

A Methodology for Making Early Comparative
Architecture Performance Evaluations

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Gerald S. Doyle
Masters of Science

George Mason University, 2000
Masters of Science

Naval Postgraduate School, 1979
Bachelor of Science

United States Military Academy, 1973

Director: Elizabeth White, Professor
Department of Computer Science

Fall Semester 2010
George Mason University

Fairfax, VA

ii

Copyright 2010 Gerald S. Doyle
All Rights Reserved

iii

DEDICATION

I dedicate this dissertation to my family, friends, and co-workers who donated the
gifts of time, patience and encouragement to advance this work to completion.

iv

ACKNOWLEDGEMENTS

First and foremost I would like to express my gratitude to my family, friends and
co-workers who provided me the time, flexibility and encouragement needed to
complete this effort. The patience of Charlotte, Laura, Kim, Bruce and Bruce can
not be overstated. I would like to thank Dr. Elizabeth White for her guidance in
my study of architectures over the years as well as for her many suggested
improvements to the manuscript. I express my appreciation to the committee for
their diligent review of this work, and would further like to acknowledge the
support of the broader GMU faculty in preparing me for this effort. In particular I
would like to thank Dr. Sood for his insight into how to approach the dissertation,
and Dr. Alexander Levis for broadening my engineering perspective on many
difficult issues.

v

TABLE OF CONTENTS

 Page
LIST OF TABLES ...ix
LIST OF FIGURES... x
ABSTRACT .. xiii
1 Introduction ... 1
1.1 Introduction .. 1
1.2 Systems Development Process ... 3
1.3 Uncertainties Encountered in the Systems Development Process......... 7
1.4 Performance Analysis to Date.. 9
1.5 Architecture Performance Evaluation Options...................................... 11
1.6 Performance Analysis Improvement Strategy 12
1.7 Work Focus .. 13
1.8 Research Strategy.. 16
1.9 Definitions .. 19
1.10 Research Approach.. 21
1.11 Assumptions... 24
1.12 Organization... 25
2 Related Work .. 26
2.1 Software Architecture Foundational Work .. 26
2.2 Architecture Description Languages... 27
2.3 System Performance Evaluation .. 29
2.3.1 Queuing Networks... 30
2.3.2 Petri Nets .. 32
2.3.3 Stochastic Process Algebras .. 33
2.3.4 Simulation Models... 33
2.3.5 Combined Models ... 34
2.3.6 Component-based Architectures... 34
2.3.7 Architecture Design Domain Specific Considerations 37
2.4 Other Domain Specific Concerns ... 39
2.5 Identifying Good Attributes for a Performance Analysis Approach....... 40
2.6 Summary.. 43
3 Architecture Performance Viewed as a Specific Experiment....................... 44
3.1 Introduction .. 44
3.2 Early Performance Estimation Methodology .. 45
3.3 Defining an Experiment .. 47

vi

3.4 Performance Estimation Fundamentals ... 50
3.5 Identifying Uncertainty Sources.. 51
3.5.1 Value or Data Based Performance Uncertainties.......................... 51
3.5.2 Algorithm-Based Performance Uncertainties 52
3.5.3 Topology-Based Performance Uncertainties................................. 55
3.5.4 Synchronization-Based Performance Uncertainties 56
3.5.5 Load-Based Performance Uncertainties 57
3.5.6 Sizing-Based Performance Uncertainties...................................... 57
3.6 Summary.. 58
4 Comparing Architecture Performance Potential .. 60
4.1 Introduction .. 60
4.2 Deriving a Performance Probability Integral ... 61
4.3 Verifying the Probabilistic Analysis... 68
4.4 Example 1 – Comparing Two Normal Performance Descriptions 68
4.5 Example 2 –Possibly Overlapping Performance Descriptions.............. 73
4.6 Example 3 - Comparing Discrete Performance Descriptions 77
4.7 Example 4 – Asymmetric Performance Descriptions............................ 79
4.8 Summary.. 81
5 Constructing Architecture Performance Descriptions 82
5.1 Introduction .. 82
5.2 Summation ... 84
5.3 Quotient.. 86
5.4 MIN... 89
5.5 MAX ... 91
5.6 Composite .. 95
5.7 Summary.. 99
6 An Illustrative Practical Architecture Example ... 101
6.1 Introduction .. 101
6.1.1 Selecting Specific Architectures for Demonstration..................... 105
6.2 Assigning Delay Descriptions to Architecture Elements..................... 107
6.2.1 Characterizing the Architectural Elements 110
6.2.2 Architecture A.. 111
6.2.3 Architecture B.. 115
6.2.4 Architecture C ... 117
6.2.5 Architecture D ... 119
6.3 Comparing Results Across Architectures ... 121
6.3.1 Scaling Issues... 123
6.4 Summary.. 125
7 Two Larger Examples > ... 126
7.1 Example One: Data Exfiltration ... 127
7.1.1 Problem Definition... 127
7.1.2 Large-Grain Delay Descriptions .. 128
7.1.3 Alternative Problem Architectures... 130
7.1.4 Delay Characterization.. 132

vii

7.1.5 Data Characterization ... 132
7.1.6 Characterizing Delay DL1... 133
7.1.7 Characterizing Delay DL2... 137
7.1.8 Characterizing Delay DL3... 139
7.1.9 Characterizing Delay DL4... 140
7.1.10 Combining Component Performance Descriptions 141
7.1.11 Comparing the VIDEO Performance of the Alternatives 142
7.1.12 Example One Summary .. 144
7.2 Example Two: A Service Oriented Architecture Based Service 144
7.2.1 Problem Description.. 145
7.2.2 Large Grain Delay Descriptions .. 148
7.2.3 Delay Characterization.. 148
7.2.4 Data Characterization ... 149
7.2.5 Delay Characterization to the Photo Server, P............................ 149
7.2.6 Delay Characterization to the Search Engine, S 150
7.2.7 Delay Characterization to the Directions Server, D..................... 151
7.2.8 Combining Server Delays ... 153
7.2.9 Example Two Summary .. 158
7.3 Summary.. 159
8 The CAPE Tool . .. 160
8.1 Introduction .. 160
8.2 The CAPE Tool Design .. 161
8.3 Code Snippet Functionality .. 165
8.3.1 Function Definitions... 166
8.3.2 Modeling Topological Aspects of the Architecture....................... 167
8.3.3 CAPE Evaluation of the PPI.. 169
8.4 Library Support... 170
8.4.1 Results .. 171
8.4.2 A Simple Complete Example... 172
8.4.3 Summary... 174
9 Methodology Validation 176
9.1 Introduction .. 176
9.2 Modeling Technique... 178
9.3 Result Comparison Techniques ... 179
9.3.1 Chi Squared Goodness of Fit Testing ... 179
9.3.2 Norm Based Difference Measurement - MESA vs. CAPE 182
9.4 Validation Examples... 183
9.4.1 Example One – The Army Tactical Environment......................... 183
9.4.2 Example Two – Real Estate Service ... 188
9.5 Comparing MESA and CAPE Results Quantitatively 193
9.5.1 Hypothesis Testing - MESA vs. CAPE.. 193
9.6 Conclusion ... 199
9.7 Summary.. 204
10 Contributions and Future Research .. 205

viii

10.1 Introduction .. 205
10.2 Research Contributions.. 207
10.3 Future Research .. 209
10.3.1 Expand Offered Workload Analysis... 209
10.3.2 Improve Model Implementation Efficiency................................... 210
10.3.3 Applying CAPE to the Design of Software Architectures............. 210
10.3.4 Simplify Performance Specifications Graphical User Interface ... 211
10.3.5 Generate Parameterized Pre-built Architectural Entity Models ... 211
10.3.6 Quantify Improvement Factor.. 212
10.3.7 Specify an Appropriate Multi-Attribute Utility Function 212
10.3.8 Specify a Compatible Cost Model for a Bayes Decision 213
10.3.9 Summary... 214
A Function Model and Elementary Function Operations……........................ 215
A.1 Introduction .. 215
A.2 Representing Functions of One Variable.. 215
A.3 Operations on Functions .. 216
A.4 Scalar Multiplication .. 216
A.5 Shift Operation .. 216
A.6 Integration Operation .. 216
A.7 Differentiation Operation ... 217
A.8 Convolution Operation .. 217
A.9 makeCanonical() Operation .. 217
A.10 Representing Functions of Two Variable.. 217
A.11 Quasi-Arbitrary Random Variable Generation Functions 218
B Detailed Examples of Uncertainty……. ... 221
C Computational Methods and Verification 224
C.1 Introduction .. 224
C.2 Summation ... 224
C.3 Quotient.. 228
C.4 MIN... 232
C.5 MAX ... 234
D PLOT Library Functionality . .. 237
REFERENCES... 239

ix

LIST OF TABLES

Tables Page
Table 2.1 Performance and Domain Specific Architectures.......................... 39
Table 2.2 Desirable approach attributes ... 41
Table 6.1 Standard data table for comparing transition delays. 108
Table 6.2 Graph abbreviations used in analysis tables that follow.............. 109
Table 7.1 Summary of data exfiltration system performance estimates...... 130
Table 7.2 Table of architectures considered ... 131
Table 7.3 PPI Results for Data Exfiltration .. 143

x

LIST OF FIGURES

Figures Page
Figure 1.1 V-type systems development process 5
Figure 1.2 Implementations possible from the systems development process 6
Figure 3.1 Visual description of the experiment 48
Figure 3.2 Curve characterizing processing and transmission time tradeoff 53
Figure 3.3 Computation and communications normalization 54
Figure 4.1 Delay density function and cumulative distribution function 62
Figure 4.2 Calculating the probability System A outperforms System B 64
Figure 4.3 Evaluation of the P(A < t') for increasing values of t' 65
Figure 4.4 Simulation results for comparing systems from Figure 4.2 71
Figure 4.5 PPI values vs. difference in mean (B – A) 72
Figure 4.6 PPI calculation: non-overlapping performance descriptions 73
Figure 4.7 PPI calculation: overlapping performance descriptions 74
Figure 4.8 PPI simulation: overlapping performance descriptions 75
Figure 4.9 PPI calculation: complete overlap of performance descriptions 76
Figure 4.10 PPI simulation: narrow overlapping architecture 76
Figure 4.11 PPI calculation: discrete example 78
Figure 4.12 PPI simulation: discrete example 79
Figure 4.13 Non-symmetric performance description comparison 80
Figure 4.14 PPI simulation: Non-symmetric performance description 80
Figure 5.1 Summing process for activity performance descriptions 85
Figure 5.2 Source-sink performance descriptions for quotient calculation 88
Figure 5.3 Example case where first result is sufficient 90
Figure 5.4 Minimum function computation result 91
Figure 5.5 Timing for a subtasks processed in parallel 93
Figure 5.6 Maximum function computation result 94
Figure 5.7 PDF result of combing two data classes in a common channel 96
Figure 5.8 A single class of data is transmitted over any of multiple paths 97
Figure 5.9 Simulation confirmation of weighted composite calculations 98
Figure 5.10 Composite delay result for example two path calculation 99
Figure 6.1 Classical three tier architecture 103
Figure 6.2 XML Tree Transform Process Example 104
Figure 6.3 Alternative example architectures 105
Figure 6.4 Architecture A and associated component delays 113
Figure 6.5 Performance description for architecture A 114
Figure 6.6 Architecture B and associated delay tables 116
Figure 6.7 Performance description for architecture B 117

xi

Figure 6.8 Architecture C and associated delay tables 118
Figure 6.9 Performance description for architecture C 119
Figure 6.10 Architecture D and associated delay tables 120
Figure 6.11 Performance description for architecture D 121
Figure 6.12 Plot of all four architecture delay descriptions 122
Figure 6.13 Summarizing all architectural performance results 123
Figure 6.14 Establishing related propagation delays and data rates 124
Figure 6.15 Result of scaling the satellite delay to the terrestrial delay 125
Figure 7.1 Data exfiltration architecture and labeling convention 131
Figure 7.2 LEO satellite accessibility times 134
Figure 7.3 Critical points for LEO satellite transmit delay 135
Figure 7.4 Architecture ADE, characterization of delay DL1 136
Figure 7.5 Combined delay contributions for DL1 137
Figure 7.6 Architecture ADE, characterization of delay DL2 138
Figure 7.7 Architecture ADE, characterization of delay DL3 139
Figure 7.8 Architecture ADE, characterization of delay DL4 140
Figure 7.9 Video architecture performance descriptions 141
Figure 7.10 Initial activity diagram for SOA real estate service 146
Figure 7.11 Symbolic SOA real estate service architecture graph 147
Figure 7.12 Architecture SOA, Photo Server delay 150
Figure 7.13 Architecture SOA, Aerial Search Engine delay 151
Figure 7.14 Architecture SOA, Directions Server delay 152
Figure 7.15 Cumulative results for describing the delays of each server 154
Figure 7.16 Projected performance of original example SOA 155
Figure 7.17 Server contributions with parallel Photo Server 156
Figure 7.18 Performance of parallel Photo Server architecture 157
Figure 7.19 Projected performance of modified example SOA 158
Figure 8.1 NetBeans IDE with partial code templates 162
Figure 8.2 CAPE tool structure - PDF analysis 164
Figure 8.3 CAPE tool structure - PPI analysis 165
Figure 8.4 Building a Function point-wise within the code 166
Figure 8.5 CAPE pdf functions validating the chapter nine Army example 167
Figure 8.6 CAPE used to compute PPI 169
Figure 8.7 CAPE text output from example 172
Figure 8.8 CAPE input for example analysis 173
Figure 8.9 Raw macro result once executed within PPT 174
Figure 9.1 Top level MESA model for Army SOA example 185
Figure 9.2 Detailed CAPE delays with bounding values 186
Figure 9.3 PDF comparison of CAPE and MESA results Army example 187
Figure 9.4 MESA model for the real estate service (single photo server) 189
Figure 9.5 Single photo server delay contributions 190
Figure 9.6 Total delay for single photo server 191
Figure 9.7 Transmission delay contribution for the two photo server case 192
Figure 9.8 Cumulative delays for the two photo server case 192

xii

Figure 9.9 Initial χ2 values vs. count needed to meet rules of thumb 194
Figure 9.10 Plot of χ2 values over time 195
Figure 9.11 Absolute MESA-CAPE estimate difference– Army example 197
Figure 9.12 Uncertainty contributions before design decisions are made 201
Figure 9.13 Changing performance bounds as decisions are made 202
Figure 9.14 Boehm software development cost uncertainty description 203
Figure C.0.1 Fifteen independent stage uniformly distributed delay line 224
Figure C.0.2 Iterative summation of uniform densities 225
Figure C.0.3 An irregular pdf describing system performance 227
Figure C.0.4 Another pdf describing system performance 227
Figure C.0.5 Convolution of pdfs from Figure C.3 and Figure C.4 228
Figure C.0.6 Relationship of transmit time to data size and data rate 229
Figure C.0.7 Quotient cumulative distribution function for the example 230
Figure C.0.8 Example probability density function 231
Figure C.0.9 Simulation of one million example quotients 231
Figure C.0.10 Example two input minimum geometry calculation 232
Figure C.0.11 Calculated cdf MIN for two input example 233
Figure C.0.12 PDF for minimum of the uniform joint pdf 234
Figure C.0.13 Example two input maximum pdf geometry calculation 235
Figure C.0.14 Example cumulative distribution – two input example 235
Figure C.0.15 Example two input maximum pdf calculation 236

xiii

ABSTRACT

A METHODOLOGY FOR MAKING EARLY COMPARATIVE ARCHITECTURE
PERFORMANCE EVALUATIONS

Gerald S. Doyle, PhD

George Mason University, 2010

Dissertation Director: Dr. Elizabeth L. White

Complex and expensive systems’ development suffers from a lack of method for

making good system-architecture-selection decisions early in the development

process. Failure to make a good system-architecture-selection decision

increases the risk that a development effort will not meet cost, performance and

schedule goals. This research provides a method to mitigate that risk based on

the idea that a development can be characterized as the management of

uncertainties in a probabilistic experiment. The method developed shows how to

estimate the probability that an arbitrary implementation of one system-

architecture will perform better than an arbitrary implementation of an alternate

system architecture.

The analysis technique presented acknowledges that many implementation

uncertainties exist at system-architecture-selection time and identifies steps that

xiv

can be used to characterize these uncertainties. The process by which

uncertainty descriptions are combined into architectural performance descriptions

is presented. Once all alternative system architecture performance descriptions

are developed relative system architecture performance comparisons can be

made.

After the analysis technique is described, three examples are considered. The

first example is a simple three tier web-enabled database application. This small

web application is used to illustrate the analysis method and demonstrate some

methods for characterizing uncertainties. The next two examples are more

complex. These examples expose a broader set of uncertainties and show how

to handle cases where large numbers of uncertainties exist. Sections on

validation of results follow. The dissertation concludes with a list of future

research opportunities in this area.

1

Chapter 1

1 Introduction .

1.1 Introduction

Developing a large system is a complex task that requires an understanding of

the functional and non-functional requirements as documented in the systems

requirements specification. Functional requirements relate to what the system

does, and non-functional requirements relate to system quality. Non-functional

requirements (often called quality attributes) include reliability, modifiability,

portability, security, and performance, among others. Requirements relating to

quality influence early system development much like functional requirements.

Unlike functional requirements, performance requirements are often addressed

later in the development process, and often addressed in an unstructured

manner.

System architectures can be used to help manage the complexity inherent in

systems development. A system architecture is a high level description of the

proposed solution. It is valued for its ability to describe the large grain structure

2

of the objective system, suppressing unnecessary detail. Since a system's

architecture affects all types of requirements, it is critical that a suitable system

architecture be selected early in the development process.

A system architecture can be characterized as an enumeration of the system's

large-grain components and the connections between those components. There

are several techniques for describing system architectures. The earliest work in

the software field used boxes (components) of various shapes, combined with

lines (connectors) to characterize the interactions between components. This

description based on combining boxes and lines creates a high-level pictorial

representation of the proposed system structure. Many current description

techniques are similar.

The most concise insight on the impact that the system architecture has on

system performance comes from work done by Clements and Lakos. "Whether

or not a system will be able to exhibit its desired (or required) quality attributes is

largely determined by the time the architecture is chosen." [ClNo96] Similarly

Lakos [Lako96] writes, "If we fail to address our performance goals in the

beginning, we may adopt architectures or coding practices that will preclude our

ever achieving these goals, short of rewriting the entire system."

While there are a number of important quality attributes associated with systems,

performance is the one that is the focus of this research.

3

1.2 Systems Development Process

A systems development process is established in order to make the development

process repeatable and to ensure that the product will have known quality. It

usually enumerates a sequence of steps that the developer should follow.

System development success hinges on meeting established goals for three

criteria: cost, schedule, and performance [OMBC09]. Failing to achieve any of

these goals compromises the project.

One of the primary sources of failing to meet goals is related to change.

Changes resulting from either re-architecting or redesigning increase cost and

extend schedules. The costs associated with making changes are accrued in

activities like revising functional requirements, changing quality attribute

specifications, modifying the system architecture, and changing the system

design to fix unmet quality goals and functional requirements. System

development costs are not uniformly distributed over the system lifecycle and

neither are the costs of change. There is general agreement that mistakes made

early in the system development process are more costly to correct than those

made later in the lifecycle [WiKe00]. There are disproportionately large

expenses associated with architectural modification due to the deep

understanding that is required to successfully make significant architectural

changes and due to the magnitude and number of the changes that are routinely

4

needed [ClDB98]. Reducing the risk of making an inappropriate architecture-

selection-decision will decrease the expected cost of the development.

There are many approaches to systems development. A typical system is built

using a development model like the classical waterfall model, waterfall models

with feedback, V-models [Somm04], or alternatives. The development model

establishes a sequence of activities or steps that guide developers as they plan

the work to be done. This series of steps usually begins with requirements

specification and runs through end-of-life disposition. While different

development approaches address different development concerns, each

approach includes some type of architecture design phase followed by a detailed

design phase. Most include feedback mechanisms between the phases. The

waterfall model with feedback, for example, helps accommodate the reality that

the dividing line between the architecture design and detailed design phases is

imprecise. The model's feedback paths allow information learned while

performing the detailed design to force changes in the architecture design.

Architectural changes as well, often directly influence detailed design decisions.

An architecture design phase is usually identified early in the step sequence.

Once a particular problem is identified and system requirements are specified, an

architecture-design effort identifies a set of potential or candidate architectures to

be considered.

5

Figure 1.1 shows a V-model systems design process including an early

architecture design phase, labeled “System Specification and Definition.”

Requirements Analysis

Functional Architecture
Definition

System Specification &

Design

Software Requirements

Analysis

Software Architecture

Design

Detailed Software Design

Software Construction
Coding & Integration

Test Planning

Software Integration and

Testing

Software Acceptance

Testing

Integration, Testing

Verification & Validation

Acceptance Testing,
Certification & Accreditation

Deployment, Operations

Training & Support
Requirements Analysis

Functional Architecture
Definition

System Specification &

Design

Software Requirements

Analysis

Software Architecture

Design

Detailed Software Design

Software Construction
Coding & Integration

Test Planning

Software Integration and

Testing

Software Acceptance

Testing

Integration, Testing

Verification & Validation

Acceptance Testing,
Certification & Accreditation

Deployment, Operations

Training & Support

Figure 1.1 V-type systems development process

From a single set of requirements, there can be a number of different alternative

architectures. In a similar way, from each architecture there can be a number of

detailed designs, and again from each detailed design there can be a number of

implementations. The implementations that can result from performing the

intermediate design steps are shown in the bottom row of Figure 1.2. Branching

off from the requirements specification at the top level are the alternative

6

architectures. Below them are the possible detailed designs, followed by the

implementations.

DnA

- A -

R

D1A

B

I1 D1A Ik D1A Ij DnA In DnA I1 D1B Ik D1B Ij DnB In DnB

D1B DnB

similar similar

System
Development

Life Cycle

Highlights

Architecture
alternatives

In
c
re

a
s
in

g
 T

im
e

Requirements
Analysis

System
Specification
& Design

Software
Architecture
Design

Software
Construction
Coding &
Integration

DnADnA

-- AA --

RR

D1AD1A

BB

I1 D1AI1 D1A Ik D1AIk D1A Ij DnAIj DnA In DnAIn DnA I1 D1BI1 D1B Ik D1BIk D1B Ij DnBIj DnB In DnBIn DnB

D1BD1B DnBDnB

similar similar

System
Development

Life Cycle

Highlights

Architecture
alternatives

In
c
re

a
s
in

g
 T

im
e

Requirements
Analysis

System
Specification
& Design

Software
Architecture
Design

Software
Construction
Coding &
Integration

Figure 1.2 Implementations possible from the systems development process

From that set of initial architectures, either a specific architecture may be

selected or the architecture-selection decision may be delayed until further

analysis is conducted. When the selection decision is delayed, another set of

7

steps is executed to refine each of the architecture options. The developer

refines broader descriptions to more specific ones. For each of the choices

considered, the product's required functions are assigned to architecture specific

sub-systems or components. When the functions or the components to which

they are assigned are complex, either may be decomposed again (possibly a

number of times). This iterative process defines the structure of the detailed

design. Eventually, one specific detailed design is selected from a number of

possible alternatives.

In a similar way, for each design there is a set of reasonable implementations.

As the implementation options are examined, the design process eventually

locks-down the types of data structures to be used, the control flow of the

computations, the amount of concurrency that will be provided, as well as a

number of other factors. Each of these low level design decisions can be viewed

as the selection of one specific choice from a number of options. Before the

decision is made however, each decision carries with it an amount of uncertainty

in the system performance.

1.3 Uncertainties Encountered in the Systems Development Process

That there are undefined parameters early in the system design, and that there

are many design decisions yet to be made in the development processes leads

to two conclusions: 1) not knowing the performance impact of the specific

8

implementation decisions (those yet to be made) means that uncertainties exist,

and 2) both the sources and amounts of uncertainty will likely change over time.

The uncertainties present in the earlier development stages are reduced as the

detailed design decisions are made.

At architecture-selection time, there are a large number of implementation details

that have not been decided. The uncertainty generated by not knowing these

details prevents the designer from comprehensively and hence precisely

assessing the expected performance of the final product. Any performance

analysis method to be used early in development must be able to handle the fact

that design details will be missing when architectural evaluations are conducted.

Over the early to middle part of the development, the percentage of architectural

design usually decreases as the product design matures, while the amount of

detailed design increases as the design is refined and gets closer to the actual

implementation. It is the specification of these details during the subsequent

course of the system design that collectively determines the final performance of

the instantiated system.

There are also non-technical issues that can affect the quality attributes resulting

from executing the systems development process. Issues not directly related to

the system actually built, but to the processes and people that are used to

generate that implementation. A designer's capabilities, i.e., their knowledge

9

strengths and weaknesses, can vary widely. Different implementers will be either

more or less efficient and do either a better or worse job in creating the

implementation. Each of these non-technical uncertainties may lead to a

different implementation and hence different performance expectations.

Until the implementation exists, an exact performance characterization of an “as-

produced" system can not be established. Estimated values (with uncertainties)

must be used for analysis. This research presents a structured method for

managing these types of uncertainties.

1.4 Performance Analysis to Date

Performance analysis is routinely done near the end of a development cycle and

is informed by a number of design and code artifacts. Performance analysis near

the beginning of the development cycle does not have access to this information.

While most development processes already include an uncertainty reduction

characteristic realized through iterative feedback, most performance evaluation

methods do not. There are three methods often used to assess and improve

system performance: code profiling, queuing analysis and modeling and

simulation.

Over the past decade, engineers have begun to address performance issues but

later in the development effort. They often use a cyclic performance-

10

improvement approach. There are two general cases. In the first case, available

code elements are profiled so that code sections consuming larger proportions of

time can be identified. Recoding "slow" sections then changes the performance.

The profiling process is then repeated to quantify the performance of the

modified system. The newly measured performance is compared with the

desired performance goal. If the goal is not met, the profile-rewrite cycle

continues until no further improvement seems possible [WiKe00]. In those

cases, if performance is still considered to be unacceptable, system redesign or

architectural changes provide the next target for making improvement [Bulk00].

In the second general case, the anticipated detailed design is analyzed using

either queuing theory or simulation. These closely related methods are usually

applied after the architecture-selection decision has been made. For both

queuing models and simulation, detailed system models are usually created.

These models typically require detailed design information, e.g., component

topologies, data flow rates, queuing model strategies, execution time constants,

etc. to characterize the proposed system effectively. The queuing or simulation

approaches target performance estimation earlier than those that actually make

measurements on code, but the required information is still not available until late

in the development's detailed design phase. At this point, the developer can

choose to wait for detailed design values to become available, or can provide

estimates of structure and performance without knowing these details. In the first

11

case, waiting until later in the design process, the evaluation is delayed. In the

second case, uncertainties are injected into the evaluation process. While the

estimates such queuing and simulation models produce could give insight into

performance uncertainty, there is seldom an attempt to characterize it.

1.5 Architecture Performance Evaluation Options

In selecting an approach to evaluate architecture performance, there are at least

three ways to proceed. From a conceptual point of view, if given sufficient

resources, all implementations could be instantiated and tested across the

anticipated input datasets to provide data for making performance comparisons

(using a suitable performance metric). This technique would identify the

architecture which produced the best performing implementation. This approach

is impractical. Even for a small system, the set of implementations can be very

large. At the opposite extreme, a single architecture could be selected (perhaps

at random) to be developed. This is routinely what is done as state-of-the-art

today. A third and more beneficial approach would be to perform an analysis on

each of the alternative architectures to approximate the likely performance

attributes of each, then base architecture selection on these estimated values.

By necessity such an analysis would have to speculate or assume the

assignment of functions to components, the internals of component design,

specify details of implementation, etc. Since the true design decisions have not

12

yet been made, such estimates could provide a viable way to proceed. In cases

where there is additional information, informed decisions can be made to

eliminate early implementations that are projected to perform less well, thus

pruning the previously described tree, Figure 1.2. While this approach can

reduce the size of the potential outcome space it does not routinely identify a

single architecture as being the best to select.

1.6 Performance Analysis Improvement Strategy

This work focuses on those systems whose development success is closely tied

to meeting performance expectations. The ability to make a good architecture-

selection decision is critical to achieving that outcome. Moving performance

analysis earlier in the development process requires these performance

uncertainties to be managed in a structured manner. This effort proposes a

methodology for making architecture-selection decisions in a way that should

reduce overall system development costs by reducing architecture-selection-risk.

It is the early characterization of the system's performance that is the focus of

this research effort. Since there are many uncertainties associated with the

development, having a structured process to manage these uncertainties would

be beneficial.

At architecture-design time there is no way to determine what the actual

implementation will be. There is also no way to tell how well the actual

13

implementation will perform. Hence, a probabilistic approach is appropriate. The

assertion made here is that the performance of the "to be" instantiated system

can be viewed as a random variable which is characterized by a performance

probability density function (pdf). This random variable can be thought of as the

rule for mapping an event (architecture selected) to a number (the actual

performance of system built constrained by the architecture selected). This

probabilistic approach allows development planners to include not only design

performance uncertainties, but uncertainties associated with the teams

performing activities and the processes used to create and implement the

designs. Taking this approach, the performance-concerned developer can

reduce the risk of selecting an architecture which can not meet the desired

performance specifications by assessing the probability that a typical

implementation of one particular architecture will perform better than a typical

implementation of another.

1.7 Work Focus

This work concentrates on performance-centric development process

improvements and focuses on how to improve the architecture-selection process

as this will reduce costs associated with fixing performance problems that pop up

later in the development that result from poor architecture selection. Any method

proposed to replace existing performance evaluation techniques must have

attributes that make it better than current practice. Based on a review of related

14

work as discussed in chapter two, the most important attributes can be

enumerated in four categories.

 1) Earliness in the design process

Executing performance analysis earlier in the development process is considered

beneficial as it reduces performance-failure risk, and can thereby reduce costs.

Substantial work has already been done on evaluating designs (and hence

indirectly architectures) late in the development process when code has already

been delivered. Much less work has been done for the design phase and still

less addresses analysis at architecture design time.

The method proposed here addresses performance-goal-achievement by

managing uncertainty directly. The approach can be applied early in the

development when there is less detailed information available. As the final

design matures some of this uncertainty will be eliminated, while other

uncertainties like system load may remain (usage of the system may change

over time). As the design evolves from architectural design through detailed

design, the characteristics of components and connections will be resolved and

the system performance uncertainty will be reduced.

15

 2) Accommodation of all available data

The methodology developed should be able to accommodate both actual

performance values and performance estimates for cases where true values are

unknown. Estimates are most useful before decisions have been made about

the precise performance of platforms, communications paths, algorithms, etc.

The process should manage both the estimated values and the value

uncertainties to ensure that final performance comparisons depict meaningful

performance differences. It should be sufficient to use relative performance

estimates for alternatives' performance descriptions, since there can be a large

number of potentially good solutions to be evaluated.

 3) Repeatability

The process must be repeatable. The results obtained should not depend on the

skills of the analyst. The results should be consistent for different executions

using a particular dataset. It must produce predictable and understandable

results.

 4) Practicality

In complex systems, there are a large number of decisions that need to be made.

As each decision is made, the uncertainty in system performance is reduced.

16

The decision making process employed must avoid introducing exhaustive state-

space searches which are often not feasible [AABI00] when large numbers of

options must be considered. As well, the method adopted should be practical

and useful to a broad set of analysts.

1.8 Research Strategy

State-of-the-art methods used for performance management might be referred to

as "continuously optimistic." One follows good design guidelines in generating

the solution and then checks to see how well that design performs once

implemented. For software intensive systems, performance shortcomings are

handled through redesign or recode and re-measurement efforts. For the

broader system design problem, reconfiguration of elements and modification to

the data-flow topology can provide improvements. The method developed in this

research takes an "estimate before build" approach. It is patterned on the

INCOSE [ICSE07] and Department of Defense Systems Engineering processes

[DODI08] but modifies certain activities to account for the estimation and

management of uncertainties throughout the development. While performance

budgeting can be done either top-down or bottom-up, the method developed as

part of this research uses the bottom-up approach since those mathematical

tools are more tractable.

17

Conceptually the process is simple. In all of these approaches, top level system

requirements are defined and then the budgets for critical quantities are allocated

to subsystems. In a weapons system development, the quantities budgeted

might include system weight, power, heat dissipation, etc. In the method

described in this research, it is delay that is allocated across the architectural

components and connections of each of the alternative solutions. This allocation

is done in a hierarchical manner. At any particular level these components may

in turn be composed of sub-elements. When that is the case, performance

budgets are again sub-allocated to these smaller elements. This process

continues until all elements have been assigned a performance allocation. After

each allocation, the provided techniques are used to combine assigned budgets

along with their uncertainties to ensure end-to-end or total system performance

meets the goal. At the lowest level, individual components are built or selected

to meet these derived performance budgets. There are two difficulties: 1) there

is more than one way to split up a performance budget across a set of elements,

and 2) in many developments, some components may already exist, and the

performance of the top-down approach needs to end up with a budgeted value

that matches the performance values of those existing components when the

analysis is complete.

An alternative approach using the same tools is possible. The performance of

the lowest elements in the architecture design can be characterized and the

18

performance of the overall system built up incrementally from such descriptions.

When performance is estimated this way, one does not know in advance whether

that the requested system requirements will be met.

Both of these sets of problems can be solved by redefining the problem to be one

based on anticipating performance differences between architecture options. My

research extends current performance evaluation methods and concepts by

considering the uncertainties in performance estimates of components and

connections and provides methods of combining these uncertainty values into an

overall, end-to-end estimate of system performance in a relative way so that

comparisons can be made between alternatives.

The management of uncertainties when done as proposed can further assist the

developer in analyzing implementation costs (work that is outside the scope of

this effort). The Bayes Criteria [MeCo78] describes how to combine alternative

cost with the probabilities of selecting those alternatives. A Bayes approach

could leverage the probabilistic descriptions developed here and provide a basis

for future work directed at further reducing the cost of system developments by

balancing performance risk against cost.

19

1.9 Definitions

There are multiple definitions of architecture and performance in common use as

related to analysis in this field. These terms as used for this research are defined

next.

Architecture. A system architecture is classically defined as the enumerated set

of entities (that perform system functions), how they are connected, and how

they evolve with time [DODA97]. It routinely contains at a minimum, identification

of the components or large-grain pieces of the system, as well as descriptions of

the connections between those pieces. The quality of an architecture is directly

related to its ability to constrain eventual implementation options to ones that are

likely to meet both the desired quality goals and the functional requirements.

Architectures are intended to maximize the flexibility of developers to make lower

level design decisions while ensuring that these developers can meet system

quality and functional requirements. This view is consistent with many others like

[FrBo98] [UcYa00] which identify components, connectors, and ports as key

features.

Performance. Performance is defined to be the number of events of interest that

occur per unit of time. It is either the rate at which a set of activities is completed,

or the time required to complete a specific activity. This intentionally broad

definition allows us to qualify the performance of a system differently depending

20

on the types of information that may be available to characterize the system

elements and the related uncertainties associated with activity performance

descriptions.

Since much of this work focuses on probabilistic results and the manipulation of

functions of random variables, the following definitions are provided. While these

terms have other meanings in the computer science field, they are used in the

following context with these definitions.

Experiment. An experiment is an activity that produces an identifiable outcome.

Common experiments include the roll of a die, the toss of a dart, etc. In this

context, the experiment is routinely the selection of an architecture. The

associated result or outcome is the performance value that this selected

architecture will have based on an input selected from the feasible system inputs.

For this work, the experiment or the space of all outcomes is the closed interval

of the real line [0, X], where X is some large rational number.

Event. An event is a collection of outcomes to which we can assign probabilities.

The set of events constitutes a mathematical field. In the context of this work, all

"sensible" outcomes will qualify as events [Papo65]. There exist several

technical restrictions on what can be an event. These restrictions are not listed

here since for architecture selection purposes they are not important.

21

1.10 Research Approach

This dissertation provides a method for improving the system development

process by identifying a technique for making quantitative comparative

performance assessments of alternative system architectures early in the

development life cycle.

The problem statement for this effort is:

There are many methods that can be used to evaluate system performance.

Most are applied to systems that are either at least partially implemented or

where detailed component and connector performance information has been

clearly defined. Approaches based on queuing simulations produce precise

results where the detailed design factors are known. When design parameter

values are not clearly established however, a queuing approach usually has to

resort to checking combinations of sets of possible values. This assures that

existing uncertainty can be reflected in the end-to-end performance estimates

which will vary depending on the outcomes future design decisions. Examining

large numbers of cases takes time. There aren’t generally accepted techniques

that can directly manage the performance uncertainty that exists at architecture

selection time. Statistical techniques exist that could be used to reduce the

22

number of solution options to be analyzed and as such should reduce the time

required for analysis before the architecture selection is made.

The thesis statement for this research is:

Consider a set of proposed system architecture options (architectural designs)

and a probabilistic description of the performance of the architectural elements

that make up those designs. For each ordered pair of architectural options in

that set, one can calculate an estimate of the probability that the first option will

perform better than the second option should both options be implemented.

In executing this research, the following activities were conducted:

• Five fundamental functions were identified for use in architecture

performance modeling.

• Algorithms were implemented to evaluate each of these five functions for

quasi-arbitrary descriptions of performance uncertainties.

23

• A method was developed to generate a probabilistic description of the

performance of an architecture based on combining the descriptions of the

constituent elements using the five functions.

• A method was derived to compute the probability that one particular

architectural description will produce an implementation which will perform

better than a similar implementation of an alternative architecture.

• The method was applied to a small but realistic three-tier information

management example problem.

• The method was applied to two more complex architecture examples to

demonstrate the analysis required to identify and characterize architecture

component and connection uncertainties.

• Discrete element simulations were run on connection and processing

elements. These simulations established that one can estimate an

element's mean performance consistent with theory. It further established

that one can estimate the element performance uncertainty around the

mean. This second descriptive characterization is not routinely available

through analytic-closed-form efforts.

24

1.11 Assumptions

The analysis process is based on a number of assumptions:

1) Components – component performance does not vary over time, and the

conversion of data from input to output can be characterized by a single

probability density function.

2) Connectors – the delay of connectors is approximated by the quotient of

the probability density function for the size of transmitted elements

divided by the probabilistic description of the link data rate.

3) Contention for resources can be simulated by subtracting resources used

by other tasks (both computational and transmission) from those

available for the task under analysis.

4) Congestion/bottlenecks - . When network congestion or bottlenecks can

be anticipated, they are included in the low level performance

descriptions of the connectors. When they are not or cannot be

anticipated, they will not be reflected in the performance

characterizations.

25

1.12 Organization

Chapter one presented the context of the problem and reason for addressing this

research goal as well as the research approach. Chapter two surveys related

work in this area. Chapter three considers the architecture selection problem as

a type of probabilistic experiment. Uncertainties to be expected are identified

and the underlying performance design problem is characterized. Chapter four

assumes that the uncertainties of the architecture selection process can be

characterized as a probability density function. It then explains how to compare

architecture alternatives in terms of their likelihood of performing better than

other alternatives. Chapter five explains how to combine the probability density

functions (pdfs) describing the performance of subsystems into a probability

density function which describes the performance of the entire architecture

alternative. Chapter six uses a classic three tier database problem as an

example of the techniques described in chapters four and five. Chapter seven

takes two more realistic problems and applies the described techniques to

identify which of several alternative architectures perform better. Chapter eight

describes the CAPE tool built as part of this research. Chapter 9 describes the

validation methods used and a preliminary error bound for the architecture

comparison metric. Chapter ten identifies the research contributions and future

research directions.

26

Chapter 2

2 Related Work .

This system performance research effort is largely built upon established results

in four areas: foundational work in software architecture, architecture description

languages, performance evaluation requirements and performance evaluation

analysis. Much of the work discussed here provided the rationale for the

approach taken in this research effort. Other portions of the work discussed are

indicative of the amount of active research ongoing with regard to performance

evaluation (much of it architecture related) as well as suggesting that the

approach documented here has not already been attempted.

2.1 Software Architecture Foundational Work

A 1992 paper written by Perry and Wolf [PeWo92] began the study of software

architectures as a significant factor in creating quality software. This paper

addressed the elements, form and rationale for using a particular structure to

develop a software capability. This is the start of the association of quality

attributes (performance) with architectural elements. In the mid-1990s, papers

on the topic were published in numbers. The theme of these papers was that

software projects have architectures, either generated intentionally or evolved

27

from the detailed system design, and that architectures can be categorized into a

relatively small number of styles [BaCK98]. Some researchers formalized the

description of those architectural styles [AlGa94] [GaPZ94]. These styles provide

a categorization scheme for identifying useful elements when considering

performance contributions. Shortly thereafter Garlan and Shaw published a

seminal work [GaSh96] which began to enumerate software architectural styles

and the quality attributes of those styles. The identification or classification of

architecture styles is important because it provides a fundamental way to look at

the elements of a software system and hence points to the fundamental entities

that must be considered when performance is an important consideration.

Substantial analysis continues as investigators study the relationship between

architectural styles and software quality. Much of the work that followed focused

on Architecture Description Languages in an attempt to make the definition and

manipulation of architectures more precise.

2.2 Architecture Description Languages

Precise descriptions of architectures, or perhaps more accurately the fact that

architectural descriptions are currently not precise with respect to performance

concerns, is critical to establishing an appropriate method for analysis. Efforts

were made to increase the precision of the architectural descriptions. The

concept of an Architectural Description Language (ADL) was developed to

provide a basis for capturing the essential elements and relationships between

28

those elements in formal languages to express software architectural concepts

and structures. The role of the ADL is to express the software structure in a

notation appropriate for manipulation by supporting tools. These languages

focus on the large-scale or high-level design and provide developers and

designers with an analysis-appropriate description of the system under study.

Their value rests in their ability to clearly define relationships between entities

and to provide a common understanding among readers of the underlying

"structure" of the concept to be presented. The languages make it possible to

explore the functional properties of architectures and provide a means to

concisely define the characteristics of system elements in a precise and

expressive manner.

There are a number of ADLs, each focusing on a slightly different aspect of

overarching architectural concerns. A survey of architectural description

languages is covered in [Clem96]. Some of the more well-known languages

include: ACME [GaMW97], Aesop [GaAO94] [Garl95], C2 [MORT96], Gestalt,

LILEANNA [Trac93], MetaH [Vest96], SADL [MoRi97], UniCon [SDK+95],

Weaves [GoRa91], Regis [MaDK94], Rapide [LKA+95] [LuVe95], Darwin

[Darw94], and Wright [GaSh96] [Alle97]. Some, like Rapide, are executable,

while most are not. Nearly all include analysis capabilities addressing specific

architectural concerns. None of these ADLs specifically addresses performance

issues, although each reference gives insight into places where performance

29

related information could be inserted into a specification so that they would be

more useful in studying performance issues.

2.3 System Performance Evaluation

The earliest work on performance associated with software architectures focused

on the large grain issues relating to interoperability, the matching of interfaces

and the extent to which systems composed of parts could function properly. A

paper by Garlan, Allen and Ockerbloom [GaAO95] is characteristic and

addresses the impact of architectural considerations on system performance in a

fundamental way. Their analysis focuses on the types of mismatches that can

occur between components and connectors and how these mismatches can

remain undiscovered until well into the development life cycle. Their technique

concentrates on identifying problems, (i.e., assumptions about component

characteristics, connectors, and the global architectural structure) before they

become part of the design. The authors discuss methods to avoid making

improper assumptions about these architectural elements. They provide insight

into early interface indicators that may warn of failure when the elements are

assembled. Unfortunately, the paper does not address a specific methodology

for correcting these types of deficiencies. There are many other papers of this

type. They generally avoid addressing performance in terms of metrics or in a

numerically quantifiable way. Some efforts continue to analyze potential

30

interface mismatches and other model checking techniques in work done by

Campos and Merseguer [CaMe06].

In 2004, Balsamo et. al. summarized the state of performance work in published

approaches focusing on three evaluation factors: earliness of integration, model

used for performance estimation and the amount of automation available.

Performance work had progressed from identifying failures to the actual

prediction of performance indices such as response time, throughput and

utilization. For my research, the first two are of most interest. The paper

[BaMI04] exposes the principal research techniques, and suggests that the

benefits of probabilistic analysis show promise. The survey divides the work into

models and evaluation methods. The models fell largely into four categories:

queuing networks, stochastic Petri nets, stochastic process algebra, and

simulation models. Evaluation methods were divided into analytical techniques

and simulation.

2.3.1 Queuing Networks

Queuing networks characterize the proposed solution of a number of researchers

in this area. In early work, CHAM (CHemical Abstract Machine) [BaIM98]

[CoIW99] employs an N-layer Queuing Network Model and was used to estimate

performance based on a network automatically derived from an architecture

description language. The ATLAS Transformation Language can be used to

31

automatically map UML models into queuing networks [CoGM08]. With the

growing acceptance of UML, recent efforts started to focus on the mapping of

Message Sequence Chart descriptions of architectures to queuing networks

[AABI00]. This work is one of the reasons for suggesting that UML sequence

diagrams could be effective in a probabilistic analysis. Similarly, UML diagrams

were automatically and consistently translated into queuing-network-based

performance models in [CoMi00] and [Ambr05]. [BaMa05] started with annotated

UML use cases, activity and deployment diagrams to create performance models

based on multi-chain and multi-class Queuing Networks (QN) annotated

according to the UML Profile for Schedulability, Performance and Time

Specification. Other attempts have been made to use this specification to

construct models to make quantitative predictions regarding performance

characteristics. These efforts demonstrated generating Layered Queuing

Network (LQN) performance models based on a graph-grammar and a UML

model annotated with performance information [PeSh02]. An XSLT approach to

transform UML artifacts into LQNs is described in [GuPe02]. Some have

attempted to move the evaluation of performance even earlier than architecture-

selection time back to scenario definition time. This is the case with the Scenario

to Performance (S2P) algorithm described in [PeWo05] which transforms

scenario models automatically into performance models and uses the

LQNGenerator tool to build layered queuing network performance models.

32

2.3.2 Petri Nets

Petri nets come in a number of forms and can be used for modeling and

evaluating software architecture performance. Colored Petri Nets are used in

[XuKu98] to model a mobile-phone-family execution architecture and

characterize both the time and space performance of a large software intensive

system. Interval Time Petri Nets (Petri Nets that have random firing time

intervals) are used for a similar purpose in [NaBG09]. PEPA nets, a type of

colored stochastic Petri nets, are used with stochastic process algebras to derive

steady state performance measures in [GHKR04] and in [CGHT99]. As part of a

larger security analysis effort, Generalized Stochastic Petri Nets (GSPNs) are

used in [CoTr08] to inform on the performance impacts of security related

architectural decisions. Additionally, [Cort05] discusses the need for

performance anthologies based on evidence from operational profiles (annotating

performance parameters onto software models) and their translation into

Stochastic Petri Nets to quantify performance. Several UML diagram types

provide information for the Software Performance Engineering process which is

capable of generating GSPNs as described in [LoMC04]. Similarly state charts

and sequence diagrams provide the input to automatically generated GSPNs in

[BeDM02]. Analysis using GSPNs to generate worst and best case system

performance is discussed in [NaBG09].

33

2.3.3 Stochastic Process Algebras

Stochastic process algebras provide another strategy for addressing the

performance estimation task. In [LTK+02], UML diagrams provide information to

characterize a generalized semi-Markov process used to do performance

analysis. They are also used in TIPPtool [HHK+00] to address compositional

performance modeling. The architecture description language AEMPA

characterizes the syntax and semantics of architecture descriptions in [BeCD00]

and is used for performance analysis.

2.3.4 Simulation Models

Simulation models are the basis of a number of different approaches that do not

fit neatly into the above categories. Initially mean-value-analysis was used in

performance modeling of combined computer-communication systems. Later,

simulations were used to generate performance intervals which better

characterized systems than these single mean value numbers [LuHa98]. A

simulation environment called Arena has been used with UML data to simulate

performance in a meta-modeling environment [TKMG08]. In [SaJP05] the

simulation output is used to inform where improvements can be made in the

architecture. [BeKR07] addresses a method to parameterize architectural

features using the Palladio Component Model, a domain specific modeling

language, to gain insight into performance. Activity diagrams are simulated to

characterize performance with both exponentially distributed and deterministic

34

delays in [LTK+02]. Indicative of efforts considering hardware parameters before

design and relating them to performance expectations is [Alsa04a] where disk

and CPU delays drive architectural analysis. New UML stereotypes are

introduced in [AmCI01] where use case, activity and deployment diagrams

representing performance, complete the architecture performance description.

An algorithm for deriving a simulation model from an annotated UML software

architecture is explained in [BaMa03]. Sequence diagrams and state charts are

used to represent execution paths in [BeDM02] where performance estimates

are derived.

2.3.5 Combined Models

Combining models is common as well. [BaBS02] uses Stochastic Process

Algebras and Queuing Networks to leverage formal techniques and verify

functional properties. A component-based predictive analysis built on stochastic

process algebras and simulation forms a system called NICE that addresses

communications performance concerns [BMMI04].

2.3.6 Component-based Architectures

Component-based architectures are often handled a bit differently. With

components, the estimation problem may be simpler particularly if there is some

experimental information available. A specification might already exist for

estimating performance even before components have been built. This need to

35

determine or estimate the performance of elements is consistent with the

information needs of this research's proposed approach. Establishment of a set

of scenarios based on Use Cases to enumerate the sequence of tasks or

component responsibilities to be performed by the system is covered in [PlFa02].

Once element characteristics are established, the challenge shifts to one of

combining results to describe a complete system estimate [GrMi04].

Performance estimation with components can be difficult since systems already

built on component technology [CLGL05] have existing interfaces. When these

interfaces do not match parts of the business process, performance degradations

often result. Components routinely have interfaces that reflect their underlying

function; changes in processes will cause changes in component coordination

and performance. How to manage the expected estimate changes that crop up

from a substitution of elements is described in [AaHT02]. The importance of

workload characteristics and service demand is discussed using an XML

Component-Based Modeling Language in the analysis presented in [WuXi04].

Executable models are described in [WHKT08] where the authors identify a set

of architectures with a component-based modeling language called COLA.

Component based design benchmarking and profiling are explained in [CLGL05]

which includes case studies in CORBA and J2EE. Combining RT-UML and CB-

SPE (an automated approach for composing elements that addresses

performance engineering) [BeMi04], provides insight into methods for

parameterizing performance as well as combining elements. COTS-Aware

36

Requirements Engineering and Software Architecting, (CARE/SA) [ChCo05] is

introduced as a method to iteratively match, rank, and select COTS components

and subsequently aggregate their functional and non-functional performance into

an architecture. Other informative but more generic approaches are included in

[BFG+04] and [CoTr08] which address using patterns in a building block

approach to give insight into architecture performance.

Once a model has been established, there remains the need to populate that

model with information tailoring it to the specific architecture being evaluated. A

number of contributions can assist in this process. Model information exchange

formats have been designed to facilitate both the flexibility of bringing different

models together, as well as helping to define the minimal set of characterizing

parameters that are needed. A useful exchange schema is discussed in

[MoSW08] and descriptions of XML interchange formats are discussed in

[SLC+05]. These approaches suggest that, in the future, performance evaluation

tools may be combined in a plug-and-play manner. Others have extended

architecture description languages to include the ability to maintain performance

data. A review of different notations or languages useful for representing

performance characteristics exists in [CoMI03]. A number of UML extensions

have been proposed: Performance Aware Software Development (PASD)

includes information on resource demand budgets. Others use UML 2.0

sequence diagrams and the newer structured control constructs, like

37

CombinedFragments (an expression for sets of interaction fragments), express

concurrency [ShVN08] or use the composite structure diagram [PSG+09]. State

charts are refined in [LoMC04] and UML 2.0 versions of activity diagrams are

demonstrated in [CGH+04]. Service composition processes are described using

Business Process Execution Language for Web Services in [AmBo07].

2.3.7 Architecture Design Domain Specific Considerations

The Earth Observing System (EOS) Data and Information System (EOSDIS) is a

geographically-distributed, large-scale, data-intensive system in [GoMK95].

EOSDIS has been used as an example to describe the challenges of satisfying

functional and performance requirements. A queuing network model approach

was taken as the basis for doing architecture performance design of large-scale

distributed data intensive information systems. Focusing on meeting

performance requirements in the architecture design of distributed client/server

applications, [MeGo00] advocates integrating design and performance modeling

activities using software performance engineering language. Component service

demand parameters are derived by the compiler for this language from the

system specification. The work shows results from using this analysis technique

and shows how performance concerns can he informed by this type of design

analysis. The design of reusable component interconnection in client/server

systems is investigated in [GoMS01]. Component interconnection patterns

describe synchronous, asynchronous, and brokered communication between

38

client and server using Unified Modeling Language (UML). The approach

demonstrates the benefits of understanding component interaction patterns early

in the design. Alternative client server communications strategies are described

using Unified Modeling Language (UML) for reusable component interconnection

in client/server systems. Use of these interconnection patterns in [GoMe00]

shows the design benefit when implementing new distributed applications.

[PeGo04] applies colored Petri net (CPN) templates and UML artifacts to

concurrent software architectures behavioral modeling and other concurrent

objects in [PeGo06]. They consider dynamic object-oriented architectures and

describe the functional flow used to analyze the architecture’s concurrent

behavior. They show how design quality can be improved prior to

implementation based on the behavioral properties. Real-time, reactive

concurrent architecture designs are considered in [PeGo06]. The approach

presented addresses concurrent object-oriented software designs mapped into

stereotyped UML diagrams and transformed into reusable colored Petri net

(CPN) templates. These CPNs are used to model then analyze behavioral

properties of the software architecture. A Self-Architecting Software System

called SASSY is a framework that helps domain experts take a system

requirements specification and generates a corresponding base architecture.

From this base architecture, SASSY derives another architecture that optimizes a

multidimensional system utility function based on alternative QoS metrics

39

[MEG+10]. Problems and solutions for estimating missing service demand and

other parameters needed for queuing models is covered in [Mena08].

2.4 Other Domain Specific Concerns

Finally, there is a significant body of work related to performance in domain-

specific architectures. This work on general analysis techniques, benefits from

extending some domain specific methods currently in use. Some of the domain

specific ideas leading to these extensions are listed in Table 2.1.

Table 2.1 Performance and Domain Specific Architectures

megaservices - large-scale applications [LiLW02]

real-time telecommunications applications [LuJR98]

distributed server systems [TWG+00]

defining a performance engineering maturity model [ScSR00]

software product lines [TaPe08]

real time and embedded systems [TrGi08]

reliability estimation [ShTr05]

performance requirements [HoWi07]

static concurrency analysis [NACO97]

Topic Reference

megaservices - large-scale applications [LiLW02]

real-time telecommunications applications [LuJR98]

distributed server systems [TWG+00]

defining a performance engineering maturity model [ScSR00]

software product lines [TaPe08]

real time and embedded systems [TrGi08]

reliability estimation [ShTr05]

performance requirements [HoWi07]

static concurrency analysis [NACO97]

Topic ReferenceTopic Reference

40

Table 2.1 Performance and Domain Specific Architectures continued

RT-UML [GrMi04]

managing quality attributes [GrBo98]

real-time systems and work-flow [EsWi01]

distributed and parallel computing [FaSS00]

hosting centers or "data centers“ [DeAM08]

Java 2 Enterprise Edition (J2EE) or the Common
Object Request Broker Architecture (CORBA)

[DePE04]

testing large-scale multi-tiered collaboration
products

resource-sharing systems as in large-scale
computers with client-server architectures

recording of performance data system features and
application details [Verl06]

[HeHK02]

[GuSh08]

Topic Reference

RT-UML [GrMi04]

managing quality attributes [GrBo98]

real-time systems and work-flow [EsWi01]

distributed and parallel computing [FaSS00]

hosting centers or "data centers“ [DeAM08]

Java 2 Enterprise Edition (J2EE) or the Common
Object Request Broker Architecture (CORBA)

[DePE04]

testing large-scale multi-tiered collaboration
products

resource-sharing systems as in large-scale
computers with client-server architectures

recording of performance data system features and
application details [Verl06]

[HeHK02]

[GuSh08]

RT-UML [GrMi04]

managing quality attributes [GrBo98]

real-time systems and work-flow [EsWi01]

distributed and parallel computing [FaSS00]

hosting centers or "data centers“ [DeAM08]

Java 2 Enterprise Edition (J2EE) or the Common
Object Request Broker Architecture (CORBA)

[DePE04]

testing large-scale multi-tiered collaboration
products

resource-sharing systems as in large-scale
computers with client-server architectures

recording of performance data system features and
application details [Verl06]

[HeHK02]

[GuSh08]
testing large-scale multi-tiered collaboration
products

resource-sharing systems as in large-scale
computers with client-server architectures

recording of performance data system features and
application details [Verl06][Verl06]

[HeHK02][HeHK02]

[GuSh08][GuSh08]

Topic ReferenceTopic Reference

2.5 Identifying Good Attributes for a Performance Analysis Approach

Table 2.2 clarifies the performance attribute categories previously identified and

list many of the specific desirable traits that would characterize a good

performance analysis process. The topics listed in Table 2.2 were generated

during the review of the literature done for this work. The identified references

are the sources that came to light during this research, and there is no attempt

41

made here to identify them as either the first or only source of each idea. The

research developed in this effort attempts to incorporate at least the spirit if not

the actual content of each of these desirable attributes.

In Table 2.2, the “Achieved” column represents methodology attribute attainment:

� �

�

�

well addressed here

more could be done in the future

only partially addressed here

not addressed

Attribute attainment in my work:

� �

�

�

well addressed here

more could be done in the future

only partially addressed here

not addressed

Attribute attainment in my work:

� �

�

�

well addressed here

more could be done in the future

only partially addressed here

not addressed

� �

�

�

well addressed here

more could be done in the future

only partially addressed here

not addressed

Attribute attainment in my work:

Table 2.2 Desirable approach attributes

provide the benefits of executable UML designs with
supplemental data for further analysis

expose the benefits of difficult mathematical constructs
without demanding study in these areas

[TKMG08]

[PSG+09]

�

� �

identify and characterize workload data [AKLW02]

reduce complexity to realistic levels

[ShJT05]

[AABI00]

address the architectural level system description

ReferenceDesirable AttributeAchieved

� �

�

� �

avoid building models "by hand" [GuPe05]�
provide the benefits of executable UML designs with
supplemental data for further analysis

expose the benefits of difficult mathematical constructs
without demanding study in these areas

[TKMG08]

[PSG+09]

�

� �

identify and characterize workload data [AKLW02]

reduce complexity to realistic levels

[ShJT05]

[AABI00]

address the architectural level system description

ReferenceDesirable AttributeAchieved

� �

�

� �

avoid building models "by hand" [GuPe05]�

42

Table 2.2 Desirable approach attributes continued

parameterize loading factors which influence
performance like workload variability

expose performance properties in a formal framework

use automated transformations of existing description
techniques

address granular quantities like response times,
throughput, scalability , capacity, etc

[IyRo02]

[BeCD00]

[CoGM08]

[DePE04]

addressed quality of service early in the stages of
development

[BaMa03]

�

�

� �

bridge the gap between current UML-based tools and
analysis techniques already established

[GuPe05]

include information additional to that which is routinely
expressed in UML architecture artifacts

use scenarios to characterize the environment of a

system

augment data processing characterizations to model

both communications and processing delays

[Hoeb00]

[PeWo02]

[Verd07]

�

�

�

�

ReferenceDesirable AttributeAchieved

be able to identify sub-system specification conflicts in
component interactions

be executable by non-experts in performance analysis

architectural decisions should inform proposed

solutions to meet user performance requirements

[CoIW99]

[PSG+09]

[BFG+04]

�

�

be compatible or interoperable with existing software
development standards

[AABI00]

parameterize loading factors which influence
performance like workload variability

expose performance properties in a formal framework

use automated transformations of existing description
techniques

address granular quantities like response times,
throughput, scalability , capacity, etc

[IyRo02]

[BeCD00]

[CoGM08]

[DePE04]

addressed quality of service early in the stages of
development

[BaMa03]

�

�

� �

bridge the gap between current UML-based tools and
analysis techniques already established

[GuPe05]

include information additional to that which is routinely
expressed in UML architecture artifacts

use scenarios to characterize the environment of a

system

augment data processing characterizations to model

both communications and processing delays

[Hoeb00]

[PeWo02]

[Verd07]

�

�

�

�

ReferenceDesirable AttributeAchieved

be able to identify sub-system specification conflicts in
component interactions

be executable by non-experts in performance analysis

architectural decisions should inform proposed

solutions to meet user performance requirements

[CoIW99]

[PSG+09]

[BFG+04]

�

�

be compatible or interoperable with existing software
development standards

[AABI00]

43

Table 2.2 Desirable approach attributes continued

ReferenceDesirable AttributeAchieved

leverage available development artifacts routinely

generated in a structured development process

[CoMi00]

[PaSH01]

expose architectural mismatches [BaBS02]

ReferenceDesirable AttributeAchieved

leverage available development artifacts routinely

generated in a structured development process

[CoMi00]

[PaSH01]

expose architectural mismatches [BaBS02]expose architectural mismatches [BaBS02]

2.6 Summary

This section reviewed the Architecture Description Language foundations of

architecture analysis. These formal methods for describing architectures bring

increased clarity to the design process, however there is no ADL available today

which provides for the evaluation of performance. Many tools do exist for the

formulation of performance estimates later in the design process. These include

but are not limited to: queuing networks, petri nets, stochastic process algebras,

simulation models, combined models, as well as component-based architecture

considerations. The chapter concludes with descriptions of references

addressing domain specific architecture performance issues, and a listing of the

desirable attributes that a method or process should support to effectively

evaluate performance at architecture design time.

44

Chapter 3

3 Architecture Performance Viewed as a Specific Experiment

3.1 Introduction

System developments are generally executed to solve a specific problem or

class of problems. Architectures generated early in the system development

process are established to constrain the proposed solution space of the problem

being solved. One of the benefits of selecting an architecture is that it can

systematically rule-out undesirable solutions while at the same time, it can allow

developers maximal flexibility in defining the implementation. The goal of this

research is to develop a method for making performance-based architecture

selections. Given a set of architecture alternatives, the objective is to select the

architecture which will most likely yield the best performing implementation.

At architecture-selection time there are significant uncertainties. These

uncertainties are caused by unknown factors and influences. They characterize

the development decisions yet to be made for the design and implementation of

the proposed solution. The method developed in this research identifies,

estimates and manages these uncertainties to inform the architecture-selection

decision. In the sections that follow, the term “performance description” will be

45

used to describe the manner in which performance uncertainties are described.

A performance description will always have the form of a probability density

function that states the delay characteristics that a system, architecture or

implementation will be expected to exhibit. It quantifies the performance

uncertainties of the entity under discussion.

The process developed in this research is accomplished in four steps: 1) identify

the uncertainties associated with design and implementation, 2) quantify these

uncertainties, 3) show how to combine these uncertainties into a total or end-to-

end performance description, and 4) use the end-to-end performance description

to compare the performance of architecture alternatives. This chapter identifies

performance uncertainty sources and identifies some factors useful in

characterizing them. Chapter four shows how to compare architecture-

performance descriptions once they have been built. Chapter five shows how to

combine the performance descriptions of components and connectors into higher

level performance descriptions.

3.2 Early Performance Estimation Methodology

As listed above, uncertainty management embodies four steps. In step one, the

significant architectural elements (computing nodes and communications links) of

each of the alternative system architectures are identified. This may be done by

describing each architectural option as a UML diagram. UML collaboration

46

diagrams and sequence diagrams are effective in identifying the processing

steps of a solution, but their use is not a requirement for applying this

methodology. What is important is to generate a list all intermediate products

and their locations. With this list, map the product-locations pairs into graph

nodes, and transitions between product-location pairs into graph edges

representing communications steps.

The second step characterizes the system input using probability density

functions. It establishes the probability that an input of a particular size will be

presented to the system. It characterizes both the computational nodes and

communications edges of the graph as probability density functions. Node

descriptions associate delay probabilities with times for computing a product.

Edge descriptions associate delay probabilities with transferring information.

Step three combines component and connector performance descriptions into

system performance descriptions by searching the graph to identify all paths from

the initial product state to the final product state. Each of these paths is

evaluated (using the performance descriptions established in step two and the

techniques identified in chapter five) to obtain a probability density function that

characterizes each architecture option performance.

Step four makes performance comparisons between the architectural options by

evaluating the performance probability integral (PPI) as described in chapter four

47

to calculate the probability that any one architectural option will perform better

than any other. The architecture selection decision follows directly from this

calculation. It is based on a combination of two factors that go into selecting the

desired architectural alternative: 1) highest probability of performing better, and

2) the spread of performance that is predicted. The "best performing" option is

identified after evaluation of the performance probability integral. The spread of

possible performance estimates is determined by examining the probabilistic

descriptions that result after component contributions have been calculated.

3.3 Defining an Experiment

The uncertainties associated with architectures and the early design decisions

that implement them are not routinely considered in the context of randomness.

After all, the design process is intended to be structured and repeatable. Yet at

some level, since many of the factors that go into making those decisions are not

known and the outcome of the decisions are unknown too, it can be useful think

of each design decision as the outcome or result of running a probabilistic

experiment. In fact in this context, it can be useful to think of the architecture’s

implementation as being the random selection of one specific implementation

from all those which are achievable given the architecture description.

At a high level, let an urn represent a candidate architecture and put balls in that

urn to represent the possible performance values that an implementation built

48

from that architecture might have. In the context of Figure 1.2, each urn of balls

represents an architecture, a sub-tree rooted at the "System Specification and

Design." Each leaf in that sub-tree represents a single implementation of that

architecture. After populating the urn this way, one could generate a

performance histogram of the counts of balls that fall into particular performance

ranges. Such a histogram would show the relative likelihood of any particular

performance level being attained. If one makes the performance bins sufficiently

narrow, and scales the graph appropriately, the result can be mapped directly to

a probability density function describing the likelihood of an architecture

producing an implementation that will perform its task in a specified time.

3.43
fX(t)

Time, t

4.579.19

6.94

9.16

4.30

6.28

1.60

6.46

4.10

4.12

3.26

2.07

1.86

5.83 0.80

9.05

2.61

7.85

3.78

2.89

6.31

6.27

0.97

5.61

9.13

8.34

0.22

5.43

6.77

5.02
4.04

2.690.55

2.43

9.79
0.60

3.90

1.55

4.74

3.53

6.27

7.12

1.62

4.28

4.89

5.13

3.64

6.33
2.57

4.62

3.433.43
fX(t)

Time, t

4.579.19

6.94

9.16

4.30

6.28

1.60

6.46

4.10

4.12

3.26

2.07

1.86

5.83 0.80

9.05

2.61

7.85

3.78

2.89

6.31

6.27

0.97

5.61

9.13

8.34

0.22

5.43

6.77

5.02
4.04

2.690.55

2.43

9.79
0.60

3.90

1.55

4.74

3.53

6.27

7.12

1.62

4.28

4.89

5.13

3.64

6.33
2.57

4.62

4.579.19

6.94

9.16

4.30

6.28

1.60

6.46

4.10

4.12

3.26

2.07

1.86

5.83 0.80

9.05

2.61

7.85

3.78

2.89

6.31

6.27

0.97

5.61

9.13

8.34

0.22

5.43

6.77

5.02
4.04

2.690.55

2.43

9.79
0.60

3.90

1.55

4.74

3.53

6.27

7.12

1.62

4.28

4.89

5.13

3.64

6.33
2.57

4.62

PDF of Performance

3.43
fX(t)

Time, t

4.579.19

6.94

9.16

4.30

6.28

1.60

6.46

4.10

4.12

3.26

2.07

1.86

5.83 0.80

9.05

2.61

7.85

3.78

2.89

6.31

6.27

0.97

5.61

9.13

8.34

0.22

5.43

6.77

5.02
4.04

2.690.55

2.43

9.79
0.60

3.90

1.55

4.74

3.53

6.27

7.12

1.62

4.28

4.89

5.13

3.64

6.33
2.57

4.62

3.433.43
fX(t)

Time, t

4.579.19

6.94

9.16

4.30

6.28

1.60

6.46

4.10

4.12

3.26

2.07

1.86

5.83 0.80

9.05

2.61

7.85

3.78

2.89

6.31

6.27

0.97

5.61

9.13

8.34

0.22

5.43

6.77

5.02
4.04

2.690.55

2.43

9.79
0.60

3.90

1.55

4.74

3.53

6.27

7.12

1.62

4.28

4.89

5.13

3.64

6.33
2.57

4.62

4.579.19

6.94

9.16

4.30

6.28

1.60

6.46

4.10

4.12

3.26

2.07

1.86

5.83 0.80

9.05

2.61

7.85

3.78

2.89

6.31

6.27

0.97

5.61

9.13

8.34

0.22

5.43

6.77

5.02
4.04

2.690.55

2.43

9.79
0.60

3.90

1.55

4.74

3.53

6.27

7.12

1.62

4.28

4.89

5.13

3.64

6.33
2.57

4.62

PDF of Performance

Figure 3.1 Visual description of the experiment

Consider the simplest case first. When there are just two architectures being

considered, the experiment is modeled with just two urns, each holding a set of

49

balls. Each urn is labeled with the name of the architecture it represents. One

would expect that each implementation could process a number of different

input-data-sets. Since changing the input data results in different software

execution paths being executed, one expects that the performance of a particular

implementation depends on the input data that is applied. For each input-data-

set implementation pair, construct a ball with the performance value written on

the outside and add it to the urn. Although not practical, conceptually generate

balls for all performance values for all of the possible input data sets that could

be applied to each implementation of the architecture. This will generate a large

number of balls for each urn since there are many combinations of input data

sets, detailed designs, and capability ranges of implementers, etc.

Now define the architecture-selection decision as the following experiment.

Randomly choose one ball from each of the two urns. Compare the two

performance numbers (on the outside of each ball) and record which urn

(architecture alternative) had the ball (implementation) with the smaller

performance number, i.e., the winner. Replace each ball in its respective urn and

shake up the urns. Repeat this process many times recording the winner each

time. From this table of winners one can determine the likelihood that a

particular architectural choice will perform better than its architectural alternative.

50

The relative frequency that each architectural choice is expected to perform with

some specific amount of delay can be mapped into a probability density function

(pdf). One can then evaluate which architecture of the two has the highest

probability of performing better, with regard to the performance assumptions

made, by using the techniques of chapter four.

3.4 Performance Estimation Fundamentals

The experiment just described helps show how information known about the

implementation strategy and the types of data to be processed by the system can

influence a performance-based architecture selection. The approach can be

made mathematically tractable. To be useful, the sources of uncertainty need to

be examined and a method needs to be identified to develop the probability

density functions that describe these uncertainties. This mapping of uncertainty

to pdfs is routinely situation specific. The uncertainty model documented in

section 3.5 can be used as a guide for finding sources of uncertainty and

characterizing them.

Sources of performance uncertainty (the uncertainty in time associated with

executing a computational activity) exist at every level of processing. At the

hardware level, processor instructions often have data dependent execute cycle

counts [ARM-05] as do assembly language implementations of “multiply”

functions. Algorithm selection, data to be processed and initial algorithm starting

51

point can all affect delay by forcing the execution of alternative branching

conditions. Even availability of resources can be uncertain when competing

services make demands on the underlying hardware elements. Detailed

examples of sources of uncertainty can be found in Appendix B.

3.5 Identifying Uncertainty Sources

Once understood, each uncertainty contribution can be converted into a

probabilistic performance description. This section describes six significant

uncertainty sources routinely encountered during the system development

process. These performance descriptions (in the form of probability density

functions) can be combined to estimate the overall performance uncertainty of a

likely implementation. Chapter five covers the operators needed to combine

these descriptions into the system performance description. Since uncertainty

contributions may change as the development evolves, the mapping of

performance uncertainty to pdf should be done several times throughout the

design process.

3.5.1 Value or Data Based Performance Uncertainties

Even after the detailed design is complete, there is uncertainty in the amount of

time it takes to perform a computation. The time that it takes to execute any

particular function or computation can be computed by combining three

characterizing aspects: 1) the steps required to perform the function, 2) the

52

number of times that each such step is executed, and 3) the time that it takes to

execute each step once. Knowing these three quantities, one can estimate the

duration of the computation. For different instances of the computation however,

these three quantities may have different values. Each may vary based on the

data presented. As a result, each of these three quantities should be

characterized in a probabilistic manner so that the calculation duration can be

estimated over a range of expected input values and operating conditions. This

characterization leads to the function execution duration being described by a

probability density function that relates the function execution duration to the

probability of that duration.

3.5.2 Algorithm-Based Performance Uncertainties

The next uncertainty arises when the computational strategy (the set of

algorithms and the sequence of their execution) is being defined. There is

usually a set of alternate solutions that can provide the desired system functional

behavior. Associated with each alternate solution are a performance value and a

performance uncertainty. An analysis process is routinely executed to determine

the characteristics of alternatives so the superior one can be selected.

Algorithm identification is essentially the development of a sequence of steps that

change inputs into outputs. These steps would include not only system input and

output as in the translation of key clicks into characters and the steps required to

53

change postscript strings into printed matter, but all intermediate process steps.

Data moves through the system and changes form. Two fundamental activities

occur, changing the form of the data and transferring the data from location to

location. In this move-compute-move model, the sizes of intermediate data

products are important as they affect a proposed solution's performance. The

size of the data divided by the effective speed of the source-to-destination

connection yields the time for each communications step (transmission time).

Figure 3.2 characterizes the tradeoff between the computation time to reduce

product size and the transmission time to move a product.

Preparation

Time

Size Transmission Time

An arbitrary solution

TP

TT

Equal time lines

Hypothetical compression

curve performance

Optimal
performance

point

Compression Time Tradeoff
Preparation vs. Transmission

Preparation

Time

Size Transmission Time

An arbitrary solution

TP

TT

Equal time lines

Hypothetical compression

curve performance

Optimal
performance

point

Compression Time Tradeoff
Preparation vs. Transmission

Preparation

Time

Size Transmission Time

An arbitrary solution

TP

TT

Equal time lines

Hypothetical compression

curve performance

Optimal
performance

point

Compression Time Tradeoff
Preparation vs. Transmission

Figure 3.2 Curve characterizing processing and transmission time tradeoff

54

Since the goal is to evaluate relative overall system performance, the challenge

is to analyze both operations (size change and location change) together without

requiring absolute numbers. The connecting parameter between these two

transformations is size-change-per-unit-compute-time. The fractional size-

change-per-unit-of-compute-time is proportional to the effectiveness of the

computing step and also represents the percent of data that no longer needs to

be moved.

bits
reduced

bits
remaining

COMPUTATION:

Fractional delta

tracked through graph =

remaining /

(bits remaining + bits reduced)

Computation

eliminates

the need to send

a piece this size

COMMUNICATION:

Bits sent per unit time

Entire set of bits remaining to be sent

Initial bits in product

Size Modification Tradeoff

bits
reduced

bits
remaining

COMPUTATION:

Fractional delta

tracked through graph =

remaining /

(bits remaining + bits reduced)

Computation

eliminates

the need to send

a piece this size

COMMUNICATION:

Bits sent per unit time

Entire set of bits remaining to be sent

Initial bits in product

Size Modification Tradeoff

bits
reduced

bits
remaining

COMPUTATION:

Fractional delta

tracked through graph =

remaining /

(bits remaining + bits reduced)

Computation

eliminates

the need to send

a piece this size

COMMUNICATION:

Bits sent per unit time

Entire set of bits remaining to be sent

Initial bits in product

Size Modification Tradeoff

Figure 3.3 Computation and communications normalization

55

3.5.3 Topology-Based Performance Uncertainties

Topology-based uncertainties are slightly different. This class of uncertainty

addresses unknowns at a higher level in the design process where the topology

or arrangement of data computations and data communications elements are

being considered as they are combined into alternative data processing

solutions. This uncertainty addresses the large-grain structural differences

among proposed architectures. For any set of architecture options, there are two

types of uncertainty to consider. The first type relates to the degree to which

processing requirements are distributed across processing nodes, i.e., in what

different ways can the computations required be distributed, and across which

and how many processing elements. It is related to amount of parallelism that is

desired in any particular computational solution. It addresses the uncertainty in

the performance differences between different solutions in how the solution

partitions the computation between parts that can be done in parallel and parts

that must be done sequentially. The second uncertainty is similar in some ways

to the algorithmic uncertainty of the last section but at a higher level. It is the

uncertainty in time associated with the fact that a particular computation may

take different paths through the computational nodes. It is concerned about the

size of the performance differences to be experienced caused by proceeding

down different paths at each decision point in the computation plan. These path

decisions may be made based on either data elements associated with the actual

computation, or based on characteristics of the operating environment, i.e., the

56

way that load is distributed based on how busy processing elements are at the

time that a computation must be executed.

3.5.4 Synchronization-Based Performance Uncertainties

The next uncertainty type is the result of synchronization that is required to

ensure correct computation. There are two sources. At the lowest level, there is

the delay caused by constraining execution threads when accessing critical code

sections. This type of performance degradation is required to ensure that

multiple processes or threads do not corrupt the data used by each other during

the execution of a computation. It results in making certain activities atomic. It

as well causes delays as processes or threads may be required to wait for

uncertain amounts of time to access a needed resource. At a higher level,

synchronization addresses how computational progress is controlled ensuring

that for any computational step, all of the inputs are present before a dependent

output is generated. Often a computation requires a set of inputs and each of

these may be generated from a different source. The computation may only

proceed when all of the inputs are present. This uncertainty source accounts for

differences in execution that are encountered when concurrent operations

produce their results with differing delays before they approach synchronization

points.

57

3.5.5 Load-Based Performance Uncertainties

Load-based performance uncertainties are not intended to capture anecdotal

evidence that suggests that some applications fail because of their success.

Such situations might occur when a web application is unexpectedly successful

and is deluged with requests that swamp the implementation causing long

queues and unacceptable service times. Said performance uncertainty is difficult

to predict, and as such difficult to estimate. Load based performance

uncertainties are intended to capture the fact that systems loads can vary over a

range of anticipated values. In the context of this analysis the assumption is

made that the system is being designed for a specific range of loads. The

additional assumption is that components and connections can be built that can

exhibit the delay behaviors that are described in their performance descriptions.

If the implemented component performance varies significantly from that

planned, queues may grow and other system failures may occur. Those cases

are not covered by this analysis. The presumption for this research is that

components and connectors can be built which are consistent with the

performance descriptions.

3.5.6 Sizing-Based Performance Uncertainties

Sizing-based issues include two related uncertainties. The first is raw capacity.

The second is available capacity.

58

Raw capacity addresses the actual processing capability of computational nodes

and the bandwidth or data rate of the communications channels themselves.

When absolute estimates are not known or cannot be projected with known

uncertainty, it may be possible to pick an arbitrary computational standard, e.g.,

Bench Mark Units [SPEC09] and reference all computations (in a relative way) to

this value. Similar estimates are applicable for available capacity.

Available capacity is a downward scaled value of raw capacity and also

addresses the computational capability of nodes and link bandwidths. For

communications links, it includes the performance degradation caused by errors

generated during transmission as well as the consumption of resources by other

channel users. Similarly, computational performance is a downward scaled "raw

power" of the processor and includes the anticipated performance degradation

caused by the competition for CPU resources from other processes. In both

cases, processor cycles and channel bandwidth are often shared with other

subsystems and only a fraction is useful to the calculation of interest. There is an

uncertainty associated with the number and type of competing activities that

leads to uncertainty in the availability of needed resources.

3.6 Summary

This chapter begins by observing that there are many uncertainties in the

development of systems, and at the beginning of the development process these

59

uncertainties can significantly affect performance estimation. These ideas lead

directly to the benefit of characterizing the performance of the implementation of

a system as a random variable, or outcome of a probabilistic experiment. The

section then considers that the implementation of any actual system is the

analysis and design of two types of activities: the transformation of data from

one form to another and the communications of that data from one place to

another. There can be design tradeoffs made between the processing time

required to transform data (leading to an associated change in size) and the time

required to transmit that data to another location. When this tradeoff is

normalized by considering the ratio of bits-to-be-sent-reduction to compute-time-

required to make that reduction, a performance characterization is possible.

The actual development of a system can be considered as an experiment since

the values of the uncertainties encountered lead to a non-determinism in the

outcome. These uncertainties arise from a number of sources. Some come from

the fact that many computations take an amount of time that is related to the

values manipulated. Others come from the fact that different algorithms have

different efficiencies. Still others come from the need for computational

synchronization and the sharing of resources on computing platforms and

communications links. The chapter concludes with a summary of the steps

needed to perform a comparative analysis of the expected performance of an

implementation considering these uncertainties.

60

Chapter 4

4 Comparing Architecture Performance Potential

4.1 Introduction

In this chapter, assume that it is possible to create a complete performance

description (in the form of a probability density function) of an architectural

alternative that includes the established understanding of development

uncertainties. This performance description characterizes the likely performance

of the system and accounts for the cumulative affect of all that is understood

about attributes of the development process (team maturity, requirements clarity,

etc.) and the uncertainties associated with the proposed system implementations

(input data sets allowed, algorithms to be used, system topology, etc.). This

performance description can be built from performance descriptions describing

subcomponents. Chapter five will discuss how to combine component and

connector performance descriptions to generate a single system performance

description. This system performance description characterizes the experiment

that models the architecture-to-implementation performance mapping that is

intended to represent the development process being used.

61

This chapter derives the performance probability integral (PPI) and presents

several examples demonstrating its use. Applying the PPI calculation to a pair of

performance descriptions yields the probability that a randomly selected

implementation of one architecture will perform better than a randomly selected

implementation of a second architecture. The illustrative examples in the chapter

have been chosen to be simple and intuitive. A more interesting but still simple

realistic example will be discussed in chapter six. Chapter seven will

demonstrate the use of the PPI on two more real world examples.

4.2 Deriving a Performance Probability Integral

The performance probability integral is a function that maps two performance

descriptions into a real number (a probability). The first part of this section

demonstrates the mechanics of making performance comparisons. The second

part derives the actual integral to be evaluated. While the demonstration

examples used to show the comparison mechanics assume normal distributions

as argument performance descriptions, the approach is general as will be

demonstrated in the verification examples that follow the integral derivation.

Figure 4.1 shows performance descriptions for two architectures (left) and the

cumulative distribution functions associated with these descriptions (right). Both

functions will be used in the PPI derivation and explanation that follow.

62

Definition: The probability density function (PDF), fX(t), is the relative

likelihood that system X will perform in time t.

Definition: The cumulative distribution function (CDF), FX(t) is the relative

likelihood that system X will perform in less than time t.

Delay Probability Density Function

Time, t (sec)

Architecture A Architecture B

1.0 2.0 3.0 4.0

f(t)
fA(t) fB(t)

Delay Cumulative Distribution Function

Time, t (sec)

Architecture A Architecture B

1.0 2.0 3.0 4.0

F(t)
FA(t) FB(t)

Definition: The probability density function (PDF), fX(t), is the relative

likelihood that system X will perform in time t.

Definition: The cumulative distribution function (CDF), FX(t) is the relative

likelihood that system X will perform in less than time t.

Definition: The probability density function (PDF), fX(t), is the relative

likelihood that system X will perform in time t.

Definition: The cumulative distribution function (CDF), FX(t) is the relative

likelihood that system X will perform in less than time t.

Delay Probability Density Function

Time, t (sec)

Architecture AArchitecture A Architecture BArchitecture B

1.0 2.0 3.0 4.0

f(t)
fA(t) fB(t)

Delay Cumulative Distribution Function

Time, t (sec)

Architecture AArchitecture A Architecture BArchitecture B

1.0 2.0 3.0 4.0

F(t)
FA(t) FB(t)

Figure 4.1 Delay density function and cumulative distribution function

Consider an architecture called “X.” Let fX(t) be the architecture X performance

description, that is the probability density function describing the relative

likelihood that an implementation from architecture X will perform its task in some

amount of time close to t. Let FX(t) be a cumulative distribution function for

system X. The cumulative distribution function, FX(t), is the probability that the

system X will perform its function in less than time t. Density and distribution

functions are related in the standard probabilistic sense. When it is clear to

which system a performance description applies, or when there are more than

one density function or cumulative distribution function on the axis of a graph, the

subscript will be dropped unless confusion would result.

63

Consider two systems where the overall architecture performance description is

represented by the sum of a large number of independent contributions. This

situation is shown in the top left corner of Figure 4.1

The question that needs to be answered is "What is the probability that a

randomly selected implementation from architecture A (red), will perform better

than a randomly selected implementation of architecture B (blue)?" In this

question, “better” means that a system completes its task in less time.

This calculation can be accomplished by breaking the problem into pieces. The

probability that architecture A will produce an implementation that will perform

better than the implementation produced from architecture B for a specific but

arbitrary value t', is the probability that the random variable representing the A

implementation takes on a value less than t' while at the same time, the

independently selected value representing the B implementation is greater than

t'. The shaded regions of Figure 4.2 show this case. Note that the selection of

the A implementation value and the selection of the B implementation value are

two independent events. Since these selections are independent the probability

of the combined event is just the product of the probabilities of the individual

events. Expressed mathematically, this is the product of the integral over the

area where the implementation from A is less than t’ and the integral over the

area where the implementation from B is greater than t'.

64

tProb(A < t’) Prob(B > t’)

1.0 2.0 3.0 4.0t’

f(t)

Region Where A Performs
Better Than B at t’

tProb(A < t’) Prob(B > t’)

1.0 2.0 3.0 4.0t’

f(t)

tProb(A < t’) Prob(B > t’)

1.0 2.0 3.0 4.0t’

f(t)

Region Where A Performs
Better Than B at t’

Figure 4.2 Calculating the probability System A outperforms System B

In equation form this would be:

where fA describes system A's performance and similarly for fB.

Now generalize to the case where t' can take on any value. The probability of the

union of mutually exclusive events is the sum of the probabilities of the individual

events. Hence divide the above problem into a set of mutually exclusive events.

Base the events on the cases where the random variable (representing B’s

performance) is to take on a value in the small interval greater than t’. Now

65

calculate the probability that A's performance will be less than that of B for an

arbitrary but specific value of t = t' when B’s performance is between t’ and t’ +

∆t. Figure 4.2 shows this partition of the time axis into small time intervals, ∆t.

Partitioning the Time Axis

t’ t’+ ∆t t

P(A < t’) P(B)
t ≈ t’

f(t)

t’ t’+ ∆t t

P(A < t’) P(B)
t ≈ t’

f(t)

t’ t’+∆t t

P(A < t’) P(B)
t ≈ t’

f(t)

Partitioning the Time Axis

t’ t’+ ∆t t

P(A < t’) P(B)
t ≈ t’

f(t)

t’ t’+ ∆t t

P(A < t’) P(B)
t ≈ t’

f(t)

t’ t’+∆t t

P(A < t’) P(B)
t ≈ t’

f(t)

t’ t’+ ∆t t

P(A < t’) P(B)
t ≈ t’

f(t)

t’ t’+ ∆t t

P(A < t’) P(B)
t ≈ t’

P(B)
t ≈ t’t ≈ t’

f(t)f(t)

t’ t’+ ∆t t

P(A < t’) P(B)
t ≈ t’

f(t)

t’ t’+ ∆t t

P(A < t’) P(B)
t ≈ t’

P(B)
t ≈ t’t ≈ t’

f(t)f(t)

t’ t’+∆t t

P(A < t’) P(B)
t ≈ t’

f(t)

t’ t’+∆t t

P(A < t’) P(B)
t ≈ t’

P(B)
t ≈ t’t ≈ t’

f(t)f(t)

Figure 4.3 Evaluation of the P(A < t') for increasing values of t'

66

The red shaded area is FA (n∆t) and the thin slice to the right (Prob(A ≈ t' or t’ ≤

B < t’ + ∆t)) is the difference between two successive cumulative distribution

values for system B.

Figure 4.3 shows the evaluation of the P(A < B) for several successive ∆t

intervals. The summation accounts for all of the t’ values since these are

mutually exclusive events.

Note that the approximate probability that B will perform near t' is

Substituting the right hand side of this equation into the one above yields:

Factoring out a non-zero ∆t yields:

67

Now for "sensible" functions the probability density function is defined as:

Taking the limit as ∆t goes to zero leads to: n∆t → t and ∆t → dt.

Upon substitution this leads to the final result, the performance probability

integral (PPI):

This equation enables the calculation of the probability that implementation A will

perform better than implementation B given probabilistic descriptions of the two

Architectures involved. In the remainder of this work, this result will be referred

to as the performance probability integral (PPI).

68

4.3 Verifying the Probabilistic Analysis

To verify the PPI result, four different example cases were analyzed in detail.

Even though some of the examples are simple, they help build intuition about the

PPI calculation. In selecting the examples, an attempt was made to span the

space of likely relationships between the two performance descriptions used as

arguments in calculating the PPI. For each example, the PPI was calculated

using the CAPE tool, described in Chapter 8. The same example was then

simulated using a discrete event simulation (DES). The discrete event simulation

was run a large number of times to collect data for a goodness-of-fit test, since

there is known to be variability in the simulation result. For the first example, a

hypothesis test was done to determine if there was a difference between the

CAPE result and the simulation result. For the remaining examples, a simpler

test was executed. Since it is know that the sample mean of a population (the

varying values obtained from the DES) should be normally distributed around the

true mean a large number of sample means was generated and their distribution

compared to a normal distribution. In all cases, the CAPE result is consistent

with the DES result.

4.4 Example 1 – Comparing Two Normal Performance Descriptions

To make the example specific, consider architecture performance descriptions in

Figure 4.2 again. A’s performance (red) has been estimated as normal with a

mean of 2.0 and a standard deviation of 0.5. B’s performance (blue) is similarly

69

approximated with a normal distribution having mean of 3.0 and standard

deviation of 0.5.1

When these performance descriptions are substituted into the PPI as shown in

Figure 4.3 the result indicates that about 92% of the time A (red) will perform

better than B (blue). Since these performance descriptions are easily

represented mathematically, numerical methods were applied to evaluate the PPI

as well. The numerical integration of the PPI for these specific input functions

yields a result of 0.921350 using a trapezoidal rule approximation with step size

of 1E-7, and integration limits of minus six sigma to plus six sigma. According to

standard error analysis [Krey99] this result is good to five significant figures.

That error bound does not include the small area in the tails beyond six sigma.

The result was further verified by simulation. Two normally distributed random

variables representing implementations from architectures A and B were

1 There is a non-zero probability that either system can perform in negative time. This error is

small and can be ignored.

70

generated. One million samples were taken from each of these distributions and

compared.

The results were tabulated, and the probability of A's performing better than B

was assessed using a frequency interpretation of the experiment results, i.e., the

proportion where the A value was less than the B value was assigned as the

probability that A will perform better than B. The following histogram, Figure 4.4,

shows the results of the one-million-sample experiment being run 1000 times.

The sample mean from the simulation is 0.921351 and is indicated by the black

vertical line. The integration result is indicated by the blue vertical line in bin four.

Since the histogram was expected to be normal in distribution, the figure shows

the comparison of expected value count per bin (in red italics) and the actual

count (in black) just below the expected value.

71

2

0

20

1

91

2

227

3

311

4

242

5

91

6

13

7

3

8

2
18

89

232

318

232

89

18 2

sample

mean

minimum

sample

maximum

sample

Bin Number

Distribution of Experimental Outcomes

Expected Sampled

0 [0.920367, 0.920586)
1 [0.920586, 0.920804)

2 [0.920804, 0.921023)
3 [0.921023, 0.921241)
4 [0.921241, 0.921459)

5 [0.921459, 0.921678)
6 [0.921678, 0.921896)

7 [0.921896, 0.922114)
8 [0.922114, 0.922333)

Bin Interval
µ = 0.921351

σ = 0.000266

Calculated

µ = 0.921350

(Counts per Bin)

2

0

20

1

91

2

227

3

311

4

242

5

91

6

13

7

3

8

2
18

89

232

318

232

89

18 2

sample

mean

minimum

sample

maximum

sample

Bin Number

Distribution of Experimental Outcomes

Expected Sampled

0 [0.920367, 0.920586)
1 [0.920586, 0.920804)

2 [0.920804, 0.921023)
3 [0.921023, 0.921241)
4 [0.921241, 0.921459)

5 [0.921459, 0.921678)
6 [0.921678, 0.921896)

7 [0.921896, 0.922114)
8 [0.922114, 0.922333)

Bin Interval
µ = 0.921351

σ = 0.000266

Calculated

µ = 0.921350

(Counts per Bin)

Figure 4.4 Simulation results for comparing systems from Figure 4.2

Applying hypothesis testing to this result, leads to the following two cases:

H0: µ= 0.921350 and H1: µ ≠ 0.921350

Using a non-directional test and a level of significance α = 0.05, the rejection

region in the upper and lower tail is α = 0.025. Bins zero and one are combined

as are bins seven and eight so that each of these cases will have more than five

expected elements [LeRS01]. This makes the number of degrees of freedom six.

From tables of the t-distribution (since σ is unknown):

Reject H0 if t < t4 = -2.4469 or t > t4 = +2.4469

72

Using differences between the expected and actual bin counts, t is computed to

be 1.782769 and so the hypothesis can not be rejected based on the testing

evidence.

The relative performance of two such architecture performance descriptions

depends on the difference between the means, as well as the standard

deviations of the respective normal distributions. Keeping the standard

deviations the same, but varying the means yields the expected result displayed

in Figure 4.5. When A has a mean far to the left of B, the P(A < B) is

approximately one. When A has a mean that is far to the right of B, P(A < B) is

approximately zero. When the mean of A is the same as the mean of B, the P(A

< B) is approximately 0.5.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.51.0 2.0

Difference in Means (B-A)

P(A < B)

P(A<B) vs. Difference in Mean (B - A)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.51.0 2.0

Difference in Means (B-A)

P(A < B)

P(A<B) vs. Difference in Mean (B - A)

Figure 4.5 PPI values vs. difference in mean (B – A)

73

4.5 Example 2 –Possibly Overlapping Performance Descriptions

Performance descriptions can be related in three ways: they may not overlap,

they may partially overlap, or one may be included within the other. When using

two uniformly distributed ranges of performance values in each of these three

cases, the problem is simple enough to be analyzed by hand. Figure 4.6 shows

the case where two uniform and non-overlapping probability density functions

(1.0 to 2.0 and 3.0 to 4.0) are compared. The P(A < B) = 1.0.

PDF of Performing in Time (t)

1.0 2.0 3.0 4.0

FA(t)
P(A < B) = 1.0

1.0

System A System B

1.0 2.0 3.0 4.0

FA(t)
1.0

Time (t)

PDF of Performing in Time (t)

1.0 2.0 3.0 4.0

FA(t)
P(A < B) = 1.0

1.0

System A System B

1.0 2.0 3.0 4.0

FA(t)
1.0

Time (t)

PDF of Performing in Time (t)

1.0 2.0 3.0 4.0

FA(t)
P(A < B) = 1.0

1.0

System A System BSystem A System B

1.0 2.0 3.0 4.0

FA(t)
1.0

Time (t)

Figure 4.6 PPI calculation: non-overlapping performance descriptions

74

An example using overlapping uniform density descriptions (1.0 to 2.0 and 1.5 to

2.5) is shown in Figure 4.7. The calculation of the performance probability

integral for this case yields that P(A < B) = 0.875. Results from simulation

verification are shown in Figure 4.8

PDF of Performing in Time (t)

Time (t)

System A System B

1.0 2.0 3.0 4.0

FA(t)
P(A < B) = 0.875

1.0

PDF of Performing in Time (t)

Time (t)

System A System B

1.0 2.0 3.0 4.0

FA(t)
P(A < B) = 0.875

1.0

PDF of Performing in Time (t)

Time (t)

System A System BSystem A System B

1.0 2.0 3.0 4.0

FA(t)
P(A < B) = 0.875

1.0

Figure 4.7 PPI calculation: overlapping performance descriptions

75

2

0

24

1

101

2

242

3

282

4

223

5

96

6

26

7

4

8

3
23

97

226

300

226

97

23
3

sample

mean

minimum

sample

maximum

sample

Distribution of Experimental Outcomes

µ = 0.8750037
σ = 0.0003229

Calculated
µ = 0.875000

(Counts per Bin)

[0.873881, 0.874130)
[0.874130, 0.874380)
[0.874380, 0.874629)
[0.874629, 0.874878)

[0.874878, 0.875127)
[0.875127, 0.875377)
[0.875377, 0.875627)
[0.875626, 0.875876)

[0.875876, 0.876124)

Bin Interval

0
1
2
3

4
5
6
7

8

Bin NumberExpected Sampled

2

0

24

1

101

2

242

3

282

4

223

5

96

6

26

7

4

8

3
23

97

226

300

226

97

23
3

sample

mean

minimum

sample

maximum

sample

Distribution of Experimental Outcomes

µ = 0.8750037
σ = 0.0003229

Calculated
µ = 0.875000

(Counts per Bin)

[0.873881, 0.874130)
[0.874130, 0.874380)
[0.874380, 0.874629)
[0.874629, 0.874878)

[0.874878, 0.875127)
[0.875127, 0.875377)
[0.875377, 0.875627)
[0.875626, 0.875876)

[0.875876, 0.876124)

Bin Interval

0
1
2
3

4
5
6
7

8

Bin NumberExpected Sampled

Figure 4.8 PPI simulation: overlapping performance descriptions

In the third case, A's performance range completely includes that of B’s as seen

in Figure 4.9. The evaluation process is similar. The simulation results that

verify this calculation are shown in Figure 4.10.

76

PDF of Performing in Time (t)

Time (t)

System A System B

1.0 2.0 3.0 4.0

FA(t)

P(A < B) = 0.5

1.0

2.0

PDF of Performing in Time (t)

Time (t)

System A System B

1.0 2.0 3.0 4.0

FA(t)

P(A < B) = 0.5

1.0

2.0

PDF of Performing in Time (t)

Time (t)

System ASystem A System BSystem B

1.0 2.0 3.0 4.0

FA(t)

P(A < B) = 0.5

1.0

2.0

Figure 4.9 PPI calculation: complete overlap of performance descriptions

7

0

36

1

92

2

226

3

289

4

212

5

105

6

25

7

8

8

5
29

104

220

283

220

104

29
5

0
1
2
3
4
5
6
7
8

[0.498425, 0.498783)
[0.498783, 0.499142)
[0.499142, 0.499500)
[0.499500, 0.499859)
[0.499859, 0.500217)
[0.500217, 0.500576)
[0.500576, 0.500934)
[0.500934, 0.501293)
[0.501293, 0.501651)

Bin Interval

sample

mean

minimum

sample

maximum

sample

Distribution of Experimental Outcomes

µ = 0.500038
σ = 0.000050

Calculated
µ = 0. 500000

(Counts per Bin)

Bin NumberExpected Sampled

7

0

36

1

92

2

226

3

289

4

212

5

105

6

25

7

8

8

5
29

104

220

283

220

104

29
5

0
1
2
3
4
5
6
7
8

[0.498425, 0.498783)
[0.498783, 0.499142)
[0.499142, 0.499500)
[0.499500, 0.499859)
[0.499859, 0.500217)
[0.500217, 0.500576)
[0.500576, 0.500934)
[0.500934, 0.501293)
[0.501293, 0.501651)

Bin Interval

sample

mean

minimum

sample

maximum

sample

Distribution of Experimental Outcomes

µ = 0.500038
σ = 0.000050

Calculated
µ = 0. 500000

(Counts per Bin)

Bin NumberExpected Sampled

Figure 4.10 PPI simulation: narrow overlapping architecture

77

4.6 Example 3 - Comparing Discrete Performance Descriptions

There are cases where the architectural elements can take on discrete

performance values rather than any value over a range. In this circumstance, a

discrete probability model is appropriate. Similar to the deterministic

performance case, the actual value for each performance mode is one number;

the randomness comes from not knowing which fixed value from a set of possible

values will occur. This situation might happen when considering the use of one

of a set of Commercial Off-the-Shelf products. The performance of each

alternative may be well known, but the ultimate selection from among the

alternative products may not have been completed. The PPI analysis handles

this situation similarly.

Consider the following two architecture performance descriptions. A takes one of

six equally likely performance values. B takes one of three values with middle

value twice as likely. This configuration is shown in Figure 4.11.

78

PDF of Performing in Time (t)

System A System B

1.0 2.0 3.0 4.0

0.167
0.25

0.5

1.0
FA(t)

= P(A < B) = 0.6+ +

Time (t)
1.0 2.0 3.0 4.0

0.167
0.25

0.5

1.0
FA(t)

PDF of Performing in Time (t)

System A System B

1.0 2.0 3.0 4.0

0.167
0.25

0.5

1.0
FA(t)

= P(A < B) = 0.6+ +

Time (t)
1.0 2.0 3.0 4.0

0.167
0.25

0.5

1.0
FA(t)

PDF of Performing in Time (t)

System A System B

1.0 2.0 3.0 4.0

0.167
0.25

0.5

1.0
FA(t)

= P(A < B) = 0.6+ +

Time (t)
1.0 2.0 3.0 4.0

0.167
0.25

0.5

1.0
FA(t)

Figure 4.11 PPI calculation: discrete example

The performance probability integral can be evaluated by hand in this case:

P(A < B) = (0.25)(3/6)+(0.5)(4/6)+(0.25)(5/6) = 0.6667.

Figure 4.12 shows the simulation results verifying the evaluation of the

performance integral.

79

2

0

16

1

79

2

226

3

347

4

239

5

77

6

12

7

2

8

1 13

80

236

338

236

80

13 1

sample

mean

minimum

sample

maximum

sample

Distribution of Experimental Outcomes

µ = 0.666685
σ = 0.000483

Calculated
µ = 0. 666667

(Counts per Bin)

Bin NumberExpected Sampled

0
1
2
3
4
5
6
7
8

Bin Interval

[0.664784, 0.665206)
[0.665206, 0.665629)
[0.665629, 0.666051)
[0.666051, 0.666474)
[0.666474, 0.666896)
[0.666896, 0.667319)
[0.667319, 0.667741)
[0.667741, 0.668164)
[0.668164, 0.668586)

2

0

16

1

79

2

226

3

347

4

239

5

77

6

12

7

2

8

1 13

80

236

338

236

80

13 1

sample

mean

minimum

sample

maximum

sample

Distribution of Experimental Outcomes

µ = 0.666685
σ = 0.000483

Calculated
µ = 0. 666667

(Counts per Bin)

Bin NumberExpected Sampled

0
1
2
3
4
5
6
7
8

Bin Interval

[0.664784, 0.665206)
[0.665206, 0.665629)
[0.665629, 0.666051)
[0.666051, 0.666474)
[0.666474, 0.666896)
[0.666896, 0.667319)
[0.667319, 0.667741)
[0.667741, 0.668164)
[0.668164, 0.668586)

0
1
2
3
4
5
6
7
8

Bin Interval

[0.664784, 0.665206)
[0.665206, 0.665629)
[0.665629, 0.666051)
[0.666051, 0.666474)
[0.666474, 0.666896)
[0.666896, 0.667319)
[0.667319, 0.667741)
[0.667741, 0.668164)
[0.668164, 0.668586)

0
1
2
3
4
5
6
7
8

Bin Interval

[0.664784, 0.665206)
[0.665206, 0.665629)
[0.665629, 0.666051)
[0.666051, 0.666474)
[0.666474, 0.666896)
[0.666896, 0.667319)
[0.667319, 0.667741)
[0.667741, 0.668164)
[0.668164, 0.668586)

Figure 4.12 PPI simulation: discrete example

4.7 Example 4 – Asymmetric Performance Descriptions

The form of the performance descriptions can be relatively general. The

performance descriptions shown below are dissimilar and non-symmetrical. The

calculation of the PPI for the example performance descriptions shown in Figure

4.13 yields the probability of A performing better than B as being approximately

0.45. The computations are done as discussed above.

80

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

System A System B

PDF of Performing in Time (t)

Time (t)

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

System A System B

PDF of Performing in Time (t)

Time (t)

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

System A System BSystem A System B

PDF of Performing in Time (t)

Time (t)

Figure 4.13 Non-symmetric performance description comparison

Bin Interval

[0.451792, 0.452197)

[0.452197, 0.452601)

[0.452601, 0.453005)

[0.453005, 0.453410)

[0.453410, 0.453814)

[0.453814, 0.454219)
[0.454219, 0.454623)

[0.454623, 0.455027)
[0.455027, 0.455432)

0
1
2
3
4
5
6
7
8

0
1
2
3
4
5
6
7
8

3
2 20

20
81
92

245
230

315
312

216
230

101
92

18
20

1
2

0 1 2 3 4 5 6 7 8
Bin NumberExpected Sampled

Distribution of Experimental Outcomes

µ = 0.453613
σ = 0.000502

(Counts per Bin)

Calculated
µ = 0.453504

sample
mean

minimum

sample

maximum
sample

Bin Interval

[0.451792, 0.452197)

[0.452197, 0.452601)

[0.452601, 0.453005)

[0.453005, 0.453410)

[0.453410, 0.453814)

[0.453814, 0.454219)
[0.454219, 0.454623)

[0.454623, 0.455027)
[0.455027, 0.455432)

0
1
2
3
4
5
6
7
8

0
1
2
3
4
5
6
7
8

[0.451792, 0.452197)

[0.452197, 0.452601)

[0.452601, 0.453005)

[0.453005, 0.453410)

[0.453410, 0.453814)

[0.453814, 0.454219)
[0.454219, 0.454623)

[0.454623, 0.455027)
[0.455027, 0.455432)

0
1
2
3
4
5
6
7
8

0
1
2
3
4
5
6
7
8

0
1
2
3
4
5
6
7
8

0
1
2
3
4
5
6
7
8

3
2 20

20
81
92

245
230

315
312

216
230

101
92

18
20

1
2

0 1 2 3 4 5 6 7 8
Bin NumberExpected Sampled

Distribution of Experimental Outcomes

µ = 0.453613
σ = 0.000502

(Counts per Bin)

Calculated
µ = 0.453504

Calculated
µ = 0.453504

sample
mean

minimum

sample

maximum
sample

Figure 4.14 PPI simulation: Non-symmetric performance description

81

The simulation results and performance probability integral calculations agree. A

has a 55% chance of doing worse than B.

4.8 Summary

There are many uncertainties early in the development process that are

unresolved when the architecture selection decision is made. When the

uncertainties can be mapped to performance descriptions taking the form of

probability density functions for each of the proposed architectures, a comparison

is possible and one can assert that a random implementation, system A, from

architecture A will perform better than a similarly implemented system B from

architecture B. This section derived the form of the performance probability

integral (PPI) which quantifies this comparison and provided verification for

values generated by it use. The PPI is:

82

Chapter 5

5 Constructing Architecture Performance Descriptions

5.1 Introduction

The six uncertainty classes described in chapter three form a natural hierarchy

that is parallel to a hierarchical model of system construction. In the

development process, high level components and connections are successively

broken down into smaller and smaller pieces. The reverse process is used when

defining and characterizing the uncertainties of systems. Smaller elements with

available performance descriptions are combined to construct higher and higher

level system components’ performance descriptions until the end-to-end

performance description for the entire system is developed. A system

performance description will routinely be generated in two steps: 1) components

are arranged according to alternative topologies and then 2) probabilities are

associated with execution paths once synchronization requirements have been

applied. This chapter will describe the five basic functions that are used to

combine lower level performance descriptions into a high level performance

model. In the literature [Papo65], there are calculus based methods for

generating the functions which result from combining low level performance

descriptions (pdfs). These methods could be applied directly in this situation but

83

routinely the mathematics becomes difficult and closed form solutions are rarely

available. For this work, numerical methods are used to combine performance

descriptions (pdfs). Numerical methods make the approach practical and broadly

accessible to analysts. In addition, use of these methods does not restrict the

probabilistic system or component performance descriptions to simple

mathematical functions. Finally, numerical methods are easier to implement than

equivalent symbolic manipulation techniques.

This work uses five fundamental functions to combine the performance

descriptions of sub-system components: summation, quotient, minimum,

maximum and composite. Three of these functions (summation, minimum, and

maximum) have already been documented as being useful in computing the time

that it takes for a Command and Control organization to respond to an incoming

task [Andr88]. There is no claim that these five functions represent a complete

set for capturing the performance characteristics of all architectures. However,

they are likely to be a sufficient set for the static, acyclic architectures covered by

this research since those architectures can only have splits and joins in the

directed graph by which the architectures are described. Systems constrained to

be acyclic graphs can only split tasks into subtasks, wait for a set of inputs to

perform a task, or allow the independent execution of multiple threads of activity.

84

The details of the techniques for implementing these functions within the context

of Comparative Architecture Performance Evaluation (CAPE) can be found in

Appendix C. In most cases, verification is done by building random number

generators that deliver random values consistent with the specific density

functions involved. Values produced by these generators are then combined

according to the function being verified. The simulated result is then compared

with a CAPE computed result. In the next sections, each of these functions is

demonstrated in a practical example.

5.2 Summation

The delay associated with executing a sequence of process steps involving no

decisions or branches is computed by summing the contribution of each step.

Below, Figure 5.1 shows an example of an individual searching for a web page,

sending the result across a noisy link, and another person studying that web

page. The time to accomplish all three of these serial activities is the sum of the

three activity performance descriptions.

85

One looks for
a good web site

Transmits the page
across a noisy link

Person studies
the web page

fL(t) fC(t)

Time (t) Time (t) Time (t)

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

fT(t)

One looks for
a good web site

Transmits the page
across a noisy link

Person studies
the web page

fL(t) fC(t)

Time (t) Time (t) Time (t)

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

fT(t)

Time (t)

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6
Cumulative delay
or sumfS(t)

Time (t)

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6
Cumulative delay
or sumfS(t)

Time (t)

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6
Cumulative delay
or sumfS(t)

Figure 5.1 Summing process for activity performance descriptions

Since performance descriptions take the form of probability density functions, the

summing function will take the form of the convolution of those probability density

functions. The performance model defined here associates elementary system

delays (those of components and connectors) with random variables and their

defining probability density functions. Total system delay is the sum of these

random variables (described by these pdfs) and calculated using a method

86

derived from the convolution definition. The convolution operator (*) for two pdfs

fA(·) and fB(·) is frequently defined [LaSh79] as:

5.3 Quotient

The quotient probability density function is used when one of the sequential

processing pieces in an architecture requires the movement of data to a new

location over a communications link. The basic calculation is similar to the

deterministic case. The amount of data to be moved, divided by the data rate of

the communications link, yields the time that the transmission should take.

At a basic level, data packages of some size get transmitted through

communications links of some size. The sizes of the data packages presented to

the system can be described probabilistically with a density function. There are

several factors that impact communications link performance. In the situation

where the link is error free, the transmit time is inversely proportional to the link

data rate and directly proportional to the size of the packets being transmitted. If

the communications link protocols provide error recovery through data

retransmission or if the link can be congested by other users, the effective data

rate will be reduced. It is the effective data rate of the communications link that

87

should be used for the random delay calculation. The time to traverse the link

can be modeled as a random variable which depends on link error

characteristics, link congestion and data packet sizes.

Both the amount of data presented and the rate at which it is transmitted can be

modeled as random variables. The pdf for the communications delay can be

computed from the quotient of the random data package size and a random

effective data rate for the link, when these pdfs are known or can be estimated.

The delay, z, is the size (x) divided by the rate (y). The equation for the quotient

pdf is well known [Curt41]:

The joint probability density function fX,Y representing the data size elements (fX)

and link data rate (fY) can normally be generated as the product of fX and fY as

these two densities can routinely be expected to be independent. The

calculation has a closed form solution for some simple cases. The process

described in this research can provide estimates of the result for more general

cases.

88

Connection Delay Calculation

SinkSource

Component
produces

products of
various sizes

Move across
a connection
with varying

capacity
(transmit rate)

Size, s (Kbits)

0 1 2 3 4 5 6
0

0.2
0.4
0.6
0.8

1
1.2

fSS(s)

PDF for Source Size

fTR(r)

Rate, r (Kbps)

0 1 2 3 4 5 6
0

0.2
0.4
0.6
0.8

1
1.2

PDF for Transmit Rate

0 1 2 3 4 5 6
0

0.2
0.4
0.6
0.8

1
1.2

fTT(t)

Time, t (sec)

PDF for Transmit Time

Connection Delay Calculation

SinkSource

Component
produces

products of
various sizes

Move across
a connection
with varying

capacity
(transmit rate)

SinkSource SinkSource

Component
produces

products of
various sizes

Move across
a connection
with varying

capacity
(transmit rate)

Size, s (Kbits)

0 1 2 3 4 5 6
0

0.2
0.4
0.6
0.8

1
1.2

fSS(s)

PDF for Source Size

fTR(r)

Rate, r (Kbps)

0 1 2 3 4 5 6
0

0.2
0.4
0.6
0.8

1
1.2

PDF for Transmit Rate

Size, s (Kbits)

0 1 2 3 4 5 6
0

0.2
0.4
0.6
0.8

1
1.2

fSS(s)

PDF for Source Size

Size, s (Kbits)

0 1 2 3 4 5 6
0

0.2
0.4
0.6
0.8

1
1.2

fSS(s)

PDF for Source Size

fTR(r)

Rate, r (Kbps)

0 1 2 3 4 5 6
0

0.2
0.4
0.6
0.8

1
1.2

PDF for Transmit Rate

fTR(r)

Rate, r (Kbps)

0 1 2 3 4 5 6
0

0.2
0.4
0.6
0.8

1
1.2

PDF for Transmit Rate

0 1 2 3 4 5 6
0

0.2
0.4
0.6
0.8

1
1.2

fTT(t)

Time, t (sec)

PDF for Transmit Time

0 1 2 3 4 5 6
0

0.2
0.4
0.6
0.8

1
1.2

fTT(t)

Time, t (sec)

PDF for Transmit Time

Figure 5.2 Source-sink performance descriptions for quotient calculation

89

5.4 MIN

The minimum function (MIN) is needed in the case where the architecture

stipulates that a piece of information may be obtained from any one of a number

of places (each of which may respond at a different time). The formula [Andr88]

for computing the minimum fZ(t) of two random variables, “g” and “h” is:

Where as usual the uppercase functions (H(t) and G(t)) are the cumulative

distribution functions associated with the lower case probability density functions

(f(t) and g(t)). When multiple minimum functions need to be calculated, the

minimum function is applied a number of time using the first result with each of

the next performance descriptions dictated by the problem statement.

In the following example, a user wishes to obtain the phone number from the web

using a service. The goal is to understand how long it will take to get a response.

The service is designed to simultaneously query three different and independent

service providers. The query can be considered to be satisfied when the first of

the three independent services responds with an answer.

90

Calculation

Duration

Get the phone number for:

John Doe
123 Maple St.
Hometown, USA 12345

Find
Number

PeopleLookup.com

White
Pages

Whitepages.com

Telephone

By Address

Ask.com
0 50 100 150 200 250 300 350

0

5

10

15 PDF for Time TA

Ax 10-3

fT (t)A

Time, t (msec)

0 50 100 150 200 250 300 350
0

5

10

15 PDF for Time TP

Px 10-3

fT (t)P

Time, t (msec)

0 50 100 150 200 250 300 350
0

5

10

15 PDF for Time TW

wx 10-3

fT (t)w

Time, t (msec)

Calculation

Duration

Get the phone number for:

John Doe
123 Maple St.
Hometown, USA 12345

Find
Number

PeopleLookup.com

White
Pages

Whitepages.com

Telephone

By Address

Ask.com
0 50 100 150 200 250 300 350

0

5

10

15 PDF for Time TA

Ax 10-3

fT (t)A

Time, t (msec)

0 50 100 150 200 250 300 350
0

5

10

15 PDF for Time TP

Px 10-3

fT (t)P

Time, t (msec)

0 50 100 150 200 250 300 350
0

5

10

15 PDF for Time TW

wx 10-3

fT (t)w

Time, t (msec)

Calculation

Duration

Get the phone number for:

John Doe
123 Maple St.
Hometown, USA 12345

Find
Number

PeopleLookup.com

White
Pages

Whitepages.com

Telephone

By Address

Ask.com

Get the phone number for:

John Doe
123 Maple St.
Hometown, USA 12345

Find
Number

PeopleLookup.com

White
Pages

Whitepages.com

Telephone

By Address

Ask.com
0 50 100 150 200 250 300 350

0

5

10

15 PDF for Time TA

Ax 10-3

fT (t)A

Time, t (msec)
0 50 100 150 200 250 300 350

0

5

10

15 PDF for Time TA

A

PDF for Time TA

Ax 10-3

fT (t)A
x 10-3

fT (t)A

Time, t (msec)

0 50 100 150 200 250 300 350
0

5

10

15 PDF for Time TP

Px 10-3

fT (t)P

Time, t (msec)
0 50 100 150 200 250 300 350

0

5

10

15 PDF for Time TP

P

PDF for Time TP

Px 10-3

fT (t)P
x 10-3

fT (t)P

Time, t (msec)

0 50 100 150 200 250 300 350
0

5

10

15 PDF for Time TW

wx 10-3

fT (t)w

Time, t (msec)
0 50 100 150 200 250 300 350

0

5

10

15 PDF for Time TW

w

PDF for Time TW

wx 10-3

fT (t)w
x 10-3

fT (t)w

Time, t (msec)

Figure 5.3 Example case where first result is sufficient

For the purpose of this example, each service is presumed to return an answer in

a time that is uniformly distributed between 100 and 300 milliseconds. The result

of the minimum function being applied to this case is shown in Figure 5.4.

91

Treq = Min(TA, TP, TW)

PDF for Total Integration Time Treq

fT (t) vs. Time (msec)
req

x 10-3

fT (t)req

0 50 100 150 200 250 300 350
0

5

10

15

20

Time, Treq (msec)

Treq = Min(TA, TP, TW)

PDF for Total Integration Time Treq

fT (t) vs. Time (msec)
req

x 10-3

fT (t)req

0 50 100 150 200 250 300 350
0

5

10

15

20

Time, Treq (msec)

Treq = Min(TA, TP, TW)

PDF for Total Integration Time Treq

fT (t) vs. Time (msec)
req

PDF for Total Integration Time Treq

fT (t) vs. Time (msec)
req

x 10-3

fT (t)req

0 50 100 150 200 250 300 350
0

5

10

15

20

Time, Treq (msec)

x 10-3

fT (t)req

x 10-3

fT (t)req

0 50 100 150 200 250 300 350
0

5

10

15

20

Time, Treq (msec)

Figure 5.4 Minimum function computation result

This situation occurs any time that a product is requested from multiple

independent sources, or a result is calculated in multiple independent different

ways and the first answer is considered acceptable.

5.5 MAX

The maximum function (MAX) can be encountered in a number of ways as well.

The most commonly encountered occurrence is when there are several input

values required for a computation. These values may be generated in different

places or at different times using different methods. They may be generated in

parallel as well. Usually the computation can not proceed until all inputs are

92

available. Alternatively the situation can occur where a computation is done in

number of different ways to ensure consistency in the result. The maximum

function is useful to characterize the time it takes to be ready to continue with the

comparison after a consistency check is done on these computed values. The

formula [Andr88] for computing the maximum fZ(t) of two random variables, “g”

and “h” is:

Where as usual the uppercase functions (H(t) and G(t)) are the cumulative

distribution functions associated with the lower case probability density functions

(f(t) and g(t)). When multiple maximum functions need to be calculated, the

maximum function is applied a number of times using the first result with each of

the next performance descriptions dictated by the problem statement.

93

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

A B C D

0 50 100 150 200 250 300 350
0

5

10

15 PDF for Time TA

x 10-3

fT (t)A

Time, t (msec)

0 50 100 150 200 250 300 350
0

5

10

15 PDF for Time TB

x 10-3

fT (t)B

Time, t (msec)

0 50 100 150 200 250 300 350
0

5

10

15 PDF for Time TC

x 10-3

fT (t)C

Time, t (msec)

0 50 100 150 200 250 300 350
0

5

10

15 PDF for Time TD

x 10-3

fT (t)D

Time, t (msec)

PDF for Transmit Rate

fR(r)

Rate, r (kbits/sec)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

A B C DAA BB CC DD

0 50 100 150 200 250 300 350
0

5

10

15 PDF for Time TA

x 10-3

fT (t)A

Time, t (msec)
0 50 100 150 200 250 300 350

0

5

10

15 PDF for Time TAPDF for Time TA

x 10-3

fT (t)A
x 10-3

fT (t)A

Time, t (msec)

0 50 100 150 200 250 300 350
0

5

10

15 PDF for Time TB

x 10-3

fT (t)B

Time, t (msec)
0 50 100 150 200 250 300 350

0

5

10

15 PDF for Time TBPDF for Time TB

x 10-3

fT (t)B
x 10-3

fT (t)B

Time, t (msec)

0 50 100 150 200 250 300 350
0

5

10

15 PDF for Time TC

x 10-3

fT (t)C

Time, t (msec)
0 50 100 150 200 250 300 350

0

5

10

15 PDF for Time TCPDF for Time TC

x 10-3

fT (t)C
x 10-3

fT (t)C

Time, t (msec)

0 50 100 150 200 250 300 350
0

5

10

15 PDF for Time TD

x 10-3

fT (t)D

Time, t (msec)
0 50 100 150 200 250 300 350

0

5

10

15 PDF for Time TDPDF for Time TD

x 10-3

fT (t)D
x 10-3

fT (t)D

Time, t (msec)

PDF for Transmit Rate

fR(r)

Rate, r (kbits/sec)

Figure 5.5 Timing for a subtasks processed in parallel

Figure 5.5 shows the calculation plan for integrating the area under the curve.

The idea behind the example is that the calculation of the area under the curve

can be broken up into four problems. Each of the colored bands represents a

portion of the curve’s area calculation that can be assigned to a separate

integrator. Each of these integrators will perform their sub-tasks in a time

94

duration described by a uniformly distributed random variable with duration

between 100 and 300 milliseconds. The final answer is not available until the

last of these four computations completes and the four sub-task answers are

added together. This addition time is assumed to be very small when compared

with the delay associated with the rest of the calculation. Figure 5.6 shows the

result of the maximum function being applied to these four performance

descriptions.

TTot = Max(TA, TB, TC, TD)

0 50 100 150 200 250 300 350
0

5

10

15

20

Time, t (msec)

x 10-3

fT (t)
Tot

PDF for Total Integration Time TTot

fT (t) vs. Time (msec)
Tot

TTot = Max(TA, TB, TC, TD)

0 50 100 150 200 250 300 350
0

5

10

15

20

Time, t (msec)

x 10-3

fT (t)
Tot

PDF for Total Integration Time TTot

fT (t) vs. Time (msec)
Tot

TTot = Max(TA, TB, TC, TD)

0 50 100 150 200 250 300 350
0

5

10

15

20

Time, t (msec)

x 10-3

fT (t)
Tot

0 50 100 150 200 250 300 350
0

5

10

15

20

Time, t (msec)

x 10-3

fT (t)
Tot

x 10-3

fT (t)
Tot

PDF for Total Integration Time TTot

fT (t) vs. Time (msec)
Tot

PDF for Total Integration Time TTot

fT (t) vs. Time (msec)
Tot

Figure 5.6 Maximum function computation result

95

5.6 Composite

There are times when different amounts of data may be moved across different

paths, either in parallel or based on a decision. These different paths terminate

on the same source and sink but traverse different intermediate points. In these

situations, a composite delay density function characterizes the data movement.

Normalized weighting factors are computed based on the probability of data

traversing each path. The individual density functions are then multiplied by

these normalized weighting factors and summed to produce the composite

density function.

The composite calculation is useful in two separate situations. Figure 5.7, shows

the situation where two classes of data are applied to a channel. The weighting

factor for each class presented is expressed as a percentage of the total

communications load applied. In this example, both classes are assumed to be

of equal magnitude. The class distributed like a semi-circle (gray) and that

distributed as a trapezoid (also gray) are scaled to the green and blue shapes

before being combined in the communications channel. This scaling results from

the weighting of the two sources and when combined creates the result shown as

the red line. The vertical beige bars are the simulation confirming the resulting

computation.

96

Source

#1

Source

#N

*

*

%1

%N

0 3 6
0

1

0 3 6
0

1

0 3 6
0

1

+

weighted

semi-circle

pdf

weighted

trapezoid

pdf

weighted

composite

pdf

original pdf
simulated

bin values

Source

#1

Source

#N

*

*

%1

%N

0 3 6
0

1

0 3 6
0

1

0 3 6
0

1

+

Source

#1

Source

#N

*

*

%1

%N

0 3 6
0

1

0 3 6
0

1

0 3 6
0

1

0 3 6
0

1

0 3 6
0

1

0 3 6
0

1

+

weighted

semi-circle

pdf

weighted

trapezoid

pdf

weighted

composite

pdf

original pdf
simulated

bin values

weighted

semi-circle

pdf

weighted

semi-circle

pdf

weighted

trapezoid

pdf

weighted

trapezoid

pdf

weighted

composite

pdf

weighted

composite

pdf

original pdforiginal pdf
simulated

bin values

simulated

bin values

Figure 5.7 PDF result of combing two data classes in a common channel

In the second case, Figure 5.8, the data classes may be transmitted over

different channels. The result is similar. Each channel changes the input data

(size) pdf and these pdfs are added after being weighted proportionately by the

amount transmitted. In the figure, the original pdfs (gray) are scaled according to

the amount transmitted (blue, yellow, green) and combined into the red weighted

composite description of the combined data. Again the beige vertical lines are

the values captured with a discrete even simulation verifying the computation.

97

0 3 6
0

1

-Channel
#2

Channel

#1

Channel

#N

Source

0 3 6
0

1

+

weighted

semi-circle

pdf

weighted

trapezoid

pdf

weighted

composite

pdf

original pdfs:

semi-circle

triangle
trapezoid

simulated

bin values

weighted

triangle

pdf

0 3 6
0

1

-Channel
#2

Channel

#1

Channel

#N

Source

0 3 6
0

1

+

0 3 6
0

1

0 3 6
0

1

--Channel
#2

Channel

#1

Channel

#N

Source

0 3 6
0

1

0 3 6
0

1

+

weighted

semi-circle

pdf

weighted

trapezoid

pdf

weighted

composite

pdf

original pdfs:

semi-circle

triangle
trapezoid

simulated

bin values

weighted

triangle

pdf

weighted

semi-circle

pdf

weighted

semi-circle

pdf

weighted

trapezoid

pdf

weighted

trapezoid

pdf

weighted

composite

pdf

weighted

composite

pdf

original pdfs:

semi-circle

triangle
trapezoid

original pdfs:

semi-circle

triangle
trapezoid

simulated

bin values

simulated

bin values

weighted

triangle

pdf

weighted

triangle

pdf

Figure 5.8 A single class of data is transmitted over any of multiple paths

Figure 5.9 shows examples of different weights applied to data passing through

the channel. The pC and pT values represent the probability or percentage of the

semi-Circular pdf and Trapezoidal pdf respectively as submitted to the channel.

The red curve represents the aggregate. The beige lines show the simulation

results confirming the computed channel behavior using random number

generators matched to the input pdfs.

98

0 3 6
0

1

0 3 6
0

1

0 3 6
0

1

0 3 6
0

1

0 3 6
0

1

0 3 6
0

1

0 3 6
0

1

0 3 6
0

1

0 3 6
0

1
pC = 0.6 , pT = 0.4pC = 0.4 , pT = 0.6 pC = 0.5 , pT = 0.5

pC = 0.8 , pT = 0.2 pC = 1.0 , pT = 0.0pC = 0.6 , pT = 0.3

pC = 0.0, pT = 1.0 pC = 0.2 , pT = 0.8 pC = 0.3 , pT = 0.6

weighted

semi-circle
pdf

weighted

trapezoid
pdf

weighted

aggregate
pdf

original pdf

simulated

bin values

0 3 6
0

1

0 3 6
0

1

0 3 6
0

1

0 3 6
0

1

0 3 6
0

1

0 3 6
0

1

0 3 6
0

1

0 3 6
0

1

0 3 6
0

1

0 3 6
0

1

0 3 6
0

1

0 3 6
0

1

0 3 6
0

1

0 3 6
0

1

0 3 6
0

1

0 3 6
0

1

0 3 6
0

1

0 3 6
0

1
pC = 0.6 , pT = 0.4pC = 0.4 , pT = 0.6 pC = 0.5 , pT = 0.5

pC = 0.8 , pT = 0.2 pC = 1.0 , pT = 0.0pC = 0.6 , pT = 0.3pC = 0.6 , pT = 0.3

pC = 0.0, pT = 1.0 pC = 0.2 , pT = 0.8 pC = 0.3 , pT = 0.6pC = 0.3 , pT = 0.6

weighted

semi-circle
pdf

weighted

trapezoid
pdf

weighted

aggregate
pdf

original pdf

simulated

bin values

Figure 5.9 Simulation confirmation of weighted composite calculations

A simpler example of the composite function is shown below. In Figure 5.10

there are two possible paths through the system. The composite delay

99

generated in this situation is the probabilistically weighted combination of each of

the system paths.

A

B

0 1

P=0.3; t = 1.5

P=0.7; t = 1.0

P=1.0; t = 1.0

P=1.0; t = 1.0

A

B

0 1

P=0.3; t = 1.5

P=0.7; t = 1.0

P=1.0; t = 1.0

P=1.0; t = 1.0

A

B

0 1

P=0.3; t = 1.5

P=0.7; t = 1.0

P=1.0; t = 1.0

P=1.0; t = 1.0

1.0

0.5

0.0

0.0 1.0 2.0 3.0 4.0

Delay (sec)

P

Probability vs. Delay (sec)
1.0

0.5

0.0

0.0 1.0 2.0 3.0 4.0

Delay (sec)

P

Probability vs. Delay (sec)
1.0

0.5

0.0

0.0 1.0 2.0 3.0 4.0

Delay (sec)

P

Probability vs. Delay (sec)

Figure 5.10 Composite delay result for example two path calculation

5.7 Summary

This section has described the five functions (sum, quotient, minimum,

maximum, and composite) required to combine performance descriptions and the

100

methods used to calculate the performance description composing smaller

elements into larger elements. The sum function is applicable when there is a

sequence of elements to be combined. The quotient function is used when both

the rate of the channel and the size of the data being put on the channel are

random in size. The minimum and maximum functions are used for process

synchronization. The composite function is used when there are either different

classes of data traversing a path, or different paths being traversed by a single

class of data.

101

Chapter 6

6 An Illustrative Practical Architecture Example

6.1 Introduction

To show how the preceding probabilistic analysis can be used for evaluating the

performance potential of architectural alternatives, it is helpful to consider a

simple example. The example chosen follows [DoWh07] and represents a

classic web application with several different alternative architectures. To

compare the performance potential of these alternative architectures, the

architecture components and connectors are first characterized individually and

then these descriptions are combined using the techniques of chapter five. After

several alternative architectures have been analyzed, the results are compared

to identify the relative performance potential of these architecture alternatives.

To perform the analysis, four steps are executed. These steps are: 1) identify

the alternative architectures to be examined, 2) characterize the performance of

architectural elements based on an appropriate set of assumptions that address

scaling issues to ensure that the results are comparable architecture-to-

architecture, 3) combine the delay contributions for each alternative, and 4)

compare the delay results across architecture alternatives.

102

For the example, consider a small web application designed to provide a user

with the current version of a requested XML document. Based on constraints

associated with the operational environment, the high-level form of the solution is

already agreed to be a three-tier architecture as shown in Figure 6.1. There is

consensus that there will be some processing available at each tier, and that

these tiers will be connected by communications links. The specifics describing

the expected load, the available computational capability at each tier, and the

sizes of the connecting communications links are initially unspecified.

In this application, an XML document request is made at the User tier and

transferred to the Cache tier. A search is then performed first at the Cache (and

then at the Server if required) to determine if an update is needed. If the user

version of the requested document is found to be stale, an update is processed

resulting in the User accessing the current document locally. There are many

ways to execute the involved steps, but the expectation is that by caching

documents between the User and the Server, the overall system response will be

improved.

103

User ServerCache

COMPXMTCOMPXMTCOMP

Classical Three Tier Architecture

COMP Computational Node

Ideal Communications Link
no delay, no loss, no errors

XMT Practical Communications Parameters

User ServerCache

COMPXMTCOMPXMTCOMP

User ServerCache

COMPXMTCOMPXMTCOMP

Classical Three Tier Architecture

COMP Computational Node

Ideal Communications Link
no delay, no loss, no errors

XMT Practical Communications Parameters

COMP Computational NodeCOMPCOMP Computational Node

Ideal Communications Link
no delay, no loss, no errors
Ideal Communications Link
no delay, no loss, no errors

XMT Practical Communications ParametersXMTXMT Practical Communications Parameters

Figure 6.1 Classical three tier architecture

Occasionally environmental factors force an update to documents located on the

server. Rather than redistributing the complete current XML document to the

user after each change, a processing improvement is adopted to decrease the

size of the information sent between the tiers. The architect presented with this

problem has decided to consider including any of a set of a compression

mechanisms in the design to potentially speed transfer of data between the tiers.

The chosen compression technique, shown in Figure 6.2, takes advantage of the

fact that XML documents are tree-structured. Classical tree-difference algorithms

[ZhSh89] can be used to generate difference scripts which are smaller than the

original documents. These difference scripts minimize the editing distance

104

between the initial and updated trees (documents) by defining a series of

additions and deletions or changes to the original document to produce the

updated document. In the common case, these difference scripts are much

smaller than the web pages themselves, and this can be seen to be a form of

compression. A difference script can be converted into a XSLT document that

describes how to transform the original (old) XML document into the updated

XML document [KayM00]. The size of the generated XSLT document is

proportional to the size of the difference script. These processing steps could be

executed at different tiers in different architectures. The overall transformation

process is shown in Figure 6.2.

OLD
XML

NEW
XML

TREE
DIFF

DIFF

SCRIPT
TRANS-
FORM

XSLT
SCRIPT

OLD
XML

NEW
XML

XSLT
ENGINE

OLD
XML

NEW
XML

TREE
DIFF

DIFF

SCRIPT
TRANS-
FORM

XSLT
SCRIPT

OLD
XML

NEW
XML

OLD
XML

NEW
XML

TREE
DIFF

DIFF

SCRIPT
TRANS-
FORM

XSLT
SCRIPT

OLD
XML

NEW
XML

OLD
XML

NEW
XML

TREE
DIFF

DIFF

SCRIPT
TRANS-
FORM

XSLT
SCRIPT

OLD
XML

NEW
XML

XSLT
ENGINE

Figure 6.2 XML Tree Transform Process Example

105

6.1.1 Selecting Specific Architectures for Demonstration

A

B

C

D

NEW
XML

NEW
XML

NEW
XML

NEW
XML

Server
T2T

Cache
T2T

User
T2T

NEW
XML

NEW
XML

XSLT NEW
XML

Cache
X2T

User
T2T T2X

Server
T2X

NEW
XML

NEW
XML

XSLT NEW
XML

User
X2T

Cache
T2X

Server
T2T

NEW
XML

XSLT XSLT NEW
XML

User
X2T

Server
T2X

Cache
X2X

Legend

Location
conversion

Point at base is
Tree interface

Point in center is
XSLT interface

X2T XSLT to Tree translation
T2X Tree to XSLT translation

NEW
XML

XSLT

Tree

XML Document

ProductLocation

A

B

C

D

NEW
XML

NEW
XML

NEW
XML

NEW
XML

Server
T2T

Cache
T2T

User
T2T

NEW
XML

NEW
XML

XSLT NEW
XML

Cache
X2T

User
T2T T2X

Server
T2X

NEW
XML

NEW
XML

XSLT NEW
XML

User
X2T

Cache
T2X

Server
T2T

NEW
XML

XSLT XSLT NEW
XML

User
X2T

Server
T2X

Cache
X2X

A

B

C

D

NEW
XML
NEW
XML

NEW
XML
NEW
XML

NEW
XML
NEW
XML

NEW
XML
NEW
XML

Server
T2T

Server
T2T

Cache
T2T

Cache
T2T

User
T2T

User
T2T

NEW
XML
NEW
XML

NEW
XML
NEW
XML

XSLT NEW
XML
NEW
XML

Cache
X2T

Cache
X2T

User
T2T

User
T2T T2X

Server
T2XT2X

Server
T2X

NEW
XML
NEW
XML

NEW
XML
NEW
XML

XSLT NEW
XML
NEW
XML

User
X2T

User
X2T

Cache
T2X

Cache
T2X

Server
T2T

Server
T2T

NEW
XML
NEW
XML

XSLT XSLT NEW
XML
NEW
XML

User
X2T

User
X2T

Server
T2X

Server
T2X

Cache
X2X

Legend

Location
conversion

Point at base is
Tree interface

Point in center is
XSLT interface

X2T XSLT to Tree translation
T2X Tree to XSLT translation

NEW
XML

XSLT

Tree

XML Document

ProductLocation

Legend

Location
conversion

Point at base is
Tree interface

Point in center is
XSLT interface

X2T XSLT to Tree translation
T2X Tree to XSLT translation

Location
conversion

Point at base is
Tree interface

Point in center is
XSLT interface

X2T XSLT to Tree translation
T2X Tree to XSLT translation

NEW
XML
NEW
XML

XSLT

Tree

XML Document

ProductLocation

Figure 6.3 Alternative example architectures

106

The approach researched is broadly applicable. To make it easy to correlate the

architecture differences with the performance differences in this example, the

communications infrastructure will remain fixed for all four architectures

considered. What will change is the configuration of compression servers. Were

the communications links to be changed either by modifying the data rate, error

rate, or locations between architecture nodes, the results would change

accordingly.

Figure 6.3 shows four potential architectures for this application. All four

architectures have three nodes connected sequentially and the different

component shapes in the figure represent different versions of the components.

Architecture A uses no compression; an updated XML document is sent from the

Server to the User on request. Architecture B uses the compression techniques

described earlier in the Server so that it outputs an XSLT script that is sent to the

Cache. The Cache uses this script on its local copy of the document to create an

updated version which is forwarded to the User. The Cache compresses this

updated document into a XSLT script which the User will use to convert the old

XML document into the updated XML document. Architecture C again uses

these compression techniques but it creates an XSLT script at the Cache and

sends it the User. The User similarly uses this script with its local copy of the

document to create an updated version. The Cache compresses this updated

document into a XSLT script which the User will use to convert the old XML

107

document into the updated XML document. Finally, in Architecture D, the

compression is at the Server (as in Architecture B); in this case, the Cache

forwards the compressed document to the User for use in converting the old XML

document into the updated XML document (as in Architecture C).

6.2 Assigning Delay Descriptions to Architecture Elements

The information needed to compute the performance of each architecture

computation or communications activity has the same basic form for any type of

problem where these techniques can be applied. Data for these examples is

given in table form. Table 6.1 describes the structure of these tables. This table

structure will be used in subsequent analysis to keep track of the various delay

contributions, both those which are assumptions associated with architecture

component performance, and some which are derived as is the description of

transmit delay. The top line (E) of the table holds the estimated value

descriptions. It includes both the data transformation processing delay and the

communications delay. The bottom line (D) holds the delays to be combined and

represents the inputs to the functions that combine delays as in chapter five.

The boxes in this table are small. To keep the graphs readable, Table 6.2 shows

the abbreviated versions that will be used for each graph in the following analysis

sections. The table is formulated in three columns. The first column shows the

location of the graph being explained (shadowed block). The center column

108

shows the graph labeled as it would be in a larger picture. The right column

shows the abbreviated labeling of the graphs which will be used in the following

analysis.

Table 6.1 Standard data table for comparing transition delays.

Delay Contribution

Delay From Data To Data Propagation Transmit

Dxy

E

D

A pdf description
of data size before

node processing

A pdf description

of data size after
node processing

A pdf description

of the data leading
edge delay

A pdf delay

description for
putting data on the

connector

A pdf description of the time

needed for node processing to

convert before pdf to after pdf
Same as above

Computed (pdf)

transmit time

Delay Contribution

Delay From Data To Data Propagation Transmit

Dxy

E

D

A pdf description
of data size before

node processing

A pdf description

of data size after
node processing

A pdf description

of the data leading
edge delay

A pdf delay

description for
putting data on the

connector

A pdf description of the time

needed for node processing to

convert before pdf to after pdf
Same as above

Computed (pdf)

transmit time

109

Table 6.2 Graph abbreviations used in analysis tables that follow

fT (t)
P

Propagation Time PDF

Time, t (sec)

Transmit Rate PDF

fR (r)
T

Rate, r (bps)

“From” Data PDF

fD (s)
F

Size, s (bits)

“To” Data PDF

fD (s)
T

Size, s (bits)

sec

fP

bps

fR

bits

fF

bits

fT

Table Location Actual Graph
Abbreviated

Graph

fT (t)
P

Propagation Time PDF

Time, t (sec)

fT (t)
P

fT (t)
P

Propagation Time PDF

Time, t (sec)

Propagation Time PDF

Time, t (sec)

Transmit Rate PDF

fR (r)
T

Rate, r (bps)

Transmit Rate PDF

fR (r)
T

fR (r)
T

Rate, r (bps)

“From” Data PDF

fD (s)
F

Size, s (bits)

“From” Data PDF

fD (s)
F

fD (s)
F

Size, s (bits)

“To” Data PDF

fD (s)
T

Size, s (bits)

“To” Data PDF

fD (s)
T

fD (s)
T

Size, s (bits)

sec

fP

sec

fP

bps

fR

bps

fR

bits

fF

bits

fF

bits

fT

bits

fT

Table Location Actual Graph
Abbreviated

Graph
Table Location Actual Graph

Abbreviated
Graph

110

Table 6.2 Graph abbreviations continued

Table Location Actual Graph

Data Conversion PDF

fC(s)

Time, t (sec)

sec

fC

Propagation Time PDF

fT (t)
P

Time, t (sec)

sec

fP

Transmit Time PDF

fT (t)
T

Time, t (sec)

sec

fX

Abbreviated
Graph

Table Location Actual Graph

Data Conversion PDF

fC(s)

Time, t (sec)

sec

fC

Data Conversion PDF

fC(s)

Time, t (sec)

Data Conversion PDF

fC(s)

Time, t (sec)

sec

fC

sec

fC

Propagation Time PDF

fT (t)
P

Time, t (sec)

sec

fP

Propagation Time PDF

fT (t)
P

Time, t (sec)

Propagation Time PDF

fT (t)
P

fT (t)
P

Time, t (sec)

sec

fP

sec

fP

Transmit Time PDF

fT (t)
T

Time, t (sec)

sec

fX

Transmit Time PDF

fT (t)
T

Time, t (sec)

Transmit Time PDF

fT (t)
T

fT (t)
T

Time, t (sec)

sec

fX

sec

fX

Abbreviated
Graph

6.2.1 Characterizing the Architectural Elements

For analysis purposes, it is necessary to make some assumptions about the

likely implementations and use of the system. The analysis that follows is based

on the following assumptions:

111

• A single file is studied, but that file will have a size that is normally

distributed.

• The one way (up and down) trip geostationary satellite delay is roughly

twice that of a terrestrial trip across the continental United States, that

presumed distance traversed on a terrestrial (fiber) link.

• The data rate for the satellite link is assumed to be twice that of the

allocated portion of the terrestrial (fiber) link.

• The user to cache distance is approximately equal to the cache to server

distance.

As with other values, characterizing estimates should be tailored based on an

understanding of the specifics of the actual problem being solved.

6.2.2 Architecture A

Starting with the simplest "just-send-it" architecture, architecture A, consider the

factors that go into populating Table 6.1. Architecture A takes the documents

that exist at the server and transfers them in total (without any compression) to

the cache, and then again to the user. Delays associated with this process are

labeled with a “D” that is subscripted by the source and destination nodes. In this

112

case, architecture A has two delays one from the Server to the Cache (Dsc) and

one from the Cache to the User (Dcu). To evaluate architecture A using this

methodology, compute those two delays and combine them.

To execute the calculation, the delay tables for both Dsc and Dcu are populated as

shown in Figure 6.4. The descriptions that go into the table are specific to

architecture A. The values have been taken from the characterizing assumptions

listed above.

Since there is no processing involved at the Server, the transform time is zero.

The communications time required to move the data from the Server to the

Cache can be calculated by applying the assumptions regarding the throughput

characteristics of the links connecting those nodes. Since there are few specifics

at this early step of design, further assume that the transmit delay will dominate

the propagation delay. Both delays are considered reference values and will be

used to assign values later to Dcu.

113

Architecture A -- Delay Contribution DSC

Delay From Data To Data Propagation Time Transmit Rate

E

D

DSC

bits bits sec bps

sec sec

250 msec

250 msec

300Kbps

150K 450K

300K

150K 450K

300K

0 sec

sec

1.5 sec

1 sec

0.5 sec

fF fT fP fR

fC fP fX

Architecture A -- Delay Contribution DCU

Delay From Data To Data Propagation Time Transmit Rate

E

D

DCU

bits bits sec bps

sec sec sec

125 msec

125 msec

150K 450K

300K

150K 450K

300K
150Kbps

0 sec

1 sec 3 sec

2 sec

fF fT fP fR

fC fP fX

NEW
XML

NEW
XML

NEW
XML

NEW
XML

Server
T2T

Cache
T2T

User
T2T

Architecture A -- Delay Contribution DSC

Delay From Data To Data Propagation Time Transmit Rate

E

D

DSC

bits bits sec bps

sec sec

250 msec

250 msec

300Kbps

150K 450K

300K

150K 450K

300K

0 sec

sec

1.5 sec

1 sec

0.5 sec

fF fT fP fR

fC fP fX

Architecture A -- Delay Contribution DCU

Delay From Data To Data Propagation Time Transmit Rate

E

D

DCU

bits bits sec bps

sec sec sec

125 msec

125 msec

150K 450K

300K

150K 450K

300K
150Kbps

0 sec

1 sec 3 sec

2 sec

fF fT fP fR

fC fP fX

Architecture A -- Delay Contribution DSC

Delay From Data To Data Propagation Time Transmit Rate

E

D

DSC

bits bits sec bps

sec sec

250 msec

250 msec

300Kbps

150K 450K

300K

150K 450K

300K

0 sec

sec

1.5 sec

1 sec

0.5 sec

fF fT fP fR

fC fP fX

Architecture A -- Delay Contribution DCU

Delay From Data To Data Propagation Time Transmit Rate

E

D

DCU

bits bits sec bps

sec sec sec

125 msec

125 msec

150K 450K

300K

150K 450K

300K
150Kbps

0 sec

1 sec 3 sec

2 sec

fF fT fP fR

fC fP fX

Architecture A -- Delay Contribution DSC

Delay From Data To Data Propagation Time Transmit Rate

E

D

DSC

bits bits sec bps

sec sec

250 msec

250 msec

300Kbps

150K 450K

300K

150K 450K

300K

0 sec

sec

1.5 sec

1 sec

0.5 sec

fF fT fP fR

fC fP fX

Architecture A -- Delay Contribution DSC

Delay From Data To Data Propagation Time Transmit Rate

E

D

DSC

bits bits sec bps

sec sec

250 msec

250 msec

300Kbps

150K 450K

300K

150K 450K

300K

0 sec

sec

1.5 sec

1 sec

0.5 sec

fF fT fP fR

fC fP fX

Architecture A -- Delay Contribution DCU

Delay From Data To Data Propagation Time Transmit Rate

E

D

DCU

bits bits sec bps

sec sec sec

125 msec

125 msec

150K 450K

300K

150K 450K

300K
150Kbps

0 sec

1 sec 3 sec

2 sec

fF fT fP fR

fC fP fX

Architecture A -- Delay Contribution DCU

Delay From Data To Data Propagation Time Transmit Rate

E

D

DCU

bits bits sec bps

sec sec sec

125 msec

125 msec

150K 450K

300K

150K 450K

300K
150Kbps

0 sec

1 sec 3 sec

2 sec

fF fT fP fR

fC fP fX

NEW
XML

NEW
XML

NEW
XML

NEW
XML

Server
T2T

Cache
T2T

User
T2T

NEW
XML
NEW
XML

NEW
XML
NEW
XML

NEW
XML
NEW
XML

NEW
XML
NEW
XML

Server
T2T

Server
T2T

Cache
T2T

Cache
T2T

User
T2T

User
T2T

Figure 6.4 Architecture A and associated component delays

For this example, specific values have been selected for “Transmit Rate” and

“Propagation Time” to make the example easy to follow. This is not however a

requirement. As long as the ratios of all delays are preserved, any values could

114

be used. The final PPI result will be unaffected by scaling of the time axis. The

goal of the methodology development was to make comparative architecture

performance evaluations. The assignment of specific values is not a significant

restriction to the method’s use.

The total delay for the architecture is the sum of the six graphs in the “D” rows of

Figure 6.5. This aggregate delay is computed using the techniques of chapter

five.

0 1000 2000 3000 4000
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Time, t (msec)

Architecture “A”

Total Delay, DTotal

vs. Time (msec)

DSC

DCU

DTotal

fA(t)

0 1000 2000 3000 4000
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Time, t (msec)

Architecture “A”

Total Delay, DTotal

vs. Time (msec)

DSC

DCU

DTotal

fA(t)

0 1000 2000 3000 4000
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 1000 2000 3000 4000
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Time, t (msec)

Architecture “A”

Total Delay, DTotal

vs. Time (msec)

DSC

DCU

DTotal

fA(t)

Figure 6.5 Performance description for architecture A

115

6.2.3 Architecture B

Figure 6.6 shows architecture B and the associated delay tables. In this

situation, the product from the Server is an XSLT script generated from both the

new and old XML files. Once this XSLT script is transferred to the Cache, it is

used to convert the old XML file into the updated file. The total delay for the

architecture is the sum of the six graphs in the “D” rows of Figure 6.6. The gray

curves on Figure 6.6 show the performance values of architecture A and are

included for comparison purposes. The result of combining all of these delays is

shown in Figure 6.7.

116

NEW
XML

NEW
XML

XSLT NEW
XML

Cache
X2T

User
T2T T2X

Server
T2X

Architecture B -- Delay Contribution DCU

Delay From Data To Data Propagation Time Transmit Rate

E

D

DCU

bits sec bps

sec sec

125 msec

125 msec

150K 450K

300K
150Kbps

bits

225K

sec

1 sec 3 sec

2 sec300 msec

fF fT fP fR

fC fP fX

Architecture B -- Delay Contribution DSC

Delay From Data To Data Propagation Time Transmit Rate

E

D

DSC

sec bps

sec

bits

250 msec

250 msec

300Kbps

150K 450K

300K

secsec

0-250 ms
0.75 sec

bits

225K

fF fT fP fR

fC fP fX

E

NEW
XML

NEW
XML

XSLT NEW
XML

Cache
X2T

User
T2T T2X

Server
T2X

NEW
XML
NEW
XML

NEW
XML
NEW
XML

XSLT NEW
XML
NEW
XML

Cache
X2T

Cache
X2T

User
T2T

User
T2T T2X

Server
T2XT2X

Server
T2X

Architecture B -- Delay Contribution DCU

Delay From Data To Data Propagation Time Transmit Rate

E

D

DCU

bits sec bps

sec sec

125 msec

125 msec

150K 450K

300K
150Kbps

bits

225K

sec

1 sec 3 sec

2 sec300 msec

fF fT fP fR

fC fP fX

Architecture B -- Delay Contribution DCU

Delay From Data To Data Propagation Time Transmit Rate

E

D

DCU

bits sec bps

sec sec

125 msec

125 msec

150K 450K

300K

150K 450K

300K
150Kbps

bits

225K

sec

1 sec 3 sec

2 sec300 msec

fF fT fP fR

fC fP fX

Architecture B -- Delay Contribution DSC

Delay From Data To Data Propagation Time Transmit Rate

E

D

DSC

sec bps

sec

bits

250 msec

250 msec

300Kbps

150K 450K

300K

secsec

0-250 ms
0.75 sec

bits

225K

fF fT fP fR

fC fP fX

E

Architecture B -- Delay Contribution DSC

Delay From Data To Data Propagation Time Transmit Rate

E

D

DSC

sec bps

sec

bits

250 msec

250 msec

300Kbps

150K 450K

300K

150K 450K

300K

secsec

0-250 ms
0.75 sec

bits

225K

fF fT fP fR

fC fP fX

E

Figure 6.6 Architecture B and associated delay tables

117

0 1000 2000 3000 4000
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Time, t (msec)

DSC

DCU

DTotal

fB(t)

Architecture “B”

Total Delay, DTotal

vs. Time (msec)

0 1000 2000 3000 4000
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Time, t (msec)

DSC

DCU

DTotal

fB(t)

Architecture “B”

Total Delay, DTotal

vs. Time (msec)

0 1000 2000 3000 4000
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 1000 2000 3000 4000
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Time, t (msec)

DSC

DCU

DTotal

fB(t)

Architecture “B”

Total Delay, DTotal

vs. Time (msec)

Figure 6.7 Performance description for architecture B

6.2.4 Architecture C

Next architecture C is considered. Here the conversion from both the old and

new XML trees to the XSLT script occurs in the Cache. The remainder of the

architecture remains the same. The XSLT script once transferred to the User is

used to convert the old XML document into the new XML document. The total

delay for architecture C is made up of the six contributions in the “D” rows shown

in Figure 6.9.

118

Architecture C -- Delay Contribution DCU

Delay From Data To Data Propagation Time Transmit Rate

E

D

DCU

sec bps

sec

bits

125, 250 msec 150Kbps

150K 450K

300K

125, 250 msec

bits

225K

sec

0-250 ms

sec

1.5 sec

fF fT fP fR

fC fP fX

Architecture C -- Delay Contribution DUU

Delay From Data To Data Propagation Time Transmit Rate

E

D

DUU

bits sec bps

sec sec sec

150K 450K

300K

300 msec

User-Internal
VERY HIGH

bits

225K

fF fT fP fR

fC fP fX

NEW
XML

NEW
XML

XSLT NEW
XML

User
X2T

Server
T2T

Cache
T2X

Architecture C -- Delay Contribution DCU

Delay From Data To Data Propagation Time Transmit Rate

E

D

DCU

sec bps

sec

bits

125, 250 msec 150Kbps

150K 450K

300K

125, 250 msec

bits

225K

sec

0-250 ms

sec

1.5 sec

fF fT fP fR

fC fP fX

Architecture C -- Delay Contribution DUU

Delay From Data To Data Propagation Time Transmit Rate

E

D

DUU

bits sec bps

sec sec sec

150K 450K

300K

300 msec

User-Internal
VERY HIGH

bits

225K

fF fT fP fR

fC fP fX

NEW
XML

NEW
XML

XSLT NEW
XML

User
X2T

Server
T2T

Cache
T2X

Architecture C -- Delay Contribution DCU

Delay From Data To Data Propagation Time Transmit Rate

E

D

DCU

sec bps

sec

bits

125, 250 msec 150Kbps

150K 450K

300K

125, 250 msec

bits

225K

sec

0-250 ms

sec

1.5 sec

fF fT fP fR

fC fP fX

Architecture C -- Delay Contribution DCU

Delay From Data To Data Propagation Time Transmit Rate

E

D

DCU

sec bps

sec

bits

125, 250 msec 150Kbps

150K 450K

300K

125, 250 msec

bits

225K

sec

0-250 ms

sec

1.5 sec

fF fT fP fR

fC fP fX

Architecture C -- Delay Contribution DUU

Delay From Data To Data Propagation Time Transmit Rate

E

D

DUU

bits sec bps

sec sec sec

150K 450K

300K

300 msec

User-Internal
VERY HIGH

bits

225K

fF fT fP fR

fC fP fX

Architecture C -- Delay Contribution DUU

Delay From Data To Data Propagation Time Transmit Rate

E

D

DUU

bits sec bps

sec sec sec

150K 450K

300K

300 msec

User-Internal
VERY HIGH

bits

225K

fF fT fP fR

fC fP fX

NEW
XML

NEW
XML

XSLT NEW
XML

User
X2T

Server
T2T

Cache
T2X

NEW
XML
NEW
XML

NEW
XML
NEW
XML

XSLT NEW
XML
NEW
XML

User
X2T

User
X2T

Server
T2T

Server
T2T

Cache
T2X

Cache
T2X

Figure 6.8 Architecture C and associated delay tables

119

fC(t)

0 1000 2000 3000 4000
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Time, t (msec)

DSU

DUU

DTotal

Architecture “C”

Total Delay, CTotal

vs. Time (msec)

fC(t)

0 1000 2000 3000 4000
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Time, t (msec)

DSU

DUU

DTotal

Architecture “C”

Total Delay, CTotal

vs. Time (msec)

0 1000 2000 3000 4000
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 1000 2000 3000 4000
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Time, t (msec)

DSU

DUU

DTotal

Architecture “C”

Total Delay, CTotal

vs. Time (msec)

Figure 6.9 Performance description for architecture C

6.2.5 Architecture D

In the final architecture to be considered, D, the generation of the XSLT script is

done in the Server and it is transferred through the Cache to the User where it is

combined with a copy of the old document to produce the desired new document.

The architecture and delay descriptions for this case are illustrated in Figure

6.10. The total delay accumulated in the process from the six contributions in

rows “D” of Figure 6.10 is shown in Figure 6.11.

120

Architecture D -- Delay Contribution DSU

Delay From Data To Data Propagation Rate Transmit Time

E

D

DSU

sec bps

sec sec

bitsbits

sec

300Kbps

150K 450K

300K

0.75 sec

225K
125, 250 msec

125, 250 msec0-250 ms

fF fT fP fR

fC fP fX

Architecture D -- Delay Contribution DUU

Delay From Data To Data Propagation Time Transmit Rate

E

D

DUU

bits sec

sec

150K 450K

300K

bits

225K

sec

bps

sec

User-Internal

VERY HIGH

300 msec

fF fT fP fR

fC fP fX

NEW
XML

XSLT XSLT NEW
XML

User
X2T

Server
T2X

Cache
X2X

Architecture D -- Delay Contribution DSU

Delay From Data To Data Propagation Rate Transmit Time

E

D

DSU

sec bps

sec sec

bitsbits

sec

300Kbps

150K 450K

300K

0.75 sec

225K
125, 250 msec

125, 250 msec0-250 ms

fF fT fP fR

fC fP fX

Architecture D -- Delay Contribution DSU

Delay From Data To Data Propagation Rate Transmit Time

E

D

DSU

sec bps

sec sec

bitsbits

sec

300Kbps

150K 450K

300K

0.75 sec

225K
125, 250 msec

125, 250 msec0-250 ms

fF fT fP fR

fC fP fX

Architecture D -- Delay Contribution DUU

Delay From Data To Data Propagation Time Transmit Rate

E

D

DUU

bits sec

sec

150K 450K

300K

bits

225K

sec

bps

sec

User-Internal

VERY HIGH

300 msec

fF fT fP fR

fC fP fX

Architecture D -- Delay Contribution DUU

Delay From Data To Data Propagation Time Transmit Rate

E

D

DUU

bits sec

sec

150K 450K

300K

bits

225K

sec

bps

sec

User-Internal

VERY HIGH

300 msec

fF fT fP fR

fC fP fX

NEW
XML

XSLT XSLT NEW
XML

User
X2T

Server
T2X

Cache
X2X

NEW
XML
NEW
XML

XSLT XSLT NEW
XML
NEW
XML

User
X2T

User
X2T

User
X2T

Server
T2X

Server
T2X

Server
T2X

Cache
X2X

Cache
X2X

Cache
X2X

Figure 6.10 Architecture D and associated delay tables

121

0 1000 2000 3000 4000
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Time, t (msec)

DSU

DUU

Total
fD(t)

Architecture “D”

Total Delay, DTotal

vs. Time (msec)

0 1000 2000 3000 4000
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Time, t (msec)

DSU

DUU

Total
fD(t)

Architecture “D”

Total Delay, DTotal

vs. Time (msec)

0 1000 2000 3000 4000
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Time, t (msec)

DSU

DUU

Total
fD(t)

Architecture “D”

Total Delay, DTotal

vs. Time (msec)

Figure 6.11 Performance description for architecture D

6.3 Comparing Results Across Architectures

Tabulating the evaluation of the performance probability integral for all pair-wise

cases simplifies identifying the best performing architecture. Figure 6.13 shows

the relative performance for all architectures on a pair-wise basis. When

comparing architectures A and B it is seen that B is better than A 88.8% of the

time. When comparing architectures C and D, D is better by 65% of the time.

When comparing B and D, it is seen that D is better 100% of the time. Clearly

the order in which these are compared says something about by how much the

best is better. One can note that the probability that CX will perform better than

122

CY is just 1.0 minus the probability that CY will perform better than CX. This is

clear as there are only two cases. CY or CX must perform better so the total of

both performing better must equal one.

0 1000 2000 3000 4000
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D

C

B A

Time, t (msec)

fX

PDF for Propagation Time
fX (t) vs. Time (sec)

0 1000 2000 3000 4000
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D

C

B A

Time, t (msec)

fX

PDF for Propagation Time
fX (t) vs. Time (sec)

0 1000 2000 3000 4000
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D

C

B A

0 1000 2000 3000 4000
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 1000 2000 3000 4000
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D

C

B A

Time, t (msec)

fX

PDF for Propagation Time
fX (t) vs. Time (sec)

Figure 6.12 Plot of all four architecture delay descriptions

123

Prob(row < col)

---- 0.112 0.000 0.000

---- 0.000 0.000

1.000 1.000 ---- 0.350

A

A

B

1.000 1.000 0.650 ----D

DC

C

BArch

0.888

Prob(row < col)

---- 0.112 0.000 0.000

---- 0.000 0.000

1.000 1.000 ---- 0.350

A

A

B

1.000 1.000 0.650 ----D

DC

C

BArch

0.888

Prob(row < col)

---- 0.112 0.000 0.000

---- 0.000 0.000

1.000 1.000 ---- 0.350

A

A

B

1.000 1.000 0.650 ----D

DC

C

BArch

0.888

Figure 6.13 Summarizing all architectural performance results

6.3.1 Scaling Issues

It is desirable to make comparisons between architectures on a relative basis,

but this goal can be taken only so far. Ultimately, there must be a constant scale

factor or fixed relationship maintained between the delays described for each

architectural element and the others. As long as this delay-to-delay relationship

can be preserved, then all architectures (and architecture element performance

values) can be scaled without changing the outcome of the analysis. In this

example, the geostationary satellite round trip delay could be chosen to be ½ a

time unit in seconds. Based on the assumptions above, the terrestrial delay

would be half that. The assumptions state that the satellite data rate is twice that

of the terrestrial link. Hence after choosing the satellite data rate arbitrarily at two

124

bit/sec units, then the terrestrial data rate had to be four bit/sec units. Figure

6.14 documents the application of these assumptions to the example.

bit/sec

Satellite
Data Rate

fSDR(r)

Rate, r

bit/sec

Terrestrial
Data Rate

fTDR(r)

Rate, r

bit/sec

Terrestrial
Delay

fTD(t)

Time, t

bit/sec

fSD(t)

Satellite
Delay

Time, t

bit/sec

Satellite
Data Rate

fSDR(r)

Rate, r

bit/sec

Satellite
Data Rate

fSDR(r)

Rate, r

bit/sec

Terrestrial
Data Rate

fTDR(r)

Rate, r

bit/sec

Terrestrial
Data Rate

fTDR(r)

Rate, r

bit/sec

Terrestrial
Delay

fTD(t)

Time, t

bit/sec

Terrestrial
Delay

fTD(t)

Time, t

bit/sec

fSD(t)

Satellite
Delay

Time, t

bit/sec

fSD(t)

Satellite
Delay

Time, t

Figure 6.14 Establishing related propagation delays and data rates

Once the data rates have been established, the computed times for transmission

must be inversely proportional to those rates. In this case, since the terrestrial

data rate is twice that of the satellite link and the size of the data is the same in

each case, the width of the pdf describing the time required to transmit a file is ½

as shown in Figure 6.15.

125

fTD(t)

secs

Terrestrial
Delay

Time, t

fSD(t)

secs

Satellite
Delay

Time, t

fTD(t)

secs

Terrestrial
Delay

Time, t

fSD(t)

secs

Satellite
Delay

Time, t

fTD(t)

secs

Terrestrial
Delay

Time, t

fTD(t)

secs

Terrestrial
Delay

Time, t

fSD(t)

secs

Satellite
Delay

Time, t

fSD(t)

secs

Satellite
Delay

Time, t

Figure 6.15 Result of scaling the satellite delay to the terrestrial delay

In more general cases, an arbitrary reference can be selected and applied

consecutively to the graphs being specified. Consider two density functions fA

and fB. With the arbitrary scale factor, compute the scale of fA to be some

constant Ca. Similarly compute the scale factor Cb for fB. Then scale fB by the

factor Cb/Ca.

6.4 Summary

This chapter has taken a simple three tier example architecture and walked

through the steps to identify the computational and communications processes

involved with generating a solution. Next, the performance descriptions of the

architecture elements were estimated and these descriptions were combined into

an end–to-end estimate for each of the potential architectural alternatives.

Finally, the performance probability integral was evaluated for each of the cases

considered, to identify which of the architectural choices performed the best.

126

Chapter 7

7 Two Larger Examples >

The previous chapter discussed performance analysis for a classical three tier

database application. This chapter applies these concepts to a pair of problems

which more closely represents real-world situations and therefore exposes issues

commonly encountered in real applications. The benefits of these two examples

are three-fold: they demonstrate different functions used in the performance

analysis process, they give insight into some of the approximations that can be

made to either simplify the analysis or to continue the analysis when pieces of

information are unavailable and finally they demonstrate the utility of specifying

performance parameters in a way that can account for variations in the use of the

system. The first example represents a class of problems where the primary

performance uncertainties are associated with link characteristics. This example

considers exfiltrating data from a clandestine source to an unknown location.

The second example is representative of a performance analysis that would

usually be encountered later in the development lifecycle. At that time, more

information is known about the design and performance requirements are likely

better specified. This second example addresses the development of a service

in a Service Oriented Architecture framework. It demonstrates that these

performance analysis techniques can be used to refine performance estimates.

127

One interesting feature of this example is that it is possible to determine at

architecture selection time that a specific architecture cannot meet the

performance specification and that an alternative architecture can correct this

situation.

7.1 Example One: Data Exfiltration

The data exfiltration example is representative of a class of problems where

many of the performance unknowns are delays associated with distances

between the elements that make up the architecture. This type of uncertainty

can be an advantage. There is value in designing systems to accommodate

ranges of values rather than specific values. Design processes based on exact

values for characterizing parameters are often less robust. Their performance

can be sensitive to changes in the environment in which they run. Systems

designed to accommodate ranges of critical values are normally more robust and

can often be used for purposes other than those for which they are initially

designed.

7.1.1 Problem Definition

For this example, assume that there is a news reporter in a remote location that

needs to exfiltrate data back from her location to a news room where it can be

correlated with other pieces of information. Due to the remoteness of the source

location, the reporter has only two communications alternatives. She may use a

128

radio which can establish a satellite link to a nearby town, or she may

communicate through a local network provided by military assets. Once her data

reaches the nearest town, there are two transmission options as well. The data

may be interleaved with other users’ data on a covert network connection to

make it inconspicuous, or the data may be relayed to another satellite where it is

forwarded to its destination for consolidation. Since the system is being

designed for general purpose use, there is little known about the relative

distances between the reporter, the town, and the collection location. Further, in

an effort to be inconspicuous, the radio is designed to be hand-held. It has only

a small antenna so the reporter's satellite link must be established with a low

earth orbiting (LEO) satellite.

7.1.2 Large-Grain Delay Descriptions

As with many early lifecycle architecture analysis questions, one needs to make

some preliminary assumptions about the way components and connections

perform when the solution is not entirely specified. The numbers shown in Table

7.1 are generated as approximations to actual system performance and

represent a number of different deployment situations. This will almost always

be true when the deployment locations are not known in advance of the system’s

being built. This situation is not uncommon since there can be a variety of

options for implementing systems. Different options implies that the performance

descriptions need to cover a range of values. For example, not all LEO satellites

129

orbit at the same altitude; hence the performance description for a satellite

connection should be formulated as a range of values. Since the problem

indicates that the reporter is trying to be inconspicuous, it is reasonable to

assume that she is relatively close to but not in the town. Since the local satellite

is in low earth orbit, the delay is likely to be approximately five to ten

milliseconds. Assume the town is likely to be a far distance from the news room

(as it would be in cases of an international disaster or war zone). The second

satellite is likely to be in geosynchronous (GEO) orbit (250 ms one way delay).

The terrestrial network delays are each likely to be a fraction of the geostationary

satellite delay. The allocated terrestrial bandwidth for the tactical network is likely

to be much less that that of either satellite link. At architecture design time, none

of the specifics about either satellite or terrestrial hardware is known. It is

reasonable then to estimate that the tactical data rate will be about half that of

the geostationary SATCOM link and the same as the LEO satellite. These

component and connection characteristics are summarized in Table 7.1.

130

Table 7.1 Summary of data exfiltration system performance estimates

min

max

LEO-SAT (L1)

128
(Kbps)

256
(Kbps)

Rate

0
(min)

95.2
(min)

Vis Del

250
(ms)

250
(ms)

Prop

256
(Kbps)

512
(Kbps)

Rate

200
(ms)

1000
(ms)

Prop

128
(Kbps)

128
(Kbps)

Rate

50
(ms)

280
(ms)

Prop

256
(Kbps)

256
(Kbps)

Rate

GEO-SAT (L3) Tac-Net (L2) Glob-Net (L4)

5
(ms)

10
(ms)

Prop

min

max

LEO-SAT (L1)

128
(Kbps)

256
(Kbps)

Rate

128
(Kbps)

256
(Kbps)

Rate

0
(min)

95.2
(min)

Vis Del

0
(min)

95.2
(min)

Vis Del

250
(ms)

250
(ms)

Prop

250
(ms)

250
(ms)

Prop

256
(Kbps)

512
(Kbps)

Rate

256
(Kbps)

512
(Kbps)

Rate

200
(ms)

1000
(ms)

Prop

200
(ms)

1000
(ms)

Prop

128
(Kbps)

128
(Kbps)

Rate

128
(Kbps)

128
(Kbps)

Rate

50
(ms)

280
(ms)

Prop

50
(ms)

280
(ms)

Prop

256
(Kbps)

256
(Kbps)

Rate

256
(Kbps)

256
(Kbps)

Rate

GEO-SAT (L3) Tac-Net (L2) Glob-Net (L4)

5
(ms)

10
(ms)

Prop

5
(ms)

10
(ms)

Prop

7.1.3 Alternative Problem Architectures

There are three nodes and two connections in this architecture. Each pair of

connected nodes has two alternative connection implementations resulting in

four possible architectures. Figure 7.1 shows the options for the architectures

and defines labels that will be used in the following analysis to establish the

various delays on the connections. The problem of selecting the best performing

data exfiltration architecture is solved by building the performance descriptions

for each of the alternatives. The four options are listed in Table 7.2

131

SATCOM Link

Terrestrial network

N

T

R Reporter Radio

Town Communications Node

News Room Communications Node

L1

L2

L3

L4
N T R

GEO SATELLITE

TACTICAL NETGLOBAL NET

LEO SATELLITE

SATCOM Link

Terrestrial network

N

T

R Reporter Radio

Town Communications Node

News Room Communications Node

L1

L2

L3

L4
N T R

GEO SATELLITE

TACTICAL NETGLOBAL NET

LEO SATELLITE

SATCOM Link

Terrestrial network

N

T

R Reporter Radio

Town Communications Node

News Room Communications Node
SATCOM Link

Terrestrial network

SATCOM Link

Terrestrial network

N

T

R Reporter Radio

Town Communications Node

News Room Communications Node

L1

L2

L3

L4
N T R

GEO SATELLITE

TACTICAL NETGLOBAL NET

LEO SATELLITE

L1

L2

L3

L4
N T R

GEO SATELLITE

TACTICAL NETGLOBAL NET

LEO SATELLITE

Figure 7.1 Data exfiltration architecture and labeling convention

Table 7.2 Table of architectures considered

LEO-SAT�GEO-SATALG L1, L3

LEO-SAT�GLOB-NETALB L1, L4

TAC-NET�GEO-SATATG L2, L3

ATB L2, L4

ComponentsName Links

TAC-NET�GLOB-NET

LEO-SAT�GEO-SATALG L1, L3

LEO-SAT�GLOB-NETALB L1, L4

TAC-NET�GEO-SATATG L2, L3

ATB L2, L4

ComponentsName Links

TAC-NET�GLOB-NET

LEO-SAT�GEO-SATALG L1, L3

LEO-SAT�GLOB-NETALB L1, L4

TAC-NET�GEO-SATATG L2, L3

ATB L2, L4

ComponentsName Links

TAC-NET�GLOB-NET

132

7.1.4 Delay Characterization

To characterize the end-to-end delays associated with each of the architecture

alternatives, a performance description for each component and connection must

be generated using estimates. The amount of data to be processed, the data

rates and error characteristics of the links need to be described in order to build

the performance descriptions. The propagation delay of each link is needed to

calculate the overall transport delay. In situations where the satellite is not

always available due to masking, the satellite visibility times need to be

considered.

7.1.5 Data Characterization

To analyze the performance of the different possible architectures, one starts by

characterizing the data that the reporter must transmit: text, audio clips, and

store-and-forward video. Text messages will be assumed to be several hundred

characters. Pre-requested voice questions will be answered with 4 - 15 second

of perhaps 600-bytes-per-second compressed phone quality audio yielding 3000

to 9000 bytes per response. The video is likely to be 30 - 60 seconds at 30

frames per second, 640 scan lines per frame, 480 pixels per scan line, and three

bytes per pixel with a compression ratio of 8 - 12 yielding about 99 MB to 132 MB

per transmission. In each of the performance characterization diagrams that

follow, only the video data is depicted. Since the processing and

communications delays are directly proportional to the amount of data moved,

133

performance diagrams for the other data types would be scaled, time-shifted

versions of these video diagrams.

7.1.6 Characterizing Delay DL1

Figure 7.1 identifies the nomenclature that will be used to label nodes and links in

the data exfiltration architecture performance tables. Each link option can be

characterized using the format of Table 7.1 and the techniques described in

chapter six. In this example, there are no delays associated with the

transformation of data from one form to another and it is assumed that any data

compression for voice and video occurs in the recording device.

Since there is no widely agreed altitude for low earth orbit satellites, assume that

the satellite to be used has an altitude somewhere between 800 and 2000 km.

The orbital angular velocity associated with the satellite will be 3.569 to 2.830

degrees per minute [WeLa99]. This velocity yields an orbital period of 101 - 127

minutes. Assume a nominal viewing angle from the ground of 90 - 180 degrees;

the satellite is in view for roughly 25.2 - 63.5 minutes and not in view for about

50.5 - 95.2 minutes. The amount of time a satellite is in view is a function of the

orbital period and the viewing angle from the ground. A summary of the possible

satellite in-view and out-of-view times is shown as Figure 7.2.

134

90º 180º

Viewable degrees

Period

(min)

101

127

Minutes In and Out of View

In : 25.2
Out: 75.8

In: 31.8

Out: 95.2

In: 50.5
Out: 50.5

In: 63.5

Out: 63.5

90º 180º

Viewable degrees

Period

(min)

101

127

Minutes In and Out of View

In : 25.2
Out: 75.8

In: 31.8

Out: 95.2

In: 50.5
Out: 50.5

In: 63.5

Out: 63.5

Figure 7.2 LEO satellite accessibility times

The probability density function describing the LEO connection transmission rate

can be determined using the uniform quotient analysis example from chapter

five. Only the corner values are shown in Figure 7.3.

135

132 MB

99 MB

128 Kbps 256 Kbps

Quotient Delay Calculation

42248448

6336 3168

Rate (bits/sec)

Data (bytes)

Delay (sec)

132 MB

99 MB

128 Kbps 256 Kbps

Quotient Delay Calculation

42248448

6336 3168

Rate (bits/sec)

Data (bytes)

Delay (sec)Delay (sec)

Figure 7.3 Critical points for LEO satellite transmit delay

Figure 7.4 shows the mapping of the data parameters to probability density

functions as before with the “E” or expected performance row characterizing the

link, and the “D” or delay row showing the connector delay results. The size of

the transmitted data is assumed to be uniformly distributed between the bounds

specified in the data characterization section above. There is no additional

processing done by the system so the processing delay is zero. The transmit

data rate over the satellite was not specified so is assumed to be uniformly

distributed between 128 Kbps and 256 Kbps. Since both the data and the data

rate are uniformly distributed, the link throughput can be calculated using the

uniform quotient distribution calculation.

136

Architecture ADE -- Delay Contribution DL1

Delay From Data To Data Propagation Transmit

DL1

D P P

P

bits

P

bits

P

P

sec

5-10
ms

95.2

min Rate

P

bit/sec

P

bit/sec

128 kbps
256

kbps

Architecture ADE -- Delay Contribution DL1

Delay From Data To Data Propagation Transmit

DL1

D

sec sec

bits bits

sec

sec

5-10
ms

95.2

min Rate

bit/sec

128 kbps
256

kbpsE fF fT fP fR

fC fP fX

Architecture ADE -- Delay Contribution DL1

Delay From Data To Data Propagation Transmit

DL1

D P P

P

bits

P

bits

P

P

sec

5-10
ms

95.2

min Rate

P

bit/sec

P

bit/sec

128 kbps
256

kbps

Architecture ADE -- Delay Contribution DL1

Delay From Data To Data Propagation Transmit

DL1

D

sec sec

bits bits

sec

sec

5-10
ms

95.2

min Rate

bit/sec

128 kbps
256

kbpsE fF fT fP fR

fC fP fX

Figure 7.4 Architecture ADE, characterization of delay DL1

An unusual aspect of this problem is that regarding the visibility of the satellite.

The satellite must be in view to close the communications link. For that portion of

the time when the satellite is in view, the propagation delay is characterized by

that of the low earth orbiting satellite. For the satellite-not-in-view case, the

waiting time is modeled as uniformly distributed over the time that the satellite is

obscured by the earth. This model is reasonable since the satellite location and

the time of the transmission request are both unknown. An exact analysis result

is the combination of these two distributions, one uniform to account for the

propagation delay when satellite is visible (altitude is still unknown) and the other

uniform distribution describing the time that the user has to wait for the satellite to

become visible. These characteristics are summarized in Figure 7.4 and the total

delay is shown in Figure 7.5. Note that here and in the situations that follow, the

137

same diagram represents each of the three content types: text, voice, and data.

The actual diagrams differ only in scale.

Architecture ADE -- Delay Contribution DL4

Delay From Data To Data Propagation Transmit

DL4

E

D

sec sec sec

bits bits

50
ms

280
ms

sec

Rate

bit/sec

256
kbpsfF fT fP fR

fC fP fX

Architecture ADE -- Delay Contribution DL4

Delay From Data To Data Propagation Transmit

DL4

E

D

sec sec sec

bits bits

50
ms

280
ms

sec

Rate

bit/sec

256
kbpsfF fT fP fR

fC fP fX

Figure 7.5 Combined delay contributions for DL1

7.1.7 Characterizing Delay DL2

The process for analyzing the other links delays is similar. Link DL2, a tactical

terrestrial network link between the reporter and the town, will have longer delays

when the source and destination are near the network diameter and shorter

delays for nearby node pairs. There are more intermediate values than either

extreme so a normal distribution is selected to represent this delay. Tactical

networks are subject to high error rates and intermittent link outages caused by

138

multipath interference and terrain masking. Hence, the network is assumed to be

a store-and-forward architecture when in data mode. The per-hop delay will be

assumed to be around 100 ms, and the network diameter will be assumed to be

ten. Since this is a terrestrial network, links will be short. The propagation delay

(aside from the store-and-forward aspect) will be considered to be

inconsequential. While the allocatable data rate would normally be larger on this

type of network, it is being intentionally restricted at the source to maintain the

clandestine nature of that source hence the effective data rate will be low.

Architecture ADE -- Delay Contribution DL2

Delay From Data To Data Propagation Transmit

DL2

E

D

sec

bits

secsec

bits sec

200 ms

1000 ms Rate

bit/sec

128

KbpsfF fT fP fR

fC fP fX

Architecture ADE -- Delay Contribution DL2

Delay From Data To Data Propagation Transmit

DL2

E

D

sec

bits

secsec

bits sec

200 ms

1000 ms Rate

bit/sec

128

KbpsfF fT fP fR

fC fP fX

Figure 7.6 Architecture ADE, characterization of delay DL2

139

7.1.8 Characterizing Delay DL3

The characteristics of link DL3 between the town and the news room (Figure 7.7),

will be similar to those of DL1, however since this is a geosynchronous satellite, it

is always in view (if ever in view), and the propagation delay (excluding visibility

concerns) is significantly longer. Since the data structure does not change

before traversing the links, the processing delay is again set to zero. Since

geostationary satellite locations are limited, and antennas are costly links are

routinely run at high data rates. When the anticipated data rate is between 256

Kbps and 512 Kbps and the viewing constraints are removed, the delay

contributions look as depicted in Figure 7.7.

Architecture ADE -- Delay Contribution DL3

Delay From Data To Data Propagation Transmit

DL3

E

D

sec sec

bits bits sec

250

ms

sec

Rate

bit/sec

128

kbps

256

kbps
fF fT fP fR

fC fP fX

Architecture ADE -- Delay Contribution DL3

Delay From Data To Data Propagation Transmit

DL3

E

D

sec sec

bits bits sec

250

ms

sec

Rate

bit/sec

128

kbps

256

kbps
fF fT fP fR

fC fP fX

Figure 7.7 Architecture ADE, characterization of delay DL3

140

7.1.9 Characterizing Delay DL4

Link DL4 is similar to the tactical terrestrial network, but has several important

differences. The global network will not be store-and-forward. It will rely on link

layer retransmissions and TCP windowing to manage correction of the

occasional error or link fault, and hence the per-hop delay will be small. The

network however will likely be much larger and hence the number of intermediate

nodes will be larger. Even though there will be more nodes, the delay at each

will be small, and the aggregate will result in both a smaller uncertainty in delay

and a smaller mean delay when compared with the tactical network. Figure 7.8

shows this characterization.

Architecture ADE -- Delay Contribution DL4

Delay From Data To Data Propagation Transmit

DL4

E

D

sec sec sec

bits bits

50
ms

280
ms

sec

fF fT fP

fC fP fX

Rate

bit/sec

256

kbpsfR

Architecture ADE -- Delay Contribution DL4

Delay From Data To Data Propagation Transmit

DL4

E

D

sec sec sec

bits bits

50
ms

280
ms

sec

fF fT fP

fC fP fX

Rate

bit/sec

256

kbpsfR

Rate

bit/sec

256

kbpsfR

Figure 7.8 Architecture ADE, characterization of delay DL4

141

7.1.10 Combining Component Performance Descriptions

The problem of selecting the best performing data exfiltration architecture (ADE) is

solved by applying the PPI to the summed performance descriptions for each of

the alternatives as listed in Table 7.2.

Since each of these architecture options is composed of two elements which are

connected sequentially, the summation function or convolution discussed in

chapter five is appropriate for determining the combined delay. Applying that

technique to each architecture option yields the results shown in Figure 7.9

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

1

2

3

4

5

f(t)
(x 10-4)

Time (sec)

Performance Description of the Four Architectures
Without Masking Effects Considered

ALG = L1, L3
ALB = L1, L4
ATB = L2, L4

ATG = L2, L3

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

1

2

3

4

5

f(t)
(x 10-4)

Time (sec)

Performance Description of the Four Architectures
Without Masking Effects Considered

ALG = L1, L3
ALB = L1, L4
ATB = L2, L4

ATG = L2, L3

Figure 7.9 Video architecture performance descriptions

142

7.1.11 Comparing the VIDEO Performance of the Alternatives

For each pair of architectures in Figure 7.9, the PPI can be calculated.

Here the limits “a” to “b” identify that portion of the pdf for which the function

product has non-zero value. “FA” is the cdf of the architecture A performance

description, and “fB” is the actual performance descriptions of architecture B. So

the PPI takes two functions and maps them into a real number, the PPI which is

the probability that architecture A will produce a better forming system than

architecture B. The resulting probabilities are listed in Table 7.3. There the

probability is shown that the architecture listed on the left edge of each row

performs better than the associated column architecture in that row. In this case,

ATG outperforms the others as it has the highest value in its row for all three of

the alternatives.

143

Table 7.3 PPI Results for Data Exfiltration

--- 0.351 0.413 0.244

0.649 --- 0.607 0.423

0.587 0.392 --- 0.204

0.756 0.577 0.796 ---

ALB

ALB

ALG

ATG

ATGATB

ATB

ALG

Prob(row < col)

PPI Results for Data Exfiltration

--- 0.351 0.413 0.244

0.649 --- 0.607 0.423

0.587 0.392 --- 0.204

0.756 0.577 0.796 ---

ALB

ALB

ALG

ATG

ATGATB

ATB

ALG

Prob(row < col)

PPI Results for Data Exfiltration

The performance probability integral provides the set of architectures being

analyzed with a partial ordering based on time (delay). Consider a subset of the

architecture ordered pairs, (AR, AC). Architecture AR is the architecture listed on

the left edge of a table Row and is paired with AC, the architecture listed at the

top of a table Column. The subset of pairs to be considered is that is that where

the probability listed at the intersection cell is greater than 0.5. When these

architecture pairs are mapped onto the positive real line (preserving this partial

ordering) then the architecture which ends up on the left end of the so-aligned set

will be the best performing. Using the table above and this partial ordering, the

architectures will be ordered as: ATG ALG ATB ALB, ATG being the best

performing.

144

7.1.12 Example One Summary

This research’s method has been applied to the data exfiltration example. The

architectural alternatives were identified. The component performance

characteristics were defined. Uncertainties inherent in the problem were

incorporated into the analysis at the component pdf generation stage, where

performance descriptions are developed for all significant delays. Delays were

combined according to the components in each architecture alternative. The PPI

was calculated for each performance description pair and determined the

probability that tactical-net to geostationary satellite option will out-perform the

alternatives.

7.2 Example Two: A Service Oriented Architecture Based Service

A Service Oriented Architecture can be useful in developing applications that

require gathering data from a number of different sources. Its flexibility is

particularly apparent when the needed data sources might change over time.

This example highlights a case where there is a demonstrable relationship

between a pair of architectures and the associated performance differences to be

expected. The design statement that follows includes a performance description

in the requirements specification. This is not necessary for comparing

architecture performance on a pair-wise basis. The PPI was developed for those

cases where there is insufficient data, or inadequate requirements details to

allow for a more specific conclusion to be drawn. The detailed requirements

145

included in this example have been added since performance criteria are often

specified in the requirements process. When system performance criteria are

appropriately defined, the techniques developed in this work can be applied to

determine whether the initial architecture considered meets that performance

specification. In this example, analysis shows that the initial proposed

architecture cannot meet its performance requirements. The architecture is

modified by adding a redundant Photo Server (to be defined later). After this

modification, the performance requirement can be met. While the addition of a

redundant information source could be expected to improve performance, the

benefit here is that the amount of performance improvement can sometimes be

quantified in advance of implementation.

7.2.1 Problem Description

This example assumes that the task is to provide helpful information to a traveler

looking for real estate. This traveler needs information to assess different real

estate offerings. The information requirements include access to an internet web

page that describes potential land or houses to be viewed, a set of driving

instructions to get to those places, and an aerial view of the destination

neighborhood in order to assess life-style issues like the availability of walking

paths or the existence of unsightly landmarks. Since there are a number of

locations to be investigated, a web search engine is used to identify probable

information sites for real estate to be visited. Photos and directions will be

146

provided by two other servers. An activity diagram depicting the initial

processing approach to accomplishing this task is shown in Figure 7.10. This

diagram establishes that the photos and directions are requested after a Search

Engine result has been selected. The results from the Photo Server and the

Directions Server are returned in an unspecified order. To establish a

performance goal, assume that the system requirements specification states that

at least 90 to 95 percent of the actions initiated by this system will return their

results in less than 500 ms. The activity diagram of Figure 7.10 can be turned

into a graph representing the architecture as shown in Figure 7.11.

Search

Options

Get

Photo

Get

Directions

Request

Result

Selected Option

Search

Options

Get

Photo

Get

Directions

Get

Photo

Get

Directions

Get

Photo

Get

Photo

Get

Directions

Get

Directions

Request

Result

Selected Option

Figure 7.10 Initial activity diagram for SOA real estate service

147

PCoordination
Server

Search
Engine

Aerial
Photo
Server

Directions
Server

C

S

P

D

max

PCoordination
Server

Search
Engine

Aerial
Photo
Server

Directions
Server

C

S

P

D

max

PCoordination
Server

Search
Engine

Aerial
Photo
Server

Directions
Server

C

S

P

D

max

Figure 7.11 Symbolic SOA real estate service architecture graph

The “max” function depicted explicitly in Figure 7.11 is part of the Coordination

Server. It ensures that the responses from both the Photo and Directions

Servers have arrived before the Coordination Server sends the results back to

the requestor. It is called out explicitly in the architecture because the architect

wants to rule out implementations that allow the photos and directions to be

delivered at different times. This synchronization requirement is important since

it influences the performance of the delivered system, and requires additional

analysis when compared with an architecture that does not include it. The

grayed out P server is a redundant photo server that will be added to the

architecture as an improvement when the analysis shows that the initial

requirements specification can not be met. In the discussion, delay P is from the

148

Coordination Server to the Photo Server, and back to the Coordinating Server

again (the input to the max function). Similarly, delay D is from the coordination

server to the Directions server and back to the coordination server. The equation

that describes the delay of the single is:

7.2.2 Large Grain Delay Descriptions

Some simplifying assumptions can be applied to this example to reduce its

complexity without significantly affecting its usefulness. Assume that the three

information servers are approximately the same distance from the Coordination

Server so that propagation delay differentials can be ignored. To help build the

performance estimates, assume that all of the content providers are located on a

terrestrial network, and that the location of each is known. Assume further that

the required servers exist so that performance descriptions can be measured.

Alternatively assume that server performance has been characterized in a

performance specification so that there is a basis for constructing server

performance descriptions.

7.2.3 Delay Characterization

In view of the assumptions made above, approximate the inter-server

communications delays to be 50 ms. Were those assumption not appropriate,

149

(i.e., if the locations were unknown), or if known but different distances from the

Coordination Server, the analysis would proceed as it did for the delay analysis

conducted in the first example of this chapter.

7.2.4 Data Characterization

The request that initiates each system sequence of activities is considered to be

a small string of about 100 bytes. Since the Directions Server is providing

directions as an HTML page, assume page length to be uniformly distributed

from 400 - 600 bytes. Assume that the size of the web page returned from the

search engine is uniformly distributed from 2000 - 5000 bytes, and assume that

the size of the compressed aerial photo is uniformly distributed between 5000

and 8000 bytes. As with all of the examples presented, these numeric

characterizations of sizes are estimates. When using these techniques in a true

analysis, they would be adjusted to fit the actual circumstances of the problem

being solved.

7.2.5 Delay Characterization to the Photo Server, P

There are a number of standards for internet photo formats, and they vary largely

in size, detail included, and compression techniques. If there were preferred

servers to be accessed or there was specific information available regarding the

size of the pictures to be returned this information would be included here.

Lacking that information, consider that a range of values was selected. The time

150

to convert each photo request into a result is assumed to be uniformly distributed

from 100 - 200 ms. The one-way delay to the Photo Server is 50 ms so the total

propagation delay is 100 ms. The transmit rate for the entire network is assumed

to be 256 Kbps. Based on these assumptions, the important delays are

characterized in Figure 7.12.

Architecture ASOA -- Delay Contribution DP

Delay From Data To Data Propagation Transmit

DP

E

D

bits sec

100 ms

sec

100 ms

bits

40K
64K

sec

250

ms

156

ms

sec

100 ms
200 ms

Rate

bit/sec

256

KbpsfF fT fP fR

fC fP fX

Architecture ASOA -- Delay Contribution DP

Delay From Data To Data Propagation Transmit

DP

E

D

bits sec

100 ms

sec

100 ms

bits

40K
64K

sec

250

ms

156

ms

sec

100 ms
200 ms

Rate

bit/sec

256

KbpsfF fT fP fR

fC fP fX

Figure 7.12 Architecture SOA, Photo Server delay

7.2.6 Delay Characterization to the Search Engine, S

Assumptions for the performance of the search engine are made in a similar

manner. The anecdotal information available about the time to process search

requests indicates that there may be some caching of frequently requested

151

queries so there is likely a lower limit on the time to produce a result. At the

same time, it will take longer to gather the requested information on a complex

search. As a result, the data conversion time for the search engine is modeled

as an Erlang distribution with a mean of 100ms. Since the data rate of the

network is assumed constant, the transmit delay is deterministically related to the

size of the data being sent.

Architecture ASOA -- Delay Contribution DS

Delay From Data To Data Propagation Transmit

DS

E

D

Rate

bit/sec

256

Kbps

bits sec

100 ms

sec

100 ms

sec

156

ms

62 ms

bits

16K
40K

sec

100 ms

fF fT fP fR

fC fP fX

Architecture ASOA -- Delay Contribution DS

Delay From Data To Data Propagation Transmit

DS

E

D

Rate

bit/sec

256

Kbps

bits sec

100 ms

sec

100 ms

sec

156

ms

62 ms

bits

16K
40K

sec

100 ms

fF fT fP fR

fC fP fX

Figure 7.13 Architecture SOA, Aerial Search Engine delay

7.2.7 Delay Characterization to the Directions Server, D

The situation with the Directions Server is similar. There is no specific

information to help generate better performance characteristics at this time.

152

What is known about directions is that sometimes they are simple and short, and

sometimes long and complex. Routinely however there are a set of a dozen or

so steps in navigating the roads. Since few descriptions will be very short and

similarly only a few very long, yet many of intermediate length, a normal

distribution was selected to describe the Directions Server performance. To

keep the analysis simple, the inclusion of other information like businesses in the

area, etc. has been assumed to be filtered out before transmission.

Architecture ASOA -- Delay Contribution DS

Delay From Data To Data Propagation Transmit

DS

E

D

Rate

bit/sec

256

Kbps

bits bits

3.2-4.8K

sec

13 – 19 ms

sec

100 ms

sec

100 ms

sec

100 ms

fF fT fP fR

fC fP fX

Architecture ASOA -- Delay Contribution DS

Delay From Data To Data Propagation Transmit

DS

E

D

Rate

bit/sec

256

Kbps

bits bits

3.2-4.8K

sec

13 – 19 ms

sec

100 ms

sec

100 ms

sec

100 ms

fF fT fP fR

fC fP fX

Figure 7.14 Architecture SOA, Directions Server delay

153

7.2.8 Combining Server Delays

The lower half of each of the Figure 7.12 – Figure 7.14 depicts the individual

contributions for the total processing for each server. In each case, these three

contributions are summed to generate the individual cumulative server delays.

These cumulative delays that result are shown in Figure 7.15. These would be

the performance descriptions (red – Directions, green – Photo, and blue –

Search) anticipated before encountering the “max” function. Note that in each

case the cumulative delay is the convolution of the three contributions. The

equation for the system delay is:

154

0 200 300 400 500 600
0

0.005

0.010

0.015

113.0 319.0

356.0 550.0

233.9 555.9

Performance Probability Density Functions
Three Server Delay Contributions

f(t)

Time (msec)

100

pdf after Max

pdf P

pdf D

pdf S

0 200 300 400 500 600
0

0.005

0.010

0.015

113.0 319.0

356.0 550.0

233.9 555.9

Performance Probability Density Functions
Three Server Delay Contributions

f(t)

Time (msec)

100

pdf after Max

pdf P

pdf D

pdf S

pdf after Max

pdf P

pdf D

pdf S

Figure 7.15 Cumulative results for describing the delays of each server

The partially obscured pink trace describes the result after applying the maximum

function of the Coordination Server. This obscuring is due to the fact that the

Photo Server is significantly slower than the Directions server. It is this pdf that

describes the overall performance of the complete architecture described. The

computation that generates the pdf of the combined system is actually generated

from the cumulative distribution function (cdf) of the combined system. This cdf

for the total delay can be used to assess compliance with the performance

requirements specification. When comparing the expected performance of this

architecture with that in the performance specification stated up front, the original

architecture can not achieve the desired goals, as shown in Figure 7.16.

155

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1.0

507.7

90.0%

518.7

95.0%

FS(t)

Time (msec)

Comparative Performance of SOA Alternatives
PDF vs. Time (msec)

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1.0

507.7

90.0%

518.7

95.0%

FS(t)

Time (msec)

Comparative Performance of SOA Alternatives
PDF vs. Time (msec)

Figure 7.16 Projected performance of original example SOA

One option for correcting this failure to meet the performance goals is to change

the architecture. While there are many ways that such a change could be made,

the one selected here is based on observing that the Photo Server performs least

well. While any of the servers could be changed to potentially improve

performance, replicating the Photo Server with another that works with the same

performance description appears promising. The max function of the

Coordination Server can proceed when either of the two Photo Servers returns

its value. In essence, the parallel combination of Photo Servers will be combined

with the “min” function and the execution continues as previously described.

When two independent but similarly performing Photo Servers are used in this

156

way, the combination performance of the pair is as reflected in Figure 7.17. The

dual Photo Server architecture is shown to improve system performance.

0 200 300 400 500 600
0

0.005

0.010

0.015

Performance Probability Density Functions
four Server Delay Contributions

f(t)

Time (msec)

100

pdf parallel P

pdf P

pdf D

pdf S

0 200 300 400 500 600
0

0.005

0.010

0.015

Performance Probability Density Functions
four Server Delay Contributions

f(t)

Time (msec)

100

pdf parallel P

pdf P

pdf D

pdf S

Figure 7.17 Server contributions with parallel Photo Server

Combining the performance of all four servers now leads to the performance

demonstrated in Figure 7.18.

157

0 200 300 400 500 600
0

0.005

0.010

0.015

Performance Probability Density Functions
for Server Delay Contributions

f(t)

Time (msec)

100

pdf parallel P

pdf P

pdf D

pdf S

pdf System after max

0 200 300 400 500 600
0

0.005

0.010

0.015

Performance Probability Density Functions
for Server Delay Contributions

f(t)

Time (msec)

100

pdf parallel P

pdf P

pdf D

pdf S

pdf System after max

Figure 7.18 Performance of parallel Photo Server architecture

In a manner similar to above, the cumulative distribution of the combined

architecture can be used to assess compliance with the performance

requirements specification, as shown in Figure 7.19. The performance

specification is expected to be met. It should be noted that there are some

uncertainties in the values that are projected by this method. Future research

would be appropriate to get a better understanding of the magnitudes of these

uncertainties. When the PPI is calculated for these two systems, the probability

that the parallel D version will perform better than the non-parallel version is

0.664 or the redundant version will perform better almost two thirds of the time.

158

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1.0

507.790.0%

518.7

95.0%

F(t)

Time (msec)

Comparative Performance of SOA Alternatives
Cumulative Distribution Functions

484.6474.9
Original
Parallel (Improved)

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1.0

507.790.0%

518.7

95.0%

F(t)

Time (msec)

Comparative Performance of SOA Alternatives
Cumulative Distribution Functions

484.6474.9
Original
Parallel (Improved)
Original
Parallel (Improved)

Figure 7.19 Projected performance of modified example SOA

7.2.9 Example Two Summary

Example two followed the same methodology as example one. In this case

however, the analysis showed that the initial performance specification would

likely not be met. After modification of the architecture by adding in a parallel

Photo server, a recalculation of the expected performance was done; the

improvement was quantified and an acceptable performance was achieved.

159

7.3 Summary

This chapter has presented a detailed analysis of two simple but still realistic

problems. The analysis techniques developed earlier in this work were applied to

proposed architecture solutions. Conclusions were obtained for the relative

performance capabilities of alternative architectures in each case. In many

cases, there was no performance information available for the estimation of a

component’s performance. Best available knowledge was used as an estimate.

The use of assumptions is recommended in the absence of concrete information.

This process was designed to be simple to execute so that as knowledge about

components and connections matures it can be easily rerun to provide improved

insight into the likely performance of “to be” generated implementations.

160

Chapter 8

8 The CAPE Tool .

8.1 Introduction

In the previous two chapters, examples were presented to demonstrate the

analysis method. Without computational support, such analysis is laborious and

error prone. As part of this research effort, a tool was developed to assist the

analyst in the manipulation and visualization of probability density functions

describing the performance of architecture alternatives. The tool provides three

useful capabilities: 1) it provides implementations for the methods (sum,

minimum, maximum, quotient, and composite) for combining the probability

density functions describing component and connection performance into a

probability density function describing the system architecture’s anticipated end-

to-end performance, 2) it provides a method for evaluating the PPI for pairs of

architectures using the pdf descriptions developed, and 3) it generates Microsoft

PowerPoint macros which can be used to create figures and diagrams for

explaining the performance behavior of the systems being evaluated.

161

8.2 The CAPE Tool Design

The CAPE tool-development strategy was guided by two objectives. The first

was to leverage commercial off-the-shelf and open source software artifacts.

The second was to provide the analyst with a flexible tool that could easily

incorporate new functionality and permit modification of existing code templates.

The outcome of following this approach is that CAPE is built on the capabilities of

the Sun NetBeans® IDE in combination with Microsoft PowerPoint®.

A set of analyst-editable code snippets or templates constitute the largest part of

the tool’s user interface. The analyst uses the NetBeans IDE to modify and

combine these code snippets with two libraries, FUNC, and PLOT (developed as

part of this research) to exercise the functions described in chapter five and

support visualization of architecture performance analysis. The specific

performance and topology characteristics of each architecture are edited into the

templates. The compiled set of modified templates is then executed to produce

MS PowerPoint (PPT) macros which run in PowerPoint to generate the graph

portion of analysis figures.

The conceptual output of the tool is an object of class “Figure.” The Figure class

incorporates many conventional diagram and figure attributes. The actual output

of the tool is a macro which will draw a Figure object in MS PowerPoint. Figure

162

class attributes include size, color, axes, freeform object, and lines, well as

others one would expect in modeling a traditional document figure.

Figure 8.1 NetBeans IDE with partial code templates

163

A top level IDE screen shot is shown as Figure 8.1. The code templates that are

shown in the editor window will be explained later in this chapter. The figure

demonstrates with a partial example how code templates are combined into an

executable program which can be run within the NetBeans IDE to produce the

desired results. Intermediate results are displayed in the lower window labeled

“Output.” This “Output” window logs error conditions that arise, and for longer

computations displays a progress status as the computations proceed.

CAPE provides two analysis capabilities: 1) it can generate end-to-end

architecture performance descriptions, and 2) it can compute the PPI given a set

of architecture performance descriptions. The figures below show two analysis

capabilities of the CAPE architecture. Different code snippets are incorporated

into the IDE depending on the analysis capability being exercised. Figure 8.2

shows the structure of architecture performance description analysis.

Component and connector performance descriptions are specified in terms of

“Functions,” a class that can be used to characterize known uncertainties. The

architecture topology is represented by code that uses the five combination

functions described in chapter five to merge the component and connector

performance descriptions into an end-to-end architecture performance

description.

164

Component &
Connector

Performance
Descriptions

CAPE

PPT Support
Functions

Architecture
Topology

PPT
Macro

PPT

Display

Architecture

Performance

Description

Component &
Connector

Performance
Descriptions

CAPE

PPT Support
Functions

PPT Support
Functions

Architecture
Topology

PPT
Macro

PPT

Display

Architecture

Performance

Description

Figure 8.2 CAPE tool structure - PDF analysis

Figure 8.3 shows the architecture shows the structure of PPI analysis. The

architecture performance descriptions identified on the figure are those

generated with CAPE from component and connector performance descriptions.

The “Comparative Descriptors” are implemented as sets of names of architecture

performance descriptions that are to be pair-wise compared. Pairs of

architecture performance descriptions are input to CAPE methods to produce a

table of probabilities indicating the likelihood that one architecture will produce an

implementation that will perform better than an implementation of the second.

165

Architecture
Performance
Descriptions

CAPE

Comparative
Descriptors

PPT
Macro

PPT

Display

Pair-wise

PPI

ValuesPPT Support
Functions

Architecture
Performance
Descriptions

CAPE

Comparative
Descriptors

PPT
Macro

PPT

Display

Pair-wise

PPI

ValuesPPT Support
Functions

PPT Support
Functions

Figure 8.3 CAPE tool structure - PPI analysis

8.3 Code Snippet Functionality

Each performance analysis done with CAPE is structured in essentially the same

manner. Routinely, five code snippets are needed. One of the code snippets is

relate to the establishment of screen and user coordinate spaces. A second is

associated with the formatting of diagrams and figures for incorporation into

document. A description of the other three snippet types follows next.

166

8.3.1 Function Definitions

The second code snippet usually defines the probability density functions to be

used in the analysis. These functions can be generated in either of two ways: 1)

by reading stored file descriptions from persistent storage or 2) generating them

directly within the code segment by enumerating function values point by point.

Figure 8.4 shows how to construct a function point-wise within code. In this

case, the constructor takes a single argument, the name to be assigned to the

function. Line five of Figure 8.5 shows how to read the description from a file. In

this case, the Function constructor takes two arguments, the file name containing

the function description, and the name to be assigned to the function

Function fun = new Function("MESA");
fun.addFP(45.75, 0); // Adding function points here
fun.addFP(47.25, 2);
fun.addFP(48.75, 13);
// ... Many data points deleted
fun.addFP(129.75, 6);
fun.addFP(131.25, 2);
fun.addFP(132.75, 0);

Figure 8.4 Building a Function point-wise within the code

167

0 // Setting of extremes deleted for brevity
1 String funName[] = {
 "D12", "D23", "D34", "D45", "D54", "D43", "D32", "D21"
2 };
3 Function fun[] = new Function[8];
4 for (int i = 0; i < funName.length; i++){
5 fun[i] = new Function("G:\\GSD\\DOCS\\GRAPHICS\\”
 +”FIGURES\\"+funName[i] + ".f()",funName[i]);
 }
6 Figure fig = new Figure("FIGURES\\", "VAL01TOT",
 hmExtremes);
7 fig.setXTicDeltaAndLength(25.0, 5, 0);
8 fig.setYTicDeltaAndLength(0.01, 5, 0);

9 Function fX = new Function("F5");
10 fX.addFP(0.2, 0.0);
11 fX.addFP(0.4, 2.5);
12 fX.addFP(0.6, 0.0);

13 Function f01 = Function.convolve(fun[0], fun[1], 0.1);
14 Function f23 = Function.convolve(fun[2], fun[3], 0.1);
// … other function colvolutions deleted
15 Function f0123X4567 = Function.convolve(f0123X, f4567,

0.5);
16 f0123X4567.name = "F0123X4567";

17 f0123X4567.setTau(-1.5); // Set delays = 0.25 * 6.0
18 double area = f0123X4567.integFmTo(0.0, 150.0, 0.25);
19 f0123X4567.setASF(1.0/area);
20 f0123X4567.makeThisConnonical();

21 fig.addFun(f0123X4567);
22 fig.close();

Figure 8.5 CAPE pdf functions validating the chapter nine Army example

8.3.2 Modeling Topological Aspects of the Architecture

The topology of the architecture defines two aspects of the problem solution. It

describes the sequence of components and connectors through which data

168

passes to transform data from a system input into an output. It further identifies

the synchronization points of the algorithms used to realize the architecture.

Both the relationships between the elements (components and connectors) of the

architecture and the architecture synchronization requirements are represented

with sequences the code functions discussed in chapter five. Quotient, sum, and

composite realize data transformations, minimum and maximum accomplish

process synchronization. All of these functions are provided in the FUNC library.

For example, to combine sequential connector and component delay probabilistic

descriptions into a combined description the sum function would be used. Figure

8.5 shows an example where a suitably defined array of Functions is convolved

together to generate the probabilistic sum. This sum is then shifted by a fixed

delay (setTau()) and scaled to ensure it conforms to the requirements of a pdf.

This example is taken in part from the Army communications example used as

methodology validation in chapter nine. The code lines are numbered for

reference and used in the following description. Lines one through five define

names for the functions to be manipulated and read these functions from files.

Lines six through eight define the figure which will result from the execution of the

code and include both X and Y axes. Lines nine through 12 define the pdf

describing function F5 and build this triangular pdf in a point-wise manner. Lines

15 and 16 generate a new function as the sum of two others. Line 17 shifts that

pdf by a fixed delay. Lines 18-20 scale the function to ensure it is compliant with

169

the definition of a pdf, and put the function in standard form. Line 21 adds the

function just created to the figure, and finally line 22 causes the figure macros to

be generated to file. More complex examples would likely incorporate other

functions as well to describe a more complex architecture topology.

8.3.3 CAPE Evaluation of the PPI

The fifth code snippet is related to the computation of the PPI. The evaluation of

the PPI is straightforward. When many function comparisons are needed it is

useful to put functions in an array and build the cumulative distributions functions

similarly. The PPI can then be calculated by iterating the formula values through

the arrays. A non-iterated version is shown in Figure 8.6.

// Set the extremes data structure
// Construct Figure fig and add axes
double area = 0.0;
// Define the two functions
Function A = new
 Function("G:__DISSERTATION_Brief\\aRes.f()", "A");
Function B = new
 Function("G:__DISSERTATION_Brief\\bRes.f()", "B");
// Compute cumulative distrbution functions from the pdfs
Function Acum = A.getCumulative(25.0);
// Perform the PPI calculations
Function fun = Function.multiply(Acum, B, 25.0);
Double ppiVal = fun.integFmTo(0.0, 4500.0, 25.0);
System.out.println("PPI: " + ppiVal);
fig.close();

Figure 8.6 CAPE used to compute PPI

170

8.4 Library Support

There are two libraries associated with CAPE. The first is the FUNC library. The

evaluation techniques that evolved to implement the library functions were based

on representing the functions to be manipulated as sets of piece-wise linear

approximations to real functions, and then performing the calculations on a point

by point basis. To handle even the simple cases, the end points representing

these linear segments approximating the true functions had to be general enough

to handle finite discontinuities. A representation was established that associated

with each domain value, a set of range values, and properties that indicated

whether each was closed or open. With this data structure to define segment

end points, the function was represented by an ordered list of segments.

Mathematical operations between functions were then implemented on a point by

point basis. Integrations were performed by application of the trapezoidal rule for

area computation. Division is not used. Addition is straightforward as is

multiplication by a constant (positive or negative constant to represent

subtraction). Multiplication of functions as needed for convolution and is

implemented as an exact quadratic using to the end point of linear piecewise

approximations of the functions being used as arguments. The library also

provides the capability to manipulate functions (shift in time, scale in amplitude,

generate cumulative distribution function from pdf, generate pdf from cumulative

distribution function, put functions in standard or canonical form, etc.). It provides

methods that can be put together to implement the topological aspects of the

171

architecture, for example, convolve to implement sum, and two argument

implementations of minimum, maximum and quotient. The composite function is

implemented as a weighted “add” of probability density functions. More details of

the FUNC library are included in Appendix A.

The second library is PLOT. This library provides all of the support routines

required to generate PowerPoint graphs without the need to understand the

underlying PowerPoint Visual Basic for Applications. The plotting process

identifies which PPT support functions and subroutines are needed to perform

the plot and includes these automatically in the macro generation portion of the

computation. The macros are generated in the file that was identified in the

Figure constructor. This file is then imported into PPT and executed from within

the VBA Project pane of the VBA code editing window. More PLOT library

details can be found in Appendix D.

8.4.1 Results

The code templates report progress information about the computational

processes to the Output window of the NetBeans IDE. The CAPE output-box

content from the calculation of Figure 8.5 is shown in Figure 8.7.

172

run:
Setting User data extremes in:
 G:\GSD\DOCS\GRAPHICS\FIGURES\BB.txt
[78] Constructing figure macro in:
 G:\GSD\DOCS\GRAPHICS\FIGURES\\Ch8EX.bas
[1336] TRI REC
Convolution iterations = 300
TRI REC 39 --> 300 Five progress indicators
TRI REC 94 --> 300
TRI REC 168 --> 300
TRI REC 237 --> 300
TRI REC 283 --> 300
Writing figure macro to file:
 G:\GSD\DOCS\GRAPHICS\FIGURES\Ch8EX.bas
plotting TRI
plotting REC
plotting CONV_TRI_REC
BUILD SUCCESSFUL (total time: 29 seconds)

Figure 8.7 CAPE text output from example

8.4.2 A Simple Complete Example

The example that follows, Figure 8.8, generates two functions. The first comes

from a stored file on disk; the second is generated point-wise within the code.

These two functions are then added probabilistically (convolved) to show the

sum, and then all three functions are plotted on a common graph. The graph in

Figure 8.12 is exactly as it comes out of the PPT macros. Axis labels and graph

labels have to be added separately in PPT.

173

// First section - Defining the Bounding Boxes
HashMap hmExtremes = new HashMap<String, Double>();
String[] extremes = {
 "UAX = 5.0","UIX = 0.0",
 "UAY = 1.3","UIY = 0.0",
 "sax = 600",
 "six = 400",
 "say = 500",
 "siy = 300"
};
for (int i = 0; i < extremes.length; i++) {
 String[] parts = extremes[i].split("=");
 parts[0] = parts[0].trim().toUpperCase();
 parts[1] = parts[1].trim();
 hmExtremes.put(parts[0], parts[1]);
}
// Second section - Defining the Functions used
Function tri = new Function("TRI");
tri.addFP(1.5, 0.0);
tri.addFP(2.5, 1.0);
tri.addFP(3.5, 0.0);
tri.setColor(255, 0, 0);
Function rec = new Function("REC");
rec.addFP(0.5, 1.0);
rec.addFP(1.5, 1.0);
rec.setColor(0, 0, 255);
Function sum = new Function("SUM");
// Third section - Defining the figure to hold the
// visulization
Figure fig = new Figure("FIGURES\\", "Ch8EX", hmExtremes);
fig.setXTicDeltaAndLength(1.0, 5, 0);
fig.setYTicDeltaAndLength(0.2, 5, 0);
fig.addFun(tri);
fig.addFun(rec);
// Fourth section - pdf manipulation, generate the sum
// (convolve)
sum = Function.convolve(tri, rec, 0.01); // 0.01 =
// resolution
sum.setColor(51, 153, 102); // DARK GREEN
fig.addFun(sum);
// Fifth section - Generate the PPT macros
fig.close();

Figure 8.8 CAPE input for example analysis

174

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Figure 8.9 Raw macro result once executed within PPT

8.4.3 Summary

The CAPE tool provides three types of calculation capability: 1) support for the

generation of and manipulation of probability density functions that represent the

delay characterizations of components and connections, and 2) a set of plotting

support macros written in Visual Basic that simplify the plotting of figures

describing the performance graphs generated, and 3) support for evaluating the

PPI for a set of architectures. The CAPE tool is an integration of five major

pieces. Two are commercial or open source: Microsoft’s PowerPoint, and Sun’s

NetBeans. The other three pieces were developed specifically within this

research effort. The function library (FUNC) provides class descriptions for

175

representing probability density functions, described in more detail in Annex A.

This includes implementations of manipulation functions needed to generate end-

to-end delay performance descriptions. A plotting library (PLOT), described in

Annex D, which is a set of Visual Basic macros to manipulate the plotting of the

graphs generated by CAPE. And finally the set of code templates which define

the user and screen coordinates, generate functions from files or point-wise in

code, manipulate pdf delay descriptions, and guide the computation of the PPI

from end-to-end architecture delay descriptions.

176

Chapter 9

9 Methodology Validation .

9.1 Introduction

The ideal technique for validating CAPE, the methodology presented in this

research, is that of selecting a large set of architectures and instantiating each of

those architectures a large number of times. One could then make performance

measurements on each implementation and combine them (grouped by parent

architecture) into architecture specific performance descriptions. Once the

architecture performance descriptions were determined, the PPI could be

validated by comparing the PPI computed result with the probabilistic (frequency

based) individual implementation performance measurements. Unfortunately

however, this approach is not feasible. Implementation costs are too high.

Reduction to a small number of implementations does not help either. The

implementations selected might not well represent the spread of possible

performance values that could be achieved with a large number of

implementations. Taking measurements of real world systems is even more

restrictive. There would be only a single instantiation to consider. An alternative

validation approach must be developed.

177

Since the PPI results were extensively validated in chapter four and the

implementation of the functions are validated in Appendix C, what remains to be

validated is the combination of functions that are used to build-up architecture-

performance descriptions. The heart of such a validation effort centers on

confirming that results generated from the CAPE methodology agree with results

from other methods known (or assumed) to be valid. The Department of

Defense (DoD) often uses, a modeling and simulation technique based on MESA

[MITR05] for examining performance issues under a broad set of circumstances.

For this validation effort, two problems are evaluated using the MESA tool to

validate CAPE’s results. The first problem is taken from an Army

communications program and exercises the sum and quotient functions. I do not

have access to the data of any other real-world problem to validate the other

functions. As a result, the example problem defined in chapter seven of this work

is modeled in MESA for results comparison. It may be noted that the first

example is dominated by the communications delays in the architecture. This is

not surprising as it is a communications system. However there is no loss of

generality in the validation as communications and computational delays are

treated in exactly the same manner within the analysis method. The second

example (while not based on real-world data) does demonstrate the incorporation

of significant computational delays.

178

Within this chapter, section 9.2 describes the MESA modeling technique and the

next section introduces two result comparison techniques. The first technique is

based on hypothesis testing, and the second leverages the concept of a norm

from vector space analysis. Section 9.4 validates two examples, the Army

communications problem, and the real estate problem discussed in chapter

seven. CAPE and MESA model results are compared. The chapter closes with

an explanation of why hypothesis testing is not more useful in this situation and

explains the normed vector result.

9.2 Modeling Technique

Each of the two validation examples that follow are treated in a similar manner.

A discrete event simulation was built using the graphical model construction

capability of Extend 7 [Rive98] coupled with the MESA discrete event simulation

engine libraries.

Extend is a customizable graphically-oriented general purpose modeling and

simulation environment which can handle both discrete and continuous modeling

tasks. Simulation elements are “dropped” onto the screen and connected

graphically in a manner similar to Lab View®. Random processing times can be

allocated to simulation elements. Resources are tracked through queues and

plots are available showing queue lengths, queuing times, etc. There is a

179

scripting language associated with MESA that manages sensitivity analysis by

rerunning simulations with varying parameters.

MESA is a toolkit designed to run on Extend and is specifically designed to

support end-to-end performance analysis of services being developed in a

Service Oriented Architecture. MESA provides ready-to-run library components

that are specifically designed for SOA analysis. The combination of MESA

components running on the Extend simulation system infrastructure provides a

unified, flexible, verifiable performance estimate of the problems being modeled.

9.3 Result Comparison Techniques

Statistical testing is routinely performed on experiment sample data to decide

whether to accept or reject a hypothesis. For this validation effort, the

appropriate hypothesis to be tested is whether or not the two models suggest the

same performance for the architecture being analyzed. After collecting data on

the two models, a Chi Squared Goodness of Fit test can detect differences.

Hence an alternative technique based on normed vector spaces is used to gauge

the amount of difference between the two performance estimates.

9.3.1 Chi Squared Goodness of Fit Testing

One of the techniques routinely used to determine whether or not two densities

are the same is the Chi Squared Goodness of Fit test. This test is formulated to

180

decide which of two hypotheses is likely to be correct. Alternative H0, usually

captures the hypothesis that there is no difference between the two densities and

H1, represents that there is a difference. To perform the actual test, samples

from the two densities are collected and a statistic is first computed then

compared with a threshold to establish whether or not there is statistical evidence

to reject H0.

The basic Chi Squared goodness-of-fit-test has three steps. The first step

breaks down the range of values to be processed into sub-ranges (bins) and

compares the number of observed values in respective bins to the number of

expected values in those bins. To ensure a correct result, a set of “rules of

thumb” are applied to structure the test. First, no bin should have fewer than five

values; second, there should be 50 or more values in the total sample [LeRS01],

and third, for best results, the bins should be configured so that each bin has

approximately the same number of expected values [FiHe10]. In this case, there

is no known-to-be-true set of values so the observed values from the CAPE

description could be compared with the observed values of the MESA

description. The formula for doing so is as follows.

181

The k summation is over the set of bins chosen for the test.

The second step is to define the “level of significance” of the test. The level of

significance of a test is often represented as alpha (α) and represents the

probability of making a Type I error. A Type I error is the probability of falsely

rejecting H0. Associated with a specific value for alpha, and the number of

degrees of freedom (related to the number of bins) is a tabulated threshold value.

When the Chi Squared value calculated from the formula exceeds the tabulated

threshold, H0 is rejected.

In a more typical test, the number of sample values taken is usually limited by

cost, i.e., the time to make the measurements or the dollars needed to be spent

to collect the data. Here samples can be generated quickly and cheaply. The

question remains how many data points to use in the comparison. The power of

the test is the ability of the test to reject a false null hypothesis. This power

improves by taking a larger number of samples. At least one thing is clear.

Since there are some differences between the model results, the test will

eventually be able to differentiate between the two when enough samples are

generated

182

9.3.2 Norm Based Difference Measurement - MESA vs. CAPE

The study of normed vector spaces provides an approach for describing the size

of the difference between two performance estimates. Given a vector space, X,

with elements, x, any function that maps an element of that vector space into a

real number can be called a norm, ||x||, if it satisfies the following axioms:

1. ||x|| ≥ 0 for all x є X, ||x|| = 0 if and only if x = θ.

2. ||x + y|| ≤ ||x|| + ||y|| for each x, y є X.

3. ||αx|| = |α| ||x|| for all scalars α and each x є X [Lune69].

The set of all continuous functions on a closed interval [a, b] of the real line is a

vector space and one of the useful norms on that vector space is:

The types of probability density functions that are generated by CAPE and MESA

are both in this space. This norm can be used to measure the difference

between the performance descriptions.

183

9.4 Validation Examples

For the purpose of validating this work, two examples have been selected which

cover a substantial part of the interesting architecture modeling space. The Army

example takes unclassified data from a real program office. The Real Estate

Service example follows chapter seven.

9.4.1 Example One – The Army Tactical Environment

The first example is taken from an engineering study done for the Defense

Information Systems Agency by MITRE Corporation. It demonstrates the most

commonly used functions of the model (sum and quotient) in the context of

developing services in a Service Oriented Architecture environment. The two

functions, sum and quotient, dominate most service performance analysis done

within the DoD since current SOA services do not broadly support dynamic

service discovery. Most complex services are developed by identifying a set of

statically discovered functional services and executing them sequentially.

This particular engineering study was done as part of a recent Enterprise Wide

Systems Engineering (EWSE) task that established guidelines for service

delivery in a SOA environment and used the Army tactical communications

infrastructure as the specific architecture for the analysis. The goal was to

generate guidelines that program developers and evaluators could use to assess

the performance of new and proposed services. These results would support

184

tradeoff analysis between cost, performance and sometimes schedule when

developing program alternatives. Previously such performance analysis work

had been done in an ad hoc manner. This task developed a structured analysis

approach that could be consistently applied in many environments. Consistency

in analysis is valued as implementing services in the SOA structure is seen as an

important step in moving the Department of Defense to a net-centric

communications environment.

While the CAPE method presented in this work provides for including many types

of quantifiable performance uncertainty, e.g., the capability of the development

team, uncertainties about component location, etc., the MESA tool does not. To

make the results of both models comparable, these more general types of

uncertainties were not included in this validation work.

A specific architecture was selected as a subset of the broader EWSE task and

examined in detail. That subset of the larger architecture analyzed in detail is

identified and highlighted in yellow in Figure 9.1. That figure shows the

communications path that connects a Squad element to a Combatant

Commander’s (COCOM) location using a sequence of devices: local tactical

vehicle, adjacent tactical mobile communications center, intermediate satellite,

and finally the COCOM termination equipment. The path to return the service

result is similar using the same communications elements in the reverse order.

185

The analysis steps identified in chapter five were applied to this sequence of

equipment elements. The performance characteristics are unclassified values.

D12

D21

D23

D32

D34

D43

D45

D54

D5

D12

D21

D23

D32

D34

D43

D45

D54

D5

Figure 9.1 Top level MESA model for Army SOA example

The performance description for this system can be calculated form the following:

186

Each of the delays identified in Figure 9.1 was translated into a component or

connection and the delays were modeled using the CAPE methodology.

0 25 50 75

Time (sec)

Comp/Conn Min (sec) Max (sec)

1.280

2.000

0.128

0.128

0.600

48.000

75.000

4.800

0.008

0.013

0.001

0.001

0.200

16.000

25.000

1.600

D12

D23

D34

D45

D55

D54

D43

D32

4.800 1.600D21

fD

fD

fD

fD

fD

fD

fD

fD

fD

Scaled PDF

Architecture Transmission Delay Contributions

1.440 1.440CUMPROP 0 25 50 75

Time (sec)

Comp/Conn Min (sec) Max (sec)

1.280

2.000

0.128

0.128

0.600

48.000

75.000

4.800

0.008

0.013

0.001

0.001

0.200

16.000

25.000

1.600

D12

D23

D34

D45

D55

D54

D43

D32

4.800 1.600D21

fD

fD

fD

fD

fD

fD

fD

fD

fD

Scaled PDF

Architecture Transmission Delay Contributions

1.440 1.440CUMPROP 1.440 1.440CUMPROP

Figure 9.2 Detailed CAPE delays with bounding values

187

To simplify the comparison of delays estimated by CAPE and MESA analysis

techniques, the fixed propagation delays of each connection were separated out

from the associated transmission delays (as they do not change the transmission

delay pdf shape) and were added back in to generate the final result in the

bottom row of Figure 9.2 under the heading of CUMPROP.

Figure 9.2 shows the CAPE delays. The CAPE result is generated by summing

the nine element delays (D12-D21) with the sum function and adding in the

CUMPROP value. Figure 9.3 shows the MESA and CAPE results.

0 25 50 75 100 125 150
0

0.01

0.02

0.03

0.04

Time (sec)

fD

PDF Army Delay

MESA Simulation

CAPE Prediction

Theory

Max

Theory

Min

0 25 50 75 100 125 150
0

0.01

0.02

0.03

0.04

Time (sec)

fD

PDF Army Delay

MESA Simulation

CAPE Prediction

Theory

Max

Theory

Min

Figure 9.3 PDF comparison of CAPE and MESA results Army example

188

While the two predicted performance density functions are very similar, they can

be distinguished with hypothesis testing (section 9.5.1). Using vector analysis

techniques (section 9.3.2) the difference can be approximated as 7%. Since the

MESA model has been validated against other models before taking on the

EWSE engineering study, this consistency in shape and location indicates that

CAPE has produced a correct result for this example.

9.4.2 Example Two – Real Estate Service

The second example, a real estate service, demonstrates some of the different

CAPE functions that are used when the topology in not completely sequential.

The performance characteristics for this validation were taken directly from

chapter seven.

189

Figure 9.4 MESA model for the real estate service (single photo server)

The performance description for this system can be calculated form the following:

190

In a manner similar to example one, two MESA/Extend models were developed.

Figure 9.4 shows the single photo server case. The dual photo server case is

analogous (but not shown). The CAPE calculated architecture delay descriptions

for the single photo server case are shown in Figure 9.5 and the total or

cumulative delay is shown in Figure 9.6.

Real Estate Example with Single Photo Server Delays

Theoretical
Min (msec)

Theoretical
Max (msec)

1054.375165.625

553.125359.375

Delays
Comp/Conn

Search

Function

Single-Photo

Function

PDF (different scales)

321.875115.625
Directions

Function

553.125359.375
Max Direction

& Single Photo

fS

fP

fD

fA

Real Estate Example with Single Photo Server Delays

Theoretical
Min (msec)

Theoretical
Max (msec)

1054.375165.625

553.125359.375

Delays
Comp/Conn

Search

Function

Single-Photo

Function

PDF (different scales)

321.875115.625
Directions

Function

553.125359.375
Max Direction

& Single Photo

fSfS

fP

fDfD

fA

Figure 9.5 Single photo server delay contributions

191

0 100 200 300 400 500 600 700 800 900 1000110012001300140015001600

0

0.005

f

PDF Comparison for MESA and CAPE
Single Photo Server Case

fC CAPE PDF fM1 MESA PDF

Time, t (msec)

0 100 200 300 400 500 600 700 800 900 1000110012001300140015001600

0

0.005

f

PDF Comparison for MESA and CAPE
Single Photo Server Case

fC CAPE PDF fM1 MESA PDFfC CAPE PDF fM1 MESA PDF

Time, t (msec)

Figure 9.6 Total delay for single photo server

Similarly, the transmission delay contributions and the total delay for the two

photo server case are shown in Figure 9.7 and Figure 9.8 respectively.

192

Real Estate Example with Dual Photo Server Delays

Theoretical
Min (msec)

Theoretical
Max (msec)

1054.375165.625

553.125359.375

Delays
Comp/Conn

Search

Function

Dual-Photo

Function

PDF (different scales)

321.875115.625
Directions

Function

553.125359.375
Max Direction

& Dual Photo

fS

fD

fDP

fA

Single Photo

Dual photo

Single Photo

Dual photo

Real Estate Example with Dual Photo Server Delays

Theoretical
Min (msec)

Theoretical
Max (msec)

1054.375165.625

553.125359.375

Delays
Comp/Conn

Search

Function

Dual-Photo

Function

PDF (different scales)

321.875115.625
Directions

Function

553.125359.375
Max Direction

& Dual Photo

fS

fD

fDP

fA

Real Estate Example with Dual Photo Server Delays

Theoretical
Min (msec)

Theoretical
Max (msec)

1054.375165.625

553.125359.375

Delays
Comp/Conn

Search

Function

Dual-Photo

Function

PDF (different scales)

321.875115.625
Directions

Function

553.125359.375
Max Direction

& Dual Photo

fSfS

fDfD

fDPfDP

fAfA

Single Photo

Dual photo

Single Photo

Dual photo

Single Photo

Dual photo

Single Photo

Dual photo

Figure 9.7 Transmission delay contribution for the two photo server case

0 100 200 300 400 500 600 700 800 900 1000110012001300140015001600

0

0.005

f

PDF Comparison for MESA and CAPE
Dual Photo Server Case

fC CAPE PDF fM2 MESA DUAL PHOTO PDF

Time, t (msec)

fM1 MESA SINGLE PHOTO PDF

0 100 200 300 400 500 600 700 800 900 1000110012001300140015001600

0

0.005

f

PDF Comparison for MESA and CAPE
Dual Photo Server Case

fC CAPE PDF fM2 MESA DUAL PHOTO PDF

Time, t (msec)

fM1 MESA SINGLE PHOTO PDF

Figure 9.8 Cumulative delays for the two photo server case

193

In each case, the CAPE predictions reasonably match the MESA simulation

estimates of the performance of the real estate service, and the service as

modified with the additional photo server. This closeness of predictions again

tends to validate that the CAPE methodology makes a reasonable estimate of

the anticipated implementation performance.

9.5 Comparing MESA and CAPE Results Quantitatively

When comparing the results obtained from the MESA simulation and the CAPE

calculation, one clearly sees that the two have a strong resemblance. However,

a more quantifiable comparison may be possible. There are at least two

possibilities: statistical comparison (hypothesis test) and difference

measurement with a suitable norm.

9.5.1 Hypothesis Testing - MESA vs. CAPE

The validation process conducted for this research is a little bit different than for a

routine Chi Squared testing circumstance. In comparing the results here, we are

not cost constrained with regard to how many sample data points are collected.

Section 9.3.1 identified commonly used rules of thumb for performing Chi

Squared testing. To be consistent with these rules, the test process collects

sample values until the rules of thumb are satisfied, i.e., more than 50 samples,

and no fewer than 5 in a bin, etc. After these rules have been satisfied, there is a

choice, to be made: a) evaluate the Chi Squared statistic, or b) gather more

194

sample points and then evaluate the statistic. Figure 9.9 shows the results of an

experiment where each of the 1000 dots represents the selection of a random

seed followed by the production of random samples according to the CAPE pdf

and the MESA pdf until the rules of thumb are satisfied. Once the rules of thumb

are satisfied, the Χ2 value is plotted against the sample count.

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

α = 0.01
α = 0.05
α = 0.10

Initial Χ2 Values vs. Count
ARMY MESA vs. CAPE Simulation

Χ2

Count

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

α = 0.01
α = 0.05
α = 0.10

Initial Χ2 Values vs. Count
ARMY MESA vs. CAPE Simulation

Χ2

Count

Figure 9.9 Initial χ2 values vs. count needed to meet rules of thumb

195

Of the 1000 initial points plotted, 59% exceed the threshold for rejecting H0 at the

10% level of significance, 47% exceed the threshold for the 5% level, and 29%

exceed the threshold for the 1% level. H0 should be rejected. The result is the

same for the Real Estate Service example. H0 should be rejected. Differences

between MESA and CAPE pdfs drive this behavior. More samples worsens the

situation, Figure 9.1. Traces near the extremes highlight the variability.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
0

10

20

30

40

50

60

70

80

90

100

α = 0.01
α = 0.05
α = 0.10

Χ2

Sample Count

Samples vs. Χ2 Values
ARMY MESA vs. CAPE Simulation

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
0

10

20

30

40

50

60

70

80

90

100

α = 0.01
α = 0.05
α = 0.10

Χ2

Sample Count

Samples vs. Χ2 Values
ARMY MESA vs. CAPE Simulation

Figure 9.10 Plot of χ2 values over time

196

When the number of available comparison points is large, the Chi Squared

Goodness of Fit test does not help very much in establishing the near equality of

the two models. As a result, an alternative approach is used based on normed

vector spaces as discussed in section 9.3.2.

The probability density functions generated by MESA and CAPE in this situation

are continuous and of finite range so they do constitute a vector space. Using

the norm identified in section 9.3.2 one can take the absolute value of the

difference between the MESA performance estimate and the CAPE estimate in

the Army communications example. The result is plotted in Figure 9.11 (in blue).

197

0 20 40 60 80 100 120 140
0

0.01

0.02

0.03

0.04 Delay Performance Description

MESA vs. CAPE

f

Delay (msec)

CAPE Prediction MESA Simulation | MESA-CAPE |

0 20 40 60 80 100 120 140
0

0.01

0.02

0.03

0.04 Delay Performance Description

MESA vs. CAPE

f

Delay (msec)

CAPE Prediction MESA Simulation | MESA-CAPE |

0 20 40 60 80 100 120 140
0

0.01

0.02

0.03

0.04 Delay Performance Description

MESA vs. CAPE

f

Delay (msec)

CAPE Prediction MESA Simulation | MESA-CAPE |CAPE PredictionCAPE Prediction MESA Simulation | MESA-CAPE || MESA-CAPE |

Figure 9.11 Absolute MESA-CAPE estimate difference– Army example

When the blue curve is integrated over its range, the value is 0.1375. Now since

the two original curves were probability density functions whose area must

integrate to one, the maximum difference possible for these two curves would be

2.0. The minimum difference would be 0.0 if the two curves were the same.

Hence the difference between the MESA and CAPE performance estimates differ

by approximately 7% for this example. Neither performance description is truly

known to be the correct value, as both are performance estimate approximations

of the same system (yet to be completed). Using this method, the performance

estimate difference for the Real Estate Service with single photo server, Figure

198

9.6 is only 3.1%, and the difference between the two estimates for the Real

Estate Service with dual photo server, Figure 9.8, is 3.3%.

In absolute terms, a 3% or 7% difference between models could be considered

large or small depending on the concern of the moment. A portion of this

comparison difference is generated by the “wiggles” in the performance estimate

function generated by MESA. MESA is a discrete event simulation, and as such,

the shape of the curve will change over time as more values are added. There is

nothing in the underlying physics of the systems that would suggest that such

“wiggles” are an artifact of the systems, but rather they are generated as part of

the modeling technique. As such the “wiggles” can be ignored, and a smoothed

MESA prediction would be even closer to the CAPE estimate.

The Army example however is a bit different. The MESA function is slightly

broader (and consequently shorter) than the CAPE function. The difference is

not huge, but it is observable. Yet even this difference might be considered

insignificant in view of the fact that the current version of the PPI only considers

the probability that one implementation will likely perform better than another. It

does not yet assert that it will be better by some significant amount, nor by a

specifiable amount. Further, the PPI and the CAPE analysis technique was to

help identify performance differences between architectures. When the projected

199

differences are small, it is highly likely that the actual selection should be made

on another quality criterion, i.e., portability, security, etc.

The two approaches described for evaluating the closeness of the MESA and

CAPE predictions show that in this case the normed vector space method is

more helpful. This will not always be the case. When other methods of

estimating performance are used, it is likely that the cost of gathering data points

will be more expensive, and as such, there may be many fewer. In such cases,

the Chi Squared testing will likely be more effective. It will however still only tell

whether or not there is a detectible difference, not how big that different is (as

does the normed vector approach).

9.6 Conclusion

The result of the detailed analysis validating CAPE predictions against the MESA

predictions needs to be put into perspective. It is clear that these two models

produce slightly different results and when sufficient numbers of data points can

be gathered, the Chi Squared test can distinguish between them. Differences

between models are to be expected, as models are just approximations of reality

and it is the approximation aspect of the system reality that generates these

differences. In the case of modeling the performance of the “to be built” system,

true reality can not be known in advance. Differences between models will likely

exist for all but the simplest cases.

200

To appreciate the importance of these differences, one must revert back to the

intent of the analysis. The principal reason for generating performance models at

the earliest stages of design is to formulate a technical basis for filtering out less

well performing architectures. It is an attempt to narrow the field of plausible

architectures so that more detailed analysis can be done on only those which

look most promising. Weeding out less promising alternatives is a cost saving

measure; eliminating some possibilities before time and money are invested in

more detailed analysis. This down-selection process only makes sense where

the architecture performance potential differences are considered significant.

Small model differences will not hide significant differences between alternative

architecture performance potential estimates.

These differences in model performance estimates can be viewed as a benefit.

Consider some of the sources of uncertainty enumerated in section 3.5:

algorithm, value or data, topology, synchronization, load and sizing. One can

observe both the initial estimate and evolution of the uncertainty sizes involved in

generating the proposed architecture’s performance potential as design

decisions are made. Graphing each of these uncertainties in size (using a

simplified minimum, maximum estimate) the individual contributions can be seen

in Figure 9.12. Here each of the decisions has been allocated two uncertainties,

one for the minimum performance value, and another for the maximum.

201

Uncertainty in Minimum

Uncertainty in Maximum

Before decisions is made

Uncertainty in Minimum

Uncertainty in Maximum

After decision is made

Key

1

1

2

2

3

3

4

4

5

5

Initial estimates for five proposed design decisions

1

2

3

4

5

algorithm

value or data

topology

synchronization

load and sizing

Uncertainty in Minimum

Uncertainty in Maximum

Before decisions is made

Uncertainty in Minimum

Uncertainty in Maximum

After decision is made

Uncertainty in Minimum

Uncertainty in Maximum

Before decisions is made

Uncertainty in Minimum

Uncertainty in Maximum

Uncertainty in Minimum

Uncertainty in Maximum

Before decisions is made

Uncertainty in Minimum

Uncertainty in Maximum

After decision is made

Uncertainty in Minimum

Uncertainty in Maximum

Uncertainty in Minimum

Uncertainty in Maximum

After decision is made

Key

1

1

2

2

3

3

4

4

5

5

Initial estimates for five proposed design decisions

1

1

2

2

3

3

4

4

5

5

1

1

2

2

3

3

4

4

5

5

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

Initial estimates for five proposed design decisions

1

2

3

4

5

algorithm

value or data

topology

synchronization

load and sizing

Figure 9.12 Uncertainty contributions before design decisions are made

When these uncertainty estimates are regrouped placing maximums and

minimums together the result is a simplified estimate of the system’s

performance bounds. Figure 9.13 shows the change in the estimate of those

bounds can be viewed over time as various design decisions are made.

202

1

1

2

2

3

3

4

4

5

5

1

2

3

4

5

1

2

3

4

5

3

1

4

5

2

3

2

3

1

4

5

1

1

2

4

5

2

3

3

1

4

5

2 4

1

2

4

5

2

3

3

1

4

5

5

1

2

4

5

2

3

3

1

4

5

-
Decisions Made Over Time

Estimated
System
Performance

Performance

Uncertainty

Max

Min

11

11

22

22

33

33

44

44

55

55

11

22

33

4

5

44

55

11

22

3

44

55

3

11

4

5

2

3

44

55

22

3

22

33

1

44

55

1

11

22

44

55

2

3

33

1

44

55

2 4

1

2

4

55

2

3

33

1

4

55

5

1

2

4

5

2

3

3

1

4

5

-
Decisions Made Over Time

Estimated
System
Performance

Performance

Uncertainty

Max

Min

Figure 9.13 Changing performance bounds as decisions are made

One of the benefits to knowing that there are differences in model performance

estimates and how those differences are related is that they help to establish the

203

sizes of the uncertainties being considered in analyses as shown in Figure 9.13.

From the validation example earlier, it is known that different models will predict

slightly different performance ranges. As a result, if the Army Communications

System is used as an element of a larger performance estimation problem, this

model uncertainty should be included in the uncertainty estimates and

calculations used to perform the analysis. Model differences add to our

understanding of the performance of system elements, and as such tend to

improve the confidence that the modeled composite system will behave as

predicted.

A similar uncertainty reduction over the development life-cycle is seen in costing.

Log of

Relative
Cost
Error

Concept of

Operation

Rqmts.

Spec.

Product

Design
Spec.

Detailed

Design
Spec.

Accepted

Software

Feasibility Plans

and
Rqmts.

Product

Design

Devel.

and
Test

Detailed

Design

4x

2x

1.5x

1.25x

x

0.5x

0.25x

Log of

Relative
Cost
Error

Concept of

Operation

Rqmts.

Spec.

Product

Design
Spec.

Detailed

Design
Spec.

Accepted

Software

Feasibility Plans

and
Rqmts.

Product

Design

Devel.

and
Test

Detailed

Design

4x

2x

1.5x

1.25x

x

0.5x

0.25x

Log of

Relative
Cost
Error

Concept of

Operation

Rqmts.

Spec.

Product

Design
Spec.

Detailed

Design
Spec.

Accepted

Software

Feasibility Plans

and
Rqmts.

Product

Design

Devel.

and
Test

Detailed

Design

4x

2x

1.5x

1.25x

x

0.5x

0.25x

Figure 9.14 Boehm software development cost uncertainty description

204

Boehm [Boeh81] found that cost-to-complete estimates could be off by a factor of

four early in the life-cycle. Vagueness and ambiguity in the software

requirements lead to these uncertainties. This situation is similar to that found

here in performance estimation. Various early models will approximate reality

differently. Uncertainty in how components and prototypes will perform is

greatest at the outset and decreases over time as design decisions are made

reducing performance uncertainty. The modeling process is valid.

9.7 Summary

This chapter has taken two CAPE modeling examples and validated the results

against MESA/Extend models used within the Department of Defense.

Hypothesis testing and normed vector analysis methods were described for

comparing the performance descriptions of the two examples. In each case, the

results from both models are in agreement. The chapter concludes with a

discussion of the differences between the estimation methods and an

explanation of the advantages and shortcomings of each.

205

Chapter 10

10 Contributions and Future Research .

10.1 Introduction

In this dissertation, a method has been developed (chapter four and chapter five)

for making performance comparisons between architecture alternatives. Using

these techniques at architecture design time, the developer can compare the

estimated likely performance of systems that might be built from an architecture

description. The techniques described provide a systematic means for

quantitatively assessing the probability that one particular architecture will

produce an implemented system which will perform better than another through

the evaluation of what is called the "performance probability integral." The

approach is applicable at different levels of abstraction of the problem solution

description, and provides for the inclusion for varied sources of uncertainty in

how the implementation will actually be instantiated. It allows for refinement of

the comparative performance estimates as detailed design characteristics are

specified and provides a method for managing the uncertainties of those

characteristics not quantitatively defined. To demonstrate the procedure, the

classical three-tier architecture was examined (chapter six) for two architectures

and two implementation choices for communications links. A proof-of-concept

206

prototype has been developed to perform the probabilistic computations. This

allows statistical methods to be applied by non-experts. Further, the technique

allows for description of element characteristics in a simplified manner, i.e.,

without needing to generate complex equations to describe the probability

density functions that describe delays, sizes, and processing times. This

simplified interface expands the utility of the approach by making it usable to a

broader audience.

A variety of methods can be used to evaluate system performance. Many are

most easily applied to systems that are partially implemented or where detailed

component and connector information is available. Particularly popular are

approaches based on queuing simulations. Queuing approaches can produce

precise results by taking advantage of mature system design parameters sets.

When the design parameters are not well established, a queuing approach often

resorts to checking combinations of sets of values for each of the unspecified or

large uncertainty specifications. This results in a larger number of cases being

run to cover the design space and takes additional time. When the queuing

models are evaluated using simulation based techniques, the solution time can

be significant as well. Queuing network models solved using other approaches

are often less accessible to the broad research audience.

207

CAPE takes advantage of the early design uncertainties associated with

component and connection performance descriptions, parameterizes them and

manages them. As such, CAPE routinely does not require multiple runs for

systems of known topology. CAPE was intended to address performance related

design issues earlier in the system development than other techniques. It

informs the decision processes when it is the topology or combining of different

components and connections that is being resolved. While this type of

performance analysis can also be done using queuing models, using queuing

models is likely to take longer than when using the CAPE approach. One of the

primary advantages of using CAPE is its simplicity. It allows researchers and

analysts from a broad set of disciplines to do productive work in architecture

performance analysis without substantial start-up training. The results that it

generates are quickly computed and the examples accumulated to date show

good performance correlation with the systems that are being built.

10.2 Research Contributions

Specifically the contributions of this research are:

a) This research identifies the underlying uncertainties that exist at system

architecture design time that likely do not exist later in the development life-cycle.

These uncertainties are categorized so that the system designer can

appropriately characterize them individually.

208

b) Five functions necessary to combine system architecture level

uncertainties are identified.

c) For each of the five functions needed to combine the uncertainties at the

system architecture level, a computation method is demonstrated and verified.

d) The Performance Probability Integral is derived to calculate the probability

that the expected performance of one architectural option will exceed the

expected performance of another architectural option.

e) A method is defined that characterizes architectural uncertainties and,

maps them into probabilistic descriptions, then combines them for application of

the performance probability integral.

f) A tool was developed that assists in performing the calculations for

combining component and connection performance descriptions into system

architecture performance descriptions.

g) A simple three tier data application and two quasi-real world examples are

used to demonstrate the use of the developed technique.

209

10.3 Future Research

There are a number of additional research areas which could enhance this work.

They represent both extensions to and refinements of that presented here and

would increase its utility of the methods described previously.

10.3.1 Expand Offered Workload Analysis

Current CAPE analysis techniques capture the static aspects of data

transformation and movement. CAPE assumes that the sizes of data elements

posed to the architectures being analyzed as well as the behavior characteristics

of the components and connectors that make up those architectures are correct.

The consequence of assuming correct performance descriptions is that

‘bottlenecks’ can not happen unless they are described in the performance

description. This is a “chicken and egg” problem. If one does not know the

correct performance description, or can not build a component or connector

which exhibits that performance, there will be an issue as bottlenecks could exist.

CAPE does not currently address the rate at which those input data objects

arrive. This choice was made believing that the sizes of queues and the flow-

rate of data elements was a detailed design consideration. Whether detailed

design or not, there is value in incorporating into CAPE the input considerations

associated with the arrival rates of data elements, and how those rates effect the

later portions of the design process. Supplementing CAPE with an probabilistic

210

arrival rate feature would provide both architecture and detailed designers with

improved insight into end-to-end system performance.

10.3.2 Improve Model Implementation Efficiency

A number of data structures are required to support the computations that take

place when this model is executed. For the purpose of this work, emphasis was

placed on achieving correct results. There is value in generalizing and

formalizing both the data representations and function implementations that

manipulate this data so that a broader class of problems can be considered

easily. Such extensions would include better incorporation of Dirac delta

functions into the function definitions and the associated improvements in

operations used on these functions once so extended. The redefinition of such

data structures and functions should consider primarily efficiency of execution

and representation while taking into account appropriate numerical accuracy.

10.3.3 Applying CAPE to the Design of Software Architectures

While CAPE is expected to be of assistance in developing distributed

computation systems, there may be refinements which would be beneficial for

analyzing software architectures too. Software architectures are likely to address

a lower level of architecture design than that at a system level. Delays that could

be ignored at a system level may become significant to the performance of a

software architecture. Further study would be beneficial to identify how software

211

architecture designs differ from system designs, and how CAPE could be

modified to extend to this area of architecture performance analysis.

10.3.4 Simplify Performance Specifications Graphical User Interface

The current implementation of these algorithms works with functions that are

either numerically defined as sequences of linear approximations, or in some

cases defined by code snippets that can provide such approximations. This

interface is awkward for researchers interested in the performance of the

architecture of the to-be system. While the exact form of a more desirable

interface is not clear right now, it would appear that a graphical interface allowing

the researcher to define functions with a point-and-click approach would be

desirable. Such an interface would have to include appropriate transformations

or warnings to ensure that the probability density functions so constructed were

mathematically correct.

10.3.5 Generate Parameterized Pre-built Architectural Entity Models

The set of interesting architectures which are routinely considered for

performance analysis have a number of common components. Such

components include satellite links, other transport links, aggregations of such

links, i.e., networks, as well as processing models that transform data from one

form to another. The performance of each of these is routinely associated with a

set of parameters that characterize spatial considerations, error handling as well

212

as more fundamental attributes like data rates or available bandwidth allocations.

Since these types of elements are likely to be incorporated into any number of

analysis efforts, it would be valuable to pre-build models for sets of components

that are routinely used in architecture performance analysis. This would not only

reduce the analysis setup time for investigators, but help to ensure consistency

between architecture specifications.

10.3.6 Quantify Improvement Factor

The method developed assesses the probability that one system is expected to

perform better than another. It may be of use however to add an additional

parameter, i.e., that one system will perform better than the other by more than

X%. This would assist the Systems Engineer in identifying cases where such

differences are likely to be more significant. Confidence intervals have not been

considered in this work. Work to incorporate them would be valuable in the

obvious way.

10.3.7 Specify an Appropriate Multi-Attribute Utility Function

In restricting the scope of this research effort to keep it manageable, a decision

was made to address only the performance aspect of architecture analysis.

There are a number of other attributes that other researchers will likely study.

These might include security, reliability, and cost to name but a few. Once this

broader analysis is possible, there needs to be a way to combine the findings of

213

each of these analyses together into a single view for comparing architectures

against this broader combined criterion. A multi-attribute utility function would

appear to be one method of combining these disparate views of an architecture,

but there may be others. Some work should be done to provide guidelines or

recommendations on how to combine architecture analysis products into a more

general decision rule for selecting that which is most appropriate for a particular

situation.

10.3.8 Specify a Compatible Cost Model for a Bayes Decision

Life-cycle cost is one of the principal concerns faced by any system builder.

Routinely there is a desire to minimize the expected system cost while at the

same time achieving critical performance parameters. While there may be a

number of ways to project the expected cost of a development, one that must

clearly be considered is Bayes Criterion. This criterion combines the probability

of making a certain decision (architecture selection) with the cost associated with

that decision (implementation) to calculate the expected cost to be absorbed.

This research has only offered a method for computing the probabilities of one

architecture performing better than another. This could be extended with Bayes

Criteria to include cost data to be of more value to Systems Engineers.

214

10.3.9 Summary

This research effort has made the comparison of architectures with respect to

performance concerns viable. It has done so in a manner that is consistent with

current best practices and is practical, useful, and broadly applicable. This

chapter has summarized the contributions of this research and identified areas of

proposed study to improve the usability and extend applicability of the methods

proposed.

215

Appendix A

A Function Model and Elementary Function Operations…….

A.1 Introduction

The results calculated for the examples in this work are based on the model of
functions and function operations demonstrated here. All of the computations
are carried out numerically based on graphical algorithms. This approach was
selected since it is possible that the probability density functions encountered in
practical calculations may not be easily approximated with closed form
representations, e.g., the quotient probability density function discussed in
chapter four.

A.2 Representing Functions of One Variable

Functions are implemented as Java objects of a general form with y as the
dependent (range) variable and x as the independent (domain) variable. There is
an amplitude scaling factor that simplifies multiplication by a scalar, and a tau
argument term which allows for the shifting of functions by amounts of the
domain variable. The direction of this shift is controlled by the sign applied to the
shift amount (tau). The function argument domain value is inverted through a
sign variable applied to x to easily accomplish the function of convolution. The
general form of functions is therefore:

y = Amplitude * function (argument)

where argument is defined to be:

argument = plusOrMinus * x plusOrMinus tau

The implementation of these functions of one variable is done as a data structure
of piecewise linear approximations of the exact function. The end points of the
approximating line segments or domain values are implemented in the Function
Domain Value (FDV) class. These domain or x values hold both the exact
representation (Java based finite arithmetic approximation) and a rounded value.

216

The exact value is used for plotting while the rounded value is used for indexing
the domain values in data structures like trees and hash maps were small
accumulating errors due to floating point increments in “for” or “while” loops can
occur causing difficulties in achieving the proper end-of-loop condition.

Points in the range, i.e., the y value of the function are represented by the
Function Range Value (FRV) class. This class routinely holds three numeric
values and three open-closed conditions. For each range value, there is a value
for the point at the exact domain value, a continuous-to-the-left value, and a
continuous-to-the-right value. There are also three Boolean values to indicate
that the point is either open or closed the each of the associated magnitude
values. There are consistency checks applied as clearly all combinations are not
meaningful.

A.3 Operations on Functions

There are seven fundamental operations implemented for functions:
multiplication by a scalar as well as function shift, addition, multiplication,
integration, differentiation and convolution. In each case, the result is an
instance of the Function class and is available for further computation in
subsequent steps.

A.4 Scalar Multiplication

Multiplying a function by a scalar is done directly through the adjustment of the
amplitude attribute of the function described above. When the function needs to
be put into canonical form, i.e., where the amplitude is one, and the value of the
shift is zero, all individual function points are adjusted.

A.5 Shift Operation

The shift operation is useful for implementing convolution and is handled by
changing the “tau” variable defined in the function definition. Positive tau values
(after combining with the associated plusOrMinus prefix operator) shift the
function to the left. Similarly negative values shift the function to the right

A.6 Integration Operation

Integration is performed on each of the piecewise linear approximating segments
and summed. Each linear segment is subdivided appropriately and the

217

integration is done by evaluating the formula for the integration of that segment.
The integration function is used in largely three ways: to compute cumulative
distribution functions from probability density functions, to calculate the
normalization constant for functions that are proposed as probability density
functions, and again in the convolution operation.

A.7 Differentiation Operation

Differentiation is accomplished on a point by point basis for each function
approximating line segment. The slope of each segment is taken to be the value
of the function derivative. This value is assigned to the midpoint of that line
segment.

A.8 Convolution Operation

Convolution is a binary operation on functions often represented by the “star”
operator and is defined as:

The implementing code first flips the first function by change the independent
variable from plus to minus. Then for each shift value, “tau” where the function
products have value, that product is formed point-wise and integrated across the
domain of definition. This is a straight forward implementation of the definition.

A.9 makeCanonical() Operation

The make Canonical function is a utility function that performs appropriate
transformations of function points so that the function representation is changed
in a way that makes the amplitude scaling factor 1.0, and the shift amount (tau)
0.0. This is useful in comparing functions to determine their differences.

A.10 Representing Functions of Two Variable

Functions of two variables are represented in a similar manner with the exception
that the approximating line segments become approximating planes defined by
the four points at the corners of the grid which defined each of the two
independent variables. The approximation that is used in the calculations
assigns all values within the bounding rectangle of the four defining points as the

218

average value of those points. Most of the useful cases involve the joint density
function of joint distribution function of two independent random variables. In
either of these cases, the joint density function is related to the product of two
one dimensional functions, and the associated cumulative distribution functions
are generated from the appropriate integration over regions of this product.

A.11 Quasi-Arbitrary Random Variable Generation Functions

For testing purposes, it is useful to be able to generate random variables for
quasi-arbitrary probability density functions. The technique used here takes as
input a function that is proportional to the desired pdf that describes the random
variable needed. There are three steps required to instantiate a random number
generator that will numbers consistent with the target pdf. First the proposed pdf
is integrated over its domain of definition. One over this area is defined to be the
scaling constant. The pdf is then scaled by this constant. Scaling is needed to
ensure that the probability of all outcomes sum to one.

The cumulative distribution function (cdf) is then calculated by integrating
incrementally from the minus infinity to plus infinity. This cumulative distribution
function is then inverted, i.e., where y = f(x) in the cdf, the required function is y =
f-1(x). Now random numbers are selected from the uniformly generated
generator provided by Java on the interval [0,1) and applied as the argument of
the f-1 () calculated.

219

Original Function

Scaled pdf Function

Cumulative Distribution Function

Bin Counts Generated

0.0

2.0

1.0

0.0 1.0 2.0 3.0 4.0

Example PDF and CDF with Bin Count

f, F

Original Function

Scaled pdf Function

Cumulative Distribution Function

Bin Counts Generated

0.0

2.0

1.0

0.0 1.0 2.0 3.0 4.0

Example PDF and CDF with Bin Count

Original Function

Scaled pdf Function

Cumulative Distribution Function

Bin Counts Generated

Original Function

Scaled pdf Function

Cumulative Distribution Function

Bin Counts Generated

0.0

2.0

1.0

0.0 1.0 2.0 3.0 4.0

Example PDF and CDF with Bin Count

f, F

Figure A.5.1 Conversion of pdf to cdf.

Consider Figure A.5.1 The originally provided function is in green. After
integration over its domain of definition, the area under the green curve is
calculated to be 2.5. The blue curve is then generated from the green curve by
multiplying it by the scalar (1.0 / 2.5) = 0.4. Then the blue curve is integrated
over the interval to generate the black curve. This black curve is then inverted in
Figure A.5.1.

Now values are selected at random from the uniform density function, [0.1)
shown as the dark thick black line on the horizontal axis and mapped to the
desired pdf, i.e., a → a', b → b', c → c' etc. The orange vertical lines in Figure
A.5.1 portray the normalized count of 1,000,000 random numbers generated in
this manner and divided into 70 equally spaced bins from zero to 3.5.

220

0.0 1.0

0.0

1.0

2.0

3.0

4.0

a b c

a’

b’

c’

Inverted CDF

F-1

0.0 1.0

0.0

1.0

2.0

3.0

4.0

a b c

a’

b’

c’

Inverted CDF

0.0 1.0

0.0

1.0

2.0

3.0

4.0

a b c

a’

b’

c’

Inverted CDF

F-1

Figure A.5.2 Inverted CDF used to generate random variables

221

Appendix B

B Detailed Examples of Uncertainty…….

Even at the lowest levels of computation, examples of uncertainty exist. In
[Kobl00] there is a discussion of the multiplication of a k-bit binary number by an
l-bit binary number. Routinely this type of calculation is accomplished with
successive shift add operations. Even when the shifting and copying portions of
the algorithm can be ignored as small when compared to the actual addition
portions of the process, there exists a difference in execution duration of the
computation due to differing numbers of 1's in the number being multiplied.
Since the number of 1's in the multiplier are unknown until the computation is
provided actual data, a tight estimate of the time to perform a general
multiplication may be characterized in a probabilistic manner base on that
number of multiplier 1's [Irvi09].

11101101

x 100101
11101101

11101101

11101101
10001001000001

Binary Multiplication

11101101

x 100101
11101101

11101101

11101101
10001001000001

11101101

x 100101
11101101

11101101

11101101
10001001000001

Binary Multiplication

Figure B.1 The number of additions is approximately equal to the number of
multiplier 1's.

Algorithmic performance uncertainty arises largely because one may not know in
advance how many times a particular looped action will be executed when it is
coded as a "do until," "while," or perhaps even a "for" construct iterating over an
array of run-time-determined size. In other situations, a result may not be
produced until a certain exit criteria is met and as such, the number of iterations
may not be known until certain values meet specified termination condition for
the computation. Here both the number of iterations, and the precise time
associated with executing each iteration may be unknown or may depend on the
values of the computation being considered.

222

Next consider an example of algorithm selection. One option is shown in Figure
B.2.

Initial estimate

second estimate

third estimate

Finding Function Zeros by
Newton Root Estimation

x

f(x)

Initial estimate

second estimate

third estimate

Finding Function Zeros by
Newton Root Estimation

x

f(x)

Figure B.2 First three steps in a Newton Root Approach

The goal here is to find a root of a specified polynomial. Figure B.2 shows the
first three steps given a specific function, and initial starting estimate when using
the Newton method. Yet when a different algorithm (secant, Figure B.3) is
employed, an entirely different set of estimates is generated, and a different
convergence time is likely.

223

second estimate
Initial estimate

third estimate

Finding Function Zeros by
Secant Root Estimation

x

f(x)

second estimate
Initial estimate

third estimate

Finding Function Zeros by
Secant Root Estimation

x

f(x)

Figure B.3 First three steps in a secant root approach

In the algorithm uncertainty case, the time it takes to get to the answer is a
function of the starting point(s), the shape of the function being examined, and
the algorithm being used to compute the desired root. Each factor adds a
different uncertainty to the overall time that the calculation requires.

At higher levels in the computation hierarchy different uncertainties exist.
Consider the delay associated with retrieving information from a database. The
delay experienced between the request submission and the result arrival may
depend on the size of the data stored, the organization of the underlying data
elements, the complexity of the query, the existence of synchronization locks for
critical resource elements, or even the competition for CPU resources generated
by other processes attempting to gain access. At even higher system levels, the
time to move data may depend on the path that the data takes which in turn may
change over time.

A probabilistic approach is appropriate for characterizing delays in this
environment, and hence is appropriate for estimating performance at an
architecture level of analysis. At each level of computation, there are
uncertainties, and these must be characterized and then combined to produce a
meaningful representation of an entire process.

224

Appendix C

C Computational Methods and Verification .

C.1 Introduction

The six uncertainty classes described in chapter five are computed using the
techniques identified in the following sections.

C.2 Summation

Summation is one of the most often used combination functions. Two
representative examples are provided as verification tests.

Consider a system with fifteen delays each characterized by a uniform density
function with duration from zero to 0.5 time unit as shown in Figure C.0.1

Uniform

[0.0, 0.5)

Uniform

[0.0, 0.5)

Uniform

[0.0, 0.5)

9 Stages
not shown

… …Uniform

[0.0, 0.5)

Uniform

[0.0, 0.5)

Uniform

[0.0, 0.5)

Uniform

[0.0, 0.5)

Uniform

[0.0, 0.5)

Uniform

[0.0, 0.5)

Uniform

[0.0, 0.5)

Uniform

[0.0, 0.5)

Uniform

[0.0, 0.5)

Uniform

[0.0, 0.5)

Uniform

[0.0, 0.5)

Uniform

[0.0, 0.5)

9 Stages
not shown

… …Uniform

[0.0, 0.5)

Uniform

[0.0, 0.5)

Uniform

[0.0, 0.5)

Uniform

[0.0, 0.5)

Uniform

[0.0, 0.5)

Uniform

[0.0, 0.5)

Uniform

[0.0, 0.5)

Uniform

[0.0, 0.5)

Uniform

[0.0, 0.5)

Figure C.0.1 Fifteen independent stage uniformly distributed delay line

225

From the definition of the uniform probability density function:

 1 / (b-a), for a ≤ x ≤ b

 U(a, b) =

 0, otherwise

 Mean = (a + b) / 2 Variance = (b - a) 2 / 12

Using convolution to iteratively sum this density function 15 times, yields the
result shown below

1
2
3
4
5
6
7
8
9

10
11
12
13
14

2.0

1.0

0.0

1.0 2.0 3.0 4.0 5.0 6.0 7.0

Accumulated Successive Additions

Original pdf Gaussian approximation (15)

0.0

ITERATION

Cumulative Sum (sec)

f

1
2
3
4
5
6
7
8
9

10
11
12
13
14

1
2
3
4
5
6
7
8
9

10
11
12
13
14

2.0

1.0

0.0

1.0 2.0 3.0 4.0 5.0 6.0 7.0

Accumulated Successive Additions

Original pdf Gaussian approximation (15)Original pdfOriginal pdf Gaussian approximation (15)

0.0

ITERATION

Cumulative Sum (sec)

f

Figure C.0.2 Iterative summation of uniform densities

226

The law of large numbers states that the sum of a large number of independent
identically distributed random variables approaches normal with a mean equal to
the sum of the means and variance equal to the sum of the individual variances.
In the limit the sum is exactly normal. Since 15 is significantly less than infinity
there will be an error or difference between the convolution result and a true
Normal distribution's shape. As verification of this result, superimposed over that
final sum is a dashed black line of Gaussian shape with mean 15 times the
uniform and variance of 15 times the uniform. The result however is close to
ideal. The purple curve (iteration 14, sum 15) is known to be a probability density
function since it was derived as the addition of independent identically distributed
random variables. The integral under the curve should be 1.0. When the integral
is calculated with the analysis tool the result is 1.00114. The integral under the
Gaussian curve with mean of 3.75 and variance of 0.3125 (plotted gray) is 1.0
when calculated in the same manner. The maximum difference between the two
functions occurs at the mean of 3.75 and is equal to 0.0125. The sum of the
mean square differences between these two functions summed over all 121
points plotted is 0.01253429. The sum of the mean square error between the
convolution approximation and the Gaussian is 0.002221959. The difference
between the true Gaussian and the sum of the uniform densities is small. The
calculation is useful, and is consistent with the fact that the resolution used for
the graphical integration is 2% of the range of the original random variable.
These errors are considered to be small when comparing them to the
uncertainties associated with architecture performance manipulation in general.
The graphical convolution result is reasonable for this purpose.

A second simple example helps to show that the implementation of this graphical
convolution can also represent arbitrarily defined independent random variables.
The first of these two pdfs was chosen because of its irregular shape. It has no
specific symmetry. The second pdf could reasonably be encountered in a noisy
communications channel. Figure C.0.3 and Figure C.0.4 show the pdf, the cdf,
and the plotted verification by simulation of the bin counts of the two performance
descriptions being combined.

227

f, F

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1.0

Time (t)

First Example PDF with CDF

CDF

PDF

Bins

f, F

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1.0

Time (t)

First Example PDF with CDF

CDF

PDF

Bins

CDFCDF

PDFPDF

BinsBins

Figure C.0.3 An irregular pdf describing system performance

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1.0

1.2

f, F

Time (t)

Second Example PDF with CDF

CDF

PDF

Bins

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1.0

1.2

f, F

Time (t)

Second Example PDF with CDF

CDF

PDF

Bins

CDFCDF

PDFPDF

BinsBins

Figure C.0.4 Another pdf describing system performance

228

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.2

0.4

0.6

0.8

1.0

1.2

f, F

Delay (time units)

Bin valuesDelays added Result

Probability vs. Delay

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.2

0.4

0.6

0.8

1.0

1.2

f, F

Delay (time units)

Bin valuesDelays added Result

Probability vs. Delay

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.2

0.4

0.6

0.8

1.0

1.2

f, F

Delay (time units)

Bin valuesDelays added Result Bin valuesDelays added Result

Probability vs. Delay

Figure C.0.5 Convolution of pdfs from Figure C.3 and Figure C.4

Figure C.0.5 results when these two performance descriptions are combined
through convolution. The simulation result is consistent with the convolution
result.

C.3 Quotient

The basic calculation for the quotient probability density function is similar to the
deterministic case

Consider the simple example defined in Figure C.0.6. The data package size is
assumed to be uniformly distributed from 10 to 50 bytes. The data rate of the link
is assumed to be uniformly distributed from 75 to 150 bytes per second.

Figure C.0.6 also shows the geometry associated with calculating the cumulative
distribution function of the quotient from the joint density function of size and rate.
The calculated cdf describes the probability that the time needed for a data
packet transmission will be less than some time, t'.

229

10

20

30

40

50

0

0 25 50 75 100 125 150

Data Size (bits) vs. Rate (bits/second)

Rate (bits/second)

Data

Size
(bits)

Transit Time (sec)

tmin =
Datamin

Ratemax

tmax =
Datamax

Ratemin

t’

P(t < t’)

10

20

30

40

50

0

0 25 50 75 100 125 150

Data Size (bits) vs. Rate (bits/second)

Rate (bits/second)

Data

Size
(bits)

Transit Time (sec)

tmin =
Datamin

Ratemax

tmin =
Datamin

Ratemax

tmax =
Datamax

Ratemin

tmax =
Datamax

Ratemin

t’

P(t < t’)

Figure C.0.6 Relationship of transmit time to data size and data rate

Consider first the two lines labeled tmax and tmin. The maximum time it will take to
send a data packet (tmax) is that associated with the maximum size packet
traversing the minimum data rate link. Conversely the minimum time
(transmission delay) is experienced when the smallest size packet is sent over
the highest speed the link can achieve. These values of tmax and tmin bound the
quotient performance. Each of the positive slope diagonal lines (tmax, t' and tmin)
represent the ratio of the data size to link data rate. These lines which represent
time values divide the region of integration for the calculation. For each t’ value
between tmin and tmax, the red shaded fraction of the whole rectangle represents
the probability that a delay will be less than the value stipulated by the t’ slope
defining the regions. Integrating t’ from tmin to tmax must yield one, the probability
that it will take some amount of time between tmin and tmax to send the data
packet. Since the shaded area is the probability of t being less than t' it is the
value of the cumulative distribution function (cdf) for the size-speed ratio
(quotient probability) for that time t'. Using this graphical approach yields a graph
of the cdf for the time associated with the distribution of times associated with the
data packet size and link data rate densities, Figure C.0.7.

230

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8

CDF for Quotient

0.06 0.6

F

Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8

CDF for Quotient

0.06 0.6

F

Time (sec)

Figure C.0.7 Quotient cumulative distribution function for the example

A probability density function can be derived from the cumulative distribution
function by differentiation in cases where the cdf function is well behaved. For
this same example, the probability density function is numerically calculated.
The computation yields Figure C.0.8. This result is confirmed by simulation in
Figure C.0.9.

231

0.0 0.2 0.4 0.6 0.8

1.0

2.0

3.0

4.0

0.0

PDF for Quotient

f

Time (sec)

0.06

0.6

0.13 0. 3

2.8

0.0 0.2 0.4 0.6 0.8

1.0

2.0

3.0

4.0

0.0

PDF for Quotient

f

Time (sec)

0.06

0.6

0.13 0. 3

2.8

Figure C.0.8 Example probability density function

0.0 0.2 0.4 0.6 0.8

1.0

2.0

3.0

4.0

0.0

Simulated PDF for Quotient

f

Time (sec)

Scaled Bin Counts

0.0 0.2 0.4 0.6 0.8

1.0

2.0

3.0

4.0

0.0

Simulated PDF for Quotient

f

Time (sec)

Scaled Bin Counts

Figure C.0.9 Simulation of one million example quotients

232

The data-packet size and link data rates were simulated by uniformly distributed
random variables as described in Figure C.0.6. One million sample quotients
were calculated and counted in 50 bins spanning the domain of the pdf. The
scaled bin values were then plotted in Figure C.0.9.

C.4 MIN

The minimum function (MIN) can be calculated graphically as well. Consider a
two input example to examine how this computation is done. Two sources, A
and B, generate and transmit the requested information. Source A is capable of
returning the requested data in a time uniformly distributed between 10 and 30
time units. Source B similarly returns data in a time uniformly distributed
between 25 and 35 time units. Since these two events are considered
independent, their joint probability density function is the product of the two
uniform pdfs. The shaded portion (both red and blue) shows the domain of the
joint pdf for this situation.

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

tmin

tmax

Minimum (sec)

Time A (sec)

Time B (sec)

t’

P(t < t’)

tA = tB

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

tmin

tmax

Minimum (sec)

Time A (sec)

Time B (sec)

t’

P(t < t’)

tA = tB

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

tmin

tmax

Minimum (sec)

Time A (sec)

Time B (sec)

t’

P(t < t’)

tA = tB

Figure C.0.10 Example two input minimum geometry calculation

233

The computation of the cdf follows the process described above. The right angle
line marked t’ separates the shaded region into those with values less than t’
(red) and those greater than t’ (blue). The shaded region below and to the left of
the t' line (red) is that portion of the time where either tA or tB is less than t'. The
bounding values of the possible times that can occur with the current description
of the system performance are tmin and tmax. When this calculation is performed,
the cumulative distribution function can be plotted as in Figure C.0.11.

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1.0
CDF for Minimum

F

Time (sec)

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1.0
CDF for Minimum

F

Time (sec)

Figure C.0.11 Calculated cdf MIN for two input example

The pdf is calculated directly from this cdf through differentiation as the cdf is well
behaved. Figure C.0.12 shows the pdf with a simulation of one million points
binned and scaled, confirming correctness.

The solution for cases where there are more than two inputs is generated
iteratively. Let the n inputs be labeled i1, i2, i3, … in, and define the initial result, r,
to be the min of i1 and i2. Then for i* from i3 to in, r is replaced by the min of r and
i*. Alternatively, this can be viewed as: Min(i1, Min(i2, Min(i3, Min(…, in))

234

0 5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.10
PDF for Minimum

f

Time (sec)

Bins Results for Simulation

0 5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.10
PDF for Minimum

f

Time (sec)

Bins Results for SimulationBins Results for Simulation

Figure C.0.12 PDF for minimum of the uniform joint pdf

C.5 MAX

The maximum function (MAX) is calculated in a manner similar to that of MIN.
Consider the two input case and discussed in section 5.4. The geometry of the
maximum calculation is shown in Figure C.0.13 The domain of the joint density
function remains the same (both red and blue shaded areas). The red shaded
area shows where the maximum values reside. The process is similar to the
minimum calculation done earlier. Integration takes place from tmin to tmax. Each
interim point is represented by the red shaded area bounded by the domain of
the joint density and the angled line marked t’. The cdf is shown in Figure
C.0.14.

235

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

tmin

tmax

Maximum (sec)

Time A (sec)

Time B (sec)

t’

P(t < t’)

tA = tB

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

tmin

tmax

Maximum (sec)

Time A (sec)

Time B (sec)

t’

P(t < t’)

tA = tB

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

tmin

tmax

Maximum (sec)

Time A (sec)

Time B (sec)

t’

P(t < t’)

tA = tB

Figure C.0.13 Example two input maximum pdf geometry calculation

20 25 30 35 40
0

0.2

0.4

0.6

0.8

1.0
CDF for Maximum

F

Time (sec)

20 25 30 35 40
0

0.2

0.4

0.6

0.8

1.0
CDF for Maximum

F

Time (sec)

Figure C.0.14 Example cumulative distribution – two input example

236

This cdf can be graphically differentiated to determine the associated pdf as
shown in Figure C.0.15. The vertical red lines represent the simulation of one
million points counted in 25 bins across the domain of the pdf.

0 5 10 15 20 25 30 35 40
0

0.025

0.050

0.075

0.100

0.125
PDF for Maximum

f

Time (sec)

Bins Results
for Simulation

0 5 10 15 20 25 30 35 40
0

0.025

0.050

0.075

0.100

0.125
PDF for Maximum

f

Time (sec)

Bins Results
for Simulation
Bins Results
for Simulation

Figure C.0.15 Example two input maximum pdf calculation

For cases where there are more than two inputs, the result is generated
iteratively similar to the case of MIN. Given n inputs the pseudo-code algorithm
is as follows: Let the n inputs be labeled i1, i2, i3, … in, and define the result r
initially to be the max of i1 and i2. Then for i* from i3 to in, replace r with the max
of r and i*. Alternatively, it can be viewed as: Max(i1, Max(i2, Max(i3, Max(…, in))

237

Appendix D

D PLOT Library Functionality .

The PLOT function library that supplements CAPE was designed under Microsoft
PowerPoint 2003, but since the object model has not changed in the newer
versions, it is expected to work while yet untested. The concept behind the
library is to provide to provide the user with all of the essential functions needed
to convert the PDF performance descriptions into a visual for easy analysis.

The underlying scripting language for PowerPoint is Visual Basic for Applications,
and all of the supplementary subroutines and functions that support the PPT
drawing of figure are coded in this language. To manage this set of functionality,
there is a Java Figure class which does three things: 1) it maintains the
attributes normally found in a minimal figure, e.g., coordinate axis, tick-marks,
tick-mark labels, etc. 2) it maintains the scaling factors which relate the user
coordinate system to the screen coordinate system, and 3) offers a source code
manager which scans the requirements of the figure being produced and
automatically copies into the output macro file, all of the supporting subroutines
and functions.

The support routines that are provided have largely self explanatory names:
addLabel, addSCLine, addSLine, addTextBox, addUArrow, addUDot, addUFF,
addULine, addURectangle, addUTextBox, alignLabelsWithTicks, clearAll,
drawSBB, drawUXAxis, drawUYAxis, fixMargins, GOR (Get Object Reference),
Header, lenThree, s2ux, s2uy, scaleX, scaleY, setColor, setShapeTextColor,
setTBMarginsZero, setText, u2sx (User to Screen X), u2sy, and
_dependencies.txt. this final file is a hand coded dependency list of all functions
and subfunctions used through the code module. Routinely, “U” represents
“user,” “S” represents “screen,” X and Y have their traditional meanings.

238

REFERENCES

239

REFERENCES

REFERENCES
[AABI00] Andolfi, F., et al. "Deriving Performance Models of Software

Architectures from Message Sequence Charts.” Proceedings of the 2nd
International Workshop on Software and Performance (2000). 47-57. Print.

[AaHT02] van der Aalst, van Hee and van der Toorn, R. A. "Component-
Based Software Architectures: a Framework Based on Inheritance of
Behavior.” 42.2-3 (2002). 129-171. Print.

[AKLW02] Avritzer, A., et al. "Software Performance Testing Based on
Workload Characterization.” Proceedings of the 3rd International Workshop
on Software and Performance (2002). 17-24. Print.

[AlGa94] Allen and Garlan, D. "Formalizing Architectural Connection.”
Proceedings of the 16th International Conference on Software Engineering
(1994). 71-80. Print.

[AlKo05] Alzamil and Korel, B. "Application of Redundant Computation in
Software Performance Analysis.” Proceedings of the 5th International
Workshop on Software and Performance (2005). 111-121. Print.

[Alle97] Allen, R. "A Formal Approach to Software Architecture.” Ph.D.
Thesis, CMU Technical Report CMU-CS-97-144 (1997). Print.

[Alsa04a] Alsaadi, A. "A Performance Analysis Approach Based on the UML
Class Diagram.” Proceedings of the 4th International Workshop on Software
and Performance (2004). 254-260. Print.

[Alza04b] Alzamil, Z. "Application of the Operational Profile in Software
Performance Analysis.” Proceedings of the 4th International Workshop on
Software and Performance (2004). 64-68. Print.

[AmBo07] D'Ambrogio and Bocciarelli, P. "A Model-driven Approach to
Describe and Predict the Performance of Composite Services.” Proceedings
of the 6th International Workshop on Software and Performance (2007). 78-
89. Print.

240

[Ambr05] D'Ambrogio, A. "A Model Transformation Framework for the
Automated Building of Performance Models from UML Models.” Proceedings
of the 5th International Workshop on Software and Performance (2005). 75-
86. Print.

[AmCI01] Ammar, Cortellessa and Ibrahim, A. "Modeling Resources in a
UML-based Simulative Environment.” Computer Systems and Applications,
ACS/IEEE International Conference (2001). 405-410. Print.

[Andr88] Andreadakis, S.. "Analysis and Synthesis of Decision-Making
Organizations.” PhD dissertation, Massachusetts Institute of Technology
(1988). Print.

[ARM-05] "ARM1156T2-S Revision: r0p0 Technical Reference Manual.” ARM
The Architecture for the Digital Age. ARM Limited, 2005. Web. 10 Jan 2010.

[ArSp00] Arief and Speirs, N. A. "A UML Tool for an Automatic Generation of
Simulation Programs.” Proceedings of the 2nd International Workshop on
Software and Performance (2000). 71-76. Print.

[BaBS02] Balsamo, Bernardo and Simeoni, M. "Combining Stochastic
Process Algebras and Queueing Networks for Software Architecture
Analysis.” Proceedings of the 3rd International Workshop on Software and
Performance (2002). 190-202. Print.

[BaCK98] Bass, Clements and Kazman, R. "Software Architecture in
Practice.” New York: Addison Wesley, 1998. Print.

[BaGo09] Babar and Gorton, I. "Software Architecture Review: The State of
Practice.” Computer. (2009). 26-32. Print.

[BaIM98] Balsamo, Inverardi and Mangano, C. "An Approach to Performance
Evaluation of Software Architectures.” Proceedings of the First International
Workshop on Software and Performance (1998). 178-190. Print.

[BaMa03] Balsamo and Marzolla, M. "A Simulation Based Approach to
Software Performance Modeling.” Proceedings of the 9th European Software
Engineering Conference Held Jointly with 11th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (2003). 363-366. Print.

[BaMa05] Balsamo and Marzolla, M. "Performance Evaluation of UML
Software Architectures with Multiclass Queueing Network Models.”
Proceedings of the 5th International Workshop on Software and Performance
(2005). 37-42. Print.

241

[BaMI04] Balsamo, DiMarco and Inverardi, P. "Model-Based Performance
Prediction in Software Development: A Survey.” IEEE Transactions on
Software Engineering 30.5 (2004). 295-310. Print.

[BaSi01] Balsamo and Simeoni, M. "Deriving Performance Models from
Software Architecture Specifications.” European Simulation Multiconference
2001 (2001). 65-89. Print.

[BBKV08] Bause, F., et al. "A Framework for Simulation Models of Service-
Oriented Architectures.” Proceedings of the SPEC International Workshop on
Performance Evaluation: Metrics, Models and Benchmarks (2008). 208-227.
Print.

[BCR+09] Bozzono, M. et al. "Verification and Performance Evaluation of
AADL Models.” Proceedings of the 7th joint meeting of the European
Software Engineering Conference and the ACM. (2009). 285-286. Print.

[BeCD00] Bernardo, Ciancarini and Donatiello, L. "AEMPA: A Process
Algebraic Description Language for the Performance Analysis of Software
Architectures.” Proceedings of the 2nd International Workshop on Software
and Performance (2000). 1-11. Print.

[BeDM02] Bernardi, Donatelli and Merseguer, J. "From UML Sequence
Diagrams and Statecharts to Analysable Petri Net Models.” Proceedings of
the 3rd International Workshop on Software and Performance (2002). 35-45.
Print.

[BeKR07] Becker, Koziolek and Reussner, R. "Model-Based Performance
Prediction with the Palladio Component Model.” Proceedings of the 6th
International Workshop on Software and Performance (2007). 54-65. Print.

[BeKR09] Becker, Koziolek and Reussner, R.. "The Palladio Component
Model for Model-Driven Performance Prediction.” Journal of Systems and
Software 82.1 (2009). 3-22. Print.

[BeMi04] Bertolino and Mirandola, R. "Software Performance Engineering of
Component-based Systems.” Proceedings of the 4th International Workshop
on Software and Performance (2004). 238-242. Print.

[BFG+04] Becker, S., et al. "Towards a Generic Framework for Evaluating
Component-Based Software Architectures.” Proceedings zur 1.
Verbundtagung Architekturen, Komponenten, Anwendungen 57. (2004).
163-180. Print.

242

[BMMI04] Balsamo, S., et al. "Experimenting Different Software Architectures
Performance Techniques: a Case Study.” Proceedings of the 4th International
Workshop on Software and Performance (2004). 115-119. Print.

[Boeh81] Boehm, B. Software Engineering Economics. Prentice-Hall. (1981).
311. Print.

[Boro04] Borowski, J. "Thesis: Software Architecture Simulation -
Performance Evaluation During the Design Phase.” Karlskrona: Institute fur
programvaruteknik och datavetenskap Dept. of Software Engineering and
Computer Science, 2004. 1-30.

[Bulk00] Bulka, D. "Server-Side Programming Techniques, Java(TM)
Performance and Scalability.” Vol. 1. Boston: Addison-Wesley, 2000. Print.

[CaMe03] Campos and Merseguer, J. "Exploring Roles for the UML Diagrams
in Software Performance Engineering.” Proceedings of the International
Conference on Software Engineering Research and Practice 1. (2003). 43-
47. Print.

[CaMe06] Campos and Merseguer, J. "On the Integration of UML and Petri
Nets in Software Development.” Petri Nets and Other Models of
Concurrency-ICATPN 2006 4024. (2006). 19-36. Print.

[CCIP06] Colangelo, D., et al. "Reducing Software Architecture Models
Complexity: A Slicing and Abstraction Approach.” Formal Techniques for
Networked and Distributed Systems (FORTE) 4229. (2006). 25-32. Print.

[CGH+04] Canevet, C., et al. "Analysing UML 2.0 Activity Diagrams in the
Software Performance Engineering Process.” ACM SIGSOFT Software
Engineering Notes 29.1 (2004). 74-78. Print.

[CGHT99] Clark, G., et al. "Experiences with the PEPA Performance
Modelling Tools.” IEE Proceedings Software 146.1 (1999). 11-19. Print.

[ChCo05] Chung and Cooper, K. "COTS-Aware Requirements Engineering
and Software Architecting.” Proceedings of the Internal Workshop on
Systems/Software Architectures (IWSSA04) 57.1 (2005). 100-111. Print.

[CHLS09] Coste, N. et al. "Towards Performance Prediction of Compositional
Models in Industrial GALS Designs." Proceedings of the 21st International
Conference on Computer Aided Verification. 204-218. Print.

243

[ClDB98] Clark, Devnani-Chulani and Boehm, B. "Calibrating the COCOMO II
Post-Architecture Model.” Proceedings of the 1998 International Conference
on Software Engineering (1998). 477-480. Print.

[Clem96] Clements, P. "A Survey of Architecture Description Languages.”
Proceedings of the 8th International Workshop on Software Specifications &
Design (1996). 16-25. Print.

[CLGL05] Chen, S., et al. "Performance Prediction of Component-based
Applications.” Journal of Systems and Software 74.1 (2005). 35-43. Print.

[ClNo96] Clements and Northrop, L. "Software Architecture: An Executive
Overview, CMU/SEI-96-TR-003, ESC-TR-96-003.” (1996). Print.

[CoGM08] Cortellessa, Di Gregorio and Di Marco, A. "Using ATL for
Transformations in Software Performance Engineering: a Step Ahead of
Java-based Transformations?” Proceedings of the 7th International Workshop
on Software and Performance (2008). 127-132. Print.

[CoIW99] Compare, Inverardi and Wolf, A. "Uncovering Architectural
Mismatch in Component Behavior.” Science of Computer Programming 33.2
(1999). 101-131. Print.

[CoMi00] Cortellessa and Mirandola, R. "Deriving a Queueing Network Based
Performance Model from UML Diagrams.” Proceedings of the 2nd
International Workshop on Software and Performance (2000). 58-70. Print.

[CoMI03] Cortellessa, Di Marco and Inverardi, P. "Three Performance Models
at Work: A Software Designer Perspective. Proceedings of the 2nd
International Workshop on Foundations of Coordination Languages and
Software Architectures 97. (2003). 219-239. Print.

[Cort05] Cortellessa, V. "How Far Are We from the Definition of a Common
Software Performance Ontology?” Proceedings of the 5th International
Workshop on Software and Performance (2005). 195-204. Print.

[CoTr08] Cortellessa and Trubiani, C. "Towards a Library of Composable
Models to Estimate the Performance of Security Solutions.” Proceedings of
the 7th International Workshop on Software and Performance (2008). 145-
156. Print.

[Curt41] Curtiss, J. "On the Distribution of the Quotient of Two Chance
Variables.” Annals of Mathematical Statistics (1941). 477-480. Print.

244

[Darw94] Dabrowski, Mills and Elder, J. "Understanding Consistency
Maintenance in Service Discovery Architectures During Communication
Failure.” Proceedings of the Third International Workshop on Software and
Performance (2002). 168-178. Print.

[DeAM08] Deshpande, Apte and Marathe, S. "PerfCenter: a Performance
Modeling Tool for Application Hosting Centers.” Proceedings of the 7th
International Workshop on Software and Performance (2008). 79-90. Print.

[DePE04] Denaro, Polini and Emmerich, W. "Early Performance Testing of
Distributed Software Applications.” ACM SIGSOFT Software Engineering
Notes 29.1 (2004). 94-103. Print.

[DODA97] C4ISR Architecture Working Group. "C4ISR Architecture
Framework Version 2.0.” Armed Forces Communications and Electronics
Association. US Department of Defense, 1997. Web. 11 Jan 2010.

[DODI08] "Defense Acquisition Guidebook, Chapter 4 Systems Engineering.”
Defense Acquisition University. Defense Acquisition University, 2009. Web.
12 Jan 210.

[DoWh07] Doyle and White, E. "Comparative Architecture Performance
Analysis at Design Time.” Proceedings of the 33rd International Computer
Measurement Group Conference (2007). 231-242. Print.

[Duga04] Dugan, R. F. "Performance Lies My Professor Told Me: the Case
for Teaching Software Performance Engineering to Undergraduates.”
Proceedings of the 4th International Workshop on Software and Performance
29.1 (2004). 37-48. Print.

[EdKa03] Eden and Kazman, R. "Architecture, Design, Implementation.”
Proceedings of the 25th International Conference on Software Engineering
(2003). 149-159. Print.

[EsWi01] Eshuis and Wieringa, R. "An Execution Algorithm for UML Activity
Graphs.” Proceedings of the 4th International Conference on the Unified
Modeling Language, Modeling Languages, Concepts, and Tools (2001). 47-
61. Print.

[FaSS00] Fahringer, Scholz and Sun, X. "Execution-driven Performance
Analysis for Distributed and Parallel Systems.” Proceedings of the 2nd
International Workshop on Software and Performance (2000). 204-215.
Print.

245

[FiHe10] Filliben, and Heckert, A. (2010). NIST/SEMATECH e-Handbook
of Statistical Methods, Chapter 1.3.5.15. Retrieved from
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35f.htm. Web.

[FrBo98] Franch and Botella, P. "Putting Non-Functional Requirements Into
Software Architecture.” Proceedings of the 9th International Workshop on
Software Specification and Design (1998). 60-67. Print.

 [GaAO94] Garlan, Allen and Ockerbloom, J. "Exploiting Style in Architectural
Design Environments.” Proceedings of the ACM SIGSOFT’94 Symposium on
the Foundations of Software Engineering 19.5 (1994). 175-188. Print.

[GaAO95] Garlan, Allen and Ockerbloom, J. "Architectural Mismatch or Why
It's Hard to Build systems Out of Existing Parts.” Proceedings of the 17th
International Conference on Software Engineering (1995). 179-185. Print.

[GaMW97] Garlan, Monroe and Wile, D. "ACME: An Architecture Description
Interchange Language.” Proceedings of Centers for Advanced Studies
Conference, CASCON’97 (1997). 169-183. Print.

[GaPZ94] Gannon, Purtilo and Zelkowitz, M. "Software Specification, A
Comparison of Formal Methods.” (1994). Print.

[Garl95] Garlan, D. "An Introduction to the Aesop System.” (1995). Print.

[GaSh96] Shaw and Garlan, D. "Software Architecture, Perspectives on an
Emerging Discipline.” Englewood Cliffs: Prentice Hall, 1996. Print.

[GHKR04] Gilmore, S., et al. "Software Performance Modelling Using PEPA
Nets.” Proceedings of the 4th International Workshop on Software and
Performance (2004). 13-23. Print.

[GoMe00] Gomaa and Menasce, D. “Design and Performance Modeling of
Component Interconnection Patterns for Distributed Software Architectures”,
Proceedings ACM Workshop on Software Performance, ACM Press, (2000).
117-126. Print.

[GoMK95] Gomaa, Menasce, and Kerschberg, L. “A Performance-Oriented
Design Methodology for Large-Scale Distributed Data-Intensive Information
Systems”, Proceedings IEEE International Conference on the Engineering of
Complex Computer Systems, (1995). 72-79. Print.

[GoMS01] Gomaa, Menasce, Shin E., “Reusable Component Interconnection
Patterns for Distributed Software Architectures,” Proceedings ACM
Symposium on Software Reusability, (2001). 69-77. Print.

246

[GoRa91] Gorlick and Razouk, R. R. "Using Weaves for Software
Construction and Analysis.” Proceedings of the 13th International Conference
on Software Engineering (1991). 23-34. Print.

[GrMi04] Grassi and Mirandola, R. "Towards Automatic Compositional
Performance Analysis of Component-based Systems.” Proceedings of the 4th
International Workshop on Software and Performance 29.1 (2004). 59-63.
Print.

[Gunt98] Gunther, N. "The Practical Performance Analyst.” Boston:
McGraw-Hill, 1998. Print.

[GuPe02] Gu and Petriu, D. C. "XSLT Transformation from UML Models to
LQN Performance Models.” Proceedings of the 3rd International Workshop on
Software and Performance (2002). 227-234. Print.

[GuPe05] Gu and Petriu, D. C. "From UML to LQN by XML Algebra-based
Model Transformations.” Proceedings of the 5th International Workshop on
Software and Performance (2005). 99-110. Print.

[GuSh08] Gupta and Shirole, J. V. "Architecting, Developing and Testing for
Performance of Tiered Collaboration Products.” Proceedings of the 7th
International Workshop on Software and Performance (2008). 25-32. Print.

[HeHK02] Hermanns, Herzog and Katoen, J. "Process Algebra for
Performance Evaluation.” Theoretical Computer Science 274.1-2 (2002). 43-
87. Print.

[HHK+00] Hermanns, H., et al. "Compositional Performance Modelling With
the TIPPtool.” Performance Evaluation 39.1-4 (2000). 5-35. Print.

[Hoeb00] Hoeben, F. "Using UML Models for Performance Calculation.”
Proceedings of the 2nd International Workshop on Software and Performance
(2000). 77-82. Print.

[HoSK02] Hopkins, Smith and King, P. J. B. "Two Approaches to Integrating
UML and Performance Models.” Proceedings of the 3rd International
Workshop on Software and Performance (2002). 91-92. Print.

[HoWi07] Ho and Williams, L. "Developing Software Performance with the
Performance Refinement and Evolution Model.” Proceedings of the 6th
International Workshop on Software and Performance (2007). 133-136.
Print.

247

[Hugh00] Hughes, P. H. "Toward a Common Process Model for Systems
Development and Performance Engineering.” Proceedings of the 2nd
International Workshop on Software and Performance (2000). 115-116.
Print.

[ICSE07] "INCOSE Systems Engineering Handbook.” International Council
on Systems Engineering. 3.1 ed. 2007. Print.

[Irvi09] Irvine, K. R. "Assembly Language for Intel Based Computers.”
Upper Saddle River: Prentice-Hall, 2009. Print.

[IyRo02] Iyengar and Rosu, D. "Architecting Web Sites for High
Performance.” Scientific Programming 10.1 (2002). 75-89. Print.

[JaBo05] Jansen and Bosch, J. "Software Architecture as a Set of
Architectural Design Decisions.” Proceedings of the 5th Working IEEE/IFIP
Conference on Software Architecture (2005). 109-120. Print.

[KayM00] Kay, K. "XSLT Programmer's Reference.” Wrox Press, LTD., 2000.
Print.

[KiPo00] King and Pooley, R. "Derivation of Petri Net Performance Models
from UML Specifications of Communications Software.” Proceedings of the
11th International Conference on Computer Performance Evaluation:
Modelling Techniques and Tools (2000). 262-276. Print.

[Kobl00] Koyblitz, N. "A Course in Number Theory and Cryptography.”
Berlin: Springer, 2000. Print.

[KoRe08] Koziolek and Reussner, R. "A Model Transformation from the
Palladio Component Model to Layered Queueing Networks.” Proceedings of
the SPEC international workshop on Performance Evaluation: Metrics,
Models and Benchmarks (2008). 58-78. Print.

[Krey99] Kreyszig, E. "Advanced Engineering Mathematics.” New York:
John Wiley & Sons, Inc., 1999. Print.

[Lako96] Lakos, J. "Large Scale C++ Software Design.” New York: Addison-
Wesley, 1996. Print.

[LaSh79] Larson and Shubert, B. "Probabilistic Models in Engineering
Sciences, Volume I, Random Variables and Stochastic Processes.” New
York: John Wiley & Sons, 1979. Print.

248

[LeRS01] Levine, Smidt and Ramsey, P. P. "Applied Statistics for Engineers
and Scientists: Using Microsoft Excel and Minitab.” Englewood Cliffs:
Prentice Hall, 2000. Print.

[LiLW02] Liu, Law and Wiederhold, G. "Analysis of Integration Models for
Service Composition.” Proceedings of the 3rd International Workshop on
Software and Performance (2002). 158-165. Print.

[LKA+95] Luckham, D., et al. "Specification and Analysis of System
Architecture using Rapide.” IEEE Transactions on Software Engineering 21.4
(1995). 336-354. Print.

[LoMC04] Lopez-Grao, Merseguer and Campos, J. "From UML Activity
Diagrams to Stochastic Petri Nets: Application to Software Performance
Engineering.” Proceedings of the 4th International Workshop on Software and
Performance (2004). 25-36. Print.

[LTK+02] Lindemann, C., et al. "Performance Analysis of Time-enhanced
UML Diagrams Based on Stochastic Processes.” Proceedings of the 3rd
International Workshop on Software and Performance (2002). 25-34. Print.

[LuHa98] Luthi and Haring, G. "Mean Value Analysis for Queueing Network
Models with Intervals as Input Parameters.” Performance Evaluation (1998).
Print.

[LuVe95] Luckham and Vera, J. "An Event-Based Architecture Definition
Language.” IEEE Transactions on Software Engineering 21.9 (1995). 717-
734. Print.

[MaDK94] Magee, Dulay and Kramer, J. "Regis: A Constructive Development
Environment for Distributed Programs.” IEE/IOP/BCS Distributed Systems
Engineering 1.5 (1994). 304-312. Print.

[MaHe01] Malony and Helm, B. R. "A Theory and Architecture for Automating
Performance Diagnosis.” Future Generation Computer Systems 18.1 (2001).
189-200. Print.

[MaIn03] Di Marco and Inverardi, P. "Starting from Message Sequence Chart
for Software Architecture Early Performance Analysis.” Proceedings of the
2nd International Workshop on Scenarios and State Machines: Models,
Algorithms, and Tools (2003). Print.

249

[MBKR08] Martens, A. et al. "An Empirical Investigation of the Effort of
Creating Reusable, Component-Based Models for Performance Prediction.”
Proceedings of the 11th International Symposium on Component-Based
Software Engineering (2008). 16-31. Print.

[MeAl96] Menascé and Almeida, V. “Capacity Planning for Web

Performance: Metrics, Models, and Methods.” Upper Saddle River, Prentice-Hall, Inc.,
1996. Print.

[MeCM00] Merseguer, Campos and Mena, E. "A Pattern-based Approach to
Model Software Performance.” Proceedings of the 2nd International
Workshop on Software and Performance (2000). 137-142. Print.

[MeCo78] Melsa and Cohn, D. L. "Decision and Estimation Theory.” New
York: McGraw-Hill, 1978. Print.

[MITR05] “MESA – Modeling Environment for Service-oriented-architecture
(SOA) Analysis User Manual” Ver. 1.0. MITRE Corporation, (2005). Print.

[MKUM09] Maia, P. et al. "Towards Accurate Probabilistic Models Using State
Refinement”. (2009) 281-284. Print.

[MLH+00] de Miguel, M., et al. "UML Extensions for the Specification and
Evaluation of Latency Constraints in Architectural Models.” Proceedings of
the 2nd International Workshop on Software and Performance (2000). 83-88.
Print.

[MMPT10] Malavolta, I., et al. "Providing Architectural Languages and Tools
Interoperability Through Model Transformation Technologies. IEEE
Transactions on Software Engineering. 36.1 (2010). 119-140. Print.

[MoMu02] Mos and Murphy, J. "A Framework for Performance Monitoring,
Modelling and Prediction of Component Oriented Distributed Systems.”
Proceedings of the 3rd International Workshop on Software and Performance
(2002). 235-236. Print.

[MeGo00] Menasce and Gomaa H. ”A Method for Design and Performance
Modeling of Client/Server Systems,” IEEE Transactions on Software
Engineering 26.11, (2000). 1066-1085. Print.

[MEG+10] Menascé, D. et. al. “A Framework for Utility-Based Service Oriented
Design in SASSY”, Proceedings of the First Joint WOSP/SIPEW
International Conference on Performance Engineering, (2010). 27-36. Print.

250

[Mena08] Menascé, D. “Computing Missing Service Demand Parameters for
Performance Models”. Proceedings of the Thirty-fourth International
Computer Measurement Group Conference, (2008). 241-247. Print.

[MoRi97] Moriconi and Riemenschneider, R. A. "Introduction to SADL 1.0: A
Language for Specifying Software Architecture Hierarchies, Technical Report
SRI-CSL-97-01.” (1997). Print.

[MORT96] Medvidovic, N., et al. "Using Object-Oriented Typing to Support
Architectural Design in the C2 Style.” Proceedings of the ACM SIGSOFT’96
Fourth Symposium on the Foundations of Software Engineering 21.6 (1996).
24-32. Print.

[MoSW08] Moreno, Smith and Williams, L. "Performance Analysis of Real-time
Component Architectures: Aa Model Interchange Approach.” Proceedings of
the 7th International Workshop on Software and Performance (2008). 115-
126. Print.

[NaBG09] Naumovich, Bernardi and Gribaudo, M. "ITPN-PerfBound: a
Performance Bound Tool for Interval Time Petri Nets.” Fifteenth International
Conference on Tools and Algorighms for the Construction and Analysis of
Systems 5.2 (2009). 50-53. Print.

[NPSH01] Nord, R., et al. "Effective Software Architecture Design: from
Global Analysis to UML Descriptions.” Proceedings of the 23rd International
Conference on Software Engineering (2001). 741-742. Print.

[OMBC09] "Assessing Risks and Returns: A Guide for Evaluating Federal
Agencies' IT Investment Decision-making.” U.S. Government Accountability
Office. United States General Accounting Office, 1997. Web. 10 Jan 2010.

[Papo65] Papoulis, A. "Probability, Random Variables, and Stochastic
Processes.” New York: McGraw-Hill, 1965. Print.

[PBXB08] Pllana S. et al. "Automatic Performance Model Transformation from
UML to C++.” Proceedings of the 2008 International Conference on Parallel
Processing (2008). 228-235. Print.

[PeGo04] Pettit and Gomaa H., “Modeling Behavioral Patterns of Concurrent
Software Architectures Using Petri Nets”, Proceedings of the Fourth Working
IEEE/IFIP Conference on Software Architecture. (2004) 57-68. Print.

[PeGo06a] Pettit and Gomaa H., “Modeling Behavioral Design Patterns of
Concurrent Objects”, Proceedings of the International Conference on
Software Engineering, (2006). 202-211. Print.

251

[PeGo06b] Pettit and Gomaa H., “Modeling Behavioral Patterns of Concurrent
Objects Using Petri Nets”, Proceedings of the Ninth IEEE International
Symposium on Object and Component-Oriented Real-Time Distributed
Computing. (2006). 303-312. Print.

[PeSh02] Petriu and Shen, H. "Applying the UML Performance Profile: Graph
Grammar-based Derivation of LQN Models from UML Specifications.”
Proceedings of the 12th International Conference on Computer Performance
Evaluation, Modelling Techniques and Tools (2002). 159-177. Print.

[PeWo02] Petriu and Woodside, M. "Performance Analysis in the Software
Lifecycle, Analysing Software Requirements Specifications for Performance.”
Proceedings of the 3rd International Workshop on Software and Performance
(2002). 1-9. Print.

[PeWo05] Petriu and Woodside, M. "Software Performance Models from
System Scenarios.” Performance Evaluation 61.1 (2005). 65-89. Print.

[PeWo92] Perry and Wolf, A. L. "Foundations for the Study of Software
Architecture.” ACM SIGSOFT Software Engineering Notes 17.4 (1992). Print.

[PlFa02] Pllana and Fahringer, T. "On Customizing the UML for Modeling
Performance-Oriented Applications.” Proceedings of the 5th International
Conference on the Unified Modeling Language 2460. (2002). 259-274. Print.

[PSG+09] Pustina, L., et al. "A Practical Approach for Performance-driven
UML Modelling of Handheld Devices-a Case Study.” Journal of Systems and
Software 82.1 (2009). 75-88. Print.

[Rive98] Rivera J., “Modeling with Extend,” Proceedings of the 1998 Winter
Simulation Conference, (1998), 256-252, Print.

[SaJP05] Sancho, Juiz and Puigjaner, R. "Automatic Performance Evaluation
and Feedback for MASCOT Designs.” Proceedings of the 5th International
Workshop on Software and Performance (2005). 193-194. Print.

[ScMS02] Schefczik, Mitschele-Thiel and Soellner, M. "On MSC-based
Performance Simulation.” Proceedings of the 3rd International Workshop on
Software and Performance (2002). 166-167. Print.

[ScSR00] Schmietendorf, Scholz and Rautenstrauch, C. "Evaluating the
Performance Engineering Process.” Proceedings of the 2nd International
Workshop on Software and Performance (2000). 89-95. Print.

252

[SDK+95] Shaw, M., et al. "Abstractions for Software Architecture and Tools
to Support Them.” ACM SIGSOFT Software Engineering Notes 21.4 (1995).
314-335. Print.

[ShJT05] Sharma, Jalote and Trivedi, K. S. "Evaluating Performance
Attributes of Layered Software Architecture.” Component-Based Software
Engineering, 8th International Symposium, CBSE 2005 3489. (2005). 66-81.
Print.

[ShTr05] Sharma and Trivedi, K. S. "Architecture Based Analysis of
Performance, Reliability and Security of Software Systems.” Proceedings of
the 5th International Workshop on Software and Performance 30.5 (2005).
217-227. Print.

[ShVN08] Shen, Virani and Niu, J. "Formalize UML 2 Sequence Diagrams.”
Proceedings of the 2008 11th IEEE High Assurance Systems Engineering
Symposium (2008). 437-440. Print.

[SiWo02] Siddiqui and Woodside, C. "Performance Aware Software
Development (PASD) Using Resource Demand Budgets.” Proceedings of the
3rd International Workshop on Software and Performance (2002). 275-285.
Print.

[SLC+05] Smith, C. U., et al. "From UML Models to Software Performance
Results: an SPE Process Based on XML Interchange Formats.” Proceedings
of the 5th International Workshop on Software and Performance (2005). 87-
98. Print.

[SmWi02a] Smith and Williams, L. "PASASM: a Method for the Performance
Assessment of Software Architectures.” Proceedings of the 28th International
Computer Measurement Group Conference (2002). 179-189. Print.

[SmWi02b] Smith and Williams, L. "PASASM: an Architectural Approach to
Fixing Software Performance Problems.” Proceedings of the 28th
International Computer Measurement Group Conference (2002). 307-320.
Print.

[SmWi03] Smith and Williams, L. "Best Practices for Software Performance
Engineering.” Proceedings of the 29th International Computer Measurement
Group Conference (2003). 83-92. Print.

[Somm04] Sommerville, I. "Software Engineering.” Pearson Addison Wesley,
2004. Print.

253

[SPEC09] "SPEC CPU2006 Results.” Standard Performance Evaluation
Corporation. N.p., n.d. Web. 12 Jan 2010.

[TaPe08] Tawhid and Petriu, D. "Towards Automatic Derivation of a Product
Performance Model from a UML Software Product Line Model.” Proceedings
of the 7th International Workshop on Software and Performance (2008). 91-
102. Print.

[TKMG08] Teilans, A., et al. "Design of UML Models and Their Simulation
Using ARENA.” WSEAS Transactions on Computer Research 3.1 (2008).
67-73. Print.

[Trac93] Tracz, W. "LILEANNA: a Parameterized Programming Language.”
Proceedings of the Second International Workshop on Software Reuse
(1993). 66-78. Print.

[TrGi08] Tribastone and Gilmore, S. "Automatic Extraction of PEPA
Performance Models from UML Activity Diagrams Annotated with the
MARTE Profile.” Proceedings of the 7th International Workshop on Software
and Performance (2008). 67-78. Print.

[UcYa00] Uchitel and Yankelevich, D. "Enhancing Architectural Mismatch
Detection with Assumptions.” Proceedings of the 7th IEEE International
Conference and Workshop on the Engineering of Computer-Based Systems
(2000). 138-146. Print.

[VDTD07] Verdickt, T., et al. "Hybrid Performance Modeling Approach for
Network Intensive Distributed Software.” Proceedings of the 6th International
Workshop on Software and Performance (2007). 189-200. Print.

[VeAp06] Verlekar and Apte, V. "A Methodology and Tool for Performance
Analysis of Distributed Server Systems.” Proceedings of the 28th International
Conference on Software Engineering (2006). 913-916. Print.

[Vest96] Vestal, S. "MetaH Programmer’s Manual, Version 1.09 Technical
Report.” Plymouth: Honeywell Technology Center, 1996. Print.

[WeLa99] Eds. Wertz, J. R. and Larson, W. "Space Mission Analysis and
Design.” Torrance: Microcosm Press, 1999. Print.

[WHKT08] Wang, Z., et al. "Automatic Generation of SystemC Models from
Component-based Designs for Early Design Validation and Performance
Analysis.” Proceedings of the 7th International Workshop on Software and
Performance (2008). 139-144. Print.

254

[WiKe00] Wilson and Kesselman, J. "Java Platform Performance Strategies
and Tactics.” Boston: Addison-Wesley, 2000. Print.

[WPP+05] Woodside, M., et al. "Performance by Unified Model Analysis
(PUMA).” Proceedings of the 5th International Workshop on Software and
Performance (2005). 1-12. Print.

[WuWo04] Wu and Woodside, M. "Performance Modeling from Software
Components.” Proceedings of the 4th International Workshop on Software
and Performance 29.1 (2004). 290-301. Print.

[WuXi04] Wu and Woodside, M. "Performance Modeling From Software
Components.” Proceedings of the Fourth International Workshop on
Software and Performance 29.1 (2004). 290-301. Print.

[XuJi08] Xu, J. "Rule-based Automatic Software Performance Diagnosis and
Improvement.” Proceedings of the 7th International Workshop on Software
and Performance (2008). 1-12. Print.

[XuKu98] Xu and Kuusela, J. "Modeling Execution Architecture of Software
System Using Colored Petri Nets.” Proceedings of the 1st International
Workshop on Software and Performance (1998). 70-75. Print.

[ZhSh89] Zhang and Shasta, D. "Simple Fast Algorithms for the Editing
Distance Between Trees and Related Problems.” SIAM Journal of Computing
18.6 (1989). 1245-1262. Print.

[ZWR+01] Ziegenbein, D., et al. "Interval-Based Analysis of Software
Processes.” Proceedings of the 2001 ACM SIGPLAN Workshop on
Optimization of middleware and distributed systems 36.8 (2001). 94-101.
Print.

255

CURRICULUM VITAE

Gerald S. Doyle was born in Morristown, NJ. He was awarded a Bachelor of
Science degree from the United States Military Academy in 1973, a Masters
Degree in Electrical Engineering from the Naval Postgraduate School in 1980,
and a Masters Degree in Computer Science from George Mason University in
2000.

After receiving his commission in 1973, he served in the United States Army,
during which time he commanded a Signal Company in Korea and two Artillery
Batteries in Fort Sill before attending the Signal Officer’s Advanced course in Fort
Gordon, Georgia. After a short assignment with the Defense Data Network
Program Management Office, he was appointed to teach physics,
electromagnetism and the statistical experimentation for the Department of
Physics at the United States Military Academy. He completed a program at the
Armed Forces Staff College in Norfolk, Virginia and was then assigned in 1988
as the Deputy Commander of NATO’s largest Communications Logistics Depot,
the AFCENT Central Region. In 1991 he rejoined DISA as the chief of the
Advanced Technologies and Network Management Division.

He entered the federal civil service with the Defense Information Systems
Agency in 1993. During his service in a variety of satellite and space related
assignments, he helped engineer technical standards for communication and
network control for the SATCOM environment. As part of DISA’s most recent
transformational effort he was selected to be the Chief Engineer and Deputy of
the Transport Division. In October of 2004, he was chosen to be the Chief of the
DISA Systems Engineering Architecture and Integration Center. In June 2005,
Mr. Doyle was appointed to the Senior Executive Service as the DISA Systems
Engineering Transformational Executive where he currently heads the Systems
Engineering Center. In October 2010, he was appointed as the Principal Director
for Engineering for the Defense Information Systems Agency.

