

Estimating Software Effort Hours for Major Defense

Acquisition Programs

A dissertation submitted in partial fulfillment of the requirements for the degree of Docto-

rate of Philosophy at George Mason University

By

Corinne C. Wallshein

M.S., Operations Research

George Mason University, 1997

Director: Dr. Andrew G. Loerch, Associate Professor

Department of Systems Engineering and Operations Research

Summer Semester 2010

George Mason University

Fairfax, Virginia

ii

Copyright 2010 Corinne C. Wallshein

All Rights Reserved

iii

DEDICATION

This dissertation is dedicated to my family – past, present, and future.

iv

ACKNOWLEDGEMENTS

Dr. Stephen Nash planted a seed when he asked my Operations Research capstone class in

May 1997 if anyone was thinking of coming back to George Mason University to get a

doctorate. John Riordan, as my coach in a federal leadership program, convinced me to

try. Dr. Charles Tichenor, briefing “The Management Science of Function Point Analy-

sis” in April 2003, suggested software cost estimation topics. Dr. Gerald (Jerry) Diaz and

Dr. Jacqueline Henningsen, as my supervisors and mentors, nominated me to participate in

a leadership development program. The Air Force Scientist and Engineer Career Field

Team, my employers, and my family funded my graduate studies. Dr. Henningsen‟s

steady support kept me moving forward. My gratitude is profound for this encouragement

and assistance.

I am indebted to the Air Force Cost Analysis Agency and to the Department of Defense‟s

Cost Analysis Improvement Group. They provided supervision, guidance, and access to

data and cost estimators. Justin Moul, Dr. Wilson Rosa, Walt Cooper, Xiang-Zhen (Da-

vid) Lin, John McCrillis, Joe Dean, Mike Popp, Steve Miller, and Krysty Kolesar helped

me understand software cost estimating. I very much appreciate Dr. Andrew Loerch, Dr.

Daniel Carr, Dr. Stephen Book, Dr. John Tomick, Dr. David Alberts, Dr. Richard Hayes,

and Dr. Clifton Sutton for their advice, instruction, and documentation.

My committee members are role models. My dissertation advisor and director, Dr. And-

rew Loerch, expertly guided me through the process. Dr. Peggy Brouse focused my think-

ing and my writing. Dr. Andrew Sage provided key systems engineering resources. Dr.

Alexander Levis, as the Air Force Chief Scientist, motivated me to start and, as a key

committee member, helped me to finish.

I thank my family, friends and colleagues. The Meeting Street and beach friends were a

wellspring of support. I owe Mary Bonnet and Dr. James Harris special thanks.

My husband, Wayne, likened my progress to sports. He coached me to move on to the

next shot when I fell short of expectations or to move the yard marker when I met criteria.

Our firstborn, Nathaniel, read my drafts. As his writing skills surpass mine, I welcomed

his feedback. What our youngest son, Scott, answered when people asked him about his

George Mason University sweatshirt continues to charm me. I am very grateful to have

such awesome personal, professional, and academic support.

v

TABLE OF CONTENTS

 Page

TABLE OF ACRONYMS .. vii

TABLE OF TABLES ... x

TABLE OF FIGURES ... xi

ABSTRACT .. 12

1. Introduction ... 13

Motivation and Background ... 13

Need .. 16

Problem Statement .. 16

Dissertation Organization ... 18

2. Literature Review.. 19

Estimating Software Effort ... 20

Software Estimating Methods ... 20

Software Cost Models ... 26

Cost Drivers .. 29

Software Size .. 30

Staff Size ... 36

COTS .. 38

Earned Value Management System (EVMS) ... 40

Software Quality Metrics .. 41

Other Software Cost Estimating Inputs .. 44

Complexity .. 44

Productivity ... 46

Development Methods and Life Cycle Phases ... 47

Software Cost Estimating Accuracy ... 48

Risk and Uncertainty... 52

DoD Major Acquisition Programs .. 54

Status Reporting .. 59

Data Profile ... 63

vi

3. Research Methodology ... 65

4. Research Results ... 70

5. Conclusions ... 99

6. Future Research .. 101

List of References ... 103

Appendix A: Cost Estimating Methods .. 123

Appendix B: Explanation of Software Cost Models... 134

Appendix C: Detail on Development Methods and Life Cycle Phases 144

Appendix D: Cost Estimating Uncertainty and Risk .. 150

Appendix E: Software and COTS Definitions ... 153

Appendix F: Software Resources Data Report (SRDR) Table .. 158

Appendix G: Software Accuracy Measures .. 161

vii

TABLE OF ACRONYMS

ACRONYM NAME

ACAT ..Acquisition Category

ActHrsK ..Actual (Final) Effort Hours in Thousands

ACWPActual Cost of Work Performed

AF .. .Air Force

AFP .. Adjusted Function Points

APB ... Acquisition Program Baseline

AR ... Absolute Residual

ARA .. Acquisition Resources and Analysis

ARE ...Average Relative Error

AT&L ... Acquisition, Technology & Logistics

BAC ...Budget at Completion

BCWP ... Budgeted Cost of Work Performed

BCWS ... Budgeted Cost of Work Scheduled

BRE ... Balanced Relative Error

CAE ... Component Decision Authority

CAIG .. Cost Analysis Improvement Group

CAPE ... Cost Assessment and Program Evaluation

CCDR ... Contractor Cost Data Report

CER ... Cost Estimating Relationship

CFSR ... Contract Funds Status Report

CMM ... Capability Maturity Model

CMMI .. Capability Maturity Model Integrated

COCOMO ... Constructive Cost Model

COCOTS ... Constructive COTS Model

COSMIC Common Software Measurement International Consortium

COTS ..Commercial Off-the-Shelf

CPI ... Cost Performance Index

CPLX .. COCOMO input variable for Product Complexity

CPR .. Contract Performance Report

CSDR ... Cost and Software Data Reporting

CV .. Cost Variance

CWBS .. Contract Work Breakdown Structure

DACIMS Defense Acquisition Automated Cost Information System

DAES ..Defense Acquisition Executive Summary

DAMIR Defense Acquisition Management Information Retrieval

viii

DCARC .. Defense Cost and Resource Center

DID ... Data Item Description

DISA .. Defense Information Systems Agency

DLA .. Defense Logistics Agency

DoD ...Department of Defense

EAC .. Estimate at Completion

EA/SD ... Evolutionary Acquisition with Spiral Development

EstCOTS .. Estimated COTS

EstExtReq ... Estimated Number of External Requirements

EstInitModCodeK Estimated Thousands of Lines of Modified Code

EstInitNewCodeK .. Estimated Thousands of Lines of New Code

EstInitUnmodCodeK Estimated Thousands of Lines of Unmodified Code

EstHiExp .. Estimated Percentage of Highly Experienced Staff

EstHrsK ... Estimated (Initial) Effort Hours in Thousands

EstNoExp .. Estimated Percentage of Entry-Level Staff

EstNomExp Estimated Percentage of Nominal (Average) Experienced Staff

EstPstaff .. Estimated Peak Staff

EstSWreq ... Estimated Number of Software Requirements

ETR ... SEER-SEM‟s Effective Technology Rating

EVMS .. Earned Value Management System

FLEX ... COCOMO input variable for Development Flexibility

FP .. Function Point

GAO.. U.S. Government Accountability Office

GFS .. Government-Furnished-Software

GOTS ... Government Off-the-Shelf

HTML ... Hyper Text Mark-up Language

IBRE .. Balanced Relative Error

IEC ... International Electrotechnical Commission

IEEE... Institute of Electrical and Electronics Engineers

IFPUG .. International Function Point Users Group

ISO ... International Standards Organization

IT/MIS Information Technology/Management Information System

LOC ... Lines of Code

LOC ... Lines of Code

KNEW .. New Source Lines of Code in Thousands

KSLOC .. Source Lines of Code in Thousands

LS... Logical Statements

MAIS .. Major Automated Information System

MAR .. MAIS Acquisition Reports

MBI ... SLIM‟s Manpower Build-up Index

MDA ... Milestone Decision Authority

MDAP ...Major Defense Acquisition Program

ME ... Magnitude of Error

MER... Magnitude of Error Relative to the Estimate

ix

MIL-HDBK ... Military Handbook

Mk II ...Mark II

MMRE .. Mean Magnitude of Relative Error

MQR ... MAIS Quarterly Reports

MRE.. Magnitude of Relative Error

MSE ... Mean Squared Error

NASA .. National Aeronautics and Space Administration

NESMA .. Netherlands Software Metrics Association

OSD ... Office of the Secretary of Defense

OSS ... Open Source Software

OTS ... Off-the-Shelf

PI ..SLIM‟s Productivity Index

PMAT ... COCOMO Variable for Process Maturity

PREC .. COCOMO input variable for Precedentedness

PRED ... Prediction Accuracy

PROBE ... Proxy-based estimation

PSP... Personal Software Process

QQ Plot ...Quantile - Quantile Plot

QSM... Quantitative System Management

R&D.. Research and Development

RAD .. Rapid Application Development

RDT&E ... Research, Development, Test and Evaluation

RE .. Relative Error

RESL COCOMO input variable for Architecture / Risk Resolution

RFP ... Request for Proposal

RUP .. Rational Unified Process

RMS .. Root Mean Squared Error

RRMS ... Relative Root Mean Squared Error

SAR ... Selected Acquisition Reports

SCAMPI Standard CMMI Appraisal Method for Process Improvement

SEI ... Software Engineering Institute

SLIM ... Software Lifecycle Model

SLOC ... Source Lines of Code

SOS .. System of Systems

SPI .. Schedule Performance Index

SQL…………………………………………………………Structured Query Language

SRDR ..Software Resources Data Report

SV ... Schedule Variance

SW-CMM .. Software Capability Maturity Model

TEAM ... COCOMO Variable for Team Cohesion

UFP .. Unadjusted Function Points

VAF ... Value Adjustment Factor (for Function Points)

WBS.. Work Breakdown Structure

x

TABLE OF TABLES

Table Page

2-1. Software Estimating Methods ...25

2-2. Software Cost Models‟ Parameters ...27

2-3. Converting Software Size Estimates ...35

2-4. Functionality versus Size by Programming Language Generation 35

2-5. Industry-Standard Accuracy Metrics ...51

2-6. Description and Decision Authority for ACAT I Programs55

2-7. DoD Regulatory Contract Reporting Requirements ..57

4-1. Pearson Correlation for both CMMI levels ...72

4-2. Spearman Rank Correlation for both CMMI levels ..73

4-3. Pearson Correlation for the User Application Area Subsets73

4-4. Spearman Rank Correlation of User Application Area Subsets74

4-5. Pearson Correlation of System Application Area Subsets75

4-6. Spearman Rank Correlation of System Application Area Subsets75

4-7. Pearson Correlation of Support Application Area Subsets76

4-8. Spearman Rank Correlation of Support Application Area Subsets77

4-9. CMMI Level 5 Single Variable Results: KNEW ..79

4-10. CMMI Level 5 Single Variable Results: Estimated Hours80

4-11. CMMI Level 5 Single Variable Results: Peak Staff, transformed82

4-12. CMMI Level 5 Single Variable Results: Peak Staff, transformed84

4-13. CMMI Level 5 Single Variable Results: KSLOC ...85

4-14. CMMI Level 4 Single Variable Results: KNEW ..87

4-15. CMMI Level 4 Single Variable Results: Estimated Hours88

4-16. CMMI Level 4 Single Variable Results: Peak Staff ..90

4-17. CMMI Level 4 Single Variable Results: KSLOC ...92

4-18. Generated Application Types by CMMI Levels ...93

4-19. CMMI Level 5 Application Area Subsets ...94

4-20. CMMI Level 4 Application Area Subsets ...95

A-1. Comparison of Estimation Checklists ..127

A-2. Estimation by Analogy Alternatives ...128

A-3. Motivational and Cognitive Bias ..130

B-1. Software Cost Models: Source and Web Site ...134

B-2. COCOTS Glue Code Model Parameters ..138

C-1. Comparison of Software Development Life Cycles ...148

D-1. Risk Types and Mitigation Strategies ...152

F-1. Software Resources Data Reports: Data Element Description158

G-1. Industry-Proposed Accuracy Metrics ...161

xi

TABLE OF FIGURES

Figure Page

Figure 1: Literature Map (Top-level) .. 19

Figure 2: Effort = function (size, productivity) ... 21
Figure 3: Literature Map (Level 2 - Estimating Software Effort) 24

Figure 4: Literature Map (Level 2 - Major Acquisition Programs) 54
Figure 5: WBS support of CFSR, CPR, and CCDR ... 60
Figure 6: Methodology ... 68
Figure 7: R Pairs Plot for CMMI Level 5 ... 78

Figure 8: CMMI Level 5 QQ Plot of Estimated and Final Hours 81
Figure 9: CMMI Level 5 QQ Plot of Peak Staff and Final Effort Hours 83

Figure 10: CMMI Level 4 Pairs Plot .. 86
Figure 11: CMMI Level 4 QQ Plot of Estimated and Final Effort Hours 89
Figure 12: CMMI Level 4 QQ Plot of Peak Staff and Final Effort Hours 91

Figure 13: Cone of Uncertainty .. 151

Figure 14: Relationships between controlled and controlling systems 157

ABSTRACT

ESTIMATING SOFTWARE EFFORT HOURS FOR MAJOR DEFENSE ACQUISI-

TION PROGRAMS

Corinne C. Wallshein, M.S.

George Mason University, 1997

Dissertation Director: Dr. Andrew G. Loerch

Software Cost Estimation (SCE) uses labor hours or effort required to conceptualize, de-

velop, integrate, test, field, or maintain program components. Department of Defense

(DoD) SCE can use initial software data parameters to project effort hours for large, soft-

ware-intensive programs for contractors reporting the top levels of process maturity, as-

suming these levels produce acceptable quality. Statistical analysis using ordinary least

squares (OLS) proved initial parameters, such as estimated hours, initial peak staff, or es-

timated software size, could accurately predict actual effort hours. DoD cost estimating

relationship (CER) equations differed by process maturity levels and differed for applica-

tion area subsets by process maturity level. Grouping by application area subsets or add-

ing Earned Value Management System‟s metrics (such as Schedule Performance Index

and Cost Performance Index) did not consistently improve CER accuracy for the top two

process maturity levels.

13

1. Introduction

In DoD, software cost estimates provide a foundation for budgeting and funding. Cost

estimates are required, use of a Work Breakdown Structure (WBS) is required, but esti-

mating techniques and WBS sub-levels vary across DoD. Top WBS levels, suggested in

the DoD Military Handbook (MIL-HDBK) 881A for common application categories, are

not mandated. Software cost estimation has taken on greater importance as investments

in information systems, networks transferring information, and software-intensive pro-

gram development have increased. Demand for reasonable and accurate estimates of

software development costs and maintenance costs places a premium on the development

and use of analytic tools. DoD‟s growing collection of programmatic and software data,

available to government cost analysts, is intended for the creation of software cost esti-

mating relationships (CERs) and cost analysis tools. A key data source is the Software

Resources Data Reports (SRDRs), storing initially estimated software and process me-

trics with the contractor‟s delivered, actual software and process metrics.

Motivation and Background

Although “it is difficult to get a balanced view on the software industry‟s estimation per-

formance without unbiased information from a representative set of projects and organi-

zations”, software cost overruns ranged from 33% to 89%. [Molokken and Jorgensen

14

2003] The Government Accountability Office (GAO) studied high visibility, large DoD

programs‟ baseline Research, Development, Test, and Evaluation (RDT&E) cost esti-

mates and found systemic cost growth, averaging forty percent. Underestimation of

software activities may have resulted in cost overruns. [GAO 2008] Estimating software

is complicated by the “unique aspects of software engineering: no physical properties;

lack of product visibility; very few product metrics; multiple development strategies;

changing/evolving requirements; apparent ease of change; propagation of change; little

use of pre-existing components; and white-collar craftsmen and women.” [Nidiffer 2006]

DoD‟s historical software resources data reports (SRDRs) provide the opportunity to ex-

periment with deriving evidence-based cost estimating relationship (CER) equations and

comparing accuracy measures.

Estimating techniques rely on historical data or human judgment; one author refers to this

dichotomy as many-data or sparse-data techniques. [Myrveit et al. 2005] Reported DoD

documentation varies from many-data to sparse-data; access is generally restricted to

DoD personnel. Since DoD officials promoted the use of Commercial-Off-The-Shelf

(COTS) software and non-developmental item “products and services when refining,

reengineering or redesigning functional processes”, many programs incorporate them.

[DoDD 8000.01 2002] An alternative to building applications with custom software, un-

der current regulations, is to build these applications using pre-existing software. Pre-

existing software comes from software libraries, other developers or other projects

(commonly referred to as Government Off-The-Shelf [GOTS]), the Internet (commonly

15

referred to as Open Source Software [OSS]), and vendors of COTS software components.

In DoD, COTS, GOTS, and OSS packages coexist in many programs. At least 70% of

new corporate software applications used COTS in 2003, according to the Gartner Group,

and more than 90% of future corporate software applications will use COTS. [Ayala

2008] Although many metrics are collected, quality metrics are absent, save the Software

Engineering Institute (SEI) Capability Maturity Model Integrated (CMMI) level rating

attained by the contractor.

DoD acquisition system for large, software-intensive programs is documentation-

intensive, due to myriad statutory and regulatory requirements, including ones to estab-

lish an Earned Value Management System (EVMS). In the SRDR reports, the contractor

describes the most recently achieved process maturity level. A key assumption in this

dissertation is that developers with the two highest level of process maturity produce

software of high quality and record high quality data. High levels of process maturity

reflect a continuous focus to reduce defects, achieve stakeholder satisfaction, and en-

hance software management, maintenance and improvements.

[http://www.sei.cmu.edu/cmmi/ 2009] High levels of process maturity should translate to

reduced defects in software products (including documentation), improved customer sa-

tisfaction, and improved follow-on software maintenance and upgrade activities. Studies

have shown higher CMMI levels correspond to lower defect levels.

[http://www.sei.cmu.edu/library/assets/2004-CMMI-006.pdf 2009] Among the many

possible accuracy measures for the proposed effort-estimating relationships, two metrics

16

in the literature, Mean Magnitude of Relative Error (MMRE) less than 25% and for 75%

of predicted values to be within 25% of actual values (PRED), are considered “industry-

standard”. [Conte, Dunsmore and Shen 1986; Subramanian 1991; Wieczorek and Ruhe

2002]

Need

Although many software cost models exist, including the suite of Constructive Cost

Models (COCOMO) with a setting for process maturity, none of the models or studies

have studied CMMI Level 5 and Level 4 organizations together. One article in the litera-

ture studied 37 projects from four CMMI Level 5 organizations and contrasted their study

to the only other one they found on productivity and conformance within a single CMMI

Level 5 organization. The authors found “a steep reduction in variance” in effort and

cycle time and a reduced significance of software modeling factors such as personnel ca-

pability and requirements specifications as “a potential benefit of achieving high process

maturity” leading them to speculate they could port their models across CMMI Level 5

organizations. [Agarwal and Chari 2007] These authors, like many before them, declared

software size as the most significant variable to predict development effort and cycle

time.

Problem Statement

17

Many DoD cost analysis professionals use the current contract or historical contract per-

formance as a basis for estimating future project costs, regardless of CMMI level and re-

gardless of factors other than the original bid. This dissertation analyzed 30 projects

from ten CMMI Level 5 organizations and 34 projects from five CMMI Level 4 organi-

zations to develop and determine the accuracy of parametric cost estimation models by

CMMI level in lieu of accessing all historical contractor data. In addition, the choice of

the top two CMMI levels was a conscious choice to be surrogates for quality software.

DoD does not make a catalog software defect rates available in their online acquisition

repositories. This dissertation extracted initial estimates of software parameters and ana-

lyzed them (not actually produced software parameters which are a primary source for

other software cost models) to determine whether they could predict final, actual effort.

Earned Value Management System (EVMS) data, from the start of the code and test

phase, added a set of modeling parameters to test whether an index for schedule perfor-

mance or cost performance impact estimation accuracy. Data by CMMI level went into

non-overlapping application areas created by the author and tested to determine whether

the subset‟s parametric cost models had greater accuracy than the parametric cost models

by CMMI level. The models were analyzed using visualization, goodness of fit meas-

ures, and industry-standard accuracy measures for software cost and effort models. The

accuracy measures relied upon the magnitude of relative error measures, comparing the

predicted effort using the model to the actually reported final effort hours.

18

Dissertation Organization

The dissertation has five main sections. The first main section titled „Literature Search‟

discusses software cost estimation, software methods, software data sets, software cost

models, software process maturity levels, software and project metrics (including EVMS

and CMMI), DoD acquisition categories and DoD databases. Appendices supplement the

literature search. The second main section discusses the research methodology. The

third main section details the research results. The second-to-the-last main section re-

ports dissertation conclusions. The last section provides suggestions on future research.

19

2. Literature Review

Figure 1 shows the organization of my literature review, conducted on “widely scattered”

references. [Brooks 1995; McConnell 2006] While literature on predicting costs for

software programs is growing, published, public domain, studies on costing major DoD

software-intensive acquisition programs are scarce due to data sensitivity and relative

newness of the data. Records analyzed in this dissertation dated from 2003 to 2008.

Figure 1: Literature Map (Top-level)

Predicting costs and schedules for

Major DOD Software-Intensive Acquisition Programs

Estimating Software Effort

and Duration

- Methods

- Software cost models

- Cost drivers

- Accuracy of predictions

- Risk and uncertainty

Major Acquisition Programs

- Program types

-- Major Defense Acquisition
Programs (MDAP)

-- Major Automated Information
Systems (MAIS)

- Reporting types

-- Progress metrics

-- Software metrics

20

Estimating Software Effort

Software effort estimates provide a basis for funding and budgeting decisions by all le-

vels of management. When estimates err optimistically, overruns generally result; when

they err pessimistically, waste generally results. Optimism is an oft-reported common

characteristic of software professionals. [Brooks 1995; Nidiffer 2006] Since software has

no physical form, its creation can compare to designing and manufacturing widgets, writ-

ing short stories or novels, or solving a mathematical problem or proof. [Putnam 2007;

Lewis 2001] While white-collar software professionals realize fostering software takes

money and time, they traditionally underestimate both. [Nidiffer 2006] Of the three ma-

nagerial factors to balance in software efforts, i.e., cost, schedule, and delivered functio-

nality (including required quality), past research has focused on estimating software ef-

fort hours as a proxy for software cost. [Gilb 1986] This dissertation continues the tradi-

tion of past research.

Software Estimating Methods

In software, “…progress depends on groups of humans doing highly interrelated, creative

or thinking work in a systems context…” [Putnam 1980] To estimate the future, cost es-

timates use historical metrics, some of which are listed in the succeeding graphic.

[https://www.softwaretechnews.com/stn_view.php?stn_id=47 2008]

21

Figure 2: Effort = function (size, productivity)

Cover page from Data and Analysis Center (DACS) Software Tech News, October 2008

To calculate resources required, particularly effort, we start with an estimate of software

size (in lines of code, function points, object points, or expected amounts of reused code

with an uncertainty range on the estimated size) and an estimate of productivity. Func-

tion points are “based on a rather old-fashioned underlying concept (or metamodel) in

which all systems are seen to consist of two parts: database structures and functions that

access those structures.” [Moser and Nierstrasz 1996] While the program‟s desired func-

tion or performance forms the basis for counting function points, object-oriented pro-

grams lend themselves to counting numbers of objects or object points. Estimated prod-

uctivity from historical data, measured consistently, is defensible. With increased hard-

ware capacity for software storage, many developers reported increased productivity.

[Boehm 1981] System-of-systems attributes, such as interaction complexity, code coupl-

22

ing management, and architecture, impact productivity. [Yu, Smith and Huang 1991;

Cain and McCrindle 2002] Documented productivity increases with highly capable per-

sonnel or teams are widely reported. [Boehm 1981; Vosburgh, Curtis, Wolverton, Albert,

Malec, Hoben and Liu 1984; Yu, Smith and Huang 1991] Other research on program-

mer‟s experience levels “showed non-significant relationships to productivity measures.”

[Chand and Gowda 1993] Resource constraints (i.e., scheduling constraints, timing con-

straints, memory utilization constraints, and CPU occupancy constraints) decreased prod-

uctivity, either singly or in combination. [Vosburgh, Curtis, Wolverton, Albert, Malec,

Hoben and Liu 1984; Peters, O‟Connor, Pooyan and Quick 1984; Jeffery 1987]

In a small software firm, adopting agile development practices increased productivity.

[Maurer and Martel 2002] In a large firm (Lockheed Martin Integrated Systems and So-

lutions), receiving the highest possible process maturity rating (Software Engineering In-

stitute [SEI] Capability Maturity Model Integrated [CMMI] Level 5) related to improved

productivity. [McLoone and Rohde 2007] Studies have shown moving up one CMMI

level can increase productivity. [Clark 1997; McConnell 2000]

Software effort estimates are generally in person-hours; DoD data repositories align with

this tradition. Software size, typically in source lines of code (SLOC), or function points

(FPs), provides a basis for software effort estimating techniques and acts as a primary

input to popular, contemporary software cost estimating models. DoD data repositories

store SLOC by programming language in mutually exclusive areas: new SLOC, modified

23

SLOC, and unmodified SLOC. Since informal and multiple conventions for measuring

SLOC exist, such as logical SLOC, physical SLOC, non-commented SLOC, developers

provide explanations on their reported software measurements.

Creating software involves extensive labor with corresponding effort hours, therefore,

hours multiplied by an average cost per hour approximate software cost. Software esti-

mating methods depend on effort drivers. Once actual effort occurs, the accuracy of the

estimates can be determined. Software cost models have various inputs and algorithms to

estimate effort. No estimate is complete without explicit treatment of risk (i.e., acknowl-

edged hazards that may occur) and uncertainty (i.e., acknowledged probabilities of the

hazards and of occurrences affecting the estimate). Cost analysis courses, DoD guidance,

and an Air Force handbook describe ways of handling risk and uncertainty in software

program acquisition and cost estimates.

24

Figure 3: Literature Map (Level 2 - Estimating Software Effort)

There are multiple ways to categorize estimating software effort due to the linkage be-

tween forecasting methods, cost drivers, software cost models, prediction accuracy, and

risk computations and uncertainty area identification. All forecasting methods and mod-

els require objective or subjective inputs, referred to as cost drivers. “Cost drivers are

used to capture characteristics of the software development that affect the effort to com-

plete the project.” [Boehm, Abts, Brown, Chulani, Clark, Horowitz, Madachy, Reifer and

Steece 2000]

The following table describes the different methods listed and gives an overview of their

strengths and weaknesses.

25

Table 2-1: Software Estimating Methods [Boehm 1981; Ormon 2002; Briand, El Eman

and Bomarius 1998; Schoedel 2006]

METHOD DESCRIPTION STRENGTHS WEAKNESSES

Algorithmic A procedure, formula,

and/or constraint rules to

estimate effort or duration –

includes automation and

checklists

Objective method able to

be repeated and analyzed

Susceptible to incorrect

and/or subjective inputs;

combining data elements

into a single metric can

only be as objective as the

least objective element

Analogy Historical precedent or rep-

resentative experience with

a comparable or related

item/project/system/progra

m

History tends to repeat

itself, with nuances

The historical precedent or

representative experience

may not apply

Expert-

based

Consultation with one or

more experts, making use of

elicitation techniques such

as questionnaires, panels,

the Delphi method, or an

expert knowledge base

Proficiency basis to assess

representativeness, interac-

tions, and special circums-

tances

Susceptible to biases, sub-

jectivity, incomplete recall,

group dynamics, and ex-

pert‟s ability to project

experience into new situa-

tions

Engineer-

ing Level

Individual items estimated

separately, then added for

subtotals and grand totals;

entails use of a WBS. Top-

down focuses on system or

program level; Bottom-up

details use a disaggregated

approach to calculate dis-

crete cost elements or items.

Ideal method for known,

stable systems with multi-

level WBS

Top down has little detail

and justification with fewer

lower WBS levels; bottom

up overlooks costs not de-

tailed or justified. Both

require much effort to clas-

sify costs in defined WBS

levels

Others Price-to-win, Parkinson,

Hybrid, Personal Software

Process (PSP) and PROxy

Based Estimation (PROBE)

Price-to-win strategy ob-

tains contracts; Parkinson‟s

law correlates with some

experience; Hybrid com-

bines methods: PSP esti-

mates size and effort at

software design inception;

PROBE estimates software

size and effort – and can be

used for Structured Query

Language (SQL)

Price-to-win generally

overruns costs and sche-

dules; Parkinson fosters

poor practices; Hybrid is as

good as the least stable

method used; PSP and

PROBE require specialized

collection of historical

software development data

Detail regarding the software estimating methods listed in this table is in Appendix A.

26

Software Cost Models

Industry software cost estimation models referenced by sources in my literature review

are:

1. University of Southern California (USC) Center for Systems and Software Engi-

neering (CSSE) COCOMO model suite

2. Quantitative Systems Management (QSM) Incorporated‟s SLIM model

3. PRICE Systems TruePlanning model (formerly PRICE-Software and TRUE-

Software)

4. Galorath Incorporated‟s SEER-SEM model

5. Software Engineering Incorporated (SEI) Sage model, and

6. Software Productivity Research (SPR) Incorporated‟s KnowledgePLAN (former-

ly CHECKPOINT) model.

Details beyond that in the table below are in Appendix B.

27

Table 2-2: Software Cost Models‟ Parameters: Inputs and Outputs

[http://csse.usc.edu/tools/COCOMOII.php 2009; S3DB 2005;

http://cost.jsc.nasa.gov/pcehhtml/pceh225.htm 2009; http://fast.faa.gov/pricing/c1919-

19D.htm 2009; http://seisage.net/sage.htm 2009;Nidiffer 2006]

Software

Cost

Model

Inputs Outputs

COCOMO II Size (New, Reused, Modified SLOC, along with % Design

Modified, % Code Modified, % Integration Required, Assess-

ment and Assimilation, Software Understanding, and Unfami-

liarity), 5 Scale Drivers (Precedentedness (PREC), Develop-

ment Flexibility (FLEX), Architecture / Risk Resolution

(RESL), Team Cohesion (TEAM), Process Maturity (PMAT)

related to SEI Capability Maturity Model), 17 Cost Drivers

((5 for Product: Required Software Reliability; Data Base

Size; Product Complexity; Required Reusability; Documenta-

tion to Match Lifecycle Needs),(6 for Personnel: Analyst Ca-

pability; Programmer Capability; Personnel Continuity; Ap-

plication Experience; Platform Experience; Language and

Toolset Experience),(3 for Platform: Execution Time Con-

straint; Main Storage Constraint; Platform Volatility), and (3

for Project: Use of Software Tools; Multi-Site Development;

Required Development Schedule), Labor Rates, and Staffing

Percentage by Phase (inception, elaboration, construction,

and transition)

Effort hours

Schedule in calendar

months

Costs in U.S. dollars

SLIM Languages (Choice or mix), System or Application Type (9

available), Environmental Information (Tools, methods, prac-

tices, database usage, availability/use of standards), Process

Productivity Parameter (scale ranges from 0 to 40), Manage-

ment Constraints (Planned schedule, cost, staff size, and soft-

ware reliability), Accounting (such as labor rates and inflation

rates), Flexibility (Milestones, Phase Definitions, and fraction

of time and effort applied)

Development Time

 Cost

Effort

Reliability Expected with

risk profiles

Comparisons with simi-

lar projects

SEER-SEM Size (Minimum, Maximum, and Most Likely SLOC, traditional

FP, Galorath FP – New, Preexisting and designed for reuse, or

Pre-existing and not designed for reuse), Knowledge-base In-

puts (Platform, Application, Acquisition Method, Development

Method, Development Standard, Class), Complexity, Personnel

capability and experience, Development Support Environment,

Product Development Requirements, Reusability Require-

ments, Development Environment Complexity, and Target

Environment, Schedule Constraints, Labor Rates, Integration

Requirements, Personnel Costs, Metrics, and Software Support

Size

Effort

Schedule

Effective Technology

Rating (ETR) during the

estimation process

28

Software

Cost

Model

Inputs Outputs

PRICE-S 

TRUE-S 

TruePlan-

ning

Application Type (7 basic functional categories), Productivity

Factor, Complexity, Platform, Utilization (of processor capa-

bility), Level of New Design and Code, Internal and External

Integration Effort, Schedule Start Date, Schedule End Date,

Programming Language(s), Economic Factors

Effort estimate in person-

months

Schedule estimates by

milestones

Staffing Profile with

available sensitivity and

schedule effect analysis

with summaries for

project management

CHECK-

POINT 

Knowled-

gePLAN®

Size (Converts SLOC inputs to FP; uses FP sizing or analogy),

Project description information, Project Nature (New program ,

Enhancement, or Conversion, Re-engineering, Maintenance,

etc.), Project Scope (Stand-alone program, System-of-system,

Prototype, etc.), Project Class (Single site, multi-site, or net-

work for contract, commercial, government, IT/MIS, etc.),

Project Type, Software Products (for sizing by analogy), Per-

sonnel attributes (for project management, development expe-

rience, user personnel experience, and quality experience),

Technology attributes, Process attributes, Environment

attributes, and Product Factors

Schedule

Staffing

Effort estimates in dol-

lars or person-months

using tabular or graphical

Gantt charts

Sage Size (SLOC, New source code, Modified source code, Reused

source code, executable statements, data declarations, compi-

ler directives, and format statements), Personnel attributes (for

analyst and programmer capability, application experience,

development experience, programming language experience,

practices/methods experience, target systems experience. con-

tinuity), Support attributes (development system complexity,

development system volatility, modern practices use, process

improvement, practices/methods volatility, reusability level

required, required schedule, automated tool support), Man-

agement attributes (multiple classification levels, multiple de-

velopment organizations, multiple development sites, re-

source/support location access), Product attributes (staffing

complexity, special display requirements, development rehost-

ing, target system memory constraints, required software re-

liability, real-time operations requirements, system require-

ments volatility, system security requirements, system CPU

timing constraint, target system volatility)

Most likely and worst

case cost and schedule

predictions

Cost and schedule risk

estimates

Resource and staff pro-

files for development

Size growth predictions

Comparison of estimates

with historical data

29

Cost Drivers

Potential cost drivers or estimating parameters for software cost and schedule, used in

some form in the software cost models and described in detail later are software size;

staff size; COTS; EVMS; quality; and others. There should be a logical, proven link be-

tween the measure and its purpose. The reason for the metric should be clear to the

measures‟ providers and users. “Unfortunately, metrics tend to describe properties and

conditions for which it is easy to gather data rather than those that are useful for characte-

rizing software content, complexity, and form.” [Tucker 1996]

Software cost estimating drivers depend on data collected as this provides the finite set of

possible variables. Over time, with growing data collection, this set has expanded. Tra-

ditional software cost estimate drivers derive from the collective history of this craft.

“Cost drivers are used to capture characteristics of the software development that affect

the effort to complete the project.” [Boehm, Abts, Brown, Chulani, Clark, Horowitz, Ma-

dachy, Reifer and Steece 2000] Size, complexity, productivity, planned schedule, per-

sonnel experience, personnel numbers, requirements volatility, and computing constraints

are the backbone of software effort and duration equations in the reviewed software cost

models. Additional parameters (such as application type, domain, development method,

programming languages, and COTS integration) joined the set of hypothesized effort and

duration drivers. “From a conceptual standpoint the derivation of estimating relation-

30

ships may perhaps best be viewed as a process involving the testing of hypotheses. This

implies that the cost analyst should start out by developing a theory about the possible

generators of cost for the particular activities, equipments, or facilities under considera-

tion. Then certain hypothesis can be formulated and tested in light of the available data

base.” [Fisher 1970] Other variables emerge as our metrics set expands.

“Once we understand engineering as an economic-cooperative game, the difficulty of ac-

curately predicting the trajectory of an engineering project becomes understandable…we

need different terms: methodology size, ceremony, and weight; problem size; project

size; system criticality; precision; accuracy; relevance; tolerance; visibility; scale; and

stability.” [Cockburn 2006] The advice to “Look for something to count that is a mea-

ningful measure of the scope of work in your environment” merges with Cockburn‟s

statements. [McConnell 2006] So far, however, we may only study software with the

variables we collect, test, and use in our experiments, models, and work places.

Software Size

Source lines of code (SLOC) or (LOC) is a long-standing and familiar software size me-

tric. Many authors use SLOC or LOC in software cost studies. [Najberg 1988; Long and

Lucas 1996; Vijayakumar 1997; Gaylek, Long, Bell, Hsu and Larson 2004; Misra 2005;

Martin, Pasquier, Yanez and Tornes 2005; Mohagheghi, Anda and Conradi 2005; Twala,

Cartwright and Shepperd 2005] Others use function points (FP). [Heemstra and Kusters

1991; Briand, El Emam, Surmann, Wieczorek and Maxwell 1999; Angelis, Stamelos and

31

Morisio 2001; Wieczorek and Ruhe 2002; Foss, Stensrud, Kitchenham and Myrtveit

2003; Liu and Mintram 2005; Tan and Mookerjee 2005; Ahmed, Bouktif, Serhani and

Khalil 2008; Gupta, Kaushal and Sadiq 2008; Lan 2008] A raw, unadjusted function

point count (UFP) can be determined from the data function type (Internal Logical File

and External Interface File) and the transactional function type (External Input, External

Output, and External Inquiry). These data function types and transactional function types

are five major components to be “classified, ranked, and tallied.” [Agarwal, Kuman, Yo-

gesh, Mallick, Bharadwaj and Anantwar 2001]

Calculating a Value Adjustment Factor (VAF) from the degree of influence of fourteen

general system characteristics is the International Function Point Users Group (IFPUG)

approach. Adjusted function points (AFP) equal the product of UFP times VAF. Some

authors use adjusted function points. [Andreou, Papatheocharaous and Skouroumounis

2007; Deng, Purvis and Purvis 2007; Keung and Kitchenham 2007; Andreou and Papa-

theocharaous 2008]

Barry Boehm‟s original COCOMO model counted delivered source instructions. “It

turns out that the most significant input to the COCOMO II model is Size.” [Boehm,

Abts, Brown, Chulani, Clark, Horowitz, Madachy, Reifer and Steece 2000] However,

what one expects to code may or may not be what one codes. The size measure, from the

first to the last effective estimate, remains a best guess; derived in the varied ways as ef-

fort and schedule estimates. “The sizing of software programs in terms of source lines of

32

code has long been a subjective art at best.” [Kalb 1988] Alongside this subjectivity, siz-

ing metrics vary widely; SLOC is one metric among many choices for sizing. “The prob-

lem is that there is no agreement among professionals as to the right units for measuring

software size or the right way to measure within selected units.” [Minkiewicz 2008]

Lack of agreement on sizing metrics began early. Compounded by programming lan-

guages‟ use of delimiters between statements, such as semi-colons, one line in a program

can house many logical statements. [Conte, Dunsmore and Shen 1986]

The International Standards Organization (ISO), along with the International Electro-

technical Commission (IEC), declaration of “Let the market decide” created multiple

function point counting standards in use today. [http://www.cosmicon.com/historycs.asp

2009] Namely, there is ISO/IEC 20926 for the International Function Point Users Group

(IFPUG) method‟s functional size component, ISO/IEC 24570 for the Netherlands Soft-

ware Metrics Association (NESMA) functional sizing measurement, ISO/IEC 19761 for

Common Software Measurement International Consortium (COSMIC) functional size

metric, and ISO/IEC 20968 for the Mark II (Mk II) Function Point Analysis method.

Only at the conclusion of the effort, can size be determined with any confidence within

the choice of measurement scale. Developing working code requires dual understanding.

The first understanding is how-to-code in the designated development. The second is

what-to-code. Understanding requires learning, and learning classically demonstrates

non-linear behavior. Typical learning curves have formulas of “L(y) = Ay
b
, where L(y) =

33

the number of hours needed to produce the yth unit, A = the number of hours needed to

produce the first unit, y = the cumulative unit number, and b = the learning index, the

learning-curve parameter, or the learning-curve slope parameter.” [Loerch 2001]

Although what constitutes a line of code has been argued over, one book stated this defi-

nition as a common one for researchers: “A line of code is any line of program text that is

not a comment or a blank line, regardless of the number of statements or fragments of

statements on the line. This specifically includes all lines containing program headers,

declarations, and executable and non-executable statements.” [Conte, Dunsmore and

Shen 1986] SLOC measurement scales include logical statements, physical LOC, and

non-commented source lines. “SLOC was selected early as a metric by researchers, no

doubt due to its quantifiability and seeming objectivity. Since then, an entire subarea of

research has developed to determine the best method of counting SLOC.” [Kemerer

1987] Logical and physical are the two primary methods of describing SLOC, although

pre-1992 references generally do not specify SLOC type. Logical SLOC counts only log-

ical statements in the software; Physical SLOC counts all but comments and blank lines.

[Parks 1992] Despite its longevity, SLOC is challenged by other size measures: Function

Points (FP), Object Points, Use Cases Points, Feature Points, Web Object Points, etc.

[Jones 2007] Actual counts can change depending on the invocation of an automated

code counter for identical source programs. [Reifer 2009] Automated code counters

work for only specific languages; other languages require manual counting.

34

Programming languages, by generation or type, can relate to software size. “Languages

impact both productivity and the amount of code that will be generated.” [Boehm, Abts,

Brown, Chulani, Clark, Horowitz, Madachy, Reifer and Steece 2000] Low- level lan-

guages take many more source code statements to perform operations than high-level

languages. [Gao and Lo 1994] There are currently five generations of languages from

low level (1st and 2nd generation) to high level (3rd generation and beyond). FORTRAN

and COBOL are example 3
rd

 generation languages (3GLs). SAS and Cold Fusion are

example 4
th

 generation languages (4GLs). The 5th generation languages (5GL) build

specified constraints via logic into the software development environment to allow and

disallow certain user-machine interactions. [http://e-words.us/w/5GL.html 2009] There

is debate as to whether 5GL exist. [http://www.it-director.com/content.php?cid=9096

2009] In addition to generational languages for general-purpose use, there are domain

languages for specific-purpose use. For instance, the domain language of Cold Fusion

Mark-up Language is akin to Hyper Text Mark-up Language (HTML), the difference be-

ing specialized server tags.

A rough conversion between two methods of counting source lines of code, logical

statements and physical lines of code is in the following table, based on NASA‟s Jet Pro-

pulsion Laboratory historical databases:

35

Table 2-3: Converting Software Size Estimates [http://software.gsfc.nasa.gov/docs/QSM-

class/Day%201-Cost/04a-Size.ppt 2009]

Language To Derive Logical SLOC

Assembly and Fortran Assume physical SLOC = Logical SLOC

Third-Generation Languages

(such as C, Cobol, Pascal, Ada 83)

Reduce physical SLOC by 25%

Fourth-Generation Languages

(such as SQL, Perl, Oracle)

Reduce physical SLOC by 40%

Object-oriented Languages

(such as Ada 95, C++, Java, Python)

Reduce physical SLOC by 30%

The next table illustrates the order of magnitude between the programming language‟s

generation and the average source lines of code per functionality represented by raw, un-

adjusted function points, a standardized count of data function type and the transactional

function type. This dissertation incorporated the preceding table and recent research on

converting non-commented source lines of code and physical lines of code to logical

statements to normalize the software size metric.

Table 2-4: Functionality versus Size by Programming Language Generation [Jones 2007]

PROGRAMMING LANGUAGE AVERAGE SLOC PER UFP

5GL default 5

4GL default 20

3GL default 80

2nd Generation default 107

1st Generation default 320

Machine language 640

36

Staff Size

Peter Norden depicted numbers of workers visually in a series of graphs representing the

Research and Development (R&D) phase manpower build-up and ramp-down. [Putnam

1980] The patterns in the graphs led him to experiment with Rayleigh probability distri-

bution parameters. After experimenting, he found parameters to fit the graphs. Putnam‟s

SLIM model and the COCOMO models use the Rayleigh distribution to estimate typical

labor build-ups and ramp-downs, while the more adaptive Gamma distribution may im-

prove predicted labor curves for less typical labor patterns and performed well for quick-

er labor build-ups. [Pillia and Nair 1997] Norden reports, “The purposes change

throughout the life of a project, and these changes characterize the effort cycles …The

cycles do not depend on the nature of work content of the project but seem to be a func-

tion of the way groups of engineers and scientists tackle complex technological develop-

ment problems. Each cycle can be described by a comparatively simple equation: y’ =

2Kate
-at^2

where y’ = manpower utilized each time period, K = total cumulative manpower

utilized by the end of the project, a = shape parameter (governing time to peak manpow-

er), t = elapsed time from start of cycle.” [Putnam 1980]

Mr. Putnam defined software state variables as follows: state of technology Cn or Ck; ap-

plied effort K; development time td; and independent variable time t. “The software eq-

uation relates the product to the state variables: … Ss = CkK
1/3

td
4/3

. The tradeoff law K =

C/td
4
 demonstrates the cost of trading development time for people.” [Putnam 1980] In-

37

dividual and team efforts vary according to the number of workers and the ability of the

team to partition the workload.

Pair Programming has become a best practice along with Mike Fagan‟s code inspections

[Nidiffer, 2006]. “Since software construction is inherently a systems effort – an exercise

in complex interrelationships – communication effort is great, and it quickly dominates

the decrease in individual task time brought about by partitioning. Adding more men

then lengthens, not shortens, the schedule.” [Brooks 1995] For group intercommunica-

tion channels, with n = number of communicating people, c = the number of lines of

communication required, can be calculated by the formula, c = . [Brooks 1995]

Large teams have a “very substantial impact on project productivity, thereby confirming

that compressing cycle time…comes at a substantial additional cost.” [Briand, El Emam

and Wieczorek 1999] This additional cost is likely due to the increase in group‟s com-

munications, the transmission of clear direction and instructions, and the understanding

of the technical and organizational processes needed to perform the intellectual work to

produce the software. In tandem with the increased group interaction channels, larger

teams appear to create more defects, resulting in substantial rework to fix them. [Armel

2006]

38

TruePlanning, from PRICE Systems, bounds staff size, as a user input, from the mini-

mum expected to the maximum. SLIM, from QSM Incorporated, requests peak staff as

an input. The staff‟s experience and continuity, rather than the expected number of staff,

are input variables in COCOMO II, Sage, and SEER-SEM. Staffing profiles are outputs,

with corresponding peak staffs, for the following software cost models: SLIM, TruePlan-

ning, Sage, KnowledgePLAN, and SEER-SEM.

COTS

Like any shared resource, using COTS requires planning and coordination to work well.

COTS products target a commercial market segment, and within that segment, offer op-

tions. That COTS components can fulfill a program‟s purpose is a coincidence. [Albert

and Brownsword 2002] “COTS components introduce „hard points‟ into the system ar-

chitecture before the system has been fully optimized and matured, resulting in the need

for non-COTS components to conform to COTS established interfaces.” [Sage 2005]

COTS components manifest vendor architecture design and paradigm assumptions as

well as end-user process assumptions. [Albert and Brownsword 2002] The following

terms describe COTS: white box, grey box, and black box software. A white box is

transparent as source code is visible and changeable. Open Source Software (OSS) is

white box. A grey box has the capability to interface with another component via its own

extension language or application programming interface (API). [Sage 2005] A black

box is opaque as source code is neither visible nor changeable. A black box is “where

only a binary executable form of the component is available and there is no extension

39

language or API.” [Sage 2005] Proposed variables for judging matches between software

architecture and component integration opportunities are: (1) packaging, (2) control, (3)

information flow, (4) synchronization, and (5) binding. [Yakimovich, Bieman and Basili

1999] „Packaging‟ refers to the use of independent programs, overlays, dynamic link li-

braries, or class libraries. „Control‟ refers to the type of automatic control mechanism:

allowing simultaneous multiple processes, centralizing control, or decentralizing control.

„Information flow‟ refers back „control‟ as processes or data may trigger the use of spe-

cific control mechanisms. „Synchronization‟ refers to concurrency: processes are either

asynchronous or synchronous. „Binding‟ can be static or dynamic. [Yakimovich, Bieman

and Basili 1999]

 “Our research indicates that the number of unique interfaces and the number of different

component systems are the two best factors for determining the size of the SOS [System

of Systems] effort.” [Minkiewicz 2006] In the planning for COCOSIMO, which stands

for the Cost of the System of Systems Model, proposed independent input variables relat-

ing to the cost of COTS are the number of unique component systems, the number of in-

terface protocols for the system to track and adhere to, and the number of independent

component system organizations. [Lane 2007] COCOTS uses the number of different

classes of COTS products being tailored as an input variable multiplied by the mean tai-

loring effort for all the classes of COTS products along with the tailoring complexity qua-

lifier to compute the total COTS product tailoring effort. [Abts 2004]

40

Earned Value Management System (EVMS)

The Earned Value Management System (EVMS) has lent itself to software project man-

agement in DoD. [Lipke 2002] EVMS is an integrated management tracking system of

the actual work scope against planned cost and schedule using three standardized metrics:

Actual Cost of Work Performed (ACWP), Budgeted Cost of Work Performed (BCWP),

and Budgeted Cost of Work Scheduled (BCWS). The actual work scope uses a Work

Breakdown Structure (WBS) for contractual work planning and control, where the con-

tractor can adjust the program‟s WBS into a contract-appropriate WBS called the Con-

tract WBS (CWBS), to crosswalk requirements from successively higher or lower WBS

or CWBS levels to higher or lower level design or reporting documents.

[http://guidebook.dcma.mil/79/evhelp/wbs.htm 2010]

A Cost Performance Index (CPI) is , the dollar value of work performed divided by

the work billed for a given time period. If the number is less than one, the project is over

budget by the percentage: . The percent spent is where BAC stands for

Budget at Completion representing the total amount negotiated for the contracted indi-

vidual delivery order. A Schedule Performance Index (SPI) is , the dollar value of

work performed divided by the work scheduled for a given time period. If this is less

than one, the project is behind schedule. If the fractional computation came to 0.80, the

41

project would be at 80% of the planned schedule or 20% behind. In this dissertation, I

use SPI and CPI, to represent cost and schedule performance in similar measurement

units.

Percent complete is which represents the dollar value of the work performed di-

vided by the total budgeted amount. The Cost Variance (CV) equals so

a negative CV means more money went towards the effort than was planned. [DCMA

2006] The Schedule Variance (SV) equals so a negative SV means

less work accomplished than planned, but it does not necessarily follow that the project is

behind. [DCMA 2006] A zero SV can mean the project is waiting to start or the project

proceeded to the plan.

Software Quality Metrics

Quality metrics for software development focus on three areas: the process, the people,

and the product. [Reifer 2002] The most common process model for software in DoD is

CMMI, though there are others, such as ISO-9000, a management quality standard in the

commercial marketplace. In software cost estimating, the proxy for personnel quality is

people‟s experience levels; people with higher levels of experience follow higher quality

processes and produce higher quality software. Product quality is an output in software

cost estimating models such as SLIM, KnowledgePLAN, and TruePlanning.

42

Quality could be determined by examining development products such as requirements,

plans, and expenditures-to-date. These could be documented requirements, requirements

traceability, code quality, documented test results (number of defects, priority of defect,

defect density, defect discovery rate, mean time between failures, time to fix defects, re-

work from defects, and escapes [defect fixes ahead of schedule]), quality assurance plans,

configuration management plans, and resources expended. Establishing a baseline soft-

ware project or set of projects allows qualitative and quantitative comparisons to the de-

velopment project. Desired product quality could be an input to the software cost esti-

mate, if such data is collected.

In an empirical study, where four contracts were let, there was a difference in effort ex-

pended, based on the input quality goals specified; where higher quality goals resulted in

larger effort. [Anda, Benestad and Hove 2005] Buggy software has been associated with

larger code sizes as well as larger staff sizes. [Armel 2006] Large software projects may

have “requirements errors, design errors, coding errors, user documentation errors, and

bad fixes...a bad fix is a failed attempt to repair a prior bug that accidently contains a new

bug.” [Jones 2005]

The Carnegie Mellon University‟s Software Engineering Institute (SEI) produced the

CMMI to rate a software engineer‟s process maturity level from the lowest score of zero

to the highest score of five. To judge the quality of the software development process, a

43

model titled Capability Maturity Model for Software (CMM or SW-CMM) was absorbed

into CMMI. Ratings for CMM expired as of January 1, 2008.

[http://www.sei.cmu.edu/cmmi/faq/comp-faq.html 2009] CMMI provides a process

model for improvement of software and systems engineering development practices. For

a CMMI rating, organizations begin with the appraisal reference model, follow a formal

and collaborative appraisal process, such as the Standard CMMI Appraisal Method for

Process Improvement (SCAMPI), involve management, focus on business objectives,

maintain confidentiality and non-attribution, and produce an appraisal the organization

can act upon to continue to improve in the area certified: Development, Service, or Ac-

quisition. [http://www.sei.cmu.edu/cmmi/adoption/pdf/cmmi-overview07.pdf 2009]

There are two structurally different CMMI process models: staged and continuous. For

the most part, information technology organizations follow the staged CMMI process.

[Yahya, Ahmad and Lee 2008]

DoD contracts with software developers and integrators at all CMMI maturity levels; and

“many DoD acquisition programs are including requests for CMMI maturity levels in re-

quests for proposals (RFPs) in spite of the fact that DoD has not promulgated policy re-

quiring adherence to a CMMI maturity rating.” [Schaeffer, Osiecki, Richter and Baldwin

2007]

44

Other Software Cost Estimating Inputs

The other inputs for software cost estimating are complexity, productivity, development

method, and life cycle phases. Complexity is an input in many software cost estimation

models and has been the subject of much research. Complexity may have a direct rela-

tionship with size, where greater complexity corresponds to greater code size. [Booch

1998; Zhao, Tan and Zhang 2003; Armel 2006] Productivity appears to have an inverse

relationship to quality, where higher productivity may result in lower software product

quality. [Davis 1995; Anda, Benestad and Hove 2005] Development methodologies can

pair with life cycle phasing methods. Often-used software development methods are wa-

terfall, spiral, evolutionary, and incremental; often-used life cycle phases in DoD are re-

search and development (including concept development, planning, designing, coding,

and testing), production and fielding, and operations and support. Subsequent sections of

the dissertation describe these inputs.

Complexity

“Because complexity obscures the perception and understanding of information cues, it is

believed to significantly degrade task performance.” [Banker, Davis and Slaughter 1998]

The COCOMO II model has an input variable, Product Complexity or CPLX. This vari-

able is “divided into five areas: control operations, computational operations, device-

dependent operations, data management, and user interface management operations.”

45

[Boehm, Abts, Brown, Chulani, Clark, Horowitz, Madachy, Reifer and Steece 2000] The

categorical scale for CPLX is very low, low, nominal, high, very high, and extra high.

Settings for this variable are subjective in selecting between categories. [Pfleeger, Wu

and Lewis 2005] The definition of complexity for software development and mainten-

ance is far from standardized. Complexity metrics to convert unadjusted function points

into adjusted function points, however, have remained the same for over twenty-five

years. [Ahmed, Bouktif, Serhani and Khalil 2008] In an attempt to clarify complexity, a

“complexity factor” in software development is system size itself. [Armel 2006] Joining

system complexity is algorithmic complexity, service software complexity, and database

software complexity. [Bennatan 2000] “A great deal more research is needed on all

forms of software complexity, and particularly on complexity associated with algorithms,

visualization, software requirements, specifications, test cases, and data complexity.”

[Jones 2007] High levels of complexity exist in large, complex, software-intensive DoD

programs.

In 2005, at the IEEE International Symposium of Empirical Software Engineering, Bente

Anda, Hans Christian Benestad and Siw Elisabeth Hove reported an interesting multiple-

case study on software effort estimation. [Anda, Benestad and Hove 2005] When mul-

tiple companies had the same functional specifications, used the same programming lan-

guages, had similarly talented workforces, but had different non-functional specifications

and used different development processes, actual effort variation was large. “The differ-

ences in the development process entailed different assumptions on the non-functional

46

requirements on the system with respect to the quality of the code…a heavier develop-

ment process with an increased emphasis on the quality of the code led to a large increase

in actual effort…supports previous results on the effect of complexity factors in similar

estimation methods.” [Lokan and Abran 1999]

Productivity

Productivity computations are implicit or explicit, depending on the method used. Aver-

age productivity calculations can misinform software estimates. “The best-producing

people can be 20 or more times better than the low-end group. A factor of more than

100:1 may separate programmers at the ends of the spectrum.” [Gruschke 2005] Produc-

tivity rates can decline from approximately 300 lines of code per month to 85, as the

project progresses. [Book 2001] The notion of “average-worker-productivity” discounts

the wide variance between a competent and incompetent programmer, logged at 28-to-1

for „Algebra‟ program debugging hours and 26-to-1 for „Maze‟ program debugging

hours. [Sackman, Erikson and Grant 1968] Size and number of components has an im-

pact on project productivity; blocks of existent code and multiple COTS packages slow

productivity as the team gains knowledge to build out an integrated product. [Abts 2004;

Salter 2001] Productivity is difficult to measure. Productivity metrics such as lines of

code per month rely upon the interpretation of the numerator and the denominator. A

programmer can be very competent in one setting, where he or she knows the program-

ming language, the domain of the application, the required functionality, the computing

environment, and the software components to integrate, and less competent in another.

47

Assuming programmer continuity, competence through learning behaviors may accom-

pany the next incremental change in languages, domains, requirements, environments, or

components.

Development Methods and Life Cycle Phases

The waterfall method is a formal development method, using measured, well-documented

processes. The waterfall process “forces the problem to fit the development cycle, rather

than the other way around.” [Miller, Paradis, and Whalen 1991] Different terms describe

different development methods. To support documentation-intensive processes, the hea-

vyweight waterfall process surpasses other methods. [Ikoma, Ooshima, Tanida, Oba, and

Sakai 2009] For staged contracts, where software deliveries tie into major milestones, a

staged approach bests the traditional waterfall approach. [Lott 1997] The spiral method

is iterative allowing for incorporation of feedback upon artifact delivery based on partial

specifications. According to the 2003 Bob Stump Authorization Act, the Secretary of

Defense can conduct major defense acquisition programs using the spiral method. The

2008 version of DoD 5000.02 states programs should practice evolutionary acquisition.

This is an offshoot of an approach using evolutionary acquisition with spiral development

(EA/SD) adopted by DoD after 2003. [Pagliano and O‟Rourke 2004] Evolutionary de-

velopment blends incremental deliveries into the whole software effort. Extreme Pro-

gramming, Agile methods, Rapid Application Development (RAD), and incremental me-

thods are other methods with their own vocabulary, instructions, and followers. While

different development methods are well documented, “almost any non-trivial project or

48

organization must combine technique, common sense, and domain experience.” [Royce

2005] Detail on development methods and on life cycle phases is in Appendix C.

Software Cost Estimating Accuracy

To determine a cost estimating relationship‟s accuracy: predicted values should be gener-

ated and compared to actual values; a validation technique should be chosen, defended,

and used; and information should be provided on the data set. [Mair and Shepperd 2004]

The types and amounts of input data dictate the types of possible cost analyses. Measur-

ing the presence or absence of a characteristic provides some information about that cha-

racteristic. Measuring the magnitude of the characteristic provides more information.

“The accuracy of COCOMO II allows its users to estimate within 30 percent of actuals,

74 percent of the time. This level of unpredictability in the outcome of a software devel-

opment process should be truly frightening to any software project investor.” [Reifer

2002] Early software cost estimates within plus or minus 30 percent of the actual cost are

successful per Bernard Londeix in Cost Estimating for Software Development, published

by the Addison-Wesley Publishing Company in New York in 1987. [Mertes 1996] In

1981, Robert Thibodeau published a General Research Corporation paper titled “An

Evaluation of Software Cost Estimating Models” reporting model calibration to an organ-

49

ization‟s historical data can improve software cost model accuracy by a factor of five

[Mertes 1996].

To figure out how accurate you are, you need metrics. “Stevens (e.g., 1968) developed

the concept of scales of measurement.” [Neale and Liebert 1986] Scales are nominal,

ordinal, binary, interval, and ratio. Nominal values can be equal or unequal. Preferences

are nominal values: FORTRAN can be preferred to Pascal and logical sizing can be pre-

ferred to physical. Ordinal values can be equal, unequal, less than, greater than, and

ranked from lowest to highest. Binary values equal 1 or 0. Interval values have the same

properties as ordinal and distance from one interval to the next is the same for all values

so addition and subtraction are possible. Ratio values permit all mathematical operations.

A ratio scale has a true zero point, meaning a complete absence of the measured characte-

ristic. While scale is important, “it will usually be necessary or desirable to describe the

set of observations numerically.” [Neale and Liebert 1986] Categorical input data causes

problems in the creation of regression models, as ordinary least squares performs best

when the variables‟ values are numeric and of similar magnitudes. [Angelis, Stamelos

and Morisio 2001] The authors suggest binary (on-off) variables or subjective quantifica-

tion of categorical values for building models for datasets with few numeric fields. They

produced “only one possible statistical cost model using a subset of the [International

Software Benchmarking Standards Group‟s project repository, release 6] database.” [An-

gelis, Stamelos and Morisio 2001] A common problem in data sets is input variables

50

skew toward few fixed values, rather than spreading out across the range. [Angelis, Sta-

melos and Morisio 2001]

In software cost estimating, Cost Estimating Relationships (CERs) generally follow the

form of „Yj = f(xj, β)εj for j = 1,…n‟ where:

 n is the sample size

Yj is the observed cost of the jth data point

f(xj, β)εj is the result of the experimental CER

β is the vector of coefficients estimated by the CER

xj is the vector of cost driver input variables, and

εj is a multiplicative error term with a mean of 1 and variance of σ
2
 [SAF 2007]

To transform εj into a normal distribution, with mean of 0 and variance of σ
2
, use the

formula: j . “Regardless of what method is used to generate the CER, it is

very important that the user of the CER is aware of the CER result meaning and how the

error should be modeled.” [SAF 2007]

One recommended way to improve accuracy of software cost models is to calibrate the

model to the organization‟s historical data, assuming the organization has it. From past

research in published theses from the Air Force Institute of Technology, calibration has

51

mixed success. "Even after the software cost models are calibrated to DoD databases,

most have been shown to be accurate to within only 25 percent of actual cost or schedule

about half the time…Without a holdout sample, the predictive accuracy of the model is

probably overstated. Since all new projects are outside of the historical database(s), vali-

dation is much more meaningful than the more common practice of analyzing within-

database performance." [Ferens and Christensen 2000] A table describing accuracy me-

trics found in the literature is in Appendix G. The table below highlights the accuracy

metrics in this dissertation.

Table 2-5: Industry-Standard Accuracy Metrics [Jalali 2008; Conte, Dunsmore and Shen

1986]

Measure Description Meaning

Relative

Error (RE)

On the numerator, actual value minus

predicted value, all divided by actual

value (for each predicted value)

RE can be positive or negative. If RE is nega-

tive, it can go to negative infinity. If RE is

positive, it cannot exceed a value of one. If

RE is zero, the predicted value equals the ac-

tual value.

Magnitude

of the

Relative

Error

(MRE)

The absolute value of RE

MRE can only be positive. The lower the

MRE, the better the prediction; higher MRE

means a worse prediction. If MRE is zero, the

prediction equals the actual value.

Mean

Magnitude

of the

Relative

Error

(MMRE)

The sum of all the individual MRE

values divided by n, the number of

values calculated

Generally, smaller MMRE positive values

represent better overall agreement in predicted

and actual values. However, small MMRE

values could mask one or more large deltas.

An industry standard is MMRE ≤ 0.25 and is

"acceptable for effort prediction" [Conte,

Dunsmore and Shen 1986]

52

Measure Description Meaning

Prediction

at Level L

or l

(PRED(L)

or

PRED(l))

In a set of n projects, a value, k, is the

number of projects whose MRE ≤ l, so

PRED(l) equals k divided by n; l is

number less than 1.0 whereas L is a

percentage

For PRED(l) = k/n, the k/n ratio of predicted

values are within l percentage of actual val-

ues. The accepted industry standard is

PRED(0.25) ≥ 0.75 [Conte, Dunsmore and

Shen 1986]

S. D. Conte, H. E. Dunsmore, and V. Y. Shen suggest PRED and MMRE thresholds for

prediction accuracy. [Mertes 1996; Morgan 1997; Wieczorek and Ruhe 2002] Other

measures do not enjoy this citing repetition in the literature. Researchers referencing the

COCOMO model suite have reported MMRE and PRED levels from 1981 through 2009.

[Boehm 1981; Kemerer 1987; Smith 1998; Reifer 2002; Abts 2004; Valerdi 2005; Shen

2008; Fortune 2009]

Risk and Uncertainty

Treating risk and uncertainty explicitly is a standard practice in software cost estimation.

Risk is the chance of an outcome being harmful or damaging; uncertainty is the chance of

any possible outcome defined probabilistically. This quote from Cornelius Keating is

worth repeating: “Risk is the unwanted subset of a set of uncertain outcomes”.

[http://dissertations.ub.rug.nl/FILES/faculties/rw/2009/x.c.mandri.perrot/06c6.pdf 2010]

The risk of over- or under-estimating software effort or duration can harm the project,

53

perhaps irreparably, causing resources to be misdirected. The uncertainty in the estimate

should reflect all the inputs‟ uncertainties.

The currency and applicability of historical data varies by application and by time. Data

collection mores change, interpretations change, and even definitions change. Static and

dynamic factors plague comparability of historical data to contemporary programs. Dis-

covering completed, comparable programs to use as the basis of cost analytic methods is

complicated by the situation of “the analyst is all too often in the world of extremely

small samples.” [Fisher 1970] Even with large samples, there can be problems. “We can

assemble big pieces of information and little pieces, but we can never get all the pieces

together. We never know for sure how good our sample is. That uncertainty is what

makes arriving at judgments so difficult and acting on them so risky.” [Bernstein 1996]

Further discussion on risk and uncertainty is in Appendix D.

By pairing initially estimated parameters with final, actually performed effort hours at the

two highest CMMI levels, the risk of waiting until future projects are finished to gather

actual parameter to relate to actual effort disappears. Further, the risk of applying a

growth factor to the initially estimated software size to estimate final size and then use a

software cost estimating relationship is avoided because this presumed growth (or shrin-

kage as the case may be) is embedded in the relationship between the initially estimated

parameters and the final, reported effort.

54

DoD Major Acquisition Programs

Figure 4: Literature Map (Level 2 - Major Acquisition Programs)

Large, software-intensive programs start out or become Major Defense Acquisition Pro-

grams (MDAP), Major Automated Information Systems (MAIS), or both. MDAP and

MAIS acquisition plans and program activities meet or exceed dollar thresholds set in

Title 10, United States Code. MDAP is depicted as Acquisition Category (ACAT) I,

whereas MAIS is depicted as ACAT IA. The designations specify the Milestone Deci-

sion Authority (MDA). ACAT ID and ACAT IAM mean DoD is the MDA; ACAT IC

55

and ACAT IAC mean the Component is the MDA. A component can be a separate

Armed Service (e.g., the Air Force, Navy, or Army), or a DoD agency (e.g., Defense Lo-

gistics Agency (DLA) or Defense Information Systems Agency (DISA)). The following

table provides more detail.

Table 2-6: Description and Decision Authority for Acquisition Category (ACAT) I Pro-

grams [DoDI 5000.02, Enclosure 3, Table 1 2008]

For the most part, MDAP programs result in a tangible product whereas MAIS programs

result in an intangible service. [Jones 2009] These different programs are usually inter-

dependent.

Acquisition

Category
Reason for ACAT Designation Decision Authority

ACAT I MDAP (section 2430 of Title 10, United States Code)

o Dollar value: estimated by the USD(AT&L) to require an eventual total

expenditure for research, development, test and evaluation (RDT&E) of more than

$365 million in fiscal year (FY) 2000 constant dollars or, for procurement, of

more than $2.190 billion in FY 2000 constant dollars

o MDA designation

 MDA designation as special interest

ACAT ID:

USD(AT&L)

ACAT IC: Head of the

DoD Component or, if

delegated, the CAE (not

further delegable)

ACAT IA1, 2 MAIS (Chapter 144A of Title 10, United States Code): A DoD acquisition

program for an Automated Information System3 (either as a product or a service)

that is either:

o Designated by the MDA as a MAIS; or

o Estimated to exceed:

 $32 million in FY 2000 constant dollars for all expenditures, for all in-

crements, regardless of the appropriation or fund source, directly related to the

AIS definition, design, development, and deployment, and incurred in any single

fiscal year; or

 $126 million in FY 2000 constant dollars for all expenditures, for all

increments, regardless of the appropriation or fund source, directly related to the

AIS definition, design, development, and deployment, and incurred from the be-

ginning of the Materiel Solution Analysis Phase through deployment at all sites;

or

 $378 million in FY 2000 constant dollars for all expenditures, for all

increments, regardless of the appropriation or fund source, directly related to the

AIS definition, design, development, deployment, operations and maintenance,

and incurred from the beginning of the Materiel Solution Analysis Phase through

sustainment for the estimated useful life of the system.

 MDA designation as special interest

ACAT IAM:

USD(AT&L) or desig-

nee

ACAT IAC: Head of the

DoD Component or, if

delegated, the CAE (not

further delegable)

56

DoDI 5000.04-M-1, Cost and Software Data Reporting Policy, dated April 18, 2007, lays

out reporting requirements for software-intensive major DoD programs. Cost reports

track contractor activities. Software reports collect data on the software activities, com-

ponents, peak staff, and processes. Although Congress authorized spiral development for

MDAP research and development, via Section 803 of Public Law 107-314, in 2003; in

December 2008, the newly published instruction, DoDI 5000.02, encouraged evolutio-

nary development. A significant difference between spiral and evolutionary development

is the scheduled delivery, under evolutionary development, of fully functional software.

Under spiral development, iterative conceptual prototypes aid communications and un-

derstandings between developers and users as the system progresses through design to

coding and testing. In both development methods, a series of deliveries make up the

whole; the difference is the intention in evolutionary development of independent, stand-

alone deliveries vice interdependent, iterative deliveries in spiral development.

For MDAP, MAIS, pre-MDAP, and pre-MAIS programs or for ACAT I, ACATI IA, pre-

ACAT I, and pre-ACAT IA programs, the Contractor Cost Data Report (CCDR) and the

Software Resources Data Report (SRDR) fall under the umbrella of Cost and Software

Data Reporting (CSDR). The CCDR dollar threshold is fifty million dollars; the SRDR

dollar threshold is twenty million dollars. These thresholds are in then-year or current-

year dollars. The table outlines the regulatory contract reporting requirements, as well as

the timing of the submissions of these reports, in the DoD manual, DoD 5000.04-M-1.

57

Table 2-7: DoD Regulatory Contract Reporting Requirements [DoD 5000.04-M-1 2007]

REPORT REQUIRED WHEN REQUIRED

Contractor Cost Data Report (CCDR) All major contracts1 and subcontracts, regardless of contract type, for

ACAT I and IA programs and pre-MDAP and pre-MAIS programs subse-

quent to Milestone A approval, valued at more than $502 million (then-year

dollars)

 Not required for contracts priced below $20 million (then-year dollars)

 The CCDR requirement on high-risk or high-technical-interest contracts

priced between $20 and $50 million is left to the discretion of the DoD PM

with approval by the Chair, CAIG

 Not required under the following conditions provided the DoD Program

Manager (PM) requests and obtains approval for a reporting waiver from

the Chair, CAIG: procurement of commercial systems or for non-

commercial systems bought under competitively awarded, firm fixed-price

contracts, as long as competitive conditions continue to exist.

Software Resources Data Report (SRDR) All major contracts and subcontracts, regardless of contract type, for con-

tractors developing/producing software elements within ACAT I and IA

programs and pre-MDAP and pre-MAIS programs subsequent to Milestone

A approval for any software development element with a projected soft-

ware effort greater than $20M (then-year dollars).

 The SRDR requirement on high-risk or high-technical-interest contracts

priced below $20 million is left to the discretion of the DoD PM with ap-

proval by the Chair, CAIG.

Notes:

1. For CSDR purposes, the term “contract” (or “subcontract”) may refer to the entire standalone contract, to a specific

task/delivery order, to a series of task/delivery orders, to a contract line item number, or to a series of line item numbers within a

contract. The intent is to capture data on contractual efforts necessary for cost estimating purposes irrespective of the particular

contract vehicle used.

2. For CSDR purposes, contract value shall represent the estimated price at contract completion (i.e., initial contract award plus

all expected authorized contract changes) and be based on the assumption that all contract options shall be exercised.

All programs meeting these thresholds require a Contractor Cost and Data Report

(CCDR) for new, deleted, and changed contracts and subcontracts. A Contract WBS

(CWBS) should follow guidelines in MIL-HDBK 881A, with a mapping or translation to

the Program Office WBS. Linked to the CWBS, contractors submit a Software Re-

sources Data Report (SRDR), with a companion data dictionary, at the beginning and the

end of each contracted activity or delivery order. In the SRDR, contractors list the COTS

58

products used during the course of their activities. In the data dictionary, contractors de-

scribe how they interpreted the SRDR reporting requirements and how they defined their

terms.

DoD online data sources available for cost analysts are the Defense Acquisition Man-

agement Information Retrieval (DAMIR) and Defense Acquisition Automated Cost In-

formation System (DACIMS) systems. The DAMIR site, at

http://www.acq.osd.mil/damir/, is sponsored by OUSD/AT&L and Acquisition Resources

and Analysis (ARA). DAMIR holds the following: Selected Acquisition Reports

(SARs), MAIS Acquisition Reports (MARs), Defense Acquisition Executive Summary

(DAES) reports, MAIS Quarterly Reports (MQRs), Acquisition Program Baselines

(APBs), and Earned Value Management System (EVMS) data. As program baselines

change, new ABPs are added to DAMIR. The DACIMS site, at

https://ders.dcarc.pae.osd.mil/DACIMS/Pages/Index.asp, is sponsored by the Defense

Cost and Resource Center (DCARC), formerly known as the Contractor Cost Data Re-

port (CCDR) Project Office (CCDR-PO). DCARC belongs to the Office of the Secretary

of Defense (OSD) Cost Assessment and Program Evaluation (CAPE) organization. DA-

CIMS contains CCDR reports, SRDR reports, and companion documentation such as

Contractor Work Breakdown Structure (CWBS) descriptions and SRDR data dictiona-

ries. SRDR submissions follow instructions in the Data Item Description (DID) from DI-

MGMT-81739 for the Initial Developer Report and in the DID from DI-MGMT-81740

http://www.acq.osd.mil/damir/
https://ders.dcarc.pae.osd.mil/DACIMS/Pages/Index.asp

59

for the Final Developer Report.

[http://dcarc.pae.osd.mil/Policy/CSDR/csdrReporting.aspx 2009]

Status Reporting

DoD guidelines for collecting EVMS data provided the foundation for American Nation-

al Standards Institute/Electronic Industries Alliance Standard ANSI/EIA-748. Contractor

EVMS reports link funds allocated and expended with work performed, based on the

CWBS. As the contractor progresses, the government gets periodic reports, explicitly

relating BCWP, ACWP, BCWS, and Estimate at Completion (EAC). With these metrics,

the contractor and the government can compute the cost and schedule variance along with

other performance indices using standard EVMS formulas. [DCMA 2006]

The two main WBS structures relevant to DoD cost analysis are the program‟s WBS and

the CWBS. MIL-STD-881-A as of July 30, 2005, provides guidance for program WBS.

In the Air Force Cost Analysis Agency, WBS sub-levels correspond to the three main

appropriation categories: Research and Development (R&D), Procurement (PROC), and

Operations and Support (O&S). Level 1 for the entire program scope; Level 2 for major

subordinate elements such as R&D (including system engineering), PROC, and O&S;

and Level 3 for elements below Level 2 such as software. “Within the scope of the WBS,

the contractor has the flexibility to use the work breakdown elements to support on-going

management activities. These may include EVM, cost estimating, and managing contract

funds.” [MIL-HDBK-881A 2005] The WBS organizes cost reporting in the Contract

http://dcarc.pae.osd.mil/Policy/CSDR/csdrReporting.aspx

60

Funds Status Report (CFSR), the Contractor Cost Data Report (CCDR), and the Contract

Performance Report (CPR). The WBS and CWBS establish interrelationships between

funding requirements, cost reports, and EVM data.

Figure 5: WBS support of CFSR, CPR, and CCDR [Cloos 2006]

Software Resources Data Report (SRDR) records, a component of the CSDR along with

Contractor Cost Data Report (CCDR) records, record programming languages used in

software development with Off-the-Shelf (OTS), including Commercial-Off-The-Shelf

(COTS) and Government-Off-The-Shelf (GOTS), or Government-Furnished-Software

(GFS). Designated elements are available in these reports. A table of the data elements

to report is in Appendix F.

61

There have been attempts to normalize the SRDR data for records denoting logical SLOC

counts [Jensen and Dupaix 2008], to generalize productivity factors and CER equations

in SRDR data by platforms or contractors [Popp 2008], and to evaluate CCDR data for

cost and schedule overruns [Selby, Hafen, Mink, Nicol, Flowe, Lile and Gold 2007].

SRDRs are based on historical program execution and provide various means to partition

the data sets for analysis. One way to partition is by application type. Application types

detailed in the SRDR reporting instructions come to a total of seventeen, with two to se-

venteen sub-types, adding up to a grand total of 119. In other literature, application types

vary from two (recoded as low or high) up to thirty-two, if four operating environments

combine with eight application domains. [Angelis, Stamelos and Morisio 2001;Gaylek,

Long, Bell, Hsu and Larso 2004; Long and Lucas 1996] Although MIL-HDBK-881A

allows for eight common elements for hardware and software combinations of weapon

systems, SRDR allows for seventeen. The eight MIL-HDBK-881A elements are: (a)

Aircraft System; (b) Electronic / Automated Software System; (c) Missile System; (d)

Ordnance System; (e) Sea System; (f) Space System; (g) Surface Vehicle system; and (h)

Unmanned Air Vehicle. Most SRDR entries are under (b) Electronic / Automated Soft-

ware System. The MIL-HDBK-881A and SRDR instructions underscore the lack of

standardized application types in software reporting.

62

“The lack of definitions for application type creates an open interpretation by both the

data submitter and the user”. [Jensen and Dupaix 2008] This lack of definition and stan-

dardization affects the analysis of software performance and of software estimation.

“Software development practitioners do not have a chance of operating with socially re-

fined and unified size measures.” [Gencel and Demirors 2008] Size metrics, complexity

metrics, productivity metrics, and progress metrics, aside from the internationally stan-

dardized EVMS metrics, are up for interpretation by the data submitter and the user. Al-

though the SRDR submissions include data dictionaries, the quality and usefulness of

these dictionaries rely on the producer‟s skill and the user‟s interpretation.

In addition to the lack of commonality in application types, it is common for fields to be

missing data. Missing data can be treated by imputation or by removal of the record.

Techniques such as listwise deletion [removing an entire column of data having missing

values], mean imputation [filling in missing values with the mean for that variable], and

hot-deck imputation [filling in missing values from another observation using closest dis-

tance or Mean Absolute Deviation] are three common imputation techniques. [Strike, El

Eman and Madhavji 2001] Methods should match the data. Recently, the following im-

putation techniques have been explored: decision tree single imputation, k-Nearest

neighbor single imputation, mean or mode single imputation, expectation-maximization

single imputation, expectation-maximization multiple imputation, 'fractioning' cases, and

surrogate variable splitting. [Twala, Cartwright and Shepperd 2005] In the Software Da-

63

tabase established in 1983, out of approximately 2600 data points, only 318 data points

reported effort and schedule. [Long and Lucas 1996]

For the SRDR data from 2003 to 2008, there were five programs at CMMI Level 4 and

eight at CMMI Level 5. All the CMMI Level 4 programs reported EVM metrics. There

were two contractors at CMMI Level 5 with missing EVM metrics, omitted from this da-

ta analysis, per my dissertation committee‟s direction.

Data Profile

Of the thirty-four records representing the data set of five programs reporting CMMI

Level 4 in the final SRDR, twenty-five belonged to a single program. Of the thirty

records representing the data set of eight programs reporting CMMI Level 5 in the final

SRDR, eight belonged to a single program.

CMMI Level 4 development processes were reported as follows: twenty-five, waterfall;

five, spiral; two, Rapid Application Development (RAD); and one, Incremental. CMMI

Level 5 development processes were more varied: ten reported using the waterfall devel-

opment process; nine, iterative; six, spiral; and the remainder were Modified Rational

Unified Process (RUP), Incremental, and Evolutionary.

CMMI Level 4 records had the same or similar primary programming languages: C,

C/C++, C++, and Ansi C. CMMI Level 5 records had varied primary programming lan-

64

guages. Contractors at CMMI Level 5 used C, C++, C#, Ada, Ada-95, and Java as their

primary language. Use of other languages in addition to a primary language was com-

mon for both CMMI level data sets.

65

3. Research Methodology

To determine whether the recently collected DoD data fulfills its intended purpose to im-

prove software cost estimating, my research followed a step-by-step process. Data analy-

sis, including statistical visualization of the relationships between initial estimated soft-

ware parameters and final effort hours, focused on highly correlated initial parameters to

final effort hours to derive DoD cost estimating relationships (CERs) using ex post facto

analysis of secondary data sets. Software task records, for the two highest maturity rated

contractors at CMMI Levels 4 and 5, along with the Earned Value program records con-

tain potential independent variables with final software effort hours as the dependent va-

riable. After CERs were derived using ordinary least squares (OLS) regression, statistical

visualization of the residuals ascertained their distribution. For each CER, I computed

accuracy metrics considered „standard‟ in SCE.

The method of linear and log-linear regression is “a mathematical optimization technique

used to find the „best linear fit‟ to a set of data” where either the “error is assumed to be a

fixed, additive value”, normally distributed about the CER linear fit or “a multiplicative

error term” for „Yj = f(xj, β)εj for j = 1,…n‟. [SAF 2007]

66

Statistical tests check the validity of the assumptions. These assumptions are the sample

represents the population, the predicted dependent variables have normal distributions

with identical standard deviations about the regression line, and the predicted dependent

variables are independent of each other. [Sanders 1990] In multivariate regression, for

each independent variable, the t-test can check whether that variable adds value. The null

hypothesis is the variable does not add value or the slope of the variable‟s coefficient is

zero. If the slope is zero, the variable may be redundant. While the t-test measures the

effect of single independent variables, the partial F-test measures the effect of sets of in-

dependent variables, and the F-test measures all independent variables (i.e., with the null

hypothesis that all the slopes equal zero). Since residuals are deviations from the fitted

values, the process of identifying data structures, generating a distribution „fit‟, and ex-

amining residuals is statistical analysis. The residual-fit spread plot compares the “spread

of the fitted value with the spread of the residuals…Data that are skewed toward large

values occur commonly”. [Cleveland 1993] Monotone spread means spread increases

with location or higher values have more spread.

Skewed values and monotone spread complicate data analysis and are typically found in

software cost data, including the DoD data. After transforming a data set to handle out-

liers, formal statistical rules allow the user to measure the fit on the both the transformed

and original data scales. [Lurie 2006] If a prediction uses a transformed scale, statistical

procedures can handle retransformation bias. [Lurie 2006] When the CER has a multip-

licative form, such as „a*Var1
b
*Var2

c
*…*ε‟, transforming it using logarithms makes it

67

linear, and the unit space error term follows a lognormal distribution. “Log-linear models

are in a very common and distinct class of non-linear relationships that are rendered li-

near when transformed into log-space.” [SAF 2007]

I created three distinct and non-overlapping application area subsets to categorize the data

within each CMMI level: system, support, and user. Descriptions of these application

areas follow:

- Signal processing, operating system augmentation, missile computers, flight

control, radar control and identification, and space payload represent system applications.

- Mission application, mission planning, and test programs represent support ap-

plications.

- Display and control, simulators, external communications, information man-

agement, network management, and architecture systems represent user-interaction appli-

cations.

By hypothesizing and probing relationships, this ex post facto analysis offers “simu-

late[d] experimental procedures by matching subjects who have with those who have not

received some „natural manipulation‟ on factors that might have been relevant before the

time of the study…in the comparison…(matched after the fact, rather than at the outset,

hence ex post facto)”. [Neale and Liebert 1986] Three research hypotheses were:

68

 H1: Early prediction of software effort hours is possible using CERs based

on data available without knowing contractor in advance

 H2: Splitting out data by application areas and by process maturity level

improves CER accuracy

 H3: EVMS metrics as independent variables improve CER accurcy

The following figure summarizes possible relationships in the data sets for effort:

Figure 6: Methodology

69

I analyzed these variables using Pearson and Spearman Rank correlation matrices to de-

termine relationships among the data sets. I identified potential independent variables

using correlation. I generated regression CER equations and checked the returned values.

If „Adjusted R2‟ was greater than 0.55, I checked whether the addition of EVMS metrics

improved the CER accuracy and whether the residuals behaved as they should, using sta-

tistical visualization in the OSS tool at http://www.r-project.org/ called The R Project for

Statistical Computing. I calculated the Mean Magnitude of Relative Error (MMRE), the

average of the Magnitude of Relative Error (MRE) for each record, and PRED(25), the

number of records with MRE ≤ 0.25, along with PRED(30), the number of records with

MRE ≤ 0.30, for each CER generated.

http://www.r-project.org/

70

4. Research Results

Dr. Daniel Carr‟s R scripts from his courses and advice from the George Mason Statistic-

al Consulting Center steered my statistical analyses. [Carr 2007; Sutton 2010] Of the

Earned Value metrics investigated, I chose Schedule Performance Index (SPI) and the

Cost Performance Index (CPI), with values from -1.0 to +1.0 across programs. Possible

independent variables were peak staff, estimated hours, software size, software require-

ments, number of COTS programs, and experience level percentage (i.e., percent of staff

that was highly experienced, nominally experienced, and entry-level).

Software size measures used different scales. As software counting type, such as physi-

cal, logical, and non-commented source, affects resulting size, the conversion ratios pro-

posed by NASA to derive logical SLOC from physical (and related non-commented)

SLOC by primary programming and secondary language was used to normalize the initial

code sizes as much as possible. [http://software.gsfc.nasa.gov/docs/QSM-

class/Day%201-Cost/04a-Size.ppt 2009] Combining programming languages affects

software size and resulting effort to create and modify interconnected modules. [Vouk

1984]

71

CMMI Level 4 had two programs with one language, twenty-nine programs with two

languages, and three programs with more than two languages; and CMMI Level 5 had

eleven programs with one language, seventeen with two languages, and two programs

with more than two languages. Software size counts from an automatic counter are not

necessarily stable; multiple runs produce different counts. [Reifer 2009] COTS package

code does not count in calculations of software size. Counted unmodified code should

only be existent code from prior industry software efforts. Effective source lines of code

formulas vary by the percentages assigned to modified and unmodified lines of code.

The lowest possible software size count assigns zero percent to modified and unmodified

lines; the largest possible assigns one hundred percent to modified and unmodified. [Gal-

lo, Koza, Holzman, and Hardin 2008] To bound software size, I used the lowest possible

software size and the highest possible, called new source lines of code in thousands

(KNEW) and total source lines of code in thousands (KSLOC).

The code count used in this dissertation was Logical Statements (LS) from Non-

commented source lines of code, Physical, or other. CMMI Level 5 started with fifteen

LS, four physical LOC, ten non-commented source LOC, and one effective LOC. CMMI

Level 4 started with eight LS and twenty-six physical LOC. Translation to LS used tables

from http://software.gsfc.nasa.gov/docs/QSM-class/Day%201-Cost/04a-Size.ppt (Table

2-3) and the 24th International Forum on COCOMO and Systems/Software Cost Model-

ing, in November 2009, at

http://csse.usc.edu/csse/event/2009/COCOMO/presentations/Workshop%20Summary%2

http://software.gsfc.nasa.gov/docs/QSM-class/Day%201-Cost/04a-Size.ppt
http://csse.usc.edu/csse/event/2009/COCOMO/presentations/Workshop%20Summary%20-%20Metrics%20Unification%20&%20Productivity%20Domains.ppt

72

0-%20Metrics%20Unification%20&%20Productivity%20Domains.ppt, both accessed on

February 28, 2010.

For multivariate regression to work well, the data should be in similar measurement units,

scaled correspondingly. [Carr 2007] Therefore, software sizes and effort hours divided

by one thousand provided similar measurement units to the other data. To avoid multi-

collinearity, Pearson correlation analysis tested for linear relationships and Spearman

rank correlation analysis tested for monotone relationships. [Sutton 2010] These correla-

tions by CMMI levels are shown below, where EstHrsK stands for Estimated Hours in

Thousands (K), EstPstaff stands for Estimated Peak Staff, KNEW or EstInitNewCodeK

stands for thousands of estimated new source lines of code, and KSLOC stands for thou-

sands of estimated lines of source lines of code.

 Table 4-1: Pearson Correlation for both CMMI levels

The preceding table shows much stronger relationships for CMMI Level 4 among the in-

dependent variables and between the possible independent variables and the dependent

variable than for CMMI Level 5. Peak staff for both levels correlates linearly to final ef-

PEARSON -

LEVEL 5 E
s
tH

rs
K

E
s
tP

s
ta

ff

K
N

E
W

K
S

L
O

C

A
c
tH

rs
K

PEARSON

LEVEL 4 E
s
tH

rs
K

E
s
tP

s
ta

ff

K
N

E
W

K
S

L
O

C

A
c
tH

rs
K

EstHrsK 1 0.61 0.42 0.25 0.65 EstHrsK 1 0.96 0.94 0.99 0.97

EstPstaff 1 0.40 0.65 0.79 EstPstaff 1 0.92 0.96 0.98

KNEW 1 0.37 0.51 KNEW 1 0.92 0.93

KSLOC 1 0.71 KSLOC 1 0.96

ActHrsK 1 ActHrsK 1

73

fort hours and to KSLOC. KSLOC for both also correlates to final effort hours as does

estimated hours. KNEW has a weaker correlation to final effort hours for CMMI Level 5

than for CMMI Level 4.

Table 4-2: Spearman Rank Correlation for both CMMI levels

For both levels, there is a monotone relationship between final, actual effort hours and

initial, estimated effort hours. For both, peak staff relates monotonically also. The mo-

notone relationship is stronger for KNEW to final effort hours than for KSLOC to final

effort hours in CMMI Level 4 and stronger for KSLOC than KNEW in CMMI Level 5.

Table 4-3: Pearson Correlation for the User Application Area Subsets

SPEARMAN -

LEVEL 5 E
s
tH

rs
K

E
s
tP

s
ta

ff

K
N

E
W

K
S

L
O

C

A
c
tH

rs
K

SPEARMAN

LEVEL 4 E
s
tH

rs
K

E
s
tP

s
ta

ff

K
N

E
W

K
S

L
O

C

A
c
tH

rs
K

EstHrsK 1 0.66 0.76 0.65 0.79 EstHrsK 1 0.57 0.63 0.55 0.93

EstPstaff 1 0.71 0.79 0.82 EstPstaff 1 0.50 0.71 0.65

KNEW 1 0.78 0.77 KNEW 1 0.74 0.71

KSLOC 1 0.78 KSLOC 1 0.66

ActHrsK 1 ActHrsK 1

PEARSON -

LEVEL 5 USER

APPLICATION

AREA E
s
tH

rs
K

E
s
tP

s
ta

ff

K
N

E
W

K
S

L
O

C

A
c
tH

rs
K

PEARSON -

LEVEL 4 USER

APPLICATION

AREA E
s
tH

rs
K

E
s
tP

s
ta

ff

K
N

E
W

K
S

L
O

C

A
c
tH

rs
K

EstHrsK 1 0.51 0.14 0.01 0.72 EstHrsK 1 0.98 1.00 0.99 0.98

EstPstaff 1 0.32 0.50 0.90 EstPstaff 1 0.97 0.97 1.00

KNEW 1 0.36 0.52 KNEW 1 1.00 0.97

KSLOC 1 0.51 KSLOC 1 0.97

ActHrsK 1 ActHrsK 1

74

For the user application subsets, peak staff has the highest correlation to final effort hours

and estimated hours the next highest correlation to final effort hours for both CMMI le-

vels. For CMMI Level 4, the software sizes and estimated hours relate linearly to initial,

estimated peak staff and to final effort hours. For CMMI Level 5, software size does not

strongly correlate linearly to initial, estimated peak staff or to final effort hours.

Table 4-4: Spearman Rank Correlation of User Application Area Subsets

Monotonic relationships exist for the user application area‟s peak staff to final effort

hours, for software size to final effort hours, and for estimated hours to final effort hours

in both CMMI levels. For CMMI Level 4, the strongest correlation is between estimated

and final effort hours and between new and total source lines of code, indicating that

KNEW equals KSLOC. For CMMI Level 5, the weak correlation between KNEW and

KSLOC indicates that KNEW is not equal to KSLOC. Estimated hours monotonically

correlate to KNEW in both CMMI levels.

SPEARMAN -

LEVEL 5 USER

APPLICATION

AREA E
s
tH

rs
K

E
s
tP

s
ta

ff

K
N

E
W

K
S

L
O

C

A
c
tH

rs
K

SPEARMAN -

LEVEL 4 USER

APPLICATION

AREA E
s
tH

rs
K

E
s
tP

s
ta

ff

K
N

E
W

K
S

L
O

C

A
c
tH

rs
K

EstHrsK 1 0.33 0.68 0.15 0.62 EstHrsK 1 0.91 0.98 0.98 1.00

EstPstaff 1 0.45 0.55 0.85 EstPstaff 1 0.92 0.92 0.91

KNEW 1 0.27 0.77 KNEW 1 1.00 0.98

KSLOC 1 0.65 KSLOC 1 0.98

ActHrsK 1 ActHrsK 1

75

Table 4-5: Pearson Correlation of System Application Area Subsets

The highest correlation is between peak staff and final effort hours in both CMMI levels.

The next highest correlation is between estimated hours and final effort hours. Although

software size correlates strongly to final effort hours in CMMI Level 4, a weaker correla-

tion exists in CMMI Level 5 between software size and final effort hours. The perfect

correlation in CMMI Level 4 between KNEW and KSLOC indicates KNEW equals

KSLOC whereas the weak correlation in CMMI Level 5 indicates KNEW is not equal to

KSLOC.

Table 4-6: Spearman Rank Correlation of System Application Area Subsets

PEARSON -

LEVEL 5

SYSTEM

APPLICATION

AREA E
s
tH

rs
K

E
s
tP

s
ta

ff

K
N

E
W

K
S

L
O

C

A
c
tH

rs
K

PEARSON -

LEVEL 4 SYSTEM

APPLICATION

AREA E
s
tH

rs
K

E
s
tP

s
ta

ff

K
N

E
W

K
S

L
O

C

A
c
tH

rs
K

EstHrsK 1 0.51 0.14 0.01 0.72 EstHrsK 1 0.98 1.00 0.99 0.98

EstPstaff 1 0.32 0.50 0.90 EstPstaff 1 0.97 0.97 1.00

KNEW 1 0.36 0.52 KNEW 1 1.00 0.97

KSLOC 1 0.51 KSLOC 1 0.97

ActHrsK 1 ActHrsK 1

SPEARMAN -

LEVEL 5

SYSTEM

APPLICATION

AREA E
s
tH

rs
K

E
s
tP

s
ta

ff

K
N

E
W

K
S

L
O

C

A
c
tH

rs
K

SPEARMAN -

LEVEL 4 SYSTEM

APPLICATION

AREA E
s
tH

rs
K

E
s
tP

s
ta

ff

K
N

E
W

K
S

L
O

C

A
c
tH

rs
K

EstHrsK 1 0.33 0.68 0.15 0.62 EstHrsK 1 0.91 0.98 0.98 1.00

EstPstaff 1 0.45 0.55 0.85 EstPstaff 1 0.92 0.92 0.91

KNEW 1 0.27 0.77 KNEW 1 1.00 0.98

KSLOC 1 0.65 KSLOC 1 0.98

ActHrsK 1 ActHrsK 1

76

The strongest monotone correlation is peak staff to final effort hours in CMMI Level 5

whereas the strongest monotone correlation is estimated initial hours to final effort hours

in CMMI Level 4. Software size correlates to final effort hours in both CMMI levels.

Estimated hours correlate to KNEW in both CMMI levels, stronger in CMMI Level 4

than in CMMI Level 5.

Table 4-7: Pearson Correlation of Support Application Area Subsets

The support application area subsets correlations differ from those in other subsets. Al-

though peak staff again correlates to final effort hours in CMMI Level 5, it does not cor-

relate in CMMI Level 4. Estimated hours correlate to final hours in CMMI Level 4.

Software size of KSLOC correlates in both CMMI levels to final effort hours but only

KNEW in CMMI Level 4 correlates to final effort hours. KNEW correlates to estimated

hours in CMMI Level 5 but not in CMMI Level 4. The correlation between KNEW and

KSLOC in CMMI Level 4 is 1.00, indicating KNEW equals KSLOC; not the case in

CMMI Level 5 where the correlation between KNEW and KSLOC is 0.05. Software size

correlates to peak staff in CMMI Level 4, but only KSLOC correlates to peak staff in

CMMI Level 5.

PEARSON -

LEVEL 5

SUPPORT

APPLICATION

AREA E
s
tH

rs
K

E
s
tP

s
ta

ff

K
N

E
W

K
S

L
O

C

A
c
tH

rs
K

PEARSON -

LEVEL 4

SUPPORT

APPLICATION

AREA E
s
tH

rs
K

E
s
tP

s
ta

ff

K
N

E
W

K
S

L
O

C

A
c
tH

rs
K

EstHrsK 1 0.58 0.74 0.01 0.49 EstHrsK 1 -0.22 0.31 0.31 0.77

EstPstaff 1 0.17 0.67 0.83 EstPstaff 1 0.60 0.60 0.30

KNEW 1 0.05 0.37 KNEW 1 1.00 0.74

KSLOC 1 0.86 KSLOC 1 0.74

ActHrsK 1 ActHrsK 1

77

Table 4-8: Spearman Rank Correlation of Support Application Area Subsets

The Spearman Rank correlation in CMMI Level 5 has the highest value between total

software size (KSLOC) and final effort hours with the second highest between peak staff

and final effort hours. KSLOC is highly correlated monotonically to peak staff in CMMI

Level 5. Estimated hours correlate to peak staff and to KNEW in CMMI Level 5. The

support application area for CMMI Level 4 has the highest Spearman Rank correlated

value between estimated hours and final hours.

Depending on the CMMI level, there is a linear relationship, a monotone one, or both.

To test the first hypothesis, I used R to visualize the relationship between each of the ini-

tial, estimated independent variables and the final effort hours.

SPEARMAN -

LEVEL 5

SUPPORT

APPLICATION

AREA E
s
tH

rs
K

E
s
tP

s
ta

ff

K
N

E
W

K
S

L
O

C

A
c
tH

rs
K

SPEARMAN -

LEVEL 4

SUPPORT

APPLICATION

AREA E
s
tH

rs
K

E
s
tP

s
ta

ff

K
N

E
W

K
S

L
O

C

A
c
tH

rs
K

EstHrsK 1 0.75 0.75 0.61 0.64 EstHrsK 1 0.27 0.33 0.33 0.91

EstPstaff 1 0.46 0.82 0.93 EstPstaff 1 0.08 0.08 0.27

KNEW 1 0.46 0.39 KNEW 1 1.00 0.59

KSLOC 1 0.96 KSLOC 1 0.59

ActHrsK 1 ActHrsK 1

78

Figure 7: R Pairs Plot for CMMI Level 5

The only software size shown on the preceding pairs plot is new source lines of code

representing the lowest possible software size. The variable name Est_NewCodeK

represents the same values as are in the variable name KNEW. Variable values listed on

the plots have x-axis and y-axis as indicated by the variable names. For example, the top

Actual_HrsK

0 100 200 300 0 20 40 60

0
5
0

1
5
0

0
1
0
0

2
0
0

3
0
0

Est_HrsK

Est_NewCodeK

0
1
0
0

3
0
0

0 50 150

0
2
0

4
0

6
0

0 100 300

Est_PeakStaff

CMMI Level 5

79

right graph has estimated peak staff on the x-axis and final effort hours on the y-axis with

axes reversed on the bottom left graph.

Table 4-9: CMMI Level 5 Single Variable Results: KNEW

The accuracy for the logarithmically transformed variable representing the logical state-

ments of new code to predict the transformed effort hours had high MMRE values and

low PRED values. The accuracy measures improved the most when both EVMS added

(also transformed logarithmically in keeping with the multiplicative nature of the CER),

C
M

M
I
L

e
v
e
l
5
 I
n

d
e
p

e
n

d
e
n

t
V

a
ri

a
b

le

S
P

I?

C
P

I?

S
c
a
le

In
te

rc
e
p

t

C
o

e
ff

ic
ie

n
t

C
o

e
ff

ic
ie

n
t

(S
P

I)

C
o

e
ff

ic
ie

n
t

(C
P

I)

A
d

ju
s
te

d
 R

2

p
-v

a
lu

e

R
e
s
id

u
a
ls

 v
e
rs

u
s
 F

it
te

d

Q
Q

 P
lo

t?

S
c
a
le

-L
o

c
a
ti

o
n

 P
lo

t?

L
e
v
e
ra

g
e
 o

v
e
r

0
.5

 C
o

o
k
's

 D
is

ta
n

c
e
?

O
ri

g
in

a
l
S

c
a
le

:
 M

M
R

E
 =

 M
A

P
E

O
ri

g
in

a
l
S

c
a
le

:
P

R
E

D
(2

5
)

O
ri

g
in

a
l
S

c
a
le

:
P

R
E

D
(3

0
)

KNEW No No Orig. 51.67 0.43 N/A N/A 0.23 0.00 N/A N/A N/A N/A N/A N/A

KNEW No No Log 1.65 0.68 N/A N/A 0.70 0.00

Shallow

inverted

U shape

Follow s

line from

(-1,2)

Mostly

straight No 0.98 0.20 0.27

KNEW Yes Yes Log 471.89 0.48 -377.90 -55.29 0.77 0.00

Shallow

inverted

U shape

One

outlier on

line from

(-2,3) Straight No 0.75 0.30 0.37

KNEW Yes No Log 410.99 0.47 -372.66 N/A 0.77 0.00

Shallow

inverted

U shape

One

outlier on

line from

(-2,3)

Mostly

straight No 0.77 0.33 0.43

KNEW No Yes Log 99.89 0.44 N/A -47.75 0.70 0.00

Shallow

inverted

U shape

Follow s

line from

(-1,2)

Mostly

straight No 0.99 0.17 0.20

80

lowering MMRE and raising PRED. Singly, SPI improved accuracy and raised the ad-

justed R2 value, increasing the residual range to (-2, +3) due to an outlier.

Table 4-10: CMMI Level 5 Single Variable Results: Estimated Hours

The EVMS metrics did not improve accuracy for logarithmically transformed initially

estimated effort hours as the independent variable. There was a slight improvement in

MMRE by adding EVMS metrics either singly or jointly with a worsening in PRED. Us-

C
M

M
I
L

e
v
e
l
5
 I
n

d
e
p

e
n

d
e
n

t
V

a
ri

a
b

le

S
P

I?

C
P

I?

S
c
a
le

In
te

rc
e
p

t

C
o

e
ff

ic
ie

n
t

C
o

e
ff

ic
ie

n
t

(S
P

I)

C
o

e
ff

ic
ie

n
t

(C
P

I)

A
d

ju
s
te

d
 R

2

p
-v

a
lu

e

R
e
s
id

u
a
ls

 v
e
rs

u
s
 F

it
te

d

Q
Q

 P
lo

t?

S
c
a
le

-L
o

c
a
ti

o
n

 P
lo

t?

L
e
v
e
ra

g
e
 o

v
e
r

0
.5

 C
o

o
k
's

 D
is

ta
n

c
e
?

O
ri

g
in

a
l
S

c
a
le

:
 M

M
R

E
 =

 M
A

P
E

O
ri

g
in

a
l
S

c
a
le

:
P

R
E

D
(2

5
)

O
ri

g
in

a
l
S

c
a
le

:
P

R
E

D
(3

0
)

Est. Hrs

(K) No No Orig. 31.35 0.59 N/A N/A 0.40 0.00 N/A N/A N/A N/A N/A N/A N/A

Est. Hrs

(K) Yes Yes Orig. 235.61 0.65 -415.06 190.29 0.41 0.00 N/A N/A N/A N/A N/A N/A N/A

Est. Hrs

(K) Yes No Orig. 403.20 0.63 -386.18 N/A 0.40 0.00 N/A N/A N/A N/A N/A N/A N/A

Est. Hrs

(K) No Yes Orig. -150.40 0.61 N/A 176.99 0.40 0.00 N/A N/A N/A N/A N/A N/A N/A

Est. Hrs

(K) No No Log 0.47 0.89 N/A N/A 0.79 0.00

Mostly

straight

3 pts off

line (-1,3)

Mostly

straight No 0.69 0.20 0.27

Est. Hrs

(K) Yes Yes Log -0.03 0.94 -8.76 2.25 0.82 0.00

Mostly

straight

Follow s

line from

(-1,3)

Mostly

straight No 0.62 0.27 0.37

Est. Hrs

(K) Yes No Log 0.08 0.92 -8.50 N/A 0.82 0.00 Straight

One top

outlier,

line (-1,3)

Mostly

straight No 0.63 0.30 0.40

Est. Hrs

(K) No Yes Log 0.38 0.90 N/A 1.98 0.79 0.00

Mostly

straight

3 points

off line

(-1,+3)

Mostly

straight No 0.69 0.23 0.27

81

ing estimated hours, in the original units, to predict final effort hours did not yield an ad-

justed R2 over 0.41, indicating a lack of goodness of fit.

Figure 8: CMMI Level 5 QQ Plot of Estimated and Final Hours

Although this QQ plot shows a linear relationship between the estimated hours and final

effort hours, the preceding table shows the results of R‟s lm command for linear model.

0 50 100 150 200 250 300

0

50

100

150

200

QQ Plot for CMMI Level 5

Estimated Initial Effort Hours in Thousands (K)

F
in

a
l
A

c
tu

a
l
E

ff
o

rt
 H

o
u

rs
 (

K
)

82

For estimated effort hours up to 150, the one-to-one correspondence line shows data

mostly following the line. Beyond estimated effort hours of 150, the deviations from the

line become more pronounced.

Table 4-11: CMMI Level 5 Single Variable Results: Peak Staff

The accuracy metrics for peak staff as the independent variable are not within the „ac-

cepted industry standard‟ of 0.25 or below. The values above 1.5 are higher than the ac-

cepted standard and adding EVMS metrics worsen MMRE. PRED(30) is improved only

C
M

M
I
L

e
v
e
l
5
 I
n

d
e
p

e
n

d
e
n

t
V

a
ri

a
b

le

S
P

I?

C
P

I?

S
c
a
le

In
te

rc
e
p

t

C
o

e
ff

ic
ie

n
t

C
o

e
ff

ic
ie

n
t

(S
P

I)

C
o

e
ff

ic
ie

n
t

(C
P

I)

A
d

ju
s
te

d
 R

2

p
-v

a
lu

e

R
e
s
id

u
a
ls

 v
e
rs

u
s
 F

it
te

d

Q
Q

 P
lo

t?

S
c
a
le

-L
o

c
a
ti

o
n

 P
lo

t?

L
e
v
e
ra

g
e
 o

v
e
r

0
.5

 C
o

o
k
's

 D
is

ta
n

c
e
?

O
ri

g
in

a
l
S

c
a
le

:
 M

M
R

E
 =

 M
A

P
E

O
ri

g
in

a
l
S

c
a
le

:
P

R
E

D
(2

5
)

O
ri

g
in

a
l
S

c
a
le

:
P

R
E

D
(3

0
)

Peak

Staff No No Orig. 22.10 2.44 N/A N/A 0.60 0.00 Straight

Follow s

line from

(-1,3)

Mostly

straight No 1.53 0.47 0.50

Peak

Staff Yes Yes Orig. -376.88 2.57 158.08 238.25 0.63 0.00 Straight

One top

outlier,

line (-1,4) Straight No 1.59 0.33 0.47

Peak

Staff Yes No Orig. -142.34 2.45 169.13 N/A 0.59 0.00 Straight

3 pts off

line (-1,3)

Mostly

straight #12 1.54 0.47 0.57

Peak

Staff No Yes Orig. -224.91 2.55 N/A 239.94 0.64 0.00 Straight

One top

outlier,

line (-1,4) Straight #18 1.55 0.37 0.37

83

by adding the EVMS metric SPI. Joint EVMS metrics or CPI alone worsen all the accu-

racy metrics, particularly PRED(25) and PRED(30).

Figure 9: CMMI Level 5 QQ Plot of Peak Staff and Final Effort Hours

The reference line in the preceding figure is one-to-three. With 60 estimated initial peak

staff, final effort hours approach 180, falling slightly short. Estimated initial peak staff

has more than three times the final effort hours for values of peak staff between twenty

0 20 40 60

0

50

100

150

200

QQ Plot for CMMI Level 5

Estimated Initial Peak Staff

F
in

a
l
A

c
tu

a
l
E

ff
o

rt
 H

o
u

rs
 i
n

 T
h

o
u

s
a

n
d

s

84

and fifty. The QQ plot shows the similarity of the data distributions. The reference line

and the white grid lines provide visual orientation for the reader. [Cleveland 1993]

Table 4-12: CMMI Level 5 Single Variable Results: Peak Staff, transformed

Accuracy metrics for transformed peak staff predicting transformed effort hours do not

improve with the addition of EVMS metrics. Accuracy improves slightly for CPI alone

or for joint EVMS metrics. Adding SPI does not change the accuracy metrics.

C
M

M
I
L

e
v
e
l
5
 I
n

d
e
p

e
n

d
e
n

t
V

a
ri

a
b

le

S
P

I?

C
P

I?

S
c
a
le

In
te

rc
e
p

t

C
o

e
ff

ic
ie

n
t

C
o

e
ff

ic
ie

n
t

(S
P

I)

C
o

e
ff

ic
ie

n
t

(C
P

I)

A
d

ju
s
te

d
 R

2

p
-v

a
lu

e

R
e
s
id

u
a
ls

 v
e
rs

u
s
 F

it
te

d

Q
Q

 P
lo

t?

S
c
a
le

-L
o

c
a
ti

o
n

 P
lo

t?

L
e
v
e
ra

g
e
 o

v
e
r

0
.5

 C
o

o
k
's

 D
is

ta
n

c
e
?

O
ri

g
in

a
l
S

c
a
le

:
 M

M
R

E
 =

 M
A

P
E

O
ri

g
in

a
l
S

c
a
le

:
P

R
E

D
(2

5
)

O
ri

g
in

a
l
S

c
a
le

:
P

R
E

D
(3

0
)

Peak

Staff No No Log 1.32 0.96 N/A N/A 0.74 0.00

Mostly

straight

Top

outlier

(#12),

bottom

outlier

(#7), line

(-3,+3) Straight No 0.87 0.37 0.40

Peak

Staff Yes Yes Log 1.24 0.98 0.36 2.24 0.74 0.00

Mostly

straight

Tw o

outliers,

line from

(-2,+3)

Mostly

straight No 0.86 0.40 0.50

Peak

Staff Yes No Log 1.33 0.96 0.45 N/A 0.74 0.00

Mostly

straight

Tw o

outliers,

line from

(-2,+3) Straight No 0.88 0.40 0.40

Peak

Staff No Yes Log 1.23 0.98 N/A 2.24 0.75 0.00

Mostly

straight

Tw o

outliers,

line from

(-2,+3)

Mostly

straight No 0.85 0.40 0.50

85

Table 4-13: CMMI Level 5 Single Variable Results: KSLOC

Untransformed KSLOC had a low adjusted R2 when used to predict untransformed effort

hours. The adjusted R2 value improved for the logarithmically transformed KSLOC,

EVMS, and effort hours with p-values < 0.001 indicating statistically significant models.

C
M

M
I
L

e
v
e
l
5
 I
n

d
e
p

e
n

d
e
n

t
V

a
ri

a
b

le

S
P

I?

C
P

I?

S
c
a
le

In
te

rc
e
p

t

C
o

e
ff

ic
ie

n
t

C
o

e
ff

ic
ie

n
t

(S
P

I)

C
o

e
ff

ic
ie

n
t

(C
P

I)

A
d

ju
s
te

d
 R

2

p
-v

a
lu

e

R
e
s
id

u
a
ls

 v
e
rs

u
s
 F

it
te

d

Q
Q

 P
lo

t?

S
c
a
le

-L
o

c
a
ti

o
n

 P
lo

t?

L
e
v
e
ra

g
e
 o

v
e
r

0
.5

 C
o

o
k
's

 D
is

ta
n

c
e
?

O
ri

g
in

a
l
S

c
a
le

:
 M

M
R

E
 =

 M
A

P
E

O
ri

g
in

a
l
S

c
a
le

:
P

R
E

D
(2

5
)

O
ri

g
in

a
l
S

c
a
le

:
P

R
E

D
(3

0
)

KSLOC No No Orig. 41.45 0.13 N/A N/A 0.48 0.00 N/A N/A N/A N/A N/A N/A N/A

KSLOC No No Log 1.27 0.57 N/A N/A 0.74 0.00

Mostly

straight

Top outlier

(#12) &

bottom

outlier (#4)

from (-3,2)

Mostly

straight No 0.63 0.37 0.43

KSLOC Yes Yes Log 1.10 0.58 -3.82 1.08 0.73 0.00

Mostly

straight

Top outlier

(#12) &

bottom

outlier (#4)

from (-2,3)

Mostly

straight No 0.61 0.40 0.43

KSLOC Yes No Log 1.14 0.58 -3.74 N/A 0.74 0.00

Mostly

straight

Top outlier

(#12) &

bottom

outlier (#4)

from (-3,3) Straight No 0.63 0.30 0.43

KSLOC No Yes Log 1.24 0.57 N/A 1.00 0.74 0.00

Mostly

straight

Top outlier

(#12) &

bottom

outlier (#4)

from (-3,3)

Mostly

straight No 0.62 0.40 0.43

86

CPI improved MMRE and PRED(25) slightly with no effect on PRED(30); other EVMS

metrics did not improve accuracy.

Figure 10: CMMI Level 4 Pairs Plot

As for CMMI Level 5, the only software size shown on the preceding pairs plot is the

new source lines of code where the variable shown as Est_NewCodeK is the same as

Actual_HrsK

0 200 400 600 0 100 300

0
2
0
0

6
0
0

0
2
0
0

5
0
0

Est_HrsK

Est_NewCodeK

0
5
0

1
5
0

0 200 600

0
2
0
0

4
0
0

0 50 150

Est_PeakStaff

CMMI Level 4

87

KNEW. Another similarity to CMMI Level 5 is the preponderance of low values in the

data sets for the variables. The few higher valued data‟s effect on CERs diminishes when

the data undergo a logarithmic transformation.

Table 4-14: CMMI Level 4 Single Variable Results: KNEW

Accuracy for the logarithmically transformed variable representing the logical statements

of new code had high MMRE values and low PRED values. Accuracy improved the

most with the addition of the EVMS metric, CPI, also transformed in keeping with the

multiplicative nature of the CER.

C
M

M
I
L
e
v
e
l 4

In
d
e
p
e
n
d
e
n
t
V

a
ri
a
b
le

S
c
a
le

In
te

rc
e
p
t

C
o
e
ff
ic

ie
n
t

C
o
e
ff
ic

ie
n
t
(S

P
I)

C
o
e
ff
ic

ie
n
t
(C

P
I)

A
d
ju

s
te

d
 R

2

p
-v

a
lu

e

R
e
s
id

u
a
ls

 v
e
rs

u
s
 F

itt
e
d

Q
Q

 P
lo

t?

S
c
a
le

-L
o
c
a
tio

n
 P

lo
t?

L
e
v
e
ra

g
e
 o

v
e
r

0
.5

C
o
o
k
's

 D
is

ta
n
c
e
?

O
ri
g
in

a
l S

c
a
le

:
 M

M
R

E

O
ri
g
in

a
l S

c
a
le

:
P

R
E

D
(2

5
)

O
ri
g
in

a
l S

c
a
le

:
P

R
E

D
(3

0
)

KNEW Original 11.74 2.66 N/A N/A 0.86 0.00
Shallow

V shape

Thick tails

(-2,4)

Slopes up

~60° then

up ~30°

#30 0.42 0.47 0.50

KNEW Original -501.45 2.68 1047.14 -502.79 0.87 0.00
Shallow

V shape

Thick tails

(-2,4)
Jagged

#30,

#26,

#34

0.69 0.12 0.12

KNEW Original -871.58 2.51 929.06 N/A 0.86 0.00
Shallow

V shape

Thick tails

(-2,4)

Slopes up

~60° then

flat

#30,

#26
0.47 0.24 0.24

KNEW Original 458.72 2.84 N/A -465.89 0.87 0.00
Shallow

V shape

Thick tails

(-2,4)
Jagged

#30,

#34
0.64 0.15 0.15

KNEW Log 2.86 0.48 N/A N/A 0.64 0.00

Straight,

dips,

goes up

45˚

Thick tails

(-2,+2)

Straight

until end

(up 45˚)

No 0.77 0.21 0.26

KNEW Log 3.62 0.37 6.89 6.33 0.68 0.00
Mostly

Straight

Thick tails

(-3,+2)

Straight

until end

(up 45˚)

No 0.69 0.32 0.32

KNEW Log 3.40 0.44 9.62 N/A 0.65 0.00

Straight,

curves

up at end

Thick tails

(-3,+2)

Straight

until end

(up 45˚)

Yes,

one
0.76 0.21 0.26

KNEW Log 3.26 0.39 N/A 6.87 0.68 0.00

Straight,

curves

up at end

Thick tails

(-2,+2)

Straight

until end

(up 45˚)

No 0.69 0.32 0.38

88

Table 4-15: CMMI Level 4 Single Variable Results: Estimated Hours

Estimated effort hours predict actual, final effort hours for CMMI Level 4 data. The ac-

curacy approaches or exceeds industry-standard values with or without the addition of

EVMS metrics. For transformed hours, SPI improves PRED (30) accuracy more than

CPI; the MMRE is improved for SPI or CPI alone. The most improvement occurs for

C
M

M
I
L
e
v
e
l 4

In
d
e
p
e
n
d
e
n
t
V

a
ri
a
b
le

S
c
a
le

In
te

rc
e
p
t

C
o
e
ff
ic

ie
n
t

C
o
e
ff
ic

ie
n
t
(S

P
I)

C
o
e
ff
ic

ie
n
t
(C

P
I)

A
d
ju

s
te

d
 R

2

p
-v

a
lu

e

R
e
s
id

u
a
ls

 v
e
rs

u
s
 F

itt
e
d

Q
Q

 P
lo

t?

S
c
a
le

-L
o
c
a
tio

n
 P

lo
t?

L
e
v
e
ra

g
e
 o

v
e
r

0
.5

C
o
o
k
's

 D
is

ta
n
c
e
?

O
ri
g
in

a
l S

c
a
le

:
 M

M
R

E

O
ri
g
in

a
l S

c
a
le

:
P

R
E

D
(2

5
)

O
ri
g
in

a
l S

c
a
le

:
P

R
E

D
(3

0
)

Est.

Hrs (K) Original 10.95 0.94 N/A N/A 0.94 0.00

Inclines

upw ard

(~45˚)

Thick tails

(-2,+4)

Inclines

upw ards

(~50˚)

#28,

#29,

#30 0.28 0.68 0.71

Est.

Hrs (K) Original -879.32 0.88 697.05 236.04 0.95 0.00

Shallow

incline up

(~15˚)

Thick tails

(-2,+6)

Inclines

upw ards

(~50˚)

#28,

#29,

#31 0.24 0.76 0.82

Est.

Hrs (K) Original -791.45 0.89 843.64 N/A 0.95 0.00

Steep

incline up

(~85˚)

Thick tails

(-2,+4)

J' shape

to start,

inclines up

(~50˚)

#28,

#29,

#32 0.28 0.68 0.76

Est.

Hrs (K) Original -269.42 -269.42 N/A 291.15 0.95 0.00

Inclines

dow n-

w ards

(~45˚)

Thick tails

(-2,+4)

Jagged to

start, then

inclines up

(~50˚)

#28,

#29,

#33 0.23 0.71 0.74

Est.

Hrs (K) Log 0.64 0.88 N/A N/A 0.87 0.00 Straight

Thick top

tail (-1,+4)

Slopes

dow n 45˚

then flat #31

0.36 0.35 0.50

Est.

Hrs (K) Log 1.62 0.75 8.19 4.25 0.91 0.00 Straight

Thick top

tail (-2,+4)

Mostly

straight #31
0.27 0.12 0.18

Est.

Hrs (K) Log 1.36 0.81 10.73 N/A 0.89 0.00

Slightly

inverted

V

Thick top

tail (-2,+4)

Mostly

straight #31

0.31 0.53 0.59

Est.

Hrs (K) Log 1.17 0.78 N/A 5.18 0.90 0.00 Straight

Thick top

tail (-2,+4)

Mostly

straight #31
0.30 0.50 0.53

89

SPI with CPI. For the original scale, MMRE accuracy is lowest for CPI but PRED (30)

is highest with both EVMS metrics. SPI improves PRED (30) accuracy more than CPI.

Figure 11: CMMI Level 4 QQ Plot of Estimated and Final Effort Hours

The preceding plot of estimated initial effort hours to final effort hours highlights the

concentration of low values between one hundred to two hundred thousand hours.

0 100 200 300 400 500 600 700

0

200

400

600

800

QQ Plot for CMMI Level 4

Estimated Initial Effort Hours in Thousands (K)

F
in

a
l
A

c
tu

a
l
E

ff
o

rt
 H

o
u

rs
 (

K
)

90

Table 4-16: CMMI Level 4 Single Variable Results: Peak Staff

EVMS metrics improve accuracy for CERs with untransformed peak staff as the inde-

pendent variable to predict effort hours. CPI on MMRE and joint EVMS metrics on

PRED (30) boost accuracy metrics. SPI improves PRED (30) more than CPI. However,

C
M

M
I
L
e
v
e
l 4

In
d
e
p
e
n
d
e
n
t
V

a
ri
a
b
le

S
c
a
le

In
te

rc
e
p
t

C
o
e
ff
ic

ie
n
t

C
o
e
ff
ic

ie
n
t
(S

P
I)

C
o
e
ff
ic

ie
n
t
(C

P
I)

A
d
ju

s
te

d
 R

2

p
-v

a
lu

e

R
e
s
id

u
a
ls

 v
e
rs

u
s
 F

itt
e
d

Q
Q

 P
lo

t?

S
c
a
le

-L
o
c
a
tio

n
 P

lo
t?

L
e
v
e
ra

g
e
 o

v
e
r

0
.5

C
o
o
k
's

 D
is

ta
n
c
e
?

O
ri
g
in

a
l S

c
a
le

:
 M

M
R

E

O
ri
g
in

a
l S

c
a
le

:
P

R
E

D
(2

5
)

O
ri
g
in

a
l S

c
a
le

:
P

R
E

D
(3

0
)

Peak

Staff Original 25.29 1.67 N/A N/A 0.96 0.00

Mostly

Straight

Thick tails

(-4,+2)

Mostly

straight #30 0.62 0.53 0.59

Peak

Staff Original -879.32 0.88 697.05 236.04 0.95 0.00

Mostly

Straight

Thick tails

(-2,+6)

Jagged to

start, then

goes up

(~50˚)

#28,

#29,

#30 0.24 0.76 0.82

Peak

Staff Original -791.45 0.89 843.64 N/A 0.95 0.00

Steep

incline up

(~85˚)

Thick tails

(-2,+4)

J' shape

to start,

inclines up

(~50˚)

#28,

#29,

#31 0.28 0.68 0.76

Peak

Staff Original -269.42 0.91 N/A 291.15 0.95 0.00

Inclines

dow n-

w ards

(~45˚)

Thick tails

(-2,+4)

Jagged to

start, then

goes up

(~50˚)

#28,

#29,

#32 0.23 0.71 0.74

Peak

Staff Log 2.27 0.64 N/A N/A 0.68 0.00

Mostly

Straight,

inclines

up ~20˚

Outliers

(#26 and

#32) from

(-3,+1) Straight

Yes,

one

(#26)

0.75 0.47 0.53

Peak

Staff Log 1.49 0.73 -12.01 0.50 0.67 0.00

Mostly

Straight,

inclines

up ~20˚

Outliers

(#26 and

#32) from

(-3,+1)

Mostly

straight

Yes,

one

(#26)

0.73 0.38 0.47

Peak

Staff Log 1.43 0.74 -12.33 N/A 0.68 0.00

Mostly

straight

Outliers

(#26 and

#32) from

(-3,+1)

Mostly

straight

Yes,

one

(#26)

0.72 0.38 0.44

Peak

Staff Log 2.42 0.60 N/A 1.78 0.67 0.00

Mostly

Straight,

inclines

up ~20˚

Outliers

(#26, #32,

#15) from

(-3,+1)

Mostly

straight No

0.74 0.38 0.47

91

EVMS metrics increase the number of „leverage‟ points in the CER as denoted by Cook‟s

Distance. [Draper and Smith 1998] EVMS metrics do not significantly affect accuracy

for transformed peak staff, as the independent variable. MMRE improves slightly with

any EVMS metric. PRED gets worse by adding EVMS.

Figure 12: CMMI Level 4 QQ Plot of Peak Staff and Final Effort Hours

0 100 200 300 400

0

200

400

600

800

QQ Plot for CMMI Level 4

Estimated Initial Peak Staff

F
in

a
l
A

c
tu

a
l
E

ff
o

rt
 H

o
u

rs
 i
n

 T
h

o
u

s
a

n
d

s

92

The solid reference line is one-to-three and the dashed reference line is one-to-two. The

QQ plot shows the similarity of the distributions of peak staff and final, actual effort

hours for CMMI Level 4 data.

Table 4-17: CMMI Level 4 Single Variable Results: KSLOC

With the untransformed KSLOC as the independent variable predicting software effort

hours, although the adjusted R2 values are high with low p-values, indicating a well fit-

ting CER, outlying points in the residuals expand the scale beyond the expected (-2, +2)

region for a normal distribution. Due to the outlier values, and to the poor accuracy me-

C
M

M
I

L
e
v
e
l
4

In
d
e
p
e
n
d
e
n
t

V
a
ri

a
b
le

S
c
a
le

In
te

rc
e
p
t

C
o
e
ff

ic
ie

n
t

C
o
e
ff

ic
ie

n
t

(S
P

I)

C
o
e
ff

ic
ie

n
t

(C
P

I)

A
d
ju

s
te

d
 R

2

p
-v

a
lu

e

R
e
s
id

u
a
ls

 v
e
rs

u
s
 F

it
te

d

Q
Q

 P
lo

t?

S
c
a
le

-L
o
c
a
ti
o
n
 P

lo
t?

L
e
v
e
ra

g
e
 o

v
e
r

0
.5

C
o
o
k
's

 D
is

ta
n
c
e
?

O
ri

g
in

a
l
S

c
a
le

:
 M

M
R

E

O
ri

g
in

a
l
S

c
a
le

:
P

R
E

D
(2

5
)

O
ri

g
in

a
l
S

c
a
le

:
P

R
E

D
(3

0
)

KSLOC Original 43.27 0.19 N/A N/A 0.92 0.00 Jagged

3 outliers

on (-4,+4)

90˚ line to

~50˚ line Jagged 0.68 0.38 0.41

KSLOC Original -1053.00 0.18 782.20 362.70 0.93 0.00

Mostly

straight

4 outliers

on (-4,+4)

90˚ line to

~45˚ line

#30,

#26,

#28 0.56 0.41 0.56

KSLOC Original -935.75 0.18 1027.42 N/A 0.92 0.00

Mostly

straight

3 outliers

on (-2,+4)

90˚ line to

~40˚ line

#30,

#26,

#29 0.69 0.38 0.47

KSLOC Original -137.35 0.19 N/A 429.04 0.93 0.00

Mostly

straight

Tw o

outliers on

(-4,+4) Jagged

#30,

#28 0.53 0.44 0.47

KSLOC Log 2.84 0.37 N/A N/A 0.65 0.00

Mostly

straight

3 outliers

on (-3,+3)

Mostly

straight None 0.74 0.26 0.35

KSLOC Log 3.57 0.29 7.35 5.17 0.67 0.00

Mostly

straight

4 outliers

on (-3,+2)

Mostly

straight

One

(#26) 0.64 0.38 0.44

KSLOC Log 3.35 0.34 9.16 N/A 0.66 0.00

Mostly

straight

3 outliers

on (-3,+2)

Mostly

straight

One

(#26) 0.66 0.38 0.41

KSLOC Log 3.19 0.31 N/A 5.67 0.67 0.00

Mostly

straight

3 outliers

on (-3,+2)

Mostly

straight None 0.69 0.38 0.41

93

tric, the CER with untransformed KSLOC is not robust. Transforming the software size

and the final effort hours improves residuals‟ behavior. Accuracy improves with the ad-

dition of EVMS metrics, but in none of the CERs with KSLOC is the accuracy near in-

dustry-standard levels.

I created three application areas (i.e., System, Support, or User) to sub-divided the data

within each CMMI level. Each record could belong to only one application category.

Signal processing, operating system augmentation, missile computers, flight control ap-

plications, radar control and identification applications, and space payload applications

were system application areas. Mission planning, mission applications, and testing pro-

grams were support application areas. Display and control applications, simulators, ex-

ternal communications, information management, network management, and architecture

applications were user application areas for user-interactions and decisions. The follow-

ing table shows the distribution of application types by CMMI level.

Table 4-18: Generated Application Types by CMMI Levels

Application Types CMMI Level 5 CMMI Level 4

Support 7 11

System 14 11

User 9 12

Total 30 34

94

The results in the application areas can be compared to the results for the entire CMMI

data sets to determine whether the third hypothesis, which postulates that application area

subsets will improve CER accuracy, applies.

Table 4-19: CMMI Level 5 Application Area Subsets

C
M

M
I
L

e
v
e
l
5

S
u

b
s
e
ts

#
 R

e
c

S
c
a
le

In
te

rc
e
p

t

C
o

e
ff

ic
ie

n
t

A
d

ju
s
te

d
 R

2

p
-v

a
lu

e

O
ri

g
in

a
l
S

c
a
le

:

M
M

R
E

 =
 M

A
P

E

O
ri

g
in

a
l
S

c
a
le

:

P
R

E
D

(2
5
)

O
ri

g
in

a
l
S

c
a
le

:

P
R

E
D

(3
0
)

User: KNEW 9 Original 69.83 0.29 0.16 0.15 N/A N/A N/A

System: KNEW 14 Original 21.65 1.65 0.26 0.04 N/A N/A N/A

Support: KNEW 7 Original 61.28 0.43 -0.03 0.41 N/A N/A N/A

User: KNEW 9 Log 2.06 0.58 0.52 0.02 N/A N/A N/A

System: KNEW 14 Log 1.63 0.77 0.65 0.00 1.41 0.29 0.29

Support: KNEW 7 Log 0.79 0.81 0.79 0.00 16.76 0.00 0.00

User: Est. Hours (K) 9 Original 39.55 0.48 0.44 0.03 N/A N/A N/A

System: Est. Hours (K) 14 Original 15.91 0.70 0.45 0.00 N/A N/A N/A

Support: Est. Hours (K) 7 Original 56.42 0.59 0.09 0.26 N/A N/A N/A

User: Est. Hours (K) 9 Log 1.52 0.64 0.50 0.02 9.10 0.11 0.22

System: Est. Hours (K) 14 Log 0.20 0.95 0.85 0.00 4.67 0.00 0.00

Support: Est. Hours (K) 7 Log 0.47 0.94 0.75 0.01 36.52 0.00 0.00

User: Peak Staff 9 Original 18.56 2.41 0.78 0.00 0.44 0.67 0.67

System: Peak Staff 14 Original 26.72 1.75 0.14 0.10 N/A N/A N/A

Support: Peak Staff 7 Original 32.09 2.61 0.63 0.02 3.77 0.43 0.43

User: Peak Staff 9 Log 1.55 0.87 0.76 0.00 9.41 0.22 0.22

System: Peak Staff 14 Log 1.61 0.85 0.72 0.00 3.18 0.07 0.07

Support: Peak Staff 7 Log 0.67 1.20 0.75 0.01 51.30 0.14 0.14

User: KSLOC 9 Original 48.63 0.11 0.15 0.16 N/A N/A N/A

System: KSLOC 14 Original 59.91 0.03 0.02 0.26 N/A N/A N/A

Support: KSLOC 7 Original 46.36 0.14 0.68 0.01 4.58 0.29 0.29

User: KSLOC 9 Log 1.47 0.50 0.19 0.13 N/A N/A N/A

System: KSLOC 14 Log 1.69 0.48 0.60 0.00 0.86 0.26 0.37

Support: KSLOC 7 Log 0.69 0.68 0.97 0.00 0.36 0.29 0.43

95

For all CERs predicting software effort hours, accuracy improves for the user application

subset with untransformed peak staff as the independent variable and MMRE improves

for the support application area where logarithmically transformed KSLOC (software

size) is the independent variable. Outside of these cases, accuracy does not improve after

separating the data into application area subsets for this set of CMMI Level 5 data.

Table 4-20: CMMI Level 4 Application Area Subsets

C
M

M
I
L

e
v
e
l
4

S
u

b
s
e
ts

#
 R

e
c

S
c
a
le

In
te

rc
e
p

t

C
o

e
ff

ic
ie

n
t

A
d

ju
s
te

d
 R

2

p
-v

a
lu

e

O
ri

g
in

a
l
S

c
a
le

:

M
M

R
E

 =
 M

A
P

E

O
ri

g
in

a
l
S

c
a
le

:

P
R

E
D

(2
5
)

O
ri

g
in

a
l
S

c
a
le

:

P
R

E
D

(3
0
)

User: KNEW 12 Original 4.83 2.97 0.94 0.00 0.27 0.50 0.67

System: KNEW 11 Original 40.07 0.80 0.49 0.01 N/A N/A N/A

Support: KNEW 11 Original 42.29 0.98 0.49 0.01 0.38 0.64 0.64

User: KNEW 12 Log 2.64 0.62 0.89 0.00 0.52 0.17 0.17

System: KNEW 11 Log 3.26 0.27 0.21 0.09 N/A N/A N/A

Support: KNEW 11 Log 3.59 0.17 0.06 0.23 N/A N/A N/A

User: Est. Hrs (K) 12 Original 1.41 0.95 0.95 0.00 0.14 1.00 1.00

System: Est. Hrs (K) 11 Original 12.26 1.02 0.49 0.01 N/A N/A N/A

Support: Est. Hrs (K) 11 Original 5.80 1.11 0.55 0.01 0.23 0.73 0.82

User: Est. Hrs (K) 12 Log 0.32 0.94 0.99 0.00 0.13 0.83 0.83

System: Est. Hrs (K) 11 Log 1.76 0.58 0.33 0.04 N/A N/A N/A

Support: Est. Hrs (K) 11 Log 0.92 0.81 0.69 0.00 2.01 0.00 0.00

User: Peak Staff 12 Original 20.26 1.71 1.00 0.00 0.43 0.42 0.50

System: Peak Staff 11 Original 14.02 2.39 0.36 0.03 N/A N/A N/A

Support: Peak Staff 11 Original 54.49 0.41 -0.01 0.37 N/A N/A N/A

User: Peak Staff 12 Log 2.13 0.74 0.96 0.00 0.30 0.58 0.58

System: Peak Staff 11 Log 2.46 0.50 0.07 0.22 N/A N/A N/A

Support: Peak Staff 11 Log 3.77 0.09 -0.09 0.68 N/A N/A N/A

User: KSLOC 12 Original 21.92 0.20 0.94 0.00 0.42 0.33 0.33

System : KSLOC 11 Original 42.60 0.24 0.00 0.35 N/A N/A N/A

Support: KSLOC 11 Original 42.29 0.98 0.49 0.01 0.38 0.64 0.64

User: KSLOC 12 Log -27.31 69.63 0.76 0.00 1.04 0.00 0.00

System: KSLOC 11 Log 3.43 0.11 -0.09 0.66 N/A N/A N/A

Support: KSLOC 11 Log 3.59 0.17 0.06 0.23 N/A N/A N/A

96

For CMMI Level 4, accuracy improves for several of the independent variables. In par-

ticular, untransformed KNEW approaches industry standard levels for the User applica-

tion area. Untransformed KNEW‟s accuracy metrics for the Support application area are

better than they are for the full set. Transformed KNEW‟s accuracy, like that of the full

set, does not meet industry standards.

Estimated Hours (in thousands) – transformed and untransformed exceeds industry stan-

dard levels for the User application area. Untransformed estimated hours‟ accuracy me-

trics exceed industry standard levels as well as for the Support application area. Howev-

er, for the transformed estimated hours, accuracy is worse for both metrics for the Sup-

port application area subset than it is for the full set. Untransformed peak staff‟s MMRE

metric is better for the User application area than it is for the full set; the full set‟s PRED

(30) is better than the User application area. Transformed peak staff as the independent

variable has MMRE approaching the industry standard level for the User application

area. Untransformed KSLOC had a better MMRE than the full set for the User applica-

tion area; the full set‟s PRED (30) is higher than the User application area. For the Sup-

port application area, untransformed KSLOC has better accuracy than the untransformed

KSLOC for the whole set. The whole set‟s transformed KSLOC as an independent vari-

able to predict final software effort hours has a MMRE equal to 0.74 which is better than

the User application area subset‟s MMRE of 1.04. Additionally, the PRED (30) of zero

97

for the User application area is much worse than the PRED (30) of 0.35 for the full set.

Thus, partitioning by application area does not universally improve accuracy.

Based on the data, single parameters (namely, initially estimated effort hours, peak staff,

and software size) in a CER can predict final, actual effort hours. These CERs rely on

data with large amounts of small-values and small amounts of large-values. Logarithmic

transformations of estimated hours and software size, particularly for CMMI Level 5 da-

ta, were necessary to achieve valid results. Accuracy metrics used are not the only appli-

cable ones. Threats to validity of the results found are numerous.

The small data sets threaten internal validity. Data was taken from DoD databases with

paired initial and final records and from the two highest CMMI levels and CERs from

CMMI Level 4 data are not identical to CERs from CMMI Level 5 data. The DoD data

set has varied amounts of data from contractors with varied CMMI levels and other CERs

use only final reported data parameters. “External validity threats arise when experimen-

ters draw incorrect inferences from the sample data.” [Creswell 2009] The timing of this

dissertation allowed 34 records at CMMI Level 4 and 30 at CMMI Level 5 - records sub-

ject to the business rules for entry into the DoD SRDR repository. Future records in the

SRDR repository may or may not be similar to the records analyzed for this dissertation.

Construct validity is manifest in “inadequate definitions and measures of variables.”

[Creswell 2009] A definition of new code occurred in most, but not all, of the SRDR da-

98

ta dictionaries. Modification levels of 25%, 30%, and 50% were common as demarca-

tions when to count modified code as new code. The same definition occurred most fre-

quently for CMMI Level 4 data, possibly due to the set of programs being half the size of

the CMMI Level 5 set. With lines of code, the type of line could be logical, physical,

non-commented source, and others. Lines of code converted to logical statements em-

ployed the most current translation tables available. These measures of software threaten

construct validity more than the measures for any of the other variables.

99

5. Conclusions

A significant contribution is combining and correlating initial data with final effort to es-

timate software effort for DoD contractors with a high CMMI levels. Most of the histori-

cal studies used final data to predict final effort. A few others used expert‟s predicted

effort to compare to final effort. Using initial parameters to predict final effort allows

DoD to expect, as is common in SCE, that the future will progress like the past.

Another significant contribution is the correlation analysis of the input parameters for

the higher CMMI levels of the contractors. By assuming high quality based on CMMI

rating, this dissertation focused on contractors with ongoing quality improvement ef-

forts. By comparing the top two CMMI levels separately, documented characteriza-

tions can baseline future studies by CMMI level.

CMMI Level 4 records are more consistent and interrelated than Level 5 records in this

data set. By using similar languages and traditional development processes, the CERs

residurals were better behaved and fit better for Level 4. CMMI Level 5 contractors

seemed to concentrate on systems development whereas Level 4‟s efforts spread evenly

between the three application subsets. Characteristics of future data sets will need to be

compared to the characteristics described in this dissertation.

100

The integration of Earned Value Management System (EVMS) metrics, for this subset of

the data, as an input parameter for software cost estimating is new in DoD. Discovering

whether this metric has utility in DoD software cost estimation is a contribution to know-

ledge. Further, documenting the effect this metric has on the software estimating perfor-

mance may provide a baseline for future studies.

After creating and testing CERs using initial, expected parameters to predict actual, re-

ported final effort hours, normalizing between physical and logical line counts by lan-

guages suggested by Lum, Baker and Hihn [2008], there are differences in the proposed

CERs by CMMI levels. The contribution to knowledge is the act of explicitly consider-

ing these input variables in relation to each other as well as in relation to the output vari-

able of software effort hours.

As this data set expands, other DoD researchers can take my results as a baseline to see

how the relationships among the variables change affecting CERs. Separate studies by

high CMMI levels of software project parameters and metrics will expand our knowledge

of the impact of these levels on the production of software and of the impact of software

environments. As these data sets grow and change, some parameters need to stay con-

stant, in particular those focused on in this dissertation, to allow future comparisons.

Creating and using standards in measurement of software parameters will alleviate threats

to construct validity in the future.

101

6. Future Research

As the data on software developers achieving top CMMI levels expand, continued study

of CERs by CMMI level may become common in SCE. As there are two representations

for CMMI (staged and continuous), it may be useful to investigate whether the represen-

tation type makes any difference in the CERs. Repeating this method with the same data

not separated by CMMI level would create CERs to compare to those in this dissertation.

Repeating this method with similar or different data sets by process maturity level may

validate the utility of CMMI level partitioning. Either by process maturity level or not,

different application area foci may be in order. Using application areas or environments

such as ground, air, and space may provide useful CERs for future SCE. Different appli-

cation area subsets may illuminate patterns in the data or show other statistical relation-

ships among the variables of interest. Different application areas may produce different

CER accuracy levels. Different accuracy measures applied to similar or different data

sets would provide results comparisons.

As experimentation with EVMS‟s measures continue in SCE, other EVMS variables may

prove more useful than SPI and CPI, used in this research. CV or SV values could be

useful in CERs, either with other parameters or by themselves. These values could be

divided by the contract value or by the number of effort hours, either estimated or final.

102

Comparing each of the initially estimated parameters to final parameters may shed light

on SCE over- or under-estimation, particularly by viewing them by a category of interest.

For example, initially estimated peak staff may relate differently to final peak staff at var-

ious CMMI levels. As the use of COTS expands, so should COTS measures. As meas-

ures evolve, new measures appear, or measures become standardized, particularly for

software size, new sets of CERs will emerge. Experimenting with software development

learning curves may lead to their use by one or more data set parameters. Use of similar

methods to those used in this dissertation with different statistical tools would reveal the

impact of tools. Use of different methods with the same statistical tools would reveal the

impact of methods.

103

List of References

104

List of References

Abdel-Hamid T. and Madnick S., Lessons Learned from Modeling the Dynamics of

Software Development, Communications of the ACM, Volume 32, Issue 12, December

1989, pp. 1426-1455

Abts C. M., Model Description: The COCOTS Extension of COCOMO II, University of

Southern California (USC) Center for Software Engineering and Texas A&M University

Working Paper, October 2002

Abts C. M., Extending the COCOMO II software cost model to estimate effort and sche-

dule for software systems using commercial-off-the-shelf (COTS) software components:

The COCOTS model, Dissertation, Department of Industrial and Systems Engineering,

University of Southern California, 2004, 290 pages

Agarwal R., Kumar M., Yogesh M., Mallick S., Bharadwaj R. and Anantwar D., Estimat-

ing software projects, ACM SIGSOFT Software Engineering Notes, Volume 26, Issue 4,

July 2001, pp. 60-67

Agrawal M. and Chari K., Software Effort, Quality, and Cycle Time: A Study of CMM

Level 5 Projects, IEEE Transactions on Software Engineering, Volume 33, Number 3,

March 2007, pp. 145-156

Ahmed F., Bouktif S., Serhani A. and Khalil I., Integrating Function Point Project Infor-

mation for Improving the Accuracy of Effort Estimation, Proceedings of the 2nd Interna-

tional Conference on Advanced Engineering Computing and Applications in Sciences

(ADVCOMP 2008), Volume 00, Valencia, Spain, September 29-October 4, 2008, pp.

193-198

Albert C. and Brownsword L., Evolutionary Process for Integrating COTS-Based Sys-

tems (EPIC): An Overview, Carnegie Mellon Software Engineering Institute COTS-

Based Systems Initiative, Pittsburg, Pennsylvania, July 2002, 62 pages,

http://www.sei.cmu.edu/library/abstracts/reports/02tr009.cfm, Accessed on October 4,

2009

Anda B., Benestad H. and Hove S., A Multiple Case Study of Software Effort Estimation

based on Use Case Points, Proceedings of the IEEE International Symposium on Empiri-

http://www.sei.cmu.edu/library/abstracts/reports/02tr009.cfm

105

cal Software Engineering (ISESE 2005), Noosa Heads, Australia, November 17-18,

2005, pp. 407-416

Andreou A., Papatheocharaous E. and Skouroumounis C., Evolving Conditional Value

Sets of Cost Factors for Estimating Software Development Effort, Proceedings of the

19th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2007),

Patras, Greece, October 29-31, 2007, pp. 165-172

Andreou A. and Papatheocharaous E., Software Cost Estimation using Fuzzy Decision

Trees, Proceedings of the 23rd IEEE/ACM International Conference on Automated

Software Engineering (ASE 2008), L'Aquila, Italy, September 15-19, 2008, pp. 371-374

Angelis L., Stamelos I. and Morisio M., Building a Software Cost Estimation Model

Based on Categorical Data, Proceedings of the 7th International Symposium on Software

Metrics (METRICS 2001), London, April 4-6, 2001, pp. 4-15

Armel K. (Editor), The QSM Software Almanac, Application Development Series, 2006

IT Metrics Edition, Quantitative Software Management, Inc. (QSM), 2006, 106 pages

Ayala Martinez C., Systematic construction of goal-oriented COTS taxonomies, Technic-

al University of Catalunya (Campus Nord 08034), Barcelona, Spain, February 2008, 243

pages, at http://www.tdx.cat/TDX-0428108-124137, Accessed on September 23, 2009

Bachman D., Single Point Adjustments: A New Definition with Examples (Tutorial), Ac-

quisition Review Quarterly (ARQ), September 22, 2001, pp. 177-196, at

http://www.dau.mil/pubs/arq/2001arq/Bachman.pdf, Accessed on January 4, 2009

Banker R., Davis G. and Slaughter S., Software Development Practices, Software Com-

plexity, and Software Maintenance Performance: a Field Study, Management Science,

Volume 44, Number 4, April 1998, pp. 433-450

Baskeles B., Turnhan B. and Bener A., Software Effort Estimation Using Machine Learn-

ing Methods, 22nd International Symposium on Computer and Information Sciences

(ISCIS 2007), November 7-9 2007

Beims M. and Dabney J., Reliable Tailored-COTS via Independent Verification and Va-

lidation, NATO Research and Technology Organization (RTO), Information Systems

Technology (IST) Symposium on Commercial-Off-the-Shelf Products in Defense Appli-

cations ("The Ruthless Pursuit of COTS"), RTO MP-48, Brussels, Belguim, April 3-5

2000, pp. 10:1-7, http://ftp.rta.nato.int/public//PubFulltext/RTO/MP/RTO-MP-48///MP-

48-10.pdf, Accessed on September 23, 2009

Bennatan E. M., On Time Within Budget: Software Project Management Practices and

Techniques, Third Edition, John Wiley and Sons, Inc., New York, 2000, 341 pages

http://www.tdx.cat/TDX-0428108-124137
http://www.dau.mil/pubs/arq/2001arq/Bachman.pdf
http://ftp.rta.nato.int/public/PubFulltext/RTO/MP/RTO-MP-48/MP-48-10.pdf
http://ftp.rta.nato.int/public/PubFulltext/RTO/MP/RTO-MP-48/MP-48-10.pdf

106

Berlin S., Raz T., Glezer C. and Zviran M., Comparison of estimation methods of cost

and duration in IT projects, Information and Software Technology, Elsevier, 2009, pp.

738-748

Bernstein P., Against the Gods: The Remarkable Story of Risk, John Wiley and Sons,

Inc., New York, 1996, 383 pages

Boehm B., Abts C., Brown A. W., Chulani S., Clark B., Horowitz E., Madachy R., Rei-

fer D. and Steece B., Software Cost Estimation with COCOMO II, Prentice Hall PTR,

Upper Saddle River, New Jersey, 2000, 502 pages

Boehm B., Software Engineering Economics, Prentice Hall, Upper Saddle River, New

Jersey, 1981, 767 pages

Boehm B., A view of 20th and 21st Century Software Engineering, Proceedings of the

28th International Conference on Software Engineering (ICSE 2006) Keynote Talks,

Shanghai, China, May 20-28 2006, pp. 12-29

Boetticher G. D. and Lokhandwala N., Assessing the reliability of a human estimator,

Proceedings of the 3rd international Workshop on Predictor Models in Software Engi-

neering (PROMISE 2007), Minneapolis, Minnesota, May 20-26 2007, pp. 5-12

Bollinger T., Software in the year 2010, IT Professional, Volume 6, Issue 6, IEEE Educa-

tional Activities Department, Piscataway, New Jersey, November-December 2004, pp.

11-15

Bollinger T., The Interplay of Art and Science in Software, Computer, Volume 30, Num-

ber 10, October 1997, pp. 125-128

Booch G., Best of Booch, Cambridge University Press, Cambridge, United Kingdom,

1998, 236 pages

Book S. A., Briefing titled “The Morass of Software Costing”, November 14, 2001,

Email from Dr. Daniel Nussbaum (danussba@nps.edu), Naval Postgraduate School, sent

on December 6, 2006

Braga P., Oliveira A. and Meira S., Software Effort Estimation using Machine Learning

Techniques with Robust Confidence Intervals, Proceedings of the 7th International Con-

ference on Hybrid Intelligent Systems (HIS 2007), Kaiserlautern, Germany, September

17-19, 2007, pp. 352-357

Briand L., El Emam K., Surmann D., Wieczorek I. and Maxwell K., An Assessment and

Comparison of Common Software Estimation Modeling Techniques, Proceedings of the

mailto:danussba@nps.edu

107

21st International Conference on Software Engineering (ICSE 1999), Los Angeles, Cali-

fornia, May 16-22, 1999, pp. 313-322

Briand L., El Emam K. and Bomarius F., COBRA: A Hybrid Method for Software Cost

Estimation, Benchmarking, and Risk Assessment, Proceedings of the 20th International

Conference on Software Engineering Benchmarking, and Risk Assessment (ICSE 1998),

Kyoto, Japan, April 19-25, 1998, pp. 390-399

Briand L., Langley T. and Wieczorek I., A Replicated Assessment and Comparison of

Common Software Cost Modeling Techniques, Proceedings of the 22nd International

Conference on Software Engineering (ICSE 2000), Limerick, Ireland, June 4-11, 2000,

pp. 377-386

Brooks F., The Mythical Man-Month: Essays on Software Engineering, Anniversary Edi-

tion, Addison Wesley Longman, Inc., 1995, 322 pages

Bryan J. and Locke E., Goal setting as a means of increasing motivation, Journal of Ap-

plied Psychology, Volume 51, Issue 3, June 1967, pp. 274-277

Bryant M., What Does Triangulation Do To A Cost Estimate? (Some Insights From Eva-

luating Cost Uncertainty), Air Force Cost Analysis Agency Working Paper, 2008, 12

pages

Cain J. and McCrindle R., An Investigation into the Effects of Code Coupling on Team

Dynamics and Productivity, Proceedings of the 26th International Computer Software

and Applications Conference on Prolonging Software Life: Development and Redeve-

lopment (COMPSAC 2002), Oxford, England, August 26-29, 2002, pp. 907-913

Carr D., Class lectures and learning materials, George Mason University, Statistical

Graphics and Data Exploration Course (CSI-773), Fall Semester 2007

Chand D. and Gowda R., An exploration of the impact of individual and group factors on

programmer productivity, Proceedings of the 1993 ACM conference on Computer

Science, Indianapolis, Indiana, February 16-18, 1993, pp. 338-345

Chiu N. and Huang S., The adjusted analogy-based software effort estimation based on

similarity distances, Journal of Systems and Software, Volume 80, Number 4, April

2007, pp. 628-640

Chulani S., Santhanam P., Moore D., Leszkowicz G. and Davidson G., Deriving a Soft-

ware Quality View from Customer Satisfaction and Service Data (2001), Proceedings of

the 12th European Software Control and Metrics Conference (ESCOM 2001), Volume 1,

London, April 2-4 2001, pp. 225-232,

108

http://www.escom.co.uk/conference2001/papers/chulani.pdf, Accessed on September 23,

2009

Clark B., The effects of software process maturity on software development effort, PhD

Dissertation, University of Southern California, 1997, 163 pages

Cleveland W., The Elements of Graphing Data, Wadsworth Advanced Book Program,

Bell Telephone Laboratories, Murray Hill, New Jersey, 1985, 323 pages

Cloos J., Cost Data: Government and Industry Lecture, George Mason University Gradu-

ate Course, Military Operations Research: Cost Analysis (OR 651), Alexandria, Virginia,

February 2006

Cockburn A., Agile Software Development: The Cooperative Game, Second Edition,

Pearson Education, Inc., Boston, Massachusetts, 2006, 467 pages

Conte S., Dunsmore H. and Shen V., Software Engineering Metrics and Models, Benja-

min/Cummings Publishing Company, Inc., Menlo Park, California, 1986, 396 pages

Creswell J., Research Design: Qualitative Quantitative and Mixed Method Approaches,

Third Edition, Sage Publications, Inc., Thousand Oaks, California, 2009, 296 pages

DACS - The Data & Analysis Center for Software, Software Tech News: New Directions

in Software Estimation, October 2008,

https://www.softwaretechnews.com/stn_view.php?stn_id=47, Accessed on October 27,

2008

Davis A. M., Two Hundred One Principles of Software Development, McGraw-Hill, Inc.,

New York, 1995, 240 pages

DCMA or Defense Contract Management Agency (DCMA/PID), Department of Defense

Earned Value Management Implementation Guide, October 2006, 106 pages,

http://guidebook.dcma.mil/79/EVMIG.doc, Accessed on December 2, 2008

de Barcelos Tronto I. F., da Silva J. D. S. and Sant'Anna N., Comparison of Artificial

Neural Network and Regression Models in Software Effort Estimation, Proceedings of

the International Joint Conference on Neural Networks, Orlando, Florida, August 12-17

2007, pp. 771-776

Defense Science Board, Office of the Undersecretary of Defense, Report of the Defense

Science Board Task Force on Military Software, Defense Science Board, Office of the

Undersecretary of Defense (DSB/OUSD(A)), September 1987, 84 pages,

http://www.dtic.mil/cgi-

http://www.escom.co.uk/conference2001/papers/chulani.pdf
https://www.softwaretechnews.com/stn_view.php?stn_id=47
http://guidebook.dcma.mil/79/EVMIG.doc
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA188561&Location=U2&doc=GetTRDoc.pdf

109

bin/GetTRDoc?AD=ADA188561&Location=U2&doc=GetTRDoc.pdf, Accessed on

January 4, 2009

Deng D., Purvis M. and Purvis M., Software Metric Estimation: An Empirical Study Us-

ing An Integrated Data Analysis Approach, International Conference on Service Systems

and Service Management, June 9-11, 2007, pp. 1-6

DoD – Deparment of Defense, Risk Management Guide for DoD Acquisition (Sixth Edi-

tion, Version 1.0), August 2006, www.dau.mil/pubs/gdbks/risk_management.asp, Ac-

cessed on 12/20/2008

DoDD 8000.01, Department of Defense Directive 8000.01, “Management of DoD Infor-

mation Resources and Information Technology”, February 27, 2002

DoDI 5000.02, Department of Defense Instruction 5000.02, “Operation of the Defense

Acquisition System”, December 8, 2008,

www.dtic.mil/whs/directives/corres/pdf/500002p.pdf, Accessed on December 20, 2008

DoDI 5000.04-M-1, Department of Defense Instruction 5000.04-M-1, “Cost and Soft-

ware Data Reporting (CSDR) Manual”, April 18, 2007,

www.dtic.mil/whs/directives/corres/pdf/500004m1p.pdf, Accessed on December 20,

2008

Draper N. and Smith H., Applied Regression Analysis, 3
rd

 edition, John Wiley & Sons,

New York, 1998, 706 pages

Fairley R. and Willshire M., Iterative Rework: The Good, the Bad, and the Ugly, Com-

puter, Volume 38, Number 9, Los Alamitos, California, September 2005, pp. 34-41,

http://doi.ieeecomputersociety.org/10.1109/MC.2005.303, Accessed on September 23,

2009

Ferens D. and Christensen D., Does Calibration Improve Predictive Accuracy?, Software

Technology Support Center (STSC) Cross Talk, The Journal of Defense Software Engi-

neering, April 2000, http://www.stsc.hill.af.mil/crosstalk/2000/04/ferens.html, Accessed

on December 15, 2008

Ferens D., Tech Views, DoD Software Tech News - New Directions in Software Estima-

tion, The Data and Analysis Center for Software (DACS), Volume 11, Issue 3, Rome,

New York, October 2008,

http://www.softwaretechnews.com/stn_view.php?stn_id=47&article_id=113, Accessed

on September 23, 2009

Fischman L., McRitchie K., Galorath D. D., Inside SEER-SEM, Software Technology

Support Center (STSC) Cross Talk, The Journal of Defense Software Engineering, April

http://www.dau.mil/pubs/gdbks/risk_management.asp
http://www.dtic.mil/whs/directives/corres/pdf/500002p.pdf
http://www.dtic.mil/whs/directives/corres/pdf/500004m1p.pdf
http://doi.ieeecomputersociety.org/10.1109/MC.2005.303
http://www.stsc.hill.af.mil/crosstalk/2000/04/ferens.html
http://www.softwaretechnews.com/stn_view.php?stn_id=47&article_id=113

110

2005, http://www.stsc.hill.af.mil/crosstalk/2005/04/0504Fischman.html, Accessed on

December 22, 2009

Fisher G., Cost Considerations in System Analysis, RAND Report, December 1970, 348

pages

Foss T., Stensrud E., Kitchenham B. and Myrtveit I., A Simulation Study of the Model

Evaluation Criterion MMRE, IEEE Transactions on Software Engineering, Volume 29,

Number 11, November 2003, pp. 985-995

Gallo M., Koza E., Holzman M. and Hardin P., An Approach for Building a Normalized

Software Database using SRDRs, 41st Annual DoD Cost Analysis Symposium, Wil-

liamsburg VA, 20-22 February 2008,

http://www.technomics.net/pdf/SRDR%20Software%20Database.pdf, Accessed on April

25, 2010

GAO - United States Government Accountability Office, Defense Acquisitions Assess-

ments of Selected Weapon Programs, March 2008,

http://www.gao.gov/new.items/d08467sp.pdf, Accessed on January 4, 2009

Gao X. and Lo B., An integrated software cost model based on COCOMO and function

point approaches, Proceedings of the Software Education Conference, Dunedin, New

Zealand, November 22-25, 1994, pp. 86-93

Gaylek J., Long L., Bell K., Hsu R. and Larson R., Software Cost and Productivity Mod-

el, Aerospace Report Number ATR-2004(8311)-1, February 20 2004

Gencel C. and Demirors O., Functional Size Measurement Revisited, ACM Transactions

on Software Engineering and Methodology, Volume 17, Number 3, Article 15, June

2008, pp. 15:1-36

Gilb T., Estimating software attributes: some unconventional points of view, ACM SIG-

SOFT Software Engineering Notes, Volume 11, Number 1, New York, January 1986, pp.

49-59, http://doi.acm.org/10.1145/382300.382312, Accessed on September 23, 2009

Gruschke T., Empirical Studies of Software Cost Estimation: Training of Effort Estima-

tion Uncertainty Assessment Skills, Proceedings of the 11th IEEE International Software

Metrics Symposium (METRICS 2005), September 19-22 2005, pp. 3-5

Gupta D., Kaushal S. and Sadiq M., Software estimation tool based on three-layer model

for software engineering metrics, Proceedings of the 4th IEEE International Conference

on Management of Innovation and Technology (ICMIT 2008), September 21-24 2008,

pp. 623-628

http://www.stsc.hill.af.mil/crosstalk/2005/04/0504Fischman.html
http://www.technomics.net/pdf/SRDR%20Software%20Database.pdf
http://www.gao.gov/new.items/d08467sp.pdf
http://doi.acm.org/10.1145/382300.382312

111

Heemstra F. J. and Kusters R. J., Function Point Analysis: Evaluation of a Software Cost

Estimation Model, European Journal of Information Systems, Volume 1, Issue 4, 1991,

pp. 229-237

Hihn J. and Lum K., Improving Software Size Estimates by Using Probabilistic Pairwise

Comparison Matrices, Proceedings of the 10th International Symposium on Software

Metrics (METRICS 2004), September 11-17 2004, pp. 140-150

Hillier F. and Lieberman G., Introduction to Operations Research, Eighth Edition,

McGraw-Hill, New York, 2005, 1061 pages

Huang S., Chiu N. and Liu Y., A comparative evaluation on the accuracies of software

effort estimates from clustered data, Information and Software Technology, Volume 50,

Elsevier, 2008, pp. 879-888

Huang X., Capretz L., Ren J. and Ho D., A Neuro - Fuzzy Model for Software Cost Es-

timation, Proceedings of the 3rd International Conference on Quality Software (QSIC

2003), November 6-7 2003, pp. 126-133

Humphrey W., The Personal Software Process (PSP), Carnegie Mellon University Soft-

ware Engineering Institute (CMU/SEI-2000-TR-022), Pittsburg, Pennsylvania, Novem-

ber 2000, 54 pages, http://www.sei.cmu.edu/reports/00tr022.pdf, Accessed on October 4,

2009

Huo M., Verner J., Zhu L. and Ali Babar M., Software Quality and Agile Methods, Pro-

ceedings of the 28th Annual International Computer Software and Applications Confe-

rence: Design and Assessment of Trustworthy Software-Based Systems (COMPSAC

2004), Hong Kong, China, September 27-30 2004, pp. 520-525

Idri A., Khoshgoftaar T. and Abran A., Can Neural Networks be easily Interpreted in

Software Cost Estimation?, Proceedings of the 2002 IEEE International Conference on

Fuzzy Systems (FUZZ-IEEE 2002), May 12-17, 2002, pp. 1162-1167

Ikoma M., Ooshima M., Tanida T., Oba M. and Sakai S., Using a Validated Model to

Measure the Agility of Software Development in a Large Software Development Organi-

zation, Proceedings of the 31st International Conference on Software Engineering (ISCE

2009), Vancouver, Canada, May 16-24 2009, pp. 91-100

Jalali O., Evaluation Bias in Effort Estimation, In Partial Fulfillment of the Requirements

for the Degree of Master in Science in Computer Science, Lane Department of Computer

Science and Electrical Engineering, West Virginia University (WVU), 2008, 142 pages

http://www.sei.cmu.edu/reports/00tr022.pdf

112

Jayaraman A. and Llopart M., Characteristics that Make One Estimation Technique Bet-

ter than Others, Carnegie Mellon University School of Computer Science Institute for

Software Research (CMU-ISR), Pittsburg, Pennsylvania, May 2007, 10 pages

Jeffery R., Ruhe M. and Wieczorek I., Using Public Domain Metrics to Estimate Soft-

ware Development Effort, Proceedings of the 7th International Symposium on Software

Metrics (METRICS 2001), April 4-6 2001, pp. 16-27

Jeffery D., Time-Sensitive Cost Models in the Commercial MIS Environment, IEEE

Transactions on Software Engineering, Volume 13, Issue 7, Piscataway, New Jersey, July

1987, pp. 852-859

Jensen R. and Dupaix L., Normalizing Defense Cost and Resource Center Data: A Feasi-

bility Study, Software Technology Support Center (STSC), 2008

Jones C., Estimating Software Costs: Bringing Realism to Estimating, McGraw-Hill Pub-

lishing, New York, 2007, 644 pages

Jones C., Software Cost Estimating Methods for Large Projects, Software Technology

Support Center (STSC) Cross Talk, The Journal of Defense Software Engineering, April

2005, http://www.stsc.hill.af.mil/crosstalk/2005/04/0504Jones.html, Accessed on Sep-

tember 29, 2006

Jones C. J., 42
nd

 Department of Defense Cost Analysis Symposium (DoDCAS) presenta-

tion, “MAIS vs. MDAP - Understanding the Difference”, 2009, 12 slides,

http://209.48.244.135/DODCAS%20Archives/42nd%20DODCAS%20(2009)/Software%

20and%20Data/5a_Jones_Presentation.pdf, Accessed on October 29, 2009

Jorgensen M., Practical Guidelines for Expert-Judgment-Based Software Effort Estima-

tion, IEEE Software, Volume 22, Number 3, May-June 2005, pp. 57-63

Kalb, G.E., The pursuit of accurate source lines of code sizing, Proceedings of the IEEE

National Aerospace and Electronics Conference (NAECON), Volume 2, 1988, pp. 698 -

700

Kemerer C. F., An Empirical Validation of Software Cost Estimation Models, Communi-

cations of the ACM, Volume 30, Issue 5, May 1987, pp. 416-429

Keung J. and Kitchenham B., Experiments with Analogy-X for Software Cost Estima-

tion, Proceedings of the 19th Australian Conference on Software Engineering (ASWEC

2008), March 26-28 2008, pp. 229-238

Khalifa M. and Verner J., Drivers for Software Development Usage, IEEE Transactions

on Engineering Management, Volume 47, Issue 3, August 2000, pp. 360-369

http://www.stsc.hill.af.mil/crosstalk/2005/04/0504Jones.html
http://209.48.244.135/DODCAS%20Archives/42nd%20DODCAS%20(2009)/Software%20and%20Data/5a_Jones_Presentation.pdf
http://209.48.244.135/DODCAS%20Archives/42nd%20DODCAS%20(2009)/Software%20and%20Data/5a_Jones_Presentation.pdf

113

Kitchenham B., Mendes E. and Travassos G., Cross versus Within-Company Cost Esti-

mation Studies: A Systematic Review, IEEE Transactions on Software Engineering, Vo-

lume 33, Number 5, May 2007, pp. 316-329

Kitchenham B., Pickard L., MacDonell S., and Shepperd M., "What accuracy statistics

really measure", Software - Proceedings of the IEE, Volume 148, Issue 3, June 2001

Lan C., Tseng C. and Lai K., Developing a Negotiation-based Intelligent Tutoring Sys-

tem to Support Problem Solving: A Case Study in Role-play Learning, Proceedings of the

8th IEEE international Conference on Advanced Learning Technologies (ICALT 2008),

Volume 00, Number 1, Section 5, 2008, pp. 356-360

Lane J. and Boehm B., Modern Tools to Support DoD Software Intensive Systems of

Systems Cost Estimation, The Data and Analysis Center for Software (DACS Report),

August 2007, https://www.thedacs.com/techs/abstracts/abstract.php?dan=347336, Ac-

cessed on October 4, 2009

Lewis J.P., Large Limits to Software Estimation, ACM Software Engineering Notes, Vo-

lume 26, Number 4, July 2001, pp. 54-59

Li J. and Ruhe G., Decision Support Analysis for Software Effort Estimation by Analogy,

Proceedings of the 3rd International Workshop on Predictor Models in Software Engi-

neering (PROMISE 2007), Minneapolis, Minnesota, May 20, 2007, pp. 6-15

Lipke W., EVM and Software Project Management - Our Story, Software Technology

Support Center (STSC) Cross Talk, The Journal of Defense Software Engineering, Hill

Air Force Base, Utah, November 2002,

http://www.stsc.hill.af.mil/crosstalk/2002/11/lipke.html, Accessed on May 11, 2009

Liu Q. and Mintram R., Preliminary Data Analysis Methods in Software Estimation,

Software Quality Journal, Volume 13, Number 1, March 2005, pp. 91-115

Liu Q. and Mintram R., Using Industry Based Data Sets in Software Engineering Re-

search, Proceedings of the 3rd International Workshop on Summit on Software Engineer-

ing Education (SSEE 2006), Shanghai, China, May 20, 2006, pp. 33-36

Loerch A., Learning Curves, Encyclopedia of Operations Research and Management

Science, Second Edition, Editors: S. I. Gass and C. M. Harris, Kluwer Academic Publish-

ing, Boston, Massachusetts, 2001, pp. 445-448

Long L. G. and Lucas R. H., Cost Estimating Relationships (CERs) For Software Devel-

opment, Air Force Materiel Command, Space and Missile Systems Center

https://www.thedacs.com/techs/abstracts/abstract.php?dan=347336
http://www.stsc.hill.af.mil/crosstalk/2002/11/lipke.html

114

(AFMC/SMC), Aerospace Report Number: TOR-96(8504-01)-3, Los Angeles California,

May 20, 1996, 32 pages

Lopez-Martin C., Yanez-Marquez C. and Gutierrez-Tornes A., Fuzzy Logic Systems for

Software Development Effort Estimation Based Upon Clustering of Programs Segmented

by Personal Practices, Proceedings of the Electronics, Robotics and Automotive Mechan-

ics Conference (CERMA 2006), September 2006, pp. 367-372

Lott C., Breathing New Life into the Waterfall Model, IEEE Software, Volume 14, Issue

5, September-October 1997, pp. 103-105

Lum K. T., Baker D. R. and Hihn J. M., The Effects of Data Mining Techniques on

Software Cost Estimation, Proceedings of the IEEE International Engineering Manage-

ment Conference (IEMC - Europe 2008), Estoril, Portugal, June 28-30, 2008, pp. 1-5

Lurie P., Estimating Relationships II: Complex Models Brief, George Mason University

Course: Operations Research: Cost Analysis (OR-651), Lecture, Alexandria, Virginia,

March 2006

Madachy R., System Dynamics Modeling of an Inspection-Based Process, Proceedings

of the 18th International Conference on Software Engineering (ICSE 1996), Berlin, Ger-

many, March 25-29, 1996, pp. 376-386

Mair C. and Shepperd M., Making Software Cost Data Available for Meta-Analysis, Pro-

ceedings of 8th International Conference on Empirical Assessment in Software Engineer-

ing (EASE 2004), May 2004, 9 pages,

http://dec.bournemouth.ac.uk/ESERG/Technical_Reports/TR04-02/TR04-02.pdf, Ac-

cessed on December 22, 2008

Marciniak J. and Reifer D., Software Acquisition Management: Managing the Acquisi-

tion of Custom Software Systems, John Wiley & Sons, Inc., New York, 1990, 290 pages

Martin C. L., Pasquier J. L., Yanez C. M. and Tornes A. G., Software Development Ef-

fort Estimation Using Fuzzy Logic: A Case Study, Proceedings of the 6th Mexican Inter-

national Conference on Computer Science (ENC 2005), September 26-30, 2005, pp. 113-

120

McConnell S., Software Estimation: Demystifying the Black Art, Microsoft Press, Red-

mond, Washington, 2006, 308 pages

McLoone P. and Rohde S., Performance Outcomes of CMMI-Based Process Improve-

ments, United States Department of Defense (DoD), The Data and Analysis Center for

Software (DACS), Software Tech News: Performance Outcomes from Process Improve-

ments, Volume 10, Number 1, Rome, New York, March 2007,

http://dec.bournemouth.ac.uk/ESERG/Technical_Reports/TR04-02/TR04-02.pdf

115

https://www.softwaretechnews.com/stn_view.php?stn_id=41&article_id=76, Accessed

on April 24, 2009

Mendes E., DiMartino S., Ferrucci F. and Gravino C., Effort Estimation: How Valuable

is it for a Web Company to Use a Cross-company Data Set, Compared to Using Its Own

Single-company Data Set?, Proceedings of the 16th International World Wide Web Con-

ference (WWW 2007), May 8-12, 2007, pp. 963-972,

http://www.cs.auckland.ac.nz/weta/techreports/2005/WETA-TR-01.pdf, Accessed on

January 4, 2009

Mertes K., Calibration of the Checkpoint Model to the Space and Missile Systems Center

(SMC) Software Database (SWDB), Air Force Institute of Technology (AFIT), Septem-

ber 1996, 121 pages

Meyer M. and Booker J., Eliciting and Analyzing Expert Judgment: A Practical Guide,

American Statistical Association - Society for Industrial and Applied Mathematics, Series

on Statistics and Applied Probability (ASA-SIAM), Philadelphia, Pennsylvania, 2001

Meyers B. and Oberndorf P., Managing Software Acquisition: Open Systems and COTS

Products, Addison-Wesley Professional: informIT, July 2001, 288 pages

Miller F., Paradis R. and Whalen K., Iterative Development Life Cycle (IDLC): A Man-

agement Process for Large-Scale Intelligent System Development, Proceedings of the

1991 IEEE International Conference on Tools for AI, San Jose, California, November

1991, pp. 520-521

MIL-HDBK-881A, Department of Defense (Military) Handbook, Work Breakdown

Structures for Defense Materiel Items, Office of the Undersecretary of Defense (Acquisi-

tion, Technology, and Logistics) (OUSD(AT&L)), July 30, 2005,

http://www.acq.osd.mil/pm/currentpolicy/wbs/MIL_HDBK-

881A/MILHDBK881A/WebHelp3/MIL-HDBK-

881A%20FOR%20PUBLICATION%20FINAL%2009AUG05.pdf, Accessed on January

9, 2009

Minkiewicz A., The Evolution of Software Size: A Search for Value, Software Tech

News – New Directions in Software Estimation, Volume 11, Number 3, October 2008,

pp. 18-22, http://www.softwaretechnews.com/stn_view.php?stn_id=47&article_id=116,

Accessed on January 4, 2009

Minkiewicz A., Tackling the Cost Challenges of System of Systems, Software Technolo-

gy Support Center (STSC) Cross Talk, The Journal of Defense Software Engineering,

May 2006, http://www.stsc.hill.af.mil/crosstalk/2006/05/0605Minkiewicz.html, Accessed

on January 4, 2009

https://www.softwaretechnews.com/stn_view.php?stn_id=41&article_id=76
http://www.cs.auckland.ac.nz/weta/techreports/2005/WETA-TR-01.pdf
http://www.acq.osd.mil/pm/currentpolicy/wbs/MIL_HDBK-881A/MILHDBK881A/WebHelp3/MIL-HDBK-881A%20FOR%20PUBLICATION%20FINAL%2009AUG05.pdf
http://www.acq.osd.mil/pm/currentpolicy/wbs/MIL_HDBK-881A/MILHDBK881A/WebHelp3/MIL-HDBK-881A%20FOR%20PUBLICATION%20FINAL%2009AUG05.pdf
http://www.acq.osd.mil/pm/currentpolicy/wbs/MIL_HDBK-881A/MILHDBK881A/WebHelp3/MIL-HDBK-881A%20FOR%20PUBLICATION%20FINAL%2009AUG05.pdf
http://www.softwaretechnews.com/stn_view.php?stn_id=47&article_id=116
http://www.stsc.hill.af.mil/crosstalk/2006/05/0605Minkiewicz.html

116

Misra S., Modeling Design / Coding Factors That Drive Maintainability of Software,

Software Quality Journal, Volume 13, Springer Science and Business Media, Inc., Neth-

erlands, 2005, pp. 297-320

Miyazaki Y., Terakado M. and Ozaki K., Robust Regression for Developing Software

Estimation Models, Journal of Systems and Software, Volume 27, Number 1, Elsevier

Science Inc., New York, October 1994, pp. 3-16

Mohagheghi P., Anda B. and Conradi R., Effort estimation of use cases for incremental

large-scale software development, Proceedings of the 27th International Conference on

Software Engineering (ICSE 2005), Edinburgh, Scotland, United Kingdom, May 15-21,

2005, pp. 303-311

Molokken K. and Jorgensen M., A Review of Surveys on Software Effort Estimation,

Proceedings of the 2nd International Symposium on Empirical Software Engineering

(ISESE 2003), Rome, Italy, September 30-October 1, 2003, pp. 223- 230

Morgan J., A Cost Estimation Model for the Fourth Generation Language (4GL) Soft-

ware Development Environments, PhD Dissertation, George Mason University, 1997,

457 pages

Moser S. and Nierstrasz O., The Effect of Object Oriented Frameworks on Developer

Productivity, Computer, Volume 29, Number 9, September 1996, pp. 45-51

Motsko M., Oberndorf P., Pario E. and Smith J., Rules of Thumb for the Use of COTS

Products, Carnegie Mellon University Software Engineering Institute (CMU SEI),

December 2002, 37 pages,

http://www.sei.cmu.edu/publications/documents/02.reports/02tr032.html, Accessed on

January 5, 2009

Moul J., Presentation, Through Life Support and Costing 2009 Defense Conference spon-

sored by Defense IQ – a Division of IQPC (International Quality & Productivity Center),

London, United Kingdom, June 23-25, 2009

Musilek P., Pedrycz W., Sun N. and Succi G., On the Sensitivity of COCOMO II Soft-

ware Cost Estimation Model, Proceedings of the 8th International Symposium on Soft-

ware Metrics (METRICS 2002), Ottawa, Canada, June 4-7, 2002, pp. 13-20

Myrtveit I., Stensrud E. and Shepperd M., Reliability and Validity in Comparative Stu-

dies of Software Prediction Models, IEEE Transactions on Software Engineering, Vo-

lume 31, Number 5, May 2005, pp. 380-391

Najberg A., The TASC Software Cost and Requirements Estimator (TASCOR) A Top-

Down, Structured Approach to the Software Cost Estimation Process, Proceedings of the

http://www.sei.cmu.edu/publications/documents/02.reports/02tr032.html

117

1988 National Aerospace and Electronics Conference (NAECON 1998), Volume 2, Day-

ton, Ohio, May 23-27, 1988, pp. 686-691

Naseem A., Want to Make Your System Highly Available? Add COTS to the Middle

(ware), COTS Journal Online, May 2004,

http://www.cotsjournalonline.com/articles/view/100114, Accessed on September 24,

2009

Neale J. and Liebert R., Science and Behavior: An Introduction to Methods of Research,

3
rd

 Edition, Prentice-Hall Series in Social Learning Theory, Englewood Cliffs, New Jer-

sey, 1986, 324 pages

Oh S., Pedrycz W. and Park B., Self-Organizing Neuro-Fuzzy Networks Based on Evolu-

tionary Fuzzy Granulation, IEEE Transactions on Systems, Man, and Cybernetics - Part

A: Systems and Humans, Volume 33, Issue 2, March 2003, pp. 271-277

Ormon S., Development of a Hierarchical Model-Based Decision-Support Tool for As-

sessing Uncertainty of Cost Estimates, Masters of Science in Industrial Engineering The-

sis, Mississippi State University, May 2002, 84 pages

Pagliano G. and O'Rourke R., Evolutionary Acquisition and Spiral Development in DoD

Programs: Policy Issues for Congress, Congressional Research Service, David D. Acker

Library and Knowledge Repository, Defense Acquisition University (DAU), Fort Bel-

voir, Virginia, April 8 2004, http://www.dtic.mil/cgi-

bin/GetTRDoc?AD=ADA435457&Location=U2&doc=GetTRDoc.pdf, Accessed on

September 24, 2009

Park R., Software Size Measurement: A Framework for Counting Source Statements,

Carnegie Mellon University Software Engineering Institute (CMU SEI), Pittsburgh,

Pennsylvania, September 1992, 242 pages,

http://www.sei.cmu.edu/pub/documents/92.reports/pdf/tr20.92.pdf, Accessed on January

5, 2009

Pendharkar P. C., Subramanian G. H. and Rodger J. A., A Probabilistic Model for Pre-

dicting Software Development Effort, IEEE Transactions on Software Engineering, Vo-

lume 31, Number 7, July 2005, pp. 615-624

Peters L., O'Connor E., Pooyan A. and Quick J., The relationship between time pressure

and performance: A field test of Parkingson's Law, Journal of Occupational Behavior,

John Wiley & Sons, Ltd. (pre-1986), Volume 5, Issue 4, ABI/INFORM Global, October

1984, pp. 293-299

Pfleeger S. L., Wu F. and Lewis R., Software Cost Estimation and Sizing Methods,

RAND Corporation, 2005, 127 pages

http://www.cotsjournalonline.com/articles/view/100114
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA435457&Location=U2&doc=GetTRDoc.pdf
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA435457&Location=U2&doc=GetTRDoc.pdf
http://www.sei.cmu.edu/pub/documents/92.reports/pdf/tr20.92.pdf

118

Pillai K. and Nair V., A Model for Software Development Effort and Cost Estimation,

IEEE Transactions on Software Engineering, Volume 23, Number 8, August 1997, pp.

485-497

Popp M., Software Resource Data Report (SRDR) - how it is changing NAVAIR

software estimating, Department of Defense Cost Analysis Symposium (DoDCAS), Feb-

ruary 2008,

http://209.48.244.135/DODCAS%20Archives/41st%20DODCAS%20(2008)/Track%204

%20-%20Data%20and%20Analytic%20Tools/T4S5a_Popp.pdf, Accessed on January 5,

2009

Putnam L, Tutorial Software Cost Estimating and Life-Cycle Control: Getting the Soft-

ware Numbers, Institute of Electrical and Electronics Engineers, Inc. (IEEE), New York,

1980, 349 pages

Putnam L. and Myers W., Measures for Excellence: Reliable Software on Time within

Budget, Yourdon Press, Prentice Hall PTR, Upper Saddle River, New Jersey, 1992, 378

pages

Putnam L., Jr., 2007 DoDCAS Data Trends in Software Development, Department of

Defense Cost Analysis Symposium (DoDCAS), February 2007,

http://209.48.244.135/DODCAS%20Archives/40th%20DODCAS%20(2007)/Track%203

/Session1.1Putnam.pdf, Accessed on January 5, 2009

Reifer D., Informal discussion at the 13th Annual Practical Software and Systems Mea-

surement (PSM) Users‟ Group Conference: Measurement in a Dynamic Business and

Government Environment, June 26, 2009

Reifer D. (Editor), Software Management, 6th Edition, IEEE Computer Society Press,

2002, 592 pages

Rico D., Using Cost Benefit Analyses to Develop Software Process Improvement (SPI)

Strategies, The Data and Analysis Center for Software (DACS), September 18 2000,

https://www.thedacs.com/techs/abstracts/abstract.php?dan=347008, Accessed on October

4, 2008

Rose L., COTS Integration Questions and Checklist, Software Productivity Consortium,

May 2000, https://acc.dau.mil/CommunityBrowser.aspx?id=146865, Accessed on De-

cember 18, 2008

Royce W., Successful Software Management Style: Steering and Balance, IEEE Soft-

ware, Volume 22, Number 5, September-October 2005, pp. 40-47

http://209.48.244.135/DODCAS%20Archives/41st%20DODCAS%20(2008)/Track%204%20-%20Data%20and%20Analytic%20Tools/T4S5a_Popp.pdf
http://209.48.244.135/DODCAS%20Archives/41st%20DODCAS%20(2008)/Track%204%20-%20Data%20and%20Analytic%20Tools/T4S5a_Popp.pdf
http://209.48.244.135/DODCAS%20Archives/40th%20DODCAS%20(2007)/Track%203/Session1.1Putnam.pdf
http://209.48.244.135/DODCAS%20Archives/40th%20DODCAS%20(2007)/Track%203/Session1.1Putnam.pdf
https://www.thedacs.com/techs/abstracts/abstract.php?dan=347008
https://acc.dau.mil/CommunityBrowser.aspx?id=146865

119

Ruhe M., Jeffery R. and Wieczorek I., Cost Estimation for Web Applications, Proceed-

ings of the 25th International Conference on Software Engineering (ICSE 2003), May 3-

10 2003, pp. 285-294

Sackman H., Erikson W. J. and Grant E. E., Exploratory experimental studies comparing

online and offline programming performance, Communications of the ACM, Volume 11,

Number 1, 1968, pp. 3-11

SAF or Deputy Assistant Secretary of the Air Force (Cost and Economics), Air Force

Cost Risk and Uncertainty Analysis Handbook, April 2007

Sage A., Lecture 7: COTS and Cost Estimation in Systems Integration and Architecting,

George Mason University Architecture-Based Systems Engineering (IT-850), October

2005

Salter C., A Decision Framework for the Selection of Commercial-Off-the-Shelf Tech-

nology for Organizational Processes, PhD Dissertation, George Mason University, May

2001

Schaeffer M., Osiecki L., Richter K. and Baldwin K., Improving the Integrity of the

CMMI Product Suite, Defense AT&L Magazine, July-August 2007, pp. 14-16,

http://www.dau.mil/pubs/dam/2007_07_08/scha_ja07.pdf, Accessed on October 4, 2009

Schoedel R., PROxy Based Estimation (PROBE) for Structured Query Language (SQL),

Carnegie Mellon University/Software Engineering Institute Technical Note, CMU/SEI-

2006-TN-017, May 2006, http://www.sei.cmu.edu/reports/06tn017.pdf, Accessed on De-

cember 22, 2009

Shepperd M., Software project economics: a roadmap, Future of Software Engineering

(FOSE 2007), IEEE Computer Society International Conference on Software Engineer-

ing, 2007, pp. 304-315

Silva A. and Stam A., Nonparametric Two-Group Classification: Concepts and a SAS-

Based Software Package, The American Statistician, Volume 52, Issue 2, May 1998, pp.

185-197, http://www.jstor.org/stable/2685479, Accessed on February 11, 2009

Selby R., Hafen G., Mink A., Nicol M., Flowe R., Lile R. and R. Gold, “Software Risk

and Estimation Workshop Outbrief,” Software in Acquisition Workshop, October 16-17,

2007,

http://www.acq.osd.mil/sse/ssa/docs/SoftwareRiskandEstimationOutbrief20071018.pdf,

Accessed on December 10, 2008

http://www.dau.mil/pubs/dam/2007_07_08/scha_ja07.pdf
http://www.sei.cmu.edu/reports/06tn017.pdf
http://www.jstor.org/stable/2685479
http://www.acq.osd.mil/sse/ssa/docs/SoftwareRiskandEstimationOutbrief20071018.pdf

120

Spurlock M. A., Introduction to Software Cost Estimation: How long will it take and how

much will it cost?, May 14 2003, http://www.dau.mil/conferences/presentations/2003/T7-

SoftwareCostEstimating-MarthaSpurlock.pdf, Accessed on December 1, 2008

Strike K. T., El Emam K. and Madhavji N., Software Cost Estimation with Incomplete

Data, IEEE Transactions on Software Engineering, Volume 27, Number 10, October

2001, pp. 890-908

S3DB - Space Systems Software Database Data Collection Instruction Manual, Software

Technology Support Center (STSC) product developed for Air Force Cost Analysis

Agency (AFCAA), January 1, 2005

Stutzke R., Software Estimating Technology: A Survey, Software Technology Support

Center (STSC) Crosstalk, The Journal of Defense Software Engineering, Hill Air Force

Base, Utah, May 1996, http://www.stsc.hill.af.mil/crosstalk/1996/05/estimati.asp, Ac-

cessed on August 31, 2009

Subramanian G., A Methodology to Attain Site Specificity and Model Simplicity in

Software Development Effort Estimation, A Dissertation submitted to the Temple Uni-

versity Graduate Board in Partial Fulfillment of the Requirements for the Degree Doctor

of Philosophy, Philadelphia, Pennsylvania, January 1991

Sutcliffe A., The Domain Theory: Patterns for Knowledge and Software Reuse, Law-

rence Erlbaum Associates, Inc., Mahwah, New Jersey, 2002, 398 pages

Tadayon N., Neural Network Approach for Software Cost Estimation, International Con-

ference on Information Technology Coding and Compression (ITCC 2005), April 4-6

2005, pp. 815-818

Tan Y. and Mookerjee V., Comparing Uniform and Flexible Policies for Software Main-

tenance and Replacement, IEEE Transactions on Software Engineering, Volume 31,

Number 3, March 2005, pp. 238-255

Tomer A., Goldin L., Kuflik T., Kimchi E. and Schach S., Evaluating Software Reuse

Alternatives: A Model and Its Application to an Industrial Case Study, IEEE Transac-

tions on Software Engineering, Volume 30, Number 9, September 2004, pp. 601-612

Tucker J. (Director), Panel on Statistical Methods in Software Engineering, Committee

on Applied and Theoretical Statistics Board on Mathematical Sciences, National Re-

search Council, Statistical Software Engineering, National Academy Press, Washington

D. C., 1996

Twala B., Cartwright M. and Shepperd M., Comparison of various methods for handling

incomplete data in software engineering databases, Proceedings of the 2005 International

http://www.dau.mil/conferences/presentations/2003/T7-SoftwareCostEstimating-MarthaSpurlock.pdf
http://www.dau.mil/conferences/presentations/2003/T7-SoftwareCostEstimating-MarthaSpurlock.pdf
http://www.stsc.hill.af.mil/crosstalk/1996/05/estimati.asp

121

Symposium on Empirical Software Engineering (ISESE 2005), Noosa Heads, Australia,

November 17-18, 2005, pp. 105-114

Valerdi R., The Constructive Systems Engineering Cost Model (COSYSMO), Disserta-

tion in Industrial and Systems Engineering, University of Southern California, August

2005, 137 pages

Venkatachalam A. R., Software Cost Estimation using Artificial Neural Networks, Pro-

ceedings of the 1993 International Joint Conference on Neural Networks (IJCNN 1993),

Volume 1, October 25-29 1993, pp. 987-990

Vick S., Degrees of Belief: subjective probability and engineering judgment, American

Society of Civil Engineers (ASCE) Press, 2002, 455 pages

Vijayakumar S., Use of historical data in software cost estimation, Computing & Control

Engineering Journal, Volume 8, Number 3, June 1997, pp. 113-119

Vosburgh J., Curtis B., Wolverton R., Albert B., Malec H., Hoben S. and Liu Y., Produc-

tivity Factors and Programming Environments, Proceedings of the 7th International Con-

ference on Software Engineering, IEEE Computer Society, Orlando, Florida, March 26-

29 1984, pp. 143-152

Vouk M., On the Cost of Mixed Language Programming, ACM SIGPLAN Notices, Vo-

lume 19, Number 12, December 1984, pp. 54-60

Wang Y., Song Q. and Shen J., Grey Learning Based Software Stage-Effort Estimation,

IEEE International Conference on Machine Learning and Cybernetics, Volume 3, Hong

Kong, China, August 19-22, 2007, pp. 1470-1475

Wieczorek I. and Ruhe M., How Valuable is Company-Specific Data Compared to Multi-

Company Data for Software Cost Estimation, Proceedings of the 8th IEEE Symposium

on Software Metrics (METRICS 2002), June 4-7, 2002, pp. 237-246

Yahya M. A., Ahmad R. and Lee S. P., Effects of Software Process Maturity on COCO-

MO II's Effort Estimation from CMMI Perspective, IEEE International Conference on

Research, Innovation and Vision for the Future (RIVF), July 13-17, 2008, pp. 255-262

Yakimovich D., Bieman J. M. and Basili V. R., Software architecture classification for

estimating the cost of COTS integration, Proceedings of the 21st International Confe-

rence on Software Engineering (ICSE 1999), Los Angeles, California, 1999,

http://www.cs.umd.edu/~basili/publications/proceedings/P83.pdf, Accessed on Novem-

ber 28, 2008

http://www.cs.umd.edu/~basili/publications/proceedings/P83.pdf

122

Yourdon E., Managing High-Intensity Internet Projects, Prentice Hall, Upper Saddle Riv-

er, New Jersey, 2002, 226 pages

Yu W.D, Smith D. and Huang S., Software Productivity Measurements, Proceedings of

the 15th Annual International Computer Software and Applications Conference (COMP-

SAC 1991), Toyoko, Japan, September 11-13 1991, pp. 558-564

Zhao Y. F., Tan H. and Zhang W., Software cost estimation through conceptual require-

ment, Proceedings of the Third International Conference on Quality Software, November

6-7, 2003, pp. 141-144

Zubeck J., Enhanced Unified Modeling Language Model-Checking for Business Soft-

ware Applications, PhD Dissertation, George Mason University, 2006, 245 pages

123

Appendix A: Cost Estimating Methods

Algorithmic

Literary references to algorithmic experiments abound. As these methods are data-

driven, standard data sets are available; some have a nominal fee to use. The PRedictOr

Models In Software Engineering (PROMISE) repository provides historical data sets for

researchers and practitioners to use in their software cost estimation experiments. [Boet-

ticher and Lokhandwala 2007] There were eighty-nine total data sets on July 26, 2009,

up from eighty-six on April 18. [http://promisedata.org/?cat=11 2009] The International

Standards Benchmarking Steering Group (ISBSG) maintains a database of commercial

and government software projects and distributes data sets for a nominal fee.

[http://www.isbsg.org/products 2009] Researchers and practitioners, with any data set,

may examine any parameter(s) as independent or dependent variable(s). The literature

has cases where the data is not available publically. [Chui and Huang 2007; Jones 2005;

Mukhopadhyad and Kekre 1992; Tomer, Goldin, Kuflik, Kimchi and Schach 2004; Vi-

jayakumar 1997] There is also literature exploring software cost estimation results from

a single institution versus multiple institutions based on hypothesized differences.

[Briand, El Emam, Surmann, Wieczorek and Maxwell 1999; Kitchenham, Mendes and

Travassos 2007; Mendes, DiMartino, Ferrucci and Gravino 2007; Wieczorek and Ruhe

2002]

124

Much of the literature on algorithmic methods compares parametric cost estimating rela-

tionships using ordinary least squares regression in unit space or log space with other al-

gorithmic methods. Other algorithmic methods, found in my literature search, are:

(a) Learning algorithms such as neural networks and genetic algorithms; metho-

dologies include fuzzy logic, back-propagation, radial basis function, support

vector regression, and bagging predictors [Baskeles, Turnham and Bener

2007; Berlin, Raz, Glezer and Zviran 2009; Braga, Oliveira and Meira 2007;

Deng, Purvis and Purvis 2007; Huang, Capretz, Ren and Ho 2003; Idri,

Khoshgoflaar and Abran 2002; Oh, Pedrycz and Park 2003; Pendharkar, Sub-

ramanian and Rodger 2005; Tadayon 2005; de Barcelos Tronto, da Silva and

Sant‟Anna 2007; Venkatachalam 1993; Wang, Song and Shen 2007]

(b) Statistical techniques such as robust regression, Kolmogorov-Smirnov test,

classification and regression trees (CART), factor analysis including principal

component analysis (PCA), evolving self-organizing map (ESOM), cluster

analysis with k-means, stepwise analysis of variance (ANOVA), and correla-

tion analysis, parametric and non-parametric [Briand, Langley and Wieczorek

2000; Briand, El Emam, Surmann, Wieczorek and Maxwell 1999; Deng, Pur-

vis and Purvis 2007; Huang, Chiu and Liu 2008; Jeffery, Ruhe and Wieczorek

2001; Liu and Mintram 2006; Lopez-Martin, Yanez-Marquez and Gutierrez-

Tornes 2006; Ruhe, Jeffery and Wieczorek 2003; Sackman, Erikson and Grant

1968; Wieczorek and Ruhe 2002]

125

(c) Simulation techniques such as Monte Carlo modeling and system dynamics

modeling [Briand, El Emam and Bomarius 1998; Hihn and Lum 2004; Musi-

lek, Pedrycz, Sun and Succi 2002; Silva and Stam 1998; Abdel-Hamid and

Madnick 1989; Madachy 1996]

(d) Mathematical formulas: the Cobb-Douglas equation and software cost estima-

tion equations such as Boydston, Walston-Felix, Bailey-Basili, Doty, Al-

brecht-Gaffney, Kemerer, Matson-Barret-Melichamp, Basic COCOMO, In-

termediate COCOMO, COCOMO 2.0 models, Putnam‟s SLIM, Norden-

Rayleigh curve fitting, and Halstead‟s complexity. [Nidiffer 2006]

Algorithmic “methods are divided into functions and arbitrary function approximators

(AFA). According to Myrtveit et al., „arbitrary function approximators do not make any

assumptions regarding the relationship between the predictor and response variables‟

while functions assume otherwise.” [Jalali 2008]

System dynamics uses simulation to shed light on complex, interrelated activities and

events. One simulation tool, Timed Colored Petri Nets, models temporal system beha-

viors. “Models are represented as networks modified with positive and negative feed-

back loops. Elements within the models are expressed as dynamically changing levels or

accumulations (the nodes), rates or flows between the levels (the lines connecting the

nodes), and information relative to the system that changes over time and dynamically

affects the flow rates between the levels (the feedback loops).” [Boehm, Abts, Brown,

126

Chulani, Clark, Horowitz, Madachy, Reifer and Steece 2000] Systems dynamics model-

ing has been applied to the software environment by Ray Madachy‟s simulation of

Brooks‟ law [declaring „Adding more people late in the project makes it later‟] in 1999.

Tarek Abdel-Hamid paired with Stuart Madnick to model dynamic software project man-

agement in 1991.

Learning-oriented techniques are algorithmic: techniques such as neural networks and

machine learning. Made popular by the idea of neurons in the human body, neural net-

works use training sets, which are input data subsets, to determine algorithmic parameter

values to minimize the differences between predicted and actual values. “Extremely

large data sets are needed to accurately train neural networks with intermediate structures

of any complexity. Also, for negotiation and sensitivity analysis, the neural networks

provide little intuitive support for understanding the sensitivity relationships between cost

driver parameters and model results.” [Boehm, Abts, Brown, Chulani, Clark Horowitz,

Madachy, Reifer and Steece 2000] To explore machine-learning algorithms, researchers

set aside a data portion to use as a test. In one case, the researchers experimentally set

aside 10 records out of 60 and then performed a second, comparative, experiment with 20

records set aside. The observed phenomenon was error increases as training set size de-

creases. [Baskeles, Turnhan and Bener 2007] Machine learning has also been criticized

for using an “unclear and closed structure of the computation process.” [Berlin, Raz,

Glezer and Zviran 2009]

127

Checklists are one of the basic, common, algorithmic methods, though the steps may

vary. Seven steps for software cost estimating documented by Barry Boehm (to use sev-

eral independent techniques, compare them, iterate, and follow-up) expanded in the time

since he proposed them. [Boehm 1981] Recently, McConnell published a checklist with

twelve steps and Jones, ten steps. The checklists recommend the analyst perform and ite-

rate estimation activities in each creator‟s order. The actual order differs, but the recom-

mended estimation activities are extremely similar. While Jones recommends using a

size prediction to estimate software development workload and explicitly characterizing

worker‟s assignment scope, McConnell recommends estimating ranges using worst case

as a lower bound, best case as a higher bound, and most likely case as a central tendency

measurement.

Table A-1: Comparison of Estimation Checklists [McConnell 2006; Jones 2007

McConnell 2006

 Checklist for Individual Estimates

Jones 2007

Standard Sequence for Software Cost Estimates

1. Is what‟s being estimated clearly defined? Step 0: Analyze the requirements

2. Does the estimate include all the kinds of

work needed to complete the task?

Step 1: Start with…size prediction using an estimating

tool…[or] by extrapolation from function point to-

tals…[or] by analogy with similar projects…[or] us-

ing…intuition…[or] statistical methods or Monte Carlo

simulation

3. Does the estimate include all the functionali-

ty areas needed to complete the task?

Step 2: Identify the activities to be included…work that

will be performed

4. Is the estimate broken down into enough

detail to expose hidden work?

Step 3: Estimate software defect potentials and removal

methods

5. Did you look at documented facts (written

notes) from past work rather than estimating

purely from memory?

Step 4: Estimate staffing requirements…a characteristic

assignment scope, or amount of work that can be done

by a single employee

128

McConnell 2006

 Checklist for Individual Estimates

Jones 2007

Standard Sequence for Software Cost Estimates

6. Is the estimate broken down into enough

detail to expose hidden work?

Step 5: Adjust assumptions based on capabilities and

experience…experts will have larger assignment scopes

and higher production rates

7. Is the productivity assumed in the estimate

similar to what has been achieved on similar

assignments?

Step 6: Estimate effort and schedules

8. Does the estimate include a Best Case, Worst

Case, and Most Likely Case?

Step 7: Estimate development costs

9. Is the Worst Case really the worst case?

Does it need to be made even worse?

Step 8: Estimate maintenance and enhancement costs

10. Is the Expected Case computed appropriate-

ly from the other cases?

Step 9: Present your estimate to the client and defend it

against rejection

11. Have the assumptions in the estimate been

documented?

12. Has the situation changed since the estimate

was prepared?

Analogy

Expert-based techniques provide a range of estimating options: “surveys have been con-

sistent in reporting expert judgment as the most common prediction technique in the lite-

rature”. [Shepperd 2007] Reasoning by analogy is a form of inductive reasoning: “an

analogy is a statement of a logical relationship between two similar things that are com-

pared with each other.” [http://www.samford.edu/schools/netlaw/dh2/logic/logic1.html

2009] Issues relating to choice of analogies are amounts of missing data, data quality,

data homogeneity, and relevance of data selection framework. The following table pro-

vides alternatives to consider as these issues arise.

Table A-2: Estimation by Analogy Alternatives [Li and Ruhe, PROMISE ‘07]

Issue to decide Alternatives to consider

Impact analysis of missing values Preliminary knowledge

Dealing with missing values Deletion and imputation techniques: NULL value

129

Issue to decide Alternatives to consider

Object selection Hill climbing, simulated annealing, forward and backward se-

quential selection algorithms

Converting continuous attributes to

discrete attributes

Rough Set Analysis (RSA)-based attribute weighting; based on

interval, frequency, or both; other machine learning techniques

Attribute weighting and selection RSA-based, Wrapper, hill-climbing, genetic algorithm

Determining similarity measures Distance-based, local-global similarity principle

Retrieving analogs Using similarity measures or rule-based heuristics

Determining closest analogs Fixed number of analogs; learning process; data availability

Analogy adaptation strategy Mean, weighted mean, median, linear extrapolation

Choosing [accuracy] evaluation criteria Some conventional criteria: e.g., MMRE, PRED

Comparison methods in general Accuracy-based methods

The use of heuristics is common in making analogies. Heuristics are rules-of-thumb;

heuristic methods designed “to fit a specific problem type rather than a variety of applica-

tions” are “likely to discover a very good feasible solution, but not necessarily an optimal

solution”. [Hillier and Lieberman 2005] Meta-heuristic methods provide structure and

guidance to tackle specific problems. Heuristic and meta-heuristic methods guide analo-

gy choices, using means such as hill climbing, simulated annealing, and genetic algo-

rithms. Rough set analysis explores data relationships as discernable, complementary,

similar, or negatively similar using forward inclusion and backward inclusion. [Orlowska

1998]

Expert-based

When data is sparse or untrustworthy, experts, whether alone or in combination with oth-

er experts or other methods, can generate or verify software cost, effort, and schedule es-

timates. To obtain expert opinions, questioning is required. Often careful phrasing of the

question can evoke pertinent responses. “Simple process changes such as reframing

130

questions can lead to more realistic estimates”. [Jorgensen 2005] Querying experts and

understanding their responses “…can be difficult to do and subject to numerous biases”.

[SAF 2007] The following table categorizes these biases as motivational and cognitive.

Table A-3: Motivational and Cognitive Bias [SAF 2007]

Motivational Bias Cognitive Bias

Social pressure (face to face) Inconsistency (opinion changes over time)

Impressions (not face to face) Anchoring

Wishful thinking Relating to irrelevant analogies

Misunderstandings Underestimation

Career goals

Project advocacy

Competitive pressures

On the one hand, motivational bias, based on people‟s need for social acceptance, can

occur along organizational or personal preference lines. [Meyer and Booker 2001; Vick

2002] Social pressures, job pressures, and competitive pressures lead to groupthink and

group-behaviors. An individuals‟ preferred methods of thinking and operating influences

his or her interpretation (or misinterpretation) of details and situations. On the other

hand, cognitive bias, based on psychological studies of human information processing

constraints, can lead to inconsistent or inappropriate judgments if an expert relies on too

few analogies or on irrelevant ones. [Meyer and Booker 2001]

For software cost estimation, experts are gathered and queried in a structured process

called the Delphi Method. To arrive at a group consensus on the estimate, the facilitator

131

elicits individual responses to standardized queries, squashes extraneous discussions, and

provides relevant, often anonymous, feedback to the participants.

[http://www.iit.edu/~it/delphi.html 2007] With the Delphi Method, as with all expert-

based methods, the validity of the estimate depends on the knowledge, wisdom, expe-

rience, and judgment of experts – and on the future unfolding as envisioned, often by

extrapolating from the past. This remains the Achilles Heel of expert-based methods.

“One main disadvantage of this estimation technique is that it cannot be used in projects

involving a new domain where there is no existing expert knowledge.” [Jayaraman and

Liopart 2007]

Engineering-level

The engineering level of estimation involves disaggregation of software activities from

the top down or the bottom up. WBS levels range from a low of one to well over ten.

Practically speaking, three to six levels are sufficient to be mutually independent and col-

lectively exhaustive. „Web-Help‟ on MIL-STD-881A, The Department of Defense

Handbook, Work Breakdown Structures for Defense Materiel Items, states “just as the

system is defined and developed throughout its life cycle, so is the work breakdown

structure. The WBS will be developed and maintained based on the systems engineering

efforts throughout the system‟s life cycle.” [http://www.acq.osd.mil/pm 2009] Engineer-

ing-level estimates can rely on algorithmic, analogous, expert-based, and other methods,

132

depending on the lowest level of the WBS or the discrete WBS element. For commercial

items, appropriate vendors provide quotes upon request. Given the range of the quotes,

different techniques may be used: an average, a weighted average, a maximum quote, or,

if there are enough quotes, a probability distribution of values can be generated and a

value or a range can be randomly chosen from the distribution or chosen based on pre-

determined criteria. [Bryant 2008] Engineering level estimates ensure coverage of expli-

cit WBS levels.

Others

Other techniques, such as Price to Win and Parkinson‟s Law, influence managerial choic-

es and decisions in large, complex, software-intensive DoD programs; however, they are

not usual tools for cost analysts. Price to Win, based on the bidder‟s assessment of what

the customer is willing to spend, may not satisfy either the bidder or the customer. [Mar-

ciniak and Reifer 1990] If the system decision criterion is to go with the cheapest bid,

Price to Win is a strategy contracts use to win an award. Parkinson‟s Law marries effort

with corresponding, available task times. Referred to as a “goal-setting phenomenon”, it

is not a traditional cost-estimating method. [Bryan and Locke 1967] If schedules leng-

then, Parkinson‟s Law increases costs: people on the payroll continue to get paychecks.

133

Along with PSP and PROBE, Bayesian methods are hybrid methods. Hybrid methods

combine expert-based inputs with established mathematic algorithms or models. Baye-

sian theory underlies the COQUALMO model, in the COCOMO family, for defect intro-

duction. [Chulani, Santhanam, Moore, Leszkowicz and Davidson 2001] PROBE asks

engineers to imagine their conceptual design taking shape and size using proxies, catego-

rized by software operation and programming language. Software operation categories

are computations, data handling, and program input-output processing. Using PSP‟s five

size ranges, from very small to very large, subject matter experts (i.e., the engineers) take

each proxy‟s size estimates, combine them, and use statistical linear regression to arrive

at a total number of LOC in the project. [Humphrey 2000]

134

Appendix B: Explanation of Software Cost Models

The COCOMO model is public with documentation online. The other models are pro-

prietary with limited documentation. Input variables for software cost models, chiefly

COCOMO input variables, are the most studied independent variables in the literature.

Many software estimation models have been developed and used over time. The follow-

ing models are of interest due to their applicability to my research.

Table B-1: Software Cost Models: Source and Site

Software Cost

Model

Source Web Site

COCOMO II USC/CSSE http://csse.usc.edu/tools/COCOMOII.php

COCOTS USC/CSSE http://csse.usc.edu/csse/research/COCOTS/ind

ex.html

SLIM QSM Incorporated http://www.qsm.com/

SEER-SEM Galorath Incorporated http://www.galorath.com/

TruePlanning PRICE® Systems http://www.pricesystems.com/

KnowledgePLAN® SPR Incorporated http://www.spr.com/project-estimation.html

Sage Software Engineering Incorporated http://seisage.net/sage.htm

COCOMO II

Dr. Barry Boehm had a hand in developing the Doty Model and then COCOMO I, now

called COCOMO 81. [Spurlock 2003] “The fundamental production function in software

engineering is the function relating delivered source instructions as outputs to develop-

ment man-months as inputs.” [Boehm 1981] In 1995, Dr. Boehm at the University of

Southern California‟s Center for Systems and Software Engineering launched the CO-

COMO II model suite. Inputs include a SLOC estimate, scale factors, product attributes,

platform attributes, personnel attributes, and project attributes. The scale factors and

http://csse.usc.edu/tools/COCOMOII.php
http://csse.usc.edu/csse/research/COCOTS/index.html
http://csse.usc.edu/csse/research/COCOTS/index.html
http://www.qsm.com/
http://www.galorath.com/
http://www.pricesystems.com/
http://www.spr.com/project-estimation.html
http://seisage.net/sage.htm

135

attributes are nominal, ranging from either low or very low to high, very high, extremely

high, or extra-high. [http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html

2008]

Scale factors cover five areas: uniqueness of the effort, flexibility of the development,

risk mitigations regarding architecture, cohesion of the team, and process maturity. If the

effort is an upgrade, the prior version(s) may act as a precedent or if the effort mimics

another effort, the prior effort is a precedent. More precedents lower the scale factor.

Process maturity factors align inversely with CMMI ratings.

[http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html 2008]

Cost drivers span requirements and constraints. Requirements include development

schedule, software reliability, reusability, and computer turnaround time. Constraints in-

clude lifecycle needs of the documentation, experience levels and continuity of person-

nel, computer main storage available, and computer execution times. There are other cost

drivers: how complex the effort is, how volatile the platform is, and whether the devel-

opment occurs at one site or at multiple sites.

[http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html 2008]

http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html
http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html
http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html

136

COCOTS

COCOTS, a member of the COCOMO II model suite, stands for Constructive COTS

Model. Commercial-off-the-shelf (COTS) software can encompass a range of functions

for software developers and maintainers from automated tool support for routine or spe-

cialized administrative tasks to a called-on component, vital to the performance of the

software. Due to COCOMO II model cost drivers for „use of software tools‟ and „lan-

guage and toolset experience‟, the functionality of automated tool support and the skills

of the operators is embedded in the COCOMO II model and excluded from the COCOTS

model. The modification of a COTS product pushes it into a professed reusable compo-

nent, handled in the COCOMO II model as a “developed for reusability” cost driver and

excluded from the COCOTS model. The COCOTS model applies to the called-on com-

ponent(s) of the software application, with the premise of “the following COTS pheno-

mena…

 You have no control over a COTS product‟s functionality or performance

 Most COTS products are not designed to interoperate with each other

 You have no control over a COTS product‟s evolution

 COTS Vendor behavior varies widely”

[http://csse.usc.edu/csse/research/COCOTS/modeldesc.html 2009]

These phenomena apply to all COTS, regardless of their role in the software develop-

ment.

The COTS products may or may not fulfill their intended role as-is. When the users have

a need to adjust the COTS product to their environment or their intended use, “COTS

137

product tailoring and tuning” or “Glue Code development” can result along with the ne-

cessary testing, verification, and validation of the COTS adjustments as they occur within

the development process. [http://csse.usc.edu/csse/research/COCOTS/modeldesc.html

2009] The COCOTS model has fourteen input parameters to estimate effort:

1. An exponential scale factor, called Application Architectural Engineering

(AAREN), for the “percentage of module interfaces specified in the architec-

ture, subjectively averaged with the percentage of known risks mitigated

through the system architecting process”

2. Thirteen effort multipliers break out into:

a. Four personnel drivers such as COTS integrator personnel capability

(ACIPC), integrator personnel continuity (APCON), COTS integrator

experience with the product (ACIEP), and integrator experience with

COTS integration processes (AXCIP);

b. Five COTS components drivers: COTS product maturity (ACPMT),

COTS supplier product extension willingness (ACSEW), COTS prod-

uct interface complexity (APCPX), COTS supplier product support

(ACPPS), COTS supplier provided training and documentation

(ACPTD); and

c. Four application/system drivers: constraints on application system or

subsystem reliability (ACREL), application interface complexity

(AACPX), constraints on COTS technical performance (ACPER), and

portability across application systems (ASPRT). [Abts 2004]

For glue code or interface code between two programs or modules, Chris Abts proposed

specific values from very low to very high for each of the thirteen effort multipliers. The

COCOTS Data Collection Survey and User‟s Manual for USC COCOTS.2002.1 spread-

sheet tool calibrated parameters like COCOMO II.2000.

138

Table B-2: COCOTS Glue Code Model Parameters [Abts 2002]

 Glue Code Parameters

Nonlinear Scale Factor

 Very Low

(VL)

Low (L) Nominal (N) High (H) Very High

(H)

AAREN 4.00 3.00 2.00 1.00 0.00

Aggregate

Cost Drivers Very Low

(VL)

Low (L) Nominal (N) High (H) Very High

(H)

 Personnel Drivers

ACIEP 1.34 1.16 1.00 0.86 0.75

ACIPC 1.60 1.27 1.00 0.79 0.62

AXCIP 1.12 1.00 0.89 0.79

APCON 1.58 1.26 1.00 0.80 0.63

 COTS Component Drivers

ACPMT 1.45 1.20 1.00 0.83 0.69

ACSEW 1.07 1.00 0.94 0.88

APCPX 0.82 1.00 1.22 1.48

ACPPS 1.14 1.00 0.88 0.77

ACPTD 1.20 1.09 1.00 0.91 0.84

 Application / System Drivers

ACREL 0.88 1.00 1.14 1.30

AACPX 0.84 1.00 1.19 1.42

ACPER 1.00 1.11 1.22

ASPRT 1.00 1.07 1.14

SLIM

The software equation is: Effort = [Size * B
(1/3)

/Productivity Parameter]
3
 * (1/Time

4
).

This equation, along with a Manpower Build-up Index (MBI), is the basis for the SLIM-

ESTIMATE model offered by Quantitative System Management (QSM). The Productiv-

139

ity Parameter equals , where E is effort, B is a skills factor that is also a function

of size, and td is development time. [Putnam and Myers 1992] “A simple scale of integer

values, called the Productivity Index (PI),…behaves exponentially…The development

time that falls at the intersection of the MBI and size/PI is the minimum possible time for

the particular project.” [Putnam and Myers 1992] More development time, when staff

and/or budget are constrained or slowly built up, provides a workable solution, so long as

the development time is a few months plus the minimum possible time. [Putnam and

Myers 1992] Shorter development time results in triage, an effort to deliver software un-

der a compressed schedule. [Yourdon 2002]

SEER-SEM

The SEER-SEM model, marketed by Galorath Incorporated, went through an upgrade in

2008 to version 7.3. [http://www.reuters.com/article/pressRelease/idUS235245+14-Oct-

2008+PRN20081014 2008] SEER-SEM stands for the System Evaluation and Estima-

tion of Resources – Software Estimating Model. It translates inputs into effective sizing,

effective technology, and staffing complexity factors to use in effort and schedule esti-

mating equations. [http://www.stsc.hill.af.mil/crosstalk/2005/04/0504Fischman.html

2009] “Users follow a Work Breakdown Structure (WBS) describing each CSCI, CSC,

and CSU (module or element) to be estimated.”

[http://cost.jsc.nasa.gov/pcehhtml/pceh225.htm 2009] Outputs include a minimum sche-

http://www.reuters.com/article/pressRelease/idUS235245+14-Oct-2008+PRN20081014
http://www.reuters.com/article/pressRelease/idUS235245+14-Oct-2008+PRN20081014

140

dule, suggested staffing categories, risk reports and graphs regarding the estimated effort,

costs, and schedules, along with tradeoff calculations, over the total life cycle starting

with preliminary design and ending with operations and maintenance of the software.

[http://cost.jsc.nasa.gov/pcehhtml/pceh225.htm 2009] Four „knowledge bases‟ can be

calibrated to user specifications regarding a choice of target operating platform, designat-

ed application types, designated development methods, and designated development

standards, such as the Software Engineering Institute‟s Capability Maturity Model Inte-

grated (CMMI) or Internal Standards Organization (ISO)-9000 for quality.

[http://cost.jsc.nasa.gov/pcehhtml/pceh225.htm 2009] “SEER-SEM utilizes a unique

process that simulates a 10,000 iteration Monte Carlo for risk analysis.”

[http://cost.jsc.nasa.gov/pcehhtml/pceh225.htm 2009]

TruePlanning

Starting out as the PRICE-S model, TruePlanning is the software variant of a system of

models, with the first upgrade to PRICE-S called TRUE-S, introduced in 2003.

[http://www.pricesystems.com/news/2003_10_30.asp 2009] Inputs are: SLOC, a choice

of seven application categories, a productivity factor, three complexity parameters, the

operating environment, hardware utilization or capability, percentage of new code, inter-

nal integration effort factor, external integration effort factor, project start and end dates.

[http://cost.jsc.nasa.gov/pcehhtml/pceh.htm 2008] There are optional inputs for financial

calculations and for risk calculations. The TruePlanning model outputs effort estimates

141

and software development schedule estimates by life-cycle phase. Software metrics for

parametric estimates are:

- Software size

- Effort in labor hours, dollars, and staff size

- Productivity

- Requirements stability

- Schedule

- Environment

- Quality, and

- Cost-Performance Index (CPI) from EVMS.

[http://www.pricesystems.com/white_papers/Implementing%20a%20Parametric%20Esti

mating%20System%20for%20Development_PRICE%20Format.pdf 2009]

KnowledgePLAN

Capers Jones founded Software Productivity Research (SPR) in 1984. The company an-

nounced on December 9, 1996] “the introduction of SPR KnowledgePLAN, a fundamen-

tally new tool for software estimation” replacing the CHECKPOINT model.

[http://findarticles.com/p/articles/mi_m0EIN/is_/ai_18919783# 2008] Based on SPR

consultant “experience from over 6,700 software projects, KnowledgePLAN leads soft-

ware managers through an intuitive planning environment for managing small or large

projects” and can integrate SPR KnowledgePLAN with Microsoft Project.

142

[http://findarticles.com/p/articles/mi_m0EIN/is_/ai_18919783# 2008] A Project Wizard

can help set-up an initial estimate, create a „base‟ estimate at user-chosen levels of re-

finement for either effort or schedule, or create a detailed project schedule.

[http://www.spr.com 2008] “KnowledgePLAN is different than most models in that it

works primary in sizing by analogy or with function points instead of SLOC. The model

will accept SLOC, but converts SLOC to function points using conversion factors in the

model.” [http://fast.faa.gov/pricing/c1919-19D.htm 2009] Other features available for

analysts are the following: Integration with Crystal Reports and MS ACCESS (COTS

products); Support of Open Database Connectivity (ODBC) to connect to enterprise data;

Flexibility with entering or changing WBS; Domain categorization choices to customize

environment and product preferences or inputs. [http://www.spr.com 2008] Outputs in-

clude an estimate of schedule, staffing, and effort in dollars or time, with optional risk

analysis for selected inputs such as software size, defects, reliability, maintenance, and

productivity. [http://fast.faa.gov/pricing/c1919-19D.htm 2009]

SAGE

Sage, for software schedule and cost estimation, needs four general inputs: size, man-

agement template, product template, and project constraints with over thirty parameters

to portray the development environment and project. It outputs predictions of estimated

and worst case outcomes, and will optionally estimate source code growth to depict cost

and schedule risks. Staffing profiles can be output for development and maintenance us-

143

ing IEEE/EIA 12207, Systems and software engineering – Software life cycle processes.

[http://seisage.net/sage.htm 2009]

http://seisage.net/sage.htm

144

Appendix C: Detail on Development Methods and Life Cycle Phases

One way of looking at development methods is Barry Boehm‟s view of 20
th

 and 21
st
 cen-

tury software engineering where he extends a „Hegelian‟ hypothesis from 1950 to today.

[Boehm 2006] Waterfall methods sprang from software development efforts in the

1950s, reflecting a deliberate, sequential approach. Code-and-fix development methods

arose in the 1960s, resembling a patchwork quilt approach to building software. A two-

pronged solution included structured programming methods, involving top-down sequen-

tial approaches, and formal proof or „programming calculus‟ methods to gain domain un-

derstanding. [Boehm 2006] Structured programming methods gave rise to object-

oriented methods, standards, maturity models, and the notion of software factories; whe-

reas formal proof methods gave rise to business fourth-generation software languages,

Computer-Assisted-Design/Computer-Assisted-Manufacturing (CAD/CAM), and users

as programmers. [Boehm 2006] Finally, concurrent processes, domain-specific software

architectures, agile methods, and product-in-line reuse led to integrated systems and

software engineering, hybrid agile plan-driven methods for rapid evolution environment,

supported by service-driven architectures and model-driven development. [Boehm 2006]

Use of software development methods is determined by facilitating conditions in the or-

ganization. [Khalifa and Verner 2000] In DoD, the software development for large ac-

quisition programs uses contractors, where they determine an appropriate software devel-

opment method, facilitated by the program office. In staged contracts, notably used for

145

RAD, the “old waterfall model has accumulated a series of incremental improvements”

so the customer and contractor can determine at specified intervals whether to continue

the development effort. [Lott 1997] The waterfall method is not the only development

method able to handle partitioned development efforts. Iterative development can adapt

to the goals of the software program and take many differently named but similar forms.

The accompanying methods facilitate the following software products:

(1) Prototype development methods for user interfaces;

(2) Agile development methods for daily builds;

(3) Incremental development methods for weekly builds;

(4) Spiral development methods for evolving products [Fairley and Willshire 2009]

There are different ways to categorize the life cycle phases from the beginning of an idea

for a program to its retirement. The waterfall life cycle stages relate to the Agile methods

cycle steps, although implementation and test phases in waterfall are mirrored by iterative

small releases in Agile. [Huo, Verner, Zhu and Barbar 2004] Different software metho-

dologies relate to different life cycle phases as knowledge increases with program maturi-

ty. [http://www.stsc.hill.af.mil/resources/tech_docs/gsam4/chap2.pdf 2003]

The DoD acquisition life cycle phases, codified in the Department of Defense Instruction

5000.02 dated December 8, 2008 recognize the applicability of evolutionary development

methodologies for software and hardware. Despite this recognition, prior DoD develop-

ment activities were labeled „heavyweight‟ development, mainly following the waterfall

146

process. Earlier standards, such as the expired DoD Standard 2167A, recommended the

waterfall development model for requirements generation. [Defense Science Board 1987]

Pre-systems acquisition activities generally move along the following lines: (1) a material

solution analysis, with rudimentary requirements to generate and explore alternatives us-

ing approximate cost-benefit analyses; (2) a meeting called the Milestone „A‟ review to

decide whether to proceed; and (3) an initial technology development, usually with mod-

eling, to aim for desired characteristics. As technology development ends, another meet-

ing, named Milestone „B‟ review, determines whether to initiate the program. If the pro-

gram is initiated, typical system acquisition activities are: (1) engineering and manufac-

turing development, usually focused on matured requirements; (2) a meeting called the

Milestone „C‟ review to decide whether to proceed; and (3) a production and deployment

phase, usually accompanied with Low Rate Initial Production (LRIP) and Initial Opera-

tional Test and Evaluation (IOT&E) activities. After LRIP, IOT&E, or other tangible

signs of success, a meeting, designated as “Go” in the figure, ascertains whether and how

to field the program. Once program fielding begins, the program has an Initial Opera-

tional Capability (IOC). After the “Go” meeting, the production and deployment phase

ends and an operations and support phase begins. After operations are in place, the pro-

gram has Full Operational Capability (FOC). Operations and support (O&S) activities

are sustainment activities.

147

Figure 13: Standard DoD Weapon System Life Cycle [Moul 2009]

The costs of the retirement of a program or weapon system are included in life cycle

costs; however, the figure above does not extend to system retirement and subsequent

disposal or transition.

Steve McConnell categorized and rated different life cycle models using a scale from

poor to excellent in 1996. [Rico 2000] The commonly regarded software development

life cycles at that time were Waterfall (pure and modified), Code-and-Fix, Evolutionary

(Prototyping and Delivery), Design (Design-to-Schedule, Design-to-Tools), Spiral,

Staged Delivery, and Commercial-Off-The-Shelf (COTS). In the following table, the de-

scriptions are terse. To explain further, ambiguity applies to requirements understanding.

Innovation applies to a new resulting system. High reliability, managed growth, and ma-

naged risks apply to resulting system. Schedule applies to the development method‟s

success in meeting a set, constrained program schedule. Low overhead and adapting to

changes applies to the overall development. Process and progress visibility applies to the

development effort for the stakeholders. Easy to manage applies to the overall develop-

ment meaning that neither the developer nor the manager requires superhuman skills.

148

Table C-1: Comparison of Software Development Life Cycles [Rico 2000]

Contrast the 1996 software development life cycle descriptions with the following 2003

descriptions: waterfall (pure and modified) with just waterfall; staged delivery and De-

sign-to-Schedule with incremental; evolutionary prototyping and evolutionary delivery

with just evolutionary; and spiral excellent with just spiral. Code-and-fix, Design-to-

Tools, and COTS as a software methodology left the software development life cycle lex-

icon. [http://www.stsc.hill.af.mil/resources/tech_docs/gsam4/chap2.pdf 2003]

One view of the software life cycle shows conception springing from maintenance. Con-

siderable iteration, not shown, must exist between and among the circles. The view of

the software development life cycle must satisfy the stakeholder‟s program perspective.

Description

Typical DOD

major

software-

intensive

program

Pure

Waterfall

Code and

Fix

Spiral

Excellent

Modified

Waterfall

Evolutionary

Prototyping

Staged

Delivery

Evolutionary

Delivery

Design-to-

Schedule

Design-to-

Tools

Commercial-

Off-The-Shelf

Ambiguity Yes Poor Poor Excellent Fair-Excellent Excellent Poor Fair-Excellent Poor-Fair Fair Excellent

Innovation Sometimes Poor Poor Excellent Fair-Excellent Poor-Fair Poor Poor Poor
Poor-

Excellent

Poor-

Excellent

High

Reliability
Yes Excellent Poor Excellent Excellent Fair Excellent Fair-Excellent Fair

Poor-

Excellent

Poor-

Excellent

Managed

Growth
Yes Excellent Poor-Fair Excellent Excellent Excellent Excellent Excellent

Fair-

Excellent

Poor-

Excellent
N/A

Managed

Risks
Yes Poor Poor Fair Fair Fair Fair Fair

Fair-

Excellent
Poor-Fair N/A

Schedule Yes Fair Poor Fair Fair Poor Fair Fair Excellent Excellent Excellent

Low

Overhead
Yes Poor Excellent Fair Excellent Fair Fair Fair Fair

Fair-

Excellent
Excellent

Adapting to

changes
Yes Poor

Poor-

Excellent
Excellent Fair Excellent Poor Fair-Excellent Poor-Fair Excellent Poor

Process

Visibility
Yes Poor Fair Excellent Fair Excellent Fair Excellent Fair Excellent N/A

Progress

Visibility
Yes Fair Poor Poor Fair-Excellent Fair Excellent Excellent Excellent Excellent N/A

Easy to

Manage
Yes Fair Excellent Poor-Fair Poor Fair Fair Poor N/A Fair

149

Figure 14: Life Cycle Process Circle [Bennatan 2000]

150

Appendix D: Cost Estimating Uncertainty and Risk

Risk explicitly considers how much the plans or the estimates can differ from reality or

ground truth. [DoD 2006] “Cost risk analysis is the process of quantifying and display-

ing the uncertainty associated with point estimates of cost.” [Lurie 2006] Less risky cost

relationship equations have a well fitting model, data points inside the range of the equa-

tion‟s inputs, certain or reasonable parameters, narrow error variance, and independent

cost drivers. [Lurie 2006] GAO recommends DoD cost estimates at major decisions or

milestones present a range instead of a point estimate of costs and highlight the asso-

ciated treatments of cost risks and uncertainties. [GAO 2008]

In an article more than a decade ago in the Software Technology Support Center‟s Cross-

talk Magazine, the cone of uncertainty was born, though unnamed. Based on Barry

Boehm‟s 1981 seminal text titled Software Engineering Economics and on Richard

Stutzke‟s familiarity with DoD contracts, the author noted, “In general, since more in-

formation becomes available, e.g., product structure and size and team productivity, the

accuracy of the estimates increases as a project proceeds.” [Stutzke 1996] From program

conception to the point of software acceptance, the final costs acknowledged on DoD

contracts ranged from at least 0.25 times more to as much as 4 times more than original

early estimates. The point of software acceptance is not the end of the program, just the

end of the first iteration of the program‟s development. According to Steve McConnell‟s

blog, “The Cone is a hope, but not a promise.” [http://forums.construx.com/blogs/stev

emcc/archive/2007/05/23/update-on-the-cone-of-uncertainty.aspx 2009]

151

Figure 13: Cone of Uncertainty [Stutzke 1996; McConnell 2006]

Accompanying the cone of uncertainty for software cost estimates are managerial im-

pacts arising from these uncertainties. If the estimates are relatively accurate, the project

development cycle can proceed on a controlled, efficient, and credible path. However,

inaccurate estimates may hamper the project or program‟s path by limiting management‟s

ability to establish control, be efficient, and be credible to the stakeholders with the re-

sources provided.

The major types of uncertainty are statistical and situational. Statistical uncertainties re-

late to real world elements subject to fluctuation; situational uncertainties relate to un-

knowable, but analyzable, future “states of the world” subject to technology develop-

ments, force structure developments, strategic developments, and other developments.

152

[Fisher 1970] Risks with their potential issues for software, impact on costs, and mitiga-

tion strategies are in the table below.

Table D-1: Risk Types and Mitigation Strategies

[https://learn.dau.mil/CourseWare/66_9/18_riskmgmt/18_t2crisks/crisks0051.html 2006]

Risk Type Potential Software Risk Issue Cost Impact / Mitigation Strategy
Program-

Level

-Excessive, immature, unrealistic, or unstable

requirements

-Lack of involvement or understanding

-Underestimation of project complexity or dy-

namic issues

If the requirements vary, become subject to

multiple interpretations, or any aspect of

project complexity is under-estimated, the life

cycle lengthens and costs increase. Setting

standards for documentation and stakeholder

involvement may lessen misunderstandings

and establish reasonable, shared expectations

Program

Attributes

-Performance Shortfalls

-Unrealistic cost or schedule estimates

-Unrealistic cost or schedule allotments

Prior estimates do not apply. If unmet re-

quirements are unique or compelling, a new

program may arise to cover the shortfalls.

Cost and schedule estimates need to be based

on historical cost and schedule performance of

similar programs.

Management -Ineffective project management Negative effects on life cycle costs

Effective managers need to be brought in and

allowed to take over

Engineering -Ineffective integration, assembly and test:

quality control; specialty engineering

Negative effects on life cycle costs

Establish and enforce controls

Measure and publish test plans and results

Work Envi-

ronment

-Immature or untried design, processes or tech-

nologies

-Inadequate work plans / configuration control

-Inappropriate methods or tool selection or in-

accurate metrics

The users, testers, developers, and maintainers

should participate in decision-making

processes on designs, plans, tools, use of me-

trics, configuration control, and technologies;

once agreed to, these processes need to be

implemented and followed

Other -Poor planning

-Too few or too many reviews

-Too little or too much documentation

-Legal or contractual issues

-Obsolescence (including excessive schedules)

-Unanticipated maintenance or support costs

To avoid these traps, the program manager

should build rapid problem solving into his

processes by using „what-if‟ brainstorming

sessions with relevant stakeholders to identify

and share potential solutions to hypothesized,

future issues

https://learn.dau.mil/CourseWare/66_9/18_riskmgmt/18_t2crisks/crisks0051.html

153

Appendix E: Software and COTS Definitions

DoD defines software as “Computer programs, procedures, and possibly associated do-

cumentation and data, pertaining to the operation of a computer system.” [Ferens 2008]

This definition is similar to the IEEE definition where “software: 1. A set of computer

programs, procedures, and associated documentation concerned with the operation of a

data processing system; e.g., compilers, library routines, manuals, and circuit diagrams.

[JP1] 2. Information (generally copyrightable) that may provide instructions for com-

puters; data for documentation; and voice, video, and music for entertainment or educa-

tion.” [Medina 2008] Another definition, based on the International Standards Organiza-

tion (ISO) 9000:2005, „Fundamentals and Vocabulary,‟ and ISO 19011:2002, „Guidelines

for Quality and/or Environmental Systems Auditing,‟ expands the meaning of software to

an “intellectual product consisting of information on a support medium.”

[http://www.whittingtonassociates.com/v2/glossary.shtml 2009] Functionality via soft-

ware has been steadily replacing functionality via hardware in DoD weapon system pro-

grams. In the early 2000s, at least eighty percent of the functionality of the Air Force‟s

new fighter airplane, the F-22, was due to software; this „soft‟ functionality was previous-

ly dependent on hardware. [Spurlock 2003] In the future, decision logic may be required

to determine which functions of a physical entity rely only on software since software

could be indistinguishable from hardware. [Bollinger 2004]

154

COTS is “a [software] product that is: (1) sold, leased, or licensed to the general public;

(2) offered by a vendor trying to profit from it; (3) supported and evolved by a vendor,

who retains the intellectual property rights; (4) available in multiple, identical copies;

and (5) used without source code modification by a consumer.” [Meyers and Obendorf

2002] The Open Source Initiative (OSI), at http://opensource.org, describes “what it

means to distribute software that is open source, namely:

- Free distribution (i.e., license cannot restrict selling or giving away)

- Source code (included)

- Derived works (i.e., software can be modified and distributed by others)

- Integrity of the author‟s source code (i.e., know who gets credit for source code)

- Distribution of license (i.e., forbidding addition of further restrictive licensing) …

- License must not contaminate other software (e.g., both licensed software and

OSS can coexist in the same distribution)” [Ayala 2008]

For adopting and integrating COTS components, understanding of the software architec-

ture and the COTS product begins the process of integrating them, along with simultane-

ous organizational activities such as training, implementing appropriate interfaces, per-

forming Configuration Management, and maintaining mutual nondisclosure agreements

between users and COTS vendors. [Rose 2000] To ease the intellectual and administra-

tive burden inherent in understanding the architecture and the COTS products, the emer-

gence and enforcement of interfacing standards, particularly for standards-based architec-

tures, provides developers with the leeway to build interoperable COTS products for new

applications. [Motsko, Oberndorf, Pario and Smith 2002; Naseem 2004]

http://opensource.org/

155

One consequence of using COTS is so-called „Vendor Lock‟ throughout the system‟s life

as the customer relies upon the vendor to perform maintenance and upgrade activities in

the specific application system. [Sage 2005] Compounding the COTS integration issue is

“multiple COTS products are usually integrated to provide COTS solutions. Changes in

a single component can significantly affect the performance of other components”. [Sal-

ter 2001] Reliance on a vendor results in a watchful program managerial role and re-

liance on multiple vendors requires the program to adjust to evolutionary changes in any

of the COTS throughout the program‟s life cycle. COTS components may be interde-

pendent. [Albert and Brownsword 2002] Interface changes will be at least as important

as internal COTS processing changes. There are scores of interfaces: logical, physical,

functional, dynamic, internal, external, and environmental. Logical interfaces put a re-

source demand on the system, even when the connection is through other components, as

this is a “deduced” interface. Physical interfaces relate to hardware components driven

by software components and they describe a physical connection between hardware de-

vices or between hardware and the physical operating environment, including human in-

teractions. Functional interfaces “translate control, information, or energy” across com-

ponents. [Sage 2005] Dynamic interfaces change over time and depend on the system‟s

state or the time. Adjusting to changes in interfaces is part of the system maturation

process where knowing what they used to do and what they currently do provides a foun-

dation for software maintenance and stakeholder communications.

156

Effort relating to integrating COTS has four-prongs:

1. COTS market analysis assessing pre- and post-commitment what the

COTS can and will do as a component of the program;

2. COTS adaptation for the program, including

a. Interface identification and development

b. Architectural identification and resolution to join COTS with the

overall program using components, connectors, global structure,

and construction within local structures

c. Tailoring the COTS to the program‟s environment with new or

modified code, affected or unmodified/unaffected code

d. Tuning the COTS to perform effectively and well in the program‟s

environment by changing the parameters or configurations to

achieve performance objectives, perform automatic back-up

processes, or configure for data recovery after planned or un-

planned processing interrupts

e. Developing glue code (or new software code) to coordinate con-

current processing, to bridge and mediate processing between

components, to handle errors, and to control data and process flows

3. COTS assembly and test in the program‟s software architecture infrastruc-

ture and the program‟s operational working environment, including inde-

pendent testing, verification, and validation activities with parallel error

identification and debugging which may rework the COTS adaptations

4. COTS evolution or keeping-up with the new updates and releases of the

software so the developers/maintainers are aware of potential and actual

changes as are the users [Beims and Dabney 2000; Vieira and Madeira

2003; Sage 2005; Zubeck 2006; http://fast.faa.gov/pricing/c1919-19E.htm

2009]

Relationships between a controlled (COTS) and controlling system (DoD software-

intensive program) contain embedded assumptions requiring accumulated knowledge to

merge components into one program. [Sutcliffe 2002; Albert and Brownsword 2002]

Typically, a prime contractor is responsible for assembling and integrating the major

DoD software-intensive acquisition program, requiring a series of agreements relating to

the contracted activities, including COTS products licenses and warranties, used in de-

velopment, production, and fielding. Documentation on controlled and controlling sys-

http://fast.faa.gov/pricing/c1919-19E.htm%202009
http://fast.faa.gov/pricing/c1919-19E.htm%202009

157

tems must be current and shared between stakeholders to increase the amassed know-

ledge of the program.

Figure 14: Relationships between controlled and controlling systems [Sutcliffe 2002]

Controlled

system

Automated

software control

User

interface

Human

operator

effectors sensors

actions information

assumptions

embedded in

assumptions

embedded in

Controlling

system

158

Appendix F: Software Resources Data Report (SRDR) Table

The following table delineates whether the data element is a mandatory item in the com-

panion data dictionary. The clarification or remarks column lists the responsible office or

depicts the data type. The classification schema aligns with the SRDR reporting schema.

The context section asks for the development organization‟s details. The product and de-

velopment section asks for development type, tools and languages used, peak staff num-

bers, staff experience in the application domain, software size, requirements, explicit

WBS mapping, work-in-progress dates, and any subcontractors.

Table F-1: Software Resources Data Reports: Data Element Descriptions

Data Element to Report
(as of DID-MGMT-81739,

April 20, 2007)
Reported

In Data
Dictionary

Clarification / Remarks

Report Context and Development Organization

Security classification Mandatory No Managed by Program Office

System/Element Name Mandatory No Assigned by DCARC

CSRD Plan Number Mandatory No Assigned by DCARC

Report As-of Date Mandatory No Date of data

Authorizing Vehicle Mandatory No Reference or contract number

Reporting Event Mandatory No In CSDR Plan, Block 14

Submission Number Mandatory No Enter "1" for first time, etc.

Development Organization Mandatory Yes
To map development organizations, soft-
ware components, and submissions

Software Process Maturity Mandatory As needed To explain mechanisms and ratings

Precedents Mandatory No List up to five analogous systems

SRDR Data Dictionary Filename Mandatory Yes Date of last update

Comments Optional As needed
About report context and development
organization

Product and Development Description

159

Data Element to Report
(as of DID-MGMT-81739,

April 20, 2007)
Reported

In Data
Dictionary

Clarification / Remarks

Functional Description Mandatory No What is it? What will it do?

Software Development Characterization Mandatory No How will it be done?

Application Type Mandatory No 17 categories with 119 total types

Primary and Secondary Programming
Languages

Mandatory As needed
Based on development effort, not func-
tional size

Percentage of Overall Product Size Mandatory As needed Percentage of developed product

Planned Development Process Mandatory As needed If not an industry standard process

Upgrade or New Development Mandatory No New is also complete replacement

Software Development Method(s) Mandatory As needed
Specify type and describe non-standard
types in Data Dictionary

COTS/GOTS Applications Used Mandatory If proprietary List if these constitute deliverable(s)

Integration Effort Optional As needed
May be expressed in staff-hours,
new/modified glue code, or qualitative
assessment of effort

Peak Staff Mandatory As needed
FTEs for direct labor or as explained in
data dictionary

Peak Staff Date Mandatory No Date expected to occur

Hours per Staff-Month Mandatory Yes
List accounting standard or provide details
on how this was computed

Personnel Experience in Domain Mandatory Yes
Categorize by High, Nominal, and Entry
Level and provide rationale and explana-
tion of domain experience

Comments Optional As needed

Total Number of Software Require-
ments

Mandatory As needed
Do not count interfaces; define counts and
units in Data Dictionary

New Software Requirements Mandatory No

Total Number of External Interface Re-
quirements

Mandatory As needed
Details about count methods in Data Dic-
tionary

New External Interface Requirements Mandatory No

Requirements Volatility Mandatory,
was optional

Yes
Use a qualitative scale (very low, low, no-
minal, high, very high) and describe

Delivered Size
Mandatory As needed

Count all code once. Delineate whether
new, modified, or reused

Carryover Code Mandatory As needed
Delineate what and how much code was
carried forward from another report

Auto-generated Code Mandatory No

Subcontractor-Developed Code Mandatory As needed Provide explanation if unknown

160

Data Element to Report
(as of DID-MGMT-81739,

April 20, 2007)
Reported

In Data
Dictionary

Clarification / Remarks

Counting Convention Mandatory Yes Robert Park's definition recommended

Size Reporting by Programming Lan-
guage

Optional No

Comments Optional As needed

Effort Mandatory As needed Optional ISO 12207 activity definitions

WBS Mapping Mandatory No

Subcontractor Development Effort
Mandatory if

sub-
contractors

No

Schedule Mandatory As needed
Estimate start and end dates; Can use 1 as
start date and define in SRDR Initial Devel-
oper Report or SRDR Data Dictionary

Comments Optional As needed

Point of Contact Information Mandatory No
Full name, Department name,
Telephone, E-mail, Fax, Signature, and
Date of Signature

161

Appendix G: Software Accuracy Measures

Table G-1: Industry-Proposed Accuracy Metrics [Jalali 2008]

Measure Description Meaning

Absolute

Residual

(AR) or

Magnitude

of Error

(ME)

The absolute value of the difference

between the actual value and the pre-

dicted value

This value can only be positive. The lower

the value, the better the prediction; the higher,

the worse. If AR or ME equals zero, the pre-

dicted equals the actual value.

Relative

Error (RE)

On the numerator, actual value minus

predicted value, all divided by actual

value (for each predicted value)

RE can be positive or negative. If RE is nega-

tive, it can go to negative infinity. If RE is

positive, it cannot exceed a value of one. If

RE is zero, the predicted value equals the ac-

tual value.

Average

Relative

Error

(ARE)

The sum of all the individual RE val-

ues divided by n, the number of values

calculated

When ARE is negative, there is average over-

estimation and when ARE is positive, there is

an average underestimation. Generally,

smaller ARE positive or negative values

represent better matches between predicted

and actual values. Small ARE values could,

however, mask an imbalance with high posi-

tive and high negative differences.

Magnitude

of the

Relative

Error

(MRE)

The absolute value of RE

MRE can only be positive. The lower the

MRE, the better the prediction; higher MRE

means a worse prediction. If MRE is zero, the

prediction equals the actual value.

Mean

Magnitude

of the

Relative

Error

(MMRE)

The sum of all the individual MRE

values divided by n, the number of

values calculated

Generally, smaller MMRE positive values

represent better overall agreement in predicted

and actual values. However, small MMRE

values could mask one or more large deltas.

An industry standard is MMRE ≤ 0.25 and is

"acceptable for effort prediction" [Conte,

Dunsmore and Shen 1986]

Prediction

at Level L

or l

(PRED(L)

or

PRED(l))

In a set of n projects, a value, k, is the

number of projects whose MRE ≤ l, so

PRED(l) equals k divided by n

For PRED(l) = k/n, the k/n ratio of predicted

values are within l percentage of actual val-

ues. The accepted industry standard is

PRED(0.25) ≥ 0.75 [Conte, Dunsmore and

Shen 1986]

162

Measure Description Meaning

Magnitude

of Error

Relative

to the

Estimate

(MER)

MER is the absolute value of the dif-

ference between the actual value minus

the predicted value divided by the pre-

dicted value

MER uses the predicted value as a denomina-

tor vice the actual value used in RE to meas-

ure the error relative to the predicted value.

MER was initially called the Estimation

MMRE [Kitchenham, Pickard, MacDonell

and Shepperd 2001] There is no accepted

industry standard for accuracy.

Mean

Squared

Error

(MSE)

The sum of the squares of each indi-

vidual actual value minus the corres-

ponding predicted value divided by n,

the number of values calculated.

MSE "is meaningful for regression models

only. It represents the mean value of the error

minimized by the regression model." [Conte,

Dunsmore and Shen 1986] There is no indus-

try standard for accuracy.

Root

Mean

Square

Error

(RMS)

The square root of MSE

RMS "is meaningful for regression models

only." [Conte, Dunsmore and Shen 1986]

There is no reported, accepted industry stan-

dard for accuracy.

Relative

Root

Mean

Square

Error

(RRMS)

RMS divided by the average actual

value

RRMS ≤ 0.25 is the accepted industry stan-

dard for accuracy of effort prediction regres-

sion models [Conte, Dunsmore and Shen

1986]

Mean of

the

Balanced

Relative

Error

(BRE)

Subtract the actual value from the pre-

dicted value and examine the result. If

the result is greater than or equal to

zero, divide it by the actual value; if

not, divide it by the predicted value.

Since negative RE values represent over-

estimation, BRE aligns over-estimation with

positive values and under-estimation with

negative values. [Miyazaki, Terakado, Ozaki

and Nozaki 1994]

Inverted

Balanced

Relative

Errors

(IBRE)

Subtract the actual value from the pre-

dicted value and examine the result. If

the result is greater than or equal to

zero, divide it by the predicted value; if

not, divide it by the actual value.

IBRE was suggested as a companion to BRE.

IBRE forces positive one to represent maxi-

mum over-estimation and negative one to

represent maximum under-estimation. [Miya-

zaki, Terakado, Ozaki and Nozaki 1994]

163

CURRICULUM VITAE

Corinne C. Wallshein graduated from the University of Virginia with a Bachelor of Arts

degree in Mathematics in 1978. After an intensive training program with the United

States Air Force, she became a UNIX system administrator. In 1982, she transitioned to

applications programming for future defense budgets and developed multiple user appli-

cations and reusable library programs. Working at the Air Force Surgeon General‟s of-

fice, from 1984 to 1990, she maintained the Provider Requirements Integrated Specialty

Model based on estimated medical needs.

From 1990 to 2005, she performed multiple studies of strategic and tactical systems to

analyze the impact of potential courses of action across various spectrums of warfare.

Acting as a technical contract officer‟s representative, she structured, wrote, and managed

a multimillion-dollar studies contract. As a human resources liaison, she administered

personnel management processes. She worked on the Revised Code of Best Practice for

Command and Control Assessment as the Air Force representative for a North Atlantic

Treaty Organization‟s Studies and Analysis Team.

Recently she accomplished comprehensive resource analyses for infrastructure and ac-

quisition programs. She has concentrated on software cost estimating since 2005. Her

resource analyses include software-intensive systems, such as the Global Positioning Sys-

tem, Joint Primary Aircraft Training System, Defense Satellite Communications System,

Tactical Data Link Gateway, Evolved Expendable Launch Vehicle, Predator, Mission

Planning System, Future Combat System, Expeditionary Combat Support System, and

Defense Integrated Military Human Resources System.

Committed to continuous learning and professional development, she completed Air War

College in 1994. She earned her Master of Science in Operations Research and Man-

agement Science from George Mason University in 1997. Her goal is to apply the know-

ledge and discipline gained in her dissertation effort to benefit public and private scientif-

ic and analytic communities.

