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ABSTRACT 

DEFLECTION MEASUREMENT THROUGH 3D POINT CLOUD ANALYSIS 

Bahman Moghaddame-Jafari, M.S. 

George Mason University, 2016 

Thesis Director: Dr. David Lattanzi 

  

Point cloud technology is now used in inspection of bridges and tunnels where it 

is desired to remotely measure the structure’s movements such as settlements and 

member deformations. Current methods of point cloud analysis for measuring structural 

deflections require meshing or line/curve fitting to the point cloud data. This step adds an 

error to the overall accuracy of this technology and is not computationally stable. This 

study presents a novel method in measuring structural deflections through a per-point 

sampling method in which the point cloud is directly analyzed without the need for 

meshing or line/curve fitting. The 3D point cloud data is collected using Photogrammetry 

and the Structure-from-Motion (SfM) algorithm. The deflections are computed using 

Cloud-to-Cloud (C2C) distance measurement and Multiscale Model to Model Cloud 

Comparison (M3C2) algorithms. Through three-point flexural testing, series of aluminum 

specimens were deflected for validation. Two different statistical methods were used to 

determine the deflections along the member. The results indicate sub-millimeter accuracy 
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in measuring vertical deflection. Furthermore, results suggest that this technique can be a 

tool to update locally the structure’s Finite Element Model to account for deformations in 

the structure. 
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CHAPTER 1: INTRODUCTION 

Motivation: 
Accurate and rapid condition assessment of in-service infrastructure systems is 

critical for system-wide prioritization decisions. Recently, three-dimensional (3D) 

scanning has seen expanded use as a modern tool for this purpose. In this context, the 

results of a 3D scan, referred to as point clouds, can produce highly accurate 3D 

representations of the in-situ conditions for a given structure that can be leveraged in a 

variety of ways. The most straightforward approach is to use such 3D scans as a visual 

record at a given inspection interval. However, it is also possible to computationally 

compare 3D point cloud reconstructions from consecutive inspection intervals to assess 

time-dependent phenomena such as changes in boundary conditions or long-term strain 

effects as theses effects directly affect the load-carrying capacity of the structure. 

Moreover, in the inspection of bridge clearances, often it is needed to close or restrict the 

road under the bridge. This could be challenging when the road has high annual daily 

traffic. 3D scan can be used to inspect and monitor bridge clearances from the side 

shoulders without the need to restrict or close the road.  

There are several methods to generate dense 3D point clouds (Fathi, Dai, and 

Lourakis 2015). Light Detection And Ranging (LiDAR) is the most common, and a well-

established tool in generating point cloud data in the domains of civil surveying and 

construction, with many commercially available options. However, LiDAR systems can 
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be expensive and susceptible to damage in industrial environments. In addition, these 

modern remote sensing systems have data collection limitations on sites with limited 

ground access. An alternative to this approach is to use photogrammetry, the process of 

taking measurements from images, to generate 3D point clouds. In particular, Dense 

Structure-from-Motion (DSfM) is capable of producing point clouds with comparable 

accuracy to those of LiDAR scans while being less expensive (Seitz et al. 2006). The 

general procedure of 3D reconstruction from 2D images can be broken down into 

following steps: (i) salient feature point extraction, (ii) robust image matching, (iii) sparse 

3D point cloud and (iv) dense point cloud reconstruction. DSfM can also easily be used 

in conjunction with cameras mounted on unmanned aerial vehicles (UAV) (Lattanzi and 

Miller 2015).  

The point clouds generated using DSfM have the necessary density to capture 

most of the details of a structure. Therefore, these point clouds could be generated at 

different instances in time and be compared with a reference point cloud to capture the 

structural deformations. How accurately these differences can be measured is still 

unknown and is the motivation for this study.  

Purpose of the Research:  
The main purpose for this study is to determine the accuracy of deformation 

measurement through point cloud analysis in structural elements. To achieve this, a 

sampled-based algorithm was developed. It uses a combination of a direct point-wise 

distance metric in conjunction with statistical sampling to extract structural deformations.  

The algorithm was tested on series of laboratory experiments designed to test the 
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proposed approach and the results are presented. As 3D data is becoming more applicable 

among various industries, specifically Construction and Asset Management, this 

contribution is introducing a new tool to advance structural inspection documentation as 

it provides a tool to accurately keep track of any movements in the structure.  

Thesis Organization:  
The thesis is organized in the following manner. Chapter 2 reviews the related 

work. The related work in this thesis pertains to the state of the art techniques and 

computer algorithms in generating and measuring point clouds. Chapter 3 reviews the 

methods used to generate the point clouds as well as the developed measurement 

algorithms. Chapter 4 overviews experimental validation procedures including the test 

apparatus and equipment used to generate the raw data. Also, it presents the results and 

assessment of each method along with providing a more detailed explanation of the 

findings. Chapter 5 concludes the study and provides recommendations for advancement 

and future work.  
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CHAPTER 2: LITERATURE REVIEW 

Point Clouds in Engineering: 
3D point cloud techniques have been used in a broad range of inspection and 

assessment scenarios in various industries. For instance, Gonzalez-Aguilera et al. 

(González-Aguilera et al. 2013) tested a close-range photogrammetric system to measure 

vehicles surface areas for condition inspection. The results indicate the values obtained 

from close-range photogrammetry are clearly better than the conventional method of 

using measuring tape in terms of time and cost. Baek et al. (Baek, Cho, and Bang 2014) 

used point clouds in wheel alignment inspection systems for vehicles. A simple and 

inexpensive method was developed using a consumer-grade depth-sensing camera to get 

the point cloud data in real-time and conduct the inspection. The experimental results 

showed that the proposed method provides satisfactory performance. The authors in this 

study claim that point cloud data has a great potential to be an effective alternative to 

existing wheel alignment inspection methods. In another case study by Li et al. (Li, Zhou, 

and Yan 2015) improvements were made in the point cloud-based inspection of blades in 

aviation, gas, and jet engines.  

Point Clouds in Civil Engineering: 
Recently, researchers have led an effort to expand the use of these modern remote 

sensing technologies to broader civil infrastructure applications. Transportation agencies 

have used 3D modeling as an additional component of Building Information Modeling 
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(BIM) systems to track the as-built conditions of structures (Pătrăucean et al. 2015). In 

the case of infrastructure condition assessment, accurately acquiring the geometric 

information of the structure is a critical parameter. Yilmaturk et al. (Yılmaztürk, Kulur, 

and Terzi 2010) used close-range digital photogrammetry to measure and monitor 

deflections in buried flexible pipes. The authors were successful in determining the load-

deflection behavior of buried flexible pipes and recognizing this method as a reliable and 

accurate technique to monitor the pipes in near real time under load conditions. 

Moreover, Valença et al. (Valença et al. 2013) has developed an automatic monitoring 

system using photogrammetry and image processing for detecting surface cracks in 

concrete. The developed method in Valença’s research was able to find the pattern and 

characterize the surface cracks. Chen et al. (Chen, Garbatov, and Soares 2011) 

investigated the possibility of using photogrammetry to measure weld-induced 

deformations in a box girder. Cabaleiro et at. (Manuel Cabaleiro et al., n.d.) developed an 

algorithm to analyze geometric properties of cross-section of timber beams with section 

loss due to damage. In this study, LiDAR data was used to determine the new section 

properties of the damaged beam to check the stresses and member capacity. In recent 

years, significant progress has been made in image-based 3D reconstruction techniques to 

overcome/lessen the conventional limitations of these algorithms. Khaloo and Lattanzi 

(Khaloo and Lattanzi 2015) developed the Hierarchical Point Cloud Generation (HPCG) 

process, designed to generate high-resolution point clouds suitable for structural 

inspection applications. Their proposed method uses images from different scales and 
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resolutions to generate highly dense and less noisy point clouds capable of resolving 0.1 

mm details.  

Measuring Structural Deflections in Point Clouds: 
A LiDAR system approach was designed and used to measure bridge deflections 

by Fuchs et al. (Fuchs et al. 2004). The developed method described several applications 

of high-resolution LiDAR systems, most importantly for deflection measurements during 

in-service bridge static load testing. Cabaleiro et al. (M. Cabaleiro et al. 2015a) developed 

an algorithm to measure and model beam deflections from LiDAR-based point cloud data 

and determine if the deformations were within limits established by structural codes. 

Several studies have evaluated the accuracy and efficiency of remote sensing techniques, 

in particular LiDAR, as a potential method for measuring bridge clearance through 

manipulation of the dense 3D point cloud data (Liu, Chen, and Hasuer 2012; Watson et 

al. 2011; Bian et al. 2012; Jiang and Jauregui 2010). The study by Jiang and Jauregui 

used digital close-range photogrammetry to measure deflections in a bridge 

superstructure. The accuracy of Jiang’s method was comparable to that of the 

conventional surveying equipment (total station) with significantly lower cost and 

fieldwork. However, the proposed system in Jiang’s work has a typical limitation of the 

photogrammetric techniques, which is camera calibration. The developed method in this 

work does not require camera calibration and eliminates this typical limitation of 

photogrammetric techniques. Cabaleiro et al. (M. Cabaleiro et al. 2015b) considered 

using LiDAR data to develop an automated methodology to measure the torsional and 

bending deformation in metal beams and also determine the associated stresses within a 
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reasonable error. One of the main limitations of the proposed method was the 

implementation of polynomial surface fitting to a beam flange prior to deformation 

analysis, which can result in erroneous measurement in the presence of noise, or if there 

is missing data in the point cloud.  

Research Need and Focus of this Study:  
Based on the provided literature review, the idea of using 3D point clouds to 

measure deformations for inspection and monitoring purposes has been the interest of 

many fields and industries including structural engineering. However, current methods in 

point cloud data (PCD) analysis are limited and require the PCD to be meshed or fitted by 

a line/curve. This step adds an error and reduces the overall accuracy of the technique. In 

addition, in the current methods the PCDs are not scalable for larger structures. In the 

prior studies, the PCD is compared against an ideal undeformed shape of an element, 

which does not directly provide the change between the two inspections intervals. 

Therefore, there is a need for point cloud measurement method that addresses these 

limitations.  

The focus of this study is to create and test a new analytical method that measures 

deformations directly from the point cloud data at the resolution level of the raw point 

cloud without meshing or line/curve fitting, in order to maximize data integrity and 

minimize the error in sample-based approach. Moreover, the developed technique can 

directly compare the two point clouds of an element from two different inspection 

intervals. This provides the ability to directly keep track of deformations from the 

previous inspections. Furthermore, this study compares the two dominant distance 
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measurements in PCD, the C2C and M3C2 algorithms, and recommends the best practice 

for structural deflection measurement based on a series of standard laboratory scale 

flexural experiments.  
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CHAPTER 3: METHODOLOGY 

In this chapter, in order to improve upon the current methods used for PCD 

comparison, it is first necessary to understand how the raw point cloud data is developed 

through photogrammetry. Following this discussion, the chapter will present a  new point 

cloud measurement technique, which includes preprocessing, point cloud comparisons, 

and several tested cloud-sampling approaches to measurement.  

 

 

Figure 1. Flowchart of the point cloud measurement process 
 

 Figure 1 shows an overall flowchart of the approach. Point clouds of the 

undeformed and deformed specimens must first be generated for comparison. This way 

the two point clouds can be superimposed to measure the deflection. The developed 

approach is applicable for both LiDAR and photogrammetric point cloud generation 

methods. In this work point clouds were generated using DSfM to validate the proposed 
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cost-effective photogrammetric alternative to LiDAR in generating high-resolution 3D 

point cloud data using a consumer-grade digital camera.  

Point Cloud Generation:  
Dense Structure-from-motion (DSfM) (Westoby et al. 2012) is a revolutionary, 

low-cost, user-friendly photogrammetric technique for obtaining high-resolution point 

cloud data. DSfM is an automated technique to generate three-dimensional (3D) models 

of a structure from sequence of two-dimensional stereoscopic images (Figure 2). In 

contrast with traditional softcopy photogrammetric methods, in which it requires the 3D 

location and pose of the cameras, the DSfM method solves the camera pose and scene 

geometry simultaneously using a highly redundant bundle adjustment based on matching 

features in stereoscopic images. Stereoscopy is a method in which two images of the 

same object taken at slightly different position are viewed side-by-side to create an 

impression of depth and solidity. The result is the precise positions of the cameras in 

space and a dense set of 3D points that includes all fine details of the object of interest.  

 

 

Figure 2, Sequence of two-dimensional stereoscopic images taken for 3D reconstruction using DSfM algorithm 
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DSfM has many practical applications, yet still is an active research area. Some 

DSfM applications are still in their early stages of development whereas others are 

quickly becoming commercially practical techniques in industry, for instance, in 3D 

Model Reconstruction, 3D Motion Matching, and Robotics. Studies have been done 

employing different camera specifications, such as wide-lens, fisheye, stereo, 

catadioptric, pinhole, and multi-camera systems (Mouragnon et al. 2009). Each camera 

and lens has its own strength and weakness, which directly affects the quality of DSfM 

results and should be selected relative to the desired outcome.  

Point Cloud Pre-processing:  
The point clouds are pre-processed to improve the accuracy of the analysis. First, 

the feature of interest needs to be separated from the rest of the cloud; therefore, 

extraneous points in the clouds are cropped out. In addition, by applying the statistical 

outlier removal proposed in (Rusu et al. 2008) unwanted noise in the final 3D 

reconstructions is detected and removed to minimize point cloud registration failures. The 

outlier removal module detects these irregularities by computing the mean μ and standard 

deviation σ of nearest neighbor distances, and trimming the points, which fall outside of 

μ±ασ. The value of α depends on the size of the analyzed neighborhood. This also 

improves computational speed, as the algorithm has fewer points to analyze. Second, the 

point clouds must be dimensionally scaled using a known distance metric on the 

structure.  
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Cloud Registration:  
The deformed and undeformed point clouds are then automatically aligned and 

registered against each other using the Iterative Closest Point (ICP) algorithm (Besl and 

McKay 1992). The overall aim of the ICP algorithm is to estimate a rigid transformation 

between pi ∈ P, a point from the reference 3D point cloud, and qi ∈ Q, a point from the 

target point cloud. By using Nearest Neighbors search and Euclidean distance 

calculation, the algorithm estimates the closest point between pi and qi as correspondence 

points. In order to calculate the rotation R and translation t between pi and qi, ICP uses an 

error function as in Equation 1 to minimize the sum of square distances. 

 

 

Figure 3. Correspondence estimation between undeformed reference cloud P (red) and deformed cloud Q (blue) 
 

Equation 1. Error function  

𝐸𝐸(𝑅𝑅, 𝑡𝑡) = min
𝑅𝑅,𝑡𝑡

�‖𝑝𝑝𝑖𝑖 − (𝑅𝑅𝑞𝑞𝑖𝑖 + 𝑡𝑡)‖2
𝑖𝑖

 

 

This step can involve partial manual reconstruction; depending on how rough or 

fine of an alignment is desired. In this experiment, combination of manual and automatic 

P 

Q 
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registration is used. Once the two point clouds are spatially registered and scaled, they 

can then be compared against each other for deformation deviation analysis. 

Distance Measurement:  
While there are several approaches in literature for direct comparison of 3D points 

clouds, the two point cloud distance measurement algorithms, Cloud-to-Cloud (C2C) 

(Girardeau-Montaut et al. 2005a) and Multiscale Model to Model Cloud Compassion 

(M3C2) (Lague, Brodu, and Leroux 2013), were used to measure the deflections and plot 

the deformed shapes.  

C2C Algorithm:  
This method is the simplest direct method in comparing 3D point clouds. It does 

not require normal calculation or meshing of the data.  In this method, for each point of 

the compared cloud, the algorithm searches the nearest point in the reference cloud and 

computes their (Euclidean) distance (Figure 4). 

 

 

Figure 4. Distance measurement in Nearest Neighbor Search algorithm 
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Using the undeformed specimen as a reference, the nearest point in the spatially 

registered cloud of the deformed specimen is estimated and, for instance in C2C 

algorithm, the Hausdorff distance (Hossain et al. 2011) between the estimated 

correspondence points is then calculated. Hausdorff distance from set A to set B is a 

maxmin function defines, as 

 

Equation 2. Hausdorff distance 

𝐻𝐻(𝐴𝐴,𝐵𝐵) = max𝑎𝑎∈𝐴𝐴{min𝑏𝑏∈𝐵𝐵{𝑑𝑑(𝑎𝑎, 𝑏𝑏)}} 

 

where a and b are points of sets A and B respectively, and d(a,b) is any metric 

between these points. This provides a per-point deflection measurement in the case of 

beam deformations. These new proposed methods are dependent on the point density 

variations between 3D datasets, as they do not consider any implicit or explicit surface, 

but only points. In this study, the generated point clouds had relatively similar local 

density to minimize inaccuracy in distance measurements. The deformations between the 

point clouds are rendered as RGB heat maps (Figure 5) for illustrative purposes.  
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Figure 5. Calculated deflections along the span of the specimen 
 

M3C2 Algorithm:  
M3C2 distance calculation is based on set of core points for which distance and 

confidence interval are calculated. The core points are a sub-sample of the reference point 

cloud, which can be adjusted by setting minimum point spacing; however, all the 

calculations are performed on the raw data and only the result is presented on the core 

points. In M3C2, the normal vector is calculated for each point and sub-clouds that are 

defined by the intersection of the reference and compared clouds with a cylinder of 

diameter d (projection scale defined by user) and axis (i, N) (i is the core point and N is 

the normal at scale d). The intercept of each cloud with the cylinder defines two subsets 

of points that give two distributions of distances. The mean of the distributions gives the 

average position of the cloud along the normal direction.  

Figure 6 illustrates the two steps of the algorithm: Step 1: In this example, the 

normal is estimated from cloud 1. In the latter case the scale at which the cloud is the 

most planar will be selected. Step 2: 2 sub-clouds are defined by the intersection of the 
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reference and compared clouds with a cylinder of diameter d and axis (i, N). Each sub-

cloud is projected on the cylinder axis, which gives a distribution of distances along the 

normal direction. These are used to define the mean (or median) position of each cloud i1 

and i2. The local point cloud roughness r1(d) and r2(d) and size n1 and n2 of the 2 sub-

clouds are subsequently used to estimate a parametric local confidence interval.   

 

 

Figure 6. Principle of the Multiscale Model to Model Cloud Comparison (M3C2); (Lague, Brodu, and Leroux 
2013) 

 

The results can be shown as a heat map scale, which is the visualization of 

deformations in the compared point cloud (Figure 5).  

This scale may be used when high accuracy is not desired and deformations are 

large, for instance, deformations that are clearly visible. In addition to low accuracy of 

using the heat map scale, there were two other issues that needed to be addressed. After 

running the analysis, each point along the specimen at a given cross section would have a 

slightly different measurement of deformation. For instance, at quarter span there would 
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be deflections varying ±3 mm. In addition, at midspan the view of the specimen was 

obstructed due to some part of the testing frame and no data was captured at that region. 

Therefore, a statistical sampling method was developed to address theses two issues, in 

addition, to provide basis for an automatic deflection measurement technique.  

Region of Interest (ROI):  
In order to measure the deflections along the member, the data needed to be 

subdivided along the member. The point clouds were subdivided into smaller clouds 

herein referred to as region of interest (ROI). The number and width of each sub-point 

cloud were determined empirically by analyzing the histogram plots of each ROI. 

Initially, the histogram of the whole point clouds had multiple peaks, which was not 

suitable for the proposed sampling technique in this study. Therefore, the point clouds 

were subdivided to get a histogram at a specific ROI. It was found that the optimum 

width of each sub-point cloud that would have one peak was 6.35 mm (Figure 7).   

 

 

Figure 7. (a) Shows the beam before sub-dividing, (b) sub-divided point cloud of the beam 
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Histograms represent the underlying frequency distribution of a set of data. This 

allows the inspection of the data for its latent distribution (e.g., normal distribution), 

outliers, skewness, etc. Moreover, it summarizes large data sets graphically, which is a 

significant advantage in dealing with point clouds that contains large number of data 

points. Therefore, histogram analysis of point clouds was used to read the deflection 

values in each ROI.  

Point Sampling:  
Two statistical methods were used for deflection measurement in this study, 

which varies based on the accuracy and level of manual sampling effort. Initially, the 10-

point-sampling method was used for the sampling of C2C algorithm only. In this 

sampling technique, 10 points were selected at the ROI along the beam and the average 

was calculated to represent the deflection at that location. The second measurement 

technique involved analysis of the complete set of points at a given ROI. This is due to 

having multiple peaks in each ROI histogram plot as shown in Figure 8.  

 

 

Figure 8. Histogram plot of a ROI after running the C2C distance measurement 
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Chapter 3 reviewed a photogrammetric technique using DSfM algorithm to 

generate high-resolution point clouds suitable for monitoring applications and deflection 

measurement in structural elements. Thereafter, the steps required for preparing the data 

for distance measurement analysis that are C2C and M3C2 algorithms, are explained. 

Moreover, the developed sampling technique along with the need and details of creating 

region of interest in the data is described. In the next chapter, the experiment used to test 

the developed sampling technique is presented along with the results, findings, and 

discussions.  
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CHAPTER 4: EXPERIMENTAL ANALYSIS  

Experiment Procedure:  
In order to compare the accuracy of the C2C and M3C2 algorithms against 

conventional methods in measuring structural deflections, a series of flexural tests were 

designed. All flexural experiments were performed on a Tinius Olsen H50KT Universal 

Testing Machine (UTM), using a standard three point bending test setup (Figure 9). 

Aluminum specimens with rectangular cross-sections were tested in order to simplify the 

measurement and analysis process. Three specimens with different thicknesses were 

selected to explore the accuracy of the approach at various levels of deflection along with 

the effects of the object’s size in the analysis. The specimens were sequentially loaded up 

to 75% of the yield capacity, at increments of 10% of the maximum predicted deflection 

from the theoretical deflection of a simply supported beam.  

 

 

Figure 9. Three point bending test setup 
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First, point clouds of the undeflected specimens were generated using DSfM. The 

specimens were then loaded at intervals to cause controlled deflections. At each interval, 

point clouds of the deformed specimens were generated. Thereafter, the two supports in 

the three-point bending test were set to be the alignment points for the ICP algorithm as 

they are fixed with no movement in both stages (deflected and undeflected), enabling 

high accuracy reconstruction. After registration, each of the deformed point clouds was 

compared against the reference undeformed point cloud using the presented comparative 

measurement approach. Since the supports do not deflect in this setup, and at the force 

point of application (center), the cloud was not as dense due to obstruction in the data 

acquisition phase. This obstruction was to due to the UTM three-point bending test 

assembly at the midspan; these segments were excluded from the target set of ROIs 

(Figure 10).  

 

 

Figure 10. The segments in the cloud selected for analysis 
 

As mentioned earlier, all three specimens were deflected to 75% of their 

maximum elastic deflection (before yielding; the yielding point is based on the 

manufacturer’s reference) and then the deflection was decreased in set increments (10% 
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of maximum predicted deflection), seven times, for each specimen. Figure 11 shows each 

ROI along the specimen. The width of each ROI is 6.35 mm with an average of 44,000 

data points per ROI.  

 

 

Figure 11. Location of each ROI along the length 
 

The data was imported into MATLAB as text files for the statistical analysis. In 

each ROI, due to the limitations of the algorithms used for the analysis, only some 

portion of the points have the true deflection values, this was found by observing the 

histogram plots of each ROI. Therefore, percentile function was used to subdivide the 

data within each ROI (sub-point cloud). Figure 10 shows the segmented point cloud. 

Since the peak in the histogram plot is the deflection at a given ROI and it was observed 

there are multiple peaks in some ROI histograms, percentile function was used to isolate 

the one peak that corresponds to the true deflection. The percentile values used to 

estimate the true deflections were determined empirically. More detail is provided in ROI 

Analysis in MATLAB section.  
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Specimens:  
Table 1 shows the dimensions of the specimens used in this study.  

 

Table 1. Specimen's section properties 

Specimen Length (mm) Width (mm) Thickness (mm) 
Modulus of 
Elasticity 

(GPa) 
1 

203.2 25.4 
3.18 

69 2 6.35 
3 12.7 

 

Camera:  
The quality of any DSfM point cloud reconstruction is dependent on: (1) the 

imaging parameters, (2) the location of the camera for each image, (3) and the number of 

captured images. The camera model used for this experiment was a Nikon D800E 

equipped with a Nikon AF-S 50mm or AF-S 105mm lens. The images were taken with 

sensitivity (ISO) of 400 and the aperture set to f/8. A black photo backdrop was placed 

behind the UTM to help isolate the specimen from the background. 
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Figure 12. Camera and lenses used for data acquisition 
 

Data Acquisition:  
Taking photos from different angles and positions improves the accuracy of the 

DSfM reconstruction process and results in a more complete, denser and higher quality 

point cloud. Images were taken in two half-circle movements (Figure 13), first round 

with the 50mm lens and the second round with the close-up 105mm lens with roughly 70 

percent overlap between each image. By varying the focal length of the lens, different 

levels of detail can be captured and included in the 3D reconstruction. In this study an 

average of 60 images were taken for each set of point clouds, of which approximately 30 

were captured using 50mm lens and the rest with 105mm lens. 
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Figure 13. Camera positions during image acquisition, represented as blue rectangles 
 

Computer Programs:  
Agisoft PhotoScan (version 0.9.1 2013) was used to create the 3D point clouds. 

Agisoft employs an adaptation of the Semi-Global Matching algorithm (Hirschmuller 

2008) to generate dense reconstructions. In this study, all the images were down sampled 

by a factor of 2 to efficiently improve computation time and to minimize spurious image 

features. The dense reconstruction step was performed at “High” quality setting in order 

to maximize the final point cloud density. Seven point clouds for seven different 

deflection values were generated for all three specimens (3.18 mm, 6.35 mm, and 12.7 

mm), total of twenty-one point clouds (seven from each specimen). Each point cloud is 

made up of approximately 30,000,000 points with higher density in front and top, and 

lower density on the back of the specimen and at the point of load application.  
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Point Cloud Analysis:  
There are many computer programs to analyze point cloud data. In this study it 

was decided to utilize CloudCompare (version 2.6.1). Because, it provides various point 

cloud editing tools (i.e. segmenting, scaling, etc.) and it is open-source.  

 

 

Figure 14. 3D point cloud of a deflected specimen imported to CloudCompare 
 

In order to improve the efficiency in the analysis, the excessive parts of the point 

clouds, for instance the testing frame assemblies, were removed using CloudCompare 

segment tool. After removing the excessive parts, the average number of points in each 

point cloud was about 14,000,000 points. One undeflected point cloud (no load 

condition) was generated to serve as a reference for comparison. It was noted that some 

of the deflected point clouds do not have the same scale as the reference point cloud. 

Therefore, it was necessary to match the scale of the deflected point cloud to the 

reference point cloud before running the analysis. In order to accomplish this, the length 
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of the reference specimens was measured and scaled to the real dimension of the 

specimen, that is 203.2 mm. Then, the length of the unscaled point clouds were measured 

and divided by the original length to get the scaling factor. Next, by using the 

multiply/scale tool in CloudCompare the unscaled point cloud was multiplied by the 

factor to get the correct scale. The next step in the process is the alignment and 

registration of the point clouds. For some of the point clouds, the two clouds coarsely 

aligned using the “4-Points Congruent Sets for Robust Registration” algorithm (Aiger, 

Mitra, and Cohen-Or 2008), however, for most of the PCs, fine registration with ICP was 

used. ICP requires a “model” cloud and a “data” cloud, which in this experiment the 

undeflected cloud was set to be the “model” cloud. After applying the ICP algorithm to 

the data, CloudCompare outputs the resulting transformation matrix that was used for 

final registration. Furthermore, some settings were adjusted in the algorithms before 

running the analysis to improve the results.  

C2C Distance Calculations:  
In CloudCompare when this function is called, and after choosing the role of each 

cloud (reference and data to be compared), a chamfer distance (Butt and Maragos 1998) 

is automatically computed. After this initial run for approximate distance, the program 

offers various distance statistics that can refine the distance calculations. These options 

include:  

1. Approximate minimal distance 

2. Maximum approximate distance 

3. Minimum approximate distance 
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4. Standard deviation 

5. Maximum relative error of the initial approximation 

6. Max distance 

7. Octree level 

Max distance and Octree level were specified after initial distance approximation 

for improving the results. Max distance defines a distance above which it is not necessary 

to calculate a precise distance. This greatly improved the calculations as in this study it 

was intended to find the smallest deflection; therefore, this parameter was set to a 

reasonable small distance. Additionally, the Octree level parameter significantly 

improves the results. The Octree level is normally optimized automatically by the 

CloudCompare. The higher the Octree level, the more computation is performed on the 

data. Therefore, only an increment rise in the Octree level was used to achieve a better 

accuracy, yet without a significant increase in computational time. While different 

Maximum distances were used for different clouds, the Octree level was set to be 

constant and equal to eight throughout the analysis.  

M3C2 Distance Calculations:  
The main difference between M3C2 and C2C is that the computation can only be 

done on particular point called “core points”. The reason for this is to speed up the 

computations. The idea is since the DSfM-based cloud are generally very dense, it is not 

necessary to measure the distance at such high density. This is why the operator chooses 

the feature of interest or core points. The core points can be a sub-sampled version of the 

input cloud or the whole cloud. It was found that, in this particular experiment, sub-
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sampling dramatically reduces the density of the cloud resulting in inadequate data for 

analysis. Therefore, the whole cloud was set as core points and no reduction in 

computational speed was used. The normal scale is the diameter of the spherical 

neighborhood extracted around each core point to compute a local normal vector. 

Although there are advanced options for calculating the normal, this parameter was set to 

use the normal from the “model” cloud.  

ROI Analysis in MATLAB:  
MATLAB was used as a platform to run the statistical analysis. The C2C and 

M3C2 distances for each ROI were saved and loaded into MATLAB as text files. A 

MATLAB script computed the maximum deflection at ROI based on the classical beam 

theory. Then, it calculates the deflection in each ROI by using a percentile function. 

Lastly, it computes the absolute error and plots the deformed shape. Empirically, it was 

found higher percentiles values (above 80th percentile) yield a smaller absolute error for 

3.18 mm and 6.35 mm specimens. In contrast, for 12.7 mm specimen, lower percentile 

values (below 55th percentile) result in a smaller error. This decrease in percentile can 

correlate to the slightly higher quality of the thicker specimen’s PCD. Table 2 shows the 

recommended percentile values for different specimen thicknesses.  

 

Table 2. Recommended percentile values for deflection measurement by means of point cloud analysis 

Thickness (mm) C2C M3C2 
3.18 95 50 
6.35 95 50 
12.7 50 25 
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Results: 
In this section the results from both non-statistical and statistical methods are 

presented and compared. Only some of the results are plotted, but all the absolute 

differences between the PC analysis (C2C and M3C2) and theoretical method are 

tabulated.   

Initial Validation:  
Results from initial test indicate that the larger the deformations, the more 

accurate the algorithms would perform in distance measurement. The results from the 10-

point-sampling method (Jafari, Khaloo, and Lattanzi 2016), as well as the validation 

measurements from the UTM at quarter length of the specimens, are shown in Figure 15 

and Table 3. In order to read the measurement at quarter length with the UTM, the 

applied force was recorded at the midspan and based on that through the simply 

supported beam deflection equation, the deflection at the quarter length was calculated. 

The tabular results of C2C algorithm for the 3.18 mm specimen are shown, but the results 

were similar for the other specimens. For all specimens, the average error was 

approximately 0.4 mm with variance (S2) of 0.11, and was consistent between 

experiments. The results for the 3.18 mm specimen and the 12.7 mm specimen had a 

higher variance of 0.3 compared to the 6.35 mm specimen.  
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Figure 15. Comparison of UTM and point cloud measurements for all 3 specimens 
 

Table 3. Quarter point measurements for 3.18 mm specimen (the maximum and minimum values are in bold) 
UTM 
(mm) 

Point cloud  
(mm) 

Absolute error 
(mm) 

1.38 1.01 0.37 
1.64 1.16 0.47 
1.89 1.67 0.22 
2.15 1.96 0.19 
2.4 1.81 0.59 
2.65 1.53   1.12 
2.91 1.89 1.02 
3.16 3.58 0.41 

 

C2C Results:  
Figure 16 shows the deflection values obtained from C2C algorithm compared 

with theoretical values for the 3.18 mm specimen at the 95th percentile.  
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Figure 16. C2C deflection measurements at three deflection levels for the 3.18 mm specimen 
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In general, as Figure 16 shows, as the deflections get smaller, the absolute error 

increases. In Figure 16 (a) at the theoretical deflection of 6.3 mm (maximum deflection in 

this experiment), the developed sampling method measured the deflections at ROIs with 

the absolute error of 0.26 mm, which is smaller than the average error of 0.4 mm for this 

specimen for the C2C algorithm. Figure 16 (b) shows the measurements on the left side 

of the specimen are lower than the right side of the specimen; this indicates ICP 

registration error. This error indicates that the alignment points (supports) in the deflected 

point cloud were not adequately positioned on the alignment points of undeflected point 

cloud. In Figure 16 (c), at midspan deflection of 2.3 mm, the sampling method was not as 

successful in capturing the deflection at the first ROI (x=25.4 mm). While this was only 

the case for this particular point cloud and not the rest of the data, it seems there was 

noise in that ROI at the point cloud generation step.  

Figure 17 shows the same deflection calculations at three deflection levels for the 

6.35 mm specimen.  
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Figure 17. C2C deflection measurements at three deflection levels for the 6.35 mm specimen 
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In Figure 17 (a), the sampling method was able to estimate the deflection and 

determine the deformed shape of the specimen. Registration error does not appear to be 

an issue here. Figure 17 (b) shows the deformed shape, yet with a slightly higher 

measurement error. This slight increase in error could be due to another ICP registration 

form of error, that is, the deflected point cloud at the registration phase was slightly 

above the undeflected point cloud in the vertical direction. In Figure 17 (c), the method 

was able to estimate the deformations in ROI with an error of 0.27 mm, smaller than the 

average error of 0.37 mm for this specimen for the C2C algorithm. However, the 

technique could not estimate the deformed shape. It seems that the midspan deflection 

(0.3 mm) is in the range of the noise floor of the point clouds and the algorithm could not 

perform well.  

Similarly, Figure 18 shows the Cloud-to-Cloud (C2C) distance measurement at 

three deflections for 12.7 mm specimen.  
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Figure 18. C2C deflection measurements at three deflection levels for the 12.7 mm specimen 
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As it seems in Figure 18, the sampling method was able to capture the deflections 

with an average error of 0.9 mm (Table 6); however, the sampling technique could not 

estimate the deformed shapes. This is due to small deflections (under 2 mm) that seem to 

be in the noise floor rage of the data for C2C. Moreover, the percentile is decreased to 50. 

This decrease in percentile is due to having better data quality. Therefore, increase in 

thickness, improved the quality of the point cloud data and consequently, the distance 

measurement. Table 4 through Table 6 show the absolute error for all seven deflections 

with respect to theoretical values (max and min values are bolded).  

 

Table 4. C2C absolute error for the 3.18 mm specimen; mean=0.4; standard deviation=0.28 
 

 Absolute Errors (Locations Along the Specimen (mm)) 
Deflections 

(mm) 25.4 50.8 76.2 127 152.4 177.8 

6.33 0.16 0.02 0.26 0.40 0.44 0.33 
5.82 0.11 0.08 0.70 1.08 0.49 0.10 
5.31 0.98 0.85 0.65 0.47 0.30 0.24 
4.80 0.56 0.44 0.21 0.48 0.71 1.08 
4.30 0.19 0.18 0.24 0.03 0.33 0.53 
3.78 0.07 0.17 0.09 0.35 0.63 0.94 
2.77 0.15 0.31 0.53 0.49 0.38 0.13 
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Table 5. C2C absolute error for the 6.35 mm specimen; mean=0.37; standard deviation=0.24 
 

 Absolute Errors (Locations Along the Specimen (mm)) 
Deflections 

(mm) 25.4 50.8 76.2 127 152.4 177.8 

3.11 0.06 0.24 0.48 0.56 0.37 0.13 
2.60 1.07 0.71 0.39 0.14 0.58 0.92 
2.09 0.02 0.02 0.06 0.31 0.49 0.33 
1.58 0.26 0.54 0.71 0.75 0.55 0.22 
1.07 0.42 0.20 0.13 0.28 0.39 0.67 
0.57 0.53 0.17 0.09 0.02 0.39 0.45 
0.29 0.47 0.34 0.18 0.38 0.31 0.25 

 

Table 6. C2C absolute error for the 12.7 mm specimen; mean=0.9; standard deviation=0.73 
 

 Absolute Errors (Locations Along the Specimen (mm)) 
Deflections 

(mm) 25.4 50.8 76.2 127 152.4 177.8 

1.42 0.01 0.26 0.09 0.71 0.04 0.98 
1.26 0.78 0.28 0.01 0.17 0.58 1.31 
1.11 1.12 0.08 0.58 0.07 0.15 0.70 
0.95 2.46 1.63 1.75 2.02 1.84 2.14 
0.79 1.71 1.73 1.42 1.20 1.60 1.99 
0.63 0.33 0.34 0.28 0.34 0.33 0.34 
0.47 2.13 1.66 1.23 1.03 0.86 0.47 

 

In summary, C2C algorithm was capable of measuring the vertical deflections 

with mean absolute error of 0.57 mm and mean standard deviation of 0.42 for all three 

specimens.  

M3C2 Results:  
Figure 19 shows the M3C2 deflection measurement at three different deflection 

levels for the 3.18 mm specimen.  
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Figure 19. M3C2 deflection measurements at three deflection levels for the 3.18 mm specimen 
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The overall percentile values is decreased to 50, which indicates that 50% of the 

data is adequate for distance measurements whereas with C2C algorithm it is 95th 

percentile for 3.18 mm and 6.35 mm specimens. Figure 20 shows the results for 6.35 mm 

specimen.  
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Figure 20. M3C2 deflection measurements at three deflection levels for the 6.35 mm specimen 
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Figure 20 (c) shows the sampling method cloud not estimate the deformed shape 

for deflections under 0.4 mm; however, the absolute errors are still acceptable. 

Figure 21 shows the M3C2 results for the 12.7 mm specimen. As a reminder, the 

percentile value for 12.7 mm was decreased to 25th due to the higher thickness.  

 



43 
 

 

Figure 21. M3C2 deflection measurements at three deflection levels for the 12.7 mm specimen 
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Figure 21 (a) and (b) show possible registration error, as the measurements are 

lower on one side and higher on the other side. This means that in small deflection, data 

sampling is more sensitive to registration and requires more attention.  

In Figure 21 (c), even though the deflections are estimated within a reasonable 

error at each ROI, the deformed shape is not estimated. Most likely this is due to the 

range of noise floor in the PCD for M3C2, which seems to be at 0.3 mm.  

The M3C2 results show that the increase in thickness would decrease the 

percentile value. This means more data points are equal to the true deflection within each 

ROI. The larger the specimen, the more data points it will have, thus it can perform better 

in estimating the deflection. Using more lenses with larger focal lengths may have 

improved the quality of thinner specimens, but the tradeoff is higher cost and time for 

data acquisition process. Figure 22 shows the same deflection of 0.6 mm for the 6.35 mm 

and 12.7 mm specimens.  

 

 

Figure 22. Effects of thickness in M3C2 deflection measurement; (a) 12.7 mm, (b) 6.35 mm; midspan deflection 
0.6 mm 
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The thicker specimen’s point cloud provided better data to capture the deformed 

shape as well as the deflection. This is due to the higher density of the thicker specimen’s 

point cloud.  

Table 7 through Table 9 show the absolute differences for all three specimens at 

the seven deflections considered in the analysis (max and min values are bolded). 

 

Table 7. M3C2 absolute error for the 3.18 mm specimen; mean=0.41; standard deviation=0.51 
 

 Absolute Errors (Locations Along the Specimen (mm)) 
Deflections 

(mm) 25.4 50.8 76.2 127 152.4 177.8 

0.25 0.06 0.07 0.02 0.25 0.39 0.49 
0.23 1.29 3.35 3.01 2.84 3.29 1.00 
0.21 0.56 0.65 0.76 0.70 0.81 0.90 
0.19 0.98 0.91 0.71 0.08 0.01 0.49 
0.17 0.34 0.30 0.26 0.10 0.20 0.26 
0.15 0.27 0.30 0.24 0.26 0.48 0.72 
0.13 0.06 1.68 2.25 2.31 1.78 0.50 

 

Table 8. M3C2 absolute error for the 6.35 mm specimen; mean=0.29; standard deviation=0.27 
 

 Absolute Errors (Locations Along the Specimen (mm)) 
Deflections 

(mm) 25.4 50.8 76.2 127 152.4 177.8 

0.12 0.16 0.10 0.00 0.15 0.17 0.12 
0.10 0.90 0.94 0.77 0.70 0.94 1.13 
0.08 0.29 0.32 0.96 0.12 0.10 0.24 
0.06 0.00 0.97 1.20 1.06 0.92 0.01 
0.04 0.14 0.02 0.13 0.21 0.26 0.17 
0.02 0.08 0.05 0.20 0.03 0.37 0.11 
0.018 0.25 0.32 0.35 0.81 1.04 0.84 

 



46 
 

Table 9. M3C2 absolute error for the 12.7 mm specimen; mean=0.5; standard deviation=0.48 
 

 Absolute Errors (Locations Along the Specimen (mm)) 
Deflections 

(mm) 25.4 50.8 76.2 127 152.4 177.8 

0.06 0.40 0.97 1.17 0.90 0.04 1.13 
0.05 0.50 0.08 0.71 0.19 0.83 1.65 
0.04 0.37 0.68 0.77 0.92 0.18 0.68 
0.04 0.12 0.02 0.08 0.21 0.25 0.31 
0.03 1.97 1.72 1.22 0.99 1.95 2.52 
0.02 0.18 0.14 0.15 0.07 0.03 0.02 
0.018 1.06 0.92 0.71 0.52 0.42 0.29 

 

The absolute error distribution presented in the next section show the M3C2 

algorithm performed better in detecting the similar points in point clouds resulting in a 

more accurate distance measurement with the mean absolute error of 0.4 mm and average 

standard deviation of 0.42.  

C2C vs. M3C2:  
The histogram plots of absolute errors indicate that the average errors of 0.57 mm 

and 0.4 mm for C2C and M3C2 respectively. These two error values are the average for 

the all three specimens.  
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Figure 23. Absolute error distribution of 3.18 mm specimen 
 

 

Figure 24. Absolute error distribution of 6.35 mm specimen 
 

 

Figure 25. Absolute error distribution of 12.7 mm specimen 
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The absolute error histogram plot are all skewed right and most of the absolute 

errors are between 0 and 0.5 mm. M3C2 compared to C2C has a relatively lower number 

of absolute error larger than 1 mm. This indicates M3C2 was more accurate in 

measurement computation compared to C2C.  

As an example, Figure 26 shows the C2C vs. M3C2 distance computation for the 

midspan deflection of 3.1 mm for the 6.35 mm specimen. As it seems, M3C2 has 

performed better in computing the deflections and is closer to the theoretical values.  

 

 

Figure 26. C2C vs. M3C2 deflection computation for the midspan deflection of 3.1 mm; 6.35 mm specimen; (a) 
C2C and (b) M3C2  

 

Sources of Error: 
The most significant source of error in the measurements is the misalignment of 

the two point clouds during the registration step. This step requires at least a partially 

manual registration, thus misalignment can result in spurious differences between the two 

clouds. Fine registration based on the ICP algorithm is sensitive to noise and an arbitrary 
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initial state of the point clouds, and so implementing more advanced variants of the 

original ICP algorithm, such as assigning weightings to corresponding point pairs, or 

applying global deterministic optimizations or stochastic techniques would result in more 

reliable final registrations (Tam et al. 2013). 

 

 

Figure 27. Registration error 
 

For example in Figure 27, the calculated deflections on the left side are lower than 

the right side of the specimen. The reason is at registration step, the deflected point cloud 

was slightly rotated clockwise and caused this error. This error can be fixed manually by 

inspecting the registration step more closely.  
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Other sources of error include uncertainty in the mechanical properties of the 

specimen that affects the theoretical values, from the DSfM reconstruction process, as 

well as incorrect matching of points during nearest neighbors’ computations. In addition, 

measuring distances using direct cloud-to-cloud comparison with closest point technique 

(Girardeau-Montaut et al. 2005b) is sensitive to the clouds’ roughnesses, outliers, and 

point spacing which can lead to erroneous deformation calculations. 
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CHAPTER 5: CONCLUSIONS 

This research introduces a new method of measuring structural deformation for 

monitoring purposes through direct point cloud comparison in 3D. Overall, the findings 

indicate that comparative point cloud analysis techniques are capable of highly accurate 

deformation measurements, with sub-millimeter accuracy. Additionally, it was found that 

the M3C2 algorithm performed better in comparison with C2C algorithm and the 10-

point-sampling method with an absolute error of 0.4 mm. This degree of accuracy 

indicates the potential of this technique in remote sensing applications, in particular those 

where small deformations are of vital importance and where conventional sensor 

measurements are unavailable. This approach is feasible in scenarios where highly 

localized deformations have occurred, for instance in regions of local flange buckling, 

due to the high resolution per-point measurements enabled by this approach. Polynomial 

and curve fitting methods that fit points to a globally assumed shape are of limited benefit 

in such scenarios.  

The biggest challenge was in the pre-processing stage, in particular, the alignment 

and registration. When the deflections are relatively small, for instance for the 12.7 mm 

specimen, the distance computations become very sensitive to registration errors. 

Therefore, more attention is required for the correct alignment and registration of the 

clouds.  
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These experiments were performed in a highly controlled laboratory environment. 

In order for this process to be successfully implemented for infrastructure evaluations, the 

robustness and accuracy of this measurement technique must be evaluated in field 

scenarios. Ongoing and future work seeks to improve the point sampling and 

measurement process and compare the results with cloud-to-mesh and mesh-to-mesh 

analysis. Moreover, the developed sampling technique can be used to update the 

structure’s Finite Element Model (FEM) to account for deformations in the structure and 

conduct stress analyses.  

  



53 
 

APPENDIX 

MATLAB Code:  
Below is the MATLAB code used to sample the deflections and compare them 

with theoretical values. The input needs to be changed according to the specimen 

thickness and the recorded force from the UTM.  

%% Bahman Jafari  

clear;clc;close all 

%% Theoretical  

format long g 

E=10000*1000; 

b=1; h=.25; 

I=(b*h^3)/12; 

%% C2C 

pct=95; 

clmn=12; %column number in the text files  

filename = '1l_8.txt'; 

M = dlmread(filename,'\t',2,0); 

C2C = M(:,clmn); 

Y = prctile(C2C,pct); 

filename = '2l_8.txt'; 
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M2 = dlmread(filename,'\t',1,0); 

C2C2 = M2(:,clmn); 

Y2 = prctile(C2C2,pct); 

filename = '3l_8.txt'; 

M3 = dlmread(filename,'\t',1,0); 

C2C3 = M3(:,clmn); 

Y3 = prctile(C2C3,pct); 

filename = '4l_8.txt'; 

M4 = dlmread(filename,'\t',1,0); 

C2C4 = M4(:,clmn); 

Y4 = prctile(C2C4,pct); 

filename = '5l_8.txt'; 

M5 = dlmread(filename,'\t',1,0); 

C2C5 = M5(:,clmn); 

Y5 = prctile(C2C5,pct); 

filename = '6l_8.txt'; 

M6 = dlmread(filename,'\t',1,0); 

C2C6 = M6(:,clmn); 

Y6 = prctile(C2C6,pct); 

filename = '7l_8.txt'; 

M7 = dlmread(filename,'\t',1,0); 

C2C7 = M7(:,clmn); 
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Y7 = prctile(C2C7,pct); 

%% Plots  

p=150; 

xtp=[0 1 2 3 4 5 6 7 8]; 

xt2=[0 1 2 3 4]; 

yth2=-(p.*xt2)/(48*E*I).*(3*8^2-4*xt2.^2); 

y_th=25.4*[yth2(1) yth2(2) yth2(3) yth2(4) yth2(5) yth2(4) yth2(3) yth2(2) 

yth2(1)]; 

plot(25.4*xtp,y_th,'gx-') 

hold on 

x=(0:8); 

y=-25.4*[0,Y,Y2,Y3, NaN, Y5,Y6,Y7,0]; 

dif=abs(y)-abs(y_th); 

abs_dif=abs(dif); 

scatter(25.4*x,y); 

xlabel('Length (mm)','FontSize',16,'FontWeight','bold') 

ylabel('Deflection (mm)','FontSize',16,'FontWeight','bold') 

hold off 

title('Thickness 6.35 mm, Deflection 3.106 mm, Percentile 95, Force 667 N',...  

    'FontSize',16,'FontWeight','bold') 

legend('Theoretical', 'C2C') 
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