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ABSTRACT 

USING GEDI DATA TO EVALUATE THE IMPACT OF THE AUSTRALIAN 2019-

2020 FIRE SEASON ON THE STRUCTURE AND BIOMASS OF GONDWANA 

RAINFORESTS 

Colin G. Flynn, M.S. 

George Mason University, 2022 

Thesis Director: Dr. Konrad Wessels 

 

Wildfires are increasing globally in their intensity, frequency, and range. A 

unique yet globally significant example is the devastating eastern Australia 2019-2020 

fire season, which resulted in an unprecedented burnt forest area with > 21% of 

Australia’s temperate forests affected, and, in an unprecedented event, over 50% of 

Gondwana Rainforests in Australia were impacted. Currently, optical satellite imagery is 

used to detect active fires and assess burnt area, as well as impact. Assessing the impacts 

of fires solely through these techniques lacks information on vegetation structural 

changes, especially subcanopy changes. Lidar (light detection and ranging) can be used to 

evaluate the impacts of fire on vegetation structure more comprehensively. This study 

uses full waveform lidar data from NASA’s Global Ecosystem Dynamics Investigation 

(GEDI) to study the Gondwana Rainforests of Willi Willi National Park and Werrikimbe 

National Park, in New South Wales, Australia. GEDI footprints were filtered to remove 



xiii 

 

those incident upon steep slopes (>25°) and collected more than 9 months before and 

after the MODIS recorded burn date. GEDI footprint level canopy structure 

measurements (Level 2A and 2B data products) were aggregated into 5 km2 grid cells 

across the study sites and showed an average decrease of 19% in Plant Area Index, and a 

15% decrease in Canopy Cover Fraction. Vertical profiles of Plant Area Volume Density 

(PAVD) grouped into 5 meter vertical profile height bins showed an average decrease of 

-15.6% (STD = 8.1) for bins from 0-5 meters to 35-40 meters, with the largest decrease 

of -27.63% occurring in the 10-15 meter vertical profile height bin. GEDI relative height 

(RH) metrics were lower post fire: RH50 decreased by average of 12.7%, RH75 by 5.1%, 

and RH90, RH95, RH98, and RH100 all by <1%. GEDI footprint level aboveground 

biomass density (Level 4A product) showed a -1.5% decrease, correlating closely with 

percent change in RH75 and the 20-25 meter PAVD vertical profile height bin. The 

PAVD metric change therefore captured the impact of the fire more effectively than RH 

metrics, which showed limited change. Consequently, the footprint-level GEDI biomass 

which is largely derived from RH metrics show minor changes after the fire. These 

results indicate that GEDI was uniquely positioned to directly quantify the effects of 

vegetation disturbance on vertical canopy structure. The structural damage resulting from 

these fires ranged from entire stand-replacing disturbance to primarily crown or 

understory fires. We discuss the potential implications of these findings to understand the 

impact of fire severity and post-fire recovery on carbon stocks at regional scales.  
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CHAPTER ONE 

All material in the document must adhere to University Formatting Guidelines. 

For questions and further information, please contact the UDTS Coordinator: 

udts@gmu.edu.  

1. INTRODUCTION 

Wildfires are large ecological disturbances that can have varying impacts in 

different ecosystems. Recently, intense and widespread fires have been occurring across 

the world, including in the United States, Brazil, Russia, Australia, and other countries 

(Keeley & Syphard, 2021; Assis et al., 2020; Kirillina et al., 2020; Bowman et al., 2021). 

The consequences of these fires are far-reaching, affecting ecosystems, wildlife, 

economies, and the climate. Research has demonstrated links between climate change 

and increased risk of wildfires in Amazonia, Southern Europe, Scandinavia, Western 

United States, Canada, Siberia, and Australia (Jones et al., 2020).  Increases in both the 

intensity and frequency of fires have been linked to climate change, and this trend is 

expected to continue (Jolly et al., 2015). In 2008, Garnaut correctly predicted that climate 

change would exacerbate fires in Australia (Garnaut, 2008). Appropriately, the 21st 

century has been dubbed “the age of the megafire” by mainstream media.  

Australia’s 2019-2020 summer and fire season came with record breaking 

megafires across the continent, and consequently it is now commonly referred to as the 

https://library.gmu.edu/udts/resources#guidelines
mailto:udts@gmu.edu
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“Black Summer” (Scott Morrison, 2020). For megafires such as this to occur on a 

landscape-scale, four specific conditions must first be met: (1) presence of spatially 

continuous fuel, (2) the fuel must be dry enough to burn, (3) presence of an ignition 

source, (4) weather conditions conducive to the spread of fire (Nolan et al., 2020). The 

largest impedance to large fires occurring in Australia is the second condition, as many of 

the abundant fuel sources are infrequently dry enough, while the other conditions are 

commonly met. Prior to the start of the fires in 2019, eastern Australia was experiencing 

an extreme drought, with New South Wales experiencing record low rainfall in addition 

to above average temperatures (Nolan et al., 2020). This drought led the biomass in 

Australian forests to dry out significantly. The Black Summer consumed 5.68 million ha 

of land in New South Wales, alone (Davey & Sarre, 2020). Recent research claims that 

climate change made these fires 30% more likely to occur (van Oldenborgh et al., 2021). 

Across Australia, the 2019-2020 bushfires claimed a combined total of 10.2 million ha 

(Davey & Sarre, 2020). 

In comparison, the 2018 fire season, the most destructive wildfire season in 

California in recorded history, impacted 675,825 ha, which is 1/15 of the area burned in 

the 2019-2020 Australian fire season (California Government, 2019). The Black Summer 

burned over five times the amount of land burned in the Amazon Rainforest in 2019 

(Ward et al., 2020). New research from the National Oceanic and Atmospheric 

Administration (NOAA) states that nearly 1 million metric tons of carbon were released 

by these fires (Yu et al., 2021). According to the World Wildlife Fund, almost 3 billion 

animals were killed or displaced by the Black Summer fires (New WWF Report, 2020).   



3 

 

Most of the burned area was across regions and ecosystems that are prone to 

frequent burns and are considered to be fire resilient, such environments include the 

eucalypt forests. In addition to the spatial extent and temporal duration of the 2019-2020 

fire season, it was furthermore unique in that certain Australian ecosystems that do not 

typically burn during fire seasons, experienced many active fires. The Gondwana 

Rainforests are one such noteworthy ecosystem. The Gondwana Rainforests are a 

UNESCO World Heritage Site made up of a conglomeration of over 50 nationally 

protected sites. Together, these make up the world’s largest stands of existing subtropical 

rainforests and Antarctic Beech cool temperate rainforests. During the Black Summer, 

over 50% of the Gondwana Rainforests were impacted by fires, an unprecedented amount 

(Kooyman et al., 2020). Anticipating that climatic trends will continue to increase the 

propensity for fires to occur in such environments, it is important to develop more 

knowledge around how these historic forests are impacted.   

This research focuses on evaluating the impacts of forest fires in Gondwana 

Rainforests through two separate study areas. Study area 1 (SA1) is composed of 

Werrikimbe National Park and Willi Willi National Park. These two national parks are 

spatially contiguous and are treated as one site for this study. Separately, Barrington Tops 

National Park is study area 2 (SA2), which serves as a control, as it did not experience 

significant burning during the Black Summer. Both study areas are on the east coast of 

New South Wales, Australia (Figure 1).  
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Figure 1 Study areas overview map showing Study Area 1 (SA1) in red and Study Area 2 (SA2), the control 

area, in green with an inset showing where in Australia the study areas are located 

 

 

 

At present, fires are routinely detected and evaluated using passive satellite 

remote sensing (Wooster et al., 2021). Passive remote sensing systems record the 

response of the radiation on the Earth’s surface that is either reflected or emitted 

(Camarretta et al., 2020). Active fire remote sensing assesses when and where fires occur 

as well as their fire radiative power, or FRP (Wooster et al., 2021), fire severity (Keeley, 

2009), and fire emissions (Kaufman et al., 1990). Satellite imagery collected before and 

after a fire event are used in conjunction to estimate the impacts of the fire on vegetation 

through spectral changes. While satellite imagery is the most effective way to detect 



5 

 

active fires (Boer et al., 2008), other, more robust techniques to assess the post-fire 

impacts on vegetation must be investigated further.  Conventional methods of evaluating 

fire severity with multispectral satellite imagery utilize both low earth orbit and 

geostationary satellites (van Gerrevink & Veraverbeke, 2021). Commonly used for these 

purposes, passive remote sensing systems, such as Landsat, Sentinel, Worldview, 

MODIS, and others, are incapable of providing any information in regards to fire-induced 

changes in the vertical structure of vegetation, with an exception for observable stand-

replacing fire events.   

 Fire severity is a way of measuring the physical changes in the environment 

caused by fire. Fire severity evaluations can be conducted manually with indices based on 

field observations, such as the composite burn index (CBI). However, such indices that 

are reliant on field work are only able to sample plots of large fires (De Santis & 

Chuvieco, 2009). Alternatively, satellite imagery and spectral indices, which can provide 

wall-to-wall coverage of a fire area, are frequently used to categorize fire severity. 

Different spectral indices, such as the burn area index (BAI), normalized burn ratio 

(NBR) and delta normalized burn ratio (dNBR), delta normalized difference vegetation 

index (dNDVI), and delta normalized difference water index (dNDWI) are frequently 

used (Tran et al., 2018). While these are the most widely used methods for evaluating fire 

severity through remote sensing, it has been shown that these are not consistently 

sensitive to fire severity (Roy et al., 2006). The comparison between ground-based CBI 

observations and dNBR by Cocke et al. demonstrates the potential for disparities between 

multispectral satellite derived burn severity assessments and impacts on forest structure 
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(Cocke et al., 2005). As shown by Tran et al., study site characteristics impact how well 

burn indices perform and might lead one to perform better than others (2018).   

 Evaluations of wildfires utilizing these passive optical methods rely on how 

severely top of canopy (TOC) was impacted by the fire. Changes in vegetation structure 

may not be accurately represented in this manner. Consequently, research and 

development of novel metrics for assessing wildfire impact on vegetation structure, 

inclusive of changes in the midstory and understory, is needed to augment current, 

passive optical approaches. The integration of 3-dimensional information on the physical 

structure of vegetation will provide a more comprehensive depiction of how vegetation 

responds to and is impacted by fires at varying levels of severity. Lidar is an active 

remote sensing system, wherein sensor emits laser pulses and records the energy as it 

returns, distributed over time, yielding a waveform. Geospatial lidar data is recorded and 

analyzed using different methods, two main branches being discrete return lidar point 

clouds, and full waveform lidar data. Discrete return airborne lidar, also referred to as 

airborne laser scanning (ALS) is widely used to produce high resolution digital elevation 

models (DEMs), which are useful for things such as flood plain mapping, agriculture, and 

archaeology. In 2000, Dubayah and Drake embraced lidar as a “breakthrough technology 

with many forestry applications (Dubayah & Drake, 2000). Appropriately, lidar data has 

been widely employed in this area. Lidar can be used to estimate biomass (Duncanson et 

al., 2020; Stoval et al., 2018; J Wu, et al., 2009), changes in forest structure (Davison et 

al., 2020; Zhao et al., 2011; Wang & Fang, 2020; Boucher et al., 2020), and even 

distinguish vegetation types (Marselis, et al., 2018). ALS data has also been used 
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successfully to map fire severity (Hu et al., 2019), but pre- and post-fire ALS acquisitions 

are surprisingly rare, thus limiting the application of lidar to this research topic.   

Waveform lidar has the benefit of modeling 3-dimensional vegetation structure 

(Camarretta et al., 2020). Vegetation structural metrics can be accurately derived from 

such data. Geospatial lidar is primarily collected with sensors on piloted aircraft or 

drones. Additionally, there have been several space-based satellites with lidar 

instruments, including NASA’s Ice Cloud and Land Elevation Satellite (ICESat) and 

ICESat-2, the Cloud-Aerosol Transport System (CATS), the Cloud-Aerosol Lidar and 

Infrared Pathfinder Satellite Observations (CALIPSO), the Atmospheric Dynamics 

Mission (ADM-Aeolus), and the Global Ecosystem Dynamics Investigation (GEDI) 

(Fouladinejad et al., 2019). The structural metrics derived from the GEDI LiDAR 

waveform is very well suited to capturing vertical forest structure, but at the time of 

writing there has been no studies published to evaluate the effectiveness of these GEDI 

metrics in characterizing the impacts of wildfire on forest structure.  

This study proposes the use of full waveform lidar data from the space-borne 

GEDI mission and derived metrics to evaluate changes in vegetation structure caused by 

wildfire (Dubayah et al., 2020).  Observed changes in GEDI vegetation structural metrics 

will be evaluated and their relationship to multispectral burn indices examined using two 

Gondwana Rainforests study sites in New South Wales, Australia during the 2019-2020 

fire season.   
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2. LITERATURE REVIEW 

Many examples of successful applications of different burn indices can be found 

in the literature. Different platforms and sensors can be used to generate them. Wildfires 

in Australia are being heavily researched by the Australian government and the academic 

community. The causes and impacts of such fires as well as the role that climate change 

plays are all being investigated. Lidar data from GEDI has been applied to numerous 

applications in the brief time span since NASA first began releasing data from the 

sampling mission. Validation studies have shown the potential for GEDI data to be used 

reliably (Hancock et al., 2019; Liu et al., 2021; Rishmawi et al., 2021). However, at the 

time of authoring this paper, nothing has been published on the use of GEDI data to 

evaluate structural changes in vegetation following a fire event.  Separately from GEDI, 

ALS data can be used as a method for evaluating the impacts of fires, but it is often 

limited to a single temporal collection rather than using pre-fire and post-fire data as is 

used for passive remote sensing methods.   

In 1996, White et al. researched burn severity with Landsat data in Glacier 

National Park, United States. Their research helped develop a better understanding of 

where and how regrowth occurs following fires and found satellite-based techniques for 

evaluating forest fires to be useful (White et al., 1996). However, as with many burn 

severity studies the structural impacts of the fire were not evaluated.    

Cocke et al. showed that burn severity can be mapping with satellite data through 

their case study in the mixed conifer forests in the Coconino National Forest in Arizona, 

United States (Cocke et al., 2005). They compared dNBR values to composite burn index 
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(CBI) values. CBI is a method of evaluating fire severity with ground-based observations. 

They found that tree density, basal area, snag density and fine fuel accumulation were all 

associated with the severity level from the dNBR. Their conclusions noted that dNBR 

was not accurate for mapping perimeters but did identify areas that were severely burned. 

 Boer and his team mapped burn severity in Australia in 2008 using dNBR, NDVI, 

and a delta Leaf Area Index (dLAI). They found LAI to be a large contributor to NBR 

values. Boer concluded that LAI can be used to effectively map burn severity in Eucalypt 

forests (Boer et al., 2008). They also contend that this method of evaluation is preferable 

to more standard approaches, such as the DNBR, because it is more easily interpreted 

within the context of ecological forest management.    

Tran et al. (2018) comprehensively reviewed 10 different burn indices in 

Australian temperate forests. Their study included 13 different forest types and helped 

highlight that different burn indices perform well in certain forest types and poorly in 

others. This shows that any single burn index should not be used across the board as a 

standard. They found that dNBR performed the best for open forests and woodlands, 

while dNDVI performed best in open forests that had mixed fire responses, and dNDWI 

was the most accurate in closed forests. This study used cross-validation as a means of 

quantifying the accuracies of the indices and did not consider any field data or means of 

assessing changes to forest structure. They also highlighted that rainforest environments, 

such as the Gondwana Rainforests studied here, were not particularly sensitive to any of 

the metrics they tested (Tran et al., 2018). This reiterates the need for the development of 

new methods to evaluate the impacts of fires on forestry.   
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Miller and Thode proposed using a relative version of the dNBR to quantify burn 

severity. They acknowledged that absolute change, as most burn indices measure, can be 

inappropriate for the assessment of ecological implications (Miller & Thode, 2007). This 

research pointed out that current approaches can result in misclassifications due to 

different vegetation types being evaluated with the same method.   

A recent study on burn severity in North Patagonian forests sought to establish a 

relationship between spectral burn indices and field measurements, noting that in such 

environments “studies aimed at the field validation of spectral indices of burn severity are 

scarce” (Franco et al., 2020). They used a modified composite burn index (mCBI) as a 

field-based measurement of fire severity and found dNBR and dNDVI to be the most 

accurate spectral indices in comparison. Accuracies here were higher in instances of 

severe burns, while both user and producer accuracies reached 50% for moderate severity 

(Franco et al., 2020).   

The Monitoring Trends in Burn Severity (MTBS) program, a multiagency 

program in the United States, started in 2006 with the goal of consistently mapping fire 

perimeters and burn severity (Gao et al., 2020). A 2015 review by Kolden, et al. 

addressed limitations in the MTBS data products. They found the data to be “of limited 

use to research due to a lack of both consistency in developing class thresholds and 

empirical relationships with ecological metrics” (Kolden et al., 2015).  

Reilly et al. studied impacts of wildfires on fuel load and forest structure in 

Mediterranean ecosystems in California by using multispectral imagery and structure 

from motion from unoccupied aerial systems. They compared their canopy structure and 
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terrain height to pre-fire ALS data and found that their methods accurately mapped the 

upper canopy but failed to resolve mid and below canopy structure. Their post-fire 

assessment showed that even two years after the fire event, there were significant 

differences in bulk canopy height and NDVI. They suggest the use of UAS to monitor 

forests and provide post-fire assessment data (Reilly et al., 2021). While this study used 

lidar data, they were not able to use any from after the fire and, as they pointed out, could 

not resolve canopy changes below the upper canopy. Full waveform data as generated by 

GEDI is designed specifically to offer more detailed information about vegetation 

structure throughout the entire canopy and understory (Dubayah et al., 2020).   

Gelabert et al. used low point density (<4 points per m2) ALS data to analyze 

differences in structural diversity in Aleppo pine tree forests that had been affected by 

wildfires in the Mediterranean Basin. From the ALS data, they derived the LiDAR 

Height Diversity Index (LHDI), LiDAR Height Evenness Index (LHEI), the vertical and 

horizontal continuity of vegetation and topographic metrics. The authors used these 

metrics with the k-nearest neighbors (k-NN) algorithm, support vector machine (SVM) 

and random forest (RF) models to map burned and unburned areas and differentiate fire 

occurrence dates. Their results showed lower LHDI and LHEI values for recent fires and 

higher values for older fires (>20 years) due to growth of trees and shrubs. Their RF 

method produced the most accurate burn mapping with an accuracy of 89.64%, and the 

SVM model was best able to structural differences between fires, achieving a 68.79% 

accuracy (Gelabert et al., 2020).  
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Fires in Mediterranean pine forests were also researched by Montealegre et al. 

(2014) in a study that used CBI field estimations with ALS data to map fire severity with 

logistic regression modeling. They found the most important regression variables to be 

the canopy relief ratio and the percentage of all returns above one meter height, the 

results achieved up to 85.5% accuracy (Montealegre et al., 2014).  

In 2012, Magnussen and Wulder published a study using a single collection of 

ALS data in Canada to derive a least-squares polynomial (LSPOL) relationship between 

heights of presumed post-fire recovered canopies and the number of years since fire. 

They used ALS data and Landsat imagery to derive fire boundaries, the results of which 

were used to denote lidar points being inside or outside of a fire. The authors used the 

LSPOL to estimate post-fire aboveground biomass (Magnussen & Wulder, 2012).  

A 2019 study proposed a novel method for quantifying fire-induced forest 

structural changes based on profile area change (PAC). Their method using pre-fire and 

post-fire lidar data to measure the difference in profile area was tested in the Seirra 

Nevada, California for a 2013 fire. They found a correlation between PAC and field 

measurements (basal area and LAI), with an R2 value of at least 0.67. PAC correlated 

much more closely than other tested lidar metrics: canopy cover and tree height metrics 

(R2 ≤ 0.43). Additionally, they found that Landsat based RdNBR (relative differenced 

normalized burn ratio) correlated even more poorly with field measurements (R2 ≤ 0.26). 

The authors also conclude that PAC can be used to determine where canopy loss and 

subcanopy loss occurs (Hu et al., 2019).  



13 

 

Bishop et al. tested different combinations of lidar data and imagery for post-fire 

assessments of wildfire impacts. Their study used 47 plots of 0.08 ha; they estimated 

percent mortality among trees with DBH (diameter at breast height) values over 25.4 cm. 

Plots with less than 25% mortality were categorized as low, plots categorized as moderate 

had mortality between 25-50%, and anything over 50% was considered high mortality. 

Their model which only used NDVI, derived from NAIP (National Agriculture Imagery 

Program) imagery, was found to be 74% accurate; their model which combined NDVI 

and post-fire lidar was 85% accurate; finally, their model using NDVI and differenced 

(pre-fire and post-fire) lidar was 83% accurate. They concluded that the moderate 

improvement in accuracy with the addition of post-fire lidar data might not justify the 

expense of collecting it instead of solely using imagery (Bishop et al., 2014).  

Although not dealing with wildfires, Peter Scarth and his coauthors investigated 

the use of ALOS PALSAR radar data, ICESat/GLAS lidar data, and Landsat 

multispectral data to derive structural classifications for Australian Vegetation with data 

collected between 2003 and 2009. The waveform lidar based vegetation metrics provided 

by the sampling missions of ICESat and Glas were extrapolated across Australia using L-

band synthetic aperture radar data from ALOS and foliage projective cover from Landsat. 

Height accuracy issues with ICESat led to reduced accuracy and the study found that 

results were less reliable in sparsely vegetated areas such as savannas (Scarth et al., 

2019).   

Prior to the launch of the GEDI mission, many researchers simulated GEDI data 

from discrete return lidar point clouds collected via airborne laser scanning (ALS). Such 
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research established that GEDI data could be compared to discrete return lidar data that 

was used to simulate full waveform lidar like that produced by GEDI. Research shows 

that ALS data with at least 4 points per square meter can be used to accurately identify 

the ground within 1 meter. GEDI being a sampling mission, no two paths of data will 

directly overlap and allow for tree level comparisons (Boucher et al., 2020). Boucher and 

coauthors studied changes to forest structure with simulated GEDI data, showing the 

impacts that Hemlock Woolly Adelgid infestations can have in forests. Change metrics 

were computed between waveforms simulated from lidar collected at different dates. 

Plant area index (PAI) and relative height (RH) metrics were used in this study. They 

found a strong correlation between infested trees and reduced PAI and RH 

metrics (Boucher et al., 2020).   

Research by Potapov et al. (2021) used GEDI data and Landsat data to create a 

global forest canopy height map / data product for 2019 at a 30 meter spatial resolution. 

Local ALS lidar data was used to determine which RH metric was used for canopy height 

in different regions. Their regression tree machine learning model predicted a forest 

height value based on multispectral data from Landsat based on training data from GEDI 

RH metrics. Comparing their results to available GEDI data (not used for training the 

model) and ALS data yielded values R2 values of 0.62 and 0.61 with RMSE (root mean 

squared error) values of 6.6 meters and 9.07 meters and MAE (mean absolute error) 

values of 4.45 meters and 6.36 meters, respectively (Potapov et al., 2021).    

Recent research using 119 study sites in south-eastern Australia, demonstrated the 

impacts that logging and wildfires can have on the height and density of forest 
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vegetation. They used portable weather stations to monitor and collect data on air 

temperature, relative humidity, vapour pressure deficit and windspeed. As time since 

loggings increased, the relative humidity and fuel moisture increased. These changes 

were accompanied by decreasing windspeeds, temperature, vapour pressure deficit and 

lower Forest Fire Danger Index values (Wilson et al., 2022). Overall, their research 

showed that changes in vegetation structure attributed to logging, or, to a lesser extent, 

wildfires, increased the risk of fire (Wilson et al., 2022). In the context of this research, a 

better understanding of structural changes to vegetation structure is of heightened 

importance as it influences the risk for more wildfires.   

There are limited studies relating widely used burn indices to changes in 

vegetation structure due to wildfire over large areas.  Pre-fire and post-fire high quality 

lidar data for a study site are infrequently available, limiting the number of opportunities 

to study how lidar data evaluates changes to forest structure. The timing of GEDI’s 

presence collecting data from the ISS allows for a novel lidar based derivation of changes 

in forest structure metrics and for a comparison to frequently used satellite derived 

spectral indices.    

3. RESEARCH QUESTIONS 

This research aims to answer 4 research questions:  

1. How do observed changes in vegetation structure relate to spectral indices of 

burn severity? Changes in GEDI metrics might be correlated with commonly derived 

satellite indices that use changes in spectral signatures to derive and quantify burn 

severity. GEDI could capture changes in a manner unable to be captured with passive 
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remote sensing techniques. GEDI metrics related to the understory are essentially 

observing a different target than the TOC measurements recorded by optical imagery.   

2. What differences can be observed in GEDI metrics between pre-fire and post-

fire footprints? GEDI RH metrics, vertical profile metrics, and canopy cover estimates 

have never (to our best awareness) been used to evaluate fire-induced changes. It is 

unknown how each different GEDI metric will measure the changes.  

3. Which of the GEDI metrics offer the most insight into fire-induced changes in 

vegetation structure? Certain GEDI metrics might respond more directly to changes in 

vegetation structure depending on the vertical location in the forest that the fire occurred. 

Fires do not always impact the forest all the way up to the canopy; depending on the 

conditions and availability of fuel, fires can burn more intensely in the understory or 

amongst shrubs.   

4. What changes do GEDI L4A above ground biomass density estimations show, 

and can they be used to derive carbon emissions estimations? Accurate biomass 

estimations allow for direct derivations of carbon emissions. GEDI’s primary science 

goal is the creation of accurate above ground biomass density (AGBD) estimates 

(Duncanson et al., 2022), this research offers a unique perspective on how those data 

reflect fire-induced changes in forest structure. 

4. MATERIALS AND METHODS 

The methods used in this study are broken down into five components. First, the 

MODIS burned area product is used to identify when and where fires took place 

surrounding the identified study area of the Gondwana Rainforests located in New South 
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Wales, Australia. Second, using the burn dates identified, appropriate Landsat 8 data is 

downloaded and used to calculate the burn indices used in this study. Next, L2A, L2B, 

and L4A GEDI data are downloaded and separated into pre-fire and post-fire datasets for 

each study area. The GEDI data is then filtered based on quality flags, slope, and to 

include only records from within nine months pre and post burn. 5 km2 grid cells are 

created for each study area and only those with a minimum of 50 GEDI footprints for 

both before and after are retained for processing. The remaining data are then used for 

change analyses.   

4.1 Study Area 

This study uses Willi Willi National Park and Werrikimbe National Park as a 

conjoined primary study area, referred to as Study Area 1 (SA1). The entirety of Willi 

Willi National Park is classified as temperate mountain system (TeM) according to the 

Food and Agricultural Organization (FAO) of the UN, while Werrikimbe National Park 

is mostly TeM and partly subtropical humid forest (SCf). 88% and 96% of the land in 

Willi Willi National Park and Werrikimbe National Park, respectively, were affected by 

fire during the 2019-2020 fire season (Commonwealth of Australia, Department of 

Agriculture, Water and the Environment, 2020). The average annual rainfalls for the 

national parks in SA1 are between 1000-1500 mm per year (Australian Government 

Bureau of Meteorology, n.d.). Average annual rainfall in Barrington Tops National Park 

(SA2) ranges between 1000 and 2000 mm (Barrington Tops National Park, Mount Royal 

National Park and Barrington Tops State Conservation Area Plan of Management, 

2022). Werrikimbe National Park has an average summer temperature between 16°C and 
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29°C, while winter temperatures average between 5°C and 20°C (Werrikimbe 

National Park | Visitor Info, n.d.). Willi Willi National Park has less variation in its 

average temperatures, with the average for summer being between 26°C and 28°C 

and winter between 16°C and 20°C (Willi Willi National Park | Visitor Info, n.d.). 

Willi Willi National Park, and other areas affected by the fires, hold cultural significance 

to indigenous tribes such as the Dunghutti Aboriginals (Office of Environment & 

Heritage, 2011). 23 of the plants native to Willi Willi National Park are considered 

threatened (Office of Environment & Heritage, 2011). According to the New South 

Wales National Parks and Wildlife Service, Werrikimbe National Park is home to more 

than 200 animal species and roughly 1000 different plant species, of which almost 30 are 

rare or threatened (Werrikimbe National Park | Learn More, n.d.).  
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Figure 2 Study Area 1 (SA1) overview map with grid cells, pre-fire, and post-fire GEDI points over a digital 

elevation model with hillshade 

 

 

 

Barrington Tops National Park is used as a control study area, referred to as Study 

Area 2 (SA2), its use as a control in this study is due to its lack of significant burns 

during the 2019-2020 fire season, with only 11% being considered fire-affected 

(Commonwealth of Australia, Department of Agriculture Water, and the Environment, 

2020). Both SA1 and SA2 are Gondwana Rainforests and are located roughly 100 km 

apart on the east coast of New South Wales, Australia between the cities of Sydney (to 

the south) and Brisbane (to the north).  
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Figure 3 Study Area 2 (SA2) overview map with grid cells, pre-fire, and post-fire GEDI points over a digital 

elevation model with hillshade 

 

 

 

4.2 MODIS Burned Area 

Using Willi Willi National Park and Werrikimbe National Park as a conjoined 

primary study area, the MODIS Burned Area Product was used to determine exactly 

when and where burns occurred. Google Earth Engine (GEE) was used to access and 

download this data. The MODIS Burn Area Product is produced with daily surface 
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reflectance values at 500 meters spatial resolution from both Terra and Aqua platforms 

(Giglio et al., 2020). The algorithm uses surface reflectance values to identify areas of 

rapid change in conjunction with a vegetation index that is sensitive to burns, using bands 

5 and 7. MODIS band 5 is located in the shortwave infrared (SWIR) region of the 

electromagnetic spectrum, from 1230-1250 nm. Band 7 also operates in the SWIR region, 

from 2105–2155 nm. See Table 1 for a complete list of the bands used in this study and 

related information. Atmospheric corrections have been applied to the associated band 

data. For areas the algorithm identifies as burned, the Julian day is assigned as the value 

for that pixel. Areas that are not flagged as burned have a value of 0. Inspection of the 

dataset across the study areas reveals when each study area experienced burning to 

determine the “before” and “after” dates for all other date-based data filtering.  

 

 

 
Table 1 Satellite systems and the bands used in this study 

Sensor Band name 
Wavelength 

(nm) 

Spatial 

Resolution 

(m) 

MODIS 
5 – SWIR 1230-1250 500 

7 – SWIR 2105-2155 500 

Landsat 8 

4 – Red 630-680 30 

5 – NIR 845-885 30 

7 – SWIR 2100-2300 30 

 

4.3 Landsat 8 spectral indices 

GEE is used to access Landsat 8 data and generate the two spectral indices used in 

this study: the Normalized Burn Ratio (NBR) and the Normalized Difference Vegetation 
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Index (NDVI). The NBR is calculated using one NIR and one SWIR channel. For 

Landsat 8, the NIR reflectance is obtained with band 5, and the SWIR reflectance with 

band 7. The NBR results for Landsat 8 will have a spatial resolution of 30 meters. The 

NBR is then computed as follows (Hudak et al., 2007):  

 

Equation 1 Normalized Burn Ratio (NBR) calculation 

𝑁𝐵𝑅 =
(𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅)

(𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅)
 

 

NDVI values will then be computed for each sensor for the pre-fire and post-fire 

data. NDVI requires a red reflectance band and a NIR reflectance band. Landsat 8 utilizes 

band 4 for recording red reflectance. The following equation is used for NDVI (Huang et 

al., 2021):  

 

Equation 2 Normalized Difference Vegetation Index (NDVI) calculation 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)
 

 

These calculations were all performed in GEE. The NBR and NDVI were 

calculated twice each, once for pre-fire and once for post-fire. The pre-fire calculations 

used the monthly average values for September 2019; the earliest recorded burn date in 

the study area was in October. The post-fire calculations used the monthly average values 

for January 2020, as the last burn date for SA1 was in December 2019.  

4.4 GEDI Data 

The University of Maryland has led the GEDI mission since it was selected as a 

NASA Earth Ventures Instrument (EVI). GEDI was launched with the hope of furthering 
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our ability to characterize and understand the effects of climate change on ecosystem 

structures and dynamics. The instrument allows us to better quantify and understand 

carbon and water cycling processes. GEDI is based on the International Space Station 

(ISS), in the Japanese Experiment Module. It began collecting full waveform large 

footprint LiDAR data in 2019. GEDI data coverage is limited to 51.6 degrees North and 

South due to the orbital constraints of the ISS. GEDI’s instrument consists of three lasers 

that emit 242 light pulses per second in the Near Infrared (NIR), at a wavelength of 1064 

nm. One of the lasers is a coverage laser and is split into two beams, the other two lasers 

are full power beams, together producing four beams. Through the use of Beam Dithering 

Units (BDUs) the angle of the outgoing beams are shifted by 1.5 mrad (1/1000th of a 

radian). In total, this produces eight ground tracks of data, four being full power tracks 

and four coverage tracks. The distance between one track to the next, generated from the 

same beam at the same angle is 60 meters, this is the along track distance. The distance 

between the ground tracks produced by different beams or angles is 600 meters, this is 

the across track distance, see Figure 2. For a more in depth look at the GEDI instrument, 

readers should examine (Dubayah et al., 2020). 
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Figure 4 Illustration of the ground sampling pattern that GEDI uses. The dashed lines represent the result of 

dithering each beam to produce 8 different ground tracks of data. There is a 60 meter distance between GEDI 

footprints along track and a 600 meter distance between GEDI footprints across track. 

 

 

 

Science data from the GEDI mission are all public and categorized at different 

levels. The algorithms, models, and physical theories behind these data products are 

elaborated on in the GEDI ATBD (Hofton & Blair, 2019). Level 1 (L1) and level 2 (L2) 

data are available through NASA’s Land Processes Distributed Active Archive Center 

(LPDAAC). L1A being the raw waveforms and L1B being the geolocated waveforms. 

L2A provides ground elevation, top of canopy height, and relative height (RH) metrics. 

L2B offers canopy cover fraction (CCF) and CCF profile, plant area index (PAI), plant 

area volume density (PAVD), and foliage height diversity (FHD). All L1 and L2 data 

have a resolution of 25 m (GEDI footprint diameter). GEDI level 4 data (L4) can be 
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downloaded from NASA’s Oak Ridge National Laboratory Distributed Active Archive 

Center (ORNLDAAC). L4A data provides users with aboveground biomass density 

(AGBD) estimates. Parametric models relating GEDI waveform relative heights metrics 

to field based AGBD estimates are used to derive the L4A data product (Dubayah, et al., 

2021). This study uses L2A, L2B and L4A GEDI data, which was downloaded from the 

NASA EARTHDATA SEARCH tool. Using RStudio, the data was downloaded as 

hdf5 files (this was done using the httr, getpass and GEDI4R R libraries) and then 

converted into point shapefiles using python. Each point in the shapefile represents a 

GEDI footprint on the ground with a diameter of 25 meters. Each GEDI footprint point 

feature in the shapefile has information extracted from the L2A and L2B hdf5 files, 

including important statistics for evaluating vegetation structure. One of those being the 

relative height (RH) values at different returned energy quantiles.   

An RH metric represents the height above the ground mode at which a specified 

quantile of energy is returned (Dubayah et al., 2020). To illustrate an example: an RH50 

value of 10 (meters) would be indicative of a waveform having 50% of its energy 

returned to the sensor at a height of 10 meters above the ground. RH metrics can be 

calculated at any percentage between 0 and 100. This study uses RH50, RH75, RH90, 

RH95, RH98, and RH100. The only data used from the L4A product are the AGBD 

estimates.  

Canopy cover is used to describe the spatially aggregated geometric properties of 

vegetation (Tang & Armston, 2019). Canopy cover as derived from GEDI observations is 

the canopy fractional cover (CFC) over the area where the sensor’s laser is incident and is 
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the percent of the ground that is covered by the vertical projection of canopy material 

(Tang & Armston, 2019). GEDI derived Plant Area Index (PAI) is similar to the more 

commonly used Leaf Area Index (LAI), where LAI is defined as half of the total leaf area 

per unit ground surface (Chen et al., 1997), and PAI is one half of the total plant area per 

unit ground surface. PAI is different from LAI in that it includes the branches, stems and 

trunks of plants in addition to leaves (Tang & Armston, 2019). The difference in PAI and 

LAI tends to be small, and LAI values can be derived from GEDI PAI values. Plant Area 

Volume Density (PAVD) are vertical structure profiles with a vertical resolution of 5 

meters (Tang & Armston, 2019) that indicate the areal density of vegetation for a given 

elevation or range of elevations (Griebel et al., 2015). PAVD profiles are calculated as a 

derivative of PAI for a specified height bin. Using vertical profiles of PAVD offer a 3-

dimensinoal view of crown dynamics (Griebel et al., 2015). The PAVD vertical profile 

height bins used here are shown in Table 2. PAVD has implications for canopy carbon 

storage (Tang et al., 2012). Detailed information about PAI and PAVD can be found 

elsewhere (Tang et al., 2012). FHD serves as a method to measure the complexity of 

canopy structure, it is also referred to as Shannon’s Diversity Index. Higher FHD values 

can be associated with more complex forest structure (Tang & Armston, 2019). FHD can 

be used as an indicator for the quality of wildlife habitats. 

 

 
 

Table 2 GEDI PAVD vertical profile height bins 

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 Bin 7 Bin 8 

0-5 

meters 

5-10 

meters 

10-15 

meters 

15-20 

meters 

20-25 

meters 

25-30 

meters 

30-35 

meters 

35-40 

meters 
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GEDI AGBD estimates, from the L4A data product, are not published for all 

GEDI footprints. Only the highest quality footprints based on a selection criterion that 

includes the collection timeframe being within one of GEDI’s “Golden Weeks” and that 

the footprints spatially overlap collection of previous LVIS lidar data. Additionally, 

GEDI footprints are only used if they meet standards for GEDI uncertainty metrics and 

quality flags. AGBD estimates are field-based values from different combinations of 

plant functional types and world regions. Parametric models using field-plot estimates of 

AGBD and GEDI RH metrics are used to derive the footprint level AGBD estimates. All 

AGBD values are in units of Mg/Ha (megagrams per hectare) (Dubayah, et al., 2022). 

Prior to any filtering or processing, the GEDI footprints represented as points 

were converted to polygons by buffering the points by 12.5 meters to produce a circular 

polygon with a diameter of 25 meters, the same as the diameter of GEDI footprints on the 

ground. Values from satellite imagery, or other raster products, were then extracted based 

on the average value within each GEDI footprint. For each pre-fire or post-fire GEDI 

footprint, pre-fire NBR and NDVI values were assigned by averaging their values over 

the entire footprint polygon.  

4.4.1 Filtering GEDI data for best results. The initial burn date from the MODIS 

Burned Area data product is used to determine the date for allocating data into the “pre-

fire” or “post-fire” categories. All GEDI data recorded on or after that date, including 

GEDI footprints collected over the study area during an active burn, are treated as post-

fire records. All GEDI data from before that date are considered pre-fire records. Areas 
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within the study area that did not experience burns are identified based on the MODIS 

Burn Area Product. GEDI data points overlapping these non-burn areas are flagged and 

not used in the statistical analyses. 

The accuracy of GEDI data is influenced by the slope of the terrain it is incident 

upon. A 2020 study using GEDI data in Spain, reported higher RMSE values with higher 

slopes (Quirós et al., 2021). Similarly, a 2021 study discussed the waveform broadening 

effect associated with terrain slope and the impact it has on AGBD estimates (Ni et al., 

2021). In accordance with these findings, GEDI footprints with an average slope value 

over 25◦ were removed from the study. The slope was generated from a 2-meter DEM 

from Australia’s Elevation Foundation Spatial Data. 

Additionally, GEDI data collected more than 270 days, or roughly nine months, 

before and after the recorded burn date were not used in the study. For the control area, 

where burns did not occur, the median burn date from SA1 was used as the determining 

date for limiting GEDI footprints used in SA2. Footprints collected within 270 days 

before and 270 days after the median burn date from SA1 were included.  

4.5 Grid Cells 

Since GEDI footprints will rarely directly overlap previously collected footprints, 

it is impossible to perform a direct comparison between pre-fire and post-fire collections 

in the same way it can be done with passive remote sensing systems that provide spatially 

continuous data products. Dividing the study area into grid cells and averaging the pre-

fire and post-fire values in each cell allows for percent change comparison. Tessellation 

squares of 5 km2 were created over SA1 with the ArcGIS Pro tool Generate Tessellation. 
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Only grid cells with a minimum of 50 GEDI footprints collected pre-fire and 50 post-fire 

were maintained and used in the study. All other grid cells and their overlapping GEDI 

points were not considered. This resulted in 20 grid cells with 2,196 pre-fire and 1,931 

post-fire GEDI footprints included in the analysis. The same process applied to SA2 

resulted in 25 grid cells having 2,245 pre-fire and 3,856 post-fire footprints. 

As discussed in 4.4, GEDI AGBD estimates are not available for all footprints, 

resulting in a smaller dataset being used for that component of this study. Accordingly, 

SA1 AGBD analyses are based on 1441 pre-fire footprints and 879 post-fire footprints. 

To maintain a minimum of 50 pre-fire and post-fire points for each grid cell, the number 

of cells used in SA1 was reduced to 10, compared to the 20 cells used for the analysis of 

all other variables. For SA2, this did not reduce the number of grid cells used and 

minimally impacted the number of footprints available for processing, with pre-fire 

footprints numbering and 3,816 post-fire footprints.  

5. RESULTS 

Overall, the comparisons of pre-fire and post-fire GEDI derived metrics indicate 

significant changes in vegetation structure due to the 2019-2020 fires. Similarly, and as 

expected, the two satellite imagery derived indices also indicate intense burns. However, 

most GEDI metrics do not correlate with the indices and illustrate a possible weakness in 

applications that evaluate fire impacts solely based on such spectral indices. For each grid 

cell, the average value for all the GEDI footprints contained in it was calculated for each 

of the GEDI metrics and the extracted spectral indices’ values: NBR, NDVI, RH50, 
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RH75, RH90, RH95, RH98, RH100, PAI, FHD, CCF, PAVD (for eight different vertical 

profile height bins), and AGBD. 

5.1 Satellite indices 

In SA1, average NBR values decreased by 61.3%, and NDVI values decreased by 

46% (Figure 5). SA2, showed a 0% change in both average NBR and NDVI values. 

These satellite metrics are not representative of the entire area; rather, they are a 

representative average based on their pixel values within the GEDI footprints used in the 

study. Percent change in NBR and NDVI were highly correlated, with a Pearson’s 

correlation coefficient of 0.91. Surprisingly, neither were correlated with percent change 

in any of the studied GEDI metrics, positively or negatively (Table 3). 
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 Figure 5 Boxplot of average Normalized Burn Ratio (NBR), on the left, and Normalized Difference Vegetation 

(NDVI), on the right, in SA1 with green representing pre-fire values and brown representing post-fire values 

 

 

 

The pre-fire NDVI values are high and associated with dense vegetation. Post-fire 

NDVI values are in line with NDVI values for very sparse vegetation (Brown, n.d.). Pre-

fire values are comparable to average NDVI values in the Amazon rainforest (Julien & 

Sobrino, 2009). Research has shown that differenced using NDVI (dNDVI) and NBR 

(dNBR) to evaluate burn severity score poorly in tall mixed forests, although no other 

indices performed higher (Tran et al., 2018).  
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5.2 GEDI vegetation metrics 

Relative Height metrics: 

Surprisingly, limited differences were observed between pre-fire and post-fire 

GEDI RH metrics. The largest changes were recorded in RH50 and RH75, which had 

average decreases of 12.7% and 5.1%. RH90, RH95, RH98, and RH100 all decreased by 

1% or less (Figures 6 and 7). The control area, SA2, showed minimal changes in all RH 

metrics, with a range of -1.2 to -3.5% (Figures 8). Amongst different forest types, GEDI 

RH98 has been shown to have its lowest performance in tall tree forest stands and in high 

cover forest types (Wang et al., 2022); consequently, the observed changes in RH metrics 

and the related derived AGBD will incur some level of inherent errors. 
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Figure 6 Percent change in each GEDI Relative Height (RH) metric in Study Area 1 
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Figure 7 Boxplot of GEDI Relative Height (RH) metrics in Study Area 1 
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Figure 8 Boxplot of GEDI Relative Height (RH) metrics in the control area 

 

 

 

Planet Area Index, Foliage Height Diversity and Canopy Cover Fraction:  

In SA1, the average PAI value decreased by 19.8%, compared to the control, 

where PAI was observed to have increased by 1.68%. Average FHD decreased by 2.5% 

in SA1 and 0.51% in SA2. The Average CCF value in SA1 decreased by 15.15% while 

the control showed an increase of 0.58% (Figure 9). Supplemental figures regarding these 

metrics can be found in the appendix.  

 



36 

 

 
Figure 9 Comparison of the percent change in GEDI observed Plant Area Index (PAI), Foliage Height Diversity 

(FHD) and Canopy Cover Fraction (CCF) in SA1 (shown in red) and in SA2, the control area (shown in green) 

 

Plant Area Volume Density: 

GEDI vertical profiles of PAVD showed the most dramatic change in response to 

the fires. Vertical height profile bins 1-5 (0-25 meters) averaged a 20.9% reduction in 

PAVD (Figure 10), these same profiles also had the highest average values for PAVD 

(Figure 11). The average loss in each PAVD bin increases from bin 1 through bin 3 (0-15 

meters), where the percent change peaks at -27.63. The percent change then steadily 
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decreases from bins 4 (15-20 meters) to bin 8 (35-40 meters). These trends are indicative 

of a fire that caused most of its damage in the understory and midstory of the forest, 

below the canopy. Conversely, the same analysis in SA2, the control, demonstrates 

changes in a forest spared from fire. The 15.7% increase in the 0-5 meter vertical profile 

bin (Figure 14 in appendix) could be attributed to new growth or differences in areas 

sampled by GEDI footprints. PAVD height bins above 40 meters were excluded from 

analysis as less than 50% of GEDI footprints in SA1 recorded any data for those values. 
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Figure 10 Percent change in GEDI Plant Area Volume Density (PAVD) by vertical profile height bin in Study 

Area 1 where each height bin has a vertical resolution of 5 meters and the bins range from 0-5 meters to 35-40 

meters 
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Figure 11 Boxplot of GEDI Plant area volume density (PAVD) showing pre-fire (green) and post-fire (brown) by 

vertical profile height bin in Study Area 1. Blue lines in boxes indicate the median value. 

 

Above Ground Biomass Density (AGBD): 

GEDI biomass (AGBD) estimates from L4A showed minimal changes. The 

average percent change in AGBD per grid cell was only -1.5% in SA1 (Table 3). While 

in SA2, the control area, percent change in AGBD was half that, at –0.76%. The GEDI 

footprints for which L4A AGBD data is available are more limited than the L2A data 

products used in this study. Since the algorithms used to generate the AGBD estimates 

are dependent on geographic variables and other GEDI data indicators, many of the L2A 

points used in analyzing other GEDI metrics did not have associated AGBD estimates 

(Duncanson et al., 2022; Kellner et al., 2022). GEDI AGBD estimations are mostly based 

on RH metrics, specifically RH98 (Duncanson et al., 2022), which also showed low 

percent change in SA1. The reliance on RH metrics and lack of inclusion of other GEDI 
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metrics, such as PAI and PAVD, could lead to limited observations of fire-induced 

changes in AGBD.  

 

Table 3 Summary statistics from SA1 and SA2 

*The Avg PC value represents the average percent change per grid cell, while the PC value represents the 

percent change between the pre-fire and post-fire averages for all grid cells  

 SA1 SA2 

Metric Pre-fire Post-fire Avg 

PC* 

PC* Pre-fire Post-fire Avg PC* PC* 

PAI 2.31 1.80 -19.08 -22.08 2.64 2.53 1.68 -4.17 

FHD 0.60 0.50 -2.50 -16.67 0.64 0.63 0.58 -1.56 

CCF 3.08 2.99 -15.15 -2.92 3.05 3.01 -0.51 -1.31 

RH50 8.55 6.93 -12.70 -18.95 11.13 9.37 -3.50 -15.81 

RH75 18.13 16.76 -5.10 -7.56 19.33 17.77 -2.98 -10.84 

RH90 23.88 23.33 -1.01 -2.30 24.97 22.71 -1.32 -9.05 

RH95 25.99 25.60 -0.38 -1.50 26.95 24.55 -1.20 -8.91 

RH98 27.54 27.18 -0.31 -1.31 28.46 25.88 -1.29 -9.07 

RH100 28.93 28.52 -0.40 -1.42 29.79 27.00 -1.49 -9.37 

NBR 0.62 0.24 -61.30 -61.29 0.08 0.08 0.00 0.00 

NDVI 0.63 0.34 -46.00 -46.03 0.11 0.11 0.00 0.00 

PAVD 1 0.09 0.08 -16.92 -16.48 0.99 0.11 15.70 -89.39 

PAVD 2 0.10 0.08 -23.23 -23.23 0.11 0.11 8.77 0.93 

PAVD 3 0.09 0.06 -27.63 -30.77 0.10 0.10 3.96 -3.06 

PAVD 4 0.07 0.05 -23.12 -30.30 0.07 0.07 0.73 -2.78 

PAVD 5 0.05 0.04 -13.65 -22.64 0.06 0.06 3.10 -5.08 

PAVD 6 0.05 0.04 -9.30 -15.56 0.05 0.05 1.79 -6.00 

PAVD 7 0.03 0.03 -7.74 -11.76 0.04 0.04 21.55 -12.50 

PAVD 8 0.02 0.02 -3.27 -5.26 0.03 0.02 545.16 -18.52 

AGBD 348.42 338.56 -1.50 -2.83 370.20 344.47 -0.76 -6.95 
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Table 4 Person’s correlation coefficients between pairs of variables in Study Area 1

 

 

 

 

Percent change in PAI was highly correlated with the PAVD height bins 3 and 4 

(10-15m and 15-20m) with Pearson’s correlation coefficients of 0.92, 0.88, respectively. 

CCF, which is related to PAI, had similarly high coefficients to PAVD height bins 3 and 

4: 0.83 and 0.88, respectively.  

The highest Pearson’s correlation coefficient for percent change in NDVI were 

0.54, 0.51, and 0.47 for RH90, RH95, and PAVD at the 35-40m height bin (bin 8), 

respectively. Aside from PAVD height bin 8, percent change for all other PAVD height 

bins had less than |0.23| correlation coefficient with percent change NDVI. Notably, 

PAVD height bins 2, 3 and 4 (5-10m, 10-15m, 15-20m), which exhibited the greatest 
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change amongst all studied GEDI metrics, had Pearson’s correlation coefficients of –

0.23, -0.13, and –0.07, respectively. Additionally, the percent change in AGBD was 

minimally correlated with a coefficient of 0.06.  

In SA1, observed percent change in NBR over GEDI footprints was most closely 

correlated to GEDI PAVD height bin 8 (35-40m) and RH90, with Pearson’s correlation 

coefficients of 0.49 and 0.3, respectively. PAVD height bins 2, 3, and 4 had coefficients 

of –0.08, -0.04, and –0.04, respectively. AGBD percent change had a correlation 

coefficient of –0.08. Percent change in GEDI AGBD correlates most closely with RH75, 

with a Pearson’s correlation coefficient of 0.87. This alone is not surprising since GEDI 

AGBD estimates are based more on RH metrics than any other GEDI metrics. However, 

it is surprising and noteworthy that AGBD values have such a wide range of correlation 

coefficients with the PAVD vertical profile height bins. Coefficients are as low as –0.32 

(0-5 meter height bin) and –0.14 (5-10 meter height bin) and as high as 0.87 and 0.86 

(15-20 meter and 20-25 meter height bins). The PAVD in the10-15 meter height bin, 

which recorded the highest average percent change, had a correlation coefficient of only 

0.39 with AGBD. The correlation coefficients indicate that changes in PAVD are not 

reflected well in changes in AGBD.  

6. DISCUSSION AND CONCLUSION 

Remote sensing has been widely used to locate active fires, map fire perimeters, 

and estimate burn severity (Wooster et al., 2021), however, the results from this study 

demonstrate the new capability of GEDI to quantify the structural impacts of wildfires. 

The Gondwana Rainforests, a UN Educational, Scientific and Cultural Organization 
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(UNESCO) World Heritage site, are an ancient ecosystem, which have remained 

relatively unchanged since Australia began to break apart from Antarctica, 40 million 

years ago. The Gondwana Rainforests burn incredibly rarely, in fact most of the areas 

impacted by the 2019-2020 fires had never burned in recorded history (Fisher et al., 

2021), and the long-term effects of the discussed fires are still unknown. No other place 

in the world has more threatened rainforest plant species than the Gondwana Rainforests 

of Australia (Kooyman et al., 2020). It has been determined that at least 113 endemic 

animal species had 30% or more of their range impacted by these fires (Commonwealth 

of Australia, Department of Agriculture, Water and the Environment, 2020). Lee et al. 

demonstrated the vulnerability of the Gondwana Rainforests to fires through the response 

of bird species to the 2019-2020 fires (Lee et al., 2022). They found that bird diversity 

was lower in burnt rainforests compared to unburnt rainforests. Laidlaw et al. found that 

satellite-based burn severity mapping in Gondwana Rainforests underestimated the 

severity of the fires’ ecological impacts, largely because Rainforests are fire sensitive 

(Laidlaw et al., 2022), in opposition to the Eucalypt forests which are commonly subject 

to fires in Australia. They point out that detecting disturbances in tall, closed-canopy 

forests, like the Gondwana Rainforests are most reliable when there has been significant 

canopy loss. In an effort to quantify the species-level impacts of fires on wildlife in fire-

sensitive environments, Law and coauthors found that the golden-tipped bat Phoniscus 

papuensis had lower occupancy rates in burnt rainforest, mostly due to loss of habitat 

(Law et al., 2022). New research has also shown that some rainforest plants are fire-

resistant and influx on new species as shown through a 22% increase in woody plant 
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species richness during recovery following the fire. This was attributed to new seedlings 

and high resprouting rates (Baker et al., 2022). As climate change exacerbates the threat 

of new fires in these ecosystems, the importance of understanding the full extent of their 

impacts is important for the conservation of the Gondwana Rainforests.    

GEDI, an active remote sensing system that acquired data both before and after 

the devastating 2019-2020 fires in Australia, offers a unique opportunity to use space-

borne lidar data to investigate and quantify the impacts of forest fires on vegetation 

structure, biomass and thus potentially carbon emissions. This study shows that GEDI 

metrics are able to characterize the impacts of fires and illustrates that structural changes 

were more evident at lower levels of the canopy, rather than at top of canopy, which is 

the target most optical remote sensing techniques observe. Since GEDI is a sampling 

mission and the collection process produces spatially discontinuous footprints along 

tracks, there is an inherent amount of uncertainty introduced into the multi-temporal 

statistical analyses, as the time series of footprints do not overlap exactly. GEDI data 

must therefore be aggregated at various gridded levels to allow for spatial estimations and 

statistical comparisons (Patterson et al., 2019). 

Research Question 1: How do GEDI observed changes in vegetation structure 

relate to spectral indices of burn severity? 

In our study area (SA1), Landsat-derived NBR decreased at an average of 61.3%, 

and NDVI at 46% (Table 3), while the control showed no percent change in either 

satellite metric. While NDVI and NBR both showed changes in the spectral response of 

vegetation that are attributed to the damage caused by the fires, they do not correlate well 



45 

 

with any changes in GEDI structural metrics. The highest Pearson’s correlation 

coefficient observed for percent change in NBR was 0.47, for percent change in PAVD 

vertical profile height bin 8 (35-40 meters). Percent change in NDVI had correlation 

coefficients of 0.54, 0.51, 0.46, and 0.49 for RH90, RH95, RH98 and PAVD bin 8, 

respectively (Table 4). The GEDI metrics with the highest correlation coefficients to the 

studied indicices, while still low, are all tightly linked to vegetation structure at or near 

the top of canopy. The passive remote sensing techniques used to assess fire impacts, 

such as NBR and NDVI, only measure the changes in canopy reflectance from above. 

They effectively capture the loss of green, healthy vegetation and any accumulation of 

black soot from burnt vegetation. When observations are made over largely intact, green 

canopies, where the understory and or midstory are burnt, the observed spectral signature 

may not reflect structural changes below the canopy (Lentile et al., 2009).  

Research Question 2: What differences can be observed in GEDI metrics between 

pre-fire and post-fire footprints? & Research Question 3: Which of the GEDI metrics 

offer the most insight into fire-induced changes in vegetation structure? 

GEDI Relative Height (RH) metrics are commonly used for characterizing 

vegetation structure from large-footprint lidar and offer metrics related to biomass 

estimations. Each RH metric is defined as the distance between the detected ground 

elevation (the lowest mode in the full waveform for each GEDI footprint) and the n% 

accumulated waveform energy, where n is between 1 and 100 (Wang et al., 2022). RH50 

exhibited the greatest percent change with an average of -12.70% followed by RH75 with 

percent change of -5.10%. RH90, RH95, RH98, and RH100 had average percent changes 
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between -1 and -0.3, as the magnitude of change decreases with each increase in 

accumulated energy. The overall magnitude of change in RH metrics is much lower than 

observed in other GEDI metrics. RH90 through RH100 represent vegetation close to or at 

the top of the canopy, while the most notable changes in PAVD occurred at lower levels 

of the forest. Therefore, minimal changes in high RH metrics are not surprising. 

However, the lack of recorded change in RH metrics will impact AGBD estimations that 

rely exclusively on GEDI RH metrics during its calculation (discussed further below).  

Plant Area Index (PAI) was observed to exhibit significant decreases, with an 

average percent change of -19.08 in SA1. PAI is intrinsically related to CCF and PAVD 

and their relationship is exhibited through the correlation analyses, where PAI has an 

average Pearson’s correlation coefficient of 0.69 with highs of 0.92 and 0.88 at the 10-15 

meter and 15-20 meter vertical profile bins, respectively, and a coefficient of 0.95 with 

CCF (Table 4). Derivations of these metrics are related to estimates of vertical canopy 

directional gap probability (Tang & Armston, 2019), for GEDI data this was derived 

based on Ni-Meister et al., using gap probability as a complement of vertical canopy 

profile (2001). However, it is poorly correlated with vertical profiles close to the ground 

and at the canopy level. Foliage Height Diversity (FHD) showed a minimal decrease due 

to fire in SA1, with an average of -2.5%. Since FHD offers insight into the heterogeneity 

of the vertical foliage profile, differences in sampling will have large impacts on this 

variable (Tang & Armston, 2019). Decreases in FHD can show a loss of complex canopy 

structure which can have ecological impacts such as the loss of biodiversity. However, 

surprisingly, FHD showed minimal change due to the fire. GEDI CCF essentially 
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provides the percent of the ground over which there is some canopy material, that being 

stems, leaves and branches (Tang & Armston, 2019). CCF values showed significant 

change with average percent changes of -15.15. 

In this study, GEDI best captured changes in forest structure with the vertical 

profiles of Plant Area Volume Density (PAVD), effectively quantifying the density of 

vegetation in a 3-dimensional voxel at specific height elevations above the ground. GEDI 

PAVD values across all 8 vertical profile height bins averaged a decrease of 15.61%, 

with the 5-20 meter PAVD elevation profiles having an average decrease of 24.66%. 

These profiles also demonstrated the highest average PAVD values, showing that the 

fires severely impacted the most densely vegetated areas of the forest.  

Observations of lower average percent change in the higher PAVD vertical 

profiles align with the observations by Laidlaw et al. (2022) who asserted that tall, 

closed-canopy forests can experience disturbances at lower levels of the forest without 

impacting the upper canopy. GEDI recorded changes to PAVD offer insight into how the 

vegetation structure was changed in a way that cannot be measured with passive remote 

sensing techniques which largely sense the top of canopy reflectance and not the lower 

strata of the forest. The manner in which fire sensitive environments, such as the 

Gondwana Rainforests, are impacted by and respond to these large wildfires can be 

revolutionized by the addition of structural metrics from space-based lidar. 

Research Question 4: What changes do GEDI L4A above ground biomass density 

estimations show, and can they be used to derive carbon emissions estimations? 
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The models used to derive L4A, footprint level AGBD are developed per plant 

functional type (PFT) and geographic region and rely heavily on inputs from GEDI RH 

metrics (Duncanson et al., 2022). Calculations for AGBD introduce additional 

uncertainty, much of which comes from the fundamental uncertainties associated with the 

spatial distribution of above ground biomass (Kellner et al., 2022). AGBD in the main 

study area, SA1, showed an average percent change of only -1.5, dropping from an 

average of 348.42 Mg/ha to 338.56 Mg/ha. Percent change in AGBD is correlated with 

Pearson’s correlation coefficients of at least 0.6 for all RH metrics, with the highest being 

0.87 and 0.7 for RH75 and RH90, respectively. Despite these high correlation 

coefficients, it had a correlation coefficient of just 0.39 with the 10-15 meter PAVD 

height bin, which had the greatest reduction in vegetation density and the highest average 

PAVD pre-fire. 

While relatively high correlations can be observed between AGBD and some 

PAVD vertical profiles, the minimal absolute change in AGBD raises concerns that it 

might not be accurately modelling the forest biomass in tall, closed-canopy rainforest 

containing significant midstory and understory. While Duncanson et al. try to limit the 

number of variables they use in the GEDI AGBD algorithms, RH98 is included in all of 

them and contributed the most information to the models' predictions (Duncanson et al., 

2022). In undisturbed forests, these variables might give consistent and reliable 

indications of AGBD. However, forests that have experienced fires or other disturbances 

that impact the vegetation at varying sub-canopy heights may not exhibit notable changes 

in RH98 and these impacts will not be reflected in RH-derived AGBD.  
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Reliance on RH metrics in AGBD estimation algorithms may decrease the ability 

to predict changes in AGBD accurately and reliably. Other impactful events, such as the 

clear cutting of forests, where entire stands of trees are removed, will produce more 

reliable changes in AGBD. Assessing the impacts that changes in land use (in this case 

changes due to fire) have on atmospheric concentrations of carbon dioxide requires 

estimations of AGBD (Dubayah et al., 2022). In their process of deriving optimal models, 

lower RH metrics were included as potential variables. Perhaps forcing a low RH metric, 

such as RH50, into the algorithms, in the same manner that RH98 is forced, could 

introduce a viable means of ensuring AGBD estimates are able to reflect changes that 

occur in different levels of forestry. We recommend further research into AGBD 

algorithms that, in addition to RH metrics, consider the inclusion of other GEDI 

vegetation structure metrics that would accurately capture changes in carbon stocks 

derived from AGBD and consequently carbon dioxide emissions to the atmosphere. 

Conclusion 

At time of writing, this study was the first to demonstrate GEDI’s ability to 

characterize fire impacts on forest structure, anywhere in the world, but we anticipate that 

this approach will become commonplace. GEDI PAVD vertical profiles between 5 and 

15 meters exhibit the greatest impact, while the more well-known lidar derived RH 

metrics showed very limited impacts. As a result, RH-derived GEDI footprint level 

AGBD estimates did not capture the significant changes to biomass that took place 

during these fires. Consequently, GEDI AGBD based calculations for carbon emissions 

and carbon stock losses due to the fires will not be accurate. In order to be able to rely on 
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these data products to derive meaningful conclusions on carbon loss, further research will 

need to investigate the inclusion of GEDI metrics that are indeed sensitive to the impact 

of sub-canopy wildfires. We anticipate that GEDI data, or other full waveform lidar data, 

will in future, be regularly incorporated into assessments of fire severity and impact. This 

will contribute to developing an understanding of how Gondwana Rainforests respond to 

fires and how to best mitigate the impacts on carbon stock and wildlife habitat. 
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APPENDIX 

Appendix of supplemental figures not included in main body.  

 

 
Figure 22 Boxplot of average Normalized Burn Ratio (NBR), on the left, and Normalized Difference Vegetation 

(NDVI), on the right, in SA2 with green representing pre-fire values and brown representing post-fire values 
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Figure 33 Percent change in each GEDI Relative Height (RH) metric in Study Area 2 
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Figure 44 Percent change in GEDI Plant Area Volume Density (PAVD) by vertical profile height bin in Study 

Area 2 where each height bin has a vertical resolution of 5 meters and the bins range from 0-5 meters to 35-40 

meters 
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Figure 55 Boxplot of GEDI Plant area volume density (PAVD) showing pre-fire (green) and post-fire (brown) by 

vertical profile height bin in Study Area 1. Blue lines in boxes indicate the median value. 
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Figure 66 Plant Area Index (PAI) values from SA1 
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Figure 77 Foliage Height Diversity (FHD) values from SA1 
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Figure 88 Canopy Cover Fraction (CCF) values from SA1 
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Figure 99 Plant Area Index (PAI) values from SA2 
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Figure 20 Foliage Height Diversity (FHD) values from SA2 
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Figure 21 Canopy Cover Fraction (CCF) values from SA2 
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Figure 22 Plant Area Index (PAI) scatterplot, SA1 
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Figure 23 Foliage Height Diversity (FHD) scatterplot, SA1 
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Figure 24 Canopy Cover Fraction (CCF) scatterplot, SA1 
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Figure 25 Plant Area Index (PAI) scatterplot, SA2 
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Figure 26 Foliage Height Diversity (FHD) scatterplot, SA2 
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Figure 27 Canopy Cover Fraction (CCF) scatterplot, SA2 
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