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Abstract 
 

Natural induction and conceptual clustering are two methodologies pioneered by the GMU Machine 
Learning and Inference Laboratory for discovering conceptual relationships in data, and presenting 
them in the forms easy for people to interpret and understand.  The first methodology is for 
supervised learning (learning from examples) and the second for unsupervised learning (clustering).  
Examples of their application to a wide range of practical domains are presented, including 
bioinformatics, medicine, agriculture, volcanology, demographics, intrusion detection and computer 
user modeling, manufacturing, civil engineering, optimization of functions of very large number of 
variables (100-1000), design of complex engineering systems, tax fraud detection, and musicology.  
Most of the results were obtained by applying our recent natural induction program, AQ21, which is 
downloadable from http://www.mli.gmu.edu/msoftware.html.  To give the Reader a quick insight into 
differences between natural induction implemented in AQ21 and some well-known learning methods, 
such as those implemented in C4.5, RIPPER, and CN2, as well as between conceptual clustering and 
conventional clustering, Sections 15 and 16 describe results from applying all these methods to very 
simple, designed problems. 

Keywords: data mining and knowledge discovery, machine learning, natural induction, cluster 
analysis, conceptual clustering, data mining applications, machine learning applications 
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1 INTRODUCTION 

A common activity in almost all areas of science is to collect data in order to derive from 
them useful insights or discover new knowledge about the phenomenon under study.  The 
amount of data collected may vary from very large, as in, for example, genomics, particle 
physics, or tax return, where it can be on the order of gigabytes or terabytes, to very small, as 
in archeology or criminology, where only a few, loosely linked facts may be available. 

Modern tools for data analysis and data mining have evolved primarily from research in 
machine learning and statistics. The tools stemming from machine learning research are often 
available from university laboratories as free experimental computer programs. The tools 
stemming from research statistics, a much older discipline, are usually available as 
commercial, industrial-strength software, that was developed and is maintained by private 
companies.   

Statistical and some machine learning tools for data analysis have been widely used, and are 
very useful in many practical applications. They have, however, significant limitations.  
Statistical tools do not work well with very small datasets and  are primarily oriented toward 
creating quantitative (numerical) characterizations of the studied phenomena. These 
characterizations typically involve variables that are already present in the data, or some 
predefined functions of these variables. Both statistical tools and most of the current machine 
learning methods do not engage and reason with much prior domain knowledge while 
extracting patters from data. They also use relatively limited knowledge representation 
languages that may preclude them from discovering patterns or relationships in the data that a 
human expert employing a much richer language may be able to discover. 

In many application domains it is desirable to characterize observations and express 
hypotheses about them not quantitatively, but rather qualitatively (descriptively), with an 
accompanying statistical annotation. Such qualitative descriptions are often quite sufficient 
for decision making, and may also be more reliable.  For example, for everyday decision 
making, it is usually quite sufficient and even preferable to know that the next week will be 
sunny, warm, and with low humidity, rather than be given a set of numbers expressing 
precisely the temperature and humidity that is predicted for each day of the week.  An 
accurate qualitative prediction is also usually much easier to create than an accurate 
quantitative prediction.  

The GMU Machine Learning and Inference Laboratory is engaged in research, supported by 
the National Science Foundation, on developing a new, complementary approach to 
statistical data analysis, called knowledge mining, whose objective is to discover previously 
unknown regularities in data, and express them in the qualitative forms natural to people as 
they resemble those in which people express knowledge. These forms include logic-based or 
simplified natural language descriptions, and various knowledge visualizations, such as 
graphs, diagrams, figures, or images.  Such forms are easy to understand, interpret, and use 
for creating mental models.   

Basic methods of knowledge mining perform qualitative data analysis that seeks human-
style explanations of data. They can efficiently derive task-relevant information from large 
volumes of data with many irrelevant facts, induce general rules and discover patterns in 
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data, propose logical explanations of given facts, hypothesize structural relationships and 
causal dependencies, and incrementally improve the previously determined qualitative 
knowledge in the light of new data. 

This article reviews examples of diverse practical applications of two methodologies of 
knowledge mining developed in our laboratory, natural induction and conceptual clustering. 
The presented examples include applications to bioinformatics, medicine, agriculture, 
volcanology, demographics, intrusion detection and computer user modeling, manufacturing, 
civil engineering, optimization of functions of very large number of variables (100-1000), 
design of complex engineering systems, tax fraud detection, and musicology.  The article is 
written in a simple, tutorial style in order to make it easy to understand by a wide range of 
readers. Technical details and algorithms are described in papers listed in the References. 
Most of the referred papers are downloadable from www.mli.gmu.edu (select “Papers”). The 
learning program AQ21 that was used in many experiments is also downloadable from that 
website (select “Software”). 

Sections 2-11, describe selected applications of natural induction, Sections 12-14 describe 
applications of conceptual clustering, and Sections 15-16 present simple examples of 
comparative studies of natural induction and other methods.  Most of the applications 
represent very recent work. 

Because the concepts of “natural induction” and “conceptual clustering” are relatively new, 
and may not be familiar to the reader, we start by briefly explaining them.  Natural induction 
is a form of supervised learning, a.k.a learning from examples, that hypothesizes general 
concept descriptions from concept examples or discovers patterns in data, in qualitative 
forms that are easy for people to understand, interpret, and make a mental model of them. 
Specifically, knowledge derived from data is expressed in terms of logic-style rules that 
directly correspond to simple natural language statements and are visualized using new forms 
of graphical representation, such as concept association graphs, generalized logic diagrams 
and ruletrees (see examples in Figures 3, 4, 6, and 7).   

An important aspect of natural induction is that it places equal emphasis on predictive 
accuracy and on the understandability of computer-generated knowledge, in contrast to most 
of machine learning and data mining methods in which high predictive accuracy is the main, 
or only objective. Natural induction thus aims at being a "transparent box" method for 
analyzing data, in contrast to “black box” methods that may produce accurate results, but are 
opaque and difficult to interpret.   

Our newest program implementing natural induction is AQ21 (Wojtusiak, 2004; Wojtusiak et 
al., 2006). Given a set  of data, it outputs hypotheses learned from the data in the form of 
rulesets in attributional calculus, a logic and representation system developed for supporting 
natural induction (Michalski, 2004).  For an example of such a ruleset see Figure 2. 

Depending on the setting of its parameters,  AQ21 may generate different types of data 
characterizations, such as complete and consistent generalizations, patterns that represent 
strong regularities, but partially inconsistent with the data, descriptions with exception 
clauses, and some other.  An AQ21’s learning process can be viewed as a search for a 
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description (a ruleset) that maximizes a given measure of description utility, defined by a 
Lexicographic Evaluation Functional1 (briefly, LEF): 

LEF = <QUALITY , q%; SIMPLICITY> 
where: 

QUALITY measures a description quality, Q(w), defined as: 

Q(w) = Covw * Config1-w 

In this measure: 
Cov = p/P          (“Coverage”) 
Config = ((p / (p + n)) – (P /(P + N))) * ((P +N) /N)  (“Confidence gain”) 
p and n  are numbers of positive and negative examples in the training set covered by the 

description 
P and N are total numbers of positive and negative examples in the training data, 

respectively, and 
w is a parameter that allows the user to control the relative importance of the Cov and Config 

components. 

SIMPLICITY is the reciprocal of the description COMPLEXITY, defined as the sum of the costs 
associated with each operator in the description.  In our experiments, the default costs of 
operators were: conjunction – 4, disjunction – 10, internal disjunction – 2, range – 2, less 
than or greater than operators – 1, equality operator – 1, inequality operator – 2.  For 
operators within an exception clause, the costs are doubled.  When a ruleset consists of m 
rules, it is assumed that it has m-1 disjunction operators. 

Parameter q%, called the tolerance for QUALITY , defines the range of QUALITY  values of 
rules that will be evaluated for SIMPLICITY.  Rules whose QUALITY  is not within q% of the 
best rule in the set of candidates are ignored.  LEF thus provides a simple multi-criterion 
evaluation of a set of alternatives.  It is particularly attractive when there are many 
alternatives to evaluate, because the number of alternatives to consider decreases after 
applying each criterion. Such a situation often arises in the inductive inference from non- 
trivial data. 

Conceptual clustering is a form of unsupervised learning (a.k.a. learning from observation) 
that concerns grouping observed entities into “conceptual clusters” that represent simple 
concepts, in contrast to conventional clustering, which clusters objects into groups of similar 
objects, according to some an a priori defined mathematical measure of similarity.  
Conceptual clustering outputs both clusters and cluster descriptions, and evaluates clusters on 
the basis of the quality of these descriptions, whereas conventional clustering outputs only 
clusters, and evaluates them on the basis of the intra- and inter-cluster similarities.   

————— 
1 For readers unacquainted with the concept of LEF (Michalski, 1972), here is a brief explanation.  LEF can be 
used for ranking individual rules or entire rulesets.  Let us assume that it is applied to ranking a set of rules.  
First, LEF determines rules that score the highest on the first criterion (in the above example, QUALITY).  
Rules whose QUALITY is at least (TopQuality - q% x TopQuality) are then evaluated on the second criterion 
(here, SIMPLICITY); others are rejected. The rule that scores the highest on SIMPLICITY is selected as the 
overall best according to the LEF. LEF can be applied to rank rules or any other entities based on multiple 
criteria. 
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Conceptual clustering is accomplished by executing a search for a clustering (collection of 
clusters) that optimizes a criterion of clustering quality that reflects clusters’ “conceptual 
cohesiveness” (Michalski and Stepp, 1983a,b; Seeman and Michalski, 2006).  Examples of 
the application of conceptual clustering are presented in Sections 11-13. 

In our research on natural induction and conceptual clustering, the underlying description 
language is attributional calculus, which combines elements of propositional logic, predicate 
logic and many-valued logics for the purpose of facilitating inductive learning and qualitative 
data analysis (Michalski, 2004).  The relationships discovered by natural induction may 
combine descriptive and statistical information.  Here is an example of a hypothesis produced 
by the AQ21 learning program that analyzed of a medical dataset representing a gene 
microarray of patients with medulloblastoma: 

If in a gene array derived from a patient, the expression of Gene-1611 is below the 
threshold T1, the expression of Gene-1036 is in the range T2 to T3, and the 
expression of Gene-914 is below the threshold T4, or the expression of Gene-1783 is 
above the threshold T5, then the patient’s cancer is likely to be metastatic. 

For a detailed explanation of this result, see the next section. The above text is a direct 
translation of attributional rules learned by the program. 

In the following sections, we describe examples of applications of our methods of natural 
induction and conceptual clustering to bioinformatics, medicine, agriculture, volcanology, 
demographics, intrusion detection and computer user modeling, manufacturing, engineering, 
musicology, and tax fraud detection.  For readers interested in getting a quick insight into 
differences between our methods and some other well-known methods, Sections 14 and 15 
use simple designed problems to compare the methods.  Section 14 compares natural 
induction to other methods of supervised learning, and Section 15 compares conceptual 
clustering to a similarity-based method of unsupervised learning. 

2 AN EXAMPLE OF APPLICATION TO BIOINFORMATICS 

This example concerns an application of natural induction to the problem of diagnosing 
medulloblastoma from patients’ gene microarrays (representing degrees of expressions of 
patients’ genes).  Medulloblastoma is a highly invasive primitive neuroectodermal tumor of 
the cerebellum and the most common malignant brain tumor of childhood.  The data for this 
application were obtained from the Gene Expression Omnibus (GEO), NCBI NLM NIH, 
available online at http://www.ncbi.nlm.nih.gov/geo.  The original gene microarray data 
consists of 46 records split into two classes: 20 records representing patients with metastatic 
tumors and 26 records representing patients with non-metastatic tumors. Each record 
registers values of 2059 real-valued attributes that represent the expression of different genes. 

In the experiments that inspired this work, performed by McDonald et al. (2001), out of 2059 
genes (serving as attributes), the authors selected the 87 with the highest Prediction Strength 
Correlation, defined as the ratio of the difference between the mean values in the two classes 
(metastatic and non-metastatic) to the sum of the standard deviations in the classes.  Figure 1 
shows a subset of a gene microarray with medulloblastoma data for a subset of 23 patients.  
Each row corresponds to a patient, and registers expressions of the selected 87 genes, 
represented in the columns. 
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Figure 1:  A gene microarray containing medulloblastoma data for 23 patients. 

The first 9 rows represent patients with metastatic tumors, and the remaining 14 with non-
metastatic tumors.  Bright red color spots represent a high gene expression level, and bright 
green spots denote a low expression level. 

For our experiments, we selected only the ten attributes that scored highest on the PROMISE 
measure of attribute quality, studied by our former student Baim (1982). The measure 
expresses a degree to which an attribute differentiates between classes.  After projecting data 
on the selected 10 attributes, we applied the AQ21 natural induction program to hypothesize 
rules for distinguishing between metastatic and non-metastatic rumors. 

In the experiment reported here, the training data for metastatic tumors consisted of 16 
unique examples, and for non-metastatic tumors 12 unique examples (after attribute 
selection, some examples became indistinguishable).  Given these examples, AQ21 
discovered two rules (a ruleset) for the metastatic tumor presented in Figure 2. 

 [Cancer = metastatic] 
 <= [Gene-1611 <= 100.9: 18, 8, 69%, 18, 8, 69%] & 

[Gene-1036  = -41.76..160.8: 18, 20, 47%, 16, 4, 80%] & 
   [Gene-914   <= 121.5: 20, 15, 57%, 16, 0, 100%]:  
  #positives = 16, #negatives =0, #unique = 14, QUALITY  = 1, COMPLEXITY = 17 
 

<= [Gene-1783  >= 96.6: 6,0,100%,6,0,100%]:  
  #positives = 6, #negatives= 0, #unique = 4, QUALITY  = 1; COMPLEXITY = 5 

Figure 2:  An example of a ruleset discovered by AQ21 for recognizing metastatic tumors. 

In Figure 2, the condition [Cancer = metastatic] is the rule’s consequent that is implied by 
two alternative premises (that follow the implication sign “<=”).  A pair, a consequent and a 
premise, constitutes a single rule.  Thus, Figure 2 presents two rules.  The premise of the first 
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rule is a logical conjunction of three conditions, and the premise of the second rule consists 
of just one condition. 

The first rule states that if the expression of the gene Gene-1611 (interferon IFN-) is equal 
to or below 100.9, and the expression of the gene Gene-1036 (IL15: interleukin 15) is 
between -41.76 and 160.8 (inclusive), and the expression of the gene Gene-914 (ERG:  
v-etserythroblastosis virus E26 oncogene like, avian) is equal to or below 121.5 in a gene 
array of a patient, then metastatic cancer is indicated in that patient. The second rule states an 
alternative condition indicating medulloblastoma, namely, when the expression of Gene-
1783 (RIN2: Ras and Rab interactor 2) is above or equal to 96.6. 

Each condition of every rule is annotated by two triples of numbers, listed after the colon.  
The first number in the first triple indicates the number of positive examples in the training 
set (here, the number of metastatic patients) that satisfy this condition (denoted generally as 
“pc”), the second number indicates the number of negative examples (here, non-metastatic 
patients that satisfy this condition (denoted generally as “nc”), and the third number is the 
condition confidence, defined as pc /( pc + nc ), and expressed as a percentage. 

The numbers in the second triple represent the same quantities but not just for the given 
condition, but for the logical conjunction of the given condition and all the previous 
conditions in the rule’s premise.  Thus, in the first condition of each rule, both triples are 
always identical, because there are no previous conditions because it is the first condition.  
However, the subsequent conditions in the premise will usually contain different triples, 
because they refer now to the numbers of cases (here, patients) that satisfy both the given 
condition and all the previous ones. 

The five numbers at the end of each rule denote respectively: the total number of positive 
examples (here, patients with metastatic tumors) covered by the rule (#positives or, briefly, 
p), the total number of negative examples covered (#negatives or, briefly, n), the number of 
positive examples covered only by this rule and no other rule (#unique, of briefly, u), and the 
rule QUALITY  and COMPLEXITY, as defined before.  Note that when p and u parameters of a rule 
are very small, this indicates that the example covered by this rule is an outlier and may be an 
error.  If n=0, the rule is fully consistent with all the training data. 

To illustrate graphically rulesets generated by AQ21, we have developed two programs, KV 
(“Knowledge Visualizer”), which represents rules in a Generalized Logic Diagram (GLD), 
and CAG (Concept Association Graph), which represents them as a labeled graph with 
varying thicknesses of the links. 

A GLD is a planar representation of a multi-dimensional space spanned over discrete 
attributes.  For example, Figure 3 presents a GLD for an instance space spanned over three 
attributes, representing discretized values of expressions of genes, g1611, g1036, g1783, and 
g914 (the domains of these attributes have been discretized into 2, 3, 2, and 2 ranges, 
respectively). 
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Cells marked by “+” and “-” represent examples of metastatic and non-metastatic cancers, respectively.  

Figure 3: A general logic diagram visualizing training data and  
       discovered rules for diagnosing metastatic tumors. 

Each cell of the diagram represents a combination of values of these four attributes.  Cells 
marked by a “+” represent metastatic patients, and those marked by a “-” represent non-
metastatic patients.  A small number next to a symbol “+” or “-“ in a cell denotes the number 
of patients with metastatic and non-metastatic patients, respectively, whose discretized gene 
expressions are represented by this cell.  For example, the cell defined by: g1611 = 1 & 
g1036 = 2 & g1783 = 1 & g914 = 1 represents 14 metastatic patients.  In Figure 3, the first 
rule from Figure 2 is visualized as R1, and the second as R2. As one can see, a GLD displays 
both examples and rules in a simple, easy to understand form.  This visualization method is, 
however, limited to cases in which the variables spanning the diagram are discrete and their 
number is relatively small. 

To visualize more complex cases, we developed an alternative method, which employs a 
concept association graph.  In such a graph, nodes represent attributes or attribute-value 
pairs, links represent rule conditions, and collections of links connected by an arc represent 
attributional rules. The top node represents a ruleset for the output attribute value indicated in 
the node. The thicknesses of the links represent a requested measure of the condition or rule 
importance. Depending on the parameter setting, the program can use different importance 
measures, such as confidence (p /(p + n)) or support (p), where p and n are the numbers of 
positive and negative examples, respectively, covered by the condition or rule.  

For example, Figure 4 presents a concept association graph visualizing the discovered ruleset 
for medulloblastoma.  The lowest nodes represent input attributes, and annotations on the 
links connecting them to rectangular nodes marked “Rule 1” and “Rule 2” represent 
conditions on the individual attributes. 
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The thickness of links is proportional to condition or rule confidence (p/(p+n)). 

Figure 4:  A CAG visualizing discovered rules for recognizing metastatic tumors. 

The thickness of each link in this graph is proportional to the confidence of the 
corresponding condition or rule, thus this is not an ordinary labeled graph, but a graph that 
conveys information also through the thickness of the links and the arches connecting the 
links.  The pairs of numbers (p,n) associated with the links, or inside the nodes denoted “Rule 
1” and “Rule 2”, indicate the number of positive and negative examples, respectively, 
covered by the corresponding condition or rule.  For example, the pair (16,0) inside of the 
node marked “Rule 1” and the pair (6,0) inside of the node marked “Rule 2” indicate that 
these rules cover 16 positive and 0 negative examples, and 6 positive and 0 negative 
examples, respectively.  Both rules have thus confidence p/(p+n) =1, and the links to the top 
node (metastatic =M1) are maximally thick.  

Comments on the results 

Let us briefly comment on the example of the hypothesis (ruleset) in Figure 2, discovered by 
AQ21 for recognizing metastatic patients in a gene array.  The ruleset involves only 4 genes 
out of 2059 genes.  When the experiment was performed using 5-fold cross-validation2, the 
predictive accuracy was about 95%. (There was only one misdiagnosis. Because there was 
one example in the data that looked like an outlier with respect to other examples of the same 
class of patients; therefore, one cannot exclude the possibility that it might have been an 
example erroneously classified in the data). 

————— 

2 In 5-fold validation, the complete dataset for each class is split into 5 roughly equal groups.  An experiment is 
repeated for each set of 4 groups serving as a training set, and the remaining 1 group serving as the testing set.  
The output predicative accuracy is the average of the predictive accuracies from each combination of the 
training and testing sets. 
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The two-rule ruleset is surprisingly simple and easy to understand, Despite having a very 
limited number of training examples to learn from and large number of attributes spanning 
the original search space, the ruleset discovered by the natural induction method achieved 
high predictive accuracy (95%).  

These results from natural induction are in contrast with the neural net developed for the 
same task, which was described in (MacDonald et al., 2001). Their neural net requires 
measuring 80 genes (attributes), rather than 4, and its reported predictive accuracy is about 
72%, lower by 23% than that of AQ21 rules.  In addition, the neural net is a “black box” 
solution that is difficult to interpret and understand, while the “transparent box” ruleset 
obtained by natural induction can be easily interpreted, and executed even without a 
computer. Further research is needed, however, to test the rules obtained by natural induction 
on more medical data, and to have them evaluated by medulloblastoma experts before they 
could be accepted as a valid medical discovery. 

3 AN EXAMPLE OF APPLICATION TO MEDICINE 

This work applied natural induction to a problem of determining relationships between 
lifestyles and diseases of non-smoking males, aged 50-65.  The study employed a database 
from the American Cancer Society that contained 73,553 records of responses of patients to 
questions regarding their lifestyles and diseases.  Each patient was described in terms of 32 
attributes: 7 lifestyle attributes (2 Boolean, 2 numeric, and 3 rank), and 25 Boolean attributes 
representing diseases.  

The natural induction program AQ19 (a predecessor of AQ21) was applied to discover 
patterns (that is, tendencies, rather than unbreakable rules) characterizing the relationships 
between the lifestyles and 25 diseases, and possible relationships between the diseases.  
Among the many discovered patterns, a typical example is shown in Figure 5.    

 [Arthritis = Present] 
     <=   [HBP=present: 432, 1765] & 
   [Rotundity>=low: 1070, 5578] &  

[Education<=college_grad: 940, 4529] & 
   [YinN > 0: 1109, 5910]: p = 325, n = 1156; P = 1171, N = 6240 

where 
HBP stands for High Blood Pressure 
Rotundity is a discretized ratio of the patient’s weight to his height 
YinN_denotes the years the patient lived in the same neighborhood 
The two numbers listed within each condition after the colon denote pc and nc, that is, the 
number of positive and negative examples in the training set covered by that condition, 
respectively 
p and n, are the number of positive and negative examples in the training set covered by the 
rule, respectively. 
P and N are the number of positive and negative examples in the training data for that class  (here, 
Arthritis), respectively.  

NOTE: This rule was obtained by an earlier version of the program that did not output all the 
annotation parameters that were discussed in the medulloblastoma application. 

Figure 5:  A pattern for Arthritis discovered in the medical database. 
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The pattern in Figure 5 defines a set of conditions under which patients had arthritis 
relatively frequently, which include the presence of high blood pressure, higher than low 
“rotundity”, no education beyond college, and staying in current neighborhood at least one 
year. In the training data, about 16% of the patients had arthritis (P/(P+N)), but among 
patients satisfying the pattern, the percentage grows to 22% (p/(p+n), that is, the likelihood of 
them having arthritis increases by 37%. The most significant factor in this pattern is high 
blood pressure, which by itself has confidence of about 20% (pc/pc+nc). 

Discovered patterns were visualized using concept association graphs.  One such graph is 
presented in Figure 6. It was automatically generated from the discovered patterns using 
computer program, CAG, designed for graphically representing attributional rules. In this 
graph, a link’s thickness reflects the condition coverage (p), and the link’s annotation (+, –, v, 
or ^) indicates the type of the relationship between condition and consequent.  Specifically, 
“+” represents a positive monotonic relationship (higher values of the condition attribute 
indicate higher values of the consequent attribute),“-” represents a negative relationship 
(lower values of the condition attribute indicate higher values of the consequent attribute), 
and “v” and “^” indicate that extreme values of the attribute indicate higher or lower values 
of the consequent attribute, respectively. 

 

The thickness of links is proportional to condition or rule coverage. 

Figure 6:  Concept Association Graph representing seven patterns in the medical database. 

While no claim is made as to the practical usefulness of these specific obtained results, they 
indicate, however, that the developed methodology is potentially capable of discovering 
important patterns in the data and representing them in an understandable way, either as 
qualitative relationships or in graphical forms. 
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4 AN EXAMPLE OF APPLICATION TO AGRICULTURE 

This section illustrates a form of natural induction that generates attributional rule-tree, 
rather then ruleset representations of concepts.  An attributional rule-tree is a combination of 
a tree structure and a ruleset structure. It was developed as a simple representation of 
classifiers that classify entities into many related classes.  It is intended for situations in 
which a flat ruleset or a decision tree might not be easy to mentally follow, but a rule-tree 
might represent related concepts in a more understandable way. 

In this application, the task was to learn a classifier for diagnosing the most common soybean 
diseases (15 diseases) from a database describing disease cases in terms of 35 multi-valued 
attributes.  The training data consisted of 266 cases provided by a domain expert. Figure 7 
presents a rule-tree and an equivalent ruleset learned for the fifteen soybean diseases. 

 

Figure 7:  Complexity comparison of rule trees and rulesets in the soybean domain. 

The classifier in the form of a rule-tree was learned by the ART program based on the 
method introduced in (Michalski, 2002).  ART works in two steps: the first step seeks 
partitioning attributes whose combination of values split given decision classes into different 
groups, and the second step applies an AQ learning program like AQ21 to attributional learn 
rules distinguishing classes within groups obtained in the first step. 

For the soybean disease diagnosis problem, ART found two partitioning attributes, leaf-
mildew and internal discoloration, that were assigned to the root node of the rule-tree.  
Different combinations of their values split the fifteen classes into five logically disjoint 
subsets.  Four of these subsets correspond to single diseases: powdery-mildew, downy-
mildew, charcoal-rot and brown-stem-rot, and the fifth one corresponds eleven diseases.  For 
each of the eleven diseases, the program learned a ruleset distinguishing it from the other 
ones.  As one can see in Figure 7, the rule-tree representation (on the left-hand side of the 
figure) appears simpler and easier to understand than the equivalent flat ruleset representation 
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(on the right-hand side).  Because AQ was applied to a smaller number of classes, the overall 
learning time of the rule-tree was shorter than the learning time of the flat ruleset. 

5 AN EXAMPLE OF APPLICATION TO VOLCANOLOGY 

This application was developed in collaboration with the Smithsonian Institution in 
Washington, D.C.  Given a database with records of volcanic eruptions over the past 10,000 
years provided by the Institution, the AQ21 learning system sought patterns in those 
eruptions.  The data consisted of approximately 20,000 records characterizing individual 
cases of eruptions.  Each case was described by 78 attributes of different types: binary, 
discrete, continuous, and structured (the domains of the structured attributes are hierarchies).  
A selection of these attributes used in this study is shown in Table 1. 

 

Table 1:  A selection attributes used in the Volcano Database. 

Name    Type  Description 

Subregion    Structured  Part of the world in which the volcano is located 
Latx, Longx   Continuous  Latitude and longitude of the volcano 
Upper    Discrete   Elevation of the peak (meters) 
Upper1    Discrete   Height of the volcano (meters) 
Type     Structured  Type of volcano 
TC     Structured  Tectonic setting of the volcano 
MapStatus2   Discrete   Indicates how long since last erupt (lower=more recent) 
Year, Stop_year  Discrete   Years of eruption start and end, respectively 
Radial_fissure   Binary  Whether there was a radial fissure eruption 
Regional_fissure  Binary  Whether there was a regional fissure eruption 
Island_forming   Binary  Whether the eruption resulted in the creation of an island 
Subglacial   Binary  Whether there was a subglacial eruption 
Crater_lake_erupt  Binary  Whether there was a crater lake eruption 
Explosive    Binary  Whether the eruption was explosive in nature 
Pyroclastic   Binary  Whether the eruption included pyroclastic materials 
Lava_lake    Binary  Whether a lava lake was formed 
Damage    Binary  Whether there was damage to human structures 
Lahars    Structured  Whether lahars were formed 
Tsunami    Binary  Whether the eruption resulted in a tsunami 
Evacuation   Binary  Whether there were evacuations  

NOTE: Attributes above the dashed line describe the volcano, and those below it 
describe individual eruptions. 

In the experiment described here, the goal was to determine rules for differentiating eruptions 
in which fatalities were known to have occurred from eruptions without fatalities.  The 
training set consisted of 50% of the cases of both types of eruptions randomly selected from 
the database; the remaining cases constituted the testing set.  Figure 8 presents examples of 
rules learned for the two classes of eruptions. 
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[Fatalities = present] 
   <= [Radial_fissure=present: 72,773] & 
  [Tsunami=present: 61,29] & 
  [Latx<=33.99: 343,5782] & 
  [Stop_year<=1889: 148,934]: p=13, n=0; QUALITY =0.7 
 
[Fatalities = absent] 
   <= [Pyroclastic=absent: 8244, 221]: p=8244,n=221, QUALITY  =0.4 

Figure 8:  Examples of discovered rules in the volcano database. 

The first rule says that fatalities occurred in thirteen cases of eruptions with a radial fissure in 
which a tsunami occurred, and that the eruptions occurred south of 34 degrees north latitude, 
and ended prior to 1889.  There were no exceptions to this rule.  The second rule is a strong 
pattern that states that in 8244 out of 8472 documented cases, a non-pyroclastic eruption 
resulted in no fatalities.  There were 221 exceptions to this pattern. 

In all experiments, predictive accuracy of the discovered rules was greater than 90% on the 
testing dataset.  One surprising result was that pattern sets in which inconsistency was 
permitted had a comparable predictive accuracy on the testing set as the complete and 
consistent rulesets, even though they were much simpler (involved far fewer rules and 
conditions).  The generated rulesets were understandable and easy to interpret by the 
collaborating scientists from the Smithsonian Institution.  This feature made it possible for 
them to adjust the rules that contained spurious conditions, and to improve the rules to reflect 
their expert knowledge (Kaufman and Michalski, 2006). 

6 AN EXAMPLE OF APPLICATION TO DEMOGRAPHICS 

These experiments sought to discover unknown patterns or anomalies in a dataset describing 
190 countries in the CIA’s World Factbook.  Attributes describing countries included 
population growth rate, birth rate, death rate, net migration rate, fertility rate, infant mortality 
rate, literacy, life expectancy, and predominant religion. 

This experiment involved conducting a grand tour, in which each attribute in the dataset is 
sequentially treated as an output (dependent) attribute, while the remaining ones are treated 
as input (independent) attributes.  One example of a rule learned in the grand tour is a rule 
characterizing 25 of the 55 countries with low (<1%) population growth: 

[PopGrRate < 1%] 

<= [BirthRate = 10..20 or 50..60: 46, 20] & 
[FertRate = 1..2 or >7: 32, 17] & 
[Religion is Protestant or Catholic or Orthodox or Shinto: 38, 32] & 
[NetMigRate < +10: 54, 123]: p=25, n=0 

This rule exposed an interesting anomaly.  In its first condition, there is a range of birth rates 
from 50 to 60, which is rather high for cases with low population growth.  Looking at the 25 
countries that satisfied this rule, 24 had birth rates less than or equal to 20.  Only one, 
Malawi, had a birth rate above 50.  Investigating Malawi against the rest of the countries 
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quickly revealed the reason for this surprising finding: the country had an outward net 
migration rate dwarfing those of all other countries in the world. 

7 AN EXAMPLE OF APPLICATION TO INTRUSION DETECTION 

The goal of these experiments was to discover patterns that characterize legitimate activities 
of computer users in order to detect computer intrusion or misuse.  Such a misuse may be 
indicated when a purported user strongly violates the patterns characterizing his or her 
computer use.  For this task, we developed a new methodology, called LUS (Learning User 
Signatures), that employs natural induction to derive models of users’ behavior from the 
temporal datastreams characterizing their interaction with computers (Michalski et al. 2005; 
2006). 

The LUS methodology has several embodiments, depending on the type of user model is to 
be learned.  Among the models we have explored are Multistate Templates, Prediction-based, 
Rule-Bayesian, and Activity-based models.  Here we present briefly results using the 
multistate template model, which generates flexible templates that can concisely describe a 
large number of different user activities. 

The learning of user models is a multi-step process that consists of extracting events from the 
system’s process table, determining the most relevant attributes and the most relevant events 
in the training target dataset for each user, and applying a learning method, or a combination 
of learning methods under appropriate parameter settings to this dataset. 

The methodology strives to develop user models that can be modified manually by human 
experts, and are able to reliably detect illegitimate user behavior from user data streams that 
are as short as possible.  LUS strives to emulate several important aspects of human learning 
and recognition processes: 

• Idiosyncracy:  It searches for patterns that are most characteristic of a given user, so 
that recognition is possible from short episodes that contain such features. 

• Satisfiability:  If, at some point the observed behavior strongly matches one user 
model, and only weakly matches other models, the observation of the users’ data 
stream stops, and a decision is reported. 

• Understandability:  It strives for creating user models that are easy to interpret and 
understand by humans. 

• Incrementability:  User models can be updated incrementally over time, without re-
learning them from scratch. 

The raw data stream (from the NJIT archive) comprised three sets of data consisting of 
records extracted from process tables.  Each set contained records of 1282 sessions from 26 
users.  From the available data, we selected the 10 users that had the highest number of 
recorded sessions, and then extracted the first 10 sessions of each of these users for training, 
and the following 5 for testing. 

The basic construct for learning multistate templates is the n x k-gram, or multigram, which 
is a generalization of the well-known concept of an n-gram.  A multigram is an n x k matrix, 
consisting of k attributes whose values are recorded at n consecutive time instances. A 
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multigram is a useful device for characterizing processes whose states at different time 
instances need to be described not by one, but by several attributes. 

Figure 9 shows a multistate template learned from multigrams, with n set to 4.  4000 training 
multigrams represented User4’s activities, and 25143 represented those of other users. The 
first condition in the template says that the hour in the third position of the multigram (the 
second most recent, since the last position is the most recent) must be between 11 and 14, 
i.e., that part of the activity took place between the 11 AM and 2 PM hours.  That condition 
alone was satisfied by 3393 User4 multigrams and by 9171 of all other users.  The second 
condition sets values on the process name at all four time positions of the multigram, and 
other conditions are interpreted similarly. It says, for example, that at the first time instance 
of the multigram the process name was netscape, outlook or winword.  In all, this template 
was satisfied by 2419 multigrams of User4’s activity, and none of other users. 

 [User = user4] 
<= [hour= << 11..14 : 3393,9171 (3) >> ] & 
 [process_name = < netscape,outlook,winword : 3904,18376; 
      csrss,netscape,outlook,winword : 3909,18413; 
      csrss,netscape,outlook,winword : 3909,18397; 
      csrss,netscape,outlook,winword : 3909,18379 > ] & 
 [event_status = < c,o : 3997,22090; c,o : 3997,22113; c,o : 3997,22123; * > ] & 
 [proc_cpu_time_in_win_lf = < 0.3466..4.049 : 3611,12784; *; *; lt_3.916 : 3994,20119 > ] & 
 [win_time_elapsed_lf = << gt_3.337 : 3251,13713 (1) >> ] & 
 [delta_time_new_window = << lt_1800 : 3985,21445 (1) >> ] & 
 [delta_time_new_window_lf = <<lt_7.748 : 3987,21518 (4) >> ] & 
 [new_win_time_elapsed = <<300..18000 : 3954,16719 (4)>>] & 
 [prot_words_chars = << lt_20 : 3980,17938 (1) >> ] & 
 [proc_count_in_win_lf = << gt_4.063 : 3060,7992 (1) >>] & 
 [win_opened_lf = < <1.498..2.636 : 3600,13531 (4) >> ]  
        p = 2419, n = 0, P = 4000, N = 25173  

Figure 9:  A multistate template characterizing User4’s activity. 

During the course of this research, we tried many experiments with many different sets of 
parameters.  In general, we used AQ21 to learn rules from which templates were formed, and 
then the EPIC program to test and classify.  EPIC is an episode classifier; rather than classify 
individual events, it looks at the episode (a temporal sequence, typically a user session) as a 
whole, and sees which model best matches the entire episode. 

Figure 10 shows the predictive accuracy of user models when they were matched against the 
testing data streams of the users (by “First Choice Correct” is meant the percentage of cases 
in which the degree of match between the testing data stream and the correct user model was 
the highest among all models). 

 

Figure 10:  First choice predictive accuracy of the user models. 
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Overall, 75% of the test episodes were correctly classified as EPIC’s first choice.  Whenever 
that was a reasonable similarity between training and testing data, the test episode was 
correctly classified.  Of course, if no such similarity exists, no classifier will do well.  Figure 
11 presents a graphical representation how five of User25’s testing episodes performed 
against the ten user models.  The target model (User25) appears in black on the bar graphs. 
As one can see, the best match always indicates the correct user.  

 

Figure 11:  Classification of User25 test episodes. 

Although these experiments have explored only a very small subspace of possible 
experiments on learning and testing of the developed user modeling methods, they show that 
the presented method can lead to an effective system for user modeling and intrusion 
detection under the following conditions: 

• Sufficient training data for each user is available 

• The target training data set for each user is appropriately determined 

• The user’s future behavior is “reasonably” similar to that recorded in the training data 
stream. 

Details on this research are described in (Michalski et al. 2005). 

8 AN EXAMPLE OF APPLICATION TO COMPLEX FUNCTION 

OPTIMIZATION  

This section describes how natural induction was applied to guide evolutionary optimization 
of complex functions.  The idea of guiding evolutionary optimization by machine learning 
has been embodied in Learnable Evolution Model (LEM), invented by Michalski; U.S. patent 
No 6,518988. The introductory paper on LEM (Michalski, 2000) is downloadable from 
www.mli.gmu.edu.   
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The novel idea in LEM is to apply machine learning at each stage of evolution to create 
hypotheses indicating subspaces of the search space that most likely contain the desirable 
solution. Instead of relying on blind operators of random mutations and/or recombinations, 
LEM applies hypothesis formation and instantiation operators, and thus constitutes a form of 
non-Darwinian evolutionary computation.   

The newest implementation of LEM, called LEM3, employs AQ21 natural induction 
program for learning hypotheses, and was successfully applied to optimization of functions 
with the number of arguments (variables) ranging between 2 and 1000.  In all our 
experiments on function optimization, LEM3 outperformed (sometimes by an order of 
magnitude or more) every tested method of conventional evolutionary computation in terms 
of the evolution length, measured by the number fitness function evaluations needed to 
achieve the same result (Wojtusiak and Michalski, 2006).   

A particularly significant result of these experiments was that the LEM3’s advantage over 
compared other evolutionary computation methods in terms of evolution length grew with 
the number of variables. This implies that LEM3 may be particularly advantageous for 
optimizing very complex functions. 

A typical example of LEM3 performance is shown below, in which LEM3 was compared to 
EA, a standard evolutionary computation method, on the problem of optimizing the Rastrigin 
function of 500 variables.  The Rastrigin function is defined by the equation: 
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The two dimensional case of the Rastrigin function (n=2) is illustrated on Figure 12. 

 

Figure 12: The Rastrigin function of 2 variables (from Wojtusiak and Michalski, 2005). 
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Figure 13 shows the performance of EA and LEM3. As one can see, results from EA and 
LEM3 were converging very fast toward the optimum (the value “0”) at the very beginning 
of the evolutionary computation. After this early phase, however, EA started to converge 
very slowly, while LEM3 continued to converge relatively fast.  LEM3 reached the =0.1-
close solution3 after 5252 fitness function evaluations while EA reached the same solution 
after 128,184 evaluations (an average of 10 runs).  The evolutionary speedup of LEM3 over 
EA for =0.1 was thus about 24.    
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Figure 13: The LEM3 and EA evolutionary computation in minimizing  
the Rastrigin function of 500 variables (from Wojtusiak and Michalski, 2005). 

For a detailed description of these experiments, see (Wojtusiak and Michalski, 2005; 2006). 

9 AN EXAMPLE OF APPLICATION TO COMPLEX SYSTEM OPTIMIZATION  

This example concerns the application of learnable evolution to the optimization of designs 
of heat exchangers used in refrigerators and air conditioners.  A heat exchanger is a complex 
arrangement of tubes carrying a refrigerant (Figure 14).  The optimization task is to configure 
the connection of tubes in a way that maximizes capacity of the heat exchanger for the 
technical parameters of the exchanger, such as number and configuration of tubes, and for the 
given environmental conditions. 

This is a very complex, but practically very important optimization problem.  Because of the 
ubiquity of heat exchangers, even a small improvement in their capacity may lead to huge 
economic and environmental benefits.  For this optimization task, we developed a task-
specific system, ISHED, that conducts optimization through evolutionary computation 
performed according to Learnable Evolution Model (LEM; Michalski, 2000).  

————— 
3  A δ -close solution is a distance between the solution and the optimal solution normalized by the value of the fitness 
function for the best individual in the initial population. 
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As mentioned earlier, LEM is a form of evolutionary computation in which the process of 
creating new individuals (here, designs) is guided by hypotheses created by a learning 
system. These hypotheses indicate the types of changes in the designs that will likely 
improve them. 

 

Figure 14:  An example of a heat exchanger. 

This work has been conducted in collaboration with the National Institute of Standards and 
Technology (NIST).  In experiments conducted by NIST, the ISHED system has generated 
designs that matched or outperformed the best human designs (Domanski et al., 2004).  NIST 
is now trying to popularize ISHED among commercial companies. 

10 AN EXAMPLE OF APPLICATION TO MANUFACTURING 

The goal of these experiments was to assist a manufacturer in designing gearboxes meeting 
customer specifications.  The customers provide specifications of the gearbox they need, 
which may include the size, mount, motor, flange, variable speed drive, gear ratio, and model 
number.  Given such a specification, the manufacturer must either look up the components of 
that gearbox or, if no gearbox with those specifications has previously been developed, 
determine the components needed to build the requested gearbox (e.g., which shaft, which 
flange, which lubricant).  This research developed an inductively learned rule base that 
provides assistance in this regard.  It was conducted in collaboration with Lenze GmbH & Co 
KG, Germany. 

Figure 15 shows examples of rules for selecting the Schnekenwelle (worm shaft) learned by 
AQ learning system (AQ19). For instance, the first rule says to use part number 00650943 
for the worm shaft when the requested gear ratio is 5 and the model number is 104, 105, 113 
or 145. Other rules are interpreted similarly. 
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 [Schneckenwelle = 00650943]  <= [Ratio = 5]      & [Model=104,105,113,145] 
    00650944]  <= [Ratio = 7]      & [Model=104,105,113,145] 
    00650945] <= [Ratio = 10]    & [Model=104,105,113,145] 
    00650946] <= [Ratio = 13]    & [Model=104,105,113,145] 
    00650947] <= [Ratio = 15]    & [Model=104,105,113,145] 
     00650948] <= [Ratio = 20]    & [Model=104,105,113,145] 
    00650949] <= [Ratio = 26]    & [Model=104,105,113,145] 
    00652155] <= [Ratio = 5]      & [motor size = 80] 
    00652156] <= [Ratio = 7]      & [motor size = 80] 
    00652157] <= [Ratio = 10]    & [motor size = 80] 
    00652158] <= [Ratio = 13]    & [motor size = 80] 
    00652159] <= [Ratio = 15]    & [motor size = 80] 
    00652160] <= [Ratio = 20]    & [motor size = 80] 
    00652161] <= [Ratio = 26]    & [motor size = 80] 
    00652143] <= [Ratio = 5]      & [motor size = 90] 
    00652144] <= [Ratio = 7]      & [motor size = 90] 
    00652145] <= [Ratio = 10]    & [motor size = 90] 
    00652146 ] <= [Ratio = 13]    & [motor size = 90] 
    00652147] <= [Ratio = 15]    & [motor size = 90] 
    00652148] <= [Ratio = 20]    & [motor size = 90] 
    00652149] <= [Ratio = 26]    & [motor size = 90] 

Figure 15:  Examples of discovered rules for assigning the correct Schnekenwelle  
(worm shaft) when given the gear ratio and model number or motor size. 

Some of the discovered rules, such as those in Figure 15, were straightforward.  For the 
requested size or gear ratio, certain parts were dictated.  Other rules were more complex.   

The rules learned by the program provided insights into the relationships and constraints of 
the gearbox manufacturing domain, and even exposed some errors in the data that had been 
provided. The learned classifier (a family of rulesets for different components) was able to 
select components with guaranteed 100% accuracy. Such high accuracy was possible because 
the data from which the classifier learned the rules included all known cases, and the natural 
induction program was run in the theory formation mode that generates descriptions that are 
fully complete and consistent with all the training data.  This result was highly satisfactory 
for the Lenze company, not only because of the 100% accuracy of the rules, but also because 
they were so easy to interpret. 

11 AN EXAMPLE OF APPLICATION TO CIVIL ENGINEERING 

The research described in this section was conducted by Professor Kasperkiewicz and his 
team at the Institute of Fundamental Technological Research, Polish Academy of Sciences, 
in collaboration with the Machine Learning and Inference Laboratory. 

One of the problems to which they applied our natural induction technology was to discover 
rules for distinguishing between different types of concrete, which are determined by the 
additives used in it.  In the experiments described here, the goal was to identify concrete with 
silica fume as an additive.  Results of the analysis were used to ascertain that silica fume was 
used as an additive as claimed. 
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The data was collected using acoustic emission sensors, and preprocessed using a wavelet 
transformation to obtain 10 input attributes: the nominal attribute “Class” with the domain 
{Cement Paste, Interface region, Aggregate, Void}, and nine numeric attributes such as the 
number of cases measured (Lzd), average energies (Sen), and average amplitudes (Saz) in 
three energy bands (H, M, L), and other.  A decision attribute, “Composition,” has the three-
valued domain {silica, no additives, pfa}.  The training dataset consisted of 500 examples, 
with 302 examples in which silica was present, and the rest in which silica was not present. 

Here is one of the strong patterns discovered by the AQ learning program (version AQ19) in 
this dataset: 

[Composition=silica] <= [IzdM=23..233.5] & [SazM<28] 

stating that concrete with silica as an additive is indicated if the number of events medium 
level (LzdM) is between 23 and 233.5, and the average amplitude of medium level signals 
(SazM) is smaller than 28. 

This result was determined by the expert to be “more suitable” for use than the one obtained 
by the well-known and widely used commercial learning program See5 (Kasperkiewicz, 
2005).  Professor Kasperkiewicz and his research team have also applied the AQ natural 
induction method to several other civil engineering problems (e.g., Kasperkiewicz, 2003). 

12 AN EXAMPLE OF APPLICATION OF CONCEPTUAL CLUSTERING  TO 

AGRICULTURE 

An important question in the research on unsupervised learning is how well classifications 
discovered by a learning program correspond to categorizations developed by experts.  This 
problem was investigated by applying conceptual clustering program CLUSTER/2 developed 
in our laboratory and 18 other numerical taxonomy techniques (implemented in the NUMAX 
system) to an unclassified version of the soybean disease data that was the basis for the 
experiments presented in Section 4.  The goal of the experiments was to see if the clustering 
program would re-create a classification of four selected diseases, Diaporthe stem canker 
(denoted D1), Charcoal rot (D2), Rhizoctonia root rot (D3), or Phytophtora rot (D4) on the 
basis on examples of these diseases without telling the program which disease these 
examples represent.  The experiment used 47 cases of the above diseases, described by 35 
mutli-valued attributes. 

Only 4 of the 18 taxonomies created by the NUMAX program matched exactly the correct 
classification.  None of the techniques used by the program provided any description of the 
created classes. 

CLUSTER/2 reconstructed the classification of the diseases without a single error, and 
provided descriptions of individual classes. For example, Figure 16(a), shows the description 
of the cluster generated by CLUSTER/2 that corresponds to D1.  Figure 16(b) shows a plant 
pathologist’s description of the symptoms of D1, which is called by experts Diaporthe stem 
canker. 

As one can see from Figures 16 (a) and (b), the program-generated description for cluster D1 
corresponds well to the expert description.  The program’s description contains all the 
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symptoms specified by the expert, plus additional conditions that were added as they were 
observed in the input data. 

  
[Precipitation = Above normal] &   [Precipitation = Normal or Above] & 
[Temperature = Normal] &    [Temperature = Normal or Above] & 
[Stem Cankers = Above 2nd node] &  [Stem Cankers = Above 2nd node] & 
[Canker Lesion Color = Brown or N/A] & [Canker Lesion Color = Brown] & 
[Fruiting Bodies = Present] &    [Fruiting Bodies = Present] & 
[Condition of Fruit Pods = Normal] &  [Condition of Fruit Pods = Normal] & 
[Time of Occurrence = Jul-Oct] &   [Time of occurrence = Aug-Sep] 
[Damaged Area = Scattered or Low] & 
[Severity = Potential or Severe] & 
[Seed Treatment = None or Fungicide] & 
[Plant Height = Abnormal] & 
[Condition of Leaves = Abnormal] &  
[Leaf Spots = Absent] & 
[Shotholing/Shreading = Absent] & 
[Leaf Malformation = Absent] & 
[Leaf Mildew Growth = Absent] & 
[Condition of Seed = Normal] & 
[Condition of Stem = Abnormal] & 
[Extern. Stem Decay = Firm and Dry] & 
[Mycelium on Stem = Absent] & 
[Int. Discolor of Stem = None] & 
[Sclerotia int. or ext. = Absent] & 
[Condition of Roots = Normal] & 
[Plant stand = Normal] 

  (a) A CLUSTER/2-generated description          (b) An expert-provided description 

Figure 16:  Two descriptions of Diaporthe stem canker in soybeans. 

This is a very satisfactory result, because it shows that the conceptual clustering program not 
only reconstructed correctly experts’ classification of the diseases on the basis of a limited 
sample of data, but also created descriptions of diseases that match well their expert-provided 
characterizations.  For more details on this research and on conceptual clustering, consult 
(Michalski and Stepp, 1983a,b; Seeman and Michalski, 2006). 

13 AN EXAMPLE OF APPLICATION TO MUSICOLOGY 

This section describes an application of conceptual clustering to determining a classification 
of Spanish songs.  The dataset, provided by musicologist Pablo Poveda (Poveda, 1980), 
consists of descriptions of 100 Spanish songs in terms of 22 attributes, some are binary, some 
multi-valued, and some continuous.  The clustering evaluation criterion was to seek clusters 
whose description had minimum sparseness, (defined as the ratio of the number of examples 
covered the description and the number of  all possible examples that could satisify this 



 

 24 

description).  The taxonomy automatically generated by the conceptual clustering program is 
shown in Figure 17. 

 

Figure 17:  A classification hierarchy of Spanish folk songs produced by conceptual 
clustering (figure reproduced from Michalski and Stepp, 1983a). 

At the top level, the songs are divided into monophonic and polyphonic harmonic structures.  
The monophonic songs are then divided into those with low or high degrees of rubato, while 
the polyphonic ones are subdivided according to their degrees of embellishment.  The full 
taxonomy divides the songs into a total of 11 classes, each consisting of between 5 and 17 
songs, as indicated by numbers associated with the leaves of the hierarchy.  By tracing 
branches from the root to the leaves, one can create a description of classes of songs 
associated with different leaves. 

This result was highly evaluated by the musicologist, because it corresponds well to his own 
sense as to how best to classify the songs.  He was particularly pleased by the fact that he 
could see an understandable description of each class of songs generated by the program, in 
contrast to the taxonomy he had obtained using a conventional, similarity-based clustering 
program that did not provide such descriptions. 

14 AN EXAMPLE OF APPLICATION TO TAX FRAUD DETECTION 

In these experiments, done by our student Scott Fischthal at Lockheed Martin Corporation, 
conceptual clustering and natural induction were combined to develop rules for detecting tax 

Monophonic   Polyphonic 

Secular   Religious 

Low   
Tonal 

Range 
4-7 

Instruments? 

No   Yes (Singers) 

Same  Mixed 

   Sex  Sexes 

Low   
Rubato 

0-3 

High  
Rubato 
4-5 

High 
Tonal 
Range 
8-11 

Low   
Embellishment 

0-1 

High  
Embellishment 
2-4 

Low No.   
of Tones 

5-7 

High No. 
of Tones 
8-10 

Low   
Melisma 

0-1 

High  
Melisma
2-3 

Low   
Tonal 

Range 
5-6 

High 
Tonal 
Range 
7-11 

No. of 
Songs: 

α1         α2  α3         α4  α5         α6  α7         α8      α9        α10      α11 

8          9  5          12  17        10        10          7     6           5     15 



 

 25 

fraud.  In this approach, data (tax returns) were grouped by a conceptual clustering program, 
and then supervised learning was applied to examples of known fraud in .each group, in 
order to generate simple rules distinguishing regular and fraudulent tax forms within each 
group.  These rules were finally applied to new tax returns.  Figure 18 depicts this 
methodology. 

 

Figure 18:  Clustering and rule learning for tax fraud detection  
(the diagram made by Scott Fischthal). 

These experiments created different groups of taxpayers, and among them found a cluster 
with a much higher percentage of tax violators than in other clusters (Figure 19). 

 

Figure 19:  Distribution of filers and cases of fraud among the discovered groups  
(result by Scott Fischthal). 
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The above figure shows that taxpayers with the profile satisfying the description of the 
discovered cluster on the right of the figure are much more likely to submit a fraudulent tax 
form return than those that do not satisfy that description. 

15 COMPARING NATURAL INDUCTION WITH OTHER METHODS ON A 

SIMPLE DESIGN PROBLEM 

15.1   Problem Definition 

In order to help the Reader get a quick insight into the natural induction capabilities of the 
AQ21 program and those of some other well-known learning programs, we designed a 
simple, easy to understand problem.  In this problem, given entities are described in terms of 
the attributes presented in Figure 20. 

Attribute       Type            Domain 

Condition  discrete {rain, cloudy, sunny} 
Wind   nominal  {no, yes} 
Temperature discrete {very_low, low, medium, high} 
Daytype  nominal  {workday, weekend} 
Activity  nominal  {Play, Shop, Read} 

Figure 20:  Attributes, their types, and their domains. 

“Activity” is an output attribute that characterizes the activity of a person during a given time 
interval, and is assumed to be a function of the remaining (input) attributes.  Suppose that our 
task is to discover a general rule characterizing the dependence of the activity “Play” on the 
input attributes, on the basis of examples that link different activities to the sets of input 
attribute values (training examples).  Figure 21 presents a General Logic Diagram spanned 
over the input attributes and the examples of three classes P (Play), S (Shop), and R (Read).   

 

C – Condition, W – Wind, T – Temperature, D – Daytype, r – rain, c – cloudy, s – sunny, 
n – no, y – yes, v – very low, l – low m – medium, h – high, o – workday, e – weekend, 

P – play, R – read, S - shop 

Figure 21:  A GLD with 22 examples of different values of the Activity attribute. 
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Each cell of the diagram corresponds to one combination of input attribute values (an event).  
Training examples are represented by placing in the cells the first letter of the activity 
associated with the events the cells represent.  Empty cells indicate events for which activity 
is unknown and will be hypothesized through learning.  

15.2  Solutions to the Problem by Different Learning Programs 

To the problem described above, we applied the AQ21 program and some well-known 
programs, specifically, C4.5 (Quinlan, 1993), RIPPER (Cohen, 1995), and CN2 (Clark and 
Niblett, 1989).  The results are as follows. 

Figure 22 presents a decision tree and Figure 23 a set of rules determined by C4.5.  Both the 
decision tree and the rules were partially inconsistent with the training data.  In the case of 
decision rules, the activity “Play” is defined partially explicitly and partially implicitly.  The 
implicit value “Play” is a default decision that is assigned when the event to be classified 
does not satisfy the conditions stated explicitly. 

Condition = rain: shop (7.0/3.4) 
Condition = cloudy: 
|   Temperature = very_low: read (2.0/1.0) 
|   Temperature = low: read (1.0/0.8) 
|   Temperature = medium: play (3.0/1.1) 
|   Temperature = high: play (3.0/2.8) 
Condition = sunny: 
|   Temperature = very_low: shop (2.0/1.0) 
|   Temperature = low: shop (1.0/0.8) 
|   Temperature = medium: play (1.0/0.8) 
|   Temperature = high: play (2.0/1.0) 

Figure 22:  A decision tree learned by C4.5. 

Condition = cloudy & temperature = medium 
->  class play  [63.0%] 
Condition = sunny & temperature = high 
->  class play  [50.0%] 
Condition = rain  
->  class shop  [51.2%] 
Condition = sunny & temperature = very_low 
->  class shop  [50.0%] 
Temperature = very_low 
->  class read  [35.2%] 
Temperature = low  
->  class read  [31.4%] 
Default class: play.  

Figure 23:  Decision rules derived by C4.5 from the C4.5 decision tree. 

The RIPPER program applied to the same dataset determined the rules presented in Figure 
24.  These rules need to be evaluated sequentially. For example, to determine the activity 
“Play,” it is first necessary to evaluate two rules for activity “Read”, and if they are not 
satisfied, then “Play” is assigned. 
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read :- Temperature=very_low (3/2). 
read :- Temperature=low (2/1). 
play :- Condition=sunny (3/0). 
play :- Condition=cloudy, Wind=no (2/0). 
Play :- Condition=cloudy,Temperature=medium (2/0) 
default shop (6/1). 

Figure 24:  Rules learned by RIPPER. 

Decision rules determined by the CN2 program are presented in Figure 25 

IF    Condition = cloudy AND temperature = medium 
THEN  Activity = play  [3 0 0] 
IF    Condition = sunny AND temperature = high 
THEN  Activity = play  [2 0 0] 
IF    Condition = sunny AND temperature = medium 
THEN  Activity = play  [1 0 0] 
IF    Wind = no AND temperature = high AND   
      Daytype =weekend THEN activity =play[1 0 0] 
IF    Condition = rain AND temperature = medium 
THEN  Activity = shop  [0 3 0] 
IF    Condition = sunny AND temp = very_low 
THEN  Activity = shop  [0 2 0] 
IF    Condition = rain AND temperature = high 
THEN  Activity = shop  [0 2 0] 
IF    Wind = no AND temperature = low 
THEN  Activity = shop  [0 1 0] 
IF    Condition = cloudy AND wind = yes 
  AND Temperature = high AND daytype = weekend 
THEN  Activity = shop  [0 1 0] 
IF    Condition = cloudy  
  AND Temperature =very_low 
THEN  Activity = read  [0 0 2] 
IF    Wind = yes AND temperature = low 
THEN  Activity = read  [0 0 2] 
IF    Condition = rain AND temperature = very_low 
THEN  Activity = read  [0 0 1] 
IF    Wind = yes AND temperature = high 
      AND Daytype = workday 
THEN  Activity = read  [0 0 1] 
(DEFAULT) Activity = shop  [7 9 6]  

Figure 25:  Rules determined by CN2. 

The subsequent Figures 26, 27, 28, and 29 present different types of rules learned by AQ21.  
Section 14.4 summarizes the predictive accuracy of the descriptions generated by different 
programs for the training and testing data sets.   

In these experiments, the testing set consisted of all events that are represented by empty 
cells in Figure 21 (events with unknown classification).  The predictive accuracy on the 
testing set thus evaluates the quality of generalization performed by the different programs. 

The presented results from AQ21 were obtained by requesting from it different types of 
descriptions. When instructed to determine strong patterns for the Activity “Play,” AQ21 
determined the pattern presented in Figure 26. 
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 [Activity=play]  
<= [Condition=cloudy v sunny: 7,8] & 

   [Temperature=medium v high: 7,7]: 
   p=7,n=2,QUALITY=0.67 

Figure 26:  A strong pattern for Activity “Play” determined by AQ21. 

The pattern consists of a single attributional rule stating that the activity is “Play” if the 
weather is cloudy or sunny, and the temperature is medium or high.  The rule covers 7 
positive and 2 negative examples, and its quality, q(w), is 0.67, where w takes the default 
value 0.5 (which requests putting an equal emphasis on completeness and confidence 
criteria).  

Numbers inside conditions represent positive and negative coverages of the conditions, 
considered individually.  The pattern is graphically illustrated in Figure 27. 

 

C – Condition, W – Wind, T – Temperature, D – Daytype, r – rain, c – cloudy, s – sunny, 
n – no, y – yes, v – very low, l – low, m – medium, h – high, o – workday, e – weekend, 

P – play, R – read, S - shop 

Figure 27:  GLD showing the strong pattern discovered by AQ21. 

As one can see in Figure 21, two examples included in the pattern (one R and one S) do not 
represent “Play” activity. They are exceptions from this simple pattern. 

AQ21 allows the user to control the tradeoff between completeness and confidence of 
patterns by adjusting parameter w in the pattern quality measure q(w) (Michalski and 
Kaufman, 2001).  When setting the w parameter to 0.15, AQ21 found two rules presented in 
Figure 28 and graphically in Figure 29.  The two-rule pattern is consistent with data but 
incomplete, because one training example, the (c,h,n,e) example as seen in Figure 29, is not 
covered by the learned rules. 

It may be illustrative to note that by reducing w to 0, a complete and consistent ruleset would 
be obtained. Such a ruleset could be directly obtained by executing AQ21 in Theory 
Formation mode (rather than Pattern Discovery mode, used here). 
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[Activity= Play] 

<= [Condition=cloudy v sunny: 7,8] & 
   [Temperature=medium: 4,3]: 
   p=4,n=0,QUALITY=0.919 

<= [Condition=sunny: 3,3] & 
   [Temperature=medium v high:7,7]: 
   p=3,n=0,QUALITY=0.881 

Figure 28:  Rules hypothesized by AQ21 for w = .15. 

 
C – Condition, W – Wind, T – Temperature, D – Daytype, r – rain, c – cloudy, s – sunny, 
n – no, y – yes, v – very low, l – low, m – medium, h – high, o – workday, e – weekend, 

P – Play, R – Read, S - Shop 

Figure 29: A visualization of AQ21 rules presented in Figure 28   
using General Logic Diagram.  

15.3   Learning Rules with Exceptions 

The concept of an “exception” is commonly used by people when describing anomalies 
rarely occurring in comparison to other features in phenomena being described.  It is not 
unusual that a simple theory may work well for most cases, but turning it into a fully 
consistent and complete theory would require making it significantly more complex. In such 
cases, it is desirable to learn rules with exceptions (e.g., Michalski, 2004; Yao et al, 2004).  
AQ21 can be set to learn rules with exceptions in the following form: 

CONSEQUENT <= PREMISE |_ EXCEPTION 

where EXCEPTION is either an attributional conjunctive description, or a list of examples 
constituting exceptions to the rule.  Note that exceptions in such rules are always negative 
examples that haven been included in PREMISE.   

The processes of learning rules with exceptions in Theory Formation and Pattern Discovery 
modes are different.  In the latter mode, where inconsistency is allowed, the program learns 
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standard patterns and generates exceptions representing covered negative examples, by 
finding a conjunctive description of the negative examples using AQ learning. 

In Theory Formation mode, where consistency is guaranteed, the program adds negative 
examples to the list of exceptions if such examples are infrequent, but would introduce 
significant complexity to a description that does not cover them.  If all of the exceptions can 
be characterized by one conjunctive description, such a description is used as the exception 
clause in the rule; otherwise, an explicit list of exceptions is outputted. 

AQ21 applied to the same data as above produced the rule with EXCEPTION presented in 
Figure 30.   

[Activity=Play] 
  <=  [Condition=cloudy v sunny: 7,8] & 
   [Temperature=medium v high: 7,7] 
  |_ [Condition=cloudy] & [Wind=yes] & [Temperature=high] 
   :p=7,n=0,QUALITY=1 

Figure 30:  Strong pattern with exception found by AQ21. 

The rule states that activity is “Play” if weather is cloudy or sunny and temperature is 
medium or high, unless weather is cloudy, there is wind, and temperature is high.  

Figure 31 shows a generalized logic diagram (GLD) representation of the rule presented in 
Figure 30.  The two highlighted examples representing “Shop” (S) and “Read” (R) activities 
are treated as exceptions to the general pattern for the play activity. 

 

C – Condition, W – Wind, T – Temperature, D – Datyime, r – rain, c – cloudy, s – sunny, 
n – no, y – yes, v – very low, l – low, m – medium, h – high, o – workday, e – weekend, 

P – Play, R – Read, S - Shop 

Figure 31:  GLD showing the strong pattern with exception found by AQ21. 

AQ21 generalized the two exceptions into one conjunctive description: 

[Weather=cloudy] & [Wind=yes] & [Temperature=high]. 
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In the case that the two examples could not be generalized into one conjunctive description, 
the program would have listed them explicitly: 

cloudy, yes, high, yes,   shop 
cloudy, yes, high, no,    home. 

This simple example shows that the introduction of rules with exceptions may produce 
descriptions that are simpler, more accurate, and more comprehensible than descriptions 
without exceptions. 

15.4  Discussion of Results 

This discussion evaluates results obtained by different programs in terms of two criteria: the 
simplicity of the descriptions learned and the error rate on the training data (there was no 
testing data in this problem).  

The C4.5 program generated a decision tree with 3 internal nodes and 11 branches from the 
given training data (22 examples). When applied to this data, it made 4 classification errors 
(18%). The C4.5 rules (7 rules), generated from the decision tree, made 5 classification errors 
(23%) on the training dataset.  

RIPPER generated 6 rules, which made also 4 errors (18%) on the training data.  CN2 
generated 13 rules that were complete and consistent with the data (no errors on the training 
dataset), but constituted a much more complex description (13 rules). 

AQ21, run in Pattern Discovery mode (using the default value of w=0.5), generated only one 
strong pattern that covered all positive examples (a complete description), but also covered 2 
examples of other classes (9% error on the training set).  When executed with w=0.15, AQ21 
produced a consistent description and nearly-complete, as it missed only one example of 
activity “Play” (4.5% error). When run in Theory Formation mode, AQ21 generated three 
simple rules (as compared to 11 rules learned by CN2), which constituted a complete and 
consistent generalized description of the training data (0% errors).   

When run in the mode generating censored rules (rules with an exception clause), AQ21 
discovered one censored rule that was also complete and consistent with regard to the 
training data (0% errors).  None of the compared programs, except AQ21, had the ability to 
determine patterns describing only one class, but always generate a description for all 
classes. 

The accuracies of the descriptions obtained by different methods are summarized in Table 2.  
As one can see, in this simple example, AQ21 produced both more accurate and simpler 
concept descriptions or patterns than the other programs. These results can be attributed to 
the richer representation language that is used by this program. Using more expressive 
representation language makes possible for the program to generate simpler hypotheses and 
also in the forms easier to understand and interpret in natural language.  AQ21 also allows 
the user to control the type of description to be learned, by choosing the mode of program 
operation and by appropriately setting the parameter w in the measure of description 
QUALITY . The latter determines the relative importance given to coverage and confidence of 
the rules to be learned.  
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Table 2:  Comparison of the performance of different learning methods. 

         Training      Testing 
     “Play”    All Classes    Play”    All Classes 
 
C4.5    100%  81.8%    100%    76.9% 
C4.5Rules    100%  77.3%    100%    65.4% 
RIPPER   100%  77.3%    100%    80.8% 
CN2    100%  100%       85.8%    80.8% 
AQ21 PD Play  100%  90.91%    100%   100%  
AQ21 Ex. Play  100%  100%    100%   100% 
AQ21 Ex. All  100%  90.91%*     100%   100% 
AQ21 PD All  100%  90.91%    100%   100% 
AQ21 TF   100%  100%    100%**   100% *** 

___________________________________________________________________________ 

* 2 events (exceptions) classified as “do not know” (which is treated by the current 
ATEST testing program as wrong classification) 

** with Precision of 81.25% 
*** with Precision of 89.29% 
 (Precision less than 100% indicates that another class was also indicated; Wojtusiak, 2004) 
 

Although it was not mentioned in the paper before, AQ21 also allows the user to define a 
multi-criterion measure of the description optimality, which the user can assemble using 
predefined elementary criteria. This feature can be useful when different criteria of 
description optimality are most suitable for different problems.  In the described experiments, 
we used a default setting of this measure.  

16 COMPARING CONCEPTUAL CLUSTERING WITH CONVENTIONAL 

CLUSTERING ON A SIMPLE DESIGN PROBLEM 

To give the reader an insight into the differences between conceptual clustering and a 
conventional, similarity-based clustering, this section describes an application of both 
methods to a very simple designed problem (it is based on Seeman and Michalski, 2006). 

The objects in the dataset to be clustered are described by the following four multi-valued 
attributes, with domains denoted by {}: X1: {0,1,2}, X2: {0,1,2}, X3: {0,1,2,3}, and X4: 
{0,1}.  The dataset consists of 21 tuples (vectors of attribute values) that are represented by a 
“1” in the diagram in Figure 32(a).  

The dataset was clustered by CLUSTER3, our newest implementation of conceptual 
clustering, and by the KMlocal program that implements Lloyd’s conventional clustering 
algorithm (Kanugo et al., 2002).  The Lloyd’s algorithm assigns observations to clusters 
using the minimum Euclidean distance between the observation and the cluster centroids.  
Both KMlocal and CLUSTER3 were run with default parameters. The number of clusters 
was set to 3 for both programs. 
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The three simple disjoint cluster descriptions produced by CLUSTER3 are listed, and 
represented visually by the GLD in Figure 32(a).  A similar GLD in Figure 32(b) indicates 
the results of the KMlocal application.  In Figure 32(a), ellipses indicate the conceptual 
descriptions of the clusters; no ellipses are shown in Figure 32(b), because KMlocal creates 
groups of datapoints, but does not describe them.  In Figure 32(b), the number of the cluster 
to which events have been assigned is indicated in the upper right-hand corner of the cells 
representing events in the data. 

         

(a) Clusters generated by CLUSTER3   (b) Clusters generated by KMlocal  

Figure 32: A GLD representation of clusters of the designed dataset. 

As seen in Figure 32, clusters produced by KMlocal and CLUSTER3 are similar, except for 
the event (0,0,1,1) which was assigned to cluster 0 by CLUSTER3, and to cluster 2 by 
KMlocal. The difference in the assignment was due to the value of X2 for this event.  
CLUSTER3 included this event in cluster 0, because it can be described together with other 
events of cluster 0 by one simple description (X1 = 0 or 1, and X3 = 0 or 1).  The simplicity 
of this description was considered more important than a small difference in the Euclidean 
distance.       

This above illustrates two important differences between CLUSTER3 and KMlocal in that 
the former produces descriptions of clusters it generates, while the latter does not, and that 
properties of the description (e.g., its simplicity and the sparseness of events in it) is taken 
into consideration when creating clusters.  

Another difference is that descriptions produced by CLUSTER3 are generalizations of 
events, in the sense that they not only cover the events in the dataset, but also cover 
unobserved events.  This way, new events can be easily classified to an appropriate category 
simply by determining which description it matches.  For example, the event (0,2,1,1), not 
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present in the data, would be classified to Cluster 0 because it satisfies the description of that 
cluster.  In contrast, in the case of KMlocal, to determine whether this event should be 
classified to Cluster 0 or to Cluster 2 would require a re-execution of the KMlocal upon the 
entire dataset. 

17 CONCLUSION 

This paper reviewed examples of application of natural induction and conceptual clustering 
to a wide range of real-world problems. The presented results show that in every application, 
natural induction was able to hypothesize general descriptions or patterns in data that had 
high predictive accuracy and were also simple and easy to interpret.  

The differences between natural induction and several well-known methods were illuminated 
by comparing the method of natural induction implemented in the AQ21 program with 
several well-known methods on a simple designed problem. The final section also provided a 
very simple illustration of the differences between conceptual clustering and conventional 
similarity-based clustering.   

For technical details on the methods of natural induction and conceptual clustering employed 
in the applications described here, visit http://www.mli.gmu.edu.  This site has many papers 
on these methods and their various implementations. It also contains downloadable program 
AQ21.  For the current version of program CLUSTER3, which is still under development, 
contact MLI system manager Janusz Wojtusiak (jwojt@mli.gmu.edu), or Ryszard Michalski, 
PI of the grants that supported this research (michalski@mli.gmu.edu). 

By demonstrating the applicability of the described methods to diverse real-world problems, 
we hope to invoke Readers’ interest in applying these methods to problems in their own 
fields. 
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