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Abstract

MACHINE LEARNING FOR STUDENT MODELING AND FORECASTING

Qian Hu, PhD

George Mason University, 2020

Dissertation Director: Dr. Huzefa Rangwala

Higher educational institutions face major challenges including timely graduation and retention

of enrolled students. The National Center for Education Statistics (NCES) reports that the six-year

graduation rate for first-time and full-time undergraduates is around 60%; the retention rate among

first-time and full-time degree-seeking students is around 80%. These alarming statistics require

higher educational institutions to take actions to improve their effectiveness and efficiency at edu-

cating students. Educational data mining technologies for academic trajectory and degree planning,

course recommender systems, early warning and advising seek to improve student success. The

foundation of these systems is student modeling and forecasting.

However, developing appropriate and accurate predictive models for modeling students is a non-

trivial problem due to several challenges. The first challenge is that a student’s learning is influenced

by many factors such as motivation, affect and identify. It is further compounded by the fact that

learning is a reflection of cognition which is not a simple process. Students can also choose to

take courses in different sequences at different pace. The second challenge is that degree programs

exhibit complex knowledge dependence between courses. When it comes to decision making, ma-

chine learning has its shortcomings in terms of predictive reliability and interpretability. A reliable

model is able to express its prediction confidence so that human decision-makers can know when

the predictions are trustworthy. Interpretable models can provide explanations for predictions and



decision-makers can use the explanations to guide their decisions. Recently, several concerns have

emerged about the fairness of using machine learning models. A biased predictive model may nega-

tively influence subgroups of the larger population. For example, in the educational setting, models

unfairly predicting a particular group of students to be at a higher risk of failure can discourage

them from pursuing their degree pathway.

In this thesis, we develop novel and accurate machine learning models for student modeling

and forecasting. Specifically, we develop sequential and graph machine learning models to model

students’ learning processes and predict their academic performance. Towards informed decision

making, we develop Bayesian deep learning models to quantify uncertainty. We also propose a

metric-free individual fairness formalization and develop two fair machine learning models using

neural classifiers and gradient contextual bandits for mitigating unfairness in these predictive mod-

els.
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Chapter 1: Introduction

1.1 Introduction

The average six-year graduation rate for undergraduate programs in the United States has been

around 59% for over a decade [1]. More than half of the graduating students take six years to

finish four-year programs. The additional time required by students and low graduation rates has

high human, monetary and societal costs with regards to workforce training and economic growth.

Lack of proper academic preparation and planning are some of the main reasons that lead to student

failure in higher education [2]. Technologies from educational data mining have been identified as

promising for improving students learning. In this research, we focus on developing foundamental

algorithms for student modeling and forecasting. These algorithms can be used to build applica-

tions for aiding students such as educational early warning systems, degree planners and course

recommender systems, to name a few.

1.1.1 Student Modeling

Educational data mining (EDM) is a discipline concerned with developing machine learning and

data mining methods utilizing student-related data to better understand students and aid their learn-

ing [3]. Many approaches have been developed for tasks including student performance prediction

[4,5], affect detection [6,7], graduation prediction [8,9], etc. All these tasks are built upon a funda-

mental task which is student modeling. Accurately modeling student is challenging due to several

reasons such as i) the complexity and flexibility of student’s learning process ii) the need for reliable

and interpretable predictions for decision making.

1



Complexity and Flexibility

Student’s learning is complex as it is affected by many factors such as motivation, learning habits,

attention, environment and pedagogy, etc [10], Meanwhile, it is flexible in the sense that different

students choose different courses to fulfill the needs of their degree requirements and they can follow

different orders to take those courses. In addition, students take courses to accumulate knowledge

and knowledge requirement of a course comes from different prior courses. Knowledge dependence

between courses in a program is connected in a complex way. The combination of these factors

makes student modeling a highly complex task.

Reliability and Interpretability

The ultimate goal of student modeling is for decision making such as student intervention. For

decision making, predictive reliability and interpretability are important for decision makers to trust

and make informed decisions [11]. A reliable model should exhibit high uncertainty when the

prediction is not trustworthy so that decision makers can take over and decide based on their own

judgement. A model provides explanation for their predictions can help decision makers know the

reasons behind them and make informed decisions and thus provide accurate feedback to students.

For example, if a model using student’s grades in prior courses as features for predicting at-risk

students is able to explain which prior courses accounting for students failure, we can provide

accurate feedback to students and let them improve their learning on those prior courses to succeed

in the target course. We will discuss methods we developed to achieve reliable and interpretable

predictions.

1.1.2 Fairness

Recent progress in machine learning has sparked concerns about its fairness and equality. Many

studies have shown evidence of bias in machine learning models [12–14]. Machine learning mod-

els are trained on data. If data is biased, the model trained on biased data is discriminative [15].

Discriminative machine learning models can lead to ethical and legal consequences for stakehold-

ers. In educational setting, biased predictions can discourage students and undermine their learning

2



outcome. We thoroughly analyzed a real-world educational dataset collected at George Mason Uni-

versity and found clear bias embedded in the data with respect to gender and race. Specifically, we

found that the overall female GPA is higher than male GPA (3.15 vs. 2.86). The GPA of African-

American is lower than non-African-American (2.86 vs. 3.03). To mitigate bias, we developed a

novel fairness concept and proposed two fair models based on classifiers and gradient contextual

bandits.

1.2 Problem Statement

The ultimate goal of student modeling is for student forecasting. In this research, we focus on

two predictive tasks i) student performance prediction and ii) identifying at-risk students. We treat

student performance prediction as a regression task. Namely, given a student and his historical data

such as grades in prior courses, we want to predict his/her grade in a future target course. Grade

prediction can be useful for detecting at-risk students. A study by Polyzou et al. [16] shows that

for at-risk student detection, a dedicated classifier is more desirable. Based on this observation, we

treat the task of at-risk student detection as a classification task. That is given a student with features

extracted from his historical data, we want to predict whether he/she will be at-risk of failing a target

course. Besides the accuracy of the classifiers, we also focus on fairness of the predictive models.

1.3 Organizations and contributions

We developed methods to resolve the aforementioned challenges in educational data mining and

test the methods on the task of student performance prediction and at-risk student detection. They

are summarized as following

• (Chapter 2) In this chapter, we discuss background of student modeling and prediction and

the fundamental knowledge that our methods are based upon.

• (Chapter 3) To improve the accuracy of student modeling, we developed a hybrid model that

utilizes both student’s features and grades of prior courses. This model solves data missing

issue in traditional course-specific models.
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• (Chapter 4) Students take courses sequentially. To account for temporal dynamics within

student’s course taking process, we proposed course-specific Markovian models for student

modeling and grade prediction.

• (Chapter 5) Traditional models for student modeling and performance prediction are simple

and linear models. However, student’s knowledge acquiring process is highly complex and

shallow linear models are not able to fully model students. To better model students, we pro-

posed deep learning models for student modeling. We also proposed Bayesian deep learning

models for predictive reliability and developed a simple method for explaining the models’

prediction.

• (Chapter 6) Undergraduate degree programs exhibit complex knowledge dependence and we

found the knowledge dependence are structured as graphs. To model knowledge dependence

between courses, we proposed graph convolutional networks based on attention for student

modeling.

• (Chapter 7) Finally, to mitigate machine learning bias, we first proposed a metric-free indi-

vidual fairness formalization and proposed fair models to implement this formalization.
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Chapter 2: Background

The application of analytics to improve educational quality can be seen in many areas related to

modeling of learners [17], predicting and advising learners [3], automated content enhancement

[18], knowledge tracing [19, 20] and course/topic recommendations to students [21]. Among them,

student’s academic performance prediction has attracted much attention, as it underlies applications

to several AI-based decision making systems including educational early warning systems, degree

planning and academic trajectory planning [3]. In this part, we review related works.

2.1 Student Prediction

Several machine learning algorithms have been applied to tackle the student performance predic-

tion problem [22, 23]. Al-Barak et al. applied decision trees for grade prediction by using students’

transcript data [24]. Umair et al. used Support Vector Machines (SVMs) to select key training

instances for grade prediction [25]. Recommender systems based methods including collaborative

filtering [26], matrix factorization [27] and factorization machines [4] have been proposed for grade

prediction. These approaches use a one-size-fits-all framework for training the model and predic-

tion. Polyzou et al. proposed a personalized model that is specific to each course and student [28].

Student-course enrollment patterns have grouping structures which result in missing not at random

patterns of student grade data. Leveraging this, Elbadrawy et al. proposed a domain-aware grade

prediction algorithm for student’s performance prediction and course recommendation [21]. Since

students accumulate knowledge by taking courses sequentially within the academic programs, it

is assumed that the knowledge state of the students is evolving. Ren et al. proposed a temporal

course-wise influence model which incorporates the influence of prior courses in a sequential way,

however, up to two terms [29]. Course-specific regression models cannot correctly capture students’

knowledge state when the same knowledge can be acquired by taking different subsets of courses.
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To solve this problem, Morsy et al. [30] developed Cumulative Knowledge-based Regression Model

(CKRM), which represents the knowledge state of students in knowledge component vectors.

2.2 Temporal Dynamic Models

Hidden Markov Models (HMM) were first introduced and extensively studied by Baum et. al.

[31–33]. These models have found success in several fields including speech recognition, gene

prediction and time series analysis. The application of HMM to education was first proposed by

Corbett et al. [20] to model the acquisition of procedural knowledge in intelligent tutoring system

as Bayesian Knowledge Tracing (BKT). In this model, the hidden states represent whether a student

masters a skill or not and the observations are the students’ answers to a series of questions. Ex-

tending BKT, several models have been proposed such as the individualized BKT [19] to improve

the prediction performance. HMM have also been applied for predicting dropouts in Massively

Open Online Courses (MOOCs). Balakrishnan et al. [34] used a novel Input-Output HMM to pre-

dict student retention and inferred the general behavior patterns between the students completing

courses and those dropping at different points in a term. Geigle et al. proposed a two-layer Hidden

Markov Model to model student behavior in MOOCs and found that the features extracted from the

two-layer Hidden Markov Model correlated with educational outcomes [35]. Such modeling efforts

involved extracting server logs of student interaction from the online systems with the objectives of

identifying students at-risk of dropping out. The observation layer of the two-layer HMM is used to

model the sequence of students’ interactions with the systems [35].

Hidden Semi-Markov Models (HSMMs) were first proposed in the area of speech recognition

[36]. The key advantage of these models is that they can explicitly model the distribution of hidden

state duration. Since then, HSMMs have been applied to areas including computer vision, DNA

analysis, protein structure prediction and financial time series [37]. To the best of our knowledge,

HSMM models have not been applied to educational datasets and for the problem of next-term grade

prediction.
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2.3 Deep Learning for Educational Data

The success of deep learning comes from its hierarchical architecture introduced by stacking layers.

Each layer processes some part of the information and passes it to the next layer. Each layer solves

a part of the task before passing it on to the next, until the last layer provides the output. Hier-

archical architecture enables deep learning to learn very complex patterns within data. Student’s

learning process is highly complex that shallow linear learners are not able to capture. To better

model student’s learning process, deep learning models have been proposed in educational data

mining research community to model student’s learning habits and predict performance. Livieris

et al. developed a neural network based classifier to predict whether a student will have poor per-

formance in a Math course [38]. Gedeon et al. trained a feedforward neural network to predict a

student’s final grade in a computer science course using data from teaching sessions and provided

interpretability of the prediction results by generating a set of rules [39]. Yang et al. designed a time

series neural network using a student’s clickstream data while watching video lectures in massive

open online courses (MOOCs) [40]. Okubo et al. proposed a recurrent neural network classifier to

predict a student’s grade by using data from various logs of learning activities [41]. For modeling

student’s learning process within Intelligent Tutoring Systems (ITS), Piech et al. proposed using

deep knowledge tracing [42]. Most of the proposed neural network models were developed for in-

class prediction or for intelligent tutoring systems that model student learning in a single course.

The DKT models are similar to our proposed LSTM model; however, the DKT models only incor-

porate one response each time step. Our proposed LSTM model is more flexible and can incorporate

several (responses) grades of prior courses taken together in the same semester.

2.4 Predictive Uncertainty

Deep learning models have achieved state-of-the-art performance in many areas due to their abili-

ties to model complex patterns [43]. However, general deep learning models cannot represent un-

certainty, which is critical for decision-making. Bayesian models have the advantage of providing

principled uncertainty estimation. Therefore, combining Bayesian approaches with deep learning
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models is a way to obtain benefits from these two perspectives.

Bayesian deep learning models place a prior distribution over model parameters; the model is

updated by Bayes’ rule with observed data. The posterior distribution of the model parameters is

the learned model. Due to possible non-linear activation functions that can be applied to neurons,

exact model posterior is not available. Approximate inference methods are used for model training,

such as variational inference [44]. However, these methods have a high computational cost and are

hard to scale in practice.

Recently, Monte Carlo (MC) dropout has been proposed by Gal et al. [11], which is efficient

for uncertainty estimation and requires no change in the designed model architecture.

2.5 Fairness

Machine learning models have been deployed in many areas to help guide human decision makers.

However, recent studies show that machine learning models are prone to make biased and discrim-

inative predictions. Biased predictions can hurt the interest and benefits of minority groups and

lead to ethical and legal conflicts. In order to resolve this issue, machine learning community have

proposed fairness formalizaitons and fair machine learning models.

2.5.1 Fairness formalizations

Statistical parity has been proposed which requires that a predictor predicts a particular outcome for

individuals across groups with nearly equal probability [45,46]. Hardt et al. [47] proposed equalized

odds and equal opportunity. This formalization requires that conditioned on the true outcomes, the

predicted outcomes should be independent of the sensitive attributes. Based upon causal inference,

Kusner et al. [48] proposed counterfactual fairness which states that the predictive outcome for an

individual stays the same if his/her sensitive attribute is changed to its counterfactual value. Dwork

et al. [49] proposed individual fairness which requires that similar individuals should be treated

similarly.
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2.5.2 Fair algorithms

Many fair algorithms have been proposed. Rawlsian fairness has been proposed by Joseph et al.

[50] which is based on the notion of fairness by John Rawls that a worse candidate should never be

favored by a better one. The proposed algorithm is based on contextual bandits. The action value of

the contextual bandits is treated as the qualification of an individual. Individuals are differentiated

by their qualification. Zemel et al. [51] proposed to learn a fair representation that removes sensitive

information and assume that classifiers built upon the representation are fair. Following the idea of

learning fair representation, Edwards et al. [52] proposed to remove sensitive information by using

adversarial learning.
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Chapter 3: Content Features Enriched Course-Specific Hybrid model

for Grade Prediction

Traditional grade prediction methods rely on one-size-fits-all models, namely, training a model to

predict a student’s grades of all next-term courses [53]. As different courses have different knowl-

edge structure and requirements, one major issue of this kind of model is that it ignores unique

features of different courses. To overcome this issue, course-specific models have been proposed

to predict student’s next-term grades by using grades of prior courses, which better addresses per-

tinent challenges associated with the reliable estimation of the low-rank models [5]. However,

course-specific models that use the grades of prior courses can only capture the information of stu-

dent’s knowledge evolution. Course-specific models also suffer from inaccurate prediction if the

degree program is flexible (i.e., has several electives). In addition, there are some other factors

that can influence student’s grades, such as his/her academic level when taking a certain course,

instructor’s teaching quality and courses’ difficulty. To solve this problem we incorporate content

features, which can capture diverse information about students, courses and instructors. Based on

course-specific models, we present a model which not only uses the grades of prior courses but also

different kinds of content features.

We evaluated our proposed method on a dataset from George Mason University (GMU) col-

lected from Fall 2009 to Spring 2016 and on a dataset from University of Minnesota (UMN) col-

lected from Fall 2003 to Spring 2014. The results showed that our proposed method outperformed

competing methods to some degree. Another finding was that when the prior-course information

was sparse, the included content features were more likely to help. However, as the availability

of content features in the two universities is different, namely in GMU we have more informative

content features, for majors with flexible degree programs in GMU, the course-specific model with

content features achieves the best performance; for majors with flexible degree programs in UMN,
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the proposed course-specific model with grades of prior courses and content features performs bet-

ter. This suggests that the availability of the content features can influence the performance of the

proposed model.

3.1 Problem Formulation and Notation

Formally, we assume that we have records of n students and m courses, comprising a n×m sparse

grade matrix G, where gs,c ∈ [0 − 4] is the grade a student s earned in course c. The objective of

next-term grade prediction problem is to estimate the grade ĝs,c, a student s will achieve in course

c in the next term. Besides the grade matrix G, we have information that can be associated with

the student (e.g., academic level, previous GPA, major) and course offering (e.g., discipline, course

level, prior courses frequently taken, instructor, etc) that can be combined to extract a feature vector

per dyad. We denote this feature vector as x of p dimensions. As a convention, bold uppercase

letters are used to represent matrices (e.g., X) and bold lowercase letters represents vectors (e.g., x).

3.2 Methods

3.2.1 Course-Specific Regression with Prior Courses

Polyzou et.al. [5] motivate the use of course-specific regression models that leverage the sequential

structure of undergraduate degree programs. These regression models assume that the performance

of a student in a future course is strongly correlated with past performance on a subset of courses

related to the degree program taken earlier. Specifically, this regression model estimates the grades

for a future class as a sparse linear combination of grades obtained on prior courses. For a course c

the grades that students obtained on courses taken prior to c are extracted from the grade matrix G,

and denoted by Gpr
c . Each row of this matrix corresponds to students that have taken the course c.

Assume that nc students have taken the course c so far and mc represents the union set of courses

taken by students prior to c, then the dimensions of Gpr
c is nc ×mc. g:,c is the vector representing

the grades that students obtained for course c. We learn the parameters of this Course-Specific

Regression (CSR) model by solving the least square regression problem enforcing `1 and `2 norms.
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The optimization problem is given below:

min ||1wc0 + Gpr
c wpr

c − g:,c||22︸ ︷︷ ︸
loss

+λ1||wpr
c ||22︸ ︷︷ ︸

`2

+λ2||wpr
c ||1︸ ︷︷ ︸

`1

(3.1)

where 1 is a vector of ones of dimension nc, wpr
c ∈ Rmc denotes the weight vectors associated

with each course c and wc,0 is the bias term. The `1 norm promotes sparsity and `2 norm prevents

overfitting.

Having learned the weight vectors and bias terms, the grade estimate for a student s enrolling in

course c is given by:

ĝs,c = wc0 + xTs,cw
pr
c (3.2)

where xs,c ∈ Rmc is a feature vector representing the grades on prior courses that the student has

taken so far. We denote this Course-Specific Regression model with Prior Courses as CSRPC.

In this approach, prior to estimating the model using equation 3.1, we row-centered each row of

matrix Gpr
c and g:,c, which is done by subtracting the GPA of corresponding students from the non-

zero entries in each row of Gpr
c and g:,c [5]. We found that row-centering gives better performance

by mitigating the negative influence of missing grades from prior courses.

3.2.2 Course-Specific Regression with Content Features

The CSRPC model described above is able to provide accurate estimates of student performance in a

course provided that the students taking that course has commonly taken sufficient number of prior

courses. We seek to extract key features associated with students and courses and incorporate them

within the prediction formulation. Based on course-specific idea, instead of training one global

model for all the courses as done in existing work [4], we propose to train independent course-

specific regression models with content features. We refer to this model by CSRCF. In terms of

formulation, the proposed CSRCF is similar to CSRPC except that the feature vector is a composite

of student, course and instructor-related features as described below.

We denote the weight vector learned by this formulation as wf
c and the feature vectors xs,c ∈ Rp
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where p is the total number of features. The predicted grade estimate is then given by:

ĝs,c = wc0 + xTs,cw
f
c (3.3)

The CSRCF model is estimated in a similar manner as CSRPC and given by:

min ||1wc0 + Xf
cwf

c − g:,c||22︸ ︷︷ ︸
loss

+λ1||wf
c ||22︸ ︷︷ ︸

`2

+λ2||wf
c ||1︸ ︷︷ ︸

`1

(3.4)

where Xf
c is a matrix of stacked feature vectors from the different students who have taken the

course c in the past. Each row of this matrix is a feature vector for a student enrolled in the course

c.

Content features for GMU

1. Student Features. Student-related features include their demographic data, such as their

age, race, gender, high school GPA and so on. For each term, we have the GPA of the

student from the previous term and the accumulative GPA as of last term. As students might

take courses from other departments which has less influence than those from their own

departments, we can extract GPA of courses only from their own departments. When taking

a course, different students might come from different academic level, therefore, it might be

beneficial to incorporate their academic level into the model.

2. Course Features. The features relating to a course include its discipline, the credit hours and

course level (e.g. 100, 200, 300, 400-level). As the difficulty of a course can influence the

performance of the students, we include the course difficulty information into the model.

We use the GPA of the course from last term to represent the difficulty of the course.

3. Instructor Features. As the factors from instructors can also influence the performance of the

students, we extract content features about the instructors which include rank, tenure status

and the GPA of the courses he has taught.

Content features for UMN
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1. Student Features. Same as in GMU apart from the features related to demographic data.

Considering a specific term for which a student has taken a course, we extracted their GPA

of the previous term, the accumulative GPA as of last term, the GPA over only courses from

their own departments, as well as, the students’ academic level.

2. Course Features. Same as the ones extracted for GMU.

3. Instructor Features. No instructor features are available.

We one-hot-encoded categorical features in Xf
c and standardized the continuous features.

3.2.3 Hybrid Model

We also combine the feature vectors Xf
c and Gpr

c obtained from the student-course content and prior

grades and learn weight vectors per course, respectively. We refer to this hybrid model as CSRHY

and learn a course-specific regression model as discussed above.

3.2.4 Baseline Methods

In the experiments, we compare the proposed methods with the following baseline approaches.

1. BiasOnly (BO): BiasOnly method only takes into consideration student’s bias, course’s bias

and global bias which are estimated using Equation 4.7.

ĝs,c = b0 + bs + bc (3.5)

where b0, bs and bc are the global bias, student bias and course bias respectively.

2. Matrix Factorization (MF): The use of MF for grade prediction is based on the assumption

that the students and courses’ knowledge space can be jointly represented in low-dimensional

latent feature space [5]. Each component in the latent feature space corresponds to knowledge

components. The grade of student s in a future course c is estimated as:

ĝs,c = b0 + bs + bc + pTs qc (3.6)
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where b0, bs and bc are the global bias, student bias and course bias respectively and ps, qc

are the latent vectors representing student s and course c.

3. Course-specific Matrix Factorization (CSMF): CSMF is similar to MF except that the grade

matrix Gc for CSMF only includes the grades of students taking the course and their grades of

courses taken prior to the course we are going to predict [5].

3.3 Experimental Protocol

3.3.1 Dataset description and preprocessing

We evaluated our proposed methods on two datasets obtained from George Mason University

(GMU) and University of Minnesota (UMN), for the following four departments: (i) Computer

Science (CS), (ii) Electrical and Computer Engineering (ECE), (iii) Biology (BIOL) and Psychol-

ogy (PSYC). We will indicate the departments from GMU with the suffix “ A” and from UMN with

the suffix “ B”. The two universities from two separate states in the United States have different

characteristics. For GMU, there are around 33,000 students, the acceptance rate is 69%, the six-

year graduation rate is 66.8%, there are about 140 programs that students can select. For UMN, the

total enrollment is about 51,000, acceptance rate is 45%, the six-year graduation rate is 75%, there

are around 260 programs. Both universities exhibit diversity. In GMU, 44.7% of students are White,

18.5% Asian, 12% Hispanic/Latino, 10% African American. In UMN, 69.1% of the students are

White, 11.3% Asian, 5.2% African American, 3.4% Latino.

The data was collected from Fall 2009 to Spring 2016 at GMU and from Fall 2003 to Spring

2014 at UMN. According to the University Catalogs [54] [55], we kept the courses that were re-

quired by the degree program and electives within the same major. The statistics of the four majors

are shown in Table 3.1.

For UMN that has very flexible degree programs, we also consider courses outside of the depart-

ment that were taken by at least 50% of the students. We consider those as unstated prerequisites.

Moreover, we removed any course that was taken by less than 10% of the students, in order to re-

duce the size of the universal of courses, i.e., the possible courses that a student might take. We
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consider that these courses are not offered on a regular basis and their availability is limited.

For both datasets, we removed any courses whose grades were pass/fail. If a course was taken

more than once by a student, only the last grade was kept. We removed the students who took

less than half of the prior courses (less than one third of the prior courses for UMN). For course c

whose prior-course grade matrix is Gpr
c , if the number of rows of Gpr

c is smaller than the number of

columns, we remove course c from training and testing dataset. In addition to that, if the number of

testing instances of a course is smaller than 5, we also remove it.

To form the test and training dataset, we use the data extracted from last term (i.e., Spring 2016

at GMU and Spring 2014 at UMN) as test dataset and all the data before then as training. The

training dataset was split into 80/20, of which 80% was training data, 20% was validation data.

As the flexibility of a degree program can influence the course-specific models’ performance,

the flexibility associated with each department is computed according to [30]. The major’s flexibility

is the average course flexibility over all courses belonging to that major, weighted by the number of

pairs of students in that offering. We computed the flexibility of a course c as one minus the average

Jaccard coefficient of the courses that were taken by the students that took c prior to taking this

course. The flexibility of a course will be low if the students have taken very similar prior courses

and high otherwise.

To compute the flexibility of a major, assume there are N courses in that major; the prior-

course grade matrices for these courses are denoted as Gpr
i , i = 1 . . . N , each of which has Si, i =

1 . . . N students. From matrix Gpr
i , we can extract an indicator matrix Ipri , in which 1 means the

corresponding course is taken, 0 means not. Ri,a means the ath row of matrix Ipri .

Fi = 1− 1(
Si
2

) Si∑
a=1

Si∑
b=a+1

Jaccard(ri,a, ri,b) (3.7)

F =
N∑
i=1

Si
S
Fi (3.8)

where Jaccard is the Jaccard coefficient, S is the total number of students in that major, Fi is the
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Table 3.1: Data Statistics and Characteristics for GMU and UMN.

Major #Students #Courses Universal of courses #Grades Grades Mn Grades StD Flexibility

CS A 988 18 53 21,880 3.05 0.82 0.283
ECE A 396 16 69 16,170 3.09 0.77 0.272
BIOL A 1629 19 42 20,602 3.02 0.84 0.339
PSYC A 1114 20 60 14,851 3.26 0.74 0.429
CS B 708 24 39 78,882 3.15 0.71 0.493
ECE B 551 16 44 86,478 3.12 0.72 0.430
BIOL B 997 11 31 57,966 3.12 0.74 0.603
PSYC B 1380 18 37 77,896 3.07 0.82 0.809

#Students is the number of major students.
#Courses is the number of courses for which we predict the grades.
Universal of courses is the total number of prior courses, i.e., the required and elective courses in the corresponding major according
to university catalog.
#Grades is the total number of grades in prior-course grade matrices and the grades we predict.
Grades Mn and Grades StD are the mean and standard deviation of grades, respectively.
Flexibility is the flexibility of a major.

flexibility of course i and F is the flexibility of the major.

3.3.2 Evaluation Metrics

To assess the performance of the models, we used three kinds of metrics, namely mean absolute

error (MAE), root mean squared error (RMSE) and tick error. MAE and RMSE are computed by

pooling together all the grades across all the courses.

MAE and RMSE are averaged errors between the predicted grades and the actual grades. To

gain a better insight into the quality of the predictions, we also report the tick error as done in [5,30].

The grading system used in GMU has 11 letter grades (A+, A, A-, B+, B, B-, C+, C, C-, D, F) which

correspond to (4, 4, 3.67, 3.33, 3, 2.67, 2.33, 2, 1.67, 1, 0). UMN uses the same grading, with the

addition of D+, corresponding to 1.33, and excluding A+. We refer to the difference between two

successive letter grades as a tick. The performance of a model is assessed based on how many ticks

away the predicted grade is from the actual grade. We first converted the predicted grades into their

closest letter grades and then computed the percentages of each of the x ticks [5, 30].
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Table 3.2: MAE of different methods (↓ is better).

Method
MAE

CS A ECE A BIOL A PSYC A CS B ECE B BIOL B PSYC B
BO 0.7359 0.7285 0.5853 0.5882 0.4697 0.4356 0.4516 0.4648
MF 0.8150 0.8447 0.6169 0.5648 0.4859 0.4309 0.4452 0.4940
CSMF 0.7609 0.7015 0.5579 0.5240 0.4776 0.4433 0.4410 0.4695
CSRPC 0.6805 0.6739 0.5372 0.4933 0.4520 0.4346 0.4394 0.4932
CSRCF 0.7183 0.6775 0.4769 0.4743 0.4670 0.4395 0.4488 0.4588
CSRHY 0.6693 0.6630 0.5057 0.4859 0.4622 0.4219 0.4328 0.4526

Table 3.3: RMSE of different methods (↓ is better).

Method
RMSE

CS A ECE A BIOL A PSYC A CS B ECE B BIOL B PSYC B
BO 0.9622 0.9748 0.7794 0.7829 0.6534 0.5359 0.5855 0.6180
MF 1.0879 1.1104 0.8173 0.8035 0.6773 0.5408 0.5922 0.6574
CSMF 1.0126 0.9623 0.8045 0.7372 0.6685 0.5472 0.5763 0.6318
CSRPC 0.9288 0.9699 0.7943 0.7348 0.6613 0.5447 0.5679 0.6351
CSRCF 0.9539 0.9680 0.7205 0.6732 0.6543 0.5457 0.5825 0.6064
CSRHY 0.9199 0.9542 0.7679 0.7283 0.6607 0.5298 0.5659 0.5946

3.4 Results and Discussion

Tables 5.3 and 5.4 show the comparative performance of different methods on four different depart-

ments by using metrics MAE and RMSE. Generally, in most cases course-specific models outper-

form non-course-specific models, which means focusing on a course-specific subset of data can re-

sult in better performance. In GMU, for departments with less flexibility such as Computer Science

and Electrical Engineering, we observe that the hybrid model has the best performance. Thus in-

corporating content features into course-specific model further improves its performance; the model

with only grades of prior courses performs better than model with only content features. For depart-

ments with high flexibility such as Biology and Psychology, the model with only content features

shows the best performance, which suggests that if a department has a flexible degree program,

content features might be more informative than the grades of prior courses.

The corresponding departments in UMN are more flexible than GMU. The performance of
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(a) True vs. Predicted Grades for BO (b) True vs. Predicted Grades for CSRPC

(c) True vs. Predicted Grades for CSRCF (d) True vs. Predicted Grades for CSRHY

Figure 3.1: True vs. Predicted Grades for BiasOnly and Course-specific Models for GMU.
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(b) True vs. Predicted Grades for CSRPC
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(c) True vs. Predicted Grades for CSRCF
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(d) True vs. Predicted Grades for CSRHY

Figure 3.2: True vs. Predicted Grades for BiasOnly and Course-specific Models for UMN.
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Table 3.4: Prediction performance of different methods based on Ticks (↑ is better).

#Ticks Method CS A ECE A BIOL A PSYC A CS B ECE B BIOL B PSYC B

No tick error

BO 15.02 18.58 19.41 19.75 25.48 27.58 24.90 34.40
MF 13.04 9.84 19.95 23.89 26.68 28.48 24.90 31.91
CSMF 15.22 18.58 24.53 23.25 24.76 29.09 30.12 34.75
CSRPC 19.57 20.77 28.84 34.08 29.33 26.06 25.70 23.76
CSRCF 13.44 16.39 28.03 27.39 25.96 28.48 25.30 31.91
CSRHY 19.76 22.40 30.73 35.35 25.00 28.18 29.32 30.50

One tick
error

BO 44.27 44.26 55.26 53.82 65.38 66.36 61.85 65.60
MF 42.29 39.34 51.75 54.46 63.70 66.67 65.06 62.77
CSMF 43.08 40.44 58.76 61.78 63.94 64.85 65.06 68.44
CSRPC 48.22 55.19 62.80 61.15 69.23 64.85 62.65 57.45
CSRCF 44.66 51.37 70.89 64.97 64.42 66.67 63.05 68.44
CSRHY 49.80 55.19 67.38 61.78 68.03 66.97 64.66 66.31

Two ticks
error

BO 69.17 66.67 77.63 75.80 86.54 89.09 87.15 88.65
MF 64.82 63.38 76.82 77.07 82.69 88.79 86.75 83.69
CSMF 67.59 72.68 82.21 78.66 85.34 89.09 86.75 85.11
CSRPC 74.31 73.22 81.40 79.62 87.26 85.76 88.35 83.69
CSRCF 73.52 75.96 87.87 83.44 86.06 88.79 85.54 87.94
CSRHY 75.10 74.32 82.75 78.66 85.82 88.18 86.35 86.88

CSRPC and CSRCF is very comparable, or even better (for the Psychology Department). Their

combination, CSRHY, is the best performing method in terms of MAE and RMSE, even if the

content features included in UMN are less informative. An exception is the Computer Science

Department, which seams to have very hard-to-predict courses, as it has the highest RMSE. For

CS B, CSRPC is performing the best in terms of MAE, but BiasOnly achieves better RMSE, closely

followed by CSRCF, with just 0.0009 difference.

In the two universities, we can see that for the majority of the departments, the hybrid model

performs the best. GMU models take more advantage of the rich content features to improve the

predicted grades, especially for the most flexible departments.

To gain deeper insights into the types of errors made by different methods, Table 5.5 reports the

percentage of grades predicted with no error, with an error of at most one tick and with an error of

at most two ticks. Comparing the performance achieved by the methods we notice that the course-

specific models have relatively better performance than non-specific approaches. In GMU, in terms

of the exact prediction (i.e., no error), the hybrid model has the best performance. For departments
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with rigid degree program, such as Computer Science and Electrical Engineering, the hybrid model

has better performance than other methods. If minor errors are allowed (i.e., one or two ticks),

for flexible departments, model with only content features gives better performance. In UMN, the

picture is not that clear, as there is variation in the performance depending on the degree of accuracy

and the department. The highest percentage of grades predicted with no error is achieved by course-

specific methods(CSMF and CSRPC). The fact that other methods are the best performing in terms

of ticks, while CSRHY has the lowest RMSE for most of the cases, indicates that CSRHY does not

predict many grades with significant error, in contrast with the other methods.

From the two universities’ results, we can see that incorporating content features into the course-

specific model can improve the prediction performance. For flexible degree programs, as the prior-

course grade matrix is sparse, the model with content features has better predicting accuracy. This

is not evident in the results from UMN, as there are not enough content features.

The distribution of true (ground truth) and predicted grades for BiasOnly, CSRPC, CSRCF and

CSRHY are also plotted for GMU and UMN in Figures 3.1 and 3.2, respectively. Each row of

the figure represents the ratio of the predicted grades. For example, in Figure 3.1b the bottom

row represents that a high proportion of A’s are predicted as such. We see that BiasOnly tends to

smooth the predicted grades i.e., it predicts most of the grades around the average GPA (around B-).

However, for high grades most of the predicted grades are around the true grades in course-specific

models and for lower grades all the models tend to over predict.

Table 3.5 and 3.6 show the detailed statistics of the courses from the two universities of the

departments with the least and most flexible degree program, and the errors (RMSE) made by three

course-specific regression models. For GMU these departments are the CS and PSYC, while for

UMN are the EE and PSYC. From the two tables, we can see that if the grades in test set have high

standard deviation or higher than that of training set, the prediction error is high. The reason might

be that the course-specific models used in this work and previous works are linear. In the future, we

will explore non-linear course-specific models.

Overall, incorporating content features into the course-specific models can improve the predic-

tion performance. In GMU, for departments with less flexible degree programs, the hybrid model
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Table 3.5: Per course statistics and errors for GMU.

Course #training #testing density Mn Tr StD Tr Mn Te StD Te CSRPC CSRCF CSRHY

CS-2xx 322 76 0.766 2.640 1.249 2.548 1.455 1.179 1.226 1.176
CS-2xx 303 66 0.623 2.915 1.062 2.899 0.941 0.686 0.755 0.735
CS-3xx 138 19 0.748 3.049 0.803 3.158 0.597 0.463 0.417 0.434
CS-3xx 285 62 0.638 2.634 1.155 2.694 1.236 1.037 1.156 1.037
CS-3xx 181 41 0.711 3.063 0.779 3.041 0.617 0.527 0.465 0.539
CS-3xx 42 13 0.802 3.104 1.140 3.360 0.591 0.748 0.668 0.752
CS-3xx 189 35 0.754 2.783 1.032 2.657 1.053 0.876 0.949 0.876
CS-3xx 19 8 0.885 2.719 1.072 2.959 1.368 1.152 1.035 1.253
CS-3xx 156 29 0.768 3.088 0.762 2.897 1.175 1.072 1.045 1.066
CS-4xx 92 8 0.867 2.859 1.103 2.917 1.090 1.006 1.119 1.006
CS-4xx 29 15 0.868 2.426 1.181 2.311 1.341 1.243 0.972 0.830
CS-4xx 35 7 0.378 2.667 0.983 2.713 0.629 0.711 0.609 0.736
CS-4xx 105 36 0.909 3.137 0.810 3.297 0.965 0.951 0.913 0.994
CS-4xx 43 10 0.912 2.923 1.001 2.567 1.383 1.072 1.063 1.042
CS-4xx 46 19 0.896 2.725 1.111 1.983 1.111 1.090 1.081 1.143
CS-4xx 32 8 0.897 3.083 0.866 3.041 1.207 0.964 1.106 0.964
CS-4xx 115 32 0.868 3.018 0.914 3.229 0.659 0.655 0.643 0.655
CS-4xx 26 22 0.868 3.525 0.668 3.333 0.841 0.669 0.870 0.610
PSYC-2xx 195 24 0.608 3.165 0.802 3.639 0.429 0.709 0.604 0.694
PSYC-2xx 204 23 0.635 3.144 0.726 3.435 0.788 0.678 0.746 0.678
PSYC-3xx 247 23 0.670 3.263 0.813 3.580 0.654 0.796 0.656 0.799
PSYC-3xx 223 24 0.724 3.262 0.870 3.390 0.875 0.759 0.578 0.756
PSYC-3xx 44 5 0.825 3.212 0.943 3.600 0.490 0.507 0.829 0.653
PSYC-3xx 112 8 0.613 3.310 0.858 3.292 0.715 0.878 0.726 0.873
PSYC-3xx 86 7 0.558 3.535 0.758 3.620 0.516 0.696 0.467 0.678
PSYC-3xx 258 21 0.586 3.263 0.936 3.778 0.428 0.760 0.801 0.728
PSYC-3xx 69 14 0.718 3.251 0.667 3.357 0.672 0.481 0.475 0.467
PSYC-3xx 227 26 0.687 3.333 0.728 3.270 0.883 0.776 0.729 0.776
PSYC-3xx 94 9 0.723 3.394 0.617 3.630 0.618 0.600 0.521 0.602
PSYC-3xx 52 6 0.714 3.378 0.911 3.280 1.027 0.978 1.033 0.956
PSYC-3xx 216 22 0.731 3.048 0.951 2.803 1.013 0.940 0.642 0.940
PSYC-3xx 66 12 0.710 3.525 0.802 3.168 0.977 1.020 0.865 1.021
PSYC-3xx 121 18 0.715 3.488 0.705 3.371 0.745 0.692 0.627 0.700
PSYC-4xx 182 21 0.672 3.564 0.716 3.540 0.442 0.549 0.346 0.550
PSYC-4xx 48 5 0.789 3.771 0.409 4.000 0.000 0.424 0.253 0.424
PSYC-4xx 105 30 0.661 3.445 0.884 3.778 0.489 0.588 0.627 0.590
PSYC-4xx 34 12 0.798 3.657 0.521 3.112 0.736 0.809 0.893 0.802

The second and third column stand for the number of training and testing instances, respectively
density means the density of the prior course matrix
Tr train, Te test, Mn mean, StD standard deviation
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Table 3.6: Per course statistics and errors for UMN.

Course #training #testing density Mn Tr StD Tr Mn Te StD Te CSRPC CSRCF CSRHY

EExxx 514 22 0.441 2.82 0.73 2.95 0.70 0.603 0.547 0.544
EExxx 511 32 0.450 3.59 0.51 3.44 0.37 0.520 0.664 0.577
EExxx 540 5 0.352 2.88 0.67 2.73 0.25 0.454 0.393 0.419
EExxx 516 28 0.443 2.94 0.68 2.98 0.60 0.562 0.543 0.532
EExxx 520 21 0.405 3.05 0.67 2.84 0.79 0.574 0.589 0.573
EExxx 142 7 0.582 2.83 0.94 2.81 0.24 0.712 0.409 0.599
EExxx 88 31 0.837 3.27 0.63 3.10 0.69 0.559 0.585 0.568
EExxx 146 32 0.631 3.08 0.78 3.04 0.64 0.525 0.449 0.529
EExxx 51 13 0.587 3.86 0.28 3.95 0.18 0.378 0.494 0.383
EExxx 189 20 0.610 2.74 0.81 2.88 0.78 0.548 0.545 0.573
EExxx 225 11 0.576 3.11 0.75 3.12 0.94 0.825 0.835 0.833
EExxx 101 22 0.684 3.06 0.70 2.55 0.56 0.572 0.582 0.579
EExxx 331 29 0.558 3.24 0.63 3.47 0.54 0.445 0.416 0.419
EExxx 239 23 0.556 3.84 0.27 3.91 0.15 0.581 0.414 0.394
EExxx 407 26 0.655 3.65 0.43 3.88 0.45 0.486 0.585 0.485
EExxx 65 8 0.670 3.89 0.37 3.92 0.14 0.149 0.344 0.090
PSYCxxx 1031 18 0.207 3.30 0.59 3.26 0.57 0.452 0.429 0.433
PSYCxxx 464 7 0.259 3.21 0.83 3.14 0.59 1.027 0.998 1.023
PSYCxxx 444 10 0.263 2.90 0.80 3.17 0.43 0.733 0.693 0.784
PSYCxxx 606 17 0.261 3.21 0.77 3.24 0.72 0.490 0.509 0.510
PSYCxxx 557 18 0.254 2.97 0.87 3.48 0.92 0.795 0.794 0.802
PSYCxxx 488 13 0.220 3.03 0.89 3.56 0.48 0.430 0.495 0.438
PSYCxxx 34 12 0.482 2.80 0.90 3.42 0.71 0.873 0.870 0.867
PSYCxxx 399 12 0.259 3.13 0.79 3.39 0.45 0.512 0.389 0.375
PSYCxxx 288 13 0.261 2.97 0.79 2.95 0.76 0.468 0.468 0.485
PSYCxxx 554 7 0.271 3.35 0.67 3.48 0.43 0.471 0.629 0.538
PSYCxxx 743 13 0.162 3.17 0.78 2.87 0.78 0.626 0.812 0.650
PSYCxxx 346 9 0.268 3.30 0.78 2.74 0.91 0.676 0.699 0.705
PSYCxxx 301 10 0.229 3.46 0.59 3.67 0.42 0.907 0.679 0.684
PSYCxxx 366 5 0.276 3.22 0.82 3.07 0.44 0.593 0.660 0.618
PSYCxxx 1045 80 0.354 3.56 0.57 3.70 0.46 0.648 0.601 0.590
PSYCxxx 258 7 0.288 3.90 0.47 4.00 0.00 0.466 0.392 0.343
PSYCxxx 121 5 0.274 3.96 0.16 4.00 0.00 0.194 0.271 0.166
PSYCxxx 290 26 0.320 3.93 0.33 4.00 0.00 0.562 0.341 0.351

The second and third column stand for the number of training and testing instances, respectively.
density means the density of the prior course matrix.
Tr train, Te test, Mn mean, StD standard deviation.
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achieves better performance than traditional course-specific models. However, for departments with

more flexible degree programs, the grades of prior courses are less informative than content features,

therefore, it is more appropriate to include only content features. In UMN, CSRHY achieves the best

performance. The existance of some content features can boost the performance of the regression

methods when used alone(CSRCF) or in addition to the grades(CSRHY).

3.5 Conclusions

In this paper, we proposed a hybrid model to further improve the performance of the course-specific

models. We evaluated the proposed model on datasets from two Universities with different charac-

teristics. The experiments show similar results in the two universities, which suggests the proposed

model is generalizable. In conclusion, it is beneficial to incorporate content features into course-

specific model, which motivates us to explore other kinds of side information. In the future, we will

utilize side information mined from learning management systems.

25



Chapter 4: Course Specific Markovian Models for Grade Prediction

Several approaches have been developed in the past few years to tackle the problem of next-term

grade prediction [4]. In particular, course-specific approaches predicting a student’s grade in a

course by using the grades on a subset of courses taken prior to the target course [5,28] have shown

promising results. Given the sequential aspect of academic programs; where a chain of courses

build fundamental concepts and lead to training (education) of students; these models assume that

a subset of related prior courses can provide the necessary knowledge for future courses. Course-

specific models are based on regression or matrix factorization. One of the limitations of these

course-specific models is that they ignore the temporal dynamics associated with the evolution of a

student’s knowledge state. The concept of knowledge state is proposed in mathematical psychology

literature for assessment of a student’s mastery of knowledge. Assessments uncover the particular

state of a student and are used for predicting student’s future performance and abilities. Latent factor

models are useful for modeling students’ knowledge state evolution [56].

To model the student learning behavior and predict student’s performance we propose the Hid-

den Markov Model (HMM) and Hidden Semi-Markov Model (HSMM). In these models, students’

knowledge states are modeled as hidden states. For HMM, the sojourn time is the number of steps

spent in one state before transitioning to another state and is geometrically distributed. However,

its performance degrades when the data exhibits long-term temporal dependency [57] as in the case

of student knowledge state. For example, a student with strong capability is likely to be a high

performing student in the next several semesters, instead of suddenly transitioning to a hidden state

indicative of a low performing student. Figure 4.1 shows this property. This figure illustrates the

dynamics in students’ term GPA across all majors at George Mason University for the first six

semesters (excluding Summer terms). We only present full letter grades (i.e., A, B, C, D, F) for this

figure. The width of the flow from one semester to another shows the number of grades and illus-

trates that given a student with a particular GPA in one semester, the GPA in the next semester will
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Figure 4.1: Change in Student Term GPA for the first six semesters. The digit of the text label
denotes the term and the letter denotes the GPA. E.g., 3B implies term 3 and GPA of B (3.0)

probably remain at the same level or off by one grade point with a high likelihood. If we consider

more refined grade points (i.e., the full letter grades plus A+, A-, B+, B-, ..., C-), the statistics of the

grade data shows that 24.3% of students have the same GPA from one semester to another, 66.84%

and 84.33% of students have their next-term GPA within one and two ticks of their current-term

GPA, respectively. Ticks measure the deviations from the true letter grade and is explained in Sec-

tion 4.4. Thus it is very likely for a student to have similar GPA for the next term, which shows that

a student’s performance does not change frequently or abruptly.

To capture this long-term dependency property of students’ knowledge evolution, we propose

HSMM for grade prediction. Compared to HMM, the sojourn time of the knowledge state in HSMM

is modeled explicitly. Each hidden state in a HMM emits one observation while in HSMM each

hidden state emits a sequence of observations. The number of observations, i.e., the duration d,

produced in a hidden state is determined by the sojourn time distribution of that state. Figures

4.2a and 4.2b shows the difference between HMM and HSMM, respectively. In this work, the

distribution of sojourn time is assumed to be nonparametric and learned from data.
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Figure 4.2: Graphcial model of HMM vs. HSMM

4.1 Notations

Table 4.1: Notations

Symbol Description
O Observation
KS Knowledge State
π Initial state distribution
D The maximum number of duration of the hidden states
gs,c the true grade of student s in course c
ĝs,c the predicted grade of student s in course c
aij The probability of transition from state i to state j

bj(Gt) The probability of observing Gt at state j
dj(u) The probability of staying at state j for u steps

4.2 Problem Formulation and Notations

Assume that we have records of n students and m courses; comprising a n×m sparse grade matrix

G. Entry Gs,c in G represents the grade of student s in course c. In addition we have the time stamp

information for each grade Gs,c. Besides the grade matrix G, we have information associated with

the student (e.g., academic level, previous GPA and major) and course offering (e.g., discipline,
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course level and difficulty) that can be combined to extract features. We denote the feature vector

as x of p dimensions. As a convention, bold uppercase letters are used to represent matrices (e.g.,

X) and bold lowercase letters represents vectors (e.g., x).

4.3 Methods

4.3.1 Hidden Markov Model (HMM)

Model Description

HMM seeks to capture the dynamic evolution of student’s knowledge state. Student’s knowledge

state is modeled as the latent (hidden) states in HMM. The grades of a student are modeled as the

observations. Compared to existing discriminative models, one of the key advantages of the HMM

approach is that it introduces stochasticity/uncertainty. For example, a student with high capability

has the chance to get a low grade by slipping [20], which is hard to model using discriminative

models.

In HMM, the evolution of student’s knowledge state is modeled as a Markov chain and has the

assumption that the next state only depends on current state. The transition distribution of the model

determines the evolution of students’ knowledge state, as shown in Equation 4.1.

aij = P (KSt+1 = j|KSt = i) (4.1)

The emission distribution determines a student’s performance, given his knowledge state, given

by Equation 4.2.

bj(Gt) = P (Gt|KSt = j) (4.2)

where Gt is the student’s grade at time t.

A student’s knowledge state cannot be observed; only the grades are observable. The space of

the knowledge states and the observations are discrete.

To use HMM for modeling student’s knowledge state evolution and predict performance in next

course, two related questions need to be answered:
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• Given an observation sequence and a model, what is the likelihood of the observation se-

quence? This question can be solved by using forward algorithm [33].

• Given a set of sequences, in our case they are the sequence of students’ grades, how do we

infer the parameter set of the model? This can be done by using the classical EM algorithm

[33].

Grade Prediction

To predict the grade ĝs,c for student s in a future course c, we first extract the grades of student

s in a series of courses c1, c2, ..., cT taken prior to course c and form them as a sequence ~Gs =

gs,c1 , gs,c2 , ..., gs,cT . Assume that there are N possible grades student s could get in course c, in

our case, the possible grade x is in (4, 4, 3.67, 3.33, 3, 2.67, 2.33, 2, 1.67, 1, 0). Then we have the

following:

ĝs,c = max
x
P (x|gs,c1 , gs,c2 , ..., gs,cT )

= max
x

P (gs,c1 , gs,c2 , ..., gs,cT , x)

P (gs,c1 , gs,c2 , ..., gs,cT )

∝ max
x
P (gs,c1 , gs,c2 , ..., gs,cT , x)

(4.3)

The grade ĝs,c is predicted using maximum likelihood.

4.3.2 Hidden Semi-Markov Model (HSMM)

Model description

The HMM model proposed above assumes that a single knowledge state emits grade distributions

for one course only. Further, the number of time steps spent in a given state (i.e., sojourn time) in a
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HMM model has geometric distribution as shown by Equation 4.4 [58].

di(u) = P (St+u+1 6= i, St+u = i, St+u−1 = i, ...,

St+2 = i|St+1 = i, St 6= i)

= au−1ii (1− aii)

(4.4)

where di(u) is the probability of staying at state i for u steps.

However, a student’s knowledge state has long-term temporal dependency. It is demonstrated

that a student with strong academic capabality is unlikely to become low performing in a short time.

To better model student’s knowledge state evolution, we propose Hidden Semi-Markov Model

(HSMM) shown in Figure 4.2b. For HSMM, the underlying process is assumed to be a semi-

Markov chain. Each state can emit variable number of observations. In other words, each knowledge

state is responsible for performance in multiple courses. The sojourn time of HSMM is explicitly

modeled and different hidden states have different sojourn time distribution. For modeling student’s

knowledge state evolution, the sojourn time distribution for a given knowledge state j is defined as

following.

dj(u) = P (KSt+u+1 6= j,KSt+u−v = j, v = 0, ..., u− 2|KSt+1 = j,KSt 6= j) (4.5)

which is assumed to be nonparametric in this work (i.e. categorical distribution). The state transition

distribution of the semi-Markov chain determines the evolution of knowledge state; and is show in

Equation 4.6.

aij = P (KSt+1 = j|KSt+1 6= i,KSt = i) (4.6)

where j 6= i,
∑

j 6=i aij = 1 and aii = 0.

The emission distribution of HSMM determines a student’s performance, given their knowledge

state. Similar to HMM, for student’s knowledge state modeling and grade prediction we need to

compute the likelihood of a sequence and infer the parameters of HSMM which can be done by
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using forward and EM algorithms, respectively. The prediction of a student’s grade in a future

course by using HSMM is the same as HMM shown in Equation 4.3.

4.3.3 Baseline Methods

Bias Only (BO) The Bias Only method only takes into consideration student’s, course’s and

global bias. The predicted grade is estimated using 4.7.

ĝs,c = b0 + bs + bc (4.7)

where b0, bs and bc are the global bias, student bias and course bias respectively.

Matrix Factorization (MF) The use of MF for grade prediction is based on the assumption that

the students’ and courses’ knowledge space can be jointly represented in low-dimensional latent

feature space [5]. The grade is estimated as:

ĝs,c = b0 + bs + bc + pTs qc (4.8)

where ps, qc are the latent vectors representing student s and course c, respectively. We also applied

course-specific matrix factorization (CSMF) for grade prediction, which utilizes a course-specific

subset of data to estimate a matrix factorization model [28].

Course-Specific Regression with Prior Courses (CSRPC) CSRPC predicts the grade of a student

s in a future course c as a sparse linear combination of grades in the courses taken prior to course c

[28].

Course-Specific Regression with Content Features CSRCF predicts the performance of a stu-

dent in a course using content features such as academic level, difficulty level and instructor infor-

mation [59].

Course-Specific Hybrid Model (CSRHY) .

This model is obtained by combining the content feature vector and prior course vector [59].
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4.4 Experiments

4.4.1 Dataset description and preprocessing

We evaluate the proposed methods on a dataset from George Mason University, the largest public

university in Virginia and enrolled about 36000 students in Fall 2017. We extracted student and

course related data from the largest five undergraduate majors in terms of student enrollment. These

included: (I) Computer Science (CS), (II) Electrical and Computer Engineering (ECE), (III) Biology

(BIOL), (IV) Psychology (PSYC) and (V) Civil Engineering (CEIE).

We used data from the period of Fall 2009 to Spring 2016. Using the University catalog [54] we

selected student records for courses that are required by the major program and electives offered by

the department offering the major. We also removed courses that did not result in a grade score (in

between A-F) but were only pass/fail courses. If a course was taken more than once by a student,

only the last grade was kept. For a course, if the number of students who had taken the course was

smaller than the number of the prior courses of this course we removed this course from training

and test sets. If the number of test instances of a course was smaller than 5, we removed it.

To simulate the real-world scenario of predicting the next-term grades for students we use the

data extracted from the latest term as testing data and all the data from terms prior to the latest term

as the training set. The training data was split into 80/20, of which 80% was training data and 20%

was validation data for choosing the hyperparameters associated with the model. After selection of

hyperparameters, the model was retrained on the entire training set before final evaluation on the

last term (test set).

4.4.2 Evaluation Metrics

The performance of the methods were assessed by three different evaluation metrics: (i) mean

absolute error (MAE), (ii) root mean squared error (RMSE) and (iii) tick error. MAE and RMSE

are computed by pooling together all the grades across all the courses.

To gain deeper insights regarding the performance of the methods for course selection and de-

gree planning, we report an application-specific metric called tick errors [5]. Tick error measures

33



Table 4.2: Comparative Performance of different models using MAE. (↓ is better)

Method
MAE

CS ECE BIOL PSYC CEIE
BO 0.7257 0.6902 0.5411 0.5951 0.5863
MF 0.7184 0.6790 0.5420 0.6099 0.5796

CSMF 0.7151 0.6666 0.5365 0.5673 0.5733
CSRPC 0.6805 0.6739 0.5372 0.4933 0.601
CSRCF 0.7183 0.6775 0.4769 0.4743 0.6091
CSRHY 0.6693 0.6630 0.5057 0.4859 0.5839
CSHMM 0.601 0.4532 0.4634 0.3362 0.3632
CSHSMM 0.555 0.3782 0.4231 0.3023 0.3676

the deviation of the predicted grades from the true grades. The performance of a model is assessed

based on how many ticks away the predicted grades are from the actual grades. The grading system

has 11 letter grades (A+, A, A-, B+, B, B-, C+, C, C-, D, F) which correspond to (4, 4, 3.67, 3.33, 3,

2.67, 2.33, 2, 1.67, 1, 0). To compute the tick error for a predicted grade, the real value prediction

outputs are first converted to the closest letter grades.

4.5 Results and Discussion

4.5.1 Comparative Performance

Table 5.3 shows the average MAE for the different methods across the five majors on the test set. The

results show that the CSHSMM model achieves the best performance on all the majors. The CSHMM

outperforms previously developed Course-Specific regression and factorization models. The pro-

posed course-specific Markovian models are able to take into account the temporal dynamics as-

sociated with the evolution of student’s knowledge states in comparison to prior course-specific

approaches. The CSHSMM model outperforms CSHMM on almost all the majors and has similar per-

formance on CEIE. The students’ knowledge state which is modeled by CSHMM and CSHSMM as

hidden states tends to stay in the same state for some time instead of changing constantly. Rather

than a geometric distribution, the ideal duration distribution should have lower probabilities on
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Table 4.3: Comparative Performance of Different Models using Tick Error (↑ is better)

#Ticks Method CS ECE BIOL PSYC CEIE

Zero tick

BO 6.71 10.38 15.36 27.07 20.08
MF 7.11 13.11 15.90 28.34 21.26

CSMF 6.72 12.57 16.17 28.98 21.26
CSRPC 19.57 20.77 28.84 34.08 27.17
CSRCF 13.44 16.39 28.03 27.39 29.13
CSRHY 19.76 22.40 30.73 35.35 26.38
CSHMM 37.78 45.36 43.13 54.24 50.39
CSHSMM 37.18 46.99 46.49 52.2 49.78

One tick

BO 29.84 33.33 28.84 45.54 35.83
MF 29.84 31.15 29.65 43.95 34.25

CSMF 30.24 33.87 29.38 45.86 34.65
CSRPC 48.22 55.19 62.80 61.15 52.76
CSRCF 44.66 51.37 70.89 64.97 52.76
CSRHY 49.80 55.19 67.38 61.78 53.15
CSHMM 54.08 68.85 66.58 79.32 72.44
CSHSMM 57.85 78.14 68.65 79.66 72.29

Two ticks

BO 60.67 58.47 62.80 69.75 58.66
MF 59.88 57.92 61.46 68.15 57.48

CSMF 61.26 59.02 61.19 71.97 57.48
CSRPC 74.31 73.22 81.40 79.62 69.69
CSRCF 73.52 75.96 87.87 83.44 66.14
CSRHY 75.10 74.32 82.75 78.66 69.29
CSHMM 70.97 82.51 83.29 85.76 86.22
CSHSMM 72.37 87.98 84.32 88.81 87.01

longer or shorter durations but higher probabilities on medium durations. By modeling the tran-

sition of hidden states as semi-Markov model rather than Markov model, CSHSMM achieves better

performance than CSHMM. The exception on CEIE is because of the flexiblility in the particular

degree program (i.e., there are many electives for students to choose).

To have better insights into what kind of errors different methods make, we evaluate the ap-

proaches using tick error metrics. Table 5.4 presents the results of the best performed traditional

course-specific methods (i.e., CSRPC and CSRHY) and the proposed Markovian methods with re-

spect to tick errors. For exact prediction (i.e., 0 tick error) and one tick error, the CSHMM and

CSHSMM have the best performance. For two tick errors, the CSHMM and CSHSMM win for most

35



Table 4.4: Predictive Power at Identifying At-Risk Students (↑ is better)

Method CS ECE BIOL PSYC CEIE
Acc F-1 Acc F-1 Acc F-1 Acc F-1 Acc F-1

CSRPC 0.8202 0.5561 0.7869 0.4507 0.8437 0.5397 0.9172 0 0.7143 0.5217
CSRHY 0.8063 0.5333 0.7923 0.4412 0.8491 0.5625 0.9204 0 0.7532 0.6122
CSHMM 0.8231 0.6276 0.8634 0.7126 0.9027 0.7831 0.9492 0.4828 0.9004 0.6462
CSHSMM 0.8549 0.7092 0.8962 0.7711 0.8784 0.7594 0.9458 0.5294 0.9004 0.6462

The percentage of at-risk students for each major is CS (24.40%), ECE (19.14%), BIOL (18.79%), PSYC (9.80%),
CEIE (12.97%).

of the majors, while traditional course-specific model CSRHY show better performance in CS ma-

jors. The traditional course-specific models are poorer than CSHMM and CSHSMM, as they ignores

students’ knowledge evolution dynamics. The reason that CSRCF and CSRHY show better perfor-

mance in some cases is that they incorporate content features which are informative for student’s

performance prediction and are not included within the Markovian approaches proposed here.

4.5.2 Case Study: At-Risk Students

An important application of grade prediction is to develop an early-warning system that is able to

identify students at-risk of failing the courses that they plan to enroll in. We define at-risk students

as those whose grade for a course is below 2.0. To assess the capability of the methods on catching

at-risk students we treat the prediction as a classification problem. The experimental procedures

are similar to grade prediction as discussed in Section 4.4.1 except that the predicted grade over

2.0 are treated as pass and below 2.0 as fail. We compare the best performed traditional course-

specific methods CSRPC and CSRHY with models proposed here. The evaluation metrics are chosen

as accuracy and F-1 score. Given the imbalanced nature of the dataset, F-1 score is a suitable

classification metric. From Table 5.5, we see that the proposed CSHMM and CSHSMM outperform

all the baseline methods. In most cases, the CSHSMM outperforms the CSHMM models. For the

Psychology major (has the lowest proportion of at-risk students as shown by numbers in the table

notes), some of the existing methods are not able to identify any of the at-risk students and their F-1

score is zero.
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4.6 Conclusions

In this paper, we propose Course-Specific Hidden Markov Model and Hidden Semi-Markov Model

for student’s next-term grade prediction. The proposed Markovian models are able to capture the

temporal dynamic characteristics of students’ knowledge state evolution. The limitation of HMM

is that its hidden state duration is inherently geometrically distributed. To better model student’s

knowledge state evolution, we use Hidden Semi-Markov Model for grade prediction to model the

distribution of state duration explicitly.

We conducted extensive experiments and compared the proposed Markovian models with other

state-of-the-art grade prediction algorithms. The experimental results showed that the proposed

models achieved better grade prediction performance than the baselines. One important applica-

tion of grade prediction is early-warning systems. We evaluated the performance of the proposed

methods for identifying at-risk students. For this task, our proposed methods achieved the best

performance in comparison to other state-of-the-art methods.
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Chapter 5: Grade Prediction with Uncertainty Estimation Using

Bayesian Deep Learning

From the perspective of educational psychology, learning is affected by both external and internal

factors such as motivation, study habits, attention and instructor pedagogy [10, 60], which bring

about challenges for grade prediction. These challenges are further exacerbated by the fact that

learning is a reflection of human cognition which is a complex process [42]. Existing course-

specific models are linear shallow learners, e.g. linear regression or low-rank matrix factorization.

These shallow learners may not be capable of capturing complex interactions underlying student’s

learning. To better model students’ learning process, we propose to use deep learning models.

Another drawback of traditional grade prediction methods is that the predicted grade is a point

estimation. To make informed decision based on the predicted results, we need to know if the

prediction system is confident or not. If the system is confident enough about the predictions, we

can rely on them and take corresponding actions. However, if the prediction is not reliable, human

advisors should decide what to do. Compared to traditional deep learning models, Bayesian deep

learning models can provide principled uncertainty estimation, which is useful for deciding if a

system is confident or not.

Specifically, we propose two types of Bayesian deep learning models, (I) Multilayer Perceptron

(MLP) [61], (II) Long Short Term Memory (LSTM) networks [62]. MLP consists of hierarchical

hidden layers that maps the input vector to an output target. The input vector is treated as static and

hence the temporal dynamics of the input data are ignored by MLP. To capture student’s knowledge

evolution, we also propose a LSTM model. Theoretically, RNNs are able to model arbitrarily long

sequential data. However, in practice, because of the vanishing gradient problem, vanilla RNNs

fail to capture long-term dependencies. For grade prediction, a course taken several semesters ago

might still have influence on the student’s performance in a future course. To model such long-term

dependencies, we choose to use LSTM model.
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To trust the predictions from a model, we need to know if the system is confident about its

predictions or not. We provide empirical results about model uncertainty and investigate case studies

towards developing a reliable educational early warning system. We also propose a method to

explain the models’ predictions, which identifies a list of influential prior courses that lead to a

student’s failure in the target course.

The main contributions of this work can be summarized as follows:

• We propose two types of course-specific Bayesian deep learning models for grade predic-

tion, namely, course-specific MLP and LSTM. Compared to existing methods, the proposed

models have better modeling capability and prediction accuracy.

• The proposed models can provide prediction uncertainty which is essential for decision mak-

ing. Based on uncertainty estimation, we show how uncertainty can help build a reliable

educational early warning system.

• In addition to uncertainty estimation, we propose a method to explain the prediction results,

which can identify influential courses that results in a student’s failure of a course.

• We propose a method to evaluate the models’ capability of catching at-risk students. The

evaluation results show that the proposed methods outperform several baseline methods for

this task.

5.1 Methods

5.1.1 Model Learning Framework

Given records of n students and m courses, we extract the grades to form a sparse grade matrix

G ∈ Rn×m. In addition, we have the information associated with the semester (time) when the

particular grade was obtained. Further, the data includes student-related features (e.g., academic

level, previous GPAs, major, etc.) and course-related features (e.g., course level, discipline, credit

hours, etc.). These content features are combined to form a feature vector associated with a student-

course pair.
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Given a student’s grades in the courses taken before the target course (referred to as prior

courses), the objective of the next-term grade prediction problem is to predict the grade that the

student will achieve in a course to be taken in the next semester (term). To predict grade in a course-

wise manner, we adopt course-specific framework [28]. Under this framework, different models are

learnt for different courses. To predict a student’s grades in next courses, his/her grades from prior

courses are fed into corresponding models.

5.1.2 Multilayer Perceptron

Traditional grade prediction models are linear models, such as linear regression. Compared to

linear models, the key advantage of multilayer perceptron comes from its hierarchical hidden layers

that capture complex interactions and non-linearities. The theoretical foundation is given by the

Kolmogorov-Arnold representation theorem [63,64]; every multivariate continuous function can be

represented as a superposition of one-dimensional continuous functions.

Given an input vector x, the task of the multilayer perceptron algorithm is to map x to output

y, which has the following form

y = F (x) (5.1)

To estimate a student’s grade in course c by using the course-specifc MLP model F c, we have

ŷc = F c(s) (5.2)

where s ∈ Rm is the vector of the student’s grades in the prior courses.

5.1.3 Long Short Term Memory

To capture the sequential characteristics of students’ grades in prior courses, we model the learn-

ing behavior and performance using recurrent neural networks with long short term memory [62]

(LSTM). The standard RNN model has the vanishing gradient problem and is unable to capture

long-range dependencies. In our case, an course taken several semesters before, such as a prereq-

uisite, plays an important role in determining a student’s performance in a target course. To solve
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Figure 5.1: In this example, we want to predict a student’s grade in target course f by using grades
of the courses taken prior to course f include a, b, c, d, e. xt represents the grades of courses in term
t. y represents the predicted grade. The student took courses (a), (b, d), ..., (c) in semester 1, 2, ...,
T and obtained (3.6), (2.6, 3.3), ..., (4.0) in this example, respectively.

the long-term dependency problem, LSTM is proposed for sequential data. The hidden states of

LSTM capture the student’s knowledge states, which models a student’s knowledge evolution. The

hidden states are updated as the student enrolls for courses and obtain grades in them. Figure 5.1

shows the LSTM approach for modeling student’s learning process. At the beginning, a student has

some prior knowledge before taking any courses; the student’s knowledge states evolve as he/she

take courses, as indicated by different colors at each time step in Figure 5.1. A student’s knowledge

states influences his/her performance in a course .The last hidden state hT is used to predict his/her

grade in a target course within the course-specific framework.

LSTM is a gated recurrent neural network, which consists of forget gate and input gate. The

forget gate decides which part of the information to forget from the cell state. This is useful when

the same knowledge can be obtained by taking two different courses. A student’s knowledge state

corresponding to knowledge acquired by taking the first course can be discarded while renewed by
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using the second one. When student takes a new course, his/her knowledge state is updated. In

LSTM, this is done by the information layer and input gate; input gate decides which new infor-

mation should be added into the cell state. The output from LSTM is hidden state which represent

student’s current knowledge state.

To estimate a student’s grade in the target course by using LSTM model, we first extract the

student’s grades in the prior courses with timestamp i.e., in which terms the prior courses are taken.

The grades in term t are represented as multiple-hot encoded vector xt — as more than one course

can be taken together in one semester — where the entries of xt corresponds to the grades of courses

taken in semester t; 0 represents the corresponding courses are not taken. If the grade obtained is

0 (F), we use a small number (0.1) to represent it to differentiate it from courses that are not taken.

We input the sequence of the encoded vectors x1,x2, ...,xT to the model and the hidden state from

the last step hT is fed into a fully connected layer, the output of which is the predicted grade:

y = wyh · hT + by (5.3)

where hT is the last hidden state, wyh is the parameters of the fully connected layer and by is the

bias term.

Table 5.1: Dataset Statistics

Major
Fall 2016 Spring 2017

#S #C #G #S #C #G
CS 2,664 18 22,246 3,728 19 33,039

ECE 1,160 16 16,415 1,421 15 23,459
BIOL 2,736 19 20,984 6,002 20 42,895
PSYC 2,980 20 14,966 4,628 20 23,560
CEIE 1,525 18 23,954 1,873 17 28,198
Overall 11065 91 98,565 17652 91 151,151

#S number of students, #C number of courses, #G number of grades
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5.1.4 Uncertainty Estimation

Given input data x, the output of an Bayesian deep learning model f(·) is mean ŷ and standard

deviation σ, where σ is treated as uncertainty; the lower the standard deviation, the higher the

predictive confidence. Bayesian models such as Gaussian Process provide principled uncertainty

estimation, however, they are computationally prohibitive and hard to scale to large-scale datasets.

Yarin et al., showed that dropout can be interpreted as a Bayesian approximation and Monte Carlo

(MC) dropout is proposed to obtain prediction uncertainty [11]. Dropout is first proposed as a

method for preventing overfitting in neural networks. The basic idea of MC dropout is that for each

input, we repeat the prediction for T iterations to get T different outputs, at each iteration neurons

are randomly set to zero with some dropout probability. In the next section, we describe how to

obtain uncertainty by using Monte Carlo dropout.

Given an deep learning model trained with dropout probability p, we sample T sets of model pa-

rametersW1,W2, ...,WT with different dropout masks to have different model realizations fW1 , fW2 , ..., fWT .

For an input xi, the outputs from T model realizations are

ŷti = fWt(xi) (5.4)

The prediction mean y is estimated as

y ≈ 1

T

T∑
t=1

ŷti (5.5)

The prediction variance is estimated as

σ2i = τ−1 +
1

T

T∑
t=1

(ŷti)
2 − y2 (5.6)

which equals sample variance plus model uncertainty τ−1, where τ is a hyperparameter which needs

to be tuned for different datasets [11].
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Given prediction mean y and variance σ2i , an α-level prediction interval is calculated as

[y − za/2σ, y + za/2σ] (5.7)

where za/2 is the upper (1−C)/2 critical value for standard normal distribution. For example, 95%

prediction interval can be calculated as [y − 1.96σ, y + 1.96σ].

5.1.5 Interpretability

When a model is used for decision making, it is necessary for practitioners to have confidence

in the predictions in order to act upon them [65–67]. When an instructor is notified of an at-risk

student, they need to know not only the predicted grades but also the reasons associated with the

corresponding predictions (e.g., which prior courses lead to a student’s failure in the target course).

Towards this end, we develop an approach to explain the predictions made by the proposed model.

The course-specific model assumes that the knowledge needed for a course is accumulated when

taking the prior courses. As such, one of the factors associated with student’s performance is his

grade/performance in the prior courses. We compute the influence of a prior course in the following

way. Given a trained model M and a student s, the grade predicted by the model for this student is

denoted as ŷs. Let p be a prior course and ŷ(¬p)s be the predicted grade if the corresponding grade

of course p is set to full grade, namely, 4.0 in the input to the model. For student s, the influence of

course c — denoted by Ic(s, p) — is computed as

Ic(s, p) = ŷ(¬p)s − ŷs (5.8)

The intuition behind this approach is that if a student could have obtained higher grades in a prior

course, he/she is likely to have better performance in the target course. Based on this information

a student could be advised to prepare or review the material in these influential courses so as to be

successful in the target course.

This can also be used to improve the curriculum structure. By considering students collectively,

if there exists a prior course that consistently has a high influence for a target course across several

44



students, then this prior course material needs to be a prerequisite or reviewed in class (if not already

present). To compute the influence of a prior course on a target course, we observe that different

students have a different grade in a prior course. Instead of setting the grade of a prior course to 4.0,

we increase its grade by a fixed value of 1.0 The following equations describe how to compute the

influence of a prior course on a target course.

I∗c (s, p) = y∗(p+1.0)− ŷs (5.9)

Ic(p) =
∑
s∈S

I∗c (s, p) (5.10)

where p is the prior course, S is all the students that have taken target course c, y∗(p+1.0) is the

predicted grade if grade of prior course p is increased by 1.

5.2 Experimental Protocols

5.2.1 Dataset Description

The methods are evaluated on a dataset from University X. We choose the largest five undergrad-

uate majors including: (i) Computer Science (CS), (ii) Electrical Engineering (ECE), (iii) Biology

(BIOL), (iv) Psychology (PSYC) and (v) Civil Engineering (CEIE). To build a course-specific model

for a target course, we choose the prior courses according to the University Catalog from Fall 2009

to Spring 2017.

The evaluation simulates the real-world scenario of predicting the next-term grades for students.

Specifically, the models are trained on the data up to term T − 1 and tested on term T . The last

two terms are chosen as testing terms, i.e., Fall 2016 and Spring 2017. As an example, to evaluate

the performance of predictions on term Fall 2016, the model is trained on data from Fall 2009 to

Fall 2015; and data from Spring 2016 is used for selecting hyperparameters. Dataset statistics are

in Table 5.1.
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Table 5.2: Tick error example

True Grade Predicted Grade Tick Error
B B = 0
B B-, B, B+ ≤ 1
B C+, B-, B, B+, A- ≤ 2

5.2.2 Model Training

The deep learning models are trained by using the Adam [68] optimizer. For the hyperparameters,

we use the grid search to choose the best combination on the validation dataset as described above.

Every 50 iterations, we take a snapshot of the model and the model that performs the best on the

validation dataset is selected for final evaluation on the test set. The hyper-parameters for MLP

include the number of layers (ranging from 2 to 10) and the number of neurons in each of the

hidden layers (ranging from 2 - 50). For the stacked-LSTM, the parameters include the number of

hidden dimensions (ranging from 10 to 100) and the number of stacked layers (ranging from 1 to 5).

The activation function is Rectified Linear Unit (ReLU) and the learning rate was set to 0.001. The

configuration parameters for Adam are set to default values (β1 is 0.9, β2 is 0.999 and ε is 10e-8).

5.2.3 Evaluation Metrics

We employ different evaluation metrics including the Mean Absolute Error (MAE) and Percentage

of Tick Accuracy (PTA) [5]. In the grading system, there are 11 letter grades (A+, A, A-, B+, B, B-,

C+, C, C-, D, F) which correspond to (4, 4, 3.67, 3.33, 3, 2.67, 2.33, 2, 1.67, 1, 0). A tick is defined

as the difference between two consecutive letter grades. The performance of a model is assessed

based on how many ticks away the predicted grade is from the true grade. For example, a true grade

of B vs. prediction of B is zero tick; true grade of B vs prediction of B- is one tick and true grade

of B vs a prediction of C+ is two ticks. Table 5.2 shows an example. To assess the performance of

the models by using PTA, we first convert the predicted numerical grades to the closest letter grades

and then compute the percentages of each of the x ticks.
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5.2.4 Comparative Methods

We compare the proposed models with different approaches including matrix factorization and the

traditional course-specific models.

Bias Only (BO)

The Bias Only method only takes into account a student’s bias, course’s bias and global bias [59].

The predicted grade ĝs,c by using this model is estimated as

ĝs,c = b0 + bs + bc (5.11)

where b0, bs and bc are the global bias, student bias and course bias, respectively.

Matrix Factorization (MF)

To use matrix factorization for a student’s grade prediction, we assume that students and courses

can be jointly represented in low-dimensional latent space [59]. The grade of student s in a future

course c can be predicted as

ĝs,c = b0 + bss + bcc + pT
s qc (5.12)

where b0, bs and bc are the global bias, student bias and course bias, respectively; ps and qc are

latent vectors corresponding to student s and course c.

Course-Specific Regression with Prior Courses

The course-specific regression with prior courses (CSRPC) [28] predicts the grade of a student s in

a course c as a linear combination of the grades in prior courses. The predicted grade ĝs,c is

ĝs,c = wc0 + xT
s,cw

pr
c (5.13)

where xs,c ∈ Rmc is a feature vector encoding the grades of prior courses, wc0 is the bias term and

wpr
c ∈ Rmc is the weight vector to be learned and mc is the number of prior courses.
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Course-Specific Regression with Content Features

The Course-Specific Regression with Content Features (CSRCF) model [59] predicts a student’s

grade in a course using content features related to the student (e.g., academic level, previous GPAs,

major, etc) and the course (e.g., course, discipline, credit hours, etc.). For a full list of content

features, refer to [59]. The predicted grade is

ĝs,c = wc0 + xT
s,cw

f
c (5.14)

where xs,c is the content feature vector, wf
c is the weight vector to be learned and wc0 is the bias

term.

Course-Specific Hybrid Model

The course-specific hybrid model (CSRHY) predicts a student’s grade in a future course by combin-

ing the content features and grades of prior courses [59].

5.3 Results and Discussion

5.3.1 Comparative Performance

Table 5.3: Comparative Performance of different models using MAE. (↓ is better)

Method
Fall 2016 Spring 2017

CS ECE BIOL PSYC CEIE CS ECE BIOL PSYC CEIE
BO 0.725 0.690 0.541 0.595 0.586 0.763 0.604 0.621 0.609 0.617
MF 0.718 0.679 0.542 0.609 0.579 0.701 0.589 0.625 0.622 0.583

CSMF 0.715 0.666 0.536 0.567 0.573 0.696 0.540 0.624 0.603 0.572
CSRPC 0.680 0.673 0.537 0.493 0.601 0.666 0.506 0.566 0.567 0.517
CSRCF 0.718 0.677 0.476 0.474 0.609 0.683 0.553 0.586 0.565 0.461
CSRHY 0.669 0.663 0.505 0.485 0.583 0.663 0.502 0.560 0.558 0.465
MLP 0.590 0.450 0.429 0.353 0.395 0.606 0.368 0.517 0.491 0.419

LSTM 0.588 0.367 0.412 0.316 0.324 0.579 0.286 0.500 0.392 0.253
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Table 5.3 shows the comparison of the proposed MLP and LSTM models with various baselines

using MAE for the Fall 2016 and Spring 2017 semesters. We observe that the deep learning models

have the best performance on all datasets and LSTM outperforms MLP approach. Specifically, the

LSTM model outperforms the best performing baseline by 12 to 45% across the different majors

and the two semesters. Compared to MLP, the LSTM model is able to achieve better performance.

The reason is that LSTM can model the temporal dynamics associated with students’ knowledge

evolution, which can not be captured by MLP and other traditional methods. In addition, LSTM are

able to handle long-term dependencies within the knowledge evolution. For example, an important

course such as the prerequisite taken several semesters away can have a significant effect on the

course to be predicted, which can be modeled by LSTM.

To gain better insights into the types of errors made by different methods, Table 5.4 presents the

experimental results evaluated by using tick errors as defined in Section 5.2.3. The LSTM model

achieves the best performance (with exceptions in BIOL and CEIE majors for Fall 2016). Similar

to results evaluated by using MAE, MLP is inferior to LSTM but better than the other competing

methods. We also observe that the gap between the proposed methods and the baselines is smaller

for PTA2 that allows for errors up to two ticks to be counted as correct. The baseline models

with content features show better performance than methods that do not use content features. This

suggests that content features are informative for performance prediction.

5.3.2 Identifying At-Risk Students

One of the important applications of student’s performance prediction is to develop an early-warning

system that can identify students at-risk of failing courses they plan to take in the next term (or fu-

ture). We define at-risk students as those whose grades are below 2.0 (C and lower). We convert all

the grades above 2.0 as not-at-risk and below 2.0 as at-risk, and treat the prediction as a classifica-

tion problem. The experimental procedures are similar to grade prediction except that the predicted

grades over 2.0 are treated as pass and below 2.0 as fail. We choose accuracy and F-1 score as eval-

uation metrics, due to the fact that the number of at-risk and non-at-risk students is imbalanced as

indicated by the percentage of at-risk students at the footnote of Table 5.5 and 5.6. The experimental
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Table 5.4: Comparative Performance of Different Models using Tick Error (↑ is better)

Fall 2016 Spring 2017
Method CS ECE BIOL PSYC CEIE CS ECE BIOL PSYC CEIE

PTA0

BO 6.71 10.38 15.36 27.07 20.08 13.41 13.41 23.22 33.20 28.28
MF 7.11 13.11 15.90 28.34 21.26 18.49 17.07 23.36 33.21 27.87

CSMF 6.72 12.57 16.17 28.98 21.26 20.80 14.31 22.38 31.55 31.56
CSRPC 19.57 20.77 28.84 34.08 27.17 21.87 17.68 25.17 35.19 31.97
CSRCF 13.44 16.39 28.03 27.39 29.13 15.10 16.78 24.48 33.25 38.52
CSRHY 19.76 22.40 30.73 35.35 26.38 21.26 18.62 26.15 36.17 37.70
MLP 26.48 42.62 38.17 46.50 39.40 26.38 42.07 31.61 39.56 33.20

LSTM 28.23 50.27 41.40 50.85 52.81 28.88 53.05 35.92 45.36 54.92

PTA1

BO 29.84 33.33 28.84 45.54 35.83 48.84 43.29 46.79 60.81 70.49
MF 29.84 31.15 29.65 43.95 34.25 48.69 41.46 47.69 60.80 68.03

CSMF 30.24 33.87 29.38 45.86 34.65 47.46 40.85 48.95 61.57 70.08
CSRPC 48.22 55.19 62.80 61.15 52.76 42.84 37.19 46.01 62.37 67.21
CSRCF 44.66 51.37 70.89 64.97 52.76 45.76 36.59 49.59 65.29 66.39
CSRHY 49.80 55.19 67.38 61.78 53.15 42.68 36.58 49.73 61.89 66.80
MLP 57.51 67.76 72.31 72.29 70.99 59.87 73.17 65.03 64.56 65.98

LSTM 58.05 78.69 73.66 77.97 78.79 60.71 78.05 67.04 73.43 84.84

PTA2

BO 60.67 58.47 62.80 69.75 58.66 66.56 62.80 60.22 78.54 82.79
MF 59.88 57.92 61.46 68.15 57.48 67.79 60.36 61.70 78.64 83.19

CSMF 61.26 59.02 61.19 71.97 57.48 67.80 60.36 61.79 80.97 83.61
CSRPC 74.31 73.22 81.40 79.62 69.69 65.02 57.31 63.98 77.18 84.02
CSRCF 73.52 75.96 87.87 83.44 66.14 65.95 56.71 62.54 78.91 80.10
CSRHY 75.10 74.32 82.75 78.66 69.29 63.64 57.31 63.84 77.69 81.97
MLP 79.25 83.61 87.90 86.31 90.91 78.99 90.24 82.66 80.34 86.48

LSTM 79.32 88.52 87.63 87.80 88.74 79.97 92.07 83.66 86.97 92.62

results are shown in Table 5.5 and 5.6 for Fall 2016 and Spring 2017, respectively. Higher value is

better. We observe that the proposed methods outperform all the baselines and in most cases, LSTM

performs better than MLP.

5.3.3 Uncertainty Evaluation

In this section, we evaluate the quality of our uncertainty estimation in several aspects. The first

one is coverage, which can be evaluated by using calibration plot. The calibration plot can be

explained by observing that if a prediction is made at 95% confidence level, then the probability

that the prediction falls in the prediction interval should be 0.95. Figure 5.2 shows the calibration
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Table 5.5: Predictive Power at Identifying At-Risk Students for Fall 2016 (↑ is better)

Method CS ECE BIOL PSYC CEIE
Acc F-1 Acc F-1 Acc F-1 Acc F-1 Acc F-1

BO 0.677 0.275 0.677 0.233 0.776 0.484 0.853 0.041 0.853 0.041
MF 0.703 0.395 0.743 0.483 0.805 0.586 0.863 0.218 0.752 0.350

CSMF 0.774 0.352 0.765 0.188 0.841 0.512 0.863 0.156 0.748 0.333
CSRPC 0.820 0.556 0.786 0.450 0.843 0.539 0.917 0 0.714 0.521
CSRCF 0.796 0.424 0.770 0.192 0.849 0.541 0.942 0.357 0.714 0.388
CSRHY 0.806 0.533 0.792 0.441 0.849 0.562 0.920 0 0.753 0.612
MLP 0.851 0.623 0.863 0.657 0.865 0.647 0.939 0.424 0.870 0.464

LSTM 0.821 0.476 0.885 0.704 0.870 0.625 0.955 0.606 0.913 0.629
In Fall 2016, the percentage of at-risk students for each major is CS (24.40%), ECE (19.14%), BIOL
(18.79%), PSYC (9.80%), CEIE (12.97%).

Table 5.6: Predictive Power at Identifying At-Risk Students for Spring 2017 (↑ is better)

Method CS ECE BIOL PSYC CEIE
Acc F-1 Acc F-1 Acc F-1 Acc F-1 Acc F-1

BO 0.751 0.320 0.798 0.547 0.814 0.616 0.859 0.194 0.938 0.651
MF 0.730 0.358 0.780 0.571 0.805 0.621 0.854 0.189 0.893 0.458

CSMF 0.779 0.243 0.835 0.542 0.807 0.568 0.873 0.133 0.938 0.482
CSRPC 0.773 0.369 0.823 0.452 0.806 0.560 0.868 0.181 0.889 0.228
CSRCF 0.776 0.248 0.786 0.222 0.805 0.490 0.893 0.120 0.913 0.160
CSRHY 0.779 0.375 0.829 0.517 0.808 0.559 0.864 0.200 0.922 0.296
MLP 0.796 0.388 0.878 0.714 0.830 0.636 0.859 0.236 0.938 0.516

LSTM 0.819 0.425 0.920 0.826 0.833 0.624 0.907 0.274 0.954 0.666
In Spring 2017, the percentage of at-risk students for each major is CS (22.19%), ECE (23.78%),
BIOL (26.01%), PSYC (10.68%), CEIE (8.61%).
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Figure 5.2: Empirical confidence level vs. expected confidence level

plot evaluated on our datasets. The x-axis of the plot is the expected confidence level and the y-axis

is the empirical confidence level. From the figure, we can see that the calibration curves across the

five majors are close to the optimal calibration curve.

The second way to evaluate uncertainty estimation is that a model should make less errors on

predictions that it is confident about. Therefore, we evaluate the model as a function of confidence

score and we propose error@k:

E@k = error(k most confident predictions),

where error can be mean absolute error or tick error, the predictions are ranked in terms of predic-

tive variance, lower predictive variance is more confident. Figure 5.3 shows mean absolute error

with respect to top-k confident predictions. The figure shows that as the predictions become less

confident, the prediction errors become higher.

Grade prediction is fundamental for early-warning student facing system. The application case

of educational early-warning system is that when an instructor/advisor is informed that a student

will fail a course, then the instructor will reach out to the student and provide the student person-

alized advising and help. In this process, we want to make sure students who are not failing are

not predicted as failing students (false positives) so as to reduce wasted educational resources; and
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Figure 5.3: MAE as a function of confidence.

the failing students are not predicted as passing students (false negatives) so that they can get much

needed timely help. Prediction confidence is useful for reducing these kind of errors by only tak-

ing action on confident predictions. We also evaluate uncertainty estimation on the application of

identification of at-risk students. Figure 5.4 shows false negative rate (FNR) and false positive rate

(FPR) as a function of prediction confidence.
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Figure 5.4: FNR and FPR as a function of prediction confidence

We observe in most cases as prediction confidence decreases, there are more errors. To make

less errors, we can choose to take actions only on confident predictions. However, more confident
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top five most influential prior courses, right y-axis is student’s grade in corresponding prior course.
In the titles, target course means the course for which we are predicting grade, predicted grade is
the predicted grade for the student, and true grade is the student’s real grade in the target course.

predictions have less coverage. In practice, we propose to set an appropriate confidence threshold

to make a tradeoff between coverage and accuracy.

5.3.4 Case Studies: Influential Courses

To incorporate the developed next-term grade approaches within personalized advising system, we

seek to not only report the predicted grades for the student but identify the list of prior courses that

were most influential for determining future success in a given target course.

Figure 5.5 shows examples of use case scenarios for students in different disciplines. We choose

six at-risk students from CS, ECE, BIOL and PSYCH majors. If a student has grade lower than

2.0, he/she is identified as at-risk student. We compute the influence of the prior courses on the
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prediction as described in Section 5.1.5 and only prior courses contributing to the increase in the

prediction are reported. The influence is computed by using the LSTM model. The influence index

is sorted and normalized and only the top five prior courses are shown in the table. From the top left

subfigure, we can see that the student’s true grade in class CS-367 (this course is about computer

systems and programming) is 0.0, the predicted grade is 0.5 and the most influential prior course is

ECE-301 (class about digital electronics) which is a prerequisite. The influence of a prior course is

computed by increasing the grade of that course to full grade (i.e. 4.0). This does not suggest that a

course with a lower grade has higher influence than a course with higher grade. For example, in top

right subfigure, the lowest grade of the student is from MATH-114 (about calculus), but the most

influential is course CS-211 (about object-oriented programming) (prerequisite of the target course).

The left column of second row shows the third example. The target course is ECE-331 (about digital

system design). For this student, the actual grade in the target course is 1.0 and predicted grade is

1.6. The most influential course is ECE-220 (about signals and systems), as this student performed

very poorly in this course (grade was 0.0). From the results, we can see that the proposed approach

is able to identify influential prior courses that explain the prediction results.

Table 5.7: Top 5 influential prior courses for a target course. Bolded course is the pre-requisite.

Target Course Top 5 Influential Prior Courses
CS-367 ECE-301 CS-310 MATH-125 CS-262 MATH-213

ECE-433 ECE-333 MATH-203 STAT-346 PHYS-160 ENGR-107
PSYC-372 PSYC-325 PSYC-301 PSYC-300 PSYC-211 PSYC-100
BIOL-311 BIOL-213 CHEM-211 CHEM-212 CHEM-313 BIOL-214
CEIE-331 PHYS-261 CEIE-210 STAT-344 PHYS-161 MATH-113

Table 5.7 shows the influence of prior courses on a target course for groups of students. We

choose five representative courses from each major. From the table, we observe that for all the

courses their prerequisites are one of the top five most influential courses. Although, most of the

time, the most influential prior course for a target course is not necessarily the prerequisite, the

most influential course is very relevant to the target course. For example, course CS-367 about
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low-level computer system such as machine-level programming; the most influential course ECE-

301 is digital electronics, which is about designing logic circuits and relevant to low-level computer

system. Providing a list of influential courses for a target course can help stakeholders improve the

curriculum and program structure.

5.4 Conclusions

In this work, we proposed two course-specific Bayesian deep learning models for next-term grade

prediction. The first is a multi-layer perceptron which treats the feature vector as static and ignores

the temporal dynamics of a student’s knowledge evolution. To overcome this issue, we also devel-

oped a Long Short Term Memory model that takes into account the sequential aspect of student’s

knowledge accumulating process by taking courses across semester/terms.

We highlight the strengths of our proposed approach by incorporating the predictions within

three application scenarios: (i) identify at-risk students and (ii) provide explainable results so as to

identify a list of influential courses associated with a target course. (iii) provide prediction uncer-

tainty for building a reliable educational early warning system.

We conducted comprehensive experiments to evaluate the proposed models. The experiments

demonstrate that the proposed models exhibit better performance at predicting students’ grades

than state-of-the-art baselines. The experiments also show that the proposed models have better

capability at identifying at-risk students.
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Chapter 6: Academic Performance Estimation with Attention-based

Graph Convolutional Networks

Higher educational institutions face major challenges including timely graduation and retention of

enrolled students. The National Center for Education Statistics (NCES) reports that the six-year

graduation rate for first-time and full-time undergraduates is around 60%; the retention rate among

first-time and full-time degree-seeking students is around 80% [69]. These alarming statistics re-

quire higher educational institutions to take actions to improve their effectiveness and efficiency at

educating students. Machine learning techniques have been increasingly developed and applied to

educational settings in the hope of improving students’ learning and increasing students’ success

[70–72]. Many systems and applications have been proposed; such as course recommender sys-

tems [21], academic trajectory and degree planning [73], educational early advising systems [59],

and knowledge tracing for intelligent tutoring systems [19, 42]. Developing methods for accurate

modeling and predicting students’ performance is the key to these systems and applications.

Traditional performance prediction methods can be categorized into two types. The first builds

a static model, which takes a feature vector as input (such as a student’s grades in previous courses

or student-related features) and outputs the predicted grades. A common approach that belongs to

this category is linear regression methods [5]. Students take courses sequentially, i.e., they take

some courses at each semester; and their performance in courses taken in the next semester depends

on courses taken in previous semesters. Further, their knowledge evolves by taking a sequence of

courses. To capture the temporal dynamics of students’ knowledge evolution, sequential models

have been proposed. A set of representative approaches within this category use recurrent neural

networks (RNN) [74, 75].

Undergraduate degree programs are designed in a way that knowledge acquired in prior courses

serves as prerequisites for future courses. The knowledge and skills required to do well in a course

are acquired in multiple prior courses. The knowledge dependence between courses exhibit complex
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graph structure as shown in Figure 6.1. Figure 6.1 shows the prerequisite structures for computer

science and civil and infrastructure engineering degree programs at George Mason University. Each

node represents a particular course. An edge pointing from one course to another shows the pre-

requisite relationship. As an example, to do well in the data structure course (CS310), students

need to acquire programming skills, object-oriented programming knowledge (CS211) and math

(MATH113) which come from multiple different courses. The graph in Figure 6.1 also shows hi-

erarchical relationships where a course can depend on another course which is at a much lower

academic level. In addition to the prerequisite structures, degree programs are flexible, i.e., students

can choose to take elective courses based on their interests and do not have to follow a specific

ordering when taking these courses.

The complexity and flexibility of the degree programs make predicting students’ performance

a challenge task. Prior approaches usually simplify or ignore these complex dependencies. Figure

6.2 shows the comparison of three types of models. Figure 6.2a shows a static model, where a stu-

dent’s performance is directly dependent on a set of prior courses. Figure 6.2b shows a sequential

model, where students’ knowledge evolution is partially modeled. To overcome the constraints and

limitations of the traditional models, we propose a model based on graph convolutional networks

to capture the complex graph-structured knowledge evolution exhibited by students’ data. Specifi-

cally, we propose an attention-based graph convolutional network (ACGN) model for predicting a

student’s grade in a future course. Figure 6.2c shows the graph model, where each course depends
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on all courses taken in the semester before it so that students’ knowledge evolution is fully captured.

When a system is used for decision making e.g., as a support tool for advisors to identify students

who are at-risk of failing courses they will take; it is essential for the predictions to be interpretable.

This allows the stakeholders to trust the decision making systems and make informed decisions. We

show that our attention-based model is able to provide an interpretable and useful explanation for

the predictions. Our model is able to analyze a student’s performance in prior courses and identify

a collection of important prior courses to explain the student’s performance in target course.

We performed extensive experiments on real-world datasets to evaluate our model and com-

pare it with the other two types of models aforementioned. The experimental results are consistent

with our observations that models with architectures more close to the degree program have better

modeling capability and prediction performance. One of the important applications for students’

performance prediction is early warning and advising systems, where at-risk students are first iden-

tified and timely support is provided to improve their academic success. The experimental results

show our model’s effectiveness at identifying at-risk students.

The key contributions of the paper are summarized as follows:

• Flexible graph structured model for students’ academic performance prediction. Observing

the complex structures of undergraduate degree programs, we propose a graph convolutional

network model for students’ performance prediction.

• Attention based model for explanation. Providing explanations for a model’s predictions

makes the model useful for decision making. Our attention-based model can explain the

predictions by identifying a set of prior courses important for the predictions.

• Identification of at-risk students. While most models achieve good performance at predicting

students’ performance, they suffer from low accuracy at identifying at-risk students. Our

proposed model is able to achieve comparable performance with state-of-the-art models.
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6.1 Related Work

The need to improve higher education services and offerings has attracted research on developing

methods for predicting students’ performance [76, 77]. In this section, we review related work on

students’ performance prediction. The related work can be classified into three categories: (i) static

models, (ii) sequential models and (iii) graph models.

6.1.1 Static Models

Static grade prediction models learn a mapping function, where input is student-related features and

the output is predicted grade. Polyzou et al. [5] proposed regression models specific to courses or

students for predicting a student’s grade in a target course. They found that focusing on a course

specific subset of the data leads to more accurate predictions. Elbadrawy et al. [78] introduced a

personalized multi-regression model for predicting students’ performance in course activities. Com-

pared to a single regression model, this model is able to capture personal student differences. To

understand how students’ behavior impacts their academic performance, Wang et al. [79] collects

students’ behavioral data using smart phone for performance prediction. Many other classic super-

vised learning approaches have been used for students’ performance prediction including decision

trees [24], support vector machines and neural networks [25].

Adapted from recommender systems domain, matrix factorization [27] approaches are popular

for grade prediction. These factorization approaches make the assumption that a student’s knowl-

edge/skills and a course’s knowledge components can be jointly represented with latent vectors

(factors) [4]. Polyzou et al. [5] proposed course-specific matrix factorization models for grade pre-

diction that decompose a course-specific subset of students’ grade data. The student course records

also exhibit grouping structures and a domain-aware matrix factorization model was developed for

the joint course recommendation and grade prediction [21]. Ren et al. [29] proposed matrix factor-

ization model coupled with temporal dynamics for grade prediction.
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6.1.2 Sequential Models

Students take courses sequentially. Their knowledge and skills evolve by taking a series of courses.

To model the temporal dynamics of students’ knowledge evolution, sequential models have been

proposed. Balakrishnan [80] proposed a Hidden Markov Model for predicting student dropout by

modeling students’ activities over time in a Massive Open Online Courses (MOOCs). Swamy et

al. [81] models student progress on coding assignments in large-scale computer science courses

using recurrent neural networks. Kim et al. [74] proposed a bidirectional long short term memory

(BLSTM) model for the online educational setting. Hu et al. proposed course-specific markovian

models for students’ grade predictions [82]. Morsy et al. proposed cumulative knowledge-based

regression models for next-term grade prediction, which models students’ knowledge evolution by

using a sequential regression model. Hu et al. [75] proposed long short term memory models for

grade prediction in traditional higher education.

6.1.3 Graph Neural Networks Models

Deep learning approaches have found unprecedented success in a myriad of applications involving

regular structured data such as images (grids) and text (sequences) [43]. Graphs are more complex

and irregular than grids or sequences and recent research efforts involve designing deep learning

models for graph data. Graph neural networks have been proposed and applied to many areas

such as computer vision for point clouds classification [83], action recognition [84]; recommender

systems [85] and traffic prediction [86]. To the best of our knowledge, there is no prior work on

students’ performance prediction using graph neural networks.

6.2 Methods

6.2.1 Problem Statement

Given a student s, the set of courses taken and grades obtained in term t are represented by Pts. For a

sequence of terms 1 . . . Ts, we denote P1∼Ts
s = P1

s,P2
s, . . . ,PTss to represent the sequence of courses

taken and grades obtained by student s in Ts terms. For a target course c taken in the future (next)
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Figure 6.3: The proposed model.

term, the objective of the proposed method is to predict the grade student s will achieve in course c

denoted by ĝcs.

The proposed models are trained in a course specific manner i.e., for each target course c we

learn a unique model. Due to the flexibility of academic degree programs, in each semester different

courses can be taken; and for each student, the number of semesters studied before taking the

target course will be different. Therefore, we index the length of the sequence with student-specific

variable Ts.

For every target course c, a subset of frequently taken prior courses are identified from all the

prior courses taken by students who have already taken the target course c. These prior courses are

denoted as Cc of size Nc. For student s, only the prior courses in Cc are extracted from P1∼Ts
s to

form a graph which is represented by an adjacency matrix Ac
s ∈ {1, 0}Nc×Nc and a feature matrix

Fcs ∈ RNc×D, where D represents the number of features. Take Figure 6.2c as an example, the

student takes courses c1, c2, c3 in the first term, c4, c5 in the second term and c6, c7 in the third term;

we want to predict his/her grade in course CT . Adjacency matrix Ac
s for this student represents

his course taken process. Courses taken in the current term are fully connected to courses taken in

the next term; 1 represents connected, 0 otherwise. A row of the feature matrix Fcs represents the

student’s grades in corresponding prior courses.
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6.2.2 Model Description

Figure 6.3 shows an overview of the proposed model. It is composed of three parts: 1) graph

convolutional network, 2) attention layer and 3) a fully connected layer.

Graph Convolutional Network (GCN)

Convolutional neural networks (CNNs) show superior performance on several applications related

to vision [87], speech and text [88]. CNNs are powerful because of their ability to exploit feature

locality at multiple granularity. Graph Convolutional networks have a similar working mechanism

but on data with more complex structures, namely, graph.

The input to a GCN is an adjacency matrix Ac
s and feature matrix Fcs, encoding student s’s

course taking process and grades in prior courses, respectively. Multiple layers of graph convolu-

tional layer are applied on Ac
s and Fcs to learn a graph level embedding Zcs ∈ RN×D. Each row of Zcs

corresponds to a node embedding vector. A graph convolutional layer is mathematically described

as follows:

H(l+1) = f(H(l),A) = σ(D̃−
1
2 ÃD̃−

1
2H(l)W(l)) (6.1)

where Ã = A + IN is the adjacency matrix with self-connections, D̃ = ΣjÃj is the nor-

malization matrix, H(l) is the input and W(l) is the weight matrix to be learned. H(0) = Fcs and

H(L) = Zcs; namely, the input into the first GCN layer is the feature matrix Fcs, the output from the

last GCN layer is the student-specific graph embedding Zcs.

A filter in convolutional neural networks aggregates information from a pixel’s neighbors. Sim-

ilarly, the graph convolutional layer aggregates information from a node’s neighboring nodes and

generates a new node embedding vector by the following equation

hi = σ(Σj
1

cij
hjW) (6.2)
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where node j is node i’s neighbor. A higher level of the node embeddings are generated by ap-

plying multiple GCN layers. Multiple layers of GCN aggregate information from a node’s further

neighbors. As shown in Figure 6.3, the first GCN layer aggregates information from a node’s direct

neighbors, namely, in our case the courses taken in last semester. The second layer collects infor-

mation from a node’s second degree neighbors, i.e., the courses taken two semesters ago. The final

output is the graph embedding which entails information from all the courses a student has taken.

Attention Layer

The output from GCNs is a graph-level embedding matrix, which encodes information about a

student’s knowledge and skills acquired in prior courses. The knowledge acquired from different

prior courses has different importance for the target course. To capture the importance differences

of the prior courses, we integrate attention layer into our model. Attention mechanism allows the

model to focus on the relevant features or information useful for prediction. It works by computing

an importance score [89], higher score means the corresponding prior course is more important for

predicting a student’s performance; given by

ei = MLP (hi) (6.3)

αi =
exp(ei)

ΣN
k=1 exp(ek)

(6.4)

where MLP is a learnable function, i.e., multi-layer perceptron, αi is the attention score corre-

sponds to hi. The output from the attention layer is an attention score vector α.
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The graph embedding matrix Zcs is weighted by attention scores to form a weighted graph em-

bedding matrix Z
′c
s given by

Z
′c
s =



α1z
c
s,1

...

αiz
c
s,i

...

αNz
c
s,N


(6.5)

Finally, the pooling layer coarsens the weighted graph embedding matrix into a latent vector vcs.

The latent vector is passed through a multilayer perceptron; the output from which is the predicted

grade.

ĝcs = f(vcs) (6.6)

where f is a multilayer perceptron network.

6.3 Experimental Protocol

6.3.1 Dataset Description

Table 6.1: Dataset Statistics

Major
Fall 2017 Spring 2018

#S #C #G #S #C #G

CS 5,042 16 47,889 5,297 20 52,152
ECE 1,992 18 34,355 1,980 18 34,170
BIOL 7,065 20 52,574 6,976 20 52,672
PSYC 5,367 20 25,207 5,368 20 25,247
CEIE 2,222 17 30,956 2,181 16 30,283

Overall 21,688 91 190,981 21,802 94 194,524
#S total number of students, #C number of courses for prediction, #G total num-
ber of grades
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The data is collected at George Mason University from Fall 2009 to Spring 2018. The five

largest majors are chosen including: 1) Computer Science (CS), 2) Electrical and Computer En-

gineering (ECE), 3) Biology (BIOL), 4) Psychology (PSYC) 5) Civil Engineering (CEIE). The

evaluation procedure is designed in a way to simulate the real-world scenario of predicting the next-

term grades. Specifically, the models are trained on the data up to term T − 2 and validated on term

T − 1 and tested on term T . The latest two terms are chosen as testing terms, i.e. term Fall 2017

and term Spring 2018. For example, to evaluate the performance of the models on term Fall 2017,

the model is trained on data from term Fall 2009 to term Fall 2016, validated on term Spring 2017

to choose the parameters associated with different approaches and finally tested in term Fall 2017.

The statistics of the datasets are listed in Table 7.1

6.3.2 Evaluation Metrics

We evaluate the models from two perspectives: 1) the accuracy of grade predictions, 2) the models’

ability at detecting at-risk students.

To evaluate the models’ accuracy of grade prediction, two evaluation metrics are used a) mean

absolute error (MAE) and b) percentage of tick accuracy (PTA).

MAE =

∑N
i=1 |gi − ĝi|

N
(6.7)

where gi is true grade and ĝi is predicted grade.

In the grading system, there are 11 letter grades (A+, A, A-, B+, B, B-, C+, C, C-, D, F) which

correspond to (4, 4, 3.67, 3.33, 3, 2.67, 2.33, 2, 1.67, 1, 0). A tick is the difference between two

consecutive letter grades. The performance of a model is estimated by how many ticks away the

predicted grade is from the true grade. For example, the tick error between B and B is zero, B and

B+ is one, B and A- is two. To use PTA for evaluation, we first convert the predicted numerical

grade to its closest letter grade and then compute the percentage of errors with 0 tick, within 1 tick,

and within 2 ticks denoted by PTA0, PTA1, and PTA3, respectively.

We also evaluate the models’ performance of identifying at-risk students. At-risk students are
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defined as those whose grades are lower than 2.0 (C, C-, D, F). The predicted grades below 2.0

are treated as positives and above 2.0 are treated as negatives. The process of detecting at-risk

students is similar to grade prediction except that the output from the model (the predicted grade) is

converted to 1 or 0 based on whether the predicted grade is below or above 2.0. As the number of

at-risk students is low, we use F-1 score as evaluation metric.

6.3.3 Comparative Methods

Bias Only (BO)

Bias only method only takes into account a student’s bias, a course’s bias and global bias[5]. The

predicted grade is as follow

ĝcs = bc + bcs + bcc′ (6.8)

where bc, bcs, b
c
c′ are global bias, student bias and course bias, respectively.

Course Specific Matrix Factorization (CSMF)

The key assumption underlying this model is that students and courses can be jointly represented

by low-dimensional latent factors. N , M and D is the number of students, courses and latent

dimension, respectively [5]. To predict a student’s grade in a course, we have:

ĝcs = bc + bcs + bcc′+ < ucs,v
c
c′ > (6.9)

where bc is global bias, bcs is student bias term, bcc′ is course bias term; ucs is student s’s latent vector,

vcc′ is course c’s latent vector.

Course Specific Regression (CSR)

Course specific regression (CSR) [5] is a linear regression model. The input into this model is a

vector xcs representing a student’s grades in prior courses. A course specific subset of prior courses
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included in P1∼Ts
s are flattened to form the vector xcs. The predicted grade is

ĝcs = wc0 + xcsw
c (6.10)

where wc0 is bias term and wc are weight vectors to be learned.

Multilayer Perceptron (MLP)

Multilayer Perceptron is a generalized version of CSR. CSR model is a linear model, which is not

able to capture non-linear and complex patterns in students’ grades data. Therefore, multilayer per-

ceptron has been proposed by [75] for grade prediction. Similar to CSR, the input xcs is a student’s

grades in prior courses.

ĝcs = f(xcs) (6.11)

where f is the model to be learned.

Long Short Term Memory (LSTM)
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Figure 6.4: LSTM for grade prediction
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Long short term memory (LSTM) is an extension of recurrent neural networks (RNN) for mod-

eling sequential data. The assumption of using LSTM for students’ performance prediction is that

students knowledge and skills are evolving by taking courses in each semester. To capture the tem-

poral dynamics of students’ knowledge evolution, LSTMs have been proposed in [75]. The input

xcs,t at time step t is a student’s grades in courses at semester t. Many to one architecture is utilized

and the output from the last step of LSTM is fed into a fully connected network; the output from

which is the predicted grade. The model architecture is shown in Figure 6.4, where the courses

a, b, c, d, e are prior courses, xcs,t encodes the student’s grades in courses at time t and the output ĝ

is the predicted grade.

6.3.4 Implementation

Our method is implemented in Pytorch [90]. For model optimization we use Adam [68]. To avoid

model overfitting, we used l2 norm regularization (with coefficient 0.001) and dropout (dropout rate

0.05) [91]. The number of dimensions for the graph embedding is chosen from a list of (8, 12, 16,

20, 32, 64).

6.4 Experimental Results

6.4.1 Grade Prediction

Table 6.2: Comparative Performance of Different Models by MAE. (↓ is better)

Method
Fall 2017 Spring 2018

CS ECE BIOL PSYC CEIE CS ECE BIOL PSYC CEIE

BO 0.684 0.570 0.705 0.556 0.616 0.727 0.674 0.628 0.552 0.605
CSMF 0.594 0.476 0.550 0.517 0.479 0.647 0.539 0.499 0.492 0.491
CSR 0.607 0.444 0.551 0.440 0.441 0.628 0.493 0.463 0.439 0.444
MLP 0.585 0.390 0.515 0.407 0.413 0.590 0.436 0.417 0.413 0.369

LSTM 0.582 0.365 0.532 0.380 0.309 0.590 0.370 0.435 0.356 0.251
AGCN 0.540 0.335 0.459 0.309 0.336 0.543 0.366 0.379 0.316 0.258

70



Table 6.3: Comparative Performance of Different Models by Percentage of Tick Accuracy (↑ is
better)

Fall 2017 Spring 2018
Method CS ECE BIOL PSYC CEIE CS ECE BIOL PSYC CEIE

PTA0

BO 16.76 20.75 14.40 15.52 14.90 16.07 12.11 15.42 13.65 19.79
CSMF 20.00 23.58 22.40 23.10 28.85 22.31 17.37 23.35 28.41 28.65
CSR 24.26 33.96 27.60 38.97 40.87 26.29 28.42 34.14 41.33 35.42
MLP 26.32 39.62 31.00 41.72 41.35 27.76 33.68 41.41 43.17 42.19

LSTM 27.21 42.92 37.40 48.62 49.52 30.54 54.74 42.73 49.82 57.29
AGCN 30.00 41.51 38.80 56.21 50.00 36.52 39.47 44.49 50.55 56.77

PTA1

BO 44.71 49.06 43.20 57.59 48.56 44.09 37.37 46.70 57.20 50.00
CSMF 55.15 62.26 60.00 63.10 62.98 52.72 54.74 63.66 59.04 61.98
CSR 55.29 66.04 59.40 66.21 71.63 57.37 63.68 66.30 65.31 69.27
MLP 56.91 69.81 62.80 69.66 74.52 60.03 68.42 68.28 69.37 76.04

LSTM 58.24 73.11 61.40 73.79 79.33 59.10 72.11 72.03 75.65 82.81
AGCN 62.21 75.47 70.00 77.93 79.81 63.61 77.89 74.89 77.86 84.90

PTA2

BO 72.94 81.13 72.40 84.83 81.25 73.97 74.21 77.75 87.45 79.17
CSMF 80.00 86.79 83.60 83.45 87.50 75.30 84.21 84.36 85.24 84.38
CSR 76.76 86.32 80.80 83.45 84.62 77.03 82.63 84.58 82.66 86.46
MLP 79.85 89.62 82.80 85.86 86.54 79.42 86.32 86.34 84.13 90.62

LSTM 77.35 86.79 79.20 84.83 90.87 77.69 83.16 84.58 89.67 91.67
AGCN 81.47 92.45 85.60 88.62 91.83 80.21 88.95 87.67 88.93 93.23

Table 6.2 reports the performance of ACGN and comparative approaches for the task of next-

term grade prediction for the Fall 2017 and Spring 2018 semesters using the MAE metric. The

proposed ACGN model achieves the best performance in most cases except the Civil Engineering

(CEIE) major. The CEIE major has relatively simpler knowledge dependence structure as shown

in Figure 6.1b. A majority of higher level courses, such as 300 and 400 level courses for the CEIE

major have shallow knowledge dependence. While for CS major, the higher level courses have

deeper knowledge dependence or longer pre-requisite chains.

Another observation is that models which are able to capture the complex knowledge depen-

dence more have better performance. The static models (BO, CSMF, CSR, MLP) are outperformed

by sequential model (LSTM) in most cases, on average by 9.2%; the sequential model is outper-

formed by graph model (AGCN), besides CEIE major, on average by 7.0%. The experimental

71



results are consistent with our assumption that the knowledge dependence in the undergraduate de-

gree programs is complexly networked structures and a graph model is well-suited at capturing the

underlying dynamics.

Table 6.3 shows the comparative performance using the percentage of tick error accuracy. In

contrast to MAE, the PTA metric can provide a fine-grained view of the errors made by different

methods. From Table 6.3 we observe that the performance gap between models at PTA0 is larger

than at PTA2. For example, for CS majors in Fall 2017, the gap between the best performing model

AGCN and the worst performing model BO at PTA0 is 13.24%, which is larger than 8.53% at PTA2.

Table 6.4: Predictive Performance at Identifying At-risk Students, F-1 Score (↑ is better)

Method
Fall 2017 Spring 2018

CS ECE BIOL PSYC CEIE CS ECE BIOL PSYC CEIE

BO 0.092 0.000 0.116 0.000 0.000 0.085 0.000 0.194 0.000 0.000
CSMF 0.385 0.415 0.585 0.154 0.429 0.349 0.291 0.620 0.364 0.526
CSR 0.398 0.514 0.649 0.438 0.490 0.500 0.543 0.623 0.429 0.450
MLP 0.383 0.426 0.630 0.438 0.500 0.534 0.472 0.676 0.400 0.605

LSTM 0.492 0.533 0.553 0.276 0.702 0.584 0.650 0.638 0.400 0.681
AGCN 0.516 0.500 0.660 0.438 0.615 0.594 0.571 0.685 0.483 0.550

The percentage of at-risk students for each major in Fall 2017 is CS (23.7%), ECE (18.9%), BIOL
(25.8%), PSYC (8.3%), CEIE (15.9%); In Spring 2018, it is CS (23.7%), ECE (24.7%), BIOL
(18.1%), PSYC (6.6%), CEIE (14.1%).

6.4.2 Detecting At-risk Students

Detecting at-risk students early is a fundamental task for early warning and advising systems. We

evaluate the models’ performance at detecting at-risk students. Table 6.4 shows the experimental re-

sults evaluated by F-1 score. The percentages of at-risk students in different majors are presented at

the table footnote. The PSYC major has the lowest percentage of at-risk students. The experimental

results show that LSTM and AGCN achieve the best performance at detecting at-risk students. BO

performs worst at the detection of at-risk students. BO only captures the average performance of
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a student and a course, which is biased by other students and courses’ performance and the aver-

age performance of other students and courses is usually higher than 2.0 (the threshold of defining

at-risk students).

6.4.3 Interpretation with Attention

Table 6.5: Case Studies By Attention Score

Target Course True Grade Predicted Grade Prior Courses Grades Attention Score

CS-310 F C-

MATH-213 N 0.33
MATH-125 N 0.33

CS-262 N 0.33
CS-211 C 0.01

CS-310 D D
MATH-213 F 0.913
MATH-114 C 0.072

CS-211 N 0.015

BIOL-311 F C
BIOL-213 C+ 0.5315
BIOL-214 C+ 0.4685

BIOL-452 D C CHEM-211 C+ 0.5271
BIOL-214 B 0.2784
BIOL-213 C 0.1945

N means that the student did not take the course. Courses in bold mean they are in prerequisites chain.

Machine learning models have achieved impressive performance in many tasks. However, most

of them remain black boxes and there are concerns about their transparency. A model’s capability to

provide explanations for its predictions can increase its transparency. For decision making, under-

standing the reasons behind predictions can help decision makers make informed decisions. Grade

prediction models serve as an assistant tool for advisors to make decisions on whether to intervene

on a student or not. When the model predicts that a student is at-risk of failing a course, knowing

which prior courses results in the prediction can also help advisors provide personalized feedback

to students.

Attention mechanism works by letting the model focus on important information for prediction.

In our proposed model, the design of the attention layer lets the model focus on important prior

courses. The output from the attention layer is a vector of scores representing the importance of the

prior courses computed by Equation 6.4. In this section, we show by case studies how the attention
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scores from the attention layer explain the model’s predictions, especially, why the model predicts

that a student is at-risk of failing a target course.

Table 6.5 shows four case studies. We keep the most important prior courses identified by

attention score. For the first case study, the target course is CS-310, the student’s true grade in

the target course is F and the predicted grade is C-. The most important four courses identified

by attention layer is MATH-212, MATH-125, CS-262, CS-211. The reason for predicting this

student as at-risk is that the student did not take MATH-212, MATH-125, CS-262, therefore lacks

the necessary knowledge to do well in the target course. In the second case, the student’s true grade

in CS-310 is D, the predicted grade is D. The three most important courses are MATH-213, MATH-

114, CS-211. The reason for predicting this student as failing the target course is that he failed

MATH-213 and did not do well in MATH-114 and did not take CS-211, which is the prerequisite of

the target course. In the third case, the student’s true grade in the target course is F and the predicted

grade is C. The two most important prior courses identified are BIOL-213 and BIOL-214, both

are in prerequisite chain of the target course and the student did not do well in them. The fourth

case shows that the student failed the target course BIOL-452 and the predicted grade is C. The

three most influential prior courses are CHEM-211, BIOL-214, BIOL-213. Courses CHEM-211

and BIOL-213 are in prerequisite chain and the student did not perform well in them.

From the case studies, we can see that the attention layer identifies missing knowledge com-

ponents for a target course, arising due to two reasons: 1) the student did not take some important

prior courses, 2) the student did not do well in the corresponding prior courses.

6.4.4 Sensitivity Analysis

In this section, we evaluate the sensitivity of the model’s performance with respect to the dimension

of the graph embedding. In Figure 6.5, the x-axis is the embedding dimension and y-axis is MAE

for Fall 2017 and Spring 2018 datasets. From Figure 6.5, we can see that the model’s performance

varies with the dimension size. Overall, its performance is quite stable across the different majors.
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Figure 6.5: Sensitivity analysis on embedding dimension.

6.5 Conclusions

Students’ performance prediction is a fundamental task in educational data mining. Predicting stu-

dents’ performance in undergraduate degree programs is a challenging task due to several reasons.

First of all, undergraduate degree programs exhibit complex knowledge dependence structures. Sec-

ondly, undergraduate degree programs are flexible which means students can take courses without

following specific order and they can choose to take whatever electives they are interested in. Tradi-

tional approaches like static and sequential models are not able to fully capture the complexity and

flexibility of students’ data.

In this work, we proposed a novel attention-based graph convolutional networks for students’

performance prediction. The model is able to capture the relational structure underlying students’

course records data. We performed extensive experiments to evaluate the proposed model on real-

world datasets. The model is evaluated in several aspects: 1) grade prediction accuracy and 2) ability

to detect at-risk students. The experimental results show that our model outperformed state-of-the-

art approaches in terms of both grade prediction accuracy and at-risk students detection. Finally,

the attention layer provides explanations for the model’s prediction, which is essential for decision

making.
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Chapter 7: Towards Fair Educational Data Mining: A Case Study on

Detecting At-risk Students

Educational data mining (EDM) approaches seek to analyze student-related data with the objective

of improving learning outcomes for students. Many machine learning methods have been proposed

for student modeling and forecasting. However, in the past few years, concerns and evidence have

emerged about the fairness of machine learning models. A investigation by ProPublia has found

that a machine learning tool COMPAS used to predict risk of recidivism exhibits alarming bias

against African-American defendants. It shows that the false positive rate of African-American

defendants is twice as their white counterparts (45% vs. 23%) [12]. Buolamwini et al. [15] observed

imbalanced gender and skin type distributions in facial recognition datasets. Their study show that

facial recognition algorithms are more likely to misclassify darker-skinned females with error rates

up to 34.7%, while the maximum error rate for light-skinned male is 0.8%. In health care, an

algorithm used to guide health decisions are found that African-American patients assigned the

same level of risk are sicker than white patients [13].

In the domain of EDM, unfairness has also been observed. In academic performance predic-

tion systems, social indicators have been found to predict low-performance of male students more

accurately than that of female students [92]. A study by Doroudi et al. [93] showed that although

personalized models were more equitable than treating all students the same, they were still not

fair when relying on inaccurate models and the inequities could cascade as the amount of content

increases.

Machine learning models learn from data. If bias is recorded in data, models trained on the

biased data can also be biased [15]. Bias is also observed in educational data. Figures 7.1a and 7.1b

show the average GPA of students by gender and race at University X over a period of ten years.

The GPA of a student is his/her accumulative GPA as of the last term before graduation. In Figure

7.1a, average GPA of male students is skewed towards lower GPAs, while average GPA of female
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students is skewed towards higher GPAs. The average GPA of overall female students is 3.15 which

is higher than that of male students 2.86. Figure 7.1b shows the average GPA of African-American

and non-African-American students. From the figure, we can observe that average GPA of African-

American students leans towards left while that of non-African-American students leans towards

right. The data shows that the average GPA of African-American students is 2.86, while it is 3.03

for non-African-American students.

Biased data can lead to biased machine learning models which can be harmful to minority

groups. For example, in education models predicting a group of students to be at-risk or under-

performing can discourage them and undermine their learning outcomes. To resolve the harmful

results brought about by inequity of machine learning, there are critical needs to develop fair ma-

chine learning algorithms.

Machine learning community has been working on formalizations and evaluation of fairness.

Different concepts of fairness have been proposed such as statistical parity [94], equalized odds

and equal opportunity [95], counterfactual fairness [96] and individual fairness [97]. The above-

mentioned fairness definitions can be categorized into two types: group fairness and individual

fairness. Group fairness focus fairness on group level, which might not be fair to some individu-

als in a particular group. Individual fairness on the other hand requires that individuals are treated

equally, which is more desirable [97]. However, traditional individual fairness is based on the idea

that similar individuals should be treated similarly, which relies upon a problem-specific similarity
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metric. Its reliance on similarity metric makes it hard to adapt to different tasks. Metric-free indi-

vidual fairness has been proposed [98], which eliminates the requirement of a similarity metric. In

this work, we develop a fair model based on metric-free individual fairness.

Metric-free individual fairness assumes that an individual’s qualification should not be changed

if his/her sensitive attribute is changed. In this paper, without loss of generality we assume there

are two sensitive attributes. The proposed model is composed of two classifiers. Each classifier

corresponds to a sensitive group. The classifier corresponding to the individual’s sensitive attribute

predicts the individual’s probability of being positive, while the probability of the other classifier

indicates the individual’s probability of being positive if his/her sensitive attribute is changed. Ac-

cording to the definition of metric-free individual fairness, the two probability distributions should

be nearly identical. The proximity of the two probability distributions is treated as fairness. The

closer the two distributions, the fair the prediction is. In addition to fairness, we also care about the

accuracy of the classifier. Therefore, the overall objective we seek to optimize is the accuracy of the

classifier corresponding to the individual and the proximity of the distributions of the two classifiers.

We also explore using contextual bandits as builing block and propose an algorith called cooper-

ative contextual bandits. The algorithm consists of multiple contextual bandits where each bandit

corresponds to a sensitive attribute. Given an individual, the algorithm predicts the individual’s

probability of getting a positive outcome using bandit corresponds to his/her sensitive attribute and

compares it to the probability of getting a positive outcome by changing his/her sensitive attribute.

The proximity of the two probability distributions is treated as fairness. Namely, if the qualification

of the individual is not affected by his sensitive attribute, it is considered fair. The algorithm treats

the proximity of the two probability distributions as a reward signal and maximizes it to achieve

fairness. As we need to measure the divergence of the predictions between different bandits, we

develop a gradient contextual bandits algorithm. Compared to traditional contextual bandits which

predict the action value, gradient contextual bandits directly map a state to a action distribution that

can be used to measure divergence. The advantage of this algorithm is that the fairness is treated as

reward and the fairness criterion does not need to be differentiable.
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The proposed models are evaluated on datasets collected from University X and the task is de-

tecting at-risk students. The experimental results show the efficacy of the proposed models at miti-

gating bias. Although, the overall data shows that female and non-African-American students have

higher overall performance, we observe that the bias is different for different courses. Specifically,

in some courses female students are biased against while in some other courses male students are

biased against in terms of at-risk detection. This observation is useful for future work on developing

fair machine learning models in educational setting.

Overall, the main contributions of this work are summarized as

• We observe bias embedded in educational data and propose a fair machine learning model for

identifying at-risk students based on metric-free individual fairness. The experimental results

show the efficacy of the model at mitigating bias.

• From the experimental results, we find that different courses have different bias. This insight

informs that future work on fairness should be built in a course specific manner. Trying to

build a one-size-fit-all fair model might result in unfairness at course-level.

The rest of the paper is organized as following. Section 7.1 discusses related work on EDM and

fairness. The following section introduce preliminary on the definition of individual fairness. In

Section 7.3, we propose our fair models for at-risk students detection. Datasets and experimental

protocol is described in Section 7.4. Section 7.5 presents experimental results and analysis. The last

section concludes the paper and discusses future work.

7.1 Related Work

In this work, we focus on mitigating bias in classification tasks. We first describe related works in

EDM that rely on classification. Then we describe the formalizations of fairness. Lastly, we talk

about proposed methods for fair machine learning.
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7.1.1 Classification Problems in EDM

In educational data mining, there are many tasks that can be formulated as a classification problem

and many works have been proposed in this area such as affect detection [6], dropout prediction

[99], graduation prediction [8], at-risk student detection [16, 82], knowledge tracing [19], etc.

Affect detection is the task of classifying a student’s affective states such as boredom, confu-

sion, delight, concentration and frustration by using sensor [7] and sensor-free [100] data. Vinayak

et al. [101] proposed to predict student dropout using a Naive-Bayes classifier. Ojha et al. [9]

proposed SVMs, Gaussian Processes and Deep Boltzmann Machines for student’s graduation pre-

diction using factors such as pre-university preparation. A set of human-interpretable features have

been engineered by Polyzou et al. [16] for at-risk student detection. All these tasks can be formu-

lated as a classification problem. However, all these works did not consider the potential bias and

discrimination of the models. In this work, we try to build a general method that can be used for

different kinds of tasks. To test the proposed method, we focus on the task of identifying at-risk

student.

7.1.2 Fairness Formalizations

Over the years, different formalizations of fairness have been proposed that focus on different as-

pects. For example, statistical parity [94] requires that the probability of being predicted as positive

across all the groups should be nearly the same. Equal odds imposes the constraint that the true

positive rate should be the same for all the groups [95]. Equal opportunity requires a qualified indi-

vidual should be predicted as qualified regardless of his/her sensitive attribute [95]. Another type of

fairness formalization focuses more on individual level. The notion of individual fairness proposed

by Cynthia et al. [97] assumes that similar individuals should be treated similarly. However, the re-

quirement of a problem-specific similarity metric limits its adoption [102]. Hu et al. [98] proposed

metric free individual fairness based on the assumption that the prediction outcome of an individual

should be not be influenced by the individual’s sensitive attribute. The elimination of similarity

metric makes implementation of metric free individual fairness easier.
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7.1.3 Fair Machine Learning Algorithms

Several algorithms have been proposed to achieve individual fairness. Based on John Rawls’ notion

of fair equality of opportunity, Joseph et al. [50] proposed an individual fairness notion that a worse

individual should never be favored over a better one. To implement this notion, an algorithm based

on contextual bandits have been proposed. The output from the contextual bandits is an interval

indicating the qualification of an individual. Individuals with overlapping intervals are chained to-

gether and treated equally, while individuals with lower upper confidence bound are favored less.

The unfairness comes from the prediction’s dependence on sensitive attribute. To remove the de-

pendence, Zemel et al. [51] proposed learning a fair representation which does not contain sensitive

information. The representation is a cluster of embedding vectors. Following the idea of learning

fair representation, Edwards [52] proposed to remove sensitive information from the learned rep-

resentation by using adversarial learning. The input feature vectors are mapped to an embedding

vector by an encoder. An adversary tries to predict the sensitive attribute from the representation.

The encoder and the adversary plays a minimax game to remove sensitive information. The fair rep-

resentation learning algorithms achieve individual fairness by first learn a representation and then

train a classifier based on the learned representation. Our proposed model directly puts fairness

constraints on the predictions.

7.2 Preliminaries

In this section, we discuss the formalization of individual fairness.

7.2.1 Individual Fairness

Cynthia et al. [97] introduces the concept of individual fairness, which is based on the idea that

similar individuals should be treated similarly. This definition requires a similarity metric mea-

suring the similarity between two individuals. Given two individuals xi and xj , a classifier H is

individually fair if the difference of the predictions between the individuals are upper bounded by

81



their dissimilarity. The definition is as following

D(H(xi), H(xj)) < d(xi, xj) (7.1)

where D is the distance measure between the outputs of the classifier and d is the distance metric

between the two individuals. The drawback of this definition is that a similarity metric is required. A

similarity metric guaranteeing fairness is problem specific and requires strong assumptions, which

obstructs its adoption [102].

7.2.2 Metric Free Individual Fairness

Hu et al. [98] proposed metric free individual fairness based on the idea that the qualification of

an individual should not be influenced by his/her sensitive attribute. Thus, changing an individual’s

sensitive attribute should not change the prediction of a classifier. The definition of metric free

individual fairness is following

D(P (Y |xi, S = si), P (Y |xi, S 6= si)) < ε (7.2)

where si is the sensitive attribute of individual i,D is the distance measure of the predictions, ε is an

arbitrarily small positive number. This definition eliminates the requirement of a similarity measure

between individuals. In this work, we develop fair model based on this definition.

7.3 Methods

7.3.1 Problem Statement

In this work, we focus on the task of identifying at-risk students. Given a student iwith ((xi, si), yi),

xi ∈ RP encodes the student’s grades in courses taken prior to the target course; si ∈ {0, 1} is the

student’s sensitive attribute such as gender or race; yi ∈ {0, 1} is the ground truth label indicating

whether a student is at-risk (1) or not (0). We focus on a binary sensitive attribute, though our

method can be easily extend to scenarios where the sensitive attribute is n-ary. We want to build a
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Figure 7.2: The architecture of the proposed model. The model consists of two classifiers C0 and
C1 corresponding to sensitive attribute 0 and 1. An input vector xi is fed into the two classifiers
and the outputs are used to compute accuracy and fairness score. Note that if the sensitive attribute
si is 0, accuracy A0 and fairness F are combined to compute objective O0 and only classifier C0

is updated; otherwise, A1 and fairness F are combined to form objective O1 and classifier C1 is
updated.

classifier to predict if a student will underperform in a future target course. The classifier needs to

satisfy two constraints: 1) make predictions as accurate as possible and 2) the output of the classifier

is individually fair as specified by Equation 7.2.

The model is trained in a course-specific manner. Given a target course, we extract all the

students who have taken it. The courses these students have taken prior to the target course are

extracted as prior courses. The students’ grades in the prior courses are extracted to form a matrix

X and the students’ grades in the target course are Y . Students’ sensitive attributes are denoted as

S. We train a course-specific model on ((X,S), Y ) to predict whether students who have not taken

the target course will fail it or not. Note that sensitive attributes S are not used as features.

7.3.2 Multiple Cooperative Classifier Model

In this section, we present the proposed model, multiple cooperative classifier model (MCCM).

Figure 7.3 shows the architecture of the proposed model. The model is composed of two classi-

fiers, each of which corresponds to a sensitive attribute, e.g., male or female. Given an individual

((xi, si), yi), the feature vector xi is fed into the two classifiers. The output of the classifier cor-

responding to si is the individual’s probability of being positive, while the output of the classifier
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corresponding to 1− si is the individual’s probability of being positive if his/her sensitive attribute

is changed. Based on the assumption of metric free individual fairness, to be fair the difference

between the outputs of the two classifiers should be ignorable. In this work, the difference is the

KL-divergence of the two outputs. In addition to fairness, we also care about the accuracy of the

classifier. Therefore, for student i, the objective function we seek to optimize is as following

Li = −yi log p̂si,i − (1− yi) log(1− p̂si,i) + λKL(p̂si,i, p̂1−si,i) (7.3)

where λ is a hyperparameter trading off between accuracy and fairness, p̂si,i is the probability of

being positive predicted by classifier si and p̂1−si,i is the probability predicted by classifier 1 −

si. Note that, for Li only the classifier corresponding to si is updated. The classifiers are feed-

froward neural networks with two hidden layers. The activation function is chosen to be ReLU

[103]. Dropout [104] is used to prevent overfitting.

Procedure 1 Multiple Cooperative Classifier Model

Input: Data D = {((xi, si), yi)}Ni=1, learning rate α, λ, number of iterations T , classifier C0 and
C1.
Initialize parameters {θ00, θ01}

1: for t = 1, ..., T do
2: Sample example ((xi, si), yi) from D
3: Feed xi into classifier Csi and C1−si
4: Compute the loss Li according to equation 7.3
5: θt+1

si = θtsi + α ∂Li
∂θtsi

6: end for
7: return {θT0 , θT1 }

7.3.3 Cooperative Contextual Bandits

Gradient Contextual Bandit

Contextual bandits algorithms make a decision at each step by estimating the action value Q(x, a),

which is the expected reward of taking action a given context x. In this section, we introduce gra-

dient contextual bandits which learns a stochastic policy that maps a context vector to a probability

distribution of actions. This is desirable in our case as we want to know the distance between two

84



distributions of actions given a context vector, which is detailed in Section 7.3.3. Besides that, a

stochastic policy is beneficial in other domains such as recommender systems. For example, a user

might like an action movie as much as a science fiction movie, which can be easily modeled by

using a stochastic policy, while a deterministic policy can only choose the movie that the user likes

the best.

Formally, we want to learn a policy πθ(a|x) = P (A = a|X = x, θ) parameterized by θ, which

is the probability of choosing action a given context vector x that maximizes the expected reward

J(θ) = Ex∼P (X)[πθ(a|x)Q(x, a)] (7.4)

In the following text, we ignore θ and use πθ(a|x) and π(a|x) interchangeably. As the action space

is discrete, we can parameterize the policy as

π(a|x) =
eφ(x,a)∑
b e
φ(x,b)

(7.5)

where φ(x, a) is a preference score of choosing action a, which is mapped from feature vector x.

The gradient of the expected reward of a policy with respect to the policy parameter is

∇J(θ) = Ex∼P (X)[∇πθ(a|x)Q(x, a)] (7.6)

However, the probability distribution of X is unknown. Instead, we seek to optimize the empirical

reward Jt(θ), which is an unbiased estimator of the expected reward, namely, J(θ) = E[Jt(θ)].

The empirical policy gradient is

∇Jt(θ) = ∇ log(πθ(at|xt)rt(at)). (7.7)

The gradient of the policy with respect to its parameters is the gradient of the logarithm of the policy
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times the reward. The derivation of the policy gradient is detailed as following

∇Jt(θ) =
∑
a

∇πθ(a|xt)q(xt, a)

=
∑
a

πθ(a|xt)
∇πθ(a|xt)
πθ(a|xt)

q(xt, a)

= Eπθ [∇ log πθ(a|xt)q(xt, a)]

= Eπθ [∇ log πθ(at|xt)q(xt, at)]

= Eπθ [∇ log πθ(at|xt)Rt]

= ∇ log πθ(at|xt)Rt.

(7.8)

where Eπθ is the expectation taken with respect to πθ.

The policy parameter can be updated by using stochastic gradient ascent algorithm as

θt+1 = θt + α∇ log πθ(at|xt)rt(at). (7.9)
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Figure 7.3: The Cooperative Contextual Bandits Model.

Metric free individual fairness imposes the constraint that changing the sensitive attribute of an
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individual should not change the outcome. We propose cooperative contextual bandits algorithm

which is composed of two gradient contextual bandits Bs, s ∈ {0, 1}, where s is the sensitive at-

tribute. Figure 7.3 shows the model architecture of the proposed model. Each gradient contextual

bandit corresponds to a sensitive attribute group, e.g., male or female. Each gradient contextual

bandit learns a policy πs, s ∈ {0, 1} which maps a feature vector to an action distribution. Given

an individual with context vector xt, xt is input into both bandits, each of which outputs an action

distribution. The algorithm takes an action according to the action distribution of the bandit corre-

sponding to st. A reward is determined by the ground truth label yt and the distance between the

action distributions of the two bandits. The bandit corresponding to st receives the reward feedback

and gets updated. Note that the other bandit is not updated.

According to the definition of metric free individual fairness, the difference between outcomes

given by different gradient contextual bandits should be ignored, i.e. D(πsi(xi), π1−si(xi)) < ε, for

arbitrarily small ε. Since we are using gradient contextual bandits which directly maps the context

vector to the probability distribution of actions, the difference of the outcomes can be measured by

KL divergence between the outcomes.

Reward Function

At time step t, a individual (xt, st) is presented, an action at is taken and a reward rt(at) is received.

The action is the predicted outcome for the individual, i.e., whether he/she is hired. The reward

function is composed of two parts, fairness and accuracy.

rt(at) = rat (at)− λKL(πst(xt), π1−st(xt)) (7.10)

where rat (at) ∈ {0, 1} is the accuracy reward, λ is a hyperparameter trading off between accuracy

and fairness. The reward is high when the prediction is correct while the difference between the

outcomes from different contextual bandits is small. KL divergence is a measure of how much a

probability distribution is different from another distribution.
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Model Architecture of Gradient Contextual Bandits

The input into the gradient contextual bandit is a feature vector describing an individual. The bandit

learns a policy that maps the feature vector to an action distribution. The policy is parameterized

as a feed-forward neural network. As we assume a binary discrete label, the last layer of the neural

networks is a softmax layer whose output is the probability distribution of actions. The neural

networks are composed of one hidden layer and the activation function is a ReLU function [105].

Algorithm 2 shows the detail of the proposed algorithm.

Procedure 2 Cooperative Contextual Bandits

Input: Data D = {((xi, si), yi)}Ni=1, learning rate α, λ, number of steps T.
Initialize parameters {θ00, θ01}

1: for t = 1, ..., T do
2: Sample example ((xt, st), yt) from D
3: Sample at ∼ Bst(·|xt)
4: Take action at, compute reward rt(at) using Equation 7.10
5: θt+1

st = θtst + α∇ logBst(at|xt)rt(at)
6: end for
7: return {θT0 , θT1 }

Convergence Analysis

In this section, we analyze the convergence property of the proposed algorithm.

Assumption 1. There exists Q, such that the reward function satisfies

|rt(at)| ≤ Q (7.11)

for all t and at.

Assumption 1 states that the reward function is bounded. The reason is that rat (at) ∈ {0, 1} and

KL(πst(xt), π1−st(xt)) is bounded.
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Assumption 2. Let s ∈ {0, 1}. The first and second derivatives of the score function are element-

wise bounded by constants F and S, respectively, and 0 ≤ F, S <∞

|∇ log πs| ≤ F (7.12)

|∇2 log πs| ≤ S. (7.13)

As the action space is discrete, the policy is parameterized as

πs(a|x) =
eφ(x,a)∑
b e
φ(x,b)

. (7.14)

Therefore, ∇ log πs = (1− πs(a|x))∇φ(x, a), which is bounded if ∇φ(x, a) and the parameter θs

is bounded. The second derivative is derived as

∇2 log πs(a|x) = (1− π(a|x))2∇2φ(x, a)∇2πs(a|x)

− (1− π(a|x))2∇φ(x, a)∇φ(x, a)T
(7.15)

which is also bounded if∇2φ(x, a), ∇2πs(a|x) and ∇φ(x, a), θs are bounded.

Lemma 1. Under Assumption 2, for ∀s ∈ {0, 1}, Js(θ) is L-Lipschitz smooth and 0 ≤ L <∞

||∇Js(θ1)−∇Js(θ2)|| ≤ L||θ1 − θ2|| (7.16)

Lemma 1 assures that the objective function Js(θ) is smooth, which is essential in analyzing the

convergence of the algorithm.

Proof The Hessian matrix of the score function log πθs is

∇2 log πθs = π−1θs ∇
2πθs −∇ log πθs∇ log πTθs . (7.17)
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Therefore,

∇2πθs = πθs∇2 log πθs + πθs∇ log πθs∇ log πTθs . (7.18)

The second derivative of the objective function is bounded as shown below

∇2J(θs) =

∫
X
∇2πθs(a|x)q(x, a)dx

= πθs(

∫
X
∇2 log πθs(a|x)q(x, a)dx+

∫
X
∇ log πθs(a|x)∇ log πθs(x|a)T q(x, a)dx)

≤ SQ+ F 2Q = L.

(7.19)

Bounded second derivative implies Lipschitz continuity, therefore J(θs) is L-smooth.

Theorem 1. For ∀s ∈ {0, 1}, let {θts}Tt=0 be the sequence of learned parameters of the policy πs

given by Algorithm 2. Then, under Assumption 1 and 2, we have

||∇J(θms )||22 ≤
1

T

T∑
t=0

||∇J(θks )||22 ≤
J(θ∗s)− J(θ0s)

MT
, (7.20)

where ∇J(θms ) = min
t∈{0,...,T}

∇J(θts), J(θ∗s) = max
t∈{0,...,T}

J(θts), and M is a constant with 0 < M <

∞.

Theorem 1 shows that the average of the gradient norm square converges to a neighborhood

near zero with rate of 1
T or the minimizer of the gradient norm square converges to zero in O( 1

T )

iterations. The minimizer can be obtained by using early stopping.
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Proof The objective function J(θs) is smooth, which directly implies

J(θk+1
s ) ≥ J(θks ) + 〈∇J(θks ), θk+1

s − θks 〉 −
L

2
||θk+1

s − θks ||22

≥ J(θks ) + α||∇J(θks )||22 −
L

2
||θk+1

s − θks ||22

≥ J(θks ) + α||∇J(θks )||22 −
Lα2

2
||∇J(θks )||22

≥ J(θks ) +
2α− Lα2

2
||∇J(θks )||22

≥ J(θks ) +M ||∇J(θks )||22

(7.21)

where M = 2α−Lα2

2 .

By telescoping sum the above equation with k from 0 to K, we obtain

J(θks ) ≥ J(θ1s) +M

K∑
k=0

||∇J(θks )||22. (7.22)

Therefore,

1

K

K∑
k=0

||∇J(θks )||22 ≤
J(θks )− J(θ1s)

MK

≤ J(θ∗s)− J(θ1s)

MK

(7.23)

where J(θ∗s) is the maximizer of J(θks ) with respect to k.

Defining∇J(θms ) = min
t∈{0,...,T}

∇J(θts), we obtain

||∇J(θms )||22 ≤
1

T

T∑
t=0

||∇J(θks )||22 ≤
J(θ∗s)− J(θ0s)

MT
. (7.24)
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This Completes the proof for Theorem 1

7.4 Experimental Protocol

7.4.1 Datasets

Table 7.1: Dataset Statistics

Major #S #C #G #M #F #AA #NAA

BIOL 6,127 16 124,716 1,927(31.45%) 4,200(68.55%) 759(12.39%) 5,368(87.61%)
CEIE 450 7 23,708 338(75.11%) 112(24.89%) 27(6.00%) 423(94.00%)
CS 2,430 11 90,819 1,942(79.92%) 488(20.08%) 157(6.46%) 2,273(93.54%)

ECE 671 10 65,396 575(85.69%) 96(14.31%) 66(9.84%) 605(90.16%)
PSYC 5,110 17 84,504 1,200(23.48%) 3,910(76.52%) 694(13.58%) 4,416(86.42%)

#S total number of students, #C number of courses for prediction, #G total number of grades
#M number of male students, #F number of female students, #AA number of African-American students #NNA number of non-African-
American students.

To evaluate the proposed model, we collect ten-year data at University X from Fall 2009 to Fall

2019. We choose top five majors including Biology (BIOL), Civil Engineering (CEIE), Computer

Science (CS), Electrical Engineering (ECE) and Psychology (PSYC). We only choose a course if

there are at least 300 students who have taken it. We use a student’s grade in prior courses to predict

whether a student is at-risk of failing a target course. While preprocessing the data, we exclude

courses that are not relevant to a major such as elective courses of liberal arts. Table 7.1 shows

statistics of the data. From the table, we can see clear gender difference for different majors. Fe-

male students tend to choose Biology and Psychology majors, while male students are more prone to

engineering majors such as Civil Engineering, Computer Science and Electrical Engineering. Over-

all, the proportion of African-American students is relatively small, especially for Civil Engineering

and Computer Science.

We build course specific models, namely, for a target course we train a classifier to predict

whether a student will fail that course in the future. We define as at-risk student if the student’s

grade is lower than 3.0. Given a target course, the data related to that course is split into 75%, 15%,

15% for training, validation and testing, respectively.
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7.4.2 Baselines

As in this work we focus on individual fairness, we compare our proposed model with several

individually fair algorithms.

Logistic Regression (LR)

This baseline does not have fairness constraint. It directly predicts if a student is at-risk or not. The

input is a feature vector encoding a student’s grades in prior courses. The output is the student’s

probability of failing the target course.

Rawlsian Fairness (Rawlsian)

The concept of Rawlsian fairness is that a worse candidate should never be favored over a better one.

Joseph et al. [50] proposed an individually fair algorithm utilizing contextual bandits as building

block to implement Rawlsian fairness. Given an individual, the output from the contextual bandit is

an interval indicating the qualification of the individual. Given a group of individuals, their intervals

are chained together if they overlap. Chained individuals are treated identically and selected with

equal probability. The hyperparameters for this model are regularization parameter λ selected from

{1.0, 3.0, 9.0} and the scaling parameter δ chosen from {0.3, 0.5, 0.9}.

Learning Fair Representation (LFR)

The unfairness of a prediction comes from the correlation of the output with the sensitive attribute.

Zemel et al. [51] proposed to remove the correlation by learning an intermediate representation and

train a classifier on it. The representation is composed of a cluster of prototypes. To remove sensitive

information from the representation, a constraint is imposed that given two random individuals from

the protected and advantaged group their probability of mapping to any prototype should be almost

the same. The hyperparameters includeAx, Ay andAz which are used to control a balance between

the recovery of the original feature, accuracy and fairness. Ax is set to be 0.01, following the

original work and Ay, Az are chosen from {0.1, 0.5, 1, 5, 10}. The dimension of the representation

is chosen from {10, 20, 30}.
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Adversarial Learned Fair Representation (ALFR)

Edwards et al. [52] propose to remove sensitive information from representation by adversarial

learning. A encoder maps the original feature vector to a latent embedding vector, from which an

adversary tries to predict the sensitive attribute. While the adversary tries to predict the sensitive

attribute, the encoder seeks to generate a representation that prevent the encoder from predicting

it. The encoder and the adversary play a minimax game to remove sensitive information from the

representation. The hyperparameters of this method include the dimension of the representation

chosen from {10, 20, 30}. The encoder and the adversary are feed-froward neural networks consists

of 2 hidden layers.

7.4.3 Evaluation Metrics

To evaluate if the proposed algorithm satisfy the accuracy and fairness constraints, we utilize three

evaluation metrics accuracy, discrimination and consistency.

The accuracy metric assesses the predictive accuracy of the model, defined as following

acc =

∑N
i=1 1(yi = ŷi)

N
(7.25)

where N is the number of examples, ŷi is the prediction and ŷ is the ground truth label.

Discrimination measures the difference between the groups’ rate of being predicted as positive,

mathematically expressed as following

discri = |
∑N

i=1 1(si = 0) ∗ ŷi∑N
i=1 1(si = 0)

−
∑N

i=1 1(si = 1) ∗ ŷi∑N
i=1 1(si = 1)

| (7.26)

Consistency compares the predicted results of an individual with his/her k-nearest neighbors.

If the predicted results is close to the results of the neighbors, consistency is high and the algorithm

94



is fair. Consistency is defined as following

consist = 1−
N∑
i=1

∑K
n=1 |ŷi −

∑
j∈kNN(xi)

ŷj |
K

(7.27)

where kNN(xi) is the k-nearest neighbors of individual i.

We use Gower similarity [106] to measure the similarity between individuals. Gower similarity

is defined as

Gower(i, j) =

∑N
k=1wkSijk∑N
k=1wk

(7.28)

whereN is the number of features andwk is the weight of the k-th variable, in this paper the weights

are set to one; Sijk is the contribution by the k-th variable. If the k-th variable is continuous, Sijk is

defined as

Sijk = 1−
|xik − xjk|

rk
(7.29)

where xik is the value of k-th feature of i and rk is the range of values for the k-th variable. If the

k-th variable is categorical, Sijk is 1 if xik = xjk or 0, otherwise.

7.5 Experimental Results

7.5.1 Results and Analysis

We train a classifier for each course in a major to predict if a student will fail that course. The pre-

dictions are evaluated by using accuracy, discrimination and consistency. The results are averaged

across the courses in a major. Table 7.2 shows the experimental results with gender as sensitive at-

tribute. From the table, we can see that the proposed model MCCM achieves the best performance

in mitigating bias in terms of discrimination. It is able to achieve both group fairness and individual

fairness, although, it is designed for achieving individual fairness. The reason is that group and

individual fairness are highly correlated so that achieving one helps achieving the other.
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Table 7.2: Experimental results with gender as sensitive attribute.

Method
BIOL CEIE CS ECE PSYC

acc/discri/consist acc/discri/consist acc/discri/consist acc/discri/consist acc/discri/consist

LR 0.7662/0.0613/0.8152 0.6761/0.0837/0.7451 0.6628/0.1007/0.7569 0.7545/0.0980/0.7655 0.7769/0.0192/0.9578
Rawlsian 0.5889/0.0807/0.8120 0.6250/0.0866/0.7052 0.5582/0.0913/0.8301 0.6660/0.1498/0.7036 0.7559/0.0960/0.9396

LFR 0.6470/0.0369/0.9691 0.6983/0.0518/0.9631 0.6004/0.0228/0.9463 0.7389/0.0273/0.9912 0.7898/0.0248/0.9865
ALFR 0.6802/0.0202/0.9675 0.7062/0.0240/0.9855 0.6124/0.0134/0.9821 0.7465/0.0114/0.9783 0.7903/0.0125/0.9878

MCCM 0.6774/0.0163/0.9401 0.6415/0.0165/0.9823 0.6180/0.0038/0.9562 0.7394/0.0061/0.9717 0.7868/0.0023/0.9958
CCB 0.6663/0.0089/0.9791 0.5901/0.0334/0.9624 0.6051/0.0257/0.9416 0.7300/0.0279/0.9790 0.7861/0.0094/0.9954

acc = accuracy, discri = discrimination, consist = consistency.

Table 7.3: Experimental results with race as sensitive attribute.

Method
BIOL CEIE CS ECE PSYC

acc/discri/consist acc/discri/consist acc/discri/consist acc/discri/consist acc/discri/consist

LR 0.7662/0.1004/0.8152 0.6761/0.1411/0.7451 0.6628/0.1085/0.7569 0.7545/0.1238/0.7655 0.7769/0.0276/0.9578
Rawlsian 0.5854/0.1129/0.7870 0.5849/0.3658/0.7349 0.5561/0.1857/0.8007 0.6999/0.1446/0.7416 0.7608/0.0776/0.9570

LFR 0.6202/0.0569/0.9051 0.7099/0.1722/0.9701 0.6107/0.0599/0.9897 0.7441/0.0800/0.9852 0.7874/0.0172/0.9933
ALFR 0.6850/0.0505/0.9504 0.7274/0.0862/0.9688 0.6129/0.0086/0.9715 0.7435/0.0384/0.9887 0.7898/0.0156/0.9882

MCCM 0.6563/0.0198/0.9340 0.7138/0.0114/0.9828 0.5895/0.0303/0.9968 0.7133/0.0013/0.9986 0.7857/0.0021/0.9974
CCB 0.6443/0.0115/0.9767 0.6781/0.1071/0.8798 0.5944/0.0372/0.9824 0.7440/0.0137/0.9842 0.7863/0.0042/0.9993

acc = accuracy, discri = discrimination, consist = consistency.

The predictions from LR model is highly biased as there is no fairness constraint imposed on

it, but it performs well with respect to predicting accuracy. On average, the discrimination of LR is

7.3%. Other methods achieve fairness at the cost of accuracy. It is interesting to see that Rawlsian

is not able to remove bias and in some cases it leads to even more unfair predictions. Rawlsian

is based on the idea that a worse candidate should never be favored over a better one, which is

implemented by interval chaining that is a weak fairness constraint. We can also observe from the

table that different majors have different level of bias, e.g., Psychology has the least bias while

Computer Science has the highest bias with respect to the predictions of LR.

The experimental results with race as sensitive attribute is shown in Table 7.3. The results are

similar to those with gender as sensitive attribute. However, the bias exhibited is higher than that of

treating gender as sensitive attribute. The predictions from bias-mitigating algorithms also exhibit

higher bias than their predictions for using gender as sensitive attribute. The fair algorithms are able

to remove bias to some extent. The proposed model MCCM achieves the best performance in terms

of removing discrimination at the expense of predicting accuracy.
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7.5.2 Fine-grained analysis of the bias
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Figure 7.4: Bias of different courses with gender as sensitive attribute.

To have a fine-grained view of the bias, we look at the data and predictions at the course level.

In this section, we analyze the bias embedded in the data and predictions from LR and the proposed

model MCCM. Figure 7.4 and 7.5 shows the fine-grained results with gender and race as sensitive

attribute, respectively. For Figure 7.4, the data bias is the proportion of at-risk female students

subtracts the proportion of at-risk male students. Positive bias means female students are more

likely to be predicted as at-risk; otherwise male students are more likely to be predicted as at-risk.

For the predictions from the models, the bias is the female students’ average probability of being

predicted as at-risk students subtract that of male students. For Figure 7.5, the bias has similar

definition, except that the sensitive attribute is race.

First of all, the overall data such as overall GPA by gender and race shows that male and African-

American group are minority groups. However, when looking at the course level, different courses
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Figure 7.5: Bias of different courses with race as sensitive attribute.

have different minority groups. Figure 7.4 and 7.5 show that in some courses male and African-

American students are less likely to be at-risk. This insights can be used to inform future fairness

work in educational data mining that a course specific model is desirable, considering that different

courses have different minority groups. From the figures, we can also observe that data and machine

learning models might have different bias direction. For example, in Figure 7.4(a), for course C0

the data bias is against male while LR and MCCM is against female. In addition, data bias does

not necessarily leads to predictive bias. For example in Figure 7.4, all the courses show data bias.

However, a no-fairness-constraint classifier, e.g., logistic regression has fair predictions in many

courses.

7.5.3 Residual Bias

In this work, we build separate models to remove bias with respect to gender or race. We want

to investigate how a model is biased with respect to gender when trained using race as sensitive

attribute or vice versa. We define this kind of bias as residual bias. We evaluate the proposed model
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Table 7.4: Predicting results with respect to race using model trained with gender as sensitive at-
tribute.

Method
BIOL CEIE CS ECE PSYC

acc/discri/consist acc/discri/consist acc/discri/consist acc/discri/consist acc/discri/consist

LFR 0.5438/0.3289/0.7089 0.5282/0.3743/0.7916 0.5067/0.3813/0.8694 0.5592/0.2873/0.8422 0.5479/0.2334/0.6460
ALFR 0.4912/0.0346/0.9212 0.4075/0.0198/0.8913 0.5474/0.0249/0.9528 0.4888/0.0841/0.9003 0.5006/0.0527/0.9462

MCCM 0.7058/0.0672/0.8912 0.7003/0.0856/0.9113 0.6315/0.0216/0.9491 0.7383/0.0376/0.9477 0.7884/0.0063/0.9942
CCB 0.6616/0.0346/0.9839 0.6009/0.0380/0.9495 0.6086/0.0333/0.9438 0.7277/0.0806/0.9700 0.7816/0.0171/0.9815

acc = accuracy, discri = discrimination, consist = consistency.

Table 7.5: Predicting results with resepct to gender using model trained with race as sensitive at-
tribute.

Method
BIOL CEIE CS ECE PSYC

acc/discri/consist acc/discri/consist acc/discri/consist acc/discri/consist acc/discri/consist

LFR 0.5359/0.3158/0.7708 0.4981/0.3521/0.7348 0.5504/0.2094/0.8175 0.5992/0.4244/0.8537 0.5440/0.1604/0.7678
ALFR 0.5667/0.0112/0.9588 0.4867/0.0182/0.8585 0.4679/0.0216/0.9166 0.6057/0.0177/0.9684 0.4965/0.0093/0.9613

MCCM 0.6885/0.0811/0.8838 0.5991/0.1254/0.9297 0.6309/0.0673/0.8515 0.7118/0.0537/0.9493 0.7880/0.0211/0.9787
CCB 0.6348/0.0421/0.9580 0.6356/0.1936/0.8379 0.5891/0.0507/0.9714 0.7457/0.0430/0.9748 0.7841/0.0108/0.9854

acc = accuracy, discri = discrimination, consist = consistency.

along with LFR and ALFR. In Table 7.4, the models are first trained to remove bias with respect

to race and evaluate their bias by treating gender as sensitive attribute. Table 7.5 shows the results

of models trained to remove bias with respect to gender and evaluated with respect to race. From

the tables, we can see that LFR has the highest residual bias, while ALFR and MCCM has much

lower residual bias. For psychology major, the residual bias is trivial for MCCM in Table 7.4 and

for both in Table 7.5. However, in many cases there are still non-trivial residual bias for the models.

A naive idea to mitigate residual bias is to treat gender and race as sensitive attribute simultaneously.

However, the drawback of this approach is that there may be not enough training samples for some

combinations, which leads to highly imbalanced data. Previous studies show that imbalanced data

can result in biased classification errors for minority groups [15]. We leave the work of removing

residual bias to future work.
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7.6 Conclusion and Future Work

The concerns about bias and discrimination of machine learning models are rising with the increas-

ing of their adoption. In educational setting, we observe bias from a real-world dataset and machine

learning models without fairness constraints exhibit non-ignorable biased predictions. Machine

learning models are intended to aid students with their learning. However, unfair treatment of stu-

dents can undermine their learning and graduation. To mitigate discrimination in educational data

mining, in this paper, we proposed a fair machine learning model satisfying metric-free individual

fairness. We evaluate the model’s performance on removing unfairness on datasets collected from

an anonymous University. The results show the efficacy of the model on removing bias. Compared

to other domains, educational data mining has its own characteristics. For example, in our dataset,

when looking at university level, male and African-American students are biased against. How-

ever, at course level, different courses have different bias direction. This insights inform that future

work on fairness in educational data mining should design course-specific models. In this work, we

treat gender and race separately and the experimental results show that there is residual bias. In the

future, we want to build models that treat gender and race as sensitive attributes simultaneously.
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[22] H. Bydžovská, “Student performance prediction using collaborative filtering methods,” in
International Conference on Artificial Intelligence in Education. Springer, 2015, pp. 550–
553.

[23] S. E. Sorour, K. Goda, and T. Mine, “Student performance estimation based on topic mod-
els considering a range of lessons,” in International Conference on Artificial Intelligence in
Education. Springer, 2015, pp. 790–793.

[24] M. A. Al-Barrak and M. Al-Razgan, “Predicting students final gpa using decision trees: a
case study,” International Journal of Information and Education Technology, vol. 6, no. 7, p.
528, 2016.

[25] S. Umair and M. M. Sharif, “Predicting students grades using artificial neural networks and
support vector machine,” in Encyclopedia of Information Science and Technology, Fourth
Edition. IGI Global, 2018, pp. 5169–5182.

103
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