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Abstract

NEWTONIAN AND NON–NEWTONIAN FLOWS INTO DEFORMABLE POROUS MA-
TERIALS

Javed Iqbal Siddique, PhD

George Mason University, 2009

Dissertation Director: Dr. Daniel M. Anderson

In this dissertation we examine fluid flow of Newtonian and non–Newtonian fluid into

deformable porous materials. The one dimensional free boundary problems are modeled

using mixture theory.

The first problem we examine in this category of flows is a mathematical model for

capillary rise of a fluid into an initially dry and deformable porous material. We use mixture

theory to formulate the model. We obtain analytic results for steady state positions of the

wet porous material–dry porous material interface as well as liquid–wet material interface.

The time-dependent free-boundary problem is solved numerically and the results compared

to the steady state predictions. In the absence of gravity, the liquid rises to an infinite height

and the porous material deforms to an infinite depth, following square-root in time scaling.

In contrast, in the presence of gravity, the liquid rises to a finite height and porous material

deforms to a finite depth. Dependence on model parameters such as the solid liquid density

ratio is also explored. We also examine the one–dimensional drainage of an incompressible

liquid into an initially dry and deformable porous material. Here, we identify numerical

solutions that quantify the effects of gravity, capillarity and solid to liquid density ratio on

the time required for a finite volume of liquid to drain into a deformable porous material.



We also study the capillary rise of a non–Newtonian liquid into a rigid and deformable

porous materials in the presence and in the absence of gravity effects. In the case of

rigid porous materials when gravity effects are present in the model, equilibrium heights

are reached for both Newtonian and non-Newtonian cases. The evolution towards the

equilibrium solution differs between Newtonian and non-Newtonian cases. In the case of

deformable porous material where both fluid and solid phases move, we use mixture theory

to formulate the problem. In contrast to the rigid porous materials where there is only

one moving boundary, here both solid and liquid interface moves. In the absence of gravity

effects, the model admits a similarity solution, which we compute numerically. If the effects

of gravity are included, the free boundary problem is solved numerically where numerically

computed zero gravity solution is used as an initial condition. In this case, the liquid rises

to a finite height and the porous material deforms to a finite depth, following a scaling law

that depends on the power law index n and power law consistency index µ∗. In this case,

steady state solutions exist and are the same for both Newtonian and non-Newtonian cases.

We finally model a problem of fluid flow interactions within a deformable arterial wall.

Again we use mixture theory to compute both the structural displacement of the solid and

fluid motion. The coupled system of equations is solved numerically. We compare the mix-

ture theory model to a hierarchy of models including simple spring models as well as elastic

deformation models. The applications of the model are to understand the deformation of

the wall as a function of its material properties and the relation of this deformation to the

growth and rupture of aneurysms.



Chapter 1: Introduction

The goal of this dissertation is to study fluid flow of Newtonian and non–Newtonian into

deformable porous materials. In all of the cases we have used mixture theory to model the

problems.

The phenomena of capillary rise of Newtonian and non–Newtonian fluid occurs in a wide

range of applications such as oil recovery, inkjet printing, textile manufacturing, medical

science and geological flows. We also develop a mathematical model to study the fluid flow

interaction within a deformable arterial wall using mixture theory.

• In Chapter 2, we study the capillary rise of liquid into deformable porous materials.

The free boundary problem is modeled using the biphasic mixture theory approach.

We first compute the steady state solutions and then compute the numerical solution

of the full time dependent problem. In the absence of gravity effects the problem

admits the similarity solution which we use as an initial condition for the time depen-

dent problem. We use method of lines approach with a second order accurate finite

difference scheme in space. This converts the PDE to a system of ODEs. Finally,

we use MATLAB’s ode23s solver to solver these ODEs along with ODEs for interface

positions.

• In Chapter 3, we extend the results from Chapter 2 to study the capillary rise of

non–Newtonian liquid into porous material. In the case of rigid porous material

we compute the analytical solution in the absence of gravity effects and numerical

solution in the presence of gravity effects. For deformable porous material case in

the absence of gravity effects we introduce similarity variable that changes PDE to

ODE and ODE’s for interface position into a non–linear equations. We use the mid

point rule and central difference to discretize the ODE, which results in system of
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non-linear equations. This system of non–linear equations is solved numerically using

Newton’s method. To compute the solution in the presence of gravity effects we use

this numerically computed similarity solution as an initial condition. Then we use

method of lines to compute the solution of the full problem.

• In Chapter 4, we develop a mathematical model of fluid flow interactions within a

deformable arterial wall. Here again we use mixture theory to model the problem.

We use finite difference scheme to discretize the coupled system of equations. The

resultant system of differential algebraic equations (DAEs) are solved numerically.

We compare our mixture theory results to the elastic membrane problem on fixed and

elastic membrane problem on moving domain. The applications of the model are to

understand the deformation of the wall as a function of its material properties and

the relation of this deformation to the growth and rupture of aneurysms.
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Chapter 2: Capillary Rise into Deformable Porous Materials

2.1 Introduction

In this chapter we develop a model for capillary rise into a deformable porous material.

Capillary rise phenomena occur in both rigid and deformable materials in a wide variety

of scientific fields such as oil recovery, inkjet printing, textiles engineering, and flows in

biological tissues. There is interest in this subject from the point of view of both industrial

research and fundamental science. The present work addresses modeling and solutions of

this problem that contribute to a better understanding of capillary rise into deformable

porous materials.

The pioneering study of Washburn [64] described fluid flow into a rigid porous material.

This model was based on the assumption that the porous material was a collection of small

cylindrical capillaries, and the flow through these capillaries was Poiseuille flow subject to

a pressure difference acting to force the liquid in the capillaries. In the absence of gravity,

the volume of the liquid that penetrates into the porous material in a time t is proportional

to
√
t. In contrast, when gravity is present the liquid rises to a finite, equilibrium height.

The Washburn model has been widely used to describe capillary rise phenomena in rigid

nondeformable porous materials.

Recently, Zhmud, et al. [66] studied the dynamics of capillary rise in rigid porous

materials. They showed that a number of models, including the Washburn model, describing

dynamics of capillary rise can be obtained as particular limiting cases of a more general

equation based on Newtonian dynamics. They also showed that these general equations

were in qualitative agreement with their experimental results.

However, other recent experimental investigations have revealed capillary rise behavior

in rigid porous materials that departs notably from the Washburn predictions. Delker et

3



al. [23] performed experiments on capillary rise of water through a packing of glass beads.

Their early time data for capillary rise height follows a t1/2 power law, but for longer times

the advancing front rises beyond the Washburn equilibrium height. Lago and Araujo [46]

also observed similar dynamics in their experiments of capillary rise in an array of packed

spheres. Both studies identified a new power law scaling for this longer time regime that

was close to t1/4.

Davis and Hocking [21; 22] have considered a variety of models for liquid spreading

and imbibition into a rigid porous base. In their first model [21] they assumed that the

porous material was uniform and isotropic in structure. The flow in the porous substrate

was described by Darcy’s law. In this model they considered the partially saturated case

in which the wetted portion of the substrate was assumed to extend to the bottom of the

porous substrate. In their second model [22] they extended their previous work to include

spreading above an initially dry porous substrate. In this model they assumed that there was

no cross linking of the capillaries in the substrate which was also the case in the Washburn

model. They calculated the penetration shapes as a function of time.

The above discussion outlines briefly some of the classical as well as more recent studies

involving flows in rigid porous materials. Here we turn our attention to porous materials

which deform when liquid passes through them, e.g sponge–like materials. Deformable

porous materials arise in various fields, including geophysics [61], soil science [41; 42; 54],

infiltration [2; 10; 49; 57; 60] snow physics [26], paper and printing [18; 27], and medical

science [6; 7; 8; 33; 34; 35; 36; 37; 38]. In such cases, the flow through the deformable

porous media deforms the material due to the forces associated with flow. The material

deformation in turn influences the flow. Models that account for both flow and deformation

are required to analyze the dynamics of these materials.

Early models of flows in deformable porous media were developed to study soil consoli-

dation. Biot [12] described a problem involving deformable porous media in which Darcy’s

law, used to describe the fluid flow, was coupled to a linear elasticity model for the solid

deformation. He presented the solutions for soil consolidation in one dimension as well as

4



two dimensions under permeable [11] and impermeable [13] rectangular loads.

Our approach follows more recent work in which the porous material is modeled as

a mixture of solid and fluid. In mixture theory each component is treated as a single

continuum and every point in space is considered to be occupied by a particle belonging

to each component of the mixture at each instant of time. A detailed mixture theory

description is presented by several authors [4; 15].

Barry and Aldis [6; 7] examined a variety of different models of deformable porous

media based on mixture theory. These models include cases of flow induced deformation

from pressurized cavities in absorbing porous tissues and radial flow through deformable

porous shells. In their flow induced deformation model, biological tissues are modeled as

nonlinear deformable porous media where the deformation of the tissues in turn alters the

flow. In the case of radial flow, a governing system of equations was developed for cylindrical

and spherical geometries.

Hou et al. [38] studied the formulation of boundary conditions between a viscous fluid

and a biphasic mixture. They used binary mixture theory to develop a set of boundary

conditions based on conservation laws. These conditions were validated by applying them

to Poisuelle flow and Couette flow problems.

Barry et al. [8] revisited the work of Hou et al. [38] for fluid flow over a thin de-

formable porous layer. Binary mixture theory was used to obtain the governing system of

equations with assumptions that solid deformation was infinitesimal and the predominant

displacement was along the axis of the channel. Wang and Parker [63] examined the effect

of deformable porous surface layers on the motion of a sphere in a narrow cylindrical tube.

They also used binary mixture theory for solid and liquid constituents to model the porous

layer on both the surface of the tube and the sphere. They applied lubrication theory in

the region between the sphere and the wall in order to study the effects of deformable layers

on the motion of the sphere.

Sommer and Mortensen [60] considered the forced unidirectional infiltration in an ini-

tially dry deformable porous material. A constant applied pressure drove the fluid flow

5



in the porous material. Agreement between their model and the experimental results was

reported.

Preziosi et al. [57] studied the infiltration of a liquid into a deformable porous mate-

rial. In this model, an initially dry and compressed porous material was infiltrated by an

incompressible liquid which caused the porous material to deform and relax.

Following this work, Anderson [3] presented a model for the imbibition of a liquid droplet

on a deformable porous substrate using the deformation model of Preziosi et al. For the

assumed one–dimensional material deformation, a model for the imbibition of liquid into the

porous material and also for the porous material deformation was developed. Anderson’s

model, which did not include gravitational effects, predicted that during the imbibition of

liquid into the deformable porous substrate, swelling, swelling-relaxation and shrinking of

the porous material could occur.

The ideas used for modeling deformable sponge-like materials also have application to

problems involving suspensions and gels. Manley et al. [48] performed experiments and

examined a model for gravitational collapse of colloidal gels. Their model was based on

a Darcy’s equation similar to the one we use here. Approximations, such as negligible

fluid velocity relative to the solid velocity and constant solid volume fraction lead to a

gel height that decays exponentially in time to an equilibrium height determined by a

balance of gravitational and elastic forces. Kim et al. [44] examine a similar problem

that addresses gravitational collapse and stabilization of a suspension of attractive colloidal

particles. Their mathematical model is very similar to ours but differs in details including

boundary conditions as we discuss further in the next section.

Dufresne et al. [24; 25] studied related systems involving the flow and fracture in drying

nano–particle suspensions. Here the compaction of the material is driven by evaporation

and fluid flow at the drying surface. The dynamics of the compaction front, crack formation

in the drying suspension and long time crack propagation were investigated.

In the present work, we consider capillary rise of a fluid into a deformable porous ma-

terial. Our model is an analog of the Washburn model [64] of capillary rise into a rigid

6



porous material. The basic governing equations for flow in deformable material follow those

of several previous authors [3; 6; 7; 35; 57; 60]. Our model follows most closely that of

Preziosi et al.[57], Barry and Aldis [6; 7] and Anderson [3]. We are interested in examin-

ing gravitational effects; these have been included in previous models [7; 8; 57], but the

corresponding solutions have not been addressed.

In section two we present the one-dimensional capillary rise problem and then non-

dimensionalize the governing system of equations. In section three, we present equilibrium

and time-dependent solutions of the capillary rise problem. In section four results and

discussion of the capillary rise problem are given. In section five we discuss the drainage

problem and its solutions. Section six contains the conclusions.

2.2 The Model

We use mixture theory [2; 6; 7] to formulate the problem of capillary rise into a deformable

porous material. The mixture under consideration consists of a fluid and a deformable

solid material. Mixture theory is a homogenization approach in which each component

is treated as a single continuum and every point in space is considered to be occupied

by a particle belonging to each component of the mixture at each instant of time. As

a Newtonian and incompressible fluid flows through a deformable material, the porous

material deforms altering the porosity and permeability, which effects the flow of fluid in

the porous deformable material.

In this section we describe the governing equations in the deformable material. In

the section that follows we discuss the boundary conditions appropriate for our specific

geometry. The procedure used here follows that of [7]. The velocities of liquid and solid

phases are denoted by ~w` and ~ws respectively. The apparent liquid and solid densities in

an infinitesimally small volume dv are

ρas = lim
dv→0

dms

dv
, ρa` = lim

dv→0

dm`

dv
, (2.1)

7



where dms and dm` are solid and liquid phase masses in dv. The true intrinsic densities of

solid and liquid material phases are

ρs = lim
dvs→0

dms

dvs
, ρ` = lim

dv`→0

dm`

dv`
, (2.2)

where dvs and dv` are the small volumes occupied by solid and liquid phase respectively.

The solid and liquid volume fractions are

φ = lim
dv→0

dvs
dv

, 1− φ = lim
dv→0

dv`
dv

. (2.3)

From the above equations we infer that

ρas = φρs, ρa` = (1− φ)ρ`. (2.4)

The mixture density can be written from the following formula

ρt = lim
dv→0

dm

dv
= lim

dv→0

dms + dm`

dv
, (2.5)

so that

ρt = ρas + ρa` = φρs + (1− φ)ρ`. (2.6)

The mass balance for both liquid and solid phases for constant ρs and ρ` after using (2.4)

can be written as follows

∂φ

∂t
+∇ · (φ~ws) = 0, (2.7)

−∂φ
∂t

+∇ · [(1− φ)~w`] = 0. (2.8)

8



The momentum balance for liquid and solid constituents are

ρsφ

(
∂ ~ws
∂t

+ ~ws · ∇~ws
)

= ∇ ·Ts + φρs~g + ~πs, (2.9)

ρ`(1− φ)
(
∂ ~w`
∂t

+ ~w` · ∇~w`
)

= ∇ ·T` + ρ`(1− φ)~g + ~π`, (2.10)

where Ts and T` are stress tensors for solid and liquid phases, ~g is gravity and ~πs and ~π`

are drag forces.

We will neglect the inertial terms in equations (2.9) and (2.10) due to the assumption

that the fluid velocities and deformation rates are small. Also, Newton’s third law requires

that the force on the solid by the liquid is opposite to that on the liquid by the solid

~π` = −~πs. We follow Barry and Aldis [6] and write the stress tensors and drag forces as

Ts = −φpI + σs, T` = −(1− φ)pI + σ`, (2.11)

~π` = −~πs =
(1− φ)2µ

K(φ)
(~ws − ~w`)− p∇φ, (2.12)

where σs and σ` are solid and liquid stresses, p is the pressure and I is the identity tensor.

If the fluid stress σ` is neglected and σs = σ, the system of equation (2.7)–(2.10) reduces to

∂φ

∂t
+∇ · (φ~ws) = 0, (2.13)

∂φ

∂t
−∇ · ((1− φ)~w`) = 0, (2.14)

~ws − ~w` =
K(φ)

(1− φ)µ
(∇p− ρ`~g) , (2.15)

∇ · σ = ∇p− (ρsφ+ (1− φ)ρ`)~g. (2.16)
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p = pA + pc

← p(z = 0) = pAWet Material→
p = pA − ρℓghs

←Liquid

hs(t)

hℓ(t)

←Porous Material

Figure 1. This figure shows the one dimensional capillary rise configuration.

1

Figure 2.1: This figure shows the one dimensional capillary rise configuration

Equations (2.13)–(2.16) are the governing system of equations for flow in a deformable

porous material, subject to boundary conditions outlined below.

2.3 One–dimensional capillary rise into a deformable porous

material

In the following, we consider a one dimensional problem where we can examine solutions to

the above equations. In particular, we consider a deformable sponge-like material in contact

with a liquid. The upper end of the deformable material is fixed. At time t = 0, the contact

position of the deformable material and liquid is defined by z = 0. It is assumed that the

imbibition of fluid occurs from an infinite bath of fluid whose upper surface at z = 0 remains

open to atmospheric pressure (i.e. p = pA at z = 0 for all time). For t > 0 the liquid rises

into an initially dry porous material due to capillary suction in the pore space of the porous

material assuming the capillary pressure pc < 0, which results in deformation of the porous

material. The upper interface of the wet porous material region is defined by z = h`(t)

and the lower interface formed after the deformation is defined by z = hs(t) as shown in

figure 2.1. We have assumed that the pressure in the fluid bath is hydrostatic. This implies

that p = pA − ρ`ghs at z = hs(t). The dry porous material is rigid and has uniform solid

fraction φ0. As a result of the above assumptions, the only remaining unknowns are those

in the wet material and the boundary positions hs and h`. The variables of interest in the
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wet region are the solid fraction φ, the vertical velocity component of the liquid phase w`,

the vertical velocity component of solid phase ws, the liquid pressure p and the stress in the

solid σ where σ = σI. The set of equations for the one dimensional material deformation

can be written as

∂φ

∂t
+

∂

∂z
(φws) = 0, (2.17)

∂φ

∂t
− ∂

∂z
[(1− φ)w`] = 0, (2.18)

w` − ws = − K(φ)
(1− φ)µ

(
∂p

∂z
+ ρ`g

)
, (2.19)

0 = −∂p
∂z

+
∂σ

∂z
− g [ρsφ+ ρ`(1− φ)] , (2.20)

where ρs and ρ` are the true intrinsic densities of solid and liquid respectively and are

assumed to be constant. The permeability K(φ) and solid stress σ(φ), whose forms we

specify below, are functions of the local solid volume fraction, µ is the dynamic viscosity

and g is the gravitational acceleration. Equations (2.17)–(2.20) are consistent with those of

previous authors [6; 7; 57]. More specifically, equation (2.17) and (2.18) are the mass balance

equations for solid and liquid phases respectively where the assumption of constant density

has been taken into account. Equations (2.19) and (2.20) are reduced from general solid

and liquid momentum balances (e.g. see Preziosi et al. equations (3) and (4)). In particular,

our equation (2.20) represents a combined momentum balance of the fluid–solid mixture.

Note that we have assumed that inertial terms and viscous stresses are negligible and that

stress tensors and frictional forces between phases take forms standard in mixture theory

(e.g. see equations (16) and (17) in Barry and Aldis [7]). In this case the only velocity

terms in the momentum balances appear in the relative velocity of the modified Darcy

equation (2.19). Our new contribution is to examine in detail solutions of these equations,

and boundary conditions we specify below, in order to assess gravitational effects on the

flow and deformation.
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Equations (2.17)–(2.20) can be reduced to a single partial differential equation for the

solid fraction φ, as in [3]. Subtracting equation (2.18) from equation (2.17), and integrating

once gives

φws + (1− φ)w` = c(t), (2.21)

where c(t) is a function determined by the boundary conditions. Equations (2.19) and (2.21)

allow us to write formulas for liquid and solid velocities as follows

w` = c(t)− φK(φ)
(1− φ)µ

(
∂p

∂z
+ ρ`g

)
, (2.22)

ws = c(t) +
K(φ)
µ

(
∂p

∂z
+ ρ`g

)
. (2.23)

Since the stress is a function of the solid volume fraction σ = σ(φ) equation (2.20) can be

written as follows

∂p

∂z
= σ′(φ)

∂φ

∂z
− g[ρsφ+ ρ`(1− φ)]. (2.24)

After combining equations (2.17), (2.23) and (2.24), we get the equation for φ

∂φ

∂t
+ c(t)

∂φ

∂z
= − ∂

∂z

[
φK(φ)
µ

{
σ′(φ)

∂φ

∂z
− g(ρs − ρ`)φ

}]
, (2.25)

on hs(t) < z < h`(t). When gravity is absent, equation (2.25) is equivalent to equation

(44) in Prezoisi et al. [57] and equation (20) in Anderson [3]. When gravity is absent,

equation (2.25) is equivalent to equation (44) in Prezoisi et al. [57] and equation (20) in

Anderson [3]. The same PDE for φ can be seen in the work of Kim et al.[44] by interpreting

our K(φ) as their κ(φ), our µ as their η, our σ′(φ) as their −K(φ)/φ and our c(t) = 0.

The case c(t) = 0 follows if the solid and liquid velocities are zero at the bottom boundary,

as in Kim et al. While their final equation is the same as ours, we note that their stress
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balance (their equation 5) and continuity equation (their equation 6) involve ∂p/∂z rather

than ∂p/∂z + ρ`g.

The boundary conditions applied at the liquid-wet material interface z = hs(t) are

ws
(
h+
s , t
)

=
∂hs
∂t

, (2.26)

p
(
h+
s , t
)

= pA − ρ`ghs(t), (2.27)

σ
(
h+
s , t
)

= 0, (2.28)

where pA is atmospheric pressure. The equations (2.26)–(2.28) are the kinematic condition,

hydrostatic pressure assumption in the liquid bath, and zero stress condition respectively.

The boundary conditions applied at the wet material-dry material interface z = h`(t)

are

w`
(
h−` , t

)
=
∂h`
∂t

, (2.29)

p
(
h−` , t

)
= pA + pc, (2.30)

where pc is a constant capillary pressure. Here (2.29) and (2.30) are kinematic and capillary

pressure conditions respectively.

Following Prezoisi et al. and Anderson, an expression for the c(t) can be written as

c(t) = −(1− φ0)
φ0

[
φK(φ)
µ(1− φ)

(
σ′(φ)

∂φ

∂z
− g(ρs − ρ`)φ

)]∣∣∣∣
h−`

. (2.31)

The combination of equations (2.22) through (2.24) with equations (2.26) and (2.29) yields

equations for interface positions

∂hs
∂t

= c(t) +
K(φ)
µ

(
σ′(φ)

∂φ

∂z
− g(ρs − ρ`)φ

)∣∣∣∣
h+

s

, (2.32)
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∂h`
∂t

= c(t)− φK(φ)
µ(1− φ)

(
σ′(φ)

∂φ

∂z
− g(ρs − ρ`)φ

)∣∣∣∣
h−`

. (2.33)

To summarize, we need to solve (2.24) and (2.25) subject to (2.27), (2.28) and (2.30) where

the free surface positions are determined by (2.32) and (2.33) along with appropriate initial

conditions. Note that equation (2.25) is coupled to equation (2.24) and the pressure via the

boundary conditions.

2.3.1 Nondimensionalized System of Equations

Before solving the time-dependent problem we introduce the following dimensionless quan-

tities for space, time, interface positions and pressure

z̄ =
z − hs(t)

h`(t)− hs(t)
, t̄ =

t

T
, h̄s =

hs
L
, h̄` =

h`
L
, p̄ =

p

m
, (2.34)

where L = m
ρ`g

and T = L2µ
mK0

. Here K0 and m are permeability and stress scales defined

below. These choices of dimensionless variables allows us to transform the moving boundary

problem to a fixed domain problem.

Our choices for permeability K(φ) and stress σ(φ), which are consistent with physically

realistic trends, are K(φ) = K0
φ , where K0 > 0 and σ(φ) = m(φr − φ) [3]. We take m > 0

so that σ′(φ) = −m < 0. The assumed form of the stress function is suitable for our one-

dimensional deformation model; in higher dimensions, this would need to be generalized

to account for effects such as shear deformation. Note that σ is positive for φ < φr (i.e.

expansion relative to the relaxed state) and negative for φ > φr (i.e. compression relative

to the relaxed state). According to this choice, when solid fraction is at a constant relaxed

value φr, the stress function is zero.
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Introducing these choices and dimensionless variables, the PDE for φ can be written as

∂φ

∂t̄
+
[

(z̄ − 1)
(h̄` − h̄s)

dh̄s
dt̄
− z̄

(h̄` − h̄s)
dh̄`
dt̄

]
∂φ

∂z̄
+

c̄(t̄)
(h̄` − h̄s)

∂φ

∂z̄
=

1
(h̄` − h̄s)2

∂2φ

∂z̄2
+

ρ

(h̄` − h̄s)
∂φ

∂z̄
, (2.35)

where ρ = (ρs

ρ`
− 1).

Boundary conditions for solid volume fraction can be derived from the zero stress and

stress equilibrium conditions as follows

φ = φr, at z̄ = 0, (2.36)

φ = φ∗` − (h̄` − h̄s)
∫ 1

0
(ρφ+ 1)dz̄ − h̄s at z̄ = 1, (2.37)

where φ∗` = φr − pc

m . The boundary condition (2.37) is obtained by integrating (2.24) and

applying the pressure boundary conditions (2.27) and (2.30). Note that in the absence of

gravity equation (2.37) reduces to φ = φ∗` . The function c̄(t̄) is given by

c̄(t̄) =
1− φ0

φ0

[
1

(1− φ)(h̄` − h̄s)
∂φ

∂z̄
+

ρφ

(1− φ)

]∣∣∣∣
z̄=1

, (2.38)

and dimensionless interface positions satisfy the ODEs

dh̄s
dt̄

= c̄(t̄)−
[

1
φ(h̄` − h̄s)

∂φ

∂z̄
+ ρ

]∣∣∣∣
z̄=0

, (2.39)

dh̄`
dt̄

= c̄(t̄) +
[

1
(1− φ)(h̄` − h̄s)

∂φ

∂z̄
+

ρφ

(1− φ)

]∣∣∣∣
z̄=1

. (2.40)
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The initial conditions for the interface positions are

h̄`(t̄ = 0) = 0, h̄s(t̄ = 0) = 0. (2.41)

2.4 Capillary rise solutions approach

The time dependent free boundary problem (2.35)–(2.41) can be solved numerically. First,

however, we will identify the equilibrium state solution which will be compared with the

time dependent solution later in the results section.

2.4.1 Steady state solution

The steady state solution for solid volume fraction and pressure can be written as follows

φ(z̄) = φre
ρ(h̄∞s −h̄∞` )z̄, (2.42)

and

p̄(z̄) = φr − φ∗` + (h̄∞` − h̄∞s )(1− z̄) + p̄A, (2.43)

where h̄∞s and h̄∞` are the equilibrium heights of solid and liquid respectively to be de-

termined. Here p̄A is dimensionless atmospheric pressure. This pressure corresponds to

hydrostatic pressure and quantity φr − φ∗` can be interpreted as a dimensionless capillary

pressure.

To find the steady state solid interface position h̄∞s , we use a global mass conservation

argument which can be stated as follows. The mass of the solid before liquid is imbibed

into the material is equal to the mass of the solid after liquid is imbibed into the material.

In dimensionless form, this is

φ0h̄
∞
` = (h̄∞` − h̄∞s )

∫ 1

0
φ(z̄)dz̄. (2.44)
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The solution of equation (2.44) after using (2.42) yields a steady state solid interface position

h̄∞s =
1
ρ

ln(1− ρh̄∞`
φ0

φr
) + h̄∞` . (2.45)

Also the steady state liquid interface position can be written as

h̄∞` = φ∗` − φr, (2.46)

Note that in dimensional form h∞` = − pc

ρ`g
, which is the same as that for capillary rise in a

rigid porous material given the same capillary pressure pc. Using (2.42) and (2.45) we can

define

φ∞` = φr − ρ(φ∗` − φr)φ0, (2.47)

where φ∞` is the solid volume fraction at the wet material-dry material interface evaluated

in the limit t→∞. Further discussion of these solutions will be given in the results section.

In the following section we will solve the time–dependent capillary rise problem.

2.4.2 Time-Dependent Solution

The coefficients of equations (2.35), (2.39) and (2.40) are singular at time t = 0. However,

in the asymptotic limit t→ 0 these equations and the boundary condition (2.37) reduce to

the zero gravity case. In this case, equation (2.35) with the associated boundary conditions

can be solved using the similarity variable η = z
2
√
Dt

, where D = L2

T = K0m
µ has units

of length squared per unit time (see [3] for details). Here the interface positions can be

expressed as

h̄s(t̄) = 2λs
√
t̄, h̄`(t̄) = 2λ`

√
t̄. (2.48)
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The zero gravity solution, denoted by φs(η), can be written in terms of the error function

as follows

φs(η) =
erf(λs −B)− erf(η −B)
erf(λs −B)− erf(λ` −B)

(φ∗` − φr) + φr, (2.49)

where

B = (1− φ0)λ`, (2.50)

and

λs =
(φ∗` − φr)√

π[erf(λs −B)− erf(λ` −B)]

×
{

1
φr

exp[−(λs −B)2]− (1− φ0)
φ0(1− φ∗` )

exp[−(λ` −B)2]
}
, (2.51)

λ` = − (φ∗` − φr) exp[−(λ` −B)]
φ0(1− φ∗` )

√
π[erf(λs −B)− erf(λ` −B)]

. (2.52)

This is the solution given in Anderson [3], equations (46)–(49). We avoid the singularity

at t̄ = 0 (when h̄s(t̄)=h̄`(t̄) = 0) numerically when solving equation (2.35)–(2.40) by using

this similarity solution as an initial condition at time t̄ = t̄I > 0. Specifically, the initial

condition for φ can be derived from the similarity solution φ(z̄, t̄I) = φs(η), where t̄I is

chosen to be sufficiently small so that the solution is independent of any further reduction

in t̄I . Noting that

η = λs + z̄(λ` − λs), (2.53)

the initial condition for φ in dimensionless form becomes

φ(z̄, t̄ = tI) = φs(λs + z̄(λ` − λs)). (2.54)
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Figure 2.2: This figure shows the evolution of the interface positions hs and h` for g = 0
and g 6= 0. In this plot we have used φ∗` = 0.2, φr = 0.1, φ0 = 0.33 and for the nonzero
gravity case ρ = 0.1.

The initial conditions for h̄s and h̄` are

h̄s(t̄I) = 2λs
√
t̄I , h̄`(t̄I) = 2λ`

√
t̄I . (2.55)

The above system of equations (2.35)–(2.40) is solved numerically subject to the initial

conditions (2.55) and also by using the similarity solution (2.54) as an initial condition for

φ. To compute the numerical solution, we use a method of lines approach with a 2nd order

accurate finite difference scheme in space. This converts the PDE to a system of ODEs.

These ODEs along with (2.39) and (2.40) are solved numerically using Matlab’s ode23s

solver.

2.5 Capillary rise results and discussion

Figure 2 shows the evolution of interface positions h̄s(t)[g = 0, g 6= 0 cases] and h̄`(t)

[g = 0, g 6= 0 cases]. In the absence of gravity, h̄s(t) evolves downward and h̄`(t) evolves

upward following a square root in time trend. This is the similarity solution of Anderson
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Figure 2.3: This plot shows the ratio of h̄∞s
h̄∞`

versus ρ given by equation (2.45). The solid

line is analytical solution and ∗ is the full numerical solution at large times for different ρ
values for fixed values of φr=0.10, φ0 = 0.33 and φ∗` = 0.20.

[3]. For the nonzero gravity case, initially both curves follow the similarity solution but

ultimately reach steady state values h̄∞s and h̄∞` . The steady state values for h̄∞s , h̄
∞
`

that can be observed in Fig 2, depend on various parameters. In the next several figures

we explore this dependence. We first note that the dimensionless h̄∞` is independent of

ρ (2.46). However, it is important to point out that the length scale L and the dimensional

h∞` do depend on ρ`. Therefore, we interpret ρ as a dimensionless quantity measuring solid

density.

In the figure 3, ratio of h̄∞s and h̄∞` is plotted as a function of ρ. The solid curve represents

the analytical solution of h̄∞s and h̄∞` for ρ values ranging from −0.5 to 1. Four numerically

computed values of h`(t) and hs(t) for sufficiently large times are also indicated along

this curve, indicating agreement between numerical and analytical results. Three different

one dimensional deformable material figures are also shown in this plot to represent the

dependence of deformation on ρ. In particular, we observe that solid deformation increases

with increasing ρ.
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Figure 2.4: This is a plot of h̄∞s and h̄∞` as a function of φ∗` for φ0 = 0.33, φr = 0.1, and
ρ = ±0.1.

In Figure 4 we explore the dependence of the interface positions on the capillary pressure.

First observe that when φ∗` is equal to φr, (i.e. capillary pressure is zero), no fluid is imbibed

by the porous material; here h̄∞s , h̄∞` equal zero. As the capillary suction increases (i.e. φ∗`

increases) the porous material starts deforming. This rate of deformation depends on the

value of ρ. For ρ = −0.1, the deformation in the porous material is smaller than compared

to ρ = 0.1. As mentioned in the discussion of figure 3, the height of fluid h̄∞` depends

linearly on φ∗` [see also equation (2.45)].

Figure 5 shows a plot of h̄∞s , h̄
∞
` versus φr for different values of φ0. Note that h̄∞` , indi-

cated by the dashed line, is independent of φ0. Situations of net compression (h̄∞s positive)

generally correspond to relatively small values of φ0. In order for this to be physically re-

alistic, we assume that the liquid bath remains in contact with the solid even in cases with

h̄s > 0. On the other hand, net expansion (h̄∞s negative) generally corresponds to relatively

large values of φ0. For the intermediate values of φ0, details of other parameters values

determines the nature of the final configuration. This suggest that materials with relatively

high porosity tend to shrink while those with sufficiently low porosity tend to expand.
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Figure 2.5: This plot shows h̄∞s and h̄∞` versus φr. The dashed line shows h̄∞` and the solid
lines show h̄∞s for different φ0 values. We have used ρ = 0.1 and φ∗` = 0.20.

Figure 6 shows the interface positions (h̄s,h̄`) as a function of time for a particular choice

of parameter values for which h̄∞s = 0. Initially, the porous solid material shrinks marked

by positive hs. Again, in order for h̄s > 0 to be physically realistic, we assume that the

liquid bath remains in contact with the solid for all times. The overall behavior is that fluid

rises to an equilibrium height and the wet solid interface rises initially but then returns to

z̄ = 0 (no net deformation). However, as we show in the next plot there is local compression

(relative to φ0) near the bottom of the wet material and local expansion (relative to φ0)

near the top of the wet material. The opposite trend to that shown in figure 6 can also

be observed where initially the porous material expands (hs < 0) before the solid interface

position returns to z̄ = 0.

Figure 7 shows a plot of solid volume fraction φ as a function of z̄ for both steady state

and unsteady cases. Good agreement between the numerical and steady state solution is

found. Both are compared with a constant solution φ0 indicated by dashed line. In this

plot we have used a special value of φ0 such that h̄∞s = 0. When φ > φ0 the solid material

is in a state of relative compression. When φ < φ0 the solid material is in a state of relative
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Figure 2.6: This plot shows the interface positions (h̄` dashed line and h̄s solid line) as a
function of time for a special set of parameters that results in h̄∞s = 0. In particular we
have used ρ = 0.1, φr=0.10, φ0 = 0.0995 and φ∗` = 0.20.
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Figure 2.7: This plot shows solid fraction versus z̄ for the long–time state associated with
the previous figure. The solid line denotes the unsteady φ(z̄, t̄) for t → ∞ and ∗ denotes
the steady φ solution. The dashed line denotes φ = φ0 as reference. In these calculations,
φ0 = 0.0995, φr = 0.10, φ∗` = 0.20 and ρ = 0.1 which imply h̄∞s = 0.
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expansion. When ρ > 0, the local expansion (φ < φ0) occurs near the top while the local

compression (φ > φ0) occurs near the bottom. Note in this case there is local deformation

as described but no net deformation (i.e. h∞s = 0). This behaviour is in fact true in general,

as can be seen from a derivative of the equilibrium solid fraction

dφ

dz̄
= −ρφr(h̄∞` − h̄∞s )eρ(h̄∞s −h̄∞` )z̄ (2.56)

from equation (2.42). That is, when ρ > 0 the solid fraction decreases with increasing ver-

tical position. The opposite trend occurs when ρ < 0; namely, the solid fraction increases

with increasing vertical position. Finally, when ρ = 0 this equation shows that the equilib-

rium solid fraction is unifrom throughout the solid, with value φ = φr. Physically, when

ρs > ρ` the solid material tends to preferentially accumulate near the bottom and when

ρ` > ρs liquid tends to preferentially accumulate near the bottom.
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p = pA + ρℓg(H − hs)

← z = H(t)p = pA →

Wet Porous→
p = pA + pc

←Liquid

hℓ(t)

hs(t)

←Dry Porous

Figure 1. This figure shows the schematic of the one dimensional liquid penetra-
tion configuration.

1

Figure 2.8: This figure shows the one–dimensional drainage configuration.

2.6 Drainage into a Deformable Porous Material

In the previous problem capillarity drove fluid flow in opposition to gravity. In this section

we consider the opposite scenario in which capillary and gravational forces act in the same

direction. In this setting, at time t = 0 we consider a finite amount of liquid with thickness

H0 in contact with the deformable porous material. The pressure at z = H(t) is atmospheric

pressure. The initial contact position of the liquid and porous material is defined by z = 0.

For time t > 0 the liquid starts penetrating into the porous material. The upper interface

of the porous material after deformation is defined by z = hs(t) and lower interface formed

due to liquid penetration is defined by z = h`(t) as shown in figure 2.8. The governing

equations (2.17)–(2.20) are the same as before in the wet region. Similarly, after combining

equations (2.17), (2.23) and (2.24) we get the same PDE for φ (2.25) on h`(t) < z < hs(t).

The boundary conditions applied at the liquid-wet material interface z = hs(t) are

ws
(
h−s , t

)
=
∂hs
∂t

, (2.57)

p
(
h−s , t

)
= pA − ρ`g(hs(t)−H(t)), (2.58)

σ
(
h−s , t

)
= 0. (2.59)
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Here we have neglected inertial effects in the liquid region to get the hydrostatic pressure

condition (2.58).

The boundary conditions applied at the wet material-dry material interface z = h`(t)

are

w`
(
h+
` , t
)

=
∂h`
∂t

, (2.60)

p
(
h+
` , t
)

= pA + pc. (2.61)

We introduce the same dimensionless quantities as before to non-dimensionalize (2.25)

on h`(t) < z < hs(t) except that here we take

z̄ =
z − h`(t)

hs(t)− h`(t)
. (2.62)

The dimensionless PDE for φ can be written as

∂φ

∂t̄
+
[

(z̄ − 1)
(h̄s − h̄`)

dh̄`
dt̄
− z̄

(h̄s − h̄`)
dh̄s
dt̄

]
∂φ

∂z̄
+

c̄(t̄)
(h̄s − h̄`)

∂φ

∂z̄
=

1
(h̄s − h̄`)2

∂2φ

∂z̄2
+

ρ

(h̄s − h̄`)
∂φ

∂z̄
, (2.63)

where the function c(t̄) is given by

c̄(t̄) =
1− φ0

φ0

[
1

(1− φ)(h̄s − h̄`)
∂φ

∂z̄
+

ρφ

(1− φ)

]∣∣∣∣
z̄=0

. (2.64)

The PDE (2.63) is subject to the boundary conditions

φ = φr, at z̄ = 1, (2.65)

φ = φ∗` + H̄ − h̄s + (h̄s − h̄`)
∫ 1

0
(ρφ+ 1)dz̄ at z̄ = 0. (2.66)
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Note if g = 0, condition (2.66) reduces to φ = φ∗` . The boundary condition (2.66) is obtained

by integrating (2.24) and applying the pressure boundary conditions (2.58) and (2.61). The

liquid height H̄(t) follows from conservation of liquid

H̄(t) = H̄0 + h̄s − (h̄s − h̄`)
∫ 1

0
(1− φ)dz̄, (2.67)

were H̄0 is the dimensionless initial height of the liquid region.

The dimensionless interface positions satisfy the ODEs

dh̄s
dt̄

= c̄(t̄)−
[

1
φ(h̄s − h̄`)

∂φ

∂z̄
+ ρ

]∣∣∣∣
z̄=1

, (2.68)

dh̄`
dt̄

= c̄(t̄) +
[

1
(1− φ)(h̄s − h̄`)

∂φ

∂z̄
+

ρφ

(1− φ)

]∣∣∣∣
z̄=0

. (2.69)

The initial conditions for the interface positions are

h̄`(t̄ = 0) = 0, h̄s(t̄ = 0) = 0, and H̄(t̄ = 0) = H̄0. (2.70)

We will use the same solution technique to solve the equations (2.63)–(2.70).

Figure 9 shows interface positions h̄s, h̄` and H̄ as a function of time. A finite amount

of liquid is supplied whose thickness is shown by H̄(t) in the plot. Note, that in the absence

of gravity, the solution does not depend on ρ. Here, both curves h̄s(t) and h̄`(t) follow

the similarity solution of the case of the zero gravity capillary rise problem until the fluid

layer is completely drained into the porous material when h̄s = H̄. For the nonzero gravity

case, both curves follow the similarity solution initially but then depart from this trend

until again the liquid layer has completely drained. We define a drainage time as the time

at which all the liquid is drained into the porous material t̄ = t∗ (h̄s(t∗) = H̄(t∗)). This

drainage time is faster for the non–zero gravity case as compared to the zero gravity case.
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Figure 2.9: This plot shows the evolution of the interface positions h̄s, h̄` and H̄(t) for g = 0
and g 6= 0 when a finite amount of liquid penetrates into the deformable porous material.
In this plot we have used φ∗` = 0.2, φr = 0.1, φ0 = 0.33 and ρ = 0.1.
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Figure 2.10: This is a plot of drainage time (t∗) versus dimensionless capillary pressure.
We have used φr = 0.1, and φ0 = 0.33. The upper curve shown by + is for the zero gravity
case; here note that the g = 0 solution does not depend on ρ. For non–zero gravity, the
curve with ∗ is for ρ = 0.1 and the curve with o is for ρ = −0.1
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Figure 10 shows the drainage time (t∗) as a function of dimensionless capillary pressure

−pc/m. As capillary suction is increased the drainage time t∗ decreases. When gravity is

present, this quantity depends on the density ratio ρ. In particular, the drainage time is

larger when ρ > 0 (solid more dense than liquid) as compared to when ρ < 0 (solid less

dense than liquid). In the absence of gravity increasing the capillary suction also decreases

t∗. For the zero gravity case, the drainage time is independent of ρ.

2.7 Conclusion

We have considered a one dimensional model of capillary flow into a deformable porous

material in the presence of gravity. This model is based on the work of Barry and Aldis [6],

Preziosi et al [57], Anderson [3] and is similar to other models of flow in deformable materials

[60]. Our new contribution is a set of analytical and numerical results that detail the effects

of gravity and capillarity on the material deformation in these systems. Our capillary–rise

results of deformable porous materials are analogous to the classical Washburn results for

capillary rise in rigid porous materials.

In the presence of gravity initially both interface positions, separating the liquid bath

and wet porous material and dry porous material and wet porous material follow the square

root in time behavior as in the zero gravity case. However, in contrast to the zero gravity

case where no steady state exists, the interface positions ultimately reach to steady state

values h̄∞s and h̄∞` . This fluid motion and solid deformation is driven by capillary suction;

when capillary pressure is zero no fluid is imbibed into the material and consequently no

deformation occurs.

We have quantified the deformation and imbibition dependence on fundamental quanti-

ties such as the strength of capillary suction and the solid-liquid density ratio. Deformation

on both local and global scales has been assessed. Increased capillary pressure leads to

increased net deformation. Also the net deformation of the solid increases with increasing

ρ = (ρs/ρ` − 1). The deformation within the sponge has also been assessed. In particular,
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when the solid is more dense than the liquid we observe that there is local expansion near

the top and local compression near the bottom. An opposite trend is observed when the

solid is less dense than the liquid, where there is local expansion near bottom and local

compression near the top.

In our capillary rise configuration, the equilibrium rise height of liquid is the same

for both rigid and deformable geometries assuming the same capillary pressure in both

cases. This is also related to our assumption that the pressure is fixed at a fixed location

z̄ = 0 rather than at the bottom of deforming solid. Therefore the noted increase in net

deformation is measured by the position of the wet sponge-liquid interface.

We have also examined the case in which capillary and gravitational forces act in the

same direction. Here we measure the time required for a finite volume of fluid to penetrate

into the deformable material. It is observed that drainage of liquid is faster for the non–zero

gravity case as opposed to when gravity is absent. We have also observed that drainage

time decreases as capillary suction is increased. When gravity is present we find that when

the solid is more dense than the liquid, the drainage time is slower than when the solid is

less dense than the liquid.

These capillary and gravity interactions in one–dimensional deformable porous materials

highlight a number of interesting phenomena that suggest further analysis of models in

higher dimensions as well as experiments.
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Chapter 3: Capillary Rise of non–Newtonian Fluid into

Deformable Porous Materials

3.1 Introduction

The phenomena of capillary rise and fluid flow through porous materials has been long

studied by various researchers. In the past, both Newtonian and non–Newtonian fluid

models have been used to formulate the problems of fluid flow through rigid porous materials

whereas the subject of non–Newtonian fluid flow through deformable porous materials has

not received that much attention. Capillary rise dynamics are present in industrial as well as

biological settings such as the pharmaceutical industry [16; 31; 65], textile manufacturing

[55], paper inkjet printing [18; 27], medical science [6; 7; 8; 33; 34; 35; 36; 37; 38], oil

recovery [52; 53] and geological flows [61].

In this work we study a model of capillary rise of a non–Newtonian fluid through a

deformable porous material that extends previous work on non–Newtonian flows in rigid

materials as well as Newtonian flows in deformable porous materials. One of the early

major results on capillary rise dynamics into porous materials was the pioneering work of

Wasburn [64]. According to this classical model, in the absence of gravity effects, the volume

of liquid that is imbibed by the porous material during time t is proportional to
√
t, whereas

when capillarity competes against gravity the liquid penetrates to a finite height. Recent

experimental and theoretical models on capillary rise of water into packings of glass beads

[23; 46; 66] have validated Washburn’s early time dynamics t1/2 whereas for long time the

data deviate from equilibrium predictions. In particular for these later time experimental

observations capillary rise dynamics follows a different power law.

Recently, Siddique et al. [59] (see also chapter 2) have studied a model of capillary rise
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into deformable porous materials for Newtonian fluids. In this work they have performed

experiments on the capillary rise of water into a deformable sponge and compared the

liquid interface height and solid deformation depth with their theoretical predictions. Their

model is an analog of the Washburn model where the deformation in the porous material is

also taken into account. Their modeling approach follows closely to models that take into

account both the capillary rise dynamics and material deformation in industrial [3; 57; 60]

as well as biological [6; 7; 8] contexts. According to their theoretical model, initially in the

presence of gravity effects both liquid and solid interface positions follow a square root in

time behavior whereas for long time the interface positions reach to equilibrium heights.

According to their experiments, the early time dynamics of the capillary rise and material

deformation follow the t1/2 dynamics as predicted by capillary rise theory but for long times

their experimental results, much like those for rigid porous materials [23; 46; 66], show a

power law dynamics different than the equilibrium predictions.

In the above discussion we have briefly described classical and recent work in both rigid

and deformable porous material contexts for Newtonian fluids. Now we turn our attention

towards non–Newtonian fluid flow through rigid porous materials. There are a variety of

non–Newtonian fluids which we encounter in our everyday life such as crude oil, honey,

toothpaste, paint and blood. There are many types of non–Newtonian models: Power law,

viscoelastic fluids etc. [14]. For these non–linear and non–Newtonian flows the widely

used Darcy’s law is not valid; a modified version accounting for these effects is required.

In the case of a power law fluid the ratio of permeability to viscosity, which is the usual

proportionality factor between the fluid velocity and the pressure gradient in the Newtonian

case, is modified to account for the non–Newtonian viscosity. Typically one assumes that

the permeability relation is the same for Newtonian and non–Newtonian cases. However,

the relation between velocity and pressure gradient is no longer linear. We provide more

specific details in the next sections.

Christopher and Middleman [19] developed a modified Darcy equation referred to there

as a modified Blake–Kozeny equation for a power law fluid with laminar flow through
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packed tubes. Their capillary model was tested experimentally when a diluted polymer

solution flowed through a tube packed with spherical particles. The results obtained in this

study were then compared with that of Sadowski [58]. The major difference between the

Christopher and Middleman and Sadowski [58] models is that Sadowski has used the Ellis

model to study the non–Newtonian fluid flow through packed beds of glass beads. Sadowski

also used the same formula for permeability but with different constant prefactors (see also

Bear [9] and Kemblowski [43]).

Hayes et al. [32] used the volume averaging approach to model the flow of a power–

law fluid to examine the velocity and pressure drop through a porous bed packed with

spherical particles. In their article they have reviewed the modifications and developments

in Darcy’s law and intrinsic permeability for non–Newtonian fluids examined by different

authors [19; 43; 52].

Many authors [1; 19; 62] have used an approach in which spherical particles are approx-

imated as a bundle–of–tubes to model the flow of non–Newtonian fluids in porous media.

The use of this approximation to model the non–Newtonian flow in porous media is limited

due to the fact that typical porous media are not capillary tubes but rather a complex

network of interconnected throats. In recent work [5], network based modeling has been

used to model the flow of shear–thinning fluids in packed beds in order to study the effects

of fluid rheology and bed morphology on flow. According to this approach, the porous

medium is approximated as an interconnected networks of pores and pore throats.

Many industrial as well as biological processes mentioned earlier involve the flow of non–

Newtonian fluid through porous materials. A large amount of work [3; 6; 7; 8; 57; 60] has

been dedicated to study the Newtonian fluid flow through deformable porous materials. The

governing mechanics of these flows is coupled to the deformation of the porous material. The

material deformation caused by the fluid flow in turn affects the fluid flow through the porous

material. There is a need for such models that can take into account both non–Newtonian

fluid flow and material deformation. In this work we address the particular situation of one

dimensional capillary rise of a non–Newtonian fluid through a deformable porous material.
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This provides a setting in which one can gain insight into capillary rise phenomena as well

as explore features of non–Newtonian fluids in deformable porous materials. We do so by

combining ideas of capillary rise of a Newtonian fluid into deformable porous materials and

non–Newtonian fluid flow into rigid porous materials.

The chapter is outlined as follows. In section two, we derive the general system of

equations using mixture theory. In section three, we discuss the modeling and solution of

non–Newtonian fluid flow into rigid porous materials. In section four, we model the one–

dimensional capillary rise of a power law fluid into a deformable porous materials. Finally,

in section five, we present the results and discussion.

3.2 The Model

We study the problem of capillary rise of a non–Newtonian fluid into a deformable porous

material. We model the deformable porous material using mixture theory. Detailed de-

scriptions of mixture theory can be found in [6; 7; 8; 15; 36] and in chapter 2.

The model is stated in terms of mass and momentum balances for both solid and liquid

phases. For the case of constant true intrinsic densities of solid ρs and liquid ρ` respectively,

the conservation of mass of each constituent is expressed by

∂φ

∂t
+∇ · (φ~ws) = 0, (3.1)

−∂φ
∂t

+∇ · [(1− φ)~w`] = 0, (3.2)

where φ is the solid volume fraction and ~ws and ~w` are the velocities of solid and liquid

constituents respectively. The momentum balances for liquid and solid constituents are

ρsφ

(
∂ ~ws
∂t

+ ~ws · ∇~ws
)

= ∇ ·Ts + φρs~g + ~πs, (3.3)
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ρ`(1− φ)
(
∂ ~w`
∂t

+ ~w` · ∇~w`
)

= ∇ ·T` + ρ`(1− φ)~g + ~π`, (3.4)

where Ts and T` are stress tensors for solid and liquid phases, ~g is gravity and ~πs and ~π`

are drag forces.

We will neglect the inertial terms in equations (3.3) and (3.4) due to the assumption

that the fluid velocities and deformation rates are small. According to Newton’s third law

the force on the solid by the liquid is opposite to that on the liquid by the solid ~π` = −~πs.

We follow Barry and Aldis [6] and write the stress tensors as

Ts = −φpI + σs, T` = −(1− φ)pI + σ`, (3.5)

where σs and σ` are solid and liquid stresses, p is the pressure and I is the identity tensor.

Here we neglect the viscous stress σ` and we take σs = σ, where σ is to be specified below.

In usual power law fluid modeling the non–Newtonian effects enter through viscous stress

σ` whereas in the present model under the above assumptions the non–Newtonian effects

enter through the drag forces and those are the terms we focus on here.

The appropriate details for drag force terms for rigid, deformable, Newtonian and non–

Newtonian fluids will be included in the later sections. In the section below we will discuss

the capillary rise of a non–Newtonian liquid into a one dimensional rigid porous material

in the presence and absence of gravity effects.

3.3 One dimensional capillary rise of power law fluid into

rigid porous material

In this section, we will discuss one dimensional capillary rise of a power law fluid into a

rigid porous material. Here we assume that the upper end of the initially dry rigid porous

material is fixed. At time t = 0, the contact position of the porous material and liquid bath

is at z = 0. We also assume that the capillary rise of fluid occurs from an infinite bath of

fluid whose upper surface at z = 0 remains open to atmospheric pressure (i.e. p = pA at
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z = 0 for all time) and the pressure in the fluid bath is hydrostatic i.e.(p = pA − ρ`ghs

at z = h`). For t > 0, liquid starts rising into the porous material due to the capillary

suction in the pore space of the porous material assuming the capillary pressure pc < 0. In

this setting z = h`(t) denotes the liquid interface. In this case we also assume that solid

constituents are not moving (ws = 0) and introduce the drag force in a one dimensional

setting for rigid porous material as π` = − (1−φ)2µeff

K(φ) |w`|n−1w`, here n is power law index,

µeff is an effective viscosity and K(φ) is permeability function. In this relation for drag

force if we set n = 1, this relation reduces to one used for the Newtonian fluid case. For

n < 1 and n > 1 one gets the shear thinning and shear thickening fluid cases respectively.

After combining the above assumptions with (3.1), conservation of mass for the rigid

porous materials is written as

∂w`
∂z

= 0, (3.6)

and (3.4) momentum balance for the power law fluid can be written as

w` =
[
− K(φ)

(1− φ)µeff

(
∂p

∂z
+ ρ`g

)]1/n

. (3.7)

In equation (3.7) we assume the capillary pressure pc to be sufficiently negative that implies

(∂p∂z + ρ`g) < 0 so that w` > 0. In this case the only unknowns are the velocity of the

liquid w`, the liquid interface position h` and the pressure p. Equation (3.7) is the modified

Darcy’s equation for flow in porous medium for power–law fluid proposed by Bird et al.

[14]. Bird et al. have developed the following formulas for permeability of a bed of particles

of diameter d and solid volume fraction φ

K(φ) = W (φ)d2, W (φ) =
(1− φ)3

150φ2
, (3.8)
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with µeff for a power law fluid

µeff = µ∗Y (φ, n)d1−n, (3.9)

where

Y (φ, n) =

[
25
6

(
3n+ 1
n(1− φ)

)n(3(1− φ)
50

)(
1− φ
φ

)1−n
]
. (3.10)

Setting n = 1 in relation (3.9) we recover the Newtonian case where µ∗ would be the

standard Newtonian viscosity. When n 6= 1, µ∗ is called the power law consistency index

and has a units of Pa sn.

Substituting (3.7) in (3.6) and using the pressure boundary conditions p(z = 0) = pA

and p(z = h`) = pA + pc yields the following solution for pressure

p(z) =
pc
h`
z + pA. (3.11)

When gravity effects are not present equation (3.7) after using boundary condition w`(z =

h`, t) = dh`
dt admits an analytical solution

h` =
[
K(φ)|pc|
(1− φ)µ∗

(
n+ 1
n

t

)n] 1
n+1

. (3.12)

The above formula can be written in dimensionless form as follows

h̄` =

[
Da

n+1
2n ξ

(
W (φ)
Y (φ, n)

) 1
n

t̄

] n
n+1

, (3.13)

where ξ = µ

µ∗
1
n
|pc|

1−n
n is a dimensionless quantity. We have picked the choices of non–

dimensional quantities in such a way that the length scale L = |pc|
ρ`g

and time scale T =
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µ
|pc| are independent of n values. An additional quantity that appears as result of non–

dimensionalization is Darcy’s number Da = d2

L2 . Note that the length scale L depends

on g that we use when gravity effects are included in the model. The formula (3.12)

and (3.13) obviously depends on n. Additionally, the consistency index µ∗ is typically

determined empirically for different power law fluids and is therefore also n–dependent.

The permeability function K(φ) depends on φ and the typical pore scale radius d. Here we

have used the specific form for capillary pressure |pc| = γcosθ
d , where γ is surface tension

assumed to be constant for all non–Newtonian cases and θ is the wetting angle which in

our case we assume to θ = 0◦. In the case of a rigid porous material we have assumed the

solid volume fraction φ = φ0 to be constant.

It is important to understand the dynamics of different power law fluids. We will

investigate this by observing the evolution of interface positions of these fluids in different

time regimes. In table 3.1, we have listed consistency index µ∗ and power law index values

for test fluids VN , V 2, V 4 and V 8 where VN represent the Newtonian case and V 2, V 4 and

V 8 represent the non–Newtonian n < 1 cases. For different values of n the formula (3.13) on

loglog scales generates lines with different slopes. Table 3.1 also contains the intersection

times between these lines; these lines intersect each other at some time that leads us to

the understanding of change in the dynamics of Newtonian and non–Newtonian fluids in

different time regime. The intersection time t∗ for these lines is given by

t∗ =


(
n2+1
n2

) n2
n2+1

(
K(φ)pc

(1−φ0)µ∗2

) 1
n2+1

(
n1+1
n1

) n1
n1+1

(
K(φ)pc

(1−φ0)µ∗1

) 1
n1+1


(n1+1)(n2+1)

(n1−n2)

.

Here ni and µ∗i are the power law index and consistency index values respectively for fluids

i ∈ {1, 2}. One can see from table 3.1, that some of the intersection times are very small

and other very large. In figure 3.1 we have shown one of the intersection time.
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Figure 3.1: This plot shows the evolution of interface positions h` versus time t for New-
tonian and non–Newtonian fluid in the absence of gravity effects. Here we have used
Da = 0.01, d = 0.0001 m, φ0 = 0.33 and surface tension 63.57× 10−3N/m.

Table 3.1: This table shows the intersection time t∗ for different fluids. Consistency index
µ∗ and power law index n values used in this study are from [50]. Where VN represents the
Newtonian fluid and V2, V4, and V8 represent the non–Newtonian test fluids.

Test fluid µ∗(kPasn) n t∗VN
t∗V 2 t∗V 4 t∗V 8

VN 10−3 1 – 2.1645× 10−89 4.8831× 10−60 2.1913× 10−23

V2 0.095 0.90 – – 8.6139× 108 20.1143
V4 0.082 0.86 – – – 0.7786
V8 0.340 0.67 – – – –
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Figure 3.1 shows the evolution of interface position h̄` with respect to time t̄ for Newto-

nian n = 1 and shear thinning n < 1 fluids. The consistency index values used in this study

are for a shear thinning fluid given in [50]. These interface position predictions depend on

the power law index n, capillary pressure pc, solid volume fraction φ, Darcy’s number Da

and consistency index µ∗. The intersection times given in table 3.1 range from very small

values to very large values. It is difficult to show the intersection time for all of these lines.

For real early times the ordering (from bottom to the top not actually visible in Figure 3.1)

of these lines is from larger values of power law index n to small values whereas for large

enough time the ordering (from bottom to the top) of power law index n is from small to

large values. This tells us that the non–Newtonian fluid is faster initially and vise versa.

The ordering of these curves tells us which fluid moves faster in which time regime. For

early times, capillary rise of Newtonian fluid is faster than the non–Newtonian fluid but this

trend is opposite for larger times. This change in trend varies for different combination of

Newtonian and non–Newtonian fluids. In Figure 3.1 an intersection time between n = 0.67

and n = 0.90 with asterisk in a red square is shown. This intersection time in the actual

time units t = 31.64 sec (i.e. T=1.5 sec).

When gravity effects are present equation (3.7) yields an ordinary differential equation

dh`
dt

=
[

K(φ)
(1− φ)µeff

] 1
n
( |pc|
h`
− ρ`g

)1/n

. (3.14)

The above ordinary differential equation is solved numerically subject to appropriate initial

conditions.

In Figure 3.2 the plot of interface position h` with respect to time t for Newtonian and

shear thinning fluids is shown. When gravity effects are present the fluid reaches to an

equilibrium height. As shown in Figure 3.2 the Newtonian fluid reaches to an equilibrium

height before the non–Newtonian fluid. Note that the ordering (from bottom to the top in

Figure 3.2) of lines in this case are also from smaller values of power law index n to the larger
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Figure 3.2: This plot shows the evolution of interface positions h` versus time t for New-
tonian and non–Newtonian fluid in the presence of gravity effects. Here we have used
Da = 0.01, d = 0.0001 m, φ0 = 0.33 and surface tension 63.57× 10−3N/m

values of power law index n. Again we show results in terms of dimensionless variables with

L = |pc|
ρ`g

and T = µ
|pc| . These length and time scales are related through capillary pressure

that depends on particle diameter d. When the Darcy number Da or capillary pressure

pc is increased the imbibition of the fluid increases and when the Darcy number Da or

capillary pressure pc is decreased the imbibition of the fluid decreases. Another parameter

that effects the imbibition of the fluid is consistency index µ∗. If µ∗ is increased, imbibition

of the fluid into the porous material decreases and if µ∗ is decreased, imbibition of the fluid

increases. One can understand this by noting that increasing µ∗ increases the friction force,

which slows the dynamics. In Figure 3.3 we have shown the effect of increase (imbibition

decreases, shown by dashed dotted line) and decrease (imbibition increases, shown by solid

line) of power law consistency index µ∗ by a factor of 10. Note that the curve shown by

dashed line is with the same consistency index value used to generate Figure 3.2.
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Figure 3.3: This plot shows the evolution of interface positions h̄` versus time t̄ for non–
Newtonian fluid for same power law index n = 0.90 and µ∗ = 9.5, 95, 950 Pa sn from left
to right in the presence of gravity effects. Here we have used Da = 0.01, d = 0.0001 m,
φ0 = 0.33 and surface tension 63.57× 10−3N/m.

3.4 One-dimensional capillary rise of a shear thinning liquid

into a deformable porous material

In this section we extend the ideas and results of the previous sections to deformable porous

materials. Specifically, we focus on a one dimensional deformation of a deformable sponge-

like material in contact with a liquid. This is the same geometry considered in [59] and in

chapter 2. For clarity we briefly we describe this configuration here. We assume that the

upper end of the deformable material is fixed and the porous material is initially dry. At

time t = 0, the contact position of the deformable material and liquid is defined by z = 0.

It is assumed that the imbibition of fluid occurs from an infinite bath of fluid whose upper

surface at z = 0 remains open to atmospheric pressure (i.e. p = pA at z = 0 for all time).

The upper interface of the wet porous material region is defined by z = h`(t) and the lower

interface formed after the deformation is defined by z = hs(t) as shown in figure 2.1 in

chapter 2. We have assumed that the pressure in the fluid bath is hydrostatic which implies
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that p = pA−ρ`ghs at z = hs(t). Initially the dry porous material has uniform solid fraction

φ0.

As a result of the above assumptions, the only remaining unknowns are those in the

wet material and the boundary positions hs and h`. The variables of interest in the wet

region are the solid fraction φ, the vertical velocity component of the liquid phase w`, the

vertical velocity component of solid phase ws, the liquid pressure p and the stress in the

solid σ where σ = σ(φ)I and σ(φ) is solid stress whose form we specify below. The drag

force for the one dimensional deformable porous material case is defined as π` = −πs =

(1−φ)2µeff

K(φ) |ws − w`|n−1(ws − w`) − p∇φ. Setting n = 1 in this relation one can recover the

relation used for Newtonian deformable porous material case [6; 59; 3; 2] and setting ws = 0

and φ = constant one can yields rigid non–Newtonian case. For n < 1 and n > 1 this

relation yields a drag force for shear thinning and shear thickening fluid cases. The set of

equations (3.1)–(3.4) for the one dimensional material deformation reduces to

∂φ

∂t
+

∂

∂z
(φws) = 0, (3.15)

∂φ

∂t
− ∂

∂z
[(1− φ)w`] = 0, (3.16)

(ws − w`)n = − K(φ)
(1− φ)µeff

(
∂p

∂z
+ ρ`g

)
, (3.17)

0 = −∂p
∂z

+
∂σ

∂z
− g [ρsφ+ ρ`(1− φ)] , (3.18)

where ρs and ρ` are the true intrinsic densities of solid and liquid respectively assumed

to be constant. Note that equations (3.18) and (2.20) are same in both Newtonian and

non–Newtonian cases which we will be using to compute one of the boundary condition for

solid volume fraction after substituting the constitutive relation σ = σ(φ) in (3.18) in the

presence of gravity effects.
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Using the same procedure as in [59] and chapter 2 equations (3.15)–(3.18) can be reduced

to a single partial differential equation for the solid fraction φ, as in [3; 59]

∂φ

∂t
+ c(t)

∂φ

∂z
=

∂

∂z

[
−φ

nK(φ)(1− φ)n−1

µ

{
σ′(φ)

∂φ

∂z
− g(ρs − ρ`)φ

}] 1
n

, (3.19)

on hs(t) < z < h`(t).

The boundary conditions are the same as in the case of a Newtonian fluid. At liquid-wet

material interface z = hs(t),

ws
(
h+
s , t
)

=
∂hs
∂t

, (3.20)

p
(
h+
s , t
)

= pA − ρ`ghs(t), (3.21)

σ
(
h+
s , t
)

= 0, (3.22)

where pA is atmospheric pressure. The equations (3.20)–(3.22) are the kinematic conditions,

hydrostatic pressure assumption in the liquid bath, and zero stress condition respectively.

At the wet material-dry material interface z = h`(t)

w`
(
h−` , t

)
=
∂h`
∂t

, (3.23)

p
(
h−` , t

)
= pA + pc. (3.24)

Here (3.23) and (3.24) are kinematic and capillary pressure conditions respectively.

After some mathematical manipulation these boundary conditions (3.20,3.23) lead to

ordinary differential equations for solid and liquid interfaces

∂hs
∂t

= c(t)−
[
−K(φ)(1− φ)n−1

µ

(
σ′(φ)

∂φ

∂z
− g(ρs − ρ`)φ

)∣∣∣∣
h+

s

] 1
n

, (3.25)
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∂h`
∂t

= c(t) +

[
− φ

nK(φ)
µ(1− φ)

(
σ′(φ)

∂φ

∂z
− g(ρs − ρ`)φ

)∣∣∣∣
h−`

] 1
n

. (3.26)

The function c(t) is determined using the same procedure as in [59] and chapter 2

c(t) =
(1− φ0)
φ0

[
− φ

nK(φ)
µ(1− φ)

(
σ′(φ)

∂φ

∂z
− g(ρs − ρ`)φ

)∣∣∣∣
h−`

] 1
n

. (3.27)

We use the following stress to local solid volume fraction relation σ(φ) = m(φr − φ), this

choice is consistent with physically realistic trends (see ([3],[59]) for more details). Here we

take m > 0 so that σ′(φ) = −m < 0. Our assumption for the stress function σ is suitable

for a one dimensional setting and Non–Newtonian fluid as the stress function is related to

solid stress. For higher dimension one needs to modify the choice for σ that could take into

account the effects of shear deformation.

Setting n = 1 in (3.25) (3.26) and (3.27), recovers the Newtonian case. In the next

section we will discuss the solution methodology, when the gravity effects are not present.

3.5 Zero Gravity Case:

When gravity effects are not present the problem admits a similarity solution. Introducing

the following similarity variable

η =
z

(n+1
n )(D∗t)

n
n+1

, (3.28)

yields the following ODE

(
− n

n+ 1

) 1
n

η
dφ

dη
+

1− φ0

φ0

{
W (φ)φn

Y (φ, n)(1− φ)
dφ

dη

∣∣∣∣
λ−`

} 1
n dφ

dη
=

d

dη

{
W (φ)φn(1− φ)n−1

Y (φ, n)
dφ

dη

} 1
n

,

(3.29)

45



where D∗ = [d
n+1m
µ∗ ]

1
n has units of length( n+1

n
) per unit time.

Equation (3.29) is subject to the boundary conditions

φ = φr, at η = λs, (3.30)

φ = φ∗` , at η = λ`, (3.31)

where φ∗` = φr − pc

m .

The interface positions can also be expressed as

hs = (
n+ 1
n

)λs(D∗t)
n

n+1 , h` = (
n+ 1
n

)λ`(D∗t)
n

n+1 , (3.32)

where λs and λ` are liquid and solid interface positions in terms of the similarity variable.

After introducing these relations for interface positions into ODEs for interface position

we obtain the following non–linear equations

λs =
(

n

n+ 1

) 1
n

[
(1− φ0)
φ0

{
φnW (φ)

(1− φ)Y (φ, n)
dφ

dη

∣∣∣∣
λ−`

}
−
{

(1− φn)W (φ)
Y (φ, n)

dφ

dη

∣∣∣∣
λ+

s

}]
, (3.33)

λ` =
(

n

n+ 1

) 1
n

 1
φ0

{
φnW (φ)

Y (φ, n)(1− φ)
dφ

dη

∣∣∣∣
λ−`

} 1
n

 . (3.34)

This system of non–linear ODE (3.29) and non–linear equations (3.33,3.34) is solved nu-

merically. We use second order accurate finite difference and mid point rule schemes to

discretize in space. This converts the ODE and non–linear system of equations into a

system of non–linear equations, which is solved numerically using fsolve in Matlab. This

numerically computed solution in the absence of gravity effects is used as an initial condi-

tion for the full time dependent problem (see [59] for more details) presented in the next

section. The result of the zero gravity case will be shown in the results section.
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3.6 Non–zero Gravity Case:

The time–dependent moving domain problem (3.19)–(3.26) can be non–dimensionalized and

transformed to a fixed domain by using the following choices for dimensionless space, time,

interface positions and pressure

z̄ =
z − hs(t)

h`(t)− hs(t)
, t̄ =

t

T
, h̄s =

hs
L
, h̄` =

h`
L
, p̄ =

p

m
, (3.35)

where L = m
ρ`g

and Tn = Ln+1µ∗

mdn+1 . Note that this particular time scale depends on power

law index n. We shall revisit this issue in the discussion of the results. Introducing these

choices and dimensionless variables, the dimensionless PDE (3.19) for φ can be written as

∂φ

∂t̄
+
[

(z̄ − 1)
(h̄` − h̄s)

dh̄s
dt̄
− z̄

(h̄` − h̄s)
dh̄`
dt̄

]
∂φ

∂z̄
+

c̄(t̄)
(h̄` − h̄s)

∂φ

∂z̄
=

1
(h̄` − h̄s)

∂

∂z̄

[
W (φ)φn(1− φ)n−1

Y (φ, n)µ∗

{
1

(h̄` − h̄s)
∂φ

∂z̄
+ ρφ

}] 1
n

, (3.36)

where ρ = (ρs

ρ`
− 1).

The boundary conditions for solid volume fraction are written as follows

φ = φr, at z̄ = 0, (3.37)

φ = φ∗` − (h̄` − h̄s)
∫ 1

0
(ρφ+ 1)dz̄ − h̄s at z̄ = 1. (3.38)

It is important to mention that these boundary conditions are same as in Newtonian case [see

[59] and chapter 2]. We derive boundary condition (3.38) after the substituting of relation

σ = σ(φ) in (3.18) and using pressure boundary conditions (3.21) and (3.24). Introducing

the choices and dimensionless variables defined in (3.35), reduces the equations for interface
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positions to

dh̄s
dt̄

= c̄(t̄)−
[
W (φ)(1− φ)n−1

Y (φ, n)

(
1

(h̄` − h̄s)
∂φ

∂z̄
+ ρφ

)∣∣∣∣
z̄=0

] 1
n

, (3.39)

dh̄`
dt̄

= c̄(t̄) +
[

W (φ)φn

Y (φ, n)(1− φ)

(
1

(h̄` − h̄s)
∂φ

∂z̄
+ ρφ

)∣∣∣∣
z̄=1

] 1
n

, (3.40)

where the function c̄(t̄) is given by

c̄(t̄) =
1− φ0

φ0

[
W (φ)φn

Y (φ, n)(1− φ)

(
1

(h̄` − h̄s)
∂φ

∂z̄
+ ρφ

)∣∣∣∣
z̄=1

] 1
n

. (3.41)

The initial conditions for the interface positions are

h̄`(t̄ = 0) = 0, h̄s(t̄ = 0) = 0. (3.42)

The time dependent free boundary problem (3.36)–(3.42) can be solved numerically. We

use a method of lines approach with second order accurate finite difference and mid point

rule schemes in space. This converts the PDE to a system of ODEs. The resulting system

of ODEs are solved using Matlab’s solver ode23s.

3.7 Results and Discussion

The steady state solutions for the non–Newtonian case are same as in Newtonian case.

The details on these solutions could be found in [59] and chapter 2. Figure 3.4 shows the

evolution of interface positions h̄s(t) and h̄`(t) in the presence of gravity effects. Again we

follow the same approach as in rigid case and introduce the Newtonian time scale TNew = µ
|pc|

in such a way that the time scale used to make these figures is independent of power law

index n. This helps to assess the effect of n when examining the graph. In the presence of
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Figure 3.4: This plot shows interface positions as a function of time for Newtonian and
shear thinning fluids in the presence of gravity effects. In this plot we have used φ0 =
0.33, φr = 0.1, φ∗` = 0.2 and ρ = 0.1. We have also used surface tension γ = 63.57 × 10−3

N/m, Newtonian viscosity = 10−3 Pa S and particle diameter d = 0.01 m. Note that time
scale used in this plot is independent of power law index n.

gravity, initially both curves for different power law fluids follow the similarity solution but

ultimately reach to an equilibrium height. The Newtonian fluid reaches to an equilibrium

height much faster (105 time units) than the shear thinning fluid where 1014 is 1.573×108 sec

in actual time unites. The cross over discussed in case of zero gravity rigid porous material

occurs in deformable case also but there is no set ordering of this cross over to tell us which

fluid imbibes faster than the other. The effect of change in different parameters such as

φ0, φr, φ
∗
` and power law consistency index µ∗ values definitely influences the deformation

in the solid material and imbibition time. Here again we observe the same trend as in rigid

case, by increasing the power law consistency index µ∗ values increases the imbibition time

and by decreasing the µ∗ values decreases the imbibition time. This could be understood

by noting that increasing µ∗ increases the friction force, which slows the dynamics. In the

next figure we show that dependence by using a particular set of parameters φ0, φr and φ∗` .

Figure 3.5, in which we have used a particular set of parameters from [59] to match with
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Figure 3.5: This plot shows interface positions versus time for Newtonian and shear thinning
fluids. Here we have used φ0 = φ∗` = 0.10, φr = 0.073 and ρ = 0.1.

their sponge experiment, shows less solid deformation than the penetration of liquid into

deformable porous material. Again there is a cross over for very early times in general in

this case also. For this set of parameters the equilibrium height is different than as shown

in Figure 3.4 but the equilibrium height is reached in this case also. Here again when the

consistency index µ∗ value is increased, the shear thinning liquid takes now much more time

to reach to an equilibrium height whereas when µ∗ value is decreased, the shear thinning

liquid reach to an equilibrium faster.

It is worth mentioning that our model is also valid for shear thickening fluid, but the

experimental values that we have found in the literature are for power law consistency index

µ∗ corresponding to shear thinning fluids.

3.8 Conclusion

We have extended our previous work [59] to a one–dimensional capillary rise of power law

fluids into rigid and deformable porous materials. The new contributions here are our model

for power law fluids and numerically computed solution for both rigid and deformable cases
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in the absence and presence of gravity effects. We have used the mixture theory approach to

study capillary rise of power law fluids into deformable porous materials. The modeling and

solution approach used here is similar to ones in the previous work by the various authors

[3; 8; 57; 59].

In, the case of rigid porous materials we have shown the difference in capillary rise of

Newtonian and non–Newtonian fluids. We observed that the dynamics of Newtonian and

non–Newtonian fluid is different in different time regimes. For really early time imbibition

of non–Newtonian fluid is faster than the shear thinning fluids and this trend is opposite

for later times. We have shown the intersection time (where the dynamics between different

fluid changes) between different fluids in table 3.1.

In the presence of gravity effects, the same equilibrium height is reached for both New-

tonian and non–Newtonian liquids. We have observed that the Newtonian fluid reaches

to an equilibrium height before the shear thinning liquid for the particular set of values

shown in table 3.1. However, the imbibition of the liquid into the porous material depends

on various parameters such as Darcy number Da, capillary pressure pc, uniform volume

fraction φ0 and consistency index µ∗. On increasing the Da and pc values the imbibition of

the fluid increases while imbibition decreases if Da and pc values are decreased. The effect

of increasing the power law consistence index µ∗ decreases the liquid imbibition and vice

versa.

In the deformable case, when gravity effects are present both liquid and solid interface

positions reach to an equilibrium heights as shown in figures 3.4 and 3.5. We have used

the numerically computed zero gravity solution as an initial condition for nonzero gravity

solution. This zero gravity solution follows the square root in time behavior for Newtonian

fluid case whereas for non–Newtonian fluids it follows a different power law depending on

the power law index n. No steady state solution exists in the absence of gravity effects for

both Newtonian and power law fluid cases. When gravity effects are included in the model

the steady state solution are same for both Newtonian as well as power law fluids (see [59]

for details on this steady solution).
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The capillary rise of non–Newtonian liquid into both rigid and deformable porous ma-

terial cases highlights basic features of this interesting phenomena. The additional features

such as multidimensional deformation, evaporation, chemical interaction between liquid and

solid phases, and experimental work could be motivated by the present work.
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Chapter 4: Mathematical Modeling of Fluid Flow Through a

Porous Deformable Arterial Wall

4.1 Introduction

An aneurysm is a localized, blood-filled dilation of the arterial wall caused by disease or

weakening of the arterial wall. When the size of an aneurysm increases, there is a high risk of

rupture of an aneurysm, which can result in stroke or other complications including sudden

death. The interaction between the blood flow and the deformable arterial wall is critical

in the understanding of hemodynamic forces such as blood pressure and wall shear stress.

Prediction of these forces on and inside the aneurysm arterial wall could better estimate the

growth and rupture of arterial wall. In this chapter we will use biphasic mixture theory to

study the deformation in the arterial wall which we expect may help us to better understand

the growth and rupture of an aneurysm.

There are various theoretical frameworks that have been used to study the biomechanics

of arteries and soft tissues: finite elasticity[29; 30], membrane theory [39], viscoelasticity

[40; 56], growth and remodeling [20], thermomechanics [28; 47] and mixture theory [4; 15].

In this chapter we want to use the mixture theory approach to model the problem of blood

flow interaction within the arterial wall.

Mixture theory has been used to combine continuum theories for the motion and defor-

mation of solid and fluids to model the problems in biological tissues [35; 36; 37], articular

cartilage [45; 51], tumor growth and remodeling [17] and other deformable porous materials

[2; 3; 6; 7].

Barry and Aldis [6; 7] studied a variety of different models where deformation of the

porous material alters the fluid flow. In their flow induced deformation model, biological

tissues are modeled as deformable porous media where the deformation of the tissues alters
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the fluid motion. They [8] used mixture theory to study the fluid flow over a thin deformable

porous layer. In this model they assumed that the solid deformation is infinitesimal and

displacements are assumed to be along the axis of the channel.

Other interesting applications where mixture theory has been employed to study the

coupled fluid flow and solid deformation problem are paper inkjet printing [3] and infiltration

processes [2; 10; 49; 57; 60]. Following this work Siddique et. al [59] studied the capillary

rise into deformable porous materials where they were interested in motion of fluid and solid

interfaces (see chapter 2 for more details). According to their one dimensional theoretical

model, initially both solid and liquid interfaces follow the square in time behavior and

ultimately reach to an equilibrium heights. They have also examined the model when

gravity and capillary forces are in the same directions. In their experiments they have

shown that early time dynamics observed in the experiments are consistent with the early

time t1/2 dynamics predicted by the theory for capillary rise and material deformation. But

their experimental data do not conform the later time equilibrium predictions of our theory.

The above discussion outlines the scientific as well as the industrial application of the

mixture theory. We are interested in examining the dynamics of an arterial wall in response

to pulsatile fluid flow. In this research we use the basic mixture theory [2; 3; 8] governing

equations to model this fluid flow problem.

In section two, we present the general mixture theory formulation. In section three, we

present the one dimensional modeling of fluid flow through an arterial wall. In section four,

we present the solution of linear elastic membrane problem with linear boundary effects. In

section five we present linear elastic membrane problem with non–linear boundary effects.

In section six we present solution methodology for fluid flow through arterial wall problem.

In section seven and eight we present results and discussion and conclusion of this problem.
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4.2 Mathematical Model

We study the fluid structure interaction within the arterial wall using mixture theory. In

mixture theory deformable porous material is taken as a continuous binary mixture of

fluid and solid phases. The details of mixture theory used in here is similar to one used

in [6; 7; 8; 15; 36], Chapter 2 and Chapter 3. When incompressible Newtonian fluid flows

through the deformable arterial wall, the porous material deforms and alters the fluid motion

through the arterial wall. To take into account both fluid and solid motion the model is

stated as conservation of mass and conservation of linear momentum.

The conservation of mass for both fluid and solid phases (we denote here by α = `, s

respectively), assuming the true intrinsic densities to be constant for mixture ρα can be

written as

∂φα
∂t

+∇.(φα ~wα) = 0 (4.1)

where φα is solid volume fraction and ~wα denotes the velocity of each phase in the mixture.

Later we will use ~ws = ∂~u
∂t where ~u denotes the displacement of the solid.

The momentum balance for both phases as

ρα

(
∂ ~wα
∂t

+ ~wα.∇~wα
)

= ∇.Tα + ~πα, (4.2)

where Tα is the stress tensor for each phase and ~πα is a drag force for each phase.

Assuming the following linear stress–strain relation and incompressible Newtonian fluid

Ts = −φpI + λstr(e) + 2µse (4.3)

T` = −(1− φ)pI + λ`tr(D) + 2µ`D, (4.4)

where p is the fluid pressure, λ`, µ` are the viscous stress constants, λs and µs are Lame
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constants and I is the identity tensor. The strain tensor for the solid phase is written as

e =
1
2

(∇~u+ (∇~u)T ), (4.5)

where ~u is solid displacement.

The rate strain tensor for the fluid phase is written as

D =
1
2

(∇ ~w` + (∇ ~w`)T ). (4.6)

The drag forces for liquid and solid phase are written as

~π` = −~πs = K(φ)(~ws − ~w`)− p∇φ. (4.7)

We neglect the nonlinear ~w`.∇~w`terms in equation (4.2). In the section below we will discuss

the fluid structure interaction problem in one dimensional deformable porous arterial wall.

4.3 One dimensional arterial deformation model

In this section we develop a one dimensional mathematical model of fluid flow interactions

within the arterial wall. Here we assume that the force from blood pushing against the inner

arterial wall is pulsatile. We assume this force provides a sinusoidal displacement with a

given amplitude Amp and frequency ω at the inner arterial wall. As a result of the above

assumptions and boundary conditions still to be specified, the only unknowns are those

inside the arterial wall and the outer boundary position h(t) of the arterial wall. The other

variables of interest are the displacement of the solid u, velocity of the liquid w`, pressure

p and the solid volume fraction φ. The system of equations (4.1)– (4.2) in one–dimensional
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← z = b(t)

← z = h(t)

↑
b(t) = Amp sin ωt

Figure 4.1: This figure shows the schematic of deformable arterial wall

setting reduces to following system of equation

∂φ

∂t
+

∂

∂z

[
φ
∂u

∂t

]
= 0 (4.8)

−∂φ
∂t

+
∂

∂z
[(1− φ)w`] = 0 (4.9)

∂p

∂z
= (λs + 2µs)

∂2u

∂z2
+ 2µa

∂2w`
∂z2

− ρs
∂2u

∂t2
− ρ`

∂w`
∂t

(4.10)

ρs
∂2u

∂t2
= (λs + 2µs)

∂2u

∂z2
− φ∂p

∂z
−K

[
∂u

∂t
− w`

]
(4.11)

where the unknowns in the above system of equations are solid displacement u, velocity

of the fluid w`, pressure p and the solid volume fraction φ on the moving domain b(t) <

z < h(t). Here the position of the outer arterial wall h(t) is moving interface, which we will

be computing as an unknown in our model for a given b(t). Here 2µa = λ` + 2µ` is the

apparent viscosity of the fluid in the porous material.

4.3.1 Boundary Conditions

The boundary conditions applied at the inner side of the arterial wall z = b(t) are

u(b(t), t) = b(t), (4.12)

∂u

∂t
= w`, (4.13)
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where we impose b(t) = Amp sinωt.

The boundary conditions applied at the outer side of the arterial wall z = h(t) are

u(h(t), t) = h(t)− h0, (4.14)

∂u

∂z
= 0, (4.15)

p(h(t), t) = 0, (4.16)

φ(h(t), t) = φr (4.17)

where φr is a relaxed solid volume fraction.

4.3.2 Initial Conditions

At time t = 0, we impose that structure displacement and change in the structural displace-

ment with respect to time is zero. Also the solid volume fraction inside the arterial wall is

in relaxed state. This leads to the following initial conditions for our system

u(z, 0) = 0,
∂u

∂t
= 0, φ(z, 0) = φr,

b(0) = 0, h(0) = h0. (4.18)

Adding equations (4.8) and (4.9) and using the boundary conditions (4.13) yields a formula

for w`(z, t)

w`(z, t) =
1

(1− φ)

[
db

dt
− φ∂u

∂t

]
, (4.19)

which means fluid velocity is known everywhere.

In summary we need to solve (4.8), (4.10) and (4.11) subject to the boundary condi-

tions (4.12)– (4.17) along with appropriate initial conditions (4.18) with w` given by (4.19).

In the next section we will non–dimensionalize the above system of equation along with
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initial and boundary conditions.

4.3.3 Nondimensionalized system of equations

We introduce the following choices of the dimensionless quantities to non–dimensionalize

the above system

ź =
z

h0
, t́ = ωt, ú =

u

h0
, ẃ` =

w`
h0ω

, h́ =
h(t)
h0

, ṕ =
p

(λs + 2µs)
. (4.20)

The resulting set of dimensionless equation are given below

∂φ

∂t́
+

∂

∂ź

[
φ
∂ú

∂t́

]
= 0 (4.21)

ẃ`(z, t) =
1

(1− φ)

[
db́

dt́
− φ∂ú

∂t́

]
(4.22)

∂ṕ

∂ź
=
∂2ú

∂ź2
+ αµ

∂2ẃ`
∂ź2

− αω
∂2ú

∂t́2
− αωρ

∂ẃ`

∂t́
(4.23)

∂2ú

∂t́2
= α−1

ω

∂2ú

∂ź2
− α−1

ω φ
∂ṕ

∂ź
− αk

[
∂ú

∂t́
− ẃ`

]
(4.24)

where αµ = 2µaω
(λs+2µs) , α−1

ω = (λs+2µs)
ρsω2h2

0
, αk = K

ρsω
and ρ = ρ`

ρs
. In the next two sections

we will present these models after dropping the primes and their solutions.

4.4 Linear Elastic Membrane with Linear Boundary Effects

We study the simplified linear elastic membrane problem given below

∂2u

∂t2
= α−1

ω

∂2u

∂z2
, 0 ≤ z ≤ 1 (4.25)
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with the linear boundary effects. We assume that the initial solid displacement and rate of

change in solid displacement are zero i.e. u(z, 0) = 0 and ∂u
∂t (z, 0) = 0.

We specify the following boundary conditions at the bottom interface of the arterial wall

u(z = 0) = b(t) and at the upper interface of the arterial wall we impose the change in the

displacement ∂u
∂z (z = 1) = 0. To specify the pulsatile motion at the bottom interface of the

arterial wall we set b(t) = Amp sinωt.

We solve PDE (4.25) numerically using method of lines. This was accomplished by

solving an equivalent system of first–order differential equations

∂u

∂t
= y, (4.26)

∂y

∂t
= α−1

ω

∂2u

∂z2
. (4.27)

We use second order finite difference scheme to discretize (4.27) that converts the PDE into

a system of ODEs. This system of ODEs is solved numerically using Matlab’s ode23 solver.

In the Appendix A we present the validation of method of lines for wave equation with an

exact solution.

We apply the sinusoidal wave function Amp sin t on the inner boundary of the arterial

wall and compute the solid displacement at the outer arterial wall. Figure 4.2 shows this

displacement at z = 1 relative to the driving amplitude as function of time. There is no

response of outer arterial wall until t = 1 (this delay in the disturbance is associated with

wave speed of disturbance). After t = 1 response begins. The response at z = 1 reveals a

complex pattern. This disturbance within the arterial wall bounces back and forth. The

detailed structure is a function of speed at which disturbance propagates and interacts with

driving disturbance as shown in figure 4.7. Note that the amplitude of disturbance is more

than three times the size of the driving amplitude. We investigate this further in figure 4.4.
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Figure 4.2: This is plot of displacement/Amp as function of time. We have used Amp =
0.001 and αω = 1 in this case.

Figure 4.3 is surface plot of displacement, space and time relative to the driving ampli-

tude. This figure shows that the disturbance in the arterial wall reaches at z = 1 and then

responses back to z = 0 depending upon the speed and amplitude of the wave. We explore

this dependence in figure 4.4.

Figure 4.4 is plot of displacement Umax as function amplitude. Here we are interested in

potential resonant behavior. Note that when αω → 0, Umax goes to the driving amplitude.

Here a small peak exist for small values of α−1
ω and strong peak for large values of α−1

ω

(almost 20 times the driving amplitude).
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Figure 4.3: This is surface plot of displacement/Amp, space and time. We have used
Amp = 0.001 and αω = 1 in this case.

4.5 Linear Elastic Membrane with non–Linear Boundary Ef-

fects

In this case again we study the linear elastic membrane problem

∂2u

∂t2
= α−1

ω

∂2u

∂z2
, b(t) ≤ z ≤ h(t) (4.28)

with moving boundary effects. Here again we impose the same initial and boundary condi-

tions with u(h, t) = h(t) − h0, where h0 is initial thickness of the arterial wall. Below we

define a transformation that allow us to transform the moving boundary problem to a fixed

domain problem.
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Figure 4.4: This is Umax as function of time. We have used Amp = 0.001.

4.5.1 Transformation from moving to fixed domain

The following transformation

z̄ =
z − b(t)
b(t)− h(t)

, t̄ = t (4.29)

allow us to write the problem on fixed domain b(t) ≤ z ≤ h(t).

∂2u

∂t̄2
= α−1

ω P 2(t)
∂2u

∂z̄2
− 2Q

∂2u

∂t̄∂z̄
−Q2∂

2u

∂2z̄
− (

∂Q

∂t̄
+Q

∂Q

∂z̄
)
∂u

∂z̄
(4.30)

0 ≤ z̄ ≤ 1. The details on this transformation can be found in Appendix B.

Following the same procedure as in the previous section, we first convert (4.30) to system

of first order PDEs in time where we discretize using second order finite difference scheme.

Finally we use Matlab ode23 solver to solve this system of differential equations.
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In this figure 4.5 we show the displacement at z = 1 relative to the driving amplitude

as function of time. It is important to mention that for small values of driving amplitude

predictions are same as in fixed domain case. Figure 4.2 shows the agreement between

fixed and moving domain solution for small values of amplitude. For large values of driving

amplitude we see the difference in two solutions. The two solutions are no longer in synch.

Again note that the detailed structure is a function of driving amplitude and speed of

propagation of disturbance.
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Figure 4.5: This is plot of displacement/Amp as function of time. We have used Amp = 0.05
and αω = 1 in this case.

4.6 Full Problem Solution

The system of equations (4.21)–(4.24) is transformed from moving domain to a fixed domain

using the transformation (4.29). The detailed equations for one dimensional model can be

seen in Appendix C.

To solve the system of equations numerically, we first change the second order PDEs in
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time to an equivalent system of first–order differential equations in time by following the

same procedure as in linear elastic membrane problem with linear and non–linear boundary

effects. Again, we use method of lines approach, where we first discretize in space using

second order accurate finite difference scheme. Notice that in equation (4.23) and (4.24),

w` and p are function of time but in these two equations w` and p do not have time

derivative terms. Discretization of these PDEs results into a system of differential algebraic

equations. We solve this system of differential algebraic equations numerically using Matlab

ode15s solver. We have compared our mixture theory code with mixture terms shut off to

verify with elastic membrane problem with linear and nonlinear boundary effects. For small

driving amplitude these three problems are in good agreement.

4.7 Results and Discussion

In figure 4.6 we plot displacement relative to the driving amplitude as a function of time.

There is no delay in response in the full mixture theory case initially as in the case of linear

elastic membrane problem. The propagation of the disturbance in this case is regular. In

figures 4.7 and 4.8 we turn off the αk and αµ parameters and compare the results with

the elastic membrane problem for fixed and moving domains. It is worth mentioning that

even for small amplitudes differences in the mixture theory solution and elastic model can

be observed. Similar observations can be made in figure 4.8 where we have used a large

amplitude value. Figure 4.9 shows the plot of thickness of the arterial wall as a function

of time. Here we observe small deformation in the arterial wall. The maximum change

in thickness is less than the driving amplitude. If the thickness is 1 then there is no

deformation. In figure 4.10 we show the flux as a function of time at the outer arterial wall.

Note that this assumes a source of fluid exterior to the wall.

In figure 4.11 we plot displacement relative to the driving amplitude as a function of time.

For the solid line we turn off the permeability parameter αk and viscosity parameter αµ as

in figures 4.7 and 4.8. For the dashed dotted line we turn on the permeability parameter

αk. We observe that the delay in the response at the outer arterial wall is modified by
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Figure 4.6: This is a plot of displacement/Amp as a function of time. Here we have used
Amp = 0.01, αω = 0.7, αk = 0.9, αµ = 0.5 and ρ = 1.

turning on the permeability parameter αk. Here we also observed the changes amplitude of

the displacement.

Figure 4.12 shows the plot of displacement of the solid relative to the driving amplitude

as a function of time. Here, again solid line is the result with permeability αk and viscosity

parameters αµ set to zero. In the dashed dotted line we turn on the viscosity parameter

αµ. Initially there is no change in response at the outer arterial wall but as time evolves

changes in the two solutions are observed.

4.8 Conclusions

In this chapter we have considered a one–dimensional model of fluid flow interaction within

a deformable arterial wall. In this model we have used mixture theory approach to compute

the displacement of solid and fluid motion. The main focus of this one–dimensional study

is to understand the deformation in the arterial wall as function of its material properties.
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Figure 4.7: This is a plot of displacement/Amp as a function of time. Here we have used
Amp = 0.001, αω = 0.7, αk = 0, αµ = 0 and ρ = 1.

We have used mixture approach to model the one dimensional deformable arterial wall

problem. We compare our mixture theory results with elastic membrane with fixed and

moving domain problems.

In fixed domain elastic membrane problem we observe a delay in a response at the outer

arterial wall. This response at the outer arterial wall reveals a complex structure. The

disturbance within the arterial wall bounces around. Here the detailed structure of the

disturbance is a function of propagation of the wave. It is also observed that the amplitude

of disturbance is a function of driving amplitude.

In moving domain elastic membrane problem the response at the outer arterial wall for

the small values of driving amplitude is in good agreement with the fixed domain elastic

membrane problem. However, for the large values of driving amplitude we observe that

both solution are no longer in phase.

In our full mixture theory model, depending on the parameter values, there may or may

not be a delay in the propagation of disturbance. We have assessed the response at the
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Figure 4.8: This is a plot of displacement/Amp as a function of time. Here we have used
Amp = 0.02, αω = 0.7, αk = 0, αµ = 0 and ρ = 1.

outer arterial wall as well as wall thickness and flux as parameter values varied.

Clearly, we explored the solution for two simple, elastic membrane problems with fixed

and moving domain and a mixture theory problem. There is definitely a possibility of

exploring further dependence of mixture theory problem parameters. We hope that this

work may lead to the better understanding of rupture of the arterial wall.

68



0 5 10 15 20 25 30
0.995

0.996

0.997

0.998

0.999

1

1.001

1.002

1.003

1.004

1.005

t/π

th
ic

kn
es

s

Figure 4.9: This is a plot thickness of arterial wall as function of time. In this plot we have
used Amp = 0.01, αk = 0.9, αω = 0.7, αµ = 0.5 and ρ = 1.
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Figure 4.10: This is a plot of flux as function of time. In this plot we have used Amp = 0.01,
αk = 0.9, αω = 0.7, αµ = 0.5 and ρ = 1
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Figure 4.11: This is a plot of displacement as a function of time for mixture theory model
for two different sets of parameters. Solid line is a plot for αk = 0, αω = 0.7, αµ = 0 whereas
dashed dotted line is a plot for αk = 0.9, αω = 0.7, αµ = 0. In both of these plots we have
used Amp = 0.001 and ρ = 1.
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Figure 4.12: This is a plot of displacement as function of time for mixture theory model for
two different sets of parameters. Solid line is a plot for αk = 0, αω = 0.7, αµ = 0 whereas
dashed dotted line is a plot for αk = 0, αω = 0.7, αµ = 0.5. In both of these plots we have
used Amp = 0.001 and ρ = 1.
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Chapter 5: Conclusions and Future Work

In this dissertation we have used mixture theory to model problems of fluid flow through

deformable porous materials.

We have considered the capillary rise of a fluid into deformable porous material. We

have computed the analytical and numerical solution to take into account the gravity and

capillarity effects. In their one dimensional model they were interested in computing the

solid deformation and imbibition of liquid. In the presence of gravity effects initially both

interface positions follow the square root in time behavior and ultimately reach to steady

state heights. In our model the fluid motion and deformation in the solid is due to the

capillary pressure. When capillary pressure is zero, fluid motion and solid deformation is

zero. Increase in the capillary pressure results in increase in the deformation of the porous

material. We also observed that the equilibrium rise height of the fluid is same for both

rigid and deformable porous material case, assuming the same applied capillary pressure.

We also addressed the problem where the capillary pressure and gravitational forces act in

the same direction. In this case we observed that the drainage of liquid is faster for nonzero

gravity case. Another important result is that the drainage time is inversely proportional

to the capillary suction. Our theoretical model helped to guide the experiments (see[59] for

more details).

Second, we also studied the capillary rise of non–Newtonian fluid through deformable

porous material. In this case we presented the mixture theory based power law fluid model

and solutions for both rigid and deformable cases. Here we have shown the difference in

the dynamics of Newtonian and non–Newtonian fluids. We observed that for really early

time imbibition of non–Newtonian fluid is faster than the Newtonian fluid and this trend

is opposite for later time. We hope that our non–Newtonian model will help to guide the

experiments.
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Finally, we developed a mixture theory based one dimensional mathematical model of

fluid flow interactions within the arterial wall. We compared our mixture theory model

to the elastic membrane models. For fixed and moving domain elastic membrane problem

we observe a complex pattern. The disturbance within the arterial wall moves back and

forth. This propagation of disturbance in the arterial wall is a function of driving amplitude

and speed of the propagation of wave. We also observed that a small peak of maximum

displacement occurs for α−1
ω and a high peak for larger values α−1

ω . For the smaller values of

driving amplitude both fixed and moving domain solutions for elastic domain problem are

in good agreement. Whereas for the large value these two solutions are no longer in synch

with linear predictions. For the full mixture theory problem we observe a regular behavior

and a possibly modified delay in response at the outer arterial wall.

We answered many questions in this dissertation using the mixture theory approach.

An interesting possible question which we further want to investigate and have not been

answered.

5.1 Two dimensional fluid flow through a channel coupled

with deformable arterial wall

In this problem we want to study the two dimensional flow through a channel coupled with

deformable arterial walls. The geometry of the problem is shown in figure (5.1). Here

we have use standard Navier Stokes equations to describe the flow in the channel coupled

with mixture theory model describing the fluid structure interaction within the deformable

arterial wall.

In purely fluid region, the fluid motion is described by the Navier Stokes equations

∇. ~w` = 0

ρf
(
∂ ~w`
∂t

+ ~w`.∇~w`
)

= −∇p+ µ`∇2 ~w`,
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Figure 5.1: This figure shows the schematic of fluid flow in a deformable arterial wall

where ~w` is fluid velocity, p is pressure, ρf fluid density and µf is fluid viscosity.

In mixture theory porous material is modeled as a continuous binary mixture of liquid

and solid phases assuming that each point in space is occupied by both solid and liquid

phases. For detailed derivation on mixture theory see [8] and chapters (2 and 4).

The conservation of mass for liquid and solid phase is written as follows

∂φs
∂t

+∇ · (φs ~ws) = 0

∂φ`
∂t

+∇ · (φ` ~w`) = 0

where velocity of solid is related to displacement of solid u through ~ws = ∂u/∂t. The

momentum balance for solid and liquid phase after neglecting the gravity effects can be

written as

ρs

(
∂ ~ws
∂t

+ ~ws · ∇~ws
)

= ∇ ·Ts + ~πs

ρ`

(
∂ ~w`
∂t

+ ~w` · ∇~w`
)

= ∇ ·T` + ~π`.

Where Ts and T` are stress tensors for solid and liquid phases, ~πs and ~π` are the drag

forces. According to Newton’s third law the force on the solid constituents is opposite to

that on the liquid by the solid which allow us to write ~πs = −~π`.

74



For the definitions of the stresses we follow Barry and Aldis [8]

Ts = −φpI + λstr(e) + 2µse (5.1)

T` = −(1− φ)pI + λ`tr(D) + 2µ`D, (5.2)

where λ`, µ` are the viscous stress constants, λs and µs are Lame constants, I is the identity

tensor and p is the pressure.

We impose the following matching boundary conditions representing the conservation

of mass and linear momentum at fluid–porous medium interface

‖φf (~w` − ~ws)‖.n = 0

‖φf (Ts + T`)− ρf ~w`(~w` − ~ws)‖.n = 0,

where ‖ · ‖ is the jump going from fluid only region to the porous deformable medium. Here

n is the normal unit vector at the interface pointing into the fluid region. To close the

system we need to specify the boundary and initial conditions which is in progress. Here

we hope that parameter estimation may lead us to the better understanding of the rupture

of an arterial wall.

75



Appendix A: Test Problem:

We have used method of lines to solve the elastic membrane problem. In Appendix A we

want to verify that method on a simple wave equation that admits an analytical solution

∂2u

∂t2
=
∂2u

∂z2
, 0 < z < 1, 0 < t;

u(0, t) = u(1, t) = 0, 0 < t,

u(z, 0) = sinπz, 0 ≤ z ≤ 1,

∂u

∂t
(z, 0) = 0, 0 ≤ z ≤ 1,

with actual solution

u(z, t) = cosπt sinπz.

In this method we first discretize in space using second order finite difference scheme. Tabel

B.1 in Appendix A shows that our scheme admits the required order of accuracy.

Table B.1: This table shows the convergence rate α with respect to spatial

discretization

N error=|Uapproximate − Uexact| α

26 0.5008 1.6726

50 0.1571 1.9628

100 0.0403 1.9964

200 0.0101 -
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Appendix B: Transformation

In this dissertation we are dealing with moving domain problem. To avoid dealing with

moving of the interior grid at each time step we use the following transformation to transform

the problem on the fixed domain.

z̄ =
ź − b́(t)
h́(t)− b́(t)

t̄ = t́.

This allows us to write

∂

∂t́
=

∂

∂t̄
+

[
z̄ − 1

(h́(t)− b́(t))
db́(t)
dt́
− z̄

(h́(t)− b́(t))
dh́(t)
dt́

]
∂

∂z̄
, (B.1)

Let

P (t) =
1

h́(t)− b́(t)

∂

∂z
= P (t̄)

∂

∂z̄
(B.2)

∂2

∂ź2
= P 2(t̄)

∂2

∂z̄2
(B.3)

Q(z̄, t̄) =

[
z̄ − 1

(h́(t)− b́(t))
db́(t)
dt́
− z̄

(h́(t)− b́(t))
dh́(t)
dt́

]

∂2

∂t́2
=

∂2

∂t̄2
+ 2Q(z̄, t̄)

∂2

∂z̄∂t̄
+Q2(z̄, t̄)

∂2

∂z̄2
+
(
∂Q(z̄, t̄)
∂t̄

+Q(t̄, t̄)
∂Q(t̄, t̄)
∂z̄2

)
∂

∂z̄
(B.4)

We have used (B.1)– (B.4) to transform all three problems from moving domain to a fixed

domain.
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Appendix C: Mixture Theory Transformed Equations

The system of equations (4.21)–(4.24) after transforming from moving domain to a fixed

domain after dropping the primes can be written as

∂φ

∂t
+Q

∂φ

∂z
+ P (t)

∂

∂z

[
φ(
∂u

∂t
+Q

∂u

∂z
)
]

= 0, (C.1)

v(z, t) =
1

(1− φ)

[
db

dt
− φ(

∂u

∂t
+Q

∂u

∂z
)
]
, (C.2)

P (t)
∂p

∂z
= P 2(t)

∂2u

∂z2
+ P 2(t)αµ

∂2v

∂z2
− αω

[
∂2u

∂t2
+ 2Q

∂2u

∂z∂t
+Q2∂

2u

∂z2
+
(
∂Q

∂t
+Q

∂Q

∂z

)
∂u

∂z

]

− αωρ
(
∂v

∂t
+Q

∂v

∂z

)
, (C.3)

∂2u

∂t2
= α−1

ω P 2(t)
∂2u

∂z2
− α−1

ω P (t)φ
∂p

∂z
− αk

(
∂u

∂t
+Q

∂u

∂z
− v
)

−
[
2Q

∂2u

∂t∂z
+Q2∂

2u

∂z2
+
(
∂Q

∂t
+Q

∂u

∂z

)
∂u

∂z

]
.

(C.4)

This system of equations is solved numerically using method of lines for the full mixture
theory model.
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