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Abstract

Natural induction and conceptual clustering are two methodologies piohkg the GMU Machine
Learning and Inference Laboratory for discovering conceptlationships in data, and presenting
them in the forms easy for people to interpret and understarfie filst methodology is for
supervised learning (learning from examples) and the second dopenvised learning (clustering).
Examples of their application to a wide range of practical dwmnare presented, including
bioinformatics, medicine, agriculture, volcanology, demograplitsjsion detection and computer
user modeling, manufacturing, civil engineering, optimization of fonstiof very large number of
variables (100-1000), design of complex engineering systems, taxdesection, and musicology.
Most of the results were obtained by applying our recent natgattion program, AQ21, which is
downloadable fronmttp://www.mli.gmu.edu/msoftware.htmTo give the Reader a quick insight into
differences between natural induction implemented in AQ21 and selt#&newn learning methods,
such as those implemented in C4.5, RIPPER, and CN2, as well aeheatonceptual clustering and
conventional clustering, Sections 15 and 16 describe results fronirapallthese methods to very
simple, designed problems.

Keywords: data mining and knowledge discovery, machine learning, natural ioduaiuster
analysis, conceptual clustering, data mining applications, maclaimerig applications
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1 INTRODUCTION

A common activity in almost all areas of science is to colikeata in order to derive from
them useful insights or discover new knowledge about the phenomenon unger Shel
amount of data collected may vary from very large, as in,Xamele, genomics, particle
physics, or tax return, where it can be on the order obgtga or terabytes, to very small, as
in archeology or criminology, where only a few, loosely linked facts may bialalea

Modern tools for data analysis and data mining have evolved primeoity fesearch in
machine learning and statistics. The tools stemming from machine lgagsearch are often
available from university laboratories as free experimeraaiptiter programs. The tools
stemming from research statistics, a much older discipline, usually available as
commercial, industrial-strength software, that was developed andiigtained by private
companies.

Statistical and some machine learning tools for data andlgses been widely used, and are
very useful in many practical applications. They have, howevgnjfisiant limitations.
Statistical tools do not work well with very small datasets ane primarily oriented toward
creating quantitative (numerical) characterizations of thedieti phenomena. These
characterizations typically involve variables that are alrga@gent in the data, or some
predefined functions of these variables. Both statistical toolsnastl of the current machine
learning methods do not engage and reason with much prior domain knowledge whi
extracting patters from data. They also use relatively daniknowledge representation
languages that may preclude them from discovering patterns or relatiomsthipsiata that a
human expert employing a much richer language may be able to discover.

In many application domains it is desirable to characterize wdigmns and express
hypotheses about them not quantitatively, but rather qualitativelyrijokdgely), with an
accompanying statistical annotation. Such qualitative descriptiensefi@n quite sufficient
for decision making, and may also be more reliable. For exanglevéryday decision
making, it is usually quite sufficient and even preferable to knowttiganext week will be
sunny, warm, and with low humidity, rather than be given a set of msmxgpressing
precisely the temperature and humidity that is predicted fdn day of the week. An
accurate qualitative prediction is also usually much easier @atecrthan an accurate
guantitative prediction.

The GMU Machine Learning and Inference Laboratory is engagess@arch, supported by
the National Science Foundation, on developing a new, complementary appooach
statistical data analysis, callkdowledge miningwhose objective is to discover previously
unknown regularities in data, and express them in the qualitatives foataral to people as
they resemble those in which people express knowledge. These folutke ilugic-based or
simplified natural language descriptions, and various knowledge matiahs, such as
graphs, diagrams, figures, or images. Such forms are easy totandgersterpret, and use
for creating mental models.

Basic methods of knowledge mining perfogqualitative data analysishat seeks human-
style explanations of data. They can efficiently derive takksamt information from large
volumes of data with many irrelevant facts, induce generas rael discover patterns in



data, propose logical explanations of given facts, hypothesizetstl relationships and
causal dependencies, and incrementally improve the previously detdrmualitative
knowledge in the light of new data.

This article reviews examples of diverse practical appdioatof two methodologies of
knowledge mining developed in our laboratory, natural induction and concefutsigring.
The presented examples include applications to bioinformatics, mediagreulture,
volcanology, demographics, intrusion detection and computer user modelingaotannog,
civil engineering, optimization of functions of very large number ofaides (100-1000),
design of complex engineering systems, tax fraud detection, asidatogy. The article is
written in a simple, tutorial style in order to make it etsynderstand by a wide range of
readers. Technical details and algorithms are described in degtedsin the References.
Most of the referred papers are downloadable from www.mli.gmussdect “Papers”). The
learning program AQ21 that was used in many experimentsasdawnloadable from that
website (select “Software”).

Sections 2-11, describe selected applications of natural inductionpride@®-14 describe
applications of conceptual clustering, and Sections 15-16 present sixgoigples of

comparative studies of natural induction and other methods. Most of thieatppb

represent very recent work.

Because the concepts of “natural induction” and “conceptual clugteare relatively new,
and may not be familiar to the reader, we start by briefyaéxing them. Natural induction
is a form of supervised learning, a.k.a learning from examples hitpothesizes general
concept descriptions from concept examples or discovers patterngainirdajualitative
forms that are easy for people to understand, interpret, and makatal model of them.
Specifically, knowledge derived from data is expressed in tefmegic-style rulesthat
directly correspond to simple natural language statements awg@aézed using new forms
of graphical representation, suchcamcept association graphgeneralized logic diagrams
andruletrees(see examples in Figures 3, 4, 6, and 7).

An important aspect of natural induction is that it places equghasis on predictive
accuracy and on the understandability of computer-generated knowiledgairast to most
of machine learning and data mining methods in which high prediatougacy is the main,
or only objective. Natural induction thus aims at being a "transpdmexit method for
analyzing data, in contrast to “black box” methods that may prodimeeate results, but are
opaque and difficult to interpret.

Our newest program implementing natural induction is AQ21 (Wojtusiak, 2004; Wojttisiak e
al., 2006). Given a set of data, it outputs hypotheses learned frodatthén the form of
rulesetsin attributional calculus a logic and representation system developed for supporting
natural induction (Michalski, 2004). For an example of such a ruleset see Figure 2.

Depending on the setting of its parameters, AQ21 may dgendifferent types of data
characterizations, such as complete and consistent genevalizgbiatterns that represent
strong regularities, but partially inconsistent with the data, right®ms with exception
clauses, and some other. An AQ21's learning process can be viewedessch for a



description (a ruleset) that maximizes a given measueséription utility defined by a
Lexicographic Evaluation Functionafbriefly, LEF):

LEF = <QUALITY, %;SIMPLICITY>
where:

QUALITY measures a description quality, Q(w), defined as:
Q(w) = CoV * Config™™"

In this measure:

Cov = p/P (“Coverage”)

Config=((p/ (p+n))— (P /(P + N))) * ((P +N) /N) (“Confidence gain”)

p and n are numbers of positive and negative examples in the traihiogvee=d by the
description

P and N are total numbers of positive and negative exampleseintraining data,
respectively, and

w is a parameter that allows the user to control the relmtigertance of the Cov and Config
components.

SIMPLICITY is the reciprocal of the descripti@@MPLEXITY, defined as the sum of the costs
associated with each operator in the description. In our experinteatslefault costs of
operators were: conjunction — 4, disjunction — 10, internal disjunction -n@e ra 2, less
than or greater than operators — 1, equality operator — 1, ineqapknator — 2. For
operators within an exception clause, the costs are doubled. Wherset ndesists o
rules, it is assumed that it hasl disjunction operators.

Parameter g%, called the tolerance ¢arALITY, defines the range @UALITY values of
rules that will be evaluated f&IMPLICITY. Rules whos®UALITY is not within q% of the
best rule in the set of candidates are ignored. LEF thus provisiespée multi-criterion
evaluation of a set of alternatives. It is particularly aative when there are many
alternatives to evaluate, because the number of alternatvesnisider decreases after
applying each criterion. Such a situation often arises in the imducitference from non-
trivial data.

Conceptual clustering is a form of unsupervised learning (a.lamimg from observation)
that concerns grouping observed entities into “conceptual clusteas™répresent simple
concepts, in contrast to conventional clustering, which clusters objextgroups of similar
objects, according to some an a priori defined mathematical uneeasf similarity.
Conceptual clustering outputs both clusters and cluster descriptimheyaluates clusters on
the basis of the quality of these descriptions, whereas conventiastdring outputs only
clusters, and evaluates them on the basis of the intra- and inter-clustentsas:il

! For readers unacquainted with the concept of LEEl{Mski, 1972), here is a brief explanation. L& be
used for ranking individual rules or entire ruleset_et us assume that it is applied to rankingtao$ rules.
First, LEF determines rules that score the higloesthe first criterion (in the above example, QUAY).
Rules whose QUALITY is at least (TopQuality - g2 opQuality) are then evaluated on the second aiter
(here, SIMPLICITY); others are rejected. The rliattscores the highest on SIMPLICITY is selectedhas
overall best according to the LEF. LEF can be @gpto rank rules or any other entities based ortiphel
criteria.



Conceptual clustering is accomplished by executing a search dlustering (collection of
clusters) that optimizes a criterion of clustering qualityt tledlects clusters’ “conceptual
cohesiveness” (Michalski and Stepp, 1983a,b; Seeman and Michalski, 20G8pl&x of
the application of conceptual clustering are presented in Sections 11-13.

In our research on natural induction and conceptual clustering, the ungdedlscription
language isttributional calculus which combines elements of propositional logic, predicate
logic and many-valued logics for the purpose of facilitating ingadgarning and qualitative
data analysis (Michalski, 2004). The relationships discovered byahafgduction may
combine descriptive and statistical information. Here is an example gioghiegis produced
by the AQ21 learning program that analyzed of a medical dataepetsenting a gene
microarray of patients with medulloblastoma:

If in a gene array derived from a patient, the expression of Gene-161lovs the
threshold T1, the expression of Gene-1036 is in the range T2 to T3, and the
expression of Gene-914 is below the thresholdiT#he expression of Gene-1783 is
above the threshold T5, then the patient’s cancer is likely to be metastatic

For a detailed explanation of this result, see the next seditum.above text is a direct
translation of attributional rules learned by the program.

In the following sections, we describe examples of applicatidreur methods of natural
induction and conceptual clustering to bioinformatics, medicine, agriculoieanology,

demographics, intrusion detection and computer user modeling, manufactogimggeging,

musicology, and tax fraud detection. For readers interestedttingya quick insight into
differences between our methods and some other well-known methodsnSdetiand 15
use simple designed problems to compare the methods. Section l4reomptural

induction to other methods of supervised learning, and Section 15 compaEptoal

clustering to a similarity-based method of unsupervised learning.

2 AN EXAMPLE OF APPLICATION TO BIOINFORMATICS

This example concerns an application of natural induction to the probiesiragnosing
medulloblastoma from patients’ gene microarrays (representggees of expressions of
patients’ genes). Medulloblastoma is a highly invasive primitieeroectodermal tumor of
the cerebellum and the most common malignant brain tumor of childhooddafd&r this
application were obtained from the Gene Expression Omnibus (GEO)| NOB NIH,
available online at http://www.ncbi.nlm.nih.gov/geo. The original gemgoarray data
consists of 46 records split into two classes: 20 records refireg@atients with metastatic
tumors and 26 records representing patients with non-metastatiorstu Each record
registers values of 2059 real-valued attributes that represent the expoésiifferent genes.

In the experiments that inspired this work, performed by McDonadtl €2001), out of 2059
genes (serving as attributes), the authors selected the 8thevitighesPrediction Strength
Correlation defined as the ratio of the difference between the mean valtlestino classes
(metastatic and non-metastatic) to the sum of the standamtidasiin the classes. Figure 1
shows a subset of a gene microarray with medulloblastoma daastdrset of 23 patients.
Each row corresponds to a patient, and registers expressions olebteds 87 genes,
represented in the columns.
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Figure 1: A gene microarray containing medulloblastoma data for 23 patients.

The first 9 rows represent patients with metastatic tunamd,the remaining 14 with non-
metastatic tumors. Bright red color spots represent a higheygmession level, and bright
green spots denote a low expression level.

For our experiments, we selected only the ten attributes thaidskighest on the PROMISE
measure of attribute quality, studied by our former student Ba®82). The measure
expresses a degree to which an attribute differentiates bethsesses. After projecting data
on the selected 10 attributes, we applied the AQ21 natural indyecbgnam to hypothesize
rules for distinguishing between metastatic and non-metastatic rumors.

In the experiment reported here, the training data for metadtatiors consisted of 16
unique examples, and for non-metastatic tumors 12 unique examples dtifteute

selection, some examples became indistinguishable). Given theseplex, AQ21
discovered two rules (a ruleset) for the metastatic tumor presentedire Big

[Cancer = metastatic]
<= [Gene-1611 <= 100.98, 8, 69%, 18, 8, 69p&
[Gene-1036 =-41.76..160.88,20, 47%, 16, 4, 80p&
[Gene-914 <= 121.%80, 15, 57%, 16, 0, 100%
#positives = 16, #negatives =0, #unique =QUYALITY = 1,COMPLEXITY =17

<= [Gene-1783 >= 96.%.0,100%,6,0,100%s
#positives = 6, #negatives= 0, #unique OYWALITY = 1;COMPLEXITY =5

Figure 2: An example of a ruleset discovered by AQ21 for recognizing metastaticiumor
In Figure 2, the condition [Cancer = metastatic] is the rudetssequenthat is implied by

two alternative premises (that follow the implication sign™=A pair, a consequent and a
premise, constitutes a single rule. Thus, Figure 2 presentsilieg The premise of the first



rule is a logical conjunction of three conditions, and the premise cfeitend rule consists
of just one condition.

The first rule states that if the expression of the gene -Géhg (interferon IFNy) is equal

to or below 100.9and the expression of the gene Gene-1036 (IL15: interleukin 15) is
between -41.76 and 160.8 (inclusivapd the expression of the gene Gene-914 (ERG:
v-etserythroblastosis virus E26 oncogene like, avian) is equal to @v 4&l1.5 in a gene
array of a patient, then metastatic cancer is indicated imp#tigint. The second rule states an
alternative condition indicating medulloblastoma, namely, when the sstpre of Gene-
1783 (RIN2: Ras and Rab interactor 2) is above or equal to 96.6.

Each condition of every rule is annotated by two triples of numbetsd Iafter the colon.
The first number in the first triple indicates the number of pesigxamples in the training
set (here, the number of metastatic patients) that satisfgdhnidition (denoted generally as
“pc’), the second number indicates the number of negative examples rfbarenetastatic
patients that satisfy this condition (denoted generally d$, “and the third number is the
conditionconfidencedefined as p/( px + nc ), and expressed as a percentage.

The numbers in the second triple represent the same quantities Qustnfar the given

condition, but for the logical conjunction of the given condition and all ghevious

conditions in the rule’s premise. Thus, in the first condition of ealeh both triples are
always identical, because there are no previous conditions becasigbeitfirst condition.

However, the subsequent conditions in the premise will usually contiémedt triples,

because they refer now to the numbers of cases (here, patiettsatisfy both the given
condition and all the previous ones.

The five numbers at the end of each rule denote respectivelyottienimber of positive
examples (here, patients with metastatic tumors) covered hylthé¢#positives or, briefly,

p), the total number of negative examples covered (#negatives oly,brjetthe number of
positive examples covered only by this rule and no other rule (#unigbeefby, u),and the
ruleQuaLiTy andcompLEXITY, as defined before. Note that when p and u parameters of a rule
are very small, this indicates that the example covered by this ruleigleer and may be an
error. If n=0, the rule is fully consistent with all the training data.

To illustrate graphically rulesets generated by AQ21, we Haveloped two programs, KV
(“Knowledge Visualiz&y, which represents rules in @eneralized Logic DiagraniGLD),

and CAG (Concept Association Graphwhich represents them as a labeled graph with
varying thicknesses of the links.

A GLD is a planar representation of a multi-dimensional spacenspaover discrete
attributes. For example, Figure 3 presents a GLD for amicestspace spanned over three
attributes, representing discretized values of expressionsne$ggl611, g1036, g1783, and
g914 (the domains of these attributes have been discretized into22,aBd 2 ranges,
respectively).
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Cells marked by “+” and “-” represent examples ofetastatic and non-metastatic cancers, respectively.

Figure 3:A general logic diagram visualizing training data and
discovered rules for diagnosing metastatic tumors.

Each cell of the diagram represents a combination of values <& thar attributes. Cells
marked by a “+” represent metastatic patients, and those dhaska “-” represent non-

metastatic patients. A small number next to a symbol “+‘oin“a cell denotes the number
of patients with metastatic and non-metastatic patients, resggctvhose discretized gene
expressions are represented by this cell. For examplegethdedined by: g1611 = 1 &

01036 =2 & g1783 = 1 & g914 = 1 represents 14 metastatic patient&gure 3, the first

rule from Figure 2 is visualized as R1, and the second as R2. Asprsee, a GLD displays
both examples and rules in a simple, easy to understand form. Thataason method is,

however, limited to cases in which the variables spanning the disageadiscrete and their
number is relatively small.

To visualize more complex cases, we developed an alternative methioti, employs a
concept association graphin such a graph, nodes represent attributes or attribute-value
pairs, links represent rule conditions, and collections of links connegtad hrc represent
attributional rules. The top node represents a ruleset for the outguitatvalue indicated in

the node. The thicknesses of the links represent a requested meakereafdition or rule
importance. Depending on the parameter setting, the program califfesent importance
measures, such asnfidenceg(p /(p + n)) or support(p), where p and n are the numbers of
positive and negative examples, respectively, covered by the condition or rule.

For example, Figure 4 presents a concept association graph weptliz discovered ruleset
for medulloblastoma. The lowest nodes represent input attributesgnaedations on the
links connecting them to rectangular nodes marked “Rule 1" and “Rulee@®esent

conditions on the individual attributes.
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Figure 4: A CAG visualizing discovered rules for recognizing metastatic tumors.

The thickness of each link in this graph is proportional to the confideicéghe
corresponding condition or rule, thus this is not an ordinary labeled,dvapla graph that
conveys information also through the thickness of the links and the arshescting the
links. The pairs of numbers (p,n) associated with the links, or inside the nodes dend¢ed “R
1” and “Rule 2", indicate the number of positive and negative examplsgeatevely,
covered by the corresponding condition or rule. For example, th€lga@) inside of the
node marked “Rule 1" and the pair (6,0) inside of the node marked Rutelicate that
these rules cover 16 positive and 0 negative examples, and 6 positive reghtive
examples, respectively. Both rules have thus confidence p/(p+anélhe links to the top
node (metastatic =M1) are maximally thick.

Comments on the results

Let us briefly comment on the example of the hypothesis (tilesEigure 2, discovered by
AQZ21 for recognizing metastatic patients in a gene array. rdieset involves only 4 genes
out of 2059 genes. When the experiment was performed using 5-foldvatinkgiorf, the
predictive accuracy was about 95%. (There was only one misdiagnesmsud® there was
one example in the data that looked like an outlier with respedh¢o examples of the same
class of patients; therefore, one cannot exclude the possibdityittmight have been an
example erroneously classified in the data).

2 In 5-fold validation, the complete dataset for ealass is split into 5 roughly equal groups. Apesment is
repeated for each set of 4 groups serving as m@irigaset, and the remaining 1 group serving asdbing set.
The output predicative accuracy is the averageheffredictive accuracies from each combinationhef t
training and testing sets.



The two-rule ruleset is surprisingly simple and easy to undersespite having a very
limited number of training examples to learn from and large numbattributes spanning
the original search space, the ruleset discovered by theahatduction method achieved
high predictive accuracy (95%).

These results from natural induction are in contrast with the neatalleveloped for the
same task, which was described in (MacDonald et al., 2001). Themlnnet requires
measuring 80 genes (attributes), rather than 4, and its repoeidtiye accuracy is about
72%, lower by 23% than that of AQ21 rules. In addition, the neural reethack box”
solution that is difficult to interpret and understand, while than&parent box” ruleset
obtained by natural induction can be easily interpreted, and exeawen without a
computer. Further research is needed, however, to test the ruleeolity natural induction
on more medical data, and to have them evaluated by medulloblastomis &ebere they
could be accepted as a valid medical discovery.

3 AN EXAMPLE OF APPLICATION TO MEDICINE

This work applied natural induction to a problem of determining reldtipasbetween
lifestyles and diseases of non-smoking males, aged 50-65. The stptbyesna database
from the American Cancer Society that contained 73,553 recom@sménses of patients to
guestions regarding their lifestyles and diseases. Each patisndescribed in terms of 32
attributes: 7 lifestyle attributes (2 Boolean, 2 numeric, and 3 rankl) 25 Boolean attributes
representing diseases.

The natural induction program AQ19 (a predecessor of AQ21) wasedpiali discover
patterns (that is, tendencies, rather than unbreakable rulesctehiing the relationships
between the lifestyles and 25 diseases, and possible relationshigerdahe diseases.
Among the many discovered patterns, a typical example is shown in Figure 5.

[Arthritis = Present]
<= [HBP=presen#32, 176} &
[Rotundity>=low:1070, 557§ &
[Education<=college_grad40, 452% &
[YinN > 0:1109, 591{ p =325, n = 1156P = 1171, N = 6240
where
HBP stands for High Blood Pressure
Rotundity is a discretized ratio of the patient’s weight to his height
YinN_denotes the years the patient lived in the same neighborhood
The two numbers listed within each condition after the cdiemote pand n, that is, the
number of positive and negative examples in the training setemby®/ that condition,
respectively
p and n, are the number of positive and negative examples in tliagrag¢t covered by the
rule, respectively.
P and N are the number of positive and negative examples irathing data for that class (here,
Arthritis), respectively.

NOTE: This rule was obtained by an earlier versiminthe program that did not output all the
annotation parameters that were discussed in theéufieblastoma application.

Figure 5: A pattern for Arthritis discovered in the medical database.

10



The pattern in Figure 5 defines a set of conditions under whidenpathad arthritis
relatively frequently, which include the presence of high blood pressigher than low
“rotundity”, no education beyond college, and staying in current neftgbbd at least one
year. In the training data, about 16% of the patients had arthrifB+®)), but among
patients satisfying the pattern, the percentage grows to 22% (p/(p+n), thatlikelihood of
them having arthritis increases by 37%. The most significanorfan this pattern is high
blood pressure, which by itself has confidence of about 2Q<€p.).

Discovered patterns were visualized using concept association .gré&pte such graph is
presented in Figure 6. It was automatically generated ffemdiscovered patterns using
computer program, CAG, designed for graphically representindpudtomal rules. In this
graph, a link’s thickness reflects the condition coverage (p), and the link’'s anmgtat—, v,
or M) indicates the type of the relationship between condition andaquoerse Specifically,
“+” represents a positive monotonic relationship (highalues of the condition attribute
indicate higher values of the consequent attribute),”-” represemsgative relationship
(lower values of the condition attribute indicate higher valueth@fconsequent attribute),
and “v” and “*” indicate that extreme values of the attribute m@idigher or lower values
of the consequent attribute, respectively.

Colen Pelyps Rectal Polyps @

Pattern1
soe® ‘l-t’ [t
A
+ +

Hay Fever

The thickness of links is proportional to conditmmrule coverage.

Figure 6: Concept Association Graph representing seven patterns in the medical database

While no claim is made as to the practical usefulness of 8pssfic obtained results, they
indicate, however, that the developed methodology is potentially capallesamivering
important patterns in the data and representing them in an understan@ahleither as
qualitative relationships or in graphical forms.

11



4 AN EXAMPLE OF APPLICATION TO AGRICULTURE

This section illustrates a form of natural induction that genemteibutional rule-treg
rather then ruleset representations of concepts. An attributiopareel is a combination of
a tree structure and a ruleset structure. It was developed simiple representation of
classifiers that classify entities into many relatecss#s. It is intended for situations in
which a flat ruleset or a decision tree might not be easy tdathefollow, but a rule-tree
might represent related concepts in a more understandable way.

In this application, the task was to learn a classifier for diagnosinmgasecommon soybean
diseases (15 diseases) from a database describing diseaséndasms of 35 multi-valued
attributes. The training data consisted of 266 cases provided by andexpart. Figure 7

presents a rule-tree and an equivalent ruleset learned for the fifteenrsdigseses.

m Learning with ART Learning without ART
LRBRL-SLT, none leaf-mildew, int-discolor
ahsent, brown

Sovbean Disease Classifier

charcoaFrot «-+—] i1

Prown-stem-rot «+— ] 1,1

powderny-mifdewr +— ] i

Soybean Disease Subclassifier dowrns~mifdeswr -— ] i, &

diaporthe-stem-canker+—_]1, & diaporife-stepr-cank +— 11, 6

yroctornia-root-rot «+— ] 1,2 myzoctonia-root-rot «— 1 1,5

phytophifora-rot €+— ] 16 piytophifora-rot 4+—{] i, 5
brown-spote—{ ] 5, 32 brown-spot <+—_] 5, 3

bacterial-biigit 4+—{ ] 1, bacteriar-biigit +— ] i, 4

bacterial-pusoiie 4— | 2,2 bacteraFpusbe <+ ] 22

purpfe-seed-star «+— ] 1,5 peaple-sead-siain <— ] i, 6
anihracnose-+— | 3, it anihracnose 4+—] 3, 13
pindlostictafeafspot -+ 3, 12 pindlosticta-leaFspot 4+—{ 13, 13
afternariafeal-spot 4—] 4, 78 afternarialeafspot +—{_1 & 64
frog-eyedeakspot+— | 0, 78 frog-eyeteafspot +— 1 {0 &7
Total: 39, 236 Total: g0, MG

In the pais of numbears gbave, the fest is te pumbear oF fwles, and the second 1t the total number of conditions.

Figure 7: Complexity comparison of rule trees and rulesets in the soybean domain.

The classifier in the form of a rule-tree was learned byAR& program based on the
method introduced in (Michalski, 2002). ART works in two steps: the $itp seeks

partitioning attributeswhose combination of values split given decision classes intoetiffe
groups, and the second step applies an AQ learning programQiRé £ attributional learn

rules distinguishing classes within groups obtained in the first step.

For the soybean disease diagnosis problem, ART found two partitiorimgutass, leaf-
mildew and internal discoloration, that were assigned to the root abdee rule-tree.
Different combinations of their values split the fifteen classés five logically disjoint
subsets. Four of these subsets correspond to single diseases: puod®my downy-
mildew, charcoal-rot and brown-stem-rot, and the fifth one correspoesnetiiseases. For
each of the eleven diseases, the program learned a rulstsegudshing it from the other
ones. As one can see in Figure 7, the rule-tree representatitime(taft-hand side of the
figure) appears simpler and easier to understand than the equivalent fittnrepessentation
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(on the right-hand side). Because AQ was applied to a smalldranwhclasses, the overall
learning time of the rule-tree was shorter than the learning time datheléset.

5 AN EXAMPLE OF APPLICATION TO VOLCANOLOGY

This application was developed in collaboration with the Smithsoniantutiat in
Washington, D.C. Given a database with records of volcanic eruptionsheveast 10,000
years provided by the Institution, the AQ21 learning system sougkeérmatin those
eruptions. The data consisted of approximately 20,000 records charagtendividual
cases of eruptions. Each case was described by 78 attributiEiecént types: binary,
discrete, continuous, and structured (the domains of the structurbdtatirare hierarchies).
A selection of these attributes used in this study is shown in Table 1.

Table 1: A selection attributes used in the Volcano Database.

Name Type Description
Subregion Structured Part of the world in which the volcaluz#ed
Latx, Longx Continuous  Latitude and longitude of the volcano
Upper Discrete Elevation of the peak (meters)
Upperl Discrete Height of the volcano (meters)
Type Structured Type of volcano
TC Structured Tectonic setting of the volcano

_MapStatus2. ___________] Discrete______| Indicates _haw._long since last erupt dovgee recent).
Year, Stop_year Discrete Years of eruption start and end, ligsphect
Radial_fissure Binary Whether there was a radial fissugion
Regional_fissure Binary Whether there was a regional fissuptien
Island_forming Binary Whether the eruption resulted in the creatian island
Subglacial Binary Whether there was a subglacial eruption
Crater_lake_erupt Binary Whether there was a crater |alkdian
Explosive Binary Whether the eruption was explosive in nature
Pyroclastic Binary Whether the eruption included pyroclastie iadg
Lava_lake Binary Whether a lava lake was formed
Damage Binary Whether there was damage to human structures
Lahars Structured Whether lahars were formed
Tsunami Binary Whether the eruption resulted in a tsunami
Evacuation Binary Whether there were evacuations

NOTE: Attributes above the dashed line describe the volcano, and those below it
describe individual eruptions.

In the experiment described here, the goal was to determesefaunldifferentiating eruptions
in which fatalities were known to have occurred from eruptions witlf@uadities. The
training set consisted of 50% of the cases of both types of erupgiotemly selected from
the database; the remaining cases constituted the testingigate 8 presents examples of
rules learned for the two classes of eruptions.
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[Fatalities = present]
<= [Radial_fissure=presemz,773 &
[Tsunami=present1,29 &
[Latx<=33.99:343,5782 &
[Stop_year<=188948,934: p=13, n=0,QUALITY =0.7

[Fatalities = absent]
<= [Pyroclasticzabsent244, 22]: p=8244,n=221QUALITY =0.4

Figure 8: Examples of discovered rules in the volcano database.

The first rule says that fatalities occurred in thirteeresas eruptions with a radial fissure in
which a tsunami occurred, and that the eruptions occurred south of 34 dexgtbdatitude,
and ended prior to 1889. There were no exceptions to this rule. Timelsat®is a strong
pattern that states that in 8244 out of 8472 documented cases, a noagbgraiption
resulted in no fatalities. There were 221 exceptions to this pattern.

In all experiments, predictive accuracy of the discovered mwissgreater than 90% on the
testing dataset. One surprising result was that patternirsetdich inconsistency was
permitted had a comparable predictive accuracy on the testingssette complete and
consistent rulesets, even though they were much simpler (involvetdvi@r rules and
conditions). The generated rulesets were understandable andoeasgrpret by the
collaborating scientists from the Smithsonian Institution. Thasufe made it possible for
them to adjust the rules that contained spurious conditions, and to intipeoreges to reflect
their expert knowledge (Kaufman and Michalski, 2006).

6 AN EXAMPLE OF APPLICATION TO DEMOGRAPHICS

These experiments sought to discover unknown patterns or anomalies aset dascribing
190 countries in the CIA’'s World Factbook. Attributes describing castmcluded
population growth rate, birth rate, death rate, net migration ratéit\ferate, infant mortality
rate, literacy, life expectancy, and predominant religion.

This experiment involved conductinggaand tour in which each attribute in the dataset is
sequentially treated as an output (dependent) attribute, whilerttaenieg ones are treated
as input (independent) attributes. One example of a rule learried grand tour is a rule
characterizing 25 of the 55 countries with low (<1%) population growth:

[PopGrRate < 1%]

<= [BirthRate = 10..20 or 50..606, 24 &
[FertRate = 1..2 or >B2, 11 &
[Religion is Protestant or Catholic or Orthodox or Shing33 &
[NetMigRate < +1054, 123: p=25, n=0

This rule exposed an interesting anomaly. In its first conditi@retis a range of birth rates
from 50 to 60, which is rather high for cases with low population tirowooking at the 25
countries that satisfied this rule, 24 had birth rates less thagual to 20. Only one,
Malawi, had a birth rate above 50. Investigating Malawi agalrestrést of the countries
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quickly revealed the reason for this surprising finding: the countdy dra outward net
migration rate dwarfing those of all other countries in the world.

7 AN EXAMPLE OF APPLICATION TO INTRUSION DETECTION

The goal of these experiments was to discover patterns thactdr&e legitimate activities
of computer users in order to detect computer intrusion or misuse. aSuuse may be
indicated when a purported user strongly violates the patterns tenemiag his or her
computer use. For this task, we developed a new methodology, called_ebr8ifg User
Signatures), that employs natural induction to derive models o$'usehavior from the
temporal datastreams characterizing their interaction withpciters (Michalski et al. 2005;
2006).

The LUS methodology has several embodiments, depending on the typr afadel is to
be learned. Among the models we have explored are Multistate Templathsti®n-based,
Rule-Bayesian, and Activity-based models. Here we presentybrieflults using the
multistate template model, which generates flexible terplttat can concisely describe a
large number of different user activities.

The learning of user models is a multi-step process that t®o$iextracting events from the
system’s process table, determining the most relevant agsilautd the most relevant events
in the training target dataset for each user, and applyingranganethod, or a combination
of learning methods under appropriate parameter settings to this dataset.

The methodology strives to develop user models that can be modified madnualuman
experts, and are able to reliably detect illegitimate usea\ber from user data streams that
are as short as possible. LUS strives to emulate sevgraitant aspects of human learning
and recognition processes:

» Idiosyncracy: It searches for patterns that are most ckasditt of a given user, so
that recognition is possible from short episodes that contain such features.

« Satisfiability: If, at some point the observed behavior stromghiches one user
model, and only weakly matches other models, the observation of the datx
stream stops, and a decision is reported.

* Understandability: It strives for creating user models thateasy to interpret and
understand by humans.

* Incrementability: User models can be updated incrementally tower without re-
learning them from scratch.

The raw data stream (from the NJIT archive) comprised thete of data consisting of
records extracted from process tables. Each set containedseéd282 sessions from 26
users. From the available data, we selected the 10 users thttehhdhest number of
recorded sessions, and then extracted the first 10 sessicmshadfethese users for training,
and the following 5 for testing.

The basic construct for learning multistate templates i th&-gram or multigram which
is a generalization of the well-known concept ofnagram. A multigram is an x k matrix,
consisting ofk attributes whose values are recordech atonsecutive time instances. A
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multigram is a useful device for characterizing processes evbtaes at different time
instances need to be described not by one, but by several attributes.

Figure 9 shows a multistate template learned from mattigr withn set to 4. 4000 training
multigrams represented User4’s activities, and 25143 representedahother users. The
first condition in the template says that the hour in the thirdipositf the multigram (the

second most recent, since the last position is the most receritpenbstween 11 and 14,
i.e., that part of the activity took place between the 11 AM and Zh&Ms. That condition

alone was satisfied by 3393 User4 multigrams and by 9171 of all udkes. The second
condition sets values on the process name at all four time positiadhe multigram, and

other conditions are interpreted similarly. It says, for exantpsd, at the first time instance
of the multigram the process name was netscape, outlook or winworall, this template

was satisfied by 2419 multigrams of User4’s activity, and none of other users.

[User = user4]
<=[hour=<<11..14:3393,9171 (3) >>] &

[process_name = < netscape,outlook,winwa@eba,18376
csrss,netscape,outlook,winworb09,18413
csrss,netscape,outlook,winworbo9,18397
csrss,netscape,outlook,winworb09,18379> | &

[event_status = < ¢,m997,22090C,0 :3997,22113C,0 :3997,22123* > ] &

[proc_cpu_time_in_win_If = < 0.3466..4.049611,12784*; *; It_3.916 :3994,20119> | &

[win_time_elapsed_If = << gt _3.338251,137131) >>] &

[delta_time _new_window = << It_1803985,214451) >>] &

[delta_time_new_window_If = <<It_7.748987,215184) >> ] &

[new_win_time_elapsed = <<300..1800®54,167194)>>] &

[prot_words_chars = << It_2®980,179391) >>] &

[proc_count_in_win_If = << gt_4.0633060,7992(1) >>] &

[win_opened_|If = <<1.498..2.636600,13531(4) >> |

p =2419,n =0, P = 4000, N = 25173

Figure 9: A multistate template characterizing User4’s activity.

During the course of this research, we tried many experimattisnvany different sets of

parameters. In general, we used AQ21 to learn rules from wdngblates were formed, and
then the EPIC program to test and classify. EPIC is an epitaxtgfier; rather than classify
individual events, it looks at the episode (a temporal sequencealty@ user session) as a
whole, and sees which model best matches the entire episode.

Figure 10 shows the predictive accuracy of user models whenveéreymatched against the
testing data streams of the users (by “First Choice Gbiremeant the percentage of cases
in which the degree of match between the testing data streatheaodrrect user model was
the highest among all models).

User1 User? User3d Userd UserbS User? Userf User12 User1d User2h
First Ch.

Correct | 100% 100%  B7% 80% 100% 80% 40% 100%  B0%  100%

Figure 10: First choice predictive accuracy of the user models.
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Overall, 75% of the test episodes were correctly classifi&P#S’s first choice. Whenever
that was a reasonable similarity between training and ¢estita, the test episode was
correctly classified. Of course, if no such similarity exisio classifier will do well. Figure
11 presents a graphical representation how five of User25’s tespiisgdes performed
against the ten user models. The target model (User25) appddaskiron the bar graphs.
As one can see, the best match always indicates the correct user.

Testing Sessions for User 25

Discretization : Dis-3 Filtering: Sign.-based, rank-threshold = 10
Evaluation of Conjunction = strict  Evaluation of Disjunctions = max

3 it} il

Episodel195 Episodel1l196 Episodel1197 Episodel1198 Episode1199

Figure 11: Classification of User25 test episodes.

Although these experiments have explored only a very small subsgagmssible
experiments on learning and testing of the developed user modedthgads, they show that
the presented method can lead to an effective system for useringodet intrusion
detection under the following conditions:

» Sufficient training data for each user is available

* The target training data set for each user is appropriately determined

* The user’s future behavior is “reasonably” similar to that exin the training data
stream.

Details on this research are described in (Michalski et al. 2005).

8 AN EXAMPLE OF APPLICATION TO COMPLEX FUNCTION
OPTIMIZATION

This section describes how natural induction was applied to guide evalrtioptimization

of complex functions. The idea of guiding evolutionary optimization byhmaclearning

has been embodied in Learnable Evolution Model (LEM), invented by Michalski; U.S. patent
No 6,518988. The introductory paper on LEM (Michalski, 2000) is downloadable from
www.mli.gmu.edu
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The novel idea in LEM is to apply machine learning at each sihgwolution to create
hypotheses indicating subspaces of the search space thalikelystontain the desirable
solution. Instead of relying on blind operators of random mutations areombinations,
LEM applies hypothesis formation and instantiation operators, and thastates a form of
non-Darwinian evolutionary computation.

The newest implementation of LEM, called LEM3, employs AQ21 nhatunduction
program for learning hypotheses, and was successfully applied to zgitoni of functions

with the number of arguments (variables) ranging between 2 800.1 In all our
experiments on function optimization, LEM3 outperformed (sometimesarbyorder of
magnitude or moregverytested method of conventional evolutionary computation in terms
of the evolution length measured by the number fitness function evaluations needed to
achieve the same result (Wojtusiak and Michalski, 2006).

A particularly significant result of these experiments wWad the LEM3’'s advantage over
compared other evolutionary computation methods in terms of evolution Igreythwith
the number of variables. This implies that LEM3 may be partiguladvantageous for
optimizing very complex functions.

A typical example of LEM3 performance is shown below, in which BENas compared to
EA, a standard evolutionary computation method, on the problem of omtiniz Rastrigin
function of 500 variables. The Rastrigin function is defined by the equation:
f(Xpo X,) =105 0+ 3 (x,% =10 * cos( 2 * 77 *x,))
i=1

The two dimensional case of the Rastrigin function (n=2) is illustrated on Figure 12.
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Figure 12 The Rastrigin function of 2 variables (from Wojtusiak and Michalski, 2005).
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Figure 13 shows the performance of EA and LEM3. As one can sedsriesol EA and
LEM3 were converging very fast toward the optimum (the value &D'the very beginning
of the evolutionary computation. After this early phase, however, BAedtto converge
very slowly, while LEM3 continued to converge relatively fast. LEMached thé=0.1-
close solutioh after 5252 fitness function evaluations while EA reached the safaton
after 128,184 evaluations (an average of 10 runs). The evolutionary spéadtid3 over
EA for 6=0.1 was thus about 24.

10000

Function : Rastrigin

EA LEM3 Nunber of variables : 500

8000 i LEM3 —_— EA H

speed-up(LEM3/EA, 6=0.1)=24 Each line represents average of 10

runs with different starting popultions.
6000

LEM3: FE(5=0.01)=16,195
- LEM3: FE(5=0.1)=5252

4000
EA: FE(5=0.1)=128,184

The value of Rastrigin function

2000

O = 0.1 QB eeeeeeeeeesdlonnneeceeenecssnnnnssccccccsssssnnnssscccccssnnnnes Yy Laad™ IO
Senmthar

0 20000 40000 60000 80000 100000 120000 140000

The number of fithess evaluations

Figure 13 The LEM3 and EA evolutionary computation in minimizing
the Rastrigin function of 500 variables (from Wojtusiak and Michalski, 2005).

For a detailed description of these experiments, see (Wojtusiak and Michalski, 2005; 2006)

9 AN EXAMPLE OF APPLICATION TO COMPLEX SYSTEM OPTIMIZATION

This example concerns the application of learnable evolution to theipgtion of designs
of heat exchangers used in refrigerators and air conditionersatAexehanger is a complex
arrangement of tubes carrying a refrigerant (Figure 14). The optiorizask is to configure
the connection of tubes in a way that maximizes capacity of the dxehanger for the
technical parameters of the exchanger, such as number and configuration,cndlies the
given environmental conditions.

This is a very complex, but practically very important optiriaraproblem. Because of the
ubiquity of heat exchangers, even a small improvement in theicicapaay lead to huge
economic and environmental benefits. For this optimization task, wdogedea task-
specific system, ISHED, that conducts optimization through evolutiooangputation
performed according to Learnable Evolution Model (LEM; Michalski, 2000).

3 A §-close solution is a distance between the solugiod the optimal solution normalized by the valuetef fitness
function for the best individual in the initial polation.
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As mentioned earlier, LEM is a form of evolutionary computation inctvithe process of
creating new individuals (here, designs) is guided by hypothesesedr by a learning
system. These hypotheses indicate the types of changes irestgngd that will likely
improve them.
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Figure 14: An example of a heat exchanger.

This work has been conducted in collaboration with the National IrstfuStandards and
Technology (NIST). In experiments conducted by NIST, the ISHEDem has generated
designs that matched or outperformed the best human designs (Donmahsk@04). NIST
is now trying to popularize ISHED among commercial companies.

10 AN EXAMPLE OF APPLICATION TO MANUFACTURING

The goal of these experiments was to assist a manufactutesigning gearboxes meeting
customer specifications. The customers provide specificatioiseofearbox they need,
which may include the size, mount, motor, flange, variable speed geaeratio, and model
number. Given such a specification, the manufacturer must eattteup the components of
that gearbox or, if no gearbox with those specifications has previtesly developed,
determine the components needed to build the requested gearbox (e.g.shelfiickvhich
flange, which lubricant). This research developed an inductively lkaule base that
provides assistance in this regard. It was conducted in collaboration with GemzH & Co
KG, Germany.

Figure 15 shows examples of rules for selecting the Schnekenwelrm shaft) learned by
AQ learning system (AQ19). For instance, the first rule $aysse part number 00650943
for the worm shaft when the requested gear ratio is 5 and the modbkr is 104, 105, 113
or 145. Other rules are interpreted similarly.
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[Schneckenwelle = 00650943] <= [Ratio = 5]
00650944] <= [Ratio=7]
00650945 <= [Ratio = 10]
0065094¢ <= [Ratio =13]
00650947 <= [Ratio = 15]
00650948] <= [Ratio = 20]
00650949 <= [Ratio = 26]
00652155 <= [Ratio =5]
00652156 <= [Ratio=7]
00652157 <= [Ratio = 10]
00652158 <= [Ratio =13]
00652159 <= [Ratio = 15]
00652160 <= [Ratio = 20]
00652161] <= [Ratio = 26]
00652143 <= [Ratio =5]
00652144 <= [Ratio=7]
00652145 <= [Ratio = 10]
00652149 <= [Ratio = 13]
00652147 <= [Ratio = 15]
00652148] <= [Ratio = 20]
00652149] <= [Ratio = 26]

Figure 15: Examples of discovered rules for assigning the co8elbhekenwelle
(worm shaft) when given the gear ratio and model number or motor size.

[Model=104,105,113,145]
[Model=104,105,113,145]
[Model=104,105,113,145]
[Model=104,105,113,145]
[Model=104,105,113,145]
[Model=104,105,113,145]
[Model=104,105,113,145]
[motor size = 80]
[motor size = 80]
[motor size = 80]
[motor size = 80]
[motor size = 80]
[motor size = 80]
[motor size = 80]
[motor size = 90]
[motor size = 90]
[motor size = 90]
[motor size = 90]
[motor size = 90]
[motor size = 90]
[motor size = 90]

Ro Ro R0 Qo R0 R0 R0 Ro RO RO RO Ro RO RO RO Ro RO RO RO Ro Ro

Some of the discovered rules, such as those in Figure 15, weghtétravard. For the
requested size or gear ratio, certain parts were dictated. Other ridesiare complex.

The rules learned by the program provided insights into the relatioresipsonstraints of
the gearbox manufacturing domain, and even exposed some errors in ttreadbtd been
provided. The learned classifier (a family of rulesets fored#ifit components) was able to
select components with guaranteed 100% accuracy. Such high accuracy wds pesause
the data from which the classifier learned the rules includddalvn cases, and the natural
induction program was run in thieeory formation modéhat generates descriptions that are
fully complete and consistent with all the training data. Thssiltevas highly satisfactory
for the Lenze company, not only because of the 100% accuracy roii¢sebut also because
they were so easy to interpret.

11 AN EXAMPLE OF APPLICATION TO CIVIL ENGINEERING

The research described in this section was conducted by $tmot€asperkiewicz and his
team at the Institute of Fundamental Technological ResearcBhPadademy of Sciences,
in collaboration with the Machine Learning and Inference Laboratory.

One of the problems to which they applied our natural induction technolag to discover
rules for distinguishing between different types of concrete, warehdetermined by the
additives used in it. In the experiments described here, the gedbvidentify concrete with
silica fume as an additive. Results of the analysis weretasestertain that silica fume was
used as an additive as claimed.
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The data was collected using acoustic emission sensors, and pssptbosing a wavelet
transformation to obtain 10 input attributes: the nominal attributes&Claith the domain

{Cement Paste, Interface region, Aggregate, Void}, and nine numéricuées such as the
number of cases measured (Lzd), average energies (Sen), argkaanaitudes (Saz) in
three energy bands (H, M, L), and other. A decision attributemigosition,” has the three-
valued domain {silica, no additives, pfa}. The training dataset codsift®&00 examples,

with 302 examples in which silica was present, and the rest in which silicaotvpsesent.

Here is one of the strong patterns discovered by the AQ legonggam (version AQ19) in
this dataset:
[Composition=silica] <= [1zdM=23..233.5] & [SazM<28]

stating that concrete with silica as an additive is indicdtéaei number of events medium
level (LzdM) is between 23 and 233.5, and the average amplitude of mexliehsignals
(SazM) is smaller than 28.

This result was determined by the expert to be “more suitédraise than the one obtained
by the well-known and widely used commercial learning prograsb SEasperkiewicz,
2005). Professor Kasperkiewicz and his research team have alsedagli AQ natural
induction method to several other civil engineering problems (e.g., Kaspeki@o@3).

12 AN EXAMPLE OF APPLICATION OF CONCEPTUAL CLUSTERING TO
AGRICULTURE

An important question in the research on unsupervised learning is hibwlagsifications
discovered by a learning program correspond to categorizations devddgpexperts. This
problem was investigated by applying conceptual clustering program TERIZ developed
in our laboratory and 18 other numerical taxonomy techniques (implednantee NUMAX
system) to an unclassified version of the soybean disease dataathdhe basis for the
experiments presented in Section 4. The goal of the experimast®wee if the clustering
program would re-create a classification of four selected dise&aporthe stem canker
(denoted D1), Charcoal rot (D2), Rhizoctonia root rot (D3), or Phytophtorédd4) on the
basis on examples of these diseases without telling the progtaoh disease these
examples represent. The experiment used 47 cases of the abages]iskescribed by 35
mutli-valued attributes.

Only 4 of the 18 taxonomies created by the NUMAX program heatexactly the correct
classification. None of the techniques used by the program prbady description of the
created classes.

CLUSTER/2 reconstructed the classification of the diseas#®owti a single error, and
provided descriptions of individual classes. For example, Figure 16(a)s shewlescription
of the cluster generated by CLUSTER/2 that corresponds to D1.eFigo) shows a plant
pathologist’s description of the symptoms of D1, which is calleéxperts Diaporthe stem
canker.

As one can see from Figures 16 (a) and (b), the program-genersteghtiten for cluster D1
corresponds well to the expert description. The program’s descriptiotais all the
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symptoms specified by the expert, plus additional conditions that adeled as they were
observed in the input data.

[Precipitation = Above normal] & [Precipitation = Normal or Above] &
[Temperature = Normal] & [Temperature = Normal or Above] &
[Stem Cankers = Above 2nd node] & [Stem Cankers = Above 2nd node] &
[Canker Lesion Color = Brown or N/A] & [Canker Lesion Color = Brown] &

[Fruiting Bodies = Present] & [Fruiting Bodies = Present] &
[Condition of Fruit Pods = Normal] & [Condition of Fruit Pods = Normal] &
[Time of Occurrence = Jul-Oct] & [Time of occurrence = Aug-Sep]

[Damaged Area = Scattered or Low] &
[Severity = Potential or Severe] &
[Seed Treatment = None or Fungicide] &
[Plant Height = Abnormal] &

[Condition of Leaves = Abnormal] &
[Leaf Spots = Absent] &
[Shotholing/Shreading = Absent] &
[Leaf Malformation = Absent] &

[Leaf Mildew Growth = Absent] &
[Condition of Seed = Normal] &
[Condition of Stem = Abnormal] &
[Extern. Stem Decay = Firm and Dry] &
[Mycelium on Stem = Absent] &

[Int. Discolor of Stem = None] &
[Sclerotia int. or ext. = Absent] &
[Condition of Roots = Normal] &

[Plant stand = Normal]

(a) A CLUSTER/2-generated description (b) An expert-provided description
Figure 16: Two descriptions of Diaporthe stem canker in soybeans.

This is a very satisfactory result, because it shows thatotheeptual clustering program not
only reconstructed correctly experts’ classification of tteeases on the basis of a limited
sample of data, but also created descriptions of diseases tohtwdittheir expert-provided
characterizations. For more details on this research and on cohcdpstering, consult
(Michalski and Stepp, 1983a,b; Seeman and Michalski, 2006).

13 AN EXAMPLE OF APPLICATION TO MUSICOLOGY

This section describes an application of conceptual clusteridgtermining a classification
of Spanish songs. The dataset, provided by musicologist Pablo Poveda (P®&@)a
consists of descriptions of 100 Spanish songs in terms of 22 attriltartess age binary, some
multi-valued, and some continuous. The clustering evaluation criteriomovge®k clusters
whose description had minimusparsenesqdefined as the ratio of the number of examples
covered the description and the number of all possible examplesothldt satisify this
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description). The taxonomy automatically generated by the concepigtdring program is
shown in Figure 17.

Monophonic| Polyphonic

Low | High Low | High
Rubato | Rubato Embellishment | Embellishment
0-3 | 4-5 0-1|2-4
Low | High .
Tonal Tognal Low No. | High No.
Range | Range of Tones | of Tones
47 | 811 57| 810
Low | High
. Melisma | Melisma
Secular |Religious 0-1]2-3
. Low | High
Instruments? Same |Mixed Tonal | Tonal
Sex |Sexes Rang Range
No| Yes (SingerS) 5-6 7-11
al a2 a3 a4 a5 a6 a7 a8 a9 al0 all
No. of
Songs: 8 9 5 12 17 10 10 7 6 5 15

Figure 17: A classification hierarchy of Spanish folk songs produced by conceptual
clustering (figure reproduced from Michalski and Stepp, 1983a).

At the top level, the songs are divided into monophonic and polyphonic harnrocicies.
The monophonic songs are then divided into those with low or high degragsato, while
the polyphonic ones are subdivided according to their degrees of isimipelht. The full
taxonomy divides the songs into a total of 11 classes, each cogp@stbetween 5 and 17
songs, as indicated by numbers associated with the leaves of thechye By tracing
branches from the root to the leaves, one can create a descriptdassés of songs
associated with different leaves.

This result was highly evaluated by the musicologist, becauserégsponds well to his own
sense as to how best to classify the songs. He was patiicpleased by the fact that he
could see an understandable description of each class of songs gebgtie program, in
contrast to the taxonomy he had obtained using a conventional, syviasied clustering
program that did not provide such descriptions.

14 AN EXAMPLE OF APPLICATION TO TAX FRAUD DETECTION

In these experiments, done by our student Scott Fischthal at Lockiea@in Corporation,
conceptual clustering and natural induction were combined to deveéspfounldetecting tax
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fraud. In this approach, data (tax returns) were grouped by a corlcgpstering program,
and then supervised learning was applied to examples of known fraud hingreap, in
order to generate simple rules distinguishing regular and fraudaberiorms within each

group. These rules were finally applied to new tax returns. ré&id8 depicts this
methodology.

Claims Data
¥
Select High Leverage Field

Cunceptua
Clustermg

Figure 18: Clustering and rule learning for tax fraud detection
(the diagram made by Scott Fischthal).

These experiments created different groups of taxpayers, and ahengound a cluster
with a much higher percentage of tax violators than in other clusters (Figure 19).

Conceptual Clustering Results (Tax Forms)

General Flers Violators

. Class 1 D Class 2 . Class 3 . Class 4 - Class &
[ Jciasse [ Jclass7 [ |casss [ classs [} class 10

Tax Retum Classes

Figure 19: Distribution of filers and cases of fraud among the discovered groups
(result by Scott Fischthal).
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The above figure shows that taxpayers with the profile satgsfiiwe description of the
discovered cluster on the right of the figure are much more ltkedpibmit a fraudulent tax
form return than those that do not satisfy that description.

15 COMPARING NATURAL INDUCTION WITH OTHER METHODS ON A
SIMPLE DESIGN PROBLEM

15.1 Problem Definition

In order to help the Reader get a quick insight into the natural inducapabilities of the
AQ21 program and those of some other well-known learning programsjesigned a
simple, easy to understand problem. In this problem, given entiéeteacribed in terms of
the attributes presented in Figure 20.

Attribute Type Domai n

Condi tion di screte {rain, cloudy, sunny}

W nd nom nal {no, yes}

Tenperature discrete {very_low, low, nedium high}
Dayt ype nom nal {wor kday, weekend}

Activity nom nal {Play, Shop, Read}

Figure 20: Attributes, their types, and their domains.

“Activity” is an output attribute that characterizes the attiof a person during a given time
interval, and is assumed to be a function of the remaining (inpulbuds. Suppose that our
task is to discover a general rule characterizing the dependétize activity “Play” on the
input attributes, on the basis of examples that link different desvio the sets of input
attribute values (training examples). Figure 21 presents a &dwggic Diagram spanned
over the input attributes and the examples of three classes P (Play), S (ShopRaad)R (

C W
n R S S
. R s s
ol|R|R P P
P R|P|P[R|S
s s P
e s P P
_:_) ule D|Ie D,LE u||]e

C — Condition, W — Wind, T — Temperature, D — Daytype, r — rain, ¢ — cloudy, s — sunny,
n—no, y — yes, v—very low, | — low m — medium, h — high, o — workday, e — weekend,
P —play, R —read, S - shop

Figure 21: A GLD with 22 examples of different values of the Activity attribute.
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Each cell of the diagram corresponds to one combination of inpliudétrralues (arvenj.
Training examples are represented by placing in the celldirdteletter of the activity
associated with the events the cells represent. Empty méitaie events for which activity
is unknown and will be hypothesized through learning.

15.2 Solutions to the Problem by Different Learning Programs

To the problem described above, we applied the AQ21 program and sofenaveh
programs, specifically, C4.5 (Quinlan, 1993), RIPPER (Cohen, 1995), and CNR &Gthr
Niblett, 1989). The results are as follows.

Figure 22 presents a decision tree and Figure 23 a set of ridesided by C4.5. Both the
decision tree and the rules were partially inconsistent withréiveing data. In the case of
decision rules, the activity “Play” is defined partially expljcand partially implicitly. The
implicit value “Play” is a default decision that is assigndtemw the event to be classified
does not satisfy the conditions stated explicitly.

Condi tion rain: shop (7.0/3.4)

Condi tion cl oudy:

| Tenper ature very low read (2.0/1.0)
| Tenperature low. read (1.0/0.8)

| Tenperature medi um play (3.0/1.1)

| Tenperat ure hi gh: play (3.0/2.8)
Condi tion = sunn
| Tenper ature
| Tenper ature
| Tenper at ure
| Tenper ature

very low shop (2.0/1.0)
l ow. shop (1.0/0.8)

medi um play (1.0/0.8)
hi gh: play (2.0/1.0)

s

Figure 22: A decision tree learned by C4.5.

Condition = cloudy & tenperature = nmedi um
-> class play [63.0%

Condition = sunny & tenperature = high

-> class play [50.0%

Condition = rain

-> class shop [51.2%

Condition = sunny & tenperature = very_| ow
-> class shop [50.0%

Tenperature = very_| ow

-> class read [35.2%

Tenperature = | ow

-> class read [31.4%

Default cl ass: play.

Figure 23: Decision rules derived by C4.5 from the C4.5 decision tree.

The RIPPER program applied to the same dataset determined thenesgented in Figure
24. These rules need to be evaluated sequentially. For exampléenmide the activity
“Play,” it is first necessary to evaluate two rules fotivaty “Read”, and if they are not
satisfied, then “Play” is assigned.

27



read
read
pl ay
pl ay
Play :
def aul

.- Tenperature=very_ |l ow (3/2).

.- Tenperature=low (2/1).

:- Condition=sunny (3/0).

:- Condition=cl oudy, Wnd=no (2/0).

- Condi ti on=cl oudy, Tenper at ur e=nredi um ( 2/ 0)
shop (6/1).

Figure 24: Rules learned by RIPPER.

Decision rules determined by the CN2 program are presented in Bgure

AND
THEN
I F

AND
THEN
I F
THEN
I F
THEN
I F

THEN

Condition = cloudy AND tenperature = medi um
Activity = play [3 0 0]

Condition = sunny AND tenperature = high
Activity = play [2 0 O]

Condi tion = sunny AND tenperature = medi um
Activity = play [1 0 0]

Wnd = no AND tenperature = high AND

Dayt ype =weekend THEN activity =play[1 0 O]
Condition = rain AND tenperature = medi um
Activity = shop [0 3 0]

Condi tion = sunny AND tenmp = very_| ow
Activity = shop [0 2 0]

Condition = rain AND tenperature = high
Activity = shop [0 2 0]

Wnd = no AND tenperature = | ow

Activity = shop [0 1 0]

Condition = cloudy AND wi nd = yes
Tenperature = high AND daytype = weekend
Activity = shop [0 1 O]

Condi tion = cl oudy

Tenperature =very_| ow

Activity = read [0 O 2]

Wnd = yes AND tenperature = | ow

Activity =read [0 O 2]

Condition = rain AND tenperature = very_| ow
Activity = read [0 O 1]

Wnd = yes AND tenperature = high

AND Daytype = wor kday

Activity =read [0 O 1]

(DEFAULT) Activity = shop [7 9 6]

Figure 25: Rules determined by CN2.

The subsequent Figures 26, 27, 28, and 29 present different types ofatres ley AQ21.
Section 14.4 summarizes the predictive accuracy of the descriggoesated by different
programs for the training and testing data sets.

In these experiments, the testing set consisted of all eventarthaepresented by empty
cells in Figure 21 (events with unknown classification). The ptiedi accuracy on the
testing set thus evaluates the quality of generalization performed by #renliforograms.

The presented results from AQ21 were obtained by requesting frdifferent types of
descriptions. When instructed to determine strong patterns for ttratyA¢Play,” AQ21
determined the pattern presented in Figure 26.
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[Activity=pl ay]

<= [Condition=cloudy v sunny: 7,8] &
[ Tenper at ure=nedi umv high: 7,7]:
p=7, n=2, QUALI TY=0. 67

Figure 26: A strong pattern for Activity “Play” determined by AQ21.

The pattern consists of a single attributional rule stating ttietactivity is “Play” if the
weather is cloudy or sunny, and the temperature is medium or Higk. rule covers 7
positive and 2 negative examples, and its quality),qi6 0.67, wherev takes the default
value 0.5 (which requests putting an equal emphasis on completeness au@ncenfi
criteria).

Numbers inside conditions represent positive and negative coveragbhs cbnditions,
considered individually. The pattern is graphically illustrated in Figure 27.

cw
n R s
K R s|s s
[rRR O 0O
’ JROOO
ol s s

e s P |
_[I?u\!re l:l||e ur|nelur||e

C — Condition, W — Wind, T — Temperature, D — Daytype, r — rain, ¢ — cloudy, s — sunny,
n—no, y — yes, v—very low, | — low, m — medium, h — high, o — workday, e — weekend,
P —play, R —read, S - shop

Figure 27: GLD showing the strong pattern discovered by AQ21.

As one can see in Figure 21, two examples included in the patterR (@neé one S) do not
represent “Play” activity. They are exceptions from this simple npatte

AQ21 allows the user to control the tradeoff between completesmesdsconfidence of
patterns by adjusting parameter in the pattern quality measurewq((Michalski and
Kaufman, 2001). When setting tiweparameter to 0.15, AQ21 found two rules presented in
Figure 28 and graphically in Figure 29. The two-rule pattercorssistent with data but
incomplete, because one training example, the (c,h,n,e) examplenais $égure 29, is not
covered by the learned rules.

It may be illustrative to note that by reducivgo O, a complete and consistent ruleset would
be obtained. Such a ruleset could be directly obtained by executing AQZheory
Formation mode (rather than Pattern Discovery mode, used here).
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[Activity= Pl ay]
<= [Condition=cloudy v sunny: 7,8] &
[ Temper at ur e=nedi um 4, 3]:
p=4, n=0, QUALI TY=0. 919

<= [Condition=sunny: 3,3] &
[ Tenperature=nediumv high:7,7]:
p=3, n=0, QUALI TY=0. 881

Figure 28: Rules hypothesized by AQ21 far=.15.

CWwW

" R s s
i R S|s s
RIR Pl |P
y RRS
s s P|
I Ts P P
RN

C — Condition, W — Wind, T — Temperature, D — Daytype, r — rain, ¢ — cloudy, s — sunny,
n—no, y—yes, v—very low, | — low, m — medium, h — high, o — workday, e — weekend,
P —Play, R —Read, S - Shop

Figure 29:A visualization ofAQ21 rules presented in Figure 28
using General Logic Diagram.

15.3 Learning Rules with Exceptions

The concept of an “exception” is commonly used by people wheniliegcanomalies
rarely occurring in comparison to other features in phenomena Hebaibed. It is not
unusual that a simple theory may work well for most cases, bunguihiinto a fully
consistent and complete theory would require making it significambise complex. In such
cases, it is desirable to learn rules with exceptions (e.ghdlski, 2004; Yao et al, 2004).
AQZ21 can be set to learn rules with exceptions in the following form:

CONSEQUENT <= PREMISE |_ EXCEPTION

where EXCEPTION is either an attributional conjunctive desorptor a list of examples
constituting exceptions to the rule. Note that exceptions in such atdealways negative
examples that haven been included in PREMISE.

The processes of learning rules with exceptions in Theory FormatidriPattern Discovery
modes are different. In the latter mode, where inconsisteradiowsed, the program learns
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standard patterns and generates exceptions representing coverade negamples, by
finding a conjunctive description of the negative examples using AQ learning.

In Theory Formation mode, where consistency is guaranteed, the praddsmnegative
examples to the list of exceptions if such examples are infnggbat would introduce
significant complexity to a description that does not cover thdrall ¢f the exceptions can
be characterized by one conjunctive description, such a descriptioadisasishe exception
clause in the rule; otherwise, an explicit list of exceptions is outputted.

AQ21 applied to the same data as above produced the rule with EXCERFésented in
Figure 30.

[ Activi ty=Pl ay]
<= [Condition=cloudy v sunny: 7,8] &
[ Tenper at ur e=medi um v hi gh: 7, 7]
| _ [Condition=cloudy] & [Wnd=yes] & [ Tenperature=hi gh]
. p=7, n=0, QUALI TY=1

Figure 30: Strong pattern with exception found by AQ21.

The rule states that activity is “Play” if weatheradeudy or sunny and temperature is
medium or high, unless weather is cloudy, there is wind, and temperature is high.

Figure 31 shows a generalized logic diagram (GLD) represamtaf the rule presented in
Figure 30. The two highlighted examples representing “Shopari8)‘Read” (R) activities
are treated as exceptions to the general pattern for the playyactivit

C W

. R s s
7l R s|s s
IR|R P P
P IR0
Sl[s s p
e s P P
-?0\!,8 Dlle-u'LE u}l]e

C — Condition, W — Wind, T — Temperature, D — Datyime, r — rain, ¢ — cloudgusny,
n—no, y — yes, v—very low, | — low, m — medium, h — high, o — workday, e — weekend,
P — Play, R —Read, S - Shop

Figure 31: GLD showing the strong pattern with exception found by AQ21.

AQ21 generalized the two exceptions into one conjunctive description:

[Weather=cloudy] & [Wind=yes] & [Temperature=high].
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In the case that the two examples could not be generalized int@ojuaative description,
the program would have listed them explicitly:

cloudy, yes, high, yes, shop
cloudy, yes, high, no, home.

This simple example shows that the introduction of rules with ptixeces may produce
descriptions that are simpler, more accurate, and more comprehehsibl@escriptions
without exceptions.

154 Discussion of Results

This discussion evaluates results obtained by different progratesms of two criteria: the
simplicity of the descriptions learned and the error rate orirtii@ing data (there was no
testing data in this problem).

The C4.5 program generated a decision tree with 3 internal nodeklabranches from the
given training data (22 examples). When applied to this data, it meldesification errors
(18%). The C4.5 rules (7 rules), generated from the decision tree, mabsificdtion errors
(23%) on the training dataset.

RIPPER generated 6 rules, which made also 4 errors (18%) onathimgrdata. CN2
generated 13 rules that were complete and consistent with théhdagerors on the training
dataset), but constituted a much more complex description (13 rules).

AQZ21, run in Pattern Discovery mode (using the default value of w=gkBgrated only one
strong pattern that covered all positive examples (a completepdesy, but also covered 2
examples of other classes (9% error on the training set). Wieented with w=0.15, AQ21
produced a consistent description and nearly-complete, as ikdnisdy one example of
activity “Play” (4.5% error). When run in Theory Formation mode, AQ@2nerated three
simple rules (as compared to 11 rules learned by CN2), which coedtautomplete and
consistent generalized description of the training data (0% errors).

When run in the mode generating censored rules (rules with aptiexcelause), AQ21
discovered one censored rule that was also complete and consigtenegard to the
training data (0% errors). None of the compared programs, ex€t,Aad the ability to
determine patterns describing only one class, but always gerserdéscription for all
classes.

The accuracies of the descriptions obtained by different methodsirararized in Table 2.
As one can see, in this simple example, AQ21 produced both more acmdastmpler
concept descriptions or patterns than the other programs. Thalie cesm be attributed to
the richer representation language that is used by this gmoddsing more expressive
representation language makes possible for the program to gesigmpler hypotheses and
also in the forms easier to understand and interpret in natagaldge. AQ21 also allows
the user to control the type of description to be learned, by chotteingode of program
operation and by appropriately setting the parameter w in thesuree of description
QUALITY . The latter determines the relative importance given to covaratjeonfidence of
the rules to be learned.
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Table 2: Comparison of the performance of different learning methods.

Training Testing

“Play” All Classes Play” All Classes
C4.5 100% 81.8% 100% 76.9%
C4.5Rules 100% 77.3% 100% 65.4%
RIPPER 100% 77.3% 100% 80.8%
CN2 100% 100% 85.8%  80.8%
AQ21 PD Play 100% 90.91% 100% 100%
AQ21 Ex. Play 100% 100% 100% 100%
AQ21 Ex. All 100% 90.91%* 100% 100%
AQ21 PD All 100% 90.91% 100% 100%
AQ21 TF 100% 100% 100%**  100% ***

* 2 events (exceptions) classified as “do not know” (which is égedity the current
ATEST testing program as wrong classification)

**  with Precision of 81.25%

***  with Precision of 89.29%
(Precision less than 100% indicates that another class was alsteiddib@jtusiak, 2004)

Although it was not mentioned in the paper before, AQ21 also allogvsiger to define a
multi-criterion measure of the description optimality, which ther wssn assemble using
predefined elementary criteria. This feature can be useful vdierent criteria of
description optimality are most suitable for different problemsthé described experiments,
we used a default setting of this measure.

16 COMPARING CONCEPTUAL CLUSTERING WITH CONVENTIONAL
CLUSTERING ON A SIMPLE DESIGN PROBLEM

To give the reader an insight into the differences betweeneptral clustering and a
conventional, similarity-based clustering, this section descrilmesapplication of both
methods to a very simple designed problem (it is based on Seeman and Michalski, 2006).

The objects in the dataset to be clustered are described Igllthveing four multi-valued
attributes, with domains denoted by {}: X1: {0,1,2}, X2: {0,1,2}, X3: {0,1,2,3}, and X4:
{0,1}. The dataset consists of 21 tuples (vectors of attribute vahlisqite represented by a
“1” in the diagram in Figure 32(a).

The dataset was clustered by CLUSTERS, our newest implenoentafi conceptual
clustering, and by the KMlocal program that implements Lloyabaventional clustering
algorithm (Kanugo et al.,, 2002). The Lloyd’'s algorithm assigns wvasens to clusters
using the minimum Euclidean distance between the observation andusier dentroids.
Both KMlocal and CLUSTERS3 were run with default parameters. Tumeber of clusters
was set to 3 for both programs.
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The three simple disjoint cluster descriptions produced by CLUST&R3listed, and

represented visually by the GLD in Figure 32(a). A similaDGn Figure 32(b) indicates
the results of the KMlocal application. In Figure 32(a), ellipselicate the conceptual
descriptions of the clusters; no ellipses are shown in Figure #&tause KMlocal creates
groups of datapoints, but does not describe them. In Figure 32(b), the rafrtheecluster

to which events have been assigned is indicated in the upper rightdrawed of the cells

representing events in the data.

X X X, X
s “:’,1_-?_-_ _1." 12 12 12 12

o 1 SRR o p NS

2 |1 '\________L; 2 10

0 1 0 10
11 1 11 10

2 1\ 1]/ 2 |4 i

1 1|1 1 1]

2 1| 1 2 il
X, o 1]o 1]0 1]o0 1 X, o 110 1]o 1]o 1
X, 0 1 2 3 X, 0 1 2 3

Cluster Descriptions;

Cluster 0: [X,=0..1]8[X;=0..1]
= = = = Cluster 1: [X,=0]8[%,=2..3]
------------ Cluster 2: [X,=2]&[X;=2..3]

(a) Clusters generated by CLUSTERS (b) Clusters generated ycKM
Figure 32:A GLD representation of clusters of the designed dataset.

As seen in Figure 32, clusters produced by KMlocal and CLUSTERSiraikar, except for

the event (0,0,1,1) which was assigned to cluster 0 by CLUSTER3,0adldster 2 by

KMlocal. The difference in the assignment was due to the valu¥,ofor this event.

CLUSTERS included this event in cluster 0, because it can be dabtabether with other
events of cluster O by one simple description (X1 =0 or 1, and X8r=1). The simplicity
of this description was considered more important than a smaliediffe in the Euclidean
distance.

This above illustrates two important differences between CLURST&Nd KMlocal in that
the former produces descriptions of clusters it generates, Wweilatter does not, and that
properties of the description (e.g., its simplicity and the sparsafesvents in it) is taken
into consideration when creating clusters.

Another difference is that descriptions produced by CLUSTER3 arerglizations of
events, in the sense that they not only cover the events in the daaisetiso cover
unobserved events. This way, new events can be easily classifircppropriate category
simply by determining which description it matches. For example event (0,2,1,1), not

34



present in the data, would be classified to Cluster O becawseésiies the description of that
cluster. In contrast, in the case of KMlocal, to determinethdnethis event should be
classified to Cluster 0 or to Cluster 2 would require a re-exactof the KMlocal upon the
entire dataset.

17 CONCLUSION

This paper reviewed examples of application of natural induction amzeptual clustering
to a wide range of real-world problems. The presented results that in every application,
natural induction was able to hypothesize general descriptions ompaittedata that had
high predictive accuracy and were also simple and easy to interpret.

The differences between natural induction and several well-known metleodslluminated
by comparing the method of natural induction implemented in the AQ2Irgmnogyith
several well-known methods on a simple designed problem. Theséobn also provided a
very simple illustration of the differences between conceptuestariing and conventional
similarity-based clustering.

For technical details on the methods of natural induction and concefutsigring employed

in the applications described here, visit http://www.mli.gmu.edu. Tit@das many papers
on these methods and their various implementations. It also containsoddalole program
AQ21. For the current version of program CLUSTERS, which is wtidler development,
contact MLI system manager Janusz Wojtusiak (jwojt@mli.gmu.edijyszard Michalski,

P1 of the grants that supported this research (michalski@mli.gmu.edu).

By demonstrating the applicability of the described methodsviersi real-world problems,
we hope to invoke Readers’ interest in applying these methods to psobietineir own
fields.
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