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Abstract

INNOVATION FROM A COMPUTATIONAL SOCIAL SCIENCE PERSPECTIVE:
ANALYSES AND MODELS

Randy M. Casstevens, PhD

George Mason University, 2013

Dissertation Director: Robert Axtell

Innovation processes are critical for preserving and improving our standard of living.

While innovation has been studied by many disciplines, the focus has been on qualitative

measures that are specific to a single technological domain. I adopt a quantitative approach

to investigate underlying regularities that generalize across multiple domains. I use a novel

approach to better understand the innovation process by combining computational models

with empirical data on software development, on one hand, and the evolution of the En-

glish lexicon on the other. Innovation can be viewed as the recombination and mutation

of existing building blocks. I focus on how building blocks are used to generate innova-

tions. The building blocks are pieces of code (e.g., functions or objects) for the software

development data and words for the written language. These data lie at extremes of time

scales: innovation occurring over the course of a few days or a week in the case of software

while language evolution occurs over decades or centuries. This allows the examination of

innovation processes that range from highly-constrained to completely open-ended. Com-

putational methods reinforce the findings from the data analyses and permit exploration of

the general features of innovation processes through the construction of abstract models.

The research in this dissertation may be of interest to several types of researchers and



here I hope to guide the reader to the most relevant chapters. For innovation researchers,

all chapters may be relevant while those most interested in empirical data analysis should

focus on Chapters 2 and 4 and for those interested in how those empirical results are

extended with computational models should explore Chapters 3 and 5. For computational

social scientists, Chapters 3 and 5 are most relevant because they present the results for the

computational models. For software engineering researchers, Chapters 2 and 3 contain the

results for the analyses and models of software development. Finally, for linguists, Chapter

4 contains the results for the analyses on word usage and growth.
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Chapter 1: Introduction

1.1 Motivation

Innovation is a driving force in the economies [1] across the world [2]. With a better under-

standing of how innovation progresses, insights on how to accelerate the rate of innovation

may be discovered. Agent-based models are a relatively new technique for modeling social

phenomena [3], suitable for representing social processes on a variety of scales [4]. This

flexibility of scale makes agent-based modeling a valuable tool for the study of innovation.

Innovation occurs at every level of society from the global community [5] [6] coming together

to address a global concern (e.g., international health [7] [8] [9] and climate change [10] [11])

to individuals searching for better solutions to their problems [12]. These agent-based mod-

els should be motivated by the real world, so empirical data analysis drives the design of

the models.

When an inventor creates an innovation, it is done using component parts from existing

products or processes [13]. Therefore, an evolutionary approach will be used in the modeling

approach. This means that a new innovation will be derived from a population of existing

goods. Also, there will be a selection process that chooses which goods make it to the next

generation. There has been much research by the evolutionary computation community

[14] [15] about these types of systems and its insightful experience will be used whenever

possible.

This research focuses on the collaborative side of innovation. As Arthur nicely stated:

“[A] single practitioner’s new projects typically contain little that is novel. But

many different designers acting in parallel produce novel solutions.” [13, pg.

101]
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Technological progress does not happen in isolation by a single individual. As discussed

later, Sawyer’s work [16] disputes the “myth of the solitary genius” as the primary source

of innovation. In additional to collaboration between individuals, innovation occurs with

the help of existing technologies as building blocks and apparatuses to aid in the creation of

something new [13]. This idea of recombining existing building blocks to create something

new will be a persistent thread throughout this dissertation. With this focus on the building

blocks of innovation, many different aspects of the innovation process can be quantitatively

explored, including the problem-solvers’ contributions, the problems being solved, and the

solutions that are created.

This dissertation explores two extreme types of innovation. The first is characterized

by a short-term process that has well-defined goals. The second is characterized by a long-

term process that has ever-changing and open-ended goals. Furthermore, another important

difference is that in the first type of innovation, the introduction of an innovation does not

influence the fitness of other innovations, but in the second type of innovation, the system

is co-evolutionary, thereby the introduction of a new innovation can change the fitness of

other innovations. As a result of this, the first type of innovation will have static fitness

landscapes and the second will have dynamic fitness landscapes.

The breakdown of fitness landscapes into static and dynamic provides the structure of

the dissertation. Chapters 2 and 3 explore the analysis and modeling of systems with static

fitness landscapes, respectively, while Chapters 4 and 5 explore dynamic fitness landscapes.

Chapter 6 concludes the dissertation by summarizing results and proposing directions for

future work.

1.2 Research Questions

Many disciplines have studied innovation, but generally focus on qualitative aspects of

the innovation process. Here I attempt to find quantitative approaches to the study of

innovation so that they can be applied to multiple technological domains. Therefore, the

central question being asked in this dissertation is:
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• What aspects of the innovation process can be studied quantitatively?

Since innovations are built from component parts, the quantitative study of innovation

requires an understanding of how building blocks are assembled, which leads to another

essential question:

• How are building blocks used during innovation processes?

This dissertation focuses on building blocks because they are important and little has been

done to understand the dynamics of how building blocks are used in real-world innovation

processes. Every innovation of any complexity is made up of component parts. Examples

of products without component parts include simple objects like a paperweight, which is of

little interest to researchers of innovation. This examination of building blocks has three

distinct aspects to study:

• The problem being solved

• The problem-solvers (i.e. the innovators)

• The solutions generated (i.e. the innovations)

Empirical data sets allows the exploration of all of these aspects, although not all of these

aspects can be studied for both data sets used in this dissertation.

Two empirical data sets are used to answer these questions: MATLAB programming

contest [17] data and word frequency data from the Google Books [18] project. The building

blocks are pieces of code (i.e., functions) for the programming contest data and words for the

word frequency data. Empirical data analysis and computational models complement each

other in this dissertation. With data analysis, the behavior of actual human problem-solvers

can be quantified and studied with statistical techniques. However, data analysis may not

provide a complete picture of the phenomenon under study. With computational models,

additional scenarios can be created and systematically studied. Furthermore, computational

models provide the ability to study the mechanisms behind the innovation processes.
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In the remainder of this chapter, a survey of various important theories about innovation

are introduced. By borrowing from the existing theories, a theory of innovation is developed

for this dissertation and will be discussed later in this chapter. These theories of innovation

will be used to generate specific research questions regarding building blocks that can be

tested with empirical data analysis and/or computational models.

1.3 Group Problem Solving

In this section, I provide an overview of research dealing with how groups solve problems.

Surowiecki’s book, “The Wisdom of Crowds” [19], describes the recipe for using a crowd

to make wise decisions. The other two books discussed in this section, “Group Genius”

by Keith Sawyer [16] and “The Rise of the Creative Class” by Richard Florida [20], center

around fostering creativity. Creativity will not play a key role in this dissertation, but the

research in this area provides insight into group problem solving.

1.3.1 “The Wisdom of Crowds” by James Surowiecki

Surowiecki [19] explains how groups of individuals can consistently perform better at a task

than any single individual in the crowd. He provides many examples of collective wisdom

and explains that there are two core characteristics of the crowd for it to be wise: diversity

and independence. Diversity of opinion ensures that each individual is using the private

information available to them. The works of Scott Page [21] [22] and Richard Florida [20]

have also stressed the importance of diversity. Independence of opinion ensures that each

individual does not become overly influenced by those around them. Both diversity and

independence are important because they prevent the errors of the individuals in the crowd

from becoming correlated [19].

The wise crowd must also be decentralized. This means that the individuals in the

crowd need to be able to use their local knowledge and specialize. The final component of

a wise crowd is having a mechanism to aggregate the thoughts of the individuals. Without

a method of aggregation, there is no way to generate the solution to the problem [19]. The
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programming contest data, discussed in detail in Chapters 2 and 3, allows the study of a

unique way of aggregating solutions from a crowd.

1.3.2 “Group Genius” by Keith Sawyer

In his book, Sawyer [16] disputes the “myth of the solitary genius,” where innovations are

created by a single individual working in isolation. His book focuses on group creativity

with much of his data analysis coming from creative performances, including jazz ensembles

and improv groups. Others have also suggested that creativity is not a solitary endeavor.

In Richard Ogle’s book entitled “Smart World” [23], he emphasizes the role of networks of

individuals and ideas in the creative process. Sawyer based his research on the research of

Mihaly Csikszentmihalyi [24] and developed what he calls “group flow” where groups can

coalesce [16].

In his book entitled “Flow: The Psychology of Optimal Experience” [24], Csikszentmi-

halyi describes the state of ‘flow’ as one when someone is totally absorbed in the task at

hand. Csikszentmihalyi [24] believed that ‘flow’ is an essential ingredient for creativity and

provides happiness to the individual experiencing it. ‘Flow’ is more likely to occur when

performing a task with four characteristics:

1. The required skill matches the individual’s talents.

2. There is a clear goal.

3. There is immediate feedback.

4. The individual’s full concentration is on the task [24].

Sawyer’s research [16] centers on creativity and focuses on aspects that tend to be

difficult to quantify. Throughout this dissertation, group collaboration will play a central

theme but, unlike Sawyer’s research [16], the entities under study (i.e., the building blocks)

are easily quantifiable.
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1.3.3 “The Rise of the Creative Class” by Richard Florida

Florida’s book [20] explores how the economy of the United States is moving away from

manufacturing to an economy centered on creativity. He refers to the 30 percent of the

American workforce that creates “meaningful new forms” [pg. 68] as the creative class and

this group is growing in importance in the American economy. He goes on to describe

community characteristics that help facilitate creativity, including: thick labor markets,

urban lifestyles, social interactions, increased diversity, and the authenticity, identity, and

quality of the location [20]. His research adds motivation to the research discussed in this

dissertation because Florida expects that the rise of the creative economy will be the next

economic revolution in the United States.

1.4 Theories of the Evolution of Technology

Technological change has been studied many times and there are many varying theories

about technological progress. This section will review three theories about the evolution of

technology that have influenced my ideas about innovation. The following two subsections

will review three books: Arthur’s “The Nature of Technology”[13], Basalla’s “The Evolution

of Technology” [25], and Kelly’s “What Technology Wants” [26]. These books provide a

compelling theory of technological evolution and support their theory with many examples.

The final subsection will discuss the theory explained in the book “The Structure of Scientific

Revolutions” by Kuhn [27]. Kuhn’s theory focuses on the progress of scientific endeavors,

but provided interesting insights for the study of innovation that should be noted.

1.4.1 “The Nature of Technology” by W. Brian Arthur

Arthur’s theory of the evolution of technology centers on the idea that novel innovations

come from new combinations of existing technologies [13]. Others have made this same

argument, including Schumpeter [28]. As these new innovations appear, made of new com-

binations of existing components, the complexity of the innovations grow over time. Since
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a new innovation grows out of existing elements, which also were built of existing elements,

technologies have a recursive, hierarchical structure. This hierarchy leads to a modular

structure of technology [13]. Simon also found that complex systems commonly use hier-

archical systems for their architecture [29]. In addition to combination and recursiveness,

a technology must harness some natural phenomena [13]. Combination and recursiveness

that lead to modularity are the most important principles from Arthur’s book for this

dissertation, while the use of natural phenomena is not as directly applicable.

This theory falls very much in line with my thoughts about the evolution of technology.

However, Arthur’s focus on the growth of technology complexity caused by the combination

of existing technologies does not include a need for parsimony. Arthur mentions the cycle

of increased complexity followed by simplification, but importance was not placed on the

idea [13]. In the software development domain, the simplification phase is important as

maintainability of the software becomes more expensive in time and money as complexity

grows. This cyclic pattern of growth in complexity followed by reduction of complexity is

not as apparent in some domains as software development.

Arthur’s theory also notes that technologies are not thrown together randomly. As dis-

cussed later, computational models in this dissertation randomly combine elements together

as a baseline for comparison. Moreover, some interesting patterns can be recreated with

these simple randomly behaving agents. Therefore, as a general rule, models begin simple

and complexity is only added when necessary.

1.4.2 “The Evolution of Technology” by George Basalla

Basalla [25] cautiously compares the evolution metaphor of the “world of the made” versus

the “world of the born” because the first is a result of purposeful human activity and the

latter is a result of random natural processes. Another difference between technological and

biological evolution is that the forces influencing the creation process of new innovations

are also influencing the selection process. Also, he notes that humans have chosen to use

“excessively complex” technologies to satisfy basic necessities and that biological necessity
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is not the primary reason for technological innovation [25].

Basalla’s theory of technological evolution consists of four broad concepts: diversity,

continuity, novelty, and selection [25]. There is a vast diversity of technologies and they are

continuing to grow. Continuity means that a new innovation proceeds from an antecedent.

In selection, technologies compete for survival with the aid of humans. The selection process

is influenced by economic forces, but “by no means is the main actor” [25, pg. 144]. I found

the lack of reliance on economic forces particularly compelling, especially since some of my

data comes from problem-solvers who are not receiving any direct monetary compensation.

The role of imagination about technology is noted as a rich source of innovative ideas

and how this is particularly true in Western society [25]. He also states that there has

been a long-held claim that technology grows at an exponential rate. Importance is placed

on cultural and social views about technology. For example, Judeo-Christian beliefs pro-

moted technological innovation and gave individuals in the West an advantage in innovation.

Basalla also stresses the importance of trial and error when creating a new innovation [25].

Trial and error search is also found in evolutionary computation, which will be discussed

more later in this chapter.

1.4.3 “What Technology Wants” by Kevin Kelly

Kevin Kelly is the cofounder of Wired magazine and has some interesting insights into the

development of technology in his book “What Technology Wants” [26]. One point that Kelly

makes that is most relevant to this dissertation is that the development of technologies is

inevitable. He argues that for any evolutionary process, the large-scale characteristics of

the products of evolution are determined by the nature of the landscape. Therefore, if the

evolutionary process could be run again, then it would produce the same macrostructure.

However, the small details of the product would not necessary be the same. Kelly uses the

carving of a river as an example. The overall location of the river is determined by the

structure of the landscape and water would find the same path if the evolutionary process

was run multiple times [26].
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Since the development of a particular technology is inevitable, it is natural to find the

phenomenon of multiple individuals discovering the same technology at approximately the

same time. Once the underlying technologies have been discovered, then the subsequent

discoveries are ripe for the picking and many times happen simultaneously by independent

discoverers [26]. Kelly points out many examples of simultaneous discovery of ideas and

products [26].

The idea that technologies are inevitable has mixed implications for this dissertation. As

a computational modeler, the existence of inevitable technologies is an excellent property

because it implies that models will (or should) be robust to small changes in initial condi-

tions. However, from a complex systems perspective, inevitable technologies implies that

innovators are simply performing a search task over the technological landscape. Therefore,

it is the landscape that matters most in the innovation process and not the multitude of

interactions between innovators. Nevertheless, Kelly [26] may just be assuming that there

will be interactions between innovators, because, as noted earlier by Arthur [13] and Sawyer

[16], novel solutions are produced by many, not a single individual.

While Kelly [26] claims that the macrostructure of the evolution of technology is primar-

ily shaped by the technological landscape, his full theory of innovation depends on three

forces, which are borrowed from Stephen Jay Gould’s work [30] on biological evolution.

Gould’s three forces are “structural,” “historical,” and “functional” [30], while Kelly labels

the last force “intentional” [26]. The first force, as noted earlier, is the inevitable force

that is dictated by the structure of technology. The second force, the historical force, is the

contingent aspect of evolution where what happened in the past matters. The third force,

the intentional force, is society’s collective decisions of which technologies to use. Kelly sees

the third force as intentional actions by individuals and is differentiated from blind natural

selection in biology. Unlike Basalla, who was cautious about using the evolution metaphor

to discuss the evolution of technology, Kelly uses it with gusto and even in the literal sense

when discussing the three forces of evolution:

“If the technium is indeed the extended acceleration of the evolution of life, it
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should be governed by the same three forces.” [26, pg. 182]

The ‘technium’ is the term coined by Kelly to refer to the whole system of technological

evolution.

1.4.4 “The Structure of Scientific Revolutions” by Thomas S. Kuhn

The first edition of Kuhn’s classic book [27] dates to 1962 and focuses on progress in the

scientific community. Before a paradigm is agreed upon in a scientific discipline, there is

a preparadigmatic period that is characterized by various approaches competing for ac-

ceptance by a community of scientists. The most promising approach is selected by the

community as the best way to go about doing science. The paradigm defines the impor-

tant discoveries to build future research on and the questions that should be the scientists’

focus during future research. Therefore, it is critical that the paradigm not only define

unprecedented insights but also provide unresolved questions for future scientists to work

on [27].

A paradigm shift is the change from a older paradigm to a new one by a scientific

community. These paradigm shifts may take many years as researchers whose careers have

depended on the old paradigm are resistant to change to the new paradigm. Younger

members of the scientific community are more likely to be developers and proponents of the

new paradigm because they have not invested a great deal of time and energy in the old

paradigm [27]. Varying degrees of acceptance of a new idea is also an important concern

for the diffusion of innovation research [31].

Kuhn [27] places importance on the use of textbooks in the scientific community as a

way to define the language, important discoveries, and open questions of a paradigm. Also,

there is the tendency of authors of textbooks to view the history of science as a linear

progression from one breakthrough to the next. Kuhn points out that these progressions

may not be a smooth transition from one paradigm to the next, but rather the history of

science includes disjoint revolutions or paradigm shifts. However, the textbook authors may

smooth out the irregularities of the history of science and only choose to highlight historical
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discoveries that can be reformulated in light of the current paradigm [27].

1.5 Important Theories about Technological Progress

There are other important theoretical works about technological progress that will be useful

to review. These theories fit in nicely within the theories of technological evolution discussed

in the previous section. The theories are the linked S-curve theory of innovation [32],

Schumpeter’s theory of creative destruction [33], and Schmookler’s theory about the source

of innovation [34]. The most relevant portions of these theories are briefly discussed.

1.5.1 S-shaped Performance Curves

The S-shaped curve has been proposed as a pattern of technological innovation because

improvements are smaller in the initial phases of the product when the number of users

are small and the innovation is still becoming understood [35]. As the technology is better

understood and there are more users, the performance curve grows, which is eventually

followed by a slowing period where the product matures and improvements become more

difficult to find [35].

1.5.2 Linked S-curves

This linked S-curve theory [32] extends upon the previous section and consists of recurring

S-shaped performance curves. When the technological improvements in one technology

become exhausted, another technology takes over the performance curve (see Figure 1.1)

[32].

Exponential growth in performance of a technology can extend across multiple S-curves

as the dominant technological paradigm changes over time. Koh and Magee [36] show

empirical evidence of how linked S-curves can be responsible for the exponential growth

across multiple technology paradigms (multiple S-curves). For example, they show that the

pattern of exponential growth in computing power found in Moore’s law is much older than
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the transistor [36]. Using historical data about computational speed, including the machine

calculator, early vacuum tube computer, transistor computer, and modern day computer,

they show that the exponential growth in computation described by Moore’s law is a trend

that goes back more than 100 years. They also find this same pattern in other types of

technologies including data transportation and storage technologies [36]. Kurzweil [37] also

describes the transition from one paradigm to the next in computing power and calls our

current computing technologies the “Fifth Paradigm” of computing. Kurzweil also predicts

that the sixth paradigm will be three-dimensional computing technologies at the molecular

level [37].
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Figure 1.1: Linked S-Curve Theory (from [32] and [36])

At its core, the linked S-curve theory shows how many short-term processes can pro-

duce a long-term trend. The dichotomy of short-term and long-term processes have been

recognized in other social science fields. For example, Cioffi-Revilla [38] proposes a theory

for political development where many ‘fast’ processes (i.e., short-term) of collective action
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compose a ‘slow’ process of long-term growth in political complexity.

1.5.3 Creative Destruction

Schumpeter [33] notes that capitalism is an evolutionary process that can never be station-

ary. Also, innovation was very closely tied to Schumpeter’s thoughts about capitalism:

“The fundamental impulse that sets and keeps the capitalist engine in motion

comes from the new consumers’ goods, the new methods of production or trans-

portation, the new markets, the new forms of industrial organization that capi-

talist enterprise creates.” [33, pg. 83]

The process of creative destruction consists of new products and processes coming into

being and destroying the older existing technologies.

1.5.4 Punctuated Equilibria

The original idea of punctuated equilibria comes from Eldredge and Gould [39]. Punctuated

equilibria started in biological evolutionary theory by theorizing that species did not evolve

by a gradual process, but rather periods of “homeostatic equilibria” were disturbed by rare

events of rapid change. Eldredge and Gould [39] propose that this process caused speciation.

This same theory has been proposed for the evolution of technology, where a product can

remain unchanged for a long period, but there are episodic events of rapid change [40] [41].

1.5.5 Scientific Supply versus Market Demand

When studying the source of innovation, it is important to consider the motivations of the

inventors. Do new innovations come about due to new scientific knowledge that makes

a new innovation possible? Or does market demand for a product come before the new

innovation? As Basalla said:

“The crucial question is whether inventions are stimulated by the push of the

growing supply of knowledge or by the pull of the increasing demands of the

marketplace.” [25, pg. 113]
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Schmookler [34] believed that the market demand was the strongest driver of innovation. He

used patent data to provide evidence for this theory [42]. However, Dosi [43] discusses how

innovations follow “technological trajectories” that guide future improvements. Certainly,

both scientific supply of knowledge and market demand are working together to create

new innovations [44] and to distinguish between the two is difficult [45]. Furthermore, as

momentum grows on one side, it can encourage momentum in the other. However, economic

considerations are not the only reason for innovation, but this debate is still an interesting

one.

1.6 Models of the Evolution of Technology

The previous two sections provide excellent examples of theories about technological change,

but did not focus on developing models that could be tested with empirical data. This

section will focus on two evolutionary models of technological progress. The models are

discussed in the two books: Nelson and Winter’s “An Evolutionary Theory of Economic

Change” [46] and Frenken’s “Innovation, Evolution and Complexity Theory” [47].

1.6.1 “An Evolutionary Theory of Economic Change” by Richard Nelson

and Sidney Winter

Nelson and Winter [46] recognize the successes of neoclassical economic theory with the

common assumptions that it uses, including perfect information, two commodities, and

static equilibrium. However, these assumptions can be limiting in that they do not account

for technological change during the temporal duration of the model. They propose a sim-

ulation approach that incorporates Lamarckian evolutionary theory. In the model, many

firms are producing the same product, which is analogous to the gross national product

(GNP) (the GNP data and other data from Solow’s paper [48] is used for comparison). The

production function of a firm is defined by the firm’s production technique (defined by two

coefficients) and the amount of stock available. Each of the firms can choose to search for a

14



better production technique or imitate another firm. If the firm chooses to look for a new

technique, then a probability distribution is used to generate the new technique. In either

case, the firm only accepts the new production technique if it improves production. After

calibrating their simulation model with empirical data, the authors generate aggregate time

series of variables that are consistent with historical economic data. They are also able to

connect microeconomic variables with macro outcomes. Nelson and Winter’s model was

able to match aggregate economic values that summarize economic growth seen in the first

half of the twentieth century in the United States [46].

Nelson and Winter [46] also make note that technological progress can be continual, but

sometimes happens very rapidly, which has also been observed in the theories of innovation

discussed earlier. In Nelson and Winter’s model, there is also a constant set of possibilities

for the technology of the production function [46]. Therefore, their model was searching

within a set of preexisting possibilities. Nelson and Winter note that the term “search”

does not make sense when referring to a totally new technology, but dismiss the difference

between these two types of innovation by saying:

“But for the purpose of our evolutionary modeling, the distinction here is one

of semantics not substance.” [46, pg. 210]

However, I believe there is a substantial difference between these two types of innovation. In

the one type with only preexisting possibilities, there will be a limit on how much progress

can be made, and with enough time a search algorithm will be able to find this limitation,

but in the more open-ended type of innovation, the possibilities may be endless. These two

types of innovation provide the overall structure of this dissertation and will be discussed

later in this chapter.

1.6.2 “Innovation, Evolution and Complexity Theory” by Koen Frenken

Like Nelson and Winter [46], Frenken [47] goes beyond a theoretical framework of techno-

logical progress and includes a model. Frenken makes use of the NK landscape developed

by Kauffman [49] and the generalized NK landscape introduced by Altenberg [50] [51] [52].
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The NK landscape will be used in my model of innovation, so it will be discussed later in

this chapter.

Frenken [47] models a product’s life cycle based on Williamson’s [53] stages, which are

the explorative stage, the development stage, and the mature stage. In the explorative

stage, product innovation is high and volume is low. During the development stage, stan-

dardization causes a drop in product innovation, but innovation of the production of the

product is high. Also, the volume of production grows rapidly during this stage. In the

mature stage, both product innovation and process innovation are low. The product tech-

nological innovation remains low until a new product replaces it and the cycle starts over

again [47].

Frenken’s model [47] introduces two types of innovation: product and process innovation.

This recognizes that not only the product is undergoing innovation, but how it is produced

is also being developed. Frenken’s model also includes the idea of technology trajectory,

where an innovation is not totally ‘blind’, but where there is a sense of which parts of the

innovation should be changed or remain the same. This knowledge is used to confine the

search in the design space [47].

Entropy and mutual information are used by Frenken [47] to explore technological in-

novation. Entropy is an indicator of the amount of randomness in the distribution, where

a uniform distribution has maximum entropy. Frenken [47] uses the entropy of a type of

technology as an inverse indicator of whether or not there is a dominant design. Mutual

information gives an indicator of how much a random variable tells about another random

variable. The mutual information metric is an indicator of the amount of differentiation in

a particular type of technology. Using data from steam engines, aircraft, helicopters, and

portable computers, Frenken [47] shows how entropy and mutual information can be used

to study different evolution trajectories.
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1.7 Other Related Evolutionary Models

This section will focus on evolutionary models that are relevant to my model and especially

those models that have been used in the social sciences. These evolutionary models mainly

come from biology and economics. Evolutionary biology has been exploring evolution the

longest and provides valuable insight in the process of evolution. In economics, a subfield

called evolutionary economics has emerged to address these types of models.

1.7.1 Evolutionary Biology

There are differences between biological and technological evolution. For one, Lamarckism

is common in the evolution of innovations, but Lamarckism is only found to be true in very

limited ways in biological evolution [30]. Lamarckian inheritance (also known as “soft” in-

heritance) occurs when a parent passes characteristics to offspring that were acquired during

the parent’s lifetime. The only evidence within biology of Lamarckian inheritance is within

microorganisms. For example, Cairns et al. [54] provide evidence of this type of Lamarck-

ian inheritance in E. coli bacteria. While Lamarckism is a limited force within biological

evolution, the transfer of characteristics from one innovation to another is widespread in

technological evolution.

There are models from biological evolution that are useful in the study of technological

evolution. The following sections will briefly review these models.

Kauffman’s NK Model

Kauffman’s NK model [55] was originally designed to model biology, but was also used

by Kauffman to explore technological evolution. This model is interesting for the study

of technological evolution because the NK landscape is one where the ruggedness of the

landscape can be systemically modified using the K parameter. In the model, N represents

the number of elements within each entity (i.e., individual) in the system. This could be

the number of genes, amino acids, or some other characteristic of an entity, and there are

a number of functions, F, that are influenced by these elements. Each element makes a
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contribution to the fitness of the individual along with K other parts [55].

The ruggedness of the landscape is tunable by changing the value of K, where landscapes

with higher values of K are more rugged [49]. For example, when K = 0, then each element

is independent of the others, so there is a single peak in the fitness landscape. When K

= N-1, every element is dependent on every other element, which means that the fitness

landscape is completely random and uncorrelated. The most interesting NK landscapes

lie between these two extremes where neighboring locations on the fitness landscape are

partially correlated [55].

Altenberg’s Generalized NK Model

Altenberg’s generalized NK model [52] is based on Kauffman’s model [49]. Just as before,

there are N elements and F functions, but in this model they are not necessarily the same

value as in Kauffman’s original formulation. Altenberg’s model does not have a universal K

value. Each gene can affect any number of functions, and each function can be influenced

by any number genes [50] [51] [52].

Altenberg [51] uses his generalized NK model to study evolutionary dynamics. In this

model, a new gene (or element) is added periodically to the genome and this new gene is

assigned a random pleiotropy [51]. The pleiotropy is the number of functions that the new

gene influences. Pleiotropy could also be described as the number of connections in the

genotype-phenotype map. In his ‘constructional selection’ scheme, the new gene is only

accepted if it improves the total fitness of the individual. Altenberg [51] finds that as the

model progresses only genes with a low pleiotropy are added to the genome. Basically, after

an initial period of stabilization, the core of the genome is set and only peripheral functions

are able to be modified [51]. The generalized NK landscape provides more freedom to

experiment with the interactions between compositional elements and functional fitness

values.
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1.7.2 Evolutionary Economics

Economics has made many contributions to the use of evolutionary processes in models.

The combination of evolutionary techniques and economics has been explored in a relatively

new field called evolutionary economics. This dissertation will not focus on economic issues,

although it is worth reviewing some of the related models.

Economic Models of Production

Auerswald and his collaborators [56] were dissatisfied with the microeconomic foundations

of macroeconomic models of production. They provide a description of the production plan

by adding an engineering recipe. The NK model, discussed earlier, was used as inspiration

for their production recipe model. The model includes one input, one output, and constant

returns [56]. Their model is able to recreate the essence of ‘learning by doing’ that was

described by Kenneth Arrow [57] and Wright’s law [58], which states that the reduction in

production cost falls as a power law with respect to the cumulative production [56]1.

Zero-Intelligence Traders

In this model, an artificial market of zero-intelligence traders chose random prices to buy

or sell a resource [59]. Zero-intelligence agents did not seek to maximize profits and had no

intelligence or memory. However, the artificial market is still able to have high allocative

efficiency [59]. The zero-intelligence agents provide a baseline for comparison and Gode and

Sunder [60] used it to show the usefulness of market rules. The market rules that increase

efficiency include traders only taking profitable trades, the traders can negotiate profitable

trades, and extramarginal traders do not displace intramarginal traders [60]. Gode and

Sunder state that “if the trading rules are ‘smart,’ the traders need not be” [60, pg. 623].

Gode and Sunder’s model [59] [60] shows that the neoclassical economic assumption

of fully rational agents is unnecessary. In economics, a fully rational agent has unlimited

1Wright’s law was originally formulated as lt = a (Yt−1)−1/3, where Yt−1 is the cumulative production
and lt is the unit cost at time t. Due to further empirical research since Wright, Auerswald and collaborators

used a generalized form of the law (lt = a (Yt−1)−b) [56].

19



computational resources and access to global information. The goal of a fully rational agent

is solely to maximize the given utility function. Simon was an advocate of replacing fully

rational agents with bounded rational ones [29]. He suggested that these types of extensive

calculations with large amounts of information are not realistic for the human decision

maker. Furthermore, since there is no difference between the real world and the agent’s

perception of it, then there is no need to study the agent’s perception of the real world

[61]. One simple form of bounded rationality described by Simon was coined as ‘satisficing.’

Simon described ‘satisficing’ as using the first solution found that met a minimum criteria

[62] [63]. This is quite similar to the approach used by Gode and Sunder [59] [60].

In the computational models presented in this dissertation, bounded rational agents are

used. Furthermore, simplicity in rationality is favored over complicated cognitive mecha-

nisms. This establishes a baseline of comparison and reduces the risk of creating confounding

results.

Economic Models using Genetic Programming

Genetic programming has been advocated as a way to include bounded rationality within an

agent-based model [64] [65]. When using genetic programming as a technique for bounded

rationality, each agent has a population of programs as mental models [64]. An agent can

update a program’s fitness based on observations from the environment. Also, the learning

mechanism is flexible since if an agent’s selection criteria change, then another program can

become the favored one for use as the agent’s mental model [64].

Chen [66] use a similar notion by treating the economic agents as “collection of decisions

rules” (term from Lucas [67]). The agent’s preferences guide the evolution of the collec-

tion of decision rules. The genetic programming approach allows for the growth of agent (or

solution) complexity over time [66]. Another paper by Chen [68] proposes using genetic pro-

gramming as a way to generate modularity using automatically defined terminals (ADTs).

Chen and Chie [69] use the genetic programming approach to generate commodities and

the agent’s preferences for those commodities. Each commodity is represented by a genetic
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programming tree and the fitness of the commodity is based on how well it matched the

agent’s preferences, also represented by a genetic programming tree [69].

1.8 My Theory of the Evolution of Technology

No single element of my theory of the evolution of technology is new. Much like technology

itself, the theory is novel in that it is a new combination of existing elements. This theory

has been greatly influenced by the theories discussed above.

The main mechanism for my evolution of technology consists of novel combinations of

existing elements, or building blocks, to create new innovations. This is much like the theory

proposed by Arthur [13], but where Arthur focuses on this mechanism creating greater

complexity, I also explore how greater complexity can hinder future innovation. I believe

the regulation of complexity to favor parsimony over unnecessary complexity is crucial for

the maintainability and expense of a new product, especially in the software development

domain, which is one of the domains that I draw empirical data. Furthermore, software

development is a rare domain where innovation complexity is observable and quantifiable.

Another common observation in the evolution of technology is the idea of relative sta-

bility followed by periods of rapid change [13] [25]. This means that there may be a conflict

between the view of technological progress from short-term and long-term perspectives.

Therefore, in the next section, I will discuss how innovation processes are separated into

two groups for this dissertation.

1.9 My Approach to Innovation Research

My approach to innovation research is influenced by the linked S-curve theory of innovation.

As discussed earlier, the S-shaped curve of product performance has been proposed as a

pattern of technological innovation [35]. The linked S-curve theory extends this idea and

consists of recurring S-shaped performance curves, where a new innovation continues making

performance improvements as improvements in the older technology become exhausted [32].
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This type of transition from one type of technology to another has been referred to as a

‘paradigm shift’ [27] [37]. Exponential growth in performance of a technology can extend

across multiple S-curves as the dominant technological paradigm changes over time (for

empirical evidence see [36] and [37]).

Using the linked S-curve theory as motivation, the empirical data analysis and agent-

based models in my dissertation are broken up into two types of innovation. The first

type deals with a single S-shaped curve where innovation occurs over relatively short time

periods and has well-defined goals. The second type deals with multiple S-shaped curves

where innovation occurs over long time periods and has ever-changing and open-ended

goals. The first type of innovation is constrained to a single technological paradigm, while

the second type could have multiple paradigm shifts.

1.9.1 Empirical Data Analysis

The inclusion of empirical data is an important component of this dissertation and allows

for detailed examination of how building blocks are used during the innovation process.

There are two sources of data analyzed in this dissertation. The first, from the software

development domain, allows analysis of a short-term innovation process (one week) that

has well-defined goals (a single S-curve). The second comes from word frequency data that

allows analysis of a long-term innovation process (one century) that has open-ended goals

(multiple S-curves).

These two domains are interesting case studies in their own right, but I believe that the

results from the data analysis will generalize to other domains. As Arthur states:

“Physically, a jet engine and a computer program are very different things. One

is a set of material parts, the other a set of logical instructions. But each has

the same structure. Each is an arrangement of connected building blocks that

consists of a central assembly that carries out a base principle, along with other

assemblies or component systems that interact to support this.” [13, pg. 35]
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A brief description of the data used is given below, although more details are provided

about the empirical data in their respective chapters.

Software Development Data

Data from software developers participating in MATLAB programming contests are used to

study the first type of innovation (a single S-curve). The software development process is an

excellent domain for the study of innovation. It is a self-documenting system that provides

a detailed view of an innovation process with many of the historical artifacts available for

examination. The MATLAB programming contests are different from standard contests

because once a solution has been submitted, it can be viewed, modified, and reused by

other contestants. This allows for collaboration within the competition. Data from twenty-

three contests were gathered and analyzed. The contests occurred from December 1998 to

March 2012 and there were roughly two contests per year. This data includes every software

submission made during the contest (averaging nearly 2,000 submissions per contest). This

allows for a detailed examination of the evolution of problem solutions for each of the twenty-

three contests. Measures used to study the programming contests include characteristics of

the problem being solved (e.g., modularity, size, and complexity), the problem-solvers (e.g.,

individuals’ contributions and social network analysis), and the products of the problem-

solving process (e.g., changes in the use of sub-modules over time).

Software development provides an illustration of how the recursive, hierarchical structure

of innovations that Arthur mentions in his book [13] can develop. Programming commands

are combined to form functions, which are further aggregated to create the software ap-

plication, thereby creating a hierarchical structure. For this dissertation, functions are the

building blocks under study.

There has been much research done on the software development process of the open

source community. The open source community is an excellent domain for innovation

research because the artifacts are available for study, which is not generally the case for

commercial software. However, much of this previous research focuses on how to make the
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development process better and not necessarily on how the development process occurs,

which is the focus of this dissertation. When appropriate, previous research about the open

source community are noted.

Word Frequency Data

Data from the Google Books project are used to study the second type of innovation (in-

novation over multiple S-curves). The data used for this dissertation includes the word

frequency count from over 600,000 books that were published during the 20th century (for

more about the Google Books data see [70]). For each year of this 100-year period, word

frequency counts were used from approximately 6,174 books per year. For this data, words

are the building blocks under study.

The Google Books data gives insight into a truly long-running and open-ended inno-

vation process, which is exactly what is wanted. However, due to the open-ended nature

of the data, little can be said about the characteristics of the problem being solved. Also,

little is known about the innovators (i.e., the authors of the books) and there is no way of

tying words and phrases to the author who wrote them. Therefore, the focus of the analysis

is the products of the innovation process (the frequency of words over time).

1.9.2 Computational Models

Another important component of my approach to studying innovation is the use of compu-

tational models. Just as there are two types of data analysis (a single S-curve and multiple

S-curves), there are two types of models. The first type of computational models studies in-

novation processes with well-defined goals, and there is a single S-shaped performance curve.

These models are based on techniques from evolutionary computation (genetic algorithms).

The second type of computational models study innovation processes with open-ended goals,

and there are multiple S-shaped performance curves. Creating an open-ended evolutionary

process in a computer is difficult, but results are promising. The central goal of all of these

computational models is to better understand how building blocks are combined to create
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new innovations. Furthermore, the models provide a framework to explore scenarios where

there are no empirical data.

The computational models were kept simple intentionally to avoid confounding results.

It also illuminates which phenomena are easy to generate and which are hard. When looking

for a mechanism for a phenomenon, it is best to follow Occam’s Razor and choose the most

parsimonious mechanism with the fewest assumptions. This thought is succinctly expressed

by a quote commonly attributed to Albert Einstein:

“Everything should be made as simple as possible, but not simpler.”

Before introducing the models in the subsequent chapters, it is important to briefly

discuss some of the underlying techniques and terms that are used in the models and why

they are included in the model.

Evolutionary Computation

As mentioned earlier, evolutionary computation provided the framework for the models of

innovation for a single S-curve. Standard evolutionary computation techniques (genetic

algorithm) are used as a baseline for comparison with data from human problem-solvers.

The study of building blocks has a long history in the field of evolutionary computation.

The importance of building blocks in evolutionary computation goes back to the origins of

the field with John Holland’s discussions of it [71] [72].

The ‘agents’ in evolutionary computation are not cognitively sophisticated, but use

selection, variation, and reproduction to solve problems. In evolutionary computation, an

initial population of problem solutions are randomly generated and are allowed to evolve

to generate better solutions. If a pattern from the empirical data appears with this type of

model, then it shows that the pattern may not be a product of humans’ cognitive ability,

but rather a product of the evolutionary process.

In evolutionary computation, a population of solutions reproduce and are selected to

create a balance between exploration of unknown regions and exploitation of known regions
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of the solution space. Evolutionary computation has a rich history of how to evolve a pop-

ulation of entities using reproduction and selection. The field of evolutionary computation

shares many characteristics with the process of innovation. In both cases, a heterogeneous

population of solutions or innovations is competing for survival. The individuals with a

higher fitness are more likely to survive, while the individuals with lower fitness are more

likely to be eliminated. This characteristic is also true of the process of innovation, where

the most useful innovations are more likely to permeate society than the innovations of little

usefulness.

Agent-Based Modeling

Most times in evolutionary computation, the fitness of a solution is straightforward because

the fitness values are easily ordered and comparison between two values is trivial. However,

for an open-ended, co-evolutionary innovation process, comparison of solutions is not trivial.

For example, when comparing two innovations, the fitness of the innovations may depend

on the observer. Some individuals may find some innovations more desirable than other

individuals. Therefore, innovations evolve in a system where individuals have idiosyncratic

objectives. Moreover, some individuals may be more accepting of new ideas than oth-

ers. Therefore, the model of open-ended innovation (multiple S-curves) used agent-based

modeling. Agent-based models make it quite natural to include heterogeneous agents.

Heterogeneous Agents

Creating agents with idiosyncratic preferences is an important benefit of agent-based mod-

els [73] [4]. When modeling innovation, heterogeneous agents are important because all

individuals do not behave the same or have the same information. Therefore, information

is lost if only the aggregate characteristics of the population are considered rather than the

entire population. For example, Rogers wrote extensively on how individuals adopt a new

innovation at different times and described various classifications of individuals (innovators,

early adopters, early majority, late majority, and laggards) in terms of when they adopted
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an innovation [31].

Adoption rate is not the only important type of individual heterogeneity. As seen earlier

in Nelson and Winter’s work [46], the firms being modeled had heterogeneous production

techniques, probabilities for imitation of others, and propensity to explore for new innova-

tions. Example uses of heterogeneity in the agent-based model presented in this dissertation

include: variation in the solutions being used by the agents and the agents’ evaluations of

those solutions. This heterogeneity allows there to be diversity in the available building

blocks and this is crucial when creating a model that relies on recombination.

Growth in Complexity

As a technology progresses, the number of component elements tends to grow [74]. Arthur

explains why technology grows in complexity:

“Complexity tends to increase as functions and modifications are added to a

system to break through limitations, handle exceptional circumstances, or adapt

to a world itself more complex.” [75, pg. 144]

Arthur also notes that eventually a simplifying concept will be discovered and simplicity

will replace the complexity [75]. This regulation of complexity seems particularly important

in the software development domain because as complexity grows, maintainability becomes

more difficult.

Agent Interactions

Agent-based models easily allow for interactions between agents, which can be difficult in

other types of models (e.g., mathematical models) [73] [4]. As noted earlier, novel innova-

tions are created by groups and not by a solitary genius [16] [13]. Therefore, when modeling

innovation, it is critical to allow the innovators to interact with one another.
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1.9.3 Data Visualization

The third and final major component of my approach to innovation research is the use of

data visualization. Various types of standard data visualizations (e.g., scatter plots, box

plots, bar charts, etc.) are used throughout this dissertation. These standard visualizations

provide understanding of the data, although sometimes modifications were required to better

illustrate the topic of discussion. Furthermore, at times, a custom visualization was required

to make the point more clear. Also, in the visualizations used here, color schemes developed

by Cynthia Brewer were used (http://colorbrewer2.org/). These color schemes not only

make the visualization more aesthetically appealing, but also aid in the ease of perceiving

the information [76] [77] [78]2.

1.10 Discussion

Innovation is studied by many different fields, consequently it is important to note what

aspects of innovation will not or only slightly be covered by this dissertation. Also, when

referring to the process of innovation, I am referring to the act of problem solving and

the process by which solutions change over time. I am not referring to an innovation as

something that must have a major change in the lifestyle of the users.

The idea of creativity is outside the realm of this dissertation. I am going to follow the

lead of Basalla:

“The findings of psychological research into the wellsprings of creativity are not

included, because that material is not immediately pertinent to the theory of

technological evolution.” [25, pg. 65]

Furthermore, creativity is something that is difficult to quantify and I will focus on patterns

that are quantifiable. Certainly, creativity is an important part of the study of innovation,

but requires the modeling of individuals’ mental processes. This dissertation will focus on

2The research by Brewer and colleagues have centered on creating color schemes for maps, but I find
their color schemes quite useful for all types of visualizations.
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the population of innovations and aggregate patterns of these innovations, not on how a

single innovation is created.

Also, this work will not focus on the history of technology. There are many accounts of

the history of various types of technology. An overview of the evolution of technology with

many historical examples can be found in other sources, I especially recommend Basalla’s

[25] and Arthur’s books [13].

I want to briefly give an overview of the remainder of this dissertation. In Chapter 2,

empirical data analysis of the MATLAB programming contest data is discussed. This data

is from an innovation process that occurs over a relatively short time period and has well

defined goals (a single S-curve). In Chapter 3, computational models of this first type of

innovation (a single S-curve) are introduced. In Chapters 2 and 3, the innovation landscape

is static and there are no major paradigm shifts. Chapters 4 and 5 follow the same pattern

as Chapters 2 and 3, where a data analysis chapter is followed by a modeling chapter.

Chapter 4 discusses the data analysis of the word frequency data from the Google Books

project, which is followed by discussion of an agent-based model in Chapter 5. In Chapters

4 and 5, the innovation process is occurring over long time scales, where the problems are

open-ended and ever-changing. The landscape is dynamic and dependent on what other

solutions are in the environment, thereby it is coevolutionary. To relate the organization of

the chapters with Figure 1.1, Chapters 2 and 3 discuss the innovation of a single S-curve,

while Chapters 4 and 5 explore innovation across multiple S-curves.

My research provides a tangible way of studying collaborative problem solving by pro-

viding quantitative measures of the innovation process under study. The data sets used in

this dissertation lie at extremes; one demonstrates an innovation process that occurs over

the course of a week and the other over the course of a century. This provides a broad

range of innovation processes to study, from processes with well-defined goals to ones that

are open-ended and ever-changing. Chapter 6 concludes this dissertation by summarizing

the lessons learned from this research and proposes some future research directions.
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Chapter 2: Analyses of Static Fitness Landscapes

In this chapter, I investigate innovation on a static fitness landscape. Specifically, I study

the progressive improvement in solutions submitted to programming contests, held over

relatively short periods of time. This problem domain is able to teach us how individual

solutions build on previous solutions in order to achieve progressively better performance.

Given the highly-constrained character of such domains, with respect to both the character

of the problems being solved and the time permitted for solutions to be developed, I can

safely ignore the complexities of long-run, open-ended, dynamic innovation processes in

which the problems being solved by new inventions are themselves evolving. With regard to

the S-curve model of innovation discussed in the last chapter, the innovations investigated in

this chapter represent progress along a single S-curve. In Chapters 4 and 5, I will investigate

overlapping S-curves associated with long run technological progress.

2.1 Software Development

This chapter uses empirical data from the software development domain. There are several

reasons why this is an excellent domain for the study of innovation. 1) The historical record

is many times pristinely preserved. 2) Many attributes are easily quantifiable (e.g. lines of

code, execution time, code complexity). 3) The author of the code modification is also in the

historical record, thereby allowing the study of individuals’ contribution levels. 4) Software

engineering is an important domain in its own right. 5) Software engineering is many times

a collaborative activity and provides an excellent example of group problem solving. 6)

Lastly and most importantly, I see software engineering as the act of systematically solving

problems with computers. Hopefully, the insights found from the study of innovation in

software engineering will provide a clearer picture for other types of innovation.
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2.2 Programming Contest Data

Data from MATLAB programming contests [17] were gathered and analyzed.1 This con-

test data has shown to be an excellent way to explore collaborative problem-solving. The

MATLAB programming contests are different from traditional contests in that a submission

is not necessarily written by a single individual. The contestants could test their problem

solutions with a small set of example inputs provided by the contest administrators, but

to get a more comprehensive evaluation of their solution, the contestant must submit their

solution to the contest administrators. Once submitted, the program is scored and made

available to all contest participants. The solution’s score is a combination of the solution’s

performance, complexity, and CPU runtime (see Table 2.2 for more details). Other contes-

tants could use any previous submission(s) as the starting point of their solution [17] [81].

Moreover, a contestant can change a single line of code in another contestant’s submission

and take the lead in the contest [82]. This is referred to as “tweaking”.

Previous analyses of the MATLAB programming contests include the work of Ned Gul-

ley, the lead architect of the MATLAB programming contests, and Karim Lakhani [83].

They focused on the factors that influenced individual’s performance and the collective

value of submissions to other participants [83]. In their work, they found that novel re-

combinations of other participant’s code were a statistically significant predictor of the

submission being the best-so-far solution [83]. Therefore, Gulley and Lakhani [83] found

that collaboration in the form of novel recombination was an important contributor to in-

novation in the programming contests. Here, I focus on other aspects of the programming

contests that provide further insights into the innovation process.

2.2.1 Contest Mechanics

The contests generally last for seven days and for the first two days, the submissions are

not visible to other participants. On day two of the contest, all submissions, even ones

1An earlier version of this analysis was presented at the 2nd Annual Complexity in Business Conference
[79] and the 7th European Meeting on Applied Evolutionary Economics [80]. I would like to thank the
participants of these two conferences for valuable feedback.
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submitted during the first two days, are visible by all participants. Also, to encourage early

submissions, there was an early bird prize during the competition [17]. Since I am exploring

collaborative problem-solving for this data analysis, the period where participants can see

each other’s submission (the last five days) is of most interest and thereby, only this data

was used for the analysis.2 The period where submissions are not visible (the first two days)

is treated as a period to create an initial set of solutions. This is analogous to creating an

initial population in evolutionary computation.

This type of competition is much more useful in studying collaboration compared to the

standard contests where the contestants work in isolation during the entire duration of the

contest. Since any participant can use previously submitted programs as the starting point

for their submission, this allows for collaboration within a competitive contest. Moreover,

these contests have an interesting mix of collaboration and competition reminiscent to the

open source software movement [81].

Data from twenty-three programming contests were gathered from the MATLAB pro-

gramming contest website [17]. The data was gathered using a web scraping program that

gathered scoring, author, and rank information along with the MATLAB code that was

submitted. Table 2.1 includes summary information about the programming contests in-

cluding the number of submissions, participants, score leaders, and improvements for each

of the programming contests. This table only includes information about the submissions

that where submitted during the last five days of the competition when participants could

see others’ submissions. The number of score leaders is a count of anyone that was in the

lead during the competition. The number of improvements is a count of the number of

times an improvement to the best-so-far solution was submitted (regardless of the size of

the improvement).

2For some of the contests, it was unclear when the different phases of the contest started, so to be consis-
tent across contests, I used all submissions that were submitted two days after the first contest submission.
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Table 2.1: Summary information about the MATLAB programming contests

Number of Number of Number of Number of
Contest Name Date Submissions Participants Score Leaders Improvements

Tiles Apr 2012 1274 35 17 141
Vines Nov 2011 1081 57 18 108
Crossword Mar 2011 1439 55 15 74
Sailing Home Nov 2010 2731 62 29 216
Sensor Apr 2010 3522 70 17 256
Color Bridge Nov 2009 1867 54 17 109
Army Ants Nov 2008 1850 43 3 7
Wiring Apr 2008 3206 59 22 162
Gene Splicing Nov 2007 2172 67 21 158
Peg Solitaire May 2007 2959 86 25 165
Blackbox Nov 2006 4409 105 19 61
Blockbuster Apr 2006 4593 102 34 191
Sudoku Nov 2005 1870 90 25 129
Ants May 2005 1702 107 14 78
Moving Furniture Nov 2004 1155 54 24 164
Gerrymandering Apr 2004 1803 92 37 181
Trucking Freight Apr 2003 1079 71 34 165
Protein Folding Nov 2002 1465 109 26 105
Molecule May 2002 801 89 14 58
Mastermind Sep 2001 345 55 11 29
Gene Sequencing Mar 2000 234 41 5 12
Mars Surveyor June 1999 1351 44 12 79
Binpack Dec 1998 876 101 18 61
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2.2.2 Submission Scoring Criteria

Since the first MATLAB programming contest, the scoring criteria has changed a bit over the

years.3 Table 2.2 gives a summary of the scoring criteria used for each of the contests. Figure

2.1 shows the relationship between the innovation measures and the problem characteristics.

While these variables will be discussed in detail later in this chapter, what this figure

shows is that the change in scoring criteria does not introduce a systemic bias into the

analysis. Therefore, all contests will be treated as the same regardless of the variation in

scoring criteria. Moreover, the scoring criteria always includes the solution quality and

computational speed, which from the contest rules are the most important factors in the

score [17].

The contest administrators did not post the scoring function for the most recent contests

(the ones that use result quality, execution time, complexity, and node count) on the contest

rules. However, the following equation was used for the peg solitaire contest where result

quality, execution time, and complexity was used in the scoring [17]:

score = k1 ∗ result+ k2 ∗ e(k3∗runtime) + k4 ∗max(complexity − 10, 0) (2.1)

The smaller the score the better the submission. For all of the equations in this section,

the values of the ki parameters were unpublished, although these parameter values can be

estimated. Using the estimated values for the ki parameters, I calculated the percent of the

score that was due to each of the three scoring components: result quality, execution time,

and complexity. On average for all scored submissions for the peg solitaire contest, result

quality accounted for 93.6%, execution time for 6.3%, and complexity less than .1% of the

score values. This gives a clear indication that the contest administrators, and presumedly

the contest participants, placed priority on result quality and execution time. Also, note

that there is a penalty to include a function that has a complexity that is greater than ten,

but if all functions have a complexity of ten or less than there is no penalty. Keeping the

3This section is included for completeness and to justify my decision of which data I chose to analyze.
Most readers can skip this section without losing the overall message of this chapter.
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complexity of code at a reasonable level is a good programming practice that makes the

code easier to understand and modify. Also, as noted in the contest rules, the node count

criteria was added to motivate participants to remove unused code from their submissions

[17].

The following equation was used for several of the contests that only used result quality

and execution time in scoring [17]:

score = k1 ∗ result+ k2 ∗ e(k3∗runtime) (2.2)

Two of the earliest contests (mars surveyor and gene sequencing) used this equation to

generate scores based on result quality and execution time [17]:

score = k1 ∗ result+ k2 ∗ runtime (2.3)

After reviewing the various scoring criteria, it is not expected that the differences in

scoring will introduce confounding results into the analysis. Moreover, the contest adminis-

trators introduction of new criteria during the course of the contests was motivated to get

the participants to write simple and elegant solutions without any unnecessary code [17].

Therefore, all twenty-three contests was used in the analysis. However, for those interested,

I placed some results in Appendix A.1 that only include the first thirteen contests, where

only result quality and execution time is used in scoring.4

4The results using only the first thirteen contests tell a similar story as the arguments that I make in this
chapter.
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Table 2.2: Summary of scoring criteria for each of the MATLAB programming contests.

Result Cyclomatic Node
Contest Name Quality Speed Complexity Count

Tiles X X X X
Vines X X X X
Crossword X X X X
Sailing Home X X X X
Sensor X X X X
Color Bridge X X X X
Army Ants X X X X
Wiring X X X X
Gene Splicing X X X
Peg Solitaire X X X
Blackbox X X
Blockbuster X X
Sudoku X X
Ants X X
Moving Furniture X X
Gerrymandering X X
Trucking Freight X X
Protein Folding X X
Molecule X X
Mastermind X X
Gene Sequencing X X
Mars Surveyor X X
Binpack X X
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Figure 2.1: Relationship between innovation variables and problem characteristics using
the different scoring criteria. The red diamonds represent the first thirteen programming
contests where only result quality and execution speed was used to judge a submission.
The blue squares represent two contests that added cyclomatic complexity to the scoring
criteria. Finally, the purple circles represent the eight most recent programming contests
which added node count. 37



2.3 Research Questions

Question 1: How does the characteristics of the problem being solved influence the inno-

vation process?

Question 2: Are there any similarities between the programming contest data and the

open source software community?

Question 3: Does the programming contests show evidence of creative destruction?

The first question focuses on the problem being solved, the second on the problem-

solvers, and the third on the products of the problem-solving process. In the remainder of

this chapter, each of these questions are answered using various quantitative approaches.

2.4 Types of Analysis

Three aspects of the MATLAB programming contest data were analyzed: the problem being

solved, the problem-solvers, and the problem solutions. In the first analysis, when studying

the problem being solved, linear regression was used to investigate the effect of three problem

characteristics (i.e., size, modularity, and complexity) on the innovation process. With a

better understanding of how the characteristics of the problem being solved influences the

rate of innovation, obstacles like Brooks’s Law may be avoided. Brooks’s Law states that

adding more software developers to a late project will make it later [84].

The second analysis explored the problem-solvers. In this analysis, the distributions of

developers per project and projects per developer was investigated to see if they follow a

heavy tailed distribution and possibly a power law5. Power laws have been found for the

developers per project and projects per developer distributions in the open source com-

munity [85]. The programming contest data provided an opportunity to examine if this

type of pattern could emerge in programming contests that occur over a relatively short

time period, for approximately one week. Moreover, finding these types of distributions in

5For readers not familiar with power laws, an overview of power laws, including the two formulations of
them, is discussed in Appendix E.
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the programming contest data may help draw parallels between the relatively simple pro-

gramming contests and the highly complex community of open source software developers.

Studying a simpler system that resembles the open source community may shed light onto

previously unknown aspects of open source software development.

In the last analysis, changes in the solution population were recorded to examine if

there is evidence of creative destruction. In creative destruction, the introduction of a new

innovation causes other products to no longer be used and was credited by Schumpeter

as the “fundamental impulse that sets and keeps the capitalist engine in motion” [33, pg.

83]. By calculating the diversity of the submission population before and after a best-so-

far submission, the reduction in submission diversity was investigated and the narrowing

of the problem-solvers focus was measured. For comparison, the same operation was also

performed for the submissions that were not best-so-far submissions. A statistical analysis

was performed to see if the better submissions caused a narrowing of focus by the problem-

solvers and thereby, creative destruction.

2.5 Analysis of the Problem Being Solved

Characteristics of the problem being solved were analyzed using ordinary least squares

(OLS) regression. The regression analysis focuses on the influence of problem modularity,

size, and complexity on software developers ability to improve contest solutions. Data from

twenty-three programming contests were analyzed. The analysis provides a quantitative

way of comparing the importance of problem characteristics on the innovation process. The

following dependent and independent variables were used in the linear regression.

2.5.1 Measures of Innovation

The dependent variables are the number of innovations per participant and the percentage

of participants that were innovators. An innovation is simply anything that improved upon

the best solution so far and an innovator is anyone that submitted one of those best-so-far

solutions. These measures of innovation were chosen to allow for comparison across contests.
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Each contests have a different number of participants, so these innovation measures take

this factor into account. Furthermore, submitted solutions are easily compared within a

contest, but difficult between contests and thereby, solution improvements are difficult to

compare across all contests. Thus, the count of innovations during the contest provide a

consistent measure of innovation that is applicable to all contests.

2.5.2 Characteristics of the Problem Being Solved

The independent variables are the size, modularity and complexity of the problem being

solved by the participants. The problem’s modularity, size and complexity are not character-

istics that are directly observable from the problem statement. Therefore, the participants’

submissions were used to calculate an estimate of these characteristics. Size was measured

by the average number of nodes in the parse tree of all of the submissions. The size of the

parse tree is a better indicator of program length than the number of lines of code. Number

of lines of code as a measure of program length can be misleading due to differences in pro-

gramming style that do not affect the execution of the program. Modularity was measured

by the average number of sub-functions of all the submissions. Complexity was measured

using the cyclomatic complexity, also known as McCabe complexity. Cyclomatic complex-

ity measures the number of independent linear pathways through the code [86]. MATLAB

calculates the cyclomatic complexity for each function and a single submission may include

multiple functions, so the maximum complexity for each submission was averaged to obtain

the complexity of the problem being solved. Only submissions that did not generate an

error during execution and received a score were used in these calculations.

One problem with using modularization as a predictor of innovation is the notion that

more modules simply means longer programs which is the real reason for the increased

amount of innovation. This problem is addressed with this analysis by determining which

factor (i.e. problem size, modularity, or complexity) explains the most variation in the

measures of innovation.

The results discussed here used the average modularity, size, and complexity for all of
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the contest submissions. Separate analyses were also done for the problem characteristics

of the winning submissions and the average of the best-so-far submissions. These other

variables were highly correlated with the ones reported here and did not change the nature

of the results, so they were not included.

2.5.3 Excluded Data

Currently, the MATLAB programming contest website contains information about twenty-

five programming contests. Two of the contests were not included in the analysis. One was

excluded because it was a visualization contest and thereby, the submissions do not have a

objective way of being scored and compared. The other excluded contest scored submissions

based on the number of characters in the submitted program that correctly converted the

input into the desired output. Unlike the rest of the contests, solution quality and execution

time were not a component of a submission’s score. Since creating sub-functions required

more characters in the code, the solutions were not broken down into sub-functions. This

is substantially different from the other contests and thereby, excluded from the analysis.

The data from the remaining twenty-three MATLAB programming contests were analyzed

using linear regression.

2.5.4 Regression Results

Tables 2.3 and 2.4 display the results of the regression analysis. Table 2.3 used innova-

tions per participant and Table 2.4 used percent of participants that were innovators as

the dependent variable. Each row of the tables shows the results of the regression for each

of the independent variables: average number of functions, average node count, and av-

erage maximum complexity. The modularity variable (average number of functions) and

the size variable (average node count) were both significant predictor for both innovation

variables. However, the complexity variable was not a significant predictor for either of the

innovation variables. The effect size (measured by R-squared) of the modularity variable

was approximately double that of the size variable. This provides quantitative evidence
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that problem modularization is a better predictor of innovation than problem size and both

problem modularization and size are better predictors than problem complexity.

Table 2.3: Regression results from the 23 MATLAB contests with innovations per partici-
pant as the dependent variable.

Dependent Variable:
Innovations

Independent Variables: per Participant

Average Number Functions
Coefficient 0.094
p-value 0.002

Average Node Count
Coefficient 1.9E-04
p-value 0.041

Average Maximum Complexity
Coefficient -0.009
p-value 0.365

Intercept 0.927 1.120 2.026
R-squared 0.380 0.185 0.039
Adjusted R-squared 0.351 0.146 -0.007
F-statistic 12.880 4.754 0.856

Note: Values in bold are significant at the 5% level.
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Table 2.4: Regression results from the 23 MATLAB contests with percentage of participants
that were innovators as the dependent variable.

Dependent Variable:
Percent

Independent Variables: Innovators

Average Number Functions
Coefficient 0.011
p-value < 0.001

Average Node Count
Coefficient 2.5E-05
p-value 0.009

Average Maximum Complexity
Coefficient -2.1E-04
p-value 0.848

Intercept 0.187 0.202 0.292
R-squared 0.470 0.282 0.002
Adjusted R-squared 0.445 0.248 -0.046
F-statistic 18.640 8.244 0.038

Note: Values in bold are significant at the 5% level.

2.6 Analysis of the Problem-Solvers

In open source software, the distributions of developers per project and projects per devel-

oper follow a power law distribution [85]. For this chapter, a similar analysis was performed

for the programming contests. Identifying the developers was straightforward, but establish-

ing ‘projects’ within a contest was not quite as clear. During the contest, the participants

were given the opportunity of specifying another submission as the basis of their code. How-

ever, this information was incomplete, as this information was not always given. Therefore,

‘projects’ were established directly from the submissions themselves.

2.6.1 Comparison of Code Submissions

In order to group similar submissions to make a ‘project’, the parse tree of the functions

in each submission was generated and compared with all other functions submitted during

the contest (see Algorithm 2.1 for details). User defined names of functions and variables
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were not used during the comparison because those are easily changed to obfuscate the code

without affecting the execution of the code. Also, if functioni is labeled as function type

x and functionj is later found to be of type x, then functionk can be labeled as type x

if it is within the threshold T of either functioni or functionj . This allows the function

type to represent an entire evolutionary trajectory, not simply a cluster of functions that

are similar to one another. The method from Baxter et al. [87] was used for comparing

parse trees:

similarity(treei, treej) =
Si,j

mean(Ni, Nj)
(2.4)

Si,j is the number of nodes that are shared between the two trees and Ni is the total

number of nodes in treei. While treei is the parse tree for the ith function. This method

also requires a threshold parameter T that specifies when two parse trees are considered

the same, which will be discussed later in this section.

Algorithm 2.1 Using Function Parse Trees to Build the Submission Lineage.

ClassifiedTrees← ∅
for all functioni do
treei ← parse tree(functioni)
maxSimilarity ← arg maxj(similarity(treei, treej ∈ ClassifiedTrees))
if maxSimilarity > T then

Classify treei as the same as treemaxj
else

Create a new tree classification
end if
ClassifiedTrees← ClassifiedTrees ∪ treei

end for

The order of the branches in the parse tree were not used in the comparison. If a

developer changed a single line of code at the beginning of a function, then it would shift

all of the branches of the parse tree down. Therefore, a strict comparison requiring the
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branches to appear in the original order would classify the small change to the function

as a totally new function. Consequently, a strict ordering of branches was not required

during the comparison process. Moreover, by not being concerned with the order of the

branches in the parse tree, it helped reduce the execution time of this already long running

process. The comparison between two functions ranged between zero and one and measured

the proportion of parse tree nodes that were in both functions. These function comparisons

allowed the source code to be classified into a set of function types. A unique set of function

types were considered a ‘project’. This approach allows the lineage of the submissions to

be reconstructed directly from the submissions themselves.

Determining the Similarity Threshold

Determining the threshold for similarity (T ) includes conflicting motivations.6 On one side,

a stricter threshold (a higher T ) is better because the different approaches to solving the

problem can be identified. On the other side, a looser threshold (a lower T ) is better because

it preserves more of the lineage of the evolving solutions. While a stricter threshold can

introduce a different function type when there was an actual lineage, a looser threshold can

insist there was a lineage when there was none.

All is not lost because the quality of a threshold can be compared with the empirical data.

When submitting a solution, the participant had the option of specifying another submission

that their submission was ‘based on’. However, from examining the empirical data, there

are a few systematic reporting errors with the ‘based on’ variable. First, participants may

not report that their submission was based on another submission even if it was. Second,

participants can only specify one submission as the ‘based on’ submission. Therefore, if

they combined multiple submissions into one, then that information cannot be provided by

the participant. Third, participants could say their submission was based on their previous

submission even if they borrowed heavily from someone else’s submission.

With these reporting errors in mind, one situation where it seems that the ‘based on’

6This section is included for completeness and to justify my decision of similarity threshold T chosen.
Most readers can skip this section without losing the overall message of this chapter.
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variable would be most accurate is when the participant reports that their submission is

based on another participant’s submission. Therefore, only these instances of the ‘based on’

variable are used to determine the quality of the similarity threshold T . Figure 2.2a shows

the results of this comparison. As seen in the figure, using this criteria, lower threshold

values will always outperform higher threshold values because lower thresholds identify fewer

function types, thereby merging the evolutionary trajectory into fewer branches. Therefore,

to avoid the collapse to a few evolutionary branches, a higher threshold is preferred, but

there should be near perfect agreement with the subset of ‘based on’ information used.

Either a threshold of T = .70 (with median agreement = 99.7% and mean = 98.6%) or

T = .85 (with median agreement = 99.3% and mean = 97.5%) are reasonable and both

choices produce similar results. For the remainder of this chapter, a threshold of T = .70

is used, but the same results for T = .85 is provided in Appendix A.3. This decision was

also motivated by exploring the effect of code changes on parse trees, which is included in

Appendix A.2. Furthermore, the contests that had the lowest amount of agreement with

the ‘based on’ information had the fewest functions and smallest node counts (see Figures

2.2b and 2.2c), and thus fewer lines of code needed to be changed in order for the function to

be classified as a different function. This limitation seems unavoidable unless an approach

that used absolute differences in parse trees rather than percent differences, but this would

be disadvantageous for larger and more complex functions, which is the more interesting

case to study.

Figure 2.3 shows the complete history of the best-so-far submissions for the most recent

programming contest, ‘Tiles’. In the figure, each small square represents a function from

a submission and each column of squares is a complete submission. Each row shows the

usage of a function type where the color of the square displays how similar the function is

with the originating function of that type. The color coding shows how some function types

remain the same throughout their lifespan, but others change drastically.

As noted earlier, during the first two days of a contest, the submissions were not visible
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Figure 2.2: This figure shows how the similarity threshold was chosen. a) Various similarity
thresholds were compared to see which threshold had the best agreement with the ‘based
on’ variable supplied by the contest participants. The highest threshold that introduces the
less disagreement with the participant response is desired. b) While investigating threshold
= .70 further, the most disagreement occurs when there are a small number of functions c)
and a small node count, which is expected.
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to all participants. The dotted line shows when all submissions are viewable by all par-

ticipants. For this contest, once the submissions are viewable by all participants, there is

some additional development on the best-so-far submission, but then the participants start

improving upon an earlier idea. Finally, there is a new idea that dominates the remainder of

the contest (represented by the cluster of squares at the top of the figure). The figure shows

how there is a steep increase in reuse of function types immediately after the submissions

are visible to others, which gives a strong indication of collaboration within the contest.

Figure 2.3 provides an intuitive sense of the evolution of the function types used in the

contests. Furthermore, it shows that with either threshold, .70 or .85, the contest unfolds

in a similar way. This figure also shows how higher similarity thresholds partition functions

into more function types, while lower thresholds consolidate functions into fewer types.

2.6.2 Distributions of Projects and Developers

Figure 2.4 shows the developers per project and Figure 2.5 shows the projects per developer.

All of these plots are on a log-log scale. Some of the tails of the distributions were not

ruled out as being a power law (see Tables 2.5 and 2.6) using the maximum likelihood

method described in Clauset et al. [88]. However, I do not want to overstate the fit of the

distributions to a power law because of the small sample sizes, although most distributions

display a heavy tail, which is a signature of complex systems. Clauset et al. [88] note

that generally at least 50 observations are required to get reliable parameter estimates for

a power law. This is a problem for some of the distributions used here because only the

tail is being fitted to the distribution (refer to ntail values in Tables 2.5 and 2.6). These

distributions provide evidence that heavy tail distributions can develop over a relatively

short time period (i.e., one week) with a modest number of observations.
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Figure 2.3: The evolution of function types within the most recent programming contest
(‘Tiles’). For both similarity thresholds, a similar pattern appears. The results discussed
in this chapter are not overly sensitive to the choice of threshold. From this figure, you
can see the evolution of all of the best-so-far submission for the contest. Each small square
represents a function within a submission. A column of squares represent an entire submis-
sion. Each row shows how a function type is used over time where the color of the square
shows how similar the function is with the originating function of that type. The dotted
line shows when all submissions are viewable by all participants.
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Figure 2.4: Developers per project for the 23 programming contests (T = .70).

50



10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

Developers per Project (x)

(p) Gerrymandering

10
0

10
1

10
2

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

Developers per Project (x)

(q) Trucking Freight

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

Developers per Project (x)

(r) Protein Folding

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

Developers per Project (x)

(s) Molecule

10
0

10
1

10
2

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

Developers per Project (x)

(t) Mastermind

10
0

10
1

10
2

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

Developers per Project (x)

(u) Gene Sequencing

10
0

10
1

10
2

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

Developers per Project (x)

(v) Mars Surveyor

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

Developers per Project (x)

(w) Binpack

Figure 2.4: Developers per project for the 23 programming contests (T = .70).

51



10
0

10
1

10
2

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

Projects per Developer (x)

(a) Tiles

10
0

10
1

10
2

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

Projects per Developer (x)

(b) Vines

10
0

10
1

10
2

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

Projects per Developer (x)

(c) Crossword

10
0

10
1

10
2

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

Projects per Developer (x)

(d) Sailing Home

10
0

10
1

10
2

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

Projects per Developer (x)

(e) Sensor

10
0

10
1

10
2

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

Projects per Developer (x)

(f) Color Bridge

10
0

10
1

10
2

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

Projects per Developer (x)

(g) Army Ants

10
0

10
1

10
2

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

Projects per Developer (x)

(h) Wiring

10
0

10
1

10
2

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

Projects per Developer (x)

(i) Gene Splicing

10
0

10
1

10
2

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

Projects per Developer (x)

(j) Peg Solitaire

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

Projects per Developer (x)

(k) Blackbox

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

Projects per Developer (x)

(l) Blockbuster

10
0

10
1

10
2

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

Projects per Developer (x)

(m) Sudoku

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

Projects per Developer (x)

(n) Ants

10
0

10
1

10
2

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

Projects per Developer (x)

(o) Moving Furniture

Figure 2.5: Projects per developer for the 23 programming contests (T = .70).

52



10
0

10
1

10
2

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

Projects per Developer (x)

(p) Gerrymandering

10
0

10
1

10
2

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

Projects per Developer (x)

(q) Trucking Freight

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

Projects per Developer (x)

(r) Protein Folding

10
0

10
1

10
2

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

Projects per Developer (x)

(s) Molecule

10
0

10
1

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

Projects per Developer (x)

(t) Mastermind

10
0

10
1

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

Projects per Developer (x)

(u) Gene Sequencing

10
0

10
1

10
2

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

Projects per Developer (x)

(v) Mars Surveyor

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

Projects per Developer (x)

(w) Binpack

Figure 2.5: Projects per developer for the 23 programming contests (T = .70).
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Table 2.5: Parameters for the developers per project distributions (T = .70).

Contest Name n x̂min α̂ ntail p

Tiles 197 1 2.50 197 0.00
Vines 165 1 2.49 165 0.21
Crossword 191 1 2.73 191 0.00
Sailing Home 146 1 2.16 146 0.02
Sensor 146 1 2.47 146 0.60
Color Bridge 118 1 2.48 118 0.25
Army Ants 38 1 2.11 38 0.92
Wiring 193 1 2.34 193 0.00
Gene Splicing 206 1 2.45 206 0.03
Peg Solitaire 183 1 2.67 183 0.00
Blackbox 188 1 2.45 188 0.00
Blockbuster 196 1 2.56 196 0.00
Sudoku 154 1 2.57 154 0.00
Ants 156 1 2.79 156 0.00
Moving Furniture 189 1 2.47 189 0.08
Gerrymandering 189 1 2.44 189 0.01
Trucking Freight 77 1 1.99 77 0.17
Protein Folding 162 1 2.35 162 0.00
Molecule 106 1 2.66 106 0.01
Mastermind 54 1 2.25 54 0.75
Gene Sequencing 29 1 2.23 29 0.53
Mars Surveyor 81 1 2.65 81 0.19
Binpack 124 1 2.56 124 0.04

bold values are statistically significant (p > .10)

54



Table 2.6: Parameters for the projects per developer distributions (T = .70).

Contest Name n x̂min α̂ ntail p

Tiles 35 12 2.62 13 0.26
Vines 58 11 3.92 12 0.52
Crossword 56 4 2.23 34 0.41
Sailing Home 62 4 2.13 42 0.00
Sensor 75 3 2.29 50 0.36
Color Bridge 55 2 2.06 55 0.23
Army Ants 45 7 5.20 7 0.44
Wiring 59 9 2.82 25 0.38
Gene Splicing 70 2 1.94 70 0.06
Peg Solitaire 86 4 2.60 51 0.21
Blackbox 105 3 2.35 77 0.15
Blockbuster 104 11 3.77 15 0.34
Sudoku 93 3 2.33 65 0.00
Ants 110 2 2.42 110 0.30
Moving Furniture 55 3 2.09 43 0.13
Gerrymandering 94 2 2.03 94 0.15
Trucking Freight 74 7 3.35 19 0.60
Protein Folding 110 2 2.19 110 0.12
Molecule 90 4 3.25 33 0.49
Mastermind 58 3 3.00 36 0.08
Gene Sequencing 46 4 4.51 16 0.38
Mars Surveyor 44 3 2.44 8 0.03
Binpack 101 5 4.31 32 0.40

bold values are statistically significant (p > .10)
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2.7 Analysis of Problem Solutions

The analysis of problem solutions is centered around what Schumpeter [33] refers to as

creative destruction. Schumpeter’s theory of creative destruction describes how existing

technologies can be replaced by a new technology [33]. The programming contest data

provides a microcosm to study the “perennial gale of creative destruction” [33, pg. 84].

2.7.1 Evidence of Creative Destruction

New approaches to the problem are introduced throughout the contest. If creative destruc-

tion is present in the data, then it would be expected that when a new, better submission

is introduced, then it would be adopted by participants and replace some of the previously

used approaches. Therefore, if you look at the submission diversity before and after the

introduction of an improvement, then it would be expected that the variety of approaches

being used would decrease (Algorithm 2.2 explains how the change in diversity was calcu-

lated). The submission diversity was calculated by looking at the 10 submissions by unique

authors before and after each submission and counting the number of unique approaches.

An approach is defined as a unique combination of function types as defined earlier in this

chapter. A negative change in submission diversity means that the submission population

became more homogeneous and a positive change in diversity means the population became

more heterogeneous.

Algorithm 2.2 Change in Solution Diversity

for all submissioni do
beforei ← count approaches before(submissioni) {by 10 unique authors}
afteri ← count approaches after(submissioni) {by 10 unique authors}
changeInDiversityi ← afteri − beforei

end for

56



From Figure 2.6, many of the best-so-far solutions coincide with periods of reduced sub-

mission diversity. In the figure, the horizontal axis displays the submissions in chronological

order for the Color Bridge contest. The vertical axis displays the change in diversity as cal-

culated by Algorithm 2.2. The points on the figure indicate the best-so-far submissions with

downward pointing triangles displaying creative destruction. However, not all best-so-far

submissions caused creative destruction and those points are marked with upward pointing

triangles. Obviously, there are other factors at work and every best-so-far submission isn’t

going to reduce the submission diversity.

0 500 1000 1500

−
6

−
4

−
2

0
2

4

Submissions in Chronological Order

C
ha

ng
e 

in
 S

ub
m

is
si

on
 D

iv
er

si
ty

●●●●● ●●●●●● ●●●●●●● ● ● ●● ●

Figure 2.6: Creative destruction in the Color Bridge contest. The points indicate the loca-
tions of the best-so-far submissions with red downward pointing triangles showing creative
destruction. Green upward pointing triangles reveal best-so-far submissions that increased
the submission diversity. Blue circles indicate best-so-far submissions that had no change
in submission diversity.
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Figure 2.7 shows the difference in the average change in diversity for the best-so-far

solutions versus all other submissions (i.e., the submissions that were not the best-so-far).

The majority of the contests (17 of 23) show a greater decrease in diversity for the best-so-

far submissions. However, only six of the contests were statistically significant with one of

those in the wrong direction. Statistical significance was determined using a permutation

test [89]. A permutation test is a non-parametric, resampling method were the observations

from the two conditions are randomly sampled to determine significance.7 The Kolmogorov-

Smirnov test is another common non-parametric test, but was not used because it requires

continuous values and the difference in diversity can only be discrete, whole numbers. Also,

it is important to note there is a tendency of the submission diversity to decrease over

the duration of a contest. This can be seen in Figure 2.7 by observing the tendency of

the diversity values to be below zero. As the contest progresses and better approaches are

discovered, less effort is placed on exploration of new techniques and more effort is placed

on the exploitation of the best solutions.

2.7.2 Reuse of Improvements

Since results were modest when examining the change in diversity before and after the best-

so-far submissions, another analysis was performed to look for more convincing evidence of

creative destruction. Instead of looking at the reduction in diversity, this analysis looks for

the adoption of a new innovation by other participants. Using this view, when an improve-

ment is introduced, it is expected that it will be reused by others more than submissions

that do not make an improvement over the best-so-far. For this analysis, the number of

times that the approach was used by 10 unique authors (not including the original author)

was counted for each submission (see Algorithm 2.3). As seen in Figure 2.8, the number

of times the best-so-far submissions are reused compared to the other submissions is sta-

tistically significant in 19 of the 23 contests. Furthermore, there is high levels of reuse for

all contests and all submissions giving a strong indicator that the contests are facilitating

7For the permutation test, I used the software that was included with Maindonald and Braun’s book [90].
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Figure 2.7: Creative destruction in the programming contests using the change in submission
diversity (threshold T = .70). Most contests (17 of 23) have a larger drop in submission
diversity with best-so-far solutions compared to all other submissions. Also, note that
generally submission diversity reduces during the cause of the contests (represented by the
majority of negative values).
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collaboration. This also agrees with the result from Gulley and Lakhani [83], which found

that solutions with higher ranks at time of entry had more lines of code reused by other par-

ticipants. Moreover, the analysis method used by Gulley and Lakhani [83], quasi-maximum

likelihood fixed effects poisson regression, was quite different than the approach used here,

thereby providing support that this is a robust finding.

Algorithm 2.3 Number of Solution Reuses

for all submissioni do
numReusesi ← count reuses(submissioni) {by 10 unique authors}

end for

The results from the previous two analyses, the creative destruction analysis and the

reuse of improvements analysis, seem to be conflicting with one another. However, when

analyzing the change in submission diversity, the analysis did not take into account that

the best-so-far submission could be adding to the diversity. In other words, the approach

used in the best-so-far submission is more likely to be in the population after it was the

best, then before, thereby adding to the submission diversity. Also, the best-so-far submis-

sion could be modified beyond the similarity threshold and again, add to the submission

diversity. The results reporting the number of reuses overcome these shortfalls and provide

more evidence of creative destruction in the programming contests. Furthermore, since

solutions are frequently reused by different authors, this demonstrates that the amount of

collaboration between authors is quite high.
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Figure 2.8: Submission reuse in the 23 programming contests (threshold T = .70). Most
contests (19 of 23) have a statistically significant difference in the amount of reuse between
best-so-far submissions and other submissions.
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2.8 Discussion

Much of the analysis in this chapter required careful examination of the functions (the

building blocks), which is computationally expensive, but the underlying concepts under

study are quite simple. The programming contest data provides a look inside the innovation

process at a low level where a bottom up view of the process can be obtained. Further-

more, these analyses provide a quantitative way of exploring the problem being solved, the

problem-solvers, and the problem solutions. With a quantitative analysis, the importance

of various factors can be systemically compared to determine which are the best predictors

of innovation.

The analysis of problem characteristics found that problem modularity and size were

significant predictors of innovation. Moreover, problem modularity had an effect size (mea-

sured by R-squared values) approximately double that of problem size. This provides quan-

titative evidence that problem modularity is a better predictor of innovation than problem

size. Problem complexity was not a statistically significant predictor of innovation even in

the contests that did not include complexity as part of the scoring criteria (see Appendix

A.1). This type of empirical data analysis allows for comparison between difference aspects

of the problem-solving task.

When studying the problem-solvers, the analysis of the distributions of developers per

project and projects per developer show that heavy tailed distributions can emerge in a

short period of time. It also shows that the MATLAB programming contests have similar

patterns as what is seen in the open source software community. Therefore, it may be a

more controlled way of studying open source software and its evolution.

Finally, the analysis of problem submissions shows some evidence of a drop in submission

diversity after a best-so-far solution, which provides limited evidence of creative destruction.

These results were not totally convincing so the analysis of number of reuses of best-so-

far submissions provided a clearer picture where new innovations were more likely to be

reused by other participants. This provides evidence that a new improvement overtakes

existing solutions, but since there is little drop in submission diversity, there seems to be a
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simultaneous spurring of more innovative solutions. Therefore, the creative destruction from

a new innovation coincides with a spawning of new ideas. There appears to be two forces

at work when a new innovation is introduced. The first is Schumpeter’s ‘process of creative

destruction’ and the second is what I refer to as the ‘process of imitative construction’.

While the process of creative destruction causes old products to be eliminated, the process

of imitative construction promotes new products due to the introduction of a new idea.

The analyses discussed in this chapter all deal with static fitness landscapes. These

landscapes are appropriate for innovation that occurs over a relatively short time period.

By allowing the landscape to remain static, it is much simpler to model. In the next

chapter, I model groups of collaborating agents working to solve problems with static fitness

landscapes.
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Chapter 3: Models of Static Fitness Landscapes

In this chapter, the results from the data analysis in the previous chapter are used in the

creation of computational models. The computational models extend the types of quantita-

tive analysis that are possible. Evolutionary computation (i.e., genetic algorithms) and the

NK model are used as starting points for the computational models. The computational

models show how simple mechanisms can reproduce patterns from the MATLAB program-

ming contests without sophisticated modeling of agents’ cognitive abilities. In this chapter,

just like the previous chapter, the quality of a product does not change during its lifetime,

thereby creating a static fitness landscape.

The chapter begins with an overview of the background concepts used in the remainder of

the chapter followed by the model description and model results. Finally in this chapter, the

results from the computational models are compared with mathematical models that were

generated using only empirical data. This allows for further validation of the computational

models and the development of a better mathematical model of innovation.

3.1 Research Questions

Question 1: Which of the following computational models most closely resemble the em-

pirical data from the programming contests?

[A:] Artificial problem-solving agents using the Monte Carlo method to randomly

generate new solutions with no consideration of previously generated solutions

[B:] Artificial problem-solving agents that are locally optimizing problem solutions

without collaboration

[C:] Artificial problem-solving agents that are using selection and random recom-

bination of others’ solutions to search for better solutions
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Question 2: Once a computational model is created, can it provide a clearer picture of

the innovation process by permitting a systemic sweep of model parameters?

Question 3: Can the computational models be integrated with mathematical models that

were generated using only empirical data to help develop stronger support for both

types of models?

The first goal is to compare the results from the computational models with the empirical

data gathered from the MATLAB programming contests (Question 1). The computational

model using the Monte Carlo method provides a baseline of comparison for the other two

computational models. Using computational models from the first question, a systemic

sweep of problem parameters, size and modularity, was performed to determine their effect

on innovation (Question 2). The last task is to integrate what was learned from the com-

putational model back into the mathematical model to further strengthen and develop the

results from both types of models (Question 3). The first question is explored in the next

section, Section 3.2, and the second question is addressed in Section 3.3. Finally, the last

question is addressed in Section 3.4.

3.2 Modeling the Programming Contests

The programming contests have many variables that could be confounding the results. For

example, in each contests, there are a different number of participants. This requires that

the innovation measures be normalized by the number of participants (e.g., innovations

per participant and percent innovators). Furthermore, there is no systemic exploration of

problem size and modularity within the programming contests, thereby some parts of the

state space are more sparse than others. This can be overcome with computational models

by performing a parameter sweep of the problem size and modularity variables. Before

discussing the parameter sweep results, the empirical data is used to determine which

model most closely replicates the results from the programming contests. The idiosyncratic

characteristics from each of the programming contests are used to parametrize the fitness
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landscape used in the computational models. Then, the model results are compared to the

empirical measures of innovation to see which model gives the most accurate results. The

following three sections describe the computational models used in this analysis. These

models are modeling a group of problem-solvers that are concurrently working on a single

problem, but each model uses a distinctive mechanism to do this.

3.2.1 Monte Carlo Model

The Monte Carlo model is the simplest of the three computational models. Artificial agents

generate solutions to the problem over multiple generations, in this case, for a total of 1,000

generations. Each agent creates a single solution during each generation and every solution

is randomly generated without any consideration of previously generated solutions. The

best-so-far solution is recorded for each generation during the execution of the model. As

in all of the computational models, the problem being solved is defined by a NK landscape,

which is discussed in detail later in this chapter. Unlike the other two computational models,

the agents in this model do not use previously generated problem solutions to aide in the

creation of new solutions. Therefore, these agents do not use previously gained knowledge

during the innovation process, but are given the same number of attempts at solving the

problem. This provides a baseline for comparison with the other two computational models.

3.2.2 Parallel NK Model

Kauffman’s NK model [49] is the starting point for this model and the landscape for the

NK model is used for all of the computational models in this chapter. The original NK

model uses a simple mechanism for modeling a single individual that is searching for better

solutions on a fitness landscape. To move to a group problem-solving process, I simply have

multiple problem-solvers concurrently working on the same problem. In the NK model,

the landscape specifies how the elements of a solution (or individual) influence its fitness.

The interactions between the solution elements and fitness components are called epistatic

relationships [49]. The fitness landscape represents the problem that is being solved by the
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problem-solvers. The N parameter is the size of the fitness landscape, thereby represents

the size of the problem being solved. Each problem solution generated is N ‘genes’ long

where a gene can have a binary value (0 or 1). In the standard NK model, The ith gene

always influences the ith fitness component, which is also followed here. The K parameter is

the number of other fitness components that each of the solution elements (genes) influence.

Therefore, as K increases, the number of gene to fitness component interactions, or epistasis,

increases.

The fitness of an individual (solution) is described by the following formula:

F =
1

N

N∑
i=1

fi (3.1)

The fi variables are the values for each of the fitness components and the overall fitness of

the individual (F ) is the average of those fitness component values. The fitness component

values (fi values) are randomly drawn from a uniform distribution from 0.0 to 1.0. For each

unique combination of the K+1 genes that influence a fitness component, there is a random

number generated from the uniform distribution [49]. Therefore, a fitness component could

have 2K+1 different possible values. Even when only generating fitness component values

as they are needed, the NK landscape can be very large. This makes some versions of the

NK model NP-complete [91] which will be discussed more later.

The K parameter provides a systemic way to tune the amount of ruggedness in the

landscape. For example, when K = 0, each element only influences one fitness value, so for

each element the optimal individual can be found using a hill-climbing algorithm. When

K = N −1, all elements influence all fitness values, thereby if a single element changes then

every fitness component values changes. Therefore, creating a totally uncorrelated fitness

landscape where there is no relationship between a location on the fitness landscape and

neighboring locations [55].

In Kauffman’s most basic formulation of the NK model, the agents (problem-solvers)
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searching over the NK landscape use a steepest-ascent hill-climbing algorithm. The agent

starts on a random location of the landscape. Then the agent evaluates each of the neigh-

boring locations on the landscape and moves to the best location. The neighboring locations

are the locations on the landscape that are different from the current location by one gene,

thereby there are N neighboring locations. The agent continues until it cannot find a neigh-

boring location that has a better fitness, or in other words, the agent stops when it reaches

a local optimum [49].

The parallel version of the NK model included here simply includes multiple agents

concurrently hill-climbing over the landscape. The agents are goal-directed, but are working

independently. Later in this chapter, another computational model is discussed that uses

a genetic algorithm. In the genetic algorithm model, agents randomly recombine other

agents’ solutions, which enables collaboration in the model. Before discussing the genetic

algorithm model, the three types of NK landscapes are introduced that are used by the

computational models.

Types of NK Landscapes

There are numerous ways that the K epistatic relationships can be distributed. In Kauff-

man’s original NK model, there were two arrangements of epistatic relationships. Figure

3.1a and 3.1b show examples of Kauffman’s original landscapes. In the adjacent landscape,

the ith gene and its K neighboring genes affect the ith fitness component. In the random

landscape, the ith gene and K other randomly chosen genes affect the ith fitness component

[49]. It is interesting to note that the adjacent landscape can be optimized in polynomial

time (if K ∈ O(logN) [92]), but the random landscape has been found to be NP-complete

[91]. Moreover, Kauffman surprisingly found quite similar results using both landscapes

[49], which is also the case for the results presented here.

Altenberg’s generalized NK model [52] was used to introduce modularity into the third

landscape (see Figure 3.1c). In the generalized NK model, any arrangement of epistatic

relationships between genes and fitness components can be specified and the K value is not
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necessarily the same for all fitness components [50] [51] [52]. In the modular landscape, the

N genes were partitioned into M modules.

M =
N

K + 1
(3.2)

Therefore, each fitness component had approximately K+1 epistatic relationships, just like

the other fitness landscapes.

K =
N

M
− 1 (3.3)

In some of the landscapes, the K value was not a whole number, so some fitness components

had more epistatic relationships than others, but this minor discrepancy should have little

effect on the results.

The three fitness landscapes allowed the epistasis to remain nearly constant while chang-

ing the arrangement of epistatic relationships. The modular landscape had the additional

benefit of being able to systemically adjust the amount of modularity in the landscape

during a parameter sweep.
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Figure 3.1: The different types of NK landscapes used for the computational models. The
first two, adjacent and random, are the same as Kauffman used [49]. The modular landscape
divides the landscape into modules. Also, notice that the epistasis of each of the landscapes
is the same.
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The parallel version of the NK model simply has multiple agents searching over the

landscape using hill-climbing. The agents are goal-directed, but are working independently.

In the next computational model, discussed in the next section, the agents are randomly

recombining other agents’ solutions, thereby allowing for collaboration between agents in

the model.

3.2.3 Genetic Algorithm Model

Genetic algorithms are primarily used for solving problems, but have also been applied to

the study of evolutionary processes [93]. Here a genetic algorithm is used to determine

how closely the behavior of the genetic algorithm matches the behavior of human problem-

solvers. I am not proposing that humans solve problems in the same way as a genetic

algorithm; I am simply proposing that the patterns found in human problem-solvers may

also be found in the results of a genetic algorithm. Furthermore, the NK model has been

suggested as a systemic way of studying the effect of epistasis during the execution of a

genetic algorithm [94]. For this model, a small variation was made to the genetic algorithm

where the population grows during the execution of the model. This makes the model more

similar to the programming contest data where the number of submissions grew during

the course of the contest. Just as in the standard genetic algorithm, the genetic algorithm

discussed here still depends on the process of selection, inheritance, and variation to provide

the mechanism for the problem solving process.

In genetic algorithms, each individual represents a solution to the problem being solved

and consists of a ‘genome’ that is made up of ‘genes’. Each gene could be a real number, but

is commonly just a binary value, which is the case for the NK landscapes. The initial pop-

ulation is generally randomly generated. For each successive generation, natural selection

chooses the parents for the next generation. Normally each new individual inherits part of

its genome from each parent which creates a new combination of existing parts. Just as in

the Monte Carlo model, the genetic algorithm was executed for 1,000 generations.

The genetic algorithm used here uses only the crossover operator [71] [95]. The crossover
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operator selects portions of each parents’ genome to reuse to create a new child. For example

in one point crossover, the genes from the first individual are used up to the crossover point

and then the genes from the second individual are used. This idea can be extended to

multiple crossover points, but one point crossover was used for these model results. The

mutation operator is another common operator for introducing variation into the population

of a genetic algorithm. Mutation only requires one individual and randomly selects a gene

to change. The model results did not depend on mutation being present, so for simplicity,

only crossover was used in the results discussed here.

Building Block Hypothesis

The building block hypothesis provides an explanation of how a genetic algorithm solves

problems [71] [95]. In this hypothesis, as the genetic algorithm evolves, patterns of genes,

or schemata as named by John Holland [71], of high quality will appear in the population.

Therefore, Holland’s schema theorem [71] states that in the next generation the number of

instances that have a schema, h, will have a lower bound expressed by:

(
f̂h

f̂

)
(1− eh)Ph (3.4)

The f̂h and f̂ terms are the average fitness for the individuals with schema h and all

individuals in the population, respectively. The Ph value is the proportion of individuals

that have schema h. The eh term is an error term that is determined by the length of

the schema and the reproduction operators used. It measures the number of instances of

the schema that are destroyed during the reproduction step. In short, the schema theorem

states that on average the number of instances with a schema with higher than average

fitness will grow exponentially in subsequent generations [71] [72] [96] . The building block

hypothesis states that crossover can use these schemata as building blocks to create better

solutions of a higher order. For the schemata (the building blocks) to not be destroyed over

71



generations, it is best for them to be short and have high fitness [71] [95].

Model Parameters

Individuals in the genetic algorithm were selected to reproduce using tournament selection.

In tournament selection, a subset of individuals are selected as potential parents and the best

individual is used. Tournament selection allows the selection pressure in the evolutionary

process to be systemically adjusted. The number of individuals selected for the tournament

was varied to study the effect of selection pressure on the evolutionary process. Three sizes

were used for tournament selection: 2, 7, and 12. The middle value, 7, is discussed in this

chapter and the other two levels of selection are included in Appendix B. The various levels

of selection pressure were used to test the robustness of the model results and all three levels

of selection pressure produced similar results, thereby providing evidence that the model is

not overly sensitive to selection pressure.

The model used standard genetic algorithm approaches as much as possible, but the

empirical data motivated one change from the standard genetic algorithm. In the program-

ming contests, the population of solutions grew during the contest. However, generally in

a genetic algorithm the population size remains static from one generation to the next as

the previous generation disappears once the population for the next generation is created.

Therefore, in the genetic algorithm model discussed here, the solutions from previous gen-

erations remain in the population for the duration of the model execution. This means that

the solution population grows during model execution just as in the programming contests.

3.2.4 Analysis Description

The parameters of the fitness landscape (the NK landscape) were set as closely as possible

to the programming contests. Table 3.1 contains the information used to configure the

NK landscapes. The model configuration used exactly the same number of agents as the

number of participants from the programming contests. The average number of nodes in

the parse tree of the contest submissions was used to determine the N parameter of the
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Table 3.1: Problem characteristics from the MATLAB programming contests

Number of Average Average Number of
Contest Name Participants Node Count Function Count Improvements

Tiles 35 4439 24.6 141
Vines 57 7828 20.8 108
Crossword 55 4269 12.0 74
Sailing Home 62 2401 7.5 216
Sensor 70 3098 4.3 256
Color Bridge 54 1952 6.9 109
Army Ants 43 930 1.1 7
Wiring 59 5466 18.7 162
Gene Splicing 67 4178 14.6 158
Peg Solitaire 86 2904 9.7 165
Blackbox 105 2967 6.7 61
Blockbuster 102 1116 4.1 191
Sudoku 90 4103 3.8 129
Ants 107 1752 2.5 78
Moving Furniture 54 9607 22.2 164
Gerrymandering 92 5524 13.8 181
Trucking Freight 71 3868 8.5 165
Protein Folding 109 7949 11.2 105
Molecule 89 899 2.9 58
Mastermind 55 892 3.0 29
Gene Sequencing 41 338 1.4 12
Mars Surveyor 44 1446 1.1 79
Binpack 101 241 1.0 61

landscape. However, the node count values were too large to be computationally feasible

for the NK landscape. Therefore, to keep the landscape memory space requirement in a

reasonable range, the N parameter was set to the average node count divided by 20. The K

parameter was calculated using Equation 3.3 with the N parameter set to the node count

divided by 20 and the M parameter set to the average number of functions. Therefore,

the NK landscapes were parameterized to resemble the programming contests as closely as

possible.

The three types of artificial problem-solvers (i.e., Monte Carlo, parallel NK, and genetic

algorithm) searched over the landscapes and given enough iterations to reach a steady state.

In the parallel NK model, all of the artificial problem-solvers would reach a local optimum
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and stop. In the Monte Carlo and genetic algorithm models, one thousand generations were

sufficient for the fitness improvements to plateau. There are 23 parameter settings, one for

each programming contest, and each setting was executed 20 times.

3.2.5 Analysis Results

The results are from the three computational models, the Monte Carlo, parallel NK and

genetic algorithm models, searching across three different landscapes, adjacent, random,

and modular. Moreover, the genetic algorithm model tests the effect of selection pressure

by using three sizes of tournament selection: 2, 7, and 12. Therefore, there are fifteen

different sets of model results that use the NK landscapes parametrized according to the

MATLAB programming contests. Not all of the results are included here for brevity, but

the results are included in Appendix B for those interested.

The results of the three models are shown in Figures 3.2, 3.3, and 3.4. In each of the

figures, the colored diamonds indicate the empirical results from the programming contest.

The color of the diamond does not mean anything explicitly, but allows for easier comparison

across plots. For the modular landscape, it was possible to plot the results on a scatterplot

as well. This shows how the variation in modularity of the various contests are not evenly

distributed.

The boxes in the plots provide an indication of the range of values gathered from the

20 runs of the model. For those unfamiliar with boxplots, I will quickly review them. The

thick line in the middle of the box indicates the median value. The box goes from the first

and third quartiles. The whiskers extend from the box by up to 1.5 times the inner quartile

range. Any points drawn outside of the whiskers are considered outliers.

The data were normalized (or also referred to as standardized) to make the empirical

and model results comparable. The following equation was used for normalization:

normalize(X) =
X − µ
σ

(3.5)
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Figure 3.2: Results for the Monte Carlo model for recreating the programming contests.
These two landscapes are the ones included in the Kauffman’s original model [49].
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(d) Modular Landscape (Boxplot)

Figure 3.2: Results for the Monte Carlo model for recreating the programming contests.
This landscape consists of blocks of genes that make up modules.
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(a) Adjacent Landscape
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(b) Random Landscape

Figure 3.3: Results for the parallel NK model for recreating the programming contests.
These two landscapes are the ones included in the Kauffman’s original model [49].
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(c) Modular Landscape (Scatterplot)
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(d) Modular Landscape (Boxplot)

Figure 3.3: Results for the parallel NK model for recreating the programming contests.
This landscape consists of blocks of genes that make up modules.
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This equation resets the mean to zero and the values become the number of standard

deviations from the mean.

Figure 3.2 shows the results from the randomly behaving Monte Carlo model. This

model appears to follow the empirical data rather well considering that at each time step

each agent is creating a totally random solution without using any previously acquired

knowledge about the landscape. This isn’t totally surprising since the problem landscape

was configured based on information from the programming contests. Furthermore, a more

rigorous statistic discussed later will provide a better metric of comparison.

Figure 3.3 shows the results for the parallel NK model where multiple hill-climbers are

searching the landscape. This model is the most similar to Kauffman’s original formulation

of the NK model. As Kauffman also found in his research [49], it is surprising how little

difference there is in the results of the various landscapes. This provides an indication that

for this model the most important characteristic of the landscape is the amount of emphasis

and not the arrangement of the epistatic relationships. However, this is most likely not true

for human problem-solvers where keeping epistatic relationships together is of importance.

It has been proposed that breaking problems into subtasks is important for humans because

of limitations in short-term memory [97]. This would make it particularity important for the

epistatic relationships to be close to one another to limit additional burden on short-term

memory.

Figure 3.4 shows the results for the genetic algorithm model. Note that the agents in

the genetic algorithm model were not purposefully searching for better solutions, but rather

randomly recombining others’ solutions. This process is not as blind as it may first appear,

since it was being guided by selection.

Selection pressure seemed to have little effect on the results from the genetic algorithm

model. Figure 3.5 shows the results for the modular landscape using the other two levels of

selection pressure.1 All three levels of selection pressure tend to have a similar pattern and

it does not seem that the results are overly sensitive to the selection pressure used.

1Additional results regarding the other two levels of selection pressure are available in Appendix B.
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(a) Adjacent Landscape
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(b) Random Landscape

Figure 3.4: Results for the genetic algorithm model for recreating the programming contests.
These two landscapes are the ones included in the Kauffman’s original model [49].
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(c) Modular Landscape (Scatterplot)
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(d) Modular Landscape (Boxplot)

Figure 3.4: Results for the genetic algorithm model for recreating the programming contests.
The tournament size for selection was 7, the middle value collected..
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(a) Modular Landscape (Tournament Size = 2)
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(b) Modular Landscape (Tournament Size = 12)

Figure 3.5: Results when modifying the selection pressure in the genetic algorithm model.
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The variance of the model results vary, so any statistical test that examines if the empir-

ical values lie within the model results will favor models that generate the most variation.

Therefore, the median value for each NK landscape configuration (23 total) was used for

the comparison across model results. R2 values were calculated to determine the amount of

variance in the empirical data that is explained by the model. The R2 value can range from

0 to 1, where 1 means that the model explains all of the variance in the data. Statistical

significance was calculated using linear regression to determine if the model results were a

significant predictor of the empirical results.

Table 3.2 shows the results of the comparison. It is clear that the randomly behaving

Monte Carlo model did not perform well. It explained little of the variance from the

empirical data and is not statistically significant. However, both the parallel NK and

genetic algorithm models are statistically significant and generally explains more variance

than the multiple linear regression model.

Table 3.2: Comparison between computational model results and empirical data from pro-
gramming contests (measured using R2 values).

Amount of Variance Explained
(Measured with R2 Values)

Landscape Type
Computational Model Adjacent Random Modular

Monte Carlo 0.032 0.050 0.111
Parallel NK 0.419∗∗∗ 0.414∗∗∗ 0.424∗∗∗

Genetic Algorithm
Tournament Size = 2 0.502∗∗∗ 0.218∗ 0.399∗∗

Tournament Size = 7 0.423∗∗∗ 0.433∗∗∗ 0.444∗∗∗

Tournament Size = 12 0.327∗∗ 0.475∗∗∗ 0.319∗∗

*** p < 0.001 ** p < 0.01 * p < 0.05

For comparison sake, Table 3.3 displays the multiple linear regression results using

both problem modularity (M) and size (N) as independent variables and innovations per

participant as the dependent variable. Just to briefly summarize this regression model, the
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results show that M remains significant while N loses statistical significance. Moreover,

the coefficient for N was positive when used as the only independent variable, but is now

negative when M is included. The R2 value for the multiple linear regression model is 0.398.

The computational models improved upon the explanatory power of this regression model,

but this is not the main advantage of the computational models. As discussed in detail later

in Section 3.3, the computational models provide a platform to remove the idiosyncratic

properties of the system under study and to generate a more comprehensive data set using

a systemic parameter sweep.

Table 3.3: Multiple regression results using size and modularity as independent variables.

Dependent Variable:
Innovations

Independent Variables: per Participant

Average Number Functions (M)
Coefficient 0.123
p-value 0.015

Average Node Count (N)
Coefficient -1.0E-04
p-value 0.457

Intercept 1.014
R2
emp 0.398

F-statistic 6.598
p-value 0.006

Note: Values in bold are significant at the 5% level.

3.2.6 Effect of Arrangement of Epistatic Relationships

The three landscapes, adjacent, random, and modular, seemed to have little effect on the

computational models’ ability to match the empirical data, which mimics Kauffman’s ob-

servation [49]. This is quite surprising, especially in the genetic algorithm model since the

crossover operator was used. Wright et al. [92] suggested that crossover would perform well
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on adjacent landscapes, but not on random landscapes due to the way crossover preserves

blocks of neighboring genes. Indeed, from looking at the amount of innovation per agent in

Figure 3.6, the genetic algorithm agents perform significantly better on the adjacent land-

scape than the random landscape. As expected, the genetic algorithm agents performed

best on the modular landscape, but their performance on the adjacent landscape is quite

similar. Moreover, there is no statistically significant difference between the adjacent and

modular landscapes.
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Figure 3.6: Comparison of innovations per participant for the three computational models,
Monte Carlo, parallel NK and genetic algorithm models. Due to the random behavior of the
Monte Carlo model, the landscape appears to make no difference in innovation performance.
The genetic algorithm results are from the middle level of selection pressure (tournament size
= 7). As expected, the genetic algorithm model does significantly better on the modular
and adjacent landscapes, although surprisingly, the parallel NK model does best on the
random landscape. Significance was determined using the Kolmogorov-Smirnov test.

To gain a better understanding of the effect of crossover on each of the landscapes, the
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expected number of fitness components that could potentially change was calculated. The

equations show the effect of one-point crossover, which is the type of crossover used in the

model results presented here. Also, I will be referring to the number of fitness component

values that could potentially change. This could be different from the number of fitness

component values that actually change during the crossover operation. For example, if

two genomes are exactly the same and they are used for reproduction, then the crossover

operator cannot change any of the fitness component values of the newly created individual.

In the adjacent landscape, if the crossover point is not at the start or end of the genome,

there are at least K fitness components that could potentially change. If the crossover point

is K genes from the first or last gene, then there are 2K fitness components that could

potentially change. The first K fitness components are due to the split of the crossover

and the second K components due to the circular nature of the landscape. Therefore, the

expected number of changes in fitness component values follows the equation:

E(∆Cadjacent) = 2K −
(

2 (K − 1)

N + 1

)(
K

2

)
−
(

2

N + 1

)
2K

= 2K − K (K + 3)

N + 1

(3.6)

Where the ∆C variable is the number of fitness components that could potentially change

during a one-point crossover. The equation begins with the maximum number of compo-

nents that could change, 2K, during crossover. The subtracted quantities in the equation

represent the crossover locations that are near enough to the first or last gene to necessitate

a reduction in the number of potential changes. For example, if the crossover location is

before the first gene or after the last gene, then there will be no fitness component value

changes. This eliminates double counting the fitness components for the expected number

of changes.

The expected number of changes in fitness components for the random landscape is
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much different:

E(∆Crandom) =

N −

(
N−1∑

L=K+1

L
(

1− K
N−1

)N−L
)

+

(
N−(K+1)∑
R=1

(N −R)
(

1− K
N−1

)R)
+ 2N

N + 1

(3.7)

This equation subtracts the expected number of fitness components that do not change

from N . The L and R variables represent the possible locations of the crossover point. The

crossover point could be from 0 to N where a crossover point of i means the crossover occurs

immediately after the ith gene. In Kauffman’s landscape, the ith gene always influences the

ith fitness component (the diagonal epistatic relationships). Therefore, if the crossover is

at i, in order for the fitness component to be guaranteed to stay the same, then all of the

epistatic relationships must be to the left of the crossover point (< i) for fitness components

1 to i and to the right of the crossover point (> i) for fitness components i+ 1 to N . The

first summation calculates the expected number of fitness components that have all of its

epistatic relationships to the left of the crossover location, and thus will not be affected by

the crossover operation. The second summation does the same calculation for the epistatic

relationships to the right of the crossover point. The final value in the numerator (2N)

adjusts for when the crossover point is at the very beginning or end of the genome, thereby

the crossover operation would not change any fitness components.

The effect of one-point crossover on the modular landscape is similar to the adjacent

landscape, but has an upper bound of K instead of 2K:

E(∆Cmodular) =
(N −M)NM
N + 1

= K
N

N + 1
(3.8)

The M variable is the number of modules in the landscape (defined in Equation 3.2). In

the modular landscape, the fitness component values do not change if the crossover point is
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between two modules. However, the overall fitness of the new individual could still change

because it is a new combination of the parents’ fitness component values.

Crossover operates very differently on the various fitness landscapes. For the random

landscape, one-point crossover can change all of the fitness component values, but at most

2K and K values for the adjacent and modular landscapes, respectively. Using the E(∆C)

equations from above, Table 3.4 shows the expected number of fitness components that

could change during a one-point crossover operation for each of the 23 model configurations

(one for each programming contest). This table makes it clear that crossover affects the

fitness component values much more on the random landscape than either the adjacent or

modular landscapes.

Table 3.4: Expected number of potential changes in fitness component values due to one-
point crossover.

Contest Name N K E(∆Cadjacent) E(∆Crandom) E(∆Cmodular)

Tiles 222 8 15.6 173.6 8.0
Vines 391 18 35.0 350.1 18.0
Crossword 213 17 32.4 189.5 16.9
Sailing Home 120 15 27.8 105.2 14.9
Sensor 155 35 61.5 146.4 34.8
Color Bridge 98 13 23.9 84.2 12.9
Army Ants 46 42 43.8 43.9 41.1
Wiring 273 14 27.1 236.9 13.9
Gene Splicing 209 13 25.0 179.4 12.9
Peg Solitaire 145 14 26.4 125.9 13.9
Blackbox 148 21 38.6 134.7 20.9
Blockbuster 56 13 22.4 48.2 12.8
Sudoku 205 53 91.6 197.4 52.7
Ants 88 35 55.1 83.2 34.6
Moving Furniture 480 21 41.0 436.5 21.0
Gerrymandering 276 19 36.5 248.6 18.9
Trucking Freight 193 22 41.2 176.3 21.9
Protein Folding 397 35 66.7 375.0 34.9
Molecule 45 15 24.1 39.5 14.7
Mastermind 45 14 22.8 39.1 13.7
Gene Sequencing 17 11 13.4 14.3 10.4
Mars Surveyor 72 65 69.5 69.8 64.1
Binpack 12 11 10.2 8.3 10.2
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3.2.7 Analysis Summary

Clearly, in the empirical data, innovation does not simply increase with the amount of modu-

larity, there is a more complex relationship between problem characteristics and innovation.

As seen in the previous chapter, modularity was found to be the most important predictor

of innovation (using linear regression), but it is not the only predictor. Furthermore, from

these model results, it is starting to become more clear that the linear assumption made in

the previous chapter does not hold and there are some nonlinear relationships at work. This

more complex relationship between problem characteristics and innovation will be explored

later in this chapter in Section 3.4.

The Monte Carlo model did not provide much explanatory power, but it provided an

important baseline for comparison with the other two computational models. It also showed

that the results are falsifiable and that not any model of problem-solving would produce the

same results. However, the usefulness of the Monte Carlo model is limited for the remainder

of the chapter, so it will be dropped from the rest of the analyses. In the next section, the

results of a parameter sweep of the parallel NK and genetic algorithm models are discussed

to show how a computational model can be used to gain a clearer picture of the innovation

process.

3.3 Parameter Sweep of Problem Characteristics

In the previous analysis, the computational models were validated with empirical data and

both the parallel NK and genetic algorithm models provided explanatory power that was

statistically significant. In this analysis, a systemic parameter sweep provides a more com-

plete picture of the influence of problem characteristics on innovation. Instead of depending

on the idiosyncratic parameter settings of the programming contests, a parameter sweep

systemically increments through parameter values. Since both the parallel NK and genetic

algorithm models provided a reasonable fit to the empirical data, both of these models are

used in the parameter sweep. Also, the parameter sweep uses the modular NK landscape
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because the modularity of the landscape is easily quantified. As noted earlier, the epistasis

is an important factor for the computational models and is a well-defined quantity, but relat-

ing the results back to the real-world (i.e., the programming contests) requires the analysis

to be done with regard to modules (i.e., functions in the software submissions), which can

be done with the modular landscape. For the genetic algorithm model, the middle level of

selection pressure (tournament size = 7) is used for the parameter sweep.

The N and K parameter settings were based on Kauffman’s original values [49] with

additions (especially for the larger values).

N ∈ {8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512} (3.9)

The N values include the powers of two and the values halfway between the powers of two.

The values of N cover the full range of N values that were used in the previous section to

validate the computational models (see Table 3.4 for the values of N and K used there).

The K values are one less than the N values because the total epistasis is equal to K + 1.

K ∈ {0, 1, 3, 7, 11, 15, 23, 31, 47, 63, 95, 127, 191, 255, 383, 511} (3.10)

All pairs of N and K values were used in the parameter sweep where K < N . Each

parameter setting was executed 10 times. The number of modules, M , varied from 1 to N

and can be calculated using Equation 3.2.2

Figure 3.7 shows the relationship between problem modularity and the innovations per

(artificial) problem-solver. Using linear regression, problem modularity is a significant pre-

dictor of innovation in both models (p < .001). However, the effect size of problem mod-

ularity is higher for the parallel NK model (R2 = .82) than the genetic algorithm model

(R2 = .34). Also, as presented in the previous chapter, the R2 value = .38 for the empirical

2It is possible to have a fraction of a module using these parameter settings of N and K. For example,

if N = 12 and K = 7, then M equals 1 1
2
. Allowing for fractional modules seemed like a more reasonable

option than rounding to the nearest number of modules. The values of N and K were chosen to reduce the
number of fractional modules while still obtaining a variety of M values.
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(a) Genetic Algorithm Model
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(b) Parallel NK Model
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(d) Parallel NK Model - log(X-axis)

Figure 3.7: Problem modularity versus innovations per participant during the parameter
sweep. This figure shows all 10 runs for each parameter setting of N and K.
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data. From looking at Figure 3.7a, it is clear that there is not a simple linear relation-

ship between modularity and innovation in the genetic algorithm model. For the genetic

algorithm model, the benefit from each additional module diminishes, while the parallel

NK model follows a linear relationship between modularity and innovation. This lack of

linearity will be further explored later in this chapter in Section 3.4.

Figure 3.8 shows a similar story for the relationship between problem size and innovation.

Again, problem size is a significant predictor of innovation for both models using linear

regression (p < .001). The effect size for the genetic algorithm model is slightly higher than

the parallel NK model (R2 = .27 for the genetic algorithm model, R2 = .21 for the parallel

NK model, and from the previous chapter, R2 = .18 for the empirical data). But again,

there is an indication that the genetic algorithm model has diminishing improvements with

larger problem sizes, while the parallel NK model has linear improvements.

To gain a better understanding of the relationship of size and modularity, the median

result for each N and K parameter setting was calculated and displayed in Figures 3.9 and

3.10. This reduced the number of points in the figures by 90% and made it possible to

encode more information into the plots. Figure 3.9 shows modularity versus the median

innovations per participant. Each data point is also binned according to problem size and

is displayed with a different color and shape of plot marker. Similarly, Figure 3.10 shows

size versus the median innovations per participant and each data point is binned according

to modularity. These figures permit the display of both modularity and size in relation to

innovation at the same time. Also, it more clearly shows the nonlinear relationships within

the data.

Problem modularity and size both have an influence on the innovations per problem-

solver, but from the genetic algorithm model it does not appear to be the simple linear

relationship that was assumed in the previous chapter. The parallel NK model shows

more of a linear relationship with the problem characteristics, modularity and size, and the

innovations per problem-solver. Now, returning to the empirical data, similar figures can

be made for the programming contest data (see Figures 3.11 and 3.12).
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(a) Genetic Algorithm Model
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(b) Parallel NK Model
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(c) Genetic Algorithm Model - log(X-axis)

●●●● ●●●●● ●●●●●●
●●●●●●●

●●●●●●●●

●●●●
●●●●●

●●●
●
●
●●●●●

●
●

●

●
●●●●●●●

●●

●

●●
●
●●●●●●

●●

●

●●
●
●●
●●●●●

●

●

●

●

●
●●
●●●●
●●●

●
●

●

●

●

●

●●
●

●●●●●●

●

●

●

●

●

●

●
●
●
●●●●●●●●●●● ●●●●● ●●●●●● ●●●●●●●

●●●●●●●●

●
●

●●●●●●●

●●
●
●●●●●●●

●
●
●

●
●●
●●●●●

●●

●

●●
●●●●●●●

●●

●

●
●
●
●●●
●●●●

●
●

●

●
●

●●
●
●●●●●●

●
●

●

●

●
●

●
●
●●●●●●●

●

●

●

●

●

●

●●

●●●
●●●●●●●●● ●●●●● ●●●●●● ●●●●●●●

●●●●●●●●

●●●

●●●●●●

●●
●
●●●
●●●●

●●

●
●
●●●●●●●

●
●

●

●
●●
●●●●●●

●
●

●

●

●●
●●
●●●●●

●
●

●

●

●
●
●
●●●●●●●

●●

●

●

●

●

●
●
●
●●●●●●

●

●

●

●

●

●

●●

●
●●●●
●●●●●●● ●●●●● ●●●●●●

●●●●●●●
●●●
●●●●●

●●●
●●●
●●●

●●●
●●
●●●●●

●●

●
●●
●
●●●●●

●●

●

●
●
●
●●●●●●

●●

●

●
●
●

●●●●●●●

●●

●

●

●

●
●
●●
●●●●●

●
●

●

●

●
●

●
●●
●
●●●●●

●●

●

●

●

●

●
●

●●
●●
●●●●●●●● ●●●●● ●●●●●●

●●●●●●●
●●●●●●●●

●●●
●
●
●
●●●

●●

●
●●●●●●●

●
●

●
●●
●●●●●●

●●

●
●

●●●●●●●●

●●

●

●
●
●
●●●●●●●

●●

●

●

●

●
●
●●●●●●●

●

●

●

●

●
●

●
●
●●●
●●●●

●

●

●

●

●

●

●

●

●
●●
●●●●●●●●● ●●●●● ●●●●●● ●●●●●●●

●●●
●●●
●
●

●●
●●●●●●●

●●
●
●●●●●●●

●
●

●

●
●●
●●●●●

●●

●

●
●
●●
●●●●●

●●

●

●

●

●●●
●●●●●

●●

●

●
●
●
●●
●
●●●●●

●

●

●

●

●
●

●
●
●
●●●●●●

●

●

●

●

●

●

●
●

●●●
●●●●●●●●● ●●●●● ●●●●●●

●●●●●●●
●●●●●●●●

●
●●●●
●●●●

●
●●
●
●●●●●●

●●

●
●●●●●●●●

●
●

●

●●
●
●●●●●●

●●

●

●

●
●
●●
●●●●●

●

●

●

●

●

●
●
●●
●●●●●

●

●

●

●

●

●

●
●
●●●●●●●

●

●

●

●

●

●

●
●

●
●●
●●●●●●●●● ●●●●● ●●●●●●

●●●●●●●
●●●●●●●●

●●●
●●●●●●

●●●
●●●●●●●

●
●
●
●
●
●
●●●●●

●●

●

●
●
●●
●●●●●

●●

●

●

●●
●
●●●●●●

●

●

●

●

●
●

●●
●
●●●●●

●
●

●

●

●
●

●
●●●
●●●●●

●

●

●

●

●

●

●●
●
●
●●●●●●●●●● ●●●●● ●●●●●● ●●●●●●●

●●●
●●●●●

●
●
●
●●
●●●●

●●

●
●
●●●●●●

●●

●
●
●●●●●●●

●●

●

●
●●●
●●●●●

●●

●

●
●
●●●
●●●●●

●

●

●

●
●

●
●
●●●
●●●●

●

●

●

●

●

●
●
●
●●
●●
●●●

●

●

●

●

●
●

●
●

●
●
●●●
●●●●●●● ●●●●● ●●●●●●

●●
●●●●●

●●●●
●●●●

●●●
●●●●●●

●●●

●●●●●●●

●●

●

●●
●●
●●●●

●
●

●

●●
●●●
●●●●

●●

●

●

●
●
●●●●●●●

●
●

●

●

●
●
●
●●
●●●●●

●

●

●

●

●●

●
●

●●
●●●●●

●

●

●

●

●

●

●
●
●●
●●
●●●●

10 20 50 100 200 500

0.
0

0.
5

1.
0

1.
5

2.
0

Problem Size (N)

In
no

va
tio

ns
 p

er
 P

ro
bl

em
−

S
ol

ve
r

(d) Parallel NK Model - log(X-axis)

Figure 3.8: Problem size versus innovations per participant during the parameter sweep.
This figure shows all 10 runs for each parameter setting of N and K.
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(d) Parallel NK Model - log(X-axis)

Figure 3.9: Problem modularity versus innovations per participant during parameter sweep
using only the median value for each parameter configuration. The data points were grouped
by problem size.

94



●●●
●●●
●●●●

●
●
●

●

●●
●
●●

●●
●●
●

●
●
●●
●

●

●
●●
●

●●
●
●●

●

●

●
●
●

●●

●
●
●

●

●

●●

●

●●

●●
●

0 100 200 300 400 500

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Problem Size (N)

In
no

va
tio

ns
 p

er
 P

ro
bl

em
−

S
ol

ve
r

● 1 <= M <= 4
4 < M <= 24
24 < M <= 512

(a) Genetic Algorithm Model

●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●● ●●●●●
●●●●● ●●●●● ●●●●● ●●●●● ●●●●●

0 100 200 300 400 500

0.
0

0.
5

1.
0

1.
5

2.
0

Problem Size (N)

In
no

va
tio

ns
 p

er
 P

ro
bl

em
−

S
ol

ve
r

● 1 <= M <= 4
4 < M <= 24
24 < M <= 512

(b) Parallel NK Model

●●●
●●●

●●●●

●
●
●

●

●●
●
●●

●●
●●
●

●
●
●●
●

●

●
●●
●

●●
●
●●

●

●

●
●
●

●●

●
●
●

●

●

●●

●

●●

●●
●

10 20 50 100 200 500

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Problem Size (N)

In
no

va
tio

ns
 p

er
 P

ro
bl

em
−

S
ol

ve
r

● 1 <= M <= 4
4 < M <= 24
24 < M <= 512

(c) Genetic Algorithm Model - log(X-axis)

●●● ●●● ●●●● ●●●● ●●●●● ●●●●● ●●●●● ●●●●●
●●●●● ●●●●● ●●●●● ●●●●● ●●●●●

10 20 50 100 200 500

0.
0

0.
5

1.
0

1.
5

2.
0

Problem Size (N)

In
no

va
tio

ns
 p

er
 P

ro
bl

em
−

S
ol

ve
r

● 1 <= M <= 4
4 < M <= 24
24 < M <= 512

(d) Parallel NK Model - log(X-axis)

Figure 3.10: Problem size versus innovations per participant during parameter sweep using
only the median value for each parameter configuration. The data points were grouped by
problem modularity.
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Figure 3.11: Problem modularity versus innovations per participant during the program-
ming contests.
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Figure 3.12: Problem size versus innovations per participant during the programming con-
tests.
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With only 23 data points (one for each programming contest), it is difficult to see

the overall pattern of the empirical data. However, a pattern of diminishing returns from

additional modularity and size seems to be a reasonable assessment. Moreover, a better

model of the empirical data can be gained by using logarithmic regression instead of linear

regression, where linear regression uses the equation

y = α+ βx (3.11)

and logarithmic regression uses the equation.

y = α+ β ln(x) (3.12)

After moving to logarithmic regression, the R2 values increased from .38 to .39 when

using modularity as the predictor and .18 to .31 when using size. This additional prediction

power comes at the expense of a more complex model, although a more complex model

does not necessarily mean a less correct model. It is simply more likely to over-fit the data

and suggest relationships that are not there in reality. Therefore, a move to a model with

greater complexity would not generally be supported with such a small sample size (in this

case, 23), but the genetic algorithm model provides additional support to move to a more

complex model. Furthermore, the computational models provide better coverage of the

parameter space which helps prevent over-fitting.

Starting with a linear model is a common practice to keep the model complexity low.

However, the results from the genetic algorithm model suggest that a nonlinear model should

be considered. In the next section, the empirical results along with the model results from

the parameter sweep are used to generate a better mathematical model of innovation that

is not limited by a linear assumption.
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3.4 Integrating Mathematical and Computational Models

The previous results suggest that there is a nonlinear relationship between problem charac-

teristics and innovation. Using symbolic regression the nonlinear relationships are discov-

ered and a better mathematical model of innovation is developed. Data is analyzed using

symbolic regression to develop a better mathematical model. First, mathematical formulas

are generated for the empirical data from the programming contests. Second, formulas are

generated for both computational models, the parallel NK model and the genetic algorithm

model, using the data from the parameter sweep. Instead of presenting a single formula,

several formulations on the accuracy/complexity Pareto front are included for comparison.

Figure 3.13 shows a graphical representation of the flow of the various data sets. There

are two goals for the integration of the mathematical and computational models. The first

goal is to use the formulas generated for the computational models to identify over-fitting

of the empirical data. Due to the small sample size of the empirical data (sample size

= 23), it is easy to over-fit the data and create a model that is not very generalizable.

The computational models allow the generation of arbitrarily large data sets, in this case

there are 130 data points. Also, with the systemic exploration of the parameter space,

the parameter sweep from the computational models should not be as susceptible as the

empirical data to over-fitting sparse areas of the parameter space.

The second goal is to determine which computational model provides the best formula-

tion of the empirical data. The best formulation is judged by the predictive power and the

parsimony of the formulation. As discussed in the previous sections, both the parallel NK

and genetic algorithm models provided a reasonable fit with the empirical data. In this sec-

tion, mathematical models of varying complexity are introduced and the predictive power

is evaluated as the complexity of the mathematical models increase. These mathematical

models are created by fitting the results from the computational models (the genetic algo-

rithm model and the parallel NK model) using symbolic regression. If the computational

model is a reasonable approximation of the real-world process under study, then it would be

expected that the mathematical models generated by this process would continue to provide
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Figure 3.13: Procedure for validating computational model using fit to mathematical for-
mula.

predictive power as their complexity grows. As the complexity of the mathematical models

grow, they fit the data more closely.3 Therefore, if the mathematical models generated by

this process begin to lose their predictive power of the empirical data as their complexity

grows, then this would indicate that the computational model is introducing artifacts that

are not justified by the empirical data.

Both the empirical data and the model results have error in the data. The empirical

data has a small sample size and any mathematical model created using this data is sus-

ceptible to over-fitting, especially mathematical models of higher complexity. In contrast,

the computational model data can provide a robust data sample, but the data is created

from an abstraction of the real-world process, which may introduce biases of its own. By

combining the two approaches, I hope to overcome the weaknesses of the data and uncover

some of the underlying complexity of the real-world process. Before moving on, I want to

3The mathematical model would not be on the accuracy/complexity Pareto front otherwise.
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briefly introduce symbolic regression and how it generates the mathematical formulations.

3.4.1 Symbolic Regression

Symbolic regression is a technique of fitting data to a mathematical formula. I am using

the Eureqa software4 for the symbolic regression [98]. Schmidt and Lipson [98] used the

software to automatically rediscover some physical laws of nature using data collected from

the physical system. The software searches over various combinations of mathematical

building blocks to find a formulation that best fits the data. The Eureqa software maintains

a Pareto front of formulations across accuracy and complexity. The formulations’ accuracy

and complexity are further discussed in the next two subsections, which is followed by a

brief description of the search technique used by Eureqa, genetic programming.

Formula Accuracy

The Eureqa software provides several error metrics that can be minimized during the fitting

process. The results shown here were generated using two error metrics: the mean squared

error (MSE) and the mean absolute error (MAE). They are expressed by the following

equations:

MSE =
1

N

N∑
i=1

(y − f(x))2 (3.13)

MAE =
1

N

N∑
i=1

|y − f(x)| (3.14)

The MSE metric assumes that noise follows a normal distribution, while the MAE metric

assumes it follows a double exponential distribution. It is unknown what the underlying

noise of the empirical data is, so results from both error metrics are reported. If outliers

are present, then the MSE metric can be misled by placing too much importance on them

causing over-fitting, while the MAE metric is more likely to under-fit the data and not

4Version 0.97 Beta of Eureqa Formulize was used for this analysis. The software is available for download
at: http://creativemachines.cornell.edu/eureqa/
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capture the nuances of the data. As seen later, the results from each of the error metrics

provide a similar, although not identical story. Nevertheless, the results do not seem overly

sensitive to the error metric used. This provides an indication that there are no extreme

outliers that are introducing large biases.

Formula Complexity

The Eureqa software allows the user to choose the mathematical building blocks used in

the symbolic regression expressions. Table 3.5 shows the mathematical building blocks used

in the formulas presented here. I chose the basic mathematical building blocks along with

the exponential ones. Each building block has an associated complexity and the complexity

of the formula is the sum of the complexities of its building blocks. All formulas with a

complexity of 10 or less are presented here. Formulas of greater complexity become difficult

to interpret and are at risk of over-fitting the data. Moreover, a parsimonious model is

preferred over a more complex one.

Table 3.5: Mathematical building blocks and their complexity used in the formulas.

Mathematical
Building Block Complexity

Constant 1
Integer Constant 1
Input Variable 1

Addition 1
Subtraction 1

Multiplication 1
Division 2
Negation 1

Exponential 4
Natural Logarithm 4

Power 5
Square Root 4
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Genetic Programming

Genetic programming is the evolutionary computation technique used by Eureqa [98] to

solve the symbolic regression problem. Genetic programming is a technique of automatically

developing computer programs without explicitly telling the computer what operations

to perform [99]. A program is a combination of elements from the function set and the

terminal set. Elements from the function set perform some operation on input parameters,

which are elements from the terminal set or function set. The terminal set can be either a

constant or a domain specific input variable. The programs can be viewed as trees where

branches are elements from the function set and leaves are elements from the terminal set.

Genetic programming starts by randomly generating an initial population of programs. In

subsequent generations through crossover and mutation, the programs evolve and through

natural selection the programs become of higher fitness [99] [100]. In genetic programming,

the fitness of a program is the difference between the values predicted by the program and

the actual output values. The differences in actual and predict values can be aggregated

several different ways and for this analysis, the MSE and MAE metrics were used.

3.4.2 Validating the Computational Models

Problem size and modularity were found to be significant predictors of innovation in the

linear regression analysis in the previous chapter. Therefore, the first set of results for fitting

the empirical and model data uses only size and modularity as input parameters. Table

3.6 shows the formulas generated for the empirical data gathered from the programming

contests. As expected, as the formula complexity rises, the R2 values improve. However,

the formulas with higher complexity become harder to interpret and are more likely to suffer

from over-fitting. For example, with a formula complexity of 10, the same input variable

appears twice in both the MSE and MAE formulas, which makes the formula nonintuitive.

As discussed earlier in this chapter, Table 3.3 includes the multiple linear regression

results using both M and N as independent variables. The formula complexity created by

the multiple regression is 9 with a formula of 1.014 + 0.123M − .0001N . When compared
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Table 3.6: Formulas on the Pareto front for the programming contest data using size and
modularity as function inputs.

MSE MAE
Formula

Complexity I = f(N,M) R2
emp I = f(N,M) R2

emp

3 0.162M .38 0.161M .38

5 0.944 + 0.0978M .38 ln(M) .39

7
√

0.436M .40 0.635
√
M .40

8 3.46M
5.23+M .39 987M

1.58e3+N .43

9
√
M − 0.00024N .41 * *

10 N+774M
1.61e3+N .48 0.149M + 0.483

4.47−M .57

* There was no formula on the Pareto front for this complexity.

to the formulas created in Table 3.6, the symbolic regression results provide only a small

improvement in explanatory power (measured by R2 values) over the multiple regression

results. As noted earlier, the linear assumption does not seem like a good one, but searching

for nonlinear models using only N and M provide limited improvements. This issue will

be addressed further in Section 3.4.3, but now the symbolic regression results are used to

further validate the computational models.

Earlier in this chapter, both the genetic algorithm and parallel NK models followed the

empirical data reasonably well. The symbolic regression results can help further validate

the two computational models. Just as with the empirical data, formulas were generated

for the model data gathered during the parameter sweep discussed earlier. Since the pa-

rameter sweep had 10 values for every set of parameter settings, only the median value for

a particular parameter setting was used during the symbolic regression procedure. If the

fitting was performed on all 10 values, then it would be impossible to fit all 10 values at

once because they have different output values, but the same input parameters.
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Table 3.7: Formulas on the Pareto front for the genetic algorithm parameter sweep data
using size and modularity as function inputs.

MSE MAE
Formula

Complexity I = f(N,M) R2
mod R2

emp I = f(N,M) R2
mod R2

emp

3∗ 0.001N .28 .18 0.001N .28 .18

5 0.17 + 0.002M .36 .38 0.09 + 0.004M .36 .38

6 M
49.7+M .72 .38 M

36.8+M .75 .38

7 0.11 ln(M) .76 .39 0.12 ln(M) .76 .39

8 M
24+1.7M .78 .39 0.6 + −5.6

8.5+M .77 .39

10 M−0.27
22.1+1.7M .78 .39 0.58 + −1264

2262+NM .93 .30

* A formula using M instead of N would give higher R2 values.

Tables 3.7 and 3.8 show the formulas generated for the genetic algorithm model and

parallel NK model, respectively. In these tables, there are two sets of R2 values. One set

(R2
mod) tells how much variance is explained by the formula for the model data and the

other set (R2
emp) tells how much variance is explained for the empirical data from the pro-

gramming contests. The R2
emp are the most importance values in the tables because they

relate the formulas back to the real-world. From the tables, both of the computational

models maintain similar R2
emp values across several different formula complexities. Fur-

thermore, Figure 3.14 shows the R2
emp and R2

mod values for every formula generated with a

complexity of 50 or less. As the formula complexity increases, the formulas continue to have

explanatory power. This is surprising because as the complexity rises, the formulas fit the

parameter sweep data ever more closely and it would be expected that over-fitting would

occur causing a lack of generality for the empirical data. However, this does not happen

and the more complex formulas maintain their ability to provide explanatory power.
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Table 3.8: Formulas on the Pareto front for the parallel NK parameter sweep data using
size and modularity as function inputs.

MSE MAE
Formula

Complexity I = f(N,M) R2
mod R2

emp I = f(N,M) R2
mod R2

emp

3 0.006M .82 .38 0.008M .82 .38

5 0.08 + 0.006M .82 .38 0.03 + 0.008M .82 .38

6 * * * M
55.1+M .77 .38

7 0.11 + 0.00002NM .79 .21 0.008M + 0.0003N .84 .32

8 M
83.9+0.34M .87 .38 2.37M

155+M .86 .38

9 0.005
√
NM .96 .30 0.004

√
NM .96 .30

10 NM
18374+169M .97 .21 0.013NM

N+M .94 .37

* There was no formula on the Pareto front for this complexity.

The explanatory power of the formulas generated for each of the computational models

are almost identical. Therefore, this procedure did not provide a conclusive answer to which

computational model is best, but it does provide evidence that both computational models

are reasonable abstractions of the real-world problem-solving process. This is particularly

surprising considering that the parameter sweep data appears quite different for each of the

computational models (see Figures 3.9 and 3.10). A better model of group problem-solving

would most likely include elements from each of the computational models. This better

model would include both the collaborative aspects of the genetic algorithm model and the

purposeful exploration of the fitness landscape seen in the parallel NK model. This research

provides evidence that both group collaboration and individual inquisition are both valuable

in understanding and predicting the behavior of a problem-solving process.
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Figure 3.14: The mathematical formulas continue to have explanatory power as the formula
complexity increases. For both the MSE and MAE metric, the formulas for both compu-
tational models continue to have explanatory power. This is surprising considering how
closely the formulas fit the parameter sweep data. It would be expected that the formulas
would start to over-fit the parameter sweep data and no longer generalize to the empirical
data.

3.4.3 Developing a Better Model

The improvement in explanatory power was modest when moving from a linear mathemati-

cal model to a nonlinear one. Therefore, this section explores other problem characteristics

other than size (N) and modularity (M) to see if they are helpful in building a better model.

Problem complexity seemed like a promising candidate, but in the linear regression analy-

sis from the previous chapter, it was not a statistically significant predictor of innovation.

Perhaps problem complexity is an important factor, but in a nonlinear way. This section

reintroduces problem complexity to see if a role for it can be discovered.

In the empirical data, the problem complexity was measured for each function in every

submission. Therefore, for each submission there are M complexity values where M is the

number of functions in the submission. For this analysis, the problem complexity (C) is

actually three different variables. The Cmax, Cmin, and Cavg variables measure the average

106



across submissions for the maximum, minimum, and average complexity.

Table 3.9 shows the results for the symbolic regression using problem size, modularity

and complexity as input parameters. Starting at a formula complexity of 6, the term N
Cmax

appears and causes quite a large jump in the R2
emp value. This jump occurs even when the

modularity variable (M) is not present in the formula, which is quite surprising given that

when used individually modularity was the best predictor of innovation.

Table 3.9: Formulas on the Pareto front for the programming contest data using size,
modularity and complexity as function inputs.

MSE MAE
Formula

Complexity I = f(N,M,C) R2
emp I = f(N,M,C) R2

emp

3∗ 0.162M .38 0.161M .38

4 4.26
Cmin

.36 ** **

5∗ 0.944 + 0.0978M .38 ln(M) .39

6 0.0103N
Cmax

.58 0.0103N
Cmax

.58

8 0.59 + 0.00783N
Cmax

.58 0.0143N−M
Cmax

.59

10 N
47Cmax+0.182N .61 0.0148N−1.08M

Cmax
.59

* These formulas are the same as those found earlier in Table 3.6.
** There was no formula on the Pareto front for this complexity.

The formulation of N
Cmax

seems reasonable, but this result is based on only 23 data

points. The parameter sweep data from the computational models are used to reinforce

this finding. The computational models did not include problem complexity explicitly, but

K provides a similar variable. As discussed in the previous chapter, cyclomatic complexity

is the the number of independent linear pathways [86] in a piece of software and was used to
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measure the problem complexity of the MATLAB programming contest submissions. The

K variable defines the number of epistatic relationships there are in the fitness landscape.

As the number of the epistatic relationship increases, the problem complexity would also

increase. While K may not be a perfect analogy to problem complexity, it seems like a close

proxy. Furthermore, while using the NK model to study social networks within the open

source software community, Wagstrom and collaborators [101] found a similar result where

in highly coupled projects (i.e., high K value), the rate of project improvements decreases.

Tables 3.10 and 3.11 show the symbolic regression results for the computational models

using the variables N , M , and K. The genetic algorithm and parallel NK data both

generated formulas that include a term where N is divided by K. Since the Cmax and

K variables are measuring two different things, the R2
emp values could not be calculated.

But, the results from the computational models provide additional support that N
Cmax

is a

reasonable predictor of innovation. This makes for an intuitive model because larger simple

problems should have many improvements while smaller complex problems should have few

improvements.
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Table 3.10: Formulas on the Pareto front for the genetic algorithm parameter sweep data
using N , M , and K as function inputs.

MSE MAE
Formula

Complexity I = f(N,M,K) R2
mod I = f(N,M,K) R2

mod

3∗ 0.001N .28 0.001N .28

5∗ 0.17 + 0.002M .36 0.09 + 0.004M .36

6∗ M
49.7+M .72 M

36.8+M .75

7∗ 0.11 ln(M) .76 0.12 ln(M) .76

8∗ M
24+1.7M .78 0.6 + −5.6

8.5+M .77

10 N
162+N+17K .94 N

138+N+18.3K .94

* These formulas are the same as those found earlier in Table 3.7.

Table 3.11: Formulas on the Pareto front for the parallel NK parameter sweep data using
N , M , and K as function inputs.

MSE MAE
Formula

Complexity I = f(N,M,K) R2
mod I = f(N,M,K) R2

mod

3∗ 0.006M .82 0.008M .82

5∗ 0.08 + 0.006M .82 0.03 + 0.008M .82

6∗ ** ** M
55.1+M .77

7∗ 0.11 + 0.00002NM .79 0.008M + 0.0003N .84

8 0.021N
4.5+K .99 N

211+53K .99

10 0.021N−0.22
4.4+K .99 N−7.6

188+51K .99

* These formulas are the same as those found earlier in Table 3.8.
** There was no formula on the Pareto front for this complexity.
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3.5 Discussion

The use of models to study problem-solving in individuals is quite natural. Individuals

create a model of a problem when solving it [102]. This simplifies the problem-solving

process and removes many of real-world complexities of the problem [102]. Furthermore,

Basalla notes that trial and error methods are the predominant element for technological

change [25]. Also, Simon stated that:

“human problem solving, from the most blundering to the most insightful, in-

volves nothing more than varying mixtures of trial and error and selectivity.”

[29, pg.195]

Therefore, techniques from evolutionary computation seem like an ideal start for modeling

problem-solvers.

Popper also notes the importance of trial and error in the problem solving process, but

also states that learning is an important part of the process [103]. No doubt learning is

important to problem-solving, but in this chapter, simple computational models that did

not include any learning were able to provide reasonable levels of explanatory power. Fur-

thermore, the computational models (i.e., the genetic algorithm model and the parallel NK

model) were used to develop a better model of innovation. This also included validation

of the computational models in two ways. The first validation compared the normalized

results from the computational models to the normalized empirical data. This validation

provided support that the genetic algorithm model, which allowed for collaboration between

problem-solvers, and the parallel NK model, which had problem-solvers work independently,

both provided statistically significant predictions of the empirical data. The Monte Carlo

model showed that not all computational models were capable of generating statistically

significant predictions and showed that the experiment was falsifiable. Also, by using var-

ious arrangements of epistatic relationships (random, adjacent, and modular landscapes),

Kauffman’s observation [49] was reiterated where the arrangement of epistatic relationships

did not matter as much as expected. However, this would most likely not be true for humans
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where the arrangement of epistatic relationships would be of importance.

A parameter sweep allowed for a more complete view of the state space and showed

that there was a nonlinear relationship between the problem characteristics (size and mod-

ularity) and innovation. This suggested a move away from the linear mathematical model

used in the previous chapter to a nonlinear one. Using symbolic regression, the empirical

and computational model data was fitted to formulas of varying complexity along a Pareto

front. This made it clear that a mathematical model using only problem size and modular-

ity could provide only slightly more explanatory power than the multiple linear regression

results. This led to the second technique used to validate the computational models. Us-

ing symbolic regression, formulas were generated using the parameter sweep data for the

genetic algorithm model and parallel NK model. Both computational models generated

formulas that maintained explanatory power throughout a wide range of formula complex-

ities providing evidence that both computational models are capturing some aspects of the

real-world process.

Finally, a better mathematical model was generated by adding problem complexity to

the symbolic regression. Problem complexity was not found to be a statistically significant

predictor of innovation in the linear regression analysis in the previous chapter, but was

found to be an important component in the symbolic regression analysis. The discovered

formula includes problem size divided by problem complexity ( N
Cmax

). With a small sample

size (23), it is difficult to support the introduction of a more complex model, but the

symbolic regression results for the computational models provided more support for the

additional model complexity.

This chapter provides an example of how to use computational and mathematically

models in combination to develop a better model of the process under study. Two separate

methods of validation of the computational models were also put forward. The resulting

mathematical model of innovation is quite intuitive. The model suggests that large simple

problems will have more innovations than smaller complex problems.
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The model variations discussed in this chapter all deal with static landscapes. These

landscapes are appropriate for innovation that occurs over a relatively short time period.

By allowing the landscape to remain static, it allows for a much simpler model. The next

chapter explores an innovation process that occurs over a long time period (100 years) where

the fitness of a solution is not static and depends on the current state of the environment.
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Chapter 4: Analyses of Dynamic Fitness Landscapes

In this chapter, I move away from the static fitness landscapes discussed in the previous

two chapters and onto dynamic fitness landscapes. In these dynamic landscapes, an entity’s

fitness is not fixed and exogenous, but depends on the other entities in the environment,

which could be changing over time. Therefore, the landscape is co-evolutionary. In the

case of book publishing, as topics become popular, opportunities are opened up for others

to write about similar subjects, new terminology arises and is introduced into the written

corpus, altering the usage and usefulness of language that was used previously.

This chapter discusses quantitative analyses of word frequency data from the Google

Books project. The data used here is from over 600,000 books that were published from 1900

to 2000. This data represents a truly open-ended innovation process where the usefulness

of terms are in constant flux as new subject matter is introduced. This permits the study

of an innovation process with a dynamic fitness landscape, the second type of innovation

(i.e., innovation over multiple S-curves).

4.1 Google Books Data

This chapter discusses data analyses performed on word frequency data from the Google

Books project [18]. The data used here includes the word frequency count from over 600,000

books that were published from 1900 to 2000. For each year of this 101-year period, word

frequency counts were used from approximately 6,174 books per year. Therefore, over 53

billion word occurrences (5.3× 1010) were used in this analysis. In this data, words are the

building blocks under study.

Some terms used in this chapter have been used in various contexts, so a brief introduc-

tion to these terms is due. A n-tuple is a sequence of characters of length n, where a n-gram
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is a sequence of words of length n. Therefore, a 1-gram is a single word. In the Google

Books data, a 1-gram could be composed of various characters, including: letters, numbers,

and punctuation [70]. Google posted frequency data of n-grams going up to 5-grams [18],

but this dissertation only uses the 1-gram data.

Google scanned the books using optical character recognition and data is provided for

books published from 1550 to 2008. Since text from older books tend to be more difficult

to recognize due to book wear or other factors, only books published since 1900 was used in

this analysis. Google estimates that 98% of the words were correctly digitized for modern

English books (from supplemental information of [70]).

4.1.1 Types of Analysis Performed

The first analysis explores the distribution of word usage and shows how Zipf’s Law does

not hold for large datasets [104] [105]. Additional analysis is performed to determine why

Zipf’s Law fails to explain the word frequency data. This leads to insight into how the

building blocks of language (i.e., words) are structured.

The second analysis explores how word usage changed over time. Using the same ap-

proach as Stanley et al. [106], the change in word usage followed a Laplace distribution

(i.e., double exponential). Stanley et al. [106] found this same pattern using firm data.

The growth rates of the usage of words, the building blocks, are analyzed for the 100 year

period.

4.1.2 Preprocessing of the Google Books Data

Before describing the analysis performed on the data, the preprocessing performed on the

data should be noted. First, I removed all 1-grams that contained a character other than

the 26 English letters (A-Z and a-z). Therefore, any 1-grams that contained numbers or

punctuation1 were removed. Since, the 1-grams that I analyzed contain only English letters,

I will refer to them as words.

1For the most part, punctuation was included in a 1-gram by itself. For example, the sentence “He ran.”
contains three 1-grams.
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From this data, I made all of the words lower case and combined duplicate words2, so

the data is no longer case sensitive. Then, I created two sets of data: one data set contained

the original inflected forms of the words and the other contained only the words’ stems.

Morphology was computed using the Stanford NLP Tools (http://nlp.stanford.edu/), which

based their implementation on the work of John Carroll and collaborators [107] [108]. There

are two types of morphology: inflectional and derivational. Only inflectional morphology

was used to discover the stem of the word. Inflection changes the word’s tense (e.g. ‘run’

can be inflected to ‘ran’ or ‘running’) or number (e.g. ‘computer’ can be inflected to

‘computers’). Inflection does not change the underlying semantic content of the word.

Derivational morphology combines existing words to create a new word, which has a new

meaning (e.g. ‘uncompress’ and ’neighborhood’). For this analysis, inflectional morphology

was most suitable because as stated by Spencer, “inflected forms are just variants of one

and the same word” [pg. 9] [109]. Table 4.1 provides examples of how inflections were

stemmed.

Table 4.1: Words and their stems.

Inflections Stem

am, are, is, was, were, be, being, been be
have, has, had have

haves* haves
computer, computers computer

compute, computed, computing, computes compute
run, ran, running, runs run

compress, compressed, compressing, compresses compress
uncompress, uncompressed, uncompressing, uncompresses uncompress

neighbor, neighboring, neighbors neighbor
neighborhood, neighborhoods neighborhood

* As in the ‘haves’ and the ‘have-nots’.

Traditionally, inflected forms were used to study word frequency [110] [111] [112] and

2This means the words ‘the’, ‘The’, and ‘THE’ would be combined into one word with a single frequency.
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stemmed forms for applications in stylometry, where writing style is analyzed [112], For

example, Yule used frequencies of uninflected nouns to identify the author of the text [113].3

The analyses discussed here were performed on both the inflected and stemmed forms of

the words.

4.2 Analysis of Word Usage

One of the earliest4 and most significant characterizations of building block usage was made

by Zipf in describing the usage frequency of words [110] [111]. Zipf’s law is a special case

of power law distributions. Power laws have been found in many domains [118] [88] [116],

including: income distribution [119], population of cities [111] [120] [121], firm sizes [122],

number of papers authored [123], citations of papers [124], hits of websites [125] [126], link

distribution of the internet [127], pages per website [128], authors per Wikipedia article

[129], and intensity of wars [130] [131].

Power laws became so common a popular paper by Clauset and collaborators reexamined

24 data sets to determine if alternative distributions (e.g., log-normal and exponential)

provided a better fit. Of the 24 data sets analyzed, they found that 17 were consistent with

a power law. But, the word frequency data was the only data set that a power law was

“truly convincing” because the data was an “excellent fit” and the alternatives did not carry

any weight [88]. If there is a an underlying mechanism that unifies processes that generate

power law distributions, then word frequency may be the prototypical example to study.

However, as discussed later, the distribution of word frequency is not as straightforward as

it first appears when examining large data sets.

3The search for this type of summary statistics that provides a “fingerprint” of the text have not been
found to be reliable in identifying authorship [114] [115]. Modern stylometry uses artificial intelligence

techniques that focus on function words (i.e. words that provide little meaning, but add structure) [115].
4Newman [116] notes that Estoup [117] was the first to make the observation of word frequency, but Zipf

studied it at length.
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Zipf’s law of word frequency was originally stated as:

P (r) ∝ r−1 (4.1)

But, commonly is expressed by the following equation5:

P (r) ∝ r−α (4.2)

Here r is the rank of a word and the probability of a rank is proportional to r−α. In Zipf’s

original formulation, he stated his law with α = 1 [111] and typically in empirical word

frequency data α is approximately 1. When the distribution is plotted on a log-log scale,

the distribution is a straight line with slope = -α.

There have been several theories trying to explain Zipf’s Law. Zipf [111] put forward

the ‘Principle of Least Effort’ where, in this “economy of speech” [pg. 20], the speaker and

listener minimize the amount of effect required to communicate. To minimize effort, the

speaker wants to minimize the lexicon size (‘Force of Unification’), while the listener wants

to expand it by having a unique word for each possible meaning (‘Force of Diversification’)

[111]. The ‘Force of Unification’ reduces the lexicon size, but increases the average usage

of each word, while the ‘Force of Diversification’ grows the lexicon size, but decreases the

average usage of each word. These two forces create the “vocabulary balance” that is

observed in Zipf’s Law [111].

Mandelbrot [112] generalized Zipf’s Law to allow for a better fit of empirical data:

P (r) ∝ (r +m)−α (4.3)

This is known as the Zipf-Mandelbrot Law and introduced two additional parameters (α

and m). The α parameter is the same as mentioned before and the m parameter allows the

5Zipf’s Law is a power law relationship. Power laws were also used earlier in Chapter 2, but the inter-
pretation of those power laws are different from the ones discussed here. An overview of power laws and the
reasoning for the two interpretations are included in Appendix E.
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distribution to have fewer observations for the most frequent words than what is predicted by

the standard Zipf’s Law. Mandelbrot [112] based his work on Shannon’s work on information

theory. Information theory attempted to find the most compressed way of encoding a

message. Mandelbrot saw language as the inverse problem, where the set of words were

given and the task was to find the most efficient way to assign meaning to those words [112].

From empirical word frequency data, Zipf’s Law has been found to be an acceptable

fit for ranks between approximately 100 to 2000 and Mandelbrot’s generalization of Zipf’s

Law only improves upon the most frequent words (ranks < 100) [105]. While both of these

laws characterize word frequency data well, neither of the explanations that accompany

them seem very realistic. In Zipf’s ‘Force of Unification’, Zipf states that the speaker wants

to minimize effort by reducing the lexicon size to one [111]. Clearly a lexicon of one is

not very conducive to communication and it seems it would minimize effort as much as

a human trying to communicate in binary. Mandelbrot’s use of information theory starts

with the set of words [112], but clearly a one word lexicon existed before a lexicon with two

words. Therefore, Mandelbrot’s reasoning totally eliminates the inclusion of an evolutionary

process, which is core to the development of language [132] [133].

Zipf’s Law does not hold for large corpuses. From Figure 4.1, there is a change in regime

around the 10, 000th rank. There will be several plots like Figure 4.1 in this chapter and

they all have some common features. As customary, all of the Zipf plots are drawn on a

log-log scale. Zipf’s Law was not fitted to the data, but the canonical form, where α = 1,

was included in all of the plots. Therefore, the line for Zipf’s Law was drawn through the

word of first rank and it has a slope of -1. As seen in Figure 4.1, there is a second regime

of word usage. For all of the plots, the line for the second regime crosses the line for Zipf’s

Law at the 10, 000th rank and has a slope of -2 (α = 2). There was no data fitting to keep

the display of data consistent across plots. Moreover, the specific power law exponents are

not of utmost important for this analysis.

Google removed any words from the data that did not appear in the corpus at least 40

times (from supplemental information in [70]). Since only part of the full Google Books
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Figure 4.1: Zipf plot showing the word frequency.
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corpus is used here (from 1900 to 2000), it is possible to have words that appear fewer

than 40 times, but the tail of the distribution is still cropped (e.g., a word that appears 39

times in a single year). The final line on all of the Zipf plots shows this limit on reliable

distribution data.

The deviation of the most frequent word (ranks 1 through 7) from Zipf’s Law is not

the main concern here, in part because this topic has been explored extensively starting

with Mandelbrot [112]. However, it is worth noting that normally the most frequent words

appear less frequently then would be predicted by Zipf’s Law and as discussed earlier, this

is the reason for the better fit of the Zipf-Mandelbrot Law to empirical data. With this

extremely large corpus, the opposite holds true, where the most frequent words appear

more often than would be predicted. Tsonis and collaborators [134] found that the most

frequent words appeared less often than expected and that if Zipf’s Law held for those

words then the language would be “rather awkward and possibly not an efficient means of

communication” [pg. 13] [134]. However, this statement is not supported by the empirical

data discussed here. Tsonis and collaborators [134] also suggested the deviation is due to

the structural role of those words in the language. While I agree that these most frequent

words have special structural significance, it does not appear that they necessarily need to

appear less often then would be predicted by Zipf’s Law. Moreover, a Zipf plot posted on

the Internet [135] of a large corpus from Wikipedia also displays this same pattern where

the first several ranks have a higher frequency than predicted by Zipf’s Law. The Wikipedia

data also shows the two regimes of word usage [135], which is the focus here.

Word usage of two [104] [105] and three [136] [137] regimes have been recognized in other

large bodies of text. Here I systemically examine subsets of the word frequency data to see

what effect it has on the two regimes. For example, the Google Books data includes the

year the words were used and Figure 4.2 shows six temporal snapshots (every 20 years from

1900 to 2000). The change in regime is a consistent pattern that has appeared over the last

one hundred years. The systemic evaluation of subsets of words tests the persistence of the

two regimes of word usage and has the additional benefit of evaluating the reliability of the
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(a) 1900 (b) 1920

(c) 1940 (d) 1960

(e) 1980 (f) 2000

Figure 4.2: Zipf plot showing the word frequency by year.
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Google Books data.

Ferrer i Cancho and Solé [104] have suggested that the first regime consists of versatile

words that form the “kernel lexicon” and the unlimited second regime is used for “specific

communication”. Words found in a dictionary6 form the core lexicon of a language. There-

fore, if only dictionary words are used in the Zipf plot then much of the second regime

should disappear. Figure 4.3 shows that much of the second regime did disappear, although

there is still a regime change. To determine if the regime change occurred due to the same

words being in the top ranks, the percentage agreement of the top ranks were calculated

(see Appendix C.1). In all cases, the change in regime occurred without a major change in

the words in the first regime.

Another way to examine the second regime is to look at only the words that appear

every year for the entire 101 years. Naturally, this will cut off the tail of the distribution,

but as seen in Figure 4.4 the regime change still occurred. Finally, the subset of dictionary

words that appear in all 101 years were examined and the regime change still occurred (see

Figure 4.5). The robustness of the regime change is surprising, especially when considering

how many unique words are lost when only using dictionary words (see Table 4.2). These

results show that the regime change was not generated by some random noise in the data,

which is possible as discussed later in the next section.

4.2.1 Models of Word Use

There have been several attempts to model word usage. Even the very simple models, can

produce similar results as empirical word usage data. For example, models have shown that

random sequences of letters produce Zipf’s Law [138] [139] [140] [141]. In these models,

commonly referred to as “typing monkey” models, sequences of letters are generated at

random. There is a probability of a space (P (s)) and the 26 letters occur uniformly random

with probability 1−P (s)
26 . The word sequences created by this random process follow Zipf’s

6Unix and similar operating systems (e.g. Mac OS X and linux) include a word list (located in

/usr/share/dict/words). This word list is generally used for spell checking and other text processing tasks.
The word list used for this analysis is from Fedora 16. The word list had 415,834 entries.
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Figure 4.3: Zipf plot showing words that appear in a dictionary.
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Figure 4.4: Zipf plot showing words that appear in all years (1900 to 2000) of the data.
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Figure 4.5: Zipf plot showing dictionary words that appear in all years of the data.

125



Table 4.2: Total word occurrences and total unique words for each of the versions of the
word frequency data.

Data Set Total Word Occurences Total Unique Words

All Words
Inflected 53,410,329,926 2,007,922
Stemmed 53,410,329,926 1,723,434

Dictionary Words
Inflected 52,728,044,562 343,402
Stemmed 52,728,044,562 225,427

All Words - All Years
Inflected 52,662,000,782 154,111
Stemmed 52,734,300,895 123,597

Dictionary Words - All Years
Inflected 52,364,382,364 107,879
Stemmed 52,420,887,187 76,738

Law7 [138] [141].

Google predicted a 98% accuracy rate for the word frequency data [70], although 2% of

53 billion word occurrences could generate lots of random words. By examining only the

dictionary words and words that appear every year for a century, it shows that the second

regime is not simply a transition from a first regime of purposeful text to a second regime

of “typing monkeys”. Therefore, the Google Books data seems reliable and the two regimes

are a persistent feature.

Before moving on, a few more comments about models that generate random sequences

of letters. While it produces Zipf’s Law, there are other properties of these randomly

generated sequences that deviate from human language. For example, the median rank

(rmedian) is much higher for the random sequences than for language [143]. The median

rank is the rank where probability for ranks 1 to rmedian sum to 0.5. For human written

7Perline later found that the random sequences follow a similar distribution, the log-normal distribution
with a power law tail [142].
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text, words of a given length follow Zipf’s Law while random sequences do not [144]. Also,

the distribution of word length is not the same in random sequences of letters (i.e., random

language follows an exponential distribution for word length [144], but human language

follows a log-normal [145] [146] or Poisson [147]). Finally, the vocabulary grows faster in

random texts [148].

While the “typing monkeys” model recreated word use by constructing sequences of

letters, the following model by Simon [62] directly used words as the building blocks to

create artificial text. Simon’s model [62] uses a Yule process [149]. In this model, at

each step, a new symbol (word) is added to the end of a string of symbols (words). With

probably αs, the next symbol is a new one that has not appeared before.8 Otherwise, the

next symbol is randomly selected from the existing string of symbols. Simon found that

this model generates a Zipfian distribution with slope of αs − 1 [62].9 This is also similar

to the preferential attachment process proposed by Barabási and Albert [150].

Gan and collaborators [151] found that Simon’s model does not generate data that

follows the n-tuple Zipf law, so they made a modification to the model. The n-tuple Zipf

Law is similar to the original Zipfian relationship, but it is regarding sequences of n letters.

It says that if you break the text up into sequences of length n, then those sequences follow

Zipf’s law [152][153]. If there are N letters (or symbols) in a piece of text, then there will be

N−n+1 occurrences of a n-tuple. In the growth model proposed by Gan and collaborators

[151], sequences of symbols are generated using a simple copy and paste operation. The

model starts with an initial randomly generated string of symbols. In each iteration of the

model, a random portion of the existing string is selected to be copied and pasted to the

end of the string [151]. For their experiments, they chose an exponential distribution to

determine the length of the sequence of symbols to be copied [151]. They found that their

model recreated the n-tuple Zipf law that is found in real symbol sequences (e.g., DNA,

language, computer codes10), but did not recreate the long range correlation found in the

8Note that this αs is different then the α used in Zipf’s Law (Equation 4.2).
9Therefore, −(αs − 1) is α in Zipf’s Law.

10The α values found in these different types of data may differ from the α of 1 that is commonly found
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real data [151]. In short, the modification to Simon’s model by Gan and collaborators [151]

made it possible to include structure within the generated sequence of symbols.

Dahui and collaborators [155] attribute the emergence of Zipf’s law as a consequence of

the growth of vocabulary size and the preferential selection of words. Chinese characters

do not follow Zipf’s law for ranks greater than approximately 1,000 [156], while many

other languages do (e.g. English, French and Spanish)[155]. Furthermore, the growth in

the number of Chinese characters is much slower than words in English. With their model,

they were able to recreate the frequency distribution of English words (Zipfian) and Chinese

characters (not Zipfian) [155]. Chinese characters fall somewhere between English words

and English characters (two Chinese characters is approximately one English word [156])

in terms of the role that they play in their respective language. The frequency usage of

the 26 English letters do not follow Zipf’s law [151]. The frequency of n-grams for Chinese

(sequences of Chinese characters) and English (sequences of English words) both follow

Zipf’s Law [156]. This is evidence that the distribution of segments of the language’s

structure follows Zipf’s Law.

Zanette and Montemurro [157] noted that Simon’s model does not allow for faster decay

of low frequency words (i.e., the second regime). They modified Simon’s model in two

linguistically reasonable ways [157]. First, they introduced sub-linear introduction of new

words and secondly, made new words more likely to be reused. They found the modified

model fits empirical data in finer detail [157].

The final two mathematical models of Zipfian behavior are used to fit the Google Books

data to determine which model provides the better fit of the data. The models are promis-

ing because they both have the potential to fit the first and second regime of word usage.

The first model was motivated by empirical word frequency data [104] and borrows a math-

ematical equation [105] that was originally used by Tsallis in folded protein research [158].

The second model uses an abstract model to develop a mathematical formulation that does

not depend on the specifics of the system [159][160]. These two formulations represent a

in human language. For example, noncoding DNA was found to have an α ≈ 0.3 [154].
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broad spectrum of models inspired by a range of empirical and theoretical motivations.

Montemurro’s formulation [105] was based on empirical observations of large corpuses

of text and is given by the equation11:

P (f) ∝ 1

µf r + (1− µ) f q
(4.4)

Here P (f) is the probability a word has frequency f . This formulation has two power law

exponents, r and q, and the blend of these two parameters is controlled by the µ parameter.

Since there are two power law exponents, this model will be referred to as the ‘power-power’

model.

Baek et al. [159] proposed the random group formation (RGF) model, which makes no

assumptions about the underlying system other than that items are divided into groups.

In the case of word usage, an item (ball) being placed in a group (slot) is analogous to a

word being used, thereby the number of groups is the number of unique words [159]. The

following distribution is the most likely one if you are placing balls in slots and there is

equal chance of finding a specific ball in a specific slot [159]12:

P (f) ∝ 1

exp(bf)fγ
(4.5)

The P (f) is the same as before. The γ parameter is the exponent for the power law and

the b parameter is the rate for the exponential. This is a power law with an exponential

cutoff, so it will be referred to as the ‘power-exponential’ model.

The parameters for both equations, ‘power-power’ and ‘power-exponential’, were fitted

11In Montemurro’s paper [105], the equation had another term. The original equation was:

P (f) ∝ 1
µfr+(λ−µ)fq , but for the purposes here the λ term was not needed and was replaced by 1. Also,

without the extra term, convergence is easier because there are only two fits that are best (i.e., changing µ

to 1− µ would swap the role of r and q and thereby, create two best fits).
12Other models have suggested a first regime characterized by a power law and a second regime by an

exponential. For example, in their continuum theory, Albert and Barabási’s modified preferential attachment
model produces this type of two regimes in network degree distribution [161].
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to the empirical data using the Gauss-Newton algorithm13. The probability density function

of the data was computed using logarithmic binning to smooth the data (32 bins were used).

During fitting the word frequencies (f) were normalized so they would sum to one. To

avoid fitting the higher probabilities in the density function at the expense of the lower

probabilities, the log of the probability density function was fitted. Four versions of the

data was used in the fitting procedure. In additional to fitting all of the data, the subset

of words from the dictionary was also fitted. Each of these sets of data had corresponding

inflected and stemmed versions, which created the four sets of data.
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Figure 4.6: Fit of all inflected words to each of the models.

Figures 4.6 through 4.9 show that both models appear to provide a good fit of the

13The Gauss-Newton algorithm is a method for solving nonlinear least squares problems. The method’s
ability to converge is dependent on providing a good first guess of the parameters. Therefore, the adaptive
nonlinear least squares algorithm (from the ‘port’ library [162]) was used to generate the starting point for
the parameters. Also, maximum likelihood estimation was used to ensure that the generated parameter
estimates were valid. Those estimates are very similar to the ones presented here and can be found in
Appendix C.2.
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(b) power-exponential

Figure 4.7: Fit of all stemmed words to each of the models.
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Figure 4.8: Fit of inflected dictionary words to each of the models.
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Figure 4.9: Fit of stemmed dictionary words to each of the models.

empirical data. Table 4.3 provides a summary of the parameters with the best fit. For

both models, the parameter estimates for the data with all inflected words (not just the

dictionary words) were on the same order as empirical data used in their original paper. In

Montemurro’s paper [105], for a corpus of 2,606 books, parameter estimates14 were λ = 0.86,

µ = 0.0022, q = 1.95, and r = 1.32. Baek et al. [159] analyzed two corpuses: novels by

Thomas Hardy and novels by Herman Melville. The estimate for γ = 1.656 for Hardy’s

novels and γ = 1.734 for Melville’s novels [159]15. It should be noted that the data sets

used here are considerably larger16 than either of the data sets used by Montemurro [105]

or Baek et al. [159].

Two metrics were used to measure fit quality of each model: the correlation (R) and the

KS-statistic (D). The correlation (R) is the Pearson’s correlation coefficient between the

14To convert from the version of the power-power equation with λ [105] and the one without it, use the

equation: µnew = µold
λ

.
15The estimated values for b do not appear to be reported in Baek et al.’s paper [159].
16The largest data set used here is 291 times larger than Montemurro’s data [105] and 39,791 and 71,820

times larger than the Hardy and Melville data sets used by Baek et al. [159], respectively. See Table 4.2 for
more information about the data used here.
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Table 4.3: Parameter estimates for both models (power-power and power-exponential).

power-power power-exponential
parameters parameters

Data Set q r µ γ b

All Words
Inflected 2.06 1.49 0.01 1.61 5.30
Stemmed 2.07 1.51 0.02 1.60 4.80

Dictionary
Inflected 1.98 1.13 0.0002 1.41 9.38
Stemmed 1.94 1.08 0.0002 1.37 9.61

empirical data’s probability density function and the model predictions. The KS-statistic

(D) measures the maximum distance between the cumulative density function of the em-

pirical data and the model predictions. Therefore, higher correlation values (R) and lower

KS-statistic values (D) indicate a better fit. For all four versions of the data set and for both

metrics, the power-power model provided a better fit of the data than the power-exponential

model.

The fit quality listed in Table 4.4 does not necessarily give a definitive answer to which

model is best. For example, the power-power model has one more parameter than the power-

exponential model, which adds to the model complexity. The Akaike information criteria

(AIC) [163] allows for the comparison of the two models while considering the differences

in number of independent variables. The AIC is expressed by [163]:

AIC = −2 logL+ 2k (4.6)

The L variable is the likelihood of the model parameters given the empirical data, which is

equal to the probability of the empirical data given the model parameters. The k parameter

is the number of independent variables in the model. Smaller AIC values indicate a better
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Table 4.4: Fit quality of each model (power-power and power-exponential).

power-power power-exponential
fit quality fit quality

Data Set R D R D

All Words
Inflected .998 .041 .995 .069
Stemmed .997 .052 .994 .074

Dictionary
Inflected .996 .052 .982 .129
Stemmed .993 .067 .975 .146

Note:
−1 ≤ R ≤ 1 and larger values are better.
0 ≤ D ≤ 1 and smaller values are better.

model, so each independent variable in the model introduces a penalty to the AIC. Another

information criteria metric that imposes a larger penalty for each additional independent

variable is the Bayesian information criteria (BIC) [164], which is defined by:

BIC = −2 logL+ k log n (4.7)

The L and k values are the same as before and the n parameter is the number of observations.

Table 4.5 displays the AIC and BIC for both models, and both metrics show that the

power-power model is the better model for all four versions of the data. In addition, the

quality of fit was better for the power-power model (see Table 4.4). Since the power-power

model shows more promise, the two regime hypothesis is supported by the empirical data

more than the RGF model. There appears to be another mechanism at work here other

than randomly placing balls in slots. The next section will discuss this mechanism and how

it relates to the hierarchical structure of language.
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Table 4.5: Model comparison using AIC and BIC of the two models (power-power and
power-exponential).

power-power power-exponential
information criterion information criterion

Data Set AIC BIC AIC BIC

All Words
Inflected 7.1 13.0 66.0 70.4
Stemmed 16.5 22.3 61.2 65.6

Dictionary
Inflected 2.6 8.5 102.2 106.6
Stemmed 18.3 24.1 103.2 107.6

Note:
For AIC and BIC, smaller values are better.

4.2.2 Importance of Hierarchical Structure

In the previous analysis, the model with two power law regimes provided the best fit with

the empirical data. This section explores the hierarchical structure of language and the

important role it plays in the two regimes of word usage.

Hierarchical structure in language has been recognized as an important consideration

since the early days of Zipf’s Law when Mandelbrot studied it in the 1950s [165] [166].

Models that have indicated the importance of the structure of language include Kanter and

Kessler’s work [167], which put forward a Markov process17 that could recreate Zipf’s Law.

Their transition matrix included structure so it would not create totally random sequences

of words [167]. With their Markov process, they also were able to recreate a deviation from

Zipf’s Law in low frequency words, although their decay was exponential [167] (and not the

power law decay that was found here).

The structure of the relationships between words have also been explored. For example,

17A Markov process is a stochastic process where the next state is only dependent on the current state
and a transition matrix.
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Ferrer i Cancho and Solé [168] created a word network where the nodes represented words

and two words were linked if they appeared in the corpus next to one another. The two

regimes of word usage were evident in the degree distribution of the word network [168].

They found the word network was a small world network [169], which means that there was

a large clustering coefficient and short average path lengths. The node degree distribution

was also a power law with a similar exponent as the networks generated by the preferential

attachment model [150] , which means that the word network’s degree distribution is similar

to that found in the Internet [127] [128]. Ferrer i Cancho and Solé [168] proposed that as

the word network evolved, newly introduced words were more likely to attach to existing

words that were highly connected.

Dorogovtsev and Mendes [170] used a modified version of the preferential attachment

mechanism [150] to recreate the word network found in the empirical data by Ferrer i Cancho

and Solé [168]. In standard preferential attachment [150], at each time step, a new node is

attached to an existing node with probability proportional to the existing node’s degree. In

this modified version of preferential attachment [161] [171], at each time step, a new node

was added as before, but additional edges were also added to the network with probability

proportional to the product of the degrees of each pair of nodes. This method was able to

reconstruct the degree distribution with two regimes as seen in the empirical word network

[170].

This type of word network is of interest from a complex systems perspective, but does not

represent the type of hierarchical structure that is most critical to the underlying mechanism

behind the two regimes of word use. The hierarchical structure of language is lost due to

the way the word network flattens the word sequences that are collocated. If the ability

to collocate was paramount, then the word ‘a’, which can replace ‘the’ and still create a

syntactically correct English sentence, could appear in a corpus as the most frequent word,

which to my knowledge18 has never happened with a corpus of substantial size19. The

18Mandelbrot [166] noted that the word ‘I’ can sometimes be the most frequent word, but he does not give
an indication of the size of the corpus. Regardless, the point still stands because ‘I’ is not a syntactically
correct replacement for ‘the’.

19From the data used here, the word ‘the’ was the most frequently used word for every year for the entire
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word ‘the’ is the most common word in English not because it can be collocated with many

different words, it is collocated with many different words because it plays a structural

role in the English language. It is this structural role that leads to ‘the’ being the most

frequently used word. In short, a word’s versatility is due to its structural role and not vice

versa.

Naturally, the structure of language has been studied extensively in linguistics. Chomsky

and collaborators [172] [173] suggested the X-bar theory where individuals build sentences

using a hierarchy. A sentence is composed of a noun phrase (NP) and a verb phrase

(VP), and the NP and VP are composed of subcomponents, which in turn can be made

of subcomponents, thereby creating a hierarchy [172] [173]. Chomsky also proposed that

varying forms of the same semantic content that use similar words, called ‘surface forms’, can

be traced back to a common structure, called ‘deep structure’ [174]. Finally, Chomsky’s

Universal Grammar puts forward the idea that all languages are governed by universal

rules [175] [176], which gives some explanation of why Zipf’s Law is so universal in human

languages.

Simon has noted the importance of hierarchy in complex systems [29] and language is a

complex system [177]. Hierarchical systems that are nearly decomposable are more easily

evolvable than systems where all of the components are interconnected [29]. Pinker [178]

states that while language is communicated as a sequence of words, it is constructed in a

modular way, where sentences are created using a ‘phrase structure tree’. The modularity

of language allows different phrases to be interchanged between sentences [178].

When characterizing the two regimes of language, the first regime is marked with ver-

satility and structure, while the second regime is typified by idiosyncratic phrases [104]

[105]. However, empirical evidence supporting this distinction is lacking. Here I present

support for the importance of hierarchical structure in differentiating the first and second

regime. For the Google Books data, each word was tagged with its part-of-speech using the

twentieth century.
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Stanford log-linear part-of-speech tagger20 [179] [180]. The top 50 ranks21 for each of the

parts-of-speech are listed in Appendix C.3.

Figures 4.10 and 4.11 display the Zipf plots with each of the parts-of-speech plotted

separately. Two extra lines are included in these Zipf plots. There is a vertical line at the

10, 000th rank and a horizontal line that passes through the intersection point of the vertical

line and the two Zipf’s Law lines (first and second regime). The grey points in the figures

include all of the data, so each data point in the parts-of-speech data series move to the

right to be aggregated into the grey data series.

From these figures, it is clear that the majority of structural words (referred to as

function words or closed-class words) are located in the first regime. These parts-of-speech

include the conjunctions, prepositions, determiners, pronouns, and WH words (e.g., which,

when, who, what). Some verbs should probably be placed in this structural category,

including auxiliary verbs (e.g., is, was, be, have, were) and modal verbs (e.g., will, would,

can, should, could), because they generally carry little semantic content. Moreover, these

verbs appear quite frequently, and thus are in the first regime. The second regime is

almost entirely composed of non-structural words (referred to as content words or open-

class words). These parts-of-speech include nouns, verbs, adjectives, and adverbs. These

figures illustrate that once the distribution no longer contains elements required to create

a hierarchical structure, there is a regime change.

20The Stanford NLP libraries can be found here: http://nlp.stanford.edu/software/
21Not all parts-of-speech include 50 words.
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Figure 4.10: Zipf plot showing words (inflected) that appear in a dictionary categorized by
part-of-speech.
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Figure 4.11: Zipf plot showing words (stemmed) that appear in a dictionary categorized by
part-of-speech.
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4.3 Analysis of Change in Word Usage

In this section, the change in word use over time is the focus of the analysis. Figures 4.12

and 4.13 provide an illustration of word usage dynamics over the 101 years of Google Books

data. For both the inflected and stemmed words22, the top 50 ranked words for the entire

101 years were calculated and their ranks for each year of the 101 year period are displayed.

On the left and right side of the figures, the words are listed in order of their overall rank for

the entire 101 years. These figures clearly show how the most frequent words consistently

remain at the top, while as word frequency decreases there are many more changes in rank

over time. While this is not that surprising considering the differences in word usage is

much greater for ranks i and i+ 1 than for ranks i+ 1000 and i+ 1001, it provides intuition

for the remainder of this analysis.

4.3.1 Empirical Growth Rates

The change in word usage can be measured by a growth function defined by:

g = log
Si+1

Si
(4.8)

Where Si is the frequency of a word at time i. The Si values were normalized by dividing by

the total number of word occurrences for year i to avoid confounding results due to unequal

numbers of words for each year. This equation allows for symmetrical growth rates (i.e.,

log a
b = − log b

a), and thus the distribution of growth rates are centered approximately at

zero.

Figure 4.14 shows the growth rate distributions for each of four data sets (i.e., all

inflected, all stemmed, dictionary inflected, and dictionary stemmed). Since the y-axis is on

a logarithmic scale, a tent shaped distribution indicates a double exponential distribution,

which is also referred to as a Laplace distribution. The figure shows a ‘nested’ Laplace

22For Figures 4.12 and 4.13, there is no difference between the dictionary words and all words.

141



Year

To
p 

50
 U

se
d 

W
or

ds
 (

19
00

 to
 2

00
0)

will
would

her
its

who
if

so
when
more

no
there

has
been

you
we

their
all

one
were
they

an
have
had
but

from
at

which
or

not
are

i
this
his
he
on
by
be

with
as

was
it

for
that

is
a
in
to

and
of

the

69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

R
an

k

All 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 4.12: Changes in rank of usage over 100 years for the top 50 inflected words.
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Figure 4.13: Changes in rank of usage over 100 years for the top 50 stemmed words.
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distribution for the word usage growth rates as evident by the tent shaped distributions

that are embedded inside one another. The nesting occurs due to higher frequency words

having a smaller variance in growth rates compared to lower frequency words. The data

set was divided into five bins using logarithmic binning based on the usage of the word in

the first year (1900). The geometric mean23 of each of the bins are indicated in the plots.

Stanley et al. [106] found this same ‘nested’ Laplace distribution when analyzing the growth

rates of firms with regards to the amount of sales and number of employees. Moreover, other

empirical firm data suggested that the growth rates of firms follow a Laplace in the middle

range of growth rates, but have power law tails with an exponent of 3 [181]. However, the

word frequency data does not support this hypothesis because the tails of the distribution

drop more quickly than a power law with an exponent of 3.

Another interesting point in Figure 4.14 is that the words in the middle bin (i.e., ge-

ometric mean = 6.45 × 103) have fatter tails than would be expected. This middle bin is

centered approximately at the transition between the first and second regimes, so perhaps

this could account for some of the extra weight in the tails. Nevertheless, all five bins are

tented shaped as well as the distribution of all words grouped together, thusly the growth

rate of words follow the ‘nested’ Laplace pattern. It is also worth noting that if the number

of occurrences of a word drops to zero for a year, then the growth rate for that year and

the next is undefined24, thereby those values were not included in the growth distribution.

Stanley et al. [106] also found that the change in standard deviation over initial value

dropped with a power law relationship. Figure 4.15 shows the relationship between initial

value and standard deviation of the growth rate. The initial values are the word frequencies

at the first year (1900) and those frequencies were logarithmically binned. For each of these

bins, the standard deviation was calculated for the growth rates for the entire 101 years.

Therefore, each word could have up to 100 growth rates if the word appeared in the corpus

every year for the entire 101 years. For the smallest initial values, a boundary condition

of zero occurrences limits the amount of variance possible in those ranks causing a flatting

23Geometric mean(x) = exp (mean (log (x)))
24This due to the divide by zero or the log of zero in Equation 4.8.
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(d) Dictionary Stemmed Words

Figure 4.14: These figures display histograms of the growth rate for each of the four data
sets. The ‘nested’ Laplace growth distribution is present in each of the versions of the data.
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of the curve. For the largest initial values, there is a break in the power law relationship

at approximately rank 7. It is also worth noting that from looking at the changes in rank

over time in Figures 4.12 and 4.13, the first 6 inflected words and first 7 stemmed words

do not change rank during the entire 101 year period. With the additional evidence from

Figure 4.15, it appears that these most frequent words play a distinctive role in the English

language. Overall a power law relationship is reasonable for all but the lowest frequency

words.

Figure 4.15 also displays slopes of two lines for reference. The first line with slope of −1
2

is what would be expected if the central limit theorem governed the growth process where

the aggregation of a greater number of independent ‘shocks’ cause a decrease in variability

[106] [182]. The second line with slope of −1
6 is approximately the slope found in the firm

data by Stanley et al. [106] and falls within the range of values found in other empirical firm

data (ranged from 0.14 to 0.2) [183]. Using results from firm size data, Riccanboni et al.

[183] suggested that the slope of the relationship changed from zero for firms of size zero to

−1
2 as the firm size approached infinity. This could also be true for the word frequency data,

although the flattening out of the relationship for words of lower frequency may simply be

caused be the boundary condition where it is impossible to have negative occurrences of a

word.

To gain a better intuition of the relationship between standard deviation and initial

value, it is easier to discuss it in terms of firms. Stanley et al. [106] proposed that if the

firm’s subunits were being strictly managed from the top down, then all subunits of the firm

would behave in a similar manner, thereby there would not be a reduction in variance of

firm growth as the number of subunits increased. Essentially, in this scenario of “absolute

control”, the subunits of the firm could not dampen the amount of variance in the firm’s

growth because the subunits could not behave independently thereby, there would not be

a decrease in the growth rate’s variance as the firm’s size increased (i.e., the slope of the

relationship would be zero) [106]. Conversely, if all subunits of the firm were behaving

independently, then the slope of the power law relationship would be −1
2 due to the central
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limit theorem [106]. Since the drop in variation for the word frequency data is flatter than

the line with slope of −1
2 , it shows that the word frequency data, like the firm data, does

not follow a standard Gaussian growth process.

Continuing to follow the analysis of firm data from Stanley et al. [106], they found that

after rescaling the ‘nested’ Laplace distribution that it collapsed to a single curve. The

following equations were used to rescale the probably of the growth rates and the growth

rates25 [106]:

pscal =
√

2 (σ(gs0)) p(gs0) (4.9)

gscal =
√

2
(g − gs0)

σ(gs0)
(4.10)

Figure 4.16 shows how the ‘nested’ Laplace collapsed to a single Laplace distribution. This

exercise shows how the growth rates of word frequencies parallels the growth rates of firms.

Recently, the Laplace distribution for word frequency growth was discovered for several

languages (i.e. English, Spanish, and Hebrew) [184], but here I reconfirm this finding and

establish the ‘nested’ Laplace as a more accurate characterization of word frequency growth.

Furthermore, in the next section, a simple model is introduced that continues to explore

this pattern of growth rates.

4.3.2 Explanation of ‘Nested’ Laplace Growth

When examining their firm data, Stanley et al. [106] proposed that firms’ hierarchical

structure created the ‘nested’ Laplace growth rates. The subunits of a firm are not acting

in a totally independent or totally correlated way, but somewhere between, where policies

implemented at the root of the firm’s hierarchy can be modified as they transverse the

branches of the organization [106]. Since larger firms generally have more subunits and

25I believe these equations are the same as Stanley et al. [106], but the notation has been changed. In

Stanley et al. [106], the equation was written with σ(s0) instead of σ(gs0), but it seems that σ(gs0) is what

was intended. If σ(s0) was indeed what was intended, then the normalization factor in Equation 4.10 would
be the standard deviation of the log of the initial size, instead of what was used here, the standard deviation
of the growth rate being rescaled.
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Figure 4.15: These plots show the relationship between initial value and standard deviation.
For the smallest initial values, the power law relationship breaks due to the boundary
condition of zero word occurrences. For the largest initial values, there is a break in the
power law relationship, but overall a power law relationship seems reasonable.
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(d) Dictionary Stemmed Words

Figure 4.16: These figures display histograms of the scaled growth rate for each of the four
data sets. This shows how the ‘nested’ Laplace growth distributions can be rescaled to
collapse on one another. The center of the distribution rescales nicely, but the tails of the
distributions do not rescale perfectly.
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their behaviors are not totally correlated, the subunits’ results can cancel one another and

lessen the likelihood of an extreme overall growth rate.

This structural argument can also hold for growth rates of word usage. However, since

both firms [122] and words [111] follow a Zipfian distribution, the pattern of growth rates

could simply be a product of both types of data (i.e., firms and words) being drawn from

similar underlying distributions. This hypothesis is tested using a simple null model. A

null model tests what observables are caused by factors that are not of interest to the

experimenter [185]. They are similar in nature to the zero-intelligence models studied by

Gode and Sunder [59] [60]. Basically, a null model attempts to see what behavioral patterns

naturally occur without any sophisticated mechanism where the agents behave randomly.

In this null model, a data set was generated using a Zipfian distribution for 101 years

just like in the empirical data. The number of unique words and word occurrences from

the largest data set (all inflected words) was used to parameterize the Zipfian distribution

(see Table 4.2). Note that this Zipfian distribution is the basic Zipfian distribution and not

the two regime power law that was discussed earlier in this chapter. The growth rates were

calculated for the random data to see if it exhibits the ‘nested’ Laplace growth rates.

Naturally, the data fits Zipf’s Law almost perfectly (see Figure 4.17a). From Figure

4.17b, the ‘nested’ distribution is visible. However, the growth rates have much less variance

than the empirical data (see Figures 4.17b and 4.17c). From Figure 4.17c, there is a clear

power law relationship between initial size and standard deviation, except for the lowest

frequency words, which has the boundary condition of zero occurrences. However, the slope

of this relationship is −1
2 , thereby providing evidence that this growth process is governed by

the central limit theorem and is of a different character than the empirical data discussed

earlier. The growth distribution rescales almost perfectly, except for the two bins with

the highest frequency words, which have only a few words and extremely small standard

deviations that could be causing the rescaling to be sensitive to small changes in values.

Overall, the null model does a reasonable job of recreating the ‘nested’ Laplace growth

rates and the power law relationship between initial size and standard deviation. However,
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Figure 4.17: Results from the null model where data was generated using a Zipfian distri-
bution.
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the range of magnitudes of the growth rates are approximately half of that seen in the

empirical data. There are no self reinforcing tendencies in the null model, but they are

common in the empirical data (e.g., if a subject is mentioned once in a book, then it is

more likely to be mentioned again). In summary, the null model performed surprisingly

well considering its simplicity, thereby providing support that these patterns are a product

of the same mechanism that created the Zipfian distribution. The presence of the Zipfian

distribution is the only commonality between the three sets of data discussed here: firm

data [122], word frequency data [111], and the data generated by the null model.

4.4 Discussion

In this chapter, subsets of the Google Books data were visualized to ensure the data provided

reliable counts of word usage. The two regimes of Zipf’s Law was a persistent feature in all

versions of the data. After establishing the reliability and consistency of the two regimes,

the fit of two mathematical models to the empirical word frequency data were compared.

The random group formation (RGF) [159] is a mathematical formulation based on a simple

abstract model with only one assumption about the process, that elements are divided into

groups. However, the two regime formulation [105] that was motivated by large sets of

empirical word frequency data [104] was found to be a better fit of the Google Books data.

The Google Books data was tagged with parts-of-speech to show that structural elements

of language were concentrated in the first regime, while the second regime was mainly

content words. This provided support that the regime change was due to a structural shift

of language from the first to the second regime. A hierarchical structure argument has also

been proposed for explaining why city size distributions follow Zipf’s Law [186] [187].

In the second analysis, the growth rate of the Google Books data was examined. Here a

‘nested’ Laplace (or double exponential) distributions of growth rates were found. Using the

same analysis steps as Stanley et al. [106], the word usage data followed a similar pattern

as the firm data. Both of these domains, linguistic and economic, have an underlying
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hierarchical structure that is important for the development of these growth rate patterns

(i.e. the ‘nested’ Laplace growth and the power law relationship between initial value and

standard deviation).

Word usage [111] and firms [122] both follow a Zipfian distribution. To test if the

‘nested’ Laplace growth was simply random fluctuations produced by a Zipfian distribution,

an artificial set of word frequency data was generated using a Zipfian distribution. The

resulting data set displayed nesting and the power law relationship between initial value

and standard deviation, but had less variance in the usage of words and a steeper slope

for the power law relationship than the empirical data. Also, the ability of the growth

rates to collapse on one another was a persistent feature in the null model, except for the

most frequency words, which were very sensitive to small changes in standard deviation.

Therefore, the ability to collapse the ‘nested’ distribution doesn’t appear to be an indicator

of a higher order innovation process. While the performance of the null model is somewhat

mixed, overall it performed well considering its simplicity. Therefore, the same mechanism

that created the Zipfian distribution may also be responsible for the patterns in growth

rates.

In this chapter, I presented empirical evidence for the importance of a hierarchical struc-

ture when using building blocks. In the next chapter, an agent-based model of innovation

that explicitly includes a hierarchical structure is introduced. This model is general enough

to apply to many different types of innovation processes, including the modeling of word

usage.
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Chapter 5: Models of Dynamic Fitness Landscapes

This chapter continues investigating the material of the last chapter, but instead of merely

describing the data, I now move toward explaining why the data have the structure they do.

I do this by building an agent-based model that recreates the patterns from the empirical

analyses from the previous chapter. The chapter begins with a description of this simple

agent-based model and shows how it reproduces some of the stylized behaviors found in

innovation research. The chapter concludes with a discussion of how the agent-based model

is used to model word usage. The agent-based model is abstract enough to be applied to

a variety of domains where building blocks are assembled into hierarchies. This chapter

shows how a mechanism can be hypothesized using an agent-based model and then tested

to determine if the model reproduces results similar to those found in the empirical data.

5.1 Agent-Based Model Description

In this agent-based model, there is social interaction between heterogeneous agents.1 The

model is co-evolutionary since agents create new goods that can change the agents’ per-

ception of their existing goods (i.e., a new good that is perceived as having higher fitness

can cause an existing good to no longer be used). Over time, there is growth in complexity

of new innovations, which consist of a growing number of components. This complexity

is organized in a hierarchical structure. This model demonstrates creative destruction and

punctuated equilibria.

1A earlier version of this work was presented at the second World Congress on Social Simulation [188]. I
would like to thank the participants of this conference for useful feedback.
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5.1.1 Model Setup

In this model, there are A agents and each of those agents can carry G economic goods.

At the start of the simulation, N economic goods are generated and each good is assigned

a random fitness, with a uniform probability distribution U [0, 1]. The initial set of goods

is then randomly assigned to the agents. The agents independently evaluate the good and

assign a perceived fitness to it. An agent’s assessment of the perceived fitness of a particular

good is random between 0 and the true fitness of the good. During each time step of the

simulation, each agent has a small probability of combining two goods in its holdings and

creating a new innovation. This new innovation will have a fitness randomly assigned

between 0 and the sum of the two fitness values of the component parts. Each agent will

then evaluate the new innovation and assign it a perceived fitness randomly between 0 and

the fitness of the good. If the perceived fitness of the new innovation is higher than the

lowest perceived fitness in the agent’s current holdings, then the new innovation is added

to the agent’s holdings and drops the good with the lowest perceived fitness.

In this model of technological evolution, economic goods have a finite lifetime. An

economic good’s chance of survival is influenced by its fitness and the agents’ perceptions

of the good. Agent perception of a good is based on the idea that not all individuals will

recognize the utility of a new innovation and furthermore, not all individuals will find the

innovation equally useful.

5.1.2 Model Visualization

In additional to the modeling activities, this chapter also introduces visualizations for under-

standing the dynamics of the model. These visualizations include the standard histograms

and line graphs, but also include domain specific visualizations where detailed evolutionary

dynamics can be explored.

Time moves from left to right in Figure 5.1, and by virtue of the monotonic relation

between time and utility, fitness also increases to the right. A tick mark is placed on

the time axis each time the fitness achieved doubles. The irregular spacing of the tick
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Figure 5.1: Visualization of the dynamics of the agent-based model. For this simulation
run, there were 4 agents (A) that could hold up to 5 goods (G) and 20 initial goods (N).

marks illustrates irregularities present in the exponentially growing fitness. The size of a

node reflects how many agents have adopted it. New goods usually have two technological

antecedents, but occasionally only one since two of the same item can be combined to

produce a new good. The colors group goods into fitness bins and each consecutive bin

doubles in size. Since the fitness of the goods is monotonically increasing, the five colors

simply cycle over time. Superimposed at the top of the figure is an indication of the number

of goods present in the economy over time. When there is a sharp drop in the number of

goods in the simulation, the cause of the drop can be explored in the bottom part of the

figure, thereby providing understanding of the process of creative destruction.

This type of visualization can be used to illustrate different simulation setups. As

a simple example, Figure 5.2 is the same type of visualization, but now the agents are

separated into two teams or islands. There is a clear separation between the fitness values
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achieved by one team compared to the other.
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Figure 5.2: Visualization of the dynamics of the agent-based model with teams. This
simulation run had the same parameter settings as the previous one (A = 4, G = 5, and
N = 20).

5.1.3 Model Results

Figure 5.3 shows the irregular exponential growth in the average fitness of the agents in

the simulation. The plot’s y-axis is on a log scale, so the linear increase in the plot line

shows an exponential growth in average fitness. Relatively stable periods followed by rapid

growth are indicators of punctuated equilibria. Figure 5.3 also shows how the complexity of

the goods grow over time. The figure shows an example good from early in the simulation

and an example good late in the simulation run. The plot also shows how the x-axis from

Figure 5.1 relates to a standard plot. The tick marks are close together during periods of
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rapid grow and further apart during periods of relative stability.
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Figure 5.3: Plot of the exponential growth in fitness along with an illustration of the growth
in complexity

Figure 5.4 shows the relationship between creative destruction and the average total

fitness of the agents in the simulation. The red spikes show time periods where creative

destruction occurred. For this simulation run, there were three time periods where a single
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new innovation caused three other goods to go ‘extinct’. These periods of creative destruc-

tion are also associated with a large increase in average total fitness. This simple model was

able to demonstrate the creative destruction process by which a new innovation overtakes

an existing good(s).
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Figure 5.4: Plot showing creative destruction. Red spikes are periods of good extinction
and green spikes are when a new good is introduced.
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5.2 Relating the Model to Word Usage

This agent-based model is general enough to apply to many types of innovation processes.

For example, with regard to word usage, the goods can be viewed as phrases and the

components that make up phrases are words. Under this interpretation, a new phrase

(previously called a good) is created when two existing phrases are joined together using a

newly introduced word. While this may not be realistic linguistically, it allows for a simple

mechanism to build from the bottom-up a hierarchical structure of words. This is the same

mechanism as described above, but with two variations. The first model variant is the same

as above where the initial goods are assigned a fitness from a uniform distribution, while in

the second model variant, they are assigned a fitness using a power law:

fitness1(gi) ∈ U [0, 1] (5.1)

fitness2(gi) =
1

i
(5.2)

Where gi is the ith good and i is equal to 1 to the number of initial goods (N). However,

during the initial distribution of goods to the agents, the probability of getting any particular

good is uniform and independent of the good’s fitness for both model variants. The model

proceeds as discussed above and the agents build new phrases by recombining existing

phrases.

In the model results discussed here, there are 25 initial goods (N), while this choice

is somewhat arbitrary, Figure 5.5 shows a divergence from Zipf’s Law until approximately

rank 25 in the empirical word frequency data. This divergence could be caused by those

words having special structural importance in the English language. Regardless, the choice

in number of initial goods is not critical for the results presented here. A similar set of results

are presented in Appendix D where there were 7 initial goods. Also, for all results, there

were 1,000 agents (A) each with 1,000 holdings (G), which under this model interpretation

are phrases.
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Figure 5.6 shows the Zipf plot of the active phrases that are currently in the agents’

holdings. To be active, a phrase only needs to be held by a single agent. A phrase is a

hierarchical structure made of other sub-phrases. For each active phrase, the total uses of

words are counted and the sum from all active phrases are displayed in Figure 5.6. If a

phrase is held by multiple agents, then its words are only counted once. Figure 5.6 shows

how the word usage distribution changes over time by displaying three temporal snapshots

of the distribution.
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(b) Power Law Initialization

Figure 5.6: Zipf plots for the agent-based model results. For each model variant, there were
25 initial goods that were either assigned fitness values using a uniform distribution or a
power law relationship. Each figure shows three snapshots during execution of the model.
The legend shows the number of simulation ticks there had been when the data series was
collected. Also, since there were on average 1 new phrase per tick, it also gives an estimate
of the number of new phrases created.

From Figure 5.6, both variants of the model approximately follow Zipf’s Law. Moreover,

due to the limited capacity of the agents’ holdings, there is a regime change in the agents’
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word usage. By using a power law to add some structure to the initial words, the second

variant does a better job of following Zipf’s Law, especially in the most frequent words (see

Figure 5.6b).

The growth rate for each word was calculated every 2,000 ticks starting from tick 11,000

to tick 21,000. Figure 5.7 shows the ‘nested’ Laplace growth rates from the agent-based

model results. This same pattern of ‘nested’ Laplace growth rates was found in the empir-

ical data in the previous chapter. The growth rate distributions for the agent-based model

are noisier than the empirical data, but the agent-based model data had far fewer sam-

ples2. There appears to be no major difference in the growth rates caused by the different

initialization schemes (uniform versus power law).
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(b) Power Law Initialization

Figure 5.7: Growth rates of word usage for the agent-based model results. The growth
rates were calculated for the words in the active phrases every 2,000 ticks starting at tick
11,000 until tick 21,000. The growth rates were logarithmically binned based on the word’s
frequency at tick 11,000.

2The simulations were executed on a machine with 16GB of memory which was the limiting factor on
collecting more data.
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The growth rates were also rescaled using the same method discussed in the previous

chapter (see Section 4.3.1 for details). The rescaled growth rates collapse onto a single curve

except for the most frequent words (see Figure 5.8). Since the bin that contains the most

frequent words only contain a few words, it is most sensitive to noise in the data, so the

failure for these values to rescale is not surprising.
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(b) Power Law Initialization

Figure 5.8: Scaled growth rates for the agent-based model results. The growth rates were
calculated just like before and then rescaled using the rescaling method discussed in Section
4.3.1 and Stanley et al. [106].

The power law relationship between initial value and standard deviation of the growth

rates was also present. The growth rates were calculated the same as before. The initial

value was the word frequency at tick 11,000. Both variants of the model have a power law

relationship just as in the empirical word frequency data.

Overall this simple agent-based model was able to reproduce the patterns found in the

word frequency data. The model’s word usage approximated Zipf’s Law and included a
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(b) Power Law Initialization

Figure 5.9: Power law relationship between initial value and standard deviation for the
agent-based model results. The growth rates were calculated every 2,000 ticks from tick
11,000 to tick 21,000. Therefore, the initial value was the word frequency at tick 11,000.
Both variants of the model display the power law relationship.

regime change. The model variant with the power law initialization followed Zipf’s Law a

bit better for the most frequent words. The growth rates of the model data displayed the

‘nested’ Laplace distribution. These growth rates rescaled fairly well. There was a clear

power law relationship between initial values and the growth rates’ standard deviation,

although the slope of the relationship was steeper than the word frequency data. The slope

here is −1
2 which means that the relationship is a product of the central limit theorem.

5.3 Discussion

This agent-based model provides a general model of innovation. This model allows for

agents’ idiosyncratic preferences for some goods over others. Also, the products of the in-

novation process have a hierarchical structure that grows in complexity over time. Despite
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the model’s simplicity, it was able to display exponential growth in fitness, creative destruc-

tion, and punctuated equilibrium. This chapter also included custom visualizations that

helped to better understand the dynamics of the model.

This model is general enough to be applied to many different domains. Word usage was

used as an example domain. The model was able to reproduce some of the characteristics

of the empirical word usage data, including: Zipf’s Law with a regime change, ‘nested’

Laplace growth rates that can be rescaled, and a power law relationship between initial

values and the growth rates’ standard deviation. Therefore, this model appears to pro-

vide a reasonable abstraction of the process of creating language and it provides a simple

mechanism for creating the hierarchical structure of language. However, the slope of the

power law relationship between initial values and the growth rates was steeper than the

empirical data. Consequently, this provides evidence that the growth rates of the building

blocks (words) are more independent of one another in the model than what is found in the

empirical word frequency data.

In the next and final chapter, the dissertation will conclude with a brief summary of

research findings and some ideas for future work.
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Chapter 6: Discussion and Conclusion

This dissertation has provided a tangible way of studying collaborative problem solving

by providing quantitative measures of the innovation process under study. The data sets

used here have provided valuable insight on a broad spectrum of innovation processes.

A summary of the research findings and potential future work are presented. Finally, I

conclude with a few final thoughts.

6.1 Summary of Research Findings

This dissertation provides an example of how quantitative approaches can be used to study

the process of innovation. Using empirical data analysis and computational models, tangible

results were found that can be compared across multiple technological domains. Further-

more, due to the importance of recombination in the innovation process, an emphasis was

placed on understanding how building blocks are used. This quantitative approach that

focused on building blocks was used to study a broad spectrum of innovation processes

(ranging in duration from a week to a century) in diverse domains (software development

and word usage in books). In the remainder of this section, I will give a brief overview of

research findings from each of the chapters in this dissertation.

Chapters 2 and 3 focused on short-term innovation processes with static fitness land-

scapes. Chapter 2 provided an example of quantitive data analysis of problem solving, which

identified two predictors of innovation: problem modularity and problem size. Chapter 3

showed how a computational model can be used to further understand the problem charac-

teristics discussed in Chapter 2. It also proposed a novel way of validating a computational

model using a parameter sweep and symbolic regression. By integrating mathematical

and computational models, a better model of innovation was discovered (size divided by
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complexity).

Chapters 4 and 5 discussed long-term innovation processes that have dynamic fitness

landscapes. Chapter 4 provided evidence that the two power law regimes of word usage is

due to a shift from versatile structural words to specialized content words. This chapter also

tested two mathematical formulations proposed to express the regime change in word usage.

The empirical data provided support for the mathematical formulation that included two

power law exponents over the formulation that included a power law with an exponential

cutoff. Chapter 4 also showed how the growth rates of words were similar to growth rates

found in empirical firm data. Chapter 5 introduced a simple agent-based model that could

reproduce patterns seen in innovation processes, including: exponential growth in fitness,

creative destruction, and punctuated equilibrium. This agent-based model is general enough

to be applied to a variety of domains. Results from the agent-based model were used to

study the mechanism behind the empirical findings from the word usage data discussed in

Chapter 4. It is proposed that an important part of this mechanism is due to the hierarchical

structure of language.

6.2 Future Work

There are many directions that future work can go. Some of the most promising include

further development of the model validation technique discussed in Chapter 3. This method

of validation attempts to validate a model by creating a good overall fit of the phenomenon

under study rather than just matching the particular set of data that is currently available.

Using this method, the modeler can be more certain of the model’s validity.

There are many possible additions to the agent-based model discussed in Chapter 5.

These include adding different roles for agents and placing agents within a social network.

Also, the fitness of a good could be made more realistic by making it multidimensional

instead of being a single value. This would allow for the modeling of tradeoffs of various

performance metrics.

Overall, this dissertation shows how empirical data can be utilized to analyze and model
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the process of interest. Creating a balance of research based on empirical findings that is

not overly specific to the idiosyncratic properties of the available data is a challenge, but a

challenge worth pursuing. Another important future work project is to use other available

data sets to see how well the results generalize.

Another innovation process that has much detailed data available is software projects

within the open source community. Open source software uses a community-based model

of software development where most of the software developers provide their services and

software products for free. Therefore, monetary influences can largely be ignored. Any user

can then freely download the open source software, and furthermore, they can download

the source code for the software if they would like to make modifications. Therefore, every

individual can be an innovator and user of the innovations, which is also true for the models

described in this dissertation.

The SourceForge Research Data Archive (SRDA), maintained by Greg Madey and fel-

low researchers at the University of Notre Dame, contains very detailed data about Source-

Forge.net [189] [190]. SourceForge.net is the largest open source development website in the

world and hosts more than 180,000 open source projects and has over 1.9 million registered

users [191]. The SRDA contains over 95 monthly snapshots of SourceForge data since 2003.

The SRDA contains information about which software developers work on which projects.

The SRDA also contains detailed information about when developers are assigned a task

and when they commit source code to the project [189].

There have been several data analysis and modeling projects that used data from the

SRDA that have a similar character as work presented in this dissertation. For example,

various aspects of the innovation process in the open source community have been studied,

including: scale-free network structures [192], preferential attachment [193], power laws [85],

specialization of contributers’ tasks [194] [195]. However, little has been done that focuses

on how building blocks come together in this type of environment. For example, Dalle and

David [196] studied which modules developers choose to contribute, but did not focus on

how the modules were aggregated in the first place. Nevertheless, modularity has been an
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important consideration for the design of open source projects. For example, modularity has

been central throughout the development of one of the most popular open source projects,

Linux. The modularity in Linux reduces the communication between modules and helps

portability by keeping specifics of hardware inside a module [197] [198]. This allows code to

be written in parallel by multiple programmers in multiple places [199]. The hierarchy of

software developers working on Linux developed organically. Linus Torvalds took the lead

for the entire project when Linux was first created, but as new modules were incorporated

others became leaders of those modules [199]. For example, when Alan Cox contributed

a networking module to Linux, he became the lead of all networking issues and Torvalds

redirected any networking issues to him [199]. In future work, some of the same quantitative

approaches used for the programming contest data may provide further insight in the role

of modularity and the use of building blocks within the rich history of open source software.

Research on the open source community may also provide insights into whether inno-

vation is driven by customer demand or innovator supply. Radtke and contributors [200]

[201] used modeling to explore what made open source software successful. Their agent-

based model found that the driving force in software development was the developer, not

the consumer [200] [201]. This falls in line with others accounts of open source development

being driven by the developer [202] [203], but against Schmookler’s idea that innovation

is driven by market demand [34] [42]. Since open source software is being provided at no

charge, product demand plays a smaller role than supply. Therefore, future work could use

open source projects as prototypical examples of innovation processes that are driven by

innovator supply and determine if they evolve differently than innovation processes where

the customer has more say in the trajectory of future improvements.

6.3 Conclusion

Simon is frequently quoted on his thoughts about highly skewed distributions:

“No one supposes that there is any connection between horse-kicks suffered
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by soldiers in the German army and blood cells on a microscopic slide other

than that the same urn scheme provides a satisfactory abstract model for both

phenomena.” [pg 425] [62]

In this dissertation, I have focused on building blocks and how building blocks come to-

gether to create higher level modules. These modules can continue to aggregate to form a

hierarchical structure. I believe this hierarchical structure has an important role to play in

the “urn scheme” that Simon is referring to.
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Appendix A: Additional Programming Contest Analysis

A.1 Additional Regression Analysis Results

To ensure that the different scoring criteria did not influence the results of the regression

analysis, I include here the regression results for the first thirteen programming contests,

where only the result quality and execution time were used in the scoring criteria. These

results are displayed in Tables A.1 and A.2 and they present similar results as those discussed

in Chapter 2.

Table A.1: Regression results from the first 13 MATLAB contests with innovations per
participant as the dependent variable.

Dependent Variable:
Innovations

Independent Variables: per Participant

Average Number Functions
Coefficient 0.095
p-value 0.007

Average Node Count
Coefficient 1.8E-04
p-value 0.022

Average Maximum Complexity
Coefficient 0.007
p-value 0.462

Intercept 0.689 0.736 1.022
R-squared 0.494 0.393 0.050
Adjusted R-squared 0.448 0.338 -0.036
F-statistic 10.720 7.131 0.582

Note: Values in bold are significant at the 5% level.
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Table A.2: Regression results from the first 13 MATLAB contests with percentage of par-
ticipants that were innovators as the dependent variable.

Dependent Variable:
Percent

Independent Variables: Innovators

Average Number Functions
Coefficient 0.013
p-value 0.008

Average Node Count
Coefficient 2.4E-05
p-value 0.027

Average Maximum Complexity
Coefficient 7.7E-04
p-value 0.554

Intercept 0.178 0.187 0.232
R-squared 0.488 0.373 0.033
Adjusted R-squared 0.441 0.316 -0.055
F-statistic 10.470 6.537 0.373

Note: Values in bold are significant at the 5% level.

A.2 Example Parse Trees

To give a better idea of what a MATLAB parse tree is, this section provides a few examples

of them and how changes to the code effect similarity values (see Equation 2.4). Table A.3

shows the code for a short function and its corresponding parse tree. Table A.4, shows how

a small code change leads to a small change in the parse tree, thereby producing a high

similarity value between the two functions (.97). However, Table A.5, shows how another

modification to one line of code causes a greater reduction in the similarity value (.77)

because this modification caused a shift of an entire sub-tree.
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Table A.3: Example parse tree generated from a MATLAB function. The names of variable
and function names are not used in the comparison of parse trees, but are shown in the
figure.

Code Parse Tree

1 f unc t i on [ z ] = someFunction (x , y )

2 f o r i = 1 : l ength ( x )

3 f o r j = 1 : l ength ( y )

4 z ( i , j ) = x ( i ) + y ( j ) ;
5 end
6 end
7 end

→

1 FUNCTION:
2 ETC:
3 ID : ( z )

4 ETC:
5 ID : ( someFunction )

6 ID : (x )

7 ID : (y )

8 FOR:
9 ETC:

10 ID : ( i )

11 COLON:
12 INT : 1
13 CALL:
14 ID : ( l ength )

15 ID : (x )

16 FOR:
17 ETC:
18 ID : ( j )

19 COLON:
20 INT : 1
21 CALL:
22 ID : ( l ength )

23 ID : (y )

24 EXPR:
25 EQUALS:

26 SUBSCR:
27 ID : ( z )

28 ID : ( i )

29 ID : ( j )

30 PLUS:
31 SUBSCR:
32 ID : (x )

33 ID : ( i )

34 SUBSCR:
35 ID : (y )

36 ID : ( j )
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Table A.4: The parse tree for the same code example as before with a small change in line
4. This small code change resulted in a small change in the parse tree. Using the similarity
function (see Equation 2.4), the similarity between this function and the function in Table

A.3 is 35
36 , which is approximately .97.

Code Parse Tree

1 f unc t i on [ z ] = someFunction (x , y )

2 f o r i = 1 : l ength ( x )

3 f o r j = 1 : l ength ( y )

4 z ( i , j ) = x ( i ) ∗ y ( j ) ;
5 end
6 end
7 end

→

1 FUNCTION:
2 ETC:
3 ID : ( z )

4 ETC:
5 ID : ( someFunction )

6 ID : (x )

7 ID : (y )

8 FOR:
9 ETC:

10 ID : ( i )

11 COLON:
12 INT : 1
13 CALL:
14 ID : ( l ength )

15 ID : (x )

16 FOR:
17 ETC:
18 ID : ( j )

19 COLON:
20 INT : 1
21 CALL:
22 ID : ( l ength )

23 ID : (y )

24 EXPR:
25 EQUALS:

26 SUBSCR:
27 ID : ( z )

28 ID : ( i )

29 ID : ( j )

30 MUL:
31 SUBSCR:
32 ID : (x )

33 ID : ( i )

34 SUBSCR:
35 ID : (y )

36 ID : ( j )

175



Table A.5: The parse tree for the same code example as before with another change in
line 4. This time the change had a larger effect on the parse tree and thereby, lowering
the similarity value. Everything is the same in this parse tree as the parse code in Table
A.4 up until line 30 of the parse tree at which point everything is different. Therefore, the

similarity value of this parse tree with either of the previous two examples is 29
mean(36,39) ,

which is approximately .77. If the similarity threshold T was greater than .77, then this
function would be classified as a new function type.

Code Parse Tree

1 f unc t i on [ z ] = someFunction (x , y )

2 f o r i = 1 : l ength ( x )

3 f o r j = 1 : l ength ( y )

4 z ( i , j ) = ( x ( i ) ∗ y ( j ) ) ˆ 2 ;
5 end
6 end
7 end

→

1 FUNCTION:
2 ETC:
3 ID : ( z )

4 ETC:
5 ID : ( someFunction )

6 ID : (x )

7 ID : (y )

8 FOR:
9 ETC:

10 ID : ( i )

11 COLON:
12 INT : 1
13 CALL:
14 ID : ( l ength )

15 ID : (x )

16 FOR:
17 ETC:
18 ID : ( j )

19 COLON:
20 INT : 1
21 CALL:
22 ID : ( l ength )

23 ID : (y )

24 EXPR:
25 EQUALS:

26 SUBSCR:
27 ID : ( z )

28 ID : ( i )

29 ID : ( j )

30 EXP:
31 PARENS:
32 MUL:
33 SUBSCR:
34 ID : (x )

35 ID : ( i )

36 SUBSCR:
37 ID : (y )

38 ID : ( j )

39 INT : 2
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A.3 Additional Results using Higher Similarity Threshold

For Chapter 2, the similarity threshold of .70 was used for the analysis. However, another

reasonable threshold would have been .85 (see Table 2.2), so included here are the same

analyses as Chapter 2, but using a similarity threshold of .85. The results here are very

similar to the results presented in Chapter 2.

A.3.1 Additional Distributions of Developers and Projects

Table A.6: Parameters for the developers per project distributions (T = .85).

Contest Name n x̂min α̂ ntail p

Tiles 237 1 2.68 237 0.00
Vines 199 1 2.68 199 0.07
Crossword 242 1 2.81 242 0.00
Sailing Home 236 1 2.33 236 0.01
Sensor 209 1 2.70 209 0.16
Color Bridge 178 1 2.55 178 0.80
Army Ants 59 1 2.12 59 0.73
Wiring 286 1 2.51 286 0.00
Gene Splicing 262 1 2.62 262 0.00
Peg Solitaire 246 1 2.67 246 0.00
Blackbox 253 1 2.64 253 0.00
Blockbuster 268 1 2.63 268 0.00
Sudoku 203 1 2.68 203 0.00
Ants 199 1 2.99 199 0.00
Moving Furniture 256 1 2.69 256 0.02
Gerrymandering 277 1 2.54 277 0.03
Trucking Freight 114 1 2.06 114 0.35
Protein Folding 228 1 2.40 228 0.00
Molecule 153 1 2.71 153 0.02
Mastermind 81 1 2.73 81 0.13
Gene Sequencing 53 1 2.96 53 0.02
Mars Surveyor 143 1 2.99 143 0.00
Binpack 217 1 2.99 217 0.03

bold values are statistically significant (p > .10)
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Figure A.1: Developers per project for the 23 programming contests (T = .85).
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Figure A.1: Developers per project for the 23 programming contests (T = .85).
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Figure A.2: Projects per developer for the 23 programming contests (T = .85).
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Figure A.2: Projects per developer for the 23 programming contests (T = .85).
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Table A.7: Parameters for the projects per developer distributions (T = .85).

Contest Name n x̂min α̂ ntail p

Tiles 35 36 7.52 4 0.62
Vines 58 10 3.48 16 0.82
Crossword 56 5 2.23 31 0.53
Sailing Home 62 18 4.05 14 0.72
Sensor 75 3 2.12 51 0.45
Color Bridge 55 14 3.74 11 0.68
Army Ants 45 3 2.36 34 0.09
Wiring 59 10 2.60 25 0.61
Gene Splicing 70 2 1.90 70 0.17
Peg Solitaire 86 4 2.36 54 0.58
Blackbox 105 3 2.24 79 0.04
Blockbuster 104 2 1.98 104 0.01
Sudoku 93 8 3.53 25 0.31
Ants 110 2 2.33 110 0.16
Moving Furniture 55 3 2.01 43 0.03
Gerrymandering 94 2 1.94 94 0.18
Trucking Freight 74 9 3.55 18 0.66
Protein Folding 110 3 2.27 73 0.45
Molecule 90 4 2.83 39 0.10
Mastermind 58 4 3.23 24 0.17
Gene Sequencing 46 3 3.15 31 0.47
Mars Surveyor 44 2 1.86 8 0.01
Binpack 101 8 5.34 17 0.75

bold values are statistically significant (p > .10)

182



A.3.2 Evidence of Creative Destruction
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Figure A.3: Creative destruction in the programming contests using the change in submis-
sion diversity with the higher similarity threshold (T = .85). Fewer contests (14 of 23) have
a drop in submission diversity compared to the results with the lower similarity threshold
(.70), due to it being easier to start a new approach with the stricter similarity threshold.
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Appendix B: Modifying Selection Pressure in Genetic

Algorithm Model

To ensure the genetic algorithm model, discussed in Chapter 3, was not overly sensitive to

the selection pressure used, results from three tournament sizes were gathered. Tournament

selection allows for the systemic adjustment of the selection pressure. As the tournament

size increases, the selection pressure becomes stronger. As seen in these results, the genetic

algorithm model results are not dependent on a specific level of selection pressure.
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Figure B.1: Results for the genetic algorithm model for recreating the programming contests
(tournament size = 2). These two landscapes are the ones included in Kauffman’s original
model [49].
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Figure B.1: Results for the genetic algorithm model for recreating the programming con-
tests. The tournament size for selection was 2, the smallest selection pressure collected.
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Figure B.2: Results for the genetic algorithm model for recreating the programming contests
(tournament size = 12). These two landscapes are the ones included in Kauffman’s original
model [49].
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(c) Modular Landscape (Scatterplot)

Figure B.2: Results for the genetic algorithm model for recreating the programming con-
tests. The tournament size for selection was 12, the largest selection pressure collected.
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Appendix C: Additional Word Frequency Analysis

C.1 Agreement Between of Words in Top Frequencies

In Chapter 4, various subsets of the word frequency data were displayed separately. To

ensure that the regime change occurred with the same set of words in the top ranks (i.e.,

the first regime), the percentage agreement between all of the words and the subsets of

words were calculated. The inflected subsets were compared against all inflected words and

the same goes for the stemmed words. Using an agreement threshold of 95%, Table C.1

clearly shows that the regime changed with the same words in the first regime. Therefore,

the regime change in the subsets of the data did not simply occur due to the tail of the

distribution being moved to the left.

Table C.1: Last rank to achieve the specified percentage agreement.

Last Rank to Achieve Percent
Agreement with All Words

Subset of Words 95% 99%

Dictionary - Inflected 57,163 27,152
Dictionary - Stemmed 37,591 17,418
All Years - Inflected 52,784 18,605
All Years - Stemmed 34,551 13,108

Dictionary/All Years - Inflected 38,016 14,938
Dictionary/All Years - Stemmed 24,863 9,778
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(a) Inflected Words (b) Stemmed Words

Figure C.1: This figure shows the agreement between dictionary and all words in the first
ranks. To test if there was differences in the data when just dictionary words were consid-
ered, a comparison between all words and the dictionary words for the first X ranks was
performed. There was 99% agreement for the first 27,152 ranks for the inflected words and
for the first 17,418 ranks for the stemmed words.

(a) Inflected Words (b) Stemmed Words

Figure C.2: This figure shows the agreement between words that appear every year and all
words in the first ranks. This analysis tests how much of the second regime is made up of
words that do not appear every year. There was 99% agreement for the first 18,605 ranks
for the inflected words and for the first 13,108 ranks for the stemmed words.

191



(a) Inflected Words (b) Stemmed Words

Figure C.3: This figure shows the agreement between dictionary words that appear every
year and all words in the first ranks. This analysis tests how much of the second regime is
made up of dictionary words that do not appear every year. There was 99% agreement for
the first 14,938 ranks for the inflected words and for the first 9,778 ranks for the stemmed
words.

C.2 Estimated Parameters Using Maximum Likelihood

To ensure that the parameter estimates were correct, the estimates were also calculated

using maximum likelihood estimation. The maximum likelihood estimator used the “L-

BFGS-B” method [204]. Maximum likelihood estimation requires a specification of the

noise in the data, which was chosen to be Gaussian. The nonlinear least squares estimates

presented in Chapter 4 does not require a specification of noise in the data. When calculating

the AIC, nonlinear least squares uses the data to calculate the likelihood function, but the

noise function is used in the likelihood calculation of the maximum likelihood estimator.

Therefore, the AIC values for the maximum likelihood estimator and the nonlinear least

squares results are going to be somewhat different, although the AIC values will still be

comparable within one method of parameter estimation.

In addition to the difference in AIC values, there is one other difference in the results

presented here that is totally superficial, which has to do with the interpretation of the
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parameter estimates of the power-power model. For the power-power model, there will

always be two parameter estimates that fit the data best. The two sets of parameter

estimates are equivalent where the meaning of the r and q values are swapped and µ is now

equal to 1 − µ. The maximum likelihood estimator found one set of parameter estimates

that fit the data best and the nonlinear least squares results presented in Chapter 4 found

the other. Therefore, to compare the power-power parameter estimates reported here to

the estimates from Chapter 4, swap r and q, and µ = 1 − µ. Other than these two minor

differences (i.e., the AIC values generated and the interpretation of the parameter estimates

of the power-power model), the results are very similar. Just as in the results from Chapter

4, the power-power model outperforms the power-exponential model.

Table C.2: Parameter estimates for the two models (power-power and power-exponential)
when using maximum likelihood estimation.

power-power power-exponential
parameters fit quality I.C. parameters fit quality I.C.

Data Set r q µ R D AIC γ b R D AIC

All Words
Inflected 2.06 1.49 0.99 .998 .041 66.6 1.61 5.30 .995 .069 75.0
Stemmed 2.07 1.51 0.98 .997 .053 67.3 1.60 4.80 .994 .074 73.3

Dictionary
Inflected 2.05 1.27 0.998 .989 .092 70.4 1.41 9.38 .982 .129 100.6
Stemmed 1.96 1.22 0.998 .985 .106 71.2 1.37 9.61 .975 .146 101.9

Note:
−1 ≤ R ≤ 1 and larger values are better.
0 ≤ D ≤ 1 and smaller values are better.
For AIC, smaller values are better.
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C.3 Top 50 Ranked Words by Part-of-Speech

The performance of the Stanford part-of-speech tagger1 [179] [180] appears to be quite

robust (see Table C.3 and C.4). However, for the nouns, there are some single letter words

that appear be mistakes, but are partly due to the way the ngram data was processed.

From Table C.3, we see ‘t’, ‘p’, ‘d’, ‘m’, ‘c’, and ‘b’ in ranks 2, 15, 25, 39, 41, and 44,

respectively. When Google processed the 1-grams, a sequence of characters would be split

when an apostrophe is found [70]. Therefore, the contraction “don’t” would be broken into

three 1-grams: “don”, the apostrophe, and “t”. This would also hold for other contractions

(e.g., won’t, can’t, I’m, I’d). It is also worth noting that when processing apostrophe ‘s’,

the characters were treated as a single 1-gram (e.g., “it’s” and “John’s” were treated as a

single 1-gram) [70].

Other problems come from abbreviations (e.g., p for page, m for meter, t for ton or

temperature, M.D., M.S., B.A. and Ph.D. for degrees, A.D. and B.C. for eras, or A.M. or

P.M. for time). This could also include abbreviations for people’s first or middle names.

Hyphenated words could also cause this problem (e.g., p-value, t-test, B-52). It should

also be noted that nonsensical words are labeled as a noun (e.g., the random sequence

“ilmwecsm” would be labeled as a noun). With a data set of this size, some errors are

expected, but overall, the words tagged with part-of-speech appear to be quite reliable.

1The Stanford NLP libraries can be found here: http://nlp.stanford.edu/software/
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Table C.3: Top 50 ranks for inflected words categorized by part of speech.

Part-of-Speech
Rank Conj.
(r) Noun /Prep. Verb Det. Adj. Adv. Pron. WH

1 time of is the more not it which
2 t and was a other there he when
3 man to be this such so his who
4 work in are an new only they what
5 life that had all most first their where
6 years for have no many up we how
7 people as were these great also you whose
8 state with been some same then its why
9 way by has any good very her whom
10 part on would those own now him whatever
11 men or will each general well them whenever
12 day at may both old even she wherever
13 world from can another high much my wherein
14 use but should every large little our whoever
15 p if made la small however me whichever
16 case than do del less long us
17 government into could th present here your
18 states out see dem social down himself
19 number about said theses few still itself
20 place after must nary different too themselves
21 war between being last never myself
22 power over did second right herself
23 water like used certain just ourselves
24 system upon make important thus yourself
25 d through found possible back yours
26 form under given political again ours
27 year before might human far thine
28 order because shall national yet ya
29 point without does several often
30 american while know young always
31 fact during take best later
32 law against come necessary once
33 public de came common therefore
34 house per called better rather
35 end since say true early
36 school mr go white almost
37 country among united english away
38 hand though left various further
39 m within thought least ever
40 children until give free perhaps
41 c off set economic south
42 whole above following full already
43 course although taken next quite
44 b whether get british together
45 york either find special usually
46 history nor known due enough
47 means et think french north
48 others along am short especially
49 god near having able sometimes
50 group st cannot real soon
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Table C.4: Top 50 ranks for stemmed words categorized by part of speech.

Part-of-Speech
Rank Conj.
(r) Noun /Prep. Verb Det. Adj. Adv. Pron. WH

1 time of be the other not it which
2 man and have a more there he when
3 use to do this such so his who
4 state in make an new only they what
5 work that will all most first their where
6 year for would no many up we how
7 day as may these great also you whose
8 t with say some same then its why
9 life by see any own very her whom
10 part on can those good even him whatever
11 case or give each general now them whenever
12 form at take both present well she wherever
13 way from go another old much my wherein
14 place but come every high long our whoever
15 show if should la large little me whichever
16 people than know del small however us
17 point into find th last here your
18 number out could dem less down himself
19 child about must nary social still itself
20 power after think few too myself
21 hand between become different back herself
22 world over follow second never yourself
23 system like call certain right yours
24 order upon get important just ours
25 change through write open thus thine
26 leave under seem possible again ya
27 school before begin human far
28 interest because look political yet
29 government de might national often
30 law without shall several later
31 study mr hold common once
32 result while tell young therefore
33 house during feel best rather
34 p against set necessary early
35 country per bring better almost
36 thing since live true away
37 group among appear white further
38 water though unite free close
39 end within turn english ever
40 war until provide various south
41 fact off include least already
42 line above keep economic quite
43 word toward mean full together
44 need although meet next usually
45 american whether want british enough
46 act either put due north
47 increase nor consider special sometime
48 d et require complete especially
49 value along stand clear soon
50 woman near produce direct probably
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Appendix D: Additional Figures for the Agent-Based Model

This appendix displays the same figures shown in Chapter 5, but with 7 initial goods instead

of 25. The results are very similar to that discussed in Chapter 5, but are included here to

show how the number of initial goods influence the model results. The number of initial

goods influence the size of the bump in the Zipf plot for the most frequent words. Otherwise,

the results presented here are very similar to the ones presented in Chapter 5.
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(b) Power Law Initialization

Figure D.1: Zipf plots for the agent-based model results. For each model variant, there
were 7 initial goods that were either assigned fitness values using a uniform distribution or
a power law relationship. Each figure shows three snapshots during execution of the model.
The legend shows the number of simulation ticks there had been when the data series was
collected. Also, since there were on average 1 new phrase per tick, it also gives an estimate
of the number of new phrases created.
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(b) Power Law Initialization

Figure D.2: Growth rates of word usage for the agent-based model results when using 7
initial goods. The growth rates were calculated for the words in the active phrases every
2,000 ticks starting at tick 11,000 until tick 21,000.
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(b) Power Law Initialization

Figure D.3: Scaled growth rates for the agent-based model results when using 7 initial
goods. The growth rates were calculated just like in Figure D.2 and then rescaled using the
rescaling method discussed in Section 4.3.1 and Stanley et al. [106].
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(b) Power Law Initialization

Figure D.4: Power law relationship between initial value and standard deviation for the
agent-based model results when using 7 initial goods. The growth rates were calculated
every 2,000 ticks from tick 11,000 to tick 21,000. Therefore, the initial value was the word
frequency at tick 11,000. Both variants of the model display the power law relationship. It
is worth noting that some of the bins in the figures do not contain any words, so there are
a few missing points (two for the left figure and one for the right).
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Appendix E: Power Laws Explained

In this dissertation, there are two formulations of power laws (or power functions) used

and it is worth noting why there is a discrepancy. Furthermore, this section is provided to

help readers not familiar with power laws to gain enough understanding to follow the work

presented in this dissertation. However, this is not intended to be a rigorous mathematical

treatment of power laws (there are several papers that give a much more comprehensive

explanation [116] [88] [118] [159] [160]).

Generally, when working with power laws, the rare events go in the far right of the

distribution’s tail. This convention causes problems when dealing with different types of

data. Here I will use a comparison between word frequency data [110] [111] and firm size

data [122], which both follow a power law. In word frequency data discussed in Chapter

4, the word ‘the’ is the most common word and the word ‘macaws’ is the 100, 000th most

common word. Therefore, ‘the’ is used frequently, while ‘macaws’ is not, so ‘macaws’ belongs

in the tail of the distribution. However, if we consider firm sizes, there is currently a single

publicly held company with over 2 million employees (Walmart), while there are many small

companies with only a single employee. Therefore, using the convention that rarity goes in

the tail, Walmart should go in the tail of the distribution. This creates the discrepancy.

In the word frequency case, the entity with the first rank is very common and in the firm

size case, is very rare. There seems to be a consistent availability bias [205] at play. This

occurs because there are many instances of the word ‘the’, but only one Walmart. For

this dissertation, I have followed convention and placed the rare events in the tail, which

requires different interpretations of the power law.

Now that the reason for the discrepancy is explained, I will briefly explain the two

formulations of power laws used in this dissertation: Zipf and Pareto (this discussion is

based on material from [206] [118] and [125]). The confusion with the two interpretations is

further intensify by the common usage of α for the exponents in both types of power laws.

To avoid this confusion, I will use αz for Zipf’s formulation and αp for Pareto’s formulation.
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For this dissertation, I use αp in Chapter 2 and αz in Chapter 4.

A power law follows:

P (x) ∝ x−α (E.1)

This means that the probability of some event, P (x), is proportional to the size of the event

to some power, −α, where α must be greater than or equal to 1. A power law in terms of

Zipf’s formulation is:

P (r) ∝ r−αz (E.2)

Where r is the rank of the event ordered by decreasing frequency. Zipf’s formulation can

also be written as:

f(r) =
C

rαz
(E.3)

Now, f(r) is the frequency of rank r and C is the frequency of the most common item

(which means that C = f(1)). If the logarithm is taken of Equation E.3, then the terms

can be rearranged to be the same form as a linear equation (y = mx+ b):

log f(r) = −αz log r + logC (E.4)

This shows how if you plot the power law on a log-log plot, then it will be a straight line

with slope of −αz.

Zipf’s formulation plots a power law with the rank (r) on the x-axis and the frequency

(f(r)) on the y-axis. However, Pareto’s formulation has the two axes swapped. Now, the

frequency goes on the x-axis, but the interpretation of the y-axis changes a bit. Saying

that an entity has rank r is equivalent to saying that the entity is smaller than r − 1 other

entities. So, to place this in terms of a cumulative density function1:

P (X ≥ f(r)) =
r

N
(E.5)

1Equation E.5 assumes that ranks i and i+1 do not have the same frequency, which is reasonable because
the Pareto distribution is continuous.
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Where P (X ≥ f(r)) is the probability that a random sample drawn from the distribution

is greater than or equal to the frequency of the entity with rank r. N is the total number of

entities in the distribution. By using Equation E.5 to solve for r and then combining with

Equation E.3, we get:

f(r) =
C

(P (X ≥ f(r))N)αz
(E.6)

By taking the logarithm of this equation and rearranging terms to follow the linear equation

(y = mx+ b):

logP (X ≥ f(r)) = − 1

αz
log f(r)− log(N) +

log(C)

αz
(E.7)

As noted earlier, the axes have been switched so the P (X ≥ f(r)) goes along the y-axis

and the f(r) term along the x-axis. Therefore, on a log-log plot, the slope of this line is

− 1
αz

. But, this is in regards to the cumulative density function and Pareto’s formulation is

generally stated in terms of the probability density function. So, after taking the derivative

of Equation E.7 to obtain the probability density function, the slope becomes −
(

1
αz

+ 1
)

.

Finally, ranks are not used in Pareto’s formulation, so x replaces f(r) and we arrive to

Pareto’s Law:

P (X = x) ∝ x−
(

1
αz

+1
)

= x−αp (E.8)

To summarize, going by convention, αp is used in Chapter 2 and αz in Chapter 4 and you

can switch from one interpretation to the other using this equation:

αp =
1

αz
+ 1 (E.9)
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Appendix F: Technologies Used

This section will give a brief overview of the various tools and software libraries that were

used in this dissertation. MATLAB and R was used throughout this dissertation. Several

R libraries were found to be quite helpful, including: stats, stats4, graphics, DAAG, MASS,

VGAM, and DistributionUtils. Some of the analyses of the programming contest data and

the agent-based model were written in Java. The agent-based model used the MASON

simulation library1. Some of the custom visualizations were created with Processing2. The

symbolic regression was performed using Eureqa Formulize3.

This dissertation required much computational time and memory to complete. Various

machines were used, including: two MacBook Pros (one with 4GB of memory and the other

with 8GB), a Mac workstation (with 64GB of memory), and a Linux machine running

Fedora (with 16GB of memory).

1For more information about MASON: http://cs.gmu.edu/ eclab/projects/mason/
2For more information about Processing: http://processing.org/
3For more information about Eureqa Formulize: http://formulize.nutonian.com/
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