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CONSTRUCTIVE INDUCTION:

An Automated Improvement of Knowledge Representation Spaces
for Machine Learning

Abstract

Most machine learning methods assume that the original representation space is adequate, that is,
the initial attributes or terms are sufficiently relevant to the problem at hand. To cope with learning
problems in which this assum tion does not hold, the idea of constructive induction has been
proposed. A constructive in uction system conducts two searches, first for an improved
representation space, and the second for the “best” hypothesis in this space. Research on
constructive induction is reviewed and a method for hypothesis-driven constructive induction (AQ-
HCI) is presented. The method searches for an adequate representation space by analyzing the
hypotheses generated in each step of an iterative double-search learning process. In an
experimental study, the method outperformed all learning methods that were tested. Also, it
achieved the top performance in solving the so-called Monks® problems that were used as a
benchmark in the first international competition of learning programs. The conclusion outlines
several open problems in this area.
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1 Introduction

Most research in machine learning has been concerned with learning concept descriptions from

examplesinanaprioridefmedrepmsenu&nnspm.lnsuch nethods, the h othesis learned is
expressed usi attributes or terms selected from among those initially provided. For this reason,
such inductive ing methods are sometimes called selective (Mic 1983; Rendell, 1985).

To overcome this limitation, the idea of constructive induction has been proposed (Michalski,
1978). A constructive induction system performs a double, mutually intertwined search, one for
the most suitable representation space, and second for the “best” concept description in this space,
for example, the simplest description. The system includes mechanisms for generating new, more
relevant descriptors, as well as for modifying or removing less relevant ones from those initially
provided. In general, a constructive induction system perform a problem-oriented transformation
of the original knowledge representation space.

The primary goal of constructive induction may be to maximize the overall prediction accuracy ofa
concept description, to minimize the overall complexity of a description, or to optimize the
description according to a combination of both criteria. The prediction accuracy is measured by
applying the generated concept description to testing examples, and determining the correctness of
the predictions. It is often expressed as a percentage of the testing examples that are correctly
classified (a reciprocal measure is an error rate, defined as 100% - E;edicﬁun accuracy). The
overall complexity of a concept description is a function of the number and the complexity of
attributes used in the description, and the types of operators employed.

The primary goal of the method described here is to learn a concept description that has the highest
prediction accuracy on the unseen concept examples. The search for such a description is done by
iteratively changing representation space, and measuring the prediction accuracy of the generated
description in this space. The prediction accuracy is estimated by applying the description to
cmccptsexampicsmatwmmtusedinmelcarrﬁngprms.

This paper briefly reviews and classifies research on constructive induction, and then presents a
new method in which the desirable changes in uwmpresenmﬁonspmaredeterminedhymalyﬁng
hypotheses generated in each iteration of the iearniné process. For that reason, the method
represents a hypothesis-driven constructive induction (HCI) approach, as opposed to a data-driven
(DCI) approach, which is based on the analysis of data (concept examples). The presented method
employs the well-known AQ inductive learning algorithm, therefore the method is called AQ-HCL

To relate the presented method to other methods, Section 2 provides a summary and a classification

of existing constructive induction methods. Section 3 gives a description of the proposed AQ-HCI

method. Sections 4 and 5 examine the performance of the method on two problems.

Transformations of the representation space are illustrated by diagrammatic visualization. Section 6

describes an experimental comparison of the method with several symbolic and subsymbolic

lfiaming systal:u. Section 7 summarizes the main features of the method and suggests topics for
ture researc

2 A Classification of Constructive Induction Systems

The idea and the name constructive induction was first proposed by Michalski (1978), and
implemented in INDUCE-1 system for learning structural descriptions from examples (Larson &
Michalski, 1977, Michalski, 1980). INDUCE-1, and subsequent versions, e.g., INDUCE-4
(Bentrup, Mehler & Riedesel, 1987), used various constructive generalization rules and procedures
to generate new problem-oriented descriptors (Michalski, 1983). These descriptors were then
employed together with the original descriptors in the process of induction. A number of other
systems that exhibit various constructive induction capabilities have been subsequently developed
(e.g., Rendell, 1985; Matheus, 1989; Drastal, Czako & Raatz, 1989; Wnek & Michalski, 1991).



Systems for constructive induction may employ different strategies for improving the
representation space, in particular, for generating new dew.ripmrs_l. Based on the primary strategy
employed, existing constructive induction systems can be divided into four categones: data-driven,
hypothesis-driven, knowledge-driven, and multistrategy. Below is a brief characterization of these
categories, and selected representative systems in each category.

2.1 Data-Driven Constructive Induction Systems (DCI)

These systems analyze and explore the input data (examples), particularly, the interrelationships
among descriptors used in the examples, and on that basis suggest changes in the representation
space.

BACON creates new attributes (variables) that represent simple numerical functions of the
original variables. The process of generating new attributes employs heuristics based on the
interdependencies between original attributes in the data (Langley, Bradshaw & Simon, 1983;
Langley et al., 1987).

ABACUS employs methods for splitting data into subgroups, determining equations for each
subgroup (in a similar fashion as BACON), and applying methods of symbolic induction for
defining the applicability conditions for the equations (Falkenhainer & Michalski, 1990; Greene
1988; Michael, 1991).

PLSO (Probabilistic Learning System) creates new attributes from initial attributes using a form
of conceptual clustering performed at three levels of abstraction: object, structure, and group
relationships (Rendell, 1985).

Wyl, IOE (Induction-Qver-Explanations) learns structural descriptions of selected concepts in
chess and checkers games by first mapping the training examples from a performance-level
representation (a chess or checkers board) into a learning-level representation (concepts
characterizing game states), generalizing them in this representation, and converting the learned
concept back into the performance-level representation for efficient recognition (Flann &
Dietterich, 1986; Flann 1990).

STAGGER enhances the representation space by generating various Boolean combinations of
description elements (attribute-value pairs), and discretizing continuous attributes using a
statistical utility function (Schlimmer, 1987).

AQI17-DCI applies many different logical and mathematical operators to the original attributes to
create new "candidate” attributes. The candidate attributes that score high on an astribute quality
function are added to the original attribute set, and the whole set is employed in the process of
inductive generalization (Bloedom & Michalski, 1991).

FCE (Factored Candidate Elimination) algorithm starts with a set of initial representation
spaces. After detecting inconsistency in hypotheses formulated in these representation spaces,
the algorithm creates a Cartesian product of these spaces (Carpineto, 1992).

2.2 Hypothesis-Driven Constructive Induction Systems (HCI)

These systems incrementally transform the representation space by analyzing inductive hypotheses
generated in one iteration and using detected pattemns as attributes for the next iteration.

BLIP proposes new "meta-facts” on the basis of rule exceptions that cannot be defined in terms
in the given representation (Emde, Habel & Rollinger, 1983; Morik, 1989; Wrobel, 1989).

l my descriptors are meant attributes, predicates, functions, relations, transformations, etc. that span the knowledge
representation space in which the learning process occurs.



CITRE (Constructive [nduction on decision TREes) determines a decision tree, and by
analyzing it constructs new attributes. Simple facts are combined by constructive operators
(Matheus, 1989).

FRINGE improves decision trees by avoiding the duplication of tests in them. New attributes
are constructed from "fringes” of the tree, and stand for conjunctions of Boolean attributes
(Pagallo & Haussler, 1990).

KLUSTER introduces new relations or concepts if another concept cannot be characterized
without it. A definition of the requested concept or relation is learned using initial examples
(Kietz & Morik, 1991).

AQI7-HCI (an earlier implementation of the system presented here) creates new attributes from
admissible sets of rules, i.e. rule patterns (Wnek & Michalski, 1991).

AQ-PRAX introduces new attributes called principal gxes. The attributes are defined by AQ-
gemtednﬂesandanon—limarﬁmﬂaﬂtymeasummah,bﬁchalski & Wnek, 1992).

2.3 Knowledge-Driven Constructive Induction Systems (KCI)

These systems apply expert-provided domain knowledge to construct and/or verify new
representation space.

AM (Automated Mathematician) program changes its representation space by employing
fined heuristics for: (1) defining new concepts represented as frames, (2) creating new
slots and/their values, (3) adapting concept frames developed in one domain to another domain
(Lenat, 1977, 1983).
SPARC/E (Sequential PAttern ReCognition) ptojram for learning rules in the game Eleusis
changes the representation space by adding derive attributes. The new attributes make explicit
certain commonly known characteristics of playing cards that are likely to be used in an Eleusis
T;l&;)eﬁniﬁons of the attributes are provided by a user (Dietterich & Michalski, 1983, 1985,
COPER creates new function arguments by applying rules of dimensional analysis for
combining arguments into dimensionless monomials (Kokar, 1985)

AQIS5 applies arithmetic transformations (a-rules) and/or logical rules (I-rules) for constructing
new attributes (Michalski et al., 1986).

MIRO applies an expert-defined rules ("domain theory" ) to construct an abstraction space, and
then to perform induction in this space (Drastal, Czako & Raatz, 1989).

2.4 Multistrategy Constructive Induction Systems (MCI)

These systems combine different approaches and methods for constructing a new representation
space. (The strategies combined are specified in the parentheses).

INDUCE-1 (KCI & DCI) ngplies inductive generalization rules selected by a user from a
predefined repertoire and/or built-in procedures for generating new attributes. The rules are
applied either directly (KCI) or according to the results of the analysis of the properties of the
rigﬂégi;lral iptions of training examples (DCI) (Larson & Michalski 1977; Michalski, 1978,

STABB (DCI & HCTI) uses two procedures to Shift To A Better Bias. The least disjunction
procedure changes the ntation by examining only the training examples and the current
description language T). The constraint back-propagation procedure builds new

sentation based on hypotheses (operator sequences) verified by LEX's critic (HCI).
STABB was incorporated into the existing LEX program (Mitchell, Utgoff & Banerji, 1983) to
provide LEX with constructive abilities (Utgoff, 1984, 1986).



Duce (HCI & KCI) suggests domain features (0 a user (or oracle) on the basis of a set of
example object descriptions (given in the input or hypothesized), and six transformation
operators (HCI). Such inductive transformations are tested against an oracle which ensures the
validity of any transformation (KCI) (Muggleton, 1987).

CIGOL (HCI & KCI) (LOGIC backwards) employs "inverted resolution” using Horn clause
knowledge representation. New predicates that play role of sub-concepts (or missing premises)
are generated from input or hypothesized examples of a high-level lpredicate by applying the
intra-construction operator (equivalent to rule-paftern operator 1n AQ17-HCI). A user may name
the concept (predicate) or reject the proposed definition (which can be viewed as KCI)
(Muggleton & Buntine, 1988).

ALPINE constructs a hierarchy of monotonic, i.e. structure preserving, abstraction spaces
from the operators of a domain (DCI). It uses domain axioms and knowledge about the primary
effects of operators to avoid adding unnecessary constraints (KCI) (Knoblock, 1990). The
method was integrated with other types of learning in the PRODIGY problem solver
(Knoblock, Minton & Etzioni, 1991).

NeoDisciple (HCI & KCI) introduces néw concepls in the form of example explanations
provided by an expert (KCI) (DISCIPLE, Tecuci & Kodratoff, 1990), and creates new
intermediate concepts based on the similar definitions in the knowledge base to reduce the
inconsistency in the leamned rules (HCI) (Tecuci, 1992; Tecuci & Hieb, 1992).

CLINT (HCI & KCI) (Concept-Leamning in an INTeractive way) learns concepts using an
inductive and/or abductive method. If the learned rules maich a predefined schemata then a user
is presented with the partially instantiated schema (concept or predicate) (HCI). The user may
name the schema or reject it (KCI) (De Raedt & Bruynooghe, 1989).

AQ17 (DCI, HCI & KCI) integrates in a synergistic way constructive induction capabilities of
AQ15, AQ17-DCI and AQ17-HCI (Bloedorn, Michalski & Wnek, 1993).

3 Representation Space Transformations

In the AQ-HCI method, transformations of the representation space may involve both contraction
and expansion of the representation space operations. Contraction decreases the number of
possible instances that can be represented in the space, and expansion increases that number.
Contraction is done by removing atiributes, or combining attribute values into larger units.
E;ﬁ;npmfogn is done by adding new attributes, or adding new attribute values to the legal value sets
o attributes.

3.1Contraction

From the viewpoint of algorithmic efficiency, it is desirable to maximally reduce the representation
space, while preserving its ability to adequately describe concepts to be learned. The AQ-HCI
method removes from the representation space attributes considered as insufficiently relevant. The
latter ones can be either redundant or insignificant. The redundant attributes are defined as those
that do not occur in the concept description (a set of rules) generated by the employed selective
induction algorithm (here, AQ). The insignificant attributes are those that occur only in the “low
strength” rules (that cover only very small number of examples). The importance of the space
contraction has been confirmed by experiments showing that descriptions generated in properly
contracted representati spamstmdtohavehighmpmdittivemumcyhan &m’pﬁm

in spaces that have not been contracted (Quinlan, 1986b; Subramanian, 1990; Thrun, 1991; Vafaie
& De Jong, 1991). Another form of contraction is to agglomerate values of an attribute into larger
units, This is done by creating more abstract values of attributes. These are useful operations,
because overly precise attributes can cause an overfitting of the hypotheses.



3.2 Expansion

When the original representation space is determined to be of insufficient quality, it needs to be
extended by adding new attributes. One method for generating new attributes is to invent some
new physical processes that allow the measurement of the previously unknown or undetectable
object properties. This is often very difficult and is normally done by an expert in a given domain
(a physicist, chemist, etc.). Another method is to search a certain functions or relations among the
existing attributes for combinations that demonstrate a high relevance to describing concepts to be
1 Such combinations are given names, and serve as new constructed (or derived) attributes.
Adding constructed attributes to the representation space is a space expansion operation. The AQ-
HCI algorithm generates derived attributes by detecting various “patterns” in the descriptions
obtained in consecutive iterations of the learning process. patterns are described below.

3.3 Patterns in Concept Descriptions

By a pattern is meant here a component of a generated concept description that is characteristic of a
relatively large number of concept examples. The basic idea behind the AQ-HCI methed is to
search for different patterns in the hypotheses generated in each iteration of the learning process.
Detected patterns are viewed as relevant intermediate knowledge transformations and treated as
new derived (constructed) attributes. Each pattern is assigned a pattern strength, which reflects the
number of examples covered (or explained) by the pattern. Such a patiemn strength is viewed as a
measure of the importance of the attribute constructed on the basis of this pattern (see Sec. 3.4).

A concept description is in the form of a set of rules (a ruleset). Different pattern types correspond
to different components of such a ruleset. There are value-patterns, co. ition-patterns and rule-
patterns. A value-patiern represents a subset of attribute values that satisfies the pattern criterion. A
condition-patiemn represents a conjunction of two or more elementary conditions. A rule-pattern is a
subset of the rules in a given ruleset. A value-pattern or a condition-pattern représents an
overgeneralization, if considered by itself as a concept description. A rule pattern represents an
overspecialization if considered by itself as a concept description. Thus, patterns represent
statements about the input data that can be either an overspecialization or an overgeneralization.
Thc:;: patterns give the learning system powerful mechanisms for knowledge space
transformaton.

To illustrate the concept of derived attributes and different pattemns in a description, let’s consider
an example. Table 1 shows initial attributes spanning a description space and their value sets. Table
2 shows examples of constructed attributes that correspond to different types of patterns. These
patterns are expressed in terms of initial attributes.

Table 1. Examples of attributes.

Attribute  Value set Explanation
x 1..100 (Attribute x can take values from 1 to 100)
y small, medium, large (y is a symbolic atiribute)

z white, red, blue, green, black (z is a symbolic attribute)




Table 2. Examples of constructed attributes.

Attribute definition Value set Explanation

cal <: (z=blue vred v white) . Dorl (Value-pattern)

ca2 <: (x=20) & (y =large) Oorl (Condition-pattern)
ca3 < ((x=75.100) & (y =small)) or (x< 200 Oorl (Rule-pattern)

The first constructed attribute (cal) is based on a value-pattern. It states a condition that z should
take value blue, red or white. If the condition is satisfied, the attribute takes value 1, otherwise 0.
The second constructed attribute, ca2, is based on a condition-pattern. It is a conjunction of two
conditions. The third attribute, ca3, is based on a rule-pattern. It is a disjunction of two rules
(conjunctive terms). The first is a conjunction of two conditions and the second is a single
condition.

Let us now explain our description language. The constructed attributes, as well as the concept
descriptions are expressed in the form of DNF expressions of variable-valued logic system VL1
(Michalski, 1975). Elementary conditions in such an expression are relations between an attribute
and a set of its values: a

x#R

where x is an attribute, # denotes a relation (=, <, >), R denotes a set of attribute values that is
represented as an internal disjunction of values (a v b v ....), or a range (a..b). For examlge. an
elementary condition can be represented in such formsasx =1, x>3, x=2.7, x=AvBvD
A VL1 expression is equivalent to a set of conjunctive rules (a ruleset). Such a ruleset can be
represented as a two dimensional matrix C(n m), where n is the number of attributes, and m is the
nur:ﬂher of rules. Each C(i, j) element in this matrix is a set of values that attribute (i) is assigned to
in rule (j).

3.4 Determining the Pattern Strength

As mentioned earlier, every pattern in a ruleset is assigned a pattern strength. In the case of
learning single concepts, a pattern strength is a function of the number of positive examples,
PCov, and the negative examples, NCov, that are covered by (or satisfy) the pattern:

o(panern) = f(PCov(patiern), NCov( pattern)) (1)

To determine a desirable form of the function f, let us observe that the strength of a pattern should
be positively correlated with the number of positive examples covered by it, and negatively
correlated with the number of negative examples covered by it. In addition, the definition of a
pattern strength may distinguish between types of coverage of concept instances by the pattern. For
example, a concept instance may be covered only by the given pattern (a unique coverage), or
maybe covered by other patterns (multiply covered). To reflect this difference, PCov and
NCov are expressed not just by single numbers, but by multiple numbers. Here is a simple
measure of pattern strength (o) that reflects above considerations:

t* (pattern)+ Au" (pattern) @)
1~ (pattern)+1

ol pattern) =

where
t+(pattern), called the total positive weight, and t-(pattern), called the total negative weight, are
the numbers of positive and negative examples covered by the pattem, respectively.
uHpattern), called the unigue weight , is the number of positive examples uniquely covered by
the pattern, i.e., not covered by any other comparable patiern.
2 0 is a parameter that controls the relative importance of these two types of coverage.



When A= 0, i.e., when the unique weight is ignored, the above measure is similar to the logical
sufficiency (LS) used in the Prospector expert system (Duda, Gasching & Hart, 1979), and in the
STAGGER concept leaming system (Schlimmer, 1987).

The pattern strength function, as defined in equation (2), is used to determine which patterns are
admissible as new attributes. The function represents a degree to which an unknown example that
saﬁsﬁcsapauﬂmcanbehelievedtobeanimmnmofmcmmem

To explain the o function (eq. 2), let us assume that A = 0, i.e., the unique weights are ignored. In
this case, the function ranges from zero to the number of positive examples. When a pattem is not
matched by any positive example, o(pattern) is equal to 0. Such a pattern is least useful for
describing the concept. When the pattern is not matched by any negative examples, o(pattern)
equals the number of positive examples. If o(pattern) is greater than 1, the pattern matches more
positive negative than negative examples. Patterns that match many more positive than negative
examples may be considered useful for constructing new attributes. In the AQ-HCI method,
pattern selection is additionally restricted h‘ia condition that a pattern to be selected should have
strength greater than the strengths of all con itions involved in the pattern description.

3.5 Determining an Admissible Ruleset

The AQ-HCI method works iteratively. Each iteration generates a complete and consistent concept
description, that is, a ruleset that covers all positive examples and none of the negative examples.
To speed up the search for patterns, the method selects rules that have sufficient strength in the
generated ruleset. These rules constitute an admissible ruleset. The method searches for strong
patterns in the admissible ruleset, employs paticms for transforming the representation space, and
then moves to the next iteration (the details are described in Section 6).

When determining the strength of rules in the ruleset representing a concept, expression (2) can be
simplified, sPeciﬁcall , the denominator in (2) can be ignored. This is so because such a ruleset is
consistent with regard to negative examples (no negative examples are covered), and therefore 1~
(the negative weight ) is zero. Thus, we have:

o(rule) = 1(rule) + Au(rule) (3)

where, t is the total weight of a rule in a ruleset (the total number of positive training examples
covered by this rule); and u is the unique weight of a rule in a ruleset (the number of training
examples covered only by this rule, and not by any other rule in the ruleset; Michalski et al.,
1986). The method's default value for parameter A is 2, which gives a relatively strong preference
to rules with higher unique weights, 1.e., rules that have smaller overlap with other rules in a
ruleset for a given concept.

To determine an admissible ruleset, rules in the ruleset for a given concept are ordered from the
strongest to the weakest. An admissible ruleset contains the minimal number of rules from the
ruleset whose total relative strength exceeds a predefined threshold:

Lo
e ®

j=l.m

where o is the strength of rule (i) defined by equation (3), m the total number of rules in the
current hypothesis, m’ (m’ < m) is the number of the strongest rules (recall that the rules are
ordered, thus Gj 2 Gj4+1). The threshold TH is chosen on the basis of an estimate of the possible
noise level the data. Noisy examples are typically covered by low-strength rules, therefore the
admissible ruleset is selected to cover the most "central” portion of the concept to be learned. The
threshold level may also reflect the prior knowledge about the concept. For example, if it is known
that the concept is non-DNF, then the threshold can be set very high.



3.6 The AQ-HCI Method

The AQ-HCI method combines an inductive rule learning algorithm (implemgntaq in AQ15) with
an HCI procedure for iteratively transforming a representation space. In each iteration, the method
changes the representation § by adding new attributes determined on the basis of detected
pattems, and removing insuffllcicntly relevant attributes. The quality of the hypothesis generated in
each iteration is evaluated by applying the hypothesis to a subset of training examples. The set of
training examples prepared for a given iteration is split into the primary set (the P set), which is
used for generating hypotheses, and the secondary set (the S set), which is used for evaluating the
prediction accuracy of the generated hypotheses. Fig. 1 presents a diagram illustrating the method.

INPUT : Exampies & Definitions
of initial Attributes

Ehase 1
gfrmn.puumﬁ:;? Spiit of Examples into P & S |ag— Reformulation of Examples

Aule Learning (from P) “"F_'r":""'““" z':l'“
Rule Evaluation (on S) Rule Analysis

Learning the Final Final Rule Learning (from P&S)
Concept Description

Representation Space ouT : Rules & Definltions of
( Constructed Attributes )

NOTE: P - Primary Training Examples
S — Secondary Tralning Examples

Fig. 1. The method for Hypothesis-driven Constructive Induction.

The input consists of training examples of one or more concepts, and background knowledge
about the attributes used in the examples (which specifies their types and legal value sets). For the
sake of simplicity, let us assume that the input consists of positive examples, E* and negative
examples, E-, of only one concept. If there are several ¢ ts to learn, examples of each concept
are taken as positive examples of that concept, and the set-theoretical union of examples of other
concepts is taken as negative examples of that concept.

The method consists of two . Phase 1 determines the representation space by a process of
iterative refinement. In each iteration, the method prepares training examples, creates rules,
evaluates their performance, modifies the representation space, and then projects the training
examples into the new space. This phasc is executed until the Stopping Condition is satisfied. This
condition requires that the prediction accuracy of the learned concept descriptions exceeds a



predefined threshold, or there is no improvement of the accuracy over the previous iteration. Phase
3 determines final concept descriptions in the acquired representation space from the complete set
of training examples. The output consists of concept descriptions, and definitions of attributes
constructed in Phase 1. Below is a detailed description of both phases, and the basic modules of
the method.

Phase 1 consists of six modules. The first, "Split of Examples" module, divides positive and
negaﬁve.mirningexmnplesimutheprimﬂyset. . and the secondary set, S (in the experiments the
split was according to the ratios 2/3 and 1/3, respectively). The set of primary positive (negative
examples is denoted P+ (P-), and the set of secondary positive (negative) examples is denoted S
(S-). Thus P = P+ U P-, and § = 8+ U §°. The primary training set, P, is used for initial rule
learning, the secondary set, S, for an evaluation of intermediate rules, and total set, P §, is used
for the final rule learning (in Phase 2).
The "l}:uéevl%nf:g_n)g“fmudp}e induces a set of qlggcisiqn rules for discriminating thm%ﬂl;"r ii?.;'.{,:
cover of positive primary examples against negative snmary examples. is
by emplozi:a-lg the Angoinducuve learning prznlgmn (Michnlgki etal., 1986). 'I‘tmﬁ:rogram is based
on the Al algorithm for solving the general covering problem and for minimizing Boolean
functions of a very large number of variables (¢.g., Michalski & McCormick, 1971; Michalski,
1973). For completeness, Section 3.7 gives a brief description of the algorithm.
The "Rule Evaluation” module estimates the prediction accuracy of the rules by applying them to
the secondary training set, S. The accuracy of the rules in classifying the examples from S is
determined by the ATEST procedure ﬁmn@ in the AQ15 program (Reinke, 1984). If the
Stopping Condition criterion is not satisfied, the control passes to the "Rule Analysis" module,
otherwise, it passes to Phase 2.
The "Rule Analysis” module analyzes the rules in the ruleset for each class to determine desirable
changes in the representation space. This process includes a determination of the attribuies that are
to be removed from the space and a generation a constructed attributes that are to be added to the
representation space. The last ones represent strong patterns found in the admissible ruleset
generated in the current iteration. Section 3.8 gives more details about this process.
“Reprfmntation Space Transformation” module modifies the space according to the findings in
the previous module. It removes redundant and insignificant attributes, modifies existing attributes
(by attribute value agglomeration), and adds to the space constructed attributes.
The "Example Reformulation” module projects all training examples into the new representation
space, and the whole inductive process is repeated.
Phase 2 determines the final ruleset by applying the "Rule Learning” module to all training
examples projected into the final representation space determined in Phase 1.
For each concept, a set of the most specific (ms) rules is induced from all positive examples against
all negative examples, i.e., a cover COVms (E*/E"), and a set of the most general (mg) rules of
negative examples against positive examples, that is COVng (E-/E*). The final concept description
is built by generalizing the most specific rules for positive examples against the most general rules
for negative examples, i.c., determining a cover, COVmg[COVms (E/E-)/COVmg (E/E*)] (notice
that the arguments for the covering algorithm are not sets of examples, but sets of rules). The
description so generated represents an intermediate dcgme of generalization between the most
specific “positive” rules and the most general “negative * rules. The idea of such an intermediate
cover was proposed and implemented by Wnek (1992).

3.7 Rule Learning Module

As mentioned earlier, initial and consecutive hypotheses are generated by the inductive rule
learning program AQ15 (Michalski et al., 1986). The program learns rules from examples
resented as vectors of attribute-value pairs. Attributes can be multiple-valued and can be of
ifferent types, such as symbolic, numerical, cyclic or structured (in the latter case the value setis a

10



hierarchy}.'l‘hcteachnrpmemsﬂwlemasﬂofexamplcsufemhmmcmmbelcmed-m
program gmcmasetofgmnlmhs{amhsuﬂcharmﬁﬁngmhﬂass.
A ruleset is equivalent to a DNF disjunctive normal form expression with internal disjunction (each
rule corresponds to one disjunct). In the standard mode, the program generates rulesets that are
consistent and complete concept descriptions, i.e., COver all positive examples and no negative
examples. Generated rules optimize a problem-dependent criterion of preference. In the case of
noisy data, the program may generate only partially consistent and/or complete rules.
The AQ15 program is based on the A9 algorithm, which iteratively evokes a star generation
dure. A star of an example is the set of the most general alternative rules that cover that
example, but do not cover any negative examples. In the first step, a star is generated for a
randomly chosen example (a seed), and the "best” rule in the star, as defined by the preference
criterion, is selected. All examples covered by that rule are removed from further consideration. A
new seed is then selected from the yet-uncovered examples, and the process is repeated. The
algorithm ends when all positive examples are covered, If there exists a single rule that covers all
the examples (that is, there exists a conjunctive characterization of the concept), the algorithm
terminates after the first step of star generation). An efficient procedure for star generation is
described in (Michalski & McCormick, 1971).
The AQ1S program has various parameters whose default values can be changed accordingly to
learning goals. One parameter, trim, controls generality of the learned descriptions without
increasing their complexity, Based on this parameter setting, the program can learn either maximal
characteristic descriptions, or minimal discriminant descriptions (Michalski, 1983). The maximal
characteristic descriptions are the most specific conjunctions characterizing all objects in the given
class using descriptors of the given representation. Such descriptions are intended to discriminate
the given class from all other possible classes. The minimal discriminant descriptions are the most
general logical ucts characterizing all objects in the given class using descriptors of the given
representation. Such descriptions are intended to discriminate the given class from other classes
currently represented in the space.
Another AQ15 parameter, mode, controls cover bounds of the learned descriptions. The
intersecting covers mode produces descriptions that may intersect over areas with no training
examples. The disjoint covers mode produces descriptions that do not intersect.
There are two leamning goals in the AQ-HCI method. They are related to the two phases of the
method: the iterative determination of the representation space, and learning the final concept
description. The first leaming goal is to obtain concept descriptions that can serve as intermediate
knowledge for selecting useful for constructing new attributes. Such descriptions should
reveal the necessary conditions for the best classification of the available data, and thus help detect
useful value-patterns and condition-patterns. To this end, maximal characteristic descriptions are
most desirable.
An additional assumption is made for the purpose of finding proper rule-patterns. Such pattems, if
endorsed as new attributes, may cause ambiguity in the representation space. The ambiguity could
be introduced if two or more new attributes, created from rulesets of different concept descriptions,
had overlapping definitions, and at the same time some existing attributes, relevant for describing
the overlap, were removed. To prevent creating such ambiguity, the method in phase 1 assumes
the generation of disjoint covers.
The second goal is to obtain final concept descriptions that give the highest performance accuracy.
Therefore, Phase 2, generates concept descriptions at an intermediate level of generalization
between the most specific and the most general levels. The dacscriPtiuns of different classes may
overlap over areas occupied by unseen examples (therefore the Intersecting Covers" mode is
used). Instances from overlapping areas are recognized through a flexible matching procedure
(Reinke, 1984; Michalski, et al. 1986).

In sum, in the AQ-HCT method, the AQ15 program for searching the problem space is combined
with processes that change the representation space. The hypotheses generated in Phase 1 are
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characteristic generalizations of examples (most specific), and used for proposing problem-oriented
ch &sinthcmpmutaﬁonspm?hmzwlimsﬂwmsulﬁng representation space to gencrate
ﬁnmypmhcses which are at an intermediate level of generalization that is desirable for achieving
the highest possible prediction accuracy (Wnek 1992).

3.8 Rule Analysis Module and Pattern Determination

Given a ruleset representing a concept description generated in a given iteration of the algorithm,
the "Rule Analysis" module analyzes the rules to determine desirable changes in the representation
space. This process includes a determination of the attributes that should be removed from the
space, a modification of some attributes, and a generation a constructed attributes that are to be
added to the representation space. The last ones represent strong patierns found in the generated
rulesets for each class.

Attributes to be removed are those that are redundant (do not occur in the description) or
insufficiently relevant. The latter ones are determined by assigning the relevance to each attribute
in the concept description. The relevance of an attribute is defined as the sum of the t-weights (the
number of positive examples covered) of the rules containing the attribute in the ruleset. There is a
parameter that defines which attributes are sufficiently relevant.

The attribute modification and construction are done on the basis of the patierns determined in the
rulesets for each class. Here is an algorithm for patiern search:
1. Determine the admissible ruleset (ARSET).
Patterns are searched for only in this ruleset, in order to avoid searching through weak rules.
2. Determine a logical intersection of the rules in ARSET.
This step produces a conjunction of conditions that are common for all rules in the ruleset.
3. Determine candidate conjunctive parterns
The conjunction of conditions determined in the previous step plus all of its subconditions (of
the length one or more) are viewed as candidate patterns. A conjunction of two or more
conditions constitutes a condition-pattern; single conditions constitute value-pattiemns.
4. Determine additional subconjunctive patterns
Reduce ARSET by one rule in every possible way and repeat steps 2 and 3 to determine
additional patterns. Continue until the ARSET has no rules or the number of candidate patterns
reaches an assumed limit. :

5. Select value-patterns and condition-patterns
Evaluate the strength of all the generated patterns and select a predetermined number of the
strongest ones. The result is a set of value-patterns and condition-patterns.

6. Determine rule-patterns :
There are two methods for determining rule-patterns. The early method, “top-down,” was
empl in our earlier work (Wnek and Michalski, 1991). Here, the whole admissible set
was as a rule-pattern. The new “bottom up” method works as follows. For each pair
of candidate patterns determined in steps 1-4, create a disjunction of them, and evaluate its
strength. Repeat this operation for three and more patterns, until the number of patterns
reaches a predefined threshold.

7. Select rule-patterns
Evaluate the strength of the determined candidate rule-patterns and select form them a
predetermined number of the strongest ones to be rule-patterns.

The so determined patterns are assigned names, and used as attributes for determining a
representation space for the next iteration of the algorithm.
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The ability to introduce new attributes in the form of subconcepts corresponding to patterns found
in subsequently generated rules makes two implicit extensions to the representational capabilities of
the AQ family programs:
(1) Ruleset-to—condition operator. This operator substitutes a simple condition for a DNF
expression. For example, following the domain description from Table 1, the system can create
and use the following condition:

(c3=1)

that stands for ( { (x =75..100) & (y =small) ) or (x=T)).
(2) Ruleset-negation—to—condition operator. This operator substitutes an attribute value for a
negated DNF expression. From a conceptual point of view, this operator plays an important role in
negating the created subconcepts. For example:

(c3=0)

that stands for (not ( ( (x="75,100) & (y =small)) or (x=7)))

which is equivalent to ( ((x #75,100) or (y # small) ) & (x#7))
Notice that by extending the representation space by introducing new attributes that are logical
combinations of other attributes, some areas of the space may represent impossible combinations

of the attribute values, and some areas may contain a high concentration of concept examples. The:

higher the concentration of examples of a specific concept in a some area, the easier it is to describe
and generalize these examples. Such an effect is a desirable consequence of the representation
space change.

It may be interesting to note, that the idea of the so-called “W-operator” (Muggleton, 1988) is
closely related to the detection of condition-patterns in rules for different concept descriptions
(called the “inter-construction” W-operator) or rule-patterns (called the “intra-construction™ W-
operator). The presented concepts of value-patterns, condition-patterns and rule-patterns can be
applied not only within the attributional description language used here, but also within a relational
description language, €.g., predicate calculus or annotated predicate calculus (Michalski, 1983).

4 Case Study I: Representation Space Contraction
4.1 The Initial Representation Space

The testing domain in this study is the world of robot-like figures in the EMERALD? sysiem
(Kaufman, Michalski & Schultz, 1989). For simplicity's sake, the robots are described by just six
multivalued attributes (Fig. 3A). The attributes are Head Shape, Body Sh Smiling, Holding,
Jacket Color and Tie, and can have 3, 3, 2, 3, 4, and 2 values, respectively. Consequently, the
size ofeverm'.pwe{thesmofaﬂpossiblcruhotdescripﬁons}is3x 3x2x3x4x2=432 The
space of all possible concepts in this space is 2432 -1 (=10143), Below is a description of a target
concept used in the experiment with the total numbers of positive and negative examples:

C1: Head is round and jacket is red or head is square and is holding a balloon

(84 positive, 348 negative)
The concept is presented graphically in Fig. 2B using a method for diagrammatic visualization.
This method employs a General Logic Diagram (GLD) which is a planar representation of a multi-
dimensional space spanned over multivalued discrete attributes? (Michalski, 1973; Wnek &

2 EMERALD is a large-scale system integrating several different leaming programs for the purpose of education and
research in machine learning. It was developed at the Center for Artificial Intelligence at George Mason University. An
earlier version, ILLIAN, was developed at the University of Illinois at Urbana-Champaign.

3 The system DIAV implementing the visualization method permits one to directly display description spaces as many as
105 cells (¢.g., about twenty binary attributes). Larger spaces can also be displayed but their representations must be
projected to subspaces.
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Michalski, 1993). Each cell in the diagram r;!imm a combination of the attribute values, e.g., a
concept example. For example, the cell A in Fig. 2B represents the following robot description:
Head Shape = round, Body Shape = round, SMiling = yes
HOIlding = flag, Jacket Color = green, Tle = no
Positive and negative training examples are marked with + and -, respectively. Concepts are

mmnﬂumofmﬂ&ﬁcmptﬂlmbadmmibedbymomlus:
R1: Head Shape is round and Jacket Color is red

R2: Head Shape is square and is HOMing balloon
Themlesmrepmsemedin:hcdiagmmbyshadcdarmmarkadklandnl

R2
Call A - a robot description:
[HS=r] & [BS=r] & [SM=y] & [HO=f] & [JC=g] & [Tl=n] |-

A.  ROBOTS Domain B. Concept C1 E_Ho C
Attributes Possible Values L n)*
HS Head Shape  round, squars, octagon Y
BS Body Shape  round, square, octagon Y
SM Smiling yes, no — =1 f
HO Holding sword, balloon, flag R1 7
JC Jacket Color  red, yellow, green, blue =1 o1
Tl Tie yes, no Y

n b y
+ Positive sxample A = Ty
= Neogsative example / ¥

[ n |

n

¥y

n

1
f
L LIl

Target concept C1 consists of two rules: o
Rule R1: Head is round and jacket is red
Rule R2 head is square and is holding balicon A

~ colls representing rule R1: [HS=1] & [JC=(] = ~
_ cella representing rule R2: (HS=s] & (HOsb] [ 1 B K2
y|m yla[y[m
] (]
L)

= |- -|H-LH
-
-4

2|

y[o] y[o]y[=]y[n]y[n]¥[n
L] o r L ] L F
T [ ]

i

Fig. 2. The target concept and initial training examples in the ROBOTS domain.

The diagrammatic visualization method permits one to display the target and learned concepts,
individual steps in a learning process, and the errors in learning. The set of cells representing the
target concept (the concept to be learned) is called the target concept image (T). The set of cells
representing the learned concept is called the learned concept image (L). The areas of the rarget
concept not covered by the learned concept represent errors of omission (T\ L), while the areas of
the learned concept not covered by the target concept represent errors of commission (L\T). The
glnint:d olfir?:sm types of errors represents the error image. In the diagrams, errors are marked by
an "



Fig. 3 explains the meaning of various cases in concept visualization. Concept images arc
represented in the diagrams by shaded areas, e.g. Figures 3A and 3B. If the target and ¢

concepts are visualized in the same diagram, then the shaded areas represent learned concept (Fig.
3C). The error image is represented by slanted areas. It is easy to distinguish between errors of
omission and errors of commission. Since errors of commission are part of a learned concept,
corresponding areas on the diagram are both shaded and slanted. Errors of omission are not part of
the learned concept thus the corresponding slanted areas remain white in the background. The
location of the target concept is implicitly indicated by correctly learned concept and errors of

omission. The parts of the target concept that were correctly learned are only shaded.
'I'hedescripﬁons!mme:dbydwmeﬂmdswuemmpamdinwrmsufthemcrermrm;e.ﬂmcrermr
rate is the ratio between exact error and the size of event space. It is measured as a function of the
number of training examples. Exact error is defined as the total number of errors of omission and
errors of commission, or equivalently the cardinality of the set-difference between the union and
the intersection of the target and learned concepts.

_ Exact_error
Exact_error_rale = o= = )]
where Exact_error=k[(T\ L)U(L\ T)]=#[(TUL)\ (TN L)]
where (T\ L) — error of omission, (L\ T)— error of commission

A. Target concept B. Leamed concept s Hmm mml
Errors of
omission

Comrectly
leamed part
of the concapt

Errors of
commission

Fig. 3. An illustration of a target concept, learned concept and their interrelationship.

There are many ways to define error rates in order to characterize learning capabilities of a system.
Here are three assumptions related to the equation (7). Firstly, for simplicity, we do not make any
distinction between errors of omission and errors of commission, which may be important in some
real-world domains. Secondly, the equation (7) indicates that if the event space were large and the
target concept were relatively small, then the error rate would always be small, and thus, not
sensitive to learning errors, Fig. 4 illustrates two cases where the equation (7) would give the same
error rate for different learning results. In the first case (Fig. 4A), a system did not learn any part
of the target concept and still maintained 2% error rate, or in other words, it was 98% accurate!
Since the correct performance of a system is artificially increased by the system's performance on
non-examples of a concept, the error estimating method is subjected to the Hempel's paradox
(Hempel, 1965; Kodratoff, 1992).

In the second case (Fig. 4B), where the target concept occupies relatively large portion of the event
space, the 2% error rate intuitively reflects the true performance of a system. In our experiments
the representation space is small and the target concepts cover approximately 30%.
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The third assumption related to equation (7) is that in order to get complete insight into the
performance of the tested methods we used all examples from the event space to test the
performance. In other studies, training examples might have been excluded from the testing phase.

4.2 Steps in Learning Concept C1

The rule learned by AQ17-HCI was exactly equivalent to the target concept (Fig. 5A). It was
generated in a transformed, smaller description space. Fig. 6 shows the steps in learning concept
C1 by AQ17-HCL The input to the method is a set of training examples in the original
representation space as shown in the diagram A.

LTugltcom-ptA-'-ﬂ-iﬂmrﬂpf B. Target concapt B — "large-size concept’
T ]

I T W
T RN R
T L T L R

A'. Concapt A is not learned at all B'. Large portion of concept B is leamed:
Exact_smor_nuie = (2%) Exaci_error_raie = (2%)

i= = AR iR EE AR AR imiRaRAAR

inm sus iy A

7] Errors of omission B Errors of commiesion [l Correctly leamed conospt
FZ2+ I Taret concept [+ Leamed concept

Fig. 4. The dependence of the error rate definition on the relative size of the target concept.

The method divides the training set into primary and secondary examples and employs the AQ15
leaming algorithm to induce rules from the primary set of training examples (diagram B). Since the
performance test on the secondary training set is not satisfactory, the representation space is
reduced to contain relevant attributes only, i.., those attributes that are present or significant in the
induced hypothesis. The method changed the ROBOTS original representation space by removing
three irrelevant attributes: Body Shape, SMiling, and Tle (diagram C). The new representation
space implied changes in the event space so the number of training examples was decreased by 1.
This is due to the fact that two positive examples, E1 and E2, from the original event space have
the same description in the new event space.

E1: (round, round, yes, sword, red, no)E2: (round, square, yes, sword, red, yes)
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Fig. 5. Steps in learning concept C1 by AQ17-HCL
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Although such an abstracted problem is simpler for learning, the resulting hypothesis is still not
accurate (diagram D). Anhispuint,lhetminingdmmmmsmbeiusuﬂiciemmaﬂawmper
learning. The lacking information can however, be induced while taking into consideration both
positive and negative hypotheses. Fig. 5, diagrams D and E show two covers, COVms (E*/E") and
COVug (E/E*), that were generated using all the initial training examples. AQ17-HCI generalized
the positive concept description against the negative concept, and by this means improved the
learned concept. The concept C1 was learned precisely (Fig. 5, diagram F).

5 Case Study II: Representation Space Contraction and Expansion

To illustrate the use of the ruleset attributes described in Section 3.9, let us describe an experiment
on learning a form of the multiplexer function with 3 binary inputs and 8 binary outputs: the
multiplexer-11 (MX11) problem (Wilson, 1987). The function "switches on" an output (data) line
addressed by the input (address) lines. The remaining output lines are irrelevant for the given
address.

MX11
I||||||1I]: ii EW
r [e]
1
1
o -2 o i
.n.:,. 1
1 1
e TIESEIEEE S
'!..'li' - 1
R Z2AF ol o
'l'h-.-'-..—?-||
N -:-;::'f"::"‘?‘ L. g !
HHH FRTIE] 19,
JF.I‘J?—?::??‘
P CECECECECECECECECRCECECRCECRCECECRLRCRERCRCRCECECRCECECECREEEEET
d10191ﬁ1ﬂ15101ﬂ101010?0'(&101010'.01
a0 0 1 ] 1 a 1 o 1 0 1 1] i a 1 <] 1
2| 2] 1 0 1 a 1 1] 1
atl [ 1 o 1
a0 0 1
Bules constituting concept MX11:
B [20=0] & [a1=0] & [a2=0] & [d0=1] [a0=1] & [a1=0] & [a2=0] & [d4=1]
P (a0=0] & [a1=0] & [a2=1] & [d1=1] B [a0=1] & [a1=0] & [a2=1] & [d5=1]
EH (a0=0] & [a1=1] & [a2=0] & [d2=1] [a0=1] & [a1=1] & [a2=0] & [d6=1]
B [20=0] & [a1=1] & [a2=1] & [d3=1] [a0=1] & [a1=1] & [a2=1] & [d7=1]

Fig. 6. Target concept MX11 in the original representation space.

The address lines are represented by a0, al, a2 binary attributes, and the data lines are represented
by d0-d7 binary attributes. For example, the result of MX11 function on [a0=0] [al=1] [a2=1] is
[dO=#] [d1=#] [d2=#] [d3=1] [d4=#] [d5=#] [d6=H] [d7=#], where "#" represents "0" or "1". An
instance described by [a0=0] [al=1] [a2=1] [d0=#] [d1=#] [d2=#] [d3=1] [d4=#] [d5=#] [d6=#]
[d7=#] is a positive example of the MX11 concept. Fig. 6 presents the MX11 concept graphically,
using the diagrammatic visualization method. The MX11 concept is described by eight rules listed
at the bottom of the figure. For easy recognition, each rule in the diagram is shaded differently.
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Thclulxllﬁmcﬁonhuthevnlueofmedmahithndﬂmdbyﬂenddmbm.lnﬂwexpﬂmmthe
input examples were encoded in terms of 11 binary attributes. Thus, the representation space
contains 2048 elements. The training set had 64 (6%) of the positive examples and 64 (6%) of the
negative examples. Table 3 shows a sample of the positive and the negative examples. From these
examples, the Rule Leaming module produced disjoint and maximally characteristic hypotheses of
the correct (Pos-Class) and incorrect (Neg-Class) behavior of the multiplexer.

Table 3. Part of the set of training examples.

Positive examples Negative examples

o001 01000000 001 00111110
010 00100001 010 0000O00O01
010 11111110 010 11011110
101 00001101 101 000O0CO0COCCO0OO0
110 00001111 110 00001000

Table 4. Disjoint characteristic descriptions of MX11 concept induced by AQ1S5 from the training

examples.

Pos-Class If

1. (a0=1) & (al=1) & (a2=0) & (d6=1) or (e11, w:ll)
2. (a0=0) & (a1=0) & (a2=1) & (dI=1) or (11, w:ll)
3. (ab=1) & (al=0) & (a2=1) & (d5=1) or (:10, u:10)
4. (a0=1) & (al=1) & (a2=1) & (d7=1) or (t:10, u:10)
5, (aD=1) & (al=0) & (a2=0) & (dd=1) or (9, w9
6. (aD=0) & (al=1) & (a2=1) & (d2=0) & (d3=1) & (d7=L)or (t4, u:3)
7. (a0=0) & (al=1) & (d2=1) & (B=1) & (d4=0) & (d7=0) or (3, u:3)
8. (a0=0) & (al=0) & (a2=0) & (d0=1) & (d1=0) & (d2=1) & (d3=1) & (d5=1) or (2, v:2)
9. (a0=0) & (al=1) & (a2=1) & (d1=1) & (d3=1) & (d5=0) & (d6=0) or (2, u:1)
10.(aD=0) & (al=1) & (a2=1) & (d0=1) & (d1=0) & (d2=0) & (d3=1) & (dd=1) &(d5=1) & (d6=1) & (d7=0) (t1, wl)
11.(aD=0) & (al=1) & (a2=0) & (d0=0) & (d1=0) & (d2=1) & (d3=0) & (dd=1) &(d5=1) & (d6=0) & (d7=0) (t:1, wl)
12.(a0=0) & (al=1) & (a2=0) & (d0=1) & (d1=1) & (d2=1) & (d3=0) & (d4=1) &(d5=0) & (d6=1) & (d7=1) {1, wl)
Neg-Class if

1. (a0=1) & (al=1) & (a2=1) & (d7=0) or {t:13, u:13)
2. (a0=0) & (a2=0) & (d2=0) or (t:12, u:12)
3, (aD=0) & (21=0) & (a2=1) & (d1=0) or (t:10, u:10)
4. (al=0) & (a2=0) & (d1=1) & (d4=0) or (9, w9)
5. (aD=1) & (al=1) & (a2=0) & (d6=0) or . (7, wT)
6. (al=1) & (al=0) & (a2=1) & (d5=0) or (t:5, w:5)
7. (a=0) & (al=1) & (a2=1) & (d3=0) & (d7=1) or (t:5, u:5)
8, (al=0) & (81=0) & (a2=0) & (d0=0) & (d1=1) & (d2=1) & (d3=0) & (d6=0) & (d7=1) or (t:2, u:2)
9, (aD=0) & (al=0) & (a2=0) & (d0=0) & (d1=1) & (A2=1) & (d3=0) & (d4=0) & (d5=0) & (d6=1) & (d7=0) (t:1,u:1)

Fig. 7 presents an AQ15 leamed concept in the context of the target concept. The total number of
errors measured over the whole representation space is 299, which gives a 15% total error rate.
(The total error rate for uverlapging covers is 20%). The classification rules are shown in Table 4.
Pos-Class and Neg-Class are hypotheses in the k-DNF form. Each rule in the hypotheses is
accompanied with t and u weights that represent total and unique numbers of training examples
covered by a rule.
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Fig. 7. AQ15-leamed concept in the original representation space and its relationship to the
MX11 target concept

From the hypotheses presented in Table 4, the admissible rulesets were selected to constitute the
candidate attributes P1 and N2 (Table 5). Table 6 shows the definition of the new attributes and
Fig. 8 shows the coverage of the instance space done by the new attributes.

Table 5. The admissible rulesets selected according to formula (4).

Pos-Class Neg-Class

1. (ab=1) & (al=1) & (a2=0) & (d6=1) (2:33) 1. (al=1) & (al=1) & (a2=1) & (d7=0) (s:39)
2. (aD=0) & (al=0) & (a2=1) & (d1=1} (5:33) 2. (a0=0) & (a2=0) & (d2=0) (5:36)
3. (a0=1) & (al=0) & (a2=1) & (d5=1) (s:30) 3, (a0=0) & (al=0) & (a2=1) & (d1=0) (s:30)
4. (aD=1) & (al=1) & (a2=1) & (d7=1) (5:30) 4. (a1=0) & (a2=0) & (d1=1) & (d4=0) (s:27)
5. (ad=1) & (al=0) & (a2=0) & (d4=1) (8:27)

[E.mftzsjj]= 126 /191 =0.66 < TH (i=1.4) [(E tﬂlf{flj:l}= 105/192=055<TH (i=1..3)

[(Es)/(Es)]=153/191=080>TH  (i=1.5) (E s/ (Es))=132/192=069>TH (i=1.4)



Table 6. The definition of the constructed attributes P1 and N2.

P1=1If
1= [ﬂ:l}&(ll=1)l{ﬂﬂ)l(ﬁ=l] or
2. (al=0) & (al=0) & (a2=1) & (d1=1) or
3 (aD=1) & (a1=0) & (a2=1) & (d5=1) or
4. (a0=1) & (al=1) & (a2=1) & (d7=1) or
5. (a0=1) & (a1=0) & (2=0) & (d4=1)

Pl = 0 otherwise

Nlis=s1lif

1. (ab=1) & (al=1) & (a2=1) & (&7=0) or
2. (a0=0) & (a2=0) & (d2=0) or

3, (oD=0) & (al=0) & (a2=1) & (d1=0) or
4 (a1=0) & (a2=0) & (d1=1) & (d4=0)

N2 = 0 otherwise

=]

Pl=0
Fig. 9. Images of the constructed attributes P1 and N2,

Once the new attributes are created, they are used to reformulate the training examples (Table 7).
For each training example the new P1 and N2 attribute values are added. Note that, if the new

attribute originated in the gi
reformulated, the whole inducti

Table 7. A part of the reformulated training set.
Negative examples

Positive examples
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Table 8. Decision rules with the constructed attributes.
Pos-Class If

1.
2.
3.

(Pl=1) or
{a0=0) & (d3=1) & (P1=0) & (N2=0) or
(a0=0) & (al=1) & (a2=0) & (d3=0) & (P1=0) & (N2=0)

(s, wsl)
(t:11, wll)
(t2, 0:2)
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Neg-Class if

1. (N2=l) or (44, udd)
2. (ab=1) & (P1=0) & (N2=0) or (t:12, u:12)
3. (a0=0) & (al=1) & (a2=1) & (d3=0) & (P1=0) & (N2=0) or (t:5, u:5)
4, (a0=0) & (al=0) & (a2=0) & (d0=0) & (d3=0) & (P1=0) & (N2=D) (3, u:3)

As expected, the new atiributes were used in the output hypotheses in both Pos and Neg classes,
replacing some of the initially given attributes. We can observe that large portions of training
examples were covered by the rules (P1=1) in the Pos-Class, and (N2=1) in the Neg-Class. Fig. 9
smmmmsﬁmmwmmsmskmﬂnchmgcdmmmmﬁonspamTmespmmnﬁmaﬂ
binary attributes: 5 primary attributes and 2 constructed attributes. A characteristic feature of this
representation space are impossible instances, i.e., instances that do not have equivalent
descriptions in the original space. For example, instances described by the rule ((P1=1) & (N2=1))
are impossible. This is directly related to the definitions of P1 and N2 and the fact that these
attributes were constructed from two disjoint rulesets. This is also in agreement with the intuition
that there should not be any instances that conform to both the "Positive” and "Negative" concept

descriptions represented by P1 and N2.
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C. Training examples mapped into the new space 9<M4 D. Concept leamed in the new space
> Number of positive (negative) Pz T concept
{r]annﬂnmppodh‘-nlndl .+ arget :
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B Impossible instance Il Correctly classified examples FZ2 <+ Total number of arrors 4

Fig. 9. Steps in learning the concept MX11 in the changed representation space.

The MX11 target concept image is shown in Fig. 9A after mapping into the new representaﬁon
space. For easy identification, areas that correspond to those in Fig. 6 are marked with the same



pattern. Fig. 9B shows all instances of the MX11 concept mapped into the new space. One cell in
the new space mpremts&lorﬂnrigimlexamplesdepcndins on the rule describing the new cell.
Fig. 9C shows the training examples in the new space. Fig. 9D shows the final concept learned.
The learned concept still does not cover exactly the target concept (3 errors of omission and 1 error
of commission) but it gives improved prediction accuracy. The learning could be further improved
if the generalization were prohibited over impossible areas. Instead of producing the rule (s0=0) &
(@3=1) & (P1=0) & (N2=0) to cover the four positive examples listed below, the system would be forced
to generate a more specific rule.

1. (aD=0) & (al=1) & (a2=1) & (d0=0) & (d3=1) & (P1=0) & (N2=0)
2. (a0=0) & (al=1) & (a2=1) & (d0=1) & (d3=1) & (P1=0) & N2=0)
3. (a0=0) & (al=1) & (a2=0) & (40=0) & (d3=1) & (P1=0) & (N2=0)
4. (a0=0) & (al=0) & (a2=0) & (d0=1) & (d3=1) & (P1=0) & (N2=0)

The rule does not produce a commission error. The only remaining uncovered example (4) could
be generalized to form the rule: (a0=0) & (21=0) & (a2=0) & (d0=1) & (P1=0), and therefore eliminate the

three omission errors. Ongoing research is invcstigaﬁnli ways of improving induction in spaces,

with impossible instances. Another important issue that needs further research involves the
utilization of information about the numbers of original examples mapped into new examples.
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Fig. 10. AQ17-HCI-learned concept projected into the original representation space and its
relationship to the MX11 target concept.
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The final hypothesis produced by AQ17-HCI was tested against the testing set. The result was
94% accuracy (com with 85% accuracy from rules generated by AQ15 without constructive
induction). Fig. 10 shows the final concept image learned by AQ17-HCI in the original
representation space. Compare this figure with Figs 6 and 7.

6 Experiments with the AQ-HCI method

6.1 Comparing AQ-HCI with Symbolic Methods

A major measure of the performance of a learning system is the prediction accuracy of the leamed
concepts on the testing examples. The ediction accuracy is a ratio between the number of
correctly classified examples from the testing data set and the cardinality of this set. For the sake of
comparison with results published previously, we also use the complementary measure of error
rate. Error rate is a ratio between the number of incorrectly classified examples from the testing
datnselandmccardinaﬁtynfthissethuexpeﬁmmtswmnmmaﬁmtsommndomlygcnemmd
data and the results were averaged.

ThcgoalofmrexperimentswastomthuwwcﬂthﬁAQ-HClmcthod does according to prediction
accuracy criterion, and how well it compares to other methods. The following systems were
compared: a system implementing the method for generating attributes from rule-patterns, AQ17-
HCT: a standard decision rule system, AQ15 (Michalski et al., 1986); two decision lists systems,
GREEDY?3 and GROVE (Pagallo & Haussler, 1990); and two decision tree systems, one, based
on hypothesis-driven constructive induction, FRINGE, and second, based on the standard D3,
REDWOOD (Pagallo & Haussler, 1990).

6.1.1 Experimental Domains

The domains for testing AQ17-HCI and comparison with other methods were four discrete
functions: C1 (DNF3), C2 (DNF4), C3 (MX11), and C4 (PARS). These functions were used by
Pagallo & Haussler (1989, 1990) to test several learning methods, specifically REDWOOD,
FRINGE, GREEDY?3 and GROVE. In this study, we applied AQ17-HCI and AQ15 and compared
results with those reported by Pagallo & Haussler (1989, 1990).

Table 9 provides a characterization of the test domains. The number of training examples was
calculated according to the following formula (Pagallo & Haussler, 1990):

: K.EE (N) D

where N is the number of attributes, K is the number of conditions in the smallest DNF description
of the target concept, e is the maximum error rate of the learned description. The number of
conditions in the smallest DNF description of the target concept is the product of the number of
rulﬁslig the description and the average number of conditions in a rule. In the experiments € is set
to 0.10.

The testing set consists of 2000 examples (different from training examples). The training and
testing sets are very small in relation to the size of the representation space. For example, in the
representation space with 32 binary attributes, there are 232 - 1 i.e., about 4.3 x 109, possible
descriptions of examples. Following Table 9 are the descriptions of the target concepts Cl1-C4.



Table 9. A characterization of experimental domains.

Target No. of No. of | No. | Average no. No. of | No. of
concept | attribute | redundant| of of conditions | training | testing
L] attribute | rules in a rule eX. eX.
-
C1 (DNF3) 32 12 6 55 1650 2000
C2 (DNF4) 64 EX 10 4.1 2640 2000
C3 (MX11) 32 21 8 4.0 1600 2000
C4 (PARS) 32 7 16 5.0 4000 2000

C1 The DNF3 function defined by rules:

x1 x2 x6 x8 x25 x28 —=x29 =>Cl —x2 —x10 x14 —x21 —x24>Cl
x2 x9 x14 —x16 —x22 x25 =>Cl x11 x17 x19 x21 —x25 == Cl
xl —x4 =x19 —x22 x27 x28=>C1 —=x1 x4 x13 —x25 =>Cl1

Attributes {x3 x5 x7 x12 x15 x18 x20 x23 x26 x30 x31 x32} are irrelevant, i.e. have random
values for each example.

C2 The DNF4 function defined by rules:

x1 x4 x13 x57 —x59 =>C2 x18 —x22 —x24 =>C2
x30 —x46 x48 —x58 =>C2 —x9 x12 —x38 x55 =>C2
—x5 x29 —x48 =>C2 x23 x33 x40 x52 =2
x4 —x26 —x38 —x52 =>C2 x6 x11 x36 —x55 =>C2
—x6 —x9 —x10 x39 —x46 =>C2 x3 x4 x21 —=x37 —x57 =>C2

Attributes {x2 x7 x8 x14 x15 x16 x17 x19 x20 x25 x27 x28 x31 x32 x34 x35 x41 x42 x43 xd4
x45 x47 x49 x50 x51 x53 x54 x56 x60 x61 x62 x63 x64} are viewed as irrelevant.

C3  The C3 function is based on multiplexer-11 function (Wilson, 1987).

—x1 —x2 —x3 x4 =3 —x1 =x2 x3 x5 =>C3
—x1 x2 —x3 x6 =>C3 —x1 x2 x3 x7 =>C3
x] —x2 —x3 x8 =>C3 x1 —x2 x3 x9 =>C3
x1 x2 —x3 x10 =>C3 x1 x2 x3 x11 =>C3

Attributes {x12 .. x32} are viewed as irrelevant.

C4  Parity-5 function with irrelevant attributes.

The function has value rue on an observation if an even number of relevant attributes {x1..x5} are
present, otherwise it has the value false.

—x]1 =x2 —x3 —x4 x5 ==>0C4 =x1 x2 x3 —x4 —x5 == C4
—x]1 —x2 —x3 x4 x5 =>Cd4 x1 —x2 x3 x4 —x§ =>C4
—xl —x2 x3 —x4 x5 =>C4 xl x2 —x3 —x4 —x5 =>C4
—xl x2 —x3 —x4 x5 =>C4 —x1 x2 x3 x4 x5 =>C4
x1 —x2 —x3 —x4 x5 =>C4 xl —x2 x3 x4 x5 =>C4
—x1 —x2 x3 x4 —x5 =>C4 x1 x2 —x3 x4 x5 =>C4
—x1 x2 —x3 x4 —x5 =>C4 xl x2 x3 —x4 x5 == C4
x1 —x2 —x3 x4 —x5 =>C4 x1 x2 x3 x4 —x5 =>C4

Attributes {x6 .. x32} are viewed as irrelevant.



6.1.2 Comparing AQ-HCI with the Non-Constructive Induction System AQ15

This section com the performance of the AQ17-HCI and AQL1S systems on concepts Cl1-C4
on various sets of experimental data. The rules generated by both systems were tested using the
ATEST procedure (Reinke, 1984). ATEST views rules as expressions which, when applied to a
vector of attribute values, evaluate to a real number. This number-is called the degree of
consonance between the rule and an instance of a concept.

The method for arriving at the degree of consonance varies with the settings of the various ATEST
parameters. Rule testing is summarized by grouping the results of testing all the instances of a
single class, This is done by establishing equivalence classes among the rules that were tested on
those instances. Each equivalence class (called a rank) contains rules whose detgmes of consonance
were within a specified tolerance (t) of the highest degree of consonance for that rank. When
ATEST summarizes the results it reports the percentage of first rank decisions (flexible match)
(t=0.02) as well as the percentage of only choice decisions (100% match) (1=0).

Concepts C1-C4 were learned and tested using data sets characterized in Table 9. The summary of
the I.'ESI.I":}IT.S obtained in ten executions of both systems for each concept learned, is presented in
Table 10.

The AQ17-HCI system was able to correctly learn all concepts. The 100% match between the
learned concept descriptions and the testing examples shows that all concepts were learned
precisely. The AQ1S system did not learn exact descriptions of concepts Cl, C2, and C4,
however, it was able to recognize them using the flexible matching procedure. The results reported
in the "Flexible match" columns are compared with results from other methods in Table 10.

Table 10. The experimental results for different problems.

Average Error Rate
T
— AQ1S AQI7-HCI
ble match| 100% match |Flexible match| 100% match
C1 0.3% ' 15% 0.0% 0.0%
Cc2 0.2% 115% 0.0% 0.0%
c3 0.0% 0.0% 0.0% 0.0%
c4 1.6% 18.3% 0.0% 0.0%

Table 11 presents results from learning concept C2 using varying numbers of examples in the
training set. From the table, it is easy to estimate the number of examples required by a system to
achieve a desired prediction accuracy. The table shows that the HCI method requires a significantly
smaller training set to precisely learn the C2 lﬁ;ﬂblcm. These results are due to better descriptors
used in expressing learned concepts both in the learning phase (relations already discovered and
stored under new attributes make it possible for a deeper search for dependencies among training
data), and the testing phase (the match between an example and a more concise rule results in a
higher degree of consonance). The results from this table were combined with results from other
methods and presented in Fig. 12.

Both systems, AQ15 and AQ17-HCI, generate a complete and consistent set of rules from the
input examples. Since HCI involves attributes constructed from AQ1S5 rules, a question arises:
why does AQ17-HCI produce higher accuracy on testing examples? The answer seems to lie in the
AQ15 method of generalizing examples. The extend-against generalization operator (Michalski,
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1983) considers attributes one at a time#. This can be an essential obstacle in learning hard
concepts in the context of a preliminary description of a leamed problem (Rendell & Seshu, 19940).

Hard concepts are spread out all over the given hypotheses space and require multiple covers.

Table 11. The results for different numbers of training examples in learning concept C2.

Average Error Rate in Learning Target Concept C2
. AQIS AQI7-HCT
examples [Flexible Match| 100% match |Flexible Match| 100% match
330 29.6% 482% 27.2% 48.2%
660 11% 24.8% 24% 9.4%
1320 1.8% 164% 02% 43%
1980 0.8% 13.6% 0.0% 0.0%
2640 02% 114% 0.0% 0.0%
3960 0.2% 10.5% 0.0% 0.0%

In order to merge those regions and to make the induction process simpler, a learning algorithm
has to detect possible attribute interactions, and construct new attributes that capture those
interactions. A closer look at AQ17-HCI shows that it does exactly this. By abstracting concept
descriptions, the method takes advantage of already detected attribute interactions and uses them in
converting a hard problem to an easier one by just enlarging the initial attribute set. Since new
attributes combine interacting attributes, the systematic transformations in a hypotheses space
support the extend-against operator in finding more accurate and effective hypotheses.

6.1.3 Empirical Comparison of AQ-HCI with Other Methods

Fig. 11 and Table 12 summarize the results obtained in ten executions of all tested algorithms. The
results for the REDWOQOD, FRINGE, GREEDY3, and GROVE algorithms come from (Pagallo &
Haussler, 1989, 1990).

Fig. 11 shows the learning curves for the concept C2. The curves were obtained by measuring and
averaging prediction accuracy over ten experiments. The measure points were at 330, 660, 1320,
1980, 2640, and 3960 training examples. Four systems, AQ15, FRINGE, GREEDY?3, and AQ17-
HCI obtain 100% performance accuracy when supplied with 2640 training examples. However,
convergence to 100% is fastest in the case of AQ17-HCI. The exact results for 2640 examples are
given in the row describing concept C2 in Table 12.

Table 12 shows the results obtained from testing concepts C1-C4 (Table 9). AQ17-HCI with
hypothesis-driven constructive induction capabilities has completely learned all the target concepts.
REDWOOD and GROVE did not learn any concept with 100% accuracy. FRINGE and GREEDY3
learned three concepts but failed to learn the PARS concept. It is worth noting that the standard
decision rule system AQ15 (without constructive induction) learned all the concepts.

4 One wayta:dd:enuni.apmb]mn.nbe-lmhhud technique to detect interaction between attributes, but this increases
computational cost (Rendell & Seshu, 1990).
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Fig. 11. Learning curves for the concept C2 for different systems.

The results shown in Table 12 suggest that all problems were difficult for the decision tree
algorithm implemented in REDWQOD. The reason is that the decision tree structure does not
capture interactions between attributes. Only FRINGE which places conjunctions of initial
attributes in the nodes of the decision tree, thus acting more like AQ15, was able to partially
overcome these difficulties. The AQ15 algorithm was able to find almost perfect solutions. This
suggests that the structure of this algorithm supports solving these kinds of problems.

Table 12. Experimental results for testing descriptions of concepts C1-C4 learned by different
systems.

Average Error Rate
Target [“Ton e TREES (*) | Decision LISTS (%) | Decision RULES (1)

concept
REDWOOD| FRINGE |GREEDY3| GROVE | AQ15 |AQ17-HC]
c1 7.4% 0.3% 0.6% 1.4% 03% 0.0%
Cc2 24.9% 0.0% 0.0% 7.8% 0.2% 0.0%
3 13.1% 0.0% 0.5% 3.9% 0.0% 0.0%
C4 36.5% 22.1% 45.8% 41.3% 1.6% 0.0%

(*) from (Pagallo & Hanssler, 1989, 1990), (1) flexible match. Concepts C1, C2, C3, C4 were learned from 1650,
2640, 1600, and 4000 examples, respectively. All concepts were tested on 2000 testing examples.

Finally, Table 13 gives a qualitative comparison of AQ17-HCI with FRINGE. The two systems
are compared using the following criteria: representational capabilities (1-2), achievement of
constructive induction goals (3), and the overall capabilities (4-7).
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Table 13. Qualitative comparison of AQ17-HCI with FRINGE.

AQ17-HCI FRINGE
1. Representational formalism . =
INPUT: descriptions of examples VL1 “:t“m . M""‘“’
Background knowledge VL1 Not available
OUTPUT: concept description VL1 Decision tree
Constructed anribuses VL1 Conjunctive

expression

2. Operators used io CORSITICT new Value-patiems, €.8. Binary conjunction,
attributes (x1=1, 5..10, 15) e.g. (x1=1) & (x2=0)

Condition-patterns,e.g.

(xl=1) & (x2=5) &

(x5=4)

Rule-patterns, €.8.

[(x1=1) & (x2=5)] or

[(x3=0) & (x5=T)] or

[(x4=8)]

3. Constructive induction goal:
- improvement of prediction accuracy | YES YES

- reduction of description complexity | The number of rules is | The tree is smaller but
reduced but construcied | nodes may contain

attributes can be complex conjunctive
complex sions
4. Facilitating the learning process with | YES NO
information about imposs. ible areas
5. Multiconcept learning YES NO

6. Concepis learned that the underlying | MONK2 problem
selective induction learning algorithm | paRs (parity 5)

could not learn I i 1 i
prediction accuracy in | prediction accuracy in
leaming DNF-type learning DNF-type
Concepts CODCEPLS

7. Tested concepis that could not be None ’ PARS

learned

6.2 Testing AQ17-MCI on MONK's Problems

This section reports results from a performance comparison of AQ17-HCI with a large number of
machine learning algorithms on the so-called MONK's problems. The problems were so called
because they were introduced at the Priory Corsendonk in Belgium (a former monastery turned to a
conference center), where an International Summer School on Machine Learning was held in 1991
(Thrun et al., 1991). During the School, there were many discussions on the merits and demerits
of different machine learning approaches. To help to resolve the disputes, Tom Mitchell (CMU)
and Sebastian Thrun (GDM) suggested three problems and asked various research teams in the us
and Europe to apply their learning programs to them. A large number of machine learning
programs were tested on these problems.
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The MONK’s problems represent three different types of learning problems. The first problem,
M1, is to learn a concept description that can be formulated as a simple DNF expression (a
Disjunctive Normal Form). This is a "DNF-type" problem. Because symbolic methods work well
on such problems, the M1 problem can be viewed as favoring symbolic learning methods.
Problem M2 is to learn an "m-of-n" description (if m out of n features occur in an object, then the
object is an instance of the concept). This is a "non-DNF-type” problem, because describing such a
concept in the form of a DNF expression would yield a very long expression. This problem favors
neural-net learning, because it is easy to express the target description in an artificial neural net.
Problem M3 is a DNF-type problem, like M1, but the leamning data set contains noise (5%). An
expectation was that a neural net might perform better on such a problem, as neural nets are
claimed to be more noise-resistant than symbolic methods.

Below is a more detailed characterization of each MONK's problem. It should be noted that in the
original formulation of the problems (Thrun et al., 1991), attributes represented characteristics of
imaginary robot figures. We changed them here to abstract attributes, x;, because the nature of the
attributes is irrelevant to the methods described.

Problem M1. The target concept (unknown to the learning program) can be simply characterized
by a VL1 (variable-valued logic one) expression (Michalska, 1975):

[x3 = 1] v [x4 = x5] = Ml
which can be interpreted: “If for an unknown entity, the attribute x2 takes value 1, or the attributes

x4 and x5 take the same value (no matter which one), then—regardless of the values of other
attributes—classify the entity as an instance of the concept M1.”
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Fig. 12. The target concept and training examples in the first MONK's problem (M1).



The set of training events contained 124 training examples (62 positive and 62 negative), which
constituted 30% of the total event space (432 events). Each example was described in terms of six
multivalued attributes. The set of testing examples included all possible examples (216 positive and
216 negative). Thus, the accuracies of the learned descriptions (Table 14) were absolute, not
estimates.

This problem represents a simple DNF concept, which is visualized in Fig. 12. The diagram in
Fig. 12 consists of small cells, each representing one possible example (a vecior of attribute
values). To read-out the values of attributes x1, X2,..., X6, for any example, use the scales at the
bottom and the right of the diagram (numbers assigned to different intervals represent possible
values of the associated attributes). The dark area in the figure represents the target concept (the
concept to be learned), and the white area represents the concept’s negation (the set of all possible
counterexamples). Cells marked by “+“ and - correspond to positive and negative concept
examples, respectively.

Problem M2. The target concept can be characterized by a sentence:

"If exactly two of six given attributes take their first value for the given entity,
then classify the entity as an instance of the class M2."
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Fig. 13. The target concept and training examples in the second MONK's problem (M2).

It is not important which two of the six attributes take their first value, but it is important that two
and only two attributes take such value. The “first value” means that the value sets of the attributes
are totaily ordered sets, and the first element in the set represents the first value. This concept does
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not have a simple DNF representation, and therefore a serious problem for typical symbolic
learning methods. In the AQ17-DCI program (listed in Table 14), which performs a data-driven
constructive induction, this description can be expressed as a special case of a general “counting”
condition: [#Attrs(S, Rel, Value) = R] which states that the number of attributes in the set S
that are in relation Rel (=, #, <, >) to value v should be one of the values stated in the set R (in this
case, S is the set of all initial attributes, Rel is “=", v is 1, and R consists of just one element,
namely 2). This general condition is part of the program’s concept description language, similarly
as a sigmoid or threshold logic transformation is a part of the language of artificial neural nets.

The training set consisted of 169 examples (105 positive and 64 negative), which represented 40%
of the total event space. The testing examples were all possible examples (190 positive and 242
negative). Fig. 13 presents a diagrammatic visualization of the target concept and the training
examples for the problem M2.

Problem M3, In this problem, the goal concept can be expressed in VL1 as:

{xz#d-]&[;s:lvl] v [Il=l]&[lz=3] = M3

which can be interpreted: to classify an entity to M3, one of two conjunctive conditions must be
satisfied: x2 should take value different than 4 and x5 should take value 1 or 2, or x1 should take

value 1 and x2 should take value 3.
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Fig. 14. The target concept and training examples in the third MONK’s problem (M3).
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The purpose for introducing this problem was to test learning programs’ ability to learn from noisy
data,plhat is, from examples that contain errors. There were 122 training examples (62 positive and
60 negative), which represented 30% of the total event space. The testing examples were the set of
all possible examples (204 positive and 228 negative). Noise was randomly inserted into the
training example set so that 5% of the training examples were misclassified.

Fig. 13 gives a diagrammatic visualization of the target concept and training examples for this
problem. The five minuses in the darken area and one plus in the white area represent errors
introduced into the training examples.

The tested learning systems fall into four categories:

« Neural Networks:  Backpropagation (McClelland & Rumelhart, 1988)
Cascade Correlation (Fahlman & Lebiere, 1990)

» Decision Trees ID3 (Quinlan, 1986)
Assistant Professional (Cestnik, Kononenko & Bratko, 1987)
ID5R (Utgoff, 1990)
IDL (Van de Velde, 1989)
ID5R-hat (Utgoff, 1990)
TDIDT (Qui 1986)
PRISM (Cendrowska, 1988)

« Inductive Logic Programming (ILP):
mFOIL (Dzeroski, 1991)

« Decision Rules  AQ14-NT (Pachowicz & Bala, 1991)
AQR, CN2 (Clark & Niblett, 1989)
AQ15 (Michalski et al., 1986)
AQ15-GA (Vafaie & De Jong, 1991)
AQ17-DCI (Bloedom & Michalski, 1991)
AQ17-FCLS (zmg& Michalski, 1993)
AQ17-HCI (Wnek & Michalski, 1991)

Table 14 shows the results from applying of these systems to the MONKS® problems. The results
show that the AQ17-HCI has learned all three concepts with 100% accuracy. While its good
performance on problems M1 and M2 is relatively easy to explain, it is rather surprising that it
performed so well on the M2 problem, which is non-DNF problem. The reason for the surprise is
that the program performs only logic-type transformations on the representations space and does
not have the concept of a “counting” condition in its linguistic repertoire (like AQ17-DCI). This
counting condition is here a property directly relevant to this problem and it is not easy to express
in logical terms. Thus, the program does not seem to be equipped for solving such problems. It
may be therefore interesting to see how it expressed the M2 concept. The concept was expressed
by a structure of the following rules:

M2 < [c4=0)&[cT=1]1&[c8=1] & [c9=0]or
[2=0] &[cT=1] & [cB=0] & [c9=1]or
[c6=0]&[cT=0]&[cB=1] & [cI=1]or
[cl1=0]&[c3=0] &[c5=1] & [c6=0] or
[cl=1]&[c3=0]&[c5=0]&[c7T=0]&[c9=0]or
[c1=0] &[c2=0] &[c3=1]&[c5=0]&[c6=1] &[c9=0]

where, cl - c9 are constructed attributes defined as follows:
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(cl=1<:[x4=1] 2=1)<:[x5=1] (c3=1<:[x3=1]
(cl=0)<: [x4=2v3] (2=0)<:[x5=2v13] (c3=0)<:[x3=0]

(ced=1<:[xl1=1] (eS=1<:[x2=1] (c6=1)<:[x6=1]
(cd=0)<:[x1=2v3] (e5=0)<:[x2#1] (c6=0)<:[x6=0]

(c‘?:1}¢::[c3=1]&[cﬁ=ﬂ]o:[c3={l]&[cﬁ=1]
(cﬂ:l)-:;:[c‘2=1]&[n5=ﬂ]ur[c2=ﬂ]&[{:5=1]
(c9=1)<: [cl1=1]&[c4=0]or[cl=0] & [c4 =1]

The first representation space change involved construction of the c1- c6 attributes from value-
patterns. These are binary auributes and can be considered intermediate concepts. The introduction
of these concepts contracted the representation space from 432 to 64 instances. The second change
in the representation was done due to the construction of the c7 - ¢9 intermediate concepts on the
basis on rule-patterns. These concepts have a very regular form. All consist of two rules and
involve only two attributes, e.g. ¢7 is defined by c3 and c6. The attribute values in the second rule
are always complementary to ose in the first rule. Because of this, such a form of the rule-pattern
is called xor-rule-pattern. The attributes constructed from xor-rule-patterns merged examples of the
non-DNF concept into regions that were easy to describe using DNE-type expressions (Wnek,
1993).

The detection of the xor-patterns in rules generated in the second iteration of the learning process
was the key transformation that enabled the program to learn the M2 concept correctly. These
results demonstrate that the AQ-HCI method is very versatile and can produce good results even
for the problems that appear alien to symbolic methods.

7 Summary

This paper addressed issues of concept learning when the original representation space is of low
quality, that is problems of constructive induction. It reviewed various methods and approaches to
building constructive induction learning programs capable of a self-improvement of the original
space. A hypothesis-driven method for constructive induction, AQ-HCI was described in detail
and compared with several other methods. It was interesting to see that a relatively simple
mechanism for constructive induction employed in this method was able to significantly improve
the learning capabilities of the original AQ-type method.

The AQ-HCI method used the Ad-type rule learning procedure implemented in AQ15 program. The
basic idea of the HCI procedure employed in the system is to search for different types of patierns
mﬂtgmea‘awdhypoﬂ;msmduseﬂm as new attributes, Three types of patterns were identified:
value-patterns, condition-patterns, and rule-patterns. If no patierns are found, then the method
does not change the representation space and concept descriptions are learned in the original
representation space.

The system AQ17-HCI implementing the method was shown to be very effective in improving the
performance accuracy in a wide range of both DNF-type, and as well as nun-DNF-?pa concepts.
The fact that it works well on some non-DNF problems shows the importance of constructive
induction in an automated design of knowledge representation spaces for machine learning. One
drawback to the method is that the overall complexity of the descriptions is increased if the
generated attributes are complex.



Table 14. Summary of results for MONK's problems.

University, Pittsburgh, Pennsylvania, USA; (Sloven
(Germany) Institute for Real-Time Computer Control
Karlsrube; (Belgium) Artificial Intelligence
Lab, Institute for Informatics, University

Laboratory, Vrije Universiteit Brussel, Brussels; (Switzerland) Al-
of Zurich; (GMU) Center for Antificial Intelligence, George Mason

PREDICTION ACCURACY
PARADIGM PROGRAM Al Lab DNF-type | Non-DNF | DNF-type
{no nolse) {m-of-n) (noise)
Neural Nets B i CMU 100% 100% 93%
Cmmmd?bmrrdaﬂm CMU 100% 100% 97%
Decision Trees Assistant Professional| Slovenia 100% 81% 100%
D3 Germany 9% 68% 94%
ID3 (no windowing) |Germany 83% 69% 2%6%
IDSR Belgium 82% 69% 95%
ID5R-hat Belgium 90% 66% —
IDL Belgioum 97% 66% —
TDIDT Belgium 76% 67% —
PRISM Switzerland 86% T3% 90%
Relation Learning | mFOIL Slovenia 100% 69% 100%
Decision Rules AQI14-NT GMU 100% 17% 100%
AQR Germany 6% 80% 87%
CN2. Germany 100% 69% 89%
AQI1S GMU 100% 11% B4%
AQI15-GA GMU 100% 87% 100%
AQ17-DCI GMU 100% 100% 97%
AQ17-FCLS GMU 100% 93% 97%
AQ17-HCI GMU 100% 10% 100%
Experiments were performed at the following laboratories: (CMU) School of Computer Science, Carnegie Mellon

ia) Al Laboratory, Josef Stefan Institute, Ljubljana.;
Systems and Robotics, and University of Karlsruhe,

University, Fairfax, VA, USA

The presented methodology can be potentially applied not only with the Ad-type rule learning
method but with other inductive learning methods that use different knowledge representations,
such as VL2, annotated predicate calculus (APC; Michalski, 1983), Horn-clauses, decision trees,
etc. To do so, one needs to identify types of patterns in hypotheses that are appropriate for the
knowledge representation used, and develop a method for their evaluation and employment as new
attributes or intermediate concepts. It is likely that employing the proposed HCI methodology
within any "non-constructive” inductive learning system will improve its performance.

In multiple concept learning, it might be desirable to find class-patterns that characterize rulesets of
different classes. Such patterns would represent conditions that are common for a subset of
classes, and distinguish this subset from other classes.

The representation space transformations done by the presented hypothesis-driven constructive
induction method are easy to determine and easy to make. They are, however, limited by the
representation language used. Thus, they are more limited than those that in which a new repertoire
of attributes that can be constructed by direct, data-driven methods. Such data-driven methods
require much more search, but can potentially perform any type of transformation that can be
described by a mathematical or logical expression. This suggests a new line of research aimed at a
synergistic integration of the two approaches.
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