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One of the main challenges in modern communication networks, like the Internet, is

providing performance guarantees, such as bounds on end-to-end delay, while avoiding un-

derutilization of the network resources. In the early 1990s an approach to address this

problem was proposed in which the input traffic was bounded either stochastically or de-

terministically by a so-called traffic envelope. Network calculus was developed to derive

end-to-end delay bounds from the traffic burstiness bounds. Since deterministic network

calculus can lead to loose bounds, our research focuses on stochastic network calculus.

In this dissertation, we address three open problems in applying stochastic network

calculus to practical networks: 1) estimating an appropriate stochastic traffic envelope for an

arbitrary traffic source; 2) enforcing conformance of a given traffic flow to a stochastic traffic

envelope; 3) admission control based on an enforceable traffic envelope, while achieving

statistical multiplexing gain. We develop a method to characterize an arbitrary traffic

source by a traffic envelope that takes the form of a phase-type distribution. The versatility

and generality of the phase-type distribution make it useful for obtaining tight bounds to

characterize the traffic. We particularize a class of stochastic burtiness bounds using the

proposed phase-type bounds. We also develop a stochastic traffic regulator that forces a



traffic flow to conform to a given traffic envelope from a class of traffic envelopes, includ-

ing our proposed phase-type envelopes. We propose a new traffic envelope, referred to as

the W-envelope, based on the moment generating function of the workload process obtained

from offering the traffic to a constant service rate queue. We show how the W-envelope can

be used in a QoS (quality of service) framework for providing stochastic end-to-end delay

guarantees in conjunction with the proposed traffic characterization method and stochastic

traffic regulator. Finally, we develop a new available bandwidth estimation (ABE) method

that can provide accurate estimates of the available bandwidth on an end-to-end network

path even in presence of packets dropped due to congestion. Our ABE method could be

used to discover the amount of available bandwidth on an end-to-end, which could then be

used to provide stochastic delay guarantees for time-sensitive traffic via our proposed QoS

framework.



Chapter 1: Introduction

1.1 Motivation

One of the main challenges in data networks is providing end-to-end performance guaran-

tees like, end-to-end delay. As the data network grows in size and provides service to a

massive number of users, providing performance guarantee and avoiding under-utilization

of the network resources becomes crucial. Using queuing theory we can extensively char-

acterize the output traffic of a single node under general input and service processes. Such

characterization, however, becomes intractable in the case of a network of nodes, unless un-

realistic simplifying assumptions are made on the input traffic or service processes. Queuing

theory fails to accurately address the case of bursty traffic, which is very common in today’s

Internet.

In an attempt to address the aforementioned shortcomes, network calculus was devel-

oped in pioneering work of Cruz [24,25]. He bounded input traffic deterministically by the

so-called (σ, ρ)-characterization. He then used such characterization and developed network

calculus to derive a bound on end-to-end delay. However, since his method considered the

worst case delay, in practice the end-to-end bounds were very loose. Therefore later on,

Yaron and Sidi [97] developed stochastic bounds for the input traffic, specifically bounds

in the form of exponential functions. The exponentially bounded burstiness (EBB) traffic

envelope of Yaron and Sidi [97] was generalized to a larger class of bounding functions,

resulting in a traffic envelope called stochastically bounded burstiness (SBB) [85]. This

envelope was further modified in [51,99] to the so-called generalized stochastically bounded

burstiness (gSBB). Stochastic network calculus theorems associated with these traffic en-

velopes were developed to obtain stochastic bounds on end-to-end network delay. In theory,

1



stochastic network calculus should provide much tighter end-to-end bounds and higher net-

work utilization compared to deterministic network calculus.

In the literature on stochastic network calculus there has been relatively little work on

specifying the bounding function itself, other then the exponential function proposed in [97],

and the mixture of exponentials discussed in [85]. Motivated by the versatility of the family

of the phase-type distributions, we specialize the bounding function into a form related to

phase-type distribution. We also particularize a stochastic network calculus developed for

general bounding functions, to this specific family of functions.

One of the main issues of the stochastic network calculus, which had not been addressed

in prior work, is the question of how to estimate the traffic burstiness bounds for a given

traffic trace. We develop two approaches to estimate phase-type bounds for a given traffic

trace. Another problem that needs to be addressed is how to enforce a traffic stream to

obey a given traffic burstiness bound. Based on the well-known of deterministic (σ, ρ) traffic

shaper [24], we developed a stochastic traffic regulator that enforces the output traffic to

conform to the so-called gSBB traffic envelope.

Stochastic network calculus involves the use of traffic envelopes to derive end-to-end

performance metrics. To apply network calculus in practice, the traffic envelopes should: (i)

be readily determined for an arbitrary traffic source, (ii) be enforceable by traffic regulation,

and (iii) yield statistical multiplexing gain. Existing traffic envelopes typically satisfy at

most two of these properties. The traffic envelope based on the moment generating function

(MGF) of the arrival process satisfies only the third property. We propose a new traffic

envelope, referred to as the W-envelope, based on the MGF of the workload process obtained

from offering the traffic to a constant service rate queue. We show how the W-envelope is

related to the gSBB traffic envelope. We show that W-envelope, together with its associated

gSBB traffic envelope, satisfies all three properties and can be the basis of a framework for

provisioning stochastic delay guarantees in a network.

The remainder of this dissertation is organized as follows. In Chapter 2, we review the

literature on network calculus and we also cover phase-type distributions. In Chapter 3, we
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develop a network calculus based on phase-type distributions. In Chapter 4, we develop two

methods of estimating the phase-type bounds for a given traffic source. In Chapter 5, we

develop a stochastic traffic regulator to shape any given traffic flow into desired phase-type

characterization. In Chapter 6, we propose and evaluate a framework, based on results

from stochastic network calculus, for guaranteeing stochastic bounds on network delay at

a statistical multiplexer. In Chapter 7, we propose a new traffic envelope, refereed to as

W-envelope, based on the MGF of the workload process obtained from offering the traffic

to a constant service rate queue. In Chapter 8, we propose a set of techniques to extend

modern available bandwidth estimation methods in the presence of packet loss. Finally, the

dissertation is concluded in Chapter 9.

1.2 Main Contributions

In this section we provide a summary of the main contributions of this dissertation.

1.2.1 Phase-type Traffic Bound

In Chapter 3, we developed a network calculus for PHBB and phase-type traffic bounds

as particular cases of SBB and gSBB traffic envelopes developed in [51, 97, 99]. The main

contributions in this chapter can be summarized as follows:

1. We develope phase-type bounded burstiness (PHBB) as a special cases of SBB traffic

envelope using phase-type distribution.

2. We show that the network calculus theorems for SBB traffic envelopes hold for PHBB

traffic envelopes. Therefore, characterization of all the input traffic flows to a network

using PHBB bounds leads to characterization of all the traffic flows in the network

using PHBB bounds. Such characterization can lead to stochastic bounds on end-to-

end delay in the network.

3. We develop a new class of phase-type bounds as a special cases of gSBB traffic envelope

using phase-type distribution. We introduced a threshold on the tail of the bound in
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the definition and therefore making it possible to bound heavy-tailed traffic commonly

seen in Internet using phase-type bounds.

4. We show that the network calculus theorems for gSBB traffic envelopes hold for phase-

type traffic envelopes. Therefore, having characterized the input traffics to a network

using phase-type bounds can result in characterization of all the traffics in the network

using phase-type bounds. Such characterization can lead to stochastic bounds on end-

to-end delay in the network. We Show the advantage of phase-type bounds versus

PHBB bounds as the traffic is traversed through the network, the bounds will stay

the same and will not become loose.

5. We show the versatility of phase-type bounds and the tightness they provide when the

input traffic streams are assumed independent using a MMPP/G/1 traffic example.

1.2.2 Traffic Characterization Using Traffic Bounds

Having developed phase-type traffic bounds in Chapter 3, in Chapter 4 we addressed the

first practical problem of using phase-type network calculus, namely, how to characterize an

arbitrary traffic source. The main contributions of this chapter are summarized as follows:

1. We formulate the problem of finding the phase-type bound as an optimization prob-

lem and developed a least squares solution method. We simplified this optimization

problem for the special cases of phase-type distribution, namely, hyperExponentials,

mixture of Erlangs, and Canonical form I.

2. We develop an alternative algorithm for characterizing the traffic stream using phase-

type bounds based on EM algorithm. The algorithm is based on generating the

samples of the workload, when traffic is fed into a constant rate server, and fitting

the samples to a phase-type distribution. In this algorithm we also use a special

class of phase-type distribution, namely, mixture of Erlangs, which includes mixture

of exponentials as a special case.
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3. We develop an efficient EM algorithm for fitting a traffic trace to a special form of of

phase-type distribution, namely, mixture of Erlangs. Our algorithm is a very efficient

extension of the algorithm developed in [87].

4. We apply the two approaches to characterize a heavy-tailed traffic source using phase-

type bounds. Our results showed that the least squares method outperformed the EM

method.

1.2.3 Stochastic Traffic Regulator

In Chapter 5, we addressed the open problem of how to enforce conformance of an arbitrary

traffic flow to a given gSBB bound. The main contributions of this chapter are summarized

as follows:

1. We design a stochastic traffic regulator to shape an arbitrary traffic flow to conform

to a given gSBB bound by extending the (σ, ρ) traffic regulator developed in [24].

2. We develop three alternative implementations of the designed stochastic traffic reg-

ulator. We show the first algorithms satisfies the desired bound asymptotically and

second and the third ones satisfying the desired bound at all the times.

3. We present examples of shaping of Poisson traffic flow and a bursty traffic flow into the

desired gSBB bound. We show that much lower delay is introduced by the stochastic

traffic regulator in comparison to the (σ, ρ) traffic regulator.

1.2.4 A Framework for Providing Stochastic Delay Guarantee

In Chapter 6, we designed a practical framework for providing stochastic delay guaran-

tees in communication networks utilizing stochastic network calculus developed in previous

chapters. Specifically, our framework is based on the phase-type traffic envelope and the

W-envelope. The main contributions of this chapter are summarized as follows:

1. We proposed the use of phase-type traffic envelopes to characterize traffic flows (Chap-

ter 4) and the enforcement of these envelopes by a stochastic traffic regulator (Chapter
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5). By doing so we can guarantee that, all traffic flows will conform to the negotiated

stochastic bounds and the desired performance metrics of the traffic flows are not

compromised by nonconforming traffic flows.

2. We propose an admission control scheme based on phase-type bounds and MGF

bounds. By using network calculus and delay guarantees provided by phase-type

and MGF bounds, such admission control only accepts new flows, when the desired

performance metrics of the rest of the flows will not be violated.

3. We applied the hybrid admission control scheme to an example with traffic modeled

by a Markov modulated Poisson process and demonstrate multiplexing gain achieved

using MGF bounds.

1.2.5 Traffic Envelope and the Offered Multiplexing Gain

In Chapter 7, we introduced a new traffic envelope based on an exponential bound on MGF

of the workload, when the traffic flow is offered as an input to a constant rate server. We

showed this new traffic envelope, which we refer to as the W-envelope, can offer multiplexing

gain when it is applied at a multiplexer, and more importantly as it is based on the workload,

a given traffic flow can be characterized and enforced according to a W-envelope via an

associated gSBB envelope. The main contributions of this chapter are summarized as

follows:

1. We introduce the W-envelope and derive its properties, particularly the relationship

between the W-envelope and the arrival MGF envelope.

2. We develop a framework for providing delay guarantees using the W-envelop. We

show through the relationship between gSBB bounds and the W-envelop, how a given

traffic flow can be characterized using a W-envelop. We also show by using a gSBB

stochastic regulator we can enforce a given traffic to conform to its associated W-

envelope.
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3. We use the W-envelop to characterize two well-known traffic models, namely, Markov

fluid model and MMPP model. We then showed how using the W-envelope we can

achieve multiplexing gain for these traffic sources and how this envelop can be applied

to admission control at a multiplexer to provide stochastic delay guarantee, meanwhile,

providing multiplexing gain.

1.2.6 Available Bandwidth Estimation

In Chapter 8, we addressed the problem of estimating the available bandwidth (ABE) on

an end-to-end path. Having such estimation can help us to provide the end-to-end delay

guarantee using the methods introduced in previous chapters. Specifically, we aimed to

address the problem of ABE using an active method by sending probes on the end-to-end

path. However, one of the key issues that arises in such situation is losing some of the

probes due to the congestion on the path. We formulated this problem mathematically

and developed an approach to extend the existing estimation methods to address these

situations. The main contributions of this chapter are summarized as follows:

1. We review the cases that lead to the lost probes, for example because of congested

queues along the end-to-end path or because of aggressive automatic queuing man-

agements (AQM) used along the path. We discuss how current ABE methods are not

designed to address such cases.

2. We extend the formulation of the current decreasing-rate ABE methods to estimate

the lost cross traffic during the estimation process, and therefore estimate the available

bandwidth while accounting for the lost cross traffic.

3. We develop two alternative methods to solve the problem of ABE in the presence of

lost packets. The first method is based on accounting for the received probes versus

the sent probes. The second method however, estimates the lost cross traffic and leads

to a more accurate estimate. The second method, however, needs an estimate of the

bottleneck capacity.
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4. We exhaustively tested our developed algorithm on a real testbed using Linux servers.

Our tests were done on different range of channel bandwidth, i.e., 100 Mbps, 1 Gbps,

and 10 Gbps. We show that our two methods significantly outperform the current

existing ABE methods in all cases.
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Chapter 2: Background and Literature Review

In this chapter we review some concepts that our work is based on: stochastic network

calculus, the (σ, ρ) deterministic network calculus and (σ, ρ) traffic regulator, the phase-

type distribution, and the EM algorithm.

The remainder of this chapter is organized as follows. In Section 2.1, we provide a review

of stochastic network calculus definitions and theorems. In Section 2.3, we review the phase-

type distribution and we cover some theorems about this class of random variables. Finally,

in Section 2.4, we review the EM algorithm for hyper-Erlang distribution.

2.1 Stochastic Network Calculus

Stochastic network calculus was pioneered by Yaron and Sidi in [96,97] and Chang in [22].

The main contribution of Yaron and Sidi was to characterize the input traffic as so-called

EBB (exponential bounded burstiness), which in more accurate terms can be expressed in

these two definitions.

Definition 2.1.1 (EB). A stochastic process W = {W (t) : t ≥ 0} is called exponentially

bounded (EB) if there exist α ≥ 0 and A ∈ [0, 1] such that

P{W (t) ≥ σ} ≤ Ae−ασ, (2.1)

for all t ≥ 0 and all σ ≥ 0.

Definition 2.1.2 (EBB). A traffic process A(t) is said to have exponentially bounded bursti-

ness (EBB) with upper rate ρ if there exist α ≥ 0 such that for all t ≥ s ≥ 0 and all

σ ≥ 0

P {A(s, t) ≥ ρ(t− s) + σ} ≤ Ae−ασ, (2.2)
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where A(s, t) := A(t)−A(s) is the amount of traffic that arrives in the interval [s, t).

For a discrete-time traffic process {Ak : k = 0, 1, . . .}, essentially the same definition of

EBB applies, except that s and t are nonnegative integers. Using this definition, they were

able to develop network calculus theorems and extend these characteristics to the output

traffics and workload processes through the network. Therefore, they were able to bound

the delay and other parameters of the interest in the network by exponential bounds.

For some traffic models, the exponential bound of EBB can be quite loose. Therefore,

this bound was extended in [85] to employ a general bounding function.

Definition 2.1.3 (SB). A stochastic process W (t) is called stochastically bounded (SB) if,

for all t ≥ 0 and all σ ≥ 0

P{W (t) ≥ σ} ≤ f(σ), (2.3)

where f(σ) ∈ F , and F is defined as the family of functions such that for every n, σ ≥ 0,

the n-fold integral (
∫∞
σ du)nf(u) is bounded.

Definition 2.1.4 (SBB). A traffic process A(t) is said to have stochastically bounded bursti-

ness (SBB) with upper rate ρ and bounding function f(σ) if, for all t ≥ s ≥ 0 and all

σ ≥ 0,

P {A(s, t) ≥ ρ(t− s) + σ} ≤ f(σ), (2.4)

where f(σ) ∈ F , and F is defined in Definition 2.1.3.

Network calculus theorems developed for SBB generalize those for EBB. The network

model considered in this context is a feedforward network that starts at t = 0 and all the

network queues are empty at that time. Buffers are assumed to be infinite. The network is

assumed to be a work-conserving system, which means that in every element of the network,

no work is created or destroyed, and the server of the element never idles in the presence

of a non-empty queue.

• The SBB Characterization Theorem [85, Theorem 1] considers a work-conserving sys-

tem that transmits at a rate of ρ, fed with a traffic stream with traffic process A(t).
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If W (t), the queue workload at time t, is SB with bounding function f(σ), then the

input traffic stream will have SBB with the same bounding function f(σ) and upper

rate ρ.

• The SBB Sum Theorem [85, Theorem 2] states that when two traffic streams A1(t)

and A2(t) having SBB with bounding functions f1(σ) and f2(σ) and upper rates ρ1

and ρ2 are fed into a network element with constant service rate, the aggregate traffic

process A1(t)+A2(t) will also have SBB with upper rate ρ1+ρ2 and bounding function

g(σ) = f1(pσ) + f2((1− p)σ), where p is any value such that 0 < p < 1.

• The SBB Input-Output Relation Theorem [85, Theorem 3] considers a traffic process

Ain(t) fed as input to a work-conserving network element that transmits at rate C.

If Ain(t) is having SBB with upper rate ρ < C and bounding function f(σ), then the

queue workload processW (t) and the output traffic process Aout(t) have the following

properties:

i) Aout(t) is having SBB with upper rate ρ and bounding function

g(σ) = f(σ) +
1

C − ρ

∫ ∞

σ
f(u) du, (2.5)

ii) W (t) is SB with the same bounding function as (2.5).

By the Sum Theorem, if a set of individual traffic streams are having SBB, their aggregated

traffic stream will also have SBB. Then by the Input-Output Relation Theorem, W (t) and

Aout(t) of these nodes will be SB and having SBB, respectively. Following the same steps,

we can extend this further to other nodes, and eventually to the entire network. Thus, if

the input traffic streams to the feedforward network can be characterized as having SBB,

then the traffic streams in all links of the network and the queue workloads at all network

elements can be characterized as having SBB and being SB, respectively.

The idea of SBB was further developed in [51, 99], by introducing the closely related
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concept of gSBB.

Definition 2.1.5 (gSBB). A traffic process A(t) is said to have generalized stochastically

bounded burstiness (gSSB) with upper rate ρ and bounding function f(σ) ∈ BF if, for all

t ≥ 0 and all σ ≥ 0,

P {W (t) ≥ σ} ≤ f(σ), (2.6)

where,

Wρ(t) = max
0≤s≤t

{A(s, t)− ρ(t− s)} , (2.7)

and BF is defined as the family of positive and non-increasing functions.

We should note that, by comparing Eqs. (2.4) and (2.6), the gSBB characterization

is more restrictive than that of SBB. In other words, for a given bounding function, if a

traffic process is gSBB then it is also SBB, but the converse may not hold. The inequiv-

alence between SBB and gSBB concepts is explained in detail with a counter-example in

Appendix A. There are some advantages for gSBB characterization over SBB, which makes

it more useful. First of all, the class of bounding functions for gSBB is less restrictive than

that for SBB. This is especially useful in characterizing heavy-tail traffics , which are very

common in the Internet traffic [47, 49]. Secondly, in the definition of gSBB, the process

W (t) can be interpreted as the virtual workload of a constant rate queue with service rate

ρ and input traffic R. This property is used later on in our work, as discussed in Chapter 4,

to estimate the parameter of the gSBB traffic burstiness bound.

In [99] and [51], several network calculus theorems for gSBB traffics are developed that

can be used to bound network delays using probabilistic bounds. The main ones are similar

to the ones for SBB and are summarized as follows:

• The gSBB Characterization Theorem [99, Theorem 1] considers a work-conserving

system that transmits at a rate of ρ, fed with a traffic process A(t) and W (t) is the

queue workload at time t. Then A(t) is having gSBB with upper rate ρ and bounding
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function f if and only if

P{W (t) ≥ σ} ≤ f(σ). (2.8)

• The gSBB Sum Theorem [99, Theorem 3] states that when two traffic streams A1(t)

and A2(t), having gSBB with bounding functions f1(σ) and f2(σ) and upper rates

ρ1 and ρ2 are fed into a network element, the aggregate traffic process A1(t) + A2(t)

will also have gSBB with upper rate ρ1 + ρ2 and bounding function g(σ) = f1(pσ) +

f2((1− p)σ), where p is any value such that 0 < p < 1.

• The gSBB Input-Output Relation Theorem [99, Theorem 5] considers a traffic process

Ain(t) fed as input to a work-conserving network element that transmits at rate C. If

Ain(t) is having gSBB with upper rate ρ < C and bounding function f(σ), the output

rate process Aout(t) is gSBB with upper rate ρ and bounding function f(σ).

One of the advantages of gSBB characterization lies in the last property, as the input and

output traffics are having the same bounding function, whereas in SBB characterization,

the bounding function of the output and workload will be added by an integration part as

in (2.5). Therefore, as we go deeper in the network nodes, the bounding function in SBB

characterization becomes looser, whereas in gSBB characterization, the same tightness of

the bound is kept throughout the network.

2.2 (σ, ρ)-bounded Traffics and (σ, ρ) Regulator

2.2.1 (σ, ρ)-bounded Traffics

Cruz in his pioneering work [24] on deterministic network calculus, defined the (σ, ρ)-

bounded traffic as a traffic stream which is bounded by a linear function in any interval.

More precisely,

Definition 2.2.1. Given σ ≥ 0, and ρ ≥ 0, A traffic process A(t) is said to (σ, ρ)-bounded,
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and is denoted as A ∼ (σ, ρ), if and only if

A(s, t) ≤ ρ(t− s) + σ (2.9)

for all t ≥ s ≥ 0.

In other words, if A ∼ (σ, ρ), there is an upper bound on the amount of the traffic

received in any interval. If we define Wρ(t) as (2.7), therefore Wρ(t) ≤ σ, if and only if

A ∼ (σ, ρ). This property is further used to regulate the traffic, or in other words, for a

given σ, ρ ≥ 0 enforce the traffic to A ∼ (σ, ρ).

2.2.2 (σ, ρ) Regulator

The (σ, ρ) regulator was introduced in [24] and was used in [25] to decrease the end-to-

end delay by shaping the traffic. The concept of (σ, ρ) regulator is closely related to leaky

bucket, which has been extensively studied in the literature [17, 18,90, 91]. The idea of the

(σ, ρ) regulator is to delay the incoming packets long enough, such that the delayed traffic

or so-called output of the regulator is (σ, ρ)-bounded.

When a certain performance guarantee, such as a maximum end-to-end delay, is de-

manded in the network, the input traffic at different stages of the network should be shaped

to enforce the desired guarantees. Except the work of the Cruz [24, 25], which is a case

of deterministic traffic shaper, namely, it enforces the output traffic to always be (σ, ρ)-

bounded, there has been relatively little work to develop different forms of traffic regulator.

In Chapter 5, we propose a stochastic traffic shaper, which shapes the traffic such that the

result is stochastically (σ, ρ)-bounded.

We assume in a (σ, ρ) traffic regulator the input and output link have a capacity of C

bits/s. Therefore, the input traffic rate, dA(t)
d t , can be expressed as

dA(t)

d t
= C

∞∑
j=1

I{sj≤t<sj+Lj/C} (2.10)
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where sj is the arrival time of the jth packet and Lj is the length of the jth packet in bits. It

is assumed a packet will not arrive while the previous one is being received. In other words,

we have sj + Lj/C ≤ sj+1. Let tj be the time that jth packet leave the traffic regulator,

and Ro(t) the traffic process exiting the traffic regulator. A (σ, ρ) traffic regulator transmits

the packets on the output link in FCFS order such as

Wρ(tj) ≤ σ (2.11)

Wρ(tj) is defined in (2.7). If we define dj = tj − sj ≥ 0 as the delay which the jth packet

suffers in a (σ, ρ) traffic regulator, it is shown in [24] that

dj =
1

ρ
(Wρ(sj)− σ)+, (2.12)

for all j, where x+ := max{x, 0} . For the output traffic process, Ao(t), we have

Ao ∼ (σ + (1− ρ/C)L, ρ), (2.13)

where L = maxj Lj .

2.3 Phase-Type Distribution

The phase-type distribution is defined in terms of a Markov chain X = {X(t) : t ≥ 0} with

state space E = {1, 2, . . . , n, n + 1}, where states 1, 2, . . . , n are transient states and n + 1

is an absorbing state. The generator of X has the form [11]

Q q

0 0

 , (2.14)
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where Q = [qij : i, j = 1, . . . , n] is an n× n matrix such that qij is the transition rate from

state i to state j and q = col(q1, . . . , qn) such that qi is the transition rate from transient

state i to the absorbing state n + 1. The submatrix Q is invertible and the vector q is

related to Q as follows:

q = −Q1, (2.15)

where 1 denotes a column vector of ones of the appropriate dimension, which is n in this

case. Define πi = P(X(0) = i) for i = 1, . . . , n+ 1 and the vector π = (π1, . . . , πn). Hence,

the initial distribution of X is given by (π, πn+1), where πn+1 is the probability that the

chain starts in the absorbing state. Let τ = inf{t ≥ 0|X(t) = n + 1} be the time until

absorption of the Markov process X. The random variable τ is phase-type with parameter

(π,Q):

τ ∼ PHn(π,Q). (2.16)

In this case, the probability density function, cumulative distribution function and survival

function of τ are given, respectively, by

fτ (t) = −πeQtQ1, t ≥ 0 (2.17)

Fτ (t) = 1− πeQt1, t ≥ 0 (2.18)

Sτ (t) = P(τ > t) = 1− Fτ (t) = πeQt1, t ≥ 0. (2.19)

The Laplace transform of τ is given by

Mτ (s) : = E
{
e−sτ

}
= πn+1 + π[sI −Q]−1q

= πn+1 +
N(s)

D(s)
, (2.20)
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where I denotes an identity matrix of appropriate dimension, in this case n× n, and

D(s) = det(sI −Q) =

n∏
i=1

(s+ γi), (2.21)

where γi being the generally complex-values eigenvalues of Q. On the other hand, N(s) is in

general, a polynomial of order p− 1, therefore not considering the mass at absorbing state,

πp+1, we need 2p parameters to represent a phase-type random variable. However, by using

π and Q we need p2 + p− 1 parameters to represent the same phase-type random variable.

Therefore, representation of a phase-type random variable using (2.16) is not unique [77].

The expected value of the phase-type random variable τ is given by

E{τ} = −πQ−11. (2.22)

The transition probabilities among the transient states of X are given by

P(X(t) = j, τ > t | X(0) = i) =
[
eQt
]
ij
, (2.23)

where i, j ∈ {1, 2, . . . , n}. As the states 1, 2, . . . , n are transient, we have

lim
t→∞

[
eQt
]
ij
= 0, (2.24)

The family of phase-type distributions is closed under convolution and mixture oper-

ations (see [11], Theorems 3.1.26 and 3.1.27, respectively). Suppose, for example, that

τ1 ∼ PHn(α,G) and τ2 ∼ PHm(β,H) and τ1 and τ2 are independent. Then τsum = τ1 + τ2

is a phase-type random variable with n+m transient states such that

τsum ∼ PHm+n

(α,0),

G gβ

0 H


 , (2.25)
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where g = −G1. Thus, if X1, X2, . . . , Xn are independent exponential random variables

with Xi ∼ exp(λi), i = 1, . . . , n, then the distribution of the sum τ = X1 +X2 + . . . +Xn

is given by τ ∼ PHn(π,Q) where

Q =



−λ1 λ1 0 0 · · · 0

0 −λ2 λ2 0 · · · 0

0 0 −λ3 λ3 · · · 0

...
...

...
...

. . .
...

0 0 0 0 · · · λn−1

0 0 0 0 · · · −λn


,

π = (1, 0, 0, · · · , 0).

(2.26)

Next consider a mixture of phase-type distributions defined by

τmix =


τ1 with probability p,

τ2 with probability 1− p,

where p ∈ [0, 1]. Then

τmix ∼ PHn+m

(pα, (1− p)β),

G 0

0 H


 . (2.27)

In particular, if τ is a random variable such that with probability πi, τ is exponentially

distributed with parameter λi for i = 1, . . . , n, then τ is called mixture of exponentials and
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(1, 1) (1, r1)

(M, 1) (M, rM )

absorbing state

λ1 λ1

λ1

λM λM

λM

πM+1

Figure 2.1: Hyper-Erlang form of a Phase-type random variable

we have τ ∼ PHn(π,Q), where

Q = diag{−λ1,−λ2, . . . ,−λn}, (2.28)

π = (π1, π2, · · · , πn). (2.29)

By limiting Q to special forms we can achieve other special forms of phase-type random

variable such as Erlang random variables, Hyper-Erlang random variable, or acyclic Phase-

type random variables. In case of Hyper-Erlang random variable the associated generating

Markov chain can be represented as Fig. 2.1. In this case every branch is a summation of

independent identically distributed exponentials where results in Erlang random variables

at every branch and the phase-type random variable itself is a mixture of these Erlang

random variables. We should note in this form no mass is considered at absorbing state or

πn+1 = 0. In this case Q will be

Q = diag{q1,q2, . . . ,qM}, (2.30)

qi =



−λi λi 0 . . . 0

0 −λi λi . . . 0

...
. . .

. . .
...

...

0 0 . . . −λi λi

0 0 . . . 0 −λi


ri×ri

(2.31)
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where ri is the order of the Erlang distribution in the ith branch. On the other hand, π

will be

π = (π1, 0, . . . , 0︸ ︷︷ ︸
r1−1

, π2, 0, . . . , 0︸ ︷︷ ︸
r2−1

, . . . , πM , 0, . . . , 0︸ ︷︷ ︸
rM−1

, πM+1) (2.32)

In this case probability density function for τ is given by

fτ (t) =

M∑
i=1

πi
(λit)

ri−1

(ri − 1)!
λie

−λit (2.33)

Limiting the phase-type random distribution to Hyper-Erlang gives the representation of

the phase-type distribution using 3M parameters of r = (r1, r2, . . . , rM ) ∈ NM , π =

(π1, π2, . . . , πM ) ∈ RM , λ = (λ1, λ2, . . . , λM ) ∈ RM , and M as the number of mixture

components.

On the other hand by limitingQ to an upper-triangular matrix we can achieve an Acyclic

Phase-Type random variable. What is special about Hyper-Erlang random variables and

Acyclic Phase-Type random variables is that, not only general phase-type distributions are

dense in the set of densities with nonnegative support and every density function in this

set can be approximated arbitrarily close by a general phase-type distribution [7, Theorem

4.2] [95, Theorem 5.2], also Hyper-Erlang distributions [33] [7, Corollary 4.4] and Acyclic

Phase-type distributions [26] are dense in the set of densities with nonnegative support.

In [26] it is shown every Acyclic continuous-time phase-type random variable can be

represented in the Canonical Form 1(CF1) such that the associated generating markov

chain can be represented as Fig. 2.2. where,

πi ≥ 0 i = 1, 2, . . . , p+ 1 ,

p+1∑
i=1

πi = 1

λp ≥ λp−1 ≥ . . . ≥ λ2 ≥ λ1 ≥ 0, (2.34)
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1 2 p p+ 1

π1 π2 πp πp+1

absorbing state

λ1 λ2 λp−1 λp

Figure 2.2: Canonical Form 1(CF1) of an Acyclic Phase-type random variable

In this case Q will be

Q =



−λ1 λ1 0 . . . 0

0 −λ2 λ2 . . . 0

...
. . .

. . .
...

...

0 0 . . . −λp−1 λp−1

0 0 . . . 0 −λp


(2.35)

When there is no mass at absorbing state πp+1 = 0. Laplace transform of the CF1 random

variable will be [12]

Mτ (s) = πp+1 +
N(s)

D(s)
, D(s) =

p∏
i=1

(s+ λi), (2.36)

2.4 EM Algorithm for Hyper-Erlang Distribution

We have developed two methods to derive the phase-type bounding parameters. The second

method is based on an EM algorithm for a special class of phase-type distributions, i.e., a

mixture of Erlang distribution, also called the hyper-Erlang distribution.

The EM algorithm is essentially an optimization method trying to minimize the cross-

entropy,
∫∞
0 f(t) log(f(t)

f̂(t)
)dt, between a known probability density dunction, f(t), and fiting
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probability density function, f̂(t). This minimization is equivalent to maximizing the like-

lihood function
∫∞
0 log(f̂(t))dt of the fitting pdf f̂(t). EM algorithm, however, does this

by estimating the parameters of the f̂(t) from a given set of data trace which may be

incomplete or have missing values [29,73].

There are numerous works in the literature for fitting a data set to a phase-type distri-

bution using EM algorithm such as pioneering work by Asmussen [8] for general forms of

phase-type distribution. This work was further improved in [75]. Some authors also devel-

oped EM algorithm to fit the data to special forms of the phase-type distribution like the

hyper-Erlang distribution [87] or mixture of exponentials [53]. There have been also some

work on dividing the samples into different clusters and the fitting different clusters with

special forms of phase-type distributions like the hyper-Erlang distribution [83,93], or mix-

ture of CF1, described in 2.3, and mixture of exponentials [44]. In this section we present a

slight modification to the algorithm presented in [87] that fits the data with Hyper-Erlang

distribution. This algorithm is further improved in section 4, for finding the parameters of

the bounding function in form of phase-type distributions.

The pdf of an Erlang distribution with parameter (r, λ) is given by

f(x; r, λ) =
(λx)r−1

(r − 1)!
λe−λx, x ≥ 0, (2.37)

which can be seen as the convolution of r pdfs of an exponential distribution with rate λ.

The pdf of an Erlang mixture model with parameter Θ = (π, r,λ) is given by

f(x;Θ) =

M∑
i=1

πif(x; ri, λi). (2.38)

In our case of traffic stream, however, when traffic is fed to a constant rate server with

rate C and workload is sampled, sometimes the workload is empty or some samples are 0.

In queuing theory usually we have P{W (t) = 0} = 1− ρ, where ρ is the utilization factor of
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the queue. Having a phase-type fit with a non-zero mass at absorbing state has not been

addressed in the works in this area, such as [8,87]. To allow for a positive probability value

at x = 0, the Erlang mixture model can be extended by introducing an additional mixture

probability πM+1 such that
∑M+1

i=1 πi = 1. In other words, in Fig. 2.1, πM+1 ̸= 0. The pdf

of the extended Erlang mixture model is given by

f̃(x;Θ) =
M∑
i=1

πif(x; ri, λi) + πM+1δ(x), (2.39)

where δ(x) denotes the Dirac delta function.

Due to the term involving δ(x), the pdf in (2.39) cannot be used as a likelihood func-

tion for parameter estimation. Instead, we shall use the Radon-Nikodym derivative of the

probability law of the extended Erlang mixture model specified by (2.39) with respect to

the measure ν = λ+ δx, where µ and δx denote the Lebesgue and Dirac measures (see, e.g.,

[21]), respectively:

p(x;Θ) =

 f(x;Θ), x ̸= 0,

πM+1, x = 0.
(2.40)

Therefore, the parameter of the hyper-Erlang distribution will be extended toΘ = (π, r,λ) =

(π1, π2, . . . , πM , πM+1, r1, r2, . . . , rM , λ1, λ2, . . . , λM ). Under the (extended) Erlang mixture

model, the log-likelihood of a sample vector x = (x1, . . . , xK) is given by

ℓ(Θ | x) = log p(x;Θ) = log

K∏
k=1

p(xk;Θ)

=
K∑
k=1
xk ̸=0

log

(
M∑
i=1

πif(xk; ri, λi)

)
+K0 log(πM+1), (2.41)

where K0 = #{k : xk = 0; k = 1, . . . ,K} denotes the number of 0 samples. In a similar
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way, the Erlang mixture model can be extended to accommodate positive probabilities at

any finite set of points on the positive real line.

The EM algorithm aims to find Θ that maximizes the log-likelihood ℓ(Θ | x). Note

that, r in Θ = (π, r,λ) is fixed and chosen in advance. This maximization is complicated

by the summation inside the logarithm in (2.41). Therefore, we introduce unobserved data

y = (y1, . . . , yK), where yk ∈ {1, . . . ,M +1} denotes the mixture component corresponding

to the observed sample xk. We shall assume that the unobserved sample yk =M + 1 when

xk = 0. The joint likelihood of (xk, yk) is given by

p(xk, yk;Θ) = πykp(xk;Θ). (2.42)

The complete data log-likelihood is then given by

ℓ(Θ | x,y) = log p(x,y;Θ) = log

K∏
k=1

p(xk, yk;Θ)

=
K∑
k=1
xk ̸=0

log(πykf(xk; ryk , λyk)) +K0 log(πM+1). (2.43)

The EM algorithm involves maximization of the parameter Θ over an auxiliary function

defined as the expectation of the complete data log-likelihood given the observed data x

with respect to the current parameter estimate Θ̂ = (π̂, r, λ̂):

Q(Θ, Θ̂) := E
[
ℓ(Θ | x,Y) | x; Θ̂

]
=

∑
y∈{1,...,M+1}K

p(y | x; Θ̂)ℓ(Θ|x,y) (2.44)

where Y denotes the random vector corresponding to the realization y of the unobserved

data. Posterior probability {Y = y}, given the observed sample vector x, and current
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estimate of the parameters, Θ̂ is given by,

p(y|x, Θ̂) =

K∏
k=1

p(yk|xk, Θ̂) (2.45)

When xk ̸= 0, the posterior probability p(yk | xk; Θ̂) is given by

p(yk | xk; Θ̂) =
π̂ykf(xk; ryk , λ̂yk)∑M
i=1 π̂if(xk; ri, λ̂i)

, (2.46)

where yk ∈ {1, . . . ,M}. Substituting (2.45) into (2.44), and performing some algebraic

manipulations (see [87, Appendix A.2]), the following expression for the auxiliary function

can be obtained:

Q(Θ, Θ̂) = K0 log(πM+1) +

M∑
i=1

K∑
k=1
xk ̸=0

p(i | xk; Θ̂) log(πi)

+

M∑
i=1

K∑
k=1
xk ̸=0

p(i | xk; Θ̂) log(f(xk; ri, λi)). (2.47)

Considering the expression for Q(Θ, Θ̂) in (2.47), it can be seen that maximization with

respect to (πi, λi) is independent of (πj , λj) for j ̸= i. Further, maximization of Q(Θ, Θ̂)

with respect to π is independent of maximization with respect to λ. Thus, maximization of

Q(Θ, Θ̂) can be performed separately for each mixture component. During each iteration of

the EM algorithm, the auxiliary function Q(Θ, Θ̂) is optimized first with respect to π and

then with respect to the parameter λi of each Erlang mixture component, for i = 1, . . . ,M .

Since r is fixed, like [87], maximization of Q(Θ, Θ̂) with respect to Θ = (π,λ) can be

done using the method of Lagrange multipliers subject to the normalization constraint for
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the mixture probabilities {π1, . . . , πM+1}. The local optimum solution is given by

πi =
1

K

K∑
k=1
xk ̸=0

p(i | xk; Θ̂), i = 1, . . . ,M, (2.48)

πM+1 =
K0

K
, (2.49)

λi(ri) = ri ·

∑K
k=1
xk ̸=0

p(i | xk; Θ̂)∑K
k=1
xk ̸=0

xkp(i | xk; Θ̂)
, i = 1, . . . ,M, (2.50)

where in (2.50), we have written λi explicitly as a function of ri. We note that πM+1

corresponds to the probability of a 0 sample and remains fixed for all EM iterations.

In [87], number of Erlang branches, M , and order of each branch, (r1, r2, . . . , rM ), are

chosen from set Rn defined as

Rn = {(r1, r2, . . . , rM )|r1 + r2 + . . .+ rM = n, ri ≥ 0, for i = 1, 2, . . . ,M} (2.51)

For each branch branch order r = (r1, r2, . . . , rM ), at each iteration of EM algorithm after

(πi, λi) has been determined for all mixture components, i = 1, . . . ,M , according to the

procedure described above, the Erlang mixture parameter estimate is updated as Θ̂ =

(π, r,λ), and the EM algorithm iteration is completed. The EM algorithm is continued

until the relative difference between the log-likelihoods, given by (2.41), of the last two

parameter estimates falls below a threshold ϵ or limit, N , on the maximum number EM

iterations is reached. The proposed EM algorithm is outlined in Algorithm 1. After going

exhaustively through Rn and performing EM algorithm for each r ∈ Rn, the branch order

with the highest log-likelihood, given by (2.41), is chosen. This algorithm is summarized in

a pseudo-code in Algorithm 1.
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Algorithm 1 Calculate Q,π using EM algorithm

Input: Workload samples and n
Output: Q,π

1: Set πM+1 =
K0
K

2: repeat
3: Choose (r1, r2, . . . , rM ) from Rn as in (2.51)

4: Choose initial estimate Θ̂ = (π̂1, π̂2, . . . , π̂M , r1, r2, . . . , rM , λ̂1, λ̂2, . . . , λ̂M )
5: repeat

6: Compute f(xk; ri, λ̂i) for i = 1, 2, . . . ,M, k = 1, 2, . . . ,K, xk ̸= 0 according

to (2.37).

7: E-step: Compute the pmf of the unobserved data for i = 1, 2, . . . ,M, k =

1, 2, . . . ,K, xk ̸= 0 as.

p(yk | xk; Θ̂) =
π̂ykf(xk; ryk , λ̂yk)∑M
i=1 π̂if(xk; ri, λ̂i)

,

8: M-step: Choose πi and λi that maximizes (2.47) for i = 1, 2, . . . ,M as

πi =
1

K

K∑
k=1
xk ̸=0

q(i|xk, Θ̂) and

λi = ri ·
K∑
k=1
xk ̸=0

q(i|xk, Θ̂)/
K∑
k=1
xk ̸=0

q(i|xk, Θ̂) · xk

9: Θ̂← Θ
10: until relative difference of log-likelihood in (2.41) is less than ϵ = 10−6

11: until All order combinations of (r1, r2, . . . , rM ) from Rn are tried
12: Choose the one order combination (r1, r2, . . . , rM ) and the derived π,λ with the highest

log-likelihood as in (2.41)
13: Q is derived based on λ = [λ1, λ2, . . . , λM ] according to (2.30), and (2.31) return Q,π
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Chapter 3: Phase-Type Bounded Burstiness

In this section, we develop phase-type network delay bounds based on the SBB and gSBB

calculus developed in [51, 85, 99]. The phase-type bounds provide a useful specialization

of the SBB and gSBB bounds. The class of phase-type distributions has the important

property of being dense in the family of distributions of nonnegative random variables;

i.e., the distribution of any random variable taking values in [0,∞) can be approximated

arbitrarily closely by a phase-type distribution [7, Theorem 4.2] [95, Theorem 5.2]. In

addition, phase-type distributions are mathematically tractable and form a closed set with

respect to operations such as convolutions or mixtures. We use properties of phase-type

random variables to relate bounds on the input traffic to a network element to bounds on

the queue workload as well as bounds on the output traffic. Parts of the work in this chapter

were published in [56,61].

The remainder of the chapter is organized as follows. In Section 3.1, we extend the

concepts of SBB and gSBB to PHBB and phase-type bounds. In Section 3.2, we extend the

theorems on SBB bounds to PHBB bounds. In Section 3.3, we provide some theorems on

the application of PHBB bounds in providing stochastic network performance guarantees.

In Section 3.4, we extend the theorems on gSBB to the case of phase-type bounds. In

Section 3.5, we provide some theorems on the application of phase-type bounds in providing

stochastic network performance guarantees. In Section 3.6, we investigate the stochastic

performance guarantees provided by gSBB and phase-type bounds. Concluding remarks

are given in Section 3.7.
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3.1 Concepts

In this section we provide the definitions of the developed phase-type bounded burstiness

(PHBB) and phase-type bounds. These concepts are particular cases of SBB and gSBB,

respectively, with an additional parameter component to limit the tail of the bound.

Definition 3.1.1. A stochastic process W (t) is phase-type bounded (PHB) with bounding

parameter (π,Q, a, T ) where a ≥ 0, and (π,Q) are the parameters of a phase-type random

variable such that

P{W (t) ≥ σ} ≤ aπeQσ1, (3.1)

for all t ≥ 0 and all T ≥ σ ≥ 0. When T = ∞, the PHB bounding parameter is written

simply as (π,Q, a).

Definition 3.1.2. A traffic process A(t) is said to have phase-type bounded burstiness

(PHBB) with upper rate ρ and bounding parameter (π,Q, a, T ) if

P {A(s, t) ≥ ρ(t− s) + σ} ≤ AπeQσ1, (3.2)

for all t ≥ s ≥ 0 and all T ≥ σ ≥ 0, where A(s, t) := A(t) − A(s) is the amount of traffic

that arrives in the interval [s, t). Also in this definition, when T =∞, the PHBB bounding

parameter is written simply as (π,Q, a).

Next, we show that phase-type bounding functions belong to the family of functions F

defined immediately after (2.1.3).

Theorem 3.1.1. Let (π,Q, a) be a phase-type bounding parameter. Then f(σ) = aπeQσ1

is monotonically decreasing and f ∈ F .

Proof. Since (π,Q) is the parameter of a phase-type distribution, the function S(σ) =

πeQσ1 is the associated survival function, which by definition is monotonically decreasing.

Therefore, f(σ) is a monotonically decreasing function. To show that f ∈ F , we need to
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show that (
∫∞
σ du)nf(u) is bounded. For the phase-type bounding function we have

∫ ∞

σ
aπeQu1du = aπ

∫ ∞

σ
eQu du 1 = aπ

[
Q−1eQu

]∞
σ

1 = −aπQ−1eQσ1. (3.3)

From (2.24), limu→∞ eQu = 0. Hence, the right-hand side of (3.3) is bounded. Repeating

this argument n− 1 more times shows that (
∫∞
σ du)nf(u) is bounded.

Corollary 3.1.1. For phase-type bounding parameter (π,Q, a, T ) and f(σ) = aπeQσ1 for

T ≥ σ ≥ 0, we also have f ∈ F .

As mentioned earlier we also particularize the gSBB concept to bounds based on phase-

type distributions.

Definition 3.1.3. A traffic process A(t) has tail-limited general phase-type bounded bursti-

ness (gPHBB) with upper rate ρ and bounding parameter (a,π,Q, T ) if

P {Wρ(t;A) ≥ σ} = P

{
max
0≤s≤t

{A(s, t)− ρ(t− s)} ≥ σ
}
≤ aπeQσ1, (3.4)

for all t ≥ 0 and all T ≥ σ ≥ 0. Again, when T =∞, the bounding parameter is written as

(a,π,Q).

In this definition

Wρ(t;A) = max
0≤s≤t

{A(s, t)− ρ(t− s)} (3.5)

can be interpreted as the queue workload in a work-conserving system that transmits at a

constant rate of ρ and is fed with an input traffic process A(t).

Definition 3.1.4. A process D(t) is tail-limited general phase-type bounded (gPHB) with

bounding parameter (a,π,Q, T ) if

P {D(t) ≥ σ} ≤ aπeQσ1, (3.6)

for all t ≥ 0 and all T ≥ σ ≥ 0.
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3.2 PHBB Network Calculus

In this section we extend the network calculus theorems in [85] for SBB to the case of

PHBB. For simplicity, we shall assume T =∞, but the theorems also hold when T is finite.

We will include T when we discuss gPHBB network calculus in Section 3.4.

Theorem 3.2.1 (Characterization). Consider a work-conserving system that transmits at a

constant rate of ρ and is fed with a single traffic process A(t). Let W (t) be the workload

in the system at time t. If W (t) is PHB with parameter (π,Q, a) then A(t) is PHBB with

upper rate ρ and bounding parameter (π,Q, a).

Proof. The result follows from [85, Theorem 1], where the bounding function is given by

f(σ) = aπeQσ1.

Theorem 3.2.2 (Sum). Let A1(t) be PHBB with upper rate ρ1 and bounding parameter

(α,G, a1), and A2(t) be PHBB with upper rate ρ2 and bounding parameter (β,H, a2).

Then A1(t)+A2(t) is PHBB with upper rate ρ = ρ1+ρ2 and bounding parameter (π,Q, a)

where a = a1 + a2,

π =
[a1
a
α,

a2
a
β
]
, Q =

pG 0

0 (1− p)H

 , (3.7)

and p is a real number such that 0 < p < 1.

Proof. As A1(t) and A2(t) are PHBB, a special case of SBB, we can apply the Sum theorem

for SBB [85, Theorem 2]. In this case, a bounding function of the aggregated traffic is given

by g(σ) = f1(pσ) + f2((1− p)σ), where

f1(σ) = a1αe
Gσ1, f2(σ) = a2βe

Hσ1. (3.8)
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We have

g(σ) = a1αe
pGσ1+ a2βe

(1−p)Hσ1 =
[
a1α, a2β

]epG 0

0 e(1−p)H

1, (3.9)

from which the result follows.

Theorem 3.2.3 (Sum of Independent Traffic Streams). Let A1(t) be PHBB with upper rate

ρ1 and bounding parameter (α,G, a), and A2(t) be PHBB with upper rate ρ2 and bounding

parameter (β,H, b). Then if A1(t) and R2(t) are independent, A1(t) +A2(t) is PHBB with

upper rate ρ = ρ1 + ρ2 and bounding parameter (π,Q, c), where c = a+ b− ab

π =

[
a(1− b)
a+ b− ab

α,
b(1− a)
a+ b− ab

β,
ab

a+ b− ab
α,0

]
, (3.10)

Q =



G 0 0 0

0 H 0 0

0 0 G gβ

0 0 0 H


,

where g = −G1.

Proof. This proof is based on the proof of theorem 4 in [99]. If A1(t) and A2(t) are in-

dependent, therefore {A1(s, t)− ρ1(t− s)} and {A2(s, t)− ρ2(t− s)} are independent with

the corresponding distribution functions of G1(σ) and G2(σ) and

P {A1(s, t)− ρ1(t− s) ≥ σ} = 1−G1(σ),

P {A2(s, t)− ρ2(t− s) ≥ σ} = 1−G2(σ).

Therefore, {A1(s, t) +A2(s, t)− (ρ1 + ρ2)(t− s)} which is summation of two independent
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random variables has the distribution function of G1(σ)✩G2(σ), where ✩ denotes the Stielt-

jes convolution and is defined as: F1✩F2 =
∫ x
0 F1(x− y)dF2(y). Hence

P {A1(s, t) +A2(s, t)− (ρ1 + ρ2)(t− s) ≥ σ} = 1−G1(σ)✩G2(σ)

On the other hand,

P {A1(s, t)− ρ1(t− s) ≥ σ} ≤ 1− F1(σ) = aαeGσ1,

P {A2(s, t)− ρ2(t− s) ≥ σ} ≤ 1− F2(σ) = bβeHσ1

Therefore, we have

1−G1(σ) ≤ 1− F1(σ), 1−G2(σ) ≤ 1− F2(σ)→ F1(σ)✩F2(σ) ≤ G1(σ)✩G2(σ).

Hence,

P {A1(s, t) +A2(s, t)− (ρ1 + ρ2)(t− s) ≥ σ} ≤ 1− F1(σ)✩F2(σ).

But if we consider X as a random variable with cumulative distribution function F1(σ) and

pdf f1(σ) =
dF1(σ)

dσ and Y as another random variable with cumulative distribution function

F2(σ) and pdf f2(σ) =
dF2(σ)

dσ , and if we consider X and Y as independent random variables,

then F (σ) = F1✩F2(σ) is the cumulative distribution fucntion of the new random variable

Z = X + Y with pdf of f(σ) = f1(σ) ∗ f2(σ). We have

F1(0) = 1− a, F1(0) = 1− b

therefore,

f1(σ) = (1− a)δ(σ) + aαeGσg f1(σ) = (1− b)δ(σ) + bβeHσh,
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where g = −G1, and h = −H1. Therefore,

f(σ) = f1(σ) ∗ f2(σ) = ((1− a)δ(σ) + aαeGσg) ∗ ((1− b)δ(σ) + bβeHσh)

= (1− a)(1− b)δ(σ) + (1− a)bβeHσh+ (1− b)aαeGσg + ab(αeGσg) ∗ (βeHσh)

but αeGσg and βeHσh are pdfs of the two phase-type random variables τ1 ∼ PHn(α,G)

and τ2 ∼ PHn(β,H), respectively, and (αeGσg) ∗ (βeHσh) is the pdf of τ = τ1 + τ2 when

τ1 and τ2 are independent, which is according to (2.25) a phase-type random variable.

Therefore,

τ1 + τ2 ∼ PHm+n

(α,0),

G gβ

0 H




where g = −G1. Therefore,

f(σ) = (1− a)(1− b)δ(σ) + (1− a)bβeHσh+ (1− b)aαeGσg + abγeKσk,

where

γ = (α,0), K =

G gβ

0 H

 , k = −K1.

Therefore,

F (σ) =

∫ σ

0
f(τ)dτ = (1− a)(1− b) + (1− a)b(1− βeHσ1) + (1− b)a(1−αeGσ1)

+ ab(1− γeKσ1),
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Therefore,

g(σ) = (1− b)aαeGσ1+ (1− a)bβeHσ1+ abγeKσ1 = (a+ b− ab)·

[
(1− b)a
a+ b− ab

α,
(1− a)b
a+ b− ab

β,
ab

a+ b− ab
γ

]
·


eGσ 0 0

0 eHσ 0

0 0 eKσ

 · 1.

Theorem 3.2.4 (Input-Output Relation). Let Ain(t) be the input traffic rate process to a

work-conserving element, which transmits at constant rate C. Suppose that Ain(t) is fed to

the element on the input link with infinite capacity and is PHBB with upper rate ρ < C

and bounding parameter (π,Q, a). Let W (t) denote the queue workload process and let

Aout(t) denote the output traffic rate process. Then the following hold:

1. W (t) is PHB with bounding parameter

(
π(C − ρ)− πQ−1

E{τ}+ C − ρ
,Q,

a(C − ρ+ E{τ})
C − ρ

)
, (3.11)

where E{τ} = −πQ−11 is the mean of phase-type random variable τ ∼ PH(π,Q).

2. Aout(t) is PHBB with upper rate ρ and bounding parameter as given in (3.11).

Proof. 1. Since Ain(t) is PHBB with upper rate ρ < C, we can apply the general

SBB input-output relation theorem given in [85, Theorem 3]. In this case, W (t)

will be bounded with bounding function g(σ) = f(σ) + 1
C−ρ

∫∞
σ f(u) du, where
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f(σ) = aπeQσ1. We have

g(σ) = aπeQσ1− aπQ−1eQσ1

C − ρ
= a

[
π − πQ−1

C − ρ

]
eQσ1

=
a(C−ρ+E{τ})

C − ρ

[
π(C−ρ)− πQ−1

E{τ}+ C − ρ

]
eQσ1.

The factor in square brackets represents a probability distribution since

π(C − ρ)− πQ−1

E{τ}+ C − ρ
· 1 =

C − ρ− πQ−11

E{τ}+ C − ρ
= 1,

where we have used (2.22). Therefore, g(σ) is a phase-type bounding function for the

output traffic rate process.

2. Since Ain(t) is PHBB, following the same argument as above we can establish that

Aout(t) is bounded with upper rate ρ and bounding function g(σ)=f(σ)+ 1
C−ρ

∫∞
σ f(u) du,

where f(σ) = is PHn(π,T, a). The proof relies on the facts that
∫∞
σ f(u) du ∈ F and

f(σ) is a decreasing function of σ, which are established in Theorem 3.1.1.

Theorem 3.2.5 (Average workload in a work-conserving element). Let Ain(t) be the input

traffic rate process to a work-conserving element, which transmits at constant rate C. Sup-

pose that Ain(t) is PHBB with upper rate ρ < C and bounding parameter (π,Q, a). Let

W (t) denote the queue workload process, then we have

E{W (t)} ≤ aπ
(
I−Q−1

(
1 +

1

C − ρ

)
+

Q−2

C − ρ

)
eQ1 (3.12)

In order to prove this theorem at first we present its generalized form for SBB input

traffic and then particularize the result to the case of PHBB.

Lemma 3.2.1. Let Ain(t) be the input traffic rate process to a work-conserving element,
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which transmits at constant rate C. Suppose that Ain(t) is SBB with upper rate ρ < C and

bounding function f(σ). Let W (t) denote the queue workload process, then we have

E{W (t)} ≤ f(1) +
(
1 +

1

C − ρ

)∫ ∞

1
f(u) du+

1

C − ρ

∫ ∞

1

∫ ∞

τ
f(u) dudτ (3.13)

Proof. According to [85][Theorem Input-Output], W (t) is SB with bounding function g(σ)

= f(σ) + 1
C−ρ

∫∞
σ f(u) du. Therefore, we have

E{W (t)} =
∞∑
σ=1

P{W (t) ≥ σ} ≤
∞∑
σ=1

g(σ) = g(1) +

∞∑
σ=2

g(σ) ≤ g(1) +
∫ ∞

1
g(u) du

Theorem 3.2.5 can be proved by particularizing the result of Lemma 3.2.1.

Theorem 3.2.6 (Delay in a work-conserving element). Let Ain(t) be the input traffic rate

process to a work-conserving element, which transmits at constant rate C. Suppose that

Ain(t) is PHBB with upper rate ρ < C and bounding parameter (π,Q, a). Let W (t) denote

the queue workload process and D(t) denote the maximum delay of the bits of a packet

arriving at time t, then D(t) is gPHB with bounding parameter

(
π(C − ρ)− πQ−1

E{τ}+ C − ρ
,Q(C − ρ), a(C − ρ+ E{τ})

C − ρ

)
, (3.14)

where E{τ} = −πQ−11 is the mean of phase-type random variable τ ∼ PH(π,Q).

In order to prove the following theorem at first we present its generalizations for SBB

traffic and then particularize the result for the case of PHBB traffic.

Lemma 3.2.2. Let Ain(t) be the input traffic rate process to a work-conserving element,

which transmits at constant rate C. Suppose that Ain(t) is SBB with upper rate ρ < C and

bounding function f(σ). Let W (t) denote the queue workload process and D(t) denote the

maximum delay of the bits of a packet arriving at time t, then D(t) is SB with bounding
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function g(σ)

g(σ) = f((C − ρ)σ) + 1

C − ρ

∫ ∞

(C−ρ)σ
f(τ) dτ. (3.15)

Proof. Let d(t) denote the time that has passed since the last time the queue was empty

prior to t. In other words

d(t) = min{u :W (t− u) = 0} (3.16)

Also Let D(t) denote the rest of the busy period that t resides in. In other words

D(t) = min{u :W (t+ u) = 0} (3.17)

Then the delay incurred on the packet arriving at t, D(t), is bounded by D(t). Therefore,

we have

P{D(t) ≥ σ} ≤ P{D(t) ≥ σ} =
t∑

i=0

P{{d(t) = i} ∩ {D(t) ≥ σ}}

≤
∞∑
i=0

P{Ain(t− i, t+ σ) ≥ C(i+ σ)} ≤ f((C − ρ)σ)

+
1

(C − ρ)

∞∑
i=1

(C − ρ)f ((C − ρ)(i+ σ)) ≤ f((C − ρ)σ) + 1

(C − ρ)

∫ ∞

(C−ρ)σ
f(τ) dτ

Now we can proof Theorem 3.2.6 by particularizing the result of Lemma 3.2.2 to the

case of phase-type bound.

Proof. As Ain is PHBB, a special case of SBB we can use the result of Theorem 3.2.2. As
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we have f(σ) = aπeQσ1, therefore D(t) is PHB with bounding function g(σ), where

g(σ) = aπeQσ1− AπQ−1eQσ1

C − ρ
= a

[
π − πQ−1

C − ρ

]
eQ(C−ρ)σ1

=
a(C−ρ+E{τ})

C − ρ

[
π(C−ρ)− πQ−1

E{τ}+ C − ρ

]
eQ(C−ρ)σ1.

Theorem 3.2.7 (Input-Output Relation for Limited Capacity Input Link). Let Ain(t) be the

input traffic rate process to a work-conserving element, which transmits at constant rate

C. Suppose that Ain(t) is fed to the element on the input link with capacity C1 > C and

is PHBB with upper rate ρ < C and bounding parameter (π,Q, a). Let W (t) denote the

queue workload process and let Aout(t) denote the output traffic rate process. Then the

following hold:

1. W (t) is PHB with bounding parameter

(
π(C − ρ)− πQ−1

E{τ}+ C − ρ
,Q

(
C − ρ
C1 − C

+ 1

)
,
a(C − ρ+ E{τ})

C − ρ

)
, (3.18)

where E{τ} = −πQ−11 is the mean of phase-type random variable τ ∼ PH(π,Q).

2. Rout(t) is PHBB with upper rate ρ and bounding parameter as given in (3.18).

Note that in Theorem 3.2.7, if C1 < C then we have W (t) = 0 w.p 1. In order to

prove Theorem 3.2.7 we first present its generalized form for SBB input traffic and then

particularize the results for PHBB case.

Lemma 3.2.3. Let Ain(t) be the input traffic rate process to a work-conserving element,

which transmits at constant rate C. Suppose that Ain(t) is fed to the element on the input

link with capacity C1 > C and is SBB with upper rate ρ < C and bounding function f(σ).

Let W (t) denote the queue workload process and let Aout(t) denote the output traffic rate

process. Then the following hold:
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1. W (t) is SB with bounding function

f

(
σ

(
C − ρ
C1 − C

+ 1

))
+

1

C − ρ

∫ ∞

σ
(

C−ρ
C1−C

+1
) f(u) du, (3.19)

2. Aout(t) is SBB with upper rate ρ and bounding parameter as given in (3.19).

Proof. We prove the part 1 in here. Part 2 is proved similarly. Let d(t), as defined in (3.16),

denote the time passed since the start of the busy period. Therefore we will have

P{W (t) ≥ σ} =
t∑

i=0

{{W (t) ≥ σ} ∩ {d(t) = i}} =
t∑

i=0

{Ain(t− i, t) ≥ Ci+ σ} (3.20)

But we have

C1t ≥ Ain(t− i, t)

and if Ain(t− i, t) ≥ σ+Ci, then we should have i ≥ σ
C1−C . Therefore summation in (3.20)

should modify to

P{W (t) ≥ σ} =
t∑

i= σ
C1−C

{Ain(t− i, t) ≥ Ci+ σ} ≤
∞∑

i= σ
C1−C

f((C − ρ)i+ σ)

= f

(
σ

(
C − ρ
C1 − C

+ 1

))
+

1

C − ρ

∞∑
i= σ

C1−C
+1

(C − ρ)f((C − ρ)i+ σ)

≤ f
(
σ

(
C − ρ
C1 − C

+ 1

))
+

1

C − ρ

∫ ∞

σ
(

C−ρ
C1−C

+1
) f(u) du

Theorem 3.2.7 is proved by particularizing the results of Lemma 3.2.3. Details are

omitted.
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3.3 PHBB Network Calculus Application

In this section, we provide some applications of the PHBB network calculus theorems. Here,

we consider discrete time input traffic. We assume there is a work-conserving server with

capacity C which is fed by N input traffic processes Ai(t), 1 ≤ i ≤ N , such that each

Ai(t) is PHBB with upper rate ρi and bounding parameter (αi,Gi, ai), and
∑N

i=1 ρi < C.

In this section, we characterize the output traffic and delay for each source under different

service disciplines. Here, D(t), denotes the maximal delay for packets arriving at time t

and D(t) = n means the last bit of input traffic A(t) is transmitted at time t+ n. On the

other hand, Q(t) denotes the queue length at time t, and Qi(t) denotes the portion of the

queue which belongs to the source i.

If A(t) =
∑N

i=1Ai(t) is defined as the aggregate input traffic, then according to the Sum

theorem A(t) is PHBB with upper rate ρ =
∑N

i=1 ρi and bounding parameter (β,H, b)

where

β =
[a1
b
α1,

a2
b
α2, . . . ,

aN
b
αN

]
, H =



q1G1 0 . . . 0

0 q2G2 . . . 0

...
...

. . .
...

0 0 . . . qNGN


(3.21)

B =
∑N

i=1 ai and where 0 < qi < 1, i = 1, 2, . . . , N and
∑N

i=1 qi = 1. In here and all other

subsequent sections, qi for i = 1, 2, . . . , N should be chosen such that the resulting bound

is the tightest. This aspect remains to be investigated further.

3.3.1 General results

The following theorem holds for all service disciplines.

Theorem 3.3.1. Suppose that we have N sources sharing a work-conserving system with

transmission rate C. Let Aj(t) be PHBB with upper rate ρj and bounding parameter
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(αj ,Gj , aj), where Rj(t) is the input traffic process from source j, and
∑N

j=1 ρj < C. Let

A
(out)
j (t) be the output process of source j. Then A

(out)
j (t) is PHBB with upper rate ρj and

bounding parameter (ζ,H, cj) where

ζ =

[
aj
cj
αj ,

b

cj
Γ

]
, H =

pGj 0

0 (1− p)Q

 (3.22)

with

Γ =
π(C − ρ)− πQ−1

E{τ}+ C − ρ
, B =

a(C − ρ+ E{τ})
C − ρ

,

π =
[a1
a
α1,

a2
a
α2, . . . ,

aN
a

αN

]
Q =



q1G1 0 . . . 0

0 q2G2 . . . 0

...
...

. . .
...

0 0 . . . qNGN


, (3.23)

where a =
∑N

j=1 aj and aj = aj + b and 0 < qi < 1 and 0 < p < 1 and
∑N

i=1 qi = 1. The qi,

for i = 1, 2, . . . , N and p, should be chosen to achieve the tightest bound.

Proof. This proof is based on the proof of Theorem 6 in [99]. We use A(t) to denote the

aggregate input process, i.e., A(t) =
∑N

j=1Aj(t). According to the Sum theorem A(t) is

PHBB with upper rate ρ =
∑N

j=1 ρj and bounding parameter (π,Q, a) where a =
∑N

j=1 aj

π =
[a1
a
α1,

a2
a
α2, . . . ,

aN
a

αN

]
Q =



q1G1 0 . . . 0

0 q2G2 . . . 0

...
...

. . .
...

0 0 . . . qNGN


, (3.24)

with 0 < qi < 1 and
∑N

i=1 qi = 1. Let W (t) denote the queue workload process and Wi(t)
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denote the portion of the workload process which belongs to source i. According to the

Input-Output Theorem W (t) is PHB with bounding parameter

π(C − ρ)− πQ−1

E{τ}+ C − ρ︸ ︷︷ ︸
Γ

,Q,
a(C − ρ+ E{τ})

C − ρ︸ ︷︷ ︸
b

 , (3.25)

where E{τ} = −πQ−11 is the mean of a phase-type random variable τ ∼ PH(π,Q).

Because the system is work-conserving, we have

A
(out)
j (s, t) ≤Wj(s) +Aj(s, t).

Clearly, the output of source j in the time interval (s, t] cannot exceed the sum of the

input in this interval and the amount of workload from the same source stored in the queue

previously. Therefore,

A
(out)
j (s, t)− ρj(t− s) ≤Wj(s) +Aj(s, t)− ρj(t− s) ≤W (s) +Aj(s, t)− ρj(t− s).

But we have{
A

(out)
j (s, t)− ρj(t− s) ≥ σ

}
⊆ {W (s) ≥ pσ} ∪ {Aj(s, t)− ρj(t− s) ≥ (1− p)σ}

where 0 < p < 1, therefore

P
{
A

(out)
j (s, t)− ρj(t− s) ≥ σ

}
≤ P{W (s) ≥ pσ}+ P {Aj(s, t)− ρj(t− s) ≥ (1− p)σ}

But according to Theorem 3.2.4, W (s) is PHB with bounding parameter (Γ,Q, b) and

Rj(t) is PHBB with bounding parameter (αj ,Gj , aj). Therefore, A
(out)
j (t) is PHBB with
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bounding parameter (ζ,H, cj) where cj = aj + b

ζ =

[
aj
cj
αj ,

b

cj
Γ

]
, H =

pGj 0

0 (1− p)Q

 ,

3.3.2 First in first out (FIFO)

In this section we assume the service discipline is FIFO, which means if Q(t− 1) < C then

any arrival at time t have the equal opportunity to be served.

3.3.3 Strict priority (SP)

In this service discipline, if i < j, source i has a higher priority over source j and source j

will not be served as long as there is workload from source i in the system. However, for

traffic from the same priority, the FIFO serving discipline is adopted.

Theorem 3.3.2. Suppose that we have N sources sharing a work-conserving system with

transmission rate C, which serves according to SP discipline. Let Aj(t) be PHBB with

upper rate ρj and bounding parameter (αj ,Gj , aj), where Aj(t) is the input traffic process

from source j, and
∑N

j=1 ρj < C. Let A
(out)
j (t) be the output process of source j. Then

A
(out)
1 (t) is PHBB with upper bound ρ1 and bounding parameter

(
α1(C − ρ)−α1G

−1
1

E{τ}+ C − ρ
,G1,

a(C − ρ+ E{τ})
C − ρ

)
, (3.26)

where E{τ} = −α1G
−1
1 1 is the mean of the phase-type random variable τ ∼ PH(α1,G1).

A
(out)
j (t) for j = 2, . . . , N , on the other hand, is PHBB with upper rate ρj and bound-

ing parameter (ζj ,Hj , cj) which are derived from (3.22) and (3.23), when we have just

A1(t), A2(t), . . . , Aj(t) as input traffic processes.
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Proof. Due to the SP service discipline, for the traffic from source 1, the system behaves

exactly like a single input system with a PHBB input with upper rate ρ1 and bounding

parameter (α1,G1, a1). Therefore A
(out)
1 (t) will be PHBB and its parameters can be derived

from (3.11). For j = 2, on the other hand, the system works as if we have just the aggregate

input traffic A1(t) + A2(t). Therefore A
(out)
2 (t) is PHBB with upper rate ρ2 and bounding

parameter (ζ2,H2, c2), which can be derived from (3.22) and (3.23) with j = 2. By a similar

argument we can get (ζj ,Hj , cj) for j = 3, . . . , N .

3.3.4 Generalized processor sharing (GPS)

In this discipline, the ith flow is assigned a parameter ϕi > 0, and if there is a backlog for

flow i in the time interval (s, t], or in other words Qi(τ) > 0, for all s < τ ≤ t, then we have

A
(out)
i (s, t)

A
(out)
j (s, t)

≥ ϕi
ϕj
, j = 1, 2, . . . , N, (3.27)

where A
(out)
i (s, t) is the amount of output traffic in the time interval (s, t] for the ith flow [78].

In our work, without loss of generality, we assume
∑N

i=1 ϕi = 1, and we call ϕi the ith service

weight. It can be seen from (3.27) that if the ith traffic flow is backlogged all the time in

the interval (s, t], then the available service rate for source i is at least ϕiC during this time

interval.

3.4 Phase-type Network Calculus

In this section we extend the network calculus theorems in [51, 99] developed for gSBB to

the case of phase-type traffic bounds. Further, we shall incorporate a limit T on the tail of

the bounding function in the results for phase-type traffic bounds.

Theorem 3.4.1 (Characterization). Consider a work-conserving system that transmits at a

constant rate of ρ and is fed with a single traffic stream with traffic process A(t) andW (t) is
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the queue workload at time t. Then A(t) is characterized by a phase-type traffic descriptor

[ρ; (a,π,Q, T )] if and only if

P{W (t) ≥ σ} ≤ aπeQσ1, (3.28)

for all t ≥ 0 and all σ ∈ (0, T ]. We interchangeably say A(t) is characterized by a phase-type

traffic descriptor with upper rate ρ and bounding function aπeQσ1.

Proof. By using the relation

W (t) = max
0≤s≤t

{A(s, t)− ρ(t− s)} ,

the theorem is easily proven.

In Appendix A, we have shown that a gSBB traffic process is SBB with the same upper

rate and bounding parameter, but the converse does not necessarily hold. The following

theorem expresses relationships between the bounding parameter of a PHBB process and

that of the counterpart phase-type traffic process.

Theorem 3.4.2.

1. If A(t) is characterized by a phase-type traffic descriptor [ρ; (a,α,G, T )], then it is

PHBB with the same upper rate and bounding parameter.

2. If A(t) is PHBB with upper rate ρ and bounding parameters (a,α,G), then for any

ϵ > 0, it characterized by a phase-type traffic descriptor [ρ + ϵ; (b,β,H, T = ∞)],

where

(b,β,H) =

(
a(ϵ+ E{τ})

ϵ
,G,

αϵ−αG−1

E{τ}+ ϵ

)
, (3.29)

where E{τ} = −αG−11 is the mean of phase-type random variable τ ∼ PH(α,G).
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These relationships between phase-type traffic bound and PHBB also hold for a finite tail

bound T .

Proof. As PHBB and phase-type traffic bounds are special cases of SBB and gSBB, respec-

tively, this theorem is a special case of [99, Theorem 2], therefore part one is easily verified.

For the second part we have the bounding function of the phase-type traffic process as

g(σ) = f(σ)+ 1
ϵ

∫∞
σ f(u) du, where f(σ) = AαeGσ1 is the bounding function of the PHBB

process R(t). We have

g(σ) = AαeGσ1− 1

ϵ

∫ ∞

σ
AαeGu1 du = AαeGσ1− 1

ϵ
Aα

∫ ∞

σ
eGu du 1

= AαeGσ1−Aα
[
G−1eGu

]∞
σ

1 = A

[
α− αG−1

ϵ

]
eGσ1

=
A(ϵ+E{τ})

ϵ

[
αϵ−αG−1

E{τ}+ ϵ

]
eGσ1. (3.30)

where in deriving (3.30), we used, limu→∞ eGu = 0, which we have according to (2.24). The

factor in square brackets represents a probability distribution since

αϵ−αG−1

E{τ}+ ϵ
· 1 =

ϵ−αG−11

E{τ}+ ϵ
= 1,

where we have used (2.22). Therefore, A(t) can be characterized by a phase-type traffic

descriptor with upper rate ρ+ ϵ and bounding function g(σ).

Theorem 3.4.3 (Sum). Let A1(t) be characterized by a phase-type traffic descriptor [ρ1;

(a,α,G, T1)], and A2(t) be characterized by a phase-type traffic descriptor [ρ2; (b,β,H, T2)].

ThenA1(t)+A2(t) can be characterized by a phase-type traffic descriptor [ρ1+ρ2; (c,π,Q, T )]
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where T = min(T1, T2), c = a+ b,

π =

[
a

c
α,

b

c
β

]
, Q =

pG 0

0 (1− p)H

 , (3.31)

and p is a real number such that 0 < p < 1.

Proof. As A1(t) and A2(t) are characterized by phase-type traffic descriptors, a special case

of gSBB, we can apply the Sum theorem for gSBB [99, Theorem 3]. In this case, a bounding

function of the aggregated traffic is given by g(σ) = f1(pσ) + f2((1− p)σ), where

f1(σ) = aαeGσ1, for T1 > σ > 0, f2(σ) = bβeHσ1, for T2 > σ > 0.

We have

g(σ) = aαepGσ1+ bβe(1−p)Hσ1 = (a+ b)

[
aα

a+ b
,
bβ

a+ b

]epG 0

0 e(1−p)H

1,

for T = min(T1, T2) ≥ σ > 0. By setting T = min(T1, T2), g(σ) is well-defined.

Theorem 3.4.4 (Sum of Independent Traffic Processes). Let A1(t) be characterized by a

phase-type traffic descriptor [ρ1; (a,α,G, T1)], and A2(t) be characterized by a phase-type

traffic descriptor [ρ2; (b,β,H, T2)]. Then if A1(t) and A2(t) are independent, A1(t) +A2(t)

can be characterized by a phase-type traffic descriptor [ρ1 + ρ2; (c,π,Q, T )], where T =

min(T1, T2), c = a+ b− ab,

π =

[
a(1− b)

c
α,

b(1− a)
c

β,
ab

c
α,0

]
, Q =



G 0 0 0

0 H 0 0

0 0 G gβ

0 0 0 H


, (3.32)
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where g = −G1.

Proof. As A1(t) and A2(t) are characterized by phase-type traffic descriptors, a special case

of gSBB, we can apply the Sum of Independent Traffic theorem for gSBB [99, Theorem 4].

Details of the proof are omitted as the proof is very similar to the proof of Theorem 3.2.3.

Theorem 3.4.5 (Input-Output Relation). Let Ain(t) be the input traffic rate process to a

work-conserving element, which transmits at rate C. Suppose that Ain(t) is characterized

by a phase-type traffic descriptor [ρ; (a,π,Q, T )]. Let Aout(t) denotes the output traffic

rate process. Then the following hold:

1. Aout(t) is less bursty than Ain(t). In other words,

max
0≤s≤t

{Aout(s, t)− ρ(t− s)} ≤ max
0≤s≤t

{Ain(s, t)− ρ(t− s)} , (3.33)

2. Aout(t) can be characterized by the same phase-type traffic descriptor [ρ; (a,π,Q, T )].

Proof. 1. This relation is based on [99, Theorem 5] and does not depend on the bounding

function.

2. Since Ain(t) is characterized by a phase-type traffic descriptor [ρ; (a,π,Q, T )], which is

a special case of gSBB, therefore according to [99, Corollary (Input-Output Relation)]

Aout(t) can be characterized by the same phase-type traffic descriptor [ρ; (a,π,Q, T )].

Theorem 3.4.6. Assume thatA(t) is characterized by a phase-type traffic descriptor [ρ; (a,α,G, T )]

and is the input traffic to a work-conserving system with transmission rate C > ρ. If D(t)

denotes the maximum delay of the bits of a packet arriving at time t, then the tail proba-

bility D(t) is is bounded as follows,

P{D(t) ≥ σ} ≤ Aαe(C−ρ)Gσ1, (3.34)
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for all t ≥ 0 and all T
C−ρ ≥ σ ≥ 0.

Proof. Here, time is considered as discrete and σ is an integer value. As A(t) is characterized

by a phase-type traffic descriptor, a special case of gSBB, we can apply the corresponding

theorem for gSBB [99, Theorem 7]. Therefore,

P{D(t) ≥ σ} ≤ f(σ(C − ρ)),

where f(σ(C − ρ)) = Aαe(C−ρ)Gσ1. This relation, however, holds if

P{WC(t+ σ − 1;R) ≥ σ(C − ρ)} ≤ f(σ(C − ρ)),

where WC(t + σ − 1;R) is defined according to (3.5), and is valid for σ(C − ρ) < T or

σ < T
C−ρ .

3.5 Phase-type Network Calculus Application

In this section, we provide some applications of the Phase-type network calculus theorems.

In this section we consider the same work-conserving system described in Section 3.3. We

assume there is a work-conserving server with capacity C which is fed by N input traffic

processes Ai(t), 1 ≤ i ≤ N , such that each Ai(t) is characterized by a phase-type traffic

descriptor [ρi; (ai,αi,Gi, Ti)], and
∑N

i=1 ρi < C. In this section we characterize the output

traffic and delay for each source under different service disciplines. In this section, D(t)

denotes the maximum delay of the bits of a packet arriving at time t and D(t) = n means

the last bit of input traffic A(t) is transmitted at time t+n. On the other hand, Q(t) denotes

the queue length at time t, and Qi(t) denotes the portion of the queue which belongs to

source i.

If A(t) =
∑N

i=1Ai(t) is the aggregate input traffic, then according to the Sum theorem A(t)
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can be characterized by a phase-type traffic descriptor [ρ; (b,β,H, T )] where T = min
1≤j≤N

Tj ,

β =
[a1
b
α1,

a2
b
α2, . . . ,

aN
b
αN

]
, H =



q1G1 0 . . . 0

0 q2G2 . . . 0

...
...

. . .
...

0 0 . . . qNGN


(3.35)

and b =
∑N

i=1 ai, 0 < qi < 1, i = 1, 2, . . . , N and
∑N

i=1 qi = 1.

3.5.1 General results

Theorem 3.5.1. Suppose that we have N sources, Aj(t), j = 1, 2, . . . , N , sharing a work-

conserving system with transmission rate C. Let Aj(t) be characterized by a phase-type

traffic descriptor [ρi; (ai,αi,Gi, Ti)], where Aj(t) is the input traffic process from source j,

and
∑N

j=1 ρj < C. Let A
(out)
j (t) be the output process of source j. Then for any ϵ > 0,

A
(out)
j (t) can be characterized by a phase-type traffic descriptor [ρi+ϵ; (b̃j , π̃j , Q̃j , T )] where

T = min
1≤j≤N

Tj ,

(b̃j , π̃j , Q̃j) =

(
bj(ϵ+ E{τj})

ϵ
,
πjϵ− πjQ

−1
j

E{τj}+ ϵ
,Qj

)
, (3.36)
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E{τj} = −πjQ
−1
j 1 is the mean of phase-type random variable τj ∼ PH(πj ,Qj), and

πj =

[
aj
bj
αj ,

a1
bj

α1,
a2
bj

α2, . . . ,
aN
bj

αN

]
, Qj =



pjGj 0 0 . . . 0

0 p1G1 0 . . . 0

0 0 p2G2 . . . 0

...
...

...
. . .

...

0 0 0 . . . pNGN


,

(3.37)

where bj = aj +
∑N

i=1 ai, 0 < pi < 1, i = 1, 2, . . . , N and pj +
∑N

i=1 pi = 1. This theorem is

valid for both cases of discrete and continuous-time processes[investigated further].

Proof. As Aj(t), j = 1, 2, . . . , N are characterized by a phase-type traffic descriptor, a

special case of gSBB, we can apply the corresponding theorem for gSBB [51, Theorem 6].

Therefore A
(out)
j (t) is PHBB with upper rate ρj and bounding function

gj(σ) =

[
fj(pjσ) +

N∑
i=1

fi(piσ)

]

where fj(σ) = ajαje
Gjσ1 for 0 < σ < Tj and 0 < pi < 1 and pj +

∑N
i=1 pi = 1. Therefore,
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we have

gj(σ) =

[
ajαje

Gjpjσ1+

N∑
i=1

aiαie
Gipiσ1

]
= [ajαj , a1α1, a2α2, . . . , anαN ] ·

. exp



pjGj 0 0 . . . 0

0 p1G1 0 . . . 0

0 0 p2G2 . . . 0

...
...

...
. . .

...

0 0 0 . . . pNGN


· 1.

gj(σ) is well-defined on the interval 0 < σ < min
1≤j≤N

Tj . Therefore, for any ϵ > 0, A
(out)
j (t) can

be characterized by a phase-type traffic descriptor [ρi+ϵ; (b̃j , π̃j , Q̃j , T )], which according to

Theorem 3.4.2, are related to phase-type traffic descriptor [ρi + ϵ; (bj ,πj ,Qj , T )] as (3.29).

From this relation the results follows.

3.5.2 First in first out (FIFO)

Theorem 3.5.2. Assume thatA(t) is characterized by a phase-type traffic descriptor [ρ; (a,α,G, T )]

and is the input traffic to a work-convserving system with transmission rate C > ρ and FIFO

discipline. Then the tail probability D(t) is bounded as follows,

P{D(t) ≥ σ} ≤ aαe(C− ρ
σ
)Gσ1, (3.38)

for all t ≥ 0 and all T+ρ
C ≥ σ ≥ 0.

Proof. As A(t) is characterized by a phase-type traffic descriptor, a special case of gSBB,

we can apply the corresponding theorem for gSBB [99, Theorem 8]. Therefore

P{D(t) ≥ σ} ≤ f(Cσ − ρ),
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where f(Cσ − ρ) = aαe(Cσ−ρ)G1 = aαe(C− ρ
σ
)Gσ1. Note that, this relation is valid for

Cσ − ρ < T or σ < T+ρ
C .

3.5.3 Strict priority (SP)

Theorem 3.5.3. Suppose that we have N sources sharing a work-conserving system with

transmission rate C, and the SP service discipline. Assume that Aj(t) is characterized by a

phase-type traffic descriptor [ρi; (ai,αi,Gi, Ti)], where Aj(t) is the input traffic process from

source j, and
∑N

j=1 ρj < C. Let A
(out)
j (t) be the output process of source j. Then A

(out)
1 (t)

can be characterized by a phase-type traffic descriptor [ρ1; (a1,α1,G1, T1)]. On the other

hand, for j = 2, . . . , N , A
(out)
j (t) for any ϵ > 0 can be characterized by a phase-type traffic

descriptor [ρj + ϵ; b̃j , π̃j , Q̃j , tj)], where tj = min
1≤i≤j

Ti,

(b̃j , π̃j , Q̃j) =

(
bj(ϵ+ E{τj})

ϵ
,
πjϵ− πjQ

−1
j

E{τj}+ ϵ
,Qj

)
, (3.39)

where E{τj} = −πjQ
−1
j 1 is the mean of a phase-type random variable τj ∼ PH(πj ,Qj),

and

πj =

[
aj
bj
αj ,

a1
bj

α1,
a2
bj

α2, . . . ,
aj
bj
αj

]
, Qj =



pjjGj 0 0 . . . 0

0 pj1G1 0 . . . 0

0 0 pj2G2 . . . 0

...
...

...
. . .

...

0 0 0 . . . pjjGj


,

(3.40)

where bj = aj +
∑j

i=1 ai, 1 > pji > 0 and pjj +
∑j

i=1 pji = 1, j = 2, . . . , N.

Proof. For A1(t), the SP system behaves exactly like a single input system that input
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is characterized by a phase-type traffic descriptor [ρ1; (a1,α1,G1, T1)], therefore, A
(out)
1 (t)

can be characterized by the same phase-type traffic descriptor [ρ1; (a1,α1,G1, T1)]. For

j = 2, on the other hand, the system works as if we have aggregate input of A1(t) +A2(t),

therefore, for any ϵ > 0, A
(out)
2 (t) can be characterized by a phase-type traffic descriptor

[ρ2 + ϵ; (B̃2, π̃2, Q̃2, t2)] which are derived from (3.36) with j = 2. By a similar argument

we can obtain (B̃j , π̃j , Q̃j , tj) for j = 3, . . . , N .

Theorem 3.5.4. Let Dj(t) be the maximal delay of source j, then with the same assumptions

of Theorem 3.5.3, the tail probability of D1(t) can be bounded as follows,

P{D1(t) ≥ σ} ≤ a1αe(C− ρ
σ
)G1σ1, (3.41)

for all t ≥ 0 and all T1+ρ
C ≥ σ ≥ 0. For j ≥ 2, the tail probability of Dj(t) can be bounded

as follows,

P{Dj(t) ≥ σ} ≤ bjβje
(C−ρ̂j)Hjσ1, (3.42)

for all t ≥ 0 and all
tj

C − ρ̂j
≥ σ ≥ 0, where tj = min

1≤i≤j
Ti,

βj =

[
a1
bj

α1,
a2
bj

α2, . . . ,
aj
bj
αj

]
, Hj =



qj1G1 0 . . . 0

0 qj2G2 . . . 0

...
...

. . .
...

0 0 . . . qjjGj


, (3.43)

and bj =
∑j

i=1 ai, ρ̂j =
∑j

l=1 ρl, 0 < qji < 1, i, j = 1, 2, . . . , N and
∑j

i=1 qji = 1.

Proof. For D1(t), the system behaves exactly like a FIFO single input system with an input

that is characterized by a phase-type traffic descriptor [ρ1; (a1,α1,G1, T1)], therefore we can

use Theorem 3.5.2. Hence, the tail probability of D1(t) can be bounded according to (3.41).
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For j ≥ 2, on the other hand, the system works as if we have aggregate input of A1(t) +

. . .+Aj(t), which according to Theorem 3.4.3 can be characterized by a phase-type traffic

descriptor [ρ̂j =
∑j

l=1 ρl; (Bj ,βj ,Hj , Tj)], derived according to (3.35) for N = j. Therefore,

we can apply Theorem 3.5.2, and the tail probability of Dj(t) can be bounded as (3.42).

3.5.4 Generalized processor sharing (GPS)

Theorem 3.5.5. Suppose that we have N sources sharing a work-conserving system with

transmission rate C, which adopts GPS serving discipline. For 1 ≤ i ≤ N , traffic source i

is assigned with serving weight ϕj > 0. Assume that Aj(t) is characterized by a phase-type

traffic descriptor [ρi; (ai,αi,Gi, Ti)], where Aj(t) is the input traffic process from source j,

and
∑N

j=1 ρj < C. Let A
(out)
j (t) be the output process of source j. Then A

(out)
j (t) can be

characterized by a phase-type traffic descriptor [ρj ; (b̃j , π̃j , Q̃j , tj)]. If ϕjC > ρj we have

(b̃j , π̃j , Q̃j , tj) = (aj ,αj ,Gj , Tj) . Otherwise,

(b̃j , π̃j , Q̃j) =

(
bj(ϵ+ E{τj})

ϵ
,
πjϵ− πjQ

−1
j

E{τj}+ ϵ
,Qj

)
, (3.44)

where E{τj} = −πjQ
−1
j 1 is the mean of a phase-type random variable τj ∼ PH(πj ,Qj),

and

πj =

[
aj
bj
αj ,

a1
bj

α1,
a2
bj

α2, . . . ,
aN
bj

αN

]
, Qj =



pjGj 0 0 . . . 0

0 p1G1 0 . . . 0

0 0 p2G2 . . . 0

...
...

...
. . .

...

0 0 0 . . . pNGN


,

(3.45)
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where bj = aj+
∑N

i=1 ai, 0 < pi < 1, i = 1, 2, . . . , N , pj+
∑N

i=1 pi = 1 and tj = min1≤i≤N Ti.

Proof. If ϕjC > ρj , for the jth traffic flow we can use Theorem 3.4.5, as if the jth flow is

served by an isolated server of minimum rate of ϕjC. On the other hand, for the case of

ϕjC ≤ ρj , the result follows from Theorem 3.5.1.

Theorem 3.5.6. Let Dj(t) be the maximal delay of source j, then with the same assumptions

of Theorem 3.5.5, if ϕjC > ρj , then for j ≥ 1, the tail probability of Dj(t) can be bounded

as,

P{D(t) ≥ σ} ≤ ajαje
(Cϕj−

ρj
σ
)Gσ1, (3.46)

for all t ≥ 0 and all
Tj+ρj
Cϕj

≥ σ ≥ 0.

Proof. If ϕjC > ρj , we again consider jth traffic flow as if it is serviced by an isolated server

of minimum rate of ϕjC. Then the result follows from Theorem 3.4.6.

3.6 Case Study

In this section, we consider examples of Markov modulated Poisson process (MMPP) input

traffic streams to investigate the PHBB and phase-type traffic bounds to characterize traffic

streams. We try to bound the tail probability of workload samples.

We should note that all the derived results in this section are at steady-state for waiting

time and queue length. On the other hand, for a traffic stream to be characterized by a

phase-type traffic descriptor according to Definition 3.1.3, the bound should be valid for all

t ≥ 0. However, according to the following theorem, queue length (and also waiting time)

are stochastically monotically increasing. Therefore, if the steady-state queue length (or

waiting time) is stochastically bounded by a bounding function (in our case aπeQσ1), this

bound will be also valid for all t ≥ 0.
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Theorem 3.6.1. [51, 67] If Ain(t) is ergodic and stationary and E{Ain(1)} < ρ for some

ρ > 0, then for all t ≥ 0 we have,

Wρ(t;Ain) ≤st Wρ(t+ 1;Ain) ≤st . . . ≤st Wρ(∞;Ain) (3.47)

, where Wρ(t;Ain) is defined in (3.5), and Wρ(∞;Ain) denotes the random variable corre-

sponding to the steady state of Wρ(t;Ain) as t→∞.

We should note that, in all of the cases we have considered, the traffic is stationary and

ergodic and Loynes’ stability condition of E{Ain(1)} < ρ for some ρ > 0 is also satisfied.

3.6.1 MMPP/G/1 queue

The MMPP is a common model for traffic with a high degree of burstiness [36]. A 2-state

MMPP is parameterized by an arrival matrix

Λ =

λ0 0

0 λ1

 (3.48)

and a rate matrix

R =

−r0 r0

r1 −r1

 , (3.49)

which is the generator of the modulating Markov chain. On the other hand, when two iden-

tically independent 2-state MMPP are aggregated the result will be a 3-state MMPP [36],

with arrival matrix

Λ =


2λ1 0 0

0 λ0 + λ1 0

0 0 2λ0

 (3.50)
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and a rate matrix

R =


−2r1 2r1 0

r0 −r0 − r1 r1

0 2r0 −2r0

 . (3.51)

When the service times are independent and generally distributed, the resulting queue is

denoted as MMPP/G/1. A relatively simple form for the Laplace transform of the virtual

waiting time of a two-state MMPP/G/1 queue is given in [68] in terms of a transition

probability matrix

G = [Gij : i, j = 0, 1] =

1− d0 d0

d1 1− d1

 , (3.52)

where Gij is the probability that a busy period starting in the underlying state i ends in

underlying state j. When the MMPP has more than 2 states, deriving the virtual waiting

time for MMPP/G/1 queue becomes more complicated. An MMPP with rate matrix R

and arrival matrix Λ is a special case of Markov Arrival Process (MAP) with D0 = R−Λ

and D1 = Λ, where this MAP process is a two-dimensional Markov process {N(t), J(t)} on

the state space {(i, j) : i ≥ 0, 1 ≤ j ≤ m}, where m is the number of states of the MMPP

process. The generator matrix of the MAP has the form

Q =



D0 D1 0 0 . . .

0 D0 D1 0 . . .

0 0 D0 D1 . . .

0 0 0 D0 . . .

. . .


. (3.53)

Remark. The virtual waiting time at any given time is defined as the waiting time of a
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packet arriving at that exact given time. Therefore, at any given time the virtual waiting

time is the summation of the service times of the unserviced packets that arrived before that

time and the residual service time of the current packet in the server. But if we consider

the system to be such that the packet lengths are equal to the service times (as opposed to

a constant packet length of one), with the same arrival model, then if this input traffic is

fed to a server with constant rate C, then the virtual waiting time will be the workload size

divided by C. In the case of the MMPP/G/1 queue, the virtual waiting time is equivalent

to the queue workload or buffer content divided by C, in a system with a constant rate

server with rate C, where packets arrive according to an MMPP model and packet lengths

are drawn from a common distribution denoted by G.

Let H(s) denote the Laplace transform of the packet length, which in this interpretation

is equivalent to the packet service time, assuming that the service rate is one unit (e.g., bit)

per unit time (e.g., seconds). The generator matrix G for a 2-state MMPP is determined

by numerically solving the following equations [68, Eqs. (86), (87)]:

d0 + d1 = 1−H(r0 + r1 + λ0d0 + λ1d1) (3.54)

d0(r1 + λ1d1) = d1(r0 + λ0d0). (3.55)

For an MMPP with two or more states, generator matrix G is derived by the following

equation

G =

∞∑
n=0

γn(I + θ−1D[G])n, (3.56)

where γn =
∫∞
0 e−θx (θx)n

n! dH̃(x). In this equation H̃(x) is the cumulative distribution

function of the service process, θ = max
i
{(−D0)ii} and D(z) as matrix generating function

D(z) =
∑∞

k=0Dkz
k = D0 +D1z. This equation can be solved iteratively in the following
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recursion,

Hn+1,k = [I + θ−1D[G]]Hn,k (3.57)

Gk+1 =
∞∑
n=0

γnHn,k, (3.58)

where H0,k = I. We can start with G0 = 0, but we can achieve faster convergence if we

start with G0 = π̃1, where π̃ is the stationary probability vector of the Markov process

with generator matrix D =
∑∞

k=0Dk = D0 +D1, where

π̃D = 0, π̃1 = 1 (3.59)

Average arrival rate for the arrival process is given by

1

λavg
= π̃

∞∑
k=1

kDk1 = π̃D11 (3.60)

When the queue utilization factor, ρ =
λavg

µ < 1, G will be a stochastic matrix and the

invariant probability vector g associated with G is derived according to,

gG = g, g1 = 1. (3.61)

The Laplace transform of the queue workload is given as [68]:

W (s) = s(1− ρ)g[sI +D(H(s))]−1 (3.62)

W (0) = π̃. (3.63)
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which for the special case of a 2-state MMPP simplifies to

W (s) =
N(s)

D(s)
, (3.64)

where

N(s) = s(1−ρ)[s−r0−r1+(H(s)−1)(f0λ1+f1λ0)] (3.65)

D(s) = s2 + [(H(s)− 1)(λ0 + λ1)− (r0 + r1)]s

+ (H(s)− 1)[(H(s)− 1)λ0λ1 − r0λ1 − r1λ0]. (3.66)

3.6.2 Numerical Examples

In this section we provide three examples to investigate the phase-type bounds to charac-

terize the input traffic. These examples are based on queues with MMPP input traffic and

different service time distributions described in Section 3.6.1. In these examples we derive

the stationary virtual waiting time or stationary waiting time and by using the method

mentioned in Section 3.6.1 we relate it to the workload in a virtual queue with a constant

rate server. By bounding the tail probability of the workload and using Theorem 3.4.1, we

characterize the input traffic. In these three examples virtual waiting time or stationary

waiting times are replaced by workload size by considering the constant rate of the server

in the virtual queue as 1 or 2, e.g. in the second example.

In the first example we consider a queue, denoted by MMPP/M/1, with MMPP input

traffic and exponential service time distribution. In the second example, we use the same

MMPP arrival model with Erlang-2 service time distribution denoted by MMPP/E2/1. In

the third example, however, we consider a queue with aggregated arrivals of two independent

2-state MMPP traffic streams and exponential service time distributions. Using Theorem

3.4.4, we will characterize the aggregate input traffic with a phase-type descriptor and

compare the results with a gSBB bound based on [85, Theorem 2], which does not assume

62



independence of the input traffic streams.

MMPP/M/1 Queue

In the case of exponential service, the Laplace transform of the packet length distribution

is given by

H(s) =
µ

s+ µ
. (3.67)

Let λavg denote the average arrival rate to the queue. Then the queue utilization is given

by

ρ =
λavg
µ

=
r1

µ(r0 + r1)
λ0 +

r0
µ(r0 + r1)

λ1. (3.68)

For our numerical example, we set the parameters as follows: r0 = 2, r1 = 10−2, λ0 = 12,

λ1 = 3, µ = 7. Using (3.68), we compute ρ = 0.435. Applying (3.64) and inverting the

Laplace transform, the density of the queue workload process is obtained as follows:

fW (σ) = 1.67e−4.01σ + 0.0277e−1.61σ + 0.565δ(σ), σ ≥ 0, (3.69)

where δ(σ) denotes the Dirac delta function. The delta function in the density function

implies a discontinuity in the distribution and survival functions at σ = 0. Since we are

interested in tail probabilities, we shall only consider the case σ > 0.

The tail probability of queue workload process W (t) is then given by

P{W (t) ≥ σ} = 0.4165e−4.01σ + 0.0172e−1.61σ, (3.70)

for t ≥ 0, σ > 0.

63



Since a mixture of exponential distributions is a special case of the phase-type distribu-

tion, the right-hand side of (3.70) can be written in the form aπeQσ1, where

π = (0.9603, 0.0397), Q =

−4.01 0

0 −1.61

 , (3.71)

and a = 0.4337.

MMPP/E2/1 Queue

When the packet length has an Erlang-2 distribution, we have

H(s) =

(
2µ

s+ 2µ

)2

. (3.72)

Note that the corresponding Erlang-2 random variable is the sum of two independent ex-

ponential random variables, each of mean 1/2µ. The queue utilization in this case is also

given by (3.68). The parameters are set as follows: r0 = 2, r1 = 10−3, λ0 = 20, λ1 = 3,

µ = 4. Applying (3.64), we obtain the following pdf for the queue workload:

fW (σ) = 1.05e−1.38σ − 0.318e−11.6σ − 4.65 · 10−5e−14σ + 0.007e−0.444σ + 0.248δ(σ), (3.73)

for σ ≥ 0. The survival function of the queue workload for σ > 0 is then given by

P{W (t) ≥ σ} = 0.7609e−1.38σ − 0.0274e−11.6σ − 0.3321 · 10−5e−14σ + 0.0158e−0.444σ.

(3.74)

Note that the tail probability of W (t) is not a mixture of exponentials, nor a phase-type

distribution due to the negative coefficients on the right-hand side of (3.74). Nevertheless

the tail probability of W (t) has a matrix exponential distribution [11] and can be bounded

using phase-type bounds. The phase-type bound can be obtained by simply dropping the
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negative terms on the right-hand side of (3.74), i.e.,

P{W (t) ≥ σ} ≤ 0.7609e−1.38σ + 0.0158e−0.444σ. (3.75)

In this case the tail probability of W (t) has a bound in the form aπeQσ1, where ,

π = (0.9806, 0.0194), Q =

−1.38 0

0 −0.444

 , (3.76)

and a = 0.7760.

Aggregate MMPP/M/1 input traffics

As shown in (3.70), when an MMPP/M/1 input traffic with parameters set as Section 3.6.2,

is fed to a server with constant rate of 1, the tail probability of the queue length will

be bounded by a mixture of exponentials. Therefore, according to the Characterization

Theorem [99, Theorem 1] the input traffic is gSBB, and also can be characterized by a phase-

type traffic descriptor [ρi = 1; (ai = 0.4337,πi,Qi, T = ∞)], i = 1, 2, where πi, i = 1, 2

and Qi, i = 1, 2 are given in (3.71).

Now we consider two i.i.d. input traffic streams, as inputs to a server with constant service

rate of 2. In this case we have A1(t) and A2(t) as gSBB traffic inputs with upper rate

ρ1 = ρ2 = 1 and bounding function

f1(σ) = f2(σ) = 0.4165e−4.01σ + 0.0172e−1.61σ. (3.77)
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According to the Sum Theorem [99, Theorem 3] the aggregate input A(t) = A1(t) + A2(t)

will be also gSBB with upper rate ρ = ρ1 + ρ2 = 2 and bounding function

g(σ) = f1(pσ) + f2((1− p)σ) = 0.4165e−4.01pσ+

0.0172e−1.61pσ + 0.4165e−4.01(1−p)σ + 0.0172e−1.61(1−p)σ

(3.78)

where p is any value such that 0 < p < 1. As we want this upper bound to be the tightest

we set p = 0.5, in which case

g(σ) = 0.833e−2.005σ + 0.0344e−0.805σ. (3.79)

which is a weighted sum of exponentials. Note that A1(t) and A2(t) can also be characterized

by a phase-type traffic descriptor [ρi = 1; (ai = 0.4337,πi,Qi, T = ∞)], i = 1, 2, where

πi, i = 1, 2 and Qi, i = 1, 2 are given in (3.71).

Considering the independence of the input traffics in this case, and according to The-

orem 3.4.4, A(t) = A1(t) + A2(t) can be characterized by a phase-type traffic descriptor

[ρ = ρ1 + ρ2 = 2; (b,α,H)], where b = a1 + a2 − a1a2 = 0.6793,

α =

[
a1(1− a2)

b
π1,

a2(1− a1)
b

π2,
a1a2
b

π1,0

]

= (0.2359, 0.0097, 0.2359, 0.0097, 0.1806, 0.0075, 0, 0),

H=



Q1 0 0 0

0 Q2 0 0

0 0 Q1 q1π2

0 0 0 Q2


=



−4.01 0 0 0 0 0 0 0

0 −1.61 0 0 0 0 0 0

0 0 −4.01 0 0 0 0 0

0 0 0 −1.61 0 0 0 0

0 0 0 0 −4.01 0 3.851 0.159

0 0 0 0 0 −1.61 1.5461 0.0639

0 0 0 0 0 0 −4.01 0

0 0 0 0 0 0 0 −1.61


.

(3.80)
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Figure 3.1: gSBB bound, phase-type bound, and true tail probability for aggregated
MMPP/M/1 input traffic streams.

As we can see in Fig. 3.1, the phase-type bound is tighter than the gSBB bound. The

true tail probability is derived through the following steps. As we have two identically

independent 2-state MMPP’s, with R and Λ as

R =

−r0 r0

r1 −r1

 =

 −2 2

10−2 −10−2

 , (3.81)

Λ =

λ0 0

0 λ1

 =

12 0

0 3

 , (3.82)

the aggregated arrival process will be according to (3.50) and (3.51) a 3-state MMPP process
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with with R and Λ as

R =


−2r1 2r1 0

r0 −r0 − r1 r1

0 2r0 −2r0

 =


−0.02 0.02 0

2 −2.01 0.01

0 4 −4

 , (3.83)

Λ =


2λ1 0 0

0 λ0 + λ1 0

0 0 2λ0

 =


6 0 0

0 15 0

0 0 24

 . (3.84)

In this case, the 3-state MMPP as a special case of MAP will give us D0 = R − Λ and

D1 = Λ. Therefore, D[G] = D0 +D1G. Matrix G is derived according to (3.56), where in

this case

γn =

∫ ∞

0
e−θx (θx)

n

n!
dH̃(x) =

∫ ∞

0
e−θx (θx)

n

n!
µe−µxdx =

θnµ

(θ + µ)n+1
(3.85)

In the aggregate case we are trying to find

max
0≤s≤t

{A1(s, t) +A2(s, t)− (ρ1 + ρ2)(t− s)} (3.86)

which is the queue workload when the input traffic is aggregated as A1(t) + A2(t) and the

server constant rate is ρ1 + ρ2. In our model, that arrivals are MMPP and packet sizes are

exponentially distributed with Laplace Transform H(s) = µ
s+µ = 7

s+7 , and constant server

rate ρ1 = ρ2 = 1. When we are considering the aggregate case and we increase the server

rate to ρ1 + ρ2 = 2, using (3.62) and (3.63), we incorporate this increase of the server rate

in our calculation by doubling the µ to µ = 14. In this case we have packet sizes that are

exponentially distributed again, however, this time the average packet lengths are halved

on average. Therefore, doubling the server rate to 2, which means the queue workload will

be emptied in the half time, is equivalent to having a constant rate server with server rate
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1, but packet lengths that are halved by setting µ = 14. This change in the packet length

instead of increasing the server rate, as we can see in Fig.3.1, is verified by simulation.

Following the iterative equations of (3.58) and (3.58), we obtain the G matrix as

G =


0.99866 0.00133 0

0.33254 0.66714 0.00031

0.37585 0.17597 0.44817

 . (3.87)

We should note the following iteration is started withG0 = π̃1, where π̃ is derived according

to (3.59), which is

π̃ = (0.99, 0.0099, 10−5). (3.88)

The average arrival rate for this 3-state MMPP is derived according to (3.60) as λavg = 6.089

and the utilization factor of the queue will be ρ = 0.4349. Since ρ < 1, the invariant

probability vector g associated with G is derived following (3.61) as

g = (0.996, 0.00398, 3.66 · 10−6) (3.89)

ThenW (s), the Laplace Transform of the virtual waiting time, is derived according to (3.62)

and (3.63) as

Wv(s) =
3.34

s+ 8.02
+

0.0721

s+ 4.01
+

0.00318

s+ 3.22
+ 0.565 (3.90)

In the time-domain we have

fW (σ) = 3.34e−8.02σ + 0.0721e−4.01σ+0.00318e−3.22σ + 0.565δ(σ), σ ≥ 0 (3.91)

Also in this case virtual waiting time pdf has a discontinuity at σ = 0, which is as expected

and is equal to 1 − ρ. Therefore, the tail probability for the queue workload process W (t)
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is given by

P{W (t) ≥ σ} = 0.4165e−8.02σ + 0.0180e−4.01σ + 9.8758 · 10−4e−3.22σ, (3.92)

for t ≥ 0, σ > 0.

3.7 Conclusion

In this chapter we extended the concept of SBB and gSBB to the case of PHBB and

phase-type bounds. We showed the PHBB or phase-type network calculus provides a closed

network calculus for characterizing all the traffics inside the network, and can provide a

mechanism to provide stochastic network performance guarantees. We showed how PHBB

and phase-type bounds can be applied in a network with different service policies. The

phase-type bounds were used in our case study to provide a stochastic bound on the work-

load size, and it was shown how this particular class of bounds have the advantage to provide

tighter bounds compare to gSBB when the independence of the input traffics is utilized.
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Chapter 4: Fitting Traffics to Phase-Type Bounds

One of the open questions in stochastic network calculus is how to obtain traffic bursti-

ness bounds, in our case, phase-type bounds, for a given traffic stream. According to the

Characterization theorem if the tail probability of the workload size, P{W (t) ≥ σ}, when

the traffic is fed to a constant rate server of rate ρ , can be upper bounded by a bound-

ing function of the form aπeQσ1, for σ ∈ [0, T ], then the input traffic will be phase-type

bounded with the corresponding bounding parameter. Thus, we feed the traffic stream to

a server with constant rate and obtain a phase-type traffic burstiness bound from samples

of the queue workload. In this chapter, we develop two methods for fitting these workload

samples to a phase-type bound. The first approach is based on minimizing the squared

error between the bounding function and the empirical tail probability of the workload. We

refer to this approach as the least squares method. The second method is based on EM

(expectation-maximization) algorithm, which was designed with the objective of maximiz-

ing the likelihood function. Parts of this chapter were published in [61].

The remainder of the chapter is organized as follows. In Section 4.1, we develop the

first characterization method using a least squares method. In Section 4.2, we develop the

second characterization method using EM algorithm. In Section 4.3, we investigate the

bounds derived from the least squares and EM methods for a heavy-tailed traffic process.

Concluding remarks are given in Section 4.4.

4.1 Least Squares Method

The objective of the least squares is to find an upper bound of the form aπeQσ1 for tail

probability, P{W (t) ≥ σ}, for every σ ∈ [0, T ], which is the tightest possible upper bound

in the sense of minimizing the squared error of the bound. For a fixed number of phases, p,
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this is a semi-infinitely constrained optimization problem

min
a,π,Q

∫ T

0
(P{W (t) ≥ σ} − aπeQσ1)2dσ

subject to :

A ≥ 0,π ≥ 0

p∑
i=1

πi = 1

det(Q) ̸= 0

Q(i, i) ≤ 0 for every i = 1 to p

Q(i, j) ≥ 0 for every i, j = 1 to p, i ̸= j

p∑
j=1

Q(i, j) ≤ 0 for every i = 1 to p

aπeQσ1 ≥ P{W (t) ≥ σ} for every σ ∈ [0, T ] (4.1)

Solving this problem in case of a general form of Q or in other words general form of a

phase-type random variable is very time consuming. However, there are methods to over

come these difficulties by limiting the form of the phase-type. We can limit the phase-type

to different forms of acyclic phase-type, hyper-Erlang, or even a simple case of mixture

of exponentials. As mentioned previously, the class of hyper-Erlang distributions [33] [7,

Corollary 4.4] and the class of acyclic phase-type distributions [26] are also dense in the

set of distributions with nonnegative support. Therefore, by limiting the optimization

search space of phase-type distributions to the class of hyper-Erlang or acyclic Phase-Type

distributions we do not lose the denseness property of the phase-type distribution.

We note here that the goal is to find a bound on the survival function rather than a
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phase-type fit to empirical workload distribution. Due to the denseness property, in theory

a phase-type distribution can be chosen to approximate the empirical workload distribution

to an arbitrary degree of accuracy. Given such an approximation, an upper bound on the

empirical workload distribution can be obtained by scaling the approximating phase-type

distribution by a constant. Therefore, the concept of denseness is relevant in the context of

optimization.

By limiting the phase-type distribution to the class of hyper-Erlang distributions, our

optimization reduces to,

min
a,π,Q

∫ T

0
(P{W (t) ≥ σ} − aπeQσ1)2dσ

subject to :

A ≥ 0,π ≥ 0

Q in the form of (2.30) and (2.31)

λi > 0 for every i = 1 to p

aπeQσ1 ≥ P{W (t) ≥ σ} for every σ ∈ [0, T ] (4.2)

We should note we have omitted the constraint on
∑p

i=1 πi = 1, because as the π is mul-

tiplied by a we can incorporate this multiplication factor into π. By doing so, we do not

need to account for the probability mass at the absorbing state p+1 since the components

of π do not need to sum to one.

This optimization problem, is still a semi-infinite constrained optimization. We can

simplify it further by omitting the last constraint, and by omitting a from optimization

variables. In other words, we reduce the problem to that of fitting the empirical distribution
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with a hyper-Erlang distribution. In this case our optimization problem has the form

min
π,Q

∫ T

0
(P{W (t) ≥ σ} − πeQσ1)2dσ

subject to :

π ≥ 0

Q in the form of (2.30) and (2.31)

λi > 0 for every i = 1 to p

(4.3)

Then whatever result we get we can make it an upper bound by multiplying it by a con-

stant a > 1, and then use this bound as the initial point for (4.2) or simply use this result

if it is tight enough. In our simulations we have used fmincon in MATLAB [72] for con-

strained optimization which is based on an interior-point algorithm [19,20,92] and fseminf

in MATLAB for semi-infinite constrained optimization.

For a mixture of exponentials, the associated phase-type random variable can be repre-

sented by (2.28) and (2.29). In [34], the authors have shown that a mixture of exponentials

can be a good fit to distributions with strictly decreasing pdfs. Therefore, for the case of

mixture of exponentials our optimization problem will be as in (4.2) and (4.3) with Q in

the form of (2.28).

On the other hand, for the case of CF1 acyclic phase-type random variable, depicted in
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Figure 2.2, our optimization problem will reduce to,

min
a,π,Q

∫ T

0
(P{W (t) ≥ σ} − aπeQσ1)2dσ

subject to :

π ≥ 0

Q in the form of (2.35)

λp ≥ λp−1 ≥ . . . ≥ λ2 ≥ λ1 ≥ 0

aπeQσ1 ≥ P{W (t) ≥ σ} for every σ ∈ [0, T ] (4.4)

In [44], this optimization method was used with the CF1 phase-type distribution, but their

optimization method was based on the Frank-Wolfe algorithm [38]. This semi-infinite con-

strained optimization problem can also be further simplified into a constrained optimization

problem in the same way. We omit the details.

We can improve the speed and accuracy of the optimization algorithms by providing

the derivative of the objective function, f(π, λ1, . . . , λp) =
∫ T
0 (P{W (t) ≥ σ} − πeQσ1)2dσ

with respect to the parameters, πi and λi for i = 1, 2, . . . , p. A nice feature of limiting

the phase-type random variable to the special cases of hyper-Erlang, CF1, or mixture of

exponentials is that deriving the derivative is relatively simple. For πi we have

∂f(π, λ1, . . . , λp)

∂πi
=

∂

∂πi

∫ T

0
(P{W (t) ≥ σ} − πeQσ1)2dσ

=

∫ T

0

∂

∂πi
(P{W (t) ≥ σ} − πeQσ1)2dσ = −2

∫ T

0
eie

Qσ1(P{W (t) ≥ σ} − πeQσ1)dσ,

(4.5)

where ei is a p-element row vector with ei(j) = 0 for j = 1, 2, . . . , p, j ̸= i and ei(i) = 1.
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For λi, on the other hand, we have

∂f(π, λ1, . . . , λp)

∂λi
=

∂

∂λi

∫ T

0
(P{W (t) ≥ σ} − πeQσ1)2dσ

=

∫ T

0

∂

∂λi
(P{W (t) ≥ σ} − πeQσ1)2dσ = −2

∫ T

0
π
∂eQσ

∂λi
1(P{W (t) ≥ σ} − πeQσ1)dσ.

(4.6)

If we consider Φ(λ, σ) = eQ(λ)σ and λ = [λ1, λ2, . . . , λp], we can write Φ(λ, σ) and ∂eQ(λ)σ

∂λi

in the form of Taylor series

Φ(λ, σ) =
∞∑
k=0

σk

k!
Qk(λ) (4.7)

∂Φ(λ, σ)

∂λi
=

∞∑
k=0

σk

k!

∂Qk(λ)

∂λi
. (4.8)

We can write (4.8) recursively as,

Qk(λ) = Q(λ)Qk−1(λ) (4.9)

∂Qk(λ)

∂λi
=
∂Q(λ)

∂λi
Qk−1(λ) +Q(λ)

∂Qk−1(λ)

∂λi
. (4.10)

Because of the term σk in (4.8), the summation will diverge. Therefore, we cannot substitute

∂Q(λ)
∂λi

as it is, for different cases of hyper-Erlang, CF1, or mixture of exponential. Hence,

we apply the scaling and squaring algorithm described in [16,39] to derive
∂eQ(λ)σ

∂λi
. In this

algorithm we first perform scaling as follows:

Q(λ)σ ← Q(λ)σ/r s.t.: ∥Q(λ)σ/r∥ < 0.2 (4.11)
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where ∥.∥ is the Euclidean norm of a matrix and is defined as the maximum singular value

of the matrix. In [16], r is chosen as

r = 2M , M = ⌈log2(∥Q(λ)σ∥∞)⌉ (4.12)

where ∥.∥∞ is the infinity norm of the matrix and is defined as

∥Mm×n∥∞ = max
1≤j≤m

 n∑
j=1

|aij |

 (4.13)

Then by (4.7), (4.8), (4.9), and (4.10) we derive
∂eQ(λ)σ/r

∂λi
. Applying squaring for m =

M,M − 1, . . . , 1 we have,

Φ(λ, σ/2m−1) = Φ2(λ, σ/2m) (4.14)

and based on (4.10) we obtain,

∂Φ(λ, σ/2m−1)

∂λi
=
∂Φ(λ, σ/2m)

∂λi
Φ(λ, σ/2m) + Φ(λ, σ/2m)

∂Φ(λ, σ/2m)

∂λi
. (4.15)

We can derive ∂eQ(λ)σ

∂λi
recursively using (4.14) and (4.15). For the case of hyper-Erlang

distributions we have

∂Q(λ)

∂λi
= diag

{
01,02, . . . ,0i−1,

∂qi

∂λi
,0i+1, . . . ,0p

}
, (4.16)

where 0j for j = 1, 2, . . . , p, j ̸= i are zero matrices with dimension of rj × rj and rj as the

order of the Erlang distribution in the jth branch. The partial derivative ∂qi

∂λi
, however, is
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derived based on (2.31) as follows:

∂qi

∂λi
=



−1 1 0 . . . 0

0 −1 1 . . . 0

...
. . .

. . .
...

...

0 0 . . . −1 1

0 0 . . . 0 −1


ri×ri

(4.17)

For the case of CF1, according to (2.35) we have

∂Q(λ)

∂λi
=

 −e
T
i ei + eTi ei+1, for i = 1, 2, . . . , p− 1

−eTp ep, for i = p
(4.18)

where ei is defined before. Finally, for the case of mixtures of exponentials we have

∂Q(λ)

∂λi
= −eTi ei for i = 1, 2, . . . , p (4.19)

This scaling and squaring method is summarized in a pseudo-code in Algorithm 2. In

Algorithm 2, ϵ can be chosen as a matrix with appropriate size with ϵ = 10−16 as every

element. The optimization method for different forms of phase-type random variables is

summarized in Algorithm 3.

4.2 EM Method

Another method of deriving a,π,Q such that

AπeQσ1 ≥ P{W (t) ≥ σ} for every σ ∈ [0, T ] (4.20)
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Algorithm 2 Calculate ∂eQ(λ)σ

∂λi
using squaring and scaling

Input: σ,
∂Q(λ)

∂λi
as in (4.16) or (4.18) or (4.19), ϵ

Output:
∂eQ(λ)σ

∂λi
1: M = ⌈log2(∥Q(λ)σ∥∞)⌉
2: r = 2M

3: Q(λ)σ ← Q(λ)σ/r
4: k = 2

5: while
∑k

l=0
σl

l!
∂Ql(λ)
∂λi

−
∑k−1

l=0
σl

l!
∂Ql(λ)
∂λi

> ϵ do

6: Qk(λ) = Q(λ)Qk−1(λ)

7:
∂Qk(λ)

∂λi
= ∂Q(λ)

∂λi
Qk−1(λ) +Q(λ)∂Q

k−1(λ)
∂λi

8: k ← k + 1
9: end while

10: for m =M,M − 1, . . . , 1 do
11: Φ(λ, σ/2m−1) = Φ2(λ, σ/2m)

12:
∂Φ(λ,σ/2m−1)

∂λi
= ∂Φ(λ,σ/2m)

∂λi
Φ(λ, σ/2m) + Φ(λ, σ/2m)∂Φ(λ,σ/2m)

∂λi

13: end for

14: Return
∂eQ(λ)σ

∂λi

is using EM algorithm. As mentioned earlier, our objective is to find a bound in the form

of aπeQσ1, which is the survival function of a phase-type random variable multiplied by a

constant a to bound the survival function of the workload, P{W (t) ≥ σ}. However, if we

try to fit the workload distribution with a phase-type distribution we can always achieve

an upper bound on the survival function by multiplying the derived survival function by a

constant a > 1. Such a technique was also used in Section 4.1 to simplify the optimization

problem. As in the least squares method, we particularize the phase-type distribution to a

special case, in particular, the class of hyper-Erlang distributions.

4.2.1 Hyper-Erlang EM algorithm without fixed branch orders

In this section we develop an EM algorithm for fitting data samples to a special case of

phase-type distribution, namely hyper-Erlangs. This algorithm is the core part our al-

gorithm to derive the bounding parameter (a,π,Q), but it can be used generally in any
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Algorithm 3 Calculate a,Q,π using least squares method

Input: ρ, T, Input traffic stream
Output: a,π,Q
1: Feed the traffic stream into a server with a constant rate ρ to get W (t) samples
2: Derive P{W (t) ≥ σ} for every σ ∈ [0, T ]
3: Choose the form of phase-type random variable as hyper-Erlang, CF1, or mixture of

exponentials
4: Choose p
5: if phase-type random variable is hyper-Erlang then
6: Choose r1, r2, . . . , rp
7: end if
8: Choose initial values for π,Q according to the chosen form
9: for every σ ∈ [0, T ] do

10: Derive ∂eQ(λ)σ

∂λi
using Algorithm 2

11: end for
12: Derive π,Q by solving constrained optimization problem (4.3)for hyper-Erlang or its

variant for CF1 or mixture of exponentails
13: Multiply π by an a > 1 to derive an upper bound
14: if upper bound is tight enough then
15: Output a =

∑p
i=1 π and π = π

a and Q
16: else
17: Use a ·π,Q as the intitial values for semi-infinite constrained optimization problem
18: Output a =

∑p
i=1 π and π = π

a and Q
19: end if
20: Return A,Q,π

fitting problem for fitting data samples to hyper-Erlang distributions. Some numerical

examples of this algorithm are provided in Appendix C. This algorithm is a generaliza-

tion of the algorithm described in Section 2.4. In the algorithm described in section 2.4,

the order of the Erlang branches, r = (r1, r2, . . . , rM ), are chosen in advance from the

set Rn, defined in (2.51), and then for every set of orders the hyper-Erlang parameter,

Θ = (π,λ) = (π1, π2, . . . , πM , πM+1, λ1, λ2, . . . , λM ), are derived using EM algorithm. This

method, however, requires repeating these steps for every set of branch orders and then

deriving the final result by choosing the best set of branch orders, based on the likelihood of

the derived distribution function. The drawback of this method, as it is mentioned in [87], is
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that as n grows set Rn grows semi-exponentially in size, resulting in a huge processing bur-

den. Another drawback of such exhaustive search is that, by forcing the phase-type order n,

we impose a restriction on the branch orders. Instead of fixing the branch orders in advance

and then trying the EM algorithm, we can however, incorporate deriving branch orders in

the EM algorithm and make the algorithm more efficient in terms of time and required

process. We should note that in this case our parameters will extend to Θ = (π, r,λ). In

deriving order of branches in our EM algorithm we use mixture of gamma distributions

and we derive the EM algorithm for this distribution. As Erlang distribution is a special

case of gamma distribution, we then particularize the derived EM algorithm for mixture of

Erlangs1.

The gamma distribution is parameterized by (α, λ), where α > 0 is called the shape

parameter and λ > 0 is called the rate parameter. The pdf of this distribution is given by

f(x; θ) =
(λx)α−1

Γ(α)
λe−λx, x ≥ 0, (4.21)

where the gamma function is defined by

Γ(α) =

∫ ∞

0
xα−1e−xdx. (4.22)

A gamma mixture is a convex combination of, say M , gamma distributions parameterized

by θi = (αi, λi) and the mixing probabilities πi, where i = 1, . . . ,M . Thus, the parameter

of a gamma mixture can be written as (π,α,λ), where π = (π1, . . . , πM ) is the vector of

mixing probabilities, α = (α1, . . . , αM ) is the shape vector, and λ = (λ1, . . . , λM ) is the

rate vector. Mixtures of gamma distributions have been used to model general service time

distributions in networks of queues (cf. [52, p. 76]). The pdf of an Gamma mixture model

1In our work mthe terms Erlang mixture and hyper-Erlang distribution are used interchangeably
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with parameter Θ = (π,θ) = (π,α,λ) is given by

f(x;Θ) =
M∑
i=1

πif(x; θi). (4.23)

In this section also we develop the algorithm in a way to account for the case of zero samples.

Therefore, we introduce the additional mixture probability πM+1 such that
∑M+1

i=1 πi = 1.

The pdf of the extended Gamma mixture model is given by

f̃(x;Θ) =

M∑
i=1

πif(x; θi) + πM+1δ(x), (4.24)

An Erlang distribution may be characterized as a gamma distribution with parameter (r, λ)

where the shape parameter r is a positive integer. The probability density function (pdf)

of an Erlang distribution can be expressed as the convolution of r exponential pdfs of rate

λ. An Erlang mixture may be viewed as a gamma mixture parameterized by (π, r,λ),

where the shape vector r = (r1, . . . , rM ) consists of all positive integers. The number of

parameter components in an Erlang mixture is only 3M , compared to n2+n−1 parameter

components for the phase-type representation, where n =
∑M

i=1 ri is the number of phases.

Moreover, since the phase-type representation is non-unique [77], general phase-type fitting

algorithms are prone to getting stuck in sub-optimal solutions. These are among the reasons

we are inclined to use the special case of hyper-Erlangs for deriving our bounds using EM

algorithm.

The incorporation of the shape parameters or branch orders r in the set of parameter

results in a dramatic improvement in computational efficiency and estimation accuracy

compared to previous approaches, allowing distributions to be fitted easily with hundreds

or thousands of phases. The accuracy of this new algorithm can seen from our numerical

examples in Appendix C, which show the likelihood is higher and the first three moments

of the fitted distribution are very close to those of the sample data. Kullback-Leibler
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divergence is also used as another measure of the accuracy of the fitted distributions.

Again in here, due to the term involving δ(x), the pdf in (4.24) cannot be used as

a likelihood function for parameter estimation. Therefore, we use the Radon-Nikodym

derivative of the probability law of the extended Gamma mixture model specified by (4.24)

with respect to the measure ν = λ + δx, where µ and δx denote the Lebesgue and Dirac

measures (see, e.g., [21]), respectively:

p(x;Θ) =

 f(x;Θ), x ̸= 0,

πM+1, x = 0.
(4.25)

Under the (extended) Gamma mixture model, the log-likelihood of a sample vector x =

(x1, . . . , xK) is given by

ℓ(Θ | x) = log p(x;Θ) = log

K∏
k=1

p(xk;Θ)

=
K∑
k=1
xk ̸=0

log

(
M∑
i=1

πif(xk; θi)

)
+K0 log(πM+1), (4.26)

where K0 = #{k : xk = 0; k = 1, . . . ,K} denotes the number of 0 samples. Similar to

Section 2.4, in introducing unobserved data y = (y1, . . . , yK), where yk ∈ {1, . . . ,M + 1} is

the mixture component corresponding to the observed sample xk, it is assumed yk =M +1

when xk = 0. The joint likelihood of (xk, yk) is given by

p(xk, yk;Θ) = πykp(xk;Θ). (4.27)
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Similar to Section 2.4, the complete data log-likelihood is then given by

ℓ(Θ | x,y) = log p(x,y;Θ) = log
K∏
k=1

p(xk, yk;Θ)

=
K∑
k=1
xk ̸=0

log(πykf(xk; θk)) +K0 log(πM+1). (4.28)

Posterior probability {Y = y}, where Y denotes the random vector corresponding to the

realization y of the unobserved data, given the observed sample vector x, and current

estimate of the parameters, Θ̂ is given by,

p(y|x, Θ̂) =
K∏
k=1

p(yk|xk, Θ̂) (4.29)

When xk ̸= 0, the posterior probability p(yk | xk; Θ̂) is given by

p(yk | xk; Θ̂) =
π̂ykf(xk; θ̂yk)∑M
i=1 π̂if(xk; θ̂i)

, (4.30)

where yk ∈ {1, . . . ,M}. Doing the same algebraic manipulation as Section 2.4, the following

expression for the auxiliary function can be obtained:

Q(Θ, Θ̂) =

M∑
i=1

K∑
k=1
xk ̸=0

log(πi) · q(i|xk, Θ̂) +
M∑
i=1

gi(θi) +N0 log(πM+1), (4.31)

where

gi(θi) =
K∑
k=1
xk ̸=0

log(pi(xk|λi)) · q(i|xk, Θ̂) (4.32)

and θi = (αi, λi), i = 1, . . . ,M .
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Maximization of the auxiliary function results in a sequence of parameter estimates with

non-decreasing incomplete data log-likelihood values given by (4.26). From (4.31) it can be

seen that maximizing of Q(Θ, Θ̂) with respect to Θ = (π,θ) is equivalent to maximizing

the two terms separately with respect to π and θ, respectively. Maximization of the first

term in (2.44) can be done using Lagrange multipliers, which yields

πi =
1

K

K∑
k=1
xk ̸=0

p(i | xk; Θ̂), i = 1, . . . ,M. (4.33)

πM+1 =
K0

K
. (4.34)

We note that, similar to Section 2.4, πM+1 corresponds to the probability of a 0 sample and

remains fixed for all EM iterations. For the gamma mixture, maximization of the second

term in (4.31) can be carried out by maximizing gi(θi) separately for each i = 1, . . . ,M .

As noted in [10, p. 168], for the gamma mixture, a function of the form gi(θ) in (4.32) is

strictly concave with respect to (α, λ). For completeness, we provide a proof of the strict

concavity of gi(α, λ) in Appendix B.1, Proposition B.1.3. The strict concavity property of

the auxiliary function guarantees convergence of the EM algorithm to a stationary point of

the likelihood function [31, p. 1542], [10, Theorem 3.1].

When the shape parameter α is fixed, setting

∂

∂λ
gi(α, λ) = 0 (4.35)

yields the same result (2.50) as

λ(α) = α ·

∑K
k=1
xk ̸=0

p(i | xk; Θ̂)∑K
k=1
xk ̸=0

xkp(i | xk; Θ̂)
, (4.36)
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where we have made use of (B.6). Since λ(α) is a positive multiple of α,

hi(α) := gi(α, λ(α)) (4.37)

is strictly concave with respect to α. Hence, the solution to

(αi, λi) = argmax
α,λ>0

gi(α, λ) (4.38)

can be written as

αi = argmax
α>0

hi(α), (4.39)

λi(αi) = αi ·

∑K
k=1
xk ̸=0

p(i | xk; Θ̂)∑K
k=1
xk ̸=0

xkp(i | xk; Θ̂)
. (4.40)

Since hi(α) is strictly concave, the maximizing value of α must be a stationary point.

Using (4.37) and (4.36), we have

hi(α) =

K∑
k=1

p(i | xk; Θ̂)

[
α log

(
Ai

Bi

)
+ α logα+ (α− 1) log xk − log Γ(α)− Ai

Bi
αxk

]
,

(4.41)

where

Ai :=
K∑
k=1

p(i | xk; Θ̂) (4.42)

Bi :=

K∑
k=1

xkp(i | xk; Θ̂). (4.43)
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An expression for the derivative of hi(α) can be obtained as follows:

h′i(α) = Ci +Ai [logα− ψ(α)] , (4.44)

where

ψ(α) :=
d

dα
log Γ(α) =

Γ′(α)
Γ(α)

(4.45)

is known as the digamma function and

Ci : =
K∑
k=1

p(i | xk; Θ̂)

[
log

(
Ai

Bi

)
+ 1 + log xk −

Ai

Bi
xk

]

= Ai log

(
Ai

Bi

)
+

K∑
k=1

p(i | xk; Θ̂) log(xk). (4.46)

We note that Ai, Bi and Ci are not functions of α. Clearly, Ai ≥ 0 and Bi ≥ 0. It can

also be shown that logα− ψ(α) > 0 for all α > 0. It is shown in Appendix B.4, a positive

stationary point always exists. Setting h′i(α) = 0 in (4.44), the stationary point αi can be

obtained as the root of the equation

Ci +Ai [logα− ψ(α)] = 0. (4.47)

In Appendix B.2, we show that for α > 1/6,

1

2α
≤ logα− ψ(α) ≤ 1

2
(
α− 1

6

) , (4.48)

Using (4.47) and (4.48), we can obtain bounds on the stationary point αi as follows:

bi ≤ αi ≤ bi +
1

6
, (4.49)
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where

bi =
−Ai

2Ci
, (4.50)

Using [bi, bi +1/6] as an initial interval for a numerical root-finding method, the stationary

point of hi(α) can be computed very efficiently. We have used the built-in MATLAB func-

tion fzero to compute the root αi in this manner. The fzero function uses a combination

of bisection, secant, and inverse quadratic interpolation methods [2].

The EM algorithm for the gamma mixture model is summarized in Algorithm 4. In

each iteration of the algorithm, the E-step and M-step are carried out in line 5 and lines

6–11, respectively. After {(πi, αi, λi)}Mi=1 have been determined, the mixture parameter

estimate is updated as Θ = (π,α,λ), completing one iteration of the EM algorithm. The

EM algorithm is continued until either the relative difference between the incomplete data

log-likelihoods of the last two parameter estimates falls below a threshold ϵ or a limit, N ,

or the maximum number EM iterations is reached.

The EM algorithm for the Erlang mixture model follows from that of the gamma mixture

model. The function hi(α) in (4.37), defined for the gamma mixture model, was shown to

be strictly concave in α > 0. Therefore, the sequence {hi(r)}∞r=1 is strictly concave. Hence,

if αi is as given in (4.39), the value of r that maximizes hi(r) must be one of the two integers

closest in value to αi, i.e.,

ri := argmax
r=1,2,...

hi(r) = argmax
r∈{⌊αi⌋∨1,⌈αi⌉}

hi(r). (4.51)

Although a closed-form expression for αi is not available, we know that it lies within the

interval of length 1/6 given by (4.49). This implies that ri can be computed in terms of bi

as follows:

ri = argmax
r∈{⌊bi⌋∨1,⌈bi⌉,⌈bi⌉+1}

hi(r), (4.52)
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which can be simplified further as follows (see Appendix B.3):

ri = argmax
r∈{⌊bi⌋∨1,⌈bi⌉}

hi(r). (4.53)

Given the value of ri, the associated rate parameter is given by (cf. (4.40))

λi(ri) = ri ·
∑K

k=1 p(i | xk; ϕ̂)∑K
k=1 xkp(i | xk; ϕ̂)

. (4.54)

Algorithm 4 can be adapted for the Erlang mixture model by replacing α with r in the

Output line and in lines 1 and 12. Lines 10 and 11 are replaced with the following:

10. Compute ri using (4.53)

11. Compute λi = λ(ri) using (4.40)

We shall refer to Algorithm 4 for the gamma mixture model as Alg-Ga and the modification

of this algorithm for the Erlang mixture model as Alg-Er.

Selection of the initial parameter estimate is often crucial to obtaining good parameter

estimates via an EM algorithm. Therefore, we have developed an initialization system for

Alg-Ga and Alg-Er. It has been observed in [34] that a monotonically decreasing pdf can be

well approximated by a mixture of exponential pdfs. For such cases, we have initialized the

shape vector (α for gamma mixture and r for Erlang mixture) to a vector of all ones, i.e.,

(1, . . . , 1). For other pdfs that are not monotonically decreasing, such as the Weibull(1, 5)

(see Table C.1), the initialization (1, 10, . . . , 10) has worked well. For a given setting of the

shape vector, we have initialized π and λ such that the first moment of the initial parameter

estimate matches the empirical mean τ̂ = 1
K

∑K
k=1 xk, as was done in [87]:

πi =
1

M
, λi =

iri
Mτ̂

M∑
l=1

1

l
, (4.55)

for i = 1, . . . ,M .
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As it is shown in examples in Appendix C, this algorithm is much more efficient com-

paring to the previous methods in phase-type or hyper-Erlang fitting. The E-step has

complexity O(M), while the M-step has complexity O(MK). Therefore, the complexity of

each iteration of the innermost loop (repeat-until) loop in Algorithm 1 is O(MK). Hence,

the overall complexity of the algorithm can be stated as O(MKN), where N is maximum

number of EM iterations. That is, the complexity of the algorithm is linear in the number

of data samples K and also in the number of mixture components M .

Alg-Er differs from the approach of [87] by incorporating the shape vector r as a com-

ponent in the Erlang mixture paramter, i.e., Θ = (π, r,λ), to be optimized via an EM

algorithm. In the approach of [87], r is treated as a constant while the parameter (π,λ)

is optimized by an EM algorithm. The computational complexity of each EM iteration is

O(MK). Since M ≤ n and the total number of EM iterations is at most N , the overall

complexity of the algorithm can be stated as O(nKN). The EM algorithm is applied with

all shape parameters r from the set, Rn, of all distinct settings of (r1, . . . , rn) such that the

number of phases n is equal to a predefined constant. The parameter (π, r,λ) associated

with the highest log-likelihood value determined from the exhaustive search of Rn is chosen

as the parameter estimate. We note that the set Rn is equivalent to the set of integer

partitions of n. The number of partitions of n, i.e., #Rn, grows as Ce
√
n as n→∞, where

C = eπ
√

2/3 (cf. [5, p. 70]). Therefore, the overall complexity of the approach of [87] can

be stated as O
(
ne

√
nKN

)
. The exponential factor e

√
n explains why the approach is not

computationally feasible for large values of n.

4.2.2 EM-based algorithm to derive bounding parameter

The algorithm to derive (a,π,Q) using this developed EM algorithm is summarized in

Algorithm 5. In this method also after deriving (π, r,λ) we need to find a, such that (4.20)

holds. By increasing a from 1 we can get the smallest value of a, such that (4.20) holds.
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Algorithm 4 EM algorithm for gamma mixture model.

Input: x = (x1, . . . , xK); M ; ϵ = 10−6; N = 100
Output: Θ = (π,α,λ)

1: Set πM+1 =
K0
K

2: Choose initial estimate Θ = (π,α,λ) [see (4.55) and the discussion before it]
3: ℓ← log p(x;Θ) using (4.26); ι← 1
4: repeat

5: Θ̂← Θ; ℓ̂← ℓ

6: E-step: Compute {p(i | xk; Θ̂)}Mi=1 using (4.30)

7: M-step: Compute {πi}Mi=1 using (4.34)
8: for i = 1 to M do
9: Compute bi using (4.50)

10: Compute αi as the root of (4.47) using the

11: initial interval
[
bi, bi +

1
6

]
12: Compute λi = λ(αi) using (4.40)
13: end for
14: Θ← (π,α,λ); ℓ← log p(x;Θ); ι← ι+ 1

15: until (ℓ− ℓ̂)/ℓ̂ < ϵ or ι = N
16: Return Θ

4.3 Case Study: M/G/1 Heavy-Tailed Queue

One of the commonly used models to describe the traffic streams in modern application of

teletraffic theory, like Ethernet Local Area Networks [94], Wide Area Networks [80] is non-

exponential tail models of the service time. In these models traffic streams show a striking

similarity when is considered over time periods of hours, minutes, or milliseconds. These

self-similarity or the consequent long-range dependencies of the traffic has been modeled by

one or more on-off sources in a fluid queue, with heavy-tailed on periods [15] in at least one

of the sources, or by ordinary single server queues, M/G/1, with heavy-tailed distributed

service time [14].

In this section we use the model of the M/G/1 queue in [14]. In this model service time

distribution, B(t), has the following asymptotic behavior

1−B(t) = O(t−v), t→∞ (4.56)
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Algorithm 5 Calculate a,Q,π using EM algorithm

Input: Workload samples; T ;M ; ϵ = 10−6; N = 100
Output: a,Q,π

1: Set πM+1 =
K0
K

2: Choose initial estimate Θ = (π, r,λ) [see (4.55) and the discussion before it]
3: ℓ← log p(x;Θ) using (4.26); ι← 1
4: repeat

5: Θ̂← Θ; ℓ̂← ℓ

6: E-step: Compute {p(i | xk; Θ̂)}Mi=1 using (4.30)

7: M-step: Compute {πi}Mi=1 using (4.34)
8: for i = 1 to M do
9: Compute bi using (4.50)

10: Compute ri using (4.53)
11: Compute λi = λ(ri) using (4.54)
12: end for
13: Θ← (π, r,λ); ℓ← log p(x;Θ); ι← ι+ 1

14: until (ℓ− ℓ̂)/ℓ̂ < ϵ or ι = N
15: return Θ
16: Q is derived based on λ = [λ1, λ2, . . . , λM ] and r = [r1, r2, . . . , rM ] according to (2.30),

and (2.31)

17: Choose smallest a such that we have aπeQσ1 ≥ P{W (t) ≥ σ} for every σ ∈ (0, T ],
where π = [π1, . . . , πM ].

18: return a,Q,π

where 1 < v < 2. More precisely, service time, τθ, has the following distribution function

P{τθ < t|θ = θ} = 1− δ( θ

θ + t
)v, t ≥ 0 (4.57)

where 0 < δ ≤ 1 and θ is a random variable with Gamma density function fθ(θ) as

fθ(θ) =
s2−v

Γ(2− v)
θ1−ve−sθ, θ > 0, 1 < v < 2. (4.58)

where s is positive constant. For this service time random variable, τθ, we have

β := E{τθ} =
2− v
v − 1

δ

s
(4.59)
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One of the cases considered in [14] is when v = 3
2 . For this particular case we have,

B(t) ≡ P{τθ ≤ t} = 1 + δ

[
2
√
st√
π
− (1 + 2st)esterfc(

√
st)

]
, (4.60)

for t ≥ 0, and with complementary error function given as

erfc(x) =
2√
π

∫ ∞

x
e−u2

du (4.61)

This service time distribution for t→∞ can be approximated using the following relation

1−B(t) =
2δ

π

H∑
n=1

(−1)n−1nΓ(n+ 1
2)

(st)n+
1
2

+O

[(
1

st

)H+3/2
]

(4.62)

for every finite H ∈ {0, 1, . . .}. Therefore, with this service time distribution in a single

server queue with Poisson arrivals, M/G/1, and utilization factor ρ = λβ < 1, where λ is

the arrival rate, stationary waiting time distribution will be

W (t) := P{w ≤ t} = 1−
1 +
√
ρ

2

√
ρe(1−

√
ρ)2st · erfc

[
(1−√ρ)

√
st
]

+
1−√ρ

2

√
ρe(1−

√
ρ)2st · erfc

[
(1 +

√
ρ)
√
st
]
. (4.63)

for t > 0 . This stationary waiting time distribution for t→∞ can be approximated using

the following relation

1−W (t) =

√
ρ

2π
(1− ρ)

H∑
m=0

(−1)m ·
[

1

(1−√ρ)2m+2
− 1

(1 +
√
ρ)2m+2

]
·
Γ(m+ 1

2)

(st)m+1/2

+O

[(
1

st

)H+3/2
]

(4.64)

for every finite H ∈ {0, 1, . . .}.
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Figure 4.1: Phase-type bound, and true tail probability for a heavy-tailed workload in
M/G/1 queue.

Remark. In this section we use the same technique used in 3.6.1 to interpret the stationary

waiting time as the workload size divided by C, in a queue with a constant rate server with

rate C.

Now we try to bound heavy-tailed workload in a M/G/1 queue described previously,

with heavy-tailed service time by a phase-type bounds.

In our case study we consider s = δ = 1 and λ = 0.5. Therefore, we will have a heavy-

tailed workload which is derived by (4.63) for σ ∈ (0, 120] and by (4.64) for σ ∈ (120,∞),

where σ > 0 is the workload size. We have also

P{σ = 0} = 1− ρ = 1− λβ = 0.5 (4.65)

Survival function of this waiting time is shown in Fig. 4.1.

Here the workload distribution is heavy-tailed therefore, it cannot be bounded for all σ

by a bound in the form of a phase-type survival function, unless the number of phases goes to

infinity. Nevertheless, we can bound this distribution by a phase-type bound with practically
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Table 4.1: Phase-type bound parameters for M/G/1 queue with heavy-tailed service time

Method a π Λ

1 Opt. Mix. of Exp. 0.543 [0.1836, 0.140, 0.276, 0.079, 0.320] [−1.096,−3.2e− 3,−0.0219,−2.24e− 4,−0.139]

2 Opt. Mix. of Exp. semi-inf 0.5092 [0.1694, 0.1347, 0.2822, 0.0762, 0.3375] [−1.1052,−0.0028,−0.0197,−1.966e− 4,−0.1385]

3 Opt. CF1 0.5931 [0.0772, 0.1520, 0.3308, 0.3401, 0.01] [−2.57e− 4,−0.0042,−0.0371,−0.3571,−47.54]

4 Opt. CF1 semi-inf 0.5115 [0.0747, 0.1388, 0.2828, 0.4252, 0.0785] [−2.12e− 4,−0.0033,−0.0257,−0.188,−47.589]

5 Opt. hyper-Erlang 0.5255 [0.0767, 0.1106, 0.2309, 0.3781, 0.2037] [−4.74e− 4,−0.0045,−0.0262,−0.172,−1.75]

6 Opt. hyper-Erlang semi-inf 0.52 [0.0652, 0.0979, 0.2104, 0.3543, 0.2722] [−4.047e− 4,−0.0039,−0.0242,−0.1606,−1.755]

7 EM hyper-Erlang 1.058 [0.0373, 0.0588, 0.1218, 0.1438, 0.1384] [−2.0147e− 4,−0.2.6e− 3,−0.0149,−0.0756,−0.3756]

8 EM General Phase-Type 0.5158 [0.0474, 4.43e− 9, 0.953, 8.12e− 9, 5.69e− 7] ref. to (4.66)

Table 4.2: Phase-type bound performance for M/G/1 queue with heavy-tailed service time

1 Method Objective function value(×T ) Log-likelihood(×106) Order

2 Opt. Mix. of Exp. 0.051 −3.259 5

3 Opt. Mix. of Exp. semi-inf 0.01 −3.257 5

4 Opt. CF1 0.1336 −3.3037 5

5 Opt. CF1 semi-inf 0.0192 −3.294 5

6 Opt. hyper-Erlang 0.224 −3.263 [2, 2, 2, 2, 2]

7 Opt. hyper-Erlang semi-inf 0.0395 −3.259 [2, 2, 2, 2, 2]

8 EM hyper-Erlang 0.0493 −3.248 [1, 1, 1, 1, 1]

9 EM General Phase-Type 0.5158 0.0337 −3.251 5

limited number of phases for a limited interval of σ ∈ [0, T ]. In practice also workload size

cannot be considered unlimited, because buffer size in reality is always bounded.

In deriving a phase-type bound we have used both methods of least squares and EM

algorithm described in this chapter.

In this example we have chosen T = 3890. In least squares method, as it is explained in

Algorithm 3 we have found a,π,Q by solving constrained optimization problem and then

we have used these solutions as the initial values to solving the semi-infinite optimization

problem. In EM Algorithm method number of samples generated based on (4.63) and (4.64)

are N = 106. We have compared objective function value of different method, which is

square of area difference between the phase-type bound and the tail probability of the

workload and is expressed in (4.1). In the case of hyper-Erlang using EM method the result

is a simple case of mixture of exponentials. Values of a,π,Q for different solutions are
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presented in Table 4.1 and 4.2. For the case of hyper-Erlang using EM algorithm which

is derived based on Algorithm 1 we have presented π̂. In the case of hyper-Erlang in

least squares method order of the phase-type is considered as r = [2, 2, 2, 2, 2] to be close

enough to the hyper-Erlang solution of the EM algorithm with highest likelihood with order

r = [1, 1, 1, 1, 1]. In other cases order of the phase-type random variable is considered as

r = 5. In case of hyper-Erlang, although π is in the form of (2.32), we have omitted the

0’s for brevity.

For the case of general phase-type bound we have a phase-type bound with 5 phases

and Q as,

Q =



−4.87e− 02 1.74e− 05 3.29e− 02 1.75e− 05 1.22e− 02

3.08e− 06 −1.49e− 02 2.57e− 07 1.37e− 02 1.18e− 03

1.344e− 01 1.036e− 06 −2.59e− 02 1.28e− 07 2.347e− 04

1.103e− 06 3.266e− 03 7.49e− 09 −3.41e− 03 1.43e− 04

4.3e− 03 8.72e− 04 3.461e− 06 5.053e− 04 −5.681e− 03


(4.66)

As we can see from table. 4.2, in least squares method algorithms going from constraint

optimization to the semi-infinite case, as expected, decreases the objective function value

or makes the bound tighter. As it is shown in the table the best result is achieved by a

simple case of mixture of exponentials. This can be justified considering the fact workload

density is a monotonically decreasing one and as it is pointed in [34], such a density can be

well represented using a mixture of exponentials. In EM algorithm method, we achieve the

highest likelihood, which is expected , as the EM algorithm tries to maximize the likelihood

of the samples. However, the objective function value of the EM algorithm is higher than

the least squares method results, and therefore, EM algorithm does not give us the tightest

bound comparing to the other methods. As it can be seen from the results, the case of

general phase-type using the EM algorithm also does not give us the tightest bound. To the

contrary, such a general case of phase-type random variable does not improve the likelihood

in compare to the limited case of hyper-Erlang. This decrease in the likelihood by deploying

the general case of phase-type random variable can be justified by over-parameterization of
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the EM algorithm for the case of general phase-type random variable.

Phase-type bounds for the case of mixture of exponentials in the semi-infinite least

squares method, which gives us the best result in this example and also hyper-Erlang in the

semi-infinite least squares method, and hyper-Erlang for the case of EM algorithm method

are shown in Fig. 4.1. These bounds are compared with the true survival function. As it

can be seen from the figure and it can be verified by the results in Table 4.2, mixture of

exponentials in semi-infinite least squares method gives us very close results to hyper-Erlang

in EM algorithm method, which are both tight enough. Hyper-Erlang in semi-infinite least

squares method, however, as it can be seen in the figure does not provide us a tight bound.

4.4 Conclusion

In this chapter we developed two methods to characterize a traffic process with phase-

type bounds. The first method is based on minimizing the squared error of the bound

and the empirical tail probability of the workload. In this method, the class of phase-

type bounds was limited to the cases of hyper-Erlang, mixture of exponentials, and acyclic

phase-type distributions. The second method for characterizing a traffic process with phase-

type bounds was based on EM algorithm. A very efficient standalone EM algorithm for

phase-type fitting based on hyper-Erlang class was developed and was used in deriving

the phase-type bounds. This EM algorithm was shown to be very efficient in terms of

complexity. The two developed method was used in a numerical study to characterize a

heavy-tailed traffic. As it was shown the least squares method outperforms the EM method

and can result in a tighter bound.
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Chapter 5: Stochastic Traffic Regulator

In Chapter 3, we showed how having a phase-type characterization for an input traffic stream

is related to the bounds on delay and workload size. In Chapter 4, we showed how to derive

a phase-type characterization and therefore obtain a probabilistic bound on the delay and

workload size of the data network fed by that traffic stream. Another question from a traffic

admission point-of-view that should be answered is, given a desired probabilistic bound on

the delay or workload size, how a given traffic can be regulated to comply with the desired

performance measures. In this chapter we address this problem by developing a stochastic

traffic regulator. Parts of the work in this chapter were published in [62], [60], and [57].

The remainder of this chapter is organized as follows. In Section 5.1, we provide an in-

troduction and motivation about traffic regulation. In Section 5.2, we review basic concepts

in deterministic and stochastic network calculus. In Section 5.3, we review key properties

of the deterministic (σ, ρ) regulator and develop some new results for its analysis, which are

applied in Section 5.4 to the design and implementation of the proposed stochastic (σ∗, ρ)

regulator. Numerical results demonstrating the performance of the (σ∗, ρ) regulator are

presented in Section 5.5. Concluding remarks are given in Section 5.6.

5.1 Introduction

Currently, the Internet does not provide end-to-end delay guarantees for traffic flows. Even

if the path taken by a given traffic flow is fixed, e.g., via mechanisms such as software-

defined networking or multi-protocol label switching, network congestion arising from other

flows can result in highly variable delays. The variability and random nature of traffic flows

in a packet-switched network make it very challenging to provide performance guaran-

tees. End-to-end delay guarantees would improve the user experience provided by real-time
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applications such as video streaming and video conferencing, as well as enable emerging ap-

plications involving virtual reality and augmented reality. Bounds on network delay are of

particular relevance to age of information (AoI), a performance metric whereby the freshness

of data is assessed from the receiver’s perspective [63].

The standard approach to providing network performance guarantees consists of two

basic elements:

1. Admission control: A new flow is admitted only if performance guarantees can be

maintained for all admitted flows with the available network resources.

2. Traffic regulation: Each admitted traffic flow is regulated to ensure that it does not

consume more resources than what was negotiated by the admission control scheme.

Admission control relies on a means of characterizing the traffic to determine how to al-

locate network resources to the new flow. The random and bursty nature of traffic in

packet-switched networks make them difficult to characterize. Even if a traffic flow were

to be modeled as a random arrival process, e.g., a Markov modulated Poisson process, the

problem of resource allocation to provide end-to-end performance guarantees is intractable.

Moreover, traffic regulation to ensure that a flow conforms to the parameter of a traffic

model is infeasible.

In his seminal work, Cruz [24, 25] proposed the (σ, ρ) characterization of traffic, which

imposes a deterministic bound on the burstiness of a traffic flow. The bound ensures that

the long-term average arrival rate a (σ, ρ)-bounded traffic source does not exceed the rate

parameter ρ and its maximum burst size does not exceed the burst size parameter σ. By

bounding traffic flows according to (σ, ρ) parameters, Cruz developed a network calculus

which determined how these parameters propagate through network elements and derived

associated end-to-end delay bounds.

An important feature of the (σ, ρ) characterization is that it can be enforced by a traffic

regulator. The (σ, ρ) traffic bound can be defined operationally in terms of a (σ, ρ) traffic
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regulator. For bursty traffic sources, however, the (σ, ρ) bound can lead to worst-case end-

to-end delay bounds that are very conservative, which in turn results in very low network

resource utilization. To achieve higher utilization, the approach in [71] estimates a (σ, ρ)-

based parameter for an arbitrary traffic source by minimizing a cost function derived from

the concept of effective bandwidths [23, Chap. 9], subject to a constraint on the shaping

delay incurred on the source. Given the traffic parameter, worst-case delay bounds for

a traffic source could be computed using deterministic network calculus. Alternatively,

resource allocation could be performed using effective bandwidths, but in this case true

performance guarantees would not be provided.

The (σ, ρ) traffic bound of Cruz was the basis for further research into stochastic bounds

on traffic burstiness and stochastic network calculus to provide probabilistic end-to-end de-

lay guarantees as opposed to worst-case delay bounds. Stochastic network calculus remains

an active topic of research [35]. To our knowledge, however, a traffic regulator to enforce a

stochastic traffic bound based on stochastic network calculus has not been addressed previ-

ously, despite the fact that such a regulator is necessary to provide performance guarantees

in real networks. Stochastic network calculus is based on the assumption that all traffic

flows entering the network satisfy stochastic traffic bounds. In this chapter, we develop

a traffic regulator to enforce the so-called generalized Stochastically Bounded Burstiness

(gSBB) traffic burstiness bound in [51, 99]. The gSBB bound is closely related to the SBB

and EBB bounds in [85] and [96], respectively. Formal definitions of these bounds are given

in Section 5.2.2. These bounds are also related to the moment generating function (MGF)

traffic bounds discussed in [22, 23]. We focus on the gSBB bound primarily because it is

more amenable to traffic regulation than the other traffic bounds (see Section 5.4).

We refer to our proposed regulator as a stochastic (σ∗, ρ) regulator, since the burst size

parameter σ∗ varies over time and takes on values in a finite set Σ = {σ1, . . . , σM}. We

describe the design and basic properties of the stochastic (σ∗, ρ) regulator and develop two

practical implementations. Our analysis establishes that the output traffic always conforms

to the gSBB bound.
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Ao ∼ (σ + δ, ρ)

δ = (1− ρ/C)Lmax

Ai
(σ, ρ)

Figure 5.1: (σ, ρ) regulator with input/output links of capacity C.

(σ, ρ)
Ai A1 Ao

Figure 5.2: (σ, ρ) traffic shaper with front-end buffer.

5.2 Background on Network Calculus

Our proposed stochastic traffic regulator builds on the (σ, ρ) network calculus of Cruz [24,25]

as well as stochastic network calculus. In this section, we review relevant aspects of both

types of network calculus.

5.2.1 Deterministic (σ, ρ) Network Calculus

Let A = {A(t) : t ≥ 0} denote a traffic process or flow, where A(t) represents the amount of

traffic arriving in the interval [0, t). We shall assume that t is a continuous-time parameter,

although our results carry over to the discrete-time case as well.

Definition 5.2.1 ((σ, ρ) traffic bound). A traffic flow A is said to be (σ, ρ)-bounded, denoted

as A ∼ (σ, ρ), if

A(t)−A(s) ≤ ρ(t− s) + σ, ∀s ∈ [0, t], (5.1)

where σ, ρ ≥ 0.

In conjunction with Definition 5.2.1, Cruz [24] introduced a traffic regulator to enforce

conformance to the (σ, ρ) bound. For an idealized fluid model of input traffic, a (σ, ρ) traffic

regulator ensures that the output traffic Ao ∼ (σ, ρ) and traffic departs the regulator in

the same order as it arrives to the regulator, i.e., the service discipline is first-come first-

served (FCFS). When the traffic consists of discrete packets of maximum length Lmax and
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the input/output links to the regulator have finite capacity C, the output traffic satisfies

Ao ∼ (σ + δ, ρ), where (see Fig. 5.1)

δ = (1− ρ/C)Lmax. (5.2)

Traffic regulation can be accomplished by packet dropping, packet tagging (as lower

priority), or delaying of packets. In the first two cases, the traffic regulator is sometimes

referred to as a traffic policer whereas in the third case it is referred to as a traffic shaper.

The traffic regulators discussed in this chapter will be of the traffic shaper variety. A traffic

shaper includes a front-end buffer, which stores packets that are delayed in the process of

forcing the output traffic to conform to (σ, ρ) (see Fig. 5.2). A traffic policer is equivalent

to a traffic shaper with no front-end buffer; i.e., packets that do not conform to (σ, ρ) are

dropped or tagged immediately rather than placed in a buffer.

5.2.2 Stochastic Network Calculus

The (σ, ρ) bound in (5.1) tends to be very conservative for bursty traffic. This is illustrated

in Fig. 5.12 (see Section 5.5) for a sample path of bursty traffic fed to a queue with service

rate ρ. The queue size reaches the burstiness bound σ, but is far below σ most of the time.

End-to-end delay bounds based on worst-case (σ, ρ) bounds will be overly conservative for

bursty traffic flows. Admission control based on such bounds will lead to low network

utilization. Moreover, deterministic network calculus cannot exploit the phenomenon of

statistical multiplexing. These considerations motivated the development of stochastic traf-

fic burstiness bounds and stochastic network calculus to allow the derivation of stochastic

end-to-end delay bounds [35,50].

An early proposal for a stochastic traffic burstiness bound was the Exponentially Bounded

Burstiness (EBB) of Yaron and Sidi [97], which involves an exponential bounding function.

A related traffic bound based on moment generating functions was proposed by Chang [22].

In this chapter, we focus on the generalized Stochastically Bounded Burstiness (gSBB)
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proposed in [51].

Definition 5.2.2 (gSBB). A traffic process A is gSBB with upper rate ρ and bounding

function f ∈ BF if

P{Wρ(t;A) ≥ σ} ≤ f(σ), ∀t ≥ 0, ∀σ ≥ 0, (5.3)

where BF denotes the family of positive non-increasing real-valued functions and Wρ(t;A)

is the virtual workload at time t of an infinite-buffer FCFS (First Come First Served) queue

with constant service rate ρ with input traffic A. The virtual workload is given by

Wρ(t;A) = max
0≤s≤t

[A(t)−A(s)− ρ(t− s)]. (5.4)

Intuitively, the virtual workload at an arbitrary time t is the amount of work (e.g., in units

of bits) remaining in the system for the server to process. The gSBB concept is based on

Stochastically Bounded Burstiness (SBB) [85].

Definition 5.2.3 (SBB). A traffic process A is SBB with upper rate ρ and bounding function

f ∈ F if

P{A(t)−A(s)− ρ(t− s) ≥ σ} ≤ f(σ), ∀t ≥ 0, ∀σ ≥ 0, (5.5)

where F is the family of functions f such that for every n, σ ≥ 0, the n-fold integral(∫∞
σ du

)n
f(u) is bounded.

A traffic process is EBB if it is SBB with an exponentially decaying bounding function,

i.e., f(σ) = ae−ασ, where a, α > 0. For a given SBB bounding function f ∈ F , a traffic pro-

cess that is gSBB with respect to f is also SBB. Thus, the gSBB bound is more conservative

than the SBB bound. Nevertheless, the gSBB concept has two important advantages over

SBB, which we leverage in designing the (σ∗, ρ) regulator (see Section 5.4): 1) BF ⊃ F ; 2)

The gSBB bound is defined in terms of Wρ(t;A) rather than A(t).
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The phase-type traffic bound proposed in Chapter 3, is closely related to gSBB.

Definition 5.2.4. A traffic process A is characterized by a phase-type traffic descriptor

[ρ; (a,π,Q, T )] if

P {Wρ(t;A) ≥ σ} ≤ aπeQσ1, (5.6)

for all t ≥ 0 and all σ ∈ (0, T ]. Here, 1 is a column vector of all ones, a ≥ 0, T > 0, and

(π,Q) denotes the parameter of a phase-type distribution [11,54].

When T =∞, the phase-type traffic bound is a particular case of gSBB. Using Algorithm 1

in Chapter 4, any given traffic flow can be characterized by a phase-type traffic descriptor.

Analogous to the deterministic network calculus, a stochastic network calculus can be

developed based on a given stochastic traffic burstiness bound [23, 85, 97]. By applying

results from the stochastic network calculus based on gSBB (see [51]), the admissibility of a

given set of traffic flows with respect to a certain probabilistic end-to-end delay constraint

can be determined. More general stochastic traffic bounds have since been developed in

conjunction with notions of statistical arrival envelopes, service curves, and min-plus algebra

in the context of stochastic network calculus [35]. However, end-to-end delay guarantees via

stochastic network calculus can only be provided if the user traffic flows that are offered as

input to the network conform to their negotiated traffic burstiness bounds. The stochastic

traffic regulator developed in this chapter can be applied at the network edge to ensure that

a user’s traffic does not violate the gSBB bound provided to the admission control unit.

Additional performance benefits can be obtained by applying stochastic traffic regulation

in internal network elements to reshape traffic flows to their negotiated parameters, since

the traffic parameter of a flow may be altered after it passes through a network element.

5.3 Analysis of Deterministic (σ, ρ) Regulator

The (σ∗, ρ) regulator may be viewed as an extension of the deterministic (σ, ρ) regulator, in

which the burst size parameter σ∗ takes on values from a finite set Σ = {σ1, . . . , σM} while
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adapting to the input traffic flows. In particular, the operation of a (σ, ρ) regulator can be

viewed as a special case of a (σ∗, ρ) regulator. In Section 5.3.1, we review some relevant

results on the virtual workload process Wρ(t) from the (σ, ρ) calculus. In Section 5.3.2, we

develop some new results related to Wρ(t), which we shall use in the design and analysis of

the stochastic (σ∗, ρ) regulator in Section 5.4.

5.3.1 Input/Output Workload Analysis

Suppose a traffic flow A is offered to an infinite-buffer FCFS system with constant service

rate ρ. Clearly, the virtual workload Wρ(t;A) is a decreasing function of ρ. It can easily be

shown that A ∼ (σ, ρ) if and only if

Wρ(t;A) ≤ σ, ∀t ≥ 0. (5.7)

Equation (5.7) provides a useful alternative characterization of a (σ, ρ)-bounded traffic flow.

Now suppose that the input and output traffic links to and from a (σ, ρ) regulator have

a finite capacity C > ρ. Consider an input traffic flow Ai to the regulator. Let sj denote

the arrival time of the jth packet, tj its departure time, and Lj its length in bits. The

jth packet begins arriving at time sj and is received completely at the regulator at time

aj = sj + Lj/C. We assume that a packet does not arrive when the previous one is being

received. i.e., aj < sj+1.

The operation of the regulator can be described in terms of the workload Wρ(sj ;Ai).

At time sj , if Wρ(sj ;Ai) > σ, the regulator delays the packet such that at its departure

time tj , the condition Wρ(tj ;Ao) ≤ σ holds. Hence, the departure time of the jth packet is

derived as [24]

tj = [Wρ(sj ;Ai)− σ]+/ρ+ sj , (5.8)
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where [x]+ := max{x, 0}. The packet completely departs the regulator at time

bj = tj + Lj/C. (5.9)

At times other than departures, the workload may not necessarily be bounded by σ, but

always satisfies [24]

Wρ(t;Ao) ≤ σ + (1− ρ/C)Lmax, ∀t ≥ 0. (5.10)

Thus, Ao ∼ (σ+ δ, ρ), where δ, given by (5.2), can be viewed as the maximum error margin

in regulating packetized traffic when the input/output links have capacity C (see Fig. 5.1).

As shown Fig. 5.3, when a packet is being received by the regulator, e.g., during [sj , aj ],

the workload Wρ(t;Ai) increases linearly with slope C − ρ. Conversely, during the time

between the complete arrival of a packet and the initial arrival of the next packet to the

system, e.g., during [aj , sj+1], the workload Wρ(t;Ai) decreases linearly with slope −ρ.

Similarly, when a packet departs the regulator, e.g., during [tj , bj ], the workload Wρ(t;Ao)

increases linearly with slope C−ρ. When packets are not departing the system, e.g., during

[bj , tj+1],Wρ(t;Ao) decreases linearly with slope −ρ. Assume that the buffer of the regulator

is empty at t = s1. Let

δj = (1− ρ/C)Lj (5.11)
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Figure 5.3: Example of the operation of a (σ, ρ) traffic regulator.

denote the error margin due to regulating the jth packet. We present the governing equa-

tions for a (σ, ρ) regulator in terms of the workloads Wρ(t;Ai) and Wρ(t;Ao) as follows:

Wρ(t;Ai) = [Wρ(aj−1;Ai)− ρ(t− aj−1)]
+, t ∈ [aj−1, sj ]; (5.12)

Wρ(t;Ai) =Wρ(sj ;Ai) + (t− sj)(C − ρ), t ∈ [sj , aj ]; (5.13)

Wρ(tj ;Ao) =

 σ, if Wρ(sj ;Ai) > σ,

Wρ(sj ;Ai), if Wρ(sj ;Ai) ≤ σ;
(5.14)

Wρ(t;Ao) =Wρ(tj ;Ao) + (t− tj)(C − ρ), t ∈ [tj , bj ]; (5.15)

Wρ(t;Ao) = [Wρ(bj−1;Ao)− ρ(t− bj−1)]
+, t ∈ [bj−1, tj ]; (5.16)

for j = 1, 2, . . .. Equations (5.12)–(5.16) provide a complete characterization of the virtual

workloads of the traffic flows Ai and Ao and can be used to construct the corresponding

workload curves shown in Fig. 5.3.
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5.3.2 Internal Traffic Workload Analysis

To analyze the stochastic (σ∗, ρ) regulator developed in Section 5.4, it will be convenient

to introduce the internal traffic flow A1 shown in Fig. 5.2 for the (σ, ρ) regulator and in

Fig. 5.4 for the (σ∗, ρ) regulator. We shall develop some new results for the (σ, ρ) regulator

involving the internal flow A1, which will be useful in the design of the (σ∗, ρ) regulator.

Figure 5.2 can be viewed as a more detailed depiction of the (σ, ρ) regulator shown as a

single box in Fig. 5.1. The diagrams in Figs. 5.2 and 5.4 represent single-server, infinite

buffer queueing systems. The box represents the server, which imposes a variable service

delay on an arriving packet. The service delay will be zero if no shaping is needed. Only

one packet can reside in the server at any given time. A new packet j can arrive to the

server at the instant packet j − 1 leaves the server. Packets that arrive when the server is

occupied are stored in the front-end buffer in FCFS order. The traffic flow A1 consists of

the sequence of packets arriving to the server.

Let s̃j denote the arrival time of the jth packet at the buffer and let ãj denote the

complete arrival time to the buffer, i.e., ãj := s̃j + Lj/C. The server incurs a delay on

the jth packet such that it begins departing the buffer at time tj and completely leaves

the regulator at time bj . Since the front-end buffer delays each packet until the complete

departure time of the previous packet from the regulator, we have

s̃j = max{sj , bj−1}. (5.17)

Therefore, the operation of (σ, ρ) regulator can also be described in terms of the workload

Wρ(s̃j ;A1). In other words, we have the following result, which is proved in Appendix.

Proposition 5.3.1. The departure time tj for the jth packet in the (σ, ρ) regulator is given

by (cf. (5.8)):

tj = [Wρ(s̃j ;A1)− σ]+/ρ+ s̃j . (5.18)
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An example sample path of the workloads of traffic flows Ai, A1, and Ao for a deter-

ministic (σ, ρ) regulator is shown in the top graph of Fig. 5.3. If the input traffic flow Ai

conforms to the (σ, ρ) traffic burstiness parameter at arrival times, then the workloads of

Ai, A1, and Ao will all coincide, which occurs in the interval [s1, s3] in the figure. Within

this interval, for packets j = 1 and 2, we have sj = s̃j = tj and aj = ãj = bj , since both

packets arrive when the workload Wρ(t;Ai) ≤ σ. At time s3 = s̃3, the workloads of A1 and

Ao diverge because packet 3 arrives when Wρ(t;Ai) > σ. Thus, the packet is delayed in the

server and t3 > s̃3. However, the workloads of A1 and Ao once again coincide at time b3,

i.e., the complete departure time of packet 3 from the regulator.

The workload curves of A1 and Ao form a parallelogram in the interval [s̃3, b3]. The

other points of this parallelogram occur at ã3, i.e., when packet 3 completely arrives to the

server and at t3, i.e., when packet 3 starts to depart the server. Then the two workload

curves coincide in the interval [b3, s̃4]. In general, the workloads of A1 and Ao form a (pos-

sibly degenerate) parallelogram during the interval [s̃j , bj ] and coincide during the interval

[bj , s̃j+1], for j = 1, 2, . . ..

In Fig. 5.3, we see that the workload curves of Ai and A1 coincide until time s5, which

is the start time of the arrival of packet 5 to the regulator. At this time, packet 4 is at the

server, so packet 5 waits until time s̃5 > s5 to go into service. At time ã5, when packet 5

has arrived completely to the server, the two curves coincide once again. In the interval

[s5, ã5], the two curves form a parallelogram. This is not true in general, but in the interval

[sj , ãj ] a (possibly degenerate) parallelogram can be formed in which the sides consists of

Wρ(t;Ai) for t ∈ [sj , aj ], Wρ(t;A1) for t ∈ [s̃j , ãj ], Wρ(t;Ai) for t ∈ [aj , ãj ], and Wρ(t;A1)

for t ∈ [sj , s̃j ] for j = 1, 2, . . .. Thus, the workload curves of Ai and A1 are separated by a

sequence of possibly degenerate parallelograms. Each such parallelogram corresponds to a

packet delayed in the buffer of the regulator. A similar type of relationship holds between

the workload curves of Ai and Ao. The workload curves of A1 and Ao are separated by at

most one parallelogram because the server can hold at most one packet.

Based on the above analysis and Proposition 5.3.1, the operation of the (σ, ρ) regulator
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can be characterized in terms of the internal traffic flow A1 and the output traffic Ao.

Analogous to equations (5.12)–(5.16) the following equations involving A1 can be derived:

Wρ(t;Ao) =Wρ(t;A1) = [Wρ(bj−1;Ao)− ρ(t− bj−1)]
+, t ∈ [bj−1, s̃j ]; (5.19)

Wρ(t;A1) =Wρ(s̃j ;A1) + (t− s̃j)(C − ρ), t ∈ [s̃j , ãj ]; (5.20)

Wρ(t;A1) =Wρ(ãj ;A1)− ρ(t− ãj), t ∈ [ãj , bj ]; (5.21)

Wρ(tj ;Ao) =

 σ, if Wρ(s̃j ;A1) > σ,

Wρ(s̃j ;A1), if Wρ(s̃j ;A1) ≤ σ;
(5.22)

Wρ(t;Ao) =Wρ(tj ;Ao) + (t− tj)(C − ρ), t ∈ [tj , bj ]; (5.23)

Wρ(t;Ao) =Wρ(s̃j ;Ao)− ρ(t− s̃j), t ∈ [s̃j , tj ]; (5.24)

for j = 1, 2, . . .. Equation (5.19) follows from the following equality

Wρ(bj−1;Ao) =Wρ(bj−1;A1), (5.25)

which can be verified using (5.20)-(5.24) and (5.9). Intuitively, (5.25) holds because at most

one packet is in the server of the regulator at any given time.

5.4 Stochastic (σ∗, ρ) Regulator

To our knowledge, the problem of regulating a traffic flow to force conformance to a stochas-

tic traffic bound has not been addressed in the literature. This motivates the development

of a stochastic traffic regulator, which enforces a probabilistic bound on a traffic source as

follows:

P {Wρ(t;Ao) ≥ γ} ≤ f(γ), ∀t ≥ 0, ∀γ ∈ [0, T ], (5.26)
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σ∗(j) = max {σ ∈ Σ}
such that:

P {Wρ(t;Ao) ≥ γ} ≤ f(γ),

∀ t ≥ 0, ∀γ ∈ [0, T ].

(σ∗, ρ)
Ai A1 Ao

Figure 5.4: Idealized stochastic (σ∗, ρ) traffic regulator.

where f is a non-increasing positive bounding function and T is a limit on the tail distribu-

tion of the workload (see Chapter 3). As T → ∞, (5.26) becomes equivalent to the gSBB

bound in (5.3).

5.4.1 Operational Principles

We shall show that enforcement of (5.26) can be achieved under steady-state conditions

using a regulator with a constant rate parameter ρ and a variable burstiness parameter σ∗

which is chosen from a finite set Σ for each arriving packet. We refer to such a regulator

as a stochastic (σ∗, ρ) regulator. A schematic of an idealized (σ∗, ρ) regulator is shown in

Fig. 5.4. The input and output links of the regulator are assumed to have capacity C. A

buffer at the front-end of the regulator delays incoming packets until all previous packets

have departed, thus ensuring a FCFS service discipline. Let Ai and Ao denote, respectively,

the input traffic to and output traffic from the regulator. We denote the internal traffic

departing from the front-end buffer by A1. Let sj and s̃j denote, respectively, the arrival

and departure times of the jth packet at the buffer.

For each packet j, the (σ∗, ρ) regulator chooses a burstiness parameter σ∗(j) such that

a delay dj is incurred, where (cf. (5.8))

dj = tj − sj = [Wρ(sj ;Ai)− σ∗(j)]+/ρ, (5.27)

and tj denotes the time at which the packet starts departing the traffic regulator. The
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Figure 5.5: Calculating the increment in the overshoot duration.

packet completely leaves the regulator at time bj . The front-end buffer acts as in the

deterministic (σ, ρ) regulator (see Section 5.3); therefore s̃j can be derived from (5.17). As

in a deterministic (σ, ρ) traffic regulator, the rate parameter ρ should be greater than the

long-term average input traffic rate, i.e.,

ρ > lim
t→∞

A(t)−A(s)
t− s

, ∀s ≥ 0, (5.28)

to avoid incurring unbounded packet delay.

5.4.2 Overshoot Probability and Overshoot Ratio

To design a practical (σ∗, ρ) regulator, the overshoot probability P {Wρ(t;Ao) ≥ γ} in (5.26)

can be approximated by a time-averaged overshoot ratio.

Definition 5.4.1. Given a threshold value ζ > 0 and a traffic flow A, an overshoot interval

with respect to A and ζ is a maximal interval of time η such that Wρ(τ ;A) ≥ ζ for all

τ ∈ η. Let |η| denote the length of interval η. Let O(t) denote the set of overshoot intervals

contained in [0, t]. Then the overshoot duration up to time t is defined as

Oζ(t;A) =
∑

η∈O(t)

|η|. (5.29)
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In Fig. 5.3, the overshoot set with respect to threshold value ζ until the end of time

domain depicted in the figure consists of three intervals [τ1, τ2], [τ3, τ4] and [τ5, τ6]. Given

a time interval [a, b], let w1 = Wρ(a;Ao) and w2 = Wρ(b;Ao). We define the increment in

overshoot duration when the workload of the output process is increasing due to a packet

departure from the regulator as follows:

α(a, b, ζ) =


b− a, ζ ≤ w1,

(w2 − ζ)/(C − ρ), w1 ≤ ζ ≤ w2,

0, w2 < ζ.

(5.30)

We define the increment in overshoot duration when the workload is decreasing due to the

packet inter-departure time as follows:

β(a, b, ζ) =


b− a, ζ ≤ w2,

(W1 − ζ)/ρ, w2 ≤ ζ ≤ w1,

0, w1 < ζ.

(5.31)

Figure 5.5 illustrates α(a, b, ζ) and β(a, b, ζ). The following proposition follows immediately

from the definitions and shows how to compute Oζ(t;Ao) at time t = bj for packet j.

Proposition 5.4.1.

Oζ(b1;Ao) = α(t1, b1, ζ),

Oζ(bj ;Ao) = Oζ(bj−1;Ao)+β(bj−1, tj , ζ)+α(tj , bj , ζ),

for j = 2, 3, . . ..
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Figure 5.6: Piecewise-linear approximating function f̄ , M = 6.

We define the overshoot ratio of the regulator at time t with respect to a threshold ζ by

oζ(t) = Oζ(t;Ao)/t. (5.32)

For sufficiently large t, the virtual workload Wρ(t) can be modeled as a stationary and

ergodic process [55]. This is a reasonable assumption when ρ satisfies (5.28), since the

queueing system is stable in this case. Under this assumption, the overshoot ratio asymp-

totically approaches the overshoot probability, i.e.,

oζ(t) ∼ P {Wρ(t;Ao) > ζ} as t→∞. (5.33)

Using the overshoot ratio as a proxy for the overshoot probability in (5.26), we design a

(σ∗, ρ) regulator that selects the burstiness parameters σ∗(j), j = 1, 2, . . ., from a finite set

Σ such that

oγ(t) ≤ f(γ), ∀ t ∈ [bj−1, bj ], ∀γ ∈ [0, T ], (5.34)

while minimizing the incurred packet delay. Note that the bound (5.34) is satisfied at any

time t, whereas the approximation for the overshoot probability in (5.33) holds asymptoti-

cally.
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5.4.3 Piecewise-Linear Bounding Function

Next, we address the issues of selecting the set Σ of burstiness parameter values and veri-

fication of the condition (5.34). We replace the bounding function f by a piecewise-linear

function f̄ defined in terms of a set of values T1 < T2 < . . . < TM and the value δ given by

(5.2) satisfying the following constraints:

T − TM−1 ≥ δ; TM ≫ T, T1 ≥ δ, Ti+1 − Ti ≥ δ, (5.35)

for i = 1, 2, . . . ,M − 1. For given T and δ, the maximum possible value of M is given by

Mmax = ⌊T/δ⌋ − 1. (5.36)

The values {T1, . . . , TM} determine the set of burstiness parameter values

Σ = {σi := Ti − δ : i = 1, . . . ,M}. (5.37)

Note that σ1 < σ2 < . . . < σM .

Without loss of generality, we assume f(0) = 1. The function f̄ is designed1 such that

f ≤ f̄ in [0, T1), f̄ ≤ f in [T1, T ] and ||f − f̄ || is small in [T1, T ], where || · || denotes a norm

on the space of bounding functions BF , e.g., the L2-norm || · ||2. Since f̄ is chosen from

the class of piecewise-linear functions with a finite number M of linear pieces, it cannot be

chosen arbitrarily close to f , although ||f − f̄ || decreases as M is increased. In particular,

we set f̄(γ) = f(0) = 1 for γ ∈ [0, T1). Since f̄ ≥ f in this interval, traffic regulation with

respect to f̄ may result in violation of (5.26). However, the violation probability is upper

bounded by T1/T , which can be made arbitrarily small by suitable choices of T1 and/or T .

We also set f̄(γ) = f̄(T ) for TM > γ ≥ TM−1, and we choose a large value for TM such that

the burst size of the output traffic is not limited by the stochastic (σ∗, ρ) regulator.

1For technical reasons, a slightly different definition of f̄ for values of M < Mmax is used in the proofs of
Theorems 1–3 given in Appendix D.
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In the interval [Ti, Ti+1) let

gi(γ) = f(Ti+1) + ωi(γ − Ti+1) (5.38)

represent the line connecting the points (Ti, f(Ti)) and (Ti+1, f(Ti+1)) with slope

ωi =
f(Ti+1)− f(Ti)

Ti+1 − Ti
(5.39)

for i = 1, . . . ,M − 2. If f(γ) ≥ gi(γ) for all γ ∈ [Ti, Ti+1) we set f̄ = gi in this interval.

Otherwise, we set f̄ = hi on [Ti, Ti+1), where

hi(γ) = f(Ti+1) + f ′(Ti+1)(γ − Ti+1). (5.40)

This ensures that f̄ ≤ f on [T1, TM−1). We then set f̄(γ) = f(T ) for γ ∈ [TM−1, TM ] and

f̄(γ) = 0 for γ > TM . To summarize, we define

f̄(γ) =



1, γ ∈ [0, T1),

f(Ti+1)+mi(γ−Ti+1), γ ∈ [Ti, Ti+1),

f(T ), γ ∈ [TM−1, TM ],

0, γ > TM ,

(5.41)

for i = 1, . . . ,M − 2 and the slopes mi are given by

mi =

 ωi, if f ≥ gi on [Ti, Ti+1),

f ′(Ti+1), otherwise,
(5.42)

for i = 1, . . . ,M − 2.
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5.4.4 Canonical (σ∗, ρ) Regulator

Based on the definition of f̄ in (5.41), we modify the constraint in (5.34) to hold only for

γ ∈ [T1, T ], i.e.,

oγ(t) ≤ f(γ), ∀ t ∈ [bj−1, bj ], ∀γ ∈ [T1, T ]. (5.43)

Towards a practical implementation, we further replace the bounding function f by f̄ to

obtain the following burstiness constraint:

oγ(t) ≤ f̄(γ), ∀ t ∈ [bj−1, bj ], ∀γ ∈ [T1, T ]. (5.44)

To incur minimal packet delay, σ∗(j) should be chosen as the largest value in Σ such that

the constraint (5.44) is maintained. We then define a canonical (σ∗, ρ) regulator as follows:

Aj = {σ ∈ Σ : oγ(t) ≤ f̄(γ), ∀t ∈ [bj−1, bj(σ)],

∀γ ∈ [T1, T ]}

σ∗(j) =

 σmaxAj , if Aj ̸= ∅,

σ1, otherwise.
(5.45)

Equations (5.18)-(5.24) are the governing equations for a stochastic (σ∗, ρ) in which σ is

replaced by σ∗(j) according to (5.45). The canonical regulator cannot be implemented

directly, since the condition for Aj in (5.45) is impractical to verify for all values of t ∈

[bj−1, bj ] and γ ∈ [T1, T ]. Next, we develop practical implementations of the canonical

(σ∗, ρ) regulator.
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5.4.5 Basic Implementation

We assume that TM is chosen sufficiently large such that for every packet j the set

Bj = {1 ≤ ℓ ≤M : σℓ ≥Wρ(s̃j ;A1)} , (5.46)

is non-empty. Let

Ij =
{
2 ≤ ℓ ≤ minBj : oTℓ−1

(bj(σℓ)) ≤ f̄(Tℓ)
}

(5.47)

where tj(σℓ) and bj(σℓ) are given by (5.18) and (5.9), respectively. Let

σ∗(j) =

 σmax Ij , if Ij ̸= ∅,

σ1, otherwise.
(5.48)

Equations (5.46)–(5.48) are used to develop approximate implementations of the canonical

(σ∗, ρ) regulator given by (5.45). For a given value of σℓ ∈ Σ, the condition in (5.47)

is checked only at t = bj(σℓ) and γ = Tℓ−1. Therefore, as shown in Section 5.5, the

constraint (5.43) may be violated for some values of t. However, these violations will not

occur when t is sufficiently large.

Theorem 5.4.1. The (σ∗, ρ) regulator defined by (5.46)–(5.48) produces output traffic that

satisfies (5.43) for sufficiently large t.

A proof of Theorem 5.4.1 is given in Appendix D.4. Thus, the proposed regulator ensures

that the overshoot ratio oγ(t) of the output traffic is bounded by the function f(γ) for suffi-

ciently large t. Since, by (5.33), oγ(t)→ P{Wρ(t) ≥ γ}, we have that P{Wρ(t) ≥ γ} ≤ f(γ)

for sufficiently large t i.e., the gSBB bound (5.3) is satisfied by the output traffic. The

proof of Theorem 5.4.1 can be found in Appendix D. A pseudo-code implementation of the

stochastic (σ∗, ρ) regulator is given in Algorithm 6. The input traffic Ai is represented as a

sequence {(s1, L1), . . . , (sN , LN )}, where the si’s are the arrival times of the packets and the
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Li’s are the packet lengths. The (σ∗, ρ) regulator consists of the rate ρ, the bounding func-

tion f , the range T over which the bound is applied, the set Σ, and the values {T1, . . . , TM},

which determine the piecewise-linear bounding function f̄ . The input and output links for

the regulator are assumed to be of capacity C > ρ. The output traffic Ao is represented by

the sequence {(t1, L1), . . . , (tN , LN )}, where the ti’s are packet departure times. The for

loop starting in line 11 finds the largest ℓ ∈ {2, . . . , k = minBj} such that the inequality in

(5.47) is satisfied with σ = σℓ. If such σℓ exists, then σ
∗(j) = σℓ; otherwise, σ

∗(j) = σ1, in

accordance with (5.48).

Computation of the departure time, tj , of the jth packet requires updates to oTi(bj)

for i = 1, . . . ,M − 1. Once tj is determined, the values of oTi(bj), for i = 1, . . . ,M − 1,

need to be updated. Thus, the overall computational complexity is O(M) per packet. Since

the updates to oTi(bj) are independent of each other, they could be executed in parallel

using a hardware accelerator such as a graphics processing unit (GPU). In particular, a

parallel implementation of the for loop at line 11, can effectively reduce the computational

complexity per packet to constant time, i.e., O(1).

5.4.6 Alternative Implementation

The requirement of sufficient large t in Theorem 5.4.1 can be avoided by modifying the

definition of Ij in (5.47) to include additional checks. Let Bj be as defined in (5.46). We

re-define Ij as follows:

Ij =
{
2 ≤ ℓ ≤ minBj : oTi(bj(σℓ)) ≤ f̄(Ti)− ϵi,j(σℓ), ∀i = 1, . . . , ℓ− 1

}
, (5.49)

where

ϵi,j(σℓ) :=


Wρ(bj(σℓ);Ao)−Ti

ρbj(σℓ)
(1− f̄(Ti)), i= 1, . . . , ℓ−2,

f̄(Tℓ−1)− f̄(Tℓ), i= ℓ− 1.
(5.50)
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Algorithm 6 (σ∗, ρ) stochastic regulator

Input: Ai ← {(s1, L1), . . . , (sN , LN )}; ▷ Input traffic
Input: ρ; f(·); T ; M ; Lmax; C ▷ Regulator parameters
Output: Ao ← {t1, t2, . . . , tN} ▷ Output traffic
1: δ ← (1− ρ/C)Lmax

2: Compute Ti, σi for i = 1, 2, . . . ,M ▷ (5.35), (5.37)

3: Compute f̄(·) ▷ (5.41)
4: t1 ← s̃1 ← s1; b1 ← t1 + L1/C
5: Wρ(s̃1;A1)←Wρ(t1;Ao)← 0
6: Compute Wρ(b1;Ao) ▷ (5.23)
7: Compute oTi(b1); i = 1, 2, . . . ,M − 1 ▷ Prop. 5.4.1
8: for j = 1, . . . , N do ▷ Packet j arrives at time sj
9: Compute s̃j , Wρ(s̃j ;A1), Bj ▷ (5.17), (5.19), (5.46)

10: found← false; k ← minBj
11: for ℓ = k, . . . , 2 do ▷ k ≥ 2
12: σ ← σℓ; Compute tj(σ), bj(σ) ▷ (5.18), (5.9)
13: Compute Wρ(tj ;Ao), Wρ(bj ;Ao) ▷ (5.22), (5.23)
14: Compute oTℓ−1

(bj) ▷ Prop. 5.4.1

15: if oTℓ−1
(bj) ≤ f̄(Tℓ) then ▷ (5.47)

16: found← true; break
17: end if
18: end for
19: if not found then
20: σ ← σ1; Compute tj(σ), bj(σ) ▷ (5.18), (5.9)
21: end if
22: Compute oTi(bj); i=1, 2, . . . ,M−1 ▷ Prop. 5.4.1
23: end for

The modified definition of Ij in (5.49) involves additional checks for the jth packet, which

may result in a smaller value of σ∗(j) and hence higher delay incurred on the packet.

Interestingly, our numerical simulations show that this results in slightly smaller average

delay incurred on the input traffic. This can be explained as follows. By incurring more

delay on some input packets at an earlier stage, the output traffic may be better shaped

to the desired bound; therefore, on average, less delay will need to be incurred on future

packets.

The overshoot ratio oTi(t) at t = bj(σℓ) is checked against f̄(Ti) − ϵi,j(σℓ) rather than

f̄(Ti), for i = 1, . . . , ℓ − 2. The reasoning behind this stricter condition is illustrated in
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Figure 5.7: Overshoot ratio oTi(t) for t > bj , when Wρ(sj+1;Ao) = 0.

Fig. 5.7. In choosing σ∗(j) = σℓ, the overshoot ratios oTi(t), for i = 1, . . . , ℓ − 2, will be

increasing functions of t, as shown in Fig. 5.7, up to time t = tj+1(i), which is defined as

the time at which

Wρ(t;Ao) = Ti for i = 1, 2, . . . , Tℓ−2, (5.51)

and the (j+1)th packet arrives sufficiently late that Wρ(sj+1;Ao) = 0. Enforcing the

condition in (5.49) with the lower values f̄(Ti) − ϵi,j(σℓ) ensures that the overshoot ratio

stays less than f̄(Ti) for all t ≥ bj . In this implementation, for a given value of σℓ ∈ Σ,

the condition (5.43) is checked only at t = bj(σℓ) and for γ ∈ {T1, . . . , Tℓ−1}. These

extra checks compared to Algorithm 6, as stated in the following theorem and shown in

Section 5.5, guarantee that there will be no violation of the constraint (5.43).

Theorem 5.4.2. The (σ∗, ρ) regulator defined by (5.46), (5.49), and (5.48) produces output

traffic that satisfies (5.43) for all t ≥ 0.

Algorithm 7 Replacement for lines 14–17 of Algorithm 6

14: Compute oTi(bj(σℓ)); i = 1, . . . , ℓ− 1 ▷ Prop. 5.4.1
15: Compute ϵi,j(σℓ) ; i = 1, . . . , ℓ− 1 ▷ (5.50)

16: if oTi(bj) ≤ f̄(Ti)− ϵi,j(σℓ) ∀i ∈ {1, . . . , ℓ−1} then
17: found← true; break
18: end if
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Proof of Theorem 5.4.2 is given Appendix D.2. By modifying Algorithm 6 in accordance

with Theorem 5.4.2, we obtain an alternative implementation that satisfies (5.43) for all

t ≥ 0 at the expense of some additional computation. The modified implementation is

obtained by replacing lines 15–18 in Algorithm 6 with the pseudo-code shown in Algorithm 7.

In lines 15 and 16, ℓ− 1 values of oTi(bj(σℓ)) and ϵi,j(σℓ) need to be computed. Therefore,

the complexity of the for loop at line 12 in Algorithm 6 is O(M2) and the overall complexity

of the modified algorithm is O(M2) per packet.

With further algorithmic modifications, the complexity of Algorithm 7 can be reduced

to O(M), i.e., the same time complexity as Algorithm 6. Let Bj be as in (5.46). Let

k = minBj and

Jj=
{
1 ≤ ℓ ≤ k − 1:oTℓ

(bj(σk))≤ f̄(Tℓ)− ϵℓ,j(σk)
}
, (5.52)

where ϵi,j(σk) is defined in (5.50). If 1 ∈ Jj let

m = max {ℓ ∈ Jj : i ∈ Jj , ∀1 ≤ i ≤ ℓ} , (5.53)

and let

Kj =
{
2 ≤ ℓ ≤ m+ 1 : oTℓ−1

(bj(σℓ)) ≤ f̄(Tℓ)
}
, (5.54)

where bj(σℓ) and oTℓ−1
(bj(σℓ)) are given as follows:

bj(σℓ) = s̃j + (Wρ(s̃j ;A1)− σℓ)/ρ+ Lj/C, (5.55)

bj(σℓ)oTℓ−1
(bj(σℓ)) = bj(σk)oTℓ−1

(bj(σk)) + (Wρ(s̃j ;A1)−σℓ)/ρ. (5.56)
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We now present a third implementation of the canonical (σ∗, ρ) regulator given by

σ∗(j) =

 σmaxKj , if 1 ∈ Jj and Kj ̸= ∅,

σ1, otherwise.
(5.57)

Theorem 5.4.3. The (σ∗, ρ) regulator defined by (5.46) and (5.52)–(5.57) produces the same

output traffic as the (σ∗, ρ) regulator of Theorem 5.4.2 for a given input flow and hence the

output flow satisfies (5.43) for all t ≥ 0.

Algorithm 8 Replacement for lines 11–18 of Algorithm 6

11: m← 0; found← false
12: for ℓ = 1, . . . , k − 1 do ▷ k ≥ 2
13: σ ← σk; Compute tj(σ), bj(σ), ▷ (5.18), (5.9)
14: Compute ϵℓ,j(σ), oTℓ

(bj) ▷ (5.50), Prop. 5.4.1

15: if oTℓ
(bj) > f̄(Tℓ)− ϵℓ,j(σ) then ▷ (5.52)

16: break
17: end if
18: m← m+ 1
19: end for
20: for ℓ = m+ 1, . . . , 2 do
21: σ ← σℓ; Compute bj(σ), oTℓ−1

(bj) ▷ (5.55), (5.56)

22: if oTℓ−1
(bj) ≤ f̄(Tℓ) then ▷ (5.49)

23: found← true; break
24: end if
25: end for

A proof of Theorem 5.4.3 is given in Appendix D.3. The (σ∗, ρ) regulator corresponding

to Theorem 5.4.3 can be implemented by replacing lines 11-18 in Algorithm 6 with the

lines shown in in Algorithm 8. The for loops at lines 11 and 19 in Algorithm 8 both have

complexity O(M). Therefore, the overall complexity of Algorithm 8 is O(M) per packet.

As with Algorithm 6, using a suitable parallel implementation, the complexity per packet

can be further reduced to O(1).

To summarize, Algorithm 8 provides a theoretical guarantee that the sample path
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bound (5.43) holds for all t ≥ 0. Algorithm 6 provides the weaker guarantee that the

sample path bound is satisfied asymptotically. However, our empirical studies have shown

that Algorithm 6 achieves the bound (5.43) very quickly in practice. Both implementations

have computational complexity O(M). Our simulation results (see Tables 5.1 and 5.2 in

Section 5.5), show that Algorithm 1 incurs higher average delay and greater variance in

shaping the traffic to the desired gSBB bound.

5.5 Numerical Results

We evaluate the performance of the (σ∗, ρ) regulator first in a basic scenario with Poisson-

like traffic and then a more realistic example with bursty traffic.

5.5.1 Basic Scenario

First, we consider a system similar to one studied in [24]. The packets sizes Lj are drawn

randomly according to

Lj ∼ U{Lmin, Lmin+1, . . . , Lmax}, (5.58)

where U(A) denotes a uniform distribution over the set A. The inter-arrival times of the

packets, sj+1 − sj , are determined as follows:

sj+1 − sj ∼ Uj + Lj/C, (5.59)

where Uj ∼ Exp(λ), i.e., {Uj} is an i.i.d. sequence of exponentially distributed random vari-

ables with rate parameter λ. By adopting (5.59) to model the inter-arrival times, we ensure

that packets are received after the previous ones have been fully received, i.e., the packets

will not overlap with each other. In a system described by (5.58)–(5.59), ρ−1Wρ(sj ;Ai) is

equal to the waiting time experienced by the jth customer in a G/G/1 queueing system

in which the service time of the jth customer is given by Sj = (ρ−1 − C−1)Lj and the

inter-arrival time between the jth and (j + 1)th customer is Uj [24, 54,64].
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Figure 5.8: Performance of the stochastic (σ∗, ρ) traffic regulator.

In this example, we set Lmin = 5, Lmax = 10, and λ = 0.25, and ρ = 0.65. We use the

following bounding function:

f(σ) :=

 −2.5× 10−3σ + 1, 0 ≤ σ ≤ 40,

−5× 10−3σ + 1.1, 40 < σ ≤ T = 200.
(5.60)

In Fig. 5.8, f̄ is defined by approximating f by a piecewise-linear function according to (5.41)

with M = 20, TM = 400 and Ti+1− Ti = 20 for i = 1, . . . ,M − 2. Note that, as f(γ) is also

piecewise-linear, f̄(γ) = f(γ) for γ ∈ [T1, T ]. Observe that the output traffic is shaped to

satisfy the desired bound.

Using the same model for inter-arrival and packet lengths, we have investigated the

impact of the parameter M on traffic shaping of the input traffic. From Fig. 5.9, we

see that as M is increased, a closer fit of the output traffic to the desired bound can be

achieved. In our example, the maximum possible value ofM , given by (5.36), isMmax = 56,

for which a very close fit to the bound is achieved. Figures 5.8 and 5.9 were obtained using

Algorithm 8. In Fig. 5.8, the gSBB bound given by (5.60) is represented by the black curve.

The pink curve, representing the input traffic, violates this bound. The green curve, which
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Figure 5.9: Traffic regulator performance with different M values.

Table 5.1: Traffic shaping delay with different M values for Algorithm 6 and Algorithm 8.

Average Delay Std. Dev. of Delay
M Alg. 6 Alg. 8 Alg. 6 Alg. 8
10 89 89 115 115
20 78 78 109 109
56 72 71 100 99

corresponds to the output traffic, shows that the (σ∗, ρ) regulator succeeds in enforcing the

gSBB bound.

Table 5.1 presents the average delay and standard deviation of the delay for the packets

using Algorithms 6 and 8. Note that as M increases the average delay decreases and the

standard deviation of the packet delay also decreases. An increase in M implies that the

delay incurred on a packet can increase in smaller increments, resulting in smaller overall

variance. A larger value of M results in a smaller average delay since in this case the

piecewise-linear function f̄ given by Fig. 9 also shows the impact of increasing the value of

M . With larger values of M , the workload tail probability of the output is closer to the

gSBB bound, i.e., the bound becomes less conservative, since f is better approximated by

f̄ .

126



0 1 2 3 4 5 6
104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.10: Overshoot ratio oT17(t) for M = 56.

Algorithm 8 slightly outperforms Algorithm 6 for larger values ofM with respect to mean

and standard deviation of shaping delay, in particular, M = 56, as shown in Table 5.1. In

Fig. 5.10, a sample path of the overshoot ratio oT17(t) is shown for Algorithms 6 and 8.

Observe that some violations of (5.34) occur with Algorithm 6 but there are no violations

with Algorithm 8, which confirms Theorem 5.4.2.

5.5.2 Bursty Traffic Scenario

Next, we consider a more realistic scenario with bursty traffic. The purpose of this example is

to show how the (σ∗, ρ) regulator can be applied to guarantee a delay bound for a traffic flow

at a multiplexer and contrast this with an equivalent delay bound that can be provided using

a (σ, ρ) regulator. This scenario can be generalized to a multi-hop network providing end-

to-end stochastic delay guarantees by applying results from stochastic network calculus [35,

50,51].

The packet inter-arrival times are given by (5.59), where the sequence {Uj} is generated

according to the inter-arrival times of a three-state Markov modulated Poisson Process

(MMPP) with arrival matrix Λ and rate matrix R [36,54]. In our example, the parameters
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of MMPP process are chosen according to [27, p. 79], with arrival matrix

Λ = diag{116, 274, 931} (5.61)

in units of packets/s and rate matrix

R =


−0.12594 0.12594 0

0.25 −2.22 1.97

0 2 −2

 (5.62)

in units of s−1. These values were derived from matching arrival process of the I, P and

B frames of an MPEG-4 encoded video to the three states of the MMPP. For the given

MMPP, the average arrival rate is 358 packets/s.

The packet sizes Lj are generated according to the phase-type distribution referred to

as G3 in [27, Table 1] as follows:

Lj ∼ 0.54 Er(5, 26) + 0.46 Er(5, 956), (5.63)

in units of bytes, where Er(r, 1/µ) denotes an r−stage Erlang distribution with mean

1/µ [11, 54]. This particular phase-type distribution is a mixture of Erlang distributions,

which closely approximates the empirical distribution of measured Internet packet sizes ob-

tained in [37]. We truncate the phase-type distribution at 1500 bytes, which is the MTU

(Maximum Transmission Unit) for Ethernet. In addition, since the packet lengths are inte-

ger values, the random values generated according to the truncated phase-type distribution

are quantized. The average packet size according to (5.63) is 454 bytes. In our case, how-

ever, due to truncation and quantization, the average packet size is 438 bytes. We have

set the input link capacity to 10 Mbps. Because the packet inter-arrival times are given

by (5.59), with this choice of C, the average packet arrival rate is 319 packets/s. The

average bit rate of the traffic is 1.06 Mbps.
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We consider a scenario in which the available bandwidth at a multiplexer is Co = 2Mbps.

Since Co exceeds the average packet rate of the traffic source, the flow can be supported.

We consider two traffic descriptors:

1) phase-type descriptor [ρ; (a,π,Q, T )] (Definition 5.2.4);

2) (σ, ρ) descriptor (Definition 5.2.1).

For both traffic descriptors we set ρ = Co = 2 Mbps. The black curve in Fig. 5.11 shows

the phase-type bound obtained using Algorithm 3 in Chapter 4, with a 10-component

hyperexponential distribution. The parameter T is set as the maximum value of Wρ(t;Ai),

i.e., T = 75 KBytes. This ensures that the bounding function f corresponding to the phase-

type descriptor bounds P{Wρ(t;Ai) ≥ σ} for all values of σ > 0. For the (σ, ρ) descriptor,

we set σ = T = 75 KBytes to ensure that no shaping delay will be incurred by the traffic

regulator.

Along with the traffic descriptor, the user specifies a maximum delay bound requirement

at the multiplexer. An admission controller determines whether or not the delay requirement

can be satisfied with the available bandwidth Co. If the traffic flow is admitted, a traffic

regulator is applied to ensure conformance of the traffic flow to the traffic descriptor provided

by the user. In case 1), a (σ∗, ρ) regulator is determined by finding a piecewise-linear

approximation f̄ to the bounding function f associated with the phase-type traffic descriptor

(see Section 5.4). Fig. 5.11 shows the bounding function f and its approximation f̄ (dashed

blue curve). Then Algorithm 6 or 8 can be applied to enforce f̄ . Because the bounding

function f̄ is a close upper bound toWρ(t, Ai), the workload curves at the input and output

of the regulator are very close to each other. Hence, in Fig. 5.11, just Wρ(t, Ao) is shown.

Consequently, the (σ∗, ρ) regulator incurs negligible shaping delay.

We next consider the delay bound that can be guaranteed at the multiplexer for the two

cases. Let Q(t) denote the queue size at the multiplexer with constant service rate Co and

let D(t) denote the delay at the multiplexer experienced by a bit arriving at time t. Note
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Figure 5.11: P{Wρ(t;Ao) ≥ σ}, f(σ) and f̄(σ) vs. σ for bursty traffic source.

that if Co ≥ ρ,

Q(t) =WCo(t;Ai) ≤Wρ(t;Ai). (5.64)

Since ρ = Co, (5.64) holds with equality. For a FCFS server, D(t) = Q(t)/Co. For the

(σ∗, ρ) regulator,

P{D(t) ≥ d} = P{Q(t) ≥ d Co} ≤ P{Wρ(t;Ai) ≥ d Co} = f̄(d Co) = ϵ. (5.65)

Setting ϵ = 0.02 and using the bounding curve f̄ from Fig. 5.11, we find that the smallest

value of d that can satisfy (5.65) is 22 ms. For the (σ, ρ) regulator, the smallest delay bound

that can be guaranteed is d = σ/Co = 294 ms. Thus, with the (σ∗, ρ) regulator, a much

smaller delay guarantee can be provided compared to that for the (σ, ρ) regulator.

In Fig. 5.12, the performance of the (σ, ρ) regulator is compared with that of a (σ∗, ρ)

regulator with M = 63 for a sample path of the bursty traffic source. The output queue

length attains the bound σ on the burst size, but is far smaller than σ most of the time.

By contrast, the value of σ∗ closely tracks the output queue length. Clearly, the (σ, ρ)

parameter provides an overly conservative bound on the traffic.
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Figure 5.12: Workload profile of bursty traffic fed to server with service rate ρ and compar-
ison of fixed bound σ vs. dynamic bound σ∗.

Table 5.2: Traffic shaping delay incurred by Algorithms 6 and 8 for bursty traffic (M = 63).

Alg. 1 Alg. 3

Average Delay [ms] 27 1.2

Std. Dev. of Delay [ms] 50 15

P{shaping delay > 0} 0.35 0.008

In Table 5.2, Algorithms 1 and 3 are compared in terms of the shaping delay incurred

on the bursty traffic. Algorithm 3 shapes the input traffic to the desired gSBB bound while

inducing significantly less traffic shaping delay. In particular, the value of P{shaping delay >

0} shows that the stochastic guarantee in (5.65) is achieved by Algorithm 3.

5.6 Conclusion

The stochastic traffic regulator developed in this chapter addresses an open problem in

the application of stochastic network calculus to real networks: enforcement of stochastic

traffic bounds. Given an input traffic source, our proposed stochastic (σ∗, ρ) regulator

inserts delays, as necessary, to ensure that the output traffic conforms to the gSBB traffic
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bound [51]. Operationally, the (σ∗, ρ) regulator works similarly to a deterministic (σ, ρ)

regulator, except that the burstiness parameter σ∗ is chosen, for each arriving packet, from

among a finite set of burst size parameters, Σ = {σ1, . . . , σM}. We showed, through both

analysis and simulation, that the (σ∗, ρ) regulator ensures conformance of a traffic source to

a given gSBB bound. Such a bound would be negotiated between the user and the network

during the admission control phase and potentially renegotiated during the lifetime of the

flow (cf. [71]). A closer fit to the gSBB bound can be achieved by increasing the value of

M .
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Chapter 6: A Framework for Providing Stochastic Delay

Guarantees in Communication Networks

The provisioning of delay guarantees in packet-switched networks such as the Internet re-

mains an important, yet challenging open problem. In this chapter, we propose and eval-

uate a framework, based on the results from stochastic network calculus, for guaranteeing

stochastic bounds on network delay at a statistical multiplexer. The framework consists

of phase-type traffic bounds and moment generating function traffic envelopes, stochastic

traffic regulators to enforce the traffic bounds, and an admission control scheme to ensure

that a stochastic delay bound is maintained for a given set of flows. Through numerical

examples, we show that a stochastic delay bound is maintained at the multiplexer, and

contrast the proposed framework to an approach based on deterministic network calculus.

Parts of the work in this chapter were published in [58].

The remainder of the chapter is organized as follows. In Section 6.1, we provide an in-

troduction and motivation about the framework for providing stochastic delay guarantees.

In Section 6.2, we discuss the phase-type traffic bound and its use as a traffic descriptor,

as well as the MGF traffic envelope. In Section 6.3, we discuss a scheme to enforce both a

phase-type bound and an MGF envelope for a traffic process. In Section 6.4, we discuss an

admission control scheme for a statistical multiplexer based on the phase-type bounds and

results from stochastic network calculus. Numerical results, which demonstrate the pro-

posed framework are presented in Section 6.5. Concluding remarks are given in Section 6.6.
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6.1 Introduction

Currently, the Internet does not provide end-to-end delay guarantees for traffic flows. Even

if the path taken by a given traffic flow is fixed, e.g., via mechanisms such as software-

defined networking (SDN) or multi-protocol label switching (MPLS), network congestion

arising from other flows can result in highly variable delays. The variability and random

nature of traffic flows in a packet-switched network make it very challenging to provide

performance guarantees.

The standard approach to providing network performance guarantees consists of two

basic elements:

1. Admission control: A new flow is admitted to the network only if sufficient resources

are available to maintain a given performance guarantee.

2. Traffic regulation: Each traffic flow must be regulated to ensure that it does not use

more resource than what was negotiated by the admission control scheme.

Admission control is challenging due to the random and bursty nature of traffic flows, which

makes them difficult to characterize and regulate. Even when flows are modeled as random

arrival processes, provisioning for end-to-end performance guarantees in a multi-hop network

is generally intractable.

In his seminal work, Cruz [24, 25] proposed the so-called (σ, ρ) characterization of traf-

fic, which imposes a deterministic bound on the burstiness of a traffic flow. By bounding

traffic flows according to (σ, ρ) parameters, Cruz developed a network calculus which deter-

mined how these parameters propagate through network elements, from which end-to-end

delay bounds could be derived. An important feature of the (σ, ρ) characterization is that

it could be enforced by a traffic regulator. In practice, however, the deterministic (σ, ρ)

characterization leads to very loose end-to-end delay bounds, which leads to very low uti-

lization of the network resources. Nevertheless, the (σ, ρ) characterization was the basis for

further research into stochastic bounds on traffic burstiness and stochastic network calculus

to provide tighter, probabilistic end-to-end delay guarantees. Stochastic network calculus
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and associated performance bounds remains an active topic of research, with ongoing ef-

forts aimed at improving the tightness of the stochastic delay bounds. To our knowledge,

however, stochastic network calculus has not previously been applied within a practical

framework to provide performance guarantees.

We present a practical framework for providing performance guarantees based on con-

cepts from stochastic network calculus. Traffic flows are characterized by the phase-type

traffic traffic descriptor proposed in Chapter 4 as well as a moment generating function

(MGF) traffic envelope [35]. The phase-type traffic bound for each traffic flow is enforced by

a stochastic traffic regulator, see Chapter 5. An admission control scheme decides whether

or not to admit a new traffic flow on the basis of both the phase-type descriptor and the

MGF envelope to guarantee a stochastic delay bound for all admitted traffic flows. The

main contribution of this chapter is to demonstrate that stochastic delay guarantees can

be achieved for admitted flows while maintaining relatively high traffic utilization in the

network.

6.2 Stochastic Traffic Bounds

Let A = {A(s, t) : 0 ≤ s ≤ t} denote a traffic arrival process, where A(s, t) denotes the

amount of traffic arriving in time interval [s, t). For simplicity, we shall assume that the

time parameters s and t are discrete unless otherwise specified, but the results that follow

also carry over to the continuous-time case. Our proposed framework involves two types of

bounds on a traffic process: a phase-type traffic bound and an MGF traffic envelope.

6.2.1 Phase-type Traffic Bound

We consider stochastic bounds on the burstiness of a traffic flow, with respect to an upper

rate ρ, which is chosen to be larger than or equal to the long term average traffic rate, i.e.,

ρ ≥ limt→∞
A(0,t)

t , The concept of phase-type bounded traffic is defined as follows Chapter

3.
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Definition 6.2.1. A traffic process A is characterized by a phase-type traffic descriptor

[ρ; (a,π,Q, T )] if

P {Wρ(t;A) ≥ σ} ≤ aπeQσ1, (6.1)

for all t ≥ 0 and all σ ∈ (0, T ]. Here, 1 is a column vector of all ones, a ≥ 0, T > 0. The

virtual workload of a constant rate queue with service rate ρ and input traffic A is defined

by

Wρ(t;A) := max
0≤s≤t

[A(s, t)− ρ(t− s)], (6.2)

and (π,Q) denotes the parameter of a phase-type distribution [11].

When T =∞, the phase-type traffic bound is a particular case of generalized stochastically

bounded burstiness (gSBB), which was developed in [51, 99]. In Chapter 3, it was shown

that the phase-type bound defined above is closed with respect to a stochastic network

calculus based on the gSBB concept.

The concept of gSBB is closely related to the Stochastically Bounded Burstiness (SBB)

concept introduced in [85], which in turn is a generalization of Exponentially Bounded

Burstiness (EBB) [96]. A key feature gSBB vs. SBB is that it is based on the workload

processWρ(t;A), which can be reasonably assumed to be stationary and ergodic, rather than

the arrival process A, which is neither stationary nor ergodic. Consequently, as discussed

in Section 6.3, a stochastic traffic regulator can be designed based on enforcement of a

time-average approximation of the left-hand side of (6.1).

The problem of finding a phase-type traffic descriptor to fit a given traffic trace can

be formulated as a semi-infinitely constrained optimization problem Chapter 4, which can

be solved numerically for special phase-type distributions such as the hyperexponential

distribution. In particular, the hyperexponential distribution provides a tight phase-type

bound for a large class of traffic flows. Given the procedure developed in Chapter 4, we
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shall assume that each traffic flow that requests admission to the network has an associated

phase-type traffic descriptor.

6.2.2 MGF Traffic Envelope

An alternative approach to characterizing a traffic process is to bound the moment gener-

ating function (MGF)

MA(θ; s, t) := E
[
eθA(s,t)

]

where θ > 0 is a free parameter [35].

Definition 6.2.2. The MGF traffic envelope of traffic process A is defined by

E
[
eθA(s,t)

]
≤ eθ(ρ̂(θ)(t−s)+σ̂(θ)), (6.3)

where the parameters ρ̂(θ) > 0 and σ̂(θ) ≥ 0 are functions of θ > 0.

The MGF traffic envelope is analogous to the deterministic (σ, ρ) characterization in that

it involves analogous parameters σ̂(θ) and ρ̂(θ) and it can be related to the EBB character-

ization via the Chernoff bound.

The MGF traffic envelope, however, has some advantages compared to the phase-type

bound traffic descriptor, the most important being the following,

Theorem 6.2.1 (Sum of MGF envelopes). When n independent flows A1, . . . , An, with MGF

envelope parameters (σ̂1, ρ̂1), . . . (σ̂n, ρ̂n), respectively, are superposed, the aggregate traffic

process A = A1 + . . . + An can be characterized by the MGF parameter (σ̂, ρ̂), where

σ̂ =
∑n

i=1 σ̂i and ρ̂ =
∑n

i=1 ρi.

This property of the MGF traffic envelope not only simplifies the computations involved in

admission control, but more importantly, it captures the effect of statistical multiplexing

gain. For this reason, our proposed framework uses both the phase-type bound traffic

descriptor and the MGF traffic envelope. The problem of finding a MGF traffic envelope
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can be simplified by defining a finite set Θ of values to consider for the free parameter

θ in (6.3). Then a set of MGF envelope parameters, {(σ̂(θ), ρ̂(θ)) : θ ∈ Θ}, could be

determined using an approach similar to the procedure in Chapter 4 for fitting the phase-

type traffic descriptor.

6.3 Stochastic Traffic Regulation

Next, we discuss methods for enforcing both a phase-type bound traffic descriptor and the

MGF traffic envelope.

6.3.1 (σ∗, ρ) Regulator

The deterministic (σ, ρ) regulator tends to provide a very loose bound on the traffic or to

incur unnecessarily large delays on the traffic. To address these issues, a stochastic traffic

regulator was proposed in Chapter 5, which enforces a probabilistic bound on a traffic

process A:

P {Wρ(t;A) ≥ γ} ≤ f(γ), ∀γ ∈ [0, T ], (6.4)

where f(γ) is a non-increasing positive bounding function and T is a limit on the tail

distribution of the workload. We refer to a regulator that enforces (6.4) as a stochastic

(σ∗, ρ) regulator, where the burstiness parameter σ∗ is variable.

Users specify their traffic flows with a descriptor [ρ; (f(γ), T )] in terms of a bound of

the form (6.4). In particular, for the phase-type bound the bounding function has the

form f(γ) = aπeQγ1 (cf. (6.1)). By applying results from stochastic network calculus, the

admissibility of a given set of traffic flows with respect to a certain probabilistic end-to-end

delay constraint can be determined. However, such an end-to-end delay guarantee can only

be provided if the traffic flows conform to their negotiated traffic parameters. The (σ∗, ρ)

regulator can be applied at the network edge to force compliance of each traffic flow to

a negotiated phase-type bound parameter. Optionally, the regulator could be applied at
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internal nodes of the network to reshape traffic flows to their negotiated phase-type traffic

bounds. This has the benefit of maintaining the negotiated traffic profile for each traffic

flow over a multi-hop path, but requires the additional overhead of traffic regulation within

the network.

6.3.2 MGF Traffic Envelope Regulator

According to Definition 6.2.2, the MGF envelope parameters ρ̂(θ) and σ̂(θ) satisfy (6.3).

However, verification of (6.3), requires estimation of the MGF E
[
eθA(s,t)

]
, which presents

difficulties because the traffic process A is non-stationary and non-ergodic. Therefore, we

introduce an alternative MGF envelope characterization.

Definition 6.3.1. The MGF workload envelope (or w-envelope) of traffic process A is defined

by

E
[
eθWρ̂(θ)(t;A)

]
≤ eθσ̂(θ), (6.5)

where θ > 0 is a free parameter, ρ̂(θ) > 0 and σ̂(θ) ≥ 0, and Wρ̂(A; t) is the workload

defined in (6.2).

The MGF w-envelope provides an upper bound on the MGF traffic envelope in the

following sense.

Theorem 6.3.1. Suppose a traffic processA has an MGF w-envelope with parameter {(σ̂(θ), ρ̂(θ)) :

θ ∈ Θ}, i.e.,

E
[
eθWρ̂(θ)(t;A)

]
≤ eθσ̂(θ), θ ∈ Θ. (6.6)

Then it is also characterized by an MGF traffic envelope {(σ̂(θ), ρ̂(θ)) : θ ∈ Θ}, i.e.,

E
[
eθA(s,t)

]
≤ eθ[σ+ρ(t−s)], 0 ≤ s ≤ t, θ ∈ Θ. (6.7)
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Figure 6.1: Multiplexer with n independent traffic flows.

Proof. For 0 ≤ s ≤ t,

A(s, t)− ρ(t− s) ≤ max
0≤s≤t

[A(s, t)− ρ(t− s)] =Wρ(t;A).

Therefore,

E[eθ[A(s,t)−ρ(t−s)]] ≤ E[eθWρ(t;A)],

and the result follows immediately.

Theorem 6.3.1 implies that a traffic regulator which enforces an MGF w-envelope with

parameter (σ̂, ρ) also enforces an MGF traffic envelope with the same parameter. To enforce

an MGF traffic envelope for a traffic process A, we can estimate the left-hand side of (6.6),

for each value of θ ∈ Θ, via a time-average and regulate it to ensure that the inequality is

maintained. This can be accomplished by designing a stochastic regulator along the lines

of the (σ∗, ρ) regulator in Chapter 5.

6.4 Admission Control

We develop an admission control scheme based on a stochastic delay bound derived from

the phase-type traffic bound and MGF traffic envelope. The phase-type bound provides a
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tighter delay bound when a small to moderate number of flows is considered. When the

number of flows becomes larger, the MGF envelope can yield a tighter bound due to the

statistical multiplexing effect. Therefore, we propose a hybrid admission control scheme

which uses both types of traffic bounds.

6.4.1 Admission Control via Phase-Type Bound

Consider a multiplexer of capacity C with a set of n independent traffic flows, A =

{1, . . . , n}, as inputs characterized by phase-type traffic descriptors ∆i = [ρi, (ai,πi,Q, Ti)],

i = 1, . . . , n. The essential task of the admission controller is to determine whether or not

a stochastic delay bound of the following form can be satisfied:

P{D ≥ d} < ϵ, (6.8)

where D represents the delay experienced by a packet in the multiplexer, ϵ > 0 is a small

number, e.g., ϵ = 10−3, and d represents a “maximum” tolerable delay for a packet from any

of the admitted flows. Clearly, a necessary condition for (6.8) to be satisfied is
∑n

i=1 ρi < C.

A phase-type traffic bound for the aggregate traffic input to the multiplexer can be

determined by repeated application of the following theorem.

Theorem 6.4.1 (Independent Sum). Let A1 and A2 be independent traffic processes charac-

terized by phase-type traffic descriptors ∆1 = [ρ1, (a,α,G, T1)], and ∆2 = [ρ2, (b,β,H, T2)],
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respectively. The aggregate process A = A1 + A2 is bounded by the phase-type traffic de-

scriptor ∆ = [ρ, (c,π,Q, T )]. where ρ = ρ1 + ρ2, T = min(T1, T2), c = a+ b− ab,

π =

[
a(1− b)

c
α,

b(1− a)
c

β,
ab

c
α,0

]
, (6.9)

Q =



G 0 0 0

0 H 0 0

0 0 G gβ

0 0 0 H


,

where g = −G1.

This theorem can be derived from [99, Theorem 4] for gSBB flows by applying properties

of the phase-type distribution. In Theorem 6.4.1, if the number of phases represented by

the phase-type traffic descriptors ∆1 and ∆2 equals m, then the number of phases in ∆

will be 4m. To avoid this expansion in the size of the phase-type traffic descriptor, we

can apply the numerical method developed in Chapter 4, to determine a phase-type traffic

descriptor ∆̃, which approximates the true aggregate descriptor ∆, but only has m phases.

Thus, we obtain a practical procedure for obtaining a phase-type traffic descriptor for the

superposition of an arbitrary set of independent flows characterized by phase-type traffic

descriptors.

Given the above procedure for determining a phase-type traffic descriptor for an aggre-

gate traffic flow A at the input to a multiplexer, a relationship between ϵ and d in (6.8) can

be derived from following theorem:

Theorem 6.4.2. Let A be a traffic process with phase-type descriptor [ρ; (a,π,Q, T )] that

is input to a FIFO system with constant transmission rate C > ρ. Then the steady-state

delay D through the system can be bounded as follows:

P{D ≥ d} = P{WC(t;A) ≥ Cd} ≤ P{Wρ(t;A) ≥ Cd} ≤ aπeQCd1, (6.10)
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for all t ≥ 0 and all T
C ≥ d ≥ 0.

6.4.2 Admission Control via MGF Envelope

In conjunction with Theorem 6.2.1, the following result can be used to perform admission

control based on MGF traffic envelopes [35].

Theorem 6.4.3. Suppose a traffic process A with MGF envelope (σ̂(θ), ρ̂(θ)), θ ∈ Θ, is offered

as input to a constant rate server of capacity C > ρ̂(θ), θ ∈ Θ. Then the steady-state system

delay D can be bounded as follows:

P{D ≥ d} = P{WC(t;A) ≥ Cd} ≤ P{Wρ̂(θ)(t;A) ≥ Cd} ≤ eθ(σ̂(θ)−d), θ ∈ Θ. (6.11)

The parameter θ can be optimized to minimize the right-hand side of (6.11) .

6.4.3 Hybrid Admission Control Scheme

We proposed a hybrid admission control scheme that combines the phase-type traffic de-

scriptor and MGF traffic envelope characterizations of the input traffic flows. The basic

setup is depicted in Fig. 6.1. Each flow passes through a (σ∗, ρ) stochastic regulator (see

Section 6.3.1), which enforces a phase-type traffic descriptor negotiated between the net-

work and the traffic flow. Similarly, an MGF traffic w-envelope for each flow is enforced by

an MGF traffic regulator (see Section 6.3.2).

Given a set of flows A = {1, . . . , n}, the hybrid admission control scheme checks two

admission criteria with respect to the stochastic delay constraint (6.8):

1. Using the procedure based on the phase-type traffic descriptors outlined in Sec-

tion 6.4.1, determine whether or not A is admissible.

2. Using the procedure based on MGF envelope parameters outlined in Section 6.4.2,

determine whether or not A is admissible.

If A is admissible under criterion 1 or criterion 2, then A is considered admissible.
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6.5 Numerical Study

In this section, we demonstrate key aspects of the proposed framework using traffic flows

modeled as MMPPs and discrete-time Markov on-off fluid processes.

6.5.1 Markov Modulated Poisson Process

The MMPP is a popular continuous-time model for traffic flows possessing a high degree

of burstiness [36]. An m-state MMPP is a doubly-stochastic Poisson point process N(t)

parameterized by a diagonal arrival matrix Λ = diag{λ1, . . . , λm}, where λi ≥ 0 is the

Poisson arrival rate when the underlying Markov chain is in state i and a rate matrix

R = [rij ], 1 ≤ i, j ≤ m, where rij ≥ 0 is the departure rate of the Markov chain from state i

to j ̸= i. For 1 ≤ i ≤ m, rii < 0 and −rii is the departure rate of the Markov chain from

state i. The rate matrix R is the generator matrix of the modulating Markov chain. For

example, a 2-state MMPP is parameterized by arrival and rate matrices given, respectively,

by

Λ =

λ1 0

0 λ2

 , R =

−r1 r1

r2 −r2

 . (6.12)

The superposition of n independent MMPPs is again an MMPP. The rate matrix R and

the arrival rate matrix Λ of the aggregated process are given, respectively, by

R = R1 ⊕ . . .⊕Rn, Λ = Λ1 ⊕ . . .⊕Λn, (6.13)
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Figure 6.2: Stochastic delay bound via phase-type traffic bounds.

where ⊕ denotes the Kronecker-sum [36]. For example, the superposition of two indepen-

dent, identically distributed 2-state MMPPs results in a 3-state MMPP with arrival matrix

Λ =


2λ2 0 0

0 λ1 + λ2 0

0 0 2λ1

 (6.14)

and rate matrix

R =


−2r2 2r2 0

r1 −r1 − r2 r2

0 2r1 −2r1

 . (6.15)

Assume that the packet lengths times are independent and generally distributed. Then

the MMPP N(t) together with the packet lengths specifies a continuous-time traffic arrival

process A. When the process A is fed as input to a multiplexer with constant service rate,

the system can be modeled as an MMPP/G/1 queue. A closed-form expression for the

Laplace transform of the virtual waiting time of a MMPP/G/1 queue is given in [68].
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6.5.2 Admission Control via Phase-Type Bounds

We consider the scenario shown in Fig. 6.1, in which five statistically independent traffic

flows Ai, i = 1, · · · , 5 arrive on input links with capacity Cin to a multiplexer with constant

service rate C. All flows are identically distributed 2-state MMPPs characterized by Poisson

arrival rates λ1 = 0.75 and λ2 = 0.5 and rate matrix given by r1 = 2 and r2 = 1. Hence,

the average arrival rate of each flow is 0.583 packets/unit of time. All packet lengths are

assumed to be exponentially distributed with mean µ−1 = 1. The input link capacity is set

as Cin = 5 and the multiplexer has a constant rate server of rate C = 5.

The superposition of traffic flows Ai, i = 1, . . . , 5, is a 6-state MMPP whose parameter

can be determined using (6.13). With the 6-state MMPP as the input traffic, the multiplexer

can be modeled as an MMPP/M/1 queue. Therefore, a closed-form solution for the virtual

waiting time distribution at the multiplexer can be determined using results from [68].

The orange curve in Fig. 6.2 shows the tail distribution of the incurred delay in this case.

Using definition (6.1), a phase-type bound can be obtained for each input traffic stream

by considering the virtual waiting time distribution of a 2-state MMPP/M/1 queue. Using

results from [68], this distribution has the form of an hyperexponential distribution. For

this scenario, the procedure for fitting a traffic flow to a phase-type traffic descriptor (see

Section 6.2.1) can be bypassed. We shall set the parameter ρ equal to mean rate of the

MMPP, i.e., 0.583. In this case, the phase-type bounding parameters of Ai, for i = 1, . . . , 5

can be chosen to exactly match the tail of the workload distribution. Thus, we can assume

T =∞, and we obtain a = 0.583,

π = [0.0.9982, 0.0018], Q =

−0.413 0

0 −0.858

 . (6.16)

Since the traffic flows are MMPPs, they automatically satisfy the derived phase-type

bounds and hence do not need to be regulated, although (σ∗, ρ) regulators are shown in

Fig. 6.1 for the general case. Using the phase-type descriptor in (6.16), and Theorem 6.4.1,
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Figure 6.3: Statistical multiplexing gain via MGF traffic envelopes.

the phase-type descriptor of the aggregate arrival traffic can be derived. In this case, the

aggregate traffic is characterized by a phase-type descriptor with a 92-state phase-type

parameter. In this example, the approximation procedure described in Section 6.4.1 to

limit the number of phases in the phase-type descriptor was not performed. Using this

phase-type descriptor for the aggregate traffic, a bound on the delay, as shown in Fig. 6.2,

can be derived via Theorem 6.4.2. The blue curve in Fig. 6.2 shows the bound on the delay.

From Fig. 6.2 the phase-type bounds can be used to provide the following stochastic delay

guarantee: P{D ≥ 5} < 10−3. The output link utilization in this case is 5(0.583)/C = 0.583.

To compare the stochastic delay guarantee with a deterministic guarantee, such as that

provided by the (σ, ρ) characterization of Cruz [24], we can increase the value of C such

that P{D ≥ 5} is close to zero, say 10−10. As shown in Fig. 6.2, we can derive the

exact tail probability P{D ≥ 5} for every C. By increasing the value of C, we have that

P{D ≥ 5} ≤ 10−10 when C > 8.5. Therefore, the link utilization that can be achieved when

a deterministic guarantee is provided can be most 5(0.583)/8.5 ≈ 0.34.
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6.5.3 Admission Control via MGF Traffic Envelope

As mentioned in Section 6.2.2, an advantage of the MGF traffic envelope representation

is that it can capture statistical multiplexing gain. Here, we shall consider a discrete-time

Markov on-off fluid flow as a model for traffic flows. Such a process consists of an underlying

discrete-time 2-state Markov process. In state 1 (On-state) the source generates a constant

fluid flow of packets at rate r and in state 2 (Off-state), the source does not generate packets.

The underlying Markov process has transition probability matrix P given by

P =

p11 p12

p21 p22

 , (6.17)

where pij for i, j = 1, 2 are the transition probabilities from state i to state j. The steady-

state probability of states On and Off are given, respectively, by

pon =
p12

p12 + p21
, poff =

p21
p12 + p21

. (6.18)

The mean arrival rate of the process is ponr. This process is also characterized by a burst

parameter β = 1/p12 + 1/p21. According to [35], the MGF traffic envelope of the Markov

On-Off process is given by σ̂(θ) = 0 and ρ̂(θ) =

1

θ
ln

(
p11+p22e

θr+
√
(p11+p22eθr)2−4(p11+p22−1)eθr

2

)
, (6.19)

for θ > 0. For the special case of a memoryless On-Off process, we have p11 = p21 and

p22 = p12. In this case, pon = p22 and the MGF traffic envelope simplifies to the form

σ̂(θ) = 0 and

ρ̂(θ) =
1

θ
ln
(
pone

θr + 1− pon
)
, θ > 0. (6.20)
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Consider a multiplexer with constant rate C. Suppose a maximum of M identically

distributed and statistically independent input Markov on-off fluid flows can be supported

at the multiplexer while satisfying (6.8) for some specific d and ϵ. We are interested in

evaluating the number of admissible flows per unit capacity, given by M/C, as C increases.

As an example, we shall assume that each Markov on-off fluid flow, Ai, for 1 ≤ i ≤ M ,

has average rate ponr = 0.1, peak rate r = 1, and burst parameter β = 300. Each Markov

on-off fluid flow can be characterized by an MGF traffic envelope (σ̂(θ), ρ̂(θ)), which can be

enforced by a regulator, as discussed in Section 6.2.2. In this case, ρ̂i(θ) for 1 ≤ i ≤ M , is

given by (6.19), where θ > 0 is a free parameter. Also as mentioned before, σ̂i(θ) = 0 for

1 ≤ i ≤M .

According to Theorem 6.2.1, the aggregate traffic process, A = A1+A2+. . .+AM can be

characterized by the MGF parameter ρ =Mρ̂1(θ) and σ̂ = 0. The admission control scheme

imposes a stochastic delay constraint of the form (6.8) with d = 100 and ϵ = 10−3. For each

value of M and C, by using Theorem 6.4.3, and by optimizing the free parameter θ > 0 we

can derive a statistical bound on the delay for d = 100. If the derived statistical bound on

the delay is less than ϵ, then such a choice of M and C is acceptable. For each value of C,

we try to find the maximum value of acceptable M such that the desired statistical bound

on the delay is satisfied.

With mean rate allocation, 1/0.1 = 10 flows can be supported per unit capacity, whereas

with peak rate allocation, only one flow can be supported per unit capacity. By performing

admission control according to the MGF bound parameters, statistical multiplexing gain is

achieved as C increases, as shown in Fig. 6.3. In particular, as C increases, the number of

admissible flows per unit capacity, M/C increases and approaches the mean rate allocation

of 10 flows per unit capacity. This shows that statistical multiplexing gain is achieved.
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6.6 Conclusion

We presented a practical framework for providing stochastic delay guarantees based on

results from stochastic network calculus. Key elements of our approach are the phase-type

traffic bound, Chapter 3, the MGF traffic envelope [35], a method for fitting a traffic flow

to a phase-type bound, Chapter 4, stochastic traffic regulators to enforce compliance of a

traffic flow to a negotiated traffic descriptors, Chapter 5, and an admission control scheme.

Each flow characterizes its traffic process by a phase-type traffic descriptor, which can be

determined using the procedure developed in Chapter 4. Similarly, an MGF traffic envelope

can be determined for each traffic flow. Both types of traffic descriptors are enforced by

stochastic regulators and are used in the proposed admission control scheme.

Our numerical study showed that much higher traffic utilization can be achieved com-

pared to the deterministic (σ, ρ) framework, while providing a stochastic delay guarantee.

Moreover, even higher utilization can be achieved by taking into account statistical mul-

tiplexing gain. The main contribution of this work is to show how results from stochastic

network calculus can be applied in a practical framework to provide performance guaran-

tees. In ongoing work, we are extending the proposed framework to multi-hop networking

scenarios.
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Chapter 7: Traffic Workload Envelope for Network

Performance Guarantees with Multiplexing Gain

Stochastic network calculus involves the use of traffic bounds to make admission control

and resource allocation decisions for providing end-to-end quality-of-service guarantees. To

apply network calculus in practice, the traffic bounds should: (i) be readily determined for

an arbitrary traffic source, (ii) be enforceable by traffic regulation, and (iii) yield statistical

multiplexing gain. Existing traffic bounds typically satisfy at most two of these properties.

The traffic envelope based on the moment generating function (MGF) of the arrival process

satisfies only the third property. We propose a new traffic envelope, refereed to as ‘ We

show that the traffic workload envelope satisfies all three properties and propose a frame-

work for a network service that provides stochastic delay guarantees. We demonstrate the

performance of the traffic workload envelope with two bursty traffic models: Markov on-off

fluid and Markov modulated Poisson Process (MMPP). Parts of the work in this chapter

were published in [59].

The remainder of this chapter is organized as follows. Section 7.1 provides an introduc-

tion and motivation about traffic workload envelope for network performance guarantees

with multiplexing gain. Section 7.2 provides relevant background on traffic bounds and net-

work calculus. In Section 7.3, we introduce the W-envelope and establish its key properties.

In Section 7.4, we outline a framework, based on the W-envelope, for providing delay guar-

antees. The W-envelopes for two widely used traffic models are obtained in Section 7.5 and

numerical examples are presented in Section 7.6. The chapter is concluded in Section 7.7.
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7.1 Introduction

Provisioning quality-of-service (QoS) guarantees in a resource-efficient manner remains a

challenging, yet important open problem for future networking. To this day, the Internet

does not have the capability to provide end-to-end delay guarantees, which are required

for time-critical multimedia applications. The packet-switching paradigm of the Internet

enables very efficient network resource utilization due to statistical multiplexing, but makes

provisioning for performance guarantees extremely challenging. The difficulties in achieving

delay guarantees in packet-switched networks lie in how to bound bursty traffic, enforce such

bounds, and achieve statistical multiplexing gain using these bounds.

Stochastic network calculus is a theoretical framework for leveraging the statistical char-

acteristics of traffic for efficient resource allocation while providing end-to-end QoS guaran-

tees in the form of stochastic delay bounds. As yet, howewver, stochastic network calculus

has not been successfully applied to practical networks. To apply stochastic network calcu-

lus in practice, it is necessary: 1) to fit a given flow to a suitable traffic bound on the user

side; 2) to enforce the traffic bound on the network side; 3) to achieve statistical multiplex-

ing gain using the traffic bound. If traffic flows can be characterized by traffic bounds that

are enforceable by the network, results from stochastic network calculus can be applied to

perform admission control, which enables provisioning for end-to-end QoS guarantees. To

our knowledge, such a traffic characterization is lacking in the networking literature.

Various traffic bounds have been proposed in conjunction with stochastic network calcu-

lus. The traffic arrival envelope [22], which we refer to as the A-envelope, imposes a bound

on the moment generating function (MGF) of the traffic arrival process. An important fea-

ture of the A-envelope, in contrast to other traffic bounds such as the stochastically bounded

burstiness (SBB) and its variants [85,99], is that significant statistical multiplexing gain can

be achieved for a large number of independent flows. On the other hand, characterizing

an arbitrary traffic source by an A-envelope is not straightforward since it is based on the

traffic arrival process, which increases without bound. For a similar reason, the A-envelope

is not amenable to traffic regulation. Thus, the A-envelope fails as a practical traffic bound
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with respect to the first two requirements given above.

The main contribution of this chapter is a new traffic bound, referred to as the W-

envelope, which meets the three requirements for practical application of stochastic network

calculus to achieve end-to-end quality-of-service. The W-envelope is a bound on the MGF

of the workload process that results from offering the traffic to a constant rate server.

The stationarity and ergodicity of the workload process facilitates characterization of an

arbitrary traffic source in terms of the W-envelope traffic bound. In addition, a traffic

regulator can be designed (see Chapter 5) to enforce conformance of a traffic flow to a given

W-envelope parameter. We demonstrate through numerical examples with bursty traffic

models that admission control based on W-envelopes can also achieve multiplexing gain.

7.2 Background and Motivation

We shall refer to a traffic process A(t), which represents the number of arrivals in the interval

(0, t]. The time parameter t is assumed continuous, but our results are also applicable to

the discrete-time case. In this section, we discuss existing stochastic traffic bounds that are

most relevant to our approach.

7.2.1 Stochastically Bounded Burstiness

In the exponentially bounded burstiness (EBB) concept of Yaron and Sidi [96], the tail

distribution of the arrival process is bounded by an exponential function. The EBB was

later generalized to the SBB by Starobinski and Sidi [85]:

Definition 7.2.1 (SBB). A traffic process A(t) is said to be stochastically bounded bursty

(SBB) with upper rate ρ and bounding function f(σ) ∈ F if, for all t ≥ 0 and 0 ≤ τ < t,

and all σ ≥ 0,

P {A(τ, t)− ρ(t− τ) ≥ b} ≤ f(b), (7.1)

where A(τ, t) := A(t) − A(τ) is the amount of traffic that arrives in the interval [τ, t),

F is defined as the family of functions such that for every n, b ≥ 0, the n-fold integral
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(
∫∞
b du)nf(u) is bounded.

A traffic process is EBB if it is SBB with a bounding function of the form f(b) = αe−θb,

where α, θ ≥ 0.

The SBB was further extended in [51,99] with the concept of generalized stochastically

bounded burstiness (gSBB). Let

Wρ(t) := max
0≤τ≤t

{A(τ, t)− ρ(t− τ)} , (7.2)

denote the virtual workload process (or workload) of a queue with input traffic A(t) and

constant service rate ρ.

Definition 7.2.2 (gSBB). The arrival process A(t) is generalized stochastically bounded

bursty (gSSB) with upper rate ρ and bounding function f(σ) ∈ BF if, for all t ≥ 0 and all

σ ≥ 0,

P {Wρ(t) ≥ σ} ≤ f(σ), (7.3)

where BF is the family of positive, non-increasing functions.

Significantly, gSBB is defined in terms of the virtual workloadWρ(t), rather than the arrival

process A(t). If the rate ρ exceeds the average arrival rate, the constant service rate queue

will be stable and in this case, Wρ(t) will be a stationary and ergodic process. This key

property of the workload process was exploited in Chapter 4 to develop a method for fitting

a given traffic source to a particular gSBB bound in the form of a phase-type distribution,

which generalizes an exponential bounding function. Importantly, the stationarity and

ergodicity of Wρ(t) was used in Chapter 5 to design a stochastic traffic regulator, which can

enforce conformance of a given traffic source to an arbitrary gSBB bounding function.

Next, we characterize the superposition of gSBB traffic processes by extending [51,

Theorem 4] to N traffic sources.

Theorem 7.2.1. Suppose the traffic processes Ai(t), 1 ≤ i ≤ N , are independent, and are

gSBB with upper rate ρi and bounding function fi(σ). Then the aggregate arrival process
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A(t) =
∑N

i=1Ai(t) is also gSBB with upper rate ρ =
∑N

i=1 ρi and bounding function g(σ)

defined as follows:

g(σ) = 1− F1✩F2✩ · · ·✩FN (σ), (7.4)

Fi(σ) = 1− fi(σ), i = 1, . . . , N, (7.5)

where ✩ denotes Stieltjes convolution and is defined by

F1✩F2(x) :=

∫ x

0
F1(x− y)dF2(y). (7.6)

7.2.2 Moment Generating Function Traffic Envelope

As the number of traffic sourcesN increases, computation of the N -fold Stieltjes convolution

in (7.6) becomes impractical for real-time admission control. An alternative traffic bound

based on the moment generating function (MGF) of the arrival process was proposed by

Chang [22].

Definition 7.2.3. The MGF traffic arrival envelope (A-envelope) of the traffic process A(t)

is given as follows [35]:

E
[
eθA(τ,t)

]
≤ eθ[ρ(t−τ)+σ], (7.7)

where σ ≥ 0 and

ρ > lim
t→∞

A(t)

t
(7.8)

are functions of a free parameter θ ≥ 0.

Equivalently, from (7.7), the A-envelope can be expressed as follows:

E
[
eθ[A(τ,t)−ρ(t−τ)]

]
≤ eθσ. (7.9)
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By applying the Chernoff bound, one can show (cf. [35]) that a source with A-envelope

parameterized by (σ(θ), ρ(θ)) is also EBB/SBB with upper rate ρ(θ) and bounding function

f(b) = eθσ(θ)e−θb.

7.2.3 Statistical Multiplexing and Admission Control

Suppose that a set of statistically independent and identically distributed traffic flows is

offered as input to a constant service rate queue (i.e., the multiplexer) of capacity C. We

consider an admission control scheme, which admits traffic flows subject to a quality-of-

service (QoS) constraint:

P{D > d} < ϵ, (7.10)

where D represents the steady-state delay through the multiplexer, d is a delay threshold,

ϵ is a small positive number.

An important feature of the A-envelope is that it leads to a relatively straightforward

admission control scheme that can achieve statistical multiplexing gain for a given QoS

constraint. For the SBB/gSBB families of traffic bounds, statistical multiplexing gain can be

achieved in principle, but admission control requires convolution of the bounding functions,

which is not scalable to large numbers of flows.

7.3 Workload-based Traffic Envelope

In this section, we develop an MGF traffic envelope based on the workload process Wρ(t)

given in (7.2), which we refer to as the W-envelope.

7.3.1 Definition and basic properties

Definition 7.3.1. The W-envelope of traffic process is given as follows:

E
[
eθWρ(t)

]
≤ eθσ(θ), (7.11)
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where Wρ(t) is defined in (7.2) and σ(θ) is a function of the free parameter θ ≥ 0 such that

σ ≥ 0 and (7.8) holds.

The W-envelope is more suitable for traffic characterization and traffic regulation than

the A-envelope because it is based on Wρ(t), which in practice will have a steady-state

distribution, as opposed to A(t).

Theorem 7.3.1. Suppose a traffic process A has a W-envelope with parameter (σ, ρ) as

in (7.11). Then it is also characterized by an A-envelope with parameter (σ, ρ) as in (7.9).

E
[
eθ[A(τ,t)−ρ(t−τ)]

]
≤ eθσ. (7.12)

Proof. For 0 ≤ τ ≤ t,

A(τ, t)−ρ(t− τ) ≤ max
0≤τ≤t

[A(τ, t)−ρ(t− τ)]=Wρ(t). (7.13)

Therefore,

E[eθ[A(τ,t)−ρ(t−τ)]] ≤ E[eθWρ(t)], (7.14)

and the result follows immediately.

Theorem 7.3.1 implies that a traffic regulator that enforces a W-envelope with pa-

rameter (σ, ρ) also enforces an A-envelope with the same parameter. Consider N traffic

processes A1(t), . . . , AN (t). Assume each process Ai(t) is characterized by a W-envelope of

the form (7.11) specified by parameters (σi, ρi), i.e.,

E
[
eθWρi (t)

]
≤ eθ[ρi(t−τ)+σi], i = 1, . . . , N. (7.15)
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Let

A(t) =

N∑
i=1

Ai(t). (7.16)

denote the aggregate traffic process. We will make use of the following inequality.

Lemma 7.3.1.

Wρ(t) ≤
N∑
i=1

Wρi(t). (7.17)

Proof.

Wρ(t) = max
0≤τ≤t

[A(τ, t)− ρ(t− τ)]. (7.18)

Let

τ∗ = argmax0≤τ≤t[A(τ, t)− ρ(t− τ)], (7.19)

such that

Wρ(t) = A(τ∗, t)− ρ(t− τ∗). (7.20)

Then, clearly,

Ai(τ
∗, t)− ρi(t−τ∗) ≤ max

0≤τ≤t
[Ai(τ, t)− ρ(t−τ)], (7.21)

for i = 1, . . . , N , Summing both sides of (7.21) for i = 1, . . . , N , we obtain

A(τ∗, t)−ρ(t− τ∗) ≤
N∑
i=1

max
0≤τ≤t

[Ai(τ, t)−ρi(t−τ)]. (7.22)
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Applying (7.20) and the definition of Wρi(t) in the above inequality, we obtain

Wρ(t) ≤
N∑
i=1

Wρi(t). (7.23)

Theorem 7.3.2. Let Wρ(t) denote the workload at a multiplexer with constant service rate

ρ with aggregate input traffic A(t) given by (7.16). Each of the traffic processes Ai(t) has

a W-envelope given by (7.15). Let σ =
∑N

i=1 σi and ρ =
∑N

i=1 ρi. Then, the traffic process

A has a W-envelope of the form (7.11) with parameter (σ, ρ).

Proof of Theorem 7.3.2. We have

E
[
eθWρ(t)

]
= E

[
eθmax0≤τ≤t[A(τ,t)−ρ(t−τ)]

]
. (7.24)

Applying lemma 7.3.1, we have

E
[
eθWρ(t)

]
≤ E

[
eθ

∑N
i=1 Wρi (t)

]
= E

[
N∏
i=1

eθWρi (t)

]
. (7.25)

Next, we use induction to show that

E

[
N∏
i=1

eθWρi (t)

]
≤

N∏
i=1

eθσi = eθ
∑N

i=1 σi . (7.26)

Note that (7.26) holds trivially when N = 1. Suppose that (7.26) holds for N = k ≥ 1. Let

Y (t) =
k∑

i=1

Wρi(t). (7.27)
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Applying the Cauchy-Schwarz inequality for random variables, we have

E
[
eθY (t) · eθWρk+1

(t)
]
≤
(
E
[
e2θY (t)

]) 1
2 ·
(
E
[
e2θWρk+1

(t)
]) 1

2
. (7.28)

We have

E
[
eθWρk+1

(t)
]
≤ eθσk+1 (7.29)

for all θ > 0. By the induction hypothesis.

E
[
eθY (t)

]
= E

[
k∏

i=1

eθWρi (t)

]
≤ eθ

∑k
i=1 σi . (7.30)

Applying (7.29) and (7.30) into (7.28), we obtain

E

[
k+1∏
i=1

eθWρi (t)

]
≤ eθ

∑k
i=1 σi ·eθσk+1 = eθ

∑k+1
i=1 σi . (7.31)

This establishes (7.26) by the principle of induction. Combining (7.25) and (7.26), we obtain

(7.11).

Applying Theorem 7.3.2, we see that the A-envelope of the aggregate process A(t)

satisfies

E
[
eθ[A(τ,t)−ρ(t−τ)]

]
≤ E

[
eθWρ(t)

]
≤ eθσ. (7.32)

Thus, a traffic regulator that enforces the individual W-envelope of the traffic stream Ai(t)

according to the parameter (σi, ρi), for i = 1, . . . , N , enforces both the A-envelope and W-

envelope of the aggregate process A according to the parameter (σ, ρ), where σ =
∑N

i=1 σi

and ρ =
∑N

i=1 ρi.
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7.4 Framework for Providing Delay Guarantees

We outline a framework for providing stochastic delay guarantees using the W-envelope

consisting of three components: traffic characterization, traffic regulation, and admission

control.

7.4.1 Traffic Characterization

Consider a traffic process A that is gSBB with upper rate ρ and bounding function f(σ).

The following theorem1, provides a characterization of the W-envelope of A.

Theorem 7.4.1. Let traffic process A be gSBB with upper rate ρ > 0 and bounding function

f(σ) and assume that the workload process Wρ(t) is upper bounded by σmax. Then A has

W-envelope (σ(θ), ρ) given by

σ(θ) =
1

θ
ln [1 + θC(θ)], (7.33)

where,

C(θ) =

∫ σmax

0
f(y)eθydy, (7.34)

and θ ≥ 0 is a free parameter.

To prove this theorem we use the following lemma.

Lemma 7.4.1. Let X be a nonnegative random variable taking values in the interval [a, b],

where 0 ≤ a < b <∞. Then

E[X] = a+

∫ b

a
P{X > x} dx. (7.35)

1The proof is omitted due to space constraints.

161



Proof. The expectation of a nonnegative random variable X can be computed as fol-

lows (e.g., [55, Eq. (4.11)]):

E[X] =

∫ ∞

0
P{X > x} dx. (7.36)

By partitioning the integral into three intervals [0, a), [a, b), and [b,∞), (7.35) follows readily

from (7.36).

Proof of Theorem 7.4.1. Let X = eθWρ(t). Then

P{Wρ(t) = 0} = P{X = 1} > 0

and X satisfies the conditions of Lemma 7.4.1 with a = 1 and b = eθσmax . Using Defini-

tion 2.1.5,

P
{
eθWρ(t)>x

}
=P

{
Wρ(t)>

1

θ
lnx

}
≤f

(
1

θ
lnx

)
. (7.37)

Applying (7.37) in (7.35), we have

E
[
eθWρ(t)

]
= 1 +

∫ b

1
P
{
eθWρ(t) > x

}
dx

≤ 1 +

∫ b

1
f

(
1

θ
lnx

)
dx

= 1 + θ

∫ σmax

0
f(y)eθy dy = 1 + θC(θ). (7.38)

Using (7.38) we can derive σ(θ) as given by (7.33).

In Chapter 4, an efficient method for fitting an arbitrary traffic source to a gSBB is de-

veloped. Given a gSBB characterization of a traffic process, a W-envelope characterization

can then be obtained using Theorem 7.4.1.
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7.4.2 Traffic Regulation

Using the gSBB traffic regulator developed in Chapter 5, and Theorem 7.4.1, the network

can regulate an arbitrary traffic process A such that it conforms to a negotiated W-envelope

parameter (σW , ρW ), as defined in (7.11), where σW is a functions of the free parameter θ ≥

0. Through the relationship between gSBB bounding function, f(σ) and the desired σW (θ)

obtained using Theorem 7.4.1, we find the required f(σ) for the gSBB characterization.

Then, using the gSBB traffic regulator in Chapter 5, the traffic flow can be forced to

conform to a gSBB bound with bounding function f(σ). The desired ρW will be used in

the gSBB traffic regulator, which will force the traffic flow to conform to the negotiated

W-envelope parameter (σW , ρW ).

7.4.3 Admission Control

Consider a set of statistically independent and identically distributed traffic flows is offered

as input to a constant service rate queue (i.e., the multiplexer) of capacity C. We consider

an admission control scheme, which admits new traffic flows subject to the following quality-

of-service (QoS) constraint:

P{D > d} < ϵ. (7.39)

Suppose a set of N independent traffic flows is characterized by W-envelope parameters

(σWi , ρWi), i = 1, . . . , N , such that ρW :=
∑N

i=1 ρWi < C. Almost surely,

Q(t) =WC(t) ≤WρW (t), (7.40)

where Q(t) denotes the queue size at the multiplexer. For a FCFS server, D(t) = Q(t)/C;

hence,

P{D(t) ≥ d} ≤ P{WρW (t) ≥ d C} ≤ eθ(σW−Cd), (7.41)

163



where the last inequality follows from the Markov inequality. In (7.41), the free parameter

θ can be optimized to obtain the best upper bound on P{D > d}. Network calculus results

(cf. [35]) can be used to extend (7.41) to an end-to-end delay guarantee for flows traversing

multi-hop paths.

7.5 Workload Envelope for Two Traffic Models

We now consider the workload envelopes for Markov fluid models and Markov modulated

Poisson Processes (MMPPs).

7.5.1 Markov Fluid Model

We consider an Markov on-off fluid model, which consists of an underlying Markov chain

with two states: 0 (off) and 1 (on) [6]. In the on state, the source generates fluid at a

constant rate of one unit of information per unit time, while in the off state, no fluid is

generated. The sojourn time in each on state is exponentially distributed with mean one,

while that in each off state is exponentially distributed with mean λ−1.

An A-envelope for a Markov on-off fluid can be obtained from the minimum envelope

rate defined in [22]. We shall use the A-envelope given by (σA = 0, ρ = a∗(θ)), where a∗(θ)

is the minimum envelope rate given by [22, Eq. (46)] (with µ = ν = 1):

a∗(θ) =
[
θ − 1− λ+

√
(θ − 1 + λ)2 + 4λ)

]
/2θ. (7.42)

We now derive the W-envelope for a Markov on-off fluid source. Applying [6, Eq. (46)]

with C = ρW < 1 and N = 1,

P{B > x} = −a0(1′ϕ0)e
z0x, (7.43)
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where 1 is a column vector of all ones, ′ denotes transpose,

z0=
λ(1−ρW )−ρW
ρW (1−ρW )

, ϕ0=

[
1−ρW
ρW

, 1

]′
, a0=

−λ
1+λ

. (7.44)

Note that the traffic utilization for a single Markov on-off fluid source fed to a constant

rate server with rate ρW is U := pon/ρW = λ/(ρW (1 + λ)). The traffic utilization should

be less than 1; otherwise, the workload process will grow without bound. We also pick

ρW < 1 since otherwise, the workload would be almost surely 0. Therefore, λ
1+λ < ρW < 1.

Applying (7.43) and (7.44), for a single source fed into a constant rate server with rate ρW ,

we get

P{B > x} = λ

ρW (1 + λ)
ez0x. (7.45)

Hence,

E
[
eθWρ(t)

]
= 1− λ

ρW (1+λ)
+

λz0
ρW (1+λ)(θ+z0)

, (7.46)

for θ ∈ (0,−z0). Then σW can be derived by equating eθσW and E
[
eθWρ(t)

]
, which yields

σW (θ) =
1

θ
logE

[
eθWρ(t)

]
. (7.47)

7.5.2 MMPP Traffic Model

We next consider a model of bursty traffic generated by a three-state MMPP with parameter

values as in [27, p. 79], which are derived from matching the arrival process of I, P and

B frames in an MPEG-4 encoded video stream to the three states of the MMPP. The

packet sizes are modeled according to a special phase-type distribution referred to as “G3”
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in [27, Table 1] with probability density function (pdf)

fL(l) = p Er(r1, 1/µ1) + (1− p) Er(r2, 1/µ2), (7.48)

where Er(r, 1/µ) denotes the pdf of an r−stage Erlang distribution with mean r/µ. This

phase-type distribution is a mixture of Erlangs, which closely approximates the empirical

distribution of measured Internet packet sizes obtained in [37]. The Laplace transform (LT)

of the packet length pdf is

H̃(s) = p

(
1 +

s

µ1

)−r1

+ (1− p)
(
1 +

s

µ2

)−r2

. (7.49)

Suppose N independent MMPP traffic sources are offered as input to a multiplexer with

capacity C. Let Λi and Ri denote the rate matrix and generator matrix of the ith source,

i = 1, . . . , N . Then the input traffic is an MMPP with arrival matrix and rate matrix given

by [36]

Λ = Λ1 ⊕ . . .⊕ΛN and R = R1 ⊕ . . .⊕RN ,

respectively, where ⊕ represents the Kronecker sum. When the service times are indepen-

dent and generally distributed, the resulting queue is denoted by MMPP/G/1.

The distribution of the virtual waiting time V (t) in steady-state can be obtained from

results in [69, 82] for a MAP/G/1 queue, since an MMPP is a special case of a Markovian

Arrival Process (MAP). Assuming that the service rate of the queue is normalized to one,

the LT of the steady-state virtual waiting time pdf of an MMPP/G/1 queue is given by [82]

Ṽ (s) = s(1− γ)g[sI +D(H̃(s))]−11, (7.50)

where γ = λavg/µavg is the utilization of the queue, λavg is the average packet arrival rate,

µ−1
avg is the mean packet length, and H̃(s) is given in (7.49). The matrix function D(z)
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is given by D(z) = D0 + D1z, where D0 = R − Λ and D1 = Λ. The row vector g is

the invariant probability vector associated with the stochastic matrix G defined in [69, Eq.

(22)], i.e., g is the solution to

gG = g, g1 = 1. (7.51)

By relating the virtual waiting time for the MAP/G/1 system considered in [69] to the

workload of the desired system, with server rate C, we obtain the LT of the workload pdf

as follows:

W̃ (s) = sC(1− γ/C)g[sCI +D(H̃(s))]−11. (7.52)

Using (7.52), with C = ρW and the MMPP parameter, we can derive the W-envelope

parameter σW as follows:

σW (θ) =
1

θ
logE

[
eθWρW

(t)
]
=

1

θ
log W̃ (−θ). (7.53)

7.6 Numerical Examples

Using the analytical results from Section 7.5, we numerically investigate the performance

of the W-envelope for particular Markov fluid and MMPP traffic sources.

Markov Fluid Model

Let M denote the maximum number of Markov on-off fluid sources that can be supported

at a multiplexer with capacity C. The statistical multiplexing gain can be quantified by

ratio g = M/C. Under peak rate allocation, the number of sources that can be supported

is Mp = C and in this case, the multiplexing gain is gp = 1. Under mean rate allocation,

the workload at the multiplexer will grow without bound, but the number Mm = C/pon =

C(1+λ)/λ provides an upper bound on the number of sources that can be supported under
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Figure 7.1: Statistical multiplexing gain vs. C using A-envelope and W-envelope: pon = 0.1,
d = 100, ϵ = 10−3.

any admission control policy, and we define gm :=Mm/C = (1 + λ)/λ. In general,

g ∈ [gp, gm) =

[
1,

1 + λ

λ

)
. (7.54)

Fig. 7.1 shows the statistical multiplexing gain under the A-envelope and W-envelope

admission control policies when the QoS constraint (7.39) is specified by ϵ = 10−3 and

d = 100. The duty cycle of each on-off source is given by pon = 0.1. The achievable gain

curve is derived from the result in [6, Eq. (46)]. As shown in Fig. 7.1, both policies achieve

high levels of multiplexing gain even for moderate values of the capacity C.

MMPP Bursty Traffic Model

Under a mean rate allocation scheme, for this traffic model, the number Mm = C/γ =

Cµavg/λavg provides an upper bound on the number of sources that can be supported

under any admission control policy, and we define gm := Mm/C = µavg/λavg. The gain g

of a general policy satisfies g ≤ gm.

To model a bursty traffic source, the MMPP parameter values are chosen according
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Figure 7.2: Statistical multiplexing gain vs. C using W-envelope for MMPP bursty traffic:
d = 4 ms, ϵ = 10−3.

to [27, p. 79], with arrival matrix Λ = diag{116, 274, 931} in units of [packets/s] and rate

matrix

R =


−0.12594 0.12594 0

0.25 −2.22 1.97

0 2 −2

 (7.55)

in units of [s−1]. The packet length parameters in (7.48) are set as p = 0.54, r1 = r2 = 5,

µ−1
1 = 5.2 bytes, µ−1

2 = 191.2 bytes. This Erlang mixture distribution closely approximates

the empirical distribution of measured Internet packet sizes obtained in [37]. The average

packet length is 454 bytes, which yields an average bit rate of 1.24 Mbps.

Fig. 7.2 shows the multiplexing gain under the W-envelope policy when the QoS con-

straint (7.39) is specified by ϵ = 10−3 and d = 4 ms. Observe that the W-envelope policy

achieves a gain close to the upper bound gm even for moderate values of C. Although

the gain g can decrease slightly with increasing C, the number of admitted flows is always

monotonically increasing.
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7.7 Conclusion

Motivated by the desire to provide performance guarantees for time-critical applications in

future networks, we proposed the W-envelope, a traffic bound on the MGF of the workload

process resulting from offering a traffic source to a constant rate server. In contrast to the

MGF traffic arrival envelope (A-envelope), the W-envelope is amenable to traffic regulation

(Chapter 5), and traffic fitting (Chapter 4). Our numerical results showed that the W-

envelope policy for admission control leads to significant statistical multiplexing gain.

We showed that the W-envelope framework can provide end-to-end network performance

guarantees in a resource-efficient manner. Although our numerical results were based on

analytical W-envelope expressions for Markov fluid and MMPP traffic models, an empirical

W-envelope can be obtained for an arbitrary traffic trace using fitting methods along the

lines of Chapter 4. We also remark that by leveraging network softwarization and virtu-

alization, a service for time-critical applications requiring delay guarantees can be realized

within a network slice using the proposed framework.
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Chapter 8: Available Bandwidth Estimation in the Presence

of Lost Packets

Accurate available bandwidth estimation (ABE) along an end-to-end path in a network is

crucial for a wide range of applications including traffic engineering, multimedia streaming,

and path selection in software-defined wide area networks. Many existing ABE methods

rely on active measurements of end-to-end packet delay using probe packets. In general,

ABE performance degrades severely when packet losses occur, since they can adversely

affect the probing process. Such packet losses may arise, for example, as a result of queue

overflow at a bottleneck link of the path. Most ABE methods assume that no packet losses

occur or simply discard entire trains of probe packets if they contain lost packets. The most

recent class of ABE methods, decreasing-rate methods, are more susceptible to packet loss

as they perform measurement throughout the period of high congestion. We propose a set

of techniques to extend modern ABE methods such as PathCos++, SLDRT or Voyager-D.

These techniques significantly improves estimation accuracy in the presence of packet loss.

The proposed techniques estimates the amount of probe traffic and cross traffic dropped at

the bottleneck to correct the original estimate. It also uses an estimate of the bottleneck

link capacity, but is relatively insensitive to the accuracy of this estimate. Our experimental

results show that even with an inaccurate estimate of the bottleneck capacity, our approach

achieves satisfactory available bandwidth estimates.

The remainder of this chapter is organized as follows. In Section 8.1, we provide an in-

troduction and motivation about available bandwidth estimation problem. In Section 8.2,

we discuss the relevant background and related work in the ABE space. Our ABE formu-

lation to account for packet losses is developed in Section 8.3. In Section 8.4, we describe

the experimental setup of our network testbed and present numerical results. The chapter

is concluded in Section 8.5.
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8.1 Introduction

Accurate and efficient estimation of the available bandwidth (ABW) along an end-to-end

network is important for achieving high performance and reliability for delay sensitive,

bandwidth hungry Internet applications such as multimedia streaming, network gaming,

and virtual/augmented reality. Over the past couple of decades, various ABW estimation

(ABE) methods have been proposed and studied in the literature [41]. Most ABE schemes

apply active measurement techniques using trains of packet probes, also known as chirps.

Chirps induce congestion at bottlenecks along a given path, and the ABW is inferred from

one-way delay measurements of the packet probes.

Since ABE methods rely on delay measurements to infer ABW, most of them ignore

the impact of packet loss by simply discarding chirps containing lost probe packets [65].

Such packet loss can occur when bursty cross traffic fills queues at bottlenecks along a path.

Further, the probe packets themselves may fill the queues when queues are shallow and

chirps are long. Discarding a chirp in response to probe packet losses can be wasteful, as

the remainder of a chirp may still carry information that can be useful for deriving an ABW

estimate. Another source of packet probe loss is modern active queue management (AQM)

techniques, which purposefully induce packet drops to mitigate the impact of congestion

at network queues. Thus, AQM can also impact the performance of ABE methods by

dropping probe packets. Most ABE methods are not formulated to handle packet losses

and consequently implementations prevent ABW estimation when packet losses happen in

the chirp. Therefore, it is usually not possible to perform ABE on paths that have packet

losses, such as paths with small queues or aggressive AQMs.

More recent ABE methods, such as PathCos++ [65], SLDRT [46] and Voyager-D [66]

employ chirps that consist of probe packets sent initially at a fast rate to induce congestion

and then probes sent with decreasing rate. redAs a result, the first part of the chirp train

induces a build-up at the bottleneck queues and the tail part of the chirp, with lower probe

rate, allows the queues to deplete and the congestion to diminish. The ABW estimate is

obtained from measurements taken during the congestion period. This estimation is done
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by looking at two points in the chirp with similar experienced congestion, one during the

first part of the chirp with high rate and the second one during the tail part of the chirp

with low rate, and computing the rate of probe packets between these two points. These

so-called decreasing-rate methods have been shown to be significantly more accurate than

earlier ABE schemes [66]. At the same time, however, the decreasing rate methods are more

sensitive to packet drops and their performance advantage can be greatly compromised in

the presence of packet loss (see Section 8.4.4).

In this chapter, we study the impact of packet loss on decreasing rate ABE methods such

as PathCos++, SLDRT and VOyager-D and propose a set of techniques to address this issue.

Our approach involves two steps. First, the formulation of the estimate is changed to use

the number of received packets, instead of the number of sent packets, to take into account

probe packets lost at the bottleneck. Second, we compute an estimate of the amount of

cross traffic dropped at the bottleneck of given path, and use it to adjust the ABW estimate

obtained from the decreasing ABE methods. This second step relies on an estimate of the

path capacity. We present experimental results obtained on a network testbed, which show

a significant improvement in accuracy of the proposed extension to decreasing-rate methods

in the presence of packet loss. Moreover, the ABW estimates obtained by our method are

relatively insensitive to the accuracy of the path capacity estimate.

8.2 Related Work and Motivation

In this section, we summarize related work most relevant to our proposed ABE approach

and motivate our work.

8.2.1 Available bandwidth estimation

The available bandwidth (ABW) of an individual link is its unused capacity, i.e., the

difference between its capacity and the current amount of traffic using it [81]. The ABW

of a network path is the smallest ABW across its links. PathCos++ [65], SLDRT [46] and

Voyager-D [66] are examples of a class of methods to estimate ABW, which are referred to
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as decreasing-rate methods. They offer much better accuracy than traditional ABW es-

timation (ABE) methods [65], especially in the presence of bursty cross traffic and interrupt

coalescence [66,89].

These methods use active probing, i.e., they send dedicated probe packets to measure

the network path. They are based on the classic Probe Rate Model, which uses the concept

of self-induced congestion [86]. If the rate of probe packets is below the path ABW, the

probe packets experience no queuing delay, whereas if it exceeds the ABW, congestion is

created, and probe packets are queued at the tight link and experience an increase in their

one-way delay (OWD). The various ABE methods mostly differ in the construction of the

chirp train, the sequence of probe packets that is sent, and how the packet OWD values are

processed to obtain an ABW estimate.

PathCos++ [65] was the first method to propose using a chirp train with decreasing

probe rates, by increasing the time between packets. The goal of such a chirp train is to first

congest and then decongest the path, creating a congestion peak. Congestion manifests itself

as a build-up at bottleneck queues. The intuition is that two packets with similar OWDs

usually experience similar congestion, and therefore the probe traffic between those packets

should be congestion-neutral and representative of the ABW. PathCos++ tries to find the

widest spaced pair of packets that are on both sides of the congestion bump and with similar

OWD, and then computes the sending rate of probe packets between these two packets as

the ABW estimate (see Fig. 8.3).

SLDRT [46] also uses a chirp train with a decreasing rate. It searches the point at which

the path becomes decongested, by picking the first packet for which the OWD returns to its

minimum, and then uses the rate of the chirp train up to that point as the ABW estimate.

The main differences with PathCos++ is the exponentially decreasing rate of the chirp train

and the fact that ABE estimates are always done from the first packet of the chirp train.

Voyager-D [66] is derived from PathCos++. Voyager-D introduces a noise threshold

based on the measured OWD noise, and modifies the pair selection to prefer probe pairs

which are above the noise threshold. Voyager-D also adjusts the leading and trailing probes
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to find a pair with less difference in OWD. The chirp train of Voyager-D is designed for

systems with rate adaptation, with reduced density at the edge of the rate window, and has

an exponential decrease like SLDRT, rather than the linear decrease of PathCos++.

8.2.2 TCP and congestion losses

While most ABE methods use packet delay, most TCP congestion algorithms use packet

losses [42], which is usually a more reliable measure of congestion. Since all queues in

the network devices have finite buffer capacity, with enough congestion a given queue can

become full. When a queue is full, tail-drop losses occur, i.e., packets that arrive to a full

queue are discarded. TCP was designed to take advantage of losses to infer congestion and

regulate its sending rate [42].

Relying on tail-drop losses to perform congestion control has the disadvantage that the

bottleneck queue must operate in a nearly full condition, which adds latency and degrades

TCP performance. This phenomenon is called BufferBloat [40]. Active Queue Management

(AQM) [28] solves this by triggering packet losses or ECN (Early Congestion Notification)

signals at early onset of congestion, before the queue builds up. When AQM can not be

used, the queue size may be reduced [45] to minimize latency.

TCP congestion control depends so much on congestion losses that, for good perfor-

mance, link layers must present to TCP a nearly lossless service. Transmission losses at

the link layer may be interpreted by TCP as congestion loss and may induce it to lower

its rate, hindering performance. As a consequence, link layers include various mechanisms

to minimize transmission losses, such as powerful and complex retransmission mechanisms

(ARQ) [32]. Thanks to those mechanisms, the probability that a packet loss is not related

to congestion is very small in actual deployments. We shall assume that nearly all packets

losses are due to congestion.
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8.2.3 ABW estimation and packet losses

Many ABE methods assume that no probe packet is lost during measurement. If a chirp

train contains lost packets, the entire chirp must be discarded and no estimate is gener-

ated [84]. If the congestion created by the ABE cause packet losses at the bottleneck, then

every chirp train needs to be discarded and ABE can never by done on that network path.

PathLoad [48] assumes packet losses are due to congestion, and reacts to losses by reducing

the maximum probing rate, although packet losses are not used in the computation of the

final ABW estimate. NEXT-V2 [79] assumes losses are due to transmission errors at the

link layer, and reacts to losses by interpolating the missing packets, however NEXT-V2 was

not designed to handle congestion losses.

Packet losses are especially problematic for decreasing-rate methods. Those methods

need to generate enough congestion in every chirp train to create a delay bump, making it

more likely that every chirp suffers from congestion losses. Further, they need to measure

packets throughout the full congestion period [65], where congestion losses are clustered

(see Fig. 8.3), so this measurement process will be impacted by congestion losses (Section

8.4.4). Neither PathCos++ nor SLDRT nor Voyager-D are formulated to handle packet

losses [46, 65, 66]. The accuracy of those methods is directly related to the chirp train

length [46], increasing the chirp train length provides improved ABE accuracy in most

cases and can overcome network noises [66]. However, longer chirp trains are more likely to

fill the queues and cause tail-drop or AQM losses, which prevents accurate ABW estimation.

This effectively puts a limit on the accuracy that can be achieved via those methods, and

motivates the need to handle congestion-induced packet losses, so that this limit on chirp

train length can be removed.

8.3 ABE with Lost packets

In this section, we extend the formulation of PathCos++ [65] to account for the potential

loss of probe packets. The formulation of SLDRT [46] is effectively a simplified version of
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PathCos++. Voyager-D [66] is based on PathCos++ and use the same formulation. All

decreasing-rate methods rely on measuring the rate of probe packets over a subset of the

chirp train and therefore can be extended to compensate for potential packet losses using

our extended formulation. Our algorithm is independent of other features of decreasing

methods, such as the construction of the chirp train and how the two points to measure the

rate are chosen. Most additional noise processing techniques, such as mitigation of interrupt

coalescence [89,98], modify the received chirp train prior to application of the ABE method.

Our algorithm operates on the modified chirp train and is therefore also compatible with

such noise pre-processing schemes.

8.3.1 Service time for cross traffic

When a chirp is sent, some packets may be dropped due to queue overflow at any hop of the

path. Such queue overflow is more likely to happen at a bottleneck link. In existing ABE

algorithms, chirps containing lost packets are ignored and not used in the estimation of the

available bandwidth. As stated in [65], end-to-end available bandwidth is defined as the

minimal residual capacity of the links along a path within a certain time interval. We shall

assume only a single bottleneck link on the path that drops the packets due to congestion.

As shown in Section 8.4, our algorithm estimates the ABW accurately in scenarios with

multiple bottlenecks, among which just one bottleneck drops the packets. Cases involving

multiple bottlenecks that drop packets due to congestion at different stages of the chirp

train, however, are not considered in this chapter.

Consider an end-to-end path consisting of N links, denoted as L1, L2, . . . , Lj , . . . , LN ,

where Lj denotes the single bottleneck link that drops the packets due to congestion. From

now on, when we refer to the bottleneck link in our formulation, we mean link Lj . The ca-

pacity of the ith link Li is Ci in bits. Probe packets 1, 2, . . . ,M are sent at times t1, t2, . . . , tM

and are received at times t′1, t
′
2, . . . , t

′
M . Let qik be the queuing delay of packet k at the ith

link, and let di be the propagation delay of the ith link, and s be the probe packet size in
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bits. Then the kth packet is received at time

t′k = tk +
N∑

i=1,i ̸=j

(
qik +

s

Ci
+ di

)
+

(
qjk +

s

Cj
+ dj

)
, (8.1)

Let Tk be the time when the kth probe packet arrives at the bottleneck link. Then,

Tk = tk +

j−1∑
i=1

(
qik +

s

Ci
+ di

)
. (8.2)

Let W (Tk, Tk+1) be the service time spent at the bottleneck link Lj on cross traffic during

time interval [Tk, Tk+1], assuming no cross traffic packet is dropped during this interval.

Then,

W (Tk, Tk+1) =

V (Tk,Tk+1)∑
i=1

csi
Cj
, (8.3)

where V (Tk, Tk+1) is the number of received cross traffic packets during interval [Tk, Tk+1],

and csi is the size of the ith cross traffic packet in bits. A busy period is defined in [65] as

an interval of time during which the queue at the bottleneck does not become idle. If probe

packets k and k+1 are within the same busy period and neither of them is dropped as they

traverse the end-to-end path, the queuing delay of the (k+1)st packet can be expressed as

follows:

qjk+1 = qjk +
s

Cj
+W (Tk, Tk+1)− (Tk+1 − Tk). (8.4)

On the other hand, if probe packets l and m are two consecutively received packets that

have traversed the end-to-end path and all the probe packets l + 1, l + 2, . . . ,m − 1 are

dropped, then

qjm = qjl +
s

Cj
+W ∗(Tl, Tm)− (Tm − Tl), (8.5)
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where W ∗(Tl, Tm) is the service time spent on the portion of the cross traffic that was not

dropped during interval [Tk, Tk+1] at link Lj . Therefore,

W ∗(Tl, Tm) =

V ∗(Tl,Tm)∑
i=1

csi
Cj
, (8.6)

where V ∗(Tl, Tm) is the number of received cross traffic packets which are not dropped

during interval [Tl, Tm], and csi is the size of the ith cross traffic packet.

For two consecutive packets k and k + 1, that are not dropped as they traverse the

end-to-end path, Qb
k denotes the difference between the corresponding queuing delay in the

links after the bottleneck. Therefore,

Qb
k =

N∑
i=j+1

(qik+1 − qik). (8.7)

Let owdk denote the one-way delay of the kth probe. From (8.1)-(8.4) and (8.7), we have

owdk+1−owdk=
s

Cj
+W (Tk, Tk+1)+Qb

k −(tk+1−tk). (8.8)

We extend the definition of Qb
l to denote the difference between the queuing delay in the

links after the bottleneck of the two consecutively received packets l and m, where all the

probe packets l + 1, l + 2, . . . ,m− 1 are dropped along the path. Therefore,

Qb
l =

N∑
i=j+1

(qim − qil). (8.9)

Similar to (8.8), we have

owdm − owdl =
s

Cj
+W ∗(Tl, Tm) +Qb

l − (tm − tl). (8.10)
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In deriving (8.10), we have made the following assumption,

A0 All probe packets that are dropped on the end-to-end path were dropped at the single

bottleneck link that drops packets due to congestion.

Assumption A0 is a valid assumption, as packet losses not caused by congestion are rare

(Section 8.2.2).

As in [65], we take the 4-tuple ⟨tk, t′k, tk+1, t
′
k+1⟩ as one sample of the path. If the

probe packets sent at times tk and tk+1 are within the same busy period and both are

received at the destination of the end-to-end path, we call the sample clean; otherwise, we

call it contaminated. Assuming M probe packets were sent in the same busy period, out of

these M packets some were dropped along the end-to-end path. Let us denote the set of

consecutive packet pairs that have been received at the receiver side of the end-to-end path

as set L. For example, if both the kth and (k + 1)th packet are received at the receiver

side, then (k, k + 1) ∈ L, as shown in Fig. 8.1. On the other hand, if two packets that are

received at the receiver side of the end-to-end path, but all the sent packets between these

two packets are dropped along the end-to-end path, they belong to Lc. For example, if

packet l and m are received at the receiver side of the end-to-end path, but all the packets

l+1, l+2, . . . ,m− 1 are dropped along the path, then (l,m) ∈ Lc. Therefore, by summing

over (8.8) and (8.10) for all of the received packets we obtain

owdM − owd1 = (M − 1− |Lc|) s
Cj

+Wt(T1, TM ) +
N∑

i=j+1

(qiM − qi1)− (tM − t1), (8.11)

where Wt(T1, TM ) is defined as the total service time spent on the cross traffic packets that

were not dropped during the interval [T1, TM ], and is defined as

Wt(T1, TM ) :=
∑

(l,m)∈Lc

W ∗(Tl, Tm)+
∑

(k,k+1)∈L
W (Tk, Tk+1). (8.12)

In deriving Eq. (8.11), packets 1 and M are at the onset and end of the busy period. In
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Figure 8.1: One-way-delay with and without dropped probes, (k, k+1) ∈ L and (l,m) ∈ Lc.

decreasing-rate methods, owd for a chirp has a bump shape as shown in Fig. 8.1. At the

beginning of the chirp, as the probes are being sent at a high rate, congestion will arise

at the bottleneck; hence, owd will increase, until it reaches its maximum value. However,

as the probe rates decrease further and go below the ABW the built-up congestion will

decongest and owd will decrease back to its minimum value. This increase and decrease in

owd is called a bump [65]. When there are tail-dropped packets in the bump, the middle

part of the bump will be flattened. This is explained further using a testbed experiment

in Section 8.4.2. We assume that if two consecutive packets k and k + 1 are both received

at the receiver side of the end-to-end path, no cross traffic packets are dropped in the

interval [Tk, Tk+1] (see Assumption A1 below). As the inter-departure time between two

consecutive probes is very small with respect to scale of the events on the bottleneck link

this assumption is a valid assumption.

8.3.2 Residual bandwidth at bottleneck

The residual bandwidth of the bottleneck link at interval [T1, TM ] can be estimated as

Rj(T1, TM ) = Cj

[
1− W (T1, TM )

TM − T1

]
= Cj

[
1− W (T1, TM )

tM − t1 +
∑j−1

i=1 (q
i
M − qi1)

]
, (8.13)
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where W (T1, TM ) is defined as the total time that would be spent on cross traffic packets,

if no cross traffic packet was dropped at the bottleneck. In the case of no dropped probes

at the bottleneck, W (T1, TM ) = Wt(T1, TM ), and equations (8.11) and (8.13) simplify to

equations (9) and (10) in [65]. However, if some packets, either probes or cross traffics, are

dropped at the bottleneck, we need to estimate W (T1, TM ) from Wt(T1, TM ).

As we can just measure the amount of cross traffic that went through the bottleneck and

was not dropped, to estimate the total cross traffic, we make some simplifying assumptions

as follows:

A1 No cross traffic packets are dropped in the interval [Tk, Tk+1], if both packets k and

k + 1 have traversed the end-to-end path.

A2 The amount of aggregate cross traffic of any interval is proportional to the interval

length.

A3 The probability of packet drop on any interval is equal between probe packets and

cross traffic packets.

A4 There is only a single bottleneck that drops packets.

Note, that while these simplifying assumptions are used to obtain an estimate of the

amount of cross traffic, they by no means lead to the exact value for the total cross traffic,

unless the cross traffic rate is almost constant in the interval [T1, TM ]. In practice, the num-

ber of cross traffic packets between two consecutive probe packets is at maximum only a

few packets; therefore, meaningful variations of cross traffic and queue occupancy are much

longer than an interval between two consecutive packets (for example, for 100 Mb/s, the

interval is around 120 µs) and the quantization does not prevent from a good enough estima-

tion of cross traffic. As is shown in our testbed evaluation 8.4.4, in spite of these simplifying

assumptions, our approach yields an accurate estimate of the available bandwidth.

One method of obtaining an estimate W (T1, TM ) from Wt(T1, TM ), is to simply set

W (T1, TM ) = Wt(T1, TM ). Obviously, when there are dropped packets this assumption is
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not correct. However, utilizing this assumption, if we choose probe 1 and M such that

owdM = owd1, then using (8.11) and (8.13), the available bandwidth can be derived as

Rj(T1, TM ) = Cj

[
1− W (T1, TM )

TM − T1

]
=

(M − 1− |Lc|)
tM − t1

s. (8.14)

In deriving (8.14), as in [65] it is assumed that

j−1∑
i=1

(qiM − qi1) =
N∑

i=j+1

(qiM − qi1) = 0 (8.15)

Equation (8.14) can be further improved if we estimateW (T1, TM ) fromWt(T1, TM ), instead

of simply equating them. Applying assumptions A1 and A2, we have,

∑
l,m∈Lc

W ∗(Tl, Tm) =
∑

l,m∈Lc

(
1− Pdropl

) Tm − Tl
TM − T1

W (TM , T1), (8.16)

where Pdropl is defined as the probability of dropping cross traffic packets during interval

[Tl, Tm]. Under assumption A3, Pdropl is the same for cross traffic packets and probe packets

in the interval [Tl, Tm] and can be derived as

Pdropl =
l −m

l −m+ 1
. (8.17)

Using assumption A2 we have,

∑
(k,k+1)∈L

W (Tk, Tk+1)=

[
1−

T|Lc|
TM − T1

]
W (TM , T1), (8.18)

where T|Lc| is defined as the duration of the intervals for which probe packets are dropped,
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or

T|Lc| :=
∑

(l,m)∈Lc

|[Tl, Tm]| =
∑

(l,m)∈Lc

(Tm − Tl). (8.19)

Using (8.12) and (8.16)-(8.19), we obtain

Wt(T1, TM ) = αLW (T1, TM ), (8.20)

where αL is the success coefficient, defined as

αL := 1−
T|Lc|

TM − T1
+
∑

l,m∈Lc

(
1− Pdropl

) Tm − Tl
TM − T1

. (8.21)

Note that when there are no dropped packets αL = 1. Using (8.20) and (8.21), and choosing

probes 1 and M such that owd1 = owdM , and using (8.15), we have

W (T1, TM ) =
1

αL

[
(tM − t1)− (M − 1− |Lc|) s

Cj

]
. (8.22)

Therefore, the residual bandwidth can be expressed as

Rj(T1, TM ) = Cj

(
1− 1

αL

)
+

(M − 1− |Lc|)
αL(tM − t1)

s (8.23)

Note that Eq. (8.23) simplifies to Eq. (11) in [65] when there are no dropped packets.

However, unlike Eq. (11) in [65], Eq. (8.23), depends on the bottleneck capacity. Hence,

some method is needed to estimate the bottleneck capacity. One of the popular methods

for capacity estimation is pathrate [30]. This method requires sending a train of packet

pairs/groups to estimate the bottleneck capacity utilizing the dispersion of these packets.

Capacity measurement introduces additional overhead, and is typically more intrusive than

modern ABE. However, since capacity is a static value, this needs to be done only once per
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path, as opposed to ABW, which is time-varying. Moreover, numerical results presented

in Section 8.4, show that our ABE algorithm is relatively insensitive to the accuracy of the

bottleneck link capacity estimate.

Note that, according to (8.16) and (8.17), during the flat part of the bump, violations

of assumptions A2 and A3 will effectively cancel out. For example, suppose there is a burst

of cross traffic between probe packets l and m. Therefore, the amount of cross traffic in the

interval [Tl, Tm] is greater than an estimate directly proportional to the interval length and

assumption A2 is violated. In addition, as there is a burst of cross traffic, the probability of

packet drop for cross traffic will also be greater than the corresponding probability for probe

packets and assumption A3 will be violated. Therefore, in (8.16), these two violations will,

in effect, cancel out. A similar argument can be given for the case where the cross traffic

in an interval [Tl, Tm] is less than an estimate directly proportional to the interval length.

8.4 Numerical Study

We use a testbed to evaluate our algorithm and compare it with PathCos++, Voyager-D

and SLDRT. The evaluation is done on a testbed, as simulations fail to account for real

world OWD noise [89].

8.4.1 Testbed configuration

Our testbed consists of 7 Linux-based workstations, as shown in Fig. 8.2. All links L1−L7

are implemented using Ethernet switches, and each link is configured at 1 Gb/s or 10 Gb/s.

We refer to these configurations as the 1 Gb/s or 10 Gb/s testbed, respectively. The

link L5 is set as the bottleneck that drops packets. Note that, having cross traffic going

through the bottleneck limits its available bandwidth and therefore induce it to act as

a bottleneck. In our experiments, the bottleneck capacity is set at 100 Mb/s, 1 Gb/s or

10 Gb/s. The Ethernet NICs on the nodes are a mix of Intel e1000e, Intel IGB and Broadcom

TG3. For the 10 Gb/s testbed, the NICs are Intel X710. Nodes r2−r4 are configured as
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Table 8.1: Experiment parameters

Parameters Description

B capacity Bottleneck link capacity:
100Mb/s, 1Gb/s, or 10Gb/s

R capacity Rest of the links’ capacity in testbed:
1Gb/s or 10Gb/s

AQM [parameters] AQM type: Pfifo [number of packets],
CoDel [number of packets,

target (ms), interval window (ms)]
PI2 [number of packets, target (ms)]

bn (bn delay, bn drop) Total # bottlenecks
(# bottlenecks that just add delay to OWD
, # bottlenecks that drop packets)

ct Type of cross traffic at bottleneck:
5UDP (bursty) or 5TCP

u Highest train rate in a chirp train

l Lowest train rate in a chirp train

N # packets in a chirp train

n # chirps in the experiment

p Probe packet size (Bytes)

routers. We use software routers rather than Ethernet switches as they are slower and

more unpredictable when processing packets, generating more OWD noise. This makes

ABE a more challenging process compared to a testbed with hardware routers. On the

router r3 acting as a bottleneck, we configure the output queue towards the bottleneck L5

as a simple FIFO queue, CoDel [74], or PI2 [28] AQM. Configuration of these bottleneck

queues is explained further in Section 8.4.4. Configurable experiment parameters are listed

in Table 8.1.

A dedicated tool is used on s1 to send to d9 a chirp train conforming to PathCos++,

Voyager-D or SLDRT. As listed in Table 8.1, the number of UDP packets in the chirp train

in the experiments is denoted by N , its lowest train rate as l and its highest train rate as u.

The train rate of a probe is the sending rate from the beginning of the chirp train to that

probe, it corresponds to how a decreasing chirp train interacts with a bottleneck. The lowest

and highest train rate are chosen manually so as to cover the range of possible available
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t7

Figure 8.2: Testbed topology for ABE evaluation.

bandwidths. The chirp train is received at d9, and both the relative OWD of each packet

and each packet loss are recorded in sequence, and processed to produce ABW estimates.

Nodes t6−t7 are used to send and receive cross traffic, the cross traffic is generated using a

number of parallel UDP iperf sessions [3] through the bottleneck, which creates traffic with

known bandwidth and micro bursts [66]1. By default, the target cross traffic bandwidth

is equally divided between 5 parallel iperf (version 2.0.12). We measure the capacity of

a network path by flooding it with UDP chirp train traffic using iperf. We compute the

“ground truth” ABW by subtracting from the capacity the amount reported by the iperf

cross traffic sessions injected on the bottlenecks.

8.4.2 Tail-drop and AQM losses

Fig. 8.3a shows the OWD and packet losses recorded in a chirp train when the bottleneck

is a simple FIFO and has a capacity of 95.5 Mb/s. In this example, there is no cross traffic,

however, as the highest rate of the chirp train is 150 Mb/s, link L5 acts as a bottleneck.

In the first phase, the queue which was empty is filling with probe packets, and as a result

the service time of packets increase, which leads to an increase of the OWD. After around

300 packets, the queue becomes full, and the queue operates in tail-drop mode and discards

excess packets. At this point, OWD no longer increases, because the queue can not get any

longer. After around 2100 packets, the probe rate of the chirp train (instantaneous sending

rate between consecutive probes) becomes lower than the bottleneck rate, the queue starts

to shrink, leading to an OWD decrease, and packet losses stop. ABW estimation algorithms

1Other cross traffic such as Poisson or Internet traces cause temporal uncertainty and introduce evaluation
errors [46,66], so are not used.
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(a) FIFO[100p], bn=1(0,1),
B capacity=100Mb/s, cr=0Mb/s,
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(b) CoDel[5ms, 100p], bn=1(0,1),
B capacity=100Mb/s, cr=0Mb/s,
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Figure 8.3: One Way Delay (OWD) and packet losses for PathCos++ chirp train with
various bottleneck configurations.

like PathCos++, estimate ABW by measuring the rate of packets between two points with

equal OWD at start and end of the bump, like the two big orange circles at the bottom of

the bump, and this measurement process is impacted by packet losses.

Fig. 8.3b shows the same experiment when the FIFO is replaced by CoDel [74], a modern

AQM (Section 8.2.2). CoDel triggers a single packet loss around packet 250. Unlike TCP,

PathCos++ does not react to AQM packet losses, so probe packets fill the queue and cause

tail-drops losses, like in the FIFO queue. Once the queue is full, CoDel increases packet

drops to shrink the queue, thus managing to reduce the queue service time and OWD. When

the probe rate is low enough, the queue become small and CoDel stops dropping packets.

Fig. 8.3c shows that PI2 [28] has similar effect on the chirp train.

By design, AQM triggers few packet losses: TCP congestion algorithms react drastically

to packet losses, so only a few losses are needed to reduce congestion in general [28]. Keeping
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the number of packet losses small is advantageous for performance, as the lost packets need

to be retransmitted. In our experience, most AQM techniques cause around 1% extra

packet loss during the onset of congestion. Furthermore, all AQMs average queue delay

over multiple packets and change their probability of drop fairly slowly, this can be seen

as CoDel only drops a single packet during the onset of congestion, but continues dropping

packets even after congestion is reduced.

In our experience, the AQM losses at the onset of congestion are too few to be reliably

measured. In summary, AQM queues produces losses similar to tail-drop losses and for the

purpose of ABE behave like a FIFO queue.

8.4.3 Multiple bottlenecks and Interrupt Coalescence

The combined effect of two active bottlenecks along the path can be seen in Fig. 8.3d.

The capacity of the network path is 10 Gb/s, and the main bottleneck at L5 has 7 Gb/s

of cross traffic. Initially, probes are sent at 15 Gb/s, therefore both the sender s1 and

the main bottleneck at r3 are queuing packets. After packet 400, the main bottleneck is

full and starts dropping packets, however the sender is still queuing packets, resulting in

a slower increase in OWD. From packets 1100 to 2000, the probe rate is below 10 Gb/s,

and the sender queue is gradually reduced to zero (at the point the train rate goes below

10 Gb/s). After packet 2200, the probe rate is below 2.7 Gb/s, causing the losses to stop

and the queue at the main bottleneck to finally deplete. The combined effect of the two

bottlenecks is quite complex and creates a more complex bump than the single bottleneck

case. However, in practice, this does not impact much our techniques (see Section 8.4.4).

Fig. 8.3d also highlight the effect of interrupt coalescence, traffic burstiness and other

OWD noises. From the bursty variations of the OWD, one can assume that assumptions A1,

A2 and A3 are violated (see Section 8.3.2), however this will not impact much our techniques

(see Section 8.4.4). On the other hand, such burtiness does impact the underlying ABE

method [66], so to combat those effects, we use MaxIAT [89] to pre-process the chirp train

prior to ABE.
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Table 8.2: ABE for FIFO queue [Mb/s]

Cross traffic [Mb/s]
PathCos++ 0 20 40 60 80

Original - Eq. (11) 113.3 102.1 88.6 71 45
Compensation I Eq. (8.14) 95.5 79.6 63.4 48.5 28.9
Compensation II Eq. (8.23) 95.6 76.3 55.1 36.3 14.8

True value 95.6 75.6 55.6 35.6 15.6
Dropped packets (%) 15.7% 22% 28.5% 31.6% 35.7%

Table 8.3: ABE for CoDel AQM [Mb/s]

Cross traffic [Mb/s]
PathCos++ 0 20 40 60 80

Original - Eq. (11) 116.5 105.7 93.2 75.2 48.6
Compensation I Eq. (8.14) 95.4 81.8 65.4 51.5 30
Compensation II Eq. (8.23) 95.5 78.6 56 39.2 13.6

True value 95.6 75.6 55.6 35.6 15.6
Dropped packets (%) 18.1% 22.6% 29.8% 31.5% 38.3%

8.4.4 ABE accuracy

We evaluated two versions of our algorithm. The original versions of PathCos++ [65],

Voyager-D [66] and SLDRT [46] discard all the chirp trains with packet losses, in our exper-

iment we forced those methods to ignore packet losses and produce an ABE using Eq. (11)

in [65]. Compensation I is based on (8.14), which only compensates for lost probe pack-

ets, does not use path capacity information, and is therefore simpler. Compensation II

is based on the more accurate formulation in (8.23), which compensates for both lost probe

packets and lost cross traffic, but requires the path capacity. Both compensations are im-

plemented as a post-processing step of each original ABE method. In each experiment,

the same set of received chirp trains is processed using each technique. In addition, Max-

IAT [89] pre-processing is used to handle interrupt coalescence. Our compensations are

a simple extension to the existing ABE methods, and can improve the ABE measured

by each method by providing a framework to compensate for the lost packets during the

measurement process.
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The results for ABE using a single chirp train conforming to PathCos++ are shown in

Tables 8.2 and 8.3. Table 8.2 shows the result of ABE with the different compensations

implemented on 1 Gb/s testbed with bottleneck capacity set at 100 Mb/s. In this exper-

iment, the chirp train length, N , is 5000 packets, the queue at the bottleneck is a FIFO

with buffer capacity 100 packets, the highest rate of the chirp, u, is 150 Mb/s, the lowest

rate, l, is 5 Mb/s, and the rest of the testbed is in its default configuration (Section 8.4.1).

As the cross traffic increases, the available queue size becomes smaller and the number of

packets dropped across the rate measurement period increases. The original formulation

of PathCos++ always overestimates the ABW. When the cross traffic rate is 80 Mb/s,

the PathCos++ estimate is 3 times the actual ABW, this explain why chirp train with

packet losses are normally discarded. When the path is idle, i.e., there is no cross traffic,

Compensation I is sufficient to provide a good ABW estimate. In the presence of cross

traffic, Compensation I improves upon the estimate of PathCos++, but still has a high

error. Compensation II gives an estimate very close to the true ABW under all conditions.

Table 8.3 shows ABE obtained from a single chirp using a CoDel AQM with buffer

capacity 100 packets, target delay 5 ms and interval 10 ms (see [74] for details) at the

bottleneck. The chirp train still uses 5000 packets, and the highest and lowest rate of the

chirp train are as before, i.e., 150 Mb/s and 5 Mb/s, respectively. The results are almost the

same as for the FIFO queue, showing that Compensation II yields accurate estimates even

when AQM is used. The percentage of dropped packets during the measurement intervals is

shown in Table 8.2 and Table 8.3. As can be observed, even when there are a considerable

number of dropped packets over the measurement interval, Compensation II is still very

accurate for both FIFO queue and CoDel AQM.

Fig. 8.4 shows ABE accuracy for different cross traffic bandwidth on a single bottleneck

of capacity 100 Mb/s on link L5. The network path is 1 Gb/s, so only L5 acts as a

bottleneck, and the outgoing interface on router r3 can be configured for tail-drop (simple

FIFO), CoDel AQM or PI2 AQM. We configured SLDRT with a longer chirp train to create

a similar amount of congestion and probe packet drops as PathCos++ and Voyager-D. We
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also configured PI2 with a larger queue to reduce tail-drop losses and highlight better the

effect of AQM losses.

Without any compensation (original - Fig. 8.4), the ABE error is quite significant,

which explains why most implementations of ABE discard chirp train with packet losses.

Compensation I offers very low estimation error when there is no cross traffic, however

its error increases as cross traffic increases, as expected. Compensation II offers very low

estimation error in all cross traffic conditions. The type of bottleneck and the type of ABE

method used does not change those observations. In all cases, the cross traffic is bursty,

generated using 5 parallel UDP iperf sessions. Such bursty cross traffic most likely violates

assumptions A1, A2 and A3 (see Section 8.3.2); however, this does not impact the accuracy

of the results.

Fig. 8.5 shows ABE accuracy for different cross traffic bandwidth on a 1 Gb/s network

path. The link L5 is the main bottleneck due to the cross traffic. However, the start of the

chirp train is sent faster (2 Gb/s) than the network path can handle; therefore, the sender

s1 is also a bottleneck. This network path is a combination of two bottlenecks at sender s1

and router r3 and is similar to the network path in Section 8.4.3. The bottleneck at sender

s1 has capacity 1 Gb/s and only queues packets (no drops). The bottleneck at router r3

has variable cross traffic, can be configured with tail-drop (simple FIFO), CoDel AQM or

PI2 AQM, and it queues and drops packets. In addition, those experiments explore larger

queue sizes (1000 packets on r3).

Without cross traffic, the bottleneck at the sender s3 queues all the excess traffic; there-

fore, the bottleneck at router r3 does not see any congestion and does not need to drop

packets. As the result, all techniques perform the same. With increasing levels of cross

traffic, more congestion is created at router r3, which increases the amount of packet drops

(Fig. 8.5). In those conditions, we see results similar to the experiments at 100 Mb/s:

original has the highest error and Compensation II offers very low estimation error in

all cross traffic conditions. This confirms that our techniques work appropriately in the

presence of multiple bottlenecks, as long as only a single bottleneck drops packets.
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Fig. 8.6 shows ABE accuracy for different cross traffic bandwidth on a 10 Gb/s network

path. The setup is similar to the previous experiments at 1 Gb/s, sender s1 is limited to

10 Gb/s and router r3 has cross traffic and can drop packets. Performing ABE in software

at 10 Gb/s is challenging [66]; however, our techniques do improve accuracy. Compensa-

tion II tends to underestimate the ABW. This is caused by violations of assumption A3.

In these experiments, there are additional packets drops that are caused by the burden of

processing packets at 10 Gb/s. The algorithm assumes that all of these packet drops happen

at the bottleneck, and therefore overestimates the probability of drop for the cross traffic.

This shows that when there are multiple sources of packet drops, it is not possible to accu-

rately estimate the amount of cross traffic drops. However, the error of Compensation II

is limited and it still gives the best performance in this case.

Fig. 8.7 shows that the ABE relative error with respect to the measurement errors in

the path capacity using a single chirp on a 100 Mb/s bottleneck capacity. The error relation

is linear: a greater amount of packet loss leads to higher error, which confirms the intuition

from (8.23). We note that the ABE is not very sensitive to the measurement of the path

capacity.

8.5 Conclusion

We developed a set of techniques to improve the accuracy of decreasing-rate ABE methods

in the presence of packet loss. The technique estimates both the amount of probe traffic

and cross traffic lost due to congestion in order to compute a more accurate ABW estimate.

These techniques are compatible with all decreasing-rate methods and are also compatible

with noise pre-processing of chirp train, such as mitigation of interrupt coalescence. We

presented experimental results from a network testbed that confirms the effectiveness of

the proposed technique in enhancing ABE accuracy in scenarios involving packet loss due

to tail-drop as well as AQM losses. Two variants of the technique were evaluated: Com-

pensation I does not require path capacity information, whereas Compensation II requires
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an estimate of path capacity to obtain more accurate ABW estimates. The results show

that Compensation I significantly improves upon existing decreasing-rate methods under

all conditions tested, but its error is still high in the presence of cross traffic. Compensa-

tion II provides ABW estimates that are very close to the true values under various levels

of cross traffic. Our results also show that Compensation II is not very sensitive to the

accuracy of the path capacity estimate. Our proposed ABE method enables the use of

larger chirps, which by extension can provide improved accuracy of the ABW estimate even

in the presence of short queues that are needed to reduce buffer-bloat.
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Figure 8.4: ABE for PathCos++, SLDRT and Voyager-D methods with various bottleneck
at 100Mb/s vs. cross traffic.
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Figure 8.5: ABE for PathCos++ and Voyager-D methods with various bottleneck at 1Gb/s
vs. cross traffic.
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Figure 8.6: ABE for PathCos++ method with various bottleneck at 10Gb/s vs. cross traffic,
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Chapter 9: Conclusion

In this dissertation we developed a stochastic traffic envelope based on the phase-type

distribution to characterize a traffic flow such that tools from stochastic network calculus

can be used to evaluate network performance in terms of probabilistic end-to-end delay

bounds. Our model is a particular form of the gSBB traffic envelope developed in [51, 99],

which we refer to as phase-type traffic bounds. We showed that the proposed phase-type

network calculus, is closed with respect to the family of phase-type functions and if the input

traffics of a feedforward network can be characterized using phase-type traffic bounds, all

the traffic streams in the network can also be characterized using phase-type traffic bounds.

This property allows us to analyze the network in terms of performance measures such as

probabilistic end-to-end delay. Further development of the phase-type network calculus for

the closed networks with loops and cross-traffic is still left to done.

We also developed two methods of characterizing a given traffic using a phase-type

traffic bounds and finding the corresponding parameters. The first method is based on a

least squares approach and the second one was based on the EM algorithm for the class of

phase-type distributions. Both methods have the potential to be further developed into an

online algorithm for traffic flows with slow time-scale statistical fluctuations.

We closed a gap in the literature on stochastic network calculus by developing a stochas-

tic traffic regulator to shape any given traffic stream according to a specified gSBB traffic

envelope. Such traffic shaping is essential in order to apply the stochastic network calculus

in practical networks.

Motivated by the desire to provide performance guarantees for time-critical applications

in future networks, we proposed theW-envelope, a traffic bound on the MGF of the workload

process resulting from offering a traffic source to a constant rate server. In contrast to the

MGF traffic arrival envelope (A-envelope), the W-envelope is amenable to traffic regulation
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and traffic fitting via the methods we developed for the gSBB traffic envelope in Chapters 5

and 4, respectively. Our numerical results showed that the W-envelope policy for admission

control with independent flows leads to significant statistical multiplexing gain. We showed

that the W-envelope framework can provide network performance guarantees in a resource-

efficient manner.

We presented a practical framework for providing stochastic delay guarantees based on

results from stochastic network calculus. Key elements of our approach are the phase-type

traffic bound (Chapter 3), the W-envelope (Chapter 7), a method for fitting a traffic flow

to a phase-type bound (Chapter 4), stochastic traffic regulators to enforce compliance of

a traffic flow to a negotiated gSBB traffic envelope (Chapter 5) and an admission control

scheme (Chapter 6). Each flow characterizes its traffic process by a phase-type traffic

envelope, which can be determined using the procedure developed in Chapter 4. Using our

result relating the gSBB envelope to the W-envelope (Theorem 7.4.1), an W-envelope can

be determined for each traffic flow (Chapter 7). A phase-type envelope, or more generally,

a gSBB envelope can be enforced by our proposed stochastic regulator. The associated

W-envelope can be used in an admission control scheme.

Finally, we developed a set of techniques to improve the accuracy of decreasing-rate

ABE methods in the presence of packet loss (Chapter 8). The technique estimates both

the amount of probe traffic and cross traffic lost due to congestion in order to compute

a more accurate ABW estimate. These techniques are compatible with all decreasing-rate

methods and are also compatible with noise pre-processing of chirp train, such as mitigation

of interrupt coalescence. We presented experimental results from a network testbed that

confirms the effectiveness of the proposed technique in enhancing ABE accuracy in scenarios

involving packet loss due to tail-drop as well as AQM losses. Our ABE method could be

used to discover the amount of available bandwidth on an end-to-end path, which could then

be used to provide stochastic delay guarantees for time-sensitive traffic via our proposed

QoS framework.
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In the ongoing work, we are trying to further develop our framework for providing end-

to-end stochastic delay guarantees on a multi-hop path with different scheduling methods

on the end-to-end path. The work in dissertation can be applied to augment the current

Internet with a service to provide end-to-end delay guarantees for time-critical applica-

tions. Such a service can benefit a wide range of applications, including delay-sensitive,

bandwidth-hungry Internet applications such as multimedia streaming, network gaming,

and virtual/augmented reality, and time-sensitive military communications over a network.
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Appendix A: Inequivalence of SBB and gSBB

According to the (2.4), a traffic process with instantaneous rate process R = {R(t) : t ≥ 0}

is said to have SBB with upper rate ρ and bounding function f(σ) ∈ F if, for all t, s ≥ 0

and all σ ≥ 0,

P {R(s, t)− ρ(t− s) ≥ σ} ≤ f(σ), (A.1)

On the other hand, a traffic process with instantaneous rate process R = {R(t) : t ≥ 0} is

said to have gSSB with upper rate ρ and bounding function f(σ) ∈ BF if, for all t ≥ 0 and

all σ ≥ 0,

P

{
max
0≤s≤t

{R(s, t)− ρ(t− s)} ≥ σ
}
≤ f(σ), (A.2)

where for continuous-time process R(t), R(s, t) =
∫ t
s R(τ) dτ and for discrete-time process

R[n], R(s, t) =
∑t

i=s+1R[i] . In this appendix we argue that being gSBB means being SBB,

but not the other way around. In other words, if a traffic process is SBB it might not be

gSBB. We provide an example of such a case in here. We define events A(s; t, σ), B(s; t),

and Z(t, σ) as

A(s; t, σ) := {R(s, t)− ρ(t− s) ≥ σ} (A.3)

B(r; t) :=

{
r = arg max

0≤s≤t
{R(s, t)− ρ(t− s)}

}
(A.4)

Z(t, σ) :=

{
max
0≤s≤t

{R(s, t)− ρ(t− s)} ≥ σ
}

(A.5)

Therefore according to (A.2), a traffic process R(t) is gSBB if we have

P {Z(t, σ)} ≤ f(σ) (A.6)
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We should note that B(r; t) for r = 0, 1, . . . , t form a partition of sample space Ω. Therefore

we have

P {Z(t, σ)} = P

{
Z(t, σ)

⋂(
t⋃

i=0

B(i; t)

)}
=

t∑
i=0

P {Z(t, σ) ∩B(i; t)}

=
t∑

i=0

P {Z(t, σ)|B(i; t)}P {B(i; t)} (A.7)

We should note that,

{Z(t, σ) ∩B(i; t)} = {A(i; t, σ) ∩B(i; t)} (A.8)

Therefore a traffic process R(t) is gSBB if we have

P {Z(t, σ)} =
t∑

i=0

P {A(i; t, σ) ∩B(i; t)} ≤ f(σ) (A.9)

for all t ≥ 0 and for all σ ≥ 0. On the other hand, a traffic process R(t) is SBB if we have

P {A(s; t, σ)} ≤ f(σ) (A.10)

for all t, s ≥ 0 and all σ ≥ 0. But for P {A(s; t, σ)} we can use the same partion of B(r; t)

for r = 0, 1, . . . , t− 1 and therefore, we will have

P {A(s; t, σ)} = P

{
A(s; t, σ)

⋂(
t⋃

i=0

B(i; t)

)}
=

t∑
i=0

P {A(s; t, σ) ∩B(i; t)} (A.11)

202



We can easily verify that {A(s; t, σ) ∩B(i; t)} ⊂ {A(i; t, σ) ∩B(i; t)} for s, i = 1, 2, . . . , t.

Therefore we have

P {A(s; t, σ)} =
t∑

i=0

P {A(s; t, σ) ∩B(i; t)} ≤
t∑

i=0

P {A(i; t, σ) ∩B(i; t)} = P {Z(t, σ)}

(A.12)

which means being gSBB leads to being SBB. Now as an example of having SBB and not

haiving gSBB, consider a discrete-time traffic process R[n], where we have

R[1] =

 4ρ if A = 1

0 if A = 0
(A.13)

R[2] =

 0 if A = 1

2ρ if A = 0
(A.14)

and R[n] = 0 for n ≥ 3, where A is a binary randon variable and P{A = 0} = P{A = 1} =

0.5. In this case we have

R(0, 2)− 2ρ =

 2ρ if A = 1

0 if A = 0
(A.15)

R(1, 2)− ρ =

 −ρ if A = 1

ρ if A = 0
(A.16)

Therefore, if we define f(σ) as,

f(σ) =


1 σ = 0

0.5 0 < σ ≤ 4ρ

0 4ρ < σ

(A.17)
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With this choise of f(σ), R[n] is clearly SBB, but this process is not gSBB as,

P {B(0; 2)} = P {A = 1} = 0.5 (A.18)

P {B(1; 2)} = P {A = 0} = 0.5 (A.19)

and P {Z(2, ρ)} = 1 > f(σ), which shows R(n) is not gSBB.
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Appendix B: Some Theorems about Alg-Er and Alg-Ga

B.1 Concavity of gi(α, λ)

We derive some useful results related to the gamma distribution and gamma mixture model.

Lemma B.1.1. The function log f(x;α, λ) is strictly concave with respect to the shape α.

Proof. Taking partial derivatives with respect to α,

∂2

∂α2
log f(x;α, λ) = −

[
Γ(α)Γ′′(α)− (Γ′(α))2

Γ2(α)

]
= −ψ(1)(α), (B.1)

where ψ(1)(z) is the polygamma function of order 1. The polygamma function of order m

is defined for complex z with positive real part by

ψ(m)(z) :=
dm

dzm
ψ(z) =

dm+1

dzm+1
log Γ(z), (B.2)

for m = 1, 2, . . ., and

ψ(0)(z) := ψ(z) =
Γ′(z)
Γ(z)

. (B.3)

The polygamma function of order m can be written in the form of a series as follows [4, Eq.

(6.4.10)]:

ψ(m)(z) = (−1)m+1m!

∞∑
k=0

1

(z + k)m+1
. (B.4)
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In particular, for α > 0,

ψ(1)(α) =
∞∑
k=0

1

(α+ k)2
>

∞∑
k=0

1

(α+ k)(α+ k + 1)

=

(
1

α
− 1

α+ 1

)
+

(
1

α+ 1
− 1

α+ 2

)
+ · · · = 1

α
. (B.5)

Therefore, the right-hand side of (B.1) is negative, from which the result follows immedi-

ately.

Lemma B.1.2. The function log f(x;α, λ) is strictly concave with respect to the rate λ.

Proof. Differentiating with respect to λ,

∂

∂λ
log f(x;α, λ) =

α

λ
− x. (B.6)

Differentiating once more with respect to λ yields

∂2

∂λ2
log f(x;α, λ) = − α

λ2
, (B.7)

which is negative.

Lemma B.1.3. The function log f(x;α, λ) is strictly concave with respect to (α, λ).

Proof. Let

q(x;α, λ) := log f(x;α, λ). (B.8)

It is sufficient to show that the Hessian matrix of q(x;α, λ) with respect to (α, λ) is negative
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definite, or equivalently, that

−∇2q(x;α, λ) :=

 a b

b d

 , (B.9)

is positive definite. From Lemmas B.1.1 and B.1.2,

a =
α

λ2
, d = ψ(1)(α), (B.10)

and are both positive. To compute b, differentiate (B.6) with respect to α to obtain

b = − ∂

∂α ∂λ
log f(x;α, λ) = − 1

λ
. (B.11)

Let z1 and z2 be real numbers, not both equal to zero, and let z = col(z1, z2). The quadratic

form zT [−∇2q(x;α, λ)]z can be written in the form

(√
az1 +

b√
a
z2

)2

+

(
d− b2

a

)
z22 . (B.12)

From the second term,

d− b2

a
= ψ(1)(α)− 1

α
, (B.13)

which is positive, from (B.5). Thus, both terms in (B.12) are non-negative for all z. For

non-zero z, if z2 = 0, the first term in (B.12) will be positive. Otherwise, if z2 ̸= 0, the

second term will be positive. Therefore, the right-hand side of (B.12) is positive for all

non-zero z, which establishes that q(x;α, λ) is strictly concave with respect to (α, λ).

The function gi(α, λ) defined in (4.32) with θ = (α, λ) is a non-negatively weighted sum

of log-likelihood functions and thus is itself strictly concave by virtue of Lemma B.1.3.
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Proposition B.1.1. The function gi(α, λ) is strictly concave with respect to (α, λ).

The auxiliary function Q(ϕ, ϕ̂) given in (4.31) depends on (α,λ) only through the sec-

ond term
∑M

i=1 gi(αi, λi), which is a separable, strictly concave function with respect to

{(αi, λi)}Mi=1, in view of (B.1.1).

Proposition B.1.2. The auxiliary function Q(ϕ, ϕ̂) is a separable, strictly concave function

with respect to {(αi, λi)}Mi=1.

B.2 Inequality of ψ(α)

To prove (4.49), we first establish the following results.

Lemma B.2.1. For t > 0 and any ϵ ≥ 1/6,

1

2
− 1

t
+

1

et − 1
≤ eϵt

2
− 1

2
. (B.14)

Proof. Let

β(t; ϵ) := 1− 1

t
+

1

et − 1
− eϵt

2
(B.15)

Clearly, β(t; ϵ) is continuous and differentiable for t > 0. By using L’Hôpital’s rule two

times we can easily verify limt→0 β(t; ϵ) = 0. Taking derivatives, we have

β′(t; ϵ) =
1

t2
− et

(et − 1)2
− ϵeϵt

2
(B.16)

β′′(t; ϵ) = − 2

t3
+

2e2t

(et − 1)3
− et

(et − 1)2
− ϵ2eϵt

2
(B.17)

Applying L’Hôpital’s rule four times we can verify that

lim
t→0

β′(t; ϵ) =
1

12
− ϵ

2
. (B.18)
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Therefore, β′(0+; ϵ) ≤ 0 for any ϵ ≥ 1/6. On the other hand, clearly et − 1 > t for t > 0.

Hence,

1

(et − 1)3
<

1

t3
(B.19)

and the sum of the first two terms in (B.17) is negative. We then conclude that β(t; ϵ) is a

concave function of t for t > 0 and any ϵ ≥ 1/6. Eq. (B.14) then follows.

Lemma B.2.2. For t > 0,

η(t) :=
1

2
− 1

t
+

1

et − 1
≥ 0. (B.20)

Proof. Using a similar approach as in Lemma B.2.1, we can show that η(0+) = 0 and η(t)

is increasing at t = 0 and convex for t > 0. Eq. (B.20) then follows.

From Binet’s first formula (cf. [9, p. 21, Eq. (4)]), for α > 0,

log Γ(α) =

(
α− 1

2

)
logα− α+

1

2
log(2π) + κ(α) (B.21)

where

κ(α) := −
∫ ∞

0

(
1

2
− 1

t
+

1

et − 1

)
e−tα

t
dt. (B.22)

Taking derivatives on both sides of (B.22),

ψ(α) = logα− 1

2α
+ κ′(α), (B.23)

or

−κ′(α) = [logα− ψ(α)]− 1

2α
, (B.24)
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where

−κ′(α) =
∫ ∞

0

(
1

2
− 1

t
+

1

et − 1

)
e−tα dt. (B.25)

Lemma B.2.2 and (B.25) imply that −κ′(α) ≥ 0. Applying this inequality with (B.24)

shows the first inequality in (4.49). Next, we apply Lemma B.2.1 with ϵ = 1/6 to (B.25) to

obtain

−κ′(α) ≤
∫ ∞

0

(
eϵt

2
− 1

2

)
e−tαdt =

1

2
(
α− 1

6

) − 1

2α
. (B.26)

Using (B.26) with (B.24) shows the second inequality in (4.49).

B.3 Deriving ri as in (4.53)

Consider αi as given by (4.39). In Section 4.2.1, it was shown that αi ∈ (bi, bi+1/6), where

bi is given by (4.50) (see (4.49)). In (4.52), it was stated that ri could take on one of three

values: ⌊bi⌋∨1, ⌈bi⌉, or ⌈bi⌉+1. We shall show that actually ri ̸= ⌈bi⌉+1, thereby justifying

the simpler expression in (4.53). We first prove the following lemma.

Lemma B.3.1. For αi ≥ 1,

hi(αi − ϵ) ≥ hi(αi − ϵ+ 1) for any ϵ ≤ 5−
√
13

6
. (B.27)

Proof. Using (4.41) and (4.47) and the following relationships involving Γ(α) and ψ(α) (see

(1) and (8), respectively, in [9])

Γ(α+ 1) = αΓ(α), (B.28)

ψ(α+ 1) = ψ(α) +
1

α
, (B.29)
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we can derive

hi(αi − ϵ+ 1)− hi(αi − ϵ) = (αi−ϵ+1) log

(
1+

1

αi−ϵ

)
+ ψ(αi)− logαi − 1. (B.30)

Next, we apply (4.48) and use the following inequality (see [88, (22)]):

log

(
1 +

1

x

)
≤ x(x+ 6)

2(3 + 2x)
, x ≥ 0, (B.31)

to obtain

hi(αi − ϵ+ 1)− hi(αi − ϵ) ≤
1

4(αi − ϵ+ 2/3)
− 1

4(αi − ϵ)
− 1

2αi

= −
(
1
3 − ϵ

)
αi +

(
ϵ2 − 2

3ϵ
)

2αi(αi − ϵ)
(
αi − ϵ+ 2

3

) . (B.32)

The left-hand side of the inequality (B.32) is less than or equal to zero if the following

conditions hold:

αi ≥ ϵ, ϵ <
1

3
, αi ≥

2ϵ− 3ϵ2

1− 3ϵ
. (B.33)

From these conditions and the assumption that αi ≥ 1, we have that the left-hand side of

(B.32) is less than or equal to zero if

ϵ ≤ 5−
√
13

6
≈ 0.232. (B.34)

If αi < 1, then clearly ri = 1, since the shape parameter of the Erlang distribution must

be at least 1. Therefore, we may consider the case αi ≥ 1 as in Lemma B.3.1. In this case,
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if

⌊bi⌋ ≤ αi ≤ ⌈bi⌉, (B.35)

then either ri = ⌊bi⌋ or ri = ⌈bi⌉. Thus, (4.53) holds when either αi < 1 or αi ≥ 1 and

satisfies (B.35). Next, suppose that αi > ⌈bi⌉ ≥ 1. In this case, by (4.49), we know that

αi ≤ ⌈bi⌉+ 1
6 . Applying Lemma B.3.1, we conclude that h (⌈bi⌉) ≥ hi (⌈bi⌉+ 1). Thus, we

have established the validity of (4.53).

B.4 Existence of the Stationary Point αi

In this section we prove a root to the equation (4.47) always exists. By taking derivative of

Q(Θ, Θ̂) with respect to αi we can show the existence of the stationary point or the root

of (4.47). For the sake of convenience we have repeated Q(Θ, Θ̂) here.

Q(Θ, Θ̂) =

M∑
i=1

K∑
k=1
xk ̸=0

log(πi) · q(i|xk, Θ̂) +

M∑
i=1

gi(θi) +N0 log(πM+1), (B.36)

where

gi(θi) =
K∑
k=1
xk ̸=0

log(pi(xk|λi)) · q(i|xk, Θ̂), (B.37)
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and θi = (αi, λi), i = 1, . . . ,M . For any fixed value of λi, by taking partial derivative of

the (B.36) with respect to αi and using (4.21), we will have

∂Q(Θ, Θ̂)

∂αi
=

∂

∂αi

K∑
k=1
xk ̸=0

log(pi(xk|λi)) · q(i|xk, Θ̂) =
K∑
k=1
xk ̸=0

log (λixk)q(i|xk, Θ̂)

−
K∑
k=1
xk ̸=0

Γ′(αi)

Γ(αi)
q(i|xk, Θ̂) = Di −

Γ′(αi)

Γ(αi)
Ai (B.38)

where Ai is defined in (4.42), and Di is defined as

Di :=
K∑
k=1
xk ̸=0

log (λixk)q(i|xk, Θ̂). (B.39)

In (B.38), Ai and Di do not depend on αi and therefore in maximization of Q(Θ, Θ̂) with

respect to αi, can be considered as constant. Clearly Ai is always greater or equal to zero.

It is shown in Appendix B.1, Q(Θ, Θ̂) is concave with respect to ri.

Gamma function is a convex positive function for x ∈ (0,∞). We have limx→0 Γ(x) =∞

and limx→∞ Γ(x) =∞. Gamma function is shown in fig. B.1a for x ∈ [1e−3, 10]. As we can

see in the figure it decreases to a value less than 1 at about 1.5 and then it is monotonically

increasing afterwards. Therefore as Ai ≥ 0, and Di being constant with respect to αi the

second term in (B.38) will become eventually negative. Therefore, we have

lim
αi→∞

∂Q(Θ, Θ̂)

∂αi
= −∞ (B.40)

On the other hand, we have limαi→∞ ψ(αi) = limαi→∞
Γ′(αi)
Γ(αi)

= −∞. Therefore, Q(Θ, Θ̂)

will be in a form as shown in fig. B.1b. Therefore, for every fixed value λi, Q(Θ, Θ̂) will

be maximized at a positive αi. In (4.38), however, λi is not a fixed value and it is linearly
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related to αi as in (4.40). This however, does not change the sign of αi, as in this case the

stationary point for each i lies on the intersection of two-dimensional Q(Θ, Θ̂) surface and

the line (4.38), which because of the form of Q(Θ, Θ̂) still will be positive. Therefore, there

is always a positive root to the equation (4.47) and the stationary point is always a valid

positive value for αi for each i = 1, 2, . . . ,M .
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Appendix C: Numerical Results for Alg-Er

In this section we present numerical results comparing the performance of three fitting

algorithms for phase-type distributions:

1. Alg-Er with a fixed number M of Erlang mixture components;

2. HErD (Hyper-Erlang Distribution): The algorithm in [87] in which the shape vector

r ranges over the set of partitions, Rn, of a fixed number of phases n;

3. GPHD (General Phase-type Distribution): The general phase-type EM fitting algo-

rithm of [8] with n phases.

Similar to [87], we have obtained results for both synthetically generated data from a set

of well-known probability distributions and from real data traces from a call center. We

have also compared Alg-Er and HErD in estimating the waiting time distribution of a

heavy-tailed M/G/1 queue. In addition, we have compared the performance of Alg-Er and

Alg-Ga.

C.1 Synthetically Generated Data

Following [87], we have used synthetic data generated from distributions given in Table C.1,

which include two heavy-tailed distributions: a Pareto-like distribution denoted here as

Pareto2 and a 2-parameter Weibull distribution. In particular, we have used the Pareto2

distribution with parameters a = 1.5 and b = 2 and two instances of the Weibull distribu-

tion: Weibull with scale parameter α = 1 and shape parameter β = 0.5 and Weibull with

α = 1 and β = 5. The Weibull(1, 5) distribution was used in [43] as an example of a heavy-

tailed distribution with a non-monotonically decreasing pdf. Similarly, Pareto2(1.5, 2) is

heavy-tailed with non-monotonically decreasing pdf, whereas Weibull(1, 0.5) is an example

of a heavy-tailed distribution with monotonically decreasing pdf. The uniform distribution
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is an example of a distribution with finite support. The shifted exponential and matrix ex-

ponential distributions were among those used as benchmarks for phase-type fitting in [13].

Each of the synthetic data traces consisted of 104 samples generated according to the dis-

tributions shown in Table C.1. To generate random samples from a given distribution, we

applied the function g(y) = F−1(y) to uniform random samples of y ∼ Uniform(0, 1), where

F (t) denotes the cdf. The cdfs for each distribution are also provided in Table C.1. In Ta-

ble C.1, Γu
inc(x, a) denotes the upper incomplete Gamma function and is defined as [4, Eq.

(6.5.1)]

Γu
inc(x, a) =

∫ ∞

x
ta−1e−tdt (C.1)

For the Pareto2 and matrix exponential distributions, for which closed forms for F−1(y) do

not exist, the function g(y) = F−1(y) was computed numerically.

For all three methods, we set ϵ = 10−6 for the stopping criterion. A limit of N = 100

iterations of the EM algorithm was imposed for Alg-Er and HErD. For GPHD, the stopping

criterion consisted of a limit of N = 50, 000 EM iterations and a maximum run time of 10

hours. The Alg-Er was programmed in MATLAB, while the MATLAB code for HErD

from [1] was used. An off-the-shelf C language implementation from [76] was used to run

Table C.1: Probability distributions defined on [0,∞)

name pdf cdf

Weibull f(t;β, α) =
β

α

(
t

α

)β−1

e(
t
α
)β F (t;β, α) = 1− e(

t
α
)β

Pareto2 f(t; a, b) =
bae−b/t

Γ(a)
t−a−1 F (t; a, b) = 1

Γ(a)Γ
u
inc

(
b
x , a
)

Shifted Exp. f(t) =

{
1
2e

−t 0 ≤ t ≤ 1
1
2e

−t + 1
2e

−(t−1) t ≥ 1
F (t) =

{
1
2 −

1
2e

−t 0 ≤ t < 1

1− 1
2e

−t − 1
2e

−(t−1) t ≥ 1

Matrix Exp. f(t) =

[
1− 1

(2π)2

]
(1− cos(2πt))e−t F (t) = 1− 4π2 + 1

π2
e−t − 1

2π
sin(2πt)e−t

+
1

4π2
cos(2πt)e−t

Uniform f(t) =
1

b− a
, a ≤ t ≤ b F (t) =

t− a
b− a

for a ≤ t ≤ b
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Figure C.1: Weibull(1, 5) distribution with order = 15.
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Figure C.2: Uniform(0.5, 1.5) distribution with order = 15.

the GPHD method. In spite of the greater efficiency of C vs. MATLAB, when the number

of phases of the fitting distribution exceeds 10, the run times for GPHD were far longer than

those for Alg-Er and HErD. All of the codes were run on a MacBook Pro with a 2.9 GHz Intel

Core i7 processor and 16 GB 2133 MHz LPDDR3 memory. In our numerical experiments,

Alg1-Er usually ran for less than 6 seconds, whereas the GPHD implementation took up to

the full 10 hours imposed as the maximum run time.

We have compared HErD and GPHD using a fixed number of phases n. For Alg-Er, the

number of mixture components M is fixed, while n is allowed to vary. To compare Alg-Er
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Figure C.3: Pareto2(1.5, 2) distribution with order = 15.

with the other two methods, we set M equal to the value of n used for HErD and GPHD.

For convenience, we will refer to the value of n used for HErD or GPHD or the value of

M used for Alg-Er simply as the order of the method. Figures C.1, C.2, and C.3 provide

qualitative comparisons of the performance of the three fitting methods applied to samples

generated from Weibull, uniform, and Pareto distributions, respectively. More detailed,

quantitative comparisons of the three methods are given in Tables C.2 and C.3.

Table C.2 shows results comparing the three phase-type fitting algorithms with data

samples generated using the distributions given in Table C.1 where the order for the

three methods is 5 and 15. A similar table for the case an order of 25 is given in Ta-

ble C.3. For brevity, Table C.3 only shows the results for Weibull(1, 5), Uniform(0.5, 1.5),

and Pareto2(1.5, 2). In general, the number of phases obtained with Alg1-Er will be much

larger than the number of mixture components. On the other hand, the run-time, denoted

by tc, in units of seconds, for Alg-Er is comparable to that of HErD and GPHD when the

order is relatively small, i.e., 5. As can be seen from Tables C.2 and C.3, when the order is

15 or 25, the run-time for Alg is much smaller than that of the other two methods and the

gap increases with increasing order.

We have computed the first three moments of the synthetic traces, denoted by µ1, µ2,

and µ3, and the corresponding moments of the three fitting distributions for Alg-Er, HErD,
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and GPHD. All three methods were initialized with parameters such that the first moment

of the fitting distribution matches the first moment of the trace data (cf. (4.55)). The

first moment matching property is maintained by each iteration of the corresponding EM

algorithm and as can be seen in Tables C.2 and C.3, the first moment is always matched

perfectly using all three methods. We have also computed the squared coefficient of variation

defined by c2 = µ2/µ
2
1 − 1. The log-likelihood ℓ (see Algorithm 4 lines 2 and 12) of each

data trace has been computed for the three methods. For Alg1-Er and HErD, the Erlang

shape vector r is also displayed.

As shown in the first row of Tables C.2 and C.3, for Weibull(1, 0.5), both Alg-Er and

HErD, the fitting distributions are mixtures of exponentials. This result confirms that

monotonically decreasing pdfs can be well-approximated by the hyper-exponential pdf (see

[34]). It is interesting that for the Weibull(1, 0.5) fitting Alg-Er and HErD yield the same

parameter estimates. In general, as the order of the method is increased from 5 to 15 and 20,

better matching of the moments and higher log-likelihood values is obtained. Interestingly,

for Weibull(1, 0.5), GPHD outperforms the other two methods with respect to the log-

likelihood value when the order is 5. However, when the order is increased to 15 or 25,

Alg and HErD outperform GPHD in terms of the log-likelihood value for all of the fitting

distributions, due to the overparameterization of the general phase-type representation. In

almost all cases shown in Tables C.2 and C.3, Alg-Er outperforms HErD and GPHD with

respect to fitting accuracy, as well as computation time, especially when the order is 15 or

25.

C.2 Call Center Data Traces

As was done in [87], we have also used some call center data traces from [70] to compare

Alg-Er, HErD, and GPHD. The data archives calls handled by a bank over a period of 12

months from January 1999 to December 1999. For every month there are about 20,000 to

30,000 entries in this data set. Each entry in this data set includes several attributes of the
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Table C.2: Comparison of HErD, Alg-Er and GPHD with synthetically generated data

Trace
order = 5 order = 15

HErD Alg-Er GPHD HErD Alg-Er GPHD

µ1

W
ei
b
u
ll
(1
,0
.5
)

1.99 1.99 (0.0%) 1.99 (0.0%) 1.99 (0.0%) 1.99 (0.0%) 1.99 (0.0%) 1.99 (0.0%)
µ2 22.1 20.7 (6.0 %) 20.7 (6.0%) 20.2 (8.6%) 21.7 (1.8%) 21.7 (1.8%) 13.4 (3.9%)
µ3 549.3 421.8 (23.2%) 421.8 (23.2%) 381.8 (30.5%) 500.6 (8.9%) 500.6 (8.9%) 139.0 (74.7%)
c2 4.59 4.26 (7.3%) 4.26 (7.3%) 4.11(10.5%) 4.49 (2.2%) 4.49 (2.2%) 2.39 (48.0%)
ℓ -11345.1 -11345.1 -11283.1 -11298.3 -11298.3 -12605.4
tc 0.4 0.3 seconds 23.8 0.8 minutes
r [1,1,1,1,1] [1,1,1,1,1] 5 [1,1,1,1,1,1,1, [1,1,1,1,1,1,1,1, 15

1,1,1,1,1,1,1,1] 1,1,1,1,1,1,1]

µ1

W
ei
b
u
ll
(1
,5
)

0.92 0.92 (0.0%) 0.92 (0.0%) 0.92 (0.0%) 0.92 (0.0%) 0.92 (0.0%) 0.92 (0.0%)
µ2 0.89 1.05 (18.7%) 0.89 (0.0%) 1.01 (14.0%) 0.90 (1.8%) 0.89 (0.0%) 0.90 (1.7%)
µ3 0.90 1.45 (62.2%) 0.90 (0.1%) 1.30 (45.3%) 0.95 (6.2%) 0.90 (0.0%) 0.95 (5.6%)
c2 0.05 0.25 (371.6%) 0.05 (0.7%) 0.2 (277.3%) 0.07 (36.8%) 0.05 (0.4%) 0.07 (33.7%)
ℓ -2520.3 1414.7 -1665.2 881.5 1423.8 976.8
tc 0.2 2.7 seconds 16.6 8.9 minutes
r [1,4] [32,51,21,16,11] - [1,14] [35,127,68,47,31, -

25,21,19,17,18,
17,16,14,13,9]

µ1

U
n
if
or
m
(0
.5
,1
.5
) 1.00 1.00 (0.0%) 1.00 (0.0%) 1.00 (0.0%) 1.00 (0.0%) 1.00 (0.0%) 1.00 (0.0%)

µ2 1.08 1.25 (15.4%) 1.08 (0.0%) 1.20 (10.1%) 1.09 (0.7%) 1.08 (0.0%) 1.09 (1.0%)
µ3 1.25 1.87 (50.2%) 1.25 (0.0%) 1.68 (34.6%) 1.29 (3.3%) 1.25 (0.0%) 1.29 (3.6%)
c2 0.083 0.25 (202.1%) 0.083 (0.0%) 0.20 (141.6%) 0.091 (9.8%) 0.08 (0.1%) 0.093 (12.7%)
ℓ -3804.7 -294.5 -3096.2 -1755.3 -179.4 -1688.4
tc 0.16 14.2 seconds 47.5 96.9 minutes
r [1,4] [130,555,43,97,449] - [1,1,1,1,11] [49,1815,376,141,36, -

35,72,63,154,223,
218,610,1083,911,911]

µ1

P
ar
et
o2
(1
.5
,2
)

3.609 3.61 (0.0%) 3.61 (0.0%) 3.61 (0.0%) 3.61 (0.0%) 3.61 (0.0%) 3.61 (0.0%)
µ2 69.276 76.0 (9.7%) 64.2 (7.3%) 53.5 (22.7%) 73.3 (5.8%) 71.4 (3.1%) 23.7 (65.7%)
µ3 4002.8 5890.7 (47.1%) 3272.4 (18.2%) 1874.8 (53.2%) 5288.3 (32.1%) 4774.8 (19.3%) 233.3 (94.2%)
c2 4.32 4.84 (11.9%) 3.93 (9.0%) 3.11 (28%) 4.63 (7.1%) 4.48 (3.8%) 0.82 (80.9%)
ℓ -20305.8 -20014.0 -20125.3 -19981.5 -19965.5 -21981.7
tc 0.22 0.65 seconds 19.3 2.54 minutes
r [1,1,3] [1,7,6,5,5] - [1,2,3,4,5] [1,8,10,10,10,10,9, -

8,7,7,6,6,6,6,6]

µ1

S
h
if
te
d
E
x
p
on

en
ti
al 1.493 1.49 (0.0%) 1.49 (0.0%) 1.49 (0.0%) 1.49 (0.0%) 1.49 (0.0%) 1.49 (0.0%)

µ2 3.465 3.44 (0.6%) 3.52 (1.5%) 3.46 (0.2%) 3.47 (0.2%) 3.45 (0.5%) 3.46 (0.2%)
µ3 10.803 10.5 (2.4%) 11.6 (7.4%) 10.6 (1.5%) 10.8 (0.05%) 10.6 (2.1%) 10.6 (1.9%)
c2 0.555 0.55 (1.8%) 0.58 (4.1%) 0.55 (0.5%) 0.56 (0.5%) 0.55 (1.5%) 0.55 (0.6%)
ℓ -13263.9 -12998.4 -13144.0 -13088.3 -12927.4 -13187.6
tc 1.17 1.4 seconds 92.0 5.1 minutes
r [1,4] [1,9,53,5,2] - [1,4,10] [1,9,12,14,17,52,117, -

12,7,4,3,2,2,2,3]

µ1

M
at
ri
x
E
x
p
on

en
ti
al 1.064 1.06 (0.0%) 1.06 (0.0%) 1.06 (0.0%) 1.06 (0.0%) 1.06 (0.0%) 1.06 (0.0%)

µ2 2.134 2.17 (1.8%) 2.27 (6.5%) 2.22 (4.1%) 2.25 (5.4%) 2.15 (1.0%) 2.17 (1.5%)
µ3 6.659 6.71 (0.9%) 7.95 (19.5%) 7.36 (11%) 8.33 (25%) 7.08 (6.3%) 6.83 (2.5%)
c2 0.884 0.92 (4.0%) 1.00 (12.8%) 0.96 (8.8%) 0.99 (11%) 0.90 (1.7%) 0.91 (3.2%)
ℓ -9319.5 -8179.7 -9036.6 -8832.9 -7685.6 -8399.7
tc 0.27 2.4 seconds 19.55 6.6 minutes
r [2,3] [2,98,5,20,6] - [1,7,7] [1,213,76,64,21,6,44, -

20,16,13,9,8,7,5,5]
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Table C.3: Comparison of HErD, Alg-Er and GPHD for synthetically generated data

order = 25
HErD Alg-Er GPHD

µ1

W
ei
b
u
ll
(1
,5
)

0.92 (0.0%) 0.92 (0.0%) 0.92 (0.0%)
µ2 0.89 (0.8 %) 0.89 (0.0%) 0.89 (0.4%)
µ3 0.92 (2.6%) 0.90 (0.0%) 0.91 (1.4%)
c2 0.06 (15.6%) 0.05 (0.4%) 0.06 (8.2%)
ℓ 1159.8 1433.5 1311.9
tc 661.6 17.8 hours
r [5,20] [37,611,141,85,63,43, -

32,28,24,22,20,19,18,
18,19,18,18,17,17,
15,15,14,11,10,10]

µ1

U
n
if
or
m
(0
.5
,1
.5
) 1.00 (0.0%) 1.00 (0.0%) 1.00 (0.0%)

µ2 1.09 (1.2%) 1.08 (0.0%) 1.09 (0.6%)
µ3 1.30 (4.5%) 1.25 (0.0%) 1.28 (2.9%)
c2 0.10 (15.8%) 0.08 (0.1%) 0.09 (8.0%)
ℓ -1716.6 -166.3 -1754.4
tc 1731.1 190.2 hours
r [12,13] [54,1811,944,387,191,65, -

38,34,35,48,56,67,100,226
214,209,332,670,954,

810,622,909,909,909,909]

µ1

P
ar
et
o2
(1
.5
,2
)

3.61 (0.0%) 3.61 (0.0%) 3.61 (0.0%)
µ2 71.5 (3.2%) 74.6 (7.8%) 23.7 (65.8%)
µ3 4792.8 (19.7%) 5668.4 (41.6%) 232.6 (94.2%)
c2 4.49 (3.9%) 4.73 (9.5%) 0.82 (81.0%)
ℓ -19952.9 -19957.4 -22041.2
tc 672.7 4.74 hours
r [2,2,3,4,6,8] [1,8,9,10,11,11, -

11,10,10,10,
9,9,8,8,7,7,7,7,
6,6,6,6,6,6]

handled calls, like, service time, waiting time, etc. We have used the service time attribute

and tried to fit a distribution to the empirical one. We have scaled the data to have a

sample mean of 1.

As can be seen from the results in Table C.4. For these two data traces, Alg-Er and HErD

perform much better than GPHD, both with respect to fitting accuracy and computation

time. The case of January data is the only case in which HErD outperforms Alg-Er in terms

of log-likelihood value. Even in this case, the performance of Alg-Er is very close to that

of HErD. However, in terms of CPU-time, Alg-Er is much faster than HErD. By increasing

M to 40, Alg-Er achieved better performance than HErD in terms of log-likelihood value

with a run-time of only 16 seconds.
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Table C.4: Comparison of HErD, Alg-Er, and GPHD for two Call Center Traces

Trace
order = 15 order = 25

HErD Alg-Er GPHD HErD Alg-Er GPHD

µ1

J
an

u
a
ry

19
99

1.00 1.00 (0.0%) 1.00 (0.0%) 1.00 (0.0%) 1.00 (0.0%) 1.00 (0.0%) 1.00 (0.0%)
µ2 2.57 2.47 (3.58%) 2.48 (3.29%) 2.57 (0.0%) 2.49 (2.95%) 2.50 (2.41%) 2.01 (21.9%)
µ3 14.78 11.90 (19.5%) 12.12 (18.0%) 14.82 (2.8%) 12.27 (17.0%) 12.71 (14.0%) 6.03 (59.2%)
c2 1.57 1.47 (5.9%) 1.48 (5.4%) 1.57 (0.0%) 1.49 (4.8%) 1.50 (3.9%) 1.01 (35.8%)
ℓ -25551.8 -25721.4 -25519.5 -25521.2 -25709.2 -26996.3
tC 52.3 6.3 minutes 1169.9 11.1 hours
r [2,2,2,4,5] [1,7,10,11,11,11, - [2,2,2,3,3,3,3,7] [1,6,10,11,11,11,11,11, -

10,9,8,7,7,5,7,3,1] 11,11,11,10,10,9,8,
8,7,8,7,7,7,3,1,1,1]

µ1

D
ec
em

b
er

1
99
9

1.00 1.00 (0.0%) 1.00 (0.0%) 1.00 (0.0%) 1.00 (0.0%) 1.00 (0.0%) 1.00 (0.0%)
µ2 2.73 2.47 (9.5%) 2.58 (5.6%) 2.52 (7.7%) 2.49 (8.9 %) 2.62 (4.2%) 1.83 (3.3%)
µ3 23.51 11.90 (49.4%) 14.49 (38.3%) 13.04 (38.3%) 12.27 (47.8%) 15.83 (32.7%) 4.99 (32.7%)
c2 1.73 1.47 (14.9%) 1.58 (8.8%) 1.52 (12.2%) 1.49 (14.0%) 1.62 (6.6%) 0.83 (52.0%)
ℓ -32476.6 -31880.9 -31801.3 -32437.8 -31871.1 -33292.2
tC 51.9 6.9 minutes 1203.6 11.7 hours
r [2,2,2,4,5] [1,8,10,11,11,10,8, - [2,2,2,3,3,3,3,7] [1,8,10,11,11,11,11, -

6,5,5,5,4,4,2,19] 11,10,9,8,6,5,5,5,5,
5,4,4,4,3,3,2,2,1]

C.3 Workload fitting in a M/G/1 heavy-tailed queue

In this section we try to fit the workload samples in a M/G/1 heavy-tailed queue using

our algorithm. In this example we have generated 106 samples based on the heavy-tailed

distribution for the workload in a M/G/1 queue, which is presented in [61, eq. (25)]. What

is particular about this example is that a considerable portion of the workload samples are

0. This comes from the fact that in a M/G/1 queue, queue is empty with probability of

1 − ρ, where ρ is the utilization factor of the queue. Therefore, in this case we are trying

to fit samples with a considerable portion of 0 ones with hyper-Erlang model. Therefore,

we will have a mass at absorbing state of the Markov model and we can see the advantage

of the likelihood with respect to the measure function of Lebesgue and Dirac function in

here. As our algorithm is designed such a way to accommodate for the case with mass

at absorbing state, we can see the satisfactory resulting hyper-Erlang fit to the samples in

figure C.4. In this example we have compared our algorithm Alg-Er with HErD. Actually,

in this case that we have a mass at absorbing state, likelihood in HErD algorithm is not a

suitable measure. In HErD algorithm, we have the order of the phase-type as n, and the

Erlang orders as (r1, r2, . . . , rM ), where M is the number of Erlang branches. Therefore,

for the case of having samples with a considerable portion of 0 ones, the incomplete data
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log-likelihood will be as follows

log ℓ(Θ|x) = log
K∏
k=1

p(xk|Θ) =
K∑
k=1
xk ̸=0

log(
M∑
i=1

πipi(xk|λi))

+

K∑
k=1
xk=0

log(

M∑
i=1

πipi(xk|λi)) =
K∑
k=1
xk ̸=0

log(

M∑
i=1

πipi(xk|λi)) +K0 log(

M∑
i=1

πipi(0|λi)) (C.2)

, where K0 is the number of 0 samples. But, for pi(0|λi) for i = 1, 2, . . . ,M we have

pi(0|λi) =

 λi if ri = 1

0 if ri > 1
(C.3)

Therefore, the incomplete data log-likelihood will simplify to

logL(Θ|x) =
K∑
k=1
xk ̸=0

log(
M∑
i=1

πipi(xk|λi)) +K0 log(
M∑
i=1
ri=1

πiλi) (C.4)

Because we have a considerable portion of samples as 0, at least one of the branches will

be of order 1 with pi(x|λi) = λie
−λix, with λi → ∞, which is an exponential pdf going

toward a δ(x) function, and models the absorbing state. Therefore, the incomplete data

log-likelihood will be summation of a δ(x) and other Erlang pdfs, or according to (C.4),

limλi→∞ logL(Θ|x) = ∞. Therefore, any effort in maximization of such a function will

result in λi =∞. Whereas, in (4.26), because of using measure of summation of Lebesgue

and Dirac function, we will not have this case and log-likelihood never goes to infity. The

better performance of our algorithm in compare to HErD can be seen in figure C.4. In our

simulations we also tried GPHD method, but as it took a long time and the results were

not as good as the other two methods, we omitted the fitting derived by GPHD. Also in

HErD method, because of getting very large value for one of the λ (in order of 10180), it is
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Figure C.4: Densities of fitted distributions using Alg-Er and HErD for M/G/1 queue
workload samples

impossible to try phase-type orders of higher than 6, whereas in our algorithm as can be

seen in the figure, very close fitting distributions can be achieved in order of 2 seconds with

15 branches.
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Appendix D: Proof of theorems about stochastic traffic

regulator

D.1 Proof of Proposition 5.3.1

We first establish the following lemma1.

Lemma D.1.1.

W (s̃j ;A1) =W (sj ;Ai)− (s̃j − sj)ρ (D.1.1)

Proof. We prove (D.1.1) using induction. For j = 1, i.e., the first packet arrival, s̃1 = s1

and W (s̃j ;A1) = W (sj ;Ai) = 0, so (D.1.1) holds in this case. Assuming (D.1.1) is valid

for the jth packet, we now verify that it holds for the (j + 1)st packet. Note that in the

interval (s̃j , ãj), the workload function W (t;A1) increases linearly with slope C − ρ by an

amount δj (see (5.11)) and then decreases linearly with slope −ρ in the interval (ãj , s̃j+1)

(see (5.20) and (5.21)). Hence,

W (s̃j+1, A1) =W (s̃j , A1) + δj − ρ(s̃j+1 − ãj). (D.1.2)

By a similar argument (see (5.12)-(5.13)),

W (sj+1, Ai) =W (sj , Ai) + δj − ρ(sj+1 − aj). (D.1.3)

Next, we apply first (D.1.1) and then (D.1.3) into (D.1.2) and re-arrange terms to obtain

W (s̃j+1, A1) =W (sj+1, Ai)− ρ(s̃j+1 − sj+1) + [(ãj − s̃j)− (aj − sj)]ρ. (D.1.4)

The last term in (D.1.4) vanishes, since ãj− s̃j = aj−sj = Lj/C. Thus, we have established

1For notational convenience we drop the subscript ρ when referring to workload functions W (·; ·).
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(D.1.1) using mathematical induction.

Proof of Proposition 5.3.1. First, suppose W (s̃j ;A1) ≤ σ. Since W (s̃j ;A1) = W (s̃j ;Ao)

(see (5.22)), we have W (s̃j ;Ao) ≤ σ, i.e., the (σ, ρ) constraint is satisfied by the output

process at time s̃j . This implies that the jth packet departs the regulator starting at time

tj = s̃j , which confirms (5.18) in this case.

Next, suppose W (s̃j ;A1) > σ. Then W (sj ;Ai) ≥W (sj ;A1) ≥W (s̃j ;A1) > σ. Thus, in

this case, we can remove the [·]+ operator in both (2.12) and (5.18). Applying Lemma D.1.1

to the right-hand side of (5.18), we have

[W (s̃j ;A1)− σ]/ρ+ s̃j = [W (sj ;Ai)− (s̃j − sj)ρ− σ]/ρ+ s̃j

= [W (sj ;Ai)− σ]/ρ+ sj = tj .

This completes the proof of Proposition 5.3.1.

D.2 Proof of Theorem 5.4.2

The proof of Theorem 5.4.2 is based on the following two lemmas.

Lemma D.2.1. Let Bj be as defined in (5.46), let k = minBj , and Ij is defined as

Ij =
{
2 ≤ ℓ ≤ k : oTi(bj(σℓ)) ≤ f̄(Ti)− ϵi,j(σℓ), ∀i = 1, . . . , ℓ− 1

}
, (D.2.1)

where

ϵi,j(σℓ)=


W (bj(σℓ);Ao)−Ti

ρbj(σℓ)
(1− f̄(Ti)) i ∈{1, . . . , ℓ−2}

f̄(Tℓ−1)− f̄(Tℓ) i = ℓ− 1,
(D.2.2)
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where tj(σℓ) and bj(σℓ) are given by (5.18) and (5.9), respectively. Set

i∗ =

 max Ij , Ij ̸= ∅,

1, otherwise.
(D.2.3)

If the burst parameter σ∗(j) is set as follows:

σ∗(j) = σi∗ , (D.2.4)

then

oTi(t) ≤ f̄(Ti), t ∈ [bj−1, bj(σi∗)], ∀ i ∈ {1, 2, . . . ,M}. (D.2.5)

Proof. We proof (D.2.5) using induction. Note that, for j = 1 we have Ij = ∅ and according

to (5.23)

OTi(t;Ao) = 0 ∀ i ∈ {1, 2, . . . ,M}. (D.2.6)

Therefore (D.2.5) holds for j = 1. Lets assume (D.2.5) is valid for the jth packet, we now

verify it holds for the (j + 1)th packet. We assume σ∗(j) = σm, where m ∈ Ij . Therefore

bj = bj(σm) and according to (D.2.1) and assumption (D.2.5)

oTi(bj) ≤ f̄(Ti), ∀ i ∈ {1, 2, . . . ,M}, (D.2.7)

oTi(bj) ≤ f̄(Ti)− ϵi,j(σm), ∀i ∈ {1, 2, . . . ,m− 1}, (D.2.8)

where ϵi,j(σm) is defined in (D.2.2). As σm+1 > W (bj ;Ao) ≥W (tj+1;Ao), therefore σ
∗(j+1)

can be chosen from {σ1, . . . , σm, σm+1}. We define Ŵ (t;Ao) as the decreasing workload with

slope ρ from W (bj ;Ao) as shown in Fig. D.1. Also, if σ∗(j + 1) is set as σ∗(j + 1) = σℓ for

ℓ ∈ {1, 2, . . . ,m+ 1} as in Fig. D.1, we have
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W (t;Ao)

Ŵj(t;Ao)

Figure D.1: W (t;Ao), when σ
∗(j) = σm > σ1 and σ∗(j + 1) ∈ {σ1, . . . , σm}.

W (t;Ao) = Ŵ (t;Ao), t ∈ [bj , tj+1(σℓ)]. (D.2.9)

We define tj+1(i) as the time that

Ŵ (tj+1(i);Ao) = Ti, for i ∈ {0, 1, . . . ,m}, (D.2.10)

with T0 = 0. Therefore, according to (5.19), we have

tj+1(i) = bj +
W (bj ;Ao)− Ti

ρ
. (D.2.11)

According to Proposition 5.4.1 and Fig. D.1, we have

OTi(t;Ao) = OTi(bj ;Ao), t ∈ [bj , bj+1], i ∈ {m,m+ 1, . . . ,M}. (D.2.12)

Therefore, according to (D.2.7)

oTi(t) ≤ f̄(Ti), t ∈ [bj , bj+1], i ∈ {m,m+ 1, . . . ,M}. (D.2.13)

On the other hand, as σ∗(j + 1) is chosen according to (D.2.3) we can have two following

228



subcases

Case 1: σ∗(j + 1) = σn ∈ {σ1, . . . , σm}.

In this case, we have

OTi(t;Ao)=

OTi(bj ;Ao)+(t− bj) t ∈ [bj , tj+1(i)],

OTi(tj+1(i);Ao) t ∈ (tj+1(i), bj+1],
(D.2.14)

for i ∈ {n, n + 1, . . . ,m − 1}. Therefore, according to (D.2.11) and (D.2.14), for i ∈

{n, n+ 1, . . . ,m− 1}

max
t∈[bj ,bj+1]

oTi(t) = oTi(tj+1(i)).

But as we have (D.2.8) therefore,

oTi(t) ≤ f̄(Ti), t ∈ [bj , bj+1], i ∈ {n, n+ 1, . . . ,m− 1}. (D.2.15)

It can be easily verified according to Proposition 5.4.1, for i ∈ {1, 2, . . . , n− 1} we have

OTi(t;Ao) = OTi(bj ;Ao) + (t− bj), t ∈ [bj , bj+1]. (D.2.16)

Therefore, for i ∈ {1, 2, . . . , n− 1}

max
t∈[bj ,bj+1]

oTi(t) = oTi(bj+1) (D.2.17)

But as σ∗(j + 1) = σn is chosen using (D.2.3) we have

oTi(bj+1) ≤ f̄(Ti)− ϵi,j+1(σn), ∀i ∈ {1, 2, . . . , n− 1}, (D.2.18)
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(a) W (bj+1;Ao) > Tm
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W (bj+1;Ao)

t
bj tj+1 bj+1

Tm

σm+1

σm

(b) W (bj+1;Ao) ≤ Tm

Figure D.2: Two subcases I, II of Wρ(t;Ao), when σ
∗(j) = σm and σ∗(j + 1) = σm+1.

Therefore according to (D.2.17) and (D.2.18)

oTi(t) < f̄(Ti), t ∈ [bj , bj+1], i ∈ {1, 2, . . . , n− 1}. (D.2.19)

Therefore, for this case using (D.2.13), (D.2.15) and (D.2.19)

oTi(t) < f̄(Ti), t ∈ [bj , bj+1], i ∈ {1, 2, . . . ,M}. (D.2.20)

Case 2: σ∗(j + 1) = σm+1.

In this case workload can be as in Fig. D.2 and can have subcases I, II, and III. In all

subcases as

W (t;Ao) < Ti, t ∈ [bj , bj+1], i ∈ {m+ 1, . . . ,M}.

Therefore, according to Proposition 5.4.1 and Fig. D.2, we have

OTi(t;Ao) = OTi(bj ;Ao), t ∈ [bj , bj+1], i ∈ {m+ 1, . . . ,M}.
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Therefore, according to (D.2.7)

oTi(t) ≤ f̄(Ti), t ∈ [bj , bj+1], i ∈ {m+ 1, . . . ,M}. (D.2.21)

On the other hand, for all subcases as

W (t;Ao) > Ti, t ∈ [bj , bj+1], i ∈ {1, 2, . . . ,m− 1}.

Therefore, according to Proposition 5.4.1 and Fig. D.2, we have

OTi(t;Ao) = OTi(bj ;Ao) + (t− bj), t ∈ [bj , bj+1], i ∈ {1, 2, . . . ,m− 1}.

Therefore, for i ∈ {1, 2, . . . ,m− 1}

max
t∈[bj ,bj+1]

oTi(t) = oTi(bj+1) (D.2.22)

But as σ∗(j + 1) = σm+1 is chosen using (D.2.3) we have

oTi(bj+1) ≤ f̄(Ti)− ϵi,j+1(σm+1), ∀i ∈ {1, 2, . . . ,m− 1}, (D.2.23)

Therefore according to (D.2.22) and (D.2.23)

oTi(t) < f̄(Ti), t ∈ [bj , bj+1], i ∈ {1, 2, . . . ,m− 1}. (D.2.24)

In subcases I and II , as

W (t;Ao) ≥ Tm, t ∈ [µ, bj+1],

where µ is defined as follows:

W (µ;Ao) = Tm, µ ∈ [bj , bj+1].
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Therefore,

OTm(t;Ao) =

 OTm(bj ;Ao) t ∈ [bj , µ]

OTm(µ;Ao) + (t− µ) t ∈ (µ, bj+1]

Hence,

argmax
t∈[bj ,bj+1]

oTm(t) ∈ {bj , bj+1}.

But as σ∗(j + 1) = σm+1 is chosen using (D.2.3), therefore

oTm(bj+1) ≤ f̄(Tm)− ϵm,j+1(σm+1) = f̄(Tm+1) < f̄(Tm)

Also as we have (D.2.7) therefore,

oTm(t) ≤ f̄(Tm), t ∈ [bj , bj+1]. (D.2.25)

For subcase III, on the other hand

W (t;Ao) < Tm, t ∈ [bj , bj+1].

Therefore, it can easily be shown

oTm(t) ≤ f̄(Tm), t ∈ [bj , bj+1]. (D.2.26)

Therefore, using (D.2.21), (D.2.24), (D.2.25) and (D.2.26) we have

oTm(t) ≤ f̄(Tm), t ∈ [bj , bj+1], i ∈ {1, . . . ,M}. (D.2.27)

232



. . .

. . . . . .

. . .

γ2

γ1

W (t;Ao)

t

Tm

σm+1

Tm+1

σm+2

(a) Oγ1,Tm+1
(t) is not at its maximum value

for a constant OTm,Tm+1
(t) = c

. . .

. . . . . .

. . .

γ2

γ1

W (t;Ao)

t

Tm

σm+1

Tm+1

σm+2

t1 t2

(b) Oγ1,Tm+1
(t) is at its maximum value for

a constant OTm,Tm+1
(t) = c

Figure D.3: Fluctuation of the W (t;Ao) between Tm and Tm+1.

Lemma D.2.2. If

oTm(t) ≤ c1; oTm+1(t) ≤ c2, (D.2.28)

for m ∈ {1, 2, . . . ,M − 2}, and t ∈ [bj−1, bj(σℓ)]. Then

oγ(t) ≤ f̄(Tm)− (γ − Tm)
c1 − c2

Tm+1 − σm+1
, (D.2.29)

for ∀γ ∈ [σm+1, Tm+1) and

oγ(t) < c1, ∀γ ∈ [Tm, σm+1). (D.2.30)

Proof. We prove this Lemma for two following cases

Case 1: γ ∈ [σm+1, Tm+1).

We know according to (D.2.28)

OTm(t;Ao) ≤ tc1; OTm+1(t;Ao) ≤ tc2. (D.2.31)
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For the simplification of the proof we extend the concept of the overshoot to the overshoot

duration with respect to two threshold values.

Definition D.2.1. Given two threshold values ζ2 > ζ1 > 0 and a traffic process A, a limited

overshoot interval with respect to A, ζ1 and ζ2 is a maximal interval of time κ such that

ζ2 > W (τ ;R) ≥ ζ1 for all τ ∈ κ. Let |κ| denote the length of interval κ. Let O[ζ1,ζ2)(t)

denote the set of limited overshoot intervals contained in [0, t]. Then the limited overshoot

duration up to time t is defined as

Oζ1,ζ2(t;A) =
∑

κ∈O[ζ1,ζ2)
(t)

|κ|. (D.2.32)

According to the Definition 5.4.1 and D.2.1 it is obvious that

Oζ2(t;A) = Oζ1,ζ2(t;A) +Oζ1(t;A)

On the other hand, for a fixed OTm(t;A) − OTm+1(t;A) = OTm,Tm+1(t;A) = c, for any

γ ∈ [TM , TM+1], Oγ(t;Ao) is maximized when Oγ,Tm+1(t;A) is at its maximum value. But

we should note that as shown in Fig. 5.3 and according to equations (5.22)-(5.24) the

workload W (t;Ao) can fluctuate between TM and TM+1 as shown in Fig. D.3. It can be

seen by comparing Fig. D.3a and D.3b that Oγ,Tm+1(t;A) is greater in Fig. D.3b in compare

to Fig. D.3a. In other words, we should have the fluctuation of W (t;Ao) between Tm

and Tm+1 in units of the complete fluctuation as shown in Fig. D.4. By considering the

increasing slope of W (t;Ao) as C−ρ and the decreasing slope of −ρ, it can easily be shown

that

∆t = t2 − t1 = (Tm+1 − σm+1)

(
1

ρ
+

1

C − ρ

)
(D.2.33)

∆τ = τ2 − τ1 = (Tm+1 − γ2)
(
1

ρ
+

1

C − ρ

)
(D.2.34)
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Figure D.4: One unit of complete fluctuation of W (t;Ao) between Tm and Tm+1

Therefore, if OTm,Tm+1(t;A) = c, in order to maximize Oγ,Tm+1(t;A) we should have n1

complete fluctuation interval, where n1 is

n1 =
⌊ c

∆t

⌋
. (D.2.35)

For example in Fig. D.3b, n1 = 6. Therefore,

Oγ,Tm+1(t;A) ≤
c∆τ

∆t
(D.2.36)

This upper bound is tight and can happen for M being at its maximum value, such that

σm+1 ≈ Tm, and for the fluctuation of W (t;Ao) as in Fig. D.3b. Hence,

oγ(t) =
Oγ,Tm+1(t;A) +OTm+1(t;A)

t
≤ c∆τ

t∆t
+ oTm+1(t)

= oTm(t)− (γ − σm+1)
oTm(t)− oTm+1(t)

Tm+1 − σm+1
(D.2.37)

It can easily be shown with the constraint of (D.2.28), we have

Oγ(t;A)

t
≤ c1 − (γ − σm+1)

c1 − c2
Tm+1 − σm+1

(D.2.38)
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Case 2: γ ∈ [Tm, σm+1).

It can be seen in Fig. D.3a and Fig. D.3b, that

Oγ(t;A) < OTm(t;A) (D.2.39)

Therefore,

oγ(t) < oTm(t) ≤ f(Tm) (D.2.40)

If we chooseM at its maximum level the bounding function can be a linear function between

any two points Tm and Tm+1.

Corollary D.2.1. Let

oTm(t) ≤ f̄(Tm); oTm+1(t) ≤ f̄(Tm+1), (D.2.41)

for m ∈ {1, 2, . . . ,M − 2}, and t ∈ [bj−1, bj(σℓ)] and M is chosen as the maximum value

such that Ti ≈ σi+1 for i ∈ {1, 2, . . . ,M − 1}. Then

oγ(t) ≤ f̄(Tm)− (γ − Tm)
f̄(Tm)− f̄(Tm+1)

Tm+1 − Tm
, (D.2.42)

for ∀γ ∈ [Tm, Tm+1).

Remark. For the case that M is not chosen as the maximum possible value and Ti < σi+1

for some i ∈ {1, 2, . . . ,M − 1}, by slightly modifying the definition of the f̄(γ), we can get

a result similar to Corollary D.2.1. In this modification, in the interval [σi+1, Ti+1) let

li(γ) := f(Ti+1) + ωi(γ − Ti+1) (D.2.43)

represent the line connecting the points (σi+1, f(σi+1)) and (Ti+1, f(Ti+1)) with slope

ω̂i :=
f(Ti+1)− f(σi+1)

Ti+1 − σi+1
(D.2.44)
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Figure D.5: Modified definition of f̄(γ) when M < Mmax.

for i = 1, . . . ,M − 2. If f(γ) ≥ li(γ) for all γ ∈ [σi+1, Ti+1) we set f̄ = li in this interval.

Otherwise, we set f̄ = hi on [σi+1, Ti+1), where

hi(γ) = f(Ti+1) + f ′(Ti+1)(γ − Ti+1). (D.2.45)

On the other hand, in the interval [Ti, σi+1) we set f̄ = f(σi+1). Similarly, we set f̄(γ) =

f(T ) for γ ∈ [TM−1, TM ] and f̄(γ) = 0 for γ > TM . To summarize, we define

f̄(γ) :=



1, γ ∈ [0, T1),

f(σi+1), γ ∈ [Ti, σi+1),

f(Ti+1) + m̂i(γ − Ti+1), γ ∈ [σi+1, Ti+1),

f(T ), γ ∈ [TM−1, TM ],

0, γ > TM ,

(D.2.46)

where the slopes m̂i are defined by

m̂i =

 ω̂i, if f ≥ hi on [σi+1, Ti+1),

f ′(Ti+1), otherwise,
(D.2.47)

for i = 1, . . . ,M − 2. This modified f̄(γ) is shown in Fig. D.5.
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Corollary D.2.2. Let

oTm(t) ≤ f̄(Tm); oTm+1(t) ≤ f̄(Tm+1), (D.2.48)

for m ∈ {1, 2, . . . ,M − 2}, and t ∈ [bj−1, bj(σℓ)] and f̄(γ) is defined as (D.2.46). Then

oγ(t) ≤ f̄(σm+1)− (γ − Tm)
f̄(σm+1)− f̄(Tm+1)

Tm+1 − σm+1
, (D.2.49)

for ∀γ ∈ [σm+1, Tm+1) and

oγ(t) ≤ f̄(σm+1), (D.2.50)

for ∀γ ∈ [Tm, σm+1).

Proof of Theorem 5.4.2. In Lemma D.2.1 we showed if σ∗(j) is chosen using (D.2.4) then

oTi(t) ≤ f̄(Ti), t ∈ [bj−1, bj(σ
∗(j))], i ∈ {1, 2, . . . ,M}. (D.2.51)

On the other hand, we showed in Corollary D.2.1 that if we have (D.2.51) and M =Mmax,

defined in (5.36), then

oγ(t) ≤ f̄(Ti)− (γ − Ti)
f̄(Ti)− f̄(Ti+1)

Ti+1 − Ti
, (D.2.52)

for ∀γ ∈ [Ti, Ti+1) and ∀i ∈ {1, . . . ,M}. On the other hand, in Corollary D.2.2 we showed,

if if we have (D.2.51) andM < Mmax, then with the modified definition of f̄(γ) in (D.2.46),

oγ(t) ≤ f̄(σi+1)− (γ − Ti)
f̄(σi+1)− f̄(Ti+1)

Ti+1 − σi+1
, (D.2.53)
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for ∀γ ∈ [σi+1, Ti+1) and

oγ(t) ≤ f̄(σi+1), (D.2.54)

for ∀γ ∈ [Ti, σi+1) and ∀i ∈ {1, . . . ,M}. Therefore, forM =Mmax if for all i ∈ {1, 2, . . . ,M−

1} and all γ ∈ [Ti, Ti+1],

f(γ) ≥ f̄(Ti)− (γ − Ti)
f̄(Ti)− f̄(Ti+1)

Ti+1 − Ti
, (D.2.55)

with f̄(γ) defined in (5.41), and for M < Mmax if for all i ∈ {1, 2, . . . ,M − 1} and all

γ ∈ [σi+1, Ti+1)

f(γ) ≥ f̄(σi+1)− (γ − Ti)
f̄(σi+1)− f̄(Ti+1)

Ti+1 − σi+1
, (D.2.56)

and if for all γ ∈ [Ti, σi+1)

f(γ) ≥ f̄(σi+1), (D.2.57)

with f̄(γ) defined in (D.2.46), then

oγ(t) ≤ f(γ), t ∈ [bj−1, bj(σ
∗(j))], ∀γ ∈ [T1, T ]. (D.2.58)

But definition of f̄(γ) assures inequalities in (D.2.55)–(D.2.57).

D.3 Proof of Theorem 5.4.3

In order to prove Theorem 5.4.3 we first establish the following lemma:

Lemma D.3.1. Let Bj be as define in (5.46), let k = minBj and Jj be as defined in (5.52).
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W (t;Ao)

W (bj−1;Ao)

t
bj−1 s̃j

W (s̃j ;A1)

W (tj(σℓ);Ao) = σℓ

bj(σℓ)

σk

bj(σk)

Tm

Figure D.6: W (t;Ao), when k = minBj , m ∈ Jj and m < k − 1 for ∀ℓ ∈ {m+ 1, . . . , k}.

If m ∈ Jj and m < k − 1 then

OTm(bj(σℓ);Ao)

bj(σℓ)
+
W (bj(σℓ);Ao)− Tm

ρbj(σℓ)
(1− f̄(Tm)) ≤ f̄(Tm), (D.3.1)

for ∀ℓ ∈ {m+ 1, . . . , k}.

Proof. Note that,

W (bj(σℓ);Ao)− Tm
ρbj(σℓ)

(1− f(Tm)) = ϵm,j(σℓ), (D.3.2)

for ∀ℓ ∈ {m + 2, . . . , k}. According to (2.12), and as it is shown in Fig. D.6, it can easily

be verified that

bj(σℓ) = bj(σk) +
W (s̃j ;A1)− σℓ

ρ
(D.3.3)

Therefore, using Proposition 5.4.1, we have

OTm(bj(σℓ);Ao) = OTm(bj(σk);Ao) +
W (s̃j ;A1)− σℓ

ρ
(D.3.4)
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Also we have

W (bj(σℓ);Ao) =W (bj(σk);Ao)− (W (s̃j ;A1)− σℓ) (D.3.5)

Therefore, using (D.3.3), (D.3.4) and (D.3.5) and m ∈ Jj after some manipulations we can

show (D.3.1) holds.

Proof of Theorem 5.4.3. Based on m, defined in (5.53), we have two following cases:

Case 1: m = k − 1.

In this case, as m ∈ Jj , therefore according to (5.52)

OTℓ
(bj(σk);Ao)

bj(σk)
≤ f̄(Tℓ)− ϵℓ,j(σk), (D.3.6)

for ℓ = 1, 2, . . . , k − 1. Therefore, according to (5.50)

OTm(bj(σk);Ao)

bj(σk)
≤ f̄(Tm)− ϵm,j(σk) = f̄(Tk) (D.3.7)

Hence, according to (5.54), m + 1 ∈ Kj . Hence, σ∗(j) derived using Theorem 5.4.3 is

σ∗(j) = σk. On the other hand, according to (D.3.6) and (5.49), σ∗(j) derived using

Theorem 5.4.2 will be also σ∗(j) = σk.

Case 2: m < k − 1.

Lets assume σ∗(j) derived using Theorem 5.4.3 and σ∗(j) = σn. We will show σ∗(j)

derived using Theorem 5.4.2 will be also σ∗(j) = σn. In this case according to (5.54)

and (5.57), if ℓ ∈ {1, 2, . . . , n − 1} then ℓ ∈ Jj and ℓ < k − 1. Therefore, according to

Lemma D.3.1

OTℓ
(bj(σn);Ao)

bj(σn)
≤ f̄(Tℓ)−

W (bj(σn);Ao)− Tℓ
ρbj(σn)

(1− f̄(Tℓ)), (D.3.8)
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for l = 1, 2, . . . , n− 1. On the other hand, as n ∈ Kj , according to (5.54) and (5.50)

OTn−1(bj(σn);Ao)

bj(σn)
≤ f̄(Tn−1) = f̄(Tn)− ϵn−1,j(σn) (D.3.9)

Therefore, according to (D.3.8), (D.3.9) and (D.3.8), σ∗(j) derived using Theorem 5.4.2 will

be also σ∗(j) = σn.

D.4 Proof of Theorem 5.4.1

D.4.1 Proof of Theorem 5.4.1, Part I

In this section we prove the following lemma, which is a preliminary version of Theo-

rem 5.4.1. Then using the results in this appendix, we prove Theorem 5.4.1 in the next

section. We also provide some details about the practical implementation of Algorithm 6

in the next section.

Lemma D.4.1. Assume that TM is chosen sufficiently large such that for every packet j the

set

Bj = {1 ≤ ℓ ≤M : σℓ ≥W (s̃j ;A1)} , (D.4.1)

is non-empty. Set

Ij =
{
2 ≤ ℓ ≤ minBj : oTℓ−1

(bj(σℓ)) ≤ f̄(Tℓ)
}

(D.4.2)

where tj(σℓ) and bj(σℓ) are given by (5.18) and (5.9), respectively. Set

i∗ =

 max Ij , Ij ̸= ∅,

1, otherwise.
(D.4.3)
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Let

σ∗(j) = σi∗ . (D.4.4)

If

bj ≥
L

ϵρ
+
TM − σ1

ρ
+
L

C
, (D.4.5)

where ϵ > 0 is given by

ϵ = min
2≤k≤M

[f(Tk−1)− f(Tk)], (D.4.6)

then

oTi∗−1
(t) ≤ f̄(Ti∗−1), t ∈ [bj−1, bj ]. (D.4.7)

By comparing (D.4.7) and (5.43), we can see Lemma D.4.1 guarantees satisfying the

constraint in (5.43) only for one specific value γ = Ti∗−1 rather than ∀γ ∈ [0, T ]. Proof of

Lemma D.4.1 is based on the following three lemmas.

Lemma D.4.2. Let Bj be as defined in (5.46) and let k = minBj . Let assume k > 1. Set

bj = bj(σk). Then

argmax
t∈[bj−1,bj ]

oTk−1
(t) ∈ {bj−1, bj , η, ν} (D.4.8)

where η ∈ [bj−1, tj ] and ν ∈ [tj , bj ] are determined by

W (η;Ao) =W (ν;Ao) = Tk−1. (D.4.9)

Proof. According to Proposition 5.4.1, OTk−1
(t;Ao) is related to OTk−1

(bj−1;Ao) over the
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interval t ∈ [bj−1, bj ] as follows,

OTk−1
(t;Ao) =

 OTk−1
(bj−1;Ao) + β(bj−1, t, Tk−1), t ∈ [bj−1, tj ]

OTk−1
(tj ;Ao) + α(tj , t, Tk−1), t ∈ [tj , bj ]

(D.4.10)

We can have one of the two following cases based on s̃j

Case 3: s̃j = sj .

In this case sj > bj−1. According to (5.18) and (5.20), tj = s̃j and W (tj ;Ao) =

W (s̃j ;A1). In this case using (5.19)-(5.23) we have

W (t;Ao) =W (t;A1), ∀ t ∈ [bj−1, bj ] (D.4.11)

If Tk−Tk−1 > δ, for W (t;Ao) on the interval t ∈ [bj−1, bj ] we can have one the five subcases

shown depicted Fig. D.7. On the other hand, If Tk−Tk−1 = δ, then Tk−1 = σk andW (t;Ao)

on the interval t ∈ [bj−1, bj ] will be like the four subcases shown in Figs. D.7b-D.7e.

According to (D.4.11), in subcase D.7a, W (t;Ao) > Tk−1 for ∀t ∈ [bj−1, bj ]. Hence,

using (D.4.10), (5.30), and (5.31) we have

oTk−1
(t) =

OTk−1
(bj−1;Ao) + (t− bj−1)

bj−1 + (t− bj−1)
, (D.4.12)

for ∀ t ∈ [bj−1, bj ]. As Oγ(t;Ao) < t for ∀γ ∈ [0, T ], it can be easily verified that in this case

argmax
t∈[bj−1,bj ]

oTk−1
(t) = bj . (D.4.13)

On the other hand, for subcase D.7b, as W (t;Ao) > Tk−1 for ∀t ∈ {[bj−1, η]∪ [ν, bj ]}, where
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W (t;Ao)

σk

Tk+1

σk+1

W (s̃j ;A1)

W (s̃j ;A1) + δj

t
tj = s̃j bj

(a) subcase 1

W (t;Ao)

σk

Tk+1

σk+1

W (s̃j ;A1)

W (s̃j ;A1) + δj

t
tj bjη ν

(b) subcase 2

W (t;Ao)

σk

Tk+1

σk+1
W (s̃j ;A1)

W (s̃j ;A1) + δj

t
tj bjbj−1

ν

(c) subcase 3

W (t;Ao)

σk

Tk+1

σk+1
W (s̃j ;A1)

W (s̃j ;A1) + δj

t
tj = s̃j bjη

(d) subcase 4

W (t;Ao)

σk

Tk+1

σk+1
W (s̃j ;A1)

W (s̃j ;A1) + δj

t
tj bjbj−1

(e) subcase 5

Figure D.7: Different cases of W (t;Ao) on the interval [bj−1, bj ] with σ = σk, ζ(σ) = Tk+1,
tj = s̃j and Tk − Tk+1 > δ.

245



η and ν are defined in (D.4.9), we have

oTk−1
(t) =


OTk−1

(bj−1;Ao)+(t−bj−1)

bj−1+(t−bj−1)
t ∈ [bj−1, η]

OTk−1
(η;Ao)

η+(t−η) t ∈ [η, ν]

OTk−1
(η;Ao)+(t−ν)

ν+(t−ν) t ∈ [ν, bj ]

(D.4.14)

Therefore, it can be easily verified that in this case

argmax
t∈[bj−1,bj ]

oTk−1
(t) ∈ {η, bj}. (D.4.15)

For subcase D.7c, as W (t;Ao) > Tk−1 for ∀t ∈ [ν, bj ], we have

oTk−1
(t) =


OTk−1

(bj−1;Ao)

bj−1+(t−bj−1)
t ∈ [bj−1, ν]

OTk−1
(bj−1;Ao)+(t−ν)

ν+(t−ν) t ∈ [ν, bj ]
(D.4.16)

Therefore, it can be easily verified that in this case

argmax
t∈[bj−1,bj ]

oTk−1
(t) ∈ {bj−1, bj}. (D.4.17)

For subcase D.7d, as W (t;Ao) > Tk−1 for ∀t ∈ [bj−1, η], we have

oTk−1
(t) =


OTk−1

(bj−1;Ao)+(t−bj−1)

bj−1+(t−bj−1)
t ∈ [bj−1, η]

OTk−1
(η;Ao)

η+(t−η) t ∈ [η, bj ]
(D.4.18)

Therefore, it can be easily verified that in this case

argmax
t∈[bj−1,bj ]

oTk−1
(t) = η. (D.4.19)
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For subcase D.7e, as W (t;Ao) < Tk−1 for ∀t ∈ [bj−1, bj ], we have

oTk−1
(t) =

OTk−1
(bj−1;Ao)

bj−1 + (t− bj−1)
, (D.4.20)

for ∀t ∈ [bj−1, bj ]. Therefore, it can be easily verified that in this case

argmax
t∈[bj−1,bj ]

OTk−1
(t;Ao)

t
= bj−1. (D.4.21)

On the other hand , when Tk−Tk−1 = δ, we have the subcases similar to the subcases D.7b-

D.7e. Therefore, we will have the same relations as (D.4.15)-(D.4.21).

Case 4: s̃j = bj−1

In this case sj < bj−1. According to (5.18) and (5.20), tj = s̃j = bj−1 and W (tj ;Ao) =

W (s̃j ;A1). In this case using (5.20)-(5.23) we have

W (t;Ao) =W (t;A1), ∀ t ∈ [bj−1, bj ] (D.4.22)

If Tk−Tk−1 > δ, forW (t;Ao) on the interval t ∈ [bj−1, bj ] we can have one the four subcases

shown depicted Fig. D.8. On the other hand, If Tk − Tk−1 = δ, then Tk−1 = σk and we can

have one the two subcases shown in Fig. D.8c and D.8d. As in subcase D.8a and D.8b,

W (t;Ao) > Tk−1 for ∀t ∈ [bj−1, bj ], we have

oTk−1
(t) =

OTk−1
(bj−1;Ao) + (t− bj−1)

bj−1 + (t− bj−1)
(D.4.23)

for ∀t ∈ [bj−1, bj ]. Therefore, it can be easily verified that in this case

argmax
t∈[bj−1,bj ]

oTk−1
(t) = bj . (D.4.24)
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W (t;Ao)

W (s̃j ;A1) + δj

W (s̃j ;A1)

σk+1

Tk+1

σk

t
tj bj

(a) subcase 1

W (t;Ao)

W (s̃j ;A1) + δj

W (s̃j ;A1)

σk+1

Tk+1

σk

t
tj bj

(b) subcase 2

W (t;Ao)

W (s̃j ;A1) + δj

W (s̃j ;A1)

σk+1

Tk+1

σk

t
tj bjν

(c) subcase 3

W (t;Ao)

W (s̃j ;A1) + δj

W (s̃j ;A1)

σk+1

Tk+1

σk

t
tj bj

(d) subcase 4

Figure D.8: Different cases of W (t;Ao) on the interval [bj−1, bj ] with σ = σk, ζ(σ) = Tk+1,
tj = s̃j = bj−1 and Tk − Tk+1 > δ.
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For subcase D.8c, as W (t;Ao) > Tk−1 for ∀t ∈ [ν, bj ], we have

oTk−1
(t) =


OTk−1

(bj−1;Ao)

bj−1+(t−bj−1)
t ∈ [bj−1, ν]

OTk−1
(bj−1;Ao)+(t−ν)

ν+(t−ν) t ∈ [ν, bj ]
(D.4.25)

Therefore, it can be easily verified that in this case

argmax
t∈[bj−1,bj ]

oTk−1
(t) ∈ {bj−1, bj}. (D.4.26)

For subcase D.8d, as W (t;Ao) < Tk−1 for ∀t ∈ [bj−1, bj ], we have

oTk−1
(t) =

OTk−1
(bj−1;Ao)

bj−1 + (t− bj−1)
(D.4.27)

Therefore, it can be easily verified that in this case

argmax
t∈[bj−1,bj ]

oTk−1
(t) = bj−1. (D.4.28)

On the other hand , when Tk−Tk−1 = δ, we have the subcases similar to the subcases D.8c-

D.8d. Therefore, we will have the same relations as (D.4.26)-(D.4.28).

Lemma D.4.3. Let Bj be as defined in (5.46) and k = minBj . Assume k > 1. Let ℓ ∈

{2, . . . , k − 1} and set bj = bj(σℓ). Then

argmax
t∈[bj−1,bj ]

oTℓ−1
(t) = bj . (D.4.29)

Proof. As it was mentioned before, OTℓ−1
(t;Ao) can be determined using OTℓ−1

(bj−1;Ao)

over the interval t ∈ [bj−1, bj ] according to (D.4.10). Similarly, we can have one of the two

following cases based on s̃j :
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W (t;Ao)

σk

W (tj ;Ao) = σl

Tl+1

W (tj ;Ao) + δj

W (s̃j ;A1)

t
s̃j ãj bjtj

W (t;Ao)

W (t;A1)

Figure D.9: W (t;Ao), when σ = σl, ζ(σ) = Tl+1, s̃j = bj−1 and Tk − Tk+1 > δ.

Case 1: s̃j = sj

In this case sj > bj−1. With σ = σℓ, tj is derived using (5.18). According to (5.20),

W (tj ;Ao) = σℓ. Hence, in this case, when Tk − Tk−1 > δ, W (t;Ao) is as shown in Fig. D.9.

On the other hand, if Tk−Tk−1 = δ, W (t;Ao) will be same as in Fig. D.9, except Tℓ−1 = σℓ.

In this case, as W (t;Ao) ≥ Tℓ−1 for ∀t ∈ [bj−1, bj ], we have

oTℓ−1
(t) =

OTℓ−1
(bj−1;Ao) + (t− bj−1)

bj−1 + (t− bj−1)
, (D.4.30)

for ∀t ∈ [bj−1, bj ]. Therefore, it can be easily verified that in this case

argmax
t∈[bj−1,bj ]

oTℓ−1
(t) = bj . (D.4.31)

Case 2: s̃j = bj−1

In this case sj < bj−1. With σ = σℓ, tj is derived using (5.18). According to (5.20),

W (tj ;Ao) = σℓ. Hence, in this case, when Tk−Tk−1 > δ, W (t;Ao) is as shown in Fig. D.10.

On the other hand, if Tk−Tk−1 = δ,W (t;Ao) will be same as in Fig. D.10, except Tℓ−1 = σℓ.
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W (t;Ao)

σk

W (tj ;Ao) = σl

Tl+1

W (tj ;Ao) + δj

W (s̃j ;A1)

t
s̃j ãj bjtj

W (t;Ao)

W (t;A1)

Figure D.10: W (t;Ao), when σ = σl, ζ(σ) = Tl+1, s̃j = bj−1 and Tk − Tk+1 > δ.

In this case, as W (t;Ao) ≥ Tℓ−1 for ∀t ∈ [bj−1, bj ], we have

oTℓ−1
(t) =

OTℓ−1
(bj−1;Ao) + (t− bj−1)

bj−1 + (t− bj−1)
, (D.4.32)

for ∀t ∈ [bj−1, bj ]. Therefore, it can be easily verified that in this case

argmax
t∈[bj−1,bj ]

oTℓ−1
(t) = bj . (D.4.33)

Lemma D.4.4. Let Bj be as defined in (5.46) and let k = minBj . Let assume k > 1 and

assume that bj satisfies the following lower bound

bj ≥
L

ϵρ
+
TM − σ1

ρ
+
L

C
, (D.4.34)

where ϵ > 0 is given in (D.4.6). Let ℓ ∈ {2, . . . , k} and set bj = bj(σℓ). Then

oTℓ−1
(bj) ≤ f̄(Tℓ), (D.4.35)
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implies

oTℓ−1
(t) ≤ f̄(Tℓ−1), ∀t ∈ [bj−1, bj ]. (D.4.36)

Proof. According to the definition (5.41),

f̄(Tℓ−1) ≥ f̄(Tℓ) for ℓ ∈ {2, . . . ,M}. (D.4.37)

Therefore, for ℓ ∈ {2, . . . , k} and bj = bj(σℓ), then if

argmax
t∈[bj−1,bj ]

oTℓ−1
(t) = bj , (D.4.38)

then, based on (D.4.37), having (D.4.35) yields (D.4.36) and no lower bound on bj is re-

quired. On the other hand, we will show for the cases that (D.4.38) does not hold or

argmax
t∈[bj−1,bj ]

oTℓ−1
(t) ̸= bj , (D.4.39)

if bj is greater than the lower bound in (D.4.34), then having (D.4.35) yields (D.4.36). As

it was shown previously in Lemmas D.4.2 and D.4.3, the only cases of having (D.4.39) is

when bj = bj(σk). When bj = bj(σk) based on s̃j we can have two cases:

Case 1: s̃j = sj

This case is shown in Fig. D.7. As it is explained in Lemma D.4.2, in the four sub-

cases D.7b-D.7e we can have cases of having the maximum of the overshoot ratio func-

tion over the interval [bj−1, bj ] at some t ̸= bj . The overshoot ratio functions for these

case, oTk−1
(t), are depicted in Fig. D.11 for t ∈ [bj−1, bj ]. Theses figures are derived us-

ing (D.4.14), (D.4.16), (D.4.18), and (D.4.20). Note that, as it was mentioned in Lemma D.4.2,

in subcases Fig. D.7b and D.7c we can have the maximum of the overshoot function hap-

pening at bj , these cases are however not considered in Fig. D.11a and D.11c, as if the
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bj−1
η ν bj

g(bj−1)

g(ν)

g(bj)

g(η)

g(t)

t

(a) Overshoot ratio function for subcase 2 in
Fig. D.7b

bj−1
η bj

g(bj−1)

g(bj)

g(η)

g(t)

t

(b) Overshoot ratio function for subcase 4 in
Fig. D.7d

bj−1
ν bj

g(bj−1)

g(ν)

g(bj)

g(t)

t

(c) Overshoot ratio function for subcase 3 in
Fig. D.7c

bj−1 bj

g(bj−1)

g(bj)

g(t)

t

(d) Overshoot ratio function for subcase 5 in
Fig. D.7e

Figure D.11: g(σ) for σ = σk and s̃j = sj for the cases of (D.4.39)

overshoot ratio function is maximized at bj , then (D.4.36) holds for ∀t ∈ [bj−1, bj ] and no

lower bound in needed on bj .

For the subcase Fig. D.11a according to Fig. D.7b we have

Tk−1 −W (s̃j ;Ao) ≤ Tk−1 − σk−1 = δ.

Therefore,

tj − η ≤
δ

ρ
.
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Similarly,

ν − tj ≤
δ

C − ρ
.

Therefore,

ν − η ≤ δ

ρ
+

δ

C − ρ
=
L

ρ
. (D.4.40)

On the other hand, according to (D.4.35), (D.4.14), and Fig. D.11a

oTk−1
(ν) =

OTk−1
(η;Ao)

ν
≤ oTk−1

(bj) ≤ f̄(Tk).

Therefore,

OTk−1
(η;Ao)

η + (ν − η)
≤ f̄(Tk)→ oTk−1

(η) ≤ η + (ν − η)
η

f̄(Tk) (D.4.41)

In this subcase

argmax
t∈[bj−1,bj ]

oTk−1
(t) = η.

Therefore, we need to find a lower bound on bj such that oTk−1
(η) < f̄(Tk−1). We know,

f̄(Tk)

η
≤ f̄(Tk)

bj−1
.

Therefore, according to (D.4.41), (D.4.40), and (D.4.6), if

f̄(Tk)

bj−1
<
ϵρ

L
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then oTk−1
(η) < f̄(Tk−1). Therefore, if

bj−1 >
L

ρϵ
>
L

ρϵ
f̄(Tk) (D.4.42)

then oTk−1
(η) < f̄(Tk−1). Since TM is chosen large enough such that Bj ̸= ∅ for all j, we

can assert that W (bj−1;Ao) ≤ TM = σM + δ. On the other hand, as k = minBj > 1, we

have that W (tj ;Ao) ≥ σ1. Using (5.19), we have

tj − bj−1 =
W (bj−1;Ao)−W (tj ;Ao)

ρ
≤ TM − σ1

ρ
. (D.4.43)

Therefore,

bj − bj−1 =
Lj

C
+ tj − bj−1 ≤

TM − σ1
ρ

+
L

C
. (D.4.44)

Therefore, if

bj >
L

ρϵ
+
TM − σ1

ρ
+
L

C
(D.4.45)

then oTk−1
(η) < f̄(Tk−1). Following the same arguments for the subcase Fig. D.11b, we can

have the same lower bound for bj as (D.4.45).

For the subcase Fig. D.11c, following the same arguments we can show

tj − bj−1 ≤
δ

ρ
, ν − tj ≤

δ

C − ρ
.

Therefore,

ν − bj−1 ≤
δ

ρ
+

δ

C − ρ
=
L

ρ
. (D.4.46)
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On the other hand, according to (D.4.35), (D.4.16), and Fig. D.11c

oTk−1
(ν) =

OTk−1
(bj−1;Ao)

ν
≤ oTk−1

(bj) ≤ f̄(Tk).

Therefore,

OTk−1
(bj−1;Ao)

bj−1 + (ν − bj−1)
≤ f̄(Tk)→ oTk−1

(bj−1) ≤
bj−1 + (ν − bj−1)

bj−1
f̄(Tk) (D.4.47)

In this subcase

argmax
t∈[bj−1,bj ]

oTk−1
(t) = bj−1.

Similarly, according to (D.4.47), (D.4.46), and (D.4.6), if

f̄(Tk)

bj−1
<
ϵρ

L

then g(bj−1) < f̄(Tk−1). Therefore, if

bj−1 >
L

ρϵ
>
L

ρϵ
f̄(Tk) (D.4.48)

then g(bj−1) < f̄(Tk−1). Therefore the same lower bound on bj as (D.4.45) will be achieved

for this subcase. Following the same arguments for the subcase Fig. D.11d, we can have

the same lower bound on bj .

Case 2: s̃j = bj−1

This case is shown in Fig. D.8. As it is explained in Lemma D.4.3, in the two sub-

cases D.8c and D.8d we can have cases of having the maximum of the overshoot ratio

function, oTk−1
(t), over the interval [bj−1, bj ] at t = bj−1. The overshoot ratio function for

these two subcases is similar to Fig. D.11c and D.11d for t ∈ [bj−1, bj ]. Theses figures are
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derived using (D.4.25) and (D.4.27). Note that, as it was mentioned in Lemma D.4.3, in

subcase Fig. D.8c we can have the maximum of the overshoot function happening at bj ,

following the same argument as before, this case however is not considered in here.

For the subcase Fig. D.8c, which its overshoot ratio function is depicted in Fig. D.11c,

by following the same argument as before, we have

ν − bj−1 ≤
δ

C − ρ
. (D.4.49)

On the other hand, according to (D.4.35), (D.4.27), and Fig. D.11c

oTk−1
(ν) =

OTk−1
(bj−1;Ao)

ν
≤ oTk−1

(bj) ≤ f̄(Tk).

Therefore,

OTk−1
(bj−1;Ao)

bj−1 + (ν − bj−1)
≤ f̄(Tk)→ oTk−1

(bj−1) ≤
bj−1 + (ν − bj−1)

bj−1
f̄(Tk) (D.4.50)

In this subcase

argmax
t∈[bj−1,bj ]

oTk−1
(t) = bj−1.

Similarly, according to (D.4.50), (D.4.46), and (D.4.6), if

f̄(Tk)

bj−1
<
ϵ(C − ρ)

δ

then oTk−1
(bj−1) < f̄(Tk−1). Therefore, if

bj−1 >
δ

ϵ(C − ρ)
=

L

Cϵ
>

δ

ϵ(C − ρ)
f̄(Tk) (D.4.51)

then oTk−1
(bj−1) < f(Tk−1). As in this case bj−1 = tj , the lower bound on bj in this case
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will be

bj >
L

Cϵ
+
L

C
(D.4.52)

Following the same arguments, we can have the same lower bound for bj as (D.4.52) for

the subcase Fig. D.8d. Therefore, using (D.4.45) and (D.4.52) the lower bound for bj to

ensure (D.4.36) will be

bj > max

{
L

ρϵ
+
TM − σ1

ρ
+
L

C
,
L

Cϵ
+
L

C

}
=
L

ρϵ
+
TM − σ1

ρ
+
L

C
. (D.4.53)

In our case study with M = 56, the lower bound in (D.4.53) will be bj ≥ 2.35e3. Therefore,

for j ≥ 220, inequality (D.4.36) holds.

Proof of Lemma D.4.1. Let Bj be as defined in Lemma D.4.1 and let k = minBj . In

lemma D.4.4 we showed if k > 1, Ij ̸= ∅ and

bj >
L

ρϵ
+
TM − σ1

ρ
+
L

C
. (D.4.54)

Then

∀ℓ ∈ Ij : oTℓ−1
(t) ≤ f̄(Tℓ−1), t ∈ [bj−1, bj(σℓ)]. (D.4.55)

On the other hand, if Ij = ∅ or k = 1, which in turn means Ij = ∅, then σ∗(j) = σ1. But

as f̄(T0) = 1, therefore

oT0(t) ≤ f̄(T0), t ∈ [bj−1, bj(σ1)]. (D.4.56)

In the next section we show if t is sufficiently large, then the limited constraint in (D.4.7)

can be extended to the desired constraint in (5.43).
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Lemma D.4.5. Let k = minBj , k > 1 and assume that bj satisfies the following lower bound

bj ≥
1

ϵ

(
L

C
+
TM − σ1

ρ

)
, (D.4.57)

where ϵ > 0 is given by

ϵ = min
2≤k≤M

[f(Tk−1)− f(Tk)]. (D.4.58)

Let ℓ ∈ {2, . . . , k} and set bj = bj(σℓ). Then

oTℓ−1
(bj) ≤ f̄(Tℓ), (D.4.59)

implies

oTℓ−1
(t) < f(Tℓ−1), ∀t ∈ [bj−1, bj ]. (D.4.60)

Proof. Let t ∈ [bj−1, bj ]. We have

oTℓ−1
(t) ≤

OTℓ−1
(bj−1;Ao) + (t− bj−1)

bj−1 + (t− bj−1)
=: h(t; bj−1), (D.4.61)

for t ∈ [bj−1, bj ]. It can be seen that h(t; bj−1) is an increasing function of t in the interval

[bj−1, bj ]. Thus, we have

oTℓ−1
(t) ≤ h(bj ; bj−1), ∀t ∈ [bj−1, bj ]. (D.4.62)

On the other hand,

oTℓ−1
(bj) =

OTℓ−1
(bj−1;Ao) + (bj − bj−1)− |G|
bj−1 + (bj − bj−1)

= h(bj ; bj−1)−
|G|
bj

(D.4.63)

where G := {t ∈ [bj−1, bj ] : 0 < W (t;Ao) < Tℓ−1} and |G| denotes the Lebesgue measure of
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G. Using (D.4.62), (D.4.63), and (D.4.59) we have

oTℓ−1
(t) ≤ oTℓ−1

(bj) +
|G|
bj
≤ f̄(Tℓ) +

bj − bj−1

bj
≤ f(Tℓ) +

bj − bj−1

bj
, (D.4.64)

where we have used the fact that |G| ≤ (bj − bj−1), and f̄(Tℓ) ≤ f(Tℓ) for ∀ Tℓ ∈

{T1, . . . , TM−1}. Since TM is chosen large enough such that Bj ̸= ∅ for all j, we can

assert that W (bj−1;Ao) ≤ TM = σM + δ. On the other hand, as k = minBj > 1, we have

that W (tj ;Ao) ≥ σ1. Using (5.19), we have

tj − bj−1 =
W (bj−1;Ao)−W (tj ;Ao)

ρ
≤ TM − σ1

ρ
. (D.4.65)

Therefore,

bj − bj−1 =
Lj

C
+ tj − bj−1 ≤

TM − σ1
ρ

+
L

C
. (D.4.66)

Since the right-hand side of (D.4.66) is a constant we can choose bj sufficiently large such

that

bj − bj−1

bj
< ϵ, (D.4.67)

where ϵ > 0 is given by (D.4.58). When bj satisfies (D.4.57), equations (D.4.64), (D.4.67),

and (D.4.58) yield the inequality (D.4.60). In our case study with M = 56, which has the

smallest value for ϵ = 0.0089, with TM = 400, σM = 0.1, ρ = 0.654, L = 10, and C = 1, the

lower bound in (D.4.57) will be bj ≥ 7× 104. Therefore, for j ≥ 6125, inequality (D.4.60)

holds.
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D.4.2 Proof of Theorem 5.4.1, Part II

In this section we show in order to achieve the desired constraint in (5.43) rather than the

preliminary one in (D.4.7), we need to increase bj from the lower in bound in (D.4.5) to

sufficiently large values. The proof of Theorem 5.4.1 is based on the next two lemmas.

Lemma D.4.6. The (σ∗, ρ) regulator defined by (5.46)–(5.48) produces an output traffic

stream that satisfies

oTi(t) ≤ f̄(Ti), for ∀i ∈ {1, . . . ,M}, (D.4.68)

for sufficiently large t.

Proof. In order to prove this lemma, we use Fig. D.12 which shows the input workload,

W (t;Ai), and output workload, W (t;Ao), for
2 t ∈ [2.5e4, 3e4] for the numerical example

in Section 5.5 with M = 56. The corresponding overshoot ratios, oTi(t) for two values of

T16 and T21 on the interval [2.5e4, 3e4] are shown in Fig. D.13. As can be seen in Fig. D.13,

over the interval of [2.5e4, 3e4] there is violation of the constraints in (D.4.68) for some t,

as

oT17(t) > f̄(T16), t ∈ [t3, t6],

where t3 = 2.73e4 and t6 = 2.87e4 are shown in Fig. D.13. By explaining what happens on

the interval [2.5e4, 3e4] we can explain why this violation happens and how these violations

are avoided when t is sufficiently large. Note that, although this is just one specific example,

it can act as a guideline and does not limit the scope of this proof.

As it can be seen in Fig. D.12, at t = t1 output workload increases above T16, and after

t = t5 it decreases again to a level below T16. According to Algorithm 6 and (5.47), and

as can be seen in Fig. D.13, oT16(t1) ≤ f̄(T17). Therefore, at t = t1, σ
∗(j) will be set to

σ∗(j) = σ17 and output workload will increase. As long as oT16(bj) ≤ f̄(T17) for bj > t1 and

W (s̃j ;A1) < σ17, this process will continue and σ
∗(j) will be set to σ∗(j) = σ17 tillW (s̃j ;A1)

is increased to W (s̃j ;A1) > σ17. At this point according to Algorithm 6 and (5.47), oT17(bj)

2For notational convenience, we use the E-notation aeb := a× 10b.
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Figure D.12: Input and output workload for t ∈ [2.5e4, 3e4] for the example in Section 5.5
for Algorithm 6 with M = 56.

Figure D.13: Overshoot ratio, oTi(t) for t ∈ [2.5e4, 3e4] and Ti ∈ {T16, T21} for the example
in Section 5.5 for Algorithm 6 with M = 56.
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will be compared against f̄(T18) and if oT17(t) ≤ f̄(T18), as in this example, σ∗(j) will be

set to σ∗(j) = σ18. On the other hand, at t = t5, minBj = σ22. Therefore, oT21(bj) will be

compared against f̄(T22) and if oT21(bj) > f̄(T22), as in this example, σ∗(j) will be set to a

value less than σ22. In this example σ∗(j) is set to a σ∗(j) = σ10 as oTi−1(bj(σi)) > f̄(Ti)

for i = 10, 11, . . . , 22.

From the discussion above it can be understood when the output workload at the com-

plete departure time, W (bj ;Ao), increases above σi for the jth packet, the overshoot ratio,

oTℓ
(bm(σℓ+1)), will be compared against f̄(Tℓ+1), for ℓ ∈ {i, . . . ,M − 1} and m > j, as long

as the output workload stays above σi. Therefore, during the interval that the workload is

above σi, for all m > j such that W (bm;Ao) > σi, there is at least one k ∈ {i, . . . ,M − 1},

such that oTk
(bm(σk+1)) ≤ f̄(Tk+1). Based on this concepts we define threshold violation

distance with respect to a threshold value, a bounding value and a traffic stream.

Definition D.4.1. Given a threshold value ζ > 0, a bounding value α > 0 and a traffic process

A, threshold violation distance with respect to R, ζ and α, is defined as the minimum time

it takes such that the overshoot ratio reaches the bounding value α. In other words,

Distζ,α(t;A) :=

 t̂(ζ)− t+minR dt, s.t: oζ(t̂(ζ) + dt)=α, if oζ(t̂(ζ)) ≤ α,

0, otherwise,
(D.4.69)

where t̂(ζ) is defined as

t̂(ζ) = t+ [ζ −W (t;A)]+/(C − ρ) (D.4.70)

Note that, in Definition D.4.1, if the output workload is less than the threshold ζ then

t̂(ζ) will be the earliest time the output workload can increase to the threshold level ζ.

On the other hand, minR dt is the minimum extra time the output workload needs to stay

above ζ such that overshoot ratio with respect to ζ reaches the bounding value α. Threshold

violation distance for output traffic can be calculated using the following proposition.
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Proposition D.4.1. For the output traffic if oζ(t̂(ζ)) ≤ α, then

Distζ,α(t;Ao) =
t̂(ζ)− t
1− α

+
αt−Oζ(t;Ao)

1− α
=
t̂(ζ)− t
1− α

+
αt− toζ(t)

1− α
,

where t̂(ζ) can be derived according to (D.4.70) with R replaced by Ao.

Proof. According to (D.4.69) and (5.32), if oζ(t̂(ζ)) ≤ α, then

Oζ(t+Distζ,α(t;Ao);Ao)

t+Distζ,α(t;Ao)
= α (D.4.71)

But clearly if oζ(t̂(ζ)) ≤ α, for the workload we need to have

W (t;Ao) > ζ, t ∈ [t̂(ζ), t+Distζ,α(t;Ao)].

Therefore,

Oζ(t+Distζ,α(t;Ao);Ao) = Oζ(t̂(ζ);Ao) + Distζ,α(t;Ao)− (t̂(ζ)− t)

= Oζ(t;Ao) + Distζ,α(t;Ao)− (t̂(ζ)− t). (D.4.72)

Hence, using equations (D.4.70), (D.4.71) and (D.4.72), Proposition D.4.1 can be derived.

For the jth packet, we define distj(Ti), for 1 ≤ i ≤M−1, using definition of Distζ,α(t;Ao)

for special values of ζ, α, and t as follow:

distj(Ti) :=

 DistTi,f̄(Ti+1)
(bj ;Ao), for i ∈ Lj ,

DistTi,f̄(Ti)
(bj ;Ao), for i ∈Mj ,

(D.4.73)
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where

Lj = {1 ≤ ℓ ≤M − 1 : Tℓ > σ∗(j)}, (D.4.74)

Mj = {1 ≤ m ≤M − 1 : Tm ≤ σ∗(j)}. (D.4.75)

When the output workload is W (bj ;Ao), distj(Ti) for i ∈ Mj , means the extra time the

workload can be greater than Ti, such that the desired bound in (D.4.68) is violated. On the

other hand, distj(Ti) for i ∈ Lj , means the time the workload can be greater than Ti, such

that the constraint in (5.47) is violated. Note that, as TM is chosen large enough such that

W (tj ;Ao) is always less than TM , therefore, distj(TM ) can not be defined as the workload

never goes beyond TM .

For the example in Figs. D.12 and D.13, distj(Ti) for j = 2191 and i = 1, 2 . . . ,M − 1,

is shown in Fig. D.14. For j = 2191, bj is slightly less than t2 In Fig. D.12. In Fig. D.14,

dist2191(Ti) is shown in red if Ti ≤ σ∗(j) and is shown in blue if Ti > σ∗(j). In other words,

blue bars show how long the workload can stay above the corresponding Ti according to

Algorithm 6. Red bars, however, show the longest time the workload can stay above the

corresponding Ti such that the desired upper bound at that Ti is violated. Note that, if

the blue bars are greater than the red bars for some Ti’s, then we can have the cases of the

violations of the desired bound at the corresponding Ti’s for the red bars. This is actually

the case in Fig. D.14. In this case,

dist2191(T21) = 0.301e4 > dist2191(T16) = 0.201e4

Therefore, as can be seen the workload is allowed to stay above T21 according to Algorithm 6

on the interval t ∈ [t2, t4], with t2 = 2.531e4 and t4 = 2.805e4. The length of this interval

is t4 − t2 = 0.274e4, which is greater dist(t1, T16). Therefore, although according to the

Algorithm 6, the output workload is allowed to stay above T21, and no violation of (5.47)

happens, the desired bound for T16, however, as can be in seen in Fig. D.13, is violated.
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Figure D.14: distj(Ti) for i = 1, 2 . . . ,M for the example in Section 5.5 for Algorithm 6
with M = 56, j = 2191, bj = 2.53e4 and σ∗(j) = 71.54.

On the other hand, for j = 8950 and bj = 11e4, when t is sufficiently large, dist8950(Ti)

for i = 1, 2 . . . ,M is shown in Fig. D.15. As we can see in Fig. D.15, all the blue bars are

less the red bars in this case.

Based on the discussion for the specific example in Figs. D.14 and D.15, we can generalize

these cases and present a sufficient condition on distj(Ti), for i ∈ {1, 2, . . . ,M − 1}, such

that the desired bound in (D.4.68) is satisfied. If output workload is W (bj ;Ao) and bj is

sufficiently large enough, the sufficient condition to satisfy the desired constraint (D.4.68)

is,

distj(Tℓ) ≤ distj(Tm), ∀ ℓ ∈ Lj , ∀m ∈Mj , (D.4.76)

if Mj ̸= ∅. Note that, if Mj = ∅, then σ∗(j) = σ1. In this case f̄(γ) = 1 for γ ∈ [T0, T1].

Therefore, the desired bound of

oT0(t) ≤ f̄(γ),

will never be violated, independent of the duration of the interval that the workload stays

above T0. In the definition of distj(Ti) and in the sufficient condition in (D.4.76), we are
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Figure D.15: distj(Ti) for i = 1, 2 . . . ,M for the example in Section 5.5 for Algorithm 6
with M = 56, j = 8950, bj = 11e4 and σ∗(j) = 60.82.

just considering the complete departure times and we verify the sufficient condition at those

moments. Ascertaining the sufficient condition at those complete departure times moment,

however, can guarantee the desired condition in (D.4.68) is satisfied for all sufficiently large

t. Because if after the departure of every packet we can assure the duration of the time

that the workload stays above the Tm for ∀Tm ∈ Mj , is less than the time to violate the

desired condition in (D.4.68), then the desired condition in (D.4.68) is not only satisfied at

the complete departure times, but also it is satisfied at all sufficiently large t.

Note that, ifMj ̸= ∅, according to (D.4.75) and (5.47),

σ∗(j) = σmaxMj+1. (D.4.77)

On the other hand, in the sufficient condition in (D.4.76), if instead of all m ∈ Mj , just

m = maxMj is considered the sufficient condition will be simplified as,

distj(Tℓ) ≤ distj(Tm), ∀ ℓ ∈ Lj , m = maxMj , (D.4.78)

if Mj ̸= ∅ and bj is sufficiently large enough. This simplified sufficient condition can be
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explained as follows, when σ∗(j) is set according to Algorithm 6 and according to (D.4.77)

and (5.47), overshoot ratio at bj with respect to TmaxMj is checked against f̄(TmaxMj+1)

or

oTmaxMj
(bj) ≤ f̄(TmaxMj+1). (D.4.79)

If we make sure the duration of the time that the workload stays above TmaxMj is less than

the time to violate the desired upper bound or

oTmaxMj
(j) ≤ f̄(TmaxMj+1), for ∀t > bj , (D.4.80)

for all packets that bj is sufficiently large. Then the desired bound in (D.4.68) is never

violated for sufficiently large t. It can easily be shown the sufficient condition in (D.4.76)

and (D.4.78) are equivalent.

Using Proposition D.4.1, we can simply distj(Ti) in the two following cases:

Case 1: i ∈ Lj

distj(Ti) =
bj(f̄(Ti+1)− oTi(bj))

1− f̄(Ti+1)
+

t̂(Ti)− bj
1− f̄(Ti+1)

, (D.4.81)

, if

bj(f̄(Ti+1)− oTi(bj)) > −(t̂(Ti)− bj)f̄(Ti+1). (D.4.82)

Otherwise, distj(Ti) = 0. In (D.4.81), t̂(Ti) can be derived from (D.4.70), with ζ = Ti and

t = bj .

Case 2: i ∈Mj

distj(Ti) =
bj(f̄(Ti)− oTi(t))

1− f̄(Ti)
+
t̂(Ti)− bj
1− f̄(Ti)

, (D.4.83)
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, if

bj(f̄(Ti)− oTi(bj)) > −(t̂(Ti)− bj)f̄(Ti). (D.4.84)

Otherwise, distj(Ti) = 0. In (D.4.83), t̂(Ti) can be derived from (D.4.70), with ζ = Ti and

t = bj .

In order to show the desired condition in (D.4.68) is satisfied for sufficiently large values

of t if σ∗(j) is chosen according to Algorithm 6, we assume bj is sufficiently large and we

show the sufficient condition in (D.4.78) is satisfied.

According to (D.4.81) and (D.4.83), if we have the following inequality, then the sufficient

condition in (D.4.78) is also satisfied,

bj(f̄(Tℓ+1)− oTℓ
(bj))

1− f̄(Tℓ+1)
+

t̂(Tℓ)− bj
1− f̄(Tℓ+1)

≤ bj(f̄(Tm)− oTm(bj))

1− f̄(Tm)
,

∀ℓ ∈ Lj , m = maxMj , Mj ̸= ∅. (D.4.85)

The second term in the LHS can be bounded according to (D.4.70) as follows,

t̂(Tℓ)− bj
1− f̄(Tℓ+1)

=
[Tℓ −W (bj ;Ao)]

+

(1− f̄(Tℓ+1))(C − ρ)
≤ TM−1 −W (bj ;Ao)

(1− f̄(TM ))(C − ρ)

≤ TM−1 − σ1
(1− f̄(TM ))(C − ρ)

:= c0 > 0, (D.4.86)

where we have used W (t;Ao) > σ1 as Mj ̸= ∅. Therefore, we can simply the inequality

in (D.4.85) into a more conservative simplified inequality as follows,

bj(f̄(Tℓ+1)− oTℓ
(bj))

1− f̄(Tℓ+1)
+ c0 ≤

bj(f̄(Tm)− toTm(bj))

1− f̄(Tm)
,

∀ℓ ∈ Lj , m = maxMj , Mj ̸= ∅. (D.4.87)

Note that, if the inequality (D.4.87) is satisfied, then inequality (D.4.85) is also satisfied.
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By doing some manipulations we can reach the following inequality,

f̄(Tℓ+1) +
c2
bjc1

− f̄(Tm)− oTm(bj)

c1
≤ oTℓ

(bj), (D.4.88)

where

c1 =
1− f̄(Tm)

1− f̄(Tℓ+1)
, (D.4.89)

c2 = c0(1− f̄(Tm)). (D.4.90)

In other words, for the sufficient condition in (D.4.76) to hold, the overshoot ratio, oTℓ
(bj)

for ∀ℓ ∈ Lj should be higher than the lower bound specified in (D.4.88). By considering

the upper bound on oTm(bj) in (D.4.79), the lower bound in (D.4.88) can be simplified into

a more conservative inequality as follows,

f̄(Tℓ+1) +
c2
bjc1

− ϵm
c1
≤ oTℓ

(bj), (D.4.91)

where

ϵm := f̄(Tm)− f̄(Tm+1). (D.4.92)

Note that, if the lower bound in (D.4.91) is satisfied, then the lower bound in (D.4.88) is

also satisfied.

For the numerical example in Figs. D.13-D.15, the overshoot ratio, oT16(t) and the lower

bounds in (D.4.88) and (D.4.91) are shown in Fig. D.16. As it was mentioned before, these

lower bounds are sufficient conditions for the desired constraint in (D.4.68) to hold. The

intervals on which the desired constraint is violated or,

oT16(t) > f̄(T16), (D.4.93)

are shown in shaded blue areas. Therefore, as it can be seen in Fig. D.16, there are some
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Figure D.16: oT16(t) and the corresponding lower bounds in (D.4.88) and (D.4.91), for the
example in Section 5.5 for Algorithm 6 with M = 56.

parts that these lower bounds are violated but the desired constraint in (D.4.68) is not

violated. On the other hand, on the intervals that the desired constraint in (D.4.68) is

violated, as it is shown the corresponding lower bounds are also violated. As it can be seen

in Fig. D.16, we do not need a very large bj to satisfy the lower bound in (D.4.88). However,

for the more conservative lower bound in (D.4.91), a larger bj is necessary.

Now we show when bj is sufficiently large, the lower bound in (D.4.91) holds. Let define

the event ξj(Tℓ), for ℓ ∈ {1, 2, . . . ,M − 1} and the kth packet as,

ξk(Tℓ) := {W (s̃k;A1) ≥ Tℓ ∩W (tk;Ao) < Tℓ} (D.4.94)

In other words, when the event ξk(Tℓ) occurs, the kth packet is delayed enough such that

the output workload becomes less than Tℓ. The event ξk(Tℓ) occurs when

oTℓ
(bk(σℓ+1)) > f(Tℓ+1). (D.4.95)

It can be easily shown between input traffic overshoot ratio, the internal traffic overshoot
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ration and the output traffic overshoot ratio we have the following relation

oTℓ
(t) ≤ OTℓ

(t;A1)

t
≤ OTℓ

(t;Ai)

t
(D.4.96)

Note that, due to ergodicity and stationarity of the input and internal traffic, we have

OTℓ
(t;Ai)

t
∼ P{W (t;Ai) ≥ Tℓ},

OTℓ
(t;A1)

t
∼ P{W (t;A1) ≥ Tℓ}

Therefore, it can be shown if the probability of the input traffic workload being greater or

equal to than Tℓ is greater or equal to than f̄(Tℓ), then the probability of the event ξj(Tℓ)

is greater than zero. In other words,

P{W (t;Ai) ≥ Tℓ} ≥ f̄(Tℓ) =⇒ P{ξj(Tℓ)} > 0. (D.4.97)

Define t̃Tℓ
(t) for ℓ ∈ {1, 2, . . . ,M − 1} as the last time before t that event ξk(Tℓ) occur, i.e.,

t̃Tℓ
(t) = max{bk ≤ t : 1ξk(Tℓ) = 1}, (D.4.98)

for ℓ ∈ {1, 2, . . . ,M − 1}, where

1A =

 1 if event A occurs,

0 if event A does not occur.
(D.4.99)

As the output workload is stationary and ergodic and the probability of the event is greater

than zero, therefore, the interval between consecutive occurs of the events ξk(Tℓ) is bounded.

Next we show for the lower bound in (D.4.91) to hold, bj − t̃Tℓ
(bj) should have an upper
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bound. In other words, we find the minimum value of bj− t̃Tℓ
(bj), such that the lower bound

in (D.4.91) is violated and then we verify that when bj is sufficiently large, bj − t̃Tℓ
(bj) will

be always less than this minimum value.

Note that,

W (t;Ao) ≤ Tℓ, ∀t ∈ [t̃Tℓ
(bj), bj ]. (D.4.100)

Therefore, according to (D.4.96), in order to find the minimum value of bj − t̃Tℓ
(bj), such

that the lower bound in (D.4.91) is violated we consider

oTℓ
(bj) = f̄(Tℓ+1) +

c2
bjc1

− ϵm
c1
, (D.4.101)

oTℓ
(t̃Tℓ

(bj)) = f̄(Tℓ+1). (D.4.102)

Therefore, according to (5.32) and (D.4.100),

bj − t̃Tℓ
(bj) = bj

ϵm − c2/bj
c1f̄(Tℓ+1)

= O(bj). (D.4.103)

Therefore, the minimum time interval that needs to pass between t̃Tℓ
(bj) and bj , such that

the lower bound in (D.4.91) is violated is linearly proportional to bj . But as bj increases the

time interval between consecutive occurrences of the event ξk(Tℓ), will be less than O(bj)

with probability 1. Note that, bj − t̃Tℓ
(bj) is less the time interval between consecutive

occurrences of the event ξk(Tℓ). Therefore, bj − t̃Tℓ
(bj) will be always less then the upper

bound derived in (D.4.103). Hence, the lower bound in (D.4.91) is always met for sufficiently

large values of bj .

For the numerical example in Figs. D.13-D.15, bj − t̃T21(bj) and the higher bound

in (D.4.103) are shown in Fig. D.17. As it can be seen, when bj is sufficiently large,

bj − t̃T21(bj) will be bounded by the higher bound in (D.4.103).

As mentioned in Appendix D.4.1, for this numerical example the lower bound on bj , in
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Figure D.17: bj − t̃T21(bj) and the higher bound in (D.4.103) for the example in Section 5.5
for Algorithm 6 with M = 56.

order to satisfy the preliminary constraint in (D.4.7), is bj ≥ 2.35 × 103. In this example,

in order to satisfy the desired bound in (5.43), however, the lower bound is increased to

bj ≥ 105.

Proof of Theorem 5.4.1. In Lemma D.4.6, we showed if t is sufficiently large, then in a

(σ∗, ρ) traffic regulator defined by (5.46)–(5.48),

oTi(t) ≤ f̄(Ti) for ∀i ∈ {1, . . . ,M}. (D.4.104)

Therefore, using the same argument as in Appendix D.2, and using Corollary D.2.1 and

the definition of f̄(γ) as (5.41) for the case M = Mmax, or using Corollary D.2.2 and the

definition of f̄(γ) as (D.2.46) for the case M < Mmax we can show

oγ(t) ≤ f(γ), t ∈ [bj−1, bj(σ
∗(j))], ∀γ ∈ [T1, T ]. (D.4.105)

In practice the sufficiently large t constraint for. Algorithm 6 is reasonable as we are
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Wρ(t;Ao)

σk

Wρ(tj ;Ao) = σk−1

Tk−2

Wρ(tj ;Ao) + δj
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(f) s̃j = bj−1: ℓ < k − 1

Figure D.18: The process of determining σ∗(j) according to Theorem 5.4.1.
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approximating the overshoot probability with the overshoot ratio in (5.33), and this ap-

proximation is asymptotically valid. In Algorithm 6 we need to compute the index set Ij in

(5.47). The process for computing set Ij is depicted in Fig. D.18 for two possible cases: 1)

s̃j = sj in Figs. D.18a–D.18c and s̃j = bj−1 in Figs. D.18d–D.18f. In Fig. D.18, k = minBj .

In the first step of computing Ij according to (5.47), ℓ is set to k as in Figs. D.18a and D.18d.

In these cases according to (5.18), tj = s̃j . Then oTℓ−1
(bj) is determined using Proposi-

tion 5.4.1. If the condition in (5.47) holds for ℓ = k, then k ∈ Ij . Therefore, σ∗ will be set

as σ∗ = σk and the algorithm will terminate at this step. Otherwise, in the next step we

set ℓ = k − 1 as in Figs. D.18b and D.18e. In these cases, tj will be determined according

to (5.18). Again OTℓ−1
(bj ;Ao) will be determined using Proposition 5.4.1 and the condition

in (5.47) is checked for ℓ = k − 1. If k − 1 ∈ Ij , then using the same argument as before

we set σ∗ = σk−1 and the algorithm will terminate at this step. Otherwise these steps are

continued as shown in Figs. D.18c and D.18f and the same process is repeated. If Ij is

determined to be empty, then we set σ∗ = σ1.
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sity of Technology, and Göteborg University, Tech. Rep., jun 1998.

[77] C. A. O’Cinneide, “On non-uniqueness of representations of phase-type distributions,”
Stoch. Models, vol. 5, no. 2, pp. 247–259, 1989.

282



[78] A. K. Parekh and R. G. Gallager, “A generalized processor sharing approach to flow
control in integrated services networks: the single-node case,” IEEE/ACM Transac-
tions on Networking, vol. 1, no. 3, pp. 344–357, Jun. 1993.

[79] A. K. Paul, A. Tachibana, and T. Hasegawa, “An enhanced available bandwidth es-
timation technique for an end-to-end network path,” IEEE Transactions on Network
and Service Management, vol. 13, no. 4, pp. 768–781, 2016.

[80] V. Paxson and S. Floyd, “Wide area traffic: the failure of Poisson modeling,”
IEEE/ACM Transactions on Networking, vol. 3, no. 3, pp. 226–244, Jun. 1995.

[81] R. Prasad, C. Dovrolis, M. Murray, and K. Claffy, “Bandwidth estimation: metrics,
measurement techniques, and tools,” IEEE Network, vol. 17, no. 6, pp. 27–35, 2003.

[82] V. Ramaswami, “The N/G/1 queue and its detailed analysis,” Advances in Applied
Probability, vol. 12, no. 1, pp. 222–261, 1980.

[83] P. Reinecke, T. Krauß, and K. Wolter, “Cluster-based fitting of phase-type distributions
to empirical data,” Comput. Math. Appl., vol. 64, no. 12, pp. 3840 – 3851, Dec. 2012.

[84] V. J. Ribeiro, R. H. Riedi, R. G. Baraniuk, J. Navratil, and L. Cottrell, “pathchirp:
Efficient available bandwidth estimation for network paths,” in Passive and Active
Network Measurement (PAM) Conference, 4 2003.

[85] D. Starobinski and M. Sidi, “Stochastically bounded burstiness for communication
networks,” IEEE Transactions on Information Theory, vol. 46, no. 1, pp. 206–212,
Jan. 2000.

[86] J. Strauss, D. Katabi, and F. Kaashoek, “A measurement study of available bandwidth
estimation tools,” in ACM Internet Measurement Conference (IMC), 2003.

[87] A. Thummler, P. Buchholz, and M. Telek, “A novel approach for phase-type fitting
with the EM algorithm,” IEEE Transactions on Dependable and Secure Computing,
vol. 3, no. 3, pp. 245–258, Jul. 2006.

[88] F. Topsœ, “Some bounds for the logarithmic function,” in Inequality Theory and Ap-
plications, Y. Cho, J. K. Kim, and S. S. Dragomir, Eds. New York: Nova Science
Publishers, 2007, vol. 4, pp. 137–151.

[89] V. Tran, J. Tourrilhes, K. K. Ramakrishnan, and P. Sharma, “Accurate available
bandwidth measurement with packet batching mitigation for high speed networks,” in
IEEE Symposium on Local and Metropolitan Area Networks (LANMAN), 2021.

[90] J. Turner, “New directions in communications (or which way to the information age?),”
IEEE Comm. Mag., vol. 24, no. 10, pp. 8–15, Oct. 1986.

[91] S. Vamvakos and V. Anantharam, “On the departure process of a leaky bucket system
with long-range dependent input traffic,” Queueing Systems, vol. 28, pp. 191–214, May
1998.

283



[92] R. Waltz, J. Morales, J. Nocedal, and D. Orban, “An interior algorithm for nonlinear
optimization that combines line search and trust region steps,” Math. Program., vol.
107, no. 3, pp. 391–408, Jul. 2006.

[93] J. Wang, J. Liu, and C. She, “Segment-based adaptive hyper-Erlang model for long-
tailed network traffic approximation,” J. Supercomput., vol. 45, no. 3, pp. 296–312,
Sep. 2008.

[94] W. Willinger, M. S. Taqqu, W. E. Leland, and D. V. Wilson, “Self-similarity in high-
speed packet traffic: Analysis and modeling of Ethernet traffic measurements,” Stat.
Sci., vol. 10, no. 1, pp. 67–85, Feb. 1995.

[95] R. W. Wolff, Stochastic Modeling and the Theory of Queues. New Jersey: Prentice-
Hall, 1989.

[96] O. Yaron and M. Sidi, “Performance and stability of communication networks via
robust exponential bounds,” IEEE/ACM Transactions on Networking, vol. 1, no. 3,
pp. 372–385, Jun. 1993.

[97] ——, “Generalized processor sharing networks with exponentially bounded burstiness
arrivals,” in IEEE INFOCOM Proc., vol. 2, Jun. 1994, pp. 628–634.

[98] Q. Yin, J. Kaur, and F. D. Smith, “Can bandwidth estimation tackle noise at ultra-
high speeds?” in 2014 IEEE 22nd International Conference on Network Protocols,
2014, pp. 107–118.

[99] Q. Yin, Y. Jiang, S. Jiang, and P. Y. Kong, “Analysis on generalized stochastically
bounded bursty traffic for communication networks,” in Proc. IEEE Local Comput.
Netw. (LCN), Nov. 2002, pp. 141–149.

284



Curriculum Vitae

Massieh Kordi Boroujeny received the B.Sc degree in electrical engineering from the Shahid
Bahonar University of Kerman in 2009, and the M.Sc. degree in electrical engineering from
the Isfahan University of Technology in 2012. He worked as a research intern for HP labs,
Palo Alto, CA from Sep. 2020 to Aug. 2022. His research interests include network calculus,
queuing theory, network resource allocation, and network measurement and analysis.

285


