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ABSTRACT 

A METHODOLOGY FOR MAKING EARLY COMPARATIVE ARCHITECTURE 
PERFORMANCE EVALUATIONS 
 
Gerald S. Doyle, PhD 
 
George Mason University, 2010 
 
Dissertation Director: Dr. Elizabeth L. White 
 
 
 
Complex and expensive systems’ development suffers from a lack of method for 

making good system-architecture-selection decisions early in the development 

process.  Failure to make a good system-architecture-selection decision 

increases the risk that a development effort will not meet cost, performance and 

schedule goals.  This research provides a method to mitigate that risk based on 

the idea that a development can be characterized as the management of 

uncertainties in a probabilistic experiment.  The method developed shows how to 

estimate the probability that an arbitrary implementation of one system-

architecture will perform better than an arbitrary implementation of an alternate 

system architecture. 

The analysis technique presented acknowledges that many implementation 

uncertainties exist at system-architecture-selection time and identifies steps that 
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can be used to characterize these uncertainties.  The process by which 

uncertainty descriptions are combined into architectural performance descriptions 

is presented.  Once all alternative system architecture performance descriptions 

are developed relative system architecture performance comparisons can be 

made. 

After the analysis technique is described, three examples are considered.  The 

first example is a simple three tier web-enabled database application.  This small 

web application is used to illustrate the analysis method and demonstrate some 

methods for characterizing uncertainties.  The next two examples are more 

complex.  These examples expose a broader set of uncertainties and show how 

to handle cases where large numbers of uncertainties exist.  Sections on 

validation of results follow.  The dissertation concludes with a list of future 

research opportunities in this area. 
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Chapter 1 

1 Introduction     . 

1.1 Introduction 

Developing a large system is a complex task that requires an understanding of 

the functional and non-functional requirements as documented in the systems 

requirements specification.  Functional requirements relate to what the system 

does, and non-functional requirements relate to system quality.  Non-functional 

requirements (often called quality attributes) include reliability, modifiability, 

portability, security, and performance, among others.  Requirements relating to 

quality influence early system development much like functional requirements.  

Unlike functional requirements, performance requirements are often addressed 

later in the development process, and often addressed in an unstructured 

manner. 

System architectures can be used to help manage the complexity inherent in 

systems development.  A system architecture is a high level description of the 

proposed solution.  It is valued for its ability to describe the large grain structure 
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of the objective system, suppressing unnecessary detail.  Since a system's 

architecture affects all types of requirements, it is critical that a suitable system 

architecture be selected early in the development process. 

A system architecture can be characterized as an enumeration of the system's 

large-grain components and the connections between those components.  There 

are several techniques for describing system architectures.  The earliest work in 

the software field used boxes (components) of various shapes, combined with 

lines (connectors) to characterize the interactions between components.  This 

description based on combining boxes and lines creates a high-level pictorial 

representation of the proposed system structure.  Many current description 

techniques are similar. 

The most concise insight on the impact that the system architecture has on 

system performance comes from work done by Clements and Lakos.  "Whether 

or not a system will be able to exhibit its desired (or required) quality attributes is 

largely determined by the time the architecture is chosen." [ClNo96]  Similarly 

Lakos [Lako96] writes, "If we fail to address our performance goals in the 

beginning, we may adopt architectures or coding practices that will preclude our 

ever achieving these goals, short of rewriting the entire system." 

While there are a number of important quality attributes associated with systems, 

performance is the one that is the focus of this research. 
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1.2 Systems Development Process  

A systems development process is established in order to make the development 

process repeatable and to ensure that the product will have known quality.  It 

usually enumerates a sequence of steps that the developer should follow.  

System development success hinges on meeting established goals for three 

criteria:  cost, schedule, and performance [OMBC09].  Failing to achieve any of 

these goals compromises the project. 

One of the primary sources of failing to meet goals is related to change.  

Changes resulting from either re-architecting or redesigning increase cost and 

extend schedules.  The costs associated with making changes are accrued in 

activities like revising functional requirements, changing quality attribute 

specifications, modifying the system architecture, and changing the system 

design to fix unmet quality goals and functional requirements.  System 

development costs are not uniformly distributed over the system lifecycle and 

neither are the costs of change.  There is general agreement that mistakes made 

early in the system development process are more costly to correct than those 

made later in the lifecycle [WiKe00].  There are disproportionately large 

expenses associated with architectural modification due to the deep 

understanding that is required to successfully make significant architectural 

changes and due to the magnitude and number of the changes that are routinely 
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needed [ClDB98].  Reducing the risk of making an inappropriate architecture-

selection-decision will decrease the expected cost of the development. 

There are many approaches to systems development.  A typical system is built 

using a development model like the classical waterfall model, waterfall models 

with feedback, V-models [Somm04], or alternatives.  The development model 

establishes a sequence of activities or steps that guide developers as they plan 

the work to be done.  This series of steps usually begins with requirements 

specification and runs through end-of-life disposition.  While different 

development approaches address different development concerns, each 

approach includes some type of architecture design phase followed by a detailed 

design phase.  Most include feedback mechanisms between the phases.  The 

waterfall model with feedback, for example, helps accommodate the reality that 

the dividing line between the architecture design and detailed design phases is 

imprecise.  The model's feedback paths allow information learned while 

performing the detailed design to force changes in the architecture design.  

Architectural changes as well, often directly influence detailed design decisions.  

An architecture design phase is usually identified early in the step sequence.  

Once a particular problem is identified and system requirements are specified, an 

architecture-design effort identifies a set of potential or candidate architectures to 

be considered. 
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Figure 1.1 shows a V-model systems design process including an early 

architecture design phase, labeled “System Specification and Definition.” 
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Figure 1.1 V-type systems development process 

 

From a single set of requirements, there can be a number of different alternative 

architectures.  In a similar way, from each architecture there can be a number of 

detailed designs, and again from each detailed design there can be a number of 

implementations.  The implementations that can result from performing the 

intermediate design steps are shown in the bottom row of Figure 1.2.  Branching 

off from the requirements specification at the top level are the alternative 
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architectures.  Below them are the possible detailed designs, followed by the 

implementations. 
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Figure 1.2 Implementations possible from the systems development process 

 

From that set of initial architectures, either a specific architecture may be 

selected or the architecture-selection decision may be delayed until further 

analysis is conducted.  When the selection decision is delayed, another set of 
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steps is executed to refine each of the architecture options.  The developer 

refines broader descriptions to more specific ones.  For each of the choices 

considered, the product's required functions are assigned to architecture specific 

sub-systems or components.  When the functions or the components to which 

they are assigned are complex, either may be decomposed again (possibly a 

number of times).  This iterative process defines the structure of the detailed 

design.  Eventually, one specific detailed design is selected from a number of 

possible alternatives. 

In a similar way, for each design there is a set of reasonable implementations.  

As the implementation options are examined, the design process eventually 

locks-down the types of data structures to be used, the control flow of the 

computations, the amount of concurrency that will be provided, as well as a 

number of other factors.  Each of these low level design decisions can be viewed 

as the selection of one specific choice from a number of options.  Before the 

decision is made however, each decision carries with it an amount of uncertainty 

in the system performance. 

1.3  Uncertainties Encountered in the Systems Development Process 

That there are undefined parameters early in the system design, and that there 

are many design decisions yet to be made in the development processes leads 

to two conclusions:  1) not knowing the performance impact of the specific 



 

8 

implementation decisions (those yet to be made) means that uncertainties exist, 

and 2) both the sources and amounts of uncertainty will likely change over time.  

The uncertainties present in the earlier development stages are reduced as the 

detailed design decisions are made. 

At architecture-selection time, there are a large number of implementation details 

that have not been decided.  The uncertainty generated by not knowing these 

details prevents the designer from comprehensively and hence precisely 

assessing the expected performance of the final product.  Any performance 

analysis method to be used early in development must be able to handle the fact 

that design details will be missing when architectural evaluations are conducted.  

Over the early to middle part of the development, the percentage of architectural 

design usually decreases as the product design matures, while the amount of 

detailed design increases as the design is refined and gets closer to the actual 

implementation.  It is the specification of these details during the subsequent 

course of the system design that collectively determines the final performance of 

the instantiated system. 

There are also non-technical issues that can affect the quality attributes resulting 

from executing the systems development process.  Issues not directly related to 

the system actually built, but to the processes and people that are used to 

generate that implementation.  A designer's capabilities, i.e., their knowledge 
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strengths and weaknesses, can vary widely.  Different implementers will be either 

more or less efficient and do either a better or worse job in creating the 

implementation.  Each of these non-technical uncertainties may lead to a 

different implementation and hence different performance expectations. 

Until the implementation exists, an exact performance characterization of an “as-

produced" system can not be established.  Estimated values (with uncertainties) 

must be used for analysis.  This research presents a structured method for 

managing these types of uncertainties. 

1.4 Performance Analysis to Date 

Performance analysis is routinely done near the end of a development cycle and 

is informed by a number of design and code artifacts.  Performance analysis near 

the beginning of the development cycle does not have access to this information. 

While most development processes already include an uncertainty reduction 

characteristic realized through iterative feedback, most performance evaluation 

methods do not.  There are three methods often used to assess and improve 

system performance:  code profiling, queuing analysis and modeling and 

simulation. 

Over the past decade, engineers have begun to address performance issues but 

later in the development effort.  They often use a cyclic performance-
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improvement approach.  There are two general cases.  In the first case, available 

code elements are profiled so that code sections consuming larger proportions of 

time can be identified.  Recoding "slow" sections then changes the performance.  

The profiling process is then repeated to quantify the performance of the 

modified system.  The newly measured performance is compared with the 

desired performance goal.  If the goal is not met, the profile-rewrite cycle 

continues until no further improvement seems possible [WiKe00].  In those 

cases, if performance is still considered to be unacceptable, system redesign or 

architectural changes provide the next target for making improvement [Bulk00]. 

In the second general case, the anticipated detailed design is analyzed using 

either queuing theory or simulation.  These closely related methods are usually 

applied after the architecture-selection decision has been made.  For both 

queuing models and simulation, detailed system models are usually created.  

These models typically require detailed design information, e.g., component 

topologies, data flow rates, queuing model strategies, execution time constants, 

etc. to characterize the proposed system effectively.  The queuing or simulation 

approaches target performance estimation earlier than those that actually make 

measurements on code, but the required information is still not available until late 

in the development's detailed design phase.  At this point, the developer can 

choose to wait for detailed design values to become available, or can provide 

estimates of structure and performance without knowing these details.  In the first 
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case, waiting until later in the design process, the evaluation is delayed.  In the 

second case, uncertainties are injected into the evaluation process.  While the 

estimates such queuing and simulation models produce could give insight into 

performance uncertainty, there is seldom an attempt to characterize it. 

1.5 Architecture Performance Evaluation Options 

In selecting an approach to evaluate architecture performance, there are at least 

three ways to proceed.  From a conceptual point of view, if given sufficient 

resources, all implementations could be instantiated and tested across the 

anticipated input datasets to provide data for making performance comparisons 

(using a suitable performance metric).  This technique would identify the 

architecture which produced the best performing implementation.  This approach 

is impractical.  Even for a small system, the set of implementations can be very 

large.  At the opposite extreme, a single architecture could be selected (perhaps 

at random) to be developed.  This is routinely what is done as state-of-the-art 

today.  A third and more beneficial approach would be to perform an analysis on 

each of the alternative architectures to approximate the likely performance 

attributes of each, then base architecture selection on these estimated values. 

By necessity such an analysis would have to speculate or assume the 

assignment of functions to components, the internals of component design, 

specify details of implementation, etc.  Since the true design decisions have not 
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yet been made, such estimates could provide a viable way to proceed.  In cases 

where there is additional information, informed decisions can be made to 

eliminate early implementations that are projected to perform less well, thus 

pruning the previously described tree, Figure 1.2.  While this approach can 

reduce the size of the potential outcome space it does not routinely identify a 

single architecture as being the best to select. 

1.6 Performance Analysis Improvement Strategy 

This work focuses on those systems whose development success is closely tied 

to meeting performance expectations.  The ability to make a good architecture-

selection decision is critical to achieving that outcome.  Moving performance 

analysis earlier in the development process requires these performance 

uncertainties to be managed in a structured manner.  This effort proposes a 

methodology for making architecture-selection decisions in a way that should 

reduce overall system development costs by reducing architecture-selection-risk.  

It is the early characterization of the system's performance that is the focus of 

this research effort.  Since there are many uncertainties associated with the 

development, having a structured process to manage these uncertainties would 

be beneficial. 

At architecture-design time there is no way to determine what the actual 

implementation will be.  There is also no way to tell how well the actual 
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implementation will perform.  Hence, a probabilistic approach is appropriate.  The 

assertion made here is that the performance of the "to be" instantiated system 

can be viewed as a random variable which is characterized by a performance 

probability density function (pdf).  This random variable can be thought of as the 

rule for mapping an event (architecture selected) to a number (the actual 

performance of system built constrained by the architecture selected).  This 

probabilistic approach allows development planners to include not only design 

performance uncertainties, but uncertainties associated with the teams 

performing activities and the processes used to create and implement the 

designs.  Taking this approach, the performance-concerned developer can 

reduce the risk of selecting an architecture which can not meet the desired 

performance specifications by assessing the probability that a typical 

implementation of one particular architecture will perform better than a typical 

implementation of another. 

1.7 Work Focus 

This work concentrates on performance-centric development process 

improvements and focuses on how to improve the architecture-selection process 

as this will reduce costs associated with fixing performance problems that pop up 

later in the development that result from poor architecture selection.  Any method 

proposed to replace existing performance evaluation techniques must have 

attributes that make it better than current practice.  Based on a review of related 
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work as discussed in chapter two, the most important attributes can be 

enumerated in four categories. 

 1)  Earliness in the design process 

Executing performance analysis earlier in the development process is considered 

beneficial as it reduces performance-failure risk, and can thereby reduce costs.  

Substantial work has already been done on evaluating designs (and hence 

indirectly architectures) late in the development process when code has already 

been delivered.  Much less work has been done for the design phase and still 

less addresses analysis at architecture design time. 

The method proposed here addresses performance-goal-achievement by 

managing uncertainty directly.  The approach can be applied early in the 

development when there is less detailed information available.  As the final 

design matures some of this uncertainty will be eliminated, while other 

uncertainties like system load may remain (usage of the system may change 

over time).  As the design evolves from architectural design through detailed 

design, the characteristics of components and connections will be resolved and 

the system performance uncertainty will be reduced. 
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 2)  Accommodation of all available data 

The methodology developed should be able to accommodate both actual 

performance values and performance estimates for cases where true values are 

unknown.  Estimates are most useful before decisions have been made about 

the precise performance of platforms, communications paths, algorithms, etc.  

The process should manage both the estimated values and the value 

uncertainties to ensure that final performance comparisons depict meaningful 

performance differences. It should be sufficient to use relative performance 

estimates for alternatives' performance descriptions, since there can be a large 

number of potentially good solutions to be evaluated. 

 3)  Repeatability 

The process must be repeatable.  The results obtained should not depend on the 

skills of the analyst.  The results should be consistent for different executions 

using a particular dataset.  It must produce predictable and understandable 

results. 

 4)  Practicality 

In complex systems, there are a large number of decisions that need to be made.  

As each decision is made, the uncertainty in system performance is reduced.  
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The decision making process employed must avoid introducing exhaustive state-

space searches which are often not feasible [AABI00] when large numbers of 

options must be considered.  As well, the method adopted should be practical 

and useful to a broad set of analysts. 

1.8 Research Strategy 

State-of-the-art methods used for performance management might be referred to 

as "continuously optimistic."  One follows good design guidelines in generating 

the solution and then checks to see how well that design performs once 

implemented.  For software intensive systems, performance shortcomings are 

handled through redesign or recode and re-measurement efforts.  For the 

broader system design problem, reconfiguration of elements and modification to 

the data-flow topology can provide improvements.  The method developed in this 

research takes an "estimate before build" approach.  It is patterned on the 

INCOSE [ICSE07] and Department of Defense Systems Engineering processes 

[DODI08] but modifies certain activities to account for the estimation and 

management of uncertainties throughout the development.  While performance 

budgeting can be done either top-down or bottom-up, the method developed as 

part of this research uses the bottom-up approach since those mathematical 

tools are more tractable. 
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Conceptually the process is simple.  In all of these approaches, top level system 

requirements are defined and then the budgets for critical quantities are allocated 

to subsystems.  In a weapons system development, the quantities budgeted 

might include system weight, power, heat dissipation, etc.  In the method 

described in this research, it is delay that is allocated across the architectural 

components and connections of each of the alternative solutions.  This allocation 

is done in a hierarchical manner.  At any particular level these components may 

in turn be composed of sub-elements.  When that is the case, performance 

budgets are again sub-allocated to these smaller elements.  This process 

continues until all elements have been assigned a performance allocation.  After 

each allocation, the provided techniques are used to combine assigned budgets 

along with their uncertainties to ensure end-to-end or total system performance 

meets the goal.  At the lowest level, individual components are built or selected 

to meet these derived performance budgets.  There are two difficulties:  1) there 

is more than one way to split up a performance budget across a set of elements, 

and 2) in many developments, some components may already exist, and the 

performance of the top-down approach needs to end up with a budgeted value 

that matches the performance values of those existing components when the 

analysis is complete. 

An alternative approach using the same tools is possible.  The performance of 

the lowest elements in the architecture design can be characterized and the 
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performance of the overall system built up incrementally from such descriptions.  

When performance is estimated this way, one does not know in advance whether 

that the requested system requirements will be met. 

Both of these sets of problems can be solved by redefining the problem to be one 

based on anticipating performance differences between architecture options.  My 

research extends current performance evaluation methods and concepts by 

considering the uncertainties in performance estimates of components and 

connections and provides methods of combining these uncertainty values into an 

overall, end-to-end estimate of system performance in a relative way so that 

comparisons can be made between alternatives. 

The management of uncertainties when done as proposed can further assist the 

developer in analyzing implementation costs (work that is outside the scope of 

this effort).  The Bayes Criteria [MeCo78] describes how to combine alternative 

cost with the probabilities of selecting those alternatives.  A Bayes approach 

could leverage the probabilistic descriptions developed here and provide a basis 

for future work directed at further reducing the cost of system developments by 

balancing performance risk against cost. 
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1.9 Definitions 

There are multiple definitions of architecture and performance in common use as 

related to analysis in this field.  These terms as used for this research are defined 

next. 

Architecture.  A system architecture is classically defined as the enumerated set 

of entities (that perform system functions), how they are connected, and how 

they evolve with time [DODA97].  It routinely contains at a minimum, identification 

of the components or large-grain pieces of the system, as well as descriptions of 

the connections between those pieces.  The quality of an architecture is directly 

related to its ability to constrain eventual implementation options to ones that are 

likely to meet both the desired quality goals and the functional requirements.  

Architectures are intended to maximize the flexibility of developers to make lower 

level design decisions while ensuring that these developers can meet system 

quality and functional requirements.  This view is consistent with many others like 

[FrBo98] [UcYa00] which identify components, connectors, and ports as key 

features. 

Performance.  Performance is defined to be the number of events of interest that 

occur per unit of time.  It is either the rate at which a set of activities is completed, 

or the time required to complete a specific activity.  This intentionally broad 

definition allows us to qualify the performance of a system differently depending 
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on the types of information that may be available to characterize the system 

elements and the related uncertainties associated with activity performance 

descriptions. 

Since much of this work focuses on probabilistic results and the manipulation of 

functions of random variables, the following definitions are provided.  While these 

terms have other meanings in the computer science field, they are used in the 

following context with these definitions. 

Experiment.  An experiment is an activity that produces an identifiable outcome.  

Common experiments include the roll of a die, the toss of a dart, etc.  In this 

context, the experiment is routinely the selection of an architecture.  The 

associated result or outcome is the performance value that this selected 

architecture will have based on an input selected from the feasible system inputs.  

For this work, the experiment or the space of all outcomes is the closed interval 

of the real line [0, X], where X is some large rational number. 

Event.  An event is a collection of outcomes to which we can assign probabilities.  

The set of events constitutes a mathematical field.  In the context of this work, all 

"sensible" outcomes will qualify as events [Papo65].  There exist several 

technical restrictions on what can be an event.  These restrictions are not listed 

here since for architecture selection purposes they are not important. 
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1.10 Research Approach 

This dissertation provides a method for improving the system development 

process by identifying a technique for making quantitative comparative 

performance assessments of alternative system architectures early in the 

development life cycle. 

 

The problem statement for this effort is: 

There are many methods that can be used to evaluate system performance.  

Most are applied to systems that are either at least partially implemented or 

where detailed component and connector performance information has been 

clearly defined.  Approaches based on queuing simulations produce precise 

results where the detailed design factors are known.  When design parameter 

values are not clearly established however, a queuing approach usually has to 

resort to checking combinations of sets of possible values.  This assures that 

existing uncertainty can be reflected in the end-to-end performance estimates 

which will vary depending on the outcomes future design decisions.  Examining 

large numbers of cases takes time.  There aren’t generally accepted techniques 

that can directly manage the performance uncertainty that exists at architecture 

selection time.  Statistical techniques exist that could be used to reduce the 
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number of solution options to be analyzed and as such should reduce the time 

required for analysis before the architecture selection is made. 

 

The thesis statement for this research is: 

Consider a set of proposed system architecture options (architectural designs) 

and a probabilistic description of the performance of the architectural elements 

that make up those designs.  For each ordered pair of architectural options in 

that set, one can calculate an estimate of the probability that the first option will 

perform better than the second option should both options be implemented. 

 

In executing this research, the following activities were conducted: 

• Five fundamental functions were identified for use in architecture 

performance modeling. 

• Algorithms were implemented to evaluate each of these five functions for 

quasi-arbitrary descriptions of performance uncertainties. 
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• A method was developed to generate a probabilistic description of the 

performance of an architecture based on combining the descriptions of the 

constituent elements using the five functions. 

• A method was derived to compute the probability that one particular 

architectural description will produce an implementation which will perform 

better than a similar implementation of an alternative architecture. 

• The method was applied to a small but realistic three-tier information 

management example problem. 

• The method was applied to two more complex architecture examples to 

demonstrate the analysis required to identify and characterize architecture 

component and connection uncertainties. 

• Discrete element simulations were run on connection and processing 

elements.  These simulations established that one can estimate an 

element's mean performance consistent with theory.  It further established 

that one can estimate the element performance uncertainty around the 

mean.  This second descriptive characterization is not routinely available 

through analytic-closed-form efforts. 
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1.11 Assumptions 

The analysis process is based on a number of assumptions: 

1) Components – component performance does not vary over time, and the 

conversion of data from input to output can be characterized by a single 

probability density function. 

2) Connectors – the delay of connectors is approximated by the quotient of 

the probability density function for the size of transmitted elements 

divided by the probabilistic description of the link data rate. 

3) Contention for resources can be simulated by subtracting resources used 

by other tasks (both computational and transmission) from those 

available for the task under analysis. 

4) Congestion/bottlenecks - . When network congestion or bottlenecks can 

be anticipated, they are included in the low level performance 

descriptions of the connectors.  When they are not or cannot be 

anticipated, they will not be reflected in the performance 

characterizations. 
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1.12 Organization 

Chapter one presented the context of the problem and reason for addressing this 

research goal as well as the research approach.   Chapter two surveys related 

work in this area.  Chapter three considers the architecture selection problem as 

a type of probabilistic experiment.  Uncertainties to be expected are identified 

and the underlying performance design problem is characterized.  Chapter four 

assumes that the uncertainties of the architecture selection process can be 

characterized as a probability density function.  It then explains how to compare 

architecture alternatives in terms of their likelihood of performing better than 

other alternatives.  Chapter five explains how to combine the probability density 

functions (pdfs) describing the performance of subsystems into a probability 

density function which describes the performance of the entire architecture 

alternative.  Chapter six uses a classic three tier database problem as an 

example of the techniques described in chapters four and five.  Chapter seven 

takes two more realistic problems and applies the described techniques to 

identify which of several alternative architectures perform better.  Chapter eight 

describes the CAPE tool built as part of this research.  Chapter 9 describes the 

validation methods used and a preliminary error bound for the architecture 

comparison metric.  Chapter ten identifies the research contributions and future 

research directions. 



 

26 

 

Chapter 2 

2 Related Work     . 

This system performance research effort is largely built upon established results 

in four areas:  foundational work in software architecture, architecture description 

languages, performance evaluation requirements and performance evaluation 

analysis.  Much of the work discussed here provided the rationale for the 

approach taken in this research effort.  Other portions of the work discussed are 

indicative of the amount of active research ongoing with regard to performance 

evaluation (much of it architecture related) as well as suggesting that the 

approach documented here has not already been attempted. 

2.1 Software Architecture Foundational Work 

A 1992 paper written by Perry and Wolf [PeWo92] began the study of software 

architectures as a significant factor in creating quality software.  This paper 

addressed the elements, form and rationale for using a particular structure to 

develop a software capability.  This is the start of the association of quality 

attributes (performance) with architectural elements.  In the mid-1990s, papers 

on the topic were published in numbers.  The theme of these papers was that 

software projects have architectures, either generated intentionally or evolved 
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from the detailed system design, and that architectures can be categorized into a 

relatively small number of styles [BaCK98].  Some researchers formalized the 

description of those architectural styles [AlGa94] [GaPZ94].  These styles provide 

a categorization scheme for identifying useful elements when considering 

performance contributions.  Shortly thereafter Garlan and Shaw published a 

seminal work [GaSh96] which began to enumerate software architectural styles 

and the quality attributes of those styles.  The identification or classification of 

architecture styles is important because it provides a fundamental way to look at 

the elements of a software system and hence points to the fundamental entities 

that must be considered when performance is an important consideration.  

Substantial analysis continues as investigators study the relationship between 

architectural styles and software quality.  Much of the work that followed focused 

on Architecture Description Languages in an attempt to make the definition and 

manipulation of architectures more precise. 

2.2 Architecture Description Languages 

Precise descriptions of architectures, or perhaps more accurately the fact that 

architectural descriptions are currently not precise with respect to performance 

concerns, is critical to establishing an appropriate method for analysis.  Efforts 

were made to increase the precision of the architectural descriptions.  The 

concept of an Architectural Description Language (ADL) was developed to 

provide a basis for capturing the essential elements and relationships between 
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those elements in formal languages to express software architectural concepts 

and structures.  The role of the ADL is to express the software structure in a 

notation appropriate for manipulation by supporting tools.  These languages 

focus on the large-scale or high-level design and provide developers and 

designers with an analysis-appropriate description of the system under study.  

Their value rests in their ability to clearly define relationships between entities 

and to provide a common understanding among readers of the underlying 

"structure" of the concept to be presented.  The languages make it possible to 

explore the functional properties of architectures and provide a means to 

concisely define the characteristics of system elements in a precise and 

expressive manner. 

There are a number of ADLs, each focusing on a slightly different aspect of 

overarching architectural concerns.  A survey of architectural description 

languages is covered in [Clem96].  Some of the more well-known languages 

include:  ACME [GaMW97], Aesop [GaAO94] [Garl95], C2 [MORT96], Gestalt, 

LILEANNA [Trac93], MetaH [Vest96], SADL [MoRi97], UniCon [SDK+95], 

Weaves [GoRa91], Regis [MaDK94], Rapide [LKA+95] [LuVe95], Darwin 

[Darw94], and Wright [GaSh96] [Alle97].  Some, like Rapide, are executable, 

while most are not.  Nearly all include analysis capabilities addressing specific 

architectural concerns.  None of these ADLs specifically addresses performance 

issues, although each reference gives insight into places where performance 
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related information could be inserted into a specification so that they would be 

more useful in studying performance issues. 

2.3 System Performance Evaluation 

The earliest work on performance associated with software architectures focused 

on the large grain issues relating to interoperability, the matching of interfaces 

and the extent to which systems composed of parts could function properly.  A 

paper by Garlan, Allen and Ockerbloom [GaAO95] is characteristic and 

addresses the impact of architectural considerations on system performance in a 

fundamental way.  Their analysis focuses on the types of mismatches that can 

occur between components and connectors and how these mismatches can 

remain undiscovered until well into the development life cycle.  Their technique 

concentrates on identifying problems, (i.e., assumptions about component 

characteristics, connectors, and the global architectural structure) before they 

become part of the design.  The authors discuss methods to avoid making 

improper assumptions about these architectural elements.  They provide insight 

into early interface indicators that may warn of failure when the elements are 

assembled.  Unfortunately, the paper does not address a specific methodology 

for correcting these types of deficiencies.  There are many other papers of this 

type.  They generally avoid addressing performance in terms of metrics or in a 

numerically quantifiable way.  Some efforts continue to analyze potential 



 

30 

interface mismatches and other model checking techniques in work done by 

Campos and Merseguer [CaMe06]. 

In 2004, Balsamo et. al. summarized the state of performance work in published 

approaches focusing on three evaluation factors:  earliness of integration, model 

used for performance estimation and the amount of automation available.  

Performance work had progressed from identifying failures to the actual 

prediction of performance indices such as response time, throughput and 

utilization.  For my research, the first two are of most interest.  The paper 

[BaMI04] exposes the principal research techniques, and suggests that the 

benefits of probabilistic analysis show promise.  The survey divides the work into 

models and evaluation methods.  The models fell largely into four categories:  

queuing networks, stochastic Petri nets, stochastic process algebra, and 

simulation models.  Evaluation methods were divided into analytical techniques 

and simulation. 

2.3.1 Queuing Networks 

Queuing networks characterize the proposed solution of a number of researchers 

in this area.  In early work, CHAM (CHemical Abstract Machine) [BaIM98] 

[CoIW99] employs an N-layer Queuing Network Model and was used to estimate 

performance based on a network automatically derived from an architecture 

description language.  The ATLAS Transformation Language can be used to 
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automatically map UML models into queuing networks [CoGM08].  With the 

growing acceptance of UML, recent efforts started to focus on the mapping of 

Message Sequence Chart descriptions of architectures to queuing networks 

[AABI00].  This work is one of the reasons for suggesting that UML sequence 

diagrams could be effective in a probabilistic analysis.  Similarly, UML diagrams 

were automatically and consistently translated into queuing-network-based 

performance models in [CoMi00] and [Ambr05].  [BaMa05] started with annotated 

UML use cases, activity and deployment diagrams to create performance models 

based on multi-chain and multi-class Queuing Networks (QN) annotated 

according to the UML Profile for Schedulability, Performance and Time 

Specification.  Other attempts have been made to use this specification to 

construct models to make quantitative predictions regarding performance 

characteristics.  These efforts demonstrated generating Layered Queuing 

Network (LQN) performance models based on a graph-grammar and a UML 

model annotated with performance information [PeSh02].  An XSLT approach to 

transform UML artifacts into LQNs is described in [GuPe02].  Some have 

attempted to move the evaluation of performance even earlier than architecture-

selection time back to scenario definition time.  This is the case with the Scenario 

to Performance (S2P) algorithm described in [PeWo05] which transforms 

scenario models automatically into performance models and uses the 

LQNGenerator tool to build layered queuing network performance models. 
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2.3.2 Petri Nets 

Petri nets come in a number of forms and can be used for modeling and 

evaluating software architecture performance.  Colored Petri Nets are used in 

[XuKu98] to model a mobile-phone-family execution architecture and 

characterize both the time and space performance of a large software intensive 

system.  Interval Time Petri Nets (Petri Nets that have random firing time 

intervals) are used for a similar purpose in [NaBG09].  PEPA nets, a type of 

colored stochastic Petri nets, are used with stochastic process algebras to derive 

steady state performance measures in [GHKR04] and in [CGHT99].  As part of a 

larger security analysis effort, Generalized Stochastic Petri Nets (GSPNs) are 

used in [CoTr08] to inform on the performance impacts of security related 

architectural decisions.  Additionally, [Cort05] discusses the need for 

performance anthologies based on evidence from operational profiles (annotating 

performance parameters onto software models) and their translation into 

Stochastic Petri Nets to quantify performance.  Several UML diagram types 

provide information for the Software Performance Engineering process which is 

capable of generating GSPNs as described in [LoMC04].  Similarly state charts 

and sequence diagrams provide the input to automatically generated GSPNs in 

[BeDM02].  Analysis using GSPNs to generate worst and best case system 

performance is discussed in [NaBG09]. 
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2.3.3 Stochastic Process Algebras 

Stochastic process algebras provide another strategy for addressing the 

performance estimation task.  In [LTK+02], UML diagrams provide information to 

characterize a generalized semi-Markov process used to do performance 

analysis.  They are also used in TIPPtool [HHK+00] to address compositional 

performance modeling.  The architecture description language AEMPA 

characterizes the syntax and semantics of architecture descriptions in [BeCD00] 

and is used for performance analysis. 

2.3.4 Simulation Models 

Simulation models are the basis of a number of different approaches that do not 

fit neatly into the above categories.  Initially mean-value-analysis was used in 

performance modeling of combined computer-communication systems.  Later, 

simulations were used to generate performance intervals which better 

characterized systems than these single mean value numbers [LuHa98].  A 

simulation environment called Arena has been used with UML data to simulate 

performance in a meta-modeling environment [TKMG08].  In [SaJP05] the 

simulation output is used to inform where improvements can be made in the 

architecture.  [BeKR07] addresses a method to parameterize architectural 

features using the Palladio Component Model, a domain specific modeling 

language, to gain insight into performance.  Activity diagrams are simulated to 

characterize performance with both exponentially distributed and deterministic 
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delays in [LTK+02].  Indicative of efforts considering hardware parameters before 

design and relating them to performance expectations is [Alsa04a] where disk 

and CPU delays drive architectural analysis.  New UML stereotypes are 

introduced in [AmCI01] where use case, activity and deployment diagrams 

representing performance, complete the architecture performance description.  

An algorithm for deriving a simulation model from an annotated UML software 

architecture is explained in [BaMa03].  Sequence diagrams and state charts are 

used to represent execution paths in [BeDM02] where performance estimates 

are derived. 

2.3.5 Combined Models 

Combining models is common as well.  [BaBS02] uses Stochastic Process 

Algebras and Queuing Networks to leverage formal techniques and verify 

functional properties.  A component-based predictive analysis built on stochastic 

process algebras and simulation forms a system called NICE that addresses 

communications performance concerns [BMMI04]. 

2.3.6 Component-based Architectures 

Component-based architectures are often handled a bit differently.  With 

components, the estimation problem may be simpler particularly if there is some 

experimental information available.  A specification might already exist for 

estimating performance even before components have been built.  This need to 
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determine or estimate the performance of elements is consistent with the 

information needs of this research's proposed approach.  Establishment of a set 

of scenarios based on Use Cases to enumerate the sequence of tasks or 

component responsibilities to be performed by the system is covered in [PlFa02].  

Once element characteristics are established, the challenge shifts to one of 

combining results to describe a complete system estimate [GrMi04]. 

Performance estimation with components can be difficult since systems already 

built on component technology [CLGL05] have existing interfaces.  When these 

interfaces do not match parts of the business process, performance degradations 

often result.  Components routinely have interfaces that reflect their underlying 

function; changes in processes will cause changes in component coordination 

and performance.  How to manage the expected estimate changes that crop up 

from a substitution of elements is described in [AaHT02].  The importance of 

workload characteristics and service demand is discussed using an XML 

Component-Based Modeling Language in the analysis presented in [WuXi04].  

Executable models are described in [WHKT08] where the authors identify a set 

of architectures with a component-based modeling language called COLA.  

Component based design benchmarking and profiling are explained in [CLGL05] 

which includes case studies in CORBA and J2EE.  Combining RT-UML and CB-

SPE (an automated approach for composing elements that addresses 

performance engineering) [BeMi04], provides insight into methods for 

parameterizing performance as well as combining elements.  COTS-Aware 
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Requirements Engineering and Software Architecting, (CARE/SA) [ChCo05] is 

introduced as a method to iteratively match, rank, and select COTS components 

and subsequently aggregate their functional and non-functional performance into 

an architecture.  Other informative but more generic approaches are included in 

[BFG+04] and [CoTr08] which address using patterns in a building block 

approach to give insight into architecture performance. 

Once a model has been established, there remains the need to populate that 

model with information tailoring it to the specific architecture being evaluated.  A 

number of contributions can assist in this process.  Model information exchange 

formats have been designed to facilitate both the flexibility of bringing different 

models together, as well as helping to define the minimal set of characterizing 

parameters that are needed.  A useful exchange schema is discussed in 

[MoSW08] and descriptions of XML interchange formats are discussed in 

[SLC+05].  These approaches suggest that, in the future, performance evaluation 

tools may be combined in a plug-and-play manner.  Others have extended 

architecture description languages to include the ability to maintain performance 

data.  A review of different notations or languages useful for representing 

performance characteristics exists in [CoMI03].  A number of UML extensions 

have been proposed:  Performance Aware Software Development (PASD) 

includes information on resource demand budgets.  Others use UML 2.0 

sequence diagrams and the newer structured control constructs, like 
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CombinedFragments (an expression for sets of interaction fragments), express 

concurrency [ShVN08] or use the composite structure diagram [PSG+09].  State 

charts are refined in [LoMC04] and UML 2.0 versions of activity diagrams are 

demonstrated in [CGH+04].  Service composition processes are described using 

Business Process Execution Language for Web Services in [AmBo07]. 

2.3.7 Architecture Design Domain Specific Considerations 

The Earth Observing System (EOS) Data and Information System (EOSDIS) is a 

geographically-distributed, large-scale, data-intensive system in [GoMK95].  

EOSDIS has been used as an example to describe the challenges of satisfying 

functional and performance requirements.  A queuing network model approach 

was taken as the basis for doing architecture performance design of large-scale 

distributed data intensive information systems.  Focusing on meeting 

performance requirements in the architecture design of distributed client/server 

applications, [MeGo00] advocates integrating design and performance modeling 

activities using software performance engineering language.  Component service 

demand parameters are derived by the compiler for this language from the 

system specification.  The work shows results from using this analysis technique 

and shows how performance concerns can he informed by this type of design 

analysis.  The design of reusable component interconnection in client/server 

systems is investigated in [GoMS01].  Component interconnection patterns 

describe synchronous, asynchronous, and brokered communication between 
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client and server using Unified Modeling Language (UML).  The approach 

demonstrates the benefits of understanding component interaction patterns early 

in the design.  Alternative client server communications strategies are described 

using Unified Modeling Language (UML) for reusable component interconnection 

in client/server systems.  Use of these interconnection patterns in [GoMe00] 

shows the design benefit when implementing new distributed applications.  

[PeGo04] applies colored Petri net (CPN) templates and UML artifacts to 

concurrent software architectures behavioral modeling and other concurrent 

objects in [PeGo06].  They consider dynamic object-oriented architectures and 

describe the functional flow used to analyze the architecture’s concurrent 

behavior.  They show how design quality can be improved prior to 

implementation based on the behavioral properties.  Real-time, reactive 

concurrent architecture designs are considered in [PeGo06]. The approach 

presented addresses concurrent object-oriented software designs mapped into 

stereotyped UML diagrams and transformed into reusable colored Petri net 

(CPN) templates.  These CPNs are used to model then analyze behavioral 

properties of the software architecture.  A Self-Architecting Software System 

called SASSY is a framework that helps domain experts take a system 

requirements specification and generates a corresponding base architecture.  

From this base architecture, SASSY derives another architecture that optimizes a 

multidimensional system utility function based on alternative QoS metrics 
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[MEG+10].  Problems and solutions for estimating missing service demand and 

other parameters needed for queuing models is covered in [Mena08]. 

2.4 Other Domain Specific Concerns 

Finally, there is a significant body of work related to performance in domain-

specific architectures.  This work on general analysis techniques, benefits from 

extending some domain specific methods currently in use.  Some of the domain 

specific ideas leading to these extensions are listed in Table 2.1. 

 

Table 2.1 Performance and Domain Specific Architectures 

megaservices - large-scale applications [LiLW02]

real-time telecommunications applications [LuJR98]

distributed server systems [TWG+00]

defining a performance engineering maturity model [ScSR00]

software product lines [TaPe08]

real time and embedded systems [TrGi08]

reliability estimation [ShTr05]

performance requirements [HoWi07]

static concurrency analysis [NACO97]

Topic Reference

megaservices - large-scale applications [LiLW02]

real-time telecommunications applications [LuJR98]

distributed server systems [TWG+00]

defining a performance engineering maturity model [ScSR00]

software product lines [TaPe08]

real time and embedded systems [TrGi08]

reliability estimation [ShTr05]

performance requirements [HoWi07]

static concurrency analysis [NACO97]

Topic ReferenceTopic Reference
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Table 2.1 Performance and Domain Specific Architectures continued 

RT-UML [GrMi04]

managing quality attributes [GrBo98]

real-time systems and work-flow [EsWi01]

distributed and parallel computing [FaSS00]

hosting centers or "data centers“ [DeAM08]

Java 2 Enterprise Edition (J2EE) or the Common 
Object Request Broker Architecture (CORBA)

[DePE04]

testing large-scale multi-tiered collaboration 
products

resource-sharing systems as in large-scale 
computers with client-server architectures

recording of performance data system features and 
application details [Verl06]

[HeHK02]

[GuSh08]

Topic Reference

RT-UML [GrMi04]

managing quality attributes [GrBo98]

real-time systems and work-flow [EsWi01]

distributed and parallel computing [FaSS00]

hosting centers or "data centers“ [DeAM08]

Java 2 Enterprise Edition (J2EE) or the Common 
Object Request Broker Architecture (CORBA)

[DePE04]

testing large-scale multi-tiered collaboration 
products

resource-sharing systems as in large-scale 
computers with client-server architectures

recording of performance data system features and 
application details [Verl06]

[HeHK02]

[GuSh08]

RT-UML [GrMi04]

managing quality attributes [GrBo98]

real-time systems and work-flow [EsWi01]

distributed and parallel computing [FaSS00]

hosting centers or "data centers“ [DeAM08]

Java 2 Enterprise Edition (J2EE) or the Common 
Object Request Broker Architecture (CORBA)

[DePE04]

testing large-scale multi-tiered collaboration 
products

resource-sharing systems as in large-scale 
computers with client-server architectures

recording of performance data system features and 
application details [Verl06]

[HeHK02]

[GuSh08]
testing large-scale multi-tiered collaboration 
products

resource-sharing systems as in large-scale 
computers with client-server architectures

recording of performance data system features and 
application details [Verl06][Verl06]

[HeHK02][HeHK02]

[GuSh08][GuSh08]

Topic ReferenceTopic Reference

 

 

2.5 Identifying Good Attributes for a Performance Analysis Approach 

Table 2.2 clarifies the performance attribute categories previously identified and 

list many of the specific desirable traits that would characterize a good 

performance analysis process.  The topics listed in Table 2.2 were generated 

during the review of the literature done for this work.  The identified references 

are the sources that came to light during this research, and there is no attempt 
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made here to identify them as either the first or only source of each idea.  The 

research developed in this effort attempts to incorporate at least the spirit if not 

the actual content of each of these desirable attributes. 

In Table 2.2, the “Achieved” column represents methodology attribute attainment: 

� �

�

�

well addressed here

more could be done in the future

only partially addressed here

not addressed 

Attribute attainment in my work:

� �

�

�

well addressed here

more could be done in the future

only partially addressed here

not addressed 

Attribute attainment in my work:

� �

�

�

well addressed here

more could be done in the future

only partially addressed here

not addressed 

� �

�

�

well addressed here

more could be done in the future

only partially addressed here

not addressed 

Attribute attainment in my work:

 

Table 2.2 Desirable approach attributes 

provide the benefits of executable UML designs with 
supplemental data for further analysis

expose the benefits of difficult mathematical constructs 
without demanding study in these areas

[TKMG08]

[PSG+09]

�

� �

identify and characterize workload data [AKLW02]

reduce complexity to realistic levels

[ShJT05]

[AABI00]

address the architectural level system description

ReferenceDesirable AttributeAchieved

� �

�

� �

avoid building models "by hand" [GuPe05]�
provide the benefits of executable UML designs with 
supplemental data for further analysis

expose the benefits of difficult mathematical constructs 
without demanding study in these areas

[TKMG08]

[PSG+09]

�

� �

identify and characterize workload data [AKLW02]

reduce complexity to realistic levels

[ShJT05]

[AABI00]

address the architectural level system description

ReferenceDesirable AttributeAchieved

� �

�

� �

avoid building models "by hand" [GuPe05]�
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Table 2.2 Desirable approach attributes continued 

parameterize loading factors which influence 
performance like workload variability

expose performance properties in a formal framework

use automated transformations of existing description 
techniques

address granular quantities like response times, 
throughput, scalability , capacity, etc

[IyRo02]

[BeCD00]

[CoGM08]

[DePE04]

addressed quality of service early in the stages of 
development

[BaMa03]

�

�

� �

bridge the gap between current UML-based tools and 
analysis techniques already established

[GuPe05]

include information additional to that which is routinely 
expressed in UML architecture artifacts

use scenarios to characterize the environment of a 

system

augment data processing characterizations to model 

both communications and processing delays

[Hoeb00]

[PeWo02]

[Verd07]

�

�

�

�

ReferenceDesirable AttributeAchieved

be able to identify sub-system specification conflicts in 
component interactions

be executable by non-experts in performance analysis

architectural decisions should inform proposed 

solutions to meet user performance requirements

[CoIW99]

[PSG+09]

[BFG+04]

�

�

be compatible or interoperable with existing software 
development standards

[AABI00]

parameterize loading factors which influence 
performance like workload variability

expose performance properties in a formal framework

use automated transformations of existing description 
techniques

address granular quantities like response times, 
throughput, scalability , capacity, etc

[IyRo02]

[BeCD00]

[CoGM08]

[DePE04]

addressed quality of service early in the stages of 
development

[BaMa03]

�

�

� �

bridge the gap between current UML-based tools and 
analysis techniques already established

[GuPe05]

include information additional to that which is routinely 
expressed in UML architecture artifacts

use scenarios to characterize the environment of a 

system

augment data processing characterizations to model 

both communications and processing delays

[Hoeb00]

[PeWo02]

[Verd07]

�

�

�

�

ReferenceDesirable AttributeAchieved

be able to identify sub-system specification conflicts in 
component interactions

be executable by non-experts in performance analysis

architectural decisions should inform proposed 

solutions to meet user performance requirements

[CoIW99]

[PSG+09]

[BFG+04]

�

�

be compatible or interoperable with existing software 
development standards

[AABI00]
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Table 2.2 Desirable approach attributes continued 

ReferenceDesirable AttributeAchieved

leverage available development artifacts routinely 

generated in a structured development process

[CoMi00]

[PaSH01]

expose architectural mismatches [BaBS02]

ReferenceDesirable AttributeAchieved

leverage available development artifacts routinely 

generated in a structured development process

[CoMi00]

[PaSH01]

expose architectural mismatches [BaBS02]expose architectural mismatches [BaBS02]
 

 

2.6 Summary 

This section reviewed the Architecture Description Language foundations of 

architecture analysis.  These formal methods for describing architectures bring 

increased clarity to the design process, however there is no ADL available today 

which provides for the evaluation of performance.  Many tools do exist for the 

formulation of performance estimates later in the design process.  These include 

but are not limited to:  queuing networks, petri nets, stochastic process algebras, 

simulation models, combined models, as well as component-based architecture 

considerations.  The chapter concludes with descriptions of references 

addressing domain specific architecture performance issues, and a listing of the 

desirable attributes that a method or process should support to effectively 

evaluate performance at architecture design time. 
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Chapter 3 

3 Architecture Performance Viewed as a Specific Experiment 

3.1 Introduction 

System developments are generally executed to solve a specific problem or 

class of problems.  Architectures generated early in the system development 

process are established to constrain the proposed solution space of the problem 

being solved.  One of the benefits of selecting an architecture is that it can 

systematically rule-out undesirable solutions while at the same time, it can allow 

developers maximal flexibility in defining the implementation.  The goal of this 

research is to develop a method for making performance-based architecture 

selections.  Given a set of architecture alternatives, the objective is to select the 

architecture which will most likely yield the best performing implementation. 

At architecture-selection time there are significant uncertainties.  These 

uncertainties are caused by unknown factors and influences.  They characterize 

the development decisions yet to be made for the design and implementation of 

the proposed solution.  The method developed in this research identifies, 

estimates and manages these uncertainties to inform the architecture-selection 

decision.  In the sections that follow, the term “performance description” will be 



 

45 

used to describe the manner in which performance uncertainties are described.  

A performance description will always have the form of a probability density 

function that states the delay characteristics that a system, architecture or 

implementation will be expected to exhibit.  It quantifies the performance 

uncertainties of the entity under discussion. 

The process developed in this research is accomplished in four steps:  1) identify 

the uncertainties associated with design and implementation, 2) quantify these 

uncertainties, 3) show how to combine these uncertainties into a total or end-to-

end performance description, and 4) use the end-to-end performance description 

to compare the performance of architecture alternatives.  This chapter identifies 

performance uncertainty sources and identifies some factors useful in 

characterizing them.  Chapter four shows how to compare architecture-

performance descriptions once they have been built.  Chapter five shows how to 

combine the performance descriptions of components and connectors into higher 

level performance descriptions. 

3.2 Early Performance Estimation Methodology 

As listed above, uncertainty management embodies four steps.  In step one, the 

significant architectural elements (computing nodes and communications links) of 

each of the alternative system architectures are identified.  This may be done by 

describing each architectural option as a UML diagram.  UML collaboration 
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diagrams and sequence diagrams are effective in identifying the processing 

steps of a solution, but their use is not a requirement for applying this 

methodology.  What is important is to generate a list all intermediate products 

and their locations.  With this list, map the product-locations pairs into graph 

nodes, and transitions between product-location pairs into graph edges 

representing communications steps. 

The second step characterizes the system input using probability density 

functions.  It establishes the probability that an input of a particular size will be 

presented to the system.  It characterizes both the computational nodes and 

communications edges of the graph as probability density functions.  Node 

descriptions associate delay probabilities with times for computing a product.  

Edge descriptions associate delay probabilities with transferring information. 

Step three combines component and connector performance descriptions into 

system performance descriptions by searching the graph to identify all paths from 

the initial product state to the final product state.  Each of these paths is 

evaluated (using the performance descriptions established in step two and the 

techniques identified in chapter five) to obtain a probability density function that 

characterizes each architecture option performance. 

Step four makes performance comparisons between the architectural options by 

evaluating the performance probability integral (PPI) as described in chapter four 
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to calculate the probability that any one architectural option will perform better 

than any other.  The architecture selection decision follows directly from this 

calculation.  It is based on a combination of two factors that go into selecting the 

desired architectural alternative:  1) highest probability of performing better, and 

2) the spread of performance that is predicted.  The "best performing" option is 

identified after evaluation of the performance probability integral.  The spread of 

possible performance estimates is determined by examining the probabilistic 

descriptions that result after component contributions have been calculated. 

3.3 Defining an Experiment 

The uncertainties associated with architectures and the early design decisions 

that implement them are not routinely considered in the context of randomness.  

After all, the design process is intended to be structured and repeatable.  Yet at 

some level, since many of the factors that go into making those decisions are not 

known and the outcome of the decisions are unknown too, it can be useful think 

of each design decision as the outcome or result of running a probabilistic 

experiment.  In fact in this context, it can be useful to think of the architecture’s 

implementation as being the random selection of one specific implementation 

from all those which are achievable given the architecture description. 

At a high level, let an urn represent a candidate architecture and put balls in that 

urn to represent the possible performance values that an implementation built 
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from that architecture might have.  In the context of Figure 1.2, each urn of balls 

represents an architecture, a sub-tree rooted at the "System Specification and 

Design."  Each leaf in that sub-tree represents a single implementation of that 

architecture.  After populating the urn this way, one could generate a 

performance histogram of the counts of balls that fall into particular performance 

ranges.  Such a histogram would show the relative likelihood of any particular 

performance level being attained.  If one makes the performance bins sufficiently 

narrow, and scales the graph appropriately, the result can be mapped directly to 

a probability density function describing the likelihood of an architecture 

producing an implementation that will perform its task in a specified time. 
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Figure 3.1 Visual description of the experiment 

Consider the simplest case first.  When there are just two architectures being 

considered, the experiment is modeled with just two urns, each holding a set of 
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balls.  Each urn is labeled with the name of the architecture it represents.  One 

would expect that each implementation could process a number of different 

input-data-sets.  Since changing the input data results in different software 

execution paths being executed, one expects that the performance of a particular 

implementation depends on the input data that is applied.  For each input-data-

set implementation pair, construct a ball with the performance value written on 

the outside and add it to the urn.  Although not practical, conceptually generate 

balls for all performance values for all of the possible input data sets that could 

be applied to each implementation of the architecture.  This will generate a large 

number of balls for each urn since there are many combinations of input data 

sets, detailed designs, and capability ranges of implementers, etc. 

Now define the architecture-selection decision as the following experiment.  

Randomly choose one ball from each of the two urns.  Compare the two 

performance numbers (on the outside of each ball) and record which urn 

(architecture alternative) had the ball (implementation) with the smaller 

performance number, i.e., the winner.  Replace each ball in its respective urn and 

shake up the urns.  Repeat this process many times recording the winner each 

time.  From this table of winners one can determine the likelihood that a 

particular architectural choice will perform better than its architectural alternative. 
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The relative frequency that each architectural choice is expected to perform with 

some specific amount of delay can be mapped into a probability density function 

(pdf).  One can then evaluate which architecture of the two has the highest 

probability of performing better, with regard to the performance assumptions 

made, by using the techniques of chapter four. 

3.4 Performance Estimation Fundamentals 

The experiment just described helps show how information known about the 

implementation strategy and the types of data to be processed by the system can 

influence a performance-based architecture selection.  The approach can be 

made mathematically tractable.  To be useful, the sources of uncertainty need to 

be examined and a method needs to be identified to develop the probability 

density functions that describe these uncertainties.  This mapping of uncertainty 

to pdfs is routinely situation specific.  The uncertainty model documented in 

section 3.5 can be used as a guide for finding sources of uncertainty and 

characterizing them. 

Sources of performance uncertainty (the uncertainty in time associated with 

executing a computational activity) exist at every level of processing.  At the 

hardware level, processor instructions often have data dependent execute cycle 

counts [ARM-05] as do assembly language implementations of “multiply” 

functions.  Algorithm selection, data to be processed and initial algorithm starting 
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point can all affect delay by forcing the execution of alternative branching 

conditions.  Even availability of resources can be uncertain when competing 

services make demands on the underlying hardware elements.  Detailed 

examples of sources of uncertainty can be found in Appendix B. 

3.5 Identifying Uncertainty Sources 

Once understood, each uncertainty contribution can be converted into a 

probabilistic performance description.  This section describes six significant 

uncertainty sources routinely encountered during the system development 

process.  These performance descriptions (in the form of probability density 

functions) can be combined to estimate the overall performance uncertainty of a 

likely implementation.  Chapter five covers the operators needed to combine 

these descriptions into the system performance description.  Since uncertainty 

contributions may change as the development evolves, the mapping of 

performance uncertainty to pdf should be done several times throughout the 

design process. 

3.5.1 Value or Data Based Performance Uncertainties 

Even after the detailed design is complete, there is uncertainty in the amount of 

time it takes to perform a computation.  The time that it takes to execute any 

particular function or computation can be computed by combining three 

characterizing aspects:  1) the steps required to perform the function, 2) the 



 

52 

number of times that each such step is executed, and 3) the time that it takes to 

execute each step once.  Knowing these three quantities, one can estimate the 

duration of the computation.  For different instances of the computation however, 

these three quantities may have different values.  Each may vary based on the 

data presented.  As a result, each of these three quantities should be 

characterized in a probabilistic manner so that the calculation duration can be 

estimated over a range of expected input values and operating conditions.  This 

characterization leads to the function execution duration being described by a 

probability density function that relates the function execution duration to the 

probability of that duration. 

3.5.2 Algorithm-Based Performance Uncertainties 

The next uncertainty arises when the computational strategy (the set of 

algorithms and the sequence of their execution) is being defined.  There is 

usually a set of alternate solutions that can provide the desired system functional 

behavior.  Associated with each alternate solution are a performance value and a 

performance uncertainty.  An analysis process is routinely executed to determine 

the characteristics of alternatives so the superior one can be selected. 

Algorithm identification is essentially the development of a sequence of steps that 

change inputs into outputs.  These steps would include not only system input and 

output as in the translation of key clicks into characters and the steps required to 
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change postscript strings into printed matter, but all intermediate process steps.  

Data moves through the system and changes form.  Two fundamental activities 

occur, changing the form of the data and transferring the data from location to 

location.  In this move-compute-move model, the sizes of intermediate data 

products are important as they affect a proposed solution's performance.  The 

size of the data divided by the effective speed of the source-to-destination 

connection yields the time for each communications step (transmission time).  

Figure 3.2 characterizes the tradeoff between the computation time to reduce 

product size and the transmission time to move a product. 
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Figure 3.2 Curve characterizing processing and transmission time tradeoff 
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Since the goal is to evaluate relative overall system performance, the challenge 

is to analyze both operations (size change and location change) together without 

requiring absolute numbers.  The connecting parameter between these two 

transformations is size-change-per-unit-compute-time.  The fractional size-

change-per-unit-of-compute-time is proportional to the effectiveness of the 

computing step and also represents the percent of data that no longer needs to 

be moved. 
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Figure 3.3 Computation and communications normalization 
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3.5.3 Topology-Based Performance Uncertainties 

Topology-based uncertainties are slightly different.  This class of uncertainty 

addresses unknowns at a higher level in the design process where the topology 

or arrangement of data computations and data communications elements are 

being considered as they are combined into alternative data processing 

solutions.  This uncertainty addresses the large-grain structural differences 

among proposed architectures.  For any set of architecture options, there are two 

types of uncertainty to consider.  The first type relates to the degree to which 

processing requirements are distributed across processing nodes, i.e., in what 

different ways can the computations required be distributed, and across which 

and how many processing elements.  It is related to amount of parallelism that is 

desired in any particular computational solution.  It addresses the uncertainty in 

the performance differences between different solutions in how the solution 

partitions the computation between parts that can be done in parallel and parts 

that must be done sequentially.  The second uncertainty is similar in some ways 

to the algorithmic uncertainty of the last section but at a higher level.  It is the 

uncertainty in time associated with the fact that a particular computation may 

take different paths through the computational nodes.  It is concerned about the 

size of the performance differences to be experienced caused by proceeding 

down different paths at each decision point in the computation plan.  These path 

decisions may be made based on either data elements associated with the actual 

computation, or based on characteristics of the operating environment, i.e., the 
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way that load is distributed based on how busy processing elements are at the 

time that a computation must be executed. 

3.5.4 Synchronization-Based Performance Uncertainties 

The next uncertainty type is the result of synchronization that is required to 

ensure correct computation.  There are two sources.  At the lowest level, there is 

the delay caused by constraining execution threads when accessing critical code 

sections.  This type of performance degradation is required to ensure that 

multiple processes or threads do not corrupt the data used by each other during 

the execution of a computation.  It results in making certain activities atomic.  It 

as well causes delays as processes or threads may be required to wait for 

uncertain amounts of time to access a needed resource.  At a higher level, 

synchronization addresses how computational progress is controlled ensuring 

that for any computational step, all of the inputs are present before a dependent 

output is generated.  Often a computation requires a set of inputs and each of 

these may be generated from a different source.  The computation may only 

proceed when all of the inputs are present.  This uncertainty source accounts for 

differences in execution that are encountered when concurrent operations 

produce their results with differing delays before they approach synchronization 

points. 
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3.5.5 Load-Based Performance Uncertainties 

Load-based performance uncertainties are not intended to capture anecdotal 

evidence that suggests that some applications fail because of their success.  

Such situations might occur when a web application is unexpectedly successful 

and is deluged with requests that swamp the implementation causing long 

queues and unacceptable service times.  Said performance uncertainty is difficult 

to predict, and as such difficult to estimate.  Load based performance 

uncertainties are intended to capture the fact that systems loads can vary over a 

range of anticipated values.  In the context of this analysis the assumption is 

made that the system is being designed for a specific range of loads.  The 

additional assumption is that components and connections can be built that can 

exhibit the delay behaviors that are described in their performance descriptions.  

If the implemented component performance varies significantly from that 

planned, queues may grow and other system failures may occur.  Those cases 

are not covered by this analysis.  The presumption for this research is that 

components and connectors can be built which are consistent with the 

performance descriptions. 

3.5.6 Sizing-Based Performance Uncertainties 

Sizing-based issues include two related uncertainties.  The first is raw capacity.  

The second is available capacity. 
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Raw capacity addresses the actual processing capability of computational nodes 

and the bandwidth or data rate of the communications channels themselves.  

When absolute estimates are not known or cannot be projected with known 

uncertainty, it may be possible to pick an arbitrary computational standard, e.g., 

Bench Mark Units [SPEC09] and reference all computations (in a relative way) to 

this value.  Similar estimates are applicable for available capacity. 

Available capacity is a downward scaled value of raw capacity and also 

addresses the computational capability of nodes and link bandwidths.  For 

communications links, it includes the performance degradation caused by errors 

generated during transmission as well as the consumption of resources by other 

channel users.  Similarly, computational performance is a downward scaled "raw 

power" of the processor and includes the anticipated performance degradation 

caused by the competition for CPU resources from other processes.  In both 

cases, processor cycles and channel bandwidth are often shared with other 

subsystems and only a fraction is useful to the calculation of interest.  There is an 

uncertainty associated with the number and type of competing activities that 

leads to uncertainty in the availability of needed resources. 

3.6 Summary 

This chapter begins by observing that there are many uncertainties in the 

development of systems, and at the beginning of the development process these 
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uncertainties can significantly affect performance estimation.  These ideas lead 

directly to the benefit of characterizing the performance of the implementation of 

a system as a random variable, or outcome of a probabilistic experiment.  The 

section then considers that the implementation of any actual system is the 

analysis and design of two types of activities:  the transformation of data from 

one form to another and the communications of that data from one place to 

another.  There can be design tradeoffs made between the processing time 

required to transform data (leading to an associated change in size) and the time 

required to transmit that data to another location.  When this tradeoff is 

normalized by considering the ratio of bits-to-be-sent-reduction to compute-time-

required to make that reduction, a performance characterization is possible. 

The actual development of a system can be considered as an experiment since 

the values of the uncertainties encountered lead to a non-determinism in the 

outcome.  These uncertainties arise from a number of sources.  Some come from 

the fact that many computations take an amount of time that is related to the 

values manipulated.  Others come from the fact that different algorithms have 

different efficiencies.  Still others come from the need for computational 

synchronization and the sharing of resources on computing platforms and 

communications links.  The chapter concludes with a summary of the steps 

needed to perform a comparative analysis of the expected performance of an 

implementation considering these uncertainties. 
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Chapter 4 

4 Comparing Architecture Performance Potential 

4.1 Introduction 

In this chapter, assume that it is possible to create a complete performance 

description (in the form of a probability density function) of an architectural 

alternative that includes the established understanding of development 

uncertainties.  This performance description characterizes the likely performance 

of the system and accounts for the cumulative affect of all that is understood 

about attributes of the development process (team maturity, requirements clarity, 

etc.) and the uncertainties associated with the proposed system implementations 

(input data sets allowed, algorithms to be used, system topology, etc.).  This 

performance description can be built from performance descriptions describing 

subcomponents.  Chapter five will discuss how to combine component and 

connector performance descriptions to generate a single system performance 

description.  This system performance description characterizes the experiment 

that models the architecture-to-implementation performance mapping that is 

intended to represent the development process being used. 
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This chapter derives the performance probability integral (PPI) and presents 

several examples demonstrating its use.  Applying the PPI calculation to a pair of 

performance descriptions yields the probability that a randomly selected 

implementation of one architecture will perform better than a randomly selected 

implementation of a second architecture.  The illustrative examples in the chapter 

have been chosen to be simple and intuitive.  A more interesting but still simple 

realistic example will be discussed in chapter six.  Chapter seven will 

demonstrate the use of the PPI on two more real world examples. 

4.2 Deriving a Performance Probability Integral 

The performance probability integral is a function that maps two performance 

descriptions into a real number (a probability).  The first part of this section 

demonstrates the mechanics of making performance comparisons.  The second 

part derives the actual integral to be evaluated.  While the demonstration 

examples used to show the comparison mechanics assume normal distributions 

as argument performance descriptions, the approach is general as will be 

demonstrated in the verification examples that follow the integral derivation.  

Figure 4.1 shows performance descriptions for two architectures (left) and the 

cumulative distribution functions associated with these descriptions (right).  Both 

functions will be used in the PPI derivation and explanation that follow. 
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Definition:  The probability density function (PDF), fX(t), is the relative 

likelihood that system X will perform in time t.

Definition:  The cumulative distribution function (CDF), FX(t) is the relative 

likelihood that system X will perform in less than time t.
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Figure 4.1 Delay density function and cumulative distribution function 

 

Consider an architecture called “X.”  Let fX(t) be the architecture X performance 

description, that is the probability density function describing the relative 

likelihood that an implementation from architecture X will perform its task in some 

amount of time close to t.  Let FX(t) be a cumulative distribution function for 

system X.  The cumulative distribution function, FX(t), is the probability that the 

system X will perform its function in less than time t.  Density and distribution 

functions are related in the standard probabilistic sense.  When it is clear to 

which system a performance description applies, or when there are more than 

one density function or cumulative distribution function on the axis of a graph, the 

subscript will be dropped unless confusion would result. 
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Consider two systems where the overall architecture performance description is 

represented by the sum of a large number of independent contributions.  This 

situation is shown in the top left corner of Figure 4.1 

The question that needs to be answered is "What is the probability that a 

randomly selected implementation from architecture A (red), will perform better 

than a randomly selected implementation of architecture B (blue)?"  In this 

question, “better” means that a system completes its task in less time. 

This calculation can be accomplished by breaking the problem into pieces.  The 

probability that architecture A will produce an implementation that will perform 

better than the implementation produced from architecture B for a specific but 

arbitrary value t', is the probability that the random variable representing the A 

implementation takes on a value less than t' while at the same time, the 

independently selected value representing the B implementation is greater than 

t'.  The shaded regions of Figure 4.2 show this case.  Note that the selection of 

the A implementation value and the selection of the B implementation value are 

two independent events.  Since these selections are independent the probability 

of the combined event is just the product of the probabilities of the individual 

events.  Expressed mathematically, this is the product of the integral over the 

area where the implementation from A is less than t’ and the integral over the 

area where the implementation from B is greater than t'. 
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Figure 4.2 Calculating the probability System A outperforms System B 

 

In equation form this would be: 

 

where fA describes system A's performance and similarly for fB. 

Now generalize to the case where t' can take on any value.  The probability of the 

union of mutually exclusive events is the sum of the probabilities of the individual 

events.  Hence divide the above problem into a set of mutually exclusive events.  

Base the events on the cases where the random variable (representing B’s 

performance) is to take on a value in the small interval greater than t’.  Now 
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calculate the probability that A's performance will be less than that of B for an 

arbitrary but specific value of t = t' when B’s performance is between t’ and t’ + 

∆t.  Figure 4.2 shows this partition of the time axis into small time intervals, ∆t. 
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Figure 4.3 Evaluation of the P(A < t') for increasing values of t' 
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The red shaded area is FA (n∆t) and the thin slice to the right (Prob( A ≈ t' or t’ ≤ 

B < t’ + ∆t)) is the difference between two successive cumulative distribution 

values for system B. 

 

Figure 4.3 shows the evaluation of the P(A < B) for several successive ∆t 

intervals.  The summation accounts for all of the t’ values since these are 

mutually exclusive events. 

Note that the approximate probability that B will perform near t' is 

 

Substituting the right hand side of this equation into the one above yields: 

 

Factoring out a non-zero ∆t yields: 
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Now for "sensible" functions the probability density function is defined as: 

 

Taking the limit as ∆t goes to zero leads to:  n∆t → t and ∆t → dt. 

Upon substitution this leads to the final result, the performance probability 

integral (PPI): 

 

This equation enables the calculation of the probability that implementation A will 

perform better than implementation B given probabilistic descriptions of the two 

Architectures involved.  In the remainder of this work, this result will be referred 

to as the performance probability integral (PPI). 
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4.3 Verifying the Probabilistic Analysis 

To verify the PPI result, four different example cases were analyzed in detail.  

Even though some of the examples are simple, they help build intuition about the 

PPI calculation.  In selecting the examples, an attempt was made to span the 

space of likely relationships between the two performance descriptions used as 

arguments in calculating the PPI.  For each example, the PPI was calculated 

using the CAPE tool, described in Chapter 8.  The same example was then 

simulated using a discrete event simulation (DES).  The discrete event simulation 

was run a large number of times to collect data for a goodness-of-fit test, since 

there is known to be variability in the simulation result.  For the first example, a 

hypothesis test was done to determine if there was a difference between the 

CAPE result and the simulation result.  For the remaining examples, a simpler 

test was executed.  Since it is know that the sample mean of a population (the 

varying values obtained from the DES) should be normally distributed around the 

true mean a large number of sample means was generated and their distribution 

compared to a normal distribution.  In all cases, the CAPE result is consistent 

with the DES result. 

4.4 Example 1 – Comparing Two Normal Performance Descriptions 

To make the example specific, consider architecture performance descriptions in 

Figure 4.2 again.  A’s performance (red) has been estimated as normal with a 

mean of 2.0 and a standard deviation of 0.5.  B’s performance (blue) is similarly 
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approximated with a normal distribution having mean of 3.0 and standard 

deviation of 0.5.1 

When these performance descriptions are substituted into the PPI as shown in 

Figure 4.3 the result indicates that about 92% of the time A (red) will perform 

better than B (blue).  Since these performance descriptions are easily 

represented mathematically, numerical methods were applied to evaluate the PPI 

as well.  The numerical integration of the PPI for these specific input functions 

yields a result of 0.921350 using a trapezoidal rule approximation with step size 

of 1E-7, and integration limits of minus six sigma to plus six sigma.  According to 

standard error analysis [Krey99] this result is good to five significant figures.  

That error bound does not include the small area in the tails beyond six sigma.  

The result was further verified by simulation.  Two normally distributed random 

variables representing implementations from architectures A and B were 

                                            

 

1 There is a non-zero probability that either system can perform in negative time.  This error is 

small and can be ignored. 
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generated.  One million samples were taken from each of these distributions and 

compared. 

The results were tabulated, and the probability of A's performing better than B 

was assessed using a frequency interpretation of the experiment results, i.e., the 

proportion where the A value was less than the B value was assigned as the 

probability that A will perform better than B.  The following histogram, Figure 4.4, 

shows the results of the one-million-sample experiment being run 1000 times.  

The sample mean from the simulation is 0.921351 and is indicated by the black 

vertical line.  The integration result is indicated by the blue vertical line in bin four.  

Since the histogram was expected to be normal in distribution, the figure shows 

the comparison of expected value count per bin (in red italics) and the actual 

count (in black) just below the expected value. 
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Figure 4.4 Simulation results for comparing systems from Figure 4.2 

 

Applying hypothesis testing to this result, leads to the following two cases: 

H0:  µ= 0.921350      and      H1: µ ≠ 0.921350 

Using a non-directional test and a level of significance α = 0.05, the rejection 

region in the upper and lower tail is α = 0.025.  Bins zero and one are combined 

as are bins seven and eight so that each of these cases will have more than five 

expected elements [LeRS01].  This makes the number of degrees of freedom six.  

From tables of the t-distribution (since σ is unknown): 

Reject H0 if t < t4 = -2.4469 or t > t4 = +2.4469 
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Using differences between the expected and actual bin counts, t is computed to 

be 1.782769 and so the hypothesis can not be rejected based on the testing 

evidence. 

The relative performance of two such architecture performance descriptions 

depends on the difference between the means, as well as the standard 

deviations of the respective normal distributions.  Keeping the standard 

deviations the same, but varying the means yields the expected result displayed 

in Figure 4.5.  When A has a mean far to the left of B, the P(A < B) is 

approximately one.  When A has a mean that is far to the right of B, P(A < B) is 

approximately zero.  When the mean of A is the same as the mean of B, the P(A 

< B) is approximately 0.5. 
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Figure 4.5 PPI values vs. difference in mean (B – A) 
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4.5 Example 2 –Possibly Overlapping Performance Descriptions 

Performance descriptions can be related in three ways:  they may not overlap, 

they may partially overlap, or one may be included within the other.  When using 

two uniformly distributed ranges of performance values in each of these three 

cases, the problem is simple enough to be analyzed by hand.  Figure 4.6 shows 

the case where two uniform and non-overlapping probability density functions 

(1.0 to 2.0 and 3.0 to 4.0) are compared.  The P(A < B) = 1.0. 
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Figure 4.6 PPI calculation:  non-overlapping performance descriptions 
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An example using overlapping uniform density descriptions (1.0 to 2.0 and 1.5 to 

2.5) is shown in Figure 4.7.  The calculation of the performance probability 

integral for this case yields that P(A < B) = 0.875.  Results from simulation 

verification are shown in Figure 4.8 
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Figure 4.7 PPI calculation:  overlapping performance descriptions 
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Figure 4.8 PPI simulation:  overlapping performance descriptions 

 

In the third case, A's performance range completely includes that of B’s as seen 

in Figure 4.9.  The evaluation process is similar.  The simulation results that 

verify this calculation are shown in Figure 4.10. 
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Figure 4.9 PPI calculation:  complete overlap of performance descriptions 

 

7

0

36

1

92

2

226

3

289

4

212

5

105

6

25

7

8

8

5
29

104

220

283

220

104

29
5

0
1
2
3
4
5
6
7
8

[0.498425, 0.498783)
[0.498783, 0.499142)
[0.499142, 0.499500)
[0.499500, 0.499859)
[0.499859, 0.500217)
[0.500217, 0.500576)
[0.500576, 0.500934)
[0.500934, 0.501293)
[0.501293, 0.501651)

Bin            Interval

sample

mean

minimum

sample

maximum

sample

Distribution of Experimental Outcomes

µ = 0.500038
σ = 0.000050

Calculated
µ = 0. 500000

(Counts per Bin)

Bin NumberExpected Sampled

7

0

36

1

92

2

226

3

289

4

212

5

105

6

25

7

8

8

5
29

104

220

283

220

104

29
5

0
1
2
3
4
5
6
7
8

[0.498425, 0.498783)
[0.498783, 0.499142)
[0.499142, 0.499500)
[0.499500, 0.499859)
[0.499859, 0.500217)
[0.500217, 0.500576)
[0.500576, 0.500934)
[0.500934, 0.501293)
[0.501293, 0.501651)

Bin            Interval

sample

mean

minimum

sample

maximum

sample

Distribution of Experimental Outcomes

µ = 0.500038
σ = 0.000050

Calculated
µ = 0. 500000

(Counts per Bin)

Bin NumberExpected Sampled  

Figure 4.10 PPI simulation:  narrow overlapping architecture 
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4.6 Example 3 - Comparing Discrete Performance Descriptions 

There are cases where the architectural elements can take on discrete 

performance values rather than any value over a range.  In this circumstance, a 

discrete probability model is appropriate.  Similar to the deterministic 

performance case, the actual value for each performance mode is one number; 

the randomness comes from not knowing which fixed value from a set of possible 

values will occur.  This situation might happen when considering the use of one 

of a set of Commercial Off-the-Shelf products.  The performance of each 

alternative may be well known, but the ultimate selection from among the 

alternative products may not have been completed.  The PPI analysis handles 

this situation similarly. 

Consider the following two architecture performance descriptions.  A takes one of 

six equally likely performance values.  B takes one of three values with middle 

value twice as likely.  This configuration is shown in Figure 4.11. 
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Figure 4.11 PPI calculation:  discrete example 

 

The performance probability integral can be evaluated by hand in this case: 

P(A < B) = (0.25)(3/6)+(0.5)(4/6)+(0.25)(5/6) = 0.6667. 

Figure 4.12 shows the simulation results verifying the evaluation of the 

performance integral. 
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Figure 4.12 PPI simulation: discrete example 

 

4.7 Example 4 – Asymmetric Performance Descriptions 

The form of the performance descriptions can be relatively general.  The 

performance descriptions shown below are dissimilar and non-symmetrical.  The 

calculation of the PPI for the example performance descriptions shown in Figure 

4.13 yields the probability of A performing better than B as being approximately 

0.45.  The computations are done as discussed above. 
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Figure 4.13 Non-symmetric performance description comparison 
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Figure 4.14 PPI simulation:  Non-symmetric performance description 
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The simulation results and performance probability integral calculations agree.  A 

has a 55% chance of doing worse than B. 

4.8 Summary 

There are many uncertainties early in the development process that are 

unresolved when the architecture selection decision is made.  When the 

uncertainties can be mapped to performance descriptions taking the form of 

probability density functions for each of the proposed architectures, a comparison 

is possible and one can assert that a random implementation, system A, from 

architecture A will perform better than a similarly implemented system B from 

architecture B.  This section derived the form of the performance probability 

integral (PPI) which quantifies this comparison and provided verification for 

values generated by it use.  The PPI is: 
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Chapter 5 

5 Constructing Architecture Performance Descriptions 

5.1 Introduction 

The six uncertainty classes described in chapter three form a natural hierarchy 

that is parallel to a hierarchical model of system construction.  In the 

development process, high level components and connections are successively 

broken down into smaller and smaller pieces.  The reverse process is used when 

defining and characterizing the uncertainties of systems.  Smaller elements with 

available performance descriptions are combined to construct higher and higher 

level system components’ performance descriptions until the end-to-end 

performance description for the entire system is developed.  A system 

performance description will routinely be generated in two steps:  1) components 

are arranged according to alternative topologies and then 2) probabilities are 

associated with execution paths once synchronization requirements have been 

applied.  This chapter will describe the five basic functions that are used to 

combine lower level performance descriptions into a high level performance 

model.  In the literature [Papo65], there are calculus based methods for 

generating the functions which result from combining low level performance 

descriptions (pdfs).  These methods could be applied directly in this situation but 
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routinely the mathematics becomes difficult and closed form solutions are rarely 

available.  For this work, numerical methods are used to combine performance 

descriptions (pdfs).  Numerical methods make the approach practical and broadly 

accessible to analysts.  In addition, use of these methods does not restrict the 

probabilistic system or component performance descriptions to simple 

mathematical functions.  Finally, numerical methods are easier to implement than 

equivalent symbolic manipulation techniques. 

This work uses five fundamental functions to combine the performance 

descriptions of sub-system components:  summation, quotient, minimum, 

maximum and composite.  Three of these functions (summation, minimum, and 

maximum) have already been documented as being useful in computing the time 

that it takes for a Command and Control organization to respond to an incoming 

task [Andr88].  There is no claim that these five functions represent a complete 

set for capturing the performance characteristics of all architectures.  However, 

they are likely to be a sufficient set for the static, acyclic architectures covered by 

this research since those architectures can only have splits and joins in the 

directed graph by which the architectures are described.  Systems constrained to 

be acyclic graphs can only split tasks into subtasks, wait for a set of inputs to 

perform a task, or allow the independent execution of multiple threads of activity. 
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The details of the techniques for implementing these functions within the context 

of Comparative Architecture Performance Evaluation (CAPE) can be found in 

Appendix C.  In most cases, verification is done by building random number 

generators that deliver random values consistent with the specific density 

functions involved.  Values produced by these generators are then combined 

according to the function being verified.  The simulated result is then compared 

with a CAPE computed result.  In the next sections, each of these functions is 

demonstrated in a practical example. 

5.2 Summation 

The delay associated with executing a sequence of process steps involving no 

decisions or branches is computed by summing the contribution of each step.  

Below, Figure 5.1 shows an example of an individual searching for a web page, 

sending the result across a noisy link, and another person studying that web 

page.  The time to accomplish all three of these serial activities is the sum of the 

three activity performance descriptions. 
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Figure 5.1 Summing process for activity performance descriptions 

 

Since performance descriptions take the form of probability density functions, the 

summing function will take the form of the convolution of those probability density 

functions.  The performance model defined here associates elementary system 

delays (those of components and connectors) with random variables and their 

defining probability density functions.  Total system delay is the sum of these 

random variables (described by these pdfs) and calculated using a method 
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derived from the convolution definition.  The convolution operator (*) for two pdfs 

fA(·) and fB(·) is frequently defined [LaSh79] as: 

 

5.3 Quotient 

The quotient probability density function is used when one of the sequential 

processing pieces in an architecture requires the movement of data to a new 

location over a communications link.  The basic calculation is similar to the 

deterministic case.  The amount of data to be moved, divided by the data rate of 

the communications link, yields the time that the transmission should take. 

At a basic level, data packages of some size get transmitted through 

communications links of some size.  The sizes of the data packages presented to 

the system can be described probabilistically with a density function.  There are 

several factors that impact communications link performance.  In the situation 

where the link is error free, the transmit time is inversely proportional to the link 

data rate and directly proportional to the size of the packets being transmitted.  If 

the communications link protocols provide error recovery through data 

retransmission or if the link can be congested by other users, the effective data 

rate will be reduced.  It is the effective data rate of the communications link that 
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should be used for the random delay calculation.  The time to traverse the link 

can be modeled as a random variable which depends on link error 

characteristics, link congestion and data packet sizes. 

Both the amount of data presented and the rate at which it is transmitted can be 

modeled as random variables.  The pdf for the communications delay can be 

computed from the quotient of the random data package size and a random 

effective data rate for the link, when these pdfs are known or can be estimated.  

The delay, z, is the size (x) divided by the rate (y).  The equation for the quotient 

pdf is well known [Curt41]: 

 

The joint probability density function fX,Y representing the data size elements (fX) 

and link data rate (fY) can normally be generated as the product of fX and fY as 

these two densities can routinely be expected to be independent.  The 

calculation has a closed form solution for some simple cases.  The process 

described in this research can provide estimates of the result for more general 

cases. 
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Figure 5.2 Source-sink performance descriptions for quotient calculation 
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5.4 MIN 

The minimum function (MIN) is needed in the case where the architecture 

stipulates that a piece of information may be obtained from any one of a number 

of places (each of which may respond at a different time).  The formula [Andr88] 

for computing the minimum fZ(t) of two random variables, “g” and “h” is: 

 

Where as usual the uppercase functions (H(t) and G(t)) are the cumulative 

distribution functions associated with the lower case probability density functions 

(f(t) and g(t)).  When multiple minimum functions need to be calculated, the 

minimum function is applied a number of time using the first result with each of 

the next performance descriptions dictated by the problem statement. 

In the following example, a user wishes to obtain the phone number from the web 

using a service.  The goal is to understand how long it will take to get a response.  

The service is designed to simultaneously query three different and independent 

service providers.  The query can be considered to be satisfied when the first of 

the three independent services responds with an answer. 
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Figure 5.3 Example case where first result is sufficient 

 

For the purpose of this example, each service is presumed to return an answer in 

a time that is uniformly distributed between 100 and 300 milliseconds.  The result 

of the minimum function being applied to this case is shown in Figure 5.4. 
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Figure 5.4 Minimum function computation result 

 

This situation occurs any time that a product is requested from multiple 

independent sources, or a result is calculated in multiple independent different 

ways and the first answer is considered acceptable. 

5.5 MAX 

The maximum function (MAX) can be encountered in a number of ways as well.  

The most commonly encountered occurrence is when there are several input 

values required for a computation.  These values may be generated in different 

places or at different times using different methods.  They may be generated in 

parallel as well.  Usually the computation can not proceed until all inputs are 
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available.  Alternatively the situation can occur where a computation is done in 

number of different ways to ensure consistency in the result.  The maximum 

function is useful to characterize the time it takes to be ready to continue with the 

comparison after a consistency check is done on these computed values.  The 

formula [Andr88] for computing the maximum fZ(t) of two random variables, “g” 

and “h” is: 

 

Where as usual the uppercase functions (H(t) and G(t)) are the cumulative 

distribution functions associated with the lower case probability density functions 

(f(t) and g(t)).  When multiple maximum functions need to be calculated, the 

maximum function is applied a number of times using the first result with each of 

the next performance descriptions dictated by the problem statement. 
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Figure 5.5 Timing for a subtasks processed in parallel 

 

Figure 5.5 shows the calculation plan for integrating the area under the curve.  

The idea behind the example is that the calculation of the area under the curve 

can be broken up into four problems.  Each of the colored bands represents a 

portion of the curve’s area calculation that can be assigned to a separate 

integrator.  Each of these integrators will perform their sub-tasks in a time 
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duration described by a uniformly distributed random variable with duration 

between 100 and 300 milliseconds.  The final answer is not available until the 

last of these four computations completes and the four sub-task answers are 

added together.  This addition time is assumed to be very small when compared 

with the delay associated with the rest of the calculation.  Figure 5.6 shows the 

result of the maximum function being applied to these four performance 

descriptions. 
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Figure 5.6 Maximum function computation result 
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5.6 Composite 

There are times when different amounts of data may be moved across different 

paths, either in parallel or based on a decision.  These different paths terminate 

on the same source and sink but traverse different intermediate points.  In these 

situations, a composite delay density function characterizes the data movement.  

Normalized weighting factors are computed based on the probability of data 

traversing each path.  The individual density functions are then multiplied by 

these normalized weighting factors and summed to produce the composite 

density function. 

The composite calculation is useful in two separate situations.  Figure 5.7, shows 

the situation where two classes of data are applied to a channel.  The weighting 

factor for each class presented is expressed as a percentage of the total 

communications load applied.  In this example, both classes are assumed to be 

of equal magnitude.  The class distributed like a semi-circle (gray) and that 

distributed as a trapezoid (also gray) are scaled to the green and blue shapes 

before being combined in the communications channel.  This scaling results from 

the weighting of the two sources and when combined creates the result shown as 

the red line.  The vertical beige bars are the simulation confirming the resulting 

computation. 
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Figure 5.7 PDF result of combing two data classes in a common channel 

 

In the second case, Figure 5.8, the data classes may be transmitted over 

different channels.  The result is similar.  Each channel changes the input data 

(size) pdf and these pdfs are added after being weighted proportionately by the 

amount transmitted.  In the figure, the original pdfs (gray) are scaled according to 

the amount transmitted (blue, yellow, green) and combined into the red weighted 

composite description of the combined data.  Again the beige vertical lines are 

the values captured with a discrete even simulation verifying the computation. 
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Figure 5.8 A single class of data is transmitted over any of multiple paths 

 

Figure 5.9 shows examples of different weights applied to data passing through 

the channel.  The pC and pT values represent the probability or percentage of the 

semi-Circular pdf and Trapezoidal pdf respectively as submitted to the channel.  

The red curve represents the aggregate.  The beige lines show the simulation 

results confirming the computed channel behavior using random number 

generators matched to the input pdfs. 
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Figure 5.9 Simulation confirmation of weighted composite calculations 

 

A simpler example of the composite function is shown below.  In Figure 5.10 

there are two possible paths through the system.  The composite delay 
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generated in this situation is the probabilistically weighted combination of each of 

the system paths. 
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Figure 5.10 Composite delay result for example two path calculation 

5.7 Summary 

This section has described the five functions (sum, quotient, minimum, 

maximum, and composite) required to combine performance descriptions and the 
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methods used to calculate the performance description composing smaller 

elements into larger elements.  The sum function is applicable when there is a 

sequence of elements to be combined.  The quotient function is used when both 

the rate of the channel and the size of the data being put on the channel are 

random in size.  The minimum and maximum functions are used for process 

synchronization.  The composite function is used when there are either different 

classes of data traversing a path, or different paths being traversed by a single 

class of data. 
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Chapter 6 

6 An Illustrative Practical Architecture Example 

6.1 Introduction 

To show how the preceding probabilistic analysis can be used for evaluating the 

performance potential of architectural alternatives, it is helpful to consider a 

simple example.  The example chosen follows [DoWh07] and represents a 

classic web application with several different alternative architectures.  To 

compare the performance potential of these alternative architectures, the 

architecture components and connectors are first characterized individually and 

then these descriptions are combined using the techniques of chapter five.  After 

several alternative architectures have been analyzed, the results are compared 

to identify the relative performance potential of these architecture alternatives. 

To perform the analysis, four steps are executed.  These steps are:  1) identify 

the alternative architectures to be examined, 2) characterize the performance of 

architectural elements based on an appropriate set of assumptions that address 

scaling issues to ensure that the results are comparable architecture-to-

architecture, 3) combine the delay contributions for each alternative, and 4) 

compare the delay results across architecture alternatives. 
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For the example, consider a small web application designed to provide a user 

with the current version of a requested XML document.  Based on constraints 

associated with the operational environment, the high-level form of the solution is 

already agreed to be a three-tier architecture as shown in Figure 6.1.  There is 

consensus that there will be some processing available at each tier, and that 

these tiers will be connected by communications links.  The specifics describing 

the expected load, the available computational capability at each tier, and the 

sizes of the connecting communications links are initially unspecified. 

In this application, an XML document request is made at the User tier and 

transferred to the Cache tier.  A search is then performed first at the Cache (and 

then at the Server if required) to determine if an update is needed.  If the user 

version of the requested document is found to be stale, an update is processed 

resulting in the User accessing the current document locally.  There are many 

ways to execute the involved steps, but the expectation is that by caching 

documents between the User and the Server, the overall system response will be 

improved. 
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Figure 6.1 Classical three tier architecture 

 

Occasionally environmental factors force an update to documents located on the 

server.  Rather than redistributing the complete current XML document to the 

user after each change, a processing improvement is adopted to decrease the 

size of the information sent between the tiers.  The architect presented with this 

problem has decided to consider including any of a set of a compression 

mechanisms in the design to potentially speed transfer of data between the tiers.  

The chosen compression technique, shown in Figure 6.2, takes advantage of the 

fact that XML documents are tree-structured. Classical tree-difference algorithms 

[ZhSh89] can be used to generate difference scripts which are smaller than the 

original documents.  These difference scripts minimize the editing distance 
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between the initial and updated trees (documents) by defining a series of 

additions and deletions or changes to the original document to produce the 

updated document.  In the common case, these difference scripts are much 

smaller than the web pages themselves, and this can be seen to be a form of 

compression.  A difference script can be converted into a XSLT document that 

describes how to transform the original (old) XML document into the updated 

XML document [KayM00].  The size of the generated XSLT document is 

proportional to the size of the difference script.  These processing steps could be 

executed at different tiers in different architectures.  The overall transformation 

process is shown in Figure 6.2. 
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Figure 6.2 XML Tree Transform Process Example 
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6.1.1 Selecting Specific Architectures for Demonstration 
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Figure 6.3 Alternative example architectures 
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The approach researched is broadly applicable.  To make it easy to correlate the 

architecture differences with the performance differences in this example, the 

communications infrastructure will remain fixed for all four architectures 

considered. What will change is the configuration of compression servers.  Were 

the communications links to be changed either by modifying the data rate, error 

rate, or locations between architecture nodes, the results would change 

accordingly. 

Figure 6.3 shows four potential architectures for this application.  All four 

architectures have three nodes connected sequentially and the different 

component shapes in the figure represent different versions of the components.  

Architecture A uses no compression; an updated XML document is sent from the 

Server to the User on request.  Architecture B uses the compression techniques 

described earlier in the Server so that it outputs an XSLT script that is sent to the 

Cache.  The Cache uses this script on its local copy of the document to create an 

updated version which is forwarded to the User.  The Cache compresses this 

updated document into a XSLT script which the User will use to convert the old 

XML document into the updated XML document.  Architecture C again uses 

these compression techniques but it creates an XSLT script at the Cache and 

sends it the User.  The User similarly uses this script with its local copy of the 

document to create an updated version.  The Cache compresses this updated 

document into a XSLT script which the User will use to convert the old XML 
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document into the updated XML document.  Finally, in Architecture D, the 

compression is at the Server (as in Architecture B); in this case, the Cache 

forwards the compressed document to the User for use in converting the old XML 

document into the updated XML document (as in Architecture C). 

6.2 Assigning Delay Descriptions to Architecture Elements 

The information needed to compute the performance of each architecture 

computation or communications activity has the same basic form for any type of 

problem where these techniques can be applied.  Data for these examples is 

given in table form.  Table 6.1 describes the structure of these tables.  This table 

structure will be used in subsequent analysis to keep track of the various delay 

contributions, both those which are assumptions associated with architecture 

component performance, and some which are derived as is the description of 

transmit delay.  The top line (E) of the table holds the estimated value 

descriptions.  It includes both the data transformation processing delay and the 

communications delay.  The bottom line (D) holds the delays to be combined and 

represents the inputs to the functions that combine delays as in chapter five. 

The boxes in this table are small.  To keep the graphs readable, Table 6.2 shows 

the abbreviated versions that will be used for each graph in the following analysis 

sections.  The table is formulated in three columns.  The first column shows the 

location of the graph being explained (shadowed block).  The center column 
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shows the graph labeled as it would be in a larger picture.  The right column 

shows the abbreviated labeling of the graphs which will be used in the following 

analysis. 

 

Table 6.1 Standard data table for comparing transition delays. 
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Table 6.2 Graph abbreviations used in analysis tables that follow 
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Table 6.2 Graph abbreviations continued 
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Transmit Time PDF

fT (t)
T

Time, t (sec)

sec

fX

Abbreviated
Graph

Table Location Actual Graph

Data Conversion PDF
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Data Conversion PDF

fC(s)

Time, t (sec)
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Time, t (sec)
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sec
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Propagation Time PDF

fT (t)
P

Time, t (sec)
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Propagation Time PDF
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P

Time, t (sec)

Propagation Time PDF

fT (t)
P

fT (t)
P

Time, t (sec)

sec

fP

sec

fP

Transmit Time PDF

fT (t)
T

Time, t (sec)

sec

fX

Transmit Time PDF

fT (t)
T

Time, t (sec)

Transmit Time PDF

fT (t)
T

fT (t)
T

Time, t (sec)

sec

fX

sec

fX

Abbreviated
Graph

 

 

6.2.1 Characterizing the Architectural Elements 

For analysis purposes, it is necessary to make some assumptions about the 

likely implementations and use of the system.  The analysis that follows is based 

on the following assumptions: 
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• A single file is studied, but that file will have a size that is normally 

distributed. 

• The one way (up and down) trip geostationary satellite delay is roughly 

twice that of a terrestrial trip across the continental United States, that 

presumed distance traversed on a terrestrial (fiber) link. 

• The data rate for the satellite link is assumed to be twice that of the 

allocated portion of the terrestrial (fiber) link. 

• The user to cache distance is approximately equal to the cache to server 

distance. 

As with other values, characterizing estimates should be tailored based on an 

understanding of the specifics of the actual problem being solved. 

6.2.2 Architecture A 

Starting with the simplest "just-send-it" architecture, architecture A, consider the 

factors that go into populating Table 6.1.  Architecture A takes the documents 

that exist at the server and transfers them in total (without any compression) to 

the cache, and then again to the user.  Delays associated with this process are 

labeled with a “D” that is subscripted by the source and destination nodes.  In this 
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case, architecture A has two delays one from the Server to the Cache (Dsc) and 

one from the Cache to the User (Dcu).  To evaluate architecture A using this 

methodology, compute those two delays and combine them. 

To execute the calculation, the delay tables for both Dsc and Dcu are populated as 

shown in Figure 6.4.  The descriptions that go into the table are specific to 

architecture A.  The values have been taken from the characterizing assumptions 

listed above. 

Since there is no processing involved at the Server, the transform time is zero.  

The communications time required to move the data from the Server to the 

Cache can be calculated by applying the assumptions regarding the throughput 

characteristics of the links connecting those nodes.  Since there are few specifics 

at this early step of design, further assume that the transmit delay will dominate 

the propagation delay.  Both delays are considered reference values and will be 

used to assign values later to Dcu. 
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Figure 6.4 Architecture A and associated component delays 

 

For this example, specific values have been selected for “Transmit Rate” and 

“Propagation Time” to make the example easy to follow.  This is not however a 

requirement.  As long as the ratios of all delays are preserved, any values could 
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be used.  The final PPI result will be unaffected by scaling of the time axis.  The 

goal of the methodology development was to make comparative architecture 

performance evaluations.  The assignment of specific values is not a significant 

restriction to the method’s use. 

The total delay for the architecture is the sum of the six graphs in the “D” rows of 

Figure 6.5.  This aggregate delay is computed using the techniques of chapter 

five. 
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Figure 6.5 Performance description for architecture A 
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6.2.3 Architecture B 

Figure 6.6 shows architecture B and the associated delay tables.  In this 

situation, the product from the Server is an XSLT script generated from both the 

new and old XML files.  Once this XSLT script is transferred to the Cache, it is 

used to convert the old XML file into the updated file.  The total delay for the 

architecture is the sum of the six graphs in the “D” rows of Figure 6.6.  The gray 

curves on Figure 6.6 show the performance values of architecture A and are 

included for comparison purposes.  The result of combining all of these delays is 

shown in Figure 6.7. 
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Figure 6.6 Architecture B and associated delay tables 
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Figure 6.7 Performance description for architecture B 

 

6.2.4 Architecture C 

Next architecture C is considered.  Here the conversion from both the old and 

new XML trees to the XSLT script occurs in the Cache.  The remainder of the 

architecture remains the same.  The XSLT script once transferred to the User is 

used to convert the old XML document into the new XML document.  The total 

delay for architecture C is made up of the six contributions in the “D” rows shown 

in Figure 6.9. 
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Figure 6.8 Architecture C and associated delay tables 
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Figure 6.9 Performance description for architecture C 

 

6.2.5 Architecture D 

In the final architecture to be considered, D, the generation of the XSLT script is 

done in the Server and it is transferred through the Cache to the User where it is 

combined with a copy of the old document to produce the desired new document.  

The architecture and delay descriptions for this case are illustrated in Figure 

6.10.  The total delay accumulated in the process from the six contributions in 

rows “D” of Figure 6.10 is shown in Figure 6.11. 
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Figure 6.10 Architecture D and associated delay tables 
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Figure 6.11 Performance description for architecture D 

 

6.3 Comparing Results Across Architectures 

Tabulating the evaluation of the performance probability integral for all pair-wise 

cases simplifies identifying the best performing architecture.  Figure 6.13 shows 

the relative performance for all architectures on a pair-wise basis.  When 

comparing architectures A and B it is seen that B is better than A 88.8% of the 

time.  When comparing architectures C and D, D is better by 65% of the time.  

When comparing B and D, it is seen that D is better 100% of the time.  Clearly 

the order in which these are compared says something about by how much the 

best is better.  One can note that the probability that CX will perform better than 
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CY is just 1.0 minus the probability that CY will perform better than CX.  This is 

clear as there are only two cases.  CY or CX must perform better so the total of 

both performing better must equal one. 
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Figure 6.12 Plot of all four architecture delay descriptions 
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Figure 6.13 Summarizing all architectural performance results 

 

6.3.1 Scaling Issues 

It is desirable to make comparisons between architectures on a relative basis, 

but this goal can be taken only so far.  Ultimately, there must be a constant scale 

factor or fixed relationship maintained between the delays described for each 

architectural element and the others.  As long as this delay-to-delay relationship 

can be preserved, then all architectures (and architecture element performance 

values) can be scaled without changing the outcome of the analysis.  In this 

example, the geostationary satellite round trip delay could be chosen to be ½ a 

time unit in seconds.  Based on the assumptions above, the terrestrial delay 

would be half that.  The assumptions state that the satellite data rate is twice that 

of the terrestrial link.  Hence after choosing the satellite data rate arbitrarily at two 
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bit/sec units, then the terrestrial data rate had to be four bit/sec units.  Figure 

6.14 documents the application of these assumptions to the example. 
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Figure 6.14 Establishing related propagation delays and data rates 

 

Once the data rates have been established, the computed times for transmission 

must be inversely proportional to those rates.  In this case, since the terrestrial 

data rate is twice that of the satellite link and the size of the data is the same in 

each case, the width of the pdf describing the time required to transmit a file is ½ 

as shown in Figure 6.15. 
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Figure 6.15 Result of scaling the satellite delay to the terrestrial delay 

 

In more general cases, an arbitrary reference can be selected and applied 

consecutively to the graphs being specified.  Consider two density functions fA 

and fB.  With the arbitrary scale factor, compute the scale of fA to be some 

constant Ca.  Similarly compute the scale factor Cb for fB.  Then scale fB by the 

factor Cb/Ca. 

6.4 Summary 

This chapter has taken a simple three tier example architecture and walked 

through the steps to identify the computational and communications processes 

involved with generating a solution.  Next, the performance descriptions of the 

architecture elements were estimated and these descriptions were combined into 

an end–to-end estimate for each of the potential architectural alternatives.  

Finally, the performance probability integral was evaluated for each of the cases 

considered, to identify which of the architectural choices performed the best. 
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Chapter 7 

7 Two Larger Examples    > 

The previous chapter discussed performance analysis for a classical three tier 

database application.  This chapter applies these concepts to a pair of problems 

which more closely represents real-world situations and therefore exposes issues 

commonly encountered in real applications.  The benefits of these two examples 

are three-fold:  they demonstrate different functions used in the performance 

analysis process, they give insight into some of the approximations that can be 

made to either simplify the analysis or to continue the analysis when pieces of 

information are unavailable and finally they demonstrate the utility of specifying 

performance parameters in a way that can account for variations in the use of the 

system.  The first example represents a class of problems where the primary 

performance uncertainties are associated with link characteristics.  This example 

considers exfiltrating data from a clandestine source to an unknown location.  

The second example is representative of a performance analysis that would 

usually be encountered later in the development lifecycle.  At that time, more 

information is known about the design and performance requirements are likely 

better specified.  This second example addresses the development of a service 

in a Service Oriented Architecture framework.  It demonstrates that these 

performance analysis techniques can be used to refine performance estimates.  
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One interesting feature of this example is that it is possible to determine at 

architecture selection time that a specific architecture cannot meet the 

performance specification and that an alternative architecture can correct this 

situation. 

7.1 Example One:  Data Exfiltration 

The data exfiltration example is representative of a class of problems where 

many of the performance unknowns are delays associated with distances 

between the elements that make up the architecture.  This type of uncertainty 

can be an advantage.  There is value in designing systems to accommodate 

ranges of values rather than specific values.  Design processes based on exact 

values for characterizing parameters are often less robust.  Their performance 

can be sensitive to changes in the environment in which they run.  Systems 

designed to accommodate ranges of critical values are normally more robust and 

can often be used for purposes other than those for which they are initially 

designed. 

7.1.1 Problem Definition 

For this example, assume that there is a news reporter in a remote location that 

needs to exfiltrate data back from her location to a news room where it can be 

correlated with other pieces of information.  Due to the remoteness of the source 

location, the reporter has only two communications alternatives.  She may use a 



 

128 

radio which can establish a satellite link to a nearby town, or she may 

communicate through a local network provided by military assets.  Once her data 

reaches the nearest town, there are two transmission options as well.  The data 

may be interleaved with other users’ data on a covert network connection to 

make it inconspicuous, or the data may be relayed to another satellite where it is 

forwarded to its destination for consolidation.  Since the system is being 

designed for general purpose use, there is little known about the relative 

distances between the reporter, the town, and the collection location.  Further, in 

an effort to be inconspicuous, the radio is designed to be hand-held.  It has only 

a small antenna so the reporter's satellite link must be established with a low 

earth orbiting (LEO) satellite. 

7.1.2 Large-Grain Delay Descriptions 

As with many early lifecycle architecture analysis questions, one needs to make 

some preliminary assumptions about the way components and connections 

perform when the solution is not entirely specified.   The numbers shown in Table 

7.1 are generated as approximations to actual system performance and 

represent a number of different deployment situations.  This will almost always 

be true when the deployment locations are not known in advance of the system’s 

being built.  This situation is not uncommon since there can be a variety of 

options for implementing systems.  Different options implies that the performance 

descriptions need to cover a range of values.  For example, not all LEO satellites 
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orbit at the same altitude; hence the performance description for a satellite 

connection should be formulated as a range of values.  Since the problem 

indicates that the reporter is trying to be inconspicuous, it is reasonable to 

assume that she is relatively close to but not in the town.  Since the local satellite 

is in low earth orbit, the delay is likely to be approximately five to ten 

milliseconds.  Assume the town is likely to be a far distance from the news room 

(as it would be in cases of an international disaster or war zone).  The second 

satellite is likely to be in geosynchronous (GEO) orbit (250 ms one way delay).  

The terrestrial network delays are each likely to be a fraction of the geostationary 

satellite delay.  The allocated terrestrial bandwidth for the tactical network is likely 

to be much less that that of either satellite link.  At architecture design time, none 

of the specifics about either satellite or terrestrial hardware is known.  It is 

reasonable then to estimate that the tactical data rate will be about half that of 

the geostationary SATCOM link and the same as the LEO satellite.  These 

component and connection characteristics are summarized in Table 7.1. 
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Table 7.1 Summary of data exfiltration system performance estimates 
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7.1.3 Alternative Problem Architectures 

There are three nodes and two connections in this architecture.  Each pair of 

connected nodes has two alternative connection implementations resulting in 

four possible architectures.  Figure 7.1 shows the options for the architectures 

and defines labels that will be used in the following analysis to establish the 

various delays on the connections.  The problem of selecting the best performing 

data exfiltration architecture is solved by building the performance descriptions 

for each of the alternatives.  The four options are listed in Table 7.2 
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Figure 7.1 Data exfiltration architecture and labeling convention 

 

Table 7.2 Table of architectures considered 

LEO-SAT�GEO-SATALG L1, L3

LEO-SAT�GLOB-NETALB L1, L4

TAC-NET�GEO-SATATG L2, L3

ATB L2, L4

ComponentsName Links

TAC-NET�GLOB-NET

LEO-SAT�GEO-SATALG L1, L3

LEO-SAT�GLOB-NETALB L1, L4

TAC-NET�GEO-SATATG L2, L3

ATB L2, L4

ComponentsName Links

TAC-NET�GLOB-NET

LEO-SAT�GEO-SATALG L1, L3

LEO-SAT�GLOB-NETALB L1, L4

TAC-NET�GEO-SATATG L2, L3

ATB L2, L4

ComponentsName Links

TAC-NET�GLOB-NET
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7.1.4 Delay Characterization 

To characterize the end-to-end delays associated with each of the architecture 

alternatives, a performance description for each component and connection must 

be generated using estimates.  The amount of data to be processed, the data 

rates and error characteristics of the links need to be described in order to build 

the performance descriptions.  The propagation delay of each link is needed to 

calculate the overall transport delay.  In situations where the satellite is not 

always available due to masking, the satellite visibility times need to be 

considered. 

7.1.5 Data Characterization 

To analyze the performance of the different possible architectures, one starts by 

characterizing the data that the reporter must transmit:  text, audio clips, and 

store-and-forward video.  Text messages will be assumed to be several hundred 

characters.  Pre-requested voice questions will be answered with 4 - 15 second 

of perhaps 600-bytes-per-second compressed phone quality audio yielding 3000 

to 9000 bytes per response.  The video is likely to be 30 - 60 seconds at 30 

frames per second, 640 scan lines per frame, 480 pixels per scan line, and three 

bytes per pixel with a compression ratio of 8 - 12 yielding about 99 MB to 132 MB 

per transmission.  In each of the performance characterization diagrams that 

follow, only the video data is depicted.  Since the processing and 

communications delays are directly proportional to the amount of data moved, 
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performance diagrams for the other data types would be scaled, time-shifted 

versions of these video diagrams. 

7.1.6 Characterizing Delay DL1 

Figure 7.1 identifies the nomenclature that will be used to label nodes and links in 

the data exfiltration architecture performance tables.  Each link option can be 

characterized using the format of Table 7.1 and the techniques described in 

chapter six.  In this example, there are no delays associated with the 

transformation of data from one form to another and it is assumed that any data 

compression for voice and video occurs in the recording device. 

Since there is no widely agreed altitude for low earth orbit satellites, assume that 

the satellite to be used has an altitude somewhere between 800 and 2000 km.  

The orbital angular velocity associated with the satellite will be 3.569 to 2.830 

degrees per minute [WeLa99].  This velocity yields an orbital period of 101 - 127 

minutes.  Assume a nominal viewing angle from the ground of 90 - 180 degrees; 

the satellite is in view for roughly 25.2 - 63.5 minutes and not in view for about 

50.5 - 95.2 minutes.  The amount of time a satellite is in view is a function of the 

orbital period and the viewing angle from the ground.  A summary of the possible 

satellite in-view and out-of-view times is shown as Figure 7.2. 
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Figure 7.2 LEO satellite accessibility times 

 

The probability density function describing the LEO connection transmission rate 

can be determined using the uniform quotient analysis example from chapter 

five.  Only the corner values are shown in Figure 7.3. 
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Figure 7.3 Critical points for LEO satellite transmit delay 

 

Figure 7.4 shows the mapping of the data parameters to probability density 

functions as before with the “E” or expected performance row characterizing the 

link, and the “D” or delay row showing the connector delay results.  The size of 

the transmitted data is assumed to be uniformly distributed between the bounds 

specified in the data characterization section above.  There is no additional 

processing done by the system so the processing delay is zero.  The transmit 

data rate over the satellite was not specified so is assumed to be uniformly 

distributed between 128 Kbps and 256 Kbps.  Since both the data and the data 

rate are uniformly distributed, the link throughput can be calculated using the 

uniform quotient distribution calculation. 
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Figure 7.4 Architecture ADE, characterization of delay DL1 

 

An unusual aspect of this problem is that regarding the visibility of the satellite.  

The satellite must be in view to close the communications link.  For that portion of 

the time when the satellite is in view, the propagation delay is characterized by 

that of the low earth orbiting satellite.  For the satellite-not-in-view case, the 

waiting time is modeled as uniformly distributed over the time that the satellite is 

obscured by the earth.  This model is reasonable since the satellite location and 

the time of the transmission request are both unknown.  An exact analysis result 

is the combination of these two distributions, one uniform to account for the 

propagation delay when satellite is visible (altitude is still unknown) and the other 

uniform distribution describing the time that the user has to wait for the satellite to 

become visible.  These characteristics are summarized in Figure 7.4 and the total 

delay is shown in Figure 7.5.  Note that here and in the situations that follow, the 
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same diagram represents each of the three content types:  text, voice, and data.  

The actual diagrams differ only in scale. 
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Figure 7.5 Combined delay contributions for DL1 

 

7.1.7 Characterizing Delay DL2 

The process for analyzing the other links delays is similar.  Link DL2, a tactical 

terrestrial network link between the reporter and the town, will have longer delays 

when the source and destination are near the network diameter and shorter 

delays for nearby node pairs.  There are more intermediate values than either 

extreme so a normal distribution is selected to represent this delay.  Tactical 

networks are subject to high error rates and intermittent link outages caused by 
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multipath interference and terrain masking.  Hence, the network is assumed to be 

a store-and-forward architecture when in data mode.  The per-hop delay will be 

assumed to be around 100 ms, and the network diameter will be assumed to be 

ten.  Since this is a terrestrial network, links will be short.  The propagation delay 

(aside from the store-and-forward aspect) will be considered to be 

inconsequential.  While the allocatable data rate would normally be larger on this 

type of network, it is being intentionally restricted at the source to maintain the 

clandestine nature of that source hence the effective data rate will be low. 
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Figure 7.6 Architecture ADE, characterization of delay DL2 
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7.1.8 Characterizing Delay DL3 

The characteristics of link DL3 between the town and the news room (Figure 7.7), 

will be similar to those of DL1, however since this is a geosynchronous satellite, it 

is always in view (if ever in view), and the propagation delay (excluding visibility 

concerns) is significantly longer.  Since the data structure does not change 

before traversing the links, the processing delay is again set to zero.  Since 

geostationary satellite locations are limited, and antennas are costly links are 

routinely run at high data rates.  When the anticipated data rate is between 256 

Kbps and 512 Kbps and the viewing constraints are removed, the delay 

contributions look as depicted in Figure 7.7. 
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Figure 7.7 Architecture ADE, characterization of delay DL3 
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7.1.9 Characterizing Delay DL4 

Link DL4 is similar to the tactical terrestrial network, but has several important 

differences.  The global network will not be store-and-forward.  It will rely on link 

layer retransmissions and TCP windowing to manage correction of the 

occasional error or link fault, and hence the per-hop delay will be small.  The 

network however will likely be much larger and hence the number of intermediate 

nodes will be larger.  Even though there will be more nodes, the delay at each 

will be small, and the aggregate will result in both a smaller uncertainty in delay 

and a smaller mean delay when compared with the tactical network.  Figure 7.8 

shows this characterization. 
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Figure 7.8 Architecture ADE, characterization of delay DL4 



 

141 

7.1.10 Combining Component Performance Descriptions 

The problem of selecting the best performing data exfiltration architecture (ADE) is 

solved by applying the PPI to the summed performance descriptions for each of 

the alternatives as listed in Table 7.2. 

Since each of these architecture options is composed of two elements which are 

connected sequentially, the summation function or convolution discussed in 

chapter five is appropriate for determining the combined delay.  Applying that 

technique to each architecture option yields the results shown in Figure 7.9 
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Figure 7.9 Video architecture performance descriptions 
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7.1.11 Comparing the VIDEO Performance of the Alternatives 

For each pair of architectures in Figure 7.9, the PPI can be calculated. 

 

Here the limits “a” to “b” identify that portion of the pdf for which the function 

product has non-zero value.  “FA” is the cdf of the architecture A performance 

description, and “fB” is the actual performance descriptions of architecture B.  So 

the PPI takes two functions and maps them into a real number, the PPI which is 

the probability that architecture A will produce a better forming system than 

architecture B.  The resulting probabilities are listed in Table 7.3.  There the 

probability is shown that the architecture listed on the left edge of each row 

performs better than the associated column architecture in that row.  In this case, 

ATG outperforms the others as it has the highest value in its row for all three of 

the alternatives. 
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Table 7.3 PPI Results for Data Exfiltration 
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The performance probability integral provides the set of architectures being 

analyzed with a partial ordering based on time (delay).  Consider a subset of the 

architecture ordered pairs,  (AR, AC).  Architecture AR is the architecture listed on 

the left edge of a table Row and is paired with AC, the architecture listed at the 

top of a table Column.  The subset of pairs to be considered is that is that where 

the probability listed at the intersection cell is greater than 0.5.  When these 

architecture pairs are mapped onto the positive real line (preserving this partial 

ordering) then the architecture which ends up on the left end of the so-aligned set 

will be the best performing.  Using the table above and this partial ordering, the 

architectures will be ordered as:  ATG   ALG   ATB   ALB, ATG being the best 

performing. 
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7.1.12 Example One Summary 

This research’s method has been applied to the data exfiltration example.  The 

architectural alternatives were identified.  The component performance 

characteristics were defined.  Uncertainties inherent in the problem were 

incorporated into the analysis at the component pdf generation stage, where 

performance descriptions are developed for all significant delays.  Delays were 

combined according to the components in each architecture alternative.  The PPI 

was calculated for each performance description pair and determined the 

probability that tactical-net to geostationary satellite option will out-perform the 

alternatives. 

7.2 Example Two:  A Service Oriented Architecture Based Service 

A Service Oriented Architecture can be useful in developing applications that 

require gathering data from a number of different sources.  Its flexibility is 

particularly apparent when the needed data sources might change over time.  

This example highlights a case where there is a demonstrable relationship 

between a pair of architectures and the associated performance differences to be 

expected.  The design statement that follows includes a performance description 

in the requirements specification.  This is not necessary for comparing 

architecture performance on a pair-wise basis.  The PPI was developed for those 

cases where there is insufficient data, or inadequate requirements details to 

allow for a more specific conclusion to be drawn.  The detailed requirements 
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included in this example have been added since performance criteria are often 

specified in the requirements process.  When system performance criteria are 

appropriately defined, the techniques developed in this work can be applied to 

determine whether the initial architecture considered meets that performance 

specification.  In this example, analysis shows that the initial proposed 

architecture cannot meet its performance requirements.  The architecture is 

modified by adding a redundant Photo Server (to be defined later).  After this 

modification, the performance requirement can be met.  While the addition of a 

redundant information source could be expected to improve performance, the 

benefit here is that the amount of performance improvement can sometimes be 

quantified in advance of implementation. 

7.2.1 Problem Description 

This example assumes that the task is to provide helpful information to a traveler 

looking for real estate.  This traveler needs information to assess different real 

estate offerings.  The information requirements include access to an internet web 

page that describes potential land or houses to be viewed, a set of driving 

instructions to get to those places, and an aerial view of the destination 

neighborhood in order to assess life-style issues like the availability of walking 

paths or the existence of unsightly landmarks.  Since there are a number of 

locations to be investigated, a web search engine is used to identify probable 

information sites for real estate to be visited.  Photos and directions will be 
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provided by two other servers.  An activity diagram depicting the initial 

processing approach to accomplishing this task is shown in Figure 7.10.  This 

diagram establishes that the photos and directions are requested after a Search 

Engine result has been selected.  The results from the Photo Server and the 

Directions Server are returned in an unspecified order.  To establish a 

performance goal, assume that the system requirements specification states that 

at least 90 to 95 percent of the actions initiated by this system will return their 

results in less than 500 ms.  The activity diagram of Figure 7.10 can be turned 

into a graph representing the architecture as shown in Figure 7.11. 
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Figure 7.10 Initial activity diagram for SOA real estate service 
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Figure 7.11 Symbolic SOA real estate service architecture graph 

The “max” function depicted explicitly in Figure 7.11 is part of the Coordination 

Server.  It ensures that the responses from both the Photo and Directions 

Servers have arrived before the Coordination Server sends the results back to 

the requestor.  It is called out explicitly in the architecture because the architect 

wants to rule out implementations that allow the photos and directions to be 

delivered at different times.  This synchronization requirement is important since 

it influences the performance of the delivered system, and requires additional 

analysis when compared with an architecture that does not include it.  The 

grayed out P server is a redundant photo server that will be added to the 

architecture as an improvement when the analysis shows that the initial 

requirements specification can not be met.  In the discussion, delay P is from the 
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Coordination Server to the Photo Server, and back to the Coordinating Server 

again (the input to the max function).  Similarly, delay D is from the coordination 

server to the Directions server and back to the coordination server.  The equation 

that describes the delay of the single is: 

 

7.2.2 Large Grain Delay Descriptions 

Some simplifying assumptions can be applied to this example to reduce its 

complexity without significantly affecting its usefulness.  Assume that the three 

information servers are approximately the same distance from the Coordination 

Server so that propagation delay differentials can be ignored.  To help build the 

performance estimates, assume that all of the content providers are located on a 

terrestrial network, and that the location of each is known.  Assume further that 

the required servers exist so that performance descriptions can be measured.  

Alternatively assume that server performance has been characterized in a 

performance specification so that there is a basis for constructing server 

performance descriptions. 

7.2.3 Delay Characterization 

In view of the assumptions made above, approximate the inter-server 

communications delays to be 50 ms.  Were those assumption not appropriate, 
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(i.e., if the locations were unknown), or if known but different distances from the 

Coordination Server, the analysis would proceed as it did for the delay analysis 

conducted in the first example of this chapter. 

7.2.4 Data Characterization 

The request that initiates each system sequence of activities is considered to be 

a small string of about 100 bytes.  Since the Directions Server is providing 

directions as an HTML page, assume page length to be uniformly distributed 

from 400 - 600 bytes.  Assume that the size of the web page returned from the 

search engine is uniformly distributed from 2000 - 5000 bytes, and assume that 

the size of the compressed aerial photo is uniformly distributed between 5000 

and 8000 bytes.  As with all of the examples presented, these numeric 

characterizations of sizes are estimates.  When using these techniques in a true 

analysis, they would be adjusted to fit the actual circumstances of the problem 

being solved. 

7.2.5 Delay Characterization to the Photo Server, P 

There are a number of standards for internet photo formats, and they vary largely 

in size, detail included, and compression techniques.  If there were preferred 

servers to be accessed or there was specific information available regarding the 

size of the pictures to be returned this information would be included here.  

Lacking that information, consider that a range of values was selected.  The time 
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to convert each photo request into a result is assumed to be uniformly distributed 

from 100 - 200 ms.  The one-way delay to the Photo Server is 50 ms so the total 

propagation delay is 100 ms.  The transmit rate for the entire network is assumed 

to be 256 Kbps.  Based on these assumptions, the important delays are 

characterized in Figure 7.12. 
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Figure 7.12 Architecture SOA, Photo Server delay 

 

7.2.6 Delay Characterization to the Search Engine, S 

Assumptions for the performance of the search engine are made in a similar 

manner.  The anecdotal information available about the time to process search 

requests indicates that there may be some caching of frequently requested 
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queries so there is likely a lower limit on the time to produce a result.  At the 

same time, it will take longer to gather the requested information on a complex 

search.  As a result, the data conversion time for the search engine is modeled 

as an Erlang distribution with a mean of 100ms.  Since the data rate of the 

network is assumed constant, the transmit delay is deterministically related to the 

size of the data being sent. 
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Figure 7.13 Architecture SOA, Aerial Search Engine delay 

 

7.2.7 Delay Characterization to the Directions Server, D 

The situation with the Directions Server is similar.  There is no specific 

information to help generate better performance characteristics at this time.  
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What is known about directions is that sometimes they are simple and short, and 

sometimes long and complex.  Routinely however there are a set of a dozen or 

so steps in navigating the roads.  Since few descriptions will be very short and 

similarly only a few very long, yet many of intermediate length, a normal 

distribution was selected to describe the Directions Server performance.  To 

keep the analysis simple, the inclusion of other information like businesses in the 

area, etc. has been assumed to be filtered out before transmission. 
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Figure 7.14 Architecture SOA, Directions Server delay 
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7.2.8 Combining Server Delays 

The lower half of each of the Figure 7.12 – Figure 7.14 depicts the individual 

contributions for the total processing for each server.  In each case, these three 

contributions are summed to generate the individual cumulative server delays.  

These cumulative delays that result are shown in Figure 7.15. These would be 

the performance descriptions (red – Directions, green – Photo, and blue – 

Search) anticipated before encountering the “max” function.  Note that in each 

case the cumulative delay is the convolution of the three contributions.  The 

equation for the system delay is: 
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Figure 7.15 Cumulative results for describing the delays of each server 

 

The partially obscured pink trace describes the result after applying the maximum 

function of the Coordination Server.  This obscuring is due to the fact that the 

Photo Server is significantly slower than the Directions server.  It is this pdf that 

describes the overall performance of the complete architecture described.  The 

computation that generates the pdf of the combined system is actually generated 

from the cumulative distribution function (cdf) of the combined system.  This cdf 

for the total delay can be used to assess compliance with the performance 

requirements specification.  When comparing the expected performance of this 

architecture with that in the performance specification stated up front, the original 

architecture can not achieve the desired goals, as shown in Figure 7.16. 
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Figure 7.16 Projected performance of original example SOA 

 

One option for correcting this failure to meet the performance goals is to change 

the architecture.  While there are many ways that such a change could be made, 

the one selected here is based on observing that the Photo Server performs least 

well.  While any of the servers could be changed to potentially improve 

performance, replicating the Photo Server with another that works with the same 

performance description appears promising.  The max function of the 

Coordination Server can proceed when either of the two Photo Servers returns 

its value.  In essence, the parallel combination of Photo Servers will be combined 

with the “min” function and the execution continues as previously described.  

When two independent but similarly performing Photo Servers are used in this 
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way, the combination performance of the pair is as reflected in Figure 7.17.  The 

dual Photo Server architecture is shown to improve system performance. 
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Figure 7.17 Server contributions with parallel Photo Server 

 

Combining the performance of all four servers now leads to the performance 

demonstrated in Figure 7.18. 
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Figure 7.18 Performance of parallel Photo Server architecture 

 

In a manner similar to above, the cumulative distribution of the combined 

architecture can be used to assess compliance with the performance 

requirements specification, as shown in Figure 7.19.  The performance 

specification is expected to be met.  It should be noted that there are some 

uncertainties in the values that are projected by this method.  Future research 

would be appropriate to get a better understanding of the magnitudes of these 

uncertainties.  When the PPI is calculated for these two systems, the probability 

that the parallel D version will perform better than the non-parallel version is 

0.664 or the redundant version will perform better almost two thirds of the time. 
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Figure 7.19 Projected performance of modified example SOA 

 

7.2.9 Example Two Summary 

Example two followed the same methodology as example one.  In this case 

however, the analysis showed that the initial performance specification would 

likely not be met.  After modification of the architecture by adding in a parallel 

Photo server, a recalculation of the expected performance was done; the 

improvement was quantified and an acceptable performance was achieved. 
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7.3 Summary 

This chapter has presented a detailed analysis of two simple but still realistic 

problems.  The analysis techniques developed earlier in this work were applied to 

proposed architecture solutions.  Conclusions were obtained for the relative 

performance capabilities of alternative architectures in each case.  In many 

cases, there was no performance information available for the estimation of a 

component’s performance.  Best available knowledge was used as an estimate.  

The use of assumptions is recommended in the absence of concrete information.  

This process was designed to be simple to execute so that as knowledge about 

components and connections matures it can be easily rerun to provide improved 

insight into the likely performance of “to be” generated implementations. 
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Chapter 8 

8 The CAPE Tool      . 

8.1 Introduction 

In the previous two chapters, examples were presented to demonstrate the 

analysis method.  Without computational support, such analysis is laborious and 

error prone.  As part of this research effort, a tool was developed to assist the 

analyst in the manipulation and visualization of probability density functions 

describing the performance of architecture alternatives.  The tool provides three 

useful capabilities:  1) it provides implementations for the methods (sum, 

minimum, maximum, quotient, and composite) for combining the probability 

density functions describing component and connection performance into a 

probability density function describing the system architecture’s anticipated end-

to-end performance, 2) it provides a method for evaluating the PPI for pairs of 

architectures using the pdf descriptions developed, and 3) it generates Microsoft 

PowerPoint macros which can be used to create figures and diagrams for 

explaining the performance behavior of the systems being evaluated. 
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8.2 The CAPE Tool Design 

The CAPE tool-development strategy was guided by two objectives.  The first 

was to leverage commercial off-the-shelf and open source software artifacts.  

The second was to provide the analyst with a flexible tool that could easily 

incorporate new functionality and permit modification of existing code templates.  

The outcome of following this approach is that CAPE is built on the capabilities of 

the Sun NetBeans® IDE in combination with Microsoft PowerPoint®. 

A set of analyst-editable code snippets or templates constitute the largest part of 

the tool’s user interface.  The analyst uses the NetBeans IDE to modify and 

combine these code snippets with two libraries, FUNC, and PLOT (developed as 

part of this research) to exercise the functions described in chapter five and 

support visualization of architecture performance analysis.  The specific 

performance and topology characteristics of each architecture are edited into the 

templates.  The compiled set of modified templates is then executed to produce 

MS PowerPoint (PPT) macros which run in PowerPoint to generate the graph 

portion of analysis figures. 

The conceptual output of the tool is an object of class “Figure.”  The Figure class 

incorporates many conventional diagram and figure attributes.  The actual output 

of the tool is a macro which will draw a Figure object in MS PowerPoint.  Figure 
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class attributes include size, color, axes, freeform object, and lines, well as 

others one would expect in modeling a traditional document figure. 

 

Figure 8.1 NetBeans IDE with partial code templates 



 

163 

A top level IDE screen shot is shown as Figure 8.1.  The code templates that are 

shown in the editor window will be explained later in this chapter.  The figure 

demonstrates with a partial example how code templates are combined into an 

executable program which can be run within the NetBeans IDE to produce the 

desired results.  Intermediate results are displayed in the lower window labeled 

“Output.”  This “Output” window logs error conditions that arise, and for longer 

computations displays a progress status as the computations proceed. 

CAPE provides two analysis capabilities:  1) it can generate end-to-end 

architecture performance descriptions, and 2) it can compute the PPI given a set 

of architecture performance descriptions.  The figures below show two analysis 

capabilities of the CAPE architecture.  Different code snippets are incorporated 

into the IDE depending on the analysis capability being exercised.  Figure 8.2 

shows the structure of architecture performance description analysis.  

Component and connector performance descriptions are specified in terms of 

“Functions,” a class that can be used to characterize known uncertainties.  The 

architecture topology is represented by code that uses the five combination 

functions described in chapter five to merge the component and connector 

performance descriptions into an end-to-end architecture performance 

description. 
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Figure 8.2 CAPE tool structure - PDF analysis 

 

Figure 8.3 shows the architecture shows the structure of PPI analysis.  The 

architecture performance descriptions identified on the figure are those 

generated with CAPE from component and connector performance descriptions.  

The “Comparative Descriptors” are implemented as sets of names of architecture 

performance descriptions that are to be pair-wise compared.  Pairs of 

architecture performance descriptions are input to CAPE methods to produce a 

table of probabilities indicating the likelihood that one architecture will produce an 

implementation that will perform better than an implementation of the second. 
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Figure 8.3 CAPE tool structure - PPI analysis 

 

8.3 Code Snippet Functionality 

Each performance analysis done with CAPE is structured in essentially the same 

manner.  Routinely, five code snippets are needed.  One of the code snippets is 

relate to the establishment of screen and user coordinate spaces.  A second is 

associated with the formatting of diagrams and figures for incorporation into 

document.  A description of the other three snippet types follows next. 
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8.3.1 Function Definitions 

The second code snippet usually defines the probability density functions to be 

used in the analysis.  These functions can be generated in either of two ways:  1) 

by reading stored file descriptions from persistent storage or 2) generating them 

directly within the code segment by enumerating function values point by point.  

Figure 8.4 shows how to construct a function point-wise within code.  In this 

case, the constructor takes a single argument, the name to be assigned to the 

function.  Line five of Figure 8.5 shows how to read the description from a file.  In 

this case, the Function constructor takes two arguments, the file name containing 

the function description, and the name to be assigned to the function 

 

Function fun = new Function("MESA"); 
fun.addFP(45.75, 0); // Adding function points here 
fun.addFP(47.25, 2); 
fun.addFP(48.75, 13); 
//  ...  Many data points deleted 
fun.addFP(129.75, 6); 
fun.addFP(131.25, 2); 
fun.addFP(132.75, 0); 

 

Figure 8.4 Building a Function point-wise within the code 
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0 // Setting of extremes deleted for brevity 
1 String funName[] = { 
    "D12", "D23", "D34", "D45", "D54", "D43", "D32", "D21" 
2 }; 
3 Function fun[] = new Function[8]; 
4 for (int i = 0; i < funName.length; i++){              
5 fun[i] = new Function("G:\\GSD\\DOCS\\GRAPHICS\\”                  
 +”FIGURES\\"+funName[i]    + ".f()",funName[i]); 
 } 
6 Figure fig = new Figure("FIGURES\\", "VAL01TOT", 
 hmExtremes); 
7 fig.setXTicDeltaAndLength(25.0, 5, 0); 
8 fig.setYTicDeltaAndLength(0.01, 5, 0); 
 
9 Function fX = new Function("F5"); 
10 fX.addFP(0.2, 0.0); 
11 fX.addFP(0.4, 2.5); 
12 fX.addFP(0.6, 0.0); 
 
13 Function f01 = Function.convolve(fun[0], fun[1], 0.1); 
14 Function f23 = Function.convolve(fun[2], fun[3], 0.1); 
//  … other function colvolutions deleted 
15 Function f0123X4567 = Function.convolve(f0123X, f4567, 

0.5); 
16 f0123X4567.name = "F0123X4567"; 
 
17 f0123X4567.setTau(-1.5); // Set delays =  0.25 * 6.0 
18 double area = f0123X4567.integFmTo(0.0, 150.0, 0.25); 
19 f0123X4567.setASF(1.0/area); 
20 f0123X4567.makeThisConnonical(); 
 
21 fig.addFun(f0123X4567); 
22 fig.close(); 

 
Figure 8.5 CAPE pdf functions validating the chapter nine Army example 

 

8.3.2 Modeling Topological Aspects of the Architecture 

The topology of the architecture defines two aspects of the problem solution.  It 

describes the sequence of components and connectors through which data 
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passes to transform data from a system input into an output.  It further identifies 

the synchronization points of the algorithms used to realize the architecture.  

Both the relationships between the elements (components and connectors) of the 

architecture and the architecture synchronization requirements are represented 

with sequences the code functions discussed in chapter five.  Quotient, sum, and 

composite realize data transformations, minimum and maximum accomplish 

process synchronization.  All of these functions are provided in the FUNC library.  

For example, to combine sequential connector and component delay probabilistic 

descriptions into a combined description the sum function would be used.  Figure 

8.5 shows an example where a suitably defined array of Functions is convolved 

together to generate the probabilistic sum.  This sum is then shifted by a fixed 

delay (setTau()) and scaled to ensure it conforms to the requirements of a pdf. 

This example is taken in part from the Army communications example used as 

methodology validation in chapter nine.  The code lines are numbered for 

reference and used in the following description.  Lines one through five define 

names for the functions to be manipulated and read these functions from files.  

Lines six through eight define the figure which will result from the execution of the 

code and include both X and Y axes.  Lines nine through 12 define the pdf 

describing function F5 and build this triangular pdf in a point-wise manner.  Lines 

15 and 16 generate a new function as the sum of two others.  Line 17 shifts that 

pdf by a fixed delay.  Lines 18-20 scale the function to ensure it is compliant with 
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the definition of a pdf, and put the function in standard form.  Line 21 adds the 

function just created to the figure, and finally line 22 causes the figure macros to 

be generated to file.  More complex examples would likely incorporate other 

functions as well to describe a more complex architecture topology. 

8.3.3 CAPE Evaluation of the PPI 

The fifth code snippet is related to the computation of the PPI.  The evaluation of 

the PPI is straightforward.  When many function comparisons are needed it is 

useful to put functions in an array and build the cumulative distributions functions 

similarly.  The PPI can then be calculated by iterating the formula values through 

the arrays.  A non-iterated version is shown in Figure 8.6. 

// Set the extremes data structure 
// Construct Figure fig and add axes 
double area = 0.0; 
// Define the two functions 
Function A = new 
 Function("G:\\__DISSERTATION\\_Brief\\aRes.f()", "A"); 
Function B = new 
 Function("G:\\__DISSERTATION\\_Brief\\bRes.f()", "B"); 
// Compute cumulative distrbution functions from the pdfs 
Function Acum = A.getCumulative(25.0); 
//  Perform the PPI calculations 
Function fun = Function.multiply(Acum, B, 25.0); 
Double ppiVal = fun.integFmTo(0.0, 4500.0, 25.0); 
System.out.println("PPI: " + ppiVal); 
fig.close(); 
 
 

Figure 8.6 CAPE used to compute PPI 
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8.4 Library Support 

There are two libraries associated with CAPE.  The first is the FUNC library.  The 

evaluation techniques that evolved to implement the library functions were based 

on representing the functions to be manipulated as sets of piece-wise linear 

approximations to real functions, and then performing the calculations on a point 

by point basis.  To handle even the simple cases, the end points representing 

these linear segments approximating the true functions had to be general enough 

to handle finite discontinuities.  A representation was established that associated 

with each domain value, a set of range values, and properties that indicated 

whether each was closed or open.  With this data structure to define segment 

end points, the function was represented by an ordered list of segments.  

Mathematical operations between functions were then implemented on a point by 

point basis.  Integrations were performed by application of the trapezoidal rule for 

area computation.  Division is not used.  Addition is straightforward as is 

multiplication by a constant (positive or negative constant to represent 

subtraction).  Multiplication of functions as needed for convolution and is 

implemented as an exact quadratic using to the end point of linear piecewise 

approximations of the functions being used as arguments.  The library also 

provides the capability to manipulate functions (shift in time, scale in amplitude, 

generate cumulative distribution function from pdf, generate pdf from cumulative 

distribution function, put functions in standard or canonical form, etc.).  It provides 

methods that can be put together to implement the topological aspects of the 
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architecture, for example, convolve to implement sum, and two argument 

implementations of minimum, maximum and quotient.  The composite function is 

implemented as a weighted “add” of probability density functions.  More details of 

the FUNC library are included in Appendix A. 

The second library is PLOT.  This library provides all of the support routines 

required to generate PowerPoint graphs without the need to understand the 

underlying PowerPoint Visual Basic for Applications.  The plotting process 

identifies which PPT support functions and subroutines are needed to perform 

the plot and includes these automatically in the macro generation portion of the 

computation.  The macros are generated in the file that was identified in the 

Figure constructor.  This file is then imported into PPT and executed from within 

the VBA Project pane of the VBA code editing window.  More PLOT library 

details can be found in Appendix D. 

8.4.1 Results 

The code templates report progress information about the computational 

processes to the Output window of the NetBeans IDE.  The CAPE output-box 

content from the calculation of Figure 8.5 is shown in Figure 8.7. 
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run: 
Setting User data extremes in:  
 G:\GSD\DOCS\GRAPHICS\FIGURES\BB.txt 
[78] Constructing figure macro in:  
 G:\GSD\DOCS\GRAPHICS\FIGURES\\Ch8EX.bas 
[1336]        TRI        REC 
Convolution iterations = 300 
TRI        REC        39 --> 300 Five progress indicators 
TRI        REC        94 --> 300  
TRI        REC        168 --> 300  
TRI        REC        237 --> 300  
TRI        REC        283 --> 300  
Writing figure macro to file: 
 G:\GSD\DOCS\GRAPHICS\FIGURES\Ch8EX.bas 
plotting TRI 
plotting REC 
plotting CONV_TRI_REC 
BUILD SUCCESSFUL (total time: 29 seconds) 

Figure 8.7 CAPE text output from example 

 

8.4.2 A Simple Complete Example 

The example that follows, Figure 8.8, generates two functions.  The first comes 

from a stored file on disk; the second is generated point-wise within the code.  

These two functions are then added probabilistically (convolved) to show the 

sum, and then all three functions are plotted on a common graph.  The graph in 

Figure 8.12 is exactly as it comes out of the PPT macros.  Axis labels and graph 

labels have to be added separately in PPT. 
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// First section - Defining the Bounding Boxes 
HashMap hmExtremes = new HashMap<String, Double>(); 
String[] extremes = { 
    "UAX = 5.0","UIX = 0.0", 
    "UAY = 1.3","UIY = 0.0", 
    "sax = 600", 
    "six = 400", 
    "say = 500", 
    "siy = 300" 
}; 
for (int i = 0; i < extremes.length; i++) { 
    String[] parts = extremes[i].split("="); 
    parts[0] = parts[0].trim().toUpperCase(); 
    parts[1] = parts[1].trim(); 
    hmExtremes.put(parts[0], parts[1]); 
} 
// Second section - Defining the Functions used 
Function tri = new Function("TRI"); 
tri.addFP(1.5, 0.0); 
tri.addFP(2.5, 1.0); 
tri.addFP(3.5, 0.0); 
tri.setColor(255, 0, 0); 
Function rec = new Function("REC"); 
rec.addFP(0.5, 1.0); 
rec.addFP(1.5, 1.0); 
rec.setColor(0, 0, 255); 
Function sum = new Function("SUM"); 
// Third section - Defining the figure to hold the 
// visulization 
Figure fig = new Figure("FIGURES\\", "Ch8EX", hmExtremes); 
fig.setXTicDeltaAndLength(1.0, 5, 0); 
fig.setYTicDeltaAndLength(0.2, 5, 0); 
fig.addFun(tri); 
fig.addFun(rec); 
// Fourth section - pdf manipulation, generate the sum 
// (convolve) 
sum = Function.convolve(tri, rec, 0.01); // 0.01 = 
// resolution 
sum.setColor(51, 153, 102); // DARK GREEN 
fig.addFun(sum); 
// Fifth section - Generate the PPT macros 
fig.close(); 

Figure 8.8 CAPE input for example analysis 
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Figure 8.9 Raw macro result once executed within PPT 

 

8.4.3 Summary 

The CAPE tool provides three types of calculation capability:  1) support for the 

generation of and manipulation of probability density functions that represent the 

delay characterizations of components and connections, and 2) a set of plotting 

support macros written in Visual Basic that simplify the plotting of figures 

describing the performance graphs generated, and 3) support for evaluating the 

PPI for a set of architectures.  The CAPE tool is an integration of five major 

pieces.  Two are commercial or open source:  Microsoft’s PowerPoint, and Sun’s 

NetBeans.  The other three pieces were developed specifically within this 

research effort.  The function library (FUNC) provides class descriptions for 
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representing probability density functions, described in more detail in Annex A.  

This includes implementations of manipulation functions needed to generate end-

to-end delay performance descriptions.  A plotting library (PLOT), described in 

Annex D, which is a set of Visual Basic macros to manipulate the plotting of the 

graphs generated by CAPE.  And finally the set of code templates which define 

the user and screen coordinates, generate functions from files or point-wise in 

code, manipulate pdf delay descriptions, and guide the computation of the PPI 

from end-to-end architecture delay descriptions. 
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Chapter 9 

9 Methodology Validation       . 

9.1 Introduction 

The ideal technique for validating CAPE, the methodology presented in this 

research, is that of selecting a large set of architectures and instantiating each of 

those architectures a large number of times.  One could then make performance 

measurements on each implementation and combine them (grouped by parent 

architecture) into architecture specific performance descriptions.  Once the 

architecture performance descriptions were determined, the PPI could be 

validated by comparing the PPI computed result with the probabilistic (frequency 

based) individual implementation performance measurements.  Unfortunately 

however, this approach is not feasible.  Implementation costs are too high.  

Reduction to a small number of implementations does not help either.  The 

implementations selected might not well represent the spread of possible 

performance values that could be achieved with a large number of 

implementations.  Taking measurements of real world systems is even more 

restrictive.  There would be only a single instantiation to consider.  An alternative 

validation approach must be developed. 
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Since the PPI results were extensively validated in chapter four and the 

implementation of the functions are validated in Appendix C, what remains to be 

validated is the combination of functions that are used to build-up architecture-

performance descriptions.  The heart of such a validation effort centers on 

confirming that results generated from the CAPE methodology agree with results 

from other methods known (or assumed) to be valid.  The Department of 

Defense (DoD) often uses, a modeling and simulation technique based on MESA 

[MITR05] for examining performance issues under a broad set of circumstances.  

For this validation effort, two problems are evaluated using the MESA tool to 

validate CAPE’s results.  The first problem is taken from an Army 

communications program and exercises the sum and quotient functions.  I do not 

have access to the data of any other real-world problem to validate the other 

functions.  As a result, the example problem defined in chapter seven of this work 

is modeled in MESA for results comparison.  It may be noted that the first 

example is dominated by the communications delays in the architecture.  This is 

not surprising as it is a communications system.  However there is no loss of 

generality in the validation as communications and computational delays are 

treated in exactly the same manner within the analysis method.  The second 

example (while not based on real-world data) does demonstrate the incorporation 

of significant computational delays. 
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Within this chapter, section 9.2 describes the MESA modeling technique and the 

next section introduces two result comparison techniques.  The first technique is 

based on hypothesis testing, and the second leverages the concept of a norm 

from vector space analysis.  Section 9.4 validates two examples, the Army 

communications problem, and the real estate problem discussed in chapter 

seven.  CAPE and MESA model results are compared.  The chapter closes with 

an explanation of why hypothesis testing is not more useful in this situation and 

explains the normed vector result. 

9.2 Modeling Technique 

Each of the two validation examples that follow are treated in a similar manner.  

A discrete event simulation was built using the graphical model construction 

capability of Extend 7 [Rive98] coupled with the MESA discrete event simulation 

engine libraries. 

Extend is a customizable graphically-oriented general purpose modeling and 

simulation environment which can handle both discrete and continuous modeling 

tasks.  Simulation elements are “dropped” onto the screen and connected 

graphically in a manner similar to Lab View®.  Random processing times can be 

allocated to simulation elements.  Resources are tracked through queues and 

plots are available showing queue lengths, queuing times, etc.  There is a 
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scripting language associated with MESA that manages sensitivity analysis by 

rerunning simulations with varying parameters. 

MESA is a toolkit designed to run on Extend and is specifically designed to 

support end-to-end performance analysis of services being developed in a 

Service Oriented Architecture.  MESA provides ready-to-run library components 

that are specifically designed for SOA analysis.  The combination of MESA 

components running on the Extend simulation system infrastructure provides a 

unified, flexible, verifiable performance estimate of the problems being modeled. 

9.3 Result Comparison Techniques 

Statistical testing is routinely performed on experiment sample data to decide 

whether to accept or reject a hypothesis.  For this validation effort, the 

appropriate hypothesis to be tested is whether or not the two models suggest the 

same performance for the architecture being analyzed.  After collecting data on 

the two models, a Chi Squared Goodness of Fit test can detect differences.  

Hence an alternative technique based on normed vector spaces is used to gauge 

the amount of difference between the two performance estimates. 

9.3.1 Chi Squared Goodness of Fit Testing 

One of the techniques routinely used to determine whether or not two densities 

are the same is the Chi Squared Goodness of Fit test.  This test is formulated to 
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decide which of two hypotheses is likely to be correct.  Alternative H0, usually 

captures the hypothesis that there is no difference between the two densities and 

H1, represents that there is a difference.  To perform the actual test, samples 

from the two densities are collected and a statistic is first computed then 

compared with a threshold to establish whether or not there is statistical evidence 

to reject H0. 

The basic Chi Squared goodness-of-fit-test has three steps.  The first step 

breaks down the range of values to be processed into sub-ranges (bins) and 

compares the number of observed values in respective bins to the number of 

expected values in those bins.  To ensure a correct result, a set of “rules of 

thumb” are applied to structure the test.  First, no bin should have fewer than five 

values; second, there should be 50 or more values in the total sample [LeRS01], 

and third, for best results, the bins should be configured so that each bin has 

approximately the same number of expected values [FiHe10].  In this case, there 

is no known-to-be-true set of values so the observed values from the CAPE 

description could be compared with the observed values of the MESA 

description.  The formula for doing so is as follows. 
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The k summation is over the set of bins chosen for the test. 

The second step is to define the “level of significance” of the test.  The level of 

significance of a test is often represented as alpha (α) and represents the 

probability of making a Type I error.  A Type I error is the probability of falsely 

rejecting H0.  Associated with a specific value for alpha, and the number of 

degrees of freedom (related to the number of bins) is a tabulated threshold value.  

When the Chi Squared value calculated from the formula exceeds the tabulated 

threshold, H0 is rejected. 

In a more typical test, the number of sample values taken is usually limited by 

cost, i.e., the time to make the measurements or the dollars needed to be spent 

to collect the data.  Here samples can be generated quickly and cheaply.  The 

question remains how many data points to use in the comparison.  The power of 

the test is the ability of the test to reject a false null hypothesis.  This power 

improves by taking a larger number of samples.  At least one thing is clear.  

Since there are some differences between the model results, the test will 

eventually be able to differentiate between the two when enough samples are 

generated 
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9.3.2 Norm Based Difference Measurement - MESA vs. CAPE 

The study of normed vector spaces provides an approach for describing the size 

of the difference between two performance estimates.  Given a vector space, X, 

with elements, x, any function that maps an element of that vector space into a 

real number can be called a norm, ||x||, if it satisfies the following axioms: 

1. ||x|| ≥ 0 for all x є X, ||x|| = 0 if and only if x = θ. 

2. ||x + y|| ≤ ||x|| + ||y|| for each x, y є X. 

3. ||αx|| = |α| ||x|| for all scalars α and each x є X [Lune69]. 

The set of all continuous functions on a closed interval [a, b] of the real line is a 

vector space and one of the useful norms on that vector space is: 

 

The types of probability density functions that are generated by CAPE and MESA 

are both in this space.  This norm can be used to measure the difference 

between the performance descriptions. 
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9.4 Validation Examples 

For the purpose of validating this work, two examples have been selected which 

cover a substantial part of the interesting architecture modeling space.  The Army 

example takes unclassified data from a real program office.  The Real Estate 

Service example follows chapter seven. 

9.4.1 Example One – The Army Tactical Environment 

The first example is taken from an engineering study done for the Defense 

Information Systems Agency by MITRE Corporation.  It demonstrates the most 

commonly used functions of the model (sum and quotient) in the context of 

developing services in a Service Oriented Architecture environment.  The two 

functions, sum and quotient, dominate most service performance analysis done 

within the DoD since current SOA services do not broadly support dynamic 

service discovery.  Most complex services are developed by identifying a set of 

statically discovered functional services and executing them sequentially. 

This particular engineering study was done as part of a recent Enterprise Wide 

Systems Engineering (EWSE) task that established guidelines for service 

delivery in a SOA environment and used the Army tactical communications 

infrastructure as the specific architecture for the analysis.  The goal was to 

generate guidelines that program developers and evaluators could use to assess 

the performance of new and proposed services.  These results would support 
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tradeoff analysis between cost, performance and sometimes schedule when 

developing program alternatives.  Previously such performance analysis work 

had been done in an ad hoc manner.  This task developed a structured analysis 

approach that could be consistently applied in many environments.  Consistency 

in analysis is valued as implementing services in the SOA structure is seen as an 

important step in moving the Department of Defense to a net-centric 

communications environment. 

While the CAPE method presented in this work provides for including many types 

of quantifiable performance uncertainty, e.g., the capability of the development 

team, uncertainties about component location, etc., the MESA tool does not.  To 

make the results of both models comparable, these more general types of 

uncertainties were not included in this validation work. 

A specific architecture was selected as a subset of the broader EWSE task and 

examined in detail.  That subset of the larger architecture analyzed in detail is 

identified and highlighted in yellow in Figure 9.1.  That figure shows the 

communications path that connects a Squad element to a Combatant 

Commander’s (COCOM) location using a sequence of devices:  local tactical 

vehicle, adjacent tactical mobile communications center, intermediate satellite, 

and finally the COCOM termination equipment.  The path to return the service 

result is similar using the same communications elements in the reverse order.  
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The analysis steps identified in chapter five were applied to this sequence of 

equipment elements.  The performance characteristics are unclassified values. 
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Figure 9.1 Top level MESA model for Army SOA example 

 

The performance description for this system can be calculated form the following: 
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Each of the delays identified in Figure 9.1 was translated into a component or 

connection and the delays were modeled using the CAPE methodology. 
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Figure 9.2 Detailed CAPE delays with bounding values 
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To simplify the comparison of delays estimated by CAPE and MESA analysis 

techniques, the fixed propagation delays of each connection were separated out 

from the associated transmission delays (as they do not change the transmission 

delay pdf shape) and were added back in to generate the final result in the 

bottom row of Figure 9.2 under the heading of CUMPROP. 

Figure 9.2 shows the CAPE delays.  The CAPE result is generated by summing 

the nine element delays (D12-D21) with the sum function and adding in the 

CUMPROP value.  Figure 9.3 shows the MESA and CAPE results. 
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Figure 9.3 PDF comparison of CAPE and MESA results  Army example 
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While the two predicted performance density functions are very similar, they can 

be distinguished with hypothesis testing (section 9.5.1).  Using vector analysis 

techniques (section 9.3.2) the difference can be approximated as 7%.  Since the 

MESA model has been validated against other models before taking on the 

EWSE engineering study, this consistency in shape and location indicates that 

CAPE has produced a correct result for this example. 

9.4.2 Example Two – Real Estate Service 

The second example, a real estate service, demonstrates some of the different 

CAPE functions that are used when the topology in not completely sequential.  

The performance characteristics for this validation were taken directly from 

chapter seven. 
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Figure 9.4 MESA model for the real estate service (single photo server) 

 

The performance description for this system can be calculated form the following: 
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In a manner similar to example one, two MESA/Extend models were developed.  

Figure 9.4 shows the single photo server case.  The dual photo server case is 

analogous (but not shown).  The CAPE calculated architecture delay descriptions 

for the single photo server case are shown in Figure 9.5 and the total or 

cumulative delay is shown in Figure 9.6. 
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Figure 9.5 Single photo server delay contributions 
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Figure 9.6 Total delay for single photo server 

 

Similarly, the transmission delay contributions and the total delay for the two 

photo server case are shown in Figure 9.7 and Figure 9.8 respectively. 
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Figure 9.7 Transmission delay contribution for the two photo server case 
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Figure 9.8 Cumulative delays for the two photo server case 
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In each case, the CAPE predictions reasonably match the MESA simulation 

estimates of the performance of the real estate service, and the service as 

modified with the additional photo server.  This closeness of predictions again 

tends to validate that the CAPE methodology makes a reasonable estimate of 

the anticipated implementation performance. 

9.5 Comparing MESA and CAPE Results Quantitatively 

When comparing the results obtained from the MESA simulation and the CAPE 

calculation, one clearly sees that the two have a strong resemblance.  However, 

a more quantifiable comparison may be possible.  There are at least two 

possibilities:  statistical comparison (hypothesis test) and difference 

measurement with a suitable norm. 

9.5.1 Hypothesis Testing - MESA vs. CAPE 

The validation process conducted for this research is a little bit different than for a 

routine Chi Squared testing circumstance.  In comparing the results here, we are 

not cost constrained with regard to how many sample data points are collected.  

Section 9.3.1 identified commonly used rules of thumb for performing Chi 

Squared testing.  To be consistent with these rules, the test process collects 

sample values until the rules of thumb are satisfied, i.e., more than 50 samples, 

and no fewer than 5 in a bin, etc.  After these rules have been satisfied, there is a 

choice, to be made:  a) evaluate the Chi Squared statistic, or b) gather more 
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sample points and then evaluate the statistic.  Figure 9.9 shows the results of an 

experiment where each of the 1000 dots represents the selection of a random 

seed followed by the production of random samples according to the CAPE pdf 

and the MESA pdf until the rules of thumb are satisfied.  Once the rules of thumb 

are satisfied, the Χ2 value is plotted against the sample count. 
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Figure 9.9 Initial χ2 values vs. count needed to meet rules of thumb 
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Of the 1000 initial points plotted, 59% exceed the threshold for rejecting H0 at the 

10% level of significance, 47% exceed the threshold for the 5% level, and 29% 

exceed the threshold for the 1% level.  H0 should be rejected.  The result is the 

same for the Real Estate Service example.  H0 should be rejected.  Differences 

between MESA and CAPE pdfs drive this behavior.  More samples worsens the 

situation, Figure 9.1.  Traces near the extremes highlight the variability. 
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Figure 9.10 Plot of χ2 values over time 



 

196 

 

When the number of available comparison points is large, the Chi Squared 

Goodness of Fit test does not help very much in establishing the near equality of 

the two models.  As a result, an alternative approach is used based on normed 

vector spaces as discussed in section 9.3.2. 

The probability density functions generated by MESA and CAPE in this situation 

are continuous and of finite range so they do constitute a vector space.  Using 

the norm identified in section 9.3.2 one can take the absolute value of the 

difference between the MESA performance estimate and the CAPE estimate in 

the Army communications example.  The result is plotted in Figure 9.11 (in blue). 
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Figure 9.11 Absolute MESA-CAPE estimate difference– Army example 

 

When the blue curve is integrated over its range, the value is 0.1375.  Now since 

the two original curves were probability density functions whose area must 

integrate to one, the maximum difference possible for these two curves would be 

2.0.  The minimum difference would be 0.0 if the two curves were the same.  

Hence the difference between the MESA and CAPE performance estimates differ 

by approximately 7% for this example.  Neither performance description is truly 

known to be the correct value, as both are performance estimate approximations 

of the same system (yet to be completed).  Using this method, the performance 

estimate difference for the Real Estate Service with single photo server, Figure 
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9.6 is only 3.1%, and the difference between the two estimates for the Real 

Estate Service with dual photo server, Figure 9.8, is 3.3%. 

In absolute terms, a 3% or 7% difference between models could be considered 

large or small depending on the concern of the moment.  A portion of this 

comparison difference is generated by the “wiggles” in the performance estimate 

function generated by MESA.  MESA is a discrete event simulation, and as such, 

the shape of the curve will change over time as more values are added.  There is 

nothing in the underlying physics of the systems that would suggest that such 

“wiggles” are an artifact of the systems, but rather they are generated as part of 

the modeling technique.  As such the “wiggles” can be ignored, and a smoothed 

MESA prediction would be even closer to the CAPE estimate. 

The Army example however is a bit different.  The MESA function is slightly 

broader (and consequently shorter) than the CAPE function.  The difference is 

not huge, but it is observable.  Yet even this difference might be considered 

insignificant in view of the fact that the current version of the PPI only considers 

the probability that one implementation will likely perform better than another.  It 

does not yet assert that it will be better by some significant amount, nor by a 

specifiable amount.  Further, the PPI and the CAPE analysis technique was to 

help identify performance differences between architectures.  When the projected 
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differences are small, it is highly likely that the actual selection should be made 

on another quality criterion, i.e., portability, security, etc. 

The two approaches described for evaluating the closeness of the MESA and 

CAPE predictions show that in this case the normed vector space method is 

more helpful.  This will not always be the case.  When other methods of 

estimating performance are used, it is likely that the cost of gathering data points 

will be more expensive, and as such, there may be many fewer.  In such cases, 

the Chi Squared testing will likely be more effective.  It will however still only tell 

whether or not there is a detectible difference, not how big that different is (as 

does the normed vector approach). 

9.6 Conclusion 

The result of the detailed analysis validating CAPE predictions against the MESA 

predictions needs to be put into perspective.  It is clear that these two models 

produce slightly different results and when sufficient numbers of data points can 

be gathered, the Chi Squared test can distinguish between them.  Differences 

between models are to be expected, as models are just approximations of reality 

and it is the approximation aspect of the system reality that generates these 

differences.  In the case of modeling the performance of the “to be built” system, 

true reality can not be known in advance.  Differences between models will likely 

exist for all but the simplest cases. 
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To appreciate the importance of these differences, one must revert back to the 

intent of the analysis.  The principal reason for generating performance models at 

the earliest stages of design is to formulate a technical basis for filtering out less 

well performing architectures.  It is an attempt to narrow the field of plausible 

architectures so that more detailed analysis can be done on only those which 

look most promising.  Weeding out less promising alternatives is a cost saving 

measure; eliminating some possibilities before time and money are invested in 

more detailed analysis.  This down-selection process only makes sense where 

the architecture performance potential differences are considered significant.  

Small model differences will not hide significant differences between alternative 

architecture performance potential estimates. 

These differences in model performance estimates can be viewed as a benefit.  

Consider some of the sources of uncertainty enumerated in section 3.5:  

algorithm, value or data, topology, synchronization, load and sizing.  One can 

observe both the initial estimate and evolution of the uncertainty sizes involved in 

generating the proposed architecture’s performance potential as design 

decisions are made.  Graphing each of these uncertainties in size (using a 

simplified minimum, maximum estimate) the individual contributions can be seen 

in Figure 9.12.  Here each of the decisions has been allocated two uncertainties, 

one for the minimum performance value, and another for the maximum. 
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Figure 9.12 Uncertainty contributions before design decisions are made 

 

When these uncertainty estimates are regrouped placing maximums and 

minimums together the result is a simplified estimate of the system’s 

performance bounds.  Figure 9.13 shows the change in the estimate of those 

bounds can be viewed over time as various design decisions are made. 
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Figure 9.13 Changing performance bounds as decisions are made 

 

One of the benefits to knowing that there are differences in model performance 

estimates and how those differences are related is that they help to establish the 
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sizes of the uncertainties being considered in analyses as shown in Figure 9.13.  

From the validation example earlier, it is known that different models will predict 

slightly different performance ranges.  As a result, if the Army Communications 

System is used as an element of a larger performance estimation problem, this 

model uncertainty should be included in the uncertainty estimates and 

calculations used to perform the analysis.  Model differences add to our 

understanding of the performance of system elements, and as such tend to 

improve the confidence that the modeled composite system will behave as 

predicted. 

A similar uncertainty reduction over the development life-cycle is seen in costing. 
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Figure 9.14 Boehm software development cost uncertainty description 
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Boehm [Boeh81] found that cost-to-complete estimates could be off by a factor of 

four early in the life-cycle.  Vagueness and ambiguity in the software 

requirements lead to these uncertainties.  This situation is similar to that found 

here in performance estimation.  Various early models will approximate reality 

differently.  Uncertainty in how components and prototypes will perform is 

greatest at the outset and decreases over time as design decisions are made 

reducing performance uncertainty.  The modeling process is valid. 

9.7 Summary 

This chapter has taken two CAPE modeling examples and validated the results 

against MESA/Extend models used within the Department of Defense.  

Hypothesis testing and normed vector analysis methods were described for 

comparing the performance descriptions of the two examples.  In each case, the 

results from both models are in agreement.  The chapter concludes with a 

discussion of the differences between the estimation methods and an 

explanation of the advantages and shortcomings of each. 
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Chapter 10 

10 Contributions and Future Research   . 

10.1 Introduction 

In this dissertation, a method has been developed (chapter four and chapter five) 

for making performance comparisons between architecture alternatives.  Using 

these techniques at architecture design time, the developer can compare the 

estimated likely performance of systems that might be built from an architecture 

description.  The techniques described provide a systematic means for 

quantitatively assessing the probability that one particular architecture will 

produce an implemented system which will perform better than another through 

the evaluation of what is called the "performance probability integral."  The 

approach is applicable at different levels of abstraction of the problem solution 

description, and provides for the inclusion for varied sources of uncertainty in 

how the implementation will actually be instantiated.  It allows for refinement of 

the comparative performance estimates as detailed design characteristics are 

specified and provides a method for managing the uncertainties of those 

characteristics not quantitatively defined.  To demonstrate the procedure, the 

classical three-tier architecture was examined (chapter six) for two architectures 

and two implementation choices for communications links.  A proof-of-concept 
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prototype has been developed to perform the probabilistic computations.  This 

allows statistical methods to be applied by non-experts.  Further, the technique 

allows for description of element characteristics in a simplified manner, i.e., 

without needing to generate complex equations to describe the probability 

density functions that describe delays, sizes, and processing times.  This 

simplified interface expands the utility of the approach by making it usable to a 

broader audience. 

A variety of methods can be used to evaluate system performance.  Many are 

most easily applied to systems that are partially implemented or where detailed 

component and connector information is available.  Particularly popular are 

approaches based on queuing simulations.  Queuing approaches can produce 

precise results by taking advantage of mature system design parameters sets.  

When the design parameters are not well established, a queuing approach often 

resorts to checking combinations of sets of values for each of the unspecified or 

large uncertainty specifications.  This results in a larger number of cases being 

run to cover the design space and takes additional time.  When the queuing 

models are evaluated using simulation based techniques, the solution time can 

be significant as well.  Queuing network models solved using other approaches 

are often less accessible to the broad research audience. 
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CAPE takes advantage of the early design uncertainties associated with 

component and connection performance descriptions, parameterizes them and 

manages them.  As such, CAPE routinely does not require multiple runs for 

systems of known topology.  CAPE was intended to address performance related 

design issues earlier in the system development than other techniques.  It 

informs the decision processes when it is the topology or combining of different 

components and connections that is being resolved.  While this type of 

performance analysis can also be done using queuing models, using queuing 

models is likely to take longer than when using the CAPE approach. One of the 

primary advantages of using CAPE is its simplicity.  It allows researchers and 

analysts from a broad set of disciplines to do productive work in architecture 

performance analysis without substantial start-up training.  The results that it 

generates are quickly computed and the examples accumulated to date show 

good performance correlation with the systems that are being built. 

10.2 Research Contributions 

Specifically the contributions of this research are: 

a) This research identifies the underlying uncertainties that exist at system 

architecture design time that likely do not exist later in the development life-cycle.  

These uncertainties are categorized so that the system designer can 

appropriately characterize them individually. 
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b) Five functions necessary to combine system architecture level 

uncertainties are identified. 

c) For each of the five functions needed to combine the uncertainties at the 

system architecture level, a computation method is demonstrated and verified. 

d) The Performance Probability Integral is derived to calculate the probability 

that the expected performance of one architectural option will exceed the 

expected performance of another architectural option. 

e) A method is defined that characterizes architectural uncertainties and, 

maps them into probabilistic descriptions, then combines them for application of 

the performance probability integral. 

f) A tool was developed that assists in performing the calculations for 

combining component and connection performance descriptions into system 

architecture performance descriptions. 

g) A simple three tier data application and two quasi-real world examples are 

used to demonstrate the use of the developed technique. 



 

209 

10.3 Future Research 

There are a number of additional research areas which could enhance this work.  

They represent both extensions to and refinements of that presented here and 

would increase its utility of the methods described previously. 

10.3.1 Expand Offered Workload Analysis 

Current CAPE analysis techniques capture the static aspects of data 

transformation and movement.  CAPE assumes that the sizes of data elements 

posed to the architectures being analyzed as well as the behavior characteristics 

of the components and connectors that make up those architectures are correct.  

The consequence of assuming correct performance descriptions is that 

‘bottlenecks’ can not happen unless they are described in the performance 

description.  This is a “chicken and egg” problem.  If one does not know the 

correct performance description, or can not build a component or connector 

which exhibits that performance, there will be an issue as bottlenecks could exist. 

CAPE does not currently address the rate at which those input data objects 

arrive.  This choice was made believing that the sizes of queues and the flow-

rate of data elements was a detailed design consideration.  Whether detailed 

design or not, there is value in incorporating into CAPE the input considerations 

associated with the arrival rates of data elements, and how those rates effect the 

later portions of the design process.  Supplementing CAPE with an probabilistic 
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arrival rate feature would provide both architecture and detailed designers with 

improved insight into end-to-end system performance. 

10.3.2 Improve Model Implementation Efficiency 

A number of data structures are required to support the computations that take 

place when this model is executed.  For the purpose of this work, emphasis was 

placed on achieving correct results.  There is value in generalizing and 

formalizing both the data representations and function implementations that 

manipulate this data so that a broader class of problems can be considered 

easily.  Such extensions would include better incorporation of Dirac delta 

functions into the function definitions and the associated improvements in 

operations used on these functions once so extended.  The redefinition of such 

data structures and functions should consider primarily efficiency of execution 

and representation while taking into account appropriate numerical accuracy. 

10.3.3 Applying CAPE to the Design of Software Architectures 

While CAPE is expected to be of assistance in developing distributed 

computation systems, there may be refinements which would be beneficial for 

analyzing software architectures too.  Software architectures are likely to address 

a lower level of architecture design than that at a system level.  Delays that could 

be ignored at a system level may become significant to the performance of a 

software architecture.  Further study would be beneficial to identify how software 
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architecture designs differ from system designs, and how CAPE could be 

modified to extend to this area of architecture performance analysis. 

10.3.4 Simplify Performance Specifications Graphical User Interface 

The current implementation of these algorithms works with functions that are 

either numerically defined as sequences of linear approximations, or in some 

cases defined by code snippets that can provide such approximations.  This 

interface is awkward for researchers interested in the performance of the 

architecture of the to-be system.  While the exact form of a more desirable 

interface is not clear right now, it would appear that a graphical interface allowing 

the researcher to define functions with a point-and-click approach would be 

desirable.  Such an interface would have to include appropriate transformations 

or warnings to ensure that the probability density functions so constructed were 

mathematically correct. 

10.3.5 Generate Parameterized Pre-built Architectural Entity Models 

The set of interesting architectures which are routinely considered for 

performance analysis have a number of common components.  Such 

components include satellite links, other transport links, aggregations of such 

links, i.e., networks, as well as processing models that transform data from one 

form to another.  The performance of each of these is routinely associated with a 

set of parameters that characterize spatial considerations, error handling as well 
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as more fundamental attributes like data rates or available bandwidth allocations.  

Since these types of elements are likely to be incorporated into any number of 

analysis efforts, it would be valuable to pre-build models for sets of components 

that are routinely used in architecture performance analysis.  This would not only 

reduce the analysis setup time for investigators, but help to ensure consistency 

between architecture specifications. 

10.3.6 Quantify Improvement Factor 

The method developed assesses the probability that one system is expected to 

perform better than another.  It may be of use however to add an additional 

parameter, i.e., that one system will perform better than the other by more than 

X%.  This would assist the Systems Engineer in identifying cases where such 

differences are likely to be more significant.  Confidence intervals have not been 

considered in this work.  Work to incorporate them would be valuable in the 

obvious way. 

10.3.7 Specify an Appropriate Multi-Attribute Utility Function 

In restricting the scope of this research effort to keep it manageable, a decision 

was made to address only the performance aspect of architecture analysis.  

There are a number of other attributes that other researchers will likely study.  

These might include security, reliability, and cost to name but a few.  Once this 

broader analysis is possible, there needs to be a way to combine the findings of 
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each of these analyses together into a single view for comparing architectures 

against this broader combined criterion.  A multi-attribute utility function would 

appear to be one method of combining these disparate views of an architecture, 

but there may be others.  Some work should be done to provide guidelines or 

recommendations on how to combine architecture analysis products into a more 

general decision rule for selecting that which is most appropriate for a particular 

situation. 

10.3.8 Specify a Compatible Cost Model for a Bayes Decision 

Life-cycle cost is one of the principal concerns faced by any system builder.  

Routinely there is a desire to minimize the expected system cost while at the 

same time achieving critical performance parameters.  While there may be a 

number of ways to project the expected cost of a development, one that must 

clearly be considered is Bayes Criterion.  This criterion combines the probability 

of making a certain decision (architecture selection) with the cost associated with 

that decision (implementation) to calculate the expected cost to be absorbed.  

This research has only offered a method for computing the probabilities of one 

architecture performing better than another.  This could be extended with Bayes 

Criteria to include cost data to be of more value to Systems Engineers. 
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10.3.9 Summary 

This research effort has made the comparison of architectures with respect to 

performance concerns viable.  It has done so in a manner that is consistent with 

current best practices and is practical, useful, and broadly applicable.  This 

chapter has summarized the contributions of this research and identified areas of 

proposed study to improve the usability and extend applicability of the methods 

proposed. 
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Appendix A 

A Function Model and Elementary Function Operations……. 

A.1 Introduction 

The results calculated for the examples in this work are based on the model of 
functions and function operations demonstrated here.  All of the computations 
are carried out numerically based on graphical algorithms.  This approach was 
selected since it is possible that the probability density functions encountered in 
practical calculations may not be easily approximated with closed form 
representations, e.g., the quotient probability density function discussed in 
chapter four. 

A.2 Representing Functions of One Variable 

Functions are implemented as Java objects of a general form with y as the 
dependent (range) variable and x as the independent (domain) variable.  There is 
an amplitude scaling factor that simplifies multiplication by a scalar, and a tau 
argument term which allows for the shifting of functions by amounts of the 
domain variable.  The direction of this shift is controlled by the sign applied to the 
shift amount (tau).  The function argument domain value is inverted through a 
sign variable applied to x to easily accomplish the function of convolution.  The 
general form of functions is therefore: 
 
y = Amplitude * function ( argument ) 
 
where argument is defined to be: 
 
argument = plusOrMinus * x  plusOrMinus tau 
 
The implementation of these functions of one variable is done as a data structure 
of piecewise linear approximations of the exact function.  The end points of the 
approximating line segments or domain values are implemented in the Function 
Domain Value (FDV) class.  These domain or x values hold both the exact 
representation (Java based finite arithmetic approximation) and a rounded value.  
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The exact value is used for plotting while the rounded value is used for indexing 
the domain values in data structures like trees and hash maps were small 
accumulating errors due to floating point increments in “for” or “while” loops can 
occur causing difficulties in achieving the proper end-of-loop condition. 
 
Points in the range, i.e., the y value of the function are represented by the 
Function Range Value (FRV) class.  This class routinely holds three numeric 
values and three open-closed conditions.  For each range value, there is a value 
for the point at the exact domain value, a continuous-to-the-left value, and a 
continuous-to-the-right value.  There are also three Boolean values to indicate 
that the point is either open or closed the each of the associated magnitude 
values.  There are consistency checks applied as clearly all combinations are not 
meaningful. 

A.3 Operations on Functions 

There are seven fundamental operations implemented for functions:  
multiplication by a scalar as well as function shift, addition, multiplication, 
integration, differentiation and convolution.  In each case, the result is an 
instance of the Function class and is available for further computation in 
subsequent steps. 

A.4 Scalar Multiplication 

Multiplying a function by a scalar is done directly through the adjustment of the 
amplitude attribute of the function described above.  When the function needs to 
be put into canonical form, i.e., where the amplitude is one, and the value of the 
shift is zero, all individual function points are adjusted. 

A.5 Shift Operation 

The shift operation is useful for implementing convolution and is handled by 
changing the “tau” variable defined in the function definition.  Positive tau values 
(after combining with the associated plusOrMinus prefix operator) shift the 
function to the left.  Similarly negative values shift the function to the right 

A.6 Integration Operation 

Integration is performed on each of the piecewise linear approximating segments 
and summed.  Each linear segment is subdivided appropriately and the 
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integration is done by evaluating the formula for the integration of that segment.  
The integration function is used in largely three ways: to compute cumulative 
distribution functions from probability density functions, to calculate the 
normalization constant for functions that are proposed as probability density 
functions, and again in the convolution operation. 

A.7 Differentiation Operation 

Differentiation is accomplished on a point by point basis for each function 
approximating line segment.  The slope of each segment is taken to be the value 
of the function derivative.  This value is assigned to the midpoint of that line 
segment. 

A.8 Convolution Operation 

Convolution is a binary operation on functions often represented by the “star” 
operator and is defined as: 
 

 
 

The implementing code first flips the first function by change the independent 
variable from plus to minus.  Then for each shift value, “tau” where the function 
products have value, that product is formed point-wise and integrated across the 
domain of definition.  This is a straight forward implementation of the definition. 

A.9 makeCanonical() Operation 

The make Canonical function is a utility function that performs appropriate 
transformations of function points so that the function representation is changed 
in a way that makes the amplitude scaling factor 1.0, and the shift amount (tau) 
0.0.  This is useful in comparing functions to determine their differences. 

A.10 Representing Functions of Two Variable 

Functions of two variables are represented in a similar manner with the exception 
that the approximating line segments become approximating planes defined by 
the four points at the corners of the grid which defined each of the two 
independent variables.  The approximation that is used in the calculations 
assigns all values within the bounding rectangle of the four defining points as the 
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average value of those points.  Most of the useful cases involve the joint density 
function of joint distribution function of two independent random variables.  In 
either of these cases, the joint density function is related to the product of two 
one dimensional functions, and the associated cumulative distribution functions 
are generated from the appropriate integration over regions of this product. 

A.11 Quasi-Arbitrary Random Variable Generation Functions 

For testing purposes, it is useful to be able to generate random variables for 
quasi-arbitrary probability density functions.  The technique used here takes as 
input a function that is proportional to the desired pdf that describes the random 
variable needed.  There are three steps required to instantiate a random number 
generator that will numbers consistent with the target pdf.  First the proposed pdf 
is integrated over its domain of definition.  One over this area is defined to be the 
scaling constant.  The pdf is then scaled by this constant.  Scaling is needed to 
ensure that the probability of all outcomes sum to one. 
 
The cumulative distribution function (cdf) is then calculated by integrating 
incrementally from the minus infinity to plus infinity.  This cumulative distribution 
function is then inverted, i.e., where y = f(x) in the cdf, the required function is y = 
f-1(x).  Now random numbers are selected from the uniformly generated 
generator provided by Java on the interval [0,1) and applied as the argument of 
the f-1 () calculated. 
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Figure A.5.1 Conversion of pdf to cdf. 

 

Consider Figure A.5.1  The originally provided function is in green.  After 
integration over its domain of definition, the area under the green curve is 
calculated to be 2.5.  The blue curve is then generated from the green curve by 
multiplying it by the scalar (1.0 / 2.5) = 0.4.  Then the blue curve is integrated 
over the interval to generate the black curve.  This black curve is then inverted in 
Figure A.5.1. 
 
Now values are selected at random from the uniform density function, [0.1) 
shown as the dark thick black line on the horizontal axis and mapped to the 
desired pdf, i.e., a → a', b → b', c → c' etc.  The orange vertical lines in Figure 
A.5.1 portray the normalized count of 1,000,000 random numbers generated in 
this manner and divided into 70 equally spaced bins from zero to 3.5. 
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Figure A.5.2 Inverted CDF used to generate random variables 
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Appendix B 

B Detailed Examples of Uncertainty……. 

Even at the lowest levels of computation, examples of uncertainty exist.  In 
[Kobl00] there is a discussion of the multiplication of a k-bit binary number by an 
l-bit binary number.  Routinely this type of calculation is accomplished with 
successive shift add operations.  Even when the shifting and copying portions of 
the algorithm can be ignored as small when compared to the actual addition 
portions of the process, there exists a difference in execution duration of the 
computation due to differing numbers of 1's in the number being multiplied.  
Since the number of 1's in the multiplier are unknown until the computation is 
provided actual data, a tight estimate of the time to perform a general 
multiplication may be characterized in a probabilistic manner base on that 
number of multiplier 1's [Irvi09]. 
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Figure B.1 The number of additions is approximately equal to the number of 
multiplier 1's. 
 
Algorithmic performance uncertainty arises largely because one may not know in 
advance how many times a particular looped action will be executed when it is 
coded as a "do until," "while," or perhaps even a "for" construct iterating over an 
array of run-time-determined size.  In other situations, a result may not be 
produced until a certain exit criteria is met and as such, the number of iterations 
may not be known until certain values meet specified termination condition for 
the computation.  Here both the number of iterations, and the precise time 
associated with executing each iteration may be unknown or may depend on the 
values of the computation being considered. 
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Next consider an example of algorithm selection.  One option is shown in Figure 
B.2. 
 
 
 
 

Initial estimate

second estimate

third estimate

Finding Function Zeros by
Newton Root Estimation

x

f(x)

Initial estimate

second estimate

third estimate

Finding Function Zeros by
Newton Root Estimation

x

f(x)

 

Figure B.2 First three steps in a Newton Root Approach 

 

The goal here is to find a root of a specified polynomial.  Figure B.2 shows the 
first three steps given a specific function, and initial starting estimate when using 
the Newton method.  Yet when a different algorithm (secant, Figure B.3) is 
employed, an entirely different set of estimates is generated, and a different 
convergence time is likely. 
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Figure B.3 First three steps in a secant root approach 

 

In the algorithm uncertainty case, the time it takes to get to the answer is a 
function of the starting point(s), the shape of the function being examined, and 
the algorithm being used to compute the desired root.  Each factor adds a 
different uncertainty to the overall time that the calculation requires. 
 
At higher levels in the computation hierarchy different uncertainties exist.  
Consider the delay associated with retrieving information from a database.  The 
delay experienced between the request submission and the result arrival may 
depend on the size of the data stored, the organization of the underlying data 
elements, the complexity of the query, the existence of synchronization locks for 
critical resource elements, or even the competition for CPU resources generated 
by other processes attempting to gain access.  At even higher system levels, the 
time to move data may depend on the path that the data takes which in turn may 
change over time. 
 
A probabilistic approach is appropriate for characterizing delays in this 
environment, and hence is appropriate for estimating performance at an 
architecture level of analysis.  At each level of computation, there are 
uncertainties, and these must be characterized and then combined to produce a 
meaningful representation of an entire process. 
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Appendix C 

C Computational Methods and Verification     . 

C.1 Introduction 

The six uncertainty classes described in chapter five are computed using the 
techniques identified in the following sections. 

C.2 Summation 

Summation is one of the most often used combination functions. Two 
representative examples are provided as verification tests. 

Consider a system with fifteen delays each characterized by a uniform density 
function with duration from zero to 0.5 time unit as shown in Figure C.0.1 
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Figure C.0.1 Fifteen independent stage uniformly distributed delay line 
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From the definition of the uniform probability density function: 

                                                            1 / (b-a), for a ≤ x ≤ b 

                                      U(a, b) = 

                                                            0,  otherwise 

                                 Mean = (a + b) / 2     Variance = (b - a) 2 / 12 

Using convolution to iteratively sum this density function 15 times, yields the 
result shown below 
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Figure C.0.2 Iterative summation of uniform densities 
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The law of large numbers states that the sum of a large number of independent 
identically distributed random variables approaches normal with a mean equal to 
the sum of the means and variance equal to the sum of the individual variances.  
In the limit the sum is exactly normal.  Since 15 is significantly less than infinity 
there will be an error or difference between the convolution result and a true 
Normal distribution's shape.  As verification of this result, superimposed over that 
final sum is a dashed black line of Gaussian shape with mean 15 times the 
uniform and variance of 15 times the uniform.  The result however is close to 
ideal.  The purple curve (iteration 14, sum 15) is known to be a probability density 
function since it was derived as the addition of independent identically distributed 
random variables.  The integral under the curve should be 1.0.  When the integral 
is calculated with the analysis tool the result is 1.00114.  The integral under the 
Gaussian curve with mean of 3.75 and variance of 0.3125 (plotted gray) is 1.0 
when calculated in the same manner.  The maximum difference between the two 
functions occurs at the mean of 3.75 and is equal to 0.0125.  The sum of the 
mean square differences between these two functions summed over all 121 
points plotted is 0.01253429.  The sum of the mean square error between the 
convolution approximation and the Gaussian is 0.002221959.  The difference 
between the true Gaussian and the sum of the uniform densities is small.  The 
calculation is useful, and is consistent with the fact that the resolution used for 
the graphical integration is 2% of the range of the original random variable.  
These errors are considered to be small when comparing them to the 
uncertainties associated with architecture performance manipulation in general.  
The graphical convolution result is reasonable for this purpose. 

A second simple example helps to show that the implementation of this graphical 
convolution can also represent arbitrarily defined independent random variables.  
The first of these two pdfs was chosen because of its irregular shape.  It has no 
specific symmetry.  The second pdf could reasonably be encountered in a noisy 
communications channel.  Figure C.0.3 and Figure C.0.4 show the pdf, the cdf, 
and the plotted verification by simulation of the bin counts of the two performance 
descriptions being combined. 
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Figure C.0.3 An irregular pdf describing system performance 
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Figure C.0.4 Another pdf describing system performance 
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Figure C.0.5 Convolution of pdfs from Figure C.3 and Figure C.4 

 

Figure C.0.5 results when these two performance descriptions are combined 
through convolution.  The simulation result is consistent with the convolution 
result. 

C.3 Quotient 

The basic calculation for the quotient probability density function is similar to the 
deterministic case 
 
Consider the simple example defined in Figure C.0.6.  The data package size is 
assumed to be uniformly distributed from 10 to 50 bytes.  The data rate of the link 
is assumed to be uniformly distributed from 75 to 150 bytes per second. 

Figure C.0.6 also shows the geometry associated with calculating the cumulative 
distribution function of the quotient from the joint density function of size and rate.  
The calculated cdf describes the probability that the time needed for a data 
packet transmission will be less than some time, t'. 
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Figure C.0.6 Relationship of transmit time to data size and data rate 

 

Consider first the two lines labeled tmax and tmin.  The maximum time it will take to 
send a data packet (tmax) is that associated with the maximum size packet 
traversing the minimum data rate link.  Conversely the minimum time 
(transmission delay) is experienced when the smallest size packet is sent over 
the highest speed the link can achieve.  These values of tmax and tmin bound the 
quotient performance.  Each of the positive slope diagonal lines (tmax, t' and tmin) 
represent the ratio of the data size to link data rate.  These lines which represent 
time values divide the region of integration for the calculation.  For each t’ value 
between tmin and tmax, the red shaded fraction of the whole rectangle represents 
the probability that a delay will be less than the value stipulated by the t’ slope 
defining the regions.  Integrating t’ from tmin to tmax must yield one, the probability 
that it will take some amount of time between tmin and tmax to send the data 
packet.  Since the shaded area is the probability of t being less than t' it is the 
value of the cumulative distribution function (cdf) for the size-speed ratio 
(quotient probability) for that time t'.  Using this graphical approach yields a graph 
of the cdf for the time associated with the distribution of times associated with the 
data packet size and link data rate densities, Figure C.0.7. 
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Figure C.0.7 Quotient cumulative distribution function for the example 

 

A probability density function can be derived from the cumulative distribution 
function by differentiation in cases where the cdf function is well behaved.  For 
this same example, the probability density function is numerically calculated.  
The computation yields Figure C.0.8.  This result is confirmed by simulation in 
Figure C.0.9. 

 



 

231 

0.0 0.2 0.4 0.6 0.8

1.0

2.0

3.0

4.0

0.0

PDF for Quotient

f

Time (sec)

0.06

0.6

0.13 0. 3

2.8

0.0 0.2 0.4 0.6 0.8

1.0

2.0

3.0

4.0

0.0

PDF for Quotient

f

Time (sec)

0.06

0.6

0.13 0. 3

2.8

 

Figure C.0.8 Example probability density function 
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Figure C.0.9 Simulation of one million example quotients 
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The data-packet size and link data rates were simulated by uniformly distributed 
random variables as described in Figure C.0.6.  One million sample quotients 
were calculated and counted in 50 bins spanning the domain of the pdf.  The 
scaled bin values were then plotted in Figure C.0.9. 

C.4 MIN 

The minimum function (MIN) can be calculated graphically as well.  Consider a 
two input example to examine how this computation is done.  Two sources, A 
and B, generate and transmit the requested information.  Source A is capable of 
returning the requested data in a time uniformly distributed between 10 and 30 
time units.  Source B similarly returns data in a time uniformly distributed 
between 25 and 35 time units.  Since these two events are considered 
independent, their joint probability density function is the product of the two 
uniform pdfs.  The shaded portion (both red and blue) shows the domain of the 
joint pdf for this situation. 
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Figure C.0.10 Example two input minimum geometry calculation 
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The computation of the cdf follows the process described above.  The right angle 
line marked t’ separates the shaded region into those with values less than t’ 
(red) and those greater than t’ (blue).  The shaded region below and to the left of 
the t' line (red) is that portion of the time where either tA or tB is less than t'.  The 
bounding values of the possible times that can occur with the current description 
of the system performance are tmin and tmax. When this calculation is performed, 
the cumulative distribution function can be plotted as in Figure C.0.11. 
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Figure C.0.11 Calculated cdf MIN for two input example 

 

The pdf is calculated directly from this cdf through differentiation as the cdf is well 
behaved.  Figure C.0.12 shows the pdf with a simulation of one million points 
binned and scaled, confirming correctness. 

The solution for cases where there are more than two inputs is generated 
iteratively.  Let the n inputs be labeled i1, i2, i3, … in, and define the initial result, r, 
to be the min of i1 and i2.  Then for i* from i3 to in, r is replaced by the min of r and 
i*.  Alternatively, this can be viewed as:  Min(i1, Min(i2, Min(i3, Min(…, in)) 
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Figure C.0.12 PDF for minimum of the uniform joint pdf 

 

C.5 MAX 

The maximum function (MAX) is calculated in a manner similar to that of MIN. 
Consider the two input case and discussed in section 5.4.  The geometry of the 
maximum calculation is shown in Figure C.0.13  The domain of the joint density 
function remains the same (both red and blue shaded areas).  The red shaded 
area shows where the maximum values reside.  The process is similar to the 
minimum calculation done earlier.  Integration takes place from tmin to tmax.  Each 
interim point is represented by the red shaded area bounded by the domain of 
the joint density and the angled line marked t’.  The cdf is shown in Figure 
C.0.14. 
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Figure C.0.13 Example two input maximum pdf geometry calculation 
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Figure C.0.14 Example cumulative distribution – two input example 
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This cdf can be graphically differentiated to determine the associated pdf as 
shown in Figure C.0.15.  The vertical red lines represent the simulation of one 
million points counted in 25 bins across the domain of the pdf. 
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Figure C.0.15 Example two input maximum pdf calculation 

 

For cases where there are more than two inputs, the result is generated 
iteratively similar to the case of MIN.  Given n inputs the pseudo-code algorithm 
is as follows:  Let the n inputs be labeled i1, i2, i3, … in, and define the result r 
initially to be the max of i1 and i2.  Then for i* from i3 to in, replace r with the max 
of r and i*.  Alternatively, it can be viewed as:  Max(i1, Max(i2, Max(i3, Max(…, in)) 
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Appendix D 

D PLOT Library Functionality     . 

The PLOT function library that supplements CAPE was designed under Microsoft 
PowerPoint 2003, but since the object model has not changed in the newer 
versions, it is expected to work while yet untested.  The concept behind the 
library is to provide to provide the user with all of the essential functions needed 
to convert the PDF performance descriptions into a visual for easy analysis. 

The underlying scripting language for PowerPoint is Visual Basic for Applications, 
and all of the supplementary subroutines and functions that support the PPT 
drawing of figure are coded in this language.  To manage this set of functionality, 
there is a Java Figure class which does three things:  1)  it maintains the 
attributes normally found in a minimal figure, e.g., coordinate axis, tick-marks, 
tick-mark labels, etc. 2)  it maintains the scaling factors which relate the user 
coordinate system to the screen coordinate system, and 3)  offers a source code 
manager which scans the requirements of the figure being produced and 
automatically copies into the output macro file, all of the supporting subroutines 
and functions. 

The support routines that are provided have largely self explanatory names:  
addLabel, addSCLine, addSLine, addTextBox, addUArrow, addUDot, addUFF, 
addULine, addURectangle, addUTextBox, alignLabelsWithTicks, clearAll, 
drawSBB, drawUXAxis, drawUYAxis, fixMargins, GOR (Get Object Reference), 
Header, lenThree, s2ux, s2uy, scaleX, scaleY, setColor, setShapeTextColor, 
setTBMarginsZero, setText, u2sx (User to Screen X), u2sy, and 
_dependencies.txt.  this final file is a hand coded dependency list of all functions 
and subfunctions used through the code module.  Routinely, “U” represents 
“user,” “S” represents “screen,” X and Y have their traditional meanings. 
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