals were computed numerically. The following procedure was then applied. We

postulate that at the last point sampled (1324 K), �̄ matches � obtained by thermodynamic

integration. From this condition, we obtain

�SL =
1

2

⇣
� � (w) + p

0
dw̄

⌘
, (3.37)

where w̄ and  (w) were computed at the last point. The values of �SL obtained by this

procedure were quoted in the previous paragraph. Using these values of �SL, the entire

function �̄(T ) was calculated from Eq.(3.34). The inset in Fig. 3.15 compares the GB free

energies computed by the two methods. Given that the two calculations are independent

(except for forcing their match at 1324 K), the agreement is very good. This lends additional

credence to the liquid layer model at premelting temperatures. At lower temperatures,

the comparison becomes impossible since the width probability distributions could not be

extracted from the simulations and the liquid layer model is not expected to be valid.

3.3.2 Grain boundary premelting in Cu-Ag solutions

3.3.2.1 Premelting behavior and disjoining potentials

As the grain composition c approaches the solidus line, the amount of GB segregation of

Ag rapidly increases (Fig. 3.16).

The segregation zone grows wider and the atomic positions within this zone become

increasingly disordered. At the undersaturation of �c = �0.11 at.%Ag, the ⌃5 GB becomes

essentially a layer of the Cu-Ag liquid solution. This trend is quantified in Fig. 3.17 where

the average GB width w̄ is plotted against �M for all three GBs.

Each GB becomes wider with increasing temperature at a fixed �M or with decreasing

|�M | at a fixed temperature. At fixed T and �M , the GB width decreases in the order ⌃5,

⌃17, ⌃13. While the widths of the ⌃5 and ⌃17 GBs diverge to infinity when approaching

the solidus line, the ⌃13 GB retains a finite width at the solidus line. In this case it was
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Figure 3.16: Premelted structures of the ⌃5 GB at the temperature of 1100 K at di↵erent
undersaturations �c (at.%Ag). The atomic positions are projected along the [001] tilt axis
normal to the page, with yellow points representing Cu atoms and blue points Ag atoms.

possible to oversaturate the grains beyond the solidus line. In such oversaturated states,

the GB width still remained finite until some point at which the entire system abruptly

melted.

The disjoining potentials were extracted from the width probability distributions com-

puted by the methodology discussed in Secs. 3.2.3 and 3.2.4 and illustrated in Figs. 3.7 and

3.8. For the ⌃5 GB,  (w) remains repulsive at all points along the solidus (Fig. 3.18).

Although the changes in the shape of the disjoining potential are small, there is a trend

for it to shift towards smaller GB widths and develop a shoulder at around 1.5-2 nm as

the temperature decreases. By contrast, the disjoining potential of the ⌃17 GB varies with

temperature more dramatically (Fig. 3.19).

As temperature decreases along the solidus line, the initially repulsive disjoining po-

tential of pure Cu gradually transitions to the intermediate shape discussed in Sec. 3.1.4

[cf. Fig. 3.3(a)]. The shoulder on the curve flattens at 1000 K and develops a double-well

shape with a shallow minimum at w ⇡ 1.3 nm. This shape evolution originates from the

emergence of a second maximum in the width probability distribution as illustrated in

Fig. 3.20.

It should be mentioned that, due to the low temperature and complex shape of the distri-

butions, these calculations required the longest simulation runs of all that were implemented
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Figure 3.17: Average width of the (a) ⌃5, (b) ⌃17 and (c) ⌃13 GBs in Cu-Ag solid solutions
as a function of the di↵usion potential �M relative the solidus line. The points represent
individual simulations. The solid lines are Bezier curves intended to show the trends.

in this work.8 The results are still subject to larger statistical errors than for single-peak

distributions. At �M = �0.0032 eV, the distribution does have a single peak. However,

as we approach closer to the solidus line (�M � �0.0012 eV), a second peak emerges and

grows higher until we reach the last point closest to the solidus (�M = �0.0004 eV) at

which the second peak is higher than the first.

Because of the importance of the bimodal distributions as evidence of the intermediate

disjoining potential, special care was taken to ensure that the bimodality is not an artifact

and to understand its origin. Fig. 3.21 shows a typical fragment of the simulation for the

8To obtain additional statistics for the bimodal distributions, the MC simulations were run four times
longer than for unimodal distributions. The segments of the disjoining potential had significant overlaps
where they did not match as smoothly as for unimodal distributions. Nevertheless, the existence of two
peaks and thus the oscillatory region of the disjoining potential at 1000 K (Fig. 3.19) are beyond reasonable
doubts.
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Figure 3.18: Disjoining potentials for the ⌃5 GB in the Cu-Ag solid solution at the three
di↵erent temperatures and in pure Cu. The insets show the fits of the simulation results
(points) by the analytical function  (w) (curves). The main plot summarizes the fitted
functions.

⌃17 GB at 1000 K for one of the grain compositions showing the bimodality.

The plot clearly shows that the boundary spontaneously switches back and forth between

two states, with a smaller and a larger average width. One of the two states is stable while

the other metastable. It is the existence of these two states that gives rise to the two peaks

in the GB width distribution P (w). The relative heights of the peaks bear information

about the relative stability of the two states. Thus, the rise of the peak corresponding to

the wider GB state indicates that this GB state becomes increasingly more stable as we

approach the solidus line, and eventually becomes more stable than the narrower state.

Therefore, we can expect that a thin-to-thick transition occurs between the two states at

some value of �M . As discussed in Sec. 3.1.4, this transition arises due to the intermediate

shape of the disjoining potential.
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Figure 3.19: Disjoining potentials for the ⌃17 GB in the Cu-Ag solid solution at the three
di↵erent temperatures and in pure Cu. The insets show the fits of the simulation results
(points) by the analytical function  (w) (curves). The main plot summarizes the fitted
functions. Note the transition of the disjoining potential from repulsive to intermediate
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Finally, the disjoining potential of the ⌃13 GB evolves from repulsive to attractive as

temperature decreases along the solidus line (Fig. 3.22).

In pure Cu, the potential curve is only beginning to develop a shoulder but remains

monotonically decreasing with w (cf. Fig. 3.13). Accordingly, the boundary premelts con-

tinuously when approaching Tm and can be described by the liquid layer model satisfactorily

(although not as accurately as for the two other GBs). As the potential evolves to attrac-

tive, the GB width becomes relatively small (< 1 nm) and its description as a liquid layer

becomes a crude approximation. Nevertheless, the simulation results show unambiguously

that the disjoining potential is attractive. The boundary retains a finite width along the

solidus line until close to pure Cu and can be oversaturated beyond the solidus line. The
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Figure 3.20: Probability density functions for di↵erent values of �M (in eV) computed for
the ⌃17 GB at the temperature of 1000 K. The points represent the original histograms
while the curves are the normalized distributions predicted by the analytical disjoining
potential. The inset shows segments of the disjoining potential obtained by inversion of
individual probability functions.

shapes of the curves in Fig. 3.22 suggest that  (w) must become intermediate at tempera-

tures between 1200 K and Tm, but a study of this temperature interval was not pursued in

this work.

3.3.2.2 Chemical composition of grain boundaries

When a GB becomes a liquid layer, its chemical composition is expected to approach the

liquidus composition c
⇤
L as the grains approach the solidus composition c

⇤
S at the same

temperature. In the previous MC study of the ⌃5 GB, [130] this trend was indeed followed

within the statistical scatter of the data. The present simulations o↵er the opportunity of

a more accurate test of this trend for the ⌃5 and ⌃17 GBs (we excluded the ⌃13 GB for

which the notion of a liquid layer is not well-defined).
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Figure 3.21: A typical fragment of MC simulations for the ⌃17 GB at 1000 K with under-
saturation �M = �0.0012 eV. The GB spontaneously switches between two states, labeled
A and B, with di↵erent widths. Multiple repetitions of such switches produce two peaks
in the width probability distribution P (w). The insets show order parameter profiles in
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Figure 3.23 shows the chemical composition, cGB, at the center of the GB region as a

function of �M . To find cGB, the bounds z1 and z2 of the GB region were calculated from

the order parameter profile in each snapshot as illustrated in Fig. 3.7.

The GB center was defined by zc = (z1 + z2)/2 and its chemical composition cGB was

computed by averaging over a 0.1 nm window centered at zc. Each point shown in Fig. 3.23

was obtained by averaging cGB over all snapshots saved in the simulation. We observe

that at high temperatures, cGB increases monotonically with �M and reaches the liquidus

composition c
⇤
L as the grains reach the solidus line (�M ! 0). We also see that, at a

given �M , cGB increases with decreasing temperature. In other words, the GB segregation

becomes stronger at low temperatures, suggesting a negative segregation energy (binding of
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Figure 3.22: Disjoining potentials for the ⌃13 GB in the Cu-Ag solid solution at the three
di↵erent temperatures and in pure Cu. The insets show the fits of the simulation results
(points) by the analytical function  (w) (curves). The main plot summarizes the fitted
functions.

Ag to the GBs). It is interesting to note, however, that at low temperatures, cGB overshoots

c
⇤
L before turning over and returning to c

⇤
L from above. Furthermore, at least for the ⌃5 GB

at 1100 K, the overshoot is followed by a slight undershoot before cGB reaches c
⇤
L. These

subtle but important e↵ects could not be resolved in the previous work [130], nor were they

seen in the phase field simulations [95].

For a more detailed understanding of these e↵ects, we examined the local chemical

composition profiles across the GBs. To obtain them, the GB center zc was found in each

snapshot and the entire simulation block was translated to bring this point to z = 0. This

re-centering procedure was applied to all snapshots saved in the simulation. A set of thin

layers parallel to the GB plane was then constructed and the chemical composition of each

layer was averaged over all snapshots. The discrete composition profile obtained was thus

60



(a)

0.6

0.8

1.0

1.2

-0.06 -0.04 0.00

1000 K

1100 K
1200K

-0.02

 / 
c*

c G
B

 (eV)M

L

(b)

0.6

0.8

1.0

1.2

-0.06 -0.04 -0.02 0.00

1000K

1100K
1200K / 

c*

 (eV)M

c G
B

L

Figure 3.23: Chemical composition cGB at the center of the GB region normalized by the
liquidus composition c

⇤
L as a function of undersaturation �M . The lines are Bezier curves

intended to highlight the trends.

centered at z = 0. It was then represented by a continuous profile by linear interpolation

between the bin centers.

Examples of composition profiles are shown in Fig. 3.24 for the ⌃5 GB at 1000 K for a

set of �M values near the solidus (similar profiles were also generated for the ⌃17 and ⌃13

GBs with similar results).

At early stages of premelting, the profile has a single maximum whose height increases

as we move closer to the solidus line. At some point, the maximum overshoots the liquidus

composition. Then, instead of growing higher, the peak begins to widen, forms a plateau,

and then splits into two local maxima on either side of a local minimum forming at z = 0.

The composition at this minimum decreases and becomes slightly below c
⇤
L. Although it

was not possible in this work to probe the states even closer to the solidus, we expect

that cGB later increases and eventually approaches c⇤L as the grain composition reaches the

solidus line. This evolution of the composition profiles is consistent with the formation of

two solid-liquid interfaces bounding a liquid layer. The two maxima are associated with

the principal peaks of the compositional oscillations created by the solid-liquid interfaces

(cf. Fig. 3.4), whereas the minimum in between is a superposition of the depletion zones

existing next to the principal peaks. This superposition can explain the slight undershoot
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Figure 3.24: Chemical compositional profiles (normalized by the liquidus composition c
⇤
L)

across the ⌃5 GB for di↵erent undersaturations �M (eV) at the temperature of 1000 K.

of cGB (Figs. 3.23 and 3.24). When the GB is narrow, the principal peaks merge into a

single peak and amplify each other, giving rise to the compositional overshoot discussed

above.

The chemical composition of the GBs can also be characterized by the total amount of

segregation, Ñ2/A, per unit GB area. Examples of the computed segregation isotherms are

shown in Fig. 3.25.

The isotherms remain nearly linear until the grain composition approaches the solidus

line, at which point the segregation rapidly accelerates and diverges to infinity. This be-

havior closely correlates with the divergence of the GB width (Fig. 3.17), which is expected

given that the composition inside the GB becomes nearly constant (and close to the liquidus

composition) and therefore Ñ2/A / w.
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Figure 3.25: Segregation isotherms for the ⌃17 GB at three temperatures. The vertical
dashed lines mark the solidus compositions c⇤S .

3.3.2.3 Free energy of premelted grain boundaries

To compute the GB free energies, we applied the thermodynamic integration scheme based

on the equation [44]

�(c) =
Ap

A
�p +

cˆ

0

"
�Ñ2

A

✓
dM

dc

◆

T

+
2X

i=1

⌧ii

✓
deii

dc

◆

T

#
dc, fixed T. (3.38)

(The original equation [44] has been modified by changing the integration variable from

M to c.) Here, �p and Ap are the free energy and cross-sectional area of the GB in the

pure Cu state (c = 0), which are known from the calculations reported in Sec. 3.3.1.2.

The properties appearing in the integrand were discussed in Sec. 3.2.5. The segregation

term plays the dominant role while the interface stress term makes a small correction. The

integration in Eq.(3.38) was performed numerically.

The functions �(c) are shown in Fig. 3.26 for all three GBs. At a fixed temperature,

� decreases with the solute concentration in the grains, which is consistent with the Gibbs
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adsorption equation given that the solute segregation is positive (Ñ2 > 0) and (dM/dc)T >

0. Similar to the pure Cu case, �SL values were computed for the ⌃5 and ⌃17 GBs by

applying Eq.(3.37) at the point closest to the solidus line. The calculations give the values

of 0.161 J/m2, 0.171 J/m2 and 0.183 J/m2 for the ⌃5 GB and 0.165 J/m2, 0.175 J/m2 and

0.184 J/m2 for the ⌃17 GB at the temperatures of 1000 K, 1100 K and 1200 K, respectively.

These numbers are in good agreement with previous calculations (by a di↵erent method)

for a solid-liquid interface with the (110) orientation [39], which gave the free energies of

0.177 J/m2, 0.184 J/m2 and 0.190 J/m2 at the respective temperatures. A more detailed

comparison is shown in Fig. 3.27.
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Figure 3.26: Free energy of the (a) ⌃5, (b) ⌃17 and (c) ⌃13 GBs in the Cu-Ag solution
at the three temperatures sampled. The solid lines in the main plot were obtained by
thermodynamic integration. The dotted lines are linear interpolations to the solidus line
(�c = 0). The inset compares these results with predictions of the liquid layer model
(points) near the solidus.

64



It is di�cult to separate calculation errors from the intrinsic orientation dependence of

�SL. Nevertheless, all calculations indicate that �SL increases with temperature along the

solidus line. This consistency of the results further validates the present methodology. For

the sake of completeness, Fig. 3.27 also includes �SL values obtained by formally apply-

ing the same procedure to the ⌃13 GB (0.172 J/m2, 0.178 J/m2 and 0.185 J/m2 at the

temperatures of 1000 K, 1100 K and 1200 K, respectively).
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Figure 3.27: Solid-liquid interface free energies in the Cu-Ag system computed in this work
from GB premelting simulations. The interface planes are indicated in the legends. For
comparison, the plot includes �SL of the (110) interface computed in previous work.[39]

Surprisingly, the results are consisted with those for the truly premelted GBs, even

though this boundary can hardly be represented by a liquid layer. This agreement could be

partially fortuitous. Fig. 3.26 also compares the GB free energies � from thermodynamic

integration with calculations of �̄ within the liquid layer model using Eqs.(3.34)-(3.36).

Recall that � and �̄ are forced to coincidence at the last point of the simulations before

the solidus, but all other points are results of independent calculations. Note the good
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agreement between the two calculations, especially at 1200 K.

3.4 Conclusions

The proposed analytical form of the disjoining potential describes repulsive, attractive and

intermediate interactions between solid-liquid interfaces by a single equation. In contrast to

the previously used exponential potentials, Eq.(3.23) captures two physical e↵ects. First,

the potential can reproduce two (or more) local minima of the GB free energy and thus

stable and metastable GB states separated by a barrier. This, in turn, leads to first order

thin-to-thick phase transitions in premelted GBs. Such transitions give rise to GB phase

equilibrium lines on bulk phase diagrams that end at a critical point. Such lines were

predicted in previous phase field simulations [95, 121, 122]. Second, the potential has

an oscillating tail. These oscillations are strongly damped and reflect the existence of

spatial oscillations of chemical composition at solid-liquid interfaces (see, e.g., Fig. 3.4).

Superposition of these compositional oscillations is expected to produce oscillations of the

attraction forces between interfaces. Furthermore, these oscillations might, in principle,

produce a whole cascade of thin-to-thick transitions similar to the layering transitions in

surface adsorption. Future work may explore if the monolayer, double-layer and other

segregation patterns in alloy GBs [37, 38] (often referred to as di↵erent “complexions”) [21]

can also be described by disjoining potentials with oscillating tails.

The atomistic simulations of GBs in binary Cu-Ag solutions conducted in this work have

explored various temperatures, chemical compositions and GB energies. The fluctuation

approach applied previously to single-component GBs [31, 56] and extended here to binary

systems, was applied to extract the disjoining potentials from the simulations under various

conditions. All three types of disjoining potentials were found – repulsive, attractive and

intermediate, in full agreement with predictions of the liquid layer model with the analytical

potential. Multiple consistency checks performed during the simulations demonstrate the

reliability of the results. In particular, the GB free energy was computed by thermodynamic

integration, producing results consistent with the liquid layer model with the analytical
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disjoining potential. Calculations of solid-liquid interface free energies also gave consistent

results for di↵erent GBs and are in agreement with previous calculations by independent

methods.

An important result of the simulations is the confirmation of the existence of multiple

stable and metastable states of premelted GBs under appropriate conditions. Such states are

characterized by di↵erent GB widths as well as other excess properties. During continuous

variations of thermodynamic state of the grains, the relative stability of such states varies

and at some point can result in a thin-thick phase coexistence. Additional calculations

could generate a thin-thick phase coexistence line on the Cu-Ag phase diagram, but this is

left for future work.
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Chapter 4: Generality of metallic grain boundary phases

In this chapter of the thesis we demonstrate that the multiplicity of GB phases arising from

variations in local atomic density, as seen in previous studies [46], is not specific to the ⌃5

tilt GBs. Indeed the emergence of new GB structures appears to be a generic phenomenon

that must take place in almost every GB. The work therefore demonstrates that the atomic

density in the GB core must be considered as an additional thermodynamic parameter

whose variation can cause structural transformations.

4.1 Simulation methods

Recall that in this thesis we focus on planar symmetric tilt grain boundaries in the FCC

crystalline system. Specifically we examine GBs with (hk0) grain boundary planes, a [001]

tilt axis, and a grain mis-alignment characterized by the tilt angle ✓. Unless otherwise

stated we work with Copper as a model FCC system and describe the atomic interactions

using an EAM potential [99]. The coordinate system for our simulations was selected so

that the x, y, and z directions are respectively aligned to the [kh0] ,[hk0] and [001] crystal

directions, i.e. the y direction is always normal to the GB plane and the z direction is always

parallel to the tilt axis. The GB structures were generated and minimized in LAMMPS

[76] using the standard geometric construction in which the upper grain (y > 0) is rotated

about the y axis by 180o relative to the lower grain (y < 0) [17]. The y-dimension of

the simulation block was chosen to be roughly 8nm for all GBs however for each GB

orientation several di↵erent cross-sectional areas were sampled. The various cross-sections

will be referred to as n⇥m where n and m are integers which represent the number of times

the minimum possible block lengths were multiplied in the x and z directions respectively.

For this system the minimum block lengths consistent with the periodicity of bulk lattice

68



are Lmin
x =

�
h
2 + k

2
� 1

2 ao, L
min
y =

�
h
2 + k

2
� 1

2 ao, and L
min
z = ao where ao is the 0 K lattice

constant.

All simulations used periodic boundary conditions in the x and z directions whereas the

y dimension of the crystal terminated in an open surface on both ends. Because of this

vacuum region the simulation block only contained a single GB located in the center of

the block. For a given 0 K structural configuration the grain boundary free energy � was

calculated from Eq.(1.4) where EGB was computed by selecting a subset of atoms centered

at the grain boundary (y = 0) in a window with a width of roughly �y = 4nm. The width

of this window is chosen so that the ends are deep enough in the bulk phase so that no

e↵ects from the GB are present. A schematic of the simulation block and the formation of

the window �y is shown in Fig. 4.1.

Figure 4.1: Schematic of the simulation block orientation and the geometry of the subset
used to calculate the 0K GB free energy for a given configuration.
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4.1.1 Fixed GB density minimization

As a starting point we carried out simulations to obtain the minimum energy grain boundary

structure for the special case of a GB with a fixed local density and a simulation block which

contained the same number of atoms as a prefect crystalline block without any misalignment.

This was done using the standard method [17] in which the upper grain (y > 0) is translated

relative to the lower grain (y < 0) by some increment �x and �z in the x and z directions

respectively. This translation is then followed by a static relaxation using the conjugate

gradient method. The process is repeated by looping over a mesh of possible translations.

At the end of the loop the the optimal translation corresponding to the lowest energy

structure can is obtained.

4.1.2 Variable GB density minimization

In order to study variations in the local GB density it is necessary to either inject vacancies

or add new atoms to the simulation block as interstitials. In order to avoid di�culties

associated with adding atoms we choose to vary the density by strictly removing atoms

rather than adding. For a simulation block with a n⇥m cross-section the (hk0) GB plane

in the bulk will contain a certain number of atoms which we denote N(hko). The value of

N(hko) sets an upper limit on how many atoms need to be removed from the GB. This is

because for a particular cross-section removing an entire plane is equivalent to not removing

any atoms. Thus for a given cross section we can vary the GB density by removing Nrm

atoms from the GB core where Nrm is an integer in the range [0, N(hko)]. This provides a

means of quantifying the local GB density. Specifically we define � as the fraction of the

N(hko) plane which has been removed from the boundary region, i.e. � = Nrm
N(hko)

. Simulation

blocks with smaller cross-sections have fewer atoms in the (hk0) plane and therefore these

blocks sample smaller subsets of the possible values of �. For this reason we carry out
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simulations with several di↵erent cross-sections for each GB. We found that the cross-

sections 1⇥1, 1⇥2, 2⇥2, 2⇥4 and 3⇥2 9 provided an adequate number of sample � points.

These cross-sections corresponded to block sizes ranging anywhere from a few hundred to

around 10,000 atoms.

There are many possible ways to search for minimum energy structures by removing

atoms from the GB region. In this work we develop a brute force algorithm to address

the problem. The general idea of the method is to randomly remove atoms from the GB

and then use short MD runs to redistribute the resultant vacancies. During the MD runs

we periodically save atomic configurations and at the end we randomly select a subset of

these for energy minimization. The advantage of this method is that it is conceptually

very simple and only requires the removal of atoms once which dramatically simplifies

the process of figuring out which atoms to remove. The details of the method are as

follows: For a given GB (hk0) and cross-section n ⇥ m we loop over the set of possible

atomic removals Nrm 2 [0, N(hko)]. For each value of Nrm we randomly remove the given

number of atoms from a region 0.2nm wide centered at the GB. We then loop over a

set of nT = 20 random translations (�x,�z) of the upper grain (y > 0) relative to the

lower grain (where �x 2 [0,
�
h
2 + k

2
� 1

2 ao] and �z 2 [0, ao]). For a given translation we

define three groups, top, middle, and bottom within the simulation block. These groups

are defined by partitioning the block only in the y dimension, i.e each region encompasses

the entire cross section similar to what is shown Fig. 4.1. The boundaries of the groups

are given by ybottom 2 [�1,�l],ymiddle 2 [�l, l] and ytop 2 [l,1] where l was chosen to be

0.4nm. The atoms in the bottom group don’t move throughout the MD run and remain

fixed in their 0K positions. The GB atoms in the center group undergo an NVT molecular

dynamics run in which the temperature is ramped from room temperature up to 85% of

the melting temperature and then back down to 0K, each MD run is 150,000 steps using

9For the ⌃5(210) and ⌃5(310) boundaries we used larger cross-sections than used for the other boundaries.
This was done to facilitate comparison with the plots from Ref.[46] and to ensure that our curves had a
comparable number of points as those in the previous work which also focused on the two ⌃5 boundaries.
Specifically for these boundaries we sampled the following cross sections 1⇥ 2, 1⇥ 6, 2⇥ 4, 2⇥ 7, 2⇥ 11 and
2⇥ 13
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a 2 fs time step. Finally the atoms in the top group also remain in their 0 K equilibrium

positions however the entire group can move as a rigid body. This allows the upper grain to

relieve normal stress from the thermally active GB atoms as well as translate in the x and

z directions. The gliding behavior of the upper grain allows the system to refine the initial

random translation and find a more energetically favorable relative locations. During NVT

runs we could have allowed all atoms to move however our method constrains the GB by

keeping it in contact with the 0 K crystal and saves time on the quench due to the fact that

most atoms are still in their 0 K positions. Because we do not allow for thermal expansion

of the in-plane directions the NVT run has some level of residual stress at the elevated

temperature but this vanishes after the subsequent 0 K minimization. During the MD run

1500 snapshots are saved for each cross section and each value of Nrm, i.e. 75 snapshots

per translation. From the 1500 snapshots we randomly select 250 to be minimized using

the conjugate gradient method and keep the lowest energy result. If the algorithm works

correctly then the output gives the minimal structural energy associated with a given value

of �. By sampling a set of � values we obtain the function �(�) for each GB. This function

is the primary result obtained in this work. One noteworthy property of this method is that

it can be easily parallelized because the MD runs and 0 K minimizations can be carried

our independently. Finally during the MD portion of the algorithm we are only interested

in rearranging the vacancies and therefore one could potentially speed the algorithm up

by increasing the time step to higher than usual values. In the present study however we

elected to used a conventional 2 fs time step.

4.2 Fixed GB density results

In this work we studies a total of twelve symmetric tilt grain boundaries over a wide range

of tilt angles. As described in Sec. 4.1.1 we first carried out minimizations for the special

case of a GB with a fixed density, specifically Nrm = 0 and � = 0. This was done by looping

over a set of rigid translations to find the optimal relative displacement of the upper and

lower grains. We find that for all of the GBs studied using the fixed density method the

72



minimal energy configurations are networks of a common structural unit which we denote

as type K (kite). These structural units are well known in the literature [17]. In Fig. 4.2

we provide images of a subset of the regular kite structures obtained using this method.

This figure is included so the reader can compare with the non-regular kite structures in

the subsequent sections.

Figure 4.2: Here we show a subset of the results for the special case in which the GB
density is fixed (Nrm = 0 ). Using the “translate and minimize” method the minimum
energy structures appears to be networks of regular kite units no matter how large or small
the tilt angle is. The images which show the kite structure are taken by projecting the
simulation block down the [001] tilt axis however the center right images shows a projection

down the [120] direction (the [kh0] projection for all other regular kite boundaries is similar
to the one shown)

In Tab. 4.1 we provide a list the various GBs sampled in this work as well as the GB

energies which arise when the boundaries take the form of networks of regular kites. These
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energies are in good agreement with those in ref.[17] which studied the same set of GBs

using the same EAM potential as in the current study.

Table 4.1: Here we provide a list of the various boundaries sampled in this work as well as
the energies of these boundaries when they take the form of networks of regular kites

Boundary ✓ �gb (Jm�2)
(regular kites)

⌃101(1010) 11.42o 0.686
⌃25(710) 16.26o 0.796
⌃37(610) 18.92o 0.837
⌃13(510) 22.62o 0.878
⌃17(410) 28.07o 0.914
⌃53(720) 31.89o 0.939
⌃5(310) 36.87o 0.905
⌃5(210) 53.13o 0.951
⌃17(530) 61.93o 0.856
⌃13(320) 67.38o 0.790
⌃25(430) 73.74o 0.677
⌃61(650) 79.61o 0.533

4.3 Variable GB density results

4.3.1 Structural units

In this work three distinct structural units were found which could describe all of the various

GBs analyzed. Projections of these units down the [001] tilt axis are shown in in Fig. 4.3.

These include the well-known kite-shaped structural unit discussed in the previous section

and two additional units which were referred to in [37, 46] as split kites and filled kites.

For brevity, we will call these structural units K, L and M, respectively, and will symbolize

them by a diamond, a square, and a circle.
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Figure 4.3: Structural units (a) K, (b) L and (c) M found in [001] symmetrical tilt GBs in
Cu. The structures are projected parallel to the [001] tilt axis (upper row) and normal to
the tilt axis (lower row). The GB density � are indicated.

4.3.2 Validation of methodology

We first tested our algorithm on the two ⌃5 boundaries. This was done to ensure that our

method was e↵ectively finding the minimum energy structures. The functions �(�) for the

⌃5 boundaries are known to have additional minima for value of � 6= 0 [37, 46]. In the

previous studies it was shown that at 0 K the ⌃5(210) boundary has three minima obtained

when � is roughly 0, 0.53 and 0.14. These configurations respectively correspond to struc-

tural units K, L and M and have free energies 0.951, 0.936 and 0.953 Jm
�2. Additionally

it was shown that the ⌃5(310) boundary has two minima occurring when � is roughly 0

and 0.6. These structures respectively had energies 0.9047 and 0.911 Jm
�2. In Fig. 4.4

we show our results for the 0 K �(�) curves for these two boundaries and include selected

representative structures for the two ⌃5 GBs. Using our method we obtain results which

are in excellent agreement with the previous studies [37, 46]. In particular show Fig. 4.4

that for the ⌃5 (210) GB the L units connect to each other head to tail to produce a more

favorable structure than the standard K units [37, 46].
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(a) (b)

Figure 4.4: In this figure we show our results for the two ⌃5 boundaries. a) (310) boundary
and b) (210) Notice that in both grain boundaries the split kite structures emerge near
the center of the curves whereas in the (210) boundary there is an additional local minima
around � = 0.14 which is associated with filled kites. For the various minima we show
images of the kite structures which are projections down the [001] tilt axis. For the split

kites we also include images projected down the [kh0] directions. The blue lines running
through the points are bezier curves included as a guide for the eye.

Because we are only interested in the minimum possible values of � as a function of � we

carry out a procedure in which we use a moving window (window width �� ⇡ 0.05) to scan

across the raw data and extract a curve which gives the minimum envelope of the raw data

(the window moves in discrete steps of size ��). This is done by only keeping the minimum

value of � within a given position of the moving window. This e↵ectively extracts a curve

associated with the minimum values obtained from our algorithm and removes higher energy

outliers. This procedure is carried out for all �(�) curves presented in this work and an

example of the result of this procedure is shown in Fig. 4.5 for the (210) boundary. For the

lower angle boundaries (relative to ✓ = 0o and 90o) the results of this procedure are more

dramatic because the data tends to have more scatter however the result is the same.
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Figure 4.5: The results of the moving window procedure discussed in the text for the case of
the (210) boundary. The blue points are the raw data and the red points are the minimum
values chosen by the moving window procedure. The line in the plot are bezier curves fitted
to the red points and is included as a guide for the eye

4.3.3 Additional results

In this section we provide a summary of the rest of the results obtained in this work,

specifically in Fig. 4.6 we provide a subset of the various �(�) which were calculated. A

complete catalog of the �(�) curves and structures corresponding to local and global minima

can be found in the appendix of this work. Low-angle GBs form when ✓ is small and when it

is close to 90�. In the first case, the GB represents an array of dislocations running parallel

to the tilt axis. Standard energy minimization without adjusting the GB density predicts

that the dislocation cores are composed of K units. However, Fig. 4.6(a) presents an example

where this structure is, in fact, not the ground state. If � is allowed to vary, � is reduced

by removing an equivalent of a half-plane (� = 0.5) and forming a new structure composed

of L units. In fact, even if the GB density remains fixed at the initial value (� = 0), our

calculations show that the structure composed of K units is still not the ground state. This

structure is metastable and is shown in Fig. 4.6(a) by a diamond symbol.
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Figure 4.6: GB energy (in Jm�2) versus GB density � (fraction of atoms removed) for
representative symmetrical tilt GBs in Cu. For GBs composed on identical structural units,
the data points are shown by symbols representing the respective structural units (} K, 2
L, � M, see Fig. 4.3). The diamond symbols in (a) and (f) represent metastable structures
composed structural units K. All other points represent stable structures that minimize the
GB energy for each density �. The dashed line in (b) is an example of a tie line between
two GB phases producing cups of the energy. The trend lines are shown as a guide to the
eye.

A more favorable structure is composed of alternating L-type and K-type units arranged

in the pattern ...-L-L-K-L-L-K..., where the dash indicates that the units are separated
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several elastically distorted perfect-lattice units. Of course, due to the conservation of atoms,

these K and L units contains some defects such as extra atoms or structural vacancies. This

example clearly demonstrates the importance of displacing GB atoms over large distances

when searching for the energy minimum. The widely accepted procedure when the energy is

minimized with respect to local atomic displacements can easily miss low-energy structures

(even if grain translations are applied).

The example in Fig. 4.6(a) is for ✓ = 16.26�. The same behavior pertains to smaller

angles. But as ✓ increases, the structure composed of K units becomes increasingly more

favorable and eventually becomes the ground state at � = 0 [Fig. 4.6(b)]. Nevertheless,

the L unit structure appearing at � = 0.5 remains even more stable. This trend continues

until the angle reaches ✓ = 36.87�. At this point, the L unit structure becomes slightly less

favorable than the standard K units [Fig. 4.6(c)].

For the low-angle boundaries near ✓ = 90�, the lowest-energy structure is again found

at � = 0.5 [Fig. 4.6(f)]. This time it consists of the structural units M [Fig. 4.3(c)]. The

structure obtained by the conventional method (� = 0) is composed of K units [17] and is

less favorable than an array of distorted M units. This confirms again the importance of

large atomic displacements during the energy minimization. As the angle decreases, the K

units become more stable while the M units less stable. At angles below about 70�, the

K unit structure becomes the ground state, whereas the structure composed of M units

becomes the least favorable one (the energy peaks at � = 0.5) [Fig. 4.3(e)]. As ✓ decreases

further, the behavior becomes more complex. As the M units come closer together, their

interaction apparently becomes attractive. When the angle reaches 53.13� corresponding

to the ⌃5 (210) GB, the M units form a compact array found in the previous work [37, 46],

where the units are connected head to tail. This energetically favorable structure creates

a local minimum [Fig. 4.6(d)]. As a result, the ⌃5 (210) GB features three energy minima

corresponding to three structures composed of the units K, L and M, respectively.

This analysis demonstrates that � is a critical parameter controlling the structure and

energy of GBs. Variations in � cause a structural evolution in GBs that can be described
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in terms of the structural unit model [118] if the mis-orientation angle is replaced by �
10.

There is a small number of special structural units that constitute the building blocks of a

series of boundaries. There are intervals of angles (respectively, � values) in which the GB

represents an array of two types of structural unit. For the set of GBs studied here, such

basic structural units have been identified as K, L and M.

The function �(�) (Fig. 4.6) has a thermodynamic meaning similar to the composition

dependence of molar Gibbs energy in bulk thermodynamics. The same common tangent

construction can be applied to predict the coexistence of di↵erent GB phases and their

“compositions” �
11. When the energy minima are cusps, the common tangent is replaced

by a tie line passing through the minimum points [Fig. 4.6(b)]. Coexistence of GB phases

has indeed been observed in the recent atomistic simulations of ⌃5 GBs [45]. In both

the present work and [37, 46], the GB cross-sections were kept relatively small. The im-

posed periodic boundary conditions stabilized the metastable and unstable states of the

boundaries, enabling the construction of continuous �(�) plots such as Fig. 4.6 (also see

this works appendix). As the cross-section increases, the boundary will eventually break

into single-phase regions separated by a one-dimensional phase boundary [36, 45]12. The

common tangent construction does not apply to the frequently used �(✓) plots since the

angle does not constitute an additive variable. Such plots are suitable for predicting GB

dissociation transitions [16], but the geometric construction is then di↵erent from the com-

mon tangent. Nevertheless, it is instructive to plot �(�, ✓), as in Fig. 4.7. While the energy

of low-angle GBs depends primarily on the angle, for high-angle GBs both variables are

equally important.

10The structural unit model [117, 118] has some intrinsic problems, such as the ambiguity in the choice
of delimiting boundaries, and is not always borne out by experiments and simulations. Here, we only refer
to the general ideas of this model, such as the existence of a small number of basic structural units forming
the GBs.

11In this work, such predictions can only be made at low temperatures since � is the GB energy and not
free energy.

12In fact, we cannot exclude that the mixtures of structural units found in some of the low-angle GBs at
� = 0 represent early stages of separation in two phases composed of units K and/or L (receptively, M near
✓ = 90�).
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Figure 4.7: GB energy as a function of GB density � and misorientation angle ✓ for [001]
symmetrical tilt boundaries in Cu. The actual simulation points are indicated.

4.3.4 Silver and Aluminum results

It is natural to question whether these results are unique to copper or are a more general

feature of FCC metals. This was addressed in Ref.[46], in that work the authors generated

0K curves for the (210) boundary using potentials for Gold, Silver, Copper and Nickel. In

all cases it was seen that the curve shapes were qualitatively similar to copper. For Au,Ag

and Cu the split kites were seen to be the lowest energy structure however in Ni regular

kites were energetically more favorable. To see the e↵ect that material has on our results

we reapplied our method to the (210) and (410) boundaries in both silver and aluminum

again using EAM potentials [131]. In Fig. 4.8 we show �(�) for silver, just as in the previous

work [46] the (210) boundary behaves nearly identically to copper, the same is true for the

(410) GB which suggests a generality of our results for all noble FCC metals.
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Figure 4.8: GB energy (in J/m2) versus GB density � (fraction of atoms removed) for
symmetrical tilt GBs in Ag.

For Al [96], the general trends were found to be similar but some di↵erences emerged.

For example, for the ⌃17 (410) GB, the energy minimum at � = 0.5 corresponding to the

L unit structure [cf. Figs. 4.6(b)] becomes a maximum [Fig. 4.9(a)]. The most favorable

structure that was found at � = 0.5 is now an array of highly defected K units, whereas the

L unit structure has a slightly higher energy. For the ⌃5 (210) GB in Al [Fig. 4.9(b)], the

two minima are replaced by one at � = 0.5. The respective GB structure is composed of M

units connected head to tail [Fig. 4.9(c)]. This combination of M units was not seen in Cu.

Further tests for other metals are warranted, but it is already evident that the specific GB

structures and their relative energies may be material-dependent.
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Figure 4.9: GB energy versus GB density � (fraction of atoms removed) for (a) ⌃17 (410)
and (b) ⌃5 (210) GBs in Al. The trend lines are shown as a guide to the eye. The most
stable structure of the ⌃5 (210) GBs is composed of M units as shown in (c).

4.4 Conclusions

In summary, we have extended the previous studies of the ⌃5 GBs [36–38, 46] to a larger

set of [001] symmetrical tilt GBs in order to evaluate the generality of the previous findings.

The GB structures and energies have been calculated by allowing variations in the GB

density � and large displacements of atoms during the energy minimization. The results

confirm the existence of stable and metastable GB phases over the entire range of mis-

orientation angles. The GBs contain arrays of structural units that follow a systematic

behavior that can be rationalized in therms of the structural unit model [118]. Each of the

GBs is composed of one or two types of structural unit, usually separated by a few perfect-

lattice units. � should be included in the descriptions of GBs as an additional parameter

capable of predicting GB phases and phase transformations.

83



Chapter 5: Canonical ensemble temperature fluctuations

In Sec. 1.2.1 we denoted the fluctuated energy in the canonical system as E(t). In the

present discussion we will drop the argument and just express this quantity as E to simplify

the notation. Additionally the di↵erent points of view concerning canonical temperature

fluctuations were briefly discussed in Sec. 1.6 however we will re-iterate them here in more

detail, the di↵erent perspectives are as follows:

(i) Temperature fluctuations in canonical systems is a real physical phenomenon and

can be measured experimentally [22]. If the volume and number of particles in the system

are fixed, then [19, 70, 93]

⌦
(�T )2

↵
=

kT
2
0

Nc0v
, (5.1)

where �T = T � T0 is the deviation of the system temperature T from the thermostat

temperature T0, c0v is the constant-volume specific heat (per particle) at the temperature T0,

and k is Boltzmann’s constant. As mentioned in Sec. 1.2.1, the angular brackets h...i indicate

the canonical ensemble average.13 Spontaneous energy exchanges between the system and

the thermostat bring the system to quasi-equilibrium states in which the temperature is

slightly higher or slightly lower than T0. It is also possible to quantify the cross-correlation

between the fluctuating temperature and the system’s total energy by the equation [19, 70,

93]

h�E�T i = kT
2
0 , (5.2)

where �E = E � E0 and E0 is the equilibrium energy.

13By contrast, the temperature T appearing in Eq.(5.1) is defined by averaging over much shorter segments
of the trajectory as discussed later in the chapter.
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(ii) Temperature of a canonical system is defined as the temperature of the thermostat.

Thus, T ⌘ T0 by definition and the very notion of temperature fluctuations is meaningless

[63–65].

(iii) While fluctuations of the system energy E are well-defined, non-equilibrium tem-

perature T is ill-defined [64, 126]. One can formally define T as T ⌘ T0 + (E �E0)/(Nc
0
v),

which makes T just a nominal parameter identical to energy [126]. From this point of view,

Eq.(5.1) contains no new physics in comparison with the well-established energy fluctuation

relation [19, 70, 93]

⌦
(�E)2

↵
= NkT

2
0 c

0
v. (5.3)

(iv) Even for an equilibrium isolated system, temperature is not a well-defined parame-

ter. It can be evaluated by measuring the system energy and trying to estimate the temper-

ature of the thermostat with which the system was in equilibrium before being disconnected

[30, 84]. This reduces the temperature definition to a statistical problem addressed in the

framework of the estimation theory. The statistical uncertainty associated with the tem-

perature estimate can be interpreted as its “fluctuation”.

As an operational definition, the non-equilibrium temperature is identified in the present

study as the kinetic energy of the particles averaged on an appropriate timescale. In Sec. 5.1

we set the stage by reviewing the thermodynamic arguments [19, 70, 93] and introducing

three timescales of the problem that permit a clear definition of non-equilibrium tempera-

ture. After presenting the simulation methodology in Sec. 5.2, we report on MD results for

the kinetic, potential and total energy fluctuations and the respective correlation functions

for the solid (Sec. 5.3). Using this data, we are able to extract the temperature fluctuations

and verify Eqs.(5.1) and (5.2) independently of Eq.(5.3). In Sec. 5.4 we summarize the

results of this work and formulate conclusions.
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5.1 Theory

We briefly introduced the canonical ensemble in Sec. 1.2.1 however we will revisit the concept

here in a more rigorous way with special attention to the timescales associated with di↵erent

processes. If a thermodynamic system is disconnected from its environment and becomes

isolated, it reaches thermodynamic equilibrium after a characteristic relaxation time ⌧r.

Suppose the isolated system is still in the process of relaxation. While E, V and N are

fixed, other thermodynamic properties can vary. If we mentally partition the system into

relatively small subsystems, their parameters E, V and N can vary during the relaxation.

It is important to recognize that the relaxation time tr of a small subsystem is much shorter

than ⌧r of the entire system, at least for short-range interatomic forces. Thus, there is a

certain timescale tq such that

tr ⌧ tq ⌧ ⌧r, (5.4)

on which the small subsystems remain infinitely close to equilibrium, even though the entire

system is not in full equilibrium. The subsystems weakly interact with each other across

their interfaces, causing a slow drift of the entire system towards equilibrium. Such virtually

equilibrium subsystems are called quasi-equilibrium [93] and the entire isolated system is

said to be in a quasi-equilibrium state.14 On the quasi-equilibrium timescale tq, the iso-

lated system can be thought of as equilibrated in the presence of isolating walls separating

its small subsystems. Accordingly, each quasi-equilibrium subsystem ↵ can be described

by a fundamental equation S↵ = S↵(E↵, V↵, N↵), from which the local temperature, pres-

sure and chemical potential can be found by T↵ = 1/(@S↵/@E↵), p↵ = T↵(@S↵/@V↵) and

µ↵ = �T↵(@S↵/@N↵), respectively. If the number of subsystems is large enough, we can

talk about spatially continuous temperature, pressure and chemical potential fields. Such

fields appear in the standard treatments of irreversible thermodynamics [87] and are only

defined on the quasi-equilibrium timescale. They evolve during the relaxation process and

eventually become uniform when the entire system reaches equilibrium.

14Landau and Lifshitz [70] call the quasi-equilibrium states “quasi-stationary”, which may cause some
confusion since the term “stationary” is often used to describe steady-state flows in driven systems.
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Following the fluctuation-dissipation concepts [20, 67, 70, 85, 101, 103, 104], one can ex-

pect that similar quasi-equilibrium states arise during equilibrium fluctuations in an isolated

system. Accordingly, the fluctuated states can be described by well-defined local values of

the intensive parameters, including temperature. Again, such local intensive parameters

are only defined on the quasi-equilibrium timescale tq.

Turning to canonical fluctuations, consider a small subsystem of an equilibrium isolated

system. Let us call this subsystem a system and the rest of the isolated system a reservoir.

Consider a timescale tq such that tr ⌧ tq ⌧ ⌧r, where tr is the relaxation time of the system

and ⌧r is the global relaxation time of the system plus reservoir. On this timescale, the sys-

tem can be considered as quasi-equilibrium and thus virtually isolated. As such, it possess

all intensive properties mentioned above. Fluctuations generally occur on all timescales.

However, if we monitor the system properties averaged over the timescale tq, then we can

talk about fluctuations of its intensive parameters. In particular, quasi-equilibrium fluctua-

tions that preserve the system volume and number of particles (canonical ensemble) include

well-defined temperature fluctuations. As long as the temperature is properly defined on

the quasi-equilibrium timescale, it will satisfy the fluctuation relation (5.1).

We next apply these concepts to a crystalline solid comprising a fixed number of atoms

N � 1. The local relaxation timescale tr can be identified with a typical phonon lifetime.

Suppose the solid is isolated and in equilibrium. Its instantaneous potential energy U and

kinetic energy of the centers of mass of the particles K fluctuate whereas the total energy

E = K + U is strictly fixed. The timescale tK of the kinetic (as well as potential) energy

fluctuations is the inverse of a typical phonon frequency f̄ : tK ⇠ 1/f̄ . Assuming that the

solid is nearly harmonic, this timescale is much shorter than tr. The temperature of the solid

is fixed at T = E/3k and can be evaluated from the equipartition relation hKi = 3NkT/2

by monitoring the kinetic energy over a long time t � tr.

If the same solid is now connected to a thermostat, two types of fluctuation occur. First,

the same fluctuations as in the isolated system, including the energy exchanges between the

phonon modes on the tr timescale. Second, there will be fluctuations in the total energy

87



of the solid due to energy exchanges between the solid and the thermostat. The two types

of fluctuation are governed by physically di↵erent relaxation processes: phonon scattering

inside the solid in the first case and heat flow between the solid and the thermostat in

the second. The respective relaxation times, tr and ⌧r, are significantly di↵erent. Usually

⌧r � tr, i.e., the energy exchanges with the thermostat occur on a much longer timescale

that depends on the system size, the system/thermostat interface and other factors. Thus,

there is a timescale tq in between, tr ⌧ tq ⌧ ⌧r, on which the solid remains quasi-equilibrium

and can be assigned a well-defined temperature. We can use the equipartition relation to

find this quasi-equilibrium temperature,

T =
2 hKiq
3Nk

, (5.5)

where the subscript q indicates that the time average must be taken on the quasi-equilibrium

timescale tq.15

If the kinetic energy is averaged over the thermodynamic timescale t � ⌧r, then the

equipartition relation trivially gives the thermostat temperature

T0 =
2 hKi
3Nk

. (5.6)

By contrast, the quasi-equilibrium temperature defined by Eq.(5.5) fluctuates around T0 and

is predicted to satisfy the fluctuation formula (5.1). We emphasize that Eq.(5.5) defines

T independently of the instantaneous or average values of the total energy and makes no

reference to the specific heat of the substance.16 Instead, the temperature fluctuations can

15The reader is reminded that h...i is the time average over a very long trajectory of the system in the phase
space. By default, the time averaging is performed in the canonical ensemble (NVT); otherwise the ensemble
is indicated as a subscript. For example, in Sec. 5.3.1 we discuss the time average h...iNV E computed in
the micro-canonical (NVE) ensemble. Some observables are averaged over many time intervals of the same
finite length (say, ✓). This is indicated in the subscript, e.g., h...i✓. h...iq denotes the time average over a

finite time interval on the quasi-equilibrium timescale tq.
16For example, for a molecular solid the rotational and vibrational degrees of freedom contribute to c0v

but do not appear in Eq.(5.5), which only includes the kinetic energy of the centers of mass.
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be used to extract the specific heat c
0
v. For a classical harmonic solid composed of atoms

(not a molecular crystal), c0v = 3k and Eq.(5.1) becomes

⌦
(�T )2

↵
=

T
2
0

3N
. (5.7)

The key point of this treatment is that the kinetic energy of the centers of mass of the

particles must be averaged over the appropriate timescale. We caution against using the

“instantaneous temperature” defined by the instantaneous value of the kinetic energy as

T̂ = 2K/3Nk, as is often done in the MD community. The “temperature” T̂ so defined

essentially represents the kinetic energy K/N itself up to units. Although this unit conver-

sion can sometimes make the MD results look more intuitive, it fails to predict the correct

temperature fluctuations. Using the standard canonical distribution, it is easy to show that

for any classical system [72]

⌦
(�K)2

↵
=

3N(kT0)2

2
, (5.8)

from which

D
(�T̂ )2

E
= 2

T
2
0

3N
. (5.9)

For an atomic solid, this equation is o↵ by a factor of two. Consequently, the specific heat of

the solid extracted from Eq.(5.1) using the “instantaneous temperature” T̂ is 3k/2 instead

of the correct 3k.

In spite of the failure of the “instantaneous temperature” T̂ to describe the mean-

square fluctuation of temperature, it does satisfy some other fluctuation relations, includ-

ing Eq.(5.2) which then becomes
D
�E�T̂

E
= kT

2
0 . Like the energy variance

⌦
(�E)2

↵
,

the covariance h�E�T i remains the same for both instantaneous and quasi-equilibrium

fluctuations. In the following sections, Eqs.(5.1), (5.2) and (5.3) will be verified by MD

simulations with di↵erent choices of the thermostat.
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5.2 Methodology of simulations

5.2.1 Molecular dynamics simulations

As a model system we chose face-centered cubic copper with atomic interactions described

by an embedded-atom potential [99]. The potential accurately reproduces many physical

properties of Cu, including phonon dispersion relations. The MD simulations were per-

formed with the LAMMPS code [107] with the time integration step of dt = 0.001 ps.

Except for the system in a “natural thermostat” discussed later, all simulations were con-

ducted in a cubic simulation block with periodic boundary conditions. The block edge was

7.23 nm and the total number of atoms was N = 32000. The block edges were aligned

with h100i directions of the crystal lattice. The simulation temperature was chosen to be

T0 = 100 K and the lattice parameter was adjusted to ensure that the solid was stress-free

at this temperature.

Prior to studying thermal fluctuations, two types of additional simulations were per-

formed to generate data needed for a comparison with fluctuation results. Firstly, the

phonon density of states g(f) at 100 K was computed by the method developed by Kong

[66] and implemented in LAMMPS. This method was chosen because it does not rely on

fluctuations and provides independent results for comparison. Secondly, to test the accuracy

of the simulation methodology, the specific heat of the solid was computed by a direct (non-

fluctuation) method. This was accomplished by running canonical (NVT) MD simulations

at the temperatures of 50, 100 and 150 K and calculating the time average energies hEi.

The volume was fixed at the value corresponding to 100 K. The energy was found to follow

a linear temperature dependence in this temperature interval, from which the derivative

(@ hEi /@T )N,V was evaluated by a linear fit. The specific heat at 100 K was then found

from the equation c
0
v = (@ hEi /@T )N,V /N . The number obtained was 24.89 J/(mol K),

which is close to the equipartition theorem prediction 3k = 24.94 J/(mol K).
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5.2.2 Post-processing procedures

We next describe the statistical analysis of the MD results at the post-processing stage.

Consider a long MD simulation run implemented for a time ttot. Suppose two fluctuating

properties, X and Y , are saved at every integration step of the simulation. These can be the

kinetic, potential or total energy of the solid. We trivially compute the time average values

hXi and hY i, as well as the variances h(�X)2i and h(�Y )2i and the covariance h�X�Y i,

were �X = X � hXi and �Y = Y � hY i.

For a spectral analysis, we break the long stochastic processes X(t) and Y (t) into a

large number of shorter processes, x(t) and y(t), by dividing the total time ttot into smaller

intervals of the same duration ✓ ⌧ ttot. The time ✓ was chosen to be longer than the

correlation times of both variables, so that the intervals represent statistically independent

samples with di↵erent initial conditions. For each time interval 0  t  ✓ we perform a

discrete Fourier transformation of x(t) and y(t) to obtain a set of Fourier amplitudes, x̂j and

ŷj , corresponding to the frequencies fj = j/✓, where j = 0,±1,±2, .... These amplitudes

are complex numbers satisfying the symmetry relations x̂�j = x̂
⇤
j and ŷ�j = ŷ

⇤
j (the asterisk

denotes complex conjugation). The functions

ĈXX(fj) =
x̂j x̂

⇤
j

f1
, ĈY Y (fj) =

ŷj ŷ
⇤
j

f1
,

where the bar denotes averaging over all time intervals, represent the ensemble-averaged

power spectra of X and Y . Likewise,

ĈXY (fj) =
x̂j ŷ

⇤
j

f1

represents the spectral power of X-Y correlations.

Following the Wiener-Khinchin theorem [68, 70], the functions ĈXX(fj), ĈY Y (fj) and
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ĈXY (fj) were then subject to inverse Fourier transformations to obtain the auto-correlation

functions (ACF) CXX(t) = hX(0)X(t)i and CY Y (t) = hY (0)Y (t)i and the cross-correlation

function (CCF) CXY (t) = hX(0)Y (t)i. In this work, we are interested in correlations

between properties relative to their average values, namely, C�X�X(t) = h�X(0)�X(t)i,

C�Y�Y (t) = h�Y (0)�Y (t)i and C�X�Y (t) = h�X(0)�Y (t)i. These were readily obtained

by removing the point f0 from the spectra prior to the Fourier inversion.

All correlation functions in the frequency domain shown in the figures below have been

normalized by h(�X)2(�Y )2i1/2. For ACFs, the area under the normalized plots agains

the frequency is therefore unity.

To evaluate the e↵ect of the averaging timescale on the fluctuation relations more di-

rectly, the spectral analysis was supplemented by a simple coarse-graining procedure in the

time domain. For this procedure, we lifted the requirement that the time interval ✓ be longer

than the correlation time. For every time interval l, we computed the time average energy

values hXil, hY il, etc. A formal temperature Tl was defined by the equipartition relation

Tl = 2 hKil /3Nk. These coarse-grained values were then treated as a new dataset, for which

we computed the fluctuation properties such as h(�E)2i✓, h(�T )2i✓ and h�E�T i✓. These

fluctuation properties were examined as functions of the time interval ✓. For ✓ = dt, this

procedure reduces to computing the fluctuations of instantaneous properties. By increasing

✓, we can scan various timescales, including tr, ⌧r, and the quasi-equilibrium timescale in

between.

5.3 Simulation results and discussion

5.3.1 NVE simulations

The goal of the NVE simulations was to evaluate the phonon relaxation time at the chosen

temperature and make consistency checks of the methodology. In Fig. 5.1 we show the

kinetic energy ACF in the frequency and time domains. The results were obtained from a

ttot = 2 ns MD run by averaging over ✓ = 3 ps time intervals. For comparison, the plot
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of Ĉ�K�K(f) [Fig. 5.1(a)] includes the phonon density of states g(f/2) computed by the

non-fluctuation method [66] and plotted against the frequency f followed by normalization

to unit area.
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Figure 5.1: Results of NVE MD simulations. (a) Normalized power spectrum Ĉ�K�K(f) of

kinetic energy fluctuations (filled circles), velocity ACF Ĉvv(f/2) (open circles), and phonon
density of states g(f/2) (solid line). (b) The kinetic energy ACF C�K�K(t).

The close similarity between the plots is not surprising: in a perfectly harmonic solid,

the kinetic energy ACF is identical to the phonon density of states except for the doubling

of the frequency scale [28, 97, 115]. This doubling is due to the fact that kinetic energy goes

through zero twice per vibration period. In the present simulations, the vibrations were not

perfectly harmonic. The anharmonicity slightly washed out the shape of the spectrum and

produced a high-frequency tail. Since the total energy is strictly conserved, the potential

energy ACF has an identical shape (not shown here). As another test, the velocity ACF

Ĉvv(f) was computed from the same simulation run. As expected, it was found to be

very similar to Ĉ�K�K(f) except for the frequency doubling e↵ect: Ĉvv(f/2) ⇡ g(f/2) ⇡

Ĉ�K�K(f).

The time-dependent ACF C�K�K(t) shown in Fig. 5.1(b) indicates that the relaxation

time due to phonon scattering is about 0.5 ps. Strictly speaking, this time depends on the
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phonon frequency and polarization, but we are only interested in a crude estimate. For

comparison, the period tK of kinetic energy fluctuations can be estimated using a typical

frequency of f̄ = 10 THz [Fig. 5.1(a)], which gives about tK ⇡ 0.1 ps. The factor of five

di↵erence between the two timescales is a measure of anharmonicity of this solid at 100 K.

In the NVE ensemble, the variance of the kinetic energy of the centers of mass of the

particles is [72]

h(�K)2iNV E =
3N(kT0)2

2

✓
1� 3k

2c0v

◆
. (5.10)

Using h(�K)2iNV E obtained by the simulation, this equation was inverted to solve for

c
0
v. The number obtained was 25.06 J/(mol K), which is in good agreement with 24.94

J/(mol K) predicted by the equipartition theorem.

We emphasize that equilibrium temperature fluctuations in the NVE ensemble are un-

defined since quasi-equilibrium states are only sampled by small subsystems of the system

but not the system as a whole. As already mentioned, one can always formally define an

“instantaneous temperature” T̂ and its fluctuations, but this temperature is identical (up

to units) to the instantaneous kinetic energy per atom and does not provide new physical

insights.

5.3.2 NVT simulations

The NVT MD simulations were conducted with two time constants of the Langevin ther-

mostat: ⌧r = 10 and 100 ps. The simulations times were ttot = 1000⌧r (10 and 100 ns,

respectively). The kinetic and total energy fluctuations are illustrated in Fig. 5.2. To fa-

cilitate the comparison, the energies were shifted relative to their time average values and

normalized by standard deviations.

The plots clearly demonstrate the existence of two di↵erent fluctuation processes: fast

fluctuations of kinetic energy and much slower fluctuations of total energy. The fast fluc-

tuations occur on the timescale of phonon frequencies, whereas the slow fluctuations occur
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Figure 5.2: Representative fluctuations of the kinetic (blue) and total (orange) energy in the
NVT ensemble with the thermostat time constants (a) ⌧r = 10 ps and (b) ⌧r = 100 ps. To
enable comparison, the energies were shifted relative to the average values and normalized
by the standard deviations. The insets zoom into shorter time intervals to demonstrate the
existence of two di↵erent timescales of the fluctuations (fast and slow).

on the thermostat timescale ⌧r. The large disparity between the two timescales is demon-

strated in the insets, where the kinetic energy fluctuations are superimposed on nearly

constant total energy. This two-scale behavior is especially manifest for the slower thermo-

stat (⌧r = 100 ps) and is a clear signature of quasi-equilibrium states, in which the system

behaves as if it were isolated and thus maintained a constant energy.

Figures 5.3(a,b) show the results of the timescale analysis discussed in Sec. 5.2.2, in

which the energies were averaged over di↵erent time intervals ✓ before computing their

fluctuations (Fig. 5.3(c) will be discussed later).

The variances/covariances h(�T )2i✓, h�E�T i✓ and h(�E)2i✓ are compared with the

right-hand sides of Eqs.(5.1), (5.2) and (5.3), respectively. The deviation is normalized by

the value of the right-hand side and plotted against ✓. Recall that the minimum value of

✓ is the integration step dt, corresponding to instantaneous values of the energies. Observe

that the “instantaneous temperature” fluctuation
D
(�T̂ )2

E
has a 50% error. This number

is consistent with the theoretical prediction in Sec. 5.1 that an estimate of temperature

fluctuations from T̂ will be o↵ by a factor of two. As the averaging time ✓ increases, the
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Figure 5.3: Normalized di↵erence between the right and left-hand sides of fluctuation rela-
tions as functions of the averaging time interval ✓: Eq.(5.1) (black solid line), Eq.(5.2) (red
dashed line) and Eq.(5.3) (blue dotted line) . (a) Langevin thermostat with tr = 10 ps, (b)
Langevin thermostat with tr = 100 ps, (c) natural thermostat.

error diminishes. When ✓ exceeds the phonon relaxation time tr (about 0.5 ps), the error

reduces to ± a few percent and remains on this low level until ✓ approaches the thermostat

time ⌧r. At that point the error increases again since the averaging begins to smooth the

temperature fluctuations. In the limit of ✓ ! 1, all fluctuations are totally suppressed and

the error goes to 100%. This behavior clearly demonstrates the existence of a timescale

on which the temperature defined by the average kinetic energy satisfies the fluctuation

relation (Eq. 5.1). As predicted in Sec. 5.1, this timescale lies between tr and ⌧r where the

system samples quasi-equilibrium states. Comparing Figs. 5.3(a) and 5.3(b), we observe

that the range of validity of Eq.(5.1) widens as the thermostat time ⌧r increases at a fixed
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tr, which is again consistent with the definition of quasi-equilibrium states. By contrast, the

errors in h�E�T i✓ and h(�E)2i✓ remain negligible on all timescales until ✓ approaches ⌧r

and the averaging begins to suppress the fluctuations. This is also fully consistent with the

theory. As discussed in Sec. 5.1, Eqs.(5.2) and (5.3) remain valid for both instantaneous and

quasi-equilibrium values of the fluctuating properties, which is consistent with Figs. 5.3(a,b).

Turning to the spectral analysis of the fluctuations, Fig. 5.4 presents the power spectra

of the kinetic and potential energies for the two Langevin thermostats. For the total energy,

the spectrum shows a monotonic decay with frequency and dies o↵ at frequencies larger than

1/⌧r, which supports the notion that the total energy fluctuations are primarily caused by

slow exchanges with the thermostat. By contrast, the kinetic energy spectrum consists of

two parts separated by a frequency gap. The low-frequency part is very similar to that for

the total energy, suggesting a strong correlation. The high-frequency part has a shape of

the phonon spectrum (plotted as a function of 2f) and is virtually identical to the spectrum

computed in the NVE ensemble (cf. Fig. 5.1). Note also that the high-frequency part of

the spectrum is the same regardless of the thermostat time constant. This part of the

spectrum is dominated by the phonon processes and is independent of how and whether

the system interacts with environment. The gap between the low and high-frequency parts

of the spectrum is where the system is found in quasi-equilibrium states. As expected, this

gap widens as ⌧r increases.

The kinetic-potential and kinetic-total CCFs in the frequency domain are plotted in

Fig. 5.5. The respective ACFs are also shown for comparison. Note that, at high frequencies,

the kinetic-potential energy CCF Ĉ�K�U (f) is a mirror image of the kinetic energy ACF

Ĉ�K�K(f) [Fig. 5.5(a)].
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Figure 5.4: Normalized power spectra of kinetic and total energy fluctuations in the NVT
ensemble with a Langevin thermostat for two di↵erent time constants (10 and 100 ps).
Square and triangle symbols - kinetic energy, circle and nabla symbols - total energy.
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Figure 5.5: Results of NVT MD simulations with a Langevin thermostat (⌧r = 10 ps). (a)
Comparison of the kinetic energy ACF and kinetic-potential energy CCF in the frequency
domain. Note that both spectra have the same shape but opposite sign at high frequencies
and coincide at low frequencies. (b) Comparison of the total energy ACF and kinetic-total
energy CCF in the frequency domain. Both functions show a similar monotonic decrease
with frequency and die o↵ above 1/⌧r.

This reflects the nearly perfect anti-correlation between the two energies on the phonon
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timescale where the energy exchanges with the thermostat are negligible and the solid

behaves as if it were isolated. In the low-frequency range below the gap, Ĉ�K�U (f) and

Ĉ�K�K(f) practically coincide. This is also expected since the energy exchanges with

the thermostat increase or decrees the kinetic and potential energies (averaged over the

phonon timescale) simultaneously. Although these correlation functions are only shown

for ⌧r = 10 ps, the results for ⌧r = 100 ps look very similar except for a wider frequency

gap. On the other hand, the Ĉ�K�E(f) and Ĉ�E�E(f) correlation functions are similar

for all frequencies [Fig. 5.5(b)]. In the low-frequency range, this is consistent with the

correlated behavior of all components of energy during the thermostat exchanges. At high

frequencies, the fast fluctuations of kinetic energy and nearly constant total energy produce

a zero CCF. Since both correlation functions are strongly dominated by low frequencies,

h(�E)2i, h�E�Ki and h�E�T i remain the same on both the instantaneous and quasi-

equilibrium timescales.
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Figure 5.6: Energy correlation functions in the time domain obtained by NVT MD simu-
lations with a Langevin thermostat (⌧r = 10 ps). The inset is a zoom into the short-range
part of the kinetic energy ACF.

Figure 5.6 shows the correlation functions in the time domain. Again, only the functions
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for ⌧r = 10 ps are shown; the result for ⌧r = 100 ps lead to similar conclusions. Two of the

functions accurately follow the exponential relations

C�E�E(t) = h(�E)2ie�t/⌧r (5.11)

and

C�E�K(t) = h�K�Eie�t/⌧r (5.12)

expected for a system interacting with a Langevin thermostat. By contrast, the kinetic

energy ACF C�K�K(t) only follows the exponential relation

C�K�K(t) = h(�K)2iqe�t/⌧r , t � tr, (5.13)

on the timescale t � tr. Here, h(�K)2iq = 1.786 eV2 is the value obtained by extrapolation

to t ! 0. For shorter times, C�K�K(t) is a superposition of Eq.(5.13) and fast-decaying

oscillations representing phonon processes. This short-range part is illustrated in the inset

and is the same for ⌧r = 100 ps (not shown). Furthermore, this part is identical to C�K�K(t)

obtained in the NVE ensemble (cf. Fig. 5.1). This is illustrated in Fig. 5.7 by superimposing

the NVT and NVE ACFs, which show accurate agreement.

It follows that the entire function C�K�K(t) computed in the NVT ensemble can be

presented in the form

C�K�K(t) = [C�K�K(t)]NV E + h(�K)2iqe�t/⌧r , (5.14)

where the first term represents the short-range correlations. Equation (5.14) shows the same

timescale decomposition as already observed in the spectral form. h(�K)2iq represents

the quasi-equilibrium timescale and can be used to calculate the temperature fluctuations.
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Figure 5.7: The NVT kinetic energy ACF for a Langevin thermostat with ⌧r = 10 ps (red
curve) superimposed on the NVE kinetic energy ACF (blue points). The inset shows a
zoom into the short-time region.

Taking Eq.(5.14) to the limit of t ! 0, we obtain

h(�K)2i = h(�K)2iNV E + h(�K)2iq. (5.15)

Inserting h(�K)2i and h(�K)2iNV E from Eqs.(5.8) and (5.10), respectively, we arrive at

h(�K)2iq =
9Nk

3
T
2
0

4c0v
. (5.16)

The temperature is defined by Eq.(5.5), from which

h(�T )2i = 4h(�K)2iq
9N2k2

. (5.17)

Inserting h(�K)2iq from Eq.(5.16) we exactly recover the fluctuation relation (5.1).

As an additional numerical test, c0v was extracted from Eq.(5.16) to obtain c
0
v = 24.89
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J/(mol K) in good agreement with the independent calculation in Sec. 5.2.1.

5.3.3 Additional tests

To demonstrate that the results reported in the previous sections are not artifacts of the

Langevin thermostat, selected simulations were repeated using the Nose-Hover thermostat

implemented in LAMMPS [107]. The results (not shown here for brevity) were found to

be in full agreement with the simulations employing the Langevin thermostat, including

the timescale separation and validation of the fluctuation relation (5.1) with temperature

computed in quasi-equilibrium states.

Both the Langevin and Nose-Hover algorithms implement virtual thermostats that cor-

rectly sample the canonical distribution but still di↵er from a physical thermostat. The

latter is commonly associated with a large volume of some inert substance possessing a

large heat capacity and separated from the system by a physical interface. The energy

exchange with the thermostat is then controlled by heat conduction across the interface,

which is di↵erent from random perturbations of atoms uniformly across the system as in

the virtual thermostats. To eliminate any possibility that the virtual thermostats could

a↵ect our conclusions, e↵orts were taken to model a “natural” thermostat and show that

the conclusions remain valid. By a “natural” thermostat we mean a simulation block much

larger than our system and separated from the latter by a physical interface.

As the first step, the NVE MD simulations were executed as above (Sec. 5.3.1), but

this time, atoms within a relatively small cubic block selected at the center of the system

were treated as the system itself, whereas the rest of the simulation cell was considered

a thermostat. Accordingly, the energy correlation functions were only computed for the

small subsystem. Repeating the same statistical analyses as above, it was confirmed that

the phonon relaxation time and the thermostat exchange time were significantly di↵erent,

creating a large time interval (accordingly, a frequency gap in the spectrum of kinetic energy)

in which the system existed in quasi-equilibrium states. The temperature defined on this

quasi-equilibrium timescale was found to satisfy the fluctuation relation (5.1).
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But even this test was not found completely satisfactory. The volume of the inner

lattice block selected as our system was not strictly fixed but rather fluctuated during the

simulations. Strictly speaking, the ensemble implemented on the system was NPT (with

zero pressure) rather than NVT. Although the fluctuation relations (5.1) and (5.2) remain

valid in the NPT ensemble as well [93], the simulations with the virtual thermostats were

conducted in a di↵erent (NVT) ensemble.

Thermostat

Thermostat

Fixed
shell

System

(a)

(b)

(c)z

x y

x

y

Figure 5.8: The anatomy of the “natural” thermostat implemented in this work. (a) Vertical
cross-section of the simulation block revealing the cubic system under study at the center,
the thermostat regions above and below the system, and a fixed shell enclosing both the
system and the thermostat. The entire assembly is much longer in the vertical (z) direction
than shown. (b) and (c) show horizontal (x-y) cross-sections at the levels indicated by the
arrows.

To make sure that the comparison is made for the same ensemble, the natural thermostat

was redesigned as shown in Fig. 5.8. A cubic lattice block with an edge of about 2 nm (about

1400 atoms) was embedded at the center of a larger periodic block with the dimensions

3.6⇥ 3.6⇥ 72 nm (80,000 atoms). This relatively small inner lattice block was the system

to be studied. Atoms within a 0.8 nm shell parallel to the long (z) direction were fixed

in their positions. The remaining atoms above and below the cubic block represented the

thermostat and were subject to the following constraint: they could only vibrate in the x
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and y directions while their z-coordinates were fixed. As a result, the cubic system was fully

surrounded by atoms incapable of motion in the directions normal to the faces of the cube.

The volume of the system was thereby fixed, imitating rigid walls of a calorimeter. At the

same time, the thermostat atoms above and below the cube could exchange energy with it

by heat conduction across the interfaces mediated by transverse phonons (polarized in the

x-y plane). This heat exchange controlled the system temperature. The entire assembly

was brought to thermal equilibrium at the temperature of 100 K.17 As usual, the lattice

parameter was chosen to ensure zero mechanical stress in the system. Once equilibrium was

reached, a 20 ns long NVE MD simulation was performed to compute statistical properties

of fluctuations as described above.

Fig. 5.3(c) shows the normalized di↵erences between the variances/covariances h(�T )2i✓,

h�E�T i✓ and h(�E)2i✓ computed with the natural thermostat and the right-hand sides of

Eqs.(5.1), (5.2) and (5.3), respectively. The results are qualitatively the same as obtained

with the Langevin thermostat [Fig. 5.3(a,b)]. The deviation from the temperature fluctua-

tion relation (5.1) is again about 50% when the instantaneous temperature is used (✓ = dt)

and reduces to approximately ± 10% when the temperature is defined by the kinetic av-

eraged over the time intervals ✓ & 0.1 ps. When ✓ reaches a few ps or higher, the error

increases again due to the smoothing of fluctuations by averaging over timescales compara-

ble with the thermostat time. We can conclude that the latter must be on the order of 10

ps. Thus, the quasi-equilibrium timescale for this thermostat is between ⇠ 0.1 and ⇠ 10 ps.

In this time interval, the temperature fluctuation relation (5.1) is approximately followed,

although not as accurately as with the Langevin thermostat. This is understandable given

that the system in the natural thermostat was a factor of 20 smaller and subject to a size

e↵ect.18 Upscaling of both the system and the thermostat would likely reduce the error but

was not pursued in this work.

17Since the partially constrained atoms forming the thermostat were thermally active only in the x and y
directions, their temperature was computed as hKi /Nk. In the system itself, the temperature was as usual
2 hKi /3Nk.

18The phonon mean free path at this temperature is estimated to be about 1.3 nm, which is comparable
to the system size.
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Spectral analysis of energy fluctuations has shown that the system closely follows the

same trends as for the Langevin and Nose-Hoover thermostats. As one example, Fig. 5.9

compares the power spectra of kinetic energy for the natural and Langevin thermostats.
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Figure 5.9: Power spectra of kinetic energy from NVT MD simulations of systems connected
to a natural thermostat and two Langevin thermostats with the time constants of 10 and
100 ps.

The high-frequency parts of the spectra coincide almost perfectly. The low-frequency

parts controlled by energy exchanges with the thermostat also have similar shapes. In fact,

for the natural thermostat, this part of the spectrum is very close to that for the Langevin

thermostat with ⌧r = 10 ps. This confirms the above estimate of the time constant of the

natural thermostat. This also shows that the time constants of the Langevin thermostat

chosen for this study were quite realistic. Overall, we can conclude that the association of

the temperature fluctuation relation (5.1) with the quasi-equilibrium timescale has a generic

validity and does not reflect some specific features of thermostats.
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5.4 Conclusions

We have addressed the long-standing controversy regarding the meaning, or even existence,

of temperature fluctuations in canonical systems. Over the past decades, the temperature

fluctuation relation (5.1) appearing in many textbooks and papers [19, 22, 70, 93] has

received di↵erent interpretations, including the assertion that this equation is meaningless

[63–65] or at best a mere formality [30, 84, 126]. We have demonstrated that Eq.(5.1) is a

physically meaningful relation that remains valid as long as the temperature is defined on an

appropriate timescale. This interpretation of temperature fluctuations has been supported

by MD simulations of a quasi-harmonic solid connected to a thermostat.

The simulations have confirmed the existence of two di↵erent fluctuation timescales in

canonical systems. The shorter timescale is associated with the time required for a small

isolated system to reach thermodynamic equilibrium. For an atomic solid studied here, this

time tr is controlled by phonon scattering. In this work, this time was about 0.5 ps at the

temperature of 100 K. The longer timescale arises due to slow energy exchanges between the

system and the thermostat. Such exchanges may occur by a variety of physically di↵erent

mechanisms, such as heat transfer across the system/thermostat interface. For the natural

and virtual thermostats studied here, the energy exchange time ⌧r was on the order of 10

to 100 ps. Thus, ⌧r is orders of magnitude longer than tr. At the intermediate timescale

tq (tr ⌧ tq ⌧ ⌧r) the system remains in internal thermodynamic equilibrium and can be

treated as if it were disconnected from the thermostat. In such quasi-equilibrium states, it

has well-defined intensive properties such as temperature, pressure and chemical potential.

In particular, temperature can be defined through the equipartition relation using the

kinetic energy averaged on the quasi-equilibrium timescale tq. It has been shown that fluc-

tuations of the temperature so defined do follow Eq.(5.1). Attempts to define temperature

through kinetic energy averaged over shorter (< tr) or longer (> ⌧r) time intervals result in

significant deviations from Eq.(5.1).

The timescale separation is also reflected in the shape of the kinetic energy ACF in the
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frequency domain, showing two peaks separated by a frequency gap. The peak at f = 0

arises from energy exchanges with the thermostat, whereas the second peak is associated

with phonon processes and has the shape of the phonon density of states (plotted against

2f). The frequency gap represents the quasi-equilibrium states. The potential energy ACF

has a similar structure and can also be used for the identification of quasi-equilibrium states.

Thus, measured or computed energy spectra of a canonical system carry all information

about the timescale on which temperature fluctuations are well-defined and follow Eq.(5.1).

The conclusions of this work were tested by MD simulations with two virtual thermostats

(Langevin and Nose-Hoover) and a natural thermostat consisting of large crystalline regions

surrounding the system. In the future, a similar study could evaluate the validity of pressure

fluctuation relations for canonical systems [70, 93, 113].
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Chapter 6: Summary

In summary, the third chapter of this work has advanced the field of binary alloy GB

premelting by proposing a novel analytical form of the disjoining potential that describes

repulsive, attractive and intermediate interactions between solid-liquid interfaces by a single

equation. Atomistic simulations of GBs in binary Cu-Ag solutions were conducted to explore

various temperatures, chemical compositions and GB energies and to test and expand our

theory. The fluctuation approach applied previously to single-component GBs [31, 56] and

extended here to binary systems, was applied to extract the disjoining potentials from the

simulations under various conditions. All three types of disjoining potentials were found:

repulsive, attractive and intermediate, in full agreement with predictions of the liquid layer

model with the analytical potential. Multiple consistency checks performed during the

simulations demonstrate the reliability of the results. In particular, the GB free energy

was computed by thermodynamic integration, producing results consistent with the liquid

layer model with the analytical disjoining potential. An important result of the simulations

is the confirmation of the existence of multiple stable and metastable states of premelted

GBs under appropriate conditions. Such states are characterized by di↵erent GB widths

as well as other excess properties. During continuous variations of thermodynamic state

of the grains, the relative stability of such states varies and at some point can result in

a thin-thick phase coexistence. Additional calculations could generate a thin-thick phase

coexistence line on the Cu-Ag phase diagram, but this is left for future work.

In the fourth chapter of the work we have extended the previous studies of the ⌃5

GBs [36–38, 46] to a larger set of [001] symmetrical tilt GBs in order to evaluate the

generality of the previous findings. The GB structures and energies have been calculated

by allowing variations in the GB density � and large displacements of atoms during the

energy minimization. From this work we have demonstrated that � should be included in
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the descriptions of GBs as an additional parameter capable of predicting GB phases and

phase transformations.

In chapter five we have addressed the long-standing controversy regarding the meaning,

or even existence, of temperature fluctuations in canonical systems. Over the past decades,

the temperature fluctuation relation (5.1) appearing in many textbooks and papers [19, 22,

70, 93] has received di↵erent interpretations, including the assertion that this equation is

meaningless [63–65] or at best a mere formality [30, 84, 126]. We have demonstrated that

Eq.(5.1) is a physically meaningful relation that remains valid as long as the temperature

is defined on an appropriate timescale. This interpretation of temperature fluctuations has

been supported by MD simulations of a quasi-harmonic solid connected to a thermostat.

Finally, as a closing summary we include the following list which includes all of the

publications which resulted from this thesis:

1. 2017: J. Hickman and Y. Mishin, Extra variable in grain boundary description. Phys-

ical Review Materials 1, No. 1, p. 010601, [selected as EDITOR’S SUGGESTION].

2. 2016: J. Hickman and Y. Mishin, Disjoining potential and grain boundary premelting

in bi- nary alloys. Physical Review B 93, No. 224108.

3. 2016: Y. Mishin and J. Hickman, Energy spectrum of a Langevin oscillator. Physical

Review E 94, No. 6, p. 062151.

4. 2016: J. Hickman and Y. Mishin, Temperature fluctuations in canonical systems:

Insights from molecular dynamics simulations. Physical Review B 94, No. 184311.
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Chapter A: GB structure catalog

Figures A.1 and A.2 contain the complete set of �(�) plots for the Cu GBs studied in chapter-

4 of this work. The trend lines are shown as a guide to the eye. For GBs composed on

identical structural units, the data points are shown by symbols representing the respective

structural units (} K, 2 L, � M).

In Tab. A.1 we compare the energies associated with the new global minima obtained

using our method and the previous values associated with regular kites. In the rightmost

column of tab.A.1 we denote in bold the boundaries which have new energies lower than

those of regular kites. Again this table reiterates the fact that the majority of the STGB

studied have structures with energies lower than the regular kites.

Table A.1: A comparison of the energies associated with the regular kite K1 with the new
global minima obtained in this work. In the rightmost column the new values with energies
lower than that of regular kites are displayed in bold font

Boundary ✓ �gb (Jm�2) �gb (Jm�2)
(regular kites) (new minima)

⌃101(1010) 11.42o 0.686 0.676
⌃25(710) 16.26o 0.796 0.783
⌃37(610) 18.92o 0.837 0.823
⌃13(510) 22.62o 0.878 0.864
⌃17(410) 28.07o 0.914 0.903
⌃53(720) 31.89o 0.939 0.935
⌃5(310) 36.87o 0.905 0.905
⌃5(210) 53.13o 0.951 0.936
⌃17(530) 61.93o 0.856 0.856
⌃13(320) 67.38o 0.790 0.790
⌃25(430) 73.74o 0.677 0.666
⌃61(650) 79.61o 0.533 0.513

Figures A.4 to A.6 display the structures of select Cu GBs studied in this work.
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Figure A.1: GB energy (in J/m2) versus GB density � (fraction of atoms removed) for
symmetrical tilt GBs in Cu.
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Figure A.2: GB energy (in J/m2) versus GB density � (fraction of atoms removed) for
symmetrical tilt GBs in Cu.
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Figure A.3: Structures of symmetrical tilt GBs in Cu. The structures are projected parallel
to the [001] tilt axis (left) and normal to the tilt axis (right). The GB density � are indicated.
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Figure A.4: Structures of symmetrical tilt GBs in Cu. The structures are projected parallel
to the [001] tilt axis (left) and normal to the tilt axis (right). The GB density � is indicated.
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Figure A.5: Structures of symmetrical tilt GBs in Cu. The structures are projected parallel
to the [001] tilt axis (left) and normal to the tilt axis (right). The GB density � is indicated.
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Figure A.6: Structures of symmetrical tilt GBs in Cu. The structures are projected parallel
to the [001] tilt axis (left) and normal to the tilt axis (right). The GB density � is indicated.
The structures are composed of M units whose connection to each other alternates along the
tilt axis from head-to-tail to separated by an extra plane. This explains why the projection
along the tilt axis does not look like in other boundaries.
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[71] Larché, F. C. and Cahn, J. W. (1985). The interactions of composition and stress in
crystalline solids. Acta Metall., 33:331–367.

[72] Lebowitz, J. L., Percus, J. K., and Verlet, L. (1967). Ensemble dependence of fluctua-
tions with application to machine computing. Phys. Rev., 153:250–254.

[73] Liang, T., Devine, B., Phillpot, S. R., and Sinnott, S. B. (2012). Variable charge
reactive potential for hydrocarbons to simulate organic-copper interactions. J. Phys.

Chem., 116:7976–7991.

[74] Lipowsky, R. (1986). Melting at grain boundaries and surfaces. Phys. Rev. Lett.,
57:2876.

[75] Lipowsky, R. and Fisher, M. E. (1987). Scaling regimes and functional renormalization
for wetting transitions. Phys. Rev. B, 36:2126–2141.

[76] Liu, C. L. and Plimpton, S. J. (1995). Molecular statics and dynamics study of di↵usion
along [001] tilt grain boundaries in ag. Phys. Rev. B, 51:4523–4528.

[77] Lobkovsky, A. and Warren, J. W. (2002). Phase field model of premelting of grain
boundaries. Physica D, 164:202–212.

[78] Lu, J. and Szpunar, J. A. (1995). Molecular dynamics simulation of a twist � = 5 grain
boundary. Interface Sci., 3:143–150.

122



[79] Lu, L. L., Hu, T. T., Lu, G. M., and Chen, Z. (2014). Phase-field crystal study of
segregation induced grain-boundary premelting in binary alloys. Physica B, 451:128–133.

[80] Luo, J., Gupta, V. K., Yoon, D. H., and Meyer, H. M. (2005). Segregation-induced
grain boundary premelting in nickel-doped tungsten. Appl. Phys. Lett., 87:231902.

[81] Lutsko, J. F., Wolf, D., Phillpot, S. R., and Yip, S. (1989). Molecular-dynamics study
of lattice-defect-nucleated melting in metals using an embedded-atom-method potential.
Phys. Rev. B, 40:2841–2855.

[82] Lutsko, J. F., Wolf, D., Yip, S., Phillpot, S. R., and Nguyen, T. (1988). Molecular-
dynamics method for the simulation of bulk-solid interfaces at high temperatures. Phys.
Rev. B, 38:11572–11581.

[83] Ma, C., Sun, H., Zhao, Y., Li, B., Li, Q., Zhao, A., Wang, X., Luo, Y., Yang, J., Wang,
B., and Hou, J. G. (2014). Evidence of van Hove singularities in ordered grain boundaries
of graphene. Phys. Rev. Lett., 112:226802.

[84] Mandelbrot, B. B. (1989). Temperature fluctuations: A well-defined and unavoidable
notion. Phys. Today, 42:71–73.

[85] Marconi, U. M. B., Puglisi, A., Rondoni, L., and Vulpiani, A. (2008). Fluctuation–
dissipation: Response theory in statistical physics. Physics Reports, 461:111–195.

[86] Masumura, R. A., Glicksman, M. E., and Vold, C. L. (1972). Absolute solid-liquid and
grain boundary energies of bismuth. Scripta Metall., 6:943–946.

[87] De Groot, S. R. and Mazur, P. (1984). Non-equilibrium thermodynamics. Dover, New
York.

[88] Palafox-Hernandez, J. P., Laird, B. B., and Asta, M. (2011). Atomistic characterization
of the cu–pb solid–liquid interface. Acta Mater., 59:3137–3144.

[89] von Alfthan, S., Haynes, P. D., Kashi, K., and Sutton, A. P. (2006). Are the structures
of twist grain boundaries in silicon ordered at 0 K? Phys. Rev. Lett., 96:055505.

[90] von Alfthan, S., Kaski, K., and Sutton, A. P. (2007). Molecular dynamics simulations
of temperature-induced structural transitions at twist boundaries in silicon. Phys. Rev.

B, 76:245317.

[91] Mellenthin, J., Karma, A., and Plapp, M. (2008). Phase-field crystal study of grain-
boundary premelting. Phys. Rev. B, 78:184110.

[92] Mishin, Y. (2014). Calculation of the �/�0 interface free energy in the Ni-Al system by
the capillary fluctuation method. Modeling Simul. Mater. Sci. Eng., 22:045001.

[93] Mishin, Y. (2015). Thermodynamic theory of equilibrium fluctuations. Annals of

Physics, 363:48–97.

[94] Mishin, Y., Asta, M., and Li, J. (2010). Atomistic modeling of interfaces and their
impact on microstructure and properties. Acta Mater., 58:1117 – 1151.

123



[95] Mishin, Y., Boettinger, W. J., Warren, J. A., and McFadden, G. B. (2009). Thermo-
dynamics of grain boundary premelting in alloys. I. Phase field modeling. Acta Mater.,
57:3771–3785.

[96] Mishin, Y., Farkas, D., Mehl, M. J., and Papaconstantopoulos, D. A. (1999). Inter-
atomic potentials for monoatomic metals from experimental data and ab initio calcula-
tions. Phys. Rev. B, 59:3393–3407.

[97] Mishin, Y. and Hickman, J. (2016). Energy spectrum of a langevin oscillator. Physical
Review E, 94(6):062151.

[98] Mishin, Y., Mehl, M. J., and Papaconstantopoulos, D. A. (2005). Phase stability in
the Fe-Ni system: Investigation by first-principles calculations and atomistic simulations.
Acta Mater., 53:4029–4041.

[99] Mishin, Y., Mehl, M. J., Papaconstantopoulos, D. A., Voter, A. F., and Kress, J. D.
(2001). Structural stability and lattice defects in copper: Ab initio, tight-binding and
embedded-atom calculations. Phys. Rev. B, 63:224106.

[100] Nguyen, T., Ho, P. S., Kwok, T., Nitta, C., and Yip, S. (1992). Thermal structural
disorder and melting at a crystalline interface. Phys. Rev. B, 46:6050–6060.

[101] Nyquist, H. (1928). Thermal agitation of electric charge in conductors. Phys. Rev.,
32(110-113).

[102] Oh, S. H., Kau↵mann, Y., Scheu, C., Kaplan, W. D., and Ruhle, M. (2005). Ordered
liquid aluminum at the interface with sapphire. Science, 310:661–663.

[103] Onsager, L. (1931a). Reciprocal relations in irreversible processes. I. Phys. Rev.,
37:405–426.

[104] Onsager, L. (1931b). Reciprocal relations in irreversible processes. II. Phys. Rev.,
38:2265–2279.

[105] Pandit, R., Schick, M., and Wortis, M. (1982). Systematics of multilayer adsorption
phenomena on attractive substrates. Phys. Rev. B, 26:5112–5140.

[106] Phillpot, S. R. and Rickman, J. M. (1992). Simulated quenching to the zero-
temperature limit of the grand-canonical ensemble. J. Chem. Phys., 97:2651–2658.

[107] Plimpton, S. (1995). Fast parallel algorithms for short-range molecular-dynamics. J.
Comput. Phys., 117:1–19.

[108] Pollet, L., Boninsegni, M., Kuklov, A., and Toyer, M. (2007). Superfluidity of grain
boundaries in solid He 4. Phys. Rev. Lett., 98:135301.

[109] Purja Pun, G. P., Yamakov, V., and Mishin, Y. (2015). Interatomic potential for the
ternary Ni–Al–Co system and application to atomistic modeling of the B2–L10 marten-
sitic transformation. Model. Simul. Mater. Sci. Eng., 23:065006.

[110] Rappaz, M., Jacot, A., and Boettinger, W. J. (2003). Last-stage solidification of
alloys: Theoretical model of dendrite-arm and grain coalescence. Metall. Mater. Trans.

A, 34:467–479.

124



[111] Rivnay, J., Jimison, L. H., Northrup, J. E., Toney, M. F., Noriega, R., Lu, S., Marks,
T. J., Facchetti, A., and Salleo, A. (2009). Large modulation of carrier transport by grain-
boundary molecular packing and microstructure in organic thin films. Nature Mater.,
8:952 – 958.

[112] Rowan, E. (2013). The structural disjoining potential of grain boundary premelting in

binary alloys using phase field crystal model. Master of Applied Science Thesis, McMaster
University, Hamilton, Ontario, Canada.

[113] Rudoi, Y. D. and Sukhanov, A. D. (2000). Thermodynamic fluctuations within the
gibbs and einstein approaches. Phys. Usp., 43:1169–1199.

[114] Sadigh, B., Erhart, P., Stukowski, A., Caro, A., Martinez, E., and Zepeda-Ruiz, L.
(2012). Scalable parallel monte carlo algorithm for atomistic simulations of precipitation
in alloys. Phys. Rev. B, 85:184203.

[115] Scheidler, P., Kob, W., Latz, A., Horbach, J., and Binder, K. (2001). Frequency
dependent specific heat of viscous silica. Phys. Rev. B, 63:104204.

[116] Spatschek, R., Adland, A., and Karma, A. (2013). Structural short-range forces
between solid-melt interfaces. Phys. Rev. B, 87:024109.

[117] Sutton, A. P. and Ballu�, R. W. (1995). Interfaces in Crystalline Materials. Claren-
don Press, Oxford.

[118] Sutton, A. P. and Vitek, V. (1983). On the structure of tilt grain boundaries in cubic
metals - I. symmetrical tilt boundaries. Phil. Trans. Roy. Soc. Lond. A, 309:1–36.

[119] Suzuki, A. and Mishin, Y. (2003). Atomistic modeling of point defects and di↵usion
in copper grain boundaries. Interface Science, 11:131–148.

[120] Suzuki, A. and Mishin, Y. (2005). Atomic mechanisms of grain boundary di↵usion:
Low versus high temperatures. J. Mater. Sci., 40:3155–3161.

[121] Tang, M., Carter, W. C., and Cannon, R. M. (2006a). Di↵use interface model for
structural transitions of grain boundaries. Phys. Rev. B, 73:024102.

[122] Tang, M., Carter, W. C., and Cannon, R. M. (2006b). Grain boundary transitions in
binary alloys. Phys. Rev. Lett., 97:075502.

[123] Terso↵, J. (1988). New empirical approach for the structure and energy of covalent
systems. Phys. Rev. B, 37:6991–7000.

[124] Thomson, E. S., Hansen-Goos, H., Wettlaufer, J. S., and Wilen, L. A. (2013). Grain
boundary melting in ice. J. Chem. Phys., 138:124707.

[125] van Duin, A. C. T., Dasgupta, S., Lorant, F., and Goddard, W. A. (2001). Reax↵: A
reactive force field for hydrocarbons. J. Phys. Chem., 105:9396–9409.

[126] van Hemmen, J. L. and Longtin, A. (2013). Temperature fluctuations for a system in
contact with a heat bath. J. Statist. Phys., 153:1132–1142.

125



[127] Vold, C. L. and Glicksman, M. E. (1972). Behavior of grain boundaries near the
melting point. In Hu, H., editor, The Nature and Behavior of Grain Boundaries, pages
171–183. Metallurgical Society of AIME, Plenum Press, New York.

[128] Wang, N., Spatschek, R., and Karma, A. (2010). Multi-phase-field analysis of short-
range forces between di↵use interfaces. Phys. Rev. E, 81:051601.

[129] Watanabe, T., Kimura, S. I., and Karashima, S. (1984). The e↵ect of grain boundary
structural transformation on sliding in (1010)-tilt zinc bicrystals. Philos. Mag. A, 49:845–
864.

[130] Williams, P. L. and Mishin, Y. (2009). Thermodynamics of grain boundary premelting
in alloys. II. Atomistic simulation. Acta Mater., 57:3786–3794.

[131] Williams, P. L., Mishin, Y., and Hamilton, J. C. (2006). An embedded-atom potential
for the Cu-Ag system. Modelling Simul. Mater. Sci. Eng., 14:817–833.

[132] Yamakov, V., Hochhalter, J. D., Leser, W. P., Warner, J. E., Newman, J. A., Purja
Pun, G. P., and Mishin, Y. (2015). Multiscale modeling of sensory properties of co–ni–al
shape memory particles embedded in an al metal matrix. J. Mate. Sci., 5:1204–1216.

126



Curriculum Vitae

James F. Hickman

Department of Physics and Astronomy

George Mason University

4400 University Dr, Fairfax, VA 22030

phone: (717)-261-6982 email: jhickma3@gmu.edu

Education:

• 2011-2014: George Mason University:

– Masters of science: applied physics (December 2014) (4.0/4.0 GPA)

• 2011: Lock Haven University:

– Nanotechnology fabrication certification (Summer 2011)(3.567/4.0 GPA)

– Certification obtained in collaboration with the Pennsylvania State University

• 2007-2011: Shippensburg University:

– Bachelor of science: (June 2011)(3.87/4.0 GPA)

⇤ Double major in physics and applied mathematics

Research experience:

• 2012-2017: George Mason University: Graduate research assistant

– Advisor: Professor Yuri Mishin

• 2010: George Mason University: Undergraduate research experience in mathematics

– Advisor: Professor Padmanabhan Seshaiyer

Publications:

• 2017: J. Hickman and Y. Mishin, E↵ect of bi-crystallography on thermal resistance
in silicon grain boundaries. (in preparation).

127



• 2017: J. Hickman and Y. Mishin, Extra variable in grain boundary description. Phys-
ical Review Materials 1, No. 1, p. 010601, [selected as EDITOR’S SUGGESTION].

• 2016: J. Hickman and Y. Mishin, Disjoining potential and grain boundary premelting
in bi- nary alloys. Physical Review B 93, No. 224108.

• 2016: Y. Mishin and J. Hickman, Energy spectrum of a Langevin oscillator. Physical
Review E 94, No. 6, p. 062151.

• 2016: J. Hickman and Y. Mishin, Temperature fluctuations in canonical systems:
Insights from molecular dynamics simulations. Physical Review B 94, No. 184311.

Academic Presentations:

• 2017: Atomistic simulations of solid state systems: Introduction and applications.
Shippensburg University Student Seminar Series (Shippensburg Pa).

• 2017: E↵ect of bi-crystallography on thermal resistance of grain boundaries. The
Minerals, Metals and Materials Society Annual Meeting and Exhibition (INVITED)(San
Diego Ca).

• 2016: Atomistic modeling of pre-melted grain boundaries. XV International Confer-
ence on Intergranular and Interphase Boundaries in Materials (Moscow).

• 2016: Equilibrium fluctuations of grain boundary properties in alloy systems. The
Minerals, Metals and Materials Society Annual Meeting and Exhibition (Nashville
Tn).

• 2015: Atomistic modeling of pre-melted grain boundaries. The Minerals, Metals and
Materials Society Annual Meeting and Exhibition (Orlando Fl).

• 2014: Fluctuations in pre-melted grain boundaries. The Minerals, Metals and Mate-
rials Society Annual Meeting and Exhibition (San Diego Ca).

• 2014: Thermodynamic simulations and parallel processing with applications to grain
boundary phenomena. Shippensburg University Student Seminar Series (Shippens-
burg Pa).

• 2013: Monte Carlo simulations: The disjointing potential and grain boundary pre-
melting in binary CuAg systems. SIAM/MAA Fourth Mid-Atlantic Regional Applied
Mathematics Student Conference (Shippensburg PA).

Academic workshops attended:

• 2014: Mason mathematical modeling workshop. Fairfax, VA (host: George Mason
University).

• 2014: Open knowledge-base of interatomic models content workshop. College Park,
MD (host: University of Maryland).

128



• 2013: LAMMPS users workshop and symposium. Albuquerque, NM (host: Sandia
National Laboratory).

• 2013: Short course in modeling materials. Argonne, IL (host: Argonne National
Laboratory).

Teaching experience:

• 2016-2017: George Mason University: Athletic department math and physics tutor

• 2015-2016: George Mason University: Substitute recitation instructor

• 2015: Seoul Korea: Computational physics instructor

– Week-1: Seoul Science High School

– Week-2: Seoul High School

• 2013-2014: Educational Connections: Private in home math and physics tutor

• 2012-2013: Oak Hill Elementary: After school math coach

• 2011-2012: George Mason University: Graduate teaching assistant

– Instructor for six sections of introductory physics

• 2008-2011: Shippensburg University Learning Center: Math and physics tutor

– certification as a CRLA Level-3 tutor.

STEM community outreach:

• 2016: Arlington Traditional Elementary School: STEM day volunteer assistant

• 2015: Lake Braddock Middle School: After school science club presenter

• 2015: Centerville High School: Volunteer science fair judge

• 2015: Arlington Traditional Elementary School: STEM day volunteer assistant

• 2014-2015: Fairfax County: VEX Robotics Coach

• 2014: Robeson High School: After school science club presenter

• 2012-2013: George Mason University: Paul Robeson leadership academy coach

129


