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Abstract

MULTI-RATE STATE-DEPENDENT PRIMITIVES UNDERLIE THE MOTOR ADAP-
TATION AND UNLEARNING TO MOTION-DEPEDENT FORCE PERTURBATIONS

Eghbal Hosseini Asl

George Mason University, 2014

Thesis Director: Dr. Wilsaan M. Joiner

The motor system can compensate for perturbations to the body and within the environ-

ment through experience. Motor adaptation studies have suggested that this compensation

takes place by developing and updating of an internal model of the body and environment.

Previous research has examined the time-scales, learning primitives, and stability of the

motor memory following adaptation to forces dependent on motion kinematics. However,

computational models that simultaneously capture these aspects of motor adaptation are

lacking. In this thesis, we propose a model that encompasses different features of adapta-

tion to motion-dependent force-fields. We first trained human subjects in different force-field

environments and measured the adaptation and subsequent unlearning. We then formu-

lated a motor-adaptation model that takes into account both the motion-dependency and

time-scales of motor memory, and investigated its ability to explain several characteristics

of experimental finding, including the hysteresis between adaptation and unlearning, and

motion-dependent adaptation asymmetries.



We finally use the new model to predict the motor adaptation behavior under gradual

introduction of the perturbation, as well as savings upon re-exposure to perturbation after

a period of inactivity.



Chapter 1:

Species have evolved from single cells passively responding to the environment to multi-

cellular organisms actively interacting with it. Humans, as a multicellular organism, have

surpassed the others in cognitive abilities and are able utilize their motor system to mold

the objects and develop tools that can exploit the resources in the environment. When

building a new object, for example, our hands perform a synchronous sequence of motions

which is hardly achievable by any other species or even most advanced robotic technology.

The complexity of motor system is manifested in two domains. First, through practice,

humans are able to learn an infinite range of movement sequences. Newborn babies make

their first steps to explore the world after months of practice to maintain the balance while

standing and synchronizing their steps. Ballet dancers, on the other hand, move their

body in harmonious sequences and transform movement into a form of art. Second, once

a movement pattern is learned, humans are able to encode this pattern into memories that

last for days, months, or even a lifetime. A newborn baby who has learned to walk will

never forget pattern of limb motion in walking.

Understanding the basis for learning and retaining the memories of movements in the

central nervous system has been baffling scientists over a century. An array of experiments

and approaches have been applied to reveal the neural basis of motor learning and memory,

including recording of neurons involved in limb motion in both healthy and unhealthy

brains, behavioral experiments, as well as computational approaches. Both Behavioral and

computational approaches have been successful in explaining many aspects of motor learning

and memory [1–4]. These studies have collectively suggested that the brain builds internal

models of the body and environment in order to perform and predict the consequence of

movements. However the temporal and spatial structure of these internal models have been

subject of debate [5–8].
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Here we focus on two recent models in motor adaptation. In temporal domain, the

multi-rate model of adaptation, which was first proposed by [3], seems to explain the motor

adaptation pattern in a class of perturbation environment called force-field. In this force-

field environment human subjects hold a robotic manipandulum and make arm reaching

movement while the robot applies a force to their hand. More recently, viscoelastic primitive

model, developed by [5], associates force-field adaptation forces to the Newtonian kinematics

of movements such as position and velocity and explains shape of force profiles within

individual trials, thus suggests that structure for spatial pattern of motor adaptation is

dependent on motion kinematics. Both models are described briefly here.

1.1 Multiple Rates of Motor Adaptation

Several motor adaptation studies, specifically force-field adaptation, have suggested the

adaptation can be viewed as the output of a feed-forward state-space system with two

internal states. The input to the state-space system is the error between the planned and

executed motor output under the force-field. The states of the system, namely fast and slow,

are separated according to their ability to learn from the error, and retain their previous

state. The fast state responds to the error with a high gain, but has a weak memory

of its previous state. The slow state on the other hand, responds to the error weakly,

but the memory of the previous state is stable over many trials. These two states evolve

independently, and the motor output is the combination of both states.

Many of the phenomena that are observed in motor adaptation experiments can be

explained by the multi-rate model. For example, experiencing a force-field environment

can create a memory that persists 24 hours after the initial exposure [4]. Interestingly,

the amount of the memory on the second day depends on the number of force-field trials

experienced on the first day and scales with the memory of the slow state of adaptation.

Other phenomena including savings, spontaneous recovery, and anterograde interference

have been investigated via the multi-rate model.

Although the multi-rate model of motor adaptation can give a meaningful picture about
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the temporal evolution of the motor adaptation, it fails to capture the nuances in tempo-

ral shape of motor output within individual trials. The input, output, and states of the

multi-rate model are one dimensional measures of motor adaptation, and are conventionally

computed by performing a regression analysis between the subjects’ applied force and the

respective hand kinematic variable that is associated to the force-field. The output of the

regression analysis is an adaptation coefficient that represents the similarity between the

applied force and the ideal kinematic dependent force-field; adaptation coefficient of 0 and

1 defines no learning and complete learning of the environment,respectively. As are result,

the multi-rate model limits the dimensionality of the forces applied by the subjects to one

motion kinematic variable and ignores the Newtonian dynamics of the movements.

1.2 Viscoelastic Primitives for Motor Adaptation

Sing et al.[5] was the first group to propose an adaptation algorithm in force-field envi-

ronments that is based on motion-dependent primitives, which we refer to as viscoelastic

primitive model. This model is stemmed from extensive evidence for the representation of

limb motion kinematics throughout the nervous system. In the viscoelastic primitive model,

the motor output is represented as a weighted combination of primitives that are uniquely

tuned to movement kinematics such as position and velocity. Similar to multi-rate model,

the viscoelastic primitive model utilizes the error between the predicated and executed mo-

tor output to drive adaptation. However, the adaptation is mediated by the changes in the

contribution from each primitive in the final motor output. The majority of the primitives

are simultaneously dependent on both position and velocity of the movement, while few are

tuned to only one of the kinematic parameter of the movement. When the motor system

is experiencing a force-field that depends on only one kinematic variable, initial adaptation

forces are consisted from both position and velocity of the movement. The model predicts

that initial adaptation is dependent on a sub-population of primitives that have correlated

tuning to both motion kinematics. As the adaptation progresses, the temporal shape of

motor output becomes more aligned with the motion dependency of the force-field. Similar
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behavior can be observed in the model, in which the weights for the primitives with corre-

lated kinematic tuning are reduced while the weights for primitives that are appropriately

tuned to force-field motion dependency gradually increase.

It is worthwhile noting that the learning in viscoelastic primitive model depends on

the temporal shape of the motor response on individual force-field trials. Moreover, unlike

the multi-rate model, the motor output is analyzed in two dimensions that are based on

Newtonian mechanics of movements. As a result, this model captures the temporal changes

in the motor output to a higher fidelity, when compared to multi-rate model.

Although the viscoelastic primitive model can be a good candidate model for motor

adaptation to force-fields, it fails to capture the behavior of the motor system during un-

learning of adaptation, as well as the retention of motor memory upon re-exposure. Here,

we aimed build a model that can capture temporal characteristics of motor adaptation over

many trials, and evolution of memory of these adaptation in the absence of perturbation in

a unified manner.

Our approach was to combine the experimental analysis of motor behavior with state

space models of motor adaptation. We specifically introduced populations of primitives

with differential ability in learning from the error and retaining their memory. We divided

our work in to 3 main parts; each included in a chapter in this thesis.

We first designed a series of experiments in chapter 2 in order to analyze the motor

adaptations to force-fields that are uniquely tuned to the position and velocity parameters of

movement. We further analyzed the unlearning of motor adaptation in these environments

in order to capture both the time-scale and the motion dependencies in the motor adaptation

memory.

We then introduced a model in chapter 3 that can reproduce the temporal details of

motor adaptation within as well as between trials of the force-field environment. We ex-

tended current viscoelastic model in order to capture the behavior of motor system during

unlearning period, where the prediction error is no longer available to the motor system.

We showed that our model can predict the changes in the behavior of motor output between
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adaptation and unlearning periods,as well as asymmetries in the motion-dependency of the

adaptation.

In chapter 4, we focused on predictions that can be made by the new model when char-

acteristics of force-field environment change. First we simulated the adaptation behavior in

an environment where the force-field is introduced gradually. Next, we made predications

about the changes in the adaptation behavior if the force-field exposure extends over two

days. We finally examined aspects of the motor adaptation that cannot be fully captured

by our model and made an effort to set our future approach for extending generality of our

model.
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Chapter 2:

2.1 Introduction

The motor system has an innate ability to adapt to imposing perturbations through expe-

rience. This adaptation is partly driven by the error between the predicted and executed

movements on individual trials [9–13], and is associated with updating of an internal model

that predicts the state of the body and environment [14–17]. In the absence of perturba-

tion, the adaptation reverts back to its prior state. This reversion, which is referred to as

unlearning, is a gradual process occurring over many trials and has been demonstrated in

various motor adaptation paradigms, including prism adaptation [18,19], locomotion adap-

tation [20–23] and visuomotor adaptation [24–26]. The unlearning has also been studied in

the force-field adaptation paradigm, where subjects are exposed to force patterns that are

dependent on either a single limb motion kinematic, such as position and velocity, or their

combination. In early studies of force-field adaptation the unlearning was prompted by

simply removing the force-field perturbation, which resulted in an aftereffect in the move-

ments that was in the opposite direction of the force-field and gradually disappeared [27].

However, the removal of the force-field does not equate to removal of error. Presence of

aftereffects triggers feedback corrections of the movements as well as a new adaptation goal

towards a non-perturbed environment, both of which mask the unlearning of the internal

model [1, 28–30].

To enhance earlier studies, error-clamp movement trials have been recently implemented

to quantify the dynamics feed-forward of adaptation and unlearning to force-fields with-

out activating feedback corrections [31–34]. Error-clamp movements are constrained to a

straight path, which limits error based feedback corrections. Thus, the force that the sub-

jects exert during these trials can reveal the details about dynamics of motor adaptation
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and formation of internal models. The adaptation forces can be effectively reconstructed

from a weighted combination of force states that are dependent on individual kinematic

parameters of motion during these trials [5, 35–37]. Interestingly, early in adaptation, the

forces contain similar weights from different motion-dependent force states. Extended ex-

posure to the force-field increases the weight of the force state that is aligned with the

motion dependency of the force-field, and decreases the force states that are misaligned.

Although these studies have elucidated the evolution of motion-dependent force states and

their contribution to the adaptation forces, they only explored the behavior of these force

states in presence of motor error. The behavior of motion-dependent force states during

unlearning of a force-field not been explored yet.

Here, we implemented novel force-field environments in order to study the unlearning of

motor adaptation through the motion-dependent force state behavior. Our first hypothesis

was that the evolution of these motion-dependent force states during unlearning would be

distinct from adaptation given that the movement error was absent in the former. We

tested unlearning in position-dependent and velocity-dependent force-field environments to

explore this hypothesis. Further, we implemented two combination force-field environments

in order to investigate whether there is any bias in the relationship between the imposing

force-field and each of motion-dependent force state during both adaptation and unlearning.

2.2 Methods

2.2.1 Participants

Fifty six [(14,14,14,14) = (velocity FF, position FF, Combination FF, and Position-biased

FF experiments)] healthy subjects without known neurological impairment were recruited

from the George Mason University community to participate in the study. All participants

were right-handed and performed the task using their right hand. Each individual partic-

ipated in only one of the experiments. The study protocol was approved by the George

Mason University Institutional Review Board, and all participants gave informed consent.
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2.2.2 Experimental setup

The experimental setup was based on the standard force-field adaptation paradigm [14].

The subjects were instructed to move their hands to multiple targets in the sagittal axis of

their body while grasping a robot manipulandum (Fig. 2.1). The manipulandum measured

hand position, velocity, and force applied by the subjects, and its motors were used to

apply forces to the hand, all at a sampling rate of 1000 Hz. In addition, a semi-transparent

mirror was used to project the location of the hand and visual targets to the plane of

movement while occluding the subject’s view of their hand (refresh rate of 60 Hz). During

the experiment the subjects reached to circular targets 0.6 cm in diameter that were spaced

10 cm apart on the sagittal axis of the body.

The subjects were instructed to ”make quick reaching movements to the targets in both

forward and backward directions”. At the end of each trial, the subjects received visual and

auditory feedback about their movement. If their maximum movement velocity was between

0.25- 0.35 ms and their movement time was shorter than 750 ms, the reach target (Fig. 2.1A)

turned green and a beep sound played, indicating a good trial. Otherwise, if the movement

speed was below 0.25 m/s, the reach target turned yellow with no beep sound, and finally, if

movement speed was above 0.35 m/s, the reach target turned red also with no beep sound.

The endpoint of each movement was used as the start point for the subsequent movement,

and movements were made in two directions. the subjects received a performance score at

the end of each block of movements, that indicated the percentage of good movements only

in 270o direction; however, the subjects were unaware of this relationship and were only

asked to maintain the score above 50% throughout the experiment. Only 270o movements

with the maximum velocity between 0.2-0.4 ms were used in the subsequent data analysis.

In addition, the subjects had to initiate their movement within 75-2000 ms after the reach

target appeared on the screen. Otherwise all targets were disappeared and the trial was

immediately repeated.

Three trial types were used during the experiment: null, force-field, and error-clamp

trials (Fig. 2.1B). Null trials were used for initial practice, where the motors of the robot

8



manipulandum did not apply any force to the hand. During force-field trials, the robot

applied a force to the hand during 270o direction movements that was dependent either on

movement position (with respect to start location), velocity, or a positive combination of po-

sition and velocity. The forces that the robot applied to the hand were always perpendicular

to direction of movement, and had the general form shown in Eq. 2.1.

 fX

fy

 = cK ×

 0 −K

K 0

×
 x

y

+ cB ×

 0 −B

B 0

×
 ẋ

ẏ

 (2.1)

In Eq. 2.1, K = 45N/m and B = 15Ns/m. For a position-dependent force-field

(position-FF), cK = ±1 and cB = 0, where cK = +1 and cK = −1 corresponded to clock-

wise and counterclockwise force fields, respectively ( the clockwise force-field is shown in

Fig. 2.1B). For a velocity-dependent force-field (velocity-FF), cK = 0 and cB = ±1 , where

cB = +1 and cB = −1 corresponded to clockwise and counterclockwise force-field direc-

tions. Combination force-field trials (Combination-FF) contained both position-dependent

and velocity-dependent force-fields components, with cK = ±1/
√

2 and cB = ±1/
√

2 for

clockwise and counterclockwise directions [5,35,36]. Lastly, Position-biased force-field trials

contained both motion-dependent force components similar to combination FF, However

the contribution of position-dependent component was greater, with cK = ±0.849 and

cB = ±0.528. Each subject experienced only one type of force-field throughout the experi-

mental session. Finally, during error-clamp trials, the robot motors constrained movements

in a straight line toward the reach target by counteracting any motion perpendicular to

the target direction [4, 38]. This was achieved by applying a stiff one-dimensional spring

(6kN/m) and a damper (150Ns/m) in the perpendicular axis to the reach direction. In

these trials, perpendicular displacement from the straight line to the reach target was held

to less than 0.6 mm and averaged about 0.2 mm in magnitude.
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Figure 2.1: Subject made reaching movement in mid-line of their body in both forward
90o and backward 270o directions, using a robotic. (A) The spatial location of their hand
was reflected to its perspective location on the screen (yellow circle), while the view of arm
was occluded. (B) Trial Types: Null movements (orange arrow) were made in the absence
of the any force from the robot. During force-field trials movement, the robot applied
forces that were dependent on a single of combination of motion kinematics. Velocity-
dependent force-field movements were made in the presence of a lateral force that was
scaled with hand velocity (blue arrows). For position-dependent force-field movements, the
lateral force was scaled with the hand position with respect to the start point of movement.
Lastly, for both combination and position biased force-field movements, the force scaled
with both hand position and velocity. During error-clamp movements were channeled in
the direction of reach target (dashed lines) by implementing a virtual spring damper system
that opposed any lateral motions. (C) Experimental Paradigm: Subjects first completed
a baseline period, during which they experienced null movement with sparse instances of
error-clamp movements (blue bars). 1st hybrid period, contained initial period of null
movements that followed by force-field movements. The frequency of error clamp trials was
increased during force-field trials. Adaptation period contained only force-field and error-
clamp trials. Finally the 2nd hybrid period started with 24 force-field movements, which
then followed by only error-clamp trials (thick blue bar). The sequence of error-clamp trials
signified unlearning period after adaptation, and contained early, mid, and late epochs.
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2.2.3 Task

To observe both the force-field adaptation and unlearning behaviors, each subject experi-

enced the experimental paradigm shown in (Fig. 2.1C). Subjects performed sets of 90o and

270o movements; however all 90o movements were made under error-clamp condition, and

the force-field was only applied to 270o movements, and only the 270o movements were

used for analysis of adaptation and unlearning. Subjects also experienced random error-

clamp trials in 270o movements during baseline and adaptation periods. During unlearning

period, however, they only experienced error-clamp trials in both directions.

Each experiment started with a baseline period, where subjects completed 360 null

trials. These null trials were divided into 4 blocks. During this period, 12 error-clamp trials

in were pseudo-randomly interspersed between 270o movements, In order to measure the

baseline levels of forces for each subject. The average lateral force during these trials were

then subtracted from the error-clamp trial forces in adaptation and unlearning periods.

Following the baseline period, subjects experienced the 1st hybrid period, during which

the force-field environment was introduced after an initial 30 null trials. We designed the 1st

hybrid period to capture the immediate changes in subject forces due to experiencing the

force-field for the first time. The 1st hybrid period was followed by 2 blocks of adaptation

in which the subjects experienced only one of the force-field environments, i.e velocity-FF,

position-FF, Combination-FF, or Position-biased-FF. Similar to the baseline period, here

we pseudo-randomly inserted 26 error-clamp trials in 270o direction in order to measure the

adaptation level at different points. The sign (direction) of the FF remained constant for

each subject, but counterbalanced between subjects. In other words, the first group of six

subjects experienced the force-field in counterclockwise direction and the second group of

six subjects experienced the force-field in clockwise direction. Finally, after the adaptation

period, subjects experienced the 2nd hybrid block. This block started with 24 force-field

trials, and followed by 60 consecutive error-clamp trials. We refer to these 60 error-clamp

trials as unlearning period, during which the adaptation returns to baseline level prior to

experiencing the force-field. Inclusion of the unlearning period within the hybrid block
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effectively masked any context dependent changes in the behavior of the subject due to the

removal of force-fields [8].

2.2.4 Analysis of Force Profiles

Previous force-field adaptation studies have suggested that adaptation involves two pro-

cesses, first, a predictive adaptive process that compensates for the expected force in the

upcoming movement, and a second online feedback process which corrects for the error expe-

rienced during the movement [1,28,30]. The implementation of error-clamp trial eliminated

any lateral errors in movement that might trigger online feedback corrections. Given that

the lateral force during error-clamp trial reflected the predictive adaptive responses to the

force-fields, we limited our analysis to these forces. Based on Eq. 2.1, subjects could fully

compensate the force-field only when they produce a force that was proportional to their

movement velocity, position, or their positive combination and opposite to the direction of

force-field. With this knowledge, we first computed the ideal force by implementing sub-

ject’s longitudinal movement kinematics (position, velocity) during the error-clamp trial in

Eq. 2.1. The movement and force profiles were truncated with a temporal window of 1500

ms centered at the peak velocity. We made sure this temporal window include the complete

progression of each movement. Next we defined an adaptation coefficient by performing a

linear regression between the ideal force and the lateral force applied by subjects during the

same error-clamp trial [4, 38–40]. We computed the adaptation coefficient for each subject

during both adaptation and unlearning periods and averaged the values over all subjects.

We further characterized adaptation and unlearning behavior by projecting the lat-

eral force during each error-clamp trial onto a two dimensional space that parsed position

dependent and velocity dependent components of force. We refer to this 2-dimensional

space as gain-space of learning [5]. The gain space represents complete adaptation to a

velocity-dependent force-field by point [0, 1], position-dependent force-field by point [1, 0],

combination force-field by point [1/
√

2, 1/
√

2], and finally a position-biased force-field by

point [0.849, 0.528]. Moreover, the x and y parts for each point in this space correspond to
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adaptation of position-dependent and velocity-dependent components, respectively. In or-

der to delineate adaptation in gain-space, we first calculated a multiple regression between

the lateral force during the error-clamp, and both position and velocity of movement. We

then rescaled the coefficients for position and velocity components by 45 N/m and 15 Ns/m

factors, respectively, and projected them to the gain-space. We performed this analysis for

each subject calculated the average gains over all subjects [5, 35–37].

In order to capture the temporal changes of adaptation level during unlearning, we

operationally defined three epochs of unlearning during 2nd hybrid period (Fig. 2.1). Early,

middle, and late unlearning epochs were defined as first, third, and last 10 error-clamp trials

in 270o direction after the start of unlearning period, respectively. Two-paired one-sided

and two-sided student t-tests were performed between different force-field groups to compare

the unlearning behavior at each epoch. We further performed two-way ANOVA to compare

the effect of different force-field type, and epochs on the unlearning behavior of the subjects.

2.3 Results

We designed series of experiments to characterize the dependency of unlearning to motion

states after adaptation to a novel force-field environment. We specifically looked at the

temporal differences in exerted force profiles during unlearning when subjects previously

had adapted to pure position or velocity-dependent force-fields. We then introduced a new

group of subjects to two new combination force-field in order to modulate the asymmetries

we observed between unlearning of pure position and velocity-dependent force-fields.

2.3.1 Adaptive Responses to a Position- and Velocity-Dependent Force-

field

We trained 14 subjects in the position-FF and another 14 subjects in the velocity-FF en-

vironment. Each subject experienced only one type of force-field after an initial baseline

period. Previous studies have shown that subjects can adapt to both type of force-fields
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and achieve asymptotic levels after 140-200 trials [3–5, 14]. We similarly observed an ini-

tial fast progression of adaptation which plateaued after 120-150 trials for both force-fields

(Fig. 2.2). Early adaptation was faster for the position-dependent force-field. However, as

learning progressed the difference between velocity FF and position FF adaptation dropped

below significance.

Immediately after adaptation period, subjects experienced a sequence of consecutive

error-clamp trials, which identified as the unlearning period. With initiation of unlearning

period, the adaptation coefficient started to decay immediately and reached an asymp-

totic level by the end of the period. Previous studies have similarly shown that subjects

monotonically decrease the exerted force in the absence of error [32, 34]. Even though the

patterns of unlearning were similar for both position FF and velocity FFs (Fig. 2.2), we

further analyzed their differences acknowledging that final adaptation levels were slightly

different between the two cases. In order to balance the unlearning with respect to the final

adaptation levels, we divided the adaptation coefficients during unlearning by the initial

value of the period, thus the first point of unlearning is scaled to 1 (Fig. 2.2B). We then

analyzed the unlearning in three epochs, i.e. early, mid, and late (E, M, and L). In both

early and middle epochs, unlearning of position FF and velocity FF are similar (p > 0.05),

however, late epoch the velocity-FF adaptation coefficient is higher (p < 0.05). This result

was surprising; we thus performed a 2 way ANOVA to investigate whether the type of

force-field had a significant effect on unlearning. As expected, the type of force-field had no

significant effect on the unlearning pattern (2 way ANOVA, p=0.28 for the main effect of

force-field type, and p < 0.05 for the main effect of epoch, and p < 0.05 for the interaction).

Although the one dimensional measure adaptation coefficient showed stereotypical be-

havior during adaptation and unlearning of velocity-FF and position-FF, previous studies

have demonstrated that the temporal characteristics of learned force profiles cannot be fully

captured by this measure [5,35,37]. Therefore, we compared the temporal shape force pro-

files with position and velocity of motion states in early and late phase of the adaptation as

well as unlearning. Early in the adaptation period the force was dependent on both velocity
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Figure 2.2: Comparison between adaptation coefficients for the position-FF (blue curve)
and velocity-FF (red curve) groups. (A) Each point during adaptation period is the average
adaptation across all subjects for a window of 15 trials. During unlearning period, the
points were average across subjects for a window of 2 trials. The start of unlearning period
is shown with a vertical dashed line. Shaded areas show S.E. (B) Normalized unlearning for
the position-FF and velocity FF groups were calculated by scaling adaptation coefficients
with respect to the first point in the period. Thus the first point is rescaled to 1. Bar graphs
show the average adaptation across subjects for early, mid and late epochs of unlearning,
which represented by the shaded areas. Error bars are S.E. (C,D) Temporal profile of the
forces during adaptation and unlearning of Position-FF and Velocity-FF. Top panel shows
evolution of the force in early and late stages of adaptation, while the bottom panel shows
the changes in early and late stages of unlearning period. The average force across all
subjects is shown by a gray curve. Position and velocity-dependent force states are shown
by blue and pink dashed lines, respectively, and were calculated by performing a multiple
regression between the force, position, and velocity of the movements. The combination of
position and velocity force-states is shown by a black dashed line, and approximates actual
exerted forces.
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and position of the movement, whereas late in the adaptation, the force is mostly aligned

with the appropriate movement parameter for the force-field adaptation. In other words,

the force exerted by the subjects in late phase of a position-FF adaptation was aligned with

position state of the movement, and in late phase of velocity-FF adaptation was aligned

with velocity state of the movement, both are consistent with previous observations [5].

Unlike adaptation period, movements during unlearning period were channeled and any

lateral errors were precluded entirely by the error-clamps. The absence of error can affect

the force profiles differently compared to the adaptation period. We therefore analyzed

the force profiles in early and late phase of unlearning. Interestingly, the force profiles

remained aligned to the appropriate motion state for experienced force-field in both early

and late stages of unlearning (bottom panels in Fig. 2.2). In early phase of unlearning for the

position-FF, the force profiles mainly consisted of a position-dependent component, and the

velocity dependent component is minimal. In late phase, the position-dependent component

remained to contribute to most of the exerted force and the velocity component was almost

at zero (Fig.2.2C bottom panel). Similarly, force profiles in both early and late phases of the

velocity-FF unlearning were mostly consisted of velocity-dependent component and position

dependent component did not return to its previous level during the adaptation period (Fig.

2.2D). When we observed the dissociation in the expression of motion-dependent force

components between adaptation and unlearning periods, we decided to further delineate

how the motion-dependent force components evolve during each period in the gain space of

learning.

2.3.2 Gain-Space Analysis of Adaptive Responses to Single State Force-

fields

When we analyzed the force profiles for the adaptation and unlearning periods in the two

dimensional gain-space and parsed the position-dependent and velocity-dependent force

components, we found a clear separation between adaptation and unlearning trajectories

for both position-FF and velocity-FF (Fig. 2.3A and B). For both type of force-fields, we
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identified a goal aligned and a goal misaligned component. The goal aligned component for

position-FF is parallel to x-axis in the gain-space and represents position-dependent force

component, whereas the goal misaligned component is parallel to the y-axis in gain-space

and represents velocity-dependent force component. On the other hand, for the velocity-FF,

the goal aligned and goal misaligned components represent velocity and position-dependent

force components, respectively.

In Both the velocity-FF and position-FF, initial adaptation was mediated by the con-

tribution of both goal aligned and goal misaligned force components with similar degrees.

As the subjects experienced the force-field, the contribution of the goal aligned component

increased whereas the goal misaligned component decreased (Fig. 2.3A and B). By the end

of adaptation period the force were consisted mostly from the goal aligned force compo-

nent. This was more evident when we looked at the location of the gains by the end of

adaptation. Late adaptation position-FF gains were close to the x-axis, which represents

pure position-dependent forces. Similarly, late adaptation velocity-FF gains were close to

the y-axis, which indicates pure velocity-dependent forces [5].

The gains started to diverge from previous adaptation trajectory with the start of the

unlearning period ( gray lines in Fig.2.3A and B). In both force-fields the direction of change

in gains was toward the origin of the space; however the gains never returned completely

to the origin, which indicates partial unlearning of the force-fields. This is corollary to

the asymptotic behavior in unlearning adaptation coefficient that we observed previously.

The separation of the adaptation and unlearning gains in both position-FF and velocity-FF

demonstrates a hysteresis in the behavior of motor system during unlearning of the adapted

force-field. This can be a direct effect of the presence or absence of error during individual

movements.

We particularly were interested in investigating the temporal changes in the gain of

goal misaligned component given that the hysteresis is a direct result of its behavior. Fig.

2.3C shows the gains for both aligned and misaligned components for position FF during

adaptation and the following unlearning period. In order to capture the changes in goal
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Figure 2.3: (A) Evolution of position and velocity gains during adaptation and unlearning
of the Position-FF. Gain trajectories during adaptation and unlearning periods are shown
in blue and gray, respectively, and are averaged across all subjects. The adaptation goal
is shown as a blue filled square. Each gain can be broken down into goal-aligned and
goal misaligned components, as shown by two vectors. Ellipses show standard error for
subjects. 3 points are selected for further comparison of goal misaligned gains, shown as
filled ellipses and also by numbers 1, 2, and 3. (B) Evolution of position and velocity gains
during adaptation and unlearning of a velocity-FF. Adaptation gains are shown in red, and
unlearning gains in gray. Goal of adaptation is represented by a red square. Here direction
of the goal aligned and goal misaligned components of each gain are shown by a red and
cyan arrow, respectively. (C,D) The temporal changes for goal-aligned and goal-misaligned
components are shown for each force field environment, shaded area shows the standard
error values. Bar graphs show the amplitude of goal misaligned component for the point
that are highlighted in part A,and B as 1,2, and 3. Error bars show standard error of gains
for each point.
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misaligned component, we picked 3 points in gain space, 1st and 2nd points were during

early and late adaptation, and the 3rd point was during unlearning period. Importantly,

1st point and 3rd points had the same goal aligned component amplitude. This was done

on the premise that the difference in the amplitude of goal misaligned component between

1st and 3rd points signifies the separation between adaptation and unlearning gains, thus

demonstrates the hysteresis.

For the position-FF, the value of goal misaligned component at the 1st point was different

from both 2nd and 3rd points (Fig. 2.3C). The difference between the 1st and 2nd points

showed that the early adaptation level was less specific to the force-field compared to the late

adaptation. The difference between the 1st and 3rd points further showed that for similar

values of goal aligned component, adaptation and unlearning gains were separated. The

goal misaligned component was always different form zero for all 3 cases, so both adaptation

and unlearning were confined in the 1st quadrant of the gain-space. The behavior of goal

misaligned component was slightly different for the velocity-FF, but the overall effect was

the same. Here, the goal misaligned component value changed from 1st point adaptation to

the 3rd point in the unlearning, again showing that the trajectories were different between

the two periods. The position-dependent component values for early and late adaptation

were not different, which might be surprising. We can expect this result if we take to

account that the gains for velocity-FF are more aligned to the goal compared to position-

FF. We also observed that gain trajectory entered the 2nd quadrant for the 3rd point in

the velocity-FF unlearning, and was no longer confined to first quadrant of space. However

when we analyzed the gains for late unlearning we did not observe this effect any more.

Although the hysteresis was present in both velocity and position FFs gain trajecto-

ries, the shapes of trajectories were not completely similar. We identified two sources of

asymmetries between gain space trajectories. First, during the adaptation period the ini-

tial learning were less specific for position-FF compared to velocity-FF. This caused the

velocity-FF adaptation gains to be more aligned with the goal compared to position-FF.

Second, there was more curvature in the unlearning gain trajectory for position-FF and
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further it was confined in the 1st quadrant, whereas the unlearning grain trajectory for

velocity-FF aligned with the goal (y-axis) and had less curvature. We hypothesized that

these asymmetries were due to intrinsic bias in the subjects’ ability to associate the impos-

ing force-field with kinematics of their movements and are not merely due to noise. If the

association between movement kinematics and force-field was skewed toward the velocity of

the movement, then adaptation to a new force-field which is equally dependent to position

and velocity should be skewed toward velocity as well. This effect should maintain during

unlearning of the force-fields as well. Thus we trained two new groups of people in novel

combination force-fields to test this hypothesis and further characterize the asymmetries

that we observed.

2.3.3 Gain-Space Analysis of Combination Force-Field

We introduced a new group of 14 subjects to a combination force-field with equal con-

tribution from position and velocity of the movement in order to further characterize the

asymmetries we observed between that gain trajectories of position and velocity-FFs. Pre-

vious studies have shown that adaptation to combination force-field is generally faster than

a pure position or velocity-dependent force-fields [5, 36]. Here we examined the ratio be-

tween the position and velocity-dependent force components during both adaptation and

unlearning periods.

We observed that the adaptation level was generally closer to the goal by the end of

the adaptation period in the combination-FF. Subjects initially adapted to the force-field

using similar gains for position and velocity, however, by the end of adaptation period,

the velocity-dependent gain contribution became greater than the position-dependent gain,

which caused the adaptation gain trajectory to be tilted towards the velocity gain axis (y-

axis in Fig. 2.4A). With the start of unlearning period, the gain trajectory started to decay

toward origin of the space, however the velocity gain remained higher than the position

gain throughout the unlearning period (Fig. 2.4A, gray line).
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Figure 2.4: (A) Adaptation gains are shown with green solid line, whereas unlearning gains
are shown in gray. Here the goal of adaptation is shown by a green square and located on
x = y line. The directions of position-aligned and velocity-aligned components are shown
by blue and red arrow respectively. (B) The normalized unlearning gains were computed by
rescaling the gains during unlearning by their respective starting points, thus the first point
is rescaled to [1,1] in gain space. The gray line represents the normalized unlearning, and the
ellipses shows standard error at each point. (C) Temporal changes in position-aligned and
velocity-aligned gains during adaptation and unlearning of the combination force-field.The
position aligned gains are shown in blue and the velocity-aligned gains are shown in red.
The bar graphs show the amplitude of each component for the shaded region numbered in
the left panel. (D) Normalized unlearning of position and velocity aligned gains. The bar
graph depicts the comparison between normalized gains in early (E), middle (M), and late
(L) epochs Error bars show standard error of gains for each epoch.
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We further examined the temporal changes of gains during both adaptation and unlearn-

ing periods by projecting the gain trajectory onto the position and velocity axes at each

point (Fig. 2.4C). Early in adaptation the position and velocity gains had similar ampli-

tudes, however, the velocity gains became significantly greater than the position gain by the

end of the adaptation period. This significant difference between the velocity and position

gains extended to the unlearning period (Fig. 2.4C, 2nd and 3rd bar graphs). This clearly

shows that when the force-field is equally dependent on the position and velocity param-

eters, the velocity-dependent force component contributes more than position-dependent

force component during both the adaptation and unlearning periods. This correlates with

the asymmetry between the velocity-FF and position-FF gain trajectories that we observed

previously and suggests that bias in toward velocity-dependent force component might be

an intrinsic property of motor system when adapting to force-fields and it is not merely an

effect of noise.

If the shape unlearning trajectory in Fig. 2.4A was a result of unequal learning at the

end of adaptation, then the normalized unlearning should be aligned with x = y line in gain

space. However, the result clearly contradicts this assumption (Fig. 2.4B). The velocity

gain contribution was always greater than position throughout the normalized unlearning.

When we looked at the temporal changes of the normalized gains for unlearning, we observed

the same effect (Fig. 2.4D). Specifically for early, mid and late epochs of unlearning, the

normalized velocity gain was greater than that of position.

We wondered whether the bias that we observed in combination-FF is local for the

velocity dominant gains. As a result we run the 4th group of subjects in a combination

force-field which was biased toward the position-dependent component. The adaptation

gains for this field were biased towards the position dominant gains as seen in Fig. 2.5,

and the adaptation trajectory lied in the portion of gain-space with higher position gains.

However with the start of the unlearning period gain trajectory diverged toward the velocity

dominant gains and lied completely in that region by the end of unlearning. This can

be seen in the temporal changes of both gains during adaptation and unlearning period
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(Fig.2.5C). Even though the adaptation started with equal contribution from both gains,

late adaptation was clearly dominated by position gain. With the start of unlearning there

is a sudden drop in the position-dependent gain, while the decay of velocity-dependent gain

is slower, which resulted dominance of velocity-dependent gains over position-dependent

gains during unlearning.

We also looked at the normalized unlearning of the position-biased force-field and ob-

served that the normalized unlearning was pulled towards the velocity axis. This effect was

strongly present in all epochs of unlearning(Fig. 2.5B, and D).

These results clearly support our hypothesis that there can be a bias in the association

between the force-field and position and velocity of movements, and this bias is towards the

velocity of movement. The bias seems to be present during both adaptation and unlearning

periods, further suggesting that the force-field does not necessarily enforce the bias, instead

the motor system plays a role in the causing the bias.

2.3.4 Comparison of Unlearning Behavior Between Different Force-field

Environments

Given the asymmetric behavior during the unlearning periods, we wondered whether the

timescale of unlearning for each motion dependent force states is tied to its spatial location

in gain space during adaptation. In other words, we asked whether the stability of each

motion-dependent memory is modulated by the force-field. In Fig. 2.4 we showed that even

when the force-field goal has equal contribution from velocity and position of movement,

both adaptation and unlearning are biased toward the velocity component suggesting that

the velocity component is more stable than the position. As a result, we examined the

unlearning of position-dependent components between position-FF and two combination-

FFs, and similarly velocity dependent components between velocity-FF and combination-

FFs (Fig. 2.6).

The position dependent force-state was most stable during unlearning of pure position-

dependent force-field (Fig. 2.6B), even in case the unlearning trajectories are normalized
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Figure 2.5: (A) Adaptation gains are shown with cyan solid line, whereas unlearning gains
are shown in gray. Here the goal of adaptation is shown by a filled cyan square and located
in a region of gain space with larger position gain than velocity. For each gain the direc-
tion of position aligned and velocity aligned components are shown by blue and red arrow
respectively. (B) The normalized unlearning gains were computed by rescaling the gains by
their respective start points value, and the unlearning starts from point [1,1] in gain space.
The gray line represents the normalized unlearning of gains, and the ellipses show standard
error for each point. (C) Temporal changes in position-aligned and velocity-aligned gains
during adaptation and unlearning of the position-biased force-field. Position aligned gains
are shown in blue and velocity-aligned gains are shown in red. The bar graph shows the
comparison between position-aligned and velocity-aligned gains at the points selected in left
panel. (D) Normalized unlearning of position and velocity aligned gains. Three epochs of
unlearning are shaded. The bar graph depicts the comparison between normalized gains
in early (E), middle (M), and late (L) epochs. Error bars show standard error of gains for
each epoch.
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Figure 2.6: (A) gain space representation of decay of motor memory after each force-field
adaptation. For each force-field a position-aligned and a velocity aligned vector identified
during unlearning. (B) Unlearning of position-aligned component for position-dependent,
combination, and position-biased force-fields. The bar graphs compare the strength of the
position-aligned component after each force-field in three epochs of unlearning. (C) Unlearn-
ing of velocity-aligned component for velocity-dependent, combination, and position-biased
force-fields. The bar graphs compare the strength of velocity-aligned component after each
force-field in three epochs of unlearning. (D,E) Normalized unlearning of the position and
velocity aligned components in the force-fields shown in B and C, respectively. Three epochs
of unlearning are shaded. The bar graphs depict the comparison between normalized gains
in early (E), middle (M), and late (L) epochs. Error bars show standard error of gains in
each epoch.
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against their initial value (Fig. 2.6D). Interestingly, the position-dependent force state

was less stable when it was learned in the combination-FF. This might suggest that stable

position-dependent force-states are aligned along the position-gain axis, and are mostly

excited in a pure position-FF environment.

On the other hand, Initial inspection of velocity-dependent force-state unlearning sug-

gested that combination-FF with equal contribution of both states as well as velocity-FF

has the most stable memories (Fig. 2.6C). However when we normalized the unlearning tra-

jectories, this relationship did not hold anymore and the velocity-dependent force-state for

velocity-FF, position-biased-FF, and combination-FF exhibited similar decays (Fig. 2.6E).

The velocity-dependent component in the combination-FF unlearning remained to be more

stable early epoch, but in late epoch this difference dropped below significance and ve-

locity dependent force state for all force-fields became similar. One possible explanation

for this behavior might be that the adaptation is strongest for the equal-combination-FF,

compared to the other two cases, which might trigger more stable component of memory in

late stages of adaptation. Nonetheless, the similarity between different velocity-dependent

force-states suggests that there is a greater distribution of stable velocity-dependent force-

states throughout the gain space which manifested in similar rate of unlearning independent

of ratio between position to velocity dependency imposed by the force-field (Fig. 2.6A and

E).

2.4 Discussion

We investigated the evolution of motion-dependent force-states during adaptation and un-

learning of position- and velocity-dependent force-field environments, and observed a clear

hysteresis between the trajectories of adaptation and unlearning. This hysteresis is a di-

rect effect of the decrease in the contribution of goal misaligned force-state in unlearning

compared to adaptation. In single field data, hysteresis effect is smaller for velocity-FF

compared to position-FF. This observation was further investigated in the unlearning tra-

jectories for two combination force-field environments in which the external perturbation
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depended on both the position and velocity of the movement. The velocity-dependent force-

state tended to be more stable during the unlearning of the combination force-fields, which

resulted in a bias toward velocity axis in the gain trajectories of unlearning .

2.4.1 Previous Studies of Unlearning of Motor Memory

Unlearning of motor memories has been previously studied in different contexts including

visuomotor and force field adaptation. In visuomotor adaptation tasks, unlearning can be

induced by removal of visual feedback of the hand location, visual error clamps, removal

of rotation, or simply passage of time[26]. However, the gradual unlearning towards the

baseline performance occurs only when the motor system is actively engaged in the task.

This engagement in the task is thought to continually modify the internal model of the

body and environment in cerebellum.

Similar to visuomotor adaptation task, force-field adaptation studies have demonstrated

unlearning by utilizing error-clamp trials, null trial, or passage of time. The unlearning due

to error-clamp trial has been linked to fast and slow components which can learn for the

error, but their ability to retain the adaptation is different. A recent study has put forward

the idea that the unlearning provoked by error clamp trials is a stochastic process that is

dependent on the subjects’ knowledge about the changes in the environment [8]. Our current

results, however, contrasts this idea. We observed that the unlearning was triggered by the

removal of the error, even though the pattern of unlearning is dependent on the nature of

learned environment. Recent observation by other labs have also shown that the unlearning

is dependent on prediction errors [41].

Other mechanisms might be responsible for our observation of specificity of unlearn-

ing. Ingram et al.[42] previously have demonstrated that the rate of experience-dependent

unlearning is regulated by the spatial overlap between the adaptation movements and the

following error-clamp movements. The unlearning was maximal when both performed in

the same spatial location and orientation. Their observation can be viewed with respect

to primitives that are spatially tuned to the task. We instead quantified adaptation based
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on primitives that were tuned to different motion kinematics with varying gains. By the

end of adaptation period, the motor adaptation memory was built from the primitives that

were closely tuned to adaptation goal. Experiencing a sequence of error free movements

during unlearning period attenuated the memory of the tuned primitives but does not evoke

memory of primitives that were inappropriate for the task.

2.4.2 Neural Correlates of Motion-dependent States in Motor System

The idea of motion-state dependency in the adaptive motor response has been supported

by several neurophysiological studies that have examined the correlation between patterns

of neural activity and motion state variables. For example, the simple spike activity of

Purkinje cells in the primate ventral paraflocculus during an ocular following response can

be approximated as a linear combination of the acceleration, velocity and position changes

during the eye movement [43]. Similarly, during a saccadic adaptation task, complex spike

activity of Purkinje cells located in the vermis of the oculomotor cerebellum are tuned to

the direction of eye movement position errors - neural signals that may drive and modulate

the subsequent adaptive responses [44].

There is evidence for a representation of limb motion kinematics as well as kinematic

errors in the neural responses of Cerebellar Purkinje cells [45–48]. Similarly, the firing rate of

Neurons in primary motor cortex correlates with the kinematics variables of limb movement

including direction [49] , position and velocity [50,51], as well as forces associated with the

limb movement [52]. One study in particular showed that in visual tracking movements,

firing rate of neurons had a sinusoidal turning to both position and velocity of the movement

and scaled linearly with distance and speed [51]. The tuning of the neural activity to the

position and velocity has also been shown in human motor cortex [53]. On the other hand,

with learning of the new environment, the neural activity undergoes changes in the primary

motor cortex [54,55].

Two previous observations are specifically applicable to our results. First, it has been

shown that the activity of neurons in motor areas including M1, PMd, and PMv correlates
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with kinematics and dynamics of movement and there are a subset of neurons that maintain

their tuning even after the force-field environment is removed, thus serve as memory cells

[55–57]. Given the evidence for motion-dependency, the activity of these memory cells

should correlate with kinematics of the movement. Moreover, our observation about the

specificity of unlearning to the force-field structure suggests that the activity of memory

cells should be tuned to motion kinematics variables that are appropriate for force-field

compensation. Second, the tuning of neurons in motor cortex seems to be more sensitive to

the velocity of movement compared to position, which can explain our observation of bias

toward velocity during adaptation and unlearning of the combination force-fields [58].

Studies of visuomotor adaptation have shown that the M1 is engaged in late stages of

learning in contrast to cerebellum which is involved in earlier stages [59]. M1 is thus hy-

pothesized to have a role in stabilizing the memory of adaptation. In Force-field adaptation

paradigms, however, results have been inconsistent. Disruption of activity in M1 via TMS

seems to have no effect on the rate of adaptation and the subsequent unlearning [60]. In

any case, the fact that the bias in unlearning trajectory was always toward the velocity of

the movement might suggest that subpopulation of stable memory cell with better tuning

to velocity of movement contribute to the temporal pattern of unlearning that we observed

here.

Our current observation is consistent with previous studies [5] and suggests that the

motor memory of in late stages of adaptation is more specific to the task goal compared

to initial stages and this specificity remains throughout the unlearning of the adaptation

memory. Previous studies have shown that the passive unlearning with time and retention of

motor memory both engaged the slow process of adaptation [4,32], specifically the amount

of retention after a 24 hours period scaled with the slow component of adaptation. On

the other hand, computational models of adaption have suggested that the fast state of

learning contributes to early unlearning whereas slow state dominates the late unlearning

[3]. We thus suspect that slow state is more specific to the goal of adaptation, thus if the

same force-field is experienced on a second day without any unlearning on the first day, the
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following adaptation would be more specific to the task and its corresponding gain-space

trajectory would lie between the gain-space trajectories of adaptation and unlearning on

the first day. We will investigate this idea in the future chapters.
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Chapter 3:

3.1 Introduction

In the previous chapter we showed that motor adaptation in the force-field environments

was consisted of two interactive force-states that were dependent on individual movement

kinematics. The contribution of these force-states to final motor output changed as sub-

jects experienced the environment. Moreover, there was an intrinsic bias toward velocity-

dependent force-state which systematically changed when the motion-dependency in the

force-field changed.

A number of previous studies have suggested the role of motion-dependent force states

in adaptation to force-fields [5,36,37]. Sing et al. [5] showed that adaptation forces can be

characterized by the motion-dependent states, and the transition between different force-

field environments is bounded by the interplay between the force-states. Similarly Yousif and

Diedrichsen [36] demonstrated that prior exposure to a specific force-field can structurally

bias the adaptation of the force-states to future force-field environments. Only Sing et al.

[5] constructed a model that could capture the adaptation behavior of the individual force-

states during exposure to the force-field, however, the unlearning behavior and biases in the

adaptation were not captured by their model.

Here we build a computational model of motor adaptation that utilizes motion-dependent

primitives as learning elements. This model combines the features from both multi-rate and

viscoelastic primitive models for motor adaptation in order to capture the range of motor

behaviors we observed in previous chapter. We first introduced both multi-rate and vis-

coelastic model and demonstrate their lack of power in predicting the aspects of unlearning

and the respective biases. We next proposed a multi-rate state-dependent primitive model

that was consisted of two overlapping populations of primitives with differential learning
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and retention gains.

3.2 Multi-rate Model of Motor Adaptation

Motor adaptation to the force-field has an exponential progression. Initial exposure to the

force field results in a rapid change in the motor output, which then is followed by a decrease

in the rate of change. Toward the end of exposure the adaptation reaches asymptotic level.

Smith et al. [3] was the first to model the motor adaptation using a state-space model

with 2 states, each with different learning and retention rates. Consider adaptation to a

force-field that is dependent on the velocity of the movement. The motor output on each

trial can be quantified as a scalar y(n) showing the proportion of the force that is learned.

The motor output on trial n can be defined combination of two states (Eq. 3.1).

y(n) = xf (n) + xs(n) (3.1)

e(n) = f(n)− y(n) (3.2)

 xf (n+ 1) = Af × xf (n) +Bf × e(n)

xs(n+ 1) = As × xs(n) +Bs × e(n)
(3.3)

On trial n, e(n) is the error between desired motor output, f(n) and current output y(n)

(Eq. 3.2). The motor output is generated by combining two hidden state, fast and slow

states, which are represented as xf (n) and xs(n) respectively (Eq. 3.3). For each state,

a coefficient defines the rate of learning from the error and a second coefficient defines

the proportion of state retained from previous trial. The fast state learns from the error

efficiently but poorly retains the previous state. On the other hand, the slow state is sluggish

in learning from the error, but is able to retain the previous state. The difference between

these two states can be formulated by the relationship between the pairs (As, Af ) as well

as (Bf , Bs) (Eq. 3.4 and 3.5).
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Figure 3.1: The input to the system is the adaptation goal of the environment. For the
baseline period the input is zero, but is non-zero in force-field period. The learning in
the system is mediated by the error between adaptation goal and current motor output on
each trial. Two hidden state xf and xs learn from the error separately and their combined
outputs creates the next trial motor output. The unlearning period is triggered in the
system by forcing the error e(n) to zero.

retention factor : 1 > As > Af (3.4)

learning rate : 1 > Bf > Bs (3.5)

We can demonstrate the multi-rate model of motor adaptation as two parallel processes

that learn from the error in a feedback setting. Fig. 3.1 shows this parallel realization.

3.2.1 Response Characteristics of Multi-rate Model of Motor Adaptation

to Force-fields

Here we simulated the multi-rate model in a force-field paradigm similar to chapter 2. The

force-field environment was modeled as a step input f(n) = u(n− 15) to the system shown

in Fig. 3.1. Importantly we modeled the unlearning after adaptation period by forcing the

error signal e(n) to 0. This resulted in a decay of output y(n) which was the result of the

retention coefficients As and Af .

In order to explore the interaction between states of the multi-rate model, we looked

the evolution of fast and slow states during adaptation and unlearning periods (Fig. 3.3).
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Figure 3.2: (A) The force-field is applied at trial 1 and remains for 165 trials, shown by the
gray solid line. During the baseline period (negative trial numbers) the motor adaptation
level is at zero. However when the force-field is applied, motor output reaches a new
asymptotic level. Initial the change in the motor adaptation is fast (trials 1 to 50). This
change becomes smaller as adaptation reaches to late phases (trials 100 to 165). With the
start of unlearning period, the adaptation coefficient gradually reverts back to the baseline
level. The start of unlearning period is shown as a vertical dashed-line.(B) Normalized
unlearning of adaptation to the force-field. The normalized unlearning was calculated by
scaling adaptation coefficient with respect to the first point in the period. Thus the first
point is rescaled to 1.

The fast state contributed to the majority of the output in early adaptation, given that

the error between the motor output and force-field was the largest. However, as adaptation

progressed, the amplitude of the motor error decreased, and as a result the contribution of

fast state declined while the contribution of slow state continually increased. This can be

observed in Fig. 3.3A, where the initial peak in the output of fast state was followed by

a gradual decline. When the unlearning period started, the input to the multi-rate model

was clamped at 0, and the poor retention factor Af caused a rapid decline in the output of

the fast state towards the baseline (Fig. 3.3E and F).

The slow state exhibited a different behavior compared to the fast state (Fig. 3.3C and

D). First, the exposure to force-field resulted in a gradual growth towards the new adapta-

tion goal. Unlike the fast state, the slow state contributed minimally in early adaptation,

due to poor learning rate. By the end of adaptation, the slow state contributed to the

majority of the motor output instead. Having a good memory of its previous state, this
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state consistently approached the adaptation goal.Second, the unlearning period resulted

in the decay of adaptation in slow state, however, the decay was much slower, and by the

end of unlearning period most of the motor output was consisted of the slow state output.

Although the multi-rate model was successful in capturing the overall adaptation be-

havior, it ignores the dependency of the motor output to different motion kinematics. In

chapter 2 we have shown that the motor output can be reconstructed from force-states that

are dependent on position and velocity of movement on individual trials. The multi-rate

model as, a one-dimensional model, cannot capture the differences in the evolution of these

force-states during adaptation and unlearning of the force-fields. Therefore we next ex-

plored viscoelastic primitive model for motor adaptation that takes into account different

movement kinematics in final output [5].

3.3 Viscoelastic Primitive Model for Motor Adaptation

The motivation for the viscoelastic primitive model came from the observation that during

adaptation to the motion-dependent force-fields, subject’s compensatory force contained

components from individual kinematic parameters. In contrast to the multi-rate model,

this model can capture multiple dimensions of the motor output. Here, we first introduce

the viscoelastic primitive model first proposed by [5], and then analyze its power in capturing

the features of adaptation and the unlearning previously shown in chapter 2.

The viscoelastic primitive model is consisted of a set of motor primitives that are

uniquely tuned to movement kinematics variables, such as position and velocity. Consider

a set of n distinct primitives, which receive the temporal profile of movement kinematics

(Fig. 3.4). Moreover, consider that the motor output on current trial is a weighted sum of

the individual primitive force outputs.

We can assume that each primitive is linearly dependent on position and velocity of

the movement. This dependency can be represented as a point in a 2 dimensional space

where each axis represents a individual movement kinematic variable. Thus, we can identify

primitive Si with [Ki, Bi] where Ki is the gain for the position, and Bi is the gain for the
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Figure 3.3: (A,C,E) The force-field is applied at trial 1 and remains for 165 trials, shown by
the gray solid line. (A) Comparison between the evolution of the fast and slow states during
adaptation to the force-field. The fast state is more active during early phase of adaptation
(blue solid line), however slow state takes over in late phases (green solid line). During
the unlearning period both states gradually revert back towards baseline level, however
the decay of the fast state is more rapid when compared to the slow state. The start
of unlearning period is shown as a vertical dashed-line. (B) Normalized unlearning for
adaptation for both fast and slow states. The normalized unlearning was calculated by
scaling adaptation coefficient of each state with respect to the first coefficient in the period.
Thus the first point is rescaled to 1. The decay of the fast state is faster compared to slow
state when both states start from the same point. (C and D) Adaptation and unlearning
behavior of the slow state.(E and F) Adaptation and unlearning behavior of fast state.
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velocity of the movement, respectively. Fig. 3.5 shows the input/output relationship for an

example primitive in this space.

The learning in the viscoelastic primitive model is mediated by the difference between

the goal motor output vector and the current motor output vector. Consider the goal

motor output y∗ and current motor output y that are defined in R2×1. As an example, the

position-dependent force-field goal is [1, 0]T and the velocity-dependent force-field goal is

[0, 1]T . On each trial, the motor output is defined as Eq. 3.6.

y =
N∑
i=1

Wi ×

 Ki × P

Bi × V

 (3.6)

Given that the position and velocity of movement are applied to all primitives in a same

manner, they can be omitted from the Eq. 3.6 and the motor output can be simplified (Eq.

3.7 and 3.8).

y =
N∑
i=1

Wi ×

 Ki

Bi

 (3.7)

y =
N∑
i=1

Wi × Si (3.8)

In Eq. 3.8 the output y can be altered by changing the gains Wi. A first order gradient

decent rule can be used to update the weights for the primitives in order to reduce the error

between the motor output and the goal of adaptation(Eq.3.9).

∆Wi = η(y∗ − y)TSi (3.9)

In this equation η is the constant for learning. The amount of change in the weight

depends on the angle between the primitive Si and the error y∗ − y. If the angle is close
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Figure 3.4: A population of n primitives receive kinematics information regarding both the
position and velocity of the movement which are shown blue and red respectively. The
output of these primitives are combined to create the force output, shown in black trace.
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Figure 3.5: The position variable of the movement is weighted with the gain Ki, whereas
the velocity of the movement is weighted with the gain Bi. The weighted position and
velocity variables are then combined to create the force-state output of the primitive.
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to 90o, the change in the weight is minimal, and if the angle is close to 0o the change

is maximal. As a result, the learning for each primitive is dependent on its location in

the gain-space, the adaptation goal, and the current state of motor adaptation.Thus, for

a fix adaptation goal and an initial state, the evolution of motor output depends on the

distribution of the primitive in the space.

3.3.1 Simulation of Viscoelastic Model in Force-field Adaptation and Un-

learning

Sing et al.[5] previously have shown that viscoelastic model can capture the subjects’ be-

havior during adaptation to different motion-dependent force-fields, however the unlearning

behavior has not been explored yet. We extended Eq. 3.9 and included a term to account

for the inter-trial stability in the memory of the weights. The weights on trial n + 1 can

relate to trial n in the following way (Eq. 3.10).

W
(n+1)
i = (1− α)W

(n)
i + ∆W

(n)
i (3.10)

In this equation, the term α represents the proportion of memory that is forgotten in

transition from trial n to n+ 1. For example, when α = 0 the motor system has a perfect

memory of weights. However previous observation showed that the adaptation memory

gradually decays over time or trial and in reality α > 0. We thus simulate the viscoelastic

primitive model with an α > 0.

We define a viscoelastic model with population of 5000 primitives. The primitives we

drawn from a jointly normal distributions equal variances along position-dependent and

velocity-dependent gains with correlation of 0.8 between them (Eq.3.11 and 3.12) [5].

 Ki

Bi

 ∼ N (µ,Σ) µ = [0, 0] (3.11)
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Σ =

 σ2p ρ · σp · σv

ρ · σp · σv σ2v

 σp = σv , ρ = 0.8 (3.12)

First we demonstrate the adaptation and unlearning behavior of viscoelastic model for

position-FF and velocity-FF (Fig. 3.6). The model makes two critical predictions about

the motor adaptation pattern. First, the adaptation trajectories for position-dependent and

velocity dependent force-force fields have similar shapes. Second, the unlearning trajectories

are straight lines towards the origin. However, as shown in chapter 2, adaptation trajectory

for velocity force field is closer to velocity axis, thus more aligned to goal compared to

position-dependent force-field adaptation. In addition, the unlearning trajectories were not

simple lines towards the origin. The curvature in the unlearning trajectories suggests that

the memory of velocity-aligned and position-aligned components decay at different rates

depending on the force-field environment.

To further illustrate the behavior in one-state viscoelastic primitive model, we simulate

two now combination force-field environments similar to the experiments in chapter 2. Fig-

ures (3.7) and (3.8) show the adaptation and unlearning prediction for the combination-FF

and a position-biased-FF, respectively.

The difference between model predictions and experimental results for unlearning tra-

jectories is more evident in this case. The model fails to show the emergence of a bias toward

velocity-dependent force-state. Even though the one-state viscoelastic model mimics the

shape of adaptation trajectory for pure position and velocity dependent force-fields, it is not

capable of capturing the aspects of their unlearning trajectories. Moreover, the behavior of

motor system during adaptation and unlearning of combination force-field is not predicted

by viscoelastic model.
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Figure 3.6: (A) Evolution of position and velocity gains during adaptation and unlearning
of Position-FF, gain trajectories during adaptation and unlearning periods are shown in
blue and gray, respectively. The adaptation goal is shown as a blue filled rectangle. Each
gain can be broken down to goal-aligned and goal misaligned components, as shown by two
vectors. 3 (B). Evolution of position and velocity gains during adaptation and unlearning
of a velocity-FF. Adaptation gains are shown in red, and unlearning gains in gray. Goal
of adaptation is represented as a red square. Here direction of the goal aligned and goal
misaligned components of each gain are shown as a red and cyan arrow, respectively. (C,D)
the temporal changes for goal-aligned and goal-misaligned components are shown for each
force field environment in A and B.
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Figure 3.7: (A). adaptation gains are shown with green solid line, whereas unlearning gains
are shown by gray dashed line. Here the goal of adaptation is shown by a green square and
located at x=y line. The directions of position-aligned and velocity-aligned components
are shown by blue and red arrow respectively.(B). The normalized unlearning gains were
computed by rescaling the gains during unlearning by their respective starting points, thus
the first point is rescaled to [1,1] in gain space. The gray line represents the normalized
unlearning. (C). Temporal changes in position-aligned and velocity-aligned gains during
adaptation and unlearning of the combination force-field. Position aligned gains are shown
in blue and velocity-aligned gains are shown in dashed red line (D). Normalized unlearning
of position and velocity aligned gains.
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Figure 3.8: (A). adaptation gains are shown with purple solid line, whereas unlearning gains
are shown in gray dashed line. Here the goal of adaptation is shown by a filled purple square
and located at in a region of gain space with larger position gain than velocity. For each
gain the direction of position aligned and velocity aligned component are shown by blue and
red arrow respectively. (B). the normalized unlearning gains were computed by rescaling
the gains by their respective start points value, the unlearning starts from point [1,1] in
gain space. The gray line represents the normalized unlearning of gains (C). temporal
changes in position-aligned and velocity-aligned gains during adaptation and unlearning of
the position-biased force-field. Position aligned gains are shown in blue and velocity-aligned
gains are shown in red. The bar graph shows the comparison between position-aligned and
velocity-aligned gains at the points selected in left panel, (D). Normalized unlearning of
position and velocity aligned gains.
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3.4 Multi-rate State-dependent Primitive Model for Motor

Adaptation

In previous sections we showed that both viscoelastic primitive and multi-rate models had

limited power in explaining the motor behavior. We wondered whether these two models

were elements of a more general model that could explain the behavior of motor system

during both force-field adaptation and unlearning in a unified scheme.

We hypothesized that the motor system output was the result interaction between two

primitive spaces with distinct learning and retention rates. Consider two primitive spaces

Sslow and Sfast. Each primitive i in space Sslow is tuned to position and velocity of

movement with the a unique gain vector [Ki
slow, B

i
slow]. Similarly, a primitive i in Sfast is

tuned to movement kinematic with [Ki
fast, B

i
fast]. The force-state from each space can be

described as follows (Eq. 3.13 and 3.14).

xnslow =
n∑

i=1

[
W i

slow

]n ×
 Ki

slow × P

Bi
slow × V

 (3.13)

xnfast =
n∑

i=1

[
W i

fast

]n ×
 Ki

fast × P

Bi
fast × V

 (3.14)

yn = xnslow + xnfast (3.15)

In the force-field environment, y∗ can represent the goal of adaptation and similar to

previous case and the error between the goal and current motor output can be defined as

e = y∗ − yn. The learning can be defined in terms of updating of the weights for both

primitive spaces (Eq. 3.16 and 3.17).

[
∆W i

slow

]n
= η(y∗ − y)TSi

slow (3.16)
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[
∆W i

fast

]n
= η(y∗ − y)TSi

fast (3.17)

Finally, assuming that the weight change in response to error and subsequent decay

rates are distinct for each primitive space, the new set of weights for each primitive space

can be calculated (Eq. 3.18 and 3.19).

[
W i

slow

](n+1)
= (1− αslow)×

[
W i

slow

](n)
+ βslow ×

[
∆W i

slow

]n
(3.18)

[
W i

fast

](n+1)
= (1− αfast)×

[
W i

fast

](n)
+ βfast ×

[
∆W i

fast

]n
(3.19)

The interaction between the learning and retention rates in this model determines how

fast the model adapts to the perturbation and how stable the memory of this adaptation will

be. In addition, the shape of each primitive space delineates a specific adaptation trajectory

that is in the direction maximum error reduction. In the next two sections we explored the

behavior of this model under different force-field conditions when the primitive spaces have

similar or distinct distributions in the motion-dependent gain space.

3.4.1 Multi-rate State-dependent Primitive Model with Same Distribu-

tion

First we assumed that the distributions for slow and fast primitive spaces were similar (Eq.

3.20).

Si
fast = Si

slow =

 Ki
fast = Ki

slow

Bi
fast = Ki

slow

(3.20)

Similar to viscoelastic primitive model, we built two primitive spaces with population

of 2500 each, from one joint normal distributions (Eq. 3.21 and 3.22).
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Nfast (µfast,Σfast) = Nslow (µslow,Σslow) = N (µ,Σ) µ = [0, 0] (3.21)

Σ =

 σ2p ρ · σp · σv

ρ · σp · σv σ2v

 σp = σv , ρ = 0.8 (3.22)

Given the similarity between the gain distributions in viscoelastic model and current

implementation of multi-rate state-dependent model, any change in adaptation trajectories

should be caused by the difference in learning and retention rates between the two popula-

tions. First we simulated the model under pure position or velocity dependent force-fields.

As shown in Fig. 3.9, the asymmetries in the adaptation trajectories could not be

reproduced only by implementation of distinct learning and retention rates. In chapter 2

we observed that biases were more evident under combination force-field environments. So

we also simulate the model under both the combination-FF and the position-biased-FF.

Fig. 3.11 and 3.12 clearly demonstrated that the multi-rate state-dependent primitive

mode with similar distributions was not capable of exhibiting the biases in the trajectories,

particularly during unlearning of the combination force-fields.

We wondered whether the distribution of primitive spaces could mediate any asymmetric

association between motion dependent force-field and motor adaptation. The experimental

result showed that the gain trajectories for combination force-field were biased toward the

velocity gain. Moreover, a closer look at the gain-trajectories for these two force-fields

reveals that the degree of asymmetry was dependent on the trial number in both adaptation

and unlearning periods. In both early adaptation and unlearning, the trajectories favored

symmetric distribution, however towards the end of each period the asymmetry behavior

dominated the trajectories. this could be linked to the prediction of the two-rate model that

early phases of learning and unlearning is affected by both fast and slow states, whereas

late phases were mostly influenced by the behavior of slow state.

Combining these two observations, we made two critical assumptions about the multi-

rate state-dependent primitive model. First, the distributions of fast and slow primitives
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Figure 3.9: (A) Evolution of position and velocity gains during adaptation and unlearning
of Position-FF, gain trajectories during adaptation and unlearning periods are shown in
blue and gray, respectively. The adaptation goal is shown as a blue filled square. Each gain
can be broken down into goal-aligned and goal misaligned components, as shown by the
two vectors. (B) Evolution of position and velocity gains during adaptation and unlearning
of a velocity-FF. Adaptation gains are shown in red, and unlearning gains in gray. Goal
of adaptation is represented as a red square. Here direction of the goal aligned and goal
misaligned components of each gain are shown by red and cyan arrows, respectively. (C,D)
The temporal changes for goal-aligned and goal-misaligned components are shown for each
force field environment in A and B.
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Figure 3.10: (A) Adaptation gains are shown with green solid line, whereas unlearning gains
are shown by gray dashed line. Here the goal of adaptation is shown by a green square and
located at x=y line. The directions of position-aligned and velocity-aligned components
are shown by blue and red arrows respectively. (B) The normalized unlearning gains were
computed by rescaling the gains during unlearning by their respective starting points, thus
the first point is rescaled to [1,1] in gain space. The gray line represents the normalized
unlearning. (C) Temporal changes in position-aligned and velocity-aligned gains during
adaptation and unlearning of the combination force-field. Position aligned gains are shown
in blue and velocity-aligned gains are shown in dashed red line. (D) Normalized unlearning
of position and velocity aligned gains.
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Figure 3.11: (A) Adaptation gains are shown with purple solid line, whereas unlearning gains
are shown in gray solid line. Here the goal of adaptation is shown by a filled purple square
and located at in a region of gain space with larger position gain than velocity. For each
gain the direction of position aligned and velocity aligned component are shown by blue and
red arrows, respectively. (B) The normalized unlearning gains were computed by rescaling
the gains by their respective start points value, the unlearning starts from point [1,1] in
gain space. The gray line represents the normalized unlearning of gains. (C) Temporal
changes in position-aligned and velocity-aligned gains during adaptation and unlearning of
the position-biased force-field. Position aligned gains are shown in blue and velocity-aligned
gains are shown in red. The bar graph shows the comparison between position-aligned and
velocity-aligned gains at the points selected in left panel. (D) Normalized unlearning of
position and velocity aligned gains.
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were not essentially similar. Second, the asymmetries in the trajectories should be modu-

lated by the distribution of slow primitives.

3.4.2 Multi-rate state-dependent primitive model with distinct distribu-

tions

Here we altered the primitive distributions for multi-rate state-dependent primitive model in

order to test whether the biases in the experimental findings could be reproduced. First, we

assumed that the fast state distribution was aligned to the mid-line of the primitive space,

similar to previous case. More importantly, we assumed that the slow state distribution

was mostly aligned with velocity axis of the space. This required that the variance along

Bslow (σv) to be larger than Kslow (σp), and the correlation between the two variances be

small enough. We first modified the distribution for fast primitives (Eq. 3.23 and 3.24).

 Ki
fast

Bi
fast

 ∼ Nfast (µfast,Σfast) µfast = [0, 0] (3.23)

Σfast =

 σ2p ρ · σp · σv

ρ · σp · σv σ2v

 σp = σv = 0.547 , ρ = 0.257 (3.24)

Unlike fast primitive, we changed the distribution for slow primitive and biased the

variability towards the velocity axis in the gain space (Eq.3.25 and 3.26).

 Ki
slow

Bi
slow

 ∼ Nslow (µslow,Σslow) µslow = [0, 0] (3.25)
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Σslow =

 σ2p ρ · σp · σv

ρ · σp · σv σ2v

 σp = 0.2812 σv = 0.567 , ρ = 0.008 (3.26)

The simulation of the multi-rate state-dependent primitive model could capture the

asymmetries presented in the experimental data. This is shown in Fig. 3.12.

The multi-rate state-dependent primitive model seemed to capture both the adaptation

and unlearning behaviors for the position and velocity-dependent force-fields. The adapta-

tion trajectory for velocity dependent force-field was closer to the velocity axis. In addition

unlearning trajectory closely follows the axis.

We also analyzed the evolution of the gain trajectories under two combination force-field

environments. Fig. 3.13 and 3.14 show the result for each force-field.

The trajectories in combination-FF and position-biased-FF clearly exhibited similar be-

havior to experimental finding. Adaptation and unlearning trajectories were biased toward

velocity axis for the combination force-field. For combination-FF, the unlearning was ap-

propriately biased towards the velocity axis. In addition, during the unlearning of position-

biased force-field, initially the trajectory had more position-dependent contribution, but

the velocity-dependent state dominated the trajectory towards the end of the period.

In order to demonstrate how each primitive contributes to the shape of the trajectory,

we next looked at the progression of slow and fast primitives in gain-space of adaptation.

We observed that for both combination force-fields, the learning of fast state was mainly

aligned with the mid-line of the space and was in the direction of the adaptation goal. This

was contrasted with the trajectory of the slow state which was shifted toward the velocity

axis of space (Fig. 3.15 and 3.16).
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Figure 3.12: (A) Gain trajectories during adaptation and unlearning periods are shown in
blue and gray, respectively. The adaptation goal is shown as a blue filled square. Each
gain can be broken down to goal-aligned and goal misaligned components, as shown by
two vectors. (B) Evolution of position and velocity aligned gains during adaptation and
unlearning of a velocity-FF. Adaptation gains are shown in red, and unlearning gains in
gray. Goal of adaptation is represented as a red square. Here direction for the goal aligned
and goal misaligned components are shown as a red and cyan arrows, respectively. (C,D)
the temporal changes for goal-aligned and goal-misaligned components are shown for each
force field environment in A and B.
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Figure 3.13: (A) Adaptation gains are shown with green solid line, whereas unlearning gains
are shown by gray dashed line. Here the goal of adaptation is shown by a green square and
located at x=y line. The directions of position-aligned and velocity-aligned components
are shown by blue and red arrow respectively. (B) The normalized unlearning gains were
computed by rescaling the gains during unlearning by their respective starting points, thus
the first point is rescaled to [1,1] in the gain space. The gray line represents the normalized
unlearning. (C) Temporal changes in position-aligned and velocity-aligned gains during
adaptation and unlearning of the combination force-field. Position aligned gains are shown
in blue and velocity-aligned gains are shown in dashed red line. (D) Normalized unlearning
of position and velocity aligned gains.
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Figure 3.14: (A) Adaptation gains are shown with purple solid line, whereas unlearning
gains are shown in gray dashed line. Here the goal of adaptation is shown by a filled purple
square and located at in a region of gain space with larger position gain than velocity.
For each gain the direction of position aligned and velocity aligned component are shown
by blue and red arrow respectively. (B) The normalized unlearning gains were computed
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(C) Temporal changes in position-aligned and velocity-aligned gains during adaptation and
unlearning of the position-biased force-field. Position aligned gains are shown in blue and
velocity-aligned gains are shown in red. (D) Normalized unlearning of position and velocity
aligned gains.
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circles in gain space. (B) Adaptation and unlearning of slow primitive in gain space. The
goal of adaptation is shown by a filled green square. The distribution of primitives is shown
by red circles in gain space.

-0.2 0.0 0.2 0.4 0.6 0.8 1.0
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Position Gain

V
e

lo
ci

ty
 G

a
in

 

 

-0.2 0.0 0.2 0.4 0.6 0.8 1.0
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Position Gain

V
e

lo
ci

ty
 G

a
in

 

 

A B

Figure 3.16: (A) Adaptation and unlearning of slow primitive in gain space. The goal of
adaptation is shown by a filled purple square. The distribution of primitives is shown by
red circles in gain space. (B) Adaptation and unlearning of slow primitive in gain space.
The goal of adaptation is shown by a filled green square. The distribution of primitives is
shown by red circles in gain space
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3.5 Discussion

Here we have shown that the behavior of the motor system when adapting and subsequently

unlearning a force-field can be effectively explained by a multi-rate state-dependent primi-

tive model that has two key characteristics. First, the model contained two distributions of

primitives, one set of primitives was efficient in learning from the error but has poor ability

in retaining the learned pattern, referred to as fast primitive, while the other set of primi-

tives, slow primitive, had low sensitivity to the error but had good memory of the previous

learned pattern. Second, the distributions for these primitive were not similar in the gain-

space. Fast primitive was symmetrically distributed along the mid-line of the gain-space

with equal variances along each axis, while the slow primitive is more aligned with the veloc-

ity axis in the space and had low correlation between the variances. The interaction of these

two primitive spaces created similar pattern to subjects’ behavior in position-dependent,

velocity dependent, combination, and position-biased force-field environments.

3.5.1 Two Rates models of Motor Adaptation

The initial multi-rate model proposed by [3] has been implemented in multitude of motor

adaptation paradigms. This model has been successful in explaining properties of motor

adaptation including savings, anterograde interference and long term retention of the adap-

tation [3, 4, 61].

Although many of the effects are well described by this model, some studies have sug-

gested that other processes might also be responsible for the adaptation behavior of the

motor system. For instance, it has been suggested that adaptation might also accompanied

by reinforcement learning mechanisms that are active in late phases of adaptation [7, 62].

The multi-rate state-dependent primitive model suggests that at least in force-field adap-

tation paradigms, the two populations of motion-dependent primitives with different time

scale can capture both to inter trial force evolution as well as within trial. The behav-

ior of the model replicated experimental data during both adaptation and unlearning of

motion-dependent force-fields.
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3.5.2 Asymmetries in the Primitive Distributions

A number of recent studies have shown that motion-dependent primitives are essential in

explaining the different features of motion-dependent force-field adaptation. Sing et al. [5]

was the first study to showed the rate of learning can be well predicted by the overlap

between the motion-dependency and the variance in the distribution of the primitives.

On the other hand, experiencing a particular motion-dependent force-field can bias the

subsequent force-field adaptation [36]. A more recent study shown that the initial variability

in each primitive can predict the rate of adaptation to the force-field, and modulation of

each primitive can increase the rate of subsequent adaptation [37]. Although the multi-rate

state dependent model has not been tested these paradigms, we suspect that the rotation in

the maximum variance direction can account for the result from both observations [36,37].

There is also evidence about the representation of movement kinematics in nervous

system, including motor cortex, muscle spindles, and cerebellum. A number of recent

studies have suggested that there can be a better representation of one motion variable over

the others in some areas. For example, Paninski et al. [51] have shown that the velocity

tuning is better in motor cortex areas compared to other movement kinematic variables.

We speculate that the asymmetries in the primitive distribution is corollary to the degree

of tuning to motion kinematics.
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Chapter 4:

4.1 Introduction

In this chapter we outlined 2 predations from multiple-rate state-dependent primitive model

2 novel force-field adaptation paradigms. We first analyzed the behavior of the model when

the schedule of perturbation changed. We then predicted how the passage of time and

subsequent re-exposure to force-field can refine the adaptation trajectory.

4.2 Prediction of Multi-rate State-dependent Primitive Model

During Gradual Introduction of the Force-field

Throughout this thesis we assumed that the force-field was introduced as a step function

after a baseline period. This type of force-field schedule, which we referred to as abrupt

schedule, can introduce large error in motor output during early adaptation trials. A number

of previous studies, however, introduced the force-field in a gradual manner in order to limit

large errors [33,39]. Interestingly, the motor system adapted to this force-field in a gradual

manner, and the final level of adaptation was comparable to abrupt schedule. Further, the

multi-rate model could capture the changes in the adaptive behavior.

However, no study have explored whether the adaptation gain trajectories are different

between abrupt and gradual schedule of the force-field. We showed that under abrupt

schedule, the initial motor output contain goal-misaligned force-states that diminish with

extended exposure. Given that the large errors were mainly present in initial phase of

adaptation to abrupt force-field, we suspect that limiting this error could change the shape

of adaptation trajectory. Specifically, initial adaptation would be more aligned with motion-

dependency of the force-field. In order to test this prediction we simulated the multi-rate
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state-dependent primitive model under gradual introduction of the force-field. After a

baseline period, The force-field amplitude increased gradually until it reached the full scale

(Eq. 4.1).

f (n) =


1
15n

x n ≤ 145

1 n > 145
where : x =

log (15)

log (145)
(4.1)

After the adaptation period, the error was clamped to initiate the unlearning of motor

adaptation. For a position-dependent force-field the goal of adaptation could be expressed

as [0, f(n)] in gain-space. The multi-rate state-dependent primitive model response to the

gradual position-dependent and velocity-dependent force-field is shown in Fig. 4.1.

The model showed that early adaptation no longer was biased towards the mid-line of the

gain space. Instead it was closer to the goal aligned axis for both position-FF and velocity-

FF. This specificity however came at a cost of reduced amount of initial learning. The

unlearning two-state primitive model showed no systematical differences when compared to

abrupt schedule.

4.3 Prediction of Multi-rate State-dependent Primitive Model

During Extended Exposure to the Force-field

Unlearning of a motor memory can occur in two ways. When the motor system is ac-

tively engaged in the movement, either error clamp or null movement, the adaptation levels

gradually reverts back to the baseline levels. This form of unlearning can be considered

as experience-dependent unlearning. The other form of unlearning can occur when motor

system is no longer performing the task. This type of unlearning is strictly dependent on

time and can be referred to as temporal unlearning.

Joiner and Smith [4] have recently demonstrated that the temporal unlearning can be

explained by the behavior of slow state in the multi-rate model. In their study subjects
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Figure 4.1: (A) Evolution of position and velocity gains during adaptation and unlearning of
gradual Position-FF, gain trajectories during adaptation and unlearning periods are shown
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adapted to the velocity-dependent force-field with variable length in exposure period and

retested in an error clamp environment 24 hours after initial adaptation in order to measure

to memory of the force-field after the temporal unlearning. They showed that the level of

motor memory was dependent on the initial length of force-field exposure. Furthermore,

the motor memory of adaptation after 24 hours was always a scaled version of slow state

adaptation level at the end of each force-field period.

Here we implemented the result from [4] to predict the change in the adaptation tra-

jectory over multiple days of exposure to force-field. We simulated the multi-rate state-

dependent primitive model in the following way. On the first day, after a small baseline

period the model was exposed to a position-dependent force-field. At the end of force-field

period, there was no longer any error clamp period. Instead the temporal unlearning was

modeled by rescaling the weights for fast primitive back to zero, and the weights for slow

state to 50% of their value at the end of adaptation period. This rescaling was comparable

to the amount of retention observed previously. We also assumed that experiencing the

force-field on the first day biases the distribution of the fast primitives towards position

axis. As a result we reduce the σfastv by 30% . For the second day, we introduced the same

force-field environment which was then followed by an error-clamp unlearning period. Fig.

4.2 shows the behavior of the model under this paradigm.

The main observation here was the difference between the adaptation trajectories on

the first and second day. The adaptation on the second day is more aligned to the motion-

dependency of the force-field. In addition it seems to show the savings effect, where the rate

of adaptation was faster upon re-exposure.Thus, the savings effect that has been previously

reported force-field adaptation paradigms might be due to the increase in the specificity of

adaptation trajectory. We will test this hypothesis in our future experiments.
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