

Scalable Role & Organization Based Access Control and Its Administration

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Zhixiong Zhang
Master of Engineering

Shanghai Jiao Tong University, 1986
Bachelor of Science

Fudan University, 1983

Co-Director: Ravi S. Sandhu, Professor
Department of Information and Software Engineering

Co-Director: Daniel Menascé, Professor
Department of Computer Science

Spring Semester 2008
George Mason University

Fairfax, VA

ii

Copyright 2008 Zhixiong Zhang
All Rights Reserved

iii

DEDICATION

To my parents, Meiqin Sheng and Xiaogen Zhang, who gave me unconditional love and
encouraged me to pursue my life-long dream.

To my lovely wife, Jianyu, who unwaveringly supported and shared with me all the
difficult times throughout this academic journey with great love and sacrifices.

To my lovely sons, JJ and Ben, who are the constant sources of joy and pride in my life.

To my sisters and brother, who supported and encouraged me during this journey.

iv

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation and gratitude to my dissertation director,
Professor Ravi Sandhu, who has provided very valuable guidance and encouragement
during my doctoral research. Without his insightful guidance, it would have been
impossible to make this work go so smoothly.

My special appreciation and thanks go to my dissertation co-director, Professor Daniel
Menascé, who stepped in to rescue me from starting over again and provided insight and
advice on my dissertation work.

I am also grateful to my dissertation committee members, Professor Duminda
Wijesekera, Professor Xinyuan Wang, and Professor Robert Simon for their valuable
comments and suggestions.

My gratitude also goes to Dr. Kenneth Hintz for his kind support and advice during the
earlier years of my doctoral study and during my family emergency.

My appreciation also goes to many friends at George Mason University for their help and
friendship. Special thanks go to Bing Wang, Xinwen Zhang, and Gregory McIntyre.

Many thanks go to Kathy Wang who helped me proof-read my dissertation in spite of a
short time notice. I also thank the administrative staff at GMU for their support. Special
thanks go to Lisa Nolder who helped me go through some administrative obstacles.

I would also like to thank my current employer, The College Board, for the financial
support during my study.

I am particularly thankful to my parents, my wife, my two sons, my sisters, and my
brother for their support, patience, tireless encouragement, and their faith in me
throughout the years.

v

TABLE OF CONTENTS

 Page
List of Tables……………………………………………………………………………vii

List of Figures…………………………………………………………………………..viii

Abstract..……
1. Introduction ...1

1.1 RBAC Models ...2
1.2 Problem Statement ..4
1.3 Summary of Contributions ..5
1.4 Organization of the Dissertation ...7

2. Motivating Examples ..8
2.1 B2B Example ..8
2.2 B2C Example ..11

3. Role and Organization Based Access Control (ROBAC)...14
3.1 Informal Description ...15
3.2 Formal Description ...16

3.2.1 ROBAC0 ...16
3.2.2 ROBAC1 ...19
3.2.3 ROBAC2 ...22
3.2.4 ROBAC3 ...27

3.3 Applicability and Expressive Power of ROBAC ..28
3.4 Discussion and Related Work ...36

3.4.1 Comparison with RBAC ...36
3.4.2 Comparison with Role Templates ...40
3.4.3 Comparison with Team-based Access Control (TMAC)41
3.4.4 Comparison with Organizational Units ..42
3.4.5 Comparison with Group Based RBAC (GB-RBAC)42
3.4.6 Comparison with Organization Based Access Control (OrBAC)43

4. Administrative ROBAC Model ..46

vi

4.1 Administrative Issues in ROBAC ...48
4.2 AROBAC07 Model ..49

4.2.1 The UROA07 Model...54
4.2.2 The PRA07 Model ..60
4.2.3 The RRA07 Model ..62
4.2.4 The OOA07 Model ...64
4.2.5 The ROA07 Model ...66

4.3 Application Compartment in ROBAC ..67
4.4 Discussion and Related Work ...70

5. ROBAC Variants ..74
5.1 Manifold ROBAC ...74
5.2 Secure Collaboration ...76

5.2.1 Background ...76
5.2.2 Secure Collaboration with Manifold ROBAC ..77

5.2.2.1 Informal Description ...78
5.2.2.2 The Asset Management ’07 Model ...83
5.2.2.3 ROBACM Based Secure Collaboration Schema84

5.2.3 Related Work ..88
5.3 Pseudo ROBAC ... 90

5.3.1 Attributes in ROBACP ..91
5.3.2 Formal Definition of ROBACP .. 94
5.3.3 Administration of ROBACP ..99

5.4 A ROBACP Case Study ..101
5.5 Discussion and Related Work ...105

6. Conclusions and future work ..108

Bibliography ...113

vii

LIST OF TABLES

Table Page
1. Sample report types in B2B example……………………………………………….9
2. Sample permissions in B2B example (with RBAC)………………………………..11
3. Sample roles in B2B example (with RBAC)……………………………………….11
4. Sample permissions in B2C example (with RBAC) ……………………………….12
5. Sample roles in B2C example (with RBAC)………………………. ……………...12
6. Sample permissions in B2C example (with ROBAC)……………………………...18
7. Sample roles in B2C example (with ROBAC)……………………………………..18
8. Sample permissions in B2B example (with ROBAC)……………………………...21
9. Sample roles in B2B example (with ROBAC)……………………………………..21
10. Separation of Duty Constraints (SoD) in ROBAC………………………………..24
11. Comparison between RBAC and ROBAC (with N orgs and M asset types)……..38
12. Permissions in the ROBACP………………………………………………….…...103
13. Roles in the ROBACP……………………………………………………………..103

viii

LIST OF FIGURES

Figure Page
1. Classic RBAC ...3
2. A sample organization hierarchy ..9
3. Relationship among ROBAC models ...14
4. A family of ROBAC models………………………………………………………...15
5. Examples of role hierarchy using classic administrative RBAC……………………47
6. AROBAC07 Model…………………………………………………………………53
7. Role and organization hierarchies using administrative ROBAC…………………..58
8. Virtual organization for secure collaboration in ROBAC…………………………..81

ABSTRACT

SCALABLE ROLE & ORGANIZATION BASED ACCESS CONTROL AND ITS
ADMINISTRATION

Zhixiong Zhang, Ph.D.

George Mason University, 2008

Dissertation Co-director: Dr. Ravi S. Sandhu

Dissertation Co-director: Dr. Daniel Menascé

In Role Based Access Control (RBAC), roles are typically created based on job

functions inside an organization. Traditional RBAC does not scale up well for modeling

security policies spanning multiple organizations. To solve this problem, a family of

extended RBAC models called Role and Organization Based Access Control (ROBAC)

models and its administrative models are proposed and formalized in this dissertation.

Two examples are used to motivate and demonstrate the usefulness of ROBAC.

Comparison between ROBAC and other RBAC extensions are given. I show that

ROBAC can significantly reduce the administrative complexities of applications

involving a large number of similar organizational units. The applicability and expressive

power of ROBAC are discussed. By showing that any given ROBAC model can be

modeled by a RBAC model and vice versa, I prove that the expressive power of ROBAC

is equal to that of traditional RBAC.

A comprehensive role and organization based administrative model called

AROBAC07 is developed. It has five sub-models dealing with various administrative

tasks in ROBAC. I show that the AROBAC07 model provides an intuitive and controlled

way to decentralize administrative tasks in ROBAC based systems. A concept called

application compartment (ACom) in ROBAC is introduced and its usage in ROBAC is

discussed. AROBAC07 scales up very well for ROBAC based systems involving many

organizational units.

Two ROBAC variants, manifold ROBAC (ROBACM) and pseudo ROBAC

(ROBACP), are presented and formalized. Their corresponding administrative models are

also proposed. The usefulness of manifold ROBAC is demonstrated in secure

collaboration via a ROBACM based secure collaboration schema which avoids many

problems resulted from role-mapping, role-translation, or role exporting. The usefulness

of pseudo ROBAC is demonstrated in a web based on-demand movie service case study.

1

Chapter 1. Introduction

 With the widespread Internet usage in our society, security and privacy issues become

more important than ever. In the last decade, role based access control (RBAC) has been

generating a considerable amount of interest among researchers and practitioners. In

RBAC, roles are defined based on job functions, permissions are associated with roles,

and users are made members of appropriate roles, thereby acquiring the roles'

permissions. This indirect association between users and permissions greatly simplifies

the management of user’s permissions. RBAC has several attractive features, such as

policy neutrality, principle of least privilege, and ease of management. Several well-

known RBAC models, such as RBAC96 [SCY96], the role graph model [NO99], and the

NIST model [FSGKC01], were developed during the last decade. Those models form the

basis for the ANSI RBAC standard [ANSI04]. As a powerful alternative to traditional

discretionary and mandatory access control, the adoption of RBAC in commercial

software and enterprises has rapidly increased in recent years [RTI02].

 The complexity of an RBAC system can be defined on the basis of the number of roles,

the number of permissions, the size of the role hierarchy, the constraints on user-role and

permission-role assignments, etc. [SFK00]. For existing large-scale RBAC systems, the

number of roles and the number of permissions are in the order of thousands. Beyond this

magnitude, the performance of RBAC may degrade and its management becomes too

2

difficult to handle correctly. Researchers and practitioners [GI97, Tho97, PS01,

PCND04] have proposed several RBAC extensions to scale up RBAC systems from

various perspectives. To achieve decentralized administration of RBAC, some role-based

administrative models have also been proposed [SBM99, CL03, OSZ06, BJBG04].

 Much of the previous work addresses RBAC in the context of a single organization and

is mainly motivated by B2E (Business to Employee) applications. On the other hand,

B2B (Business to Business) and B2C (Business to Consumer) applications often involve

a large number of organizations such as corporations, schools, families, etc. Typically,

users from different organizations with the same role name have slightly different access

privileges due to privacy considerations. For example, a user in the parent role of family

A has permission to view the progress records of family A’s kids but not the progress

records of other families’ kids. Using standard RBAC naively in these situations can

result in an enormous number of roles and permissions, well into the order of millions.

To scale up RBAC for applications involving many organizational units is the problem

we address in this dissertation.

1.1 RBAC Models

 ANSI RBAC reference model [ANSI04] includes core (flat) RBAC (no role

hierarchy), hierarchal RBAC (with role hierarchy), and constrained RBAC (with

Separation of Duty constraints). Figure 1 shows a classic RBAC, which is based on the

well-known RBAC96 [SCY96] plus permission definition from ANSI RBAC.

Figure 1. Classic RBAC

 Here we use the term classic RBAC to refer the typical RBAC models proposed in

[SCY96, NO99, FSGKC01]. As you can see, permissions and users are both assigned to

roles. Users acquire permissions via their memberships in roles during one or more

sessions. The permissions in standard RBAC are defined as operations over objects.

Here, objects represent any resources that need to be protected in the system. Assigning

permissions to roles and assigning roles to users are two separate administrative tasks.

How to define roles and permissions depends on the desired security policy in an
3

4

organization. RBAC models have been extended from various aspects (temporal, spatial,

location-aware, or context-aware) [BBF01, CLSDAA01, KKC02, BCDP05, JBLG05,

RKY06] to better meet the needs of the real world. Due to indirect assignment between

users and permissions, role based systems are more flexible and scale up better than

traditional MAC and DAC based system with respect to the number of users. However,

RBAC does not scale up well with respect to the number of roles and permissions.

Beyond the magnitude of a thousand roles, the management of RBAC is very error prone.

Several approaches have been proposed to scale up RBAC systems. Giuri and Iglio

[GI97] extend RBAC by introducing the concept of role templates with parameterized

privileges to achieve content-based access control. Thomas [Tho97] proposes Team

Based Access Control (TMAC) to scale up permission assignment with fine-grained run-

time permission activation at the level of individual users and objects. Perwaiz and

Sommerville [PS01] describe a mechanism for viewing role-permission relationships in

the context of organizational structures, which reduces the number of roles in an RBAC

implementation. Park et al. [PCND04] propose a composite RBAC for large and complex

organizations. Park’s approach categorizes roles into different classes and maps roles

between them to achieve role class reusability and scalability.

1.2 Problem Statement

 It is very common in B2B (Business to Business) and B2C (Business to Consumer) to

have applications that involve a large number of organizational units such as

5

corporations, branches, schools, families, etc. The classic RBAC does not scale up well

with respect to the number of roles and permissions. Directly applying classic RBAC to

applications involving a large number of organizations can result in a large number of

roles and permissions due to local variations and privacy concerns. Most existing RBAC

models either do not scale up well or lack systematic administrative models. Better

models are needed to address the issue of scalability when applying RBAC to

applications involving many organizational units. The new models should scale up well,

be easy to use, and inherit the good features of RBAC. This dissertation seeks to solve

this RBAC scalability problem by proposing a family of new RBAC extensions and its

corresponding administration models.

1.3 Summary of Contributions

 This dissertation contains the following contributions.

• A family of extended RBAC models called Role and Organization Based Access

Control (ROBAC) models is proposed and formalized. It includes

o ROBAC0 – an extension to core (flat) RBAC and acts as a base model

o ROBAC1 – an extension to hierarchal RBAC and has both role hierarchy

and organization hierarchy

o ROBAC2 − an extension to constrained RBAC, which includes ROBAC0

plus constraints

6

o ROBAC3 – a combined model, which includes ROBAC0 plus role

hierarchy, organization hierarchy, and constraints

• The applicability and expressive power of ROBAC are discussed.

• A comprehensive role and organization based administrative model for ROBAC,

called AROBAC07, is developed. AROBAC07 includes the following five sub-

models:

o UROA07 (user to role and organization pair assignment ’07) is concerned

with user to role and organization pair assignment;

o PRA07 (permission to role assignment ’07) deals with permission-role

assignment;

o RRA07 (role to role assignment ’07) manages roles and role hierarchy;

o OOA07 (organization to organization assignment ’07) handles

organizations and organization hierarchy; and

o ROA07 (role to organization assignment ’07) controls applicable

association between roles and organizations.

• A concept called application compartment (ACom) in ROBAC is introduced and

its usage in ROBAC is discussed

• Two ROBAC variants, manifold ROBAC (ROBACM) and pseudo ROBAC

(ROBACP) are presented.

o A ROBACM based secure collaboration schema is proposed and the

usefulness of manifold ROBAC is demonstrated in secure collaboration.

7

o The usefulness of pseudo ROBAC is demonstrated in a ROBACP case

study.

1.4 Organization of the dissertation

 Chapter 2 gives two motivating examples for developing ROBAC models. One is

abstracted from a B2B application, and the other is abstracted from a B2C application.

Chapter 3 presents a family of Role and Organization Based Access Control (ROBAC)

models. Section 3.2 describes the formal definitions of ROBAC models. The applicability

and expressive power of ROBAC are shown in section 3.3. The comparison between

ROBAC and other related RBAC models is discussed in section 3.4. After discussing the

administrative issues in ROBAC, a comprehensive role and organization based

administrative model for ROBAC, called AROBAC07, is introduced and formalized in

Chapter 4. The application compartment concept and its usage in ROBAC/AROBAC07

are discussed in section 4.3. The related administrative RBAC models are discussed in

section 4.4. Two ROBAC variants, manifold ROBAC (ROBACM) and pseudo ROBAC

(ROBACP), and their usefulness are presented in Chapter 5. The formal definition of

ROBACM is given in section 5.1. A ROBACM based secure collaboration schema and its

related administrative models are proposed in section 5.2. The formal definition of

ROBACP and its administrative model are described in section 5.3. A ROBACP based

case study is presented in section 5.4. Chapter 6 concludes the dissertation and presents

some future research directions.

8

Chapter 2. Motivating Examples

 Most existing RBAC models address problems in the context of one organization.

Many B2B and B2C applications involve a large number of organizations and often have

privacy requirements such as users in one organization are only allowed to access the

resources related to that organization and are not allowed to access other organizations’

resources. To show the motivation for our new models, let us start with two examples in

the contexts of B2B and B2C, respectively. These are abstracted from our experience

with similar real-world applications.

2.1 B2B Example

 This example considers access control policy for a web based report delivery system,

which only allows authorized users to access specific reports. The users are educational

professionals from schools, districts, and states in USA. There are on order of 10,000

schools participating in the system. Reports are classified into types based on sensitivity

and nature of the content. Because some report types include privacy-sensitive data such

as student test results and personal information, only an authorized user, say, School_1’s

official, can view School_1’s reports but cannot view School_2’s reports. There are

many different types of reports, each of which may have up to three different levels of

information (state level, district level, and school level). Some sample report types are

listed in Table 1.

Table 1. Sample report types in B2B example

Type A Report (school level, district level, and state level)
Type B Report (school level only)
Type C Report (school level only)
Type D Report (school level only)
Type E Report (school level and district level)
Type F Report (district level and state level)
…

 States, districts, and schools usually form a management hierarchy. Figure 2 shows an

example of a possible management hierarchy among states, districts, and schools.

Figure 2. A sample organization hierarchy

 Informal descriptions of some security policies of the system may include:

• Users from a school are only allowed to access the reports related to that school.

• Users from a district education office are allowed to access the reports related to

that district and the schools under it.

9

10

• Users from a state education office are allowed to access the reports related to that

state and the districts and schools under it.

• School principles can view type A and type B reports.

• School teachers can view type B and type E reports.

• Officials from a district’s board of education office can view type A and type B

reports but cannot view type D reports

 Under the above policies, an authorized school level user (say School_1 teacher) can

only access certain types of the user’s own school’s reports, but is not allowed to access

other types of reports, and furthermore, cannot access another school’s reports, or those

from any district or state level. Here we are assuming that access not explicitly allowed

by the stated policies is denied. An authorized district level user can access certain types

of the user’s own district’s reports (district level) and may also access the same types of

its subordinate schools’ reports. For example, an authorized District_1 official can access

District_1’s district level Type_A reports and school level Type_A report for School_1

and School_2 since School_1 and School_2 are under District_1.

 Assuming there are 10,000 organizations and 10 types of reports, if we use standard

RBAC to model this problem directly, we have to define about 100,000 (10,000 x 10)

permissions because viewing School_1’s Type_A report is different from viewing

School_2’s Type_A report. We also need to define 100,000 different roles because a role

that can view a School_1_Type_A report is different from a role that can view a

11

School_2_Type_A report. Table 2 and Table 3 show some samples of the possible

permissions and roles in this example.

Table 2. Sample permissions in B2B example (with RBAC)

p1: View School_1 Type A Report
p2: View School_2 Type A Report
p3: View District_1 Type A Report
…

Table 3. Sample roles in B2B example (with RBAC)
r1: School_1 Type A Report Viewer with permission p1.
r2: School_2 Type A Report Viewer with permission p2.
r3: District_1 Type A Report Viewer with permission p3.
…

 The goal here is not so much to define a complete and coherent policy for this example

but rather to illustrate the issues and complexities involved.

2.2 B2C Example

 Consider an online subscription-based tutoring system, where customers are families

that have children in elementary schools. Parents pay subscription fees for their children

and are authorized to create/update the family’s profile and view their children’s progress

reports. Students that have subscribed to the service can take classes on the web and

view their progress reports and family profiles. Here, family profiles and student progress

reports need to be protected against unauthorized access. There are potentially millions of

families, and even tens or hundreds of millions. The informal description of some

security policies of this system may include:

12

• Parents can only view their own children’s progress reports.

• Parents can create/update/view their family’s profile.

• A student can view his/her own progress report and view his/her family’s profile.

 Suppose we use standard RBAC to model these policies. Because Family_1’s parent is

only allowed to access Family_1’s profile and Family_1’s children’s progress reports,

Family_1’s parents have slightly different permissions from that of Family_2’s parents.

Table 4 and Table 5 show some samples of the possible permissions and roles when

using classic RBAC in this B2C example.

Table 4. Sample permissions in B2C example (with RBAC)

p1: Update Family_1’s Profile
p2: View Family_1’s Kids’ Progress Reports
p3: View Family_1’s Profile
p4: Update Family_2’s Profile
p5: View Family_2’s Kids’ Progress Reports
p6: View Family_2’s Profile
……

Table 5. Sample roles in B2C example (with RBAC)
r1: Family_1 Parents with permission p1 and p2.
r2: Family_1 Student with permission p2 and p3.
r3: Family_2 Parents with permission p4 and p5.
r4: Family_2 Student with permission p5 and p6.
…

 We can see that the administrative complexity is very high in applying RBAC directly

to the above two examples. These scenarios are quite typical for B2B and B2C

applications. In practice, security and application engineers usually work around this

problem by combining RBAC with other access control mechanisms such as context-

13

based or attribute-based access control. The result is an ad hoc access control model with

a specialized administrative tool for each application [GMPT01, SMJ01].

Chapter 3. Role and Organization Based Access Control (ROBAC)

 To address the issue where classic RBAC does not scale up well for applications

involving multiple organizations where privacy issue is the main concern, we extend

RBAC to ROBAC (Role and Organization Based Access Control) by basing access

decision on both role and organization.

 For ease of comparison with classic RBAC, we define ROBAC models one by one

based on the increasing security functionality of the models (ROBAC0, ROBAC1,

ROBAC2, ROBAC3) in direct correspondence with the four models of well-known

RBAC96 family (RBAC0, RBAC1, RBAC2, RBAC3). ROBAC0 is a base model.

ROBAC1 is ROBAC0 plus role hierarchy and organization hierarchy. ROBAC2 is

ROBAC0 plus constraints. ROBAC3 is ROBAC0 plus role hierarchy, organization

hierarchy and constraints. Figure 3 shows the relationship of the ROBAC models and

Figure 4 portrays their essential characteristics.

Figure 3. Relationship among ROBAC models

14

Figure 4. A family of ROBAC models

3.1 Informal Description

 The central idea behind ROBAC is quite simple. Instead of only using role related

information, ROBAC utilizes both role and organization information during the

authorization process. Specifically, in ROBAC a user is assigned to role and organization

pairs rather than roles only. Permissions in ROBAC are defined as operations over object

types instead of operations over objects. A user can access an object if and only if the

user is assigned to a role and organization pair, where the role has the right to access the

object’s type and the object is related to the organization. In the following sections, we

show that the number of roles and permissions for the above B2B and B2C examples can

15

16

be reduced significantly if we use ROBAC to model them. This demonstrates that

ROBAC can significantly reduce administrative complexity for applications involving a

large number of similar organizational units.

3.2 Formal Description

 We focus our formal definitions on ROBAC0, ROBAC1, and ROBAC2 as the ROBAC3

is just a combination of ROBAC1 and ROBAC2.

3.2.1 ROBAC0

 ROBAC0 is a base model in ROBAC family. The roles and organizations in ROBAC0

are flat.

Definition 3.1: ROBAC0 has the following components:
• U -- a set of users (same as U in RBAC96);
• S -- a set of sessions (same as S in RBAC96);
• R -- a set of roles (same as R in RBAC96);
• O -- a set of organizations;
• Op -- a set of operations;
• A -- a set of assets;
• At -- a set of asset types;
• P ⊆ Op × At -- a set of permissions;
• RO ⊆ R × O -- a set of applicable role and organization associations;
• PA ⊆ P × R -- a many-to-many permission-to-role assignment relation;
• UA ⊆ U × RO -- a many-to-many user-to-role-and-organization assignment

relation;
• user: S → U -- a function mapping a session s to a single user user(s) (same as

user in RBAC96);
• atype: A → At -- a function mapping an asset to its type;
• aorg: A→ O -- a function mapping an asset to the organization it belongs to;

17

• assigned_role-orgs: U → 2RO -- a function mapping a user to a set of role-
organization pairs assigned to the user; formally: assigned_role-orgs(u) = { (r,o) |
(u, (r,o)) ∈ UA };

• active_role-orgs: S → 2RO -- a function mapping a session s to a set of active
role-organization pairs such that active_role-orgs(s) ⊆ assigned_role-
orgs(user(s));

• can_access: S × Op × A → {true, false} -- a predicate defined as can_access(s,
op, a) is true iff ∃ (r, o) ∈ active_role-orgs(s) ∧ aorg(a) = o ∧ ((op, atype(a)), r)
∈ PA ;

here the operations (Op) are similar to the operations or actions in the classic RBAC; the

assets (A) are similar to objects; the active_role-orgs is used to model activation of role-

organization pairs inside a session and it returns a subset of the role and organization

pairs the assigned_role-orgs returns. Because certain roles are only meaningful for

certain organizations – for instance, the School_Principle role is only meaningful for

school type organizations --, we introduce the set of applicable role and organization

pairs (RO) to model that requirement. Briefly, ROBAC0 extends RBAC0 by:

• introducing new sets: Organizations(O), Asset Types (At), and Role-Organization

pairs (RO);

• introducing new functions: atype, aorg;

• extending assigned_role and roles (session_role) to assigned_role-orgs and

active_role-orgs;

• redefining permissions (P) and user to role assignment (UA);

• introducing a predicate: can_access(s, op, a).

18

 Any access control system needs to answer the following question: Can a subject

perform an operation over an object?

 The newly introduced predicate can_access serves this purpose in ROBAC. If

predicate can_access(s, op, a) is true, session s or user user(s) can perform operation op

on asset a during the session. The definition of can_access in ROBAC0 indicates that a

user (user(s)) in a session s can perform an operation op over an asset a if and only if the

user has an active role and organization pair (r, o) in that session, where r has permission

to perform op over a’s type and a is related to o.

 For the aforementioned B2C example, we can use ROBAC0. Possible permissions and

roles are listed in Table 6 and Table 7.

Table 6. Sample permissions in B2C example (with ROBAC)
p1: Update Family Profile
p2: View Kid’s Progress Reports
p3: View Family Profile
…

Table 7. Sample roles in B2C example (with ROBAC)
r1: Parent which has permission p1 and p2.
r2: Student which has permission p2 and p3.
…

 In this B2C example, ROBAC only creates two roles (parent and student) instead of a

parent role and a student role for each family as in the classic RBAC.

19

3.2.2 ROBAC1

 ROBAC1 is ROBAC0 plus role hierarchy and organization hierarchy.

 Definition 3.2: ROBAC1 has the following components:

• U, S, R, O, Op, A, At, P, RO, PA, UA, user, atype, aorg -- the same as those from

ROBAC0.

• OH ⊆ O × O -- a partial order relation on O called organization hierarchy;

• RH ⊆ R × R -- role hierarchy (same as RH in RBAC96);

• assigned_role-orgs: U → 2RO -- a function mapping a user to a set of role-

organization pairs assigned to the user; formally: assigned_role-orgs(u) = { (r,o) |

∃r’ ≥ r ∧ ∃o’ ≥ o ∧ (u, (r’,o’)) ∈ UA };

• active_role-orgs: S → 2RO -- a function mapping each session s to a set of active

role-organization pairs such that active_role-orgs(s) ⊆ assigned_role-

orgs(user(s));

• can_access: S × Op × A → {true, false} -- a predicate defined as can_access(s,

op, a) is true iff ∃(r, o) ∈ active_role-orgs(s) ∧ aorg(a) ≤ o ∧ (∃r’ ≤ r, ((op,

atype(a)), r’) ∈ PA);

20

 ROBAC1 adds both OH (organization hierarchy) and RH (role hierarchy) and changes

the assigned_role-orgs function and the can_access predicate from ROBAC0.1

 The definition of can_access in ROBAC1 means that a user user(s) in a session s can

perform an operation op over an asset a if and only if the user has an active role and

organization pair (r, o) in the session where role r or any of its junior roles has permission

to perform operation op over asset a’s type and asset a is related to organization o or any

of its subordinate organizations.

 For the aforementioned B2B example, we can use ROBAC1 to model it very

conveniently. We show some ROBAC elements differing from those in RBAC as

follows.

• O= {State_1, State_2, District_1, District_2, District_3, School_1, School_2,

School_3, School_4, …}

• OH = {(State_1, District_1), (State_1, District_2), (District_1, School_1),

(District_1, School_2), (District_ 2, School_3), (State_2, District_3), (District_3,

School_4), …}

• At = {Type_A_Report, Type_B_Report, …}

• RO = { (r1, District_1), (r2, District_1), (r1, School_1), (r2, School_2), (r3,

School_1), (r4, School_1), … }

1 In ROBAC1, assigned_role-orgs function and can_access predicate consider both role hierarchy and organization hierarchy. We
could have finer classification of ROBAC models wherein only one of these hierarchies is allowed in two subcases of ROBAC1, one
where organization hierarchies are allowed and one where role hierarchies are allowed.

21

 Possible permissions and roles are listed in Table 8 and Table 9.

Table 8. Sample permissions in B2B example (with ROBAC)
p1: View Type A Report
p2: View Type B Report
p3: View Type C Report
p4: View Type D Report
p5: View Type E Report
p6: View Type F Report
…

Table 9. Sample roles in B2B example (with ROBAC)
r1: Type A Report Viewer which has
permission p1.
r2: Type B Report Viewer which has
permission p2.
r3: Type C Report Viewer which has
permission p3.
r4: Type D Report Viewer which has
permission p4.
r5: Type E Report Viewer which has
permission p5.
r6: Type F Report Viewer which has
permission p6.
…

 In this B2B example, ROBAC only creates one role called Type_A_Report_Viewer

with only one permission called View_Type_A_Report for viewing type A report,

whereas a classic RBAC must create a role for each organization’s type A report viewer,

such as School_1_Type_A_Report_Viewer with View_School_1_Type_A_Report

permission, School_2_Type_A_Report_Viewer with View_School_2_Type_A_Report

permission, etc.

22

 Based on the security policies, r1 and r2 can have role-organization pairs within all

levels of organizations but r3 and r4 can only have role-organization pairs within school

level organizations.

3.2.3 ROBAC2

 ROBAC2 is ROBAC0 plus constraints. There are many different types of constraints in

RBAC. A detailed discussion of RBAC related constraints can be found in Ahn’s

dissertation [Ahn99]. Instead of listing all types of constraints in ROBAC, we only

emphasize select differences between RBAC constraints and ROBAC constraints via

certain examples. In ROBAC, there are two levels of constraints, global constraints and

local constraints. We explain these two levels of constraints by using the two most

common UA constraints: separation of duty and cardinality.

Separation of duty (SoD) constraint I

 A separation of duty constraint I, SoD_I, is a subset of (2R × N). For an element (rs, n)

∈ SoD_I, where rs is a role set and n is a natural number greater than 1, it means that no

user can be assigned to n or more roles from the set rs within any same organization in O.

Separation of duty constraint II

 A separation of duty constraint II, SoD_II, is a subset of (2RO × N). For an element

(ros, n) ∈ SoD_II, where ros is a role-organization pair set and n is a natural number

greater than 1, it means that no user can be assigned to n or more role-organization pairs

from the set ros.

23

Cardinality constraint I

 A cardinality constraint, cardinality: R N (natural number set), is a function that

maps a role to a natural number. For r ∈ R, cardinality(r) means the maximum number of

users who can be assigned to the role r within each organization in O.

Cardinality constraint II

A cardinality constraint, cardinality: RO N, is a function that maps a role and

organization pair to a natural number. For (r, o)∈ RO, cardinality((r, o)) means the

maximum number of users who can be assigned to role r in organization o .

In Separation of duty constraint I and Cardinality constraint I, constraints are

defined on role set R only. They have the same syntax as in the RBAC constraints and

apply to every organization within O. We classify these types of constraints as global

constraints because they apply to all organizations. In Separation of duty constraint II

and Cardinality constraint II, constraints are defined on role and organization pair set

RO. We subsequently classify these types of constraints as local constraints because they

only apply to specified organizations.

 A global constraint is equivalent to a set of local constraints. For example, a global

SoD constraint ({ri, rj}, 2) can be represented by the following set of local SoD

constraints:

∪ { ({(ri, ok), (rj, ok)}, 2) }
ok ∈ O

24

 If we use wild character ‘?’ to denote the above set as ({(ri, ?), (rj, ?)}, 2), we can use

a unified syntax to represent both global SoD constraints and local SoD constraints.

 Definition 3.3: Separation of Duty (SoD) constraints in ROBAC: SoD ⊆ (2RO+ × N)

where RO+ ⊆ R×O+ ; O+ = O ∪ { ?, * }, N is a natural number set such that

∀(ros, n) ∈ SoD, |ros| ≥ n ≥ 2.

The interpretation of SoD depends on whether it is static SoD (SSD) or dynamic SoD

(DSD). The meaning of select sample static SoD notations is shown in Table 10.

Table 10. Separation of Duty Constraints (SoD) in ROBAC
Element in SoD Meaning

({ (ri, ?), (rj, ?)}, 2) no user can be assigned to both ri and rj for
any same organization in O (global SoD).

({ (ri, ok), (rj, ol)}, 2) no user can be assigned to both ri in
organization ok and rj in organization ol
(local SoD).

({ (ri, ok), (rj, ?)}, 2) no user can be assigned to ri in organization
ok while the user has role rj in any
organization.

({ (ri, ok), (rj, *)}, 2) same as above.
({ (ri, *), (rj, *) }, 2) no user can be assigned to both ri and rj in

any organizations in O.

 The difference between wild character ‘?’ and ‘*’ is that all occurrences of ‘?’ will take

the same value from O while the different occurrences of ‘*’ can take different values

from O. Therefore, ({ (ri, ?), (rj, ?)}, 2) is less strict than ({ (ri, *), (rj, *) }, 2) in

25

ROBAC’s SoD. There will be no difference between ‘?’ and ‘*’ if there is only one

occurrence in the notation.

Similar to RBAC, the static SoD (SSD) in ROBAC is a constraint on user to role and

organization pair assignment. The presence of global static SoD signifies that the same

individual user can never hold mutually exclusive roles within one organization at any

time. Whereas the presence of local static SoD means that the same individual user can

never hold mutually exclusive role-organization pairs. To model static SoD, we need to

add a condition on set UA such that the UA cannot be in a state which violates static SoD

constraints. Formally:

∀(ros, n) ∈ SSD, ∀t ⊆ ros: |t| ≥ n ≥ 2 => ∩ assigned_users((r,o)) = φ.
 (r,o) ∈ t

where assigned_user((r,o)) is all the users assigned to the role-org pair (r, o). That is:

assigned_users((r,o)) = { u ∈ U | (u, (r,o)) ∈ UA }

The global dynamic SoD (DSD) in ROBAC means that the same user cannot activate

mutually exclusive roles for any same organization in a session. The local DSD in

ROBAC means that the same user cannot activate mutually exclusive role-organization

pairs in a session. To model the dynamic SoD, the function active_role-orgs needs to be

constrained to reflect the DSD constraints. Formally:

∀(ros, n) ∈ DSD, ∀s ∈ S, ∀ro_subset ∈ 2RO, ro_subset ⊆ active_role-orgs(s),

ro_subset ⊆ ros => |ro_subset| < n.

26

 Similarly, we can unify cardinality constraints in ROBAC.

 Definition 3.4: cardinality constraints in ROBAC, cardinality: RO+ N

where RO+ ⊆ R×O+ ; O+ = O ∪ { ?, * }; and N is a natural number set;

∀ (r, o) ∈ RO, |assigned_users((r,o))| ≤ cardinality((r,o))

 Here the wild character ‘?’ and ‘*’ have the same meaning as those in SoD constraints.

Because there is only occurrence in cardinality constraints, there is no difference between

‘?’ and ‘*’ in cardinality constraints. For instance, cardinality((r,*)) = 5 is same as

cardinality((r,?)) = 5, which means that the maximum number of users who can be

assigned to the role r in any organization is 5.

 Other types of constraints on PA (permission assignment) and role activation (session)

in ROBAC can be defined along similar lines.

 In addition to the constraints on user assignment, permission assignment, and role

activation, we can also define constraints on the RO set in ROBAC. Before we formally

define RO constraints, we need to introduce organization type concept. Usually,

organizations have different types. Some roles can only be associated with certain types

of organizations. For example, School_Principle role is only meaningful when it is

associated to school type organizations. Here we give a definition of RO constraints in

ROBAC.

 Definition 3.5: RO constraints in ROBAC is based on ROBAC0 plus

• Ot -- a set of organization types;

27

• otype: O → Ot -- a function mapping an organization to its type;

• ROC ⊆ R × Ot -- a set of RO constraints; a (r, ot) ∈ ROC means that the role r

cannot associate any organizations with organization type ot. Formally,

∀(r, o) ∈ RO => (r, otype(o)) ∉ ROC

 For the aforementioned B2B example, we can use RO constraint to model the problem

instead of listing all role-organization pairs in RO explicitly.

Ot = { School, District, State }

ROC = { (r3, District), (r3, State), (r4, District), (r4, State), (r5, State), (r6,

School), … }

 Thereby r3 and r4 are roles associated only with Schools, whereas r5 can be associated

with District and School but not State.

3.2.4 ROBAC3

ROBAC3 is the base model ROBAC0 plus role hierarchy, organization hierarchy, and

constraints. The assigned_role-orgs, active_role-orgs, and can_access in ROBAC3 are

same as those in ROBAC1. The constraints in ROBAC3 are slightly different from those

in ROBAC2 because we need to consider the impact of both role hierarchy and

organization hierarchy on constraints in ROBAC3. Ultimately, ROBAC3 is a combination

of ROBAC1 and ROBAC2 with modified definition of assigned_users function plus

possible constraints on role hierarchy and organization hierarchy.

28

The assigned_users((r,o)) function used in the static SoD definition in ROBAC2 only

includes the users directly assigned to (r, o) pair. In ROBAC3, the assigned_users((r,o))

needs to include both directly assigned users and indirectly assigned users via role

hierarchy and organization hierarchy. Formally,

 assigned_users((r,o)) = { u ∈ U | ∀(r’, o’) ∈ RO, (r’, o’) ≥ (r, o), (u, (r’, o’)) ∈ UA }

Where (r’, o’) ≥ (r, o) means r’ ≥ r in the role hierarchy and o’ ≥ o in the organization

hierarchy. With this modified assigned_users definition, all constraints discussed in

ROBAC2 are applicable to ROBAC3.

In addition to the constraints defined in ROBAC2, we may define new constraints on

role hierarchy (RH) and organization hierarchy (OH) in ROBAC3. For example, we can

define constraints on RH to restrict the permission inheritance during the role activation.

We may also define constraints to invalidate a particular parent-child relationship in OH

during a particular session in ROBAC3.

3.3 Applicability and Expressive Power of ROBAC

 What is the best scenario for using ROBAC? Here we try to categorize ROBAC from

the applicability perspective.

Definition 3.6: Given a ROBAC based system (U, S, R, RH, O, OH, Op, At, A, RO, P,

PA, UA, atype, aorg), let us define the following notations:

• oi, oj ∈ O, r ∈ R, we say oi is compatible to oj on r iff (r, oi) ∈ RO ∧ (r, oj)∈RO.

We denote that as oi ≡r oj.

29

• oi, oj ∈ O, Rc ⊆ R, we say oi is compatible to oj on Rc iff ∀r ∈ Rc, (r, oi) ∈ RO

∧ (r, oj) ∈ RO, (alternately, iff oi is compatible to oj on all r ∈ Rc). We denote

that as oi ≡Rc oj.

• compatible_O: R → 2O -- a function mapping a role to a set of organizations in

which all organizations are compatible on the given role; formally,

compatible_O(r) = { o | (r, o) ∈ RO }.

• compatible_O*: 2R → 2O -- a function mapping a set of roles to a set of

organizations in which all organizations are compatible on the given set of roles;

formally, for a Rc ⊆ R and Rc ≠ ∅ , compatible_O*(Rc) = { o | ∀r ∈ Rc, (r, o) ∈

RO }. We define compatible_O*(∅) = ∅.

• applicable_R: O → 2R -- a function mapping a organization to a set of roles in

which all roles are applicable to the organization; formally, applicable_R(o) = { r

| (r, o) ∈ RO }

• ROBAC is homogeneous on r, if compatible_O(r) = O.

• ROBAC is heterogeneous on r, if |compatible_O(r)| = 1.

• ROBAC is partially homogeneous on Rc, if 1 < | compatible_O*(Rc)| < |O|.

• ROBAC is totally homogeneous on Rc, if compatible_O*(Rc) = O.

• ROBAC is heterogeneous on Rc, if |compatible_O*(Rc)| = 1.

• homogeneous index, hindex: 2R → [0, 1] – a function mapping a role set to

number between 0 to1 (including 0 and1); formally,

hindex(Rc) = |compatible_O*(Rc)| / |O|.

30

The homogeneous index function measures the degree of compatibility of a given role

set in ROBAC. If a ROBAC is totally homogeneous on Rc, hindex(Rc) = 1. If a ROBAC

is heterogeneous on Rc, hindex(Rc) = 1/|O|. If a ROBAC is partially homogeneous on Rc,

the hindex(Rc) is between 1/|O| and 1. For completeness, we define hindex(∅) = 0.

In the aforementioned B2B example, the compatible_O*({r1, r2}) = O. Therefore,

hindex({r1,r2}) = | compatible_O*({r1, r2})| / |O| = 1

which means that the ROBAC in the B2B example is totally homogeneous on {r1, r2}.

Similarly, the ROBAC in the B2C example is totally homogeneous on {parent, kid}.

From the above definition, we can derive some properties of hindex.

 Theorem 3.1: For any two non-empty subsets Rc1 , Rc2 of role set R in ROBAC, if

Rc1 ⊆ Rc2, then hindex(Rc1) ≥ hindex(Rc2).

 Poof: Given condition: Rc1 ≠ ∅ and Rc1 ⊆ Rc2, ∀r ∈ Rc1 ⇒ r ∈ Rc2.

For any o ∈ compatible_O*(Rc2) ⇒ ∀r ∈ Rc2, (r, o) ∈ RO ⇒ ∀r ∈ Rc1, (r, o) ∈ RO

⇒ o ∈ compatible_O*(Rc1) . That is: any o in compatible_O*(Rc2) is also in

compatible_O*(Rc1). So | compatible_O*(Rc2) | ≤ | compatible_O*(Rc1) |. That means

hindex(Rc1) = | compatible_O*(Rc1) | / |O| ≥ | compatible_O*(Rc2) | / |O| = hindex(Rc2).

�

31

 Theorem 3.2: If a ROBAC is totally homogeneous on Rc, then the ROBAC is totally

homogeneous on all non-empty subsets of Rc.

Poof: Given the condition and Definition 3.6, we have compatible_O*(Rc) = O. That

means: hindex(Rc) = | compatible_O*(Rc) | / |O| = 1.

From Theorem 3.1, ∀ Rc’ ⊆ Rc ∧ Rc’ ≠ ∅, hindex(Rc’) ≥ hindex(Rc) = 1 (1)

 By definition, hindex(Rc’) ≤ 1 (2)

From (1) and (2), we have hindex(Rc’) = 1. That is, compatible_O*(Rc’) = O which

means that the ROBAC is totally homogeneous on Rc’. �

The higher the hindex(R) value is, the more the benefits we can gain by applying

ROBAC. The best scenario is that the ROBAC is totally homogeneous on the role set R,

that is hindex(R) = 1. The worst scenario for ROBAC is that the ROBAC is

heterogeneous on all subsets of the role set R, that is, ∀ Rc ⊆ R and Rc ≠ ∅

hindex(Rc) = 1/|O|

The hindex function quantifies how well the ROBAC model is used for a given

problem.

 ROBAC models change RBAC models in several ways. Do the ROBAC models

increase (or decrease) the expressive power of RBAC models? The following theorem

shows that ROBAC and RBAC have the same expressive power. We prove the theorem

by using a constructive approach. We first show that for any RBAC based system, a

ROBAC based system can be constructed to simulate the behavior of the RBAC system.

32

Then we show that for any ROBAC based system, a RBAC based system can be

constructed to simulate the behavior of the ROBAC system.

 Lemma 3.1: Any given RBAC based system can be simulated by a ROBAC based

system.

 Proof: For any given RBAC based system (U, S, R, RH, Op, A, P, PA, UA), where

• U -- a set of users;

• S -- a set of sessions;

• user: S → U -- a function mapping a session s to a single user user(s)

• R -- a set of roles;

• RH ⊆ R × R -- role hierarchy;

• Op -- a set of operations;

• A = { ai, i = 1,2, …, n } -- a set of assets;

• P ⊆ Op × A -- a set of permissions;

• PA ⊆ P × R -- a many-to-many permission-to-role assignment relation;

• UA ⊆ U × R -- a many-to-many user-to-role assignment relation;

 We can construct a corresponding ROBAC based system (U’, S’, user’, R’, RH’, Op’,

A’, At’, O’, RO’, P’, PA’, UA’, atype, aorg) where

• U’, S’, user’, R’, RH’, Op’, A’ are same as U, S, user, R, RH, Op, A in the above

RBAC system;

33

• At’ = { ati | i = 1, 2, …, n } – asset type set; for each ai in A, we add a unique ati

in At’ and define atype(ai) = ati.

• O’ = { o } – a set of organization which only has one organization; ∀ai ∈ A, we

define aorg(ai) = o;

• RO’ = { (r, o) | ∀r ∈ R }

• P’ ⊆ Op’ × At’ -- for each (op, ai) ∈ P, we add (op, ati) in P’;

• PA’ ⊆ P’ × R’ -- for each ((op, ai), r) ∈ PA, we add ((op, ati), r) in PA’;

• UA’ ⊆ U’ × RO’ -- for each (u, r) ∈ UA, we add (u, (r,o)) in UA’.

 In the constructed ROBAC system, there is only one organization o; all assets are

related to o; atype is a one to one mapping between A and At. A permission (op, ai) for a

role r in RBAC is mapped to a permission (op, ati) for the role r in ROBAC where ati =

atype(ai). Assigning a user to a role r in RBAC is mapped to assigning a user to (r, o) in

ROBAC where o is the only organization in O.

 A user u can perform operation op over asset a in RBAC means that the user u is

assigned some role r which has some permission (op, a). That is equivalent to that user u

is assigned to a role-org pair (r, o) where r has permission (op, atype(a)) and asset a is

related to organization o in the constructed ROBAC. So this same user u can also perform

operation op over asset a in the constructed ROBAC system because of the logic in

can_access predicate.

34

 Lemma 3.2: Any given ROBAC based system can be simulated by a RBAC based

system.

 Proof: For any given ROBAC based system (U, S, user, R, RH, O, OH, Op, At, A,

RO, P, PA, UA, atype, aorg), we can construct a RBAC based system (U’, S’, user’, R’,

RH’, Op’, A’, P’, PA’, UA’) where

• U’, S’, user’, Op’, A’ are same as U, S, user, Op, A in the above ROBAC system;

• R’ -- a set of roles; for each role-org pair (ri,oj) ∈ RO, we add a unique role rij’ in

the R’;

• RH’ = { (rij’, rkl’) | ri ≤ rk in RH ∧ oj ≤ ol in OH };

• P’ ⊆ Op’ × A’ -- a set of permissions; for each permission (opi, atk) in P,

P’ = P’ ∪ { (opi, ak) | atype(ak) = atk };

• PA’ ⊆ P’ × R’ -- for each ((opi, atk), ri) in the PA,

PA’ = PA’ ∪ { ((opi, ak), rim’) | atype(ak) = atk ∧ (ri,om) ∈ RO };

• UA’ ⊆ U’ × R’ -- for each (u, (ri,oj)) ∈ UA, we add (u, rij’) in UA’.

 Each role-org pair in ROBAC is mapped to a unique role in the constructed RBAC.

Each permission in ROBAC is mapped to a subset of permissions in the RBAC. Each

permission to role assignment in ROBAC is mapped to a subset of the permission to role

assignments in the RBAC. Each user to role-org pair assignment in ROBAC is mapped to

a user to role assignment in the RBAC.

35

 If a user u can perform operation op over asset a in ROBAC, then the user u is

assigned some role-org pair (ri,oj) in which ri has some permission (op, at) and atype(a) =

at and aorg(a) = oj. That is equivalent to a situation where user u is assigned to a role rij’

which has permission (op, a) in the constructed RBAC. So this same user u can also

perform operation op over asset a in the constructed RBAC system.

 Theorem 3.3: RBAC and ROBAC have same expressive power.

Poof: Lemma 3.1 shows that ROBAC is at least as expressive as RBAC while Lemma

3.2 shows that RBAC is at least as expressive as ROBAC. So RBAC and ROBAC have

same expressive power. �

For a ROBAC system with M number of roles and a large number of organizations, say

N organizations, a corresponding RBAC may have M×N roles. Using ROBAC to model

the problems involving large number of similar organizations can significantly reduce the

number of roles and permissions. Although ROBAC and RBAC have the same

theoretical-expressive power, the practical benefits of using ROBAC over RBAC for

applications involving a large number of similar organizations are obvious. A detail

comparison between ROBAC and RBAC is given in the next section.

36

3.4 Discussion and Related Work

 The organization concept in ROBAC introduces a powerful abstraction that can be

coupled quite naturally with the traditional concept of roles. For example, we can treat

the divisions or project teams in an enterprise as organizations. So ROBAC can also be

used in many B2E applications. A user with an assigned role and organization pair (r, o)

indicates that the user can act as role r within the organization o and its subordinate

organizations. Because ROBAC performs access control based on both roles and

association relations between users and protected resources (assets), it is suitable to

model privacy-related policies in applications involve a large number of similar

organizational units. A preliminary version of ROBAC model was published in [ZZS06].

 As the decision logic (can_access predicate) in ROBAC is deterministic, we believe

that it is viable to develop a general-purpose authorization engine and an administration

tool based on our proposed ROBAC models.

In this section we first compare ROBAC with classic RBAC, and subsequently with

some existing access control models, which extend RBAC with motivations that are, to

some degree, similar to those of ROBAC.

3.4.1 Comparison with RBAC

Users in ROBAC are assigned to role-organization pairs while users in classic RBAC

are assigned to roles. Permissions in ROBAC are defined as a subset of Op × At while

permissions in classic RBAC are defined as a subset of Op × A. Usually, |At| is much

37

smaller than |A|. In the above B2B example, |A| ≈ 10,000 × |At|. In general, the

relationship between the number of possible roles in RBAC (|Rc|RBAC) and the number of

possible roles in ROBAC (|Rc|ROBAC) for a same set of job functions can be summarized

by the following formula:

|Rc|RBAC = |O| × [1 + (|Rc|ROBAC -1) × hindex(Rc)]

For a totally homogenous ROBAC, hindex(R) = 1,

|R|RBAC = |O| × [1 + (|R|ROBAC -1) × 1] = |O| × |R|ROBAC

 So the number of possible roles in classic RBAC is |O| times more than the number of

possible roles in ROBAC for a totally homogeneous ROBAC.

For heterogeneous ROBAC, hindex(R) = 1 / |O|

Because none of the organizations shares job functionality, we can treat the ROBAC as

having one big organization. That is,

 |O| = 1, |R|RBAC = |O| + |R|ROBAC - 1 = |R|ROBAC

 So the number of possible roles in RBAC and ROBAC are same for a heterogeneous

ROBAC.

 Compared to RBAC, the number of roles and permissions in ROBAC are reduced

dramatically in the above mentioned B2B and B2C examples because the large

homogeneous index values in these two examples. The set of applicable role and

organization pairs (RO) is a newly introduced concept in ROBAC. The size of RO may

become large when there are a large number of organizations involved. Instead of

creating RO explicitly, we can define RO implicitly by using some rules or using RO

38

constraints. For example, in the previously mentioned B2B example, we can use the

following rules to establish RO implicitly:

• r1 (Type A Report Viewer) and r2 (Type B Report Viewer) can associate with any

organizations.

• r3 (Type C Report Viewer) and r4 (Type D Report Viewer) can only associate

with school type organizations.

Assuming that there are 8,950 schools, 1,000 districts, and 50 states in the B2B

example, we can calculate the hindex for the above roles.

hindex({r1, r2}) = 1; hindex({r3, r4}) = 8,950 / 10,000 = 0.895

The resulted ROBAC is totally homogeneous on subset {r1, r2} but is partially

homogeneous on subset {r3, r4}. Based on the Theorem 3.1, hindex (R) ≤ hindex({r3,

r4}) where R is the role set including all roles in the ROBAC. So the ROBAC in the B2B

example is partially homogeneous on R.

 For the B2C example, we allow any role to associate with any organization. The

resulted ROBAC is totally homogeneous on the role set R because the hindex(R) = 1. So

the B2C example is one of the best scenarios for ROBAC. While the size of RO may be

large, the administrative work for RO is small. Detailed comparison between ROBAC

and RBAC is listed in Table 11.

Table 11. Comparison between RBAC and ROBAC
(with N organizations and M asset types for totally homogenous ROBAC)

 RBAC ROBAC

Number of
permissions

N×M

M

39

Number of
roles

N×M

M

Organization
hierarchy

N/A

Yes

Role hierarchy

Yes

Yes

Constraints

Yes

Yes

User‐role‐
(org)
assignment

Yes

Yes

Permission‐
role
assignment

Yes

Yes

Role
administration

Yes

Yes

Number of
role‐org pairs

N/A

≤ N×M

Role‐org pairs
administration

N/A

Yes

Because the number of roles and permissions in ROBAC is much smaller than that in

RBAC under situations similar to the above two examples, the administrative complexity

in Permission-to-Role assignment is significantly reduced. Therefore, using ROBAC to

model problems similar to the above illustrated B2B and B2C examples is more succinct

and intuitive than using RBAC, and at the same time still keeps RBAC’s benefits such as

40

policy neutrality, principle of least privilege, separation of duty, and ease of management.

Although ROBAC and RBAC have the same theoretical-expressive power, the practical

benefits of using ROBAC over RBAC for applications involving a large number of

similar organizations are quite evident. It is more beneficial to use ROBAC where

privacy is a major concern and in situations involving many organizational units across

which job functions are similar (higher homogeneous index value). It is not worthwhile to

use ROBAC when there is no job function similarity across organizational units (lowest

homogeneous index value).

3.4.2 Comparison with Role Templates

 In the perspective of restricting access to a subset of contents, the role templates

[GI97] proposed by Giuri and Iglio has similar effectiveness as ROBAC. In a role

template, a parameterized privilege is defined as (am, o, exp(v1, …, vn)) where am is an

access mode (same as an operation in ROBAC) that can be performed on object o which

is similar to the asset concept in ROBAC. The exp(v1, …, vn) is a logical expression with

unbound variables v1, …vn. The parameterized privilege means to perform operation am

over o while exp(v1, …, vn) is true. The unbound variables in the parameters of the

corresponding role template need to be bound when a role is assigned to a user. Although

role templates can model security policies in our B2C example by defining organization,

objects, and users as unbound variables and “related to” as a logical expression, the

approach is not as straightforward as with ROBAC.

41

 Because the values of the variables in role templates are un-structured, it is difficult to

use role templates to model the aforementioned B2B example. In general, role templates

can achieve the modeling capability of ROBAC0 with similar complexity, but it is very

difficult for role templates to achieve the modeling capability of ROBAC1 due to the

flexibility introduced by organization hierarchies used in these ROBAC models. We

believe that the administrative tasks in ROBAC are much simpler than those in role

templates approach.

3.4.3 Comparison with Team-based Access Control (TMAC)

 In TMAC [Tho97], the notion of “team” is proposed as an abstraction that groups users

in specific roles with the objective of accomplishing a specific task or goal. As

recognized in TMAC, it is very difficult for classic RBAC to enforce the following two

requirements at the same time: scalable permission assignment and fine-grained, run-time

permission activation at the level of individual users and objects. The notions of “team”

in TMAC and “organization” in ROBAC are different. Team in TMAC or its variants

[GMPT01] and [Wang99] represents a group of users and has roles and permissions

derived from the roles and permissions of the users in the group while organization in

ROBAC does not have roles or permissions. Team members share a common goal and

may share a default set of permissions for their cooperative work. The teams in TMAC

are flat while the organizations in ROBAC can be structured. In TMAC, an access

decision is based on a team’s permissions, the user’s contexts, and the object’s contexts,

while in ROBAC a decision is based on user’s roles and the indirect association between

42

the user and the assets via organizations. Both TMAC and ROBAC realize the

importance to distinguish object (asset) type and object instance (asset) for scalable

permission assignment in RBAC. With TMAC we find that it is possible to model the

B2C example, but it is very complex to model the B2B example due to the presence of

organization hierarchy.

Further, we can simulate most components (except for the special role team header) of

TMAC with a ROBAC0 model directly. For the team header role in TMAC, we can

simply create a role with special permissions in ROBAC to model it.

 3.4.4 Comparison with Organizational Units

Perwaiz and Sommerville [PS01] utilize organizational context to restrict the

permissions of roles. An organization unit (OU) in their paper has its own permissions.

The maximum permissions of a role in an organization unit are the intersection of the

role’s permissions and the organization unit’s permissions. So the OU in Perwaiz’s

approach is more like the “team” notion in the TMAC than to the “organization” in

ROBAC, since an organization in ROBAC does not associate with permissions. The

access control decision process in ROBAC is also different from that in [PS01]. In the

perspective of reducing the number of roles in RBAC, Perwaiz and Sommerville’s

approach renders some effects similar to those yielded by ROBAC. But the

administration of ROBAC is simpler since permissions are not assigned to

organizations.

43

3.4.5. Comparison with Group Based RBAC (GB-RBAC)

The GB-RBAC model [LZQX06] incorporates the component of groups into the

RBAC96 model. Roles in GB-RBAC are divided as group roles and user roles. Groups

are assigned to group roles. Users are assigned to user roles. When a user become a

member of a group, the user acquires all group roles that group has. So the group concept

in GB-RBAC is more like team concept in TMAC than the organization concept in

ROBAC.

3.4.6. Comparison with Organization Based Access Control (OrBAC)

In OrBAC model [KBBBCDMST03], Kalam et al. consider roles that subjects, actions

or objects are assigned in an organization. The role of a subject is simply called a role as

in the RBAC model. The role of an action is called an activity whereas the role of an

object is called a view. An organization specifies security policy by defining security

rules which specify that some roles are permitted or prohibited to carry out some

activities on some views. These security rules may be activated depending on contextual

conditions. Security rules are modeled using a 6-places predicate:

- security_rule(type, org, role, activity, view, context) where type is either

permission or prohibition.

For example, security_rule(permission, a_hosp, nurse, consult, medial_record,

urgency) means that in organization a_hosp, a nurse is permitted to consult a medical

record in the context of urgency.

44

The organizational policy is then used to automatically derive concrete configurations

of Policy Enforcement Point. OrBAC model uses the following 3-places predicates to

associate subjects, actions, and objects with roles in organizations:

- empower(org, subject, role): means that subject is empowered with role in

organization org.

- consider(org, action, activity): means that action is considered as an

implementation of activity in organization org.

- use(org, object, view): means that object is used in view in organization org.

 The contextual condition is modeled by the following predicate:

- hold(org, subject, action, object, context): means that subject performs action on

object in context context within organization org.

 The general principle of deriving concrete privileges that apply to subject, action, and

object from organizational security rules is:

concrete_privilege(type, s, act, obj) :-
security_rule(org, type, r, a, v, cxt),
empower(org, s, r),
use(org, obj, v),
consider(org, act, a),
hold(org, s, act, obj, cxt)

that is a subject s has a concrete privilege of type type to perform an action act on an

object obj if

(1) organization org assigns to role r a security rule of type type to perform activity a

on view v in context cxt and

(2) organization org empowers subject s in role r and

45

(3) org uses object obj in view v and

(4) org considers that action act implements the activity a and

(5) context cxt is active when subject s is performing action act on object obj in org.

 In OrBAC, organization is used as an actor while organization in ROBAC is passive.

The organizations in OrBAC are flat (no relationship among the organizations) while the

organizations in ROBAC are structured. The security_rule predicate in OrBAC has an

effect similar to assigning permissions to role within an organization. But a role in

OrBAC may have completely different privileges in different organizations. The

empower predicate in OrBAC is similar to assigning a user (subject) to a role-org pair in

ROBAC. Similar to ROBAC, OrBAC restricts role privileges with an organization. The

concrete privilege derivation logic in OrBAC has a similar effect as can_access predicate

in ROBAC but the logic in can_access is much simpler. For each organization, OrBAC

need define its own security rules while ROBAC share the same role definition. ROBAC

is developed to solve the RBAC scalability problem due to many similar organizations

while OrBAC is developed to address organization bounded security policy modeling

problem (more abstract from implementation). For aforementioned B2B example,

OrBAC has to define security rules for each organization. So OrBAC does not scale up

well for applications involving many organizations.

46

Chapter 4. Administrative ROBAC Model

 In any security system, administrative actions need to be controlled. Using a role-based

method to control RBAC administrative tasks is often a preferred way because it can

share the underline authorization mechanism. There are two main approaches to perform

RBAC administration. One is centralized such as Gavrila and Barkley’s NIST model

[GB98] and Nyanchama and Osborn’s role graph model [NO99] where one or more

security administrators perform all administrative tasks. Another is decentralized such as

Sandhu et al’s ARBAC97 model [SBM99], Crampton and Loizou’s SARBAC model

[CL03], Oh et al’s ARBAC02 model [OSZ06], and Bhatti et al’s X-GTRBAC admin

[BJBG04] where administrative tasks are distributed among many different

administrators in a controlled manner. These role-based decentralized approaches usually

add a separate administrative role hierarchy in the original RBAC model. Figure 5 shows

an example of regular role hierarchy and administrative role hierarchy created in

ARBAC97 model for an engineering department within an enterprise.

Figure 5. Examples of role hierarchy using classic administrative RBAC

where Department Security Officer (DSO) can perform administrative tasks on the

department level and Project Security Officer (PSO) can perform administrative tasks on

the project level. Each project not only has its own instance of Project Leader role,

Production Engineer role, and Quality Engineer role in the regular role hierarchy, but also

has its own instance of Project Security Officer role in the administrative role hierarchy.

If there are a large number of projects, say in the degree of hundreds or more, in an

enterprise, both the regular role hierarchy and administrative role hierarchy will become
47

48

very clumsy and hard to manage correctly. Many classic administrative RBAC models,

such as ARBAC97, do not scale up well when a large number of similar organizational

units are involved.

 As we mentioned earlier, the organization concept in ROBAC should not be treated

literally. For business to employee (B2E) applications, we may treat divisions or project

teams in an enterprise as organizations. ROBAC model is suitable to be used in large

enterprises where there are many similar organizational units (higher homogeneous index

value). A decentralized administrative approach is preferred for large enterprises. Based

on the observation that administrative tasks are very similar in many enterprises, we

believe that it is an effective approach to utilize the role and organization based access

control concept to manage administrative tasks in ROBAC. The main topic of this

chapter is to present a comprehensive model for role and organization based

administration of ROBAC.

4.1 Administrative Issues in ROBAC

In classic RBAC, major administrative tasks include assigning users to roles, assigning

permissions to roles, and adjusting role hierarchy. Thus, some role based administrative

models, such as ARBAC97, have three separate sub-models: URA97 (user-role

assignment), PRA97 (permission-role assignment), and RRA97 (role-role assignment), to

deal with these three major administrative tasks. There are more components in ROBAC

than those in RBAC, making the administration of ROBAC more multifaceted than

49

RBAC. Following the ARBAC97 approach, we divide administrative tasks into the

following categories: assigning users to role-organization pairs, assigning permissions to

roles, managing roles and role hierarchy, managing organization and organization

hierarchy, and managing role and organization association. The reason is that these

administrative activities in ROBAC affect user’s access rights in different ways.

In most ROBAC based systems, organizations O, organization hierarchy OH, roles R,

and role hierarchy RH are expected to be mostly static and change very slowly. They are

typically available in advance and will not change frequently after the ROBAC is set up.

Therefore, the major administrative effort after initial setup is on the permission-to-role

assignment and user-to-role-and-organization assignment.

In the next section, a comprehensive role and organization based administrative model

for ROBAC is proposed. We call this new model AROBAC07 (administrative

ROBAC’07).

4.2 AROBAC07 Model

 AROBAC07 has five sub-models.

1. UROA07 (user to role and organization pair assignment ’07) is concerned with

user to role and organization pair assignment;

2. PRA07 (permission to role assignment ’07) deals with permission-role

assignment;

3. RRA07 (role to role assignment ’07) manages roles and role hierarchy;

50

4. OOA07 (organization to organization assignment ’07) handles organizations and

organization hierarchy; and

5. ROA07 (role to organization assignment ’07) controls applicable association

between roles and organizations.

 The development of AROBAC07 is inspired by ARBAC97 [SBM99], SARBAC

[CL03], and ARBAC02 [OSZ06]. Our AROBAC07 model will be presented in the

context of ROBAC1. Its interpretation for ROBAC0, ROBAC2, and ROBAC3 is

straightforward.

ARBOAC07 adds some additional sets, relationships, and functions to the ROBAC

model. Similar to ROBAC, an administrative user is assigned to administrative role and

organization pairs instead of administrative roles only. An administrative decision is

made based on both role and organization information. The common elements of

AROBAC07 are described in Definition 4.1 and Figure 6 shows some relationship among

the elements of AROBAC07.

Definition 4.1: AROBAC07 has the following components:

• U, S, O, OH, Op, A, At, P, RO, PA, UA, user, atype, aorg, assigned_role-orgs,

active_role-orgs, can_access -- same as those from ROBAC;

• RR -- a set of regular roles (renamed R in ROBAC);

• RRH ⊆ RR × RR – regular role hierarchy (renamed RH in ROBAC);

• AR -- a set of administrative roles (same as AR in ARBAC97), where

51

RR ∩ AR=∅.

• ARH ⊆ AR × AR -- administrative role hierarchy (same as ARH in ARBAC97);

• R = RR ∪ AR -- the set of all roles;

• ARRA ⊆ AR × RR -- a many-to-many administrative role to regular role

assignment;

• RH = RRH ∪ ARH -- a combined role hierarchy;

• UO ⊆ U × O -- a set of user-organization affiliations;

• PO ⊆ P × O -- a set of applicable permission-organization associations;

• CRU – a set of applicable prerequisite conditions for users;

• CRP – a set of applicable prerequisite conditions for permissions;

• CAN_ASSIGN_USER ⊆ ARRA × CRU - an association defines the constraints

when assigning users to role-organization pairs;

• CAN_REVOKE_USER ⊆ ARRA × CRU - an association defines the constraints

when revoking users from role-organization pairs;

• can_assign_user: S × U × RO → {true, false} – a predicate which indicates that if

can_assign_user(s, u, (r,o)) is true then user u can be assigned to the role-org pair

(r,o) within the session s (the definition is described in UROA07);

52

• can_revoke_user: S × U × RO → {true, false} – a predicate which indicates that

if can_revoke_user(s, u, (r,o)) is true then user u can be revoked from role-org

pair (r,o) within the session s (the definition is described in UROA07);

• CAN_ASSIGN_PERMISSION ⊆ ARRA × CRP - an association defines the

constraints when assigning permissions to roles;

• CAN_REVOKE_PERMISSION ⊆ ARRA × CRP - an association defines the

constraints when revoking permissions from roles;

• can_assign_permission: S × P × RR → {true, false} – a predicate which indicates

that if can_assign_permission(s, p, r) is true then the permission p can be

assigned to the regular role r within the session s (the definition is described in

PRA07);

• can_revoke_permission: S × P × RR → {true, false} – a predicate which indicates

that if can_revoke_permission(s, p, r) is true then the permission p can be revoked

from the regular role r within the session s (the definition is described in PRA07);

• can_modify_R: S × 2RR → {true, false} -- a predicate which indicates that if

can_modify_R(s, rset) is true then the user user(s) can modify the roles and their

relationship inside the role set rset within the session s (the definition is described

in RRA07);

• can_modify_O: S × 2O → {true, false} -- a predicate which indicates that if

can_modify_O(s, oset) is true then the user user(s) can modify the organizations

and their relationship inside the organization set oset within the session s (the

definition is described in OOA07);

• can_modify_RO: S × R × O → {true, false} -- a predicate which indicates that if

can_modify_RO(s, r, o) is true then the user user(s) can associate or disassociate

role r with organization o within the session s (the definition is described in

ROA07);

Figure 6. AROBAC07 Model

53

 In AROBAC97, UO defines user’s organization affiliation. A user may be affiliated

with multiple organizations. UO is usually pre-determined by Human Resource (HR)

departments of individual organizations. The applicable permission-organization

54

association set PO defines permissions applicable to organizations. Similar to permission

set P, PO is pre-determined via joint efforts between HR and Information Technology

(IT) departments. So we do not include the management of UO, P, and PO in our model.

The set ARRA can be considered as the administrative role’s permission over the regular

roles. Some constraints need to be enforced when creating or modifying the role

hierarchy (RH) or organization hierarchy (OH) such as no circular reference. The detailed

descriptions of the prerequisite condition sets CRU and CRP, the predicates

can_assign_user, can_revoke_user, can_assign_permission, can_revoke_permission,

can_modify_R, can_modify_O, and can_modify_RO are discussed in the following

corresponding subsections.

4.2.1 The UROA07 Model

 The UROA07 model deals with managing user to role-organization pair assignment. It

provides two predicates to determine whether the current session can grant a user

membership in a role-organization pair (or simply role-org pair) or revoke a user

membership in a role-org pair. Before introducing the details of UROA07 model we need

some definitions.

 Definition 4.2: user prerequisite condition (upc) - a upc is a boolean expression using

the usual ∧ and ∨ operators on terms of form of (r, ?), ¬(r, ?), (r, o), and ¬(r, o) where

(r, o) is a role-org pair belongs to RO. A user prerequisite condition is evaluated for a

user u by interpreting (r, o) to be true if (∃r’ ≥ r, ∃o’ ≥ o) (u, (r’, o’)) ∈ UA and ¬(r, o) is

55

true if (r, o) is not true. Here “?” is a place holder for any o∈O, and (r, ?) is true for user

u if (∃r’ ≥ r , ∃o’ ≥ ?, (u, (r’, o’)) ∈ UA) and ¬(r, ?) is true if (r, ?) is not true. CRU is

a set including all applicable upcs plus a null element. The null is interpreted as true for

any user.

Note: The (r, ?) expression represents a condition template where the value of “?” is set

to o when the system is asked whether a user can be assigned to a role-organization pair

(r, o). We will explain it in an example later.

 Definition 4.3: omembers: O 2U, is a function mapping an organization to a set of

users who are affiliated with the organization; formally, omembers(o) = { u | (u, o) ∈ UO

}; omembers*(o) = { u | ∃o’ ≤ o, (u, o’) ∈ UO }

Note: omembers(o) is the set of all users affiliated with organization o and omembers*(o)

is the set of all users affiliated with organization o or its subordinate organizations.

 Definition 4.4: apermissions: AR 2RR, is a function mapping an administrative role

to a set of regular roles which the administrative role has administrative privilege over;

formally, apermissions(ar) = { r | (ar, r) ∈ ARRA }; apermissions*(ar) = {r | ∃ar’ ≤ ar,

(ar’, r)∈ARRA }

Note: apermisions(ar) is the set of regular roles where the administrative role ar has

administrative privilege and apermissions*(ar) is the set of regular roles where

administrative role ar or its junior administrative roles has administrative privilege.

56

 Definition 4.5: may_manage_user: AR × U × RO × CRU → {true, false} - a

predicate defined as may_manage_user(ar, u, (r,o), c) is true iff (r ∈ apermissions*(ar))

∧ c ∧ (u ∈ omembers*(o)).

Note: The definition of may_manage_user(ar, u, (r,o), c) indicates that a user with

administrative role ar may manage the user u with respect to the role-org pair (r, o) if

and only if the user u satisfies the user prerequisite condition c and is affiliated to the

organization o or its subordinate organizations and the administrative role ar or its junior

administrative roles can perform administrative tasks on role r. The may_manage_user

predicate is used as a sub-routine in the following UROA07 Grant Model and UROA07

Revoke Model.

 Definition 4.6: The UROA07 Grant Model – can_assign_user predicate controls

whether a user can be assigned to a role-org pair within a session. Formally,

can_assign_user(s, u, (r,o)) is true iff (∃o’ ≥ o, ∃(ar, o’) ∈ active_role-orgs(s)) ∧

(∀c∈CRU, ((ar, r),c) ∈ CAN_ASSIGN_USER ∧ may_manage_user(ar, u, (r,o), c)).

 The definition of can_assign_user(s, u, (r,o)) in UROA07 indicates that a user (user(s))

in a session s can assign a user u to a role-org pair (r, o) if and only if user(s) has an

active role-org pair (ar, o) (explicitly or implicitly via organization hierarchy) in that

session and user u satisfies all related user prerequisite conditions defined in

CAN_ASSIGN_USER and is affiliated to the organization o or its subordinate

organizations and the administrative role ar or its junior administrative roles can perform

administrative tasks on role r.

57

 The user prerequisite condition in UROA07 is likely to be empty in most cases.

However, because it may be used to model more complex policies, we include it in the

model.

 To appreciate the benefits behind the UROA07 model, let us remodel the

aforementioned engineering department example in Figure 5 using AROBAC07. Figure 7

shows the AROBAC07 model for the engineering department problem in Figure 5. Here

we treat a project team as an organization. We further assume that roles in different

project teams within the engineering department perform similar tasks and a team

member can only access the resource related to the team he/she is in. This assumption

will usually hold because most enterprises need to enforce a unified security policy

across multiple teams.

Figure 7. Role and organization hierarchies using administrative ROBAC

 We can see that both the regular role hierarchy (Figure 7(a)) and the administrative

role hierarchy (Figure 7(c)) in AROBAC07 are simpler. For the moment please ignore

the Greatest Administrative Role (gar) and the Greatest Organization (go). We will

explain these later. Here we prefix “@” in the front of organizations to distinguish them

from roles. For example, a user with an active role-org pair (PSO, @PT1) is a security

administrator in project team 1. may_manage_user(PSO, u, (PE, @PT1), ¬(QE, ?)) is

true if user u is affiliated with project team 1 (@PT1) and u is not a QE inside the project

58

59

team 1. Based on the UROA07 grant-model, the user with active role-org pair (PSO,

@PT1) can assign membership of roles: PL, PE, QE, and ENG within project team 1, to

users affiliated with the project team 1 but he/she cannot assign these users to roles

within project team 2 and cannot assign users not affiliated to project team 1 to any roles.

He/she also cannot assign both (PE, @PT1) and (QE, @PT1) to the same user because of

the user prerequisite conditions, ((PSO, PE), ¬(QE, ?)) and ((PSO, QE), ¬(PE, ?)) ,

defined in CAN_ASSIGN_USER at Figure 7(d), which represents a global separation of

duty constraint in ROBAC.

 If there are more project teams in the engineering department or there are more

engineering departments, we need only to add them in the organization set O and

organization hierarchy OH but do not need to change other settings in ROBAC. Even

with hundreds or more project teams, the UROA07 model will scale up very nicely

whereas previous models will become incomprehensible.

 To complete the definition of the UROA07 model we define the Revoke Model as

follows.

 Definition 4.7: The UROA07 Revoke Model – can_revoke_user predicate controls

whether a user can be revoked from a role-org pair within a session. Formally,

can_revoke_user(s, u, (r,o)) is true iff (∃o’ ≥ o, ∃(ar, o’) ∈ active_role-orgs(s)) ∧ (∀c,

((ar, r), c) ∈ CAN_REVOKE_USER ∧ may_manage_user(ar, u, (r,o), c)).

The concept of weak revocation and strong revocation in ARBAC97 can be considered

in UROA07 too.

60

Definition 4.8: weak revocation – only the explicit membership of the specified role-

org pair (r, o) in can_revoke_user(s, u, (r,o)) for the user u is revoked.

Definition 4.9: strong revocation – all memberships (either explicit or implicit) of the

specified role-org pair (r, o) in can_revoke_user(s, u, (r,o)) for the user u are revoked.

 The weak revocation only removes an existing entry (u, (r,o)) from UA while the

strong revocation removes all existing entries (u, (r’, o’)), such that r’ ≥ r and o’ ≥ o,

from UA.

4.2.2 The PRA07 Model

 The PRA07 model deals with managing permission to role assignment. Similar to

UROA07, it also provides two predicates to determine whether a session can assign or

revoke permission to or from a role. We give the following definitions in analogy to

similar definitions for URAO07.

 Definition 4.10: permission prerequisite condition (ppc) – a ppc is a boolean

expression using the usual ∧ and ∨ operators on terms of form of r and ¬r where r is a

role in RR. A permission prerequisite condition is evaluated for a permission p by

interpreting r to be true if (∃r’ ≤ r, (p, r’) ∈ PA) and ¬r is true if (∀r’ ≥ r , (p, r’) ∉ PA.

CRP is a set that includes all applicable ppcs plus a null element. The null is interpreted

as true for any permission.

61

 Definition 4.11: opermissions: O 2P, is a function mapping an organization to a set

of permissions which are applicable to the organization; formally, opermissions(o) = { p:

P | (p, o) ∈ PO }; opermissions*(o) = { p: P | ∃o’ ≤ o, (p, o’) ∈ PO }

Note: opermissions(o) is the set of all permissions applicable to the organization o and

opermissions*(o) is the set of all permissions applicable to the organization o or its

subordinate organizations.

 Definition 4.12: can_manage_permission: RO × P × RR × CRP → {true, false} – a

predicate defined as can_manage_permission((ar, o), p, r, c) is true iff (r ∈

apermissions*(ar)) ∧ c ∧ (p ∈ omembers*(o)).

Note: The definition of can_manage_permission((ar, o), p, r, c) indicates that a user who

is a member of administrative role-org pair (ar, o) can manage the permission p for the

role r if and only if permission p satisfies the permission prerequisite condition c and is

applicable to the organization o or its subordinate organizations and the administrative

role ar or its junior administrative roles can perform administrative tasks on the regular

role r.

 This leads to the following Grant Model.

 Definition 4.13: The PRA07 Grant Model – can_assign_permission predicate controls

whether a permission can be assigned to a role within a session. Formally,

can_assign_permission(s, p, r) is true iff ∃(ar, o) ∈ active_role-orgs(s) ∧ (∀c, ((ar, r), c)

∈ CAN_ASSIGN_PERMISSION ∧ can_manage_permission((ar, o), p, r, c).

62

 The definition of can_assign_permission(s, p, r) in PRA07 indicates that a user

(user(s)) in a session s can assign a permission p to a role r if and only if user(s) has an

active role-org pair (ar, o) in that session, and the administrative role ar or its junior

administrative roles have administrative right over the regular role r, and the permission p

is applicable to the organization o or its subordinate organizations, and the permission p

satisfies all specified permission prerequisite conditions defined in

CAN_ASSIGN_PERMISSION. The permission prerequisite condition in PRA07 is

optional.

 Finally we have the following Revoke Model.

 Definition 4.14: The PRA07 Revoke Model – can_revoke_permission predicate

controls whether a permission can be revoked from a role within a session. Formally,

can_revoke_permission(s, p, r) is true iff (∃(ar, o) ∈ active_role-orgs(s) ∧ (∀c, ((ar, r),

c) ∈ CAN_REVOKE_PERMISSION ∧ can_manage_permission((ar, o), r, c)).

4.2.3 The RRA07 Model

 The RRA07 model deals with managing roles and role hierarchy. It provides one

predicate called can_modify_R to determine whether the current session can add/remove

a role or change role hierarchy during the session. To define can_modify_R predicate, we

need to introduce some definitions.

63

 Definition 4.15: rjuniors: R 2R, is a function mapping a role to its junior roles;

formally, rjuniors(r) = { r’: R | r’ < r }

 Definition 4.16: rseniors: R 2R, is a function mapping a role to its senior roles;

formally, rseniors(r) = { r’: R | r’ > r }

 Definition 4.17: rfamily: R 2R, is a function mapping a role to a set of roles

including itself and its junior role and senior roles; formally, rfamily(r) = {r} ∪

rjuniors(r) ∪ rseniors(r)

 Definition 4.18: rfamilies: 2R 2R, is a function mapping a set of roles to a set of

roles including all families of its members; formally, rfamilies({r1, r2, … rn}) =

rfamily(r1) ∪ rfamily(r2) ∪ … ∪ rfamily(rn)

 It is worth noting that rfamily and rfamilies only include recursive direct family

members and do not include siblings.

Definition 4.19: permissible administrative role set, parset: AR 2RR, is a function

mapping an administrative role to a set of regular roles in which the administrative role

can modify the regular role hierarchy. Formally,

 parset(ar) = { r : RR | (ar, r) ∈ ARRA ∧ rfamily(r) ⊆ apermissions*(rfamily(ar)) }

 The above definition indicates that parset for an administrative role ar includes all of

the regular roles it has administrative privilege such that the regular role’s family is a part

of the regular roles the ar’s family has administrative privilege over. For example

parset(PSO) = { PL, PE }.

64

 Because modifying role hierarchy affects all organizations in ROBAC, we should only

allow the users at the highest organization level to perform these actions. We introduce

an artificial organization called greatest organization (go) which is the ancestor for all

organizations in O (see Figure 3). Now let us define the can_modify_R predicate.

 Definition 4.20: can_modify_R: S × 2RR → {true, false} -- a predicate defined as

can_modify_R(s, rset) is true iff ∃(ar, go) ∈ active_role-orgs(s) ∧ rset ⊆ parset(ar).

 The definition of can_modify_R means that a user user(s) in a session s can modify the

relationship within the role set rset if and only if that the user has an active administrative

role ar and paired with the greatest organization go in that session and the role set rset is

a subset of the permissible administrative role set of ar. Here the modification within a

set of roles means adding/deleting an edge or adding/removing a role. For example,

according to Figure 7, PSO can remove the edge between PL and PE but cannot remove

the edge between ENG and QE because QE and ENG are not in its permissible

administrative role set.

The construction of parset in AROBAC07 is very similar to the concept of

administrative scope in RH4 of SARBAC. We will discuss it further in the related work

section.

4.2.4 The OOA07 Model

 The OOA07 model deals with managing organizations and organization hierarchy.

Similar to RRA07, it provides one predicate called can_modify_O to determine whether

65

the current session can add/remove an organization or change organization hierarchy

during the session. To define can_modify_O predicate, we also need to introduce some

definitions.

 Definition 4.21: ojuniors: O 2O, is a function mapping an organization to its

subordinate organizations. Formally, ojuniors(o) = { o’: O | o’ < o }

 Definition 4.22: oseniors: O 2O, is a function mapping an organization to its parent

organizations. Formally, oseniors(o) = { o’: O | o’ > o }

 Definition 4.23: ofamily: O 2O, is a function mapping an organization to a set of

organizations including itself and its subordinate organizations and parent organizations.

Formally, ofamily(o) = {o} ∪ ojuniors(o) ∪ oseniors(o)

 Definition 4.24: permissible administrative organization set, paoset: O 2O, is a

function mapping an organization to a set of organizations. Formally, paoset(o) = { o’ :

O | o’ < o ∧ ofamily(o’) ⊆ ofamily(o) }

 For example, paoset(@ED) = { @PT1, @PT2 } according to Figure 7(b).

 Because modifying organization hierarchy has some global effects on access rights in

ROBAC, we should only allow the most senior administrative role to modify the

organization hierarchy. We can pre-define a most senior administrative role called gar

(greatest administrative role) in AR. Here is the definition for can_modify_O predicate.

 Definition 4.25: can_modify_O: S × 2O → {true, false} -- a predicate defined as

can_modify_O(s, oset) is true iff ∃(gar, o) ∈ active_role-orgs(s) ∧ oset ⊆ paroet(o).

66

 The definition of can_modify_O means that a user user(s) in a session s can modify the

relationship within the organization set oset if and only if that the user has the greatest

administrative role gar in an organization o in that session and the organization set oset is

a subset of the permissible administrative organization set of o. For example, a user

assigned (gar, @ED) can remove @PT1 from the organization hierarchy or add a new

organization say @PT3 under it.

4.2.5 The ROA07 Model

 The ROA07 model deals with managing role and organization association in ROBAC.

Similar to other models, it provides one predicate called can_modify_RO to determine

whether the current session can associate / disassociate a role with an organization.

 Definition 4.26: can_modify_RO: S × R × O → {true, false} -- a predicate defined as

can_modify_RO(s, r, o) is true iff (∃o’ ≥ o, ∃(ar, o’) ∈ active_role-orgs(s)) ∧ r ∈

apermissions*(ar).

 The definition of can_modify_RO means that a user user(s) in a session s can associate

or disassociate the role r with the organization o if and only if user(s) has an active role

and organization pair (ar, o’) in that session and o is o’ or a subordinate of o’ and the

administrative role ar or its junior administrative roles can perform administrative tasks

on the role r. For example, a user assigned (PSO, @PT1) can associate PE with @PT1

but cannot disassociate PE from @PT2.

67

The five sub-models in AROBAC07 decentralize the administrative tasks along the

administrative role hierarchy and organization hierarchy. They control administrative

tasks based on both administrative role permissions and organization hierarchy. This is a

ROBAC approach to perform administrative work on ROBAC systems.

AROBAC07 model can not only decentralize the administrative tasks along

organization hierarchy, but also decentralize the tasks along the administrative role

hierarchy. Creating appropriate administrative roles and administrative role hierarchy is

critical to achieving decentralized administration in ROBAC system. The following two

sections try to address the issue of how to create administrative roles and build

administrative role hierarchy.

4.3 Application Compartment in ROBAC

 In the real world, an authorization service may need to support many applications in an

enterprise. Each application usually has its own set of roles and these roles are only

applicable to the application. Therefore, the regular role set may be partitioned based on

which application the roles belong to. To formalize the idea of partitioning role set in

ROBAC, we introduce the concept of application compartment. We denote App as a set

of all applications controlled by a ROBAC system.

 Definition 4.27: An Application Compartment (ACom) for an application appi ∈ App

in a ROBAC system is a tuple: (Ui, Ri Oi, Pi, ROi, RHi, OHi, PAi, UAi), where:

• Ui = U -- the same set of users as in ROABC;

68

• Ri ⊆ R -- a subset of roles applicable to this application;

• Oi ⊆ O -- a subset of organizations applicable to this application;

• Pi ⊆ P -- a subset of permissions applicable to this application;

• ROi ⊆ Ri x Oi –- a set of applicable role and organization association in this

application;

• RHi ⊆ Ri x Ri -- a partial order relation on Ri called role hierarchy;

• OHi ⊆ Oi x Oi -- a partial order relation on Oi called organization hierarchy;

• PAi ⊆ Pi x Ri -- a many-to-many permission-to-role assignment relation;

• UAi ⊆ Ui x ROi -- a many-to-many user-to-role-and-organization assignment

relation;

 Let us use acom(appi) to represent the ACom corresponding to application appi and

denote ACOM as a set of all application compartments in the ROBAC system. We can

think of acom(appi) as being controlled by a sub ROBAC system. Here we define a

dominate relation DOM in ACOM.

 Definition 4.28: DOM ⊆ ACOM × ACOM -- is a partial order relation on ACOM

such that (acom(appi), acom(appj)) ∈ DOM iff Ui ⊆ Uj ∧ Ri ⊆ Rj ∧ Oi ⊆ Oj ∧ Pi ⊆ Pj ∧

ROi ⊆ ROj ∧ RHi ⊆ RHj ∧ OHi ⊆ OHj ∧ PAi ⊆ PAj ∧ UAi ⊆ UAj.

69

 For administration purposes, we can create an administrative role ari for each

acom(appi). That requires adding ari in AR, adding { ari }× Ri into ARRA, and adding

(ari , arj) in ARH iff (acom(appj), acom(appi)) ∈ DOM.

 The partitioning process may continue within an application. In general, we can form a

hierarchy in AR based on the DOM relationship. The senior administrative role may

delegate administrative tasks to its junior administrative roles. The idea of partitioning a

system to smaller systems is not new; we simply apply this useful idea in the context of

AROBAC07. ACom concept not only provides a way to partition the regular role set and

construct administrative role hierarchy in AROBAC07, but also can be used to enforce

application boundary. For example, when a user u enters an application, say appi, the

ROBAC system only actives the role-org pairs applicable to this application. That is, if a

user u is inside appi then

 active_roles-orgs(u) ⊆ assigned_role-orgs(u) ∩ acom(appi).ROi

where acom(appi).ROi represents the role-org pairs applicable to the application appi.

You may notice that AROBAC07 does not explicitly talk about how to assign / revoke

users to/from administrative role and organization pairs. In practice, a user with

administrative role and organization pair (ar, o) can assign (or revoke) users to (or from)

administrative role and org pair (ar’, o’) such that ar’ ≤ ar and o’ ≤ o. It is not hard to

develop a formal sub-model similar to the UROA07 model if more complex constraints

are needed. So a user assigned with (gar, @go) can act like a super user in a ROBAC

system. The syntax of assigning user to role and organization pair is same regardless of

70

whether a role is a regular role or an administrative role. This feature makes AROBAC07

easy to implement in practice.

4.4 Discussion and Related Work

 ROBAC models require that organizations have similar roles. Administrator roles

across organizations tend to have greater similarity than the underlying regular roles may

have. So the ROBAC concept is particularly well suited to administrative tasks. The

ROBAC/AROBAC is totally homogeneous on the administrative role set AR. So it is the

best scenario for using ROBAC approach to control administrative tasks. A user assigned

with an administrative role and organization pair (ar, o) can perform administrative tasks

the ar allowed within the organization o and its subordinate organizations. Administrative

tasks in AROBAC07 can be delegated not only along the administrative role hierarchy

but also along the organization hierarchy. A preliminary version of AROBAC07 has

been accepted for publishing as a book chapter [ZZS07].

 As we mentioned earlier, AROBAC07 model is inspired by the following three role-

based administrative models: ARBAC97, ARBAC02, and SARBAC.

 ARBAC97 is one of the most comprehensive role-based administrative models. It uses

role range (encapsulated range) concept to define the scope of administrative

permission. The user prerequisite condition (upc) and permission prerequisite condition

(ppc) in AROBAC07 are extended versions of the corresponding prerequisite conditions

in ARBAC97.

71

 ARBAC02 enhances ARBAC97 by incorporating two external organization structures:

user organization structure (OS-U) and permission organization structure (OS-P).

URA02 and PRA02 sub-models in ARBAC02 modify the prerequisite conditions in

URA97 and PRA97 of ARABC97 by using memberships of organizations to avoid some

weakness, such as multi-step assignments, redundant assignment information, restricted

hierarchy etc., in ARBAC97. ARBAC02 uses the organization structures only for

constructing user pool and permission pool in prerequisite conditions but does not use it

to control administrative permissions. UROA07 and PRA07 in AROBAC07 use the built-

in organization hierarchy and implicitly enforce the user pool and permission pool

constraints with respect to can_assign_user and can_revoke_user and

can_assign_permission and can_revoke_permission predicates. So UROA07 and PRA07

have similar benefits of the user pool and permission pool concepts used in URA02 and

PRA02 models without putting the user pool or permission pool as a part of the

prerequisite conditions. Similar to ARBAC02, AROBAC07 avoids the weakness of

ARBAC97 by using the built-in organization hierarchy, the user-organization affiliation

information, and the applicable permission and organization association information.

 SARBAC introduces a concept called administrative scope, which can be calculated

for each role based on the role hierarchy. SARBAC tends to be simpler, more flexible,

and more permissible than ARBAC97. The ARRA relation in AROBAC07 is similar to

the can_admin relation in SARBAC. The current construction of permissible

administrative role set (parset) concept in RRA07 is similar to the administrative scope

concept in SARBAC. From that perspective, RRA07 is very similar to RH4 sub-model in

72

SARBAC. So RRA07 has some similar benefits, such as flexibility, that SARBC enjoys.

Unlike RH4, RRA07 enforces strict separation between regular roles and administrative

roles because we believe the separation of administrative duty from regular duty is a

desired security policy in most cases. It is possible to construct parset differently, such as

using the encapsulated range concept in RRA97 or other criteria. The OOA07 applies a

similar concept on the role hierarchy.

 X-GTRBAC admin [BJBG04] is a decentralized administrative model for the XML-

based Generalized Temporal Role Based Access Control (X-GTRBAC) framework

[Bha03]. It uses a concept called admin domain to tie roles (admin roles and regular

roles), permissions (admin permissions and regular permissions), and users (admin users

and regular users) together. It uses hard-coded Eligible Role (ER) for users in admin

domain to put constraint on user to role assignment task. It uses Admin Permissions to

model the possible administrative tasks. An administrator in an Admin Role is authorized

to handle assignment of users to regular roles within a given domain. The administrative

roles and admin domains in X-GTRBAC admin are both flat. If an admin domain is

considered as an organization, X-GTRBAC admin’s impact on X-GTRBAC framework

is similar to the UROA07 of AROBAC07’s impact on ROBAC0 based system. It is hard

for X-GTRBAC admin to achieve functionality similar to what AROBAC07 has when

organization hierarchy or/and administrative role hierarchy exist.

 The first three role-based administrative models control administrative tasks based on

roles only while AROBAC07 controls administrative tasks based on both roles and

73

organizations. From the perspective of administrative units, the admin domain concept in

X-GTRBAC admin is similar to the organization concept in UROA07 for ROBAC0 based

systems, but AROBAC07 has more functionality, which is hard to achieve in X-

GTRBAC admin.

 In AROBAC07, we use the same ARRA relation across all sub-models. It may be

desirable that we use a different version of ARRA in each sub-model when finer-grained

control is needed. That is ARRA could be different for UROA07 and PRA07. The

administrative role hierarchy in AROBAC07 tends to be simpler than these existing

models when there are many organizational units, such as lots of branches or project

teams, in an enterprise. With ROBAC/AROBAC07, security policies can be defined in a

small scope first and then applied to all organizations.

74

Chapter 5. ROBAC Variants

 In this chapter we propose two ROBAC variants and show their usefulness in the fields

of secure collaboration and e-commerce.

5.1 Manifold ROBAC

 In regular ROBAC models, an asset can only be tied to one organization and can only

belong to one asset type. In the real world, it is sometimes desirable to have an asset be

shared by many organizations and/or belong to more than one asset type. To meet this

requirement, we propose a ROBAC variant called manifold ROBAC and denoted as

ROBACM.

 Definition 5.1: ROBACi
M (i=0,1,2,3) has the same elements of ROBACi except that

the definitions of aorg , atype, and can_access are replaced with the following:

• aorg: A 2O – a function mapping an asset to a subset of the organization set;

• atype: A 2At – a function mapping an asset to a subset of the asset type set;

• The can_access(S, Op, A) in ROBAC0
M is slightly different from that in

ROBAC1
M.

75

o In ROBAC0
M, can_access(s, op, a) is true iff ∃ (r, o) ∈ active_role-

orgs(s) ∧ o ∈ aorg(a) ∧ (∃at ∈ atype(a), ((op, at), r) ∈ PA)

o In ROBAC1
M, can_access(s, op, a) is true iff ∃ (r, o) ∈ active_role-

orgs(s) ∧ (∃o’ ∈ aorg(a), o’ ≤ o) ∧ (∃at ∈ atype(a), ∃r’ ≤ r, ((op, at), r’)

∈ PA)

 ROBACM models allow an asset to be related to more than one organization and/or an

asset can belong to more than one asset type while the rule to make access decision

remains the same as that in ROBAC regular models. That is, a user user(s) in a session s

can perform an operation op over an asset a if and only if the user has an active role and

organization pair (r, o) in that session and the role r (or any of its junior roles) has

permission to perform the operation op over at least one of asset a’s types, while asset a

is related to organization o (or any of its subordinate organizations).

 If a new security policy, “Schools in the same district can view each other’s reports”, is

need to be added in the aforementioned B2B example, we can easily model this new

requirement by using ROBAC1
M. The aorg(a) in ROBAC1

M will include all

organizations within the same district that organization o , to which asset a is originally

related, is in. For example, we can define aorg(School_1_Type_B_Report) = {School_1,

School_2}. Now School 1’s Type B Report Viewer can see both School 1’s Type B

report and School_2’s Type B report.

76

5.2 Secure Collaboration

5.2.1 Background

 As our world becomes increasingly interwoven, collaboration among different

organizations becomes common. How to model and enforce security policies during

collaboration is an important issue. Gong and Qian [GQ96] proposed the following two

principles of secure interoperation (collaboration):

• Autonomy Principle2 – any allowed access in an individual system must also be

allowed under secure interoperation

• Security Principle – any denied access in an individual system must also be

denied under secure interoperation.

 Here we use the words interoperation and collaboration interchangeably. In the last

several years, some research efforts have been put into secure interoperation in multi-

domain environments using RBAC [KACM00, JBBG04, PJ05, SJBG05, TAPH05,

LZQX06]. Most of the previous work uses a “bottom-up” approach by performing role

translation or role mapping between different domains. In [JBBG04, SJBG05], Joshi et

al. identify and analyze three types of violations when integrating RBAC policies: user-

specific separation of duty (SoD) violation, role-specific SoD violation, and role-

assignment violation. In addition to handling those problems, the role mapping based

2 Autonomy principle is reasonable but may not be universal. For example, some collaboration between
organization o1 and o2 may require a role in o1 to give up some privilege due to conflict of interests. In this
case, autonomy principle may not hold. Security principle should hold for collaboration.

77

approaches also have to pay special attention to the “covert role promotion” problem

[KACM00], which appears when a user crosses domain boundaries and returns to a local

domain with a role senior to his original roles in the domain, during the collaboration

setup. In [LZQX06], Li et al. use Group-based RBAC to handle the ad-hoc collaboration

among different groups. Instead of using role mapping, it uses role exporting, a

permission-driven collaboration schema, to eliminate role-mapping problem but it

introduces some new problems such as conflicts of role names and permission names,

and conflicts of permissions of roles in different groups. To solve these problems,

existing RBAC based secure collaboration approaches must use rather complex

algorithms for granting, updating, and revoking collaboration.

 In the following section, we describe a manifold ROBAC based approach for secure

collaboration. Because our approach does not use role-mapping, role-translation, or role-

exporting, all aforementioned problems are avoided. Our approach is much simpler than

any existing RBAC based secure collaboration approaches.

5.2.2 Secure Collaboration with Manifold ROBAC

 When applying the aforementioned two secure interoperation principles in the context

of ROBAC, the autonomy principle means that security setup for some collaboration

policy among different organizations should not reduce the original permissions a user

has within the user’s original organization and the security principle means that the

78

collaboration setup among the different organizations should not increase the original

permissions a user has in the user’s original organization.

5.2.2.1 Informal Description

The main idea is to create a virtual organization and set it as a subordinate of all

participating organizations for the collaboration in the organization hierarchy in ROBAC.

An administrator of a participating organization sets any of its want-to-be-shared assets

as also related to the virtual organization. We can see that the want-to-be-shared assets

are related to both the original organization and the newly created virtual organization.

This is why we need to use manifold ROBAC to model secure collaboration; so that users

with the same role but in different participating organizations can share assets without

violating the two secure interoperation principles.

For example, in the aforementioned engineering department example (Figure 7) Project

Team 1 (@PT1) and Project Team 2 (@PT2) need to collaborate on some work. Assume

that the Engineer role (ENG) has permission to access some type X assets; the assets a11,

a12, and a13 are type X and belong to @PT1 while assets a21, a22, and a23 are also type X

and belong to @PT2. In this initial state, a user with (ENG, @PT1) membership (an

engineer in Project Team 1) can access a11, a12, and a13 but cannot access a21, a22, and a23

while a user with (ENG, @PT2) membership (an engineer in Project Team 2) can access

a21, a22, and a23 but cannot access a11, a12, and a13 based on the can_access predicate in

ROBAC. If the collaboration work requires a13, a21, a23 to be shared among @PT1 and

79

@PT2, how do we setup the ROBAC to control the asset access while maintaining the

two secure collaboration principles? Here is how we set up the corresponding ROBAC to

achieve this collaboration requirement.

• Pre-collaboration state in the ROBAC system(note: only involved elements are

listed here):

o { a11, a12, a13, a21, a22, a23 } ⊆ A;

o aorg(a1i) = { @PT1 }, i = 1, 2, 3;

o aorg(a2i) = { @PT2 }, i = 1, 2, 3;

o atype(aij) = { X } ⊆ At, i = 1, 2; j = 1, 2, 3;

o ∀op ∈ Op, ((op, X), ENG) ∈ PA;

In the above state (before the collaboration), ROBAC can_access predicate

guarantees:

o (ENG, @PT1) can access asset a11, a12, and a13 but not a21, a22, and a23

o (ENG, @PT2) can access asset a21, a22, and a23 but not a11, a12, and a13

• Collaboration Grant:

o Create a virtual project team @VPT12 under @PT1 and @PT2, that is,

O = O ∪ {@VPT12}, OH = OH ∪ { (@PT1, @VPT12), (@PT2,

@VPT12) };

o Assign a13 (shared asset in @PT1) to @VPT12, that is,

 aorg(a13) = aorg(a13) ∪ {@VPT12} = { @PT1, @VPT12 }

80

o Assign a21, a23 (shared assets in @PT2) to @VPT12, that is,

aorg(a21) = aorg(a21) ∪ {@VPT12} = { @PT2, @VPT12 },

aorg(a23) = aorg(a23) ∪ {@VPT12} = { @PT2, @VPT12 }

• During the collaboration:

o (ENG, @PT1) can access asset a11, a12, a13, a21, and a23

o (ENG, @PT2) can access asset a21, a22, a23, and a13

o Assign all newly produced assets from the collaboration to @VPT12.

• Collaboration Revoke:

o Remove anything related to @VPT12

• After collaboration:

o System returns back to the pre-collaboration state.

Figure 8 shows the relationship among @PT1, @PT2, @VPT12, and the related assets.

Figure 8. Virtual organization for secure collaboration in ROBAC

The ROBAC used in the above collaboration example is a manifold ROBAC. The only

changes we made in the original ROBACM are to add a virtual organization in the

organization hierarchy and allow the shared assets to also relate to the newly created

virtual organization. There is no change to the other elements of ROABCM. There is no

role-mapping, role-translation, or role-exporting needed in our approach. The required

shared assets a13, a21, and a23, which are related to the virtual organization, are

automatically shared by the users with (ENG, @PT1) or (ENG, @PT2) membership.

81

82

During the collaboration, the original security setting, such as permissions, constraints

etc., of each participating organization is still in effect while additional permissions

required by the collaboration are added. For the users who only need to access the shared

assets, we can assign them a membership of (ENG, @VPT12).

Who has the authority to grant and setup collaboration? Who has the authority to setup

shared resources for collaboration? Which role can associate with the virtual

organization? Who should manage the newly created assets during the collaboration?

These questions will be discussed and answered in the next two sections. Here we present

some idea for the above collaboration example. It is quite reasonable to assume that the

greatest administrative role (gar) in the senior organization of both project team 1

(@PT1) and project team 2 (@PT2) may grant a collaboration request between @PT1

and @PT2. So a member of (gar, @ED) has authority to grant a collaboration request

between @PT1 and @PT2 by creating a virtual organization @VPT12 under @PT1 and

@PT2. It seems appropriate that the update of aorg for the asset a13 is performed by

(gar, @PT1) while the update of aorg for the asset a21 and a23 is performed by (gar,

@PT2). The roles applicable to @PT1 and/or @PT2 may be associated with the

@VPT12. The newly produced assets in the collaboration may be managed by (gar,

@VPT12).

In regular ROBAC, functions aorg and atype are usually pre-determined during the

ROBAC setup and do not change afterwards. That is why AROBAC07 does not include

the management of aorg and atype. Updating aorg or/and atype usually will change the

access permissions in ROBAC. So we treat the updating of aorg or/and atype as a kind

83

of administrative action and therefore it needs to be controlled as well. In the following

section, we present an administrative model to control the change of aorg and atype in

ROBACM.

5.2.2.2 The Asset Management ’07 Model

The Asset Management ’07 (AM07) model addresses the asset management issue in

ROBAC. AM07 determines who can modify aorg and atype for a given asset in

ROBAC. It utilizes a predicate called can_manage_A to determine whether the current

session can update the aorg and atype for a given asset.

Definition 5.2: can_manage_A: S × A → {true, false} – a predicate defined as

can_manage_A(s,a) is true iff ∃o ∈ O, (gar, o) ∈ active_role-orgs(s) ∧ a ∈ aorg(o).

Definition 5.3: Asset Management ’07 model – if can_manage_A(s, a) is true, then

aorg(a) and atype(a) can be modified in the session s.

The definition of AM07 means that a user user(s) in a session s can modify aorg or

atype for a given asset a if and only if the user(s) has the active greatest administrative

role (gar) in some organization o in the session s and the asset a is related to this

organization o.

 For example, a user with active (gar, @PT1) in a session can update aorg(a1i), i = 1, 2,

3 and a user with active (gar, @PT2) in a session can update aorg(a2j) , j = 1, 2, 3 in the

above collaboration example. You may notice that AM07 only allows a user with (gar, o)

84

membership (a super user in the organization o) to manage the assets directly related to

the organization and that it does not allow the super user to manage assets related to o’s

subordinate organizations. For example, (gar, @PT1) cannot update aorg(a21) although

a21 is related to @VPT12 which is a subordinate of @PT1 during the collaboration. In

this way, the original entry @PT2 inside aorg(a21) will not be accidentally removed by a

user with (gar, @PT1).

5.2.2.3 ROBACM Based Secure Collaboration Schema

Secure collaboration among a set of organizations within ROBAC means that some

specified resources are shared among the participating organizations. Users with roles in

the individual participating organization can also perform the same roles against the

shared resources during the collaboration without any violation to the autonomy principle

and the security principle. To simplify the description of ROBACM based secure

collaboration, we first introduce some definitions.

Definition 5.4: oaset: O → 2A -- a function mapping an organization to a set of assets

related to the organization; formally: oaset(o) = { a | o ∈ aorg(a) }.

Definition 5.5: oaset_col: O → 2A -- a function mapping an organization o to a subset

of oaset(o) which the organization authorizes to share during a collaboration. That is,

 oaset_col(o) ⊆ oaset(o).

85

Definition 5.6: A secure collaboration request, SecureColReq, in a ROBAC based

system is a triple SecureColReq = (ROBAC, OColSet, AColSet) where ROBAC = (U, S,

user, R, RH, O, OH, Op, At, A, RO, P, PA, UA, atype, aorg), OColSet ⊆ O, a subset of

O, wish to perform the collaboration; AColSet = { oaset_col(o) | o ∈ OColSet}.

A secure collaboration request SecureColReq = (ROBAC, OColSet, AcolSet) may be

generated by the joint effort among the organizations in OColSet and/or their parent

organizations.

Definition 5.7: ocommonseniors: 2O 2O, is a function mapping a set of organization

to its common parent organizations. Formally, ocommonseniors(oset) = { o’: O | ∀o ∈

oset, o ≤ o’ }.

Note: For any oset ∈ 2O, ocommonseniors(oset) is not empty because the greatest

organization (go) is always inside ocommonseniors(oset).

Schema for secure collaboration in ROBAC:

• Input: given a collaboration request SecureColReqk = {ROBAC, OColSetk,

AColSetk } where

OColSetk = {oi | i = 1, 2, …, m}, AColSetk = { oaset_col(oi) | i = 1, 2, …, m}.

• Collaboration grant:

o Initialization: a user with (gar, ok) membership, where ok ∈

ocommonseniors(OColSetk), can create a virtual organization vok for this

collaboration request and put vok under all organizations in OColSetk.

Formally, O = O ∪ { vok }; ∀oi ∈ OColSetk, OH = OH ∪ { (oi, vok) }

86

o Want-be-shared resources setup: based on AM07, a user with (gar, oi)

membership can assign oaset_col(oi) to vok. Formally,

∀aj ∈ oaset_col(oi), aorg(aj) = aorg(aj) ∪ { vok }.

 Repeat this step for each oi in OColSetk

o Additional privilege for collaboration: in addition to all administrative

roles, all roles in applicable_R(oi), i =1, 2, …, m, can be associated with

vok if needed. For example, a users with (gar, vok) membership can act as

a super user in vok.

• During the collaboration (collaboration update):

o The users with existing role and organization pair (r, oi) membership can

continue doing their jobs in the oi in addition to doing the same jobs

against the shared assets in AColSetk via the virtual organization vok.

o All newly produced assets from the collaboration will be related to the vok.

The users with (gar, vok) membership can manage any assets produced

during the collaborations based on AM07.

o UROA07 can be used to assign users to (r, vok) if some users need to do

work requiring role r’s privilege for the collaboration but he/she does not

have the r’s privilege in any participating organizations.

• Collaboration revoke:

o A user with (gar, ok) membership, where ok∈ ocommonseniors(OColSetk),

can revoke the collaboration. Basically, it removes anything related to vok.

Formally,

87

For each oi in OColSetk

 Begin

OH = OH - { (oi, vok) }

 For each aj in oaset_col(oi)

 Begin

 aorg(aj) = aorg(aj) - { vok }

 End

 End

O = O - { vok } //destroy the virtual organization.

 The collaboration grant process requires several steps. Given a secure collaboration

request, only a super user in some common parent organization for all participating

organizations in the collaboration has the privilege to start the collaboration grant process

in the initialization step and only a super user in each participation organization has the

privilege to setup its own shared resources for the collaboration in the want-be-shared

resources setup step. During the collaboration, the users’ privileges in participating

organizations do not change while enjoying the new privileges required by the

collaboration via the newly created virtual organization. The collaboration revocation is

also quite simple: just remove the virtual organization from O, OH, and aorg. As you can

see, the ROBACM based secure collaboration schema is very simple and clean. It

achieves the secure collaboration request without violating the two secure collaboration

principles. There is no user-specific SoD violation, role-specific SoD violation, role

88

assignment violation [SJBG05], covert role promotion [KACM00], conflicts of role

names and permission names, and conflicts of permissions of roles in different groups

[LZQX06] in the ROBACM based secure collaboration schema because it does not need

to perform any role-mapping, role-translation, or role-exporting.

5.2.3 Related Work

 The most important task in secure collaboration across multi-domains is to combine a

consistent and conflict-free interoperation policy that governs all the inter-domain

information and resource exchange. There are some research efforts on RBAC based

secure collaboration in multi-domain environments in recent years [KACM00, JBBG04,

SJBG05, PJ05, LZQX06]. A dynamic role translation model is proposed in [KACM00]

to address the secure collaboration problem in multi-domain environment. It has several

security risks, such as covert role promotion problem, during role translation. Joshi et al

[JBBG04, SJBG05, PJ05] propose several approaches for multi-domain policy

specification, integration, and interoperation based on an extended RBAC model: XML

based RBAC and Generalized Temporal Role Based Access Control Model (GTRBAC).

Integration and interoperation are achieved via role mapping between different domains.

These role-mapping based approaches suffer the following three types of security

violations when integrating RBAC policies due to the use of a “bottom-up” approach:

• user-specific separation of duty (SoD) violation

• role-specific SoD violation

89

• role-assignment violation

Most of these works pay special heed to the detection and resolution of the above

mentioned violations in interoperation policies, thereby having to use rather complex

algorithms in the process. In [LZQX06], Li et al propose a permission-driven

collaboration schema which utilizes the concept of virtual group in GB-RBAC model. In

Li’s approach, the roles in the participating groups are exported to the virtual group

instead of being mapped among them. Although it eliminates some aforementioned

violation problems, it suffers the following conflicts: conflicts of user names, role names

and permission names; conflicts of permissions of roles in different groups. To detect and

resolve these conflicts, the GB-RBAC based collaboration schema has to also utilize

somewhat complex algorithms for collaboration granting, updating, and revocation. In

[CCC08], Cuppens et al. propose an OrBAC based approach, called O2O (Organization

to Organization), to manage security policy interoperability. O2O uses Virtual Private

Organization (VPO) and Role Single-Sign On (RSSO) concepts to enable any

organization undertaking an inter-operation with other organizations to keep control over

the resources accessed during the inter-operation and keep the same role when accessing

to another organization but with privileges defined in VPO. It requires one VPO for each

organization. While allowing the use of the same role name in organizations and their

corresponding VPOs, the privilege of the role is redefined in each VPO.

 In our ROBACM based collaboration schema, we treat our organizations as domains.

Our approach does not need to use role-mapping, role translation, or role-exporting for

secure collaboration due to the unique definitions of permissions, can_access predicate,

90

and the organization hierarchy in ROBAC. Similar to GB-RBAC based collaboration

schema, our schema avoids the violations resulted from role-mapping due to its “top-

down” approach. Unlike the GB-RBAC method, our method also eliminates the conflicts

resulting from role-exporting due to the organization hierarchy feature in ROBAC. All of

this makes our collaboration granting, updating, revoking algorithms significantly

simpler than those existing RBAC based collaboration methods. The redefinition of role

for each VPO in O2O is similar to that of role mapping. In ROBACM based collaboration

schema, we only need one virtual organization for a collaboration request while O2O

need number of VPOs same as the number of organizations participating the

collaboration. The collaboration setup in ROBACM based schema is much simpler than

the OrBAC based collaboration schema.

5.3 Pseudo ROBAC

The organization in ROBAC can be used as a mechanism for establishing some kind of

relationship between users and assets indirectly. For example, we can create artificial

organizations and define aorg as a function of asset’s attributes and assign user to role-

organization pairs based on the user’s attributes. Because the organizations are not real

organizations, we call them pseudo organizations. The corresponding ROBAC models

are called pseudo ROBAC, denoted as ROBACP. In ROBACP, the process of calculating

aorg for a given asset and the process of assigning user to role-organization pairs may be

automated using some rule based approaches while can_access predicate does not

91

change. Implicitly calculating related organizations for assets and assigning users to role-

organization pairs are useful because ROBAC usually involves a large number of

organizations and external users. It is costly and error-prone to assign user to role-

organization pairs manually. Further more, some external user’s identifier may be

unknown to a ROBAC system in advance if the ROBAC controlled application supports

self registration.

5.3.1 Attributes in ROBACP

Utilizing an entity’s attributes for access control purpose is a well-known technique in

attribute based access control (ABAC) [WJ03, WWJ04], rule based RBAC (RB-RBAC)

[Alk04], and usage control (UCON) [Par03, Zha06]. We assume that users, sessions, and

assets in ROBACP have attributes associated with them. In ROBACP, we use the attribute

definition in [Zha06]. That is, an attribute is modeled as a variable of a specific data type

including a set of possible values (domain) and operators to manipulate them. We denote

an attribute of an entity e as entity.attr(e) where entity can be User, Session, or Asset, e

∈ U ∪ S ∪ A, and attr is the attribute name. And we use e.attr as an abbreviation of

entity.attr(e). For example, a user Bob’s age is represented as User.age(Bob) or

Bob.age; how long a session mySession has lasted is represented as

mySession.lasted_time; an asset a’s owner is represented as a.owner.

Definition 5.8: An attribute predicate in ROBACP is a Boolean expression on

attributes in the form of

92

entity.attr1 op1 attr1_constant ∧ (or ∨) entity.attr2 op2 attr2_constant ∧ (or ∨) … ∧ (or

∨) entity.attrn opn attrn_constant.

 Here entity can be User, Session, or Asset, attri_constant is a value from attribute

attri’s domain and opi is a operator for attribute attri , i = 1, 2, …, n. For a given entity e,

the attribute predicate is evaluated as e.attr1 op1 attr1_constant ∧ (or ∨) e.attr2 op2

attr2_constant ∧ (or ∨) … ∧ (or ∨) e.attrn opn attrn_constant.

 Here are some examples of attribute predicates:

• User.age ≥ 21

• User.team = ‘Project_1’ ∧ User .division = ‘Engineering Department’

• Session.day = ‘Saturday’ ∨ Session.day = ‘Sunday’

• Asset.price > $100

• null

The first predicate is evaluated as true for any user whose age is equal or more than 21

years old. The second predicate is evaluated as true for any user who is in Project_1 team

and in Engineering Department. The third predicate is evaluated as true for a session

during the weekend (Saturday or Sunday). The fourth predicate is evaluated as true for an

asset if the asset’s price is greater than 100 dollars. The fifth predicate, null, is a special

one and is evaluated as true for any entity’s attribute.

93

Definition 5.9: A cross-attribute predicate in ROBACP is a Boolean expression from

attributes, functions, and constants where attributes include user attributes, session

attributes, and asset attributes.

Here are some examples of cross-attribute predicates:

• User.credit ≥ Asset.price + $100

• User.status = ‘gold’ ∧ Session.duration < 10

As we can see, the attribute predicates are a subset of the cross-attribute predicates.

What kinds of attributes to use is application specific. How an entity gets its attribute

values and how to manage attributes are two very important issues need to be addressed.

There are some efforts have been put in this area [HMMNR00, ZBM01, Ker02, KSM03,

Alk04]. Usually, external users (strangers) may gain attributes via certificates or attribute

authority (AA), or based on the users’ activity inside applications. Internal users may

gain attributes via an enterprise wide LDAP (Lightweight Directory Access Protocol)

system [LDAP97, LDAP01] and/or via a human resources database. There is some nice

treatment of attribute management in UCON [Par03, Zha06]. In UCON, attributes are

categorized as “administrator-controlled” or “system-controlled” attributes.

Administrator-controlled attributes can be updated only by explicit administrative actions

and the system does not modify them automatically (immutability). For example a user’s

date of birth is an administrator-controlled attribute and cannot be modified without

explicit administrative action. For administrator-controlled attributes, we may apply type-

centric approach, organization-centric [KSM03], location-centric, or role-centric

approaches to administrate them. For instance, we may use some model similar to ARB-

94

RBAC X model in RB-RBAC [Alk04] to manage attributes in pseudo ROBAC. System-

controlled attributes can be updated by the system automatically as the side effects or

results of the user’s usage (mutability) and they do not require any administrative action

for updates. For example, a user’s credit balance is decreased by the value the user spent

at the time of the usage. The approaches used in UCON to update system-controlled

attributes may be applied in ROBACP. Some detail discussion of attribute management

can be found in [Alk04].

 5.3.2 Formal Definition of ROBACP

 ROBACP has two important features which differentiate it from regular ROBAC. One

is the artificial organization concept. Another is the rule based approach for calculating

aorg of assets and for assigning / activating user to role-organization pairs implicitly.

 With the understanding on the definition of attribute predicate, we can give a formal

definition of ROBACP.

 Definition 5.10: ROBACP has the same elements of ROBAC except for the following:

• AAP -- a set of applicable asset attribute predicates;

• UAP -- a set of applicable user attribute predicates;

• SAP -- a set of applicable session attribute predicates;

• UROA_Rule ⊆ UAP × SAP × RO -- a set of rules used for activating role-

organization pair in sessions;

• AOA_Rule ⊆ AAP × O -- a set of rules used for asset to organization assignment;

95

• aorg(a) = { o ⎥ ∃(aap, o) ∈ AOA_Rule, aap is true for a}

• active_role-orgs(s) = { (r, o) ⎥ ∃(uap, sap, (r, o)) ∈ UROA_Rule, uap is true

for user(s) ∧ sap is true for s }

 The AAP includes applicable attribute predicates related to assets. An asset must

satisfy at least one of these asset attribute predicates to be considered as related to an

organization. The UAP includes applicable attribute predicates related to users and SAP

includes applicable attribute predicates related to sessions. A user in a session must

satisfy at least one of these user/session attribute predicates to be considered as a member

of some role-organization pair. UROA_Rule is a role-organization pair activation rule

set and is used in the definition of active_role-orgs function in ROBACP. AOA_Rule is

an asset to organization assignment rule set and is used in the definition of aorg function

in ROBACP.

Instead defining aorg function for all assets explicitly in regular ROBAC models,

ROBACP uses the rules in AOA_Rule to determine the value of aorg(a) for a given asset

a dynamically. In regular ROBAC, we require that active_role-orgs(s) ⊆ assigned_role-

orgs(user(s)) and assigned_role-orgs is derived from UA (user to role-organization

assignment relation). In ROBACP, we calculate that active_role-orgs(s) dynamically and

do not explicitly assign users to role-org pairs. How the UA looks like in ROBACP is an

interesting question. There are several options here. The first option is to use the same

rules in UROA_Rule to populate UA implicitly when a session starts. So the content in

assigned_role-orgs(user(s)) will be same as the content in active_role-orgs(s). Because

96

the attribute values may change even for a same user in different sessions, the content in

UA and active_role-orgs(s) may not be same in different sessions. We need to remove

the entries, which are populated during a session startup, in UA after the session ends.

This option keeps consistence between ROBACP and regular ROBAC. The second

option is to remove the constraint active_role-orgs(s) ⊆ assigned_role-orgs(user(s)) in

ROBACP. In this option, the UA is ignored. The consequence of ignoring UA is that we

cannot use the constraints defined in ROBAC2 to enforce UA constraints in ROBACP.

We believe that the first option is a better choice from theoretical point of view. The

second option may be useful in real world applications when UA constraints are not

required.

For some pseudo ROBAC, the UROA_Rule may be decomposed to two separate rule

sets: one for mapping users to roles and another for mapping user to organizations. We

denote this kind of simplified pseudo ROBAC as ROBACPs. A formal definition of

ROBACPs is given in the following definition.

 Definition 5.11: A simplified pseudo ROBAC (ROBACPs) has the same elements of

ROBAC except for the following:

• AAP, UAP, SAP, AOA_Rule, aorg are same as those defined in Definition 5.10;

• URA_Rule ⊆ UAP × SAP × R -- a set of rules used for activating roles in

sessions;

• UOA_Rule ⊆ UAP × SAP × O -- a set of rules used for activating organizations

in sessions;

97

• active_role-orgs(s) = { (r, o) ⎥ (r, o)∈ RO ∧ ∃(uap, sap, r) ∈ URA_Rule,

∃(uap’, sap’,o) ∈ UOA_Rule, uap ∧ uap’ are true for user(s) and sap ∧ sap’ is

true for s }

Due to the decoupling between roles and organizations in the rule sets, the size of the

rule sets in ROBACPs is much smaller than those in regular ROBACP.3

In ROBACP, the rules in the rule sets are quite straight forward because it does not

support cross-over attribute predicates in rules. For example, User.attri > Asset.attrj is not

allowed to appear in the rules. This limitation reduces the expressive power of regular

ROBACP. To overcome this limitation, we can re-define the rule sets in ROBACP by

allowing cross-attribute predicates in rules. The resulted ROBAC is called pseudo

ROBAC with cross-attributes predicate, denoted as ROBACPcap. Its simplified version is

denoted as ROBACPscap.

 Definition 5.12: ROBACPcap has the same elements of ROBAC except for the

following:

• AAP, AOA_Rule, and aorg are same as those in regular ROBACP;

• USAAP – a set of applicable cross-attribute predicates;

• UROA_Rule ⊆ USAAP × RO -- a set of rules used for activating role-

organization pair in sessions;

3 From now on, we will use ROBACP to refer any pseudo ROBAC and use regular ROBACP to refer the
pseudo ROBAC defined in Definition 5.10.

98

• active_role-orgs(s) = { (r, o) ⎥ ∃(usaap, (r, o)) ∈ UROA_Rule, ∃a ∈ A, o ∈

aorg(a) ∧ usaap is true for the user user(s), session s, and the asset a }

 Definition 5.13: ROBACPscap has the same elements of ROBAC except for the

following:

• AAP, AOA_Rule, and aorg are same as those in regular ROBACP;

• USAAP – a set of applicable cross-attribute predicates;

• URA_Rule ⊆ USAAP × R -- a set of rules used for activating roles in sessions;

• UOA_Rule ⊆ USAAP × O -- a set of rules used for activating organizations in

sessions;

• active_role-orgs(s) = { (r, o) ⎥ (r, o) ∈ RO ∧ ∃(usaap, r) ∈ URA_Rule,

∃(usaap’, o) ∈ UOA_Rule, ∃a ∈ A, o ∈ aorg(a) ∧ usaap ∧ usaap’ are true for

user(s), session s, and the asset a }

There are two major differences between pseudo ROBAC and previous ROBAC

models:

• The created artificial organizations are only used for the purpose of connecting

users with assets.

• The user to role-organization pair assignment for a user in a session s and the

asset to organization assignment for an asset a are refreshed automatically

99

based on the attributes of the user user(s), the current session s, and the asset a

each time when the session starts.

Pseudo ROBAC may be used in conjunction to regular ROBAC or manifold ROBAC.

5.3.3 Administration of ROBACP

 The AAP, UAP, SAP in ROBACP are usually pre-determined for a given application.

Any changes of UROA_Rule (or URA_Rule and UOA_Rule) may affect the user to

role-org pair assignment perspective of ROBAC. The change of AOA_Rule may affect

user’s permissions. Therefore, any changes of UROA_Rule (or URA_Rule or

UOA_Rule) and AOA_Rule needs to be controlled.

 Definition 5.14: can_manage_UROA_Rule: S × UROA_Rule → {true, false} – a

predicate controls whether a user can manage a given rule in UROA_Rule within a

session. Formally, can_manage_UROA_Rule(s, (uap, sap, (r, o))) is true iff (∃o’ ≥ o,

∃(ar, o’) ∈ active_role-orgs(s)) ∧ (r ∈ apermissions*(ar)).

Note: The definition of can_manage_UROA_Rule(s, (uap, sap, (r, o))) indicates that a

user (user(s)) in a session s can manage rule (uap, sap, (r, o)) if and only if user(s) has an

active role-org pair (ar, o’) in that session, and the administrative role ar or its junior

administrative roles have administrative right over the regular role r, and the organization

o is same as the organization o’ or one of its subordinate organizations.

100

 Definition 5.15: can_manage_AOA_Rule: S × AOA_Rule → {true, false} -- a

predicate defined as can_manage_AOA_Rule(s, (aap, o)) is true iff (gar, o) ∈

active_role-orgs(s).

Note: The definition of can_manage_AOA_Rule(s, (aap, o)) indicates that only a super

user in the organization o can manage the asset assignment rule (aap, o).

 Similarly, we can define the predicates for the rule sets in simplified pseudo ROBAC.

 Definition 5.16: can_manage_URA_Rule: S × URA_Rule → {true, false} – a

predicate controls whether a user can manage a given rule in URA_Rule within a session.

Formally, can_manage_URA_Rule(s, (uap, sap, r)) is true iff (∃ar ∈ AR, (ar, go) ∈

active_role-orgs(s) ∧ (r ∈ apermissions*(ar)).

Note: The definition of can_manage_URA_Rule(s, (uap, sap, r)) means that only a user

with administrator role ar membership in the highest organization level (go) and ar or its

junior administrative roles have administrative right over the regular role r can manage

the rule in URA_Rule because these rules affect all organizations in O.

 Definition 5.17: can_manage_UOA_Rule: S × UOA_Rule → {true, false} – a

predicate controls whether a user can manage a given rule in UOA_Rule within a session.

Formally, can_manage_UOA_Rule(s, (uap, sap, o)) is true iff ∃o’ ≥ o, (gar, o’) ∈

active_role-orgs(s).

101

Note: It makes sense that only a super user in the organization o or in its senior

organization can manage the rule in UOA_Rule because these rules affect all roles in R.

 Following the similar line, the administrative models for ROBACPcap and

ROBACPscap can be developed easily.

 The newly introduced role-organization pair activation rule set UROA_Rule (or its

simplified version) and asset to organization assignment rule set AOA_Rule in the

ROBACP provide great flexibility for modeling some security policy. We will see its

usefulness in the next section.

5.4 A ROBACP Case Study

 Let us consider some access control policies for a business that let users view or

download movies on the web. It is common practice in the movie industry to control the

content, date, and price of a release according to region. For example, DVD-Video discs

are usually encoded with a region code intended to restrict the area of the world in which

they can be played. This kind of “regional lockout” is achieved with the region coded

DVD discs and region restricted DVD-players. The movies distributed in USA are rated

based on the Motion Picture Association of America's (MPAA) film rating system. A

movie may be rated as:

• G - General Audiences (all ages admitted)

• PG - Parental guidance suggested (some material may not be suitable for young

children)

102

• PG-13 - Parents strongly cautioned (some material may be inappropriate for

children under 13)

• R - Restricted (under 17 requires accompanying parent or adult guardian)

• NC-17 - No Children 17 and Under Admitted

A movie rated NC-17 should not be viewed by children under 18. The business wants

to achieve similar “regional lockout’ for the movies and prevent under-age users from

viewing restricted materials on its website. The informal description of some security

policies on this website are listed below:

• Movies released for a region can be viewed or downloaded by the users in

that region and should not be viewed by users in other regions.

• Children under 13 can only view/download the movies rated G or PG.

• Children between 13 – 17 (including 13 and 17) can only view/download

movies rated G, PG, or, PG-13.

• Persons age 18 or older can view/download any movies.

The goal here is to demonstrate the usefulness of ROBACP. So the security policies

listed above are not exactly same as those used in real practice.

For the above security policies, we can use pseudo ROBAC to model them easily. We

assume that a user has age attribute and a session has residence attribute which indicates

where the session is originated. The asset set A includes all movies available on the

website. Each movie (asset) has code attribute which represents the intended distribution

103

area. The possible values for the code attribute is { Region_1, Region_2, Region_3 }

assuming there are three regions on the world. The asset type set At = { G, PG, PG-13, R,

NC-17 } where G means G rated movies, PG means PG rated movies, and so on. The

operation set Op = {access}. Here ‘access’ means view or download. The permissions are

shown in the Table 12 and the roles are shown in the Table 13.

Table 12. Permissions in the ROBACP
p1 = (access, G): access G rated movie
p2 = (access, PG): access PG rated movie
p3 = (access, PG-13): access PG-13 rated movie

p4 = (access, R): access R rated movie
p5 = (access, NC-17): access NC-17 rated movie

Table 13. Roles in the ROBACP
r1: Kid which has permission p1, p2.
r2: Teenage which has permission p1, p2, p3.
r3: Adult which has permission p1, p2, p3, p4, p5.

 We define the organization set O = { Region_1, Region_2, Region_3}. Because all

roles are applicable to all organizations, the resulted ROBAC is totally homogeneous.

There is no restriction on RO. Further more, we can use a simplified pseudo ROBAC

(ROBACPs) to model this problem.

The set of applicable asset attribute predicates,

AAP = { Asset.code = Region_1, Asset.code = Region_2,

104

Asset.code = Region_3 }.

The set of applicable user attribute predicates,

UAP = { User.age < 13, User.age ≥ 13 ∧ User.age ≤ 17, User.age ≥ 18 }.

The set of applicable session attribute predicates,

SAP = { Session.residence in Region_1, Session.residence in Region_2,

 Session.residence in Region_3 }.

The role activation rule set,

 URA_Rule = { (User.age < 13, null, Kid),

(User.age ≥ 13 ∧ User.age ≤ 17, null, Teenage),

 (User.age ≥ 18, null, Adult) }

The organization activation rule set,

 UOA_Rule = { (null, Session.residence in Region_1, Region_1),

(null, Session.residence in Region_2, Region_2),

(null, Session.residence in Region_3, Region_3) }

The asset to organization assignment rule set,

AOA_Rule = { (Asset.code = Region_1, Region_1),

(Asset.code = Region_2, Region_2),

 (Asset.code = Region_3, Region_3) }

If a 15 year old user from Canada signed into this website, the user will gain the

membership of (Teenage, Region_1) based on the rules in the URA_Rule and UOA_Rule

because Canada is in Region_1. If he/she requests to view some rated NC-17 movie, the

105

request will be denied due to the Teenage role’s lack of permission to view NC-17 rated

movies. If he/she requests to download a PG rated movie intended for Region_2, the

request will also be denied because he/she only has the Teenage role in Region_1 not in

Region_2. However, his/her request to view a PG rated movie intended for Region_1 will

be granted.

 5.5 Discussion and Related Work

 There are some efforts [HMMNR00, ZBM01, YMB01, LMW02, Alk04] to address the

issue of how to assign users to roles in role based systems automatically. Herzberg et al.

[HMMNR00] propose an approach to assign a user to roles based on the user’s

credentials, such as public key. Zhong et al. [ZBM01] propose a scheme for user-role

assignment based on the “trustworthiness” of the users. Yao et al. [YMB01] use role

activation rule and role membership rule to automate user role activation in Open

Architecture for Secure Interworking Services (OASIS). In Li et al.'s RT framework

[LMW02], each role specifies the roles that it contains and/or attributes that are required

for membership. Al-Kahtani [Alk04] proposes a family of rule-based RBAC (RB-RBAC)

models to allow the specification of automatic (implicit) user-role assignment. These

previous works focus on how to automate user to role assignments in RBAC. Our work

emphasizes how to use rule-based approach for linking users and assets via pseudo-

organizations in the context of ROBAC. If a problem can be modeled by a simplified

ROBACP, the number of roles and the number of rules in the ROBACP with respect to

106

the problem are much smaller than those in RB-RBAC. Some detail treatment of rules,

such as seniority relation among rules, induced role hierarchies etc., in RB-RBAC can be

applied in ROBACP along the similar line.

Enforcing access control based on involved entities’ attributes has been used

extensively in attribute based access control (ABAC) [WJ03, WWJ04] and usage control

(UCON) [Par03, Zha06]. In ABAC and UCON, the access control policy to a collection

of services is specified only based on a collection of attributes possessed by the involved

entities. Normally, ABAC and UCON treat role membership as one of the requester’s

attributes when some kind of role concept is involved. Due to the wide variety of

attributes, the administration in ABAC and UCON is usually application specific, which

often results in ad-hoc administrative models. The User and Asset attributes in ROBACP

are similar to the Subject and Object attributes in UCON. The System attributes in

UCON represent system wide attributes and are independent from Subject attributes and

Object attributes. The Session attributes in ROBACP represent session specific context

information such as current time, session duration etc. The System attributes can be

simulated by Session attributes. UCON has two distinguishing features: continuity of

access decision and the mutability of attributes. ROBACP does not address the continuity

of access decision and the mutability of attributes. In ROBACP, we assume all attributes

are pre-defined. Some schema of updating attribute values in UCON may be

incorporated into ROBACP if needed. The attributes predicates in regular ROBACP are

stricter than those in UCON. The best case scenario in using pseudo ROBAC is where the

problem can be modeled by the simplified version of ROBACP and the resulted ROBAC

107

is totally homogeneous. In this best case scenario, the number of rules in ROBACP is

reduced significantly. While ROBACPcap provides great flexibility and expressive power,

its manageability is usually reduced. It is easy to show that any preA0 model (an access

control decision is made before the access and there is no attribute update before, during,

or after the access) in UCON can be simulated by a ROBACPcap model.

108

Chapter 6. Conclusions and future work

 A family of extended RBAC models called Role and Organization Based Access

Control (ROBAC) models and its corresponding administrative model called

AROBAC07 are presented and formalized in this dissertation. The motivation behind

ROBAC is to scale up RBAC for B2B and B2C applications where a large number of

organizational units are involved. The advantages of ROBAC models over traditional

RBAC models are shown via two examples. A comparison between ROBAC and RBAC

has been given. We show that the benefits of using ROBAC depend on the homogeneous

index (hindex) function for a given ROBAC. The larger the hindex value for a ROBAC

model, the better off the ROBAC model. We show that the expressive power of ROBAC

is the same as that of RBAC but ROBAC is more intuitive and succinct than many RBAC

variants when used for situations involving a large number of similar organizational units

and the privacy issue is a major concern.

 Many serious security breaches are due to internal users. Hence, it is equally important

to restrict and control administrative actions on access control systems. AROABC07 is

developed for this purpose. AROBAC07 is a decentralized role and organization based

administrative model for ROBAC. It has five sub-models:

• UROA07 is concerned with user to role and organization pair assignment;

• PRA07 deals with permission-role assignment;

109

• RRA07 manages roles and role hierarchy;

• OOA07 handles organizations and organization hierarchy;

• ROA07 controls applicable association between roles and organizations.

 UROA07 and PRA07 retain the benefits of user pool and permission pool concepts in

ARBAC02 without specifying user pool and permission pool explicitly. RRA07 has the

similar advantage of RHA4 in SARBAC over RRA97 in ARBAC97 without sacrificing

the separation of duty between administrative roles and regular roles. OOA07 and

ROA07 provide ways to decentralize the administrative tasks on organization hierarchy

and applicable role and organization association. We claim that AROBAC07 scales up

well and is better than existing role based administrative models by providing more

controlled and decentralized approaches to perform administrative tasks on ROBAC.

 ROBAC / AROBAC07 scales up classic RBAC systems for situations where many

similar organizational units are involved. It inherits RBAC’s beneficial features and

provides a way to restrict access control within specified organizational units without

introducing too much administrative burden on access control systems. It is quite

suitable for modeling privacy related security policy.

 A concept called application compartment (ACom) is introduced in the context of

ROBAC / AROBAC07. We show how to use ACom when constructing administrative

role hierarchy and activating role-organization pairs.

Finally, two ROBAC variants, manifold ROBAC (ROBACM) and pseudo ROBAC

(ROBACP), are introduced. The usefulness of manifold ROBAC is demonstrated in

110

secure collaboration. ROBAC models are well positioned to handle secure collaboration

problems due to its built-in organization hierarchy. We show that using manifold

ROBAC in secure collaboration is simpler and cleaner than most existing RBAC based

approaches for cross-domain collaboration. The usefulness of pseudo ROBAC is shown

in a case study for a web based on-demand movie service. We show that using pseudo

ROBAC usually results in less number of rules than Rule Based RABC for applications

involving many similar organizations.

This dissertation lays the groundwork for ROBAC models. Many research

opportunities can be investigated further. Here is a list of future research topics related to

ROBAC models:

• Detail the implication of can_modify_R, can_modify_O, and can_modify_RO

predicates on individual administrative tasks such as add/delete nodes or

edges;

• Define each administrative action using some formal specification language

such as Z [PST91];

• Integrate general constraints in ROBAC;

• Present a reference implementation of ROBAC;

• Detail the implementation perspective of ROBACM based secure collaboration

schema;

• How to enforce UA constraints in ROBACP?

111

• How attributes get their values in ROBACP? When and where to update

system-controlled attributes in ROBACP? How administrator-control attributes

are managed?

• Integrate regular ROBAC and pseudo ROBAC in same problem;

• Perform safety analysis of ROBAC, which is equivalent to the safety analysis

of RBAC since any given ROBAC can be simulated by a RBAC though the

resulted RBAC is more complex.

112

Bibliography

113

Bibliography

[Alk04] Mohammad Abdullah Al-Kahtani, "A Family of Models for Rule-Based User-

Role Assignment", PhD Dissertation, George Mason University, Spring 2004.

[ANSI04] American National Standard Institute, “ANSI INCITS 359-2004 for Role

Based Access Control”, 2004

[BBF01] E. Bertino, P. A. Bonatti, E. Ferrari, "TRBAC: A temporal role-based access

control model", ACM Transactions on Information & System Security, 4(3), Aug.2001,

p.191-233.

[BCDP05] Elisa Bertino, Barbara Catania, Maria Luisa Damiani, Paolo Perlasca, "Access

control model I: GEO-RBAC: a spatially aware RBAC", Proceedings of the tenth ACM

symposium on Access control models and technologies, June 2005.

[BJBG04] Rafae Bhatti, James Joshi, Elisa Bertino, Arif Ghafoor, "Role administration:

X-GTRBAC admin: a decentralized administration model for enterprise wide access

control", Proceedings of the ninth ACM symposium on Access control models and

technologies, June 2004.

[CCC06] Frederic Cuppens, Nora Cuppens-Boulahia, and Celine Coma, “O2O: Virtual

114

Private Organizations to Manage Security Policy Interoperabilityl”, in Aditya Bagchi and

Vijayalakshmi Atluri Eds. Information Systems Security, Proceeding of Second

International Conference, ICISS 2006, Kolkata, India, December 2006, LNCS 4332,

Springer, pages 101-115.

[CL03] Jason Crampton and George Loizou, “Administrative Scope: A Foundation for

Role-Based Administrative Models”, ACM Transactions on Information and System

Security, Volume 6, Number 2, May 2003, pages 201-231.

[CLSDAA01] Michael J. Covington, Wende Long, Srividhya Srinivasan, Anind K. Dev,

Mustaque Ahamad, Gregory D. Abowd, "Securing context-aware applications using

environment roles", Proceedings of the sixth ACM symposium on Access control models

and technologies, May 2001.

[FBK99] David F. Ferraiolo, John F. Barkley, D. Richard Kuhn, “A role-based access

control model and reference implementation within a corporate intranet,” ACM

Transactions on Information and System Security (TISSEC), Volume 2 Issue 1, February

1999

[FSGKC01] D. Ferraiolo, R. Sandhu, S. Gavrila, D. Kuhn, and R. Chandramouli,

“Proposed NIST standard for role-based access control,” ACM Transactions on

Information and System Security (TISSEC), Volume 4 Issue 3, 2001

[GB98] Serban Gavrila and John Barkley, “Formal Specification for RBAC User/Role

and Role/Role Relationship Management”, Proceedings of Third ACM Workshop on

Role-Based Access Control, Fairfax, VA, October 1998.

115

[GI97] Luigi Giuri and Pietro Iglio, “Role Templates for Content-Based Access Control”,

Proceedings of Second ACM Workshop on Role-Based Access Control, November 1997

[GMPT01] Christos K. Georgiadis, Ioannis Mavridis, George Pangalos, and Roshan K.

Thomas, "Flexible Team-Based Access Control Using Contexts", SACMAT’01, May 3-

4, 2001, Chantilly, Vriginia, USA.

[GQ96] Li Gong and Xiaolei Qian, "Computational issues in secure interoperation",

IEEE Transactions on Software and Engineering, 22(1):43-52, January 1996.

[HMMNR00] A. Herzberg, Y. Mass, J. Mihaeli, D. Naor, and Y. Ravid, “Access control

meets public key infrastructure, or: assigning roles to strangers”, Proceedings. 2000 IEEE

Symposium on Security and Privacy, 2000. S&P 2000. 14-17 May 2000 Page(s):2 – 14

[JBBG04] J. Joshi, R. Bhatti, E. Bertino, and A. Ghafoor, “Access control language for

multi-domain environments”, IEEE Internet Computing, pages 40 - 50, November-

December 2004.

[JBLG05] J. B. D. Joshi, E. Bertino, U. Latif, A. Ghafoor, "A generalized temporal role

based access control model (GTRBAC)", IEEE Transaction on Knowledge and Data

Engineering 17, 1 (Jan. 2005).

[KACM00] A. Kapadia, J. AI-Muhtdai, R. Campbell, and D. Mickunas, “IRBAC 2000:

Secure interoperability using dynamic role translation”, In Technical Report: UIUCDCS-

R-2000-2162, 2000.

[KBBBCDMST03] A. Abou El Kalam, R. E. Baida, P. Balbiani, S. Benferhat, F.

Cuppens, Y. Deswarte, A. Miege, C. Saurel, and G. Trouessin, “Organization Based

Access Control”, Policy’03, Como, Italie, June 2003.

116

[Ker02] A. Kern, "Advanced Features for Enterprise-Wide Role-Based Access Control",

In Proceedings of the 18th Annual Computer Security Applications Conference, Las

Vegas, Nevada, USA, pages 333-342, December, 2002.

[KKC02] Arun Kumar, Neeran Karnik, Girish Chafle, "Context sensitivity in role-based

access control", ACM SIGOPS Operating Systems Review, Volume 36 Issue 3, July

2002.

[KSM03] A. Kern, A. Schaad and J. Moffett, "An Administration Concept for the

Enterprise Role-Based Access Control Model", SACMAT’03, June 1-4, Como, Italy.

[LDAP97] Lightweight Directory Access Protocol (v3), RFC2251, December 1997.

[LDAP01] Dynamic Groups for LDAPV3 draft-haripriya-dynamicgroup-00.txt, October

2001.

[LMW02] Ninghui Li, John C. Mitchell, and William H. Winsborough, "Design of a

role-based trust management framework", Proc. IEEE Symposium on Security and

Privacy, Oakland, USA, May 2002.

[LZQX06] Qi Li, Xinwen Zhang, Sihan Qing, and Mingwei Xu, "Supporting Ad-hoc

Collaboration with Group-based RBAC Model", CollaborateCom-2006, Atlanta,

Georgia, USA, November 2006.

[NO99] Matunda Nyanchama and Sylvia Osborn, “The Role Graph Model and Conflict

Of Interest”, ACM Transactions on Information and System Security, Volume 2, Number

1, February 1999, pages 3-33.

117

[OSZ06] Sejong Oh, Ravi Sandhu, and Xinwen Zhang, “An Effective Role

Administration Model Using Organization Structure”, ACM Transactions on Information

and System Security, Volume 9, Number 2, May 2006, pages 113-137.

[Par03] Jaehong Park, "Usage Control: A Unified Framework for Next Generation

Access Control", PhD Dissertation, George Mason University, Summer 2003.

[PCND04] Joon S. Park, Keith P. Costello, Teresa M. Neven, Josh A. Diosomito, “A

Composite RBAC Approach for Large, Complex Organizations”, SACMAT'04, June 2-4,

2004, Yorktown Heights, New York, USA.

[PJ05] S. Piromruen and J. Joshi, “An RBAC framework for time constrained secure

interoperation in multi-domain environments”, In Proceedings of 10th IEEE International

Workshop on Object-Oriented Real-Time Dependable Systems(WORDS’05), pages 36-

48, 2005.

[PS01] Najam Perwaiz and Ian Sommerville, “Structured Management of Role-

Permission Relationships”, SACMAT’01, May 3-4, 2001, Chantilly, Vriginia, USA.

[PST91] B. Potter, J. Sinclair, and D. Till, “An Introduction to Formal Specification and

Z”, Prentice-Hall, Ney York, NY, 1991.

[RKY06] Indrakshi Ray, Mahendra Kumar, and Lijun Yu, “LRBAC: A Location-Aware

Role-Based Access Control Model”, in Aditya Bagchi and Vijayalakshmi Atluri Eds.

Information Systems Security, Proceeding of Second International Conference, ICISS

2006, Kolkata, India, December 2006, LNCS 4332, Springer, pages 147-161.

[RTI02] RTI International, “The Economic Impact of Role-Based Access Control”,

March 2002, http://www.nist.gov/director/prog-ofc/report02-1.pdf

http://www.nist.gov/director/prog-ofc/report02-1.pdf

118

[SBM99] Ravi Sandhu, Venkata Bhamidipati, and Qamar Munawer, “The ARBAC97

Model for Role-Based Administration of Roles”, ACM Transactions on Information and

Systems Security, Volume 2, Number, February 1999.

[SCY96] Ravi Sandhu, Edward Coyne, Hal Feinstein and Charles Youman, “Role-Based

Access Control Models”, IEEE Computer, Volume 29, Number 2, February 1996.

[SFK00] Ravi Sandhu, David Ferraiolo, and Richard Kuhn, “The NIST Model for Role-

Based Access Control: Towards A Unified Standard, National Institute of Standards and

Technology”, December 2000, http://csrc.nist.gov/rbac/sandhu-ferraiolo-kuhn-00.pdf

[SJBG05] B. Shafiq, J. Joshi, E. Bertino, and A. Ghafoor, “Secure interoperation in a

multi-domain environment employing RBAC policies”, IEEE Transactions on

Knowledge and Date Engineering, 17(11):1557-1577, November 2005.

[SMJ01] Andreas Schaad, Jonathan Moffett, Jeremy Jacob, “The Role-Based Access

Control System of a European Bank: A Case Study and Discussion”, SACMAT’01, May

3-4, 2001, Chantilly, Vriginia, USA.

[SP98] Ravi Sandhu , Joon S. Park, “Decentralized user-role assignment for Web-based

intranets”, Proceedings of the third ACM workshop on Role-based access control, p.1-12,

October 22-23, 1998, Fairfax, Virginia, United States

[SRZ06] Ravi Sandhu, Kumar Ranganathan, and Xinwen Zhang, “Secure Information

Sharing Enabled by Tusted Computing and PEI Models”, ASIACCS ’06, March 2006,

Taipei, Taiwan.

[TAPH05] William Tolone, Gail-Joon Ahn, Tanusree Pai, and Seng-Phil Hong, ”Access

control in collaborative systems”, ACM Computing Surveys, 37(1):29-41, May 2005.

http://www.list.gmu.edu/journals/acm/rbac97(org).pdf
http://www.list.gmu.edu/journals/acm/rbac97(org).pdf
http://www.list.gmu.edu/journals/computer/i94rbac(org).pdf
http://www.list.gmu.edu/journals/computer/i94rbac(org).pdf
http://csrc.nist.gov/rbac/sandhu-ferraiolo-kuhn-00.pdf

119

[Tho97] R.K. Thomas, “Team-Based Access Control (TMAC): A Primitive for Applying

Role-Based Access Controls in Collaborative Environments”, Proceedings of the Second

ACM workshop on Role-based Access Control, Fairfax, VA, USA, 1997.

[WJ03] William H. Winsborough and Jay Jacobs, “Automated Trust Negotiation

Technology with Attribute-based Access Control”, Proceedings of the DARPA

Information Survivability Conference and Exposition (DISCEX’03), IEEE Computer

Society, 2003.

[WWJ04] Lingyu Wang, Duminda Wijesekera, and Sushil Jajodia, "A Logic-based

Framework for Attribute based Access Control", CCS’04, October 25-29, 2004,

Washington, DC, USA.

[YMB01] W. Yao, K. Moody, and J. Bacon, "A Model of OASIS Role-Based Control

and its Support for Active Security", SACMAT’01, Chantilly, Virginia, USA, May 3-4,

2001.

[ZBM01] Y. Zhong, B. Bhargava, and M. Mahoui, "Trustworthiness Based Authorization

on WWW", In IEEE workshop on Security in Distributed Data Warehousing, New

Orleans, USA, Oct. 2001.

[Zha06] Xinwen Zhang, "Formal Model And Analysis of Usage Control", PhD

Dissertation, George Mason University, Spring 2006.

[ZZS06] Zhixiong Zhang, Xinwen Zhang, and Ravi Sandhu, “ROBAC: Scalable Role

and Organization Based Access Control Models”, Proceedings of CollaborateCom-

2006/TrustCol-2006, Atlanta, Georgia, USA, November 2006.

120

[ZZS07] Zhixiong Zhang, Xinwen Zhang, and Ravi Sandhu, “Towards a Scalable Role

and Organization Based Access Control Model with Decentralized Security

Administration”, in Manish Gupta and Raj Sharman edit: “Handbook of Research on

Social and Organizational Liabilities in Information Security”, IGI Global publications.

Accepted for publishing in April 2007.

121

CURRICULUM VITAE

 Zhixiong Zhang received his Bachelor of Science in Computer Science from Fudan
University in 1983. He received his Master of Engineering in Electronic Engineering
from Shanghai Jiao Tong University in 1986. He also received Graduate Certificates in
Software System Engineering and in Information Security and Assurance from George
Mason University in 2000 and 2006 respectively. He worked as a research assistant and
instructor in Shanghai Jiao Tong University from 1986 - 1993. He also worked as a
software engineer for several companies in Japan and in the United States. He is currently
a senior software developer for The College Board. He has been a practitioner in the
Information Technology field for more than 20 years. His research interests include
software engineering, information security, and artificial intelligence. He received his
Ph.D. degree in Information Technology from George Mason University in 2008.

	List of Tables……………………………………………………………………………vii
	List of Figures…………………………………………………………………………..viii
	Abstract..……
	3.1 Informal Description 15
	3.2 Formal Description 16
	3.2.1 ROBAC0 16
	3.2.2 ROBAC1 19
	3.2.3 ROBAC2 22
	3.2.4 ROBAC3 27
	3.3 Applicability and Expressive Power of ROBAC 28
	3.4 Discussion and Related Work 36
	3.4.1 Comparison with RBAC 36
	3.4.2 Comparison with Role Templates 40
	3.4.3 Comparison with Team-based Access Control (TMAC) 41
	3.4.4 Comparison with Organizational Units 42
	3.4.5 Comparison with Group Based RBAC (GB-RBAC) 42
	3.4.6 Comparison with Organization Based Access Control (OrBAC) 43
	4.1 Administrative Issues in ROBAC 48
	4.2 AROBAC07 Model 49
	4.2.1 The UROA07 Model 54
	4.2.2 The PRA07 Model 60
	4.2.3 The RRA07 Model 62
	4.2.4 The OOA07 Model 64
	4.2.5 The ROA07 Model 66
	4.3 Application Compartment in ROBAC 67
	4.4 Discussion and Related Work 70
	5. ROBAC Variants 74
	5.1 Manifold ROBAC 74
	5.2 Secure Collaboration 76
	5.2.1 Background 76
	5.2.2 Secure Collaboration with Manifold ROBAC 77
	5.2.2.1 Informal Description 78
	5.2.2.2 The Asset Management ’07 Model 83
	5.2.2.3 ROBACM Based Secure Collaboration Schema 84
	5.2.3 Related Work 88
	5.3 Pseudo ROBAC 90
	5.3.1 Attributes in ROBACP 91
	5.3.2 Formal Definition of ROBACP 94
	5.3.3 Administration of ROBACP 99
	5.4 A ROBACP Case Study 101
	5.5 Discussion and Related Work 105
	6. Conclusions and future work 108
	Bibliography 113
	LIST OF TABLES

	Table Page
	LIST OF FIGURES

	Figure Page

	ABSTRACT
	Chapter 1. Introduction
	Chapter 2. Motivating Examples
	Chapter 3. Role and Organization Based Access Control (ROBAC)
	Separation of duty (SoD) constraint I
	Separation of duty constraint II
	Cardinality constraint I
	Number of roles
	Organization hierarchy
	Role hierarchy
	Constraints
	User-role-(org) assignment
	Permission-role assignment
	Role administration
	Number of role-org pairs
	Role-org pairs administration

