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ABSTRACT 

 

 

 

ESTIMATING SOFTWARE EFFORT HOURS FOR MAJOR DEFENSE ACQUISI-

TION PROGRAMS 

 

Corinne C. Wallshein, M.S. 

 

George Mason University, 1997 

 

Dissertation Director: Dr. Andrew G. Loerch 

 

 

Software Cost Estimation (SCE) uses labor hours or effort required to conceptualize, de-

velop, integrate, test, field, or maintain program components.  Department of Defense 

(DoD) SCE can use initial software data parameters to project effort hours for large, soft-

ware-intensive programs for contractors reporting the top levels of process maturity, as-

suming these levels produce acceptable quality.  Statistical analysis using ordinary least 

squares (OLS) proved initial parameters, such as estimated hours, initial peak staff, or es-

timated software size, could accurately predict actual effort hours.  DoD cost estimating 

relationship (CER) equations differed by process maturity levels and differed for applica-

tion area subsets by process maturity level.  Grouping by application area subsets or add-

ing Earned Value Management System‟s metrics (such as Schedule Performance Index 

and Cost Performance Index) did not consistently improve CER accuracy for the top two 

process maturity levels. 
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1. Introduction 

 

In DoD, software cost estimates provide a foundation for budgeting and funding.  Cost 

estimates are required, use of a Work Breakdown Structure (WBS) is required, but esti-

mating techniques and WBS sub-levels vary across DoD.  Top WBS levels, suggested in 

the DoD Military Handbook (MIL-HDBK) 881A for common application categories, are 

not mandated.  Software cost estimation has taken on greater importance as investments 

in information systems, networks transferring information, and software-intensive pro-

gram development have increased.   Demand for reasonable and accurate estimates of 

software development costs and maintenance costs places a premium on the development 

and use of analytic tools.  DoD‟s growing collection of programmatic and software data, 

available to government cost analysts, is intended for the creation of software cost esti-

mating relationships (CERs) and cost analysis tools.  A key data source is the Software 

Resources Data Reports (SRDRs), storing initially estimated software and process me-

trics with the contractor‟s delivered, actual software and process metrics. 

 

Motivation and Background 

 

Although “it is difficult to get a balanced view on the software industry‟s estimation per-

formance without unbiased information from a representative set of projects and organi-

zations”, software cost overruns ranged from 33% to 89%. [Molokken and Jorgensen 
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2003]  The Government Accountability Office (GAO) studied high visibility, large DoD 

programs‟ baseline Research, Development, Test, and Evaluation (RDT&E) cost esti-

mates and found systemic cost growth, averaging forty percent.  Underestimation of 

software activities may have resulted in cost overruns. [GAO 2008]  Estimating software 

is complicated by the “unique aspects of software engineering: no physical properties; 

lack of product visibility; very few product metrics; multiple development strategies; 

changing/evolving requirements; apparent ease of change; propagation of change; little 

use of pre-existing components; and white-collar craftsmen and women.” [Nidiffer 2006]  

DoD‟s historical software resources data reports (SRDRs) provide the opportunity to ex-

periment with deriving evidence-based cost estimating relationship (CER) equations and 

comparing accuracy measures. 

 

Estimating techniques rely on historical data or human judgment; one author refers to this 

dichotomy as many-data or sparse-data techniques. [Myrveit et al. 2005]  Reported DoD 

documentation varies from many-data to sparse-data; access is generally restricted to 

DoD personnel.  Since DoD officials promoted the use of Commercial-Off-The-Shelf 

(COTS) software and non-developmental item “products and services when refining, 

reengineering or redesigning functional processes”, many programs incorporate them. 

[DoDD 8000.01 2002]  An alternative to building applications with custom software, un-

der current regulations, is to build these applications using pre-existing software.  Pre-

existing software comes from software libraries, other developers or other projects 

(commonly referred to as Government Off-The-Shelf [GOTS]), the Internet (commonly 
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referred to as Open Source Software [OSS]), and vendors of COTS software components.  

In DoD, COTS, GOTS, and OSS packages coexist in many programs.  At least 70% of 

new corporate software applications used COTS in 2003, according to the Gartner Group, 

and more than 90% of future corporate software applications will use COTS. [Ayala 

2008]  Although many metrics are collected, quality metrics are absent, save the Software 

Engineering Institute (SEI) Capability Maturity Model Integrated (CMMI) level rating 

attained by the contractor. 

 

DoD acquisition system for large, software-intensive programs is documentation-

intensive, due to myriad statutory and regulatory requirements, including ones to estab-

lish an Earned Value Management System (EVMS).  In the SRDR reports, the contractor 

describes the most recently achieved process maturity level.  A key assumption in this 

dissertation is that developers with the two highest level of process maturity produce 

software of high quality and record high quality data.  High levels of process maturity 

reflect a continuous focus to reduce defects, achieve stakeholder satisfaction, and en-

hance software management, maintenance and improvements. 

[http://www.sei.cmu.edu/cmmi/ 2009]  High levels of process maturity should translate to 

reduced defects in software products (including documentation), improved customer sa-

tisfaction, and improved follow-on software maintenance and upgrade activities.  Studies 

have shown higher CMMI levels correspond to lower defect levels. 

[http://www.sei.cmu.edu/library/assets/2004-CMMI-006.pdf 2009]  Among the many 

possible accuracy measures for the proposed effort-estimating relationships, two metrics 
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in the literature, Mean Magnitude of Relative Error (MMRE) less than 25% and for 75% 

of predicted values to be within 25% of actual values (PRED), are considered “industry-

standard”. [Conte, Dunsmore and Shen 1986; Subramanian 1991; Wieczorek and Ruhe 

2002] 

 

Need 

 

Although many software cost models exist, including the suite of Constructive Cost 

Models (COCOMO) with a setting for process maturity, none of the models or studies 

have studied CMMI Level 5 and Level 4 organizations together.  One article in the litera-

ture studied 37 projects from four CMMI Level 5 organizations and contrasted their study 

to the only other one they found on productivity and conformance within a single CMMI 

Level 5 organization.  The authors found “a steep reduction in variance” in effort and 

cycle time and a reduced significance of software modeling factors such as personnel ca-

pability and requirements specifications as “a potential benefit of achieving high process 

maturity” leading them to speculate they could port their models across CMMI Level 5 

organizations. [Agarwal and Chari 2007]  These authors, like many before them, declared 

software size as the most significant variable to predict development effort and cycle 

time.   

 

Problem Statement 
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Many DoD cost analysis professionals use the current contract or historical contract per-

formance as a basis for estimating future project costs, regardless of CMMI level and re-

gardless of factors other than the original bid.  This dissertation analyzed 30 projects 

from ten CMMI Level 5 organizations and 34 projects from five CMMI Level 4 organi-

zations to develop and determine the accuracy of parametric cost estimation models by 

CMMI level in lieu of accessing all historical contractor data.  In addition, the choice of 

the top two CMMI levels was a conscious choice to be surrogates for quality software.  

DoD does not make a catalog software defect rates available in their online acquisition 

repositories.  This dissertation extracted initial estimates of software parameters and ana-

lyzed them (not actually produced software parameters which are a primary source for 

other software cost models) to determine whether they could predict final, actual effort.  

Earned Value Management System (EVMS) data, from the start of the code and test 

phase, added a set of modeling parameters to test whether an index for schedule perfor-

mance or cost performance impact estimation accuracy.  Data by CMMI level went into 

non-overlapping application areas created by the author and tested to determine whether 

the subset‟s parametric cost models had greater accuracy than the parametric cost models 

by CMMI level.  The models were analyzed using visualization, goodness of fit meas-

ures, and industry-standard accuracy measures for software cost and effort models.  The 

accuracy measures relied upon the magnitude of relative error measures, comparing the 

predicted effort using the model to the actually reported final effort hours.  
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Dissertation Organization 

 

The dissertation has five main sections.  The first main section titled „Literature Search‟ 

discusses software cost estimation, software methods, software data sets, software cost 

models, software process maturity levels, software and project metrics (including EVMS 

and CMMI), DoD acquisition categories and DoD databases.  Appendices supplement the 

literature search.  The second main section discusses the research methodology.  The 

third main section details the research results.  The second-to-the-last main section re-

ports dissertation conclusions.  The last section provides suggestions on future research.  
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2. Literature Review 

 

Figure 1 shows the organization of my literature review, conducted on “widely scattered” 

references. [Brooks 1995; McConnell 2006]  While literature on predicting costs for 

software programs is growing, published, public domain, studies on costing major DoD 

software-intensive acquisition programs are scarce due to data sensitivity and relative 

newness of the data.  Records analyzed in this dissertation dated from 2003 to 2008. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Literature Map (Top-level) 
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Estimating Software Effort 

 

Software effort estimates provide a basis for funding and budgeting decisions by all le-

vels of management.  When estimates err optimistically, overruns generally result; when 

they err pessimistically, waste generally results.  Optimism is an oft-reported common 

characteristic of software professionals. [Brooks 1995; Nidiffer 2006]  Since software has 

no physical form, its creation can compare to designing and manufacturing widgets, writ-

ing short stories or novels, or solving a mathematical problem or proof.  [Putnam 2007; 

Lewis 2001]  While white-collar software professionals realize fostering software takes 

money and time, they traditionally underestimate both. [Nidiffer 2006]  Of the three ma-

nagerial factors to balance in software efforts, i.e., cost, schedule, and delivered functio-

nality (including required quality), past research has focused on estimating software ef-

fort hours as a proxy for software cost. [Gilb 1986]  This dissertation continues the tradi-

tion of past research. 

 

Software Estimating Methods 

 

In software, “…progress depends on groups of humans doing highly interrelated, creative 

or thinking work in a systems context…” [Putnam 1980]  To estimate the future, cost es-

timates use historical metrics, some of which are listed in the succeeding graphic. 

[https://www.softwaretechnews.com/stn_view.php?stn_id=47 2008] 
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Figure 2: Effort = function (size, productivity) 

Cover page from Data and Analysis Center (DACS) Software Tech News, October 2008 

 

To calculate resources required, particularly effort, we start with an estimate of software 

size (in lines of code, function points, object points, or expected amounts of reused code 

with an uncertainty range on the estimated size) and an estimate of productivity.  Func-

tion points are “based on a rather old-fashioned underlying concept (or metamodel) in 

which all systems are seen to consist of two parts: database structures and functions that 

access those structures.” [Moser and Nierstrasz 1996]  While the program‟s desired func-

tion or performance forms the basis for counting function points, object-oriented pro-

grams lend themselves to counting numbers of objects or object points.  Estimated prod-

uctivity from historical data, measured consistently, is defensible.  With increased hard-

ware capacity for software storage, many developers reported increased productivity. 

[Boehm 1981]  System-of-systems attributes, such as interaction complexity, code coupl-
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ing management, and architecture, impact productivity. [Yu, Smith and Huang 1991; 

Cain and McCrindle 2002]  Documented productivity increases with highly capable per-

sonnel or teams are widely reported. [Boehm 1981; Vosburgh, Curtis, Wolverton, Albert, 

Malec, Hoben and Liu 1984; Yu, Smith and Huang 1991]  Other research on program-

mer‟s experience levels “showed non-significant relationships to productivity measures.” 

[Chand and Gowda 1993]  Resource constraints (i.e., scheduling constraints, timing con-

straints, memory utilization constraints, and CPU occupancy constraints) decreased prod-

uctivity, either singly or in combination. [Vosburgh, Curtis, Wolverton, Albert, Malec, 

Hoben and Liu 1984; Peters, O‟Connor, Pooyan and Quick 1984; Jeffery 1987] 

 

In a small software firm, adopting agile development practices increased productivity. 

[Maurer and Martel 2002]  In a large firm (Lockheed Martin Integrated Systems and So-

lutions), receiving the highest possible process maturity rating (Software Engineering In-

stitute [SEI] Capability Maturity Model Integrated [CMMI] Level 5) related to improved 

productivity. [McLoone and Rohde 2007]  Studies have shown moving up one CMMI 

level can increase productivity. [Clark 1997; McConnell 2000] 

 

Software effort estimates are generally in person-hours; DoD data repositories align with 

this tradition.  Software size, typically in source lines of code (SLOC), or function points 

(FPs), provides a basis for software effort estimating techniques and acts as a primary 

input to popular, contemporary software cost estimating models.  DoD data repositories 

store SLOC by programming language in mutually exclusive areas: new SLOC, modified 
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SLOC, and unmodified SLOC.  Since informal and multiple conventions for measuring 

SLOC exist, such as logical SLOC, physical SLOC, non-commented SLOC, developers 

provide explanations on their reported software measurements. 

 

Creating software involves extensive labor with corresponding effort hours, therefore, 

hours multiplied by an average cost per hour approximate software cost.  Software esti-

mating methods depend on effort drivers.  Once actual effort occurs, the accuracy of the 

estimates can be determined.  Software cost models have various inputs and algorithms to 

estimate effort.  No estimate is complete without explicit treatment of risk (i.e., acknowl-

edged hazards that may occur) and uncertainty (i.e., acknowledged probabilities of the 

hazards and of occurrences affecting the estimate).  Cost analysis courses, DoD guidance, 

and an Air Force handbook describe ways of handling risk and uncertainty in software 

program acquisition and cost estimates. 



 

24 

 

    

 

Figure 3: Literature Map (Level 2 - Estimating Software Effort) 

 

There are multiple ways to categorize estimating software effort due to the linkage be-

tween forecasting methods, cost drivers, software cost models, prediction accuracy, and 

risk computations and uncertainty area identification.  All forecasting methods and mod-

els require objective or subjective inputs, referred to as cost drivers.  “Cost drivers are 

used to capture characteristics of the software development that affect the effort to com-

plete the project.” [Boehm, Abts, Brown, Chulani, Clark, Horowitz, Madachy, Reifer and 

Steece 2000] 

 

The following table describes the different methods listed and gives an overview of their 

strengths and weaknesses. 
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Table 2-1: Software Estimating Methods [Boehm 1981; Ormon 2002; Briand, El Eman 

and Bomarius 1998; Schoedel 2006] 

 

METHOD DESCRIPTION STRENGTHS WEAKNESSES 

Algorithmic A procedure, formula, 

and/or constraint rules to 

estimate effort or duration – 

includes automation and 

checklists 

Objective method able to 

be repeated and analyzed 

Susceptible to incorrect 

and/or subjective inputs; 

combining data elements 

into a single metric can 

only be as objective as the 

least objective element 

Analogy Historical precedent or rep-

resentative experience with 

a comparable or related 

item/project/system/progra

m 

 

History tends to repeat 

itself, with nuances 

The historical precedent or 

representative experience 

may not apply 

Expert-

based 

Consultation with one or 

more experts, making use of 

elicitation techniques such 

as questionnaires, panels, 

the Delphi method, or an 

expert knowledge base 

Proficiency basis to assess 

representativeness, interac-

tions, and special circums-

tances 

Susceptible to biases, sub-

jectivity, incomplete recall, 

group dynamics, and ex-

pert‟s ability to project 

experience into new situa-

tions 

Engineer-

ing Level 

Individual items estimated 

separately, then added for 

subtotals and grand totals; 

entails use of a WBS.  Top-

down focuses on system or 

program level; Bottom-up 

details use a disaggregated 

approach to calculate dis-

crete cost elements or items. 

Ideal method for known, 

stable systems with multi-

level WBS 

Top down has little detail 

and justification with fewer 

lower WBS levels; bottom 

up overlooks costs not de-

tailed or justified.  Both 

require much effort to clas-

sify costs in defined WBS 

levels 

Others Price-to-win, Parkinson, 

Hybrid, Personal Software 

Process (PSP) and PROxy 

Based Estimation (PROBE) 

Price-to-win strategy ob-

tains contracts; Parkinson‟s 

law correlates with some 

experience; Hybrid com-

bines methods: PSP esti-

mates size and effort at 

software design inception; 

PROBE estimates software 

size and effort – and can be 

used for Structured Query 

Language (SQL) 

Price-to-win generally 

overruns costs and sche-

dules; Parkinson fosters 

poor practices; Hybrid is as 

good as the least stable 

method used; PSP and 

PROBE require specialized 

collection of historical 

software development data 

 

 

 

Detail regarding the software estimating methods listed in this table is in Appendix A. 

 



 

26 

 

Software Cost Models 

 

Industry software cost estimation models referenced by sources in my literature review 

are: 

1. University of Southern California (USC) Center for Systems and Software Engi-

neering (CSSE) COCOMO model suite 

2. Quantitative Systems Management (QSM) Incorporated‟s SLIM model 

3. PRICE Systems TruePlanning model (formerly PRICE-Software and TRUE-

Software) 

4. Galorath Incorporated‟s SEER-SEM model 

5. Software Engineering Incorporated (SEI) Sage model, and 

6. Software Productivity Research (SPR) Incorporated‟s KnowledgePLAN (former-

ly CHECKPOINT) model. 

 

Details beyond that in the table below are in Appendix B. 
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Table 2-2: Software Cost Models‟ Parameters: Inputs and Outputs 

[http://csse.usc.edu/tools/COCOMOII.php 2009; S3DB 2005; 

http://cost.jsc.nasa.gov/pcehhtml/pceh225.htm 2009; http://fast.faa.gov/pricing/c1919-

19D.htm 2009; http://seisage.net/sage.htm 2009;Nidiffer 2006] 

Software 

Cost 

Model 

Inputs Outputs 

COCOMO II Size (New, Reused, Modified SLOC, along with % Design 

Modified, % Code Modified, % Integration Required, Assess-

ment and Assimilation, Software Understanding, and Unfami-

liarity), 5 Scale Drivers (Precedentedness (PREC), Develop-

ment Flexibility (FLEX), Architecture / Risk Resolution 

(RESL), Team Cohesion (TEAM), Process Maturity (PMAT) 

related to SEI Capability Maturity Model), 17 Cost Drivers 

((5 for Product: Required Software Reliability; Data Base 

Size; Product Complexity; Required Reusability; Documenta-

tion to Match Lifecycle Needs),(6 for Personnel: Analyst Ca-

pability; Programmer Capability; Personnel Continuity; Ap-

plication Experience; Platform Experience; Language and 

Toolset Experience),(3 for Platform: Execution Time Con-

straint; Main Storage Constraint; Platform Volatility), and (3 

for Project: Use of Software Tools; Multi-Site Development; 

Required Development Schedule), Labor Rates, and Staffing 

Percentage by Phase (inception, elaboration, construction, 

and transition) 

Effort hours 

Schedule in calendar 

months  

Costs in U.S. dollars 

SLIM Languages (Choice or mix), System or Application Type (9 

available), Environmental Information (Tools, methods, prac-

tices, database usage, availability/use of standards), Process 

Productivity Parameter (scale ranges from 0 to 40), Manage-

ment Constraints (Planned schedule, cost, staff size, and soft-

ware reliability), Accounting (such as labor rates and inflation 

rates), Flexibility (Milestones, Phase Definitions, and fraction 

of time and effort applied)  

Development Time 

 Cost 

Effort 

Reliability Expected with 

risk profiles 

Comparisons with simi-

lar projects 

SEER-SEM Size (Minimum, Maximum, and Most Likely SLOC, traditional 

FP, Galorath FP – New, Preexisting and designed for reuse, or 

Pre-existing and not designed for reuse), Knowledge-base In-

puts (Platform, Application, Acquisition Method, Development 

Method, Development Standard, Class), Complexity, Personnel 

capability and experience, Development Support Environment, 

Product Development Requirements, Reusability Require-

ments, Development Environment Complexity, and Target 

Environment, Schedule Constraints, Labor Rates, Integration 

Requirements, Personnel Costs, Metrics, and Software Support 

Size 

Effort 

Schedule 

Effective Technology 

Rating (ETR) during the 

estimation process 
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Software 

Cost 

Model 

Inputs Outputs 

PRICE-S  

TRUE-S    

TruePlan-

ning 

Application Type (7 basic functional categories), Productivity 

Factor, Complexity, Platform, Utilization (of processor capa-

bility), Level of New Design and Code, Internal and External 

Integration Effort, Schedule Start Date, Schedule End Date, 

Programming Language(s), Economic Factors 

Effort estimate in person-

months 

Schedule estimates by 

milestones 

Staffing Profile with 

available sensitivity and 

schedule effect analysis 

with summaries for 

project management 

CHECK-

POINT  

Knowled-

gePLAN® 

Size (Converts SLOC inputs to FP; uses FP sizing or analogy), 

Project description information, Project Nature (New program , 

Enhancement, or Conversion, Re-engineering, Maintenance, 

etc.),  Project Scope (Stand-alone program, System-of-system, 

Prototype, etc.), Project Class (Single site, multi-site, or net-

work for contract, commercial, government, IT/MIS, etc.), 

Project Type, Software Products (for sizing by analogy),  Per-

sonnel attributes (for project management, development expe-

rience, user personnel experience, and quality experience), 

Technology attributes, Process attributes, Environment 

attributes, and Product Factors 

Schedule 

Staffing 

Effort estimates in dol-

lars or person-months 

using tabular or graphical 

Gantt charts 

Sage Size (SLOC, New source code, Modified source code, Reused 

source code, executable statements, data declarations, compi-

ler directives, and format statements),  Personnel attributes (for 

analyst and programmer capability, application experience, 

development experience, programming language experience, 

practices/methods experience, target systems experience. con-

tinuity), Support attributes (development system complexity, 

development system volatility, modern practices use, process 

improvement, practices/methods volatility, reusability level 

required, required schedule, automated tool support), Man-

agement attributes (multiple classification levels, multiple de-

velopment organizations, multiple development sites, re-

source/support location access), Product attributes (staffing 

complexity, special display requirements, development rehost-

ing, target system memory constraints, required software re-

liability, real-time operations requirements, system require-

ments volatility, system security requirements, system CPU 

timing constraint, target system volatility) 

Most likely and worst 

case cost and schedule 

predictions 

Cost and schedule risk 

estimates 

Resource and staff pro-

files for development 

Size growth predictions 

Comparison of estimates 

with historical data 
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Cost Drivers 

 

Potential cost drivers or estimating parameters for software cost and schedule, used in 

some form in the software cost models and described in detail later are software size; 

staff size; COTS; EVMS; quality; and others.  There should be a logical, proven link be-

tween the measure and its purpose.  The reason for the metric should be clear to the 

measures‟ providers and users.  “Unfortunately, metrics tend to describe properties and 

conditions for which it is easy to gather data rather than those that are useful for characte-

rizing software content, complexity, and form.”  [Tucker 1996] 

 

Software cost estimating drivers depend on data collected as this provides the finite set of 

possible variables.  Over time, with growing data collection, this set has expanded.  Tra-

ditional software cost estimate drivers derive from the collective history of this craft.  

“Cost drivers are used to capture characteristics of the software development that affect 

the effort to complete the project.” [Boehm, Abts, Brown, Chulani, Clark, Horowitz, Ma-

dachy, Reifer and Steece 2000]  Size, complexity, productivity, planned schedule, per-

sonnel experience, personnel numbers, requirements volatility, and computing constraints 

are the backbone of software effort and duration equations in the reviewed software cost 

models.  Additional parameters (such as application type, domain, development method, 

programming languages, and COTS integration) joined the set of hypothesized effort and 

duration drivers.  “From a conceptual standpoint the derivation of estimating relation-
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ships may perhaps best be viewed as a process involving the testing of hypotheses.  This 

implies that the cost analyst should start out by developing a theory about the possible 

generators of cost for the particular activities, equipments, or facilities under considera-

tion.  Then certain hypothesis can be formulated and tested in light of the available data 

base.” [Fisher 1970]  Other variables emerge as our metrics set expands. 

 

“Once we understand engineering as an economic-cooperative game, the difficulty of ac-

curately predicting the trajectory of an engineering project becomes understandable…we 

need different terms: methodology size, ceremony, and weight; problem size; project 

size; system criticality; precision; accuracy; relevance; tolerance; visibility; scale; and 

stability.”  [Cockburn 2006]  The advice to “Look for something to count that is a mea-

ningful measure of the scope of work in your environment” merges with Cockburn‟s 

statements. [McConnell 2006]  So far, however, we may only study software with the 

variables we collect, test, and use in our experiments, models, and work places.   

 

 

Software Size 

 

Source lines of code (SLOC) or (LOC) is a long-standing and familiar software size me-

tric.  Many authors use SLOC or LOC in software cost studies. [Najberg 1988; Long and 

Lucas 1996; Vijayakumar 1997; Gaylek, Long, Bell, Hsu and Larson 2004; Misra 2005; 

Martin, Pasquier, Yanez and Tornes 2005; Mohagheghi, Anda and Conradi 2005; Twala, 

Cartwright and Shepperd 2005]  Others use function points (FP). [Heemstra and Kusters 

1991; Briand, El Emam, Surmann, Wieczorek and Maxwell 1999; Angelis, Stamelos and 
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Morisio 2001; Wieczorek and Ruhe 2002; Foss, Stensrud, Kitchenham and Myrtveit 

2003; Liu and Mintram 2005; Tan and Mookerjee 2005; Ahmed, Bouktif, Serhani and 

Khalil 2008; Gupta, Kaushal and Sadiq 2008; Lan 2008] A raw, unadjusted function 

point count (UFP) can be determined from the data function type (Internal Logical File 

and External Interface File) and the transactional function type (External Input, External 

Output, and External Inquiry).  These data function types and transactional function types 

are five major components to be “classified, ranked, and tallied.” [Agarwal, Kuman, Yo-

gesh, Mallick, Bharadwaj and Anantwar 2001] 

 

Calculating a Value Adjustment Factor (VAF) from the degree of influence of fourteen 

general system characteristics is the International Function Point Users Group (IFPUG) 

approach.  Adjusted function points (AFP) equal the product of UFP times VAF.  Some 

authors use adjusted function points. [Andreou, Papatheocharaous and Skouroumounis 

2007; Deng, Purvis and Purvis 2007; Keung and Kitchenham 2007; Andreou and Papa-

theocharaous 2008] 

 

Barry Boehm‟s original COCOMO model counted delivered source instructions.  “It 

turns out that the most significant input to the COCOMO II model is Size.” [Boehm, 

Abts, Brown, Chulani, Clark, Horowitz, Madachy, Reifer and Steece 2000]  However, 

what one expects to code may or may not be what one codes.  The size measure, from the 

first to the last effective estimate, remains a best guess; derived in the varied ways as ef-

fort and schedule estimates.  “The sizing of software programs in terms of source lines of 
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code has long been a subjective art at best.” [Kalb 1988]  Alongside this subjectivity, siz-

ing metrics vary widely; SLOC is one metric among many choices for sizing.  “The prob-

lem is that there is no agreement among professionals as to the right units for measuring 

software size or the right way to measure within selected units.” [Minkiewicz 2008]  

Lack of agreement on sizing metrics began early.  Compounded by programming lan-

guages‟ use of delimiters between statements, such as semi-colons, one line in a program 

can house many logical statements. [Conte, Dunsmore and Shen 1986] 

 

The International Standards Organization (ISO), along with the International Electro-

technical Commission (IEC), declaration of “Let the market decide” created multiple 

function point counting standards in use today.  [http://www.cosmicon.com/historycs.asp 

2009]  Namely, there is ISO/IEC 20926 for the International Function Point Users Group 

(IFPUG) method‟s functional size component, ISO/IEC 24570 for the Netherlands Soft-

ware Metrics Association (NESMA) functional sizing measurement, ISO/IEC 19761 for 

Common Software Measurement International Consortium (COSMIC) functional size 

metric, and ISO/IEC 20968 for the Mark II (Mk II) Function Point Analysis method.   

 

Only at the conclusion of the effort, can size be determined with any confidence within 

the choice of measurement scale.  Developing working code requires dual understanding.  

The first understanding is how-to-code in the designated development.  The second is 

what-to-code.  Understanding requires learning, and learning classically demonstrates 

non-linear behavior.  Typical learning curves have formulas of “L(y) = Ay
b
, where L(y) = 
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the number of hours needed to produce the yth unit, A = the number of hours needed to 

produce the first unit, y = the cumulative unit number, and b = the learning index, the 

learning-curve parameter, or the learning-curve slope parameter.” [Loerch 2001] 

 

Although what constitutes a line of code has been argued over, one book stated this defi-

nition as a common one for researchers: “A line of code is any line of program text that is 

not a comment or a blank line, regardless of the number of statements or fragments of 

statements on the line.  This specifically includes all lines containing program headers, 

declarations, and executable and non-executable statements.” [Conte, Dunsmore and 

Shen 1986]  SLOC measurement scales include logical statements, physical LOC, and 

non-commented source lines.  “SLOC was selected early as a metric by researchers, no 

doubt due to its quantifiability and seeming objectivity.  Since then, an entire subarea of 

research has developed to determine the best method of counting SLOC.” [Kemerer 

1987]  Logical and physical are the two primary methods of describing SLOC, although 

pre-1992 references generally do not specify SLOC type.  Logical SLOC counts only log-

ical statements in the software; Physical SLOC counts all but comments and blank lines. 

[Parks 1992]  Despite its longevity, SLOC is challenged by other size measures: Function 

Points (FP), Object Points, Use Cases Points, Feature Points, Web Object Points, etc. 

[Jones 2007]  Actual counts can change depending on the invocation of an automated 

code counter for identical source programs. [Reifer 2009]  Automated code counters 

work for only specific languages; other languages require manual counting. 
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Programming languages, by generation or type, can relate to software size.  “Languages 

impact both productivity and the amount of code that will be generated.” [Boehm, Abts, 

Brown, Chulani, Clark, Horowitz, Madachy, Reifer and Steece 2000]  Low- level lan-

guages take many more source code statements to perform operations than high-level 

languages. [Gao and Lo 1994]  There are currently five generations of languages from 

low level (1st and 2nd generation) to high level (3rd generation and beyond).  FORTRAN 

and COBOL are example 3
rd

 generation languages (3GLs).  SAS and Cold Fusion are 

example 4
th

 generation languages (4GLs).  The 5th generation languages (5GL) build 

specified constraints via logic into the software development environment to allow and 

disallow certain user-machine interactions. [http://e-words.us/w/5GL.html 2009]  There 

is debate as to whether 5GL exist. [http://www.it-director.com/content.php?cid=9096 

2009]  In addition to generational languages for general-purpose use, there are domain 

languages for specific-purpose use.  For instance, the domain language of Cold Fusion 

Mark-up Language is akin to Hyper Text Mark-up Language (HTML), the difference be-

ing specialized server tags. 

 

A rough conversion between two methods of counting source lines of code, logical 

statements and physical lines of code is in the following table, based on NASA‟s Jet Pro-

pulsion Laboratory historical databases: 
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Table 2-3: Converting Software Size Estimates [http://software.gsfc.nasa.gov/docs/QSM-

class/Day%201-Cost/04a-Size.ppt 2009] 

 

Language To Derive Logical SLOC 

Assembly and Fortran Assume physical SLOC = Logical SLOC 

Third-Generation Languages 

(such as C, Cobol, Pascal, Ada 83) 

Reduce physical SLOC by 25% 

Fourth-Generation Languages 

(such as SQL, Perl, Oracle) 

Reduce physical SLOC by 40% 

Object-oriented Languages 

(such as Ada 95, C++, Java, Python) 

Reduce physical SLOC by 30% 

 

 

The next table illustrates the order of magnitude between the programming language‟s 

generation and the average source lines of code per functionality represented by raw, un-

adjusted function points, a standardized count of data function type and the transactional 

function type.  This dissertation incorporated the preceding table and recent research on 

converting non-commented source lines of code and physical lines of code to logical 

statements to normalize the software size metric. 

 

Table 2-4: Functionality versus Size by Programming Language Generation [Jones 2007] 

PROGRAMMING LANGUAGE AVERAGE SLOC PER UFP 

5GL default  5 

4GL default  20 

3GL default  80 

2nd Generation default  107 

1st Generation default  320 

Machine language  640 
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Staff Size 

Peter Norden depicted numbers of workers visually in a series of graphs representing the 

Research and Development (R&D) phase manpower build-up and ramp-down. [Putnam 

1980]  The patterns in the graphs led him to experiment with Rayleigh probability distri-

bution parameters.  After experimenting, he found parameters to fit the graphs.  Putnam‟s 

SLIM model and the COCOMO models use the Rayleigh distribution to estimate typical 

labor build-ups and ramp-downs, while the more adaptive Gamma distribution may im-

prove predicted labor curves for less typical labor patterns and performed well for quick-

er labor build-ups. [Pillia and Nair 1997]  Norden reports, “The purposes change 

throughout the life of a project, and these changes characterize the effort cycles …The 

cycles do not depend on the nature of work content of the project but seem to be a func-

tion of the way groups of engineers and scientists tackle complex technological develop-

ment problems.  Each cycle can be described by a comparatively simple equation: y’ = 

2Kate
-at^2 

where y’ = manpower utilized each time period, K = total cumulative manpower 

utilized by the end of the project, a = shape parameter (governing time to peak manpow-

er), t = elapsed time from start of cycle.” [Putnam 1980] 

 

Mr. Putnam defined software state variables as follows: state of technology Cn or Ck; ap-

plied effort K; development time td; and independent variable time t.  “The software eq-

uation relates the product to the state variables: … Ss = CkK
1/3

td
4/3

.  The tradeoff law K = 

C/td
4
 demonstrates the cost of trading development time for people.” [Putnam 1980]  In-
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dividual and team efforts vary according to the number of workers and the ability of the 

team to partition the workload. 

 

Pair Programming has become a best practice along with Mike Fagan‟s code inspections 

[Nidiffer, 2006].  “Since software construction is inherently a systems effort – an exercise 

in complex interrelationships – communication effort is great, and it quickly dominates 

the decrease in individual task time brought about by partitioning.  Adding more men 

then lengthens, not shortens, the schedule.” [Brooks 1995]  For group intercommunica-

tion channels, with n = number of communicating people, c = the number of lines of 

communication required, can be calculated by the formula, c = . [Brooks 1995] 

 

Large teams have a “very substantial impact on project productivity, thereby confirming 

that compressing cycle time…comes at a substantial additional cost.” [Briand, El Emam 

and Wieczorek 1999]  This additional cost is likely due to the increase in group‟s com-

munications, the transmission of clear direction and instructions, and the understanding 

of the technical and organizational processes needed to perform the intellectual work to 

produce the software.  In tandem with the increased group interaction channels, larger 

teams appear to create more defects, resulting in substantial rework to fix them. [Armel 

2006] 
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TruePlanning, from PRICE Systems, bounds staff size, as a user input, from the mini-

mum expected to the maximum.  SLIM, from QSM Incorporated, requests peak staff as 

an input.  The staff‟s experience and continuity, rather than the expected number of staff, 

are input variables in COCOMO II, Sage, and SEER-SEM.  Staffing profiles are outputs, 

with corresponding peak staffs, for the following software cost models: SLIM, TruePlan-

ning, Sage, KnowledgePLAN, and SEER-SEM. 

 

COTS 

Like any shared resource, using COTS requires planning and coordination to work well.  

COTS products target a commercial market segment, and within that segment, offer op-

tions.  That COTS components can fulfill a program‟s purpose is a coincidence. [Albert 

and Brownsword 2002]  “COTS components introduce „hard points‟ into the system ar-

chitecture before the system has been fully optimized and matured, resulting in the need 

for non-COTS components to conform to COTS established interfaces.” [Sage 2005]  

COTS components manifest vendor architecture design and paradigm assumptions as 

well as end-user process assumptions. [Albert and Brownsword 2002]  The following 

terms describe COTS: white box, grey box, and black box software.  A white box is 

transparent as source code is visible and changeable.  Open Source Software (OSS) is 

white box.  A grey box has the capability to interface with another component via its own 

extension language or application programming interface (API). [Sage 2005]  A black 

box is opaque as source code is neither visible nor changeable.   A black box is “where 

only a binary executable form of the component is available and there is no extension 
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language or API.” [Sage 2005]  Proposed variables for judging matches between software 

architecture and component integration opportunities are: (1) packaging, (2) control, (3) 

information flow, (4) synchronization, and (5) binding. [Yakimovich, Bieman and Basili 

1999]  „Packaging‟ refers to the use of independent programs, overlays, dynamic link li-

braries, or class libraries.  „Control‟ refers to the type of automatic control mechanism: 

allowing simultaneous multiple processes, centralizing control, or decentralizing control.  

„Information flow‟ refers back „control‟ as processes or data may trigger the use of spe-

cific control mechanisms.  „Synchronization‟ refers to concurrency: processes are either 

asynchronous or synchronous.  „Binding‟ can be static or dynamic. [Yakimovich, Bieman 

and Basili 1999] 

 

 “Our research indicates that the number of unique interfaces and the number of different 

component systems are the two best factors for determining the size of the SOS [System 

of Systems] effort.” [Minkiewicz 2006]  In the planning for COCOSIMO, which stands 

for the Cost of the System of Systems Model, proposed independent input variables relat-

ing to the cost of COTS are the number of unique component systems, the number of in-

terface protocols for the system to track and adhere to, and the number of independent 

component system organizations. [Lane 2007]  COCOTS uses the number of different 

classes of COTS products being tailored as an input variable multiplied by the mean tai-

loring effort for all the classes of COTS products along with the tailoring complexity qua-

lifier to compute the total COTS product tailoring effort. [Abts 2004] 
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Earned Value Management System (EVMS) 

 

The Earned Value Management System (EVMS) has lent itself to software project man-

agement in DoD. [Lipke 2002]  EVMS is an integrated management tracking system of 

the actual work scope against planned cost and schedule using three standardized metrics: 

Actual Cost of Work Performed (ACWP), Budgeted Cost of Work Performed (BCWP), 

and Budgeted Cost of Work Scheduled (BCWS).  The actual work scope uses a Work 

Breakdown Structure (WBS) for contractual work planning and control, where the con-

tractor can adjust the program‟s WBS into a contract-appropriate WBS called the Con-

tract WBS (CWBS), to crosswalk requirements from successively higher or lower WBS 

or CWBS levels to higher or lower level design or reporting documents. 

[http://guidebook.dcma.mil/79/evhelp/wbs.htm 2010] 

 

A Cost Performance Index (CPI) is   , the dollar value of work performed divided by 

the work billed for a given time period.  If the number is less than one, the project is over 

budget by the percentage: .  The percent spent is  where BAC stands for 

Budget at Completion representing the total amount negotiated for the contracted indi-

vidual delivery order.  A Schedule Performance Index (SPI) is  , the dollar value of 

work performed divided by the work scheduled for a given time period.  If this is less 

than one, the project is behind schedule.  If the fractional computation came to 0.80, the 
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project would be at 80% of the planned schedule or 20% behind.  In this dissertation, I 

use SPI and CPI, to represent cost and schedule performance in similar measurement 

units. 

 

Percent complete is   which represents the dollar value of the work performed di-

vided by the total budgeted amount.  The Cost Variance (CV) equals  so 

a negative CV means more money went towards the effort than was planned. [DCMA 

2006]  The Schedule Variance (SV) equals   so a negative SV means 

less work accomplished than planned, but it does not necessarily follow that the project is 

behind. [DCMA 2006]  A zero SV can mean the project is waiting to start or the project 

proceeded to the plan. 

 

 

Software Quality Metrics 

 

Quality metrics for software development focus on three areas: the process, the people, 

and the product. [Reifer 2002]  The most common process model for software in DoD is 

CMMI, though there are others, such as ISO-9000, a management quality standard in the 

commercial marketplace.  In software cost estimating, the proxy for personnel quality is 

people‟s experience levels; people with higher levels of experience follow higher quality 

processes and produce higher quality software.  Product quality is an output in software 

cost estimating models such as SLIM, KnowledgePLAN, and TruePlanning. 
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Quality could be determined by examining development products such as requirements, 

plans, and expenditures-to-date.  These could be documented requirements, requirements 

traceability, code quality, documented test results (number of defects, priority of defect, 

defect density, defect discovery rate, mean time between failures, time to fix defects, re-

work from defects, and escapes [defect fixes ahead of schedule]), quality assurance plans, 

configuration management plans, and resources expended.  Establishing a baseline soft-

ware project or set of projects allows qualitative and quantitative comparisons to the de-

velopment project.  Desired product quality could be an input to the software cost esti-

mate, if such data is collected. 

 

In an empirical study, where four contracts were let, there was a difference in effort ex-

pended, based on the input quality goals specified; where higher quality goals resulted in 

larger effort. [Anda, Benestad and Hove 2005]  Buggy software has been associated with 

larger code sizes as well as larger staff sizes. [Armel 2006]  Large software projects may 

have “requirements errors, design errors, coding errors, user documentation errors, and 

bad fixes...a bad fix is a failed attempt to repair a prior bug that accidently contains a new 

bug.” [Jones 2005] 

 

The Carnegie Mellon University‟s Software Engineering Institute (SEI) produced the 

CMMI to rate a software engineer‟s process maturity level from the lowest score of zero 

to the highest score of five.  To judge the quality of the software development process, a 
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model titled Capability Maturity Model for Software (CMM or SW-CMM) was absorbed 

into CMMI.  Ratings for CMM expired as of January 1, 2008. 

[http://www.sei.cmu.edu/cmmi/faq/comp-faq.html 2009]  CMMI provides a process 

model for improvement of software and systems engineering development practices.  For 

a CMMI rating, organizations begin with the appraisal reference model, follow a formal 

and collaborative appraisal process, such as the Standard CMMI Appraisal Method for 

Process Improvement (SCAMPI), involve management, focus on business objectives, 

maintain confidentiality and non-attribution, and produce an appraisal the organization 

can act upon to continue to improve in the area certified: Development, Service, or Ac-

quisition. [http://www.sei.cmu.edu/cmmi/adoption/pdf/cmmi-overview07.pdf 2009]  

There are two structurally different CMMI process models: staged and continuous.  For 

the most part, information technology organizations follow the staged CMMI process. 

[Yahya, Ahmad and Lee 2008] 

 

DoD contracts with software developers and integrators at all CMMI maturity levels; and 

“many DoD acquisition programs are including requests for CMMI maturity levels in re-

quests for proposals (RFPs) in spite of the fact that DoD has not promulgated policy re-

quiring adherence to a CMMI maturity rating.” [Schaeffer, Osiecki, Richter and Baldwin 

2007]  
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Other Software Cost Estimating Inputs 

 

The other inputs for software cost estimating are complexity, productivity, development 

method, and life cycle phases.  Complexity is an input in many software cost estimation 

models and has been the subject of much research.  Complexity may have a direct rela-

tionship with size, where greater complexity corresponds to greater code size. [Booch 

1998; Zhao, Tan and Zhang 2003; Armel 2006]  Productivity appears to have an inverse 

relationship to quality, where higher productivity may result in lower software product 

quality. [Davis 1995; Anda, Benestad and Hove 2005]  Development methodologies can 

pair with life cycle phasing methods.  Often-used software development methods are wa-

terfall, spiral, evolutionary, and incremental; often-used life cycle phases in DoD are re-

search and development (including concept development, planning, designing, coding, 

and testing), production and fielding, and operations and support.  Subsequent sections of 

the dissertation describe these inputs. 

 

 

Complexity 

 

“Because complexity obscures the perception and understanding of information cues, it is 

believed to significantly degrade task performance.” [Banker, Davis and Slaughter 1998]  

The COCOMO II model has an input variable, Product Complexity or CPLX.  This vari-

able is “divided into five areas: control operations, computational operations, device-

dependent operations, data management, and user interface management operations.” 
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[Boehm, Abts, Brown, Chulani, Clark, Horowitz, Madachy, Reifer and Steece 2000]  The 

categorical scale for CPLX is very low, low, nominal, high, very high, and extra high.  

Settings for this variable are subjective in selecting between categories. [Pfleeger, Wu 

and Lewis 2005]  The definition of complexity for software development and mainten-

ance is far from standardized.  Complexity metrics to convert unadjusted function points 

into adjusted function points, however, have remained the same for over twenty-five 

years. [Ahmed, Bouktif, Serhani and Khalil 2008]  In an attempt to clarify complexity, a 

“complexity factor” in software development is system size itself. [Armel 2006]  Joining 

system complexity is algorithmic complexity, service software complexity, and database 

software complexity. [Bennatan 2000]  “A great deal more research is needed on all 

forms of software complexity, and particularly on complexity associated with algorithms, 

visualization, software requirements, specifications, test cases, and data complexity.” 

[Jones 2007]  High levels of complexity exist in large, complex, software-intensive DoD 

programs. 

 

In 2005, at the IEEE International Symposium of Empirical Software Engineering, Bente 

Anda, Hans Christian Benestad and Siw Elisabeth Hove reported an interesting multiple-

case study on software effort estimation. [Anda, Benestad and Hove 2005]  When mul-

tiple companies had the same functional specifications, used the same programming lan-

guages, had similarly talented workforces, but had different non-functional specifications 

and used different development processes, actual effort variation was large.  “The differ-

ences in the development process entailed different assumptions on the non-functional 
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requirements on the system with respect to the quality of the code…a heavier develop-

ment process with an increased emphasis on the quality of the code led to a large increase 

in actual effort…supports previous results on the effect of complexity factors in similar 

estimation methods.” [Lokan and Abran 1999] 

 

Productivity 

 

Productivity computations are implicit or explicit, depending on the method used.  Aver-

age productivity calculations can misinform software estimates.  “The best-producing 

people can be 20 or more times better than the low-end group.  A factor of more than 

100:1 may separate programmers at the ends of the spectrum.” [Gruschke 2005]  Produc-

tivity rates can decline from approximately 300 lines of code per month to 85, as the 

project progresses. [Book 2001]  The notion of “average-worker-productivity” discounts 

the wide variance between a competent and incompetent programmer, logged at 28-to-1 

for „Algebra‟ program debugging hours and 26-to-1 for „Maze‟ program debugging 

hours.  [Sackman, Erikson and Grant 1968]  Size and number of components has an im-

pact on project productivity; blocks of existent code and multiple COTS packages slow 

productivity as the team gains knowledge to build out an integrated product. [Abts 2004; 

Salter 2001]  Productivity is difficult to measure.  Productivity metrics such as lines of 

code per month rely upon the interpretation of the numerator and the denominator.  A 

programmer can be very competent in one setting, where he or she knows the program-

ming language, the domain of the application, the required functionality, the computing 

environment, and the software components to integrate, and less competent in another.  
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Assuming programmer continuity, competence through learning behaviors may accom-

pany the next incremental change in languages, domains, requirements, environments, or 

components. 

 

Development Methods and Life Cycle Phases 

 

The waterfall method is a formal development method, using measured, well-documented 

processes.  The waterfall process “forces the problem to fit the development cycle, rather 

than the other way around.” [Miller, Paradis, and Whalen 1991]  Different terms describe 

different development methods.  To support documentation-intensive processes, the hea-

vyweight waterfall process surpasses other methods. [Ikoma, Ooshima, Tanida, Oba, and 

Sakai 2009]  For staged contracts, where software deliveries tie into major milestones, a 

staged approach bests the traditional waterfall approach. [Lott 1997]  The spiral method 

is iterative allowing for incorporation of feedback upon artifact delivery based on partial 

specifications.  According to the 2003 Bob Stump Authorization Act, the Secretary of 

Defense can conduct major defense acquisition programs using the spiral method.  The 

2008 version of DoD 5000.02 states programs should practice evolutionary acquisition.  

This is an offshoot of an approach using evolutionary acquisition with spiral development 

(EA/SD) adopted by DoD after 2003. [Pagliano and O‟Rourke 2004]  Evolutionary de-

velopment blends incremental deliveries into the whole software effort.  Extreme Pro-

gramming, Agile methods, Rapid Application Development (RAD), and incremental me-

thods are other methods with their own vocabulary, instructions, and followers.  While 

different development methods are well documented, “almost any non-trivial project or 
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organization must combine technique, common sense, and domain experience.” [Royce 

2005]  Detail on development methods and on life cycle phases is in Appendix C. 

 

 

 

 

Software Cost Estimating Accuracy 

 

To determine a cost estimating relationship‟s accuracy: predicted values should be gener-

ated and compared to actual values; a validation technique should be chosen, defended, 

and used; and information should be provided on the data set. [Mair and Shepperd 2004]  

The types and amounts of input data dictate the types of possible cost analyses.  Measur-

ing the presence or absence of a characteristic provides some information about that cha-

racteristic.  Measuring the magnitude of the characteristic provides more information. 

 

“The accuracy of COCOMO II allows its users to estimate within 30 percent of actuals, 

74 percent of the time.  This level of unpredictability in the outcome of a software devel-

opment process should be truly frightening to any software project investor.” [Reifer 

2002]  Early software cost estimates within plus or minus 30 percent of the actual cost are 

successful per Bernard Londeix in Cost Estimating for Software Development, published 

by the Addison-Wesley Publishing Company in New York in 1987. [Mertes 1996]  In 

1981, Robert Thibodeau published a General Research Corporation paper titled “An 

Evaluation of Software Cost Estimating Models” reporting model calibration to an organ-



 

49 

 

ization‟s historical data can improve software cost model accuracy by a factor of five 

[Mertes 1996]. 

 

To figure out how accurate you are, you need metrics.  “Stevens (e.g., 1968) developed 

the concept of scales of measurement.” [Neale and Liebert 1986]  Scales are nominal, 

ordinal, binary, interval, and ratio.  Nominal values can be equal or unequal.  Preferences 

are nominal values:  FORTRAN can be preferred to Pascal and logical sizing can be pre-

ferred to physical.  Ordinal values can be equal, unequal, less than, greater than, and 

ranked from lowest to highest.  Binary values equal 1 or 0.  Interval values have the same 

properties as ordinal and distance from one interval to the next is the same for all values 

so addition and subtraction are possible.  Ratio values permit all mathematical operations.  

A ratio scale has a true zero point, meaning a complete absence of the measured characte-

ristic.  While scale is important, “it will usually be necessary or desirable to describe the 

set of observations numerically.” [Neale and Liebert 1986]  Categorical input data causes 

problems in the creation of regression models, as ordinary least squares performs best 

when the variables‟ values are numeric and of similar magnitudes. [Angelis, Stamelos 

and Morisio 2001]  The authors suggest binary (on-off) variables or subjective quantifica-

tion of categorical values for building models for datasets with few numeric fields.  They 

produced “only one possible statistical cost model using a subset of the [International 

Software Benchmarking Standards Group‟s project repository, release 6] database.” [An-

gelis, Stamelos and Morisio 2001]  A common problem in data sets is input variables 
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skew toward few fixed values, rather than spreading out across the range. [Angelis, Sta-

melos and Morisio 2001] 

 

In software cost estimating, Cost Estimating Relationships (CERs) generally follow the 

form of „Yj = f(xj, β)εj for j = 1,…n‟ where: 

 n is the sample size 

Yj is the observed cost of the jth data point 

f(xj, β)εj is the result of the experimental CER 

β is the vector of coefficients estimated by the CER 

xj is the vector of cost driver input variables, and 

εj is a multiplicative error term with a mean of 1 and variance of σ
2
 [SAF 2007] 

To transform εj into a normal distribution, with mean of 0 and variance of σ
2
, use the 

formula:  j .  “Regardless of what method is used to generate the CER, it is 

very important that the user of the CER is aware of the CER result meaning and how the 

error should be modeled.” [SAF 2007] 

 

One recommended way to improve accuracy of software cost models is to calibrate the 

model to the organization‟s historical data, assuming the organization has it.  From past 

research in published theses from the Air Force Institute of Technology, calibration has 
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mixed success.  "Even after the software cost models are calibrated to DoD databases, 

most have been shown to be accurate to within only 25 percent of actual cost or schedule 

about half the time…Without a holdout sample, the predictive accuracy of the model is 

probably overstated.  Since all new projects are outside of the historical database(s), vali-

dation is much more meaningful than the more common practice of analyzing within-

database performance." [Ferens and Christensen 2000]  A table describing accuracy me-

trics found in the literature is in Appendix G.  The table below highlights the accuracy 

metrics in this dissertation. 

 

Table 2-5: Industry-Standard Accuracy Metrics [Jalali 2008; Conte, Dunsmore and Shen 

1986] 

Measure Description Meaning 

Relative 

Error (RE) 

On the numerator, actual value minus 

predicted value, all divided by actual 

value (for each predicted value) 

RE can be positive or negative.  If RE is nega-

tive, it can go to negative infinity.  If RE is 

positive, it cannot exceed a value of one.  If 

RE is zero, the predicted value equals the ac-

tual value. 

Magnitude 

of the 

Relative 

Error 

(MRE) 

The absolute value of RE 

MRE can only be positive.  The lower the 

MRE, the better the prediction; higher MRE 

means a worse prediction.  If MRE is zero, the 

prediction equals the actual value. 

Mean 

Magnitude 

of the 

Relative 

Error 

(MMRE) 

The sum of all the individual MRE 

values divided by n, the number of 

values calculated 

Generally, smaller MMRE positive values 

represent better overall agreement in predicted 

and actual values.  However, small MMRE 

values could mask one or more large deltas.  

An industry standard is MMRE ≤ 0.25 and is 

"acceptable for effort prediction" [Conte, 

Dunsmore and Shen 1986] 
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Measure Description Meaning 

Prediction 

at Level L 

or l 

(PRED(L) 

or 

PRED(l)) 

In a set of n projects, a value, k, is the 

number of projects whose MRE ≤ l, so  

PRED(l) equals k divided by n; l is 

number less than 1.0 whereas L is a 

percentage 

For PRED(l) = k/n, the k/n ratio of predicted 

values are within l percentage of actual val-

ues.  The accepted industry standard is 

PRED(0.25) ≥ 0.75 [Conte, Dunsmore and 

Shen 1986] 

 

 

S. D. Conte, H. E. Dunsmore, and V. Y. Shen suggest PRED and MMRE thresholds for 

prediction accuracy.  [Mertes 1996; Morgan 1997; Wieczorek and Ruhe 2002]  Other 

measures do not enjoy this citing repetition in the literature.  Researchers referencing the 

COCOMO model suite have reported MMRE and PRED levels from 1981 through 2009. 

[Boehm 1981; Kemerer 1987; Smith 1998; Reifer 2002; Abts 2004; Valerdi 2005; Shen 

2008; Fortune 2009] 

 

Risk and Uncertainty 

 

Treating risk and uncertainty explicitly is a standard practice in software cost estimation.  

Risk is the chance of an outcome being harmful or damaging; uncertainty is the chance of 

any possible outcome defined probabilistically.  This quote from Cornelius Keating is 

worth repeating: “Risk is the unwanted subset of a set of uncertain outcomes”. 

[http://dissertations.ub.rug.nl/FILES/faculties/rw/2009/x.c.mandri.perrot/06c6.pdf 2010]  

The risk of over- or under-estimating software effort or duration can harm the project, 
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perhaps irreparably, causing resources to be misdirected.  The uncertainty in the estimate 

should reflect all the inputs‟ uncertainties. 

 

The currency and applicability of historical data varies by application and by time.  Data 

collection mores change, interpretations change, and even definitions change.  Static and 

dynamic factors plague comparability of historical data to contemporary programs.  Dis-

covering completed, comparable programs to use as the basis of cost analytic methods is 

complicated by the situation of “the analyst is all too often in the world of extremely 

small samples.” [Fisher 1970]  Even with large samples, there can be problems.  “We can 

assemble big pieces of information and little pieces, but we can never get all the pieces 

together.  We never know for sure how good our sample is.  That uncertainty is what 

makes arriving at judgments so difficult and acting on them so risky.” [Bernstein 1996]  

Further discussion on risk and uncertainty is in Appendix D.   

 

By pairing initially estimated parameters with final, actually performed effort hours at the 

two highest CMMI levels, the risk of waiting until future projects are finished to gather 

actual parameter to relate to actual effort disappears.  Further, the risk of applying a 

growth factor to the initially estimated software size to estimate final size and then use a 

software cost estimating relationship is avoided because this presumed growth (or shrin-

kage as the case may be) is embedded in the relationship between the initially estimated 

parameters and the final, reported effort.    
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DoD Major Acquisition Programs 

 

 
Figure 4: Literature Map (Level 2 - Major Acquisition Programs) 

 

 

 

Large, software-intensive programs start out or become Major Defense Acquisition Pro-

grams (MDAP), Major Automated Information Systems (MAIS), or both.  MDAP and 

MAIS acquisition plans and program activities meet or exceed dollar thresholds set in 

Title 10, United States Code.  MDAP is depicted as Acquisition Category (ACAT) I, 

whereas MAIS is depicted as ACAT  IA.  The designations specify the Milestone Deci-

sion Authority (MDA).  ACAT ID and ACAT IAM mean DoD is the MDA; ACAT IC 
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and ACAT IAC mean the Component is the MDA.  A component can be a separate 

Armed Service (e.g., the Air Force, Navy, or Army), or a DoD agency (e.g., Defense Lo-

gistics Agency (DLA) or Defense Information Systems Agency (DISA)).  The following 

table provides more detail. 

 

Table 2-6:  Description and Decision Authority for Acquisition Category (ACAT) I Pro-

grams [DoDI 5000.02, Enclosure 3, Table 1 2008] 

 

For the most part, MDAP programs result in a tangible product whereas MAIS programs 

result in an intangible service. [Jones 2009]  These different programs are usually inter-

dependent. 

 

Acquisition 

Category 
Reason for ACAT Designation Decision Authority 

ACAT I  MDAP (section 2430 of Title 10, United States Code) 

o Dollar value: estimated by the USD(AT&L) to require an eventual total 

expenditure for research, development, test and evaluation (RDT&E) of more than 

$365 million in fiscal year (FY) 2000 constant dollars or, for procurement, of 

more than $2.190 billion in FY 2000 constant dollars 

o MDA designation 

 MDA designation as special interest 

ACAT ID: 

USD(AT&L) 

 

ACAT IC: Head of the 

DoD Component or, if 

delegated, the CAE (not 

further delegable) 

ACAT IA1, 2  MAIS (Chapter 144A of Title 10, United States Code):  A DoD acquisition 

program for an Automated Information System3 (either as a product or a service) 

that is either: 

o Designated by the MDA as a MAIS; or 

o Estimated to exceed: 

 $32 million in FY 2000 constant dollars for all expenditures, for all in-

crements, regardless of the appropriation or fund source, directly related to the 

AIS definition, design, development, and deployment, and incurred in any single 

fiscal year; or 

 $126 million in FY 2000 constant dollars for all expenditures, for all 

increments, regardless of the appropriation or  fund source, directly related to the 

AIS definition, design, development, and deployment, and incurred from the be-

ginning of the Materiel Solution Analysis Phase through deployment at all sites; 

or 

 $378 million in FY 2000 constant dollars for all expenditures, for all 

increments, regardless of the appropriation or fund source, directly related to the 

AIS definition, design, development, deployment, operations and maintenance, 

and incurred from the beginning of the Materiel Solution Analysis Phase through 

sustainment for the estimated useful life of the system. 

 MDA designation as special interest 

ACAT IAM:  

USD(AT&L) or desig-

nee 

 

ACAT IAC: Head of the 

DoD Component or, if 

delegated, the CAE (not 

further delegable) 
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DoDI 5000.04-M-1, Cost and Software Data Reporting Policy, dated April 18, 2007, lays 

out reporting requirements for software-intensive major DoD programs.  Cost reports 

track contractor activities.  Software reports collect data on the software activities, com-

ponents, peak staff, and processes.  Although Congress authorized spiral development for 

MDAP research and development, via Section 803 of Public Law 107-314, in 2003; in 

December 2008, the newly published instruction, DoDI 5000.02, encouraged evolutio-

nary development.  A significant difference between spiral and evolutionary development 

is the scheduled delivery, under evolutionary development, of fully functional software.  

Under spiral development, iterative conceptual prototypes aid communications and un-

derstandings between developers and users as the system progresses through design to 

coding and testing.  In both development methods, a series of deliveries make up the 

whole; the difference is the intention in evolutionary development of independent, stand-

alone deliveries vice interdependent, iterative deliveries in spiral development. 

 

For MDAP, MAIS, pre-MDAP, and pre-MAIS programs or for ACAT I, ACATI IA, pre-

ACAT I, and pre-ACAT IA programs, the Contractor Cost Data Report (CCDR) and the 

Software Resources Data Report (SRDR) fall under the umbrella of Cost and Software 

Data Reporting (CSDR).  The CCDR dollar threshold is fifty million dollars; the SRDR 

dollar threshold is twenty million dollars.  These thresholds are in then-year or current-

year dollars.  The table outlines the regulatory contract reporting requirements, as well as 

the timing of the submissions of these reports, in the DoD manual, DoD 5000.04-M-1.   
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Table 2-7: DoD Regulatory Contract Reporting Requirements [DoD 5000.04-M-1 2007] 

REPORT REQUIRED WHEN REQUIRED 

Contractor Cost Data Report (CCDR)  All major contracts1 and subcontracts, regardless of contract type, for 

ACAT I and IA programs and pre-MDAP and pre-MAIS programs subse-

quent to Milestone A approval, valued at more than $502 million (then-year 

dollars) 

 Not required for contracts priced below $20 million (then-year dollars) 

 The CCDR requirement on high-risk or high-technical-interest contracts 

priced between $20 and $50 million is left to the discretion of the DoD PM 

with approval by the Chair, CAIG 

 Not required under the following conditions provided the DoD Program 

Manager (PM) requests and obtains approval for a reporting waiver from 

the Chair, CAIG: procurement of commercial systems or for non-

commercial systems bought under competitively awarded, firm fixed-price 

contracts, as long as competitive conditions continue to exist. 

Software Resources Data Report (SRDR)  All major contracts and subcontracts, regardless of contract type, for con-

tractors developing/producing software elements within ACAT I and IA 

programs and pre-MDAP and pre-MAIS programs subsequent to Milestone 

A approval for any software development element with a projected soft-

ware effort greater than $20M (then-year dollars). 

 The SRDR requirement on high-risk or high-technical-interest contracts 

priced below $20 million is left to the discretion of the DoD PM with ap-

proval by the Chair, CAIG. 

Notes: 

1.  For CSDR purposes, the term “contract” (or “subcontract”) may refer to the entire standalone contract, to a specific 

task/delivery order, to a series of task/delivery orders, to a contract line item number, or to a series of line item numbers within a 

contract.  The intent is to capture data on contractual efforts necessary for cost estimating purposes irrespective of the particular 

contract vehicle used. 

2.  For CSDR purposes, contract value shall represent the estimated price at contract completion (i.e., initial contract award plus 

all expected authorized contract changes) and be based on the assumption that all contract options shall be exercised. 

 

All programs meeting these thresholds require a Contractor Cost and Data Report 

(CCDR) for new, deleted, and changed contracts and subcontracts.  A Contract WBS 

(CWBS) should follow guidelines in MIL-HDBK 881A, with a mapping or translation to 

the Program Office WBS.  Linked to the CWBS, contractors submit a Software Re-

sources Data Report (SRDR), with a companion data dictionary, at the beginning and the 

end of each contracted activity or delivery order.  In the SRDR, contractors list the COTS 
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products used during the course of their activities.  In the data dictionary, contractors de-

scribe how they interpreted the SRDR reporting requirements and how they defined their 

terms. 

 

DoD online data sources available for cost analysts are the Defense Acquisition Man-

agement Information Retrieval (DAMIR) and Defense Acquisition Automated Cost In-

formation System (DACIMS) systems.  The DAMIR site, at 

http://www.acq.osd.mil/damir/, is sponsored by OUSD/AT&L and Acquisition Resources 

and Analysis (ARA).  DAMIR holds the following:  Selected Acquisition Reports 

(SARs), MAIS Acquisition Reports (MARs), Defense Acquisition Executive Summary 

(DAES) reports, MAIS Quarterly Reports (MQRs), Acquisition Program Baselines 

(APBs), and Earned Value Management System (EVMS) data.  As program baselines 

change, new ABPs are added to DAMIR.  The DACIMS site, at 

https://ders.dcarc.pae.osd.mil/DACIMS/Pages/Index.asp, is sponsored by the Defense 

Cost and Resource Center (DCARC), formerly known as the Contractor Cost Data Re-

port (CCDR) Project Office (CCDR-PO).  DCARC belongs to the Office of the Secretary 

of Defense (OSD) Cost Assessment and Program Evaluation (CAPE) organization.  DA-

CIMS contains CCDR reports, SRDR reports, and companion documentation such as 

Contractor Work Breakdown Structure (CWBS) descriptions and SRDR data dictiona-

ries.  SRDR submissions follow instructions in the Data Item Description (DID) from DI-

MGMT-81739 for the Initial Developer Report and in the DID from DI-MGMT-81740 

http://www.acq.osd.mil/damir/
https://ders.dcarc.pae.osd.mil/DACIMS/Pages/Index.asp
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for the Final Developer Report.  

[http://dcarc.pae.osd.mil/Policy/CSDR/csdrReporting.aspx 2009] 

 

Status Reporting 

 

DoD guidelines for collecting EVMS data provided the foundation for American Nation-

al Standards Institute/Electronic Industries Alliance Standard ANSI/EIA-748.  Contractor 

EVMS reports link funds allocated and expended with work performed, based on the 

CWBS.  As the contractor progresses, the government gets periodic reports, explicitly 

relating BCWP, ACWP, BCWS, and Estimate at Completion (EAC).  With these metrics, 

the contractor and the government can compute the cost and schedule variance along with 

other performance indices using standard EVMS formulas. [DCMA 2006] 

  

The two main WBS structures relevant to DoD cost analysis are the program‟s WBS and 

the CWBS.  MIL-STD-881-A as of July 30, 2005, provides guidance for program WBS.  

In the Air Force Cost Analysis Agency, WBS sub-levels correspond to the three main 

appropriation categories: Research and Development (R&D), Procurement (PROC), and 

Operations and Support (O&S).  Level 1 for the entire program scope; Level 2 for major 

subordinate elements such as R&D (including system engineering), PROC, and O&S; 

and Level 3 for elements below Level 2 such as software.  “Within the scope of the WBS, 

the contractor has the flexibility to use the work breakdown elements to support on-going 

management activities.  These may include EVM, cost estimating, and managing contract 

funds.” [MIL-HDBK-881A 2005]  The WBS organizes cost reporting in the Contract 

http://dcarc.pae.osd.mil/Policy/CSDR/csdrReporting.aspx
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Funds Status Report (CFSR), the Contractor Cost Data Report (CCDR), and the Contract 

Performance Report (CPR).  The WBS and CWBS establish interrelationships between 

funding requirements, cost reports, and EVM data. 

 

Figure 5: WBS support of CFSR, CPR, and CCDR [Cloos 2006] 

 

 

 

Software Resources Data Report (SRDR) records, a component of the CSDR along with 

Contractor Cost Data Report (CCDR) records, record programming languages used in 

software development with Off-the-Shelf (OTS), including Commercial-Off-The-Shelf 

(COTS) and Government-Off-The-Shelf (GOTS), or Government-Furnished-Software 

(GFS).  Designated elements are available in these reports.  A table of the data elements 

to report is in Appendix F. 
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There have been attempts to normalize the SRDR data for records denoting logical SLOC 

counts [Jensen and Dupaix 2008], to generalize productivity factors and CER equations 

in SRDR data by platforms or contractors [Popp 2008], and to evaluate CCDR data for 

cost and schedule overruns [Selby, Hafen, Mink, Nicol, Flowe, Lile and Gold 2007].  

SRDRs are based on historical program execution and provide various means to partition 

the data sets for analysis.  One way to partition is by application type.  Application types 

detailed in the SRDR reporting instructions come to a total of seventeen, with two to se-

venteen sub-types, adding up to a grand total of 119.  In other literature, application types 

vary from two (recoded as low or high) up to thirty-two, if four operating environments 

combine with eight application domains. [Angelis, Stamelos and Morisio 2001;Gaylek, 

Long, Bell, Hsu and Larso 2004; Long and Lucas 1996]  Although MIL-HDBK-881A 

allows for eight common elements for hardware and software combinations of weapon 

systems, SRDR allows for seventeen.  The eight MIL-HDBK-881A elements are: (a) 

Aircraft System; (b) Electronic / Automated Software System; (c) Missile System; (d) 

Ordnance System; (e) Sea System; (f) Space System; (g) Surface Vehicle system; and (h) 

Unmanned Air Vehicle.  Most SRDR entries are under (b) Electronic / Automated Soft-

ware System.  The MIL-HDBK-881A and SRDR instructions underscore the lack of 

standardized application types in software reporting. 
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“The lack of definitions for application type creates an open interpretation by both the 

data submitter and the user”. [Jensen and Dupaix 2008]  This lack of definition and stan-

dardization affects the analysis of software performance and of software estimation.  

“Software development practitioners do not have a chance of operating with socially re-

fined and unified size measures.” [Gencel and Demirors 2008]  Size metrics, complexity 

metrics, productivity metrics, and progress metrics, aside from the internationally stan-

dardized EVMS metrics, are up for interpretation by the data submitter and the user.  Al-

though the SRDR submissions include data dictionaries, the quality and usefulness of 

these dictionaries rely on the producer‟s skill and the user‟s interpretation. 

 

In addition to the lack of commonality in application types, it is common for fields to be 

missing data.  Missing data can be treated by imputation or by removal of the record.  

Techniques such as listwise deletion [removing an entire column of data having missing 

values], mean imputation [filling in missing values with the mean for that variable], and 

hot-deck imputation [filling in missing values from another observation using closest dis-

tance or Mean Absolute Deviation] are three common imputation techniques. [Strike, El 

Eman and Madhavji 2001]   Methods should match the data.  Recently, the following im-

putation techniques have been explored: decision tree single imputation, k-Nearest 

neighbor single imputation, mean or mode single imputation, expectation-maximization 

single imputation, expectation-maximization multiple imputation, 'fractioning' cases, and 

surrogate variable splitting. [Twala, Cartwright and Shepperd 2005]  In the Software Da-
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tabase established in 1983, out of approximately 2600 data points, only 318 data points 

reported effort and schedule. [Long and Lucas 1996] 

 

For the SRDR data from 2003 to 2008, there were five programs at CMMI Level 4 and 

eight at CMMI Level 5.  All the CMMI Level 4 programs reported EVM metrics.  There 

were two contractors at CMMI Level 5 with missing EVM metrics, omitted from this da-

ta analysis, per my dissertation committee‟s direction. 

 

Data Profile 

 

Of the thirty-four records representing the data set of five programs reporting CMMI 

Level 4 in the final SRDR, twenty-five belonged to a single program.  Of the thirty 

records representing the data set of eight programs reporting CMMI Level 5 in the final 

SRDR, eight belonged to a single program. 

 

CMMI Level 4 development processes were reported as follows: twenty-five, waterfall; 

five, spiral; two, Rapid Application Development (RAD); and one, Incremental.  CMMI 

Level 5 development processes were more varied: ten reported using the waterfall devel-

opment process; nine, iterative; six, spiral; and the remainder were Modified Rational 

Unified Process (RUP), Incremental, and Evolutionary. 

 

CMMI Level 4 records had the same or similar primary programming languages: C, 

C/C++, C++, and Ansi C.  CMMI Level 5 records had varied primary programming lan-
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guages.  Contractors at CMMI Level 5 used C, C++, C#, Ada, Ada-95, and Java as their 

primary language.  Use of other languages in addition to a primary language was com-

mon for both CMMI level data sets.  
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3. Research Methodology 

 

To determine whether the recently collected DoD data fulfills its intended purpose to im-

prove software cost estimating, my research followed a step-by-step process.  Data analy-

sis, including statistical visualization of the relationships between initial estimated soft-

ware parameters and final effort hours, focused on highly correlated initial parameters to 

final effort hours to derive DoD cost estimating relationships (CERs) using ex post facto 

analysis of secondary data sets.  Software task records, for the two highest maturity rated 

contractors at CMMI Levels 4 and 5, along with the Earned Value program records con-

tain potential independent variables with final software effort hours as the dependent va-

riable.  After CERs were derived using ordinary least squares (OLS) regression, statistical 

visualization of the residuals ascertained their distribution.  For each CER, I computed 

accuracy metrics considered „standard‟ in SCE. 

 

The method of linear and log-linear regression is “a mathematical optimization technique 

used to find the „best linear fit‟ to a set of data” where either the “error is assumed to be a 

fixed, additive value”, normally distributed about the CER linear fit or “a multiplicative 

error term” for „Yj = f(xj, β)εj for j = 1,…n‟. [SAF 2007] 
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Statistical tests check the validity of the assumptions.  These assumptions are the sample 

represents the population, the predicted dependent variables have normal distributions 

with identical standard deviations about the regression line, and the predicted dependent 

variables are independent of each other. [Sanders 1990]  In multivariate regression, for 

each independent variable, the t-test can check whether that variable adds value.  The null 

hypothesis is the variable does not add value or the slope of the variable‟s coefficient is 

zero.  If the slope is zero, the variable may be redundant.  While the t-test measures the 

effect of single independent variables, the partial F-test measures the effect of sets of in-

dependent variables, and the F-test measures all independent variables (i.e., with the null 

hypothesis that all the slopes equal zero).  Since residuals are deviations from the fitted 

values, the process of identifying data structures, generating a distribution „fit‟, and ex-

amining residuals is statistical analysis.  The residual-fit spread plot compares the “spread 

of the fitted value with the spread of the residuals…Data that are skewed toward large 

values occur commonly”. [Cleveland 1993]  Monotone spread means spread increases 

with location or higher values have more spread. 

 

Skewed values and monotone spread complicate data analysis and are typically found in 

software cost data, including the DoD data.  After transforming a data set to handle out-

liers, formal statistical rules allow the user to measure the fit on the both the transformed 

and original data scales. [Lurie 2006]  If a prediction uses a transformed scale, statistical 

procedures can handle retransformation bias. [Lurie 2006]  When the CER has a multip-

licative form, such as „a*Var1
b
*Var2

c
*…*ε‟, transforming it using logarithms makes it 
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linear, and the unit space error term follows a lognormal distribution.  “Log-linear models 

are in a very common and distinct class of non-linear relationships that are rendered li-

near when transformed into log-space.” [SAF 2007] 

 

I created three distinct and non-overlapping application area subsets to categorize the data 

within each CMMI level: system, support, and user.  Descriptions of these application 

areas follow: 

-  Signal processing, operating system augmentation, missile computers, flight 

control, radar control and identification, and space payload represent system applications. 

- Mission application, mission planning, and test programs represent support ap-

plications. 

- Display and control, simulators, external communications, information man-

agement, network management, and architecture systems represent user-interaction appli-

cations. 

 

By hypothesizing and probing relationships, this ex post facto analysis offers “simu-

late[d] experimental procedures by matching subjects who have with those who have not 

received some „natural manipulation‟ on factors that might have been relevant before the 

time of the study…in the comparison…(matched after the fact, rather than at the outset, 

hence ex post facto)”. [Neale and Liebert 1986]  Three research hypotheses were: 
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 H1: Early prediction of software effort hours is possible using CERs based 

on data available without knowing contractor in advance 

 H2: Splitting out data by application areas and by process maturity level 

improves CER accuracy 

 H3: EVMS metrics as independent variables improve CER accurcy 

 

The following figure summarizes possible relationships in the data sets for effort: 

 

Figure 6: Methodology 
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I analyzed these variables using Pearson and Spearman Rank correlation matrices to de-

termine relationships among the data sets.  I identified potential independent variables 

using correlation.  I generated regression CER equations and checked the returned values.  

If „Adjusted R2‟ was greater than 0.55, I checked whether the addition of EVMS metrics 

improved the CER accuracy and whether the residuals behaved as they should, using sta-

tistical visualization in the OSS tool at http://www.r-project.org/ called The R Project for 

Statistical Computing.  I calculated the Mean Magnitude of Relative Error (MMRE), the 

average of the Magnitude of Relative Error (MRE) for each record, and PRED(25), the 

number of records with MRE ≤ 0.25, along with PRED(30), the number of records with 

MRE ≤ 0.30, for each CER generated. 

  

http://www.r-project.org/
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4. Research Results 

 

Dr. Daniel Carr‟s R scripts from his courses and advice from the George Mason Statistic-

al Consulting Center steered my statistical analyses. [Carr 2007; Sutton 2010]  Of the 

Earned Value metrics investigated, I chose Schedule Performance Index (SPI) and the 

Cost Performance Index (CPI), with values from -1.0 to +1.0 across programs.  Possible 

independent variables were peak staff, estimated hours, software size, software require-

ments, number of COTS programs, and experience level percentage (i.e., percent of staff 

that was highly experienced, nominally experienced, and entry-level). 

 

Software size measures used different scales.  As software counting type, such as physi-

cal, logical, and non-commented source, affects resulting size, the conversion ratios pro-

posed by NASA to derive logical SLOC from physical (and related non-commented) 

SLOC by primary programming and secondary language was used to normalize the initial 

code sizes as much as possible. [http://software.gsfc.nasa.gov/docs/QSM-

class/Day%201-Cost/04a-Size.ppt 2009]  Combining programming languages affects 

software size and resulting effort to create and modify interconnected modules. [Vouk 

1984] 
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CMMI Level 4 had two programs with one language, twenty-nine programs with two 

languages, and three programs with more than two languages; and CMMI Level 5 had 

eleven programs with one language, seventeen with two languages, and two programs 

with more than two languages.  Software size counts from an automatic counter are not 

necessarily stable; multiple runs produce different counts. [Reifer 2009]  COTS package 

code does not count in calculations of software size.  Counted unmodified code should 

only be existent code from prior industry software efforts.  Effective source lines of code 

formulas vary by the percentages assigned to modified and unmodified lines of code.  

The lowest possible software size count assigns zero percent to modified and unmodified 

lines; the largest possible assigns one hundred percent to modified and unmodified. [Gal-

lo, Koza, Holzman, and Hardin 2008]  To bound software size, I used the lowest possible 

software size and the highest possible, called new source lines of code in thousands 

(KNEW) and total source lines of code in thousands (KSLOC). 

 

The code count used in this dissertation was Logical Statements (LS) from Non-

commented source lines of code, Physical, or other.  CMMI Level 5 started with fifteen 

LS, four physical LOC, ten non-commented source LOC, and one effective LOC.  CMMI 

Level 4 started with eight LS and twenty-six physical LOC. Translation to LS used tables 

from http://software.gsfc.nasa.gov/docs/QSM-class/Day%201-Cost/04a-Size.ppt (Table 

2-3) and the 24th International Forum on COCOMO and Systems/Software Cost Model-

ing, in November 2009, at 

http://csse.usc.edu/csse/event/2009/COCOMO/presentations/Workshop%20Summary%2

http://software.gsfc.nasa.gov/docs/QSM-class/Day%201-Cost/04a-Size.ppt
http://csse.usc.edu/csse/event/2009/COCOMO/presentations/Workshop%20Summary%20-%20Metrics%20Unification%20&%20Productivity%20Domains.ppt
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0-%20Metrics%20Unification%20&%20Productivity%20Domains.ppt, both accessed on 

February 28, 2010. 

 

For multivariate regression to work well, the data should be in similar measurement units, 

scaled correspondingly. [Carr 2007]  Therefore, software sizes and effort hours divided 

by one thousand provided similar measurement units to the other data.  To avoid multi-

collinearity, Pearson correlation analysis tested for linear relationships and Spearman 

rank correlation analysis tested for monotone relationships. [Sutton 2010]  These correla-

tions by CMMI levels are shown below, where EstHrsK stands for Estimated Hours in 

Thousands (K), EstPstaff stands for Estimated Peak Staff, KNEW or EstInitNewCodeK 

stands for thousands of estimated new source lines of code, and KSLOC stands for thou-

sands of estimated lines of source lines of code. 

 Table 4-1: Pearson Correlation for both CMMI levels 

 

 

The preceding table shows much stronger relationships for CMMI Level 4 among the in-

dependent variables and between the possible independent variables and the dependent 

variable than for CMMI Level 5.  Peak staff for both levels correlates linearly to final ef-
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fort hours and to KSLOC.  KSLOC for both also correlates to final effort hours as does 

estimated hours.  KNEW has a weaker correlation to final effort hours for CMMI Level 5 

than for CMMI Level 4. 

Table 4-2: Spearman Rank Correlation for both CMMI levels 

 

 

For both levels, there is a monotone relationship between final, actual effort hours and 

initial, estimated effort hours.  For both, peak staff relates monotonically also.  The mo-

notone relationship is stronger for KNEW to final effort hours than for KSLOC to final 

effort hours in CMMI Level 4 and stronger for KSLOC than KNEW in CMMI Level 5. 

 

Table 4-3: Pearson Correlation for the User Application Area Subsets 
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For the user application subsets, peak staff has the highest correlation to final effort hours 

and estimated hours the next highest correlation to final effort hours for both CMMI le-

vels.  For CMMI Level 4, the software sizes and estimated hours relate linearly to initial, 

estimated peak staff and to final effort hours.  For CMMI Level 5, software size does not 

strongly correlate linearly to initial, estimated peak staff or to final effort hours. 

 

Table 4-4: Spearman Rank Correlation of User Application Area Subsets 

 

 

Monotonic relationships exist for the user application area‟s peak staff to final effort 

hours, for software size to final effort hours, and for estimated hours to final effort hours 

in both CMMI levels.  For CMMI Level 4, the strongest correlation is between estimated 

and final effort hours and between new and total source lines of code, indicating that 

KNEW equals KSLOC.  For CMMI Level 5, the weak correlation between KNEW and 

KSLOC indicates that KNEW is not equal to KSLOC.  Estimated hours monotonically 

correlate to KNEW in both CMMI levels.   
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Table 4-5: Pearson Correlation of System Application Area Subsets 

 

 

The highest correlation is between peak staff and final effort hours in both CMMI levels.  

The next highest correlation is between estimated hours and final effort hours.  Although 

software size correlates strongly to final effort hours in CMMI Level 4, a weaker correla-

tion exists in CMMI Level 5 between software size and final effort hours.  The perfect 

correlation in CMMI Level 4 between KNEW and KSLOC indicates KNEW equals 

KSLOC whereas the weak correlation in CMMI Level 5 indicates KNEW is not equal to 

KSLOC. 

 

Table 4-6: Spearman Rank Correlation of System Application Area Subsets 
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The strongest monotone correlation is peak staff to final effort hours in CMMI Level 5 

whereas the strongest monotone correlation is estimated initial hours to final effort hours 

in CMMI Level 4.  Software size correlates to final effort hours in both CMMI levels.  

Estimated hours correlate to KNEW in both CMMI levels, stronger in CMMI Level 4 

than in CMMI Level 5.  

Table 4-7: Pearson Correlation of Support Application Area Subsets 

 

The support application area subsets correlations differ from those in other subsets.  Al-

though peak staff again correlates to final effort hours in CMMI Level 5, it does not cor-

relate in CMMI Level 4.  Estimated hours correlate to final hours in CMMI Level 4.  

Software size of KSLOC correlates in both CMMI levels to final effort hours but only 

KNEW in CMMI Level 4 correlates to final effort hours.  KNEW correlates to estimated 

hours in CMMI Level 5 but not in CMMI Level 4.  The correlation between KNEW and 

KSLOC in CMMI Level 4 is 1.00, indicating KNEW equals KSLOC; not the case in 

CMMI Level 5 where the correlation between KNEW and KSLOC is 0.05.  Software size 

correlates to peak staff in CMMI Level 4, but only KSLOC correlates to peak staff in 

CMMI Level 5. 
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Table 4-8: Spearman Rank Correlation of Support Application Area Subsets 

 

 

The Spearman Rank correlation in CMMI Level 5 has the highest value between total 

software size (KSLOC) and final effort hours with the second highest between peak staff 

and final effort hours.  KSLOC is highly correlated monotonically to peak staff in CMMI 

Level 5.  Estimated hours correlate to peak staff and to KNEW in CMMI Level 5.  The 

support application area for CMMI Level 4 has the highest Spearman Rank correlated 

value between estimated hours and final hours.   

 

Depending on the CMMI level, there is a linear relationship, a monotone one, or both.  

To test the first hypothesis, I used R to visualize the relationship between each of the ini-

tial, estimated independent variables and the final effort hours. 
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Figure 7: R Pairs Plot for CMMI Level 5 

 

The only software size shown on the preceding pairs plot is new source lines of code 

representing the lowest possible software size.  The variable name Est_NewCodeK 

represents the same values as are in the variable name KNEW.  Variable values listed on 

the plots have x-axis and y-axis as indicated by the variable names.  For example, the top 
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right graph has estimated peak staff on the x-axis and final effort hours on the y-axis with 

axes reversed on the bottom left graph. 

Table 4-9: CMMI Level 5 Single Variable Results: KNEW 

 

 

The accuracy for the logarithmically transformed variable representing the logical state-

ments of new code to predict the transformed effort hours had high MMRE values and 

low PRED values.  The accuracy measures improved the most when both EVMS added 
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lowering MMRE and raising PRED.  Singly, SPI improved accuracy and raised the ad-

justed R2 value, increasing the residual range to (-2, +3) due to an outlier. 

Table 4-10: CMMI Level 5 Single Variable Results: Estimated Hours 

 

 

The EVMS metrics did not improve accuracy for logarithmically transformed initially 

estimated effort hours as the independent variable.  There was a slight improvement in 

MMRE by adding EVMS metrics either singly or jointly with a worsening in PRED.  Us-
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ing estimated hours, in the original units, to predict final effort hours did not yield an ad-

justed R2 over 0.41, indicating a lack of goodness of fit. 

 

Figure 8: CMMI Level 5 QQ Plot of Estimated and Final Hours 

 

Although this QQ plot shows a linear relationship between the estimated hours and final 

effort hours, the preceding table shows the results of R‟s lm command for linear model.  
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For estimated effort hours up to 150, the one-to-one correspondence line shows data 

mostly following the line.  Beyond estimated effort hours of 150, the deviations from the 

line become more pronounced. 

Table 4-11: CMMI Level 5 Single Variable Results: Peak Staff 

 

 

 

The accuracy metrics for peak staff as the independent variable are not within the „ac-

cepted industry standard‟ of 0.25 or below.  The values above 1.5 are higher than the ac-

cepted standard and adding EVMS metrics worsen MMRE.  PRED(30) is improved only 
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by adding the EVMS metric SPI.  Joint EVMS metrics or CPI alone worsen all the accu-

racy metrics, particularly PRED(25) and PRED(30). 

 
Figure 9: CMMI Level 5 QQ Plot of Peak Staff and Final Effort Hours 

 

The reference line in the preceding figure is one-to-three.  With 60 estimated initial peak 

staff, final effort hours approach 180, falling slightly short.  Estimated initial peak staff 

has more than three times the final effort hours for values of peak staff between twenty 
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and fifty.  The QQ plot shows the similarity of the data distributions.  The reference line 

and the white grid lines provide visual orientation for the reader. [Cleveland 1993] 

 

Table 4-12: CMMI Level 5 Single Variable Results: Peak Staff, transformed 

 

Accuracy metrics for transformed peak staff predicting transformed effort hours do not 

improve with the addition of EVMS metrics.  Accuracy improves slightly for CPI alone 

or for joint EVMS metrics.  Adding SPI does not change the accuracy metrics. 
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Table 4-13: CMMI Level 5 Single Variable Results: KSLOC 

 

 

Untransformed KSLOC had a low adjusted R2 when used to predict untransformed effort 

hours.  The adjusted R2 value improved for the logarithmically transformed KSLOC, 

EVMS, and effort hours with p-values < 0.001 indicating statistically significant models.  
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CPI improved MMRE and PRED(25) slightly with no effect on PRED(30); other EVMS 

metrics did not improve accuracy. 

  

 
Figure 10: CMMI Level 4 Pairs Plot 

 

As for CMMI Level 5, the only software size shown on the preceding pairs plot is the 

new source lines of code where the variable shown as Est_NewCodeK is the same as 
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KNEW.  Another similarity to CMMI Level 5 is the preponderance of low values in the 

data sets for the variables.  The few higher valued data‟s effect on CERs diminishes when 

the data undergo a logarithmic transformation. 

Table 4-14: CMMI Level 4 Single Variable Results: KNEW 

 

Accuracy for the logarithmically transformed variable representing the logical statements 

of new code had high MMRE values and low PRED values.  Accuracy improved the 

most with the addition of the EVMS metric, CPI, also transformed in keeping with the 

multiplicative nature of the CER. 
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Table 4-15: CMMI Level 4 Single Variable Results: Estimated Hours 

 

 

Estimated effort hours predict actual, final effort hours for CMMI Level 4 data.  The ac-

curacy approaches or exceeds industry-standard values with or without the addition of 

EVMS metrics.  For transformed hours, SPI improves PRED (30) accuracy more than 

CPI; the MMRE is improved for SPI or CPI alone.  The most improvement occurs for 
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SPI with CPI.  For the original scale, MMRE accuracy is lowest for CPI but PRED (30) 

is highest with both EVMS metrics.  SPI improves PRED (30) accuracy more than CPI.

 

Figure 11: CMMI Level 4 QQ Plot of Estimated and Final Effort Hours 

 

The preceding plot of estimated initial effort hours to final effort hours highlights the 

concentration of low values between one hundred to two hundred thousand hours. 
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Table 4-16: CMMI Level 4 Single Variable Results: Peak Staff 

 

 

EVMS metrics improve accuracy for CERs with untransformed peak staff as the inde-

pendent variable to predict effort hours.  CPI on MMRE and joint EVMS metrics on 

PRED (30) boost accuracy metrics.  SPI improves PRED (30) more than CPI.  However, 
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Mostly 

Straight

Thick tails 

(-4,+2)

Mostly 

straight #30 0.62 0.53 0.59

Peak 

Staff Original -879.32 0.88 697.05 236.04 0.95 0.00

Mostly 

Straight

Thick tails 

(-2,+6)

Jagged to 

start, then 

goes up 

(~50˚) 

#28, 

#29, 

#30 0.24 0.76 0.82

Peak 

Staff Original -791.45 0.89 843.64 N/A 0.95 0.00

Steep 

incline up 

(~85˚)

Thick tails 

(-2,+4)

J' shape 

to start, 

inclines up 

(~50˚) 

#28, 

#29, 

#31 0.28 0.68 0.76

Peak 

Staff Original -269.42 0.91 N/A 291.15 0.95 0.00

Inclines 

dow n-

w ards 

(~45˚)

Thick tails 

(-2,+4)

Jagged to 

start, then 

goes up 

(~50˚) 

#28, 

#29, 

#32 0.23 0.71 0.74

Peak 

Staff Log 2.27 0.64 N/A N/A 0.68 0.00

Mostly 

Straight, 

inclines 

up ~20˚

Outliers 

(#26 and 

#32) from           

(-3,+1) Straight  

Yes, 

one 

(#26)

0.75 0.47 0.53

Peak 

Staff Log 1.49 0.73 -12.01 0.50 0.67 0.00

Mostly 

Straight, 

inclines 

up ~20˚

Outliers 

(#26 and 

#32) from           

(-3,+1)

Mostly 

straight

Yes, 

one 

(#26)

0.73 0.38 0.47

Peak 

Staff Log 1.43 0.74 -12.33 N/A 0.68 0.00

Mostly 

straight

Outliers 

(#26 and 

#32) from           

(-3,+1)

Mostly 

straight

Yes, 

one 

(#26)

0.72 0.38 0.44

Peak 

Staff Log 2.42 0.60 N/A 1.78 0.67 0.00

Mostly 

Straight, 

inclines 

up ~20˚

Outliers 

(#26, #32, 

#15) from           

(-3,+1)

Mostly 

straight No

0.74 0.38 0.47
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EVMS metrics increase the number of „leverage‟ points in the CER as denoted by Cook‟s 

Distance. [Draper and Smith 1998]  EVMS metrics do not significantly affect accuracy 

for transformed peak staff, as the independent variable.  MMRE improves slightly with 

any EVMS metric.  PRED gets worse by adding EVMS. 

 

Figure 12: CMMI Level 4 QQ Plot of Peak Staff and Final Effort Hours 
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The solid reference line is one-to-three and the dashed reference line is one-to-two.  The 

QQ plot shows the similarity of the distributions of peak staff and final, actual effort 

hours for CMMI Level 4 data. 

 

Table 4-17: CMMI Level 4 Single Variable Results: KSLOC 

 

With the untransformed KSLOC as the independent variable predicting software effort 

hours, although the adjusted R2 values are high with low p-values, indicating a well fit-
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KSLOC Original 43.27 0.19 N/A N/A 0.92 0.00 Jagged

3 outliers 

on (-4,+4)

90˚ line to 

~50˚ line Jagged 0.68 0.38 0.41

KSLOC Original -1053.00 0.18 782.20 362.70 0.93 0.00

Mostly 

straight

4 outliers 

on (-4,+4)

90˚ line to 

~45˚ line

#30, 

#26, 

#28 0.56 0.41 0.56

KSLOC Original -935.75 0.18 1027.42 N/A 0.92 0.00

Mostly 

straight

3 outliers 

on (-2,+4)

90˚ line to 

~40˚ line

#30, 

#26, 

#29 0.69 0.38 0.47

KSLOC Original -137.35 0.19 N/A 429.04 0.93 0.00

Mostly 

straight

Tw o 

outliers on 

(-4,+4) Jagged

#30, 

#28 0.53 0.44 0.47

KSLOC Log 2.84 0.37 N/A N/A 0.65 0.00

Mostly 

straight

3 outliers 

on (-3,+3)

Mostly 

straight None 0.74 0.26 0.35

KSLOC Log 3.57 0.29 7.35 5.17 0.67 0.00

Mostly 

straight

4 outliers 

on (-3,+2)

Mostly 

straight

One 

(#26) 0.64 0.38 0.44

KSLOC Log 3.35 0.34 9.16 N/A 0.66 0.00

Mostly 

straight

3 outliers 

on (-3,+2)

Mostly 

straight

One 

(#26) 0.66 0.38 0.41

KSLOC Log 3.19 0.31 N/A 5.67 0.67 0.00

Mostly 

straight

3 outliers 

on (-3,+2)

Mostly 

straight None 0.69 0.38 0.41
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tric, the CER with untransformed KSLOC is not robust.  Transforming the software size 

and the final effort hours improves residuals‟ behavior.  Accuracy improves with the ad-

dition of EVMS metrics, but in none of the CERs with KSLOC is the accuracy near in-

dustry-standard levels. 

 

I created three application areas (i.e., System, Support, or User) to sub-divided the data 

within each CMMI level.  Each record could belong to only one application category.  

Signal processing, operating system augmentation, missile computers, flight control ap-

plications, radar control and identification applications, and space payload applications 

were system application areas.  Mission planning, mission applications, and testing pro-

grams were support application areas.  Display and control applications, simulators, ex-

ternal communications, information management, network management, and architecture 

applications were user application areas for user-interactions and decisions.  The follow-

ing table shows the distribution of application types by CMMI level. 

 

Table 4-18: Generated Application Types by CMMI Levels 

Application Types CMMI Level 5 CMMI Level 4 

Support 7 11 

System 14 11 

User 9 12 

Total 30 34 
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The results in the application areas can be compared to the results for the entire CMMI 

data sets to determine whether the third hypothesis, which postulates that application area 

subsets will improve CER accuracy, applies.   

 

Table 4-19: CMMI Level 5 Application Area Subsets 

 

 

C
M

M
I 
L

e
v
e
l 
5
 

S
u

b
s
e
ts

#
 R

e
c

S
c
a
le

In
te

rc
e
p

t

C
o

e
ff

ic
ie

n
t

A
d

ju
s
te

d
 R

2

p
-v

a
lu

e

O
ri

g
in

a
l 
S

c
a
le

: 
 

M
M

R
E

 =
 M

A
P

E

O
ri

g
in

a
l 
S

c
a
le

: 

P
R

E
D

(2
5
)

O
ri

g
in

a
l 
S

c
a
le

: 

P
R

E
D

(3
0
)

User: KNEW 9 Original 69.83 0.29 0.16 0.15 N/A N/A N/A

System: KNEW 14 Original 21.65 1.65 0.26 0.04 N/A N/A N/A

Support: KNEW 7 Original 61.28 0.43 -0.03 0.41 N/A N/A N/A

User: KNEW 9 Log 2.06 0.58 0.52 0.02 N/A N/A N/A

System: KNEW 14 Log 1.63 0.77 0.65 0.00 1.41 0.29 0.29

Support: KNEW 7 Log 0.79 0.81 0.79 0.00 16.76 0.00 0.00

User: Est. Hours (K) 9 Original 39.55 0.48 0.44 0.03 N/A N/A N/A

System: Est. Hours (K) 14 Original 15.91 0.70 0.45 0.00 N/A N/A N/A

Support: Est. Hours (K) 7 Original 56.42 0.59 0.09 0.26 N/A N/A N/A

User: Est. Hours (K) 9 Log 1.52 0.64 0.50 0.02 9.10 0.11 0.22

System: Est. Hours (K) 14 Log 0.20 0.95 0.85 0.00 4.67 0.00 0.00

Support: Est. Hours (K) 7 Log 0.47 0.94 0.75 0.01 36.52 0.00 0.00

User: Peak Staff 9 Original 18.56 2.41 0.78 0.00 0.44 0.67 0.67

System: Peak Staff 14 Original 26.72 1.75 0.14 0.10 N/A N/A N/A

Support: Peak Staff 7 Original 32.09 2.61 0.63 0.02 3.77 0.43 0.43

User: Peak Staff 9 Log 1.55 0.87 0.76 0.00 9.41 0.22 0.22

System: Peak Staff 14 Log 1.61 0.85 0.72 0.00 3.18 0.07 0.07

Support: Peak Staff 7 Log 0.67 1.20 0.75 0.01 51.30 0.14 0.14

User: KSLOC 9 Original 48.63 0.11 0.15 0.16 N/A N/A N/A

System:  KSLOC 14 Original 59.91 0.03 0.02 0.26 N/A N/A N/A

Support: KSLOC 7 Original 46.36 0.14 0.68 0.01 4.58 0.29 0.29

User: KSLOC 9 Log 1.47 0.50 0.19 0.13 N/A N/A N/A

System:  KSLOC 14 Log 1.69 0.48 0.60 0.00 0.86 0.26 0.37

Support: KSLOC 7 Log 0.69 0.68 0.97 0.00 0.36 0.29 0.43
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For all CERs predicting software effort hours, accuracy improves for the user application 

subset with untransformed peak staff as the independent variable and MMRE improves 

for the support application area where logarithmically transformed KSLOC (software 

size) is the independent variable.  Outside of these cases, accuracy does not improve after 

separating the data into application area subsets for this set of CMMI Level 5 data. 

Table 4-20: CMMI Level 4 Application Area Subsets 
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User: KNEW 12 Original 4.83 2.97 0.94 0.00 0.27 0.50 0.67

System: KNEW 11 Original 40.07 0.80 0.49 0.01 N/A N/A N/A

Support: KNEW 11 Original 42.29 0.98 0.49 0.01 0.38 0.64 0.64

User: KNEW 12 Log 2.64 0.62 0.89 0.00 0.52 0.17 0.17

System: KNEW 11 Log 3.26 0.27 0.21 0.09 N/A N/A N/A

Support: KNEW 11 Log 3.59 0.17 0.06 0.23 N/A N/A N/A

User: Est. Hrs (K) 12 Original 1.41 0.95 0.95 0.00 0.14 1.00 1.00

System: Est. Hrs (K) 11 Original 12.26 1.02 0.49 0.01 N/A N/A N/A

Support: Est. Hrs (K) 11 Original 5.80 1.11 0.55 0.01 0.23 0.73 0.82

User: Est. Hrs (K) 12 Log 0.32 0.94 0.99 0.00 0.13 0.83 0.83

System: Est. Hrs (K) 11 Log 1.76 0.58 0.33 0.04 N/A N/A N/A

Support: Est. Hrs (K) 11 Log 0.92 0.81 0.69 0.00 2.01 0.00 0.00

User: Peak Staff 12 Original 20.26 1.71 1.00 0.00 0.43 0.42 0.50

System: Peak Staff 11 Original 14.02 2.39 0.36 0.03 N/A N/A N/A

Support: Peak Staff 11 Original 54.49 0.41 -0.01 0.37 N/A N/A N/A

User: Peak Staff 12 Log 2.13 0.74 0.96 0.00 0.30 0.58 0.58

System: Peak Staff 11 Log 2.46 0.50 0.07 0.22 N/A N/A N/A

Support: Peak Staff 11 Log 3.77 0.09 -0.09 0.68 N/A N/A N/A

User: KSLOC 12 Original 21.92 0.20 0.94 0.00 0.42 0.33 0.33

System : KSLOC 11 Original 42.60 0.24 0.00 0.35 N/A N/A N/A

Support: KSLOC 11 Original 42.29 0.98 0.49 0.01 0.38 0.64 0.64

User: KSLOC 12 Log -27.31 69.63 0.76 0.00 1.04 0.00 0.00

System: KSLOC 11 Log 3.43 0.11 -0.09 0.66 N/A N/A N/A

Support: KSLOC 11 Log 3.59 0.17 0.06 0.23 N/A N/A N/A
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For CMMI Level 4, accuracy improves for several of the independent variables.  In par-

ticular, untransformed KNEW approaches industry standard levels for the User applica-

tion area.  Untransformed KNEW‟s accuracy metrics for the Support application area are 

better than they are for the full set.  Transformed KNEW‟s accuracy, like that of the full 

set, does not meet industry standards. 

 

Estimated Hours (in thousands) – transformed and untransformed exceeds industry stan-

dard levels for the User application area.  Untransformed estimated hours‟ accuracy me-

trics exceed industry standard levels as well as for the Support application area.  Howev-

er, for the transformed estimated hours, accuracy is worse for both metrics for the Sup-

port application area subset than it is for the full set.  Untransformed peak staff‟s MMRE 

metric is better for the User application area than it is for the full set; the full set‟s PRED 

(30) is better than the User application area.  Transformed peak staff as the independent 

variable has MMRE approaching the industry standard level for the User application 

area.  Untransformed KSLOC had a better MMRE than the full set for the User applica-

tion area; the full set‟s PRED (30) is higher than the User application area.  For the Sup-

port application area, untransformed KSLOC has better accuracy than the untransformed 

KSLOC for the whole set.  The whole set‟s transformed KSLOC as an independent vari-

able to predict final software effort hours has a MMRE equal to 0.74 which is better than 

the User application area subset‟s MMRE of 1.04.  Additionally, the PRED (30) of zero 
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for the User application area is much worse than the PRED (30) of 0.35 for the full set.  

Thus, partitioning by application area does not universally improve accuracy. 

 

Based on the data, single parameters (namely, initially estimated effort hours, peak staff, 

and software size) in a CER can predict final, actual effort hours.  These CERs rely on 

data with large amounts of small-values and small amounts of large-values.  Logarithmic 

transformations of estimated hours and software size, particularly for CMMI Level 5 da-

ta, were necessary to achieve valid results.  Accuracy metrics used are not the only appli-

cable ones.  Threats to validity of the results found are numerous. 

 

The small data sets threaten internal validity.  Data was taken from DoD databases with 

paired initial and final records and from the two highest CMMI levels and CERs from 

CMMI Level 4 data are not identical to CERs from CMMI Level 5 data.  The DoD data 

set has varied amounts of data from contractors with varied CMMI levels and other CERs 

use only final reported data parameters.  “External validity threats arise when experimen-

ters draw incorrect inferences from the sample data.” [Creswell 2009]  The timing of this 

dissertation allowed 34 records at CMMI Level 4 and 30 at CMMI Level 5 - records sub-

ject to the business rules for entry into the DoD SRDR repository.  Future records in the 

SRDR repository may or may not be similar to the records analyzed for this dissertation. 

 

Construct validity is manifest in “inadequate definitions and measures of variables.” 

[Creswell 2009]  A definition of new code occurred in most, but not all, of the SRDR da-
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ta dictionaries.  Modification levels of 25%, 30%, and 50% were common as demarca-

tions when to count modified code as new code.  The same definition occurred most fre-

quently for CMMI Level 4 data, possibly due to the set of programs being half the size of 

the CMMI Level 5 set.  With lines of code, the type of line could be logical, physical, 

non-commented source, and others.  Lines of code converted to logical statements em-

ployed the most current translation tables available.  These measures of software threaten 

construct validity more than the measures for any of the other variables.    
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5. Conclusions 

 

A significant contribution is combining and correlating initial data with final effort to es-

timate software effort for DoD contractors with a high CMMI levels.  Most of the histori-

cal studies used final data to predict final effort.  A few others used expert‟s predicted 

effort to compare to final effort.  Using initial parameters to predict final effort allows 

DoD to expect, as is common in SCE, that the future will progress like the past. 

Another significant contribution is the correlation analysis of the input parameters for 

the higher CMMI levels of the contractors.  By assuming high quality based on CMMI 

rating, this dissertation focused on contractors with ongoing quality improvement ef-

forts.  By comparing the top two CMMI levels separately, documented characteriza-

tions can baseline future studies by CMMI level. 

 

CMMI Level 4 records are more consistent and interrelated than Level 5 records in this 

data set.  By using similar languages and traditional development processes, the CERs 

residurals were better behaved and fit better for Level 4.  CMMI Level 5 contractors 

seemed to concentrate on systems development whereas Level 4‟s efforts spread evenly 

between the three application subsets.  Characteristics of future data sets will need to be 

compared to the characteristics described in this dissertation. 
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The integration of Earned Value Management System (EVMS) metrics, for this subset of 

the data, as an input parameter for software cost estimating is new in DoD.  Discovering 

whether this metric has utility in DoD software cost estimation is a contribution to know-

ledge.  Further, documenting the effect this metric has on the software estimating perfor-

mance may provide a baseline for future studies. 

 

After creating and testing CERs using initial, expected parameters to predict actual, re-

ported final effort hours, normalizing between physical and logical line counts by lan-

guages suggested by Lum, Baker and Hihn [2008], there are differences in the proposed 

CERs by CMMI levels.  The contribution to knowledge is the act of explicitly consider-

ing these input variables in relation to each other as well as in relation to the output vari-

able of software effort hours. 

 

As this data set expands, other DoD researchers can take my results as a baseline to see 

how the relationships among the variables change affecting CERs.  Separate studies by 

high CMMI levels of software project parameters and metrics will expand our knowledge 

of the impact of these levels on the production of software and of the impact of software 

environments.  As these data sets grow and change, some parameters need to stay con-

stant, in particular those focused on in this dissertation, to allow future comparisons.  

Creating and using standards in measurement of software parameters will alleviate threats 

to construct validity in the future. 
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6. Future Research 

 

As the data on software developers achieving top CMMI levels expand, continued study 

of CERs by CMMI level may become common in SCE.  As there are two representations 

for CMMI (staged and continuous), it may be useful to investigate whether the represen-

tation type makes any difference in the CERs.  Repeating this method with the same data 

not separated by CMMI level would create CERs to compare to those in this dissertation.  

Repeating this method with similar or different data sets by process maturity level may 

validate the utility of CMMI level partitioning.  Either by process maturity level or not, 

different application area foci may be in order.  Using application areas or environments 

such as ground, air, and space may provide useful CERs for future SCE.  Different appli-

cation area subsets may illuminate patterns in the data or show other statistical relation-

ships among the variables of interest.  Different application areas may produce different 

CER accuracy levels.  Different accuracy measures applied to similar or different data 

sets would provide results comparisons. 

 

As experimentation with EVMS‟s measures continue in SCE, other EVMS variables may 

prove more useful than SPI and CPI, used in this research.  CV or SV values could be 

useful in CERs, either with other parameters or by themselves.  These values could be 

divided by the contract value or by the number of effort hours, either estimated or final. 
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Comparing each of the initially estimated parameters to final parameters may shed light 

on SCE over- or under-estimation, particularly by viewing them by a category of interest.  

For example, initially estimated peak staff may relate differently to final peak staff at var-

ious CMMI levels.  As the use of COTS expands, so should COTS measures.  As meas-

ures evolve, new measures appear, or measures become standardized, particularly for 

software size, new sets of CERs will emerge.  Experimenting with software development 

learning curves may lead to their use by one or more data set parameters.  Use of similar 

methods to those used in this dissertation with different statistical tools would reveal the 

impact of tools.  Use of different methods with the same statistical tools would reveal the 

impact of methods.   
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Appendix A: Cost Estimating Methods 

 

 

Algorithmic 

Literary references to algorithmic experiments abound.  As these methods are data-

driven, standard data sets are available; some have a nominal fee to use.  The PRedictOr 

Models In Software Engineering (PROMISE) repository provides historical data sets for 

researchers and practitioners to use in their software cost estimation experiments. [Boet-

ticher and Lokhandwala  2007]  There were eighty-nine total data sets on July 26, 2009, 

up from eighty-six on April 18. [http://promisedata.org/?cat=11 2009]  The International 

Standards Benchmarking Steering Group (ISBSG) maintains a database of commercial 

and government software projects and distributes data sets for a nominal fee. 

[http://www.isbsg.org/products 2009]  Researchers and practitioners, with any data set, 

may examine any parameter(s) as independent or dependent variable(s).  The literature 

has cases where the data is not available publically. [Chui and Huang 2007; Jones 2005; 

Mukhopadhyad and Kekre 1992; Tomer, Goldin, Kuflik, Kimchi and Schach 2004; Vi-

jayakumar 1997]    There is also literature exploring software cost estimation results from 

a single institution versus multiple institutions based on hypothesized differences. 

[Briand, El Emam, Surmann, Wieczorek and Maxwell 1999; Kitchenham, Mendes and 

Travassos 2007; Mendes, DiMartino, Ferrucci and Gravino 2007; Wieczorek and Ruhe 

2002] 
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Much of the literature on algorithmic methods compares parametric cost estimating rela-

tionships using ordinary least squares regression in unit space or log space with other al-

gorithmic methods.  Other algorithmic methods, found in my literature search, are: 

(a) Learning algorithms such as neural networks and genetic algorithms; metho-

dologies include fuzzy logic, back-propagation, radial basis function, support 

vector regression, and bagging predictors [Baskeles, Turnham and Bener 

2007; Berlin, Raz, Glezer and Zviran 2009; Braga, Oliveira and Meira 2007; 

Deng, Purvis and Purvis 2007; Huang, Capretz, Ren and Ho 2003; Idri, 

Khoshgoflaar and Abran 2002; Oh, Pedrycz and Park 2003; Pendharkar, Sub-

ramanian and Rodger 2005; Tadayon 2005; de Barcelos Tronto, da Silva and 

Sant‟Anna 2007; Venkatachalam 1993; Wang, Song and Shen 2007] 

(b) Statistical techniques such as robust regression, Kolmogorov-Smirnov test, 

classification and regression trees (CART), factor analysis including principal 

component analysis (PCA), evolving self-organizing map (ESOM), cluster 

analysis with k-means, stepwise analysis of variance (ANOVA), and correla-

tion analysis, parametric and non-parametric [Briand, Langley and Wieczorek 

2000; Briand, El Emam, Surmann, Wieczorek and Maxwell 1999; Deng, Pur-

vis and Purvis 2007; Huang, Chiu and Liu 2008; Jeffery, Ruhe and Wieczorek 

2001; Liu and Mintram 2006; Lopez-Martin, Yanez-Marquez and Gutierrez-

Tornes 2006; Ruhe, Jeffery and Wieczorek 2003; Sackman, Erikson and Grant 

1968; Wieczorek and Ruhe 2002] 
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(c) Simulation techniques such as Monte Carlo modeling and system dynamics 

modeling [Briand, El Emam and Bomarius 1998; Hihn and Lum 2004; Musi-

lek, Pedrycz, Sun and Succi 2002; Silva and Stam 1998; Abdel-Hamid and 

Madnick 1989; Madachy 1996] 

(d) Mathematical formulas: the Cobb-Douglas equation and software cost estima-

tion equations such as Boydston, Walston-Felix, Bailey-Basili, Doty, Al-

brecht-Gaffney, Kemerer, Matson-Barret-Melichamp, Basic COCOMO, In-

termediate COCOMO, COCOMO 2.0 models, Putnam‟s SLIM, Norden-

Rayleigh curve fitting, and Halstead‟s complexity. [Nidiffer 2006] 

 

Algorithmic “methods are divided into functions and arbitrary function approximators 

(AFA).  According to Myrtveit et al., „arbitrary function approximators do not make any 

assumptions regarding the relationship between the predictor and response variables‟ 

while functions assume otherwise.” [Jalali 2008] 

 

System dynamics uses simulation to shed light on complex, interrelated activities and 

events.  One simulation tool, Timed Colored Petri Nets, models temporal system beha-

viors.  “Models are represented as networks modified with positive and negative feed-

back loops.  Elements within the models are expressed as dynamically changing levels or 

accumulations (the nodes), rates or flows between the levels (the lines connecting the 

nodes), and information relative to the system that changes over time and dynamically 

affects the flow rates between the levels (the feedback loops).” [Boehm, Abts, Brown, 
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Chulani, Clark, Horowitz, Madachy, Reifer and Steece 2000]  Systems dynamics model-

ing has been applied to the software environment by Ray Madachy‟s simulation of 

Brooks‟ law [declaring „Adding more people late in the project makes it later‟] in 1999.  

Tarek Abdel-Hamid paired with Stuart Madnick to model dynamic software project man-

agement in 1991. 

 

Learning-oriented techniques are algorithmic: techniques such as neural networks and 

machine learning.  Made popular by the idea of neurons in the human body, neural net-

works use training sets, which are input data subsets, to determine algorithmic parameter 

values to minimize the differences between predicted and actual values.  “Extremely 

large data sets are needed to accurately train neural networks with intermediate structures 

of any complexity.  Also, for negotiation and sensitivity analysis, the neural networks 

provide little intuitive support for understanding the sensitivity relationships between cost 

driver parameters and model results.” [Boehm, Abts, Brown, Chulani, Clark Horowitz, 

Madachy, Reifer and Steece 2000]  To explore machine-learning algorithms, researchers 

set aside a data portion to use as a test.  In one case, the researchers experimentally set 

aside 10 records out of 60 and then performed a second, comparative, experiment with 20 

records set aside.  The observed phenomenon was error increases as training set size de-

creases. [Baskeles, Turnhan and Bener 2007]  Machine learning has also been criticized 

for using an “unclear and closed structure of the computation process.” [Berlin, Raz, 

Glezer and Zviran 2009] 
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Checklists are one of the basic, common, algorithmic methods, though the steps may 

vary.  Seven steps for software cost estimating documented by Barry Boehm (to use sev-

eral independent techniques, compare them, iterate, and follow-up) expanded in the time 

since he proposed them. [Boehm 1981]  Recently, McConnell published a checklist with 

twelve steps and Jones, ten steps.  The checklists recommend the analyst perform and ite-

rate estimation activities in each creator‟s order.  The actual order differs, but the recom-

mended estimation activities are extremely similar.  While Jones recommends using a 

size prediction to estimate software development workload and explicitly characterizing 

worker‟s assignment scope, McConnell recommends estimating ranges using worst case 

as a lower bound, best case as a higher bound, and most likely case as a central tendency 

measurement. 

 

Table A-1: Comparison of Estimation Checklists [McConnell 2006; Jones 2007 

McConnell 2006 

 Checklist for Individual Estimates 

Jones 2007 

Standard Sequence for Software Cost Estimates 

1. Is what‟s being estimated clearly defined? Step 0: Analyze the requirements 

2. Does the estimate include all the kinds of 

work needed to complete the task? 

Step 1: Start with…size prediction using an estimating 

tool…[or] by extrapolation from function point to-

tals…[or] by analogy with similar projects…[or] us-

ing…intuition…[or] statistical methods or Monte Carlo 

simulation 

3. Does the estimate include all the functionali-

ty areas needed to complete the task? 

Step 2: Identify the activities to be included…work that 

will be performed 

4. Is the estimate broken down into enough 

detail to expose hidden work? 

Step 3: Estimate software defect potentials and removal 

methods 

5. Did you look at documented facts (written 

notes) from past work rather than estimating 

purely from memory? 

Step 4: Estimate staffing requirements…a characteristic 

assignment scope, or amount of work that can be done 

by a single employee 



 

128 

 

McConnell 2006 

 Checklist for Individual Estimates 

Jones 2007 

Standard Sequence for Software Cost Estimates 

6. Is the estimate broken down into enough 

detail to expose hidden work? 

Step 5: Adjust assumptions based on capabilities and 

experience…experts will have larger assignment scopes 

and higher production rates 

7. Is the productivity assumed in the estimate 

similar to what has been achieved on similar 

assignments? 

Step 6: Estimate effort and schedules 

8. Does the estimate include a Best Case, Worst 

Case, and Most Likely Case? 

Step 7: Estimate development costs 

9. Is the Worst Case really the worst case?  

Does it need to be made even worse? 

Step 8: Estimate maintenance and enhancement costs 

10. Is the Expected Case computed appropriate-

ly from the other cases? 

Step 9: Present your estimate to the client and defend it 

against rejection 

11. Have the assumptions in the estimate been 

documented? 

 

12. Has the situation changed since the estimate 

was prepared? 

 

 

 

Analogy 

Expert-based techniques provide a range of estimating options:  “surveys have been con-

sistent in reporting expert judgment as the most common prediction technique in the lite-

rature”. [Shepperd 2007]  Reasoning by analogy is a form of inductive reasoning: “an 

analogy is a statement of a logical relationship between two similar things that are com-

pared with each other.” [http://www.samford.edu/schools/netlaw/dh2/logic/logic1.html 

2009]  Issues relating to choice of analogies are amounts of missing data, data quality, 

data homogeneity, and relevance of data selection framework.  The following table pro-

vides alternatives to consider as these issues arise. 

Table A-2: Estimation by Analogy Alternatives [Li and Ruhe, PROMISE ‘07] 

Issue to decide Alternatives to consider 

Impact analysis of missing values Preliminary knowledge 

Dealing with missing values Deletion and imputation techniques: NULL value 
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Issue to decide Alternatives to consider 

Object selection Hill climbing, simulated annealing, forward and backward se-

quential selection algorithms 

Converting continuous attributes to 

discrete attributes 

Rough Set Analysis (RSA)-based attribute weighting; based on 

interval, frequency, or both; other machine learning techniques 

Attribute weighting and selection RSA-based, Wrapper, hill-climbing, genetic algorithm 

Determining similarity measures Distance-based, local-global similarity principle 

Retrieving analogs Using similarity measures or rule-based heuristics 

Determining closest analogs Fixed number of analogs; learning process; data availability 

Analogy adaptation strategy Mean, weighted mean, median, linear extrapolation 

Choosing [accuracy] evaluation criteria Some conventional criteria: e.g., MMRE, PRED 

Comparison methods in general Accuracy-based methods 

 

The use of heuristics is common in making analogies.  Heuristics are rules-of-thumb; 

heuristic methods designed “to fit a specific problem type rather than a variety of applica-

tions” are “likely to discover a very good feasible solution, but not necessarily an optimal 

solution”. [Hillier and Lieberman 2005]  Meta-heuristic methods provide structure and 

guidance to tackle specific problems.  Heuristic and meta-heuristic methods guide analo-

gy choices, using means such as hill climbing, simulated annealing, and genetic algo-

rithms.  Rough set analysis explores data relationships as discernable, complementary, 

similar, or negatively similar using forward inclusion and backward inclusion. [Orlowska 

1998]  

Expert-based 

 
When data is sparse or untrustworthy, experts, whether alone or in combination with oth-

er experts or other methods, can generate or verify software cost, effort, and schedule es-

timates.  To obtain expert opinions, questioning is required.  Often careful phrasing of the 

question can evoke pertinent responses.  “Simple process changes such as reframing 
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questions can lead to more realistic estimates”. [Jorgensen 2005]  Querying experts and 

understanding their responses “…can be difficult to do and subject to numerous biases”. 

[SAF 2007]  The following table categorizes these biases as motivational and cognitive. 

 

Table A-3: Motivational and Cognitive Bias [SAF 2007] 

Motivational Bias Cognitive Bias 

Social pressure (face to face) Inconsistency (opinion changes over time) 

Impressions (not face to face) Anchoring 

Wishful thinking Relating to irrelevant analogies 

Misunderstandings Underestimation 

Career goals  

Project advocacy 

Competitive pressures 

 

 

On the one hand, motivational bias, based on people‟s need for social acceptance, can 

occur along organizational or personal preference lines. [Meyer and Booker 2001; Vick 

2002]  Social pressures, job pressures, and competitive pressures lead to groupthink and 

group-behaviors.  An individuals‟ preferred methods of thinking and operating influences 

his or her interpretation (or misinterpretation) of details and situations.  On the other 

hand, cognitive bias, based on psychological studies of human information processing 

constraints, can lead to inconsistent or inappropriate judgments if an expert relies on too 

few analogies or on irrelevant ones. [Meyer and Booker 2001] 

 

For software cost estimation, experts are gathered and queried in a structured process 

called the Delphi Method.  To arrive at a group consensus on the estimate, the facilitator 
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elicits individual responses to standardized queries, squashes extraneous discussions, and 

provides relevant, often anonymous, feedback to the participants.  

[http://www.iit.edu/~it/delphi.html 2007]  With the Delphi Method, as with all expert-

based methods, the validity of the estimate depends on the knowledge, wisdom, expe-

rience, and judgment of experts – and on the future unfolding as envisioned, often by 

extrapolating from the past.  This remains the Achilles Heel of expert-based methods. 

“One main disadvantage of this estimation technique is that it cannot be used in projects 

involving a new domain where there is no existing expert knowledge.” [Jayaraman and 

Liopart 2007] 

 

 

 

 
Engineering-level 

 
The engineering level of estimation involves disaggregation of software activities from 

the top down or the bottom up.  WBS levels range from a low of one to well over ten.  

Practically speaking, three to six levels are sufficient to be mutually independent and col-

lectively exhaustive.  „Web-Help‟ on MIL-STD-881A, The Department of Defense 

Handbook, Work Breakdown Structures for Defense Materiel Items, states “just as the 

system is defined and developed throughout its life cycle, so is the work breakdown 

structure.  The WBS will be developed and maintained based on the systems engineering 

efforts throughout the system‟s life cycle.” [http://www.acq.osd.mil/pm 2009]  Engineer-

ing-level estimates can rely on algorithmic, analogous, expert-based, and other methods, 
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depending on the lowest level of the WBS or the discrete WBS element.  For commercial 

items, appropriate vendors provide quotes upon request.  Given the range of the quotes, 

different techniques may be used: an average, a weighted average, a maximum quote, or, 

if there are enough quotes, a probability distribution of values can be generated and a 

value or a range can be randomly chosen from the distribution or chosen based on pre-

determined criteria. [Bryant 2008]  Engineering level estimates ensure coverage of expli-

cit WBS levels. 

 

 

Others 

 
Other techniques, such as Price to Win and Parkinson‟s Law, influence managerial choic-

es and decisions in large, complex, software-intensive DoD programs; however, they are 

not usual tools for cost analysts.  Price to Win, based on the bidder‟s assessment of what 

the customer is willing to spend, may not satisfy either the bidder or the customer. [Mar-

ciniak and Reifer 1990]  If the system decision criterion is to go with the cheapest bid, 

Price to Win is a strategy contracts use to win an award.  Parkinson‟s Law marries effort 

with corresponding, available task times.  Referred to as a “goal-setting phenomenon”, it 

is not a traditional cost-estimating method. [Bryan and Locke 1967]  If schedules leng-

then, Parkinson‟s Law increases costs: people on the payroll continue to get paychecks. 
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Along with PSP and PROBE, Bayesian methods are hybrid methods.  Hybrid methods 

combine expert-based inputs with established mathematic algorithms or models.  Baye-

sian theory underlies the COQUALMO model, in the COCOMO family, for defect intro-

duction. [Chulani, Santhanam, Moore, Leszkowicz and Davidson 2001]  PROBE asks 

engineers to imagine their conceptual design taking shape and size using proxies, catego-

rized by software operation and programming language.  Software operation categories 

are computations, data handling, and program input-output processing.  Using PSP‟s five 

size ranges, from very small to very large, subject matter experts (i.e., the engineers) take 

each proxy‟s size estimates, combine them, and use statistical linear regression to arrive 

at a total number of LOC in the project. [Humphrey 2000] 
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Appendix B: Explanation of Software Cost Models 

 

The COCOMO model is public with documentation online.  The other models are pro-

prietary with limited documentation.  Input variables for software cost models, chiefly 

COCOMO input variables, are the most studied independent variables in the literature.  

Many software estimation models have been developed and used over time.  The follow-

ing models are of interest due to their applicability to my research. 

Table B-1: Software Cost Models: Source and Site 

Software Cost 

Model 

Source Web Site 

COCOMO II USC/CSSE http://csse.usc.edu/tools/COCOMOII.php 

COCOTS USC/CSSE http://csse.usc.edu/csse/research/COCOTS/ind

ex.html  

SLIM QSM Incorporated http://www.qsm.com/  

SEER-SEM Galorath Incorporated http://www.galorath.com/  

TruePlanning PRICE® Systems http://www.pricesystems.com/  

KnowledgePLAN® SPR Incorporated http://www.spr.com/project-estimation.html 

Sage Software Engineering Incorporated http://seisage.net/sage.htm 

 

COCOMO II 

Dr. Barry Boehm had a hand in developing the Doty Model and then COCOMO I, now 

called COCOMO 81. [Spurlock 2003]  “The fundamental production function in software 

engineering is the function relating delivered source instructions as outputs to develop-

ment man-months as inputs.”  [Boehm 1981]  In 1995, Dr. Boehm at the University of 

Southern California‟s Center for Systems and Software Engineering launched the CO-

COMO II model suite.  Inputs include a SLOC estimate, scale factors, product attributes, 

platform attributes, personnel attributes, and project attributes.  The scale factors and 

http://csse.usc.edu/tools/COCOMOII.php
http://csse.usc.edu/csse/research/COCOTS/index.html
http://csse.usc.edu/csse/research/COCOTS/index.html
http://www.qsm.com/
http://www.galorath.com/
http://www.pricesystems.com/
http://www.spr.com/project-estimation.html
http://seisage.net/sage.htm
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attributes are nominal, ranging from either low or very low to high, very high, extremely 

high, or extra-high. [http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html 

2008] 

 

Scale factors cover five areas: uniqueness of the effort, flexibility of the development, 

risk mitigations regarding architecture, cohesion of the team, and process maturity.  If the 

effort is an upgrade, the prior version(s) may act as a precedent or if the effort mimics 

another effort, the prior effort is a precedent.  More precedents lower the scale factor.  

Process maturity factors align inversely with CMMI ratings. 

[http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html 2008] 

 

Cost drivers span requirements and constraints.  Requirements include development 

schedule, software reliability, reusability, and computer turnaround time.  Constraints in-

clude lifecycle needs of the documentation, experience levels and continuity of person-

nel, computer main storage available, and computer execution times.  There are other cost 

drivers: how complex the effort is, how volatile the platform is, and whether the devel-

opment occurs at one site or at multiple sites. 

[http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html 2008] 

 

http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html
http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html
http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html
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COCOTS 

COCOTS, a member of the COCOMO II model suite, stands for Constructive COTS 

Model.  Commercial-off-the-shelf (COTS) software can encompass a range of functions 

for software developers and maintainers from automated tool support for routine or spe-

cialized administrative tasks to a called-on component, vital to the performance of the 

software.  Due to COCOMO II model cost drivers for „use of software tools‟ and „lan-

guage and toolset experience‟, the functionality of automated tool support and the skills 

of the operators is embedded in the COCOMO II model and excluded from the COCOTS 

model.  The modification of a COTS product pushes it into a professed reusable compo-

nent, handled in the COCOMO II model as a “developed for reusability” cost driver and 

excluded from the COCOTS model.  The COCOTS model applies to the called-on com-

ponent(s) of the software application, with the premise of “the following COTS pheno-

mena… 

 You have no control over a COTS product‟s functionality or performance 

 Most COTS products are not designed to interoperate with each other 

 You have no control over a COTS product‟s evolution 

 COTS Vendor behavior varies widely” 

[http://csse.usc.edu/csse/research/COCOTS/modeldesc.html 2009] 

These phenomena apply to all COTS, regardless of their role in the software develop-

ment. 

 

The COTS products may or may not fulfill their intended role as-is.  When the users have 

a need to adjust the COTS product to their environment or their intended use, “COTS 
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product tailoring and tuning” or “Glue Code development” can result along with the ne-

cessary testing, verification, and validation of the COTS adjustments as they occur within 

the development process. [http://csse.usc.edu/csse/research/COCOTS/modeldesc.html 

2009]  The COCOTS model has fourteen input parameters to estimate effort: 

1. An exponential scale factor, called Application Architectural Engineering 

(AAREN), for the “percentage of module interfaces specified in the architec-

ture, subjectively averaged with the percentage of known risks mitigated 

through the system architecting process” 

2. Thirteen effort multipliers break out into: 

a. Four personnel drivers such as COTS integrator personnel capability 

(ACIPC), integrator personnel continuity (APCON), COTS integrator 

experience with the product (ACIEP), and integrator experience with 

COTS integration processes (AXCIP); 

b. Five COTS components drivers: COTS product maturity (ACPMT), 

COTS supplier product extension willingness (ACSEW), COTS prod-

uct interface complexity (APCPX), COTS supplier product support 

(ACPPS), COTS supplier provided training and documentation 

(ACPTD); and 

c. Four application/system drivers: constraints on application system or 

subsystem reliability (ACREL), application interface complexity 

(AACPX), constraints on COTS technical performance (ACPER), and 

portability across application systems (ASPRT). [Abts 2004] 

 

For glue code or interface code between two programs or modules, Chris Abts proposed 

specific values from very low to very high for each of the thirteen effort multipliers.  The 

COCOTS Data Collection Survey and User‟s Manual for USC COCOTS.2002.1 spread-

sheet tool calibrated parameters like COCOMO II.2000. 
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Table B-2: COCOTS Glue Code Model Parameters [Abts 2002] 

 Glue Code Parameters 

Nonlinear Scale Factor 

  Very Low 

(VL) 

Low (L) Nominal (N) High (H) Very High 

(H) 

AAREN 4.00 3.00 2.00 1.00 0.00 

Aggregate 

Cost Drivers Very Low 

(VL) 

Low (L) Nominal (N) High (H) Very High 

(H) 

  Personnel Drivers 

ACIEP 1.34 1.16 1.00 0.86 0.75 

ACIPC 1.60 1.27 1.00 0.79 0.62 

AXCIP   1.12 1.00 0.89 0.79 

APCON 1.58 1.26 1.00 0.80 0.63 

  COTS Component Drivers 

ACPMT 1.45 1.20 1.00 0.83 0.69 

ACSEW   1.07 1.00 0.94 0.88 

APCPX   0.82 1.00 1.22 1.48 

ACPPS   1.14 1.00 0.88 0.77 

ACPTD 1.20 1.09 1.00 0.91 0.84 

  Application / System Drivers 

ACREL   0.88 1.00 1.14 1.30 

AACPX   0.84 1.00 1.19 1.42 

ACPER     1.00 1.11 1.22 

ASPRT     1.00 1.07 1.14 

 

 
SLIM 

The software equation is: Effort = [Size * B
(1/3)

/Productivity Parameter]
3
 * (1/Time

4
).  

This equation, along with a Manpower Build-up Index (MBI), is the basis for the SLIM-

ESTIMATE model offered by Quantitative System Management (QSM).  The Productiv-
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ity Parameter equals , where E is effort, B is a skills factor that is also a function 

of size, and td is development time. [Putnam and Myers 1992]  “A simple scale of integer 

values, called the Productivity Index (PI),…behaves exponentially…The development 

time that falls at the intersection of the MBI and size/PI  is the minimum possible time for 

the particular project.” [Putnam and Myers 1992]  More development time, when staff 

and/or budget are constrained or slowly built up, provides a workable solution, so long as 

the development time is a few months plus the minimum possible time. [Putnam and 

Myers 1992]  Shorter development time results in triage, an effort to deliver software un-

der a compressed schedule. [Yourdon 2002] 

 

SEER-SEM 

The SEER-SEM model, marketed by Galorath Incorporated, went through an upgrade in 

2008 to version 7.3. [http://www.reuters.com/article/pressRelease/idUS235245+14-Oct-

2008+PRN20081014 2008]  SEER-SEM stands for the System Evaluation and Estima-

tion of Resources – Software Estimating Model.  It translates inputs into effective sizing, 

effective technology, and staffing complexity factors to use in effort and schedule esti-

mating equations. [http://www.stsc.hill.af.mil/crosstalk/2005/04/0504Fischman.html 

2009]  “Users follow a Work Breakdown Structure (WBS) describing each CSCI, CSC, 

and CSU (module or element) to be estimated.” 

[http://cost.jsc.nasa.gov/pcehhtml/pceh225.htm 2009]  Outputs include a minimum sche-

http://www.reuters.com/article/pressRelease/idUS235245+14-Oct-2008+PRN20081014
http://www.reuters.com/article/pressRelease/idUS235245+14-Oct-2008+PRN20081014
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dule, suggested staffing categories, risk reports and graphs regarding the estimated effort, 

costs, and schedules, along with tradeoff calculations, over the total life cycle starting 

with preliminary design and ending with operations and maintenance of the software. 

[http://cost.jsc.nasa.gov/pcehhtml/pceh225.htm 2009]  Four „knowledge bases‟ can be 

calibrated to user specifications regarding a choice of target operating platform, designat-

ed application types, designated development methods, and designated development 

standards, such as the Software Engineering Institute‟s Capability Maturity Model Inte-

grated (CMMI) or Internal Standards Organization (ISO)-9000 for quality. 

[http://cost.jsc.nasa.gov/pcehhtml/pceh225.htm 2009]  “SEER-SEM utilizes a unique 

process that simulates a 10,000 iteration Monte Carlo for risk analysis.” 

[http://cost.jsc.nasa.gov/pcehhtml/pceh225.htm 2009] 

 

TruePlanning 

Starting out as the PRICE-S model, TruePlanning is the software variant of a system of 

models, with the first upgrade to PRICE-S called TRUE-S, introduced in 2003. 

[http://www.pricesystems.com/news/2003_10_30.asp 2009]  Inputs are: SLOC, a choice 

of seven application categories, a productivity factor, three complexity parameters, the 

operating environment, hardware utilization or capability, percentage of new code, inter-

nal integration effort factor, external integration effort factor, project start and end dates. 

[http://cost.jsc.nasa.gov/pcehhtml/pceh.htm 2008]  There are optional inputs for financial 

calculations and for risk calculations.  The TruePlanning model outputs effort estimates 
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and software development schedule estimates by life-cycle phase.  Software metrics for 

parametric estimates are: 

-  Software size 

- Effort in labor hours, dollars, and staff size 

- Productivity 

- Requirements stability 

- Schedule 

- Environment 

- Quality, and  

- Cost-Performance Index (CPI) from EVMS. 

[http://www.pricesystems.com/white_papers/Implementing%20a%20Parametric%20Esti

mating%20System%20for%20Development_PRICE%20Format.pdf 2009] 

 

KnowledgePLAN 

Capers Jones founded Software Productivity Research (SPR) in 1984.  The company an-

nounced on December 9, 1996] “the introduction of SPR KnowledgePLAN, a fundamen-

tally new tool for software estimation” replacing the CHECKPOINT model. 

[http://findarticles.com/p/articles/mi_m0EIN/is_/ai_18919783# 2008]  Based on SPR 

consultant “experience from over 6,700 software projects, KnowledgePLAN leads soft-

ware managers through an intuitive planning environment for managing small or large 

projects” and can integrate SPR KnowledgePLAN with Microsoft Project. 
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[http://findarticles.com/p/articles/mi_m0EIN/is_/ai_18919783# 2008]  A Project Wizard 

can help set-up an initial estimate, create a „base‟ estimate at user-chosen levels of re-

finement for either effort or schedule, or create a detailed project schedule. 

[http://www.spr.com 2008]  “KnowledgePLAN is different than most models in that it 

works primary in sizing by analogy or with function points instead of SLOC.  The model 

will accept SLOC, but converts SLOC to function points using conversion factors in the 

model.” [http://fast.faa.gov/pricing/c1919-19D.htm 2009]  Other features available for 

analysts are the following: Integration with Crystal Reports and MS ACCESS (COTS 

products); Support of Open Database Connectivity (ODBC) to connect to enterprise data; 

Flexibility with entering or changing WBS; Domain categorization choices to customize 

environment and product preferences or inputs. [http://www.spr.com 2008]  Outputs in-

clude an estimate of schedule, staffing, and effort in dollars or time, with optional risk 

analysis for selected inputs such as software size, defects, reliability, maintenance, and 

productivity. [http://fast.faa.gov/pricing/c1919-19D.htm 2009] 

 

SAGE 

Sage, for software schedule and cost estimation, needs four general inputs: size, man-

agement template, product template, and project constraints with over thirty parameters 

to portray the development environment and project.  It outputs predictions of estimated 

and worst case outcomes, and will optionally estimate source code growth to depict cost 

and schedule risks.  Staffing profiles can be output for development and maintenance us-
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ing IEEE/EIA 12207, Systems and software engineering – Software life cycle processes. 

[http://seisage.net/sage.htm 2009] 

  

http://seisage.net/sage.htm
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Appendix C: Detail on Development Methods and Life Cycle Phases 

 

 

One way of looking at development methods is Barry Boehm‟s view of 20
th

 and 21
st
 cen-

tury software engineering where he extends a „Hegelian‟ hypothesis from 1950 to today. 

[Boehm 2006]  Waterfall methods sprang from software development efforts in the 

1950s, reflecting a deliberate, sequential approach.  Code-and-fix development methods 

arose in the 1960s, resembling a patchwork quilt approach to building software.  A two-

pronged solution included structured programming methods, involving top-down sequen-

tial approaches, and formal proof or „programming calculus‟ methods to gain domain un-

derstanding. [Boehm 2006]  Structured programming methods gave rise to object-

oriented methods, standards, maturity models, and the notion of software factories; whe-

reas formal proof methods gave rise to business fourth-generation software languages, 

Computer-Assisted-Design/Computer-Assisted-Manufacturing (CAD/CAM), and users 

as programmers. [Boehm 2006]  Finally, concurrent processes, domain-specific software 

architectures, agile methods, and product-in-line reuse led to integrated systems and 

software engineering, hybrid agile plan-driven methods for rapid evolution environment, 

supported by service-driven architectures and model-driven development. [Boehm 2006] 

 

Use of software development methods is determined by facilitating conditions in the or-

ganization. [Khalifa and Verner 2000]  In DoD, the software development for large ac-

quisition programs uses contractors, where they determine an appropriate software devel-

opment method, facilitated by the program office.  In staged contracts, notably used for 
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RAD, the “old waterfall model has accumulated a series of incremental improvements” 

so the customer and contractor can determine at specified intervals whether to continue 

the development effort. [Lott 1997]  The waterfall method is not the only development 

method able to handle partitioned development efforts.  Iterative development can adapt 

to the goals of the software program and take many differently named but similar forms.  

The accompanying methods facilitate the following software products: 

(1) Prototype development methods for user interfaces; 

(2) Agile development methods for daily builds; 

(3) Incremental development methods for weekly builds; 

(4) Spiral development methods for evolving products [Fairley and Willshire 2009] 

 

There are different ways to categorize the life cycle phases from the beginning of an idea 

for a program to its retirement.  The waterfall life cycle stages relate to the Agile methods 

cycle steps, although implementation and test phases in waterfall are mirrored by iterative 

small releases in Agile. [Huo, Verner, Zhu and Barbar 2004]  Different software metho-

dologies relate to different life cycle phases as knowledge increases with program maturi-

ty. [http://www.stsc.hill.af.mil/resources/tech_docs/gsam4/chap2.pdf 2003] 

 

The DoD acquisition life cycle phases, codified in the Department of Defense Instruction 

5000.02 dated December 8, 2008 recognize the applicability of evolutionary development 

methodologies for software and hardware.  Despite this recognition, prior DoD develop-

ment activities were labeled „heavyweight‟ development, mainly following the waterfall 
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process.  Earlier standards, such as the expired DoD Standard 2167A, recommended the 

waterfall development model for requirements generation. [Defense Science Board 1987]  

Pre-systems acquisition activities generally move along the following lines: (1) a material 

solution analysis, with rudimentary requirements to generate and explore alternatives us-

ing approximate cost-benefit analyses; (2) a meeting called the Milestone „A‟ review to 

decide whether to proceed; and (3) an initial technology development, usually with mod-

eling, to aim for desired characteristics.  As technology development ends, another meet-

ing, named Milestone „B‟ review, determines whether to initiate the program.  If the pro-

gram is initiated, typical system acquisition activities are: (1) engineering and manufac-

turing development, usually focused on matured requirements; (2) a meeting called the 

Milestone „C‟ review to decide whether to proceed; and (3) a production and deployment 

phase, usually accompanied with Low Rate Initial Production (LRIP) and Initial Opera-

tional Test and Evaluation (IOT&E) activities.  After LRIP, IOT&E, or other tangible 

signs of success, a meeting, designated as “Go” in the figure, ascertains whether and how 

to field the program.  Once program fielding begins, the program has an Initial Opera-

tional Capability (IOC).  After the “Go” meeting, the production and deployment phase 

ends and an operations and support phase begins.  After operations are in place, the pro-

gram has Full Operational Capability (FOC).  Operations and support (O&S) activities 

are sustainment activities. 
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Figure 13: Standard DoD Weapon System Life Cycle [Moul 2009] 

 

The costs of the retirement of a program or weapon system are included in life cycle 

costs; however, the figure above does not extend to system retirement and subsequent 

disposal or transition. 

 

Steve McConnell categorized and rated different life cycle models using a scale from 

poor to excellent in 1996. [Rico 2000]  The commonly regarded software development 

life cycles at that time were Waterfall (pure and modified), Code-and-Fix, Evolutionary 

(Prototyping and Delivery), Design (Design-to-Schedule, Design-to-Tools), Spiral, 

Staged Delivery, and Commercial-Off-The-Shelf (COTS).  In the following table, the de-

scriptions are terse.  To explain further, ambiguity applies to requirements understanding.  

Innovation applies to a new resulting system.  High reliability, managed growth, and ma-

naged risks apply to resulting system.  Schedule applies to the development method‟s 

success in meeting a set, constrained program schedule.  Low overhead and adapting to 

changes applies to the overall development.  Process and progress visibility applies to the 

development effort for the stakeholders.  Easy to manage applies to the overall develop-

ment meaning that neither the developer nor the manager requires superhuman skills. 
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Table C-1: Comparison of Software Development Life Cycles [Rico 2000] 

 

 

Contrast the 1996 software development life cycle descriptions with the following 2003 

descriptions: waterfall (pure and modified) with just waterfall; staged delivery and De-

sign-to-Schedule with incremental; evolutionary prototyping and evolutionary delivery 

with just evolutionary; and spiral excellent with just spiral.  Code-and-fix, Design-to-

Tools, and COTS as a software methodology left the software development life cycle lex-

icon. [http://www.stsc.hill.af.mil/resources/tech_docs/gsam4/chap2.pdf 2003] 

 

One view of the software life cycle shows conception springing from maintenance.  Con-

siderable iteration, not shown, must exist between and among the circles.  The view of 

the software development life cycle must satisfy the stakeholder‟s program perspective. 

Description

Typical DOD 

major 

software-

intensive 

program

Pure 

Waterfall

Code and 

Fix

Spiral 

Excellent

Modified 

Waterfall

Evolutionary 

Prototyping

Staged 

Delivery

Evolutionary 

Delivery

Design-to-

Schedule

Design-to-

Tools

Commercial-

Off-The-Shelf

Ambiguity Yes Poor Poor Excellent Fair-Excellent Excellent Poor Fair-Excellent Poor-Fair Fair Excellent

Innovation Sometimes Poor Poor Excellent Fair-Excellent Poor-Fair Poor Poor Poor 
Poor-

Excellent

Poor-

Excellent

High 

Reliability
Yes Excellent Poor Excellent Excellent Fair Excellent Fair-Excellent Fair

Poor-

Excellent

Poor-

Excellent

Managed 

Growth
Yes Excellent Poor-Fair Excellent Excellent Excellent Excellent Excellent

Fair-

Excellent

Poor-

Excellent
N/A

Managed 

Risks
Yes Poor Poor Fair Fair Fair Fair Fair 

Fair-

Excellent
Poor-Fair N/A

Schedule Yes Fair Poor Fair Fair Poor Fair Fair Excellent Excellent Excellent

Low 

Overhead
Yes Poor Excellent Fair Excellent Fair Fair Fair Fair

Fair-

Excellent
Excellent

Adapting to 

changes
Yes Poor

Poor-

Excellent
Excellent Fair Excellent Poor Fair-Excellent Poor-Fair Excellent Poor 

Process 

Visibility
Yes Poor Fair Excellent Fair Excellent Fair Excellent Fair Excellent N/A

Progress 

Visibility
Yes Fair Poor Poor Fair-Excellent Fair Excellent Excellent Excellent Excellent N/A

Easy to 

Manage
Yes Fair Excellent Poor-Fair Poor Fair Fair Poor N/A Fair
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Figure 14: Life Cycle Process Circle [Bennatan 2000] 
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Appendix D: Cost Estimating Uncertainty and Risk 

 

Risk explicitly considers how much the plans or the estimates can differ from reality or 

ground truth. [DoD 2006]  “Cost risk analysis is the process of quantifying and display-

ing the uncertainty associated with point estimates of cost.” [Lurie 2006]  Less risky cost 

relationship equations have a well fitting model, data points inside the range of the equa-

tion‟s inputs, certain or reasonable parameters, narrow error variance, and independent 

cost drivers. [Lurie 2006]  GAO recommends DoD cost estimates at major decisions or 

milestones present a range instead of a point estimate of costs and highlight the asso-

ciated treatments of cost risks and uncertainties. [GAO 2008] 

 

In an article more than a decade ago in the Software Technology Support Center‟s Cross-

talk Magazine, the cone of uncertainty was born, though unnamed.  Based on Barry 

Boehm‟s 1981 seminal text titled Software Engineering Economics and on Richard 

Stutzke‟s familiarity with DoD contracts, the author noted, “In general, since more in-

formation becomes available, e.g., product structure and size and team productivity, the 

accuracy of the estimates increases as a project proceeds.” [Stutzke 1996]  From program 

conception to the point of software acceptance, the final costs acknowledged on DoD 

contracts ranged from at least 0.25 times more to as much as 4 times more than original 

early estimates.  The point of software acceptance is not the end of the program, just the 

end of the first iteration of the program‟s development.  According to Steve McConnell‟s 

blog, “The Cone is a hope, but not a promise.” [http://forums.construx.com/blogs/stev 

emcc/archive/2007/05/23/update-on-the-cone-of-uncertainty.aspx 2009] 
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Figure 13: Cone of Uncertainty [Stutzke 1996; McConnell 2006] 

 

Accompanying the cone of uncertainty for software cost estimates are managerial im-

pacts arising from these uncertainties.  If the estimates are relatively accurate, the project 

development cycle can proceed on a controlled, efficient, and credible path.  However, 

inaccurate estimates may hamper the project or program‟s path by limiting management‟s 

ability to establish control, be efficient, and be credible to the stakeholders with the re-

sources provided. 

 

The major types of uncertainty are statistical and situational.  Statistical uncertainties re-

late to real world elements subject to fluctuation; situational uncertainties relate to un-

knowable, but analyzable, future “states of the world” subject to technology develop-

ments, force structure developments, strategic developments, and other developments. 
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[Fisher 1970]  Risks with their potential issues for software, impact on costs, and mitiga-

tion strategies are in the table below. 

 

Table D-1: Risk Types and Mitigation Strategies 

[https://learn.dau.mil/CourseWare/66_9/18_riskmgmt/18_t2crisks/crisks0051.html 2006] 

Risk Type Potential Software Risk Issue  Cost Impact / Mitigation Strategy 
Program-

Level  

-Excessive, immature, unrealistic, or unstable 

requirements 

-Lack of involvement or understanding 

-Underestimation of project complexity or dy-

namic issues 

If the requirements vary, become subject to 

multiple interpretations, or any aspect of 

project complexity is under-estimated, the life 

cycle lengthens and costs increase.  Setting 

standards for documentation and stakeholder 

involvement may lessen misunderstandings 

and establish reasonable, shared expectations 

Program 

Attributes  

-Performance Shortfalls  

-Unrealistic cost or schedule estimates 

-Unrealistic cost or schedule allotments 

Prior estimates do not apply.  If unmet re-

quirements are unique or compelling, a new 

program may arise to cover the shortfalls.  

Cost and schedule estimates need to be based 

on historical cost and schedule performance of 

similar programs. 

Management  -Ineffective project management  Negative effects on life cycle costs 

Effective managers need to be brought in and 

allowed to take over 

Engineering  -Ineffective integration, assembly and test: 

quality control; specialty engineering  

Negative effects on life cycle costs  

Establish and enforce controls 

Measure and publish test plans and results 

Work Envi-

ronment  

-Immature or untried design, processes or tech-

nologies 

-Inadequate work plans / configuration control  

-Inappropriate methods or tool selection or in-

accurate metrics  

The users, testers, developers, and maintainers 

should participate in decision-making 

processes on designs, plans, tools, use of me-

trics, configuration control, and technologies; 

once agreed to, these processes need to be 

implemented and followed 

Other  -Poor planning  

-Too few or too many reviews 

-Too little or too much documentation 

-Legal or contractual issues  

-Obsolescence (including excessive schedules)   

-Unanticipated maintenance or support costs  

To avoid these traps, the program manager 

should build rapid problem solving into his 

processes by using „what-if‟ brainstorming 

sessions with relevant stakeholders to identify 

and share potential solutions to hypothesized, 

future issues 

 

 

  

https://learn.dau.mil/CourseWare/66_9/18_riskmgmt/18_t2crisks/crisks0051.html
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Appendix E:  Software and COTS Definitions 

 

 

DoD defines software as “Computer programs, procedures, and possibly associated do-

cumentation and data, pertaining to the operation of a computer system.” [Ferens 2008]  

This definition is similar to the IEEE definition where “software: 1. A set of computer 

programs, procedures, and associated documentation concerned with the operation of a 

data processing system; e.g., compilers, library routines, manuals, and circuit diagrams. 

[JP1]  2. Information (generally copyrightable) that may provide instructions for com-

puters; data for documentation; and voice, video, and music for entertainment or educa-

tion.” [Medina 2008]  Another definition, based on the International Standards Organiza-

tion (ISO) 9000:2005, „Fundamentals and Vocabulary,‟ and ISO 19011:2002, „Guidelines 

for Quality and/or Environmental Systems Auditing,‟ expands the meaning of software to 

an “intellectual product consisting of information on a support medium.” 

[http://www.whittingtonassociates.com/v2/glossary.shtml 2009]  Functionality via soft-

ware has been steadily replacing functionality via hardware in DoD weapon system pro-

grams.  In the early 2000s, at least eighty percent of the functionality of the Air Force‟s 

new fighter airplane, the F-22, was due to software; this „soft‟ functionality was previous-

ly dependent on hardware. [Spurlock 2003]  In the future, decision logic may be required 

to determine which functions of a physical entity rely only on software since software 

could be indistinguishable from hardware. [Bollinger 2004]  
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COTS is “a [software] product that is: (1) sold, leased, or licensed to the general public; 

(2) offered by a vendor trying to profit from it; (3) supported and evolved by a vendor, 

who retains the intellectual property rights; (4) available in multiple, identical copies; 

and (5) used without source code modification by a consumer.” [Meyers and Obendorf 

2002]  The Open Source Initiative (OSI), at http://opensource.org, describes “what it 

means to distribute software that is open source, namely: 

- Free distribution (i.e., license cannot restrict selling or giving away) 

- Source code (included) 

- Derived works (i.e., software can be modified and distributed by others) 

- Integrity of the author‟s source code (i.e., know who gets credit for source code) 

- Distribution of license (i.e., forbidding addition of further restrictive licensing) … 

- License must not contaminate other software (e.g., both licensed software and 

OSS can coexist in the same distribution)” [Ayala 2008] 

 

 

For adopting and integrating COTS components, understanding of the software architec-

ture and the COTS product begins the process of integrating them, along with simultane-

ous organizational activities such as training, implementing appropriate interfaces, per-

forming Configuration Management, and maintaining mutual nondisclosure agreements 

between users and COTS vendors. [Rose 2000]  To ease the intellectual and administra-

tive burden inherent in understanding the architecture and the COTS products, the emer-

gence and enforcement of interfacing standards, particularly for standards-based architec-

tures, provides developers with the leeway to build interoperable COTS products for new 

applications. [Motsko, Oberndorf, Pario and Smith 2002; Naseem 2004]   

 

http://opensource.org/
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One consequence of using COTS is so-called „Vendor Lock‟ throughout the system‟s life 

as the customer relies upon the vendor to perform maintenance and upgrade activities in 

the specific application system. [Sage 2005]  Compounding the COTS integration issue is 

“multiple COTS products are usually integrated to provide COTS solutions.  Changes in 

a single component can significantly affect the performance of other components”. [Sal-

ter 2001]  Reliance on a vendor results in a watchful program managerial role and re-

liance on multiple vendors requires the program to adjust to evolutionary changes in any 

of the COTS throughout the program‟s life cycle.  COTS components may be interde-

pendent. [Albert and Brownsword 2002]  Interface changes will be at least as important 

as internal COTS processing changes.  There are scores of interfaces: logical, physical, 

functional, dynamic, internal, external, and environmental.  Logical interfaces put a re-

source demand on the system, even when the connection is through other components, as 

this is a “deduced” interface.  Physical interfaces relate to hardware components driven 

by software components and they describe a physical connection between hardware de-

vices or between hardware and the physical operating environment, including human in-

teractions.  Functional interfaces “translate control, information, or energy” across com-

ponents.  [Sage 2005]  Dynamic interfaces change over time and depend on the system‟s 

state or the time.  Adjusting to changes in interfaces is part of the system maturation 

process where knowing what they used to do and what they currently do provides a foun-

dation for software maintenance and stakeholder communications. 
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Effort relating to integrating COTS has four-prongs: 

1. COTS market analysis assessing pre- and post-commitment what the 

COTS can and will do as a component of the program; 

2. COTS adaptation for the program, including 

a. Interface identification and development 

b. Architectural identification and resolution to join COTS with the 

overall program using components, connectors, global structure, 

and construction within local structures 

c. Tailoring the COTS to the program‟s environment with new or 

modified code, affected or unmodified/unaffected code 

d. Tuning the COTS to perform effectively and well in the program‟s 

environment by changing the parameters or configurations to 

achieve performance objectives, perform automatic back-up 

processes, or configure for data recovery after planned or un-

planned processing interrupts 

e.   Developing glue code (or new software code) to coordinate con-

current processing, to bridge and mediate processing between 

components, to handle errors, and to control data and process flows 

3. COTS assembly and test in the program‟s software architecture infrastruc-

ture and the program‟s operational working environment, including inde-

pendent testing, verification, and validation activities with parallel error 

identification and debugging which may rework the COTS adaptations 

4. COTS evolution or keeping-up with the new updates and releases of the 

software so the developers/maintainers are aware of potential and actual 

changes as are the users [Beims and Dabney 2000; Vieira and Madeira 

2003; Sage 2005; Zubeck 2006; http://fast.faa.gov/pricing/c1919-19E.htm 

2009] 

 

Relationships between a controlled (COTS) and controlling system (DoD software-

intensive program) contain embedded assumptions requiring accumulated knowledge to 

merge components into one program.  [Sutcliffe 2002; Albert and Brownsword 2002]  

Typically, a prime contractor is responsible for assembling and integrating the major 

DoD software-intensive acquisition program, requiring a series of agreements relating to 

the contracted activities, including COTS products licenses and warranties, used in de-

velopment, production, and fielding.  Documentation on controlled and controlling sys-

http://fast.faa.gov/pricing/c1919-19E.htm%202009
http://fast.faa.gov/pricing/c1919-19E.htm%202009
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tems must be current and shared between stakeholders to increase the amassed know-

ledge of the program. 

 

 

 

 

 

 

 

 

 

Figure 14: Relationships between controlled and controlling systems [Sutcliffe 2002] 
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Appendix F:  Software Resources Data Report (SRDR) Table 

 

The following table delineates whether the data element is a mandatory item in the com-

panion data dictionary.  The clarification or remarks column lists the responsible office or 

depicts the data type.  The classification schema aligns with the SRDR reporting schema.  

The context section asks for the development organization‟s details.  The product and de-

velopment section asks for development type, tools and languages used, peak staff num-

bers, staff experience in the application domain, software size, requirements, explicit 

WBS mapping, work-in-progress dates, and any subcontractors. 

 

Table F-1: Software Resources Data Reports: Data Element Descriptions 

Data Element to Report 
(as of DID-MGMT-81739, 

April 20, 2007) 
Reported 

In Data 
Dictionary 

Clarification / Remarks 

Report Context and Development Organization 

Security classification Mandatory No  Managed by Program Office 

System/Element Name Mandatory No  Assigned by DCARC 

CSRD Plan Number Mandatory No  Assigned by DCARC 

Report As-of Date Mandatory No Date of data 

Authorizing Vehicle Mandatory No Reference or contract number 

Reporting Event Mandatory No In CSDR Plan, Block 14 

Submission Number Mandatory No Enter "1" for first time, etc. 

Development Organization Mandatory Yes 
To map development organizations, soft-
ware components, and submissions 

Software Process Maturity Mandatory As needed To explain mechanisms and ratings 

Precedents Mandatory No List up to five analogous systems 

SRDR Data Dictionary Filename Mandatory Yes Date of last update 

Comments Optional As needed 
About report context and development 
organization 

Product and Development Description 
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Data Element to Report 
(as of DID-MGMT-81739, 

April 20, 2007) 
Reported 

In Data 
Dictionary 

Clarification / Remarks 

Functional Description Mandatory No What is it?  What will it do? 

Software Development Characterization Mandatory No How will it be done? 

Application Type Mandatory No 17 categories with 119 total types 

Primary and Secondary Programming 
Languages 

Mandatory As needed 
Based on development effort, not func-
tional size 

Percentage of Overall Product Size Mandatory As needed Percentage of developed product 

Planned Development Process Mandatory As needed If not an industry standard process 

Upgrade or New Development Mandatory No New is also complete replacement 

Software Development Method(s) Mandatory As needed 
Specify type and describe non-standard 
types in Data Dictionary 

COTS/GOTS Applications Used Mandatory If proprietary List if these constitute deliverable(s) 

Integration Effort Optional As needed 
May be expressed in staff-hours, 
new/modified glue code, or qualitative 
assessment of effort 

Peak Staff Mandatory As needed 
FTEs  for direct labor or as explained in 
data dictionary 

Peak Staff Date Mandatory No Date expected to occur 

Hours per Staff-Month Mandatory Yes 
List accounting standard or provide details 
on how this was computed 

Personnel Experience in Domain Mandatory Yes 
Categorize by High, Nominal, and Entry 
Level and provide rationale and explana-
tion of domain experience 

Comments Optional As needed  

Total Number of Software Require-
ments 

Mandatory As needed 
Do not count interfaces; define counts and 
units in Data Dictionary 

New Software Requirements Mandatory No  

Total Number of External Interface Re-
quirements 

Mandatory As needed 
Details about count methods in Data Dic-
tionary 

New External Interface Requirements Mandatory No  

Requirements Volatility Mandatory, 
was optional 

Yes 
Use a qualitative scale (very low, low, no-
minal, high, very high) and describe 

Delivered Size 
Mandatory As needed 

Count all code once.  Delineate whether 
new, modified, or reused 

Carryover Code Mandatory As needed 
Delineate what and how much code was 
carried forward from another report 

Auto-generated Code Mandatory No  

Subcontractor-Developed Code Mandatory As needed Provide explanation if unknown 
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Data Element to Report 
(as of DID-MGMT-81739, 

April 20, 2007) 
Reported 

In Data 
Dictionary 

Clarification / Remarks 

Counting Convention Mandatory Yes Robert Park's definition recommended 

Size Reporting by Programming Lan-
guage 

Optional No  

Comments Optional As needed   

Effort Mandatory As needed Optional ISO 12207 activity definitions 

WBS Mapping Mandatory No   

Subcontractor Development Effort 
Mandatory if 

sub-
contractors 

No  

Schedule Mandatory As needed 
Estimate start and end dates; Can use 1 as 
start date and define in SRDR Initial Devel-
oper Report or SRDR Data Dictionary 

Comments Optional As needed   

Point of Contact Information Mandatory No 
Full name, Department name, 
Telephone, E-mail, Fax, Signature, and 
Date of Signature 
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Appendix G: Software Accuracy Measures 

 

Table G-1:  Industry-Proposed Accuracy Metrics [Jalali 2008] 

Measure Description Meaning 

Absolute 

Residual 

(AR) or 

Magnitude 

of Error 

(ME) 

The absolute value of the difference 

between the actual value and the pre-

dicted value 

This value can only be positive.  The lower 

the value, the better the prediction; the higher, 

the worse.  If AR or ME equals zero, the pre-

dicted equals the actual value. 

Relative 

Error (RE) 

On the numerator, actual value minus 

predicted value, all divided by actual 

value (for each predicted value) 

RE can be positive or negative.  If RE is nega-

tive, it can go to negative infinity.  If RE is 

positive, it cannot exceed a value of one.  If 

RE is zero, the predicted value equals the ac-

tual value. 

Average 

Relative 

Error 

(ARE) 

The sum of all the individual RE val-

ues divided by n, the number of values 

calculated 

When ARE is negative, there is average over-

estimation and when ARE is positive, there is 

an average underestimation.  Generally, 

smaller ARE positive or negative values 

represent better matches between  predicted 

and actual values.  Small ARE values could, 

however, mask an imbalance with high posi-

tive and high negative differences. 

Magnitude 

of the 

Relative 

Error 

(MRE) 

The absolute value of RE 

MRE can only be positive.  The lower the 

MRE, the better the prediction; higher MRE 

means a worse prediction.  If MRE is zero, the 

prediction equals the actual value. 

Mean 

Magnitude 

of the 

Relative 

Error 

(MMRE) 

The sum of all the individual MRE 

values divided by n, the number of 

values calculated 

Generally, smaller MMRE positive values 

represent better overall agreement in predicted 

and actual values.  However, small MMRE 

values could mask one or more large deltas.  

An industry standard is MMRE ≤ 0.25 and is 

"acceptable for effort prediction" [Conte, 

Dunsmore and Shen 1986] 

Prediction 

at Level L 

or l 

(PRED(L) 

or 

PRED(l)) 

In a set of n projects, a value, k, is the 

number of projects whose MRE ≤ l, so  

PRED(l) equals k divided by n 

For PRED(l) = k/n, the k/n ratio of predicted 

values are within l percentage of actual val-

ues.  The accepted industry standard is 

PRED(0.25) ≥ 0.75 [Conte, Dunsmore and 

Shen 1986] 
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Measure Description Meaning 

Magnitude 

of Error 

Relative 

to the  

Estimate 

(MER) 

MER is the absolute value of the dif-

ference between the actual value minus 

the predicted value divided by the pre-

dicted value 

MER uses the predicted value as a denomina-

tor vice the actual value used in RE to meas-

ure the error relative to the predicted value.  

MER was initially called the Estimation 

MMRE [Kitchenham, Pickard, MacDonell 

and Shepperd 2001]  There is no accepted 

industry standard for accuracy. 

Mean 

Squared 

Error 

(MSE) 

The sum of the squares of each indi-

vidual actual value minus the corres-

ponding predicted value divided by n, 

the number of values calculated. 

MSE "is meaningful for regression models 

only.  It represents the mean value of the error 

minimized by the regression model." [Conte, 

Dunsmore and Shen 1986]  There is no indus-

try standard for accuracy. 

Root 

Mean 

Square 

Error 

(RMS) 

The square root of MSE 

RMS "is meaningful for regression models 

only." [Conte, Dunsmore and Shen 1986]  

There is no reported, accepted industry stan-

dard for accuracy. 

Relative 

Root 

Mean 

Square 

Error 

(RRMS) 

RMS divided by the average actual 

value 

RRMS ≤ 0.25 is the accepted industry stan-

dard for accuracy of effort prediction regres-

sion models [Conte, Dunsmore and Shen 

1986] 

Mean of 

the 

Balanced 

Relative 

Error 

(BRE) 

Subtract the actual value from the pre-

dicted value and examine the result.  If 

the result is greater than or equal to 

zero, divide it by the actual value; if 

not, divide it by the predicted value. 

Since negative RE values represent over-

estimation, BRE aligns over-estimation with 

positive values and under-estimation with 

negative values. [Miyazaki, Terakado, Ozaki 

and Nozaki 1994]  

Inverted 

Balanced 

Relative 

Errors 

(IBRE) 

Subtract the actual value from the pre-

dicted value and examine the result.  If 

the result is greater than or equal to 

zero, divide it by the predicted value; if 

not, divide it by the actual value. 

IBRE was suggested as a companion to BRE.  

IBRE forces positive one to represent maxi-

mum over-estimation and negative one to 

represent maximum under-estimation. [Miya-

zaki, Terakado, Ozaki and Nozaki 1994]  
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