
A Survey On Techniques Used For Designing Fault Tolerant and
Process Variation Aware Memories and Caches

Sayed Aresh Beheshti-Shirazi
George Mason University

Farifax, VA, U.S.
sbehesht@masonlive.gmu.edu

ABSTRACT
Aggressive voltage and frequency scaling schemes applied to mem-
ory and cache structures, specially for memory systems fabricated
in advanced and scaled geometry nodes that are severely affected
by process variation, significantly increases the likelihood of read,
write and access failures to/frommemory cell array, and reduces the
extent of frequency and voltage scaling. To remedy this problem, in
the past decade, many researchers have investigated alternative and
fault tolerant cache and memory organizations to mitigate the im-
pact of process variation, and to reduce the failure rate of memory
array in the results of voltage and frequency scaling. This survey
paper discusses and compare many of such cache and memory
design techniques.

KEYWORDS
Process variation, fault tolerant cache, fault tolerant memory, volt-
age and frequency scaling, DVFS

1 INTRODUCTION AND BACKGROUND
The scaling technology has delivered on Moore’s prediction and
has halved the feature size and nearly doubled the performance
of integrated circuits every 18 months, a trend that has continued
for over 3 decades. However, in smaller and scaled geometries, the
fabricated transistor devices suffer from a phenomenon referred to
as process variation. Process variation is variation in the electrical
and physical property of fabricated devices due to the physical lim-
itations of the fabrication process. The variation in the fabrication
process such as the channel length, width, oxide thickness, and
placement of dopants in a channel results in a large variation in
threshold voltage [1].

Process variation has become an ever-increasing issue in the
manufacturing and design of scaled semiconductor chips. Because
of process variation, the scaling of the transistors dimension has
a direct effect on the undesired scaling of the voltage supply. As a
result, the process variation causes limitations on designing more
power-efficient circuits.

With scaling the geometry node, the on-chip power density
significantly increases. These problems are becoming worse by the
need and the push for operating the Application-Specific Integrated
Circuit (ASIC) devices at higher frequencies. At the same time,
the contribution of leakage power is no longer negligible, and at
scaled geometries, the leakage power becomes comparable or even
dominates the dynamic power consumption of the chip. [3, 8–12]

Voltage scaling is a super effective knob to manage and reduce
power consumption. This is because both dynamic and static (leak-
age) power consumption can be super-linearly reduced with a linear

reduction in the supplied voltage at the expense of reducing per-
formance. When it comes to logic, as far as the logic is operated
(within a safe margin) above the threshold voltage, one should not
expect reliability issues and the only concern will be the loss of
performance. But when it comes to memory, in addition to the
loss in performance, the scaling of the voltage also affects the re-
liability and predictability of the memory [13, 14, 31, 37, 38]. The
reliability and predictability issue of memories at scaled geometries
is related to how process variation impacts different transistors
within each memory cell. In simple terms, process variation is the
result of imperfection and in implementing transistor devices at
scaled geometries. In other words, process variation is the direct
result of the physical limitation of the manufacturing devices in
shaping, doping, and connecting transistor devices. Under process
variation, two identical devices at the design stage may end up
with varying strength and threshold voltage after manufacturing
[4, 5, 23, 31, 44]. In the result of variability (due to process), the
read, write, and access time of the memory is not deterministic; in a
simplistic model, each of read, write and access time can be modeled
as a Gaussian distribution rather than a single value (that could
be obtained from fixed-process spice simulation at design time). In
such a model, the application of voltage scaling, not only shifts the
mean of read/access/write time distribution but also changes the
standard deviation of those distributions [35].

Figure 1 captures the results of a Monte Carlo simulation on a
Six-Transistor Statistic Random-Access Memory (6T SRAM) cell
under process variation in 32nm technology (with a standard de-
viation of 34mV for the threshold voltage [35]). As illustrated, the
probability of cell, cache way, and cache failure exponentially in-
creases with a linear reduction in the supplied voltage. Note that
for obtaining this curve, the cycle time of the memory/cache is kept
constant (to that of used in higher voltage). Hence, the increase in
the probability of failure is directly related to the extent at which
the tail of read/write/access distribution (as defined by process vari-
ation) extends out of threshold set by the defined cycle time (clock
period). Furthermore, it is worth pointing out that depending on
the choice of cycle time, different probability of failure curves can
be obtained, however, regardless of the choice of cycle time, the
trend will exhibit an exponential relation between supplied voltage
and error rate.

In the past decade, researchers have proposed many novel and
interesting solutions to remedy the sever impact of process varia-
tion in scaled geometries, the need for scaling the voltage, and the
exponential increase of the failure rate of memory and cache units
in scaled geometries. In larger geometries the impact of process
variation in the performance of logic and memory cell was under-
stood but was quite limited, resulting in a very tight distribution of

Figure 1: Probability of cell, way and cache failure in 32nm technology. for a
32KB 8 way associative cache organizations [33]

read/write and memory access time. Considering the very limited
impact of process variation, the fault rate generated in the result of
process variation was comparable or even less than that of stuck-at
faults. In conventional memory design to guarantee high produc-
tion yield in presence of Stuck-at faults and/or tolerating lifetime
failures the replacement techniques such as extra rows and columns,
were utilized [21, 40]. The memory design was simply altered by
modifying and equipping the decoder with the added capability
of using the redundant row(s) instead of defective memory row in
case of such faults (that could be detected using memory march
and testing solutions). However, in scaled geometries, the simple
row or cache redundancy techniques became useless as the number
of process-variation induced faults significantly out weighted the
other rarely occurring faults. This promoted a desire and a need
to design memory subsystems capable of tolerating a much larger
number of faults (fault tolerance) in scaled geometries. In the rest of
this section, I review several of the fault-tolerant cache and memory
organizations studies and proposed in our research group in the
last decade of research that are capable of tolerating a much large
number of process-variation induced faults compare to the base-
line memory design based on the simple use of redundancy. This
paper is a survey paper on such fault and variation tolerant tech-
niques. The rest of this paper is organized as follows: in section two
we divide the various process variation mitigation techniques into
three major categories and describe each category in the following
sections three to five. Sections three to five describe the body of
papers and techniques that could be categorized under each of these
categories. In section six we describe the metrics used for evalua-
tion and benchmarking of the suggested solutions. Section seven
describes innovative solutions for process variation management.
Finally, in section eight this survey paper is concluded.

2 OVERALL PROCESS VARIATION
MITIGATION TECHNIQUES

In general, when discussing and analyzing various solutions to
mitigate the effects of process variations the techniques can be
categorized into three different categories as follow: Architectural-
level, Circuit-level, and System and Software level. It is noted that
either one or a combination of the aforementioned techniques can

be applied during either the design phase of the new memory cell
or memory run-time.

• Circuit-Level solutions: These solutions are implemented
at the circuit level by considering a large margin to remedy
the process variations effects [7] while designing the circuits.
In this circuit designing approach, both the normal value
and the worst case value due to the process variation is con-
sidered. The Circuit-based techniques can be applied during
both the design phase of a new memory cell or memory
run-time. The circuit-level solutions, provide solutions for
the circuit that manage read/write to the memory solutions
(such as wordline drivers, read/write circuitry, sense ampli-
fier design, etc.) These techniques relying on the cell design,
introduce alternative memory cell solutions that are more
robust against process variation and/or Dynamic Voltage
and Frequency Scaling (DVFS).

• Architectural-Level solutions:These solutions are address-
ing the effects of process variations using architectural tech-
niques. When discussing architectural solutions we are ad-
dressing techniques that can take advantage of the attributes
of the processor, and processor’s elements such as cache,
or the relationship between the optimum processing values
such as performance, yield, energy or area overhead [26].
The architectural techniques can be applied during both the
design phase of a new memory cell or memory run-time.
The architectural solutions change the overall architecture
of the cache, compared to the conventional design, and add
additional units to the architecture that help with the man-
agement of the faults at scaled voltages.

• Software and System Level Solution: These solutions
mitigate the impact of memory process variation in either
system or software level. Generally, the system or user is
aware of memory fault locations and map the applications to
the memory to avoid the faulty locations. An alternative so-
lution in fault-tolerant and approximate software solutions
is to map the insensitive data to the faulty location, knowing
that rare memory induced faults have a negligible impact on
the performance of the overall system, or the software can
recover from such faults.

Please see Fig. 2 for the detailed graphical description of Process
Variation Mitigation Solutions. In the remainder of this paper, I am
going to explain different classes/sub-classes along with a more
detailed description of some example papers.

3 CIRCUIT-LEVEL SOLUTIONS:
Based on the above description, the circuit-based techniques to
mitigate the process variation effects can be categorized as follow:

3.1 Circuit-Level, Memory Cell Modification:
In this type of technique, the operation is performed at a cell-level
to mitigate the effects of Process Variation. For example, as recited
by [1] a Built-In Self Test (BIST) circuity is used to detect Process
Variation affected faulty cells during the run-time. Another example
is a proposed technique disclosed by [17] regulates RESET current
by intentionally reducing the RESET current for the cells that are
difficult to reset to let them fail temporarily and then use error

2

Figure 2: Classification of different techniques used for the mitigation of process variation in memories and caches.

correction schemes to recover them. As a result, the RESET current
for the remainder of cells can be decreased which results in lifetime
improvement of nonvolatile memory. The technique explored by
[17] would also be categorized as Circuit-Level, Peripheral solution
because it uses RESET current. Further explanation will be provided
in the appropriate section.

3.2 Circuit-Level, Memory Bank:
In this type of technique, the memory process variation is mitigated
at the Memory Bank level. For instance, each bank is providing
support for adjacent defected banks. As cited in [2, 46] “linking”,
relocating the defective word to any row in the next bank, allows
this architecture to achieve far larger fault tolerance in comparison
with prior art solutions relying on cache resizing. In Re-sizable Data
Composer Cache (RDC) as recited by [16, 34] banks are arranged
in a circular chain, with each bank providing fault tolerance for the
previous bank in the chain and the first bank providing tolerance for
the last bank. Furthermore, [48] is another research paper exploring
the Memory Bank related solution to mitigate the effects of pro-
cess variation. The paper is using a cache management technique
for tolerating process variation by developing a cache migration
scheme that utilizes fast banks. The employment and utilization of
fast banks through migration would provide a high-performance
benefit. The performance is improved by 16% in comparison to the
baseline that is determined by the slowest bank. In this section, I
will provide a more extensive summary of [48].

In the remainder of this section, I will provide a more extensive
description of some selected papers associated with Circuit-Level,
Memory Bank technique to mitigate the effects of process variation.

Re-sizable Data Composer Cache (RDC) [16, 34]
In the following paragraphs, I am going to review the techniques

explored by [16, 34]. RDC cache is the re-sizing of the cache in
scaled voltages and avoiding a write/read from defective locations.
The downsizing of the cache was explored in prior literature [2,

46], however, RDC cache refine this methodology to maximize the
size of the cache at scaled voltages by partially re-using defective
cache rows. The technique introduces a smart defect relocation
methodology. It decomposes the data that is targeted for a defective
cacheway and relocates one or a fewwords of data to a new location
while it avoids a write to the defective bits. Upon a read request,
the requested data is recomposed through an inverse operation.
The following three features a) compaction of relocated words, b)
ability to use defective words for fault tolerance and c) “linking”
(relocating the defective word to any row in the next bank), allows
this architecture to achieve far larger fault tolerance in comparison
with prior art solutions relying on cache resizing [2, 46]. In high
voltagemode, the fault-tolerantmechanism of RDC-Cache is turned-
off with minimal (0.91%) latency overhead compared to a traditional
cache.

Figure 3: Banks are organized in a circular chain; for each bank, its next-bank
will provide fault tolerance [34]

In the RDC approach, banks are arranged in a circular chain,
with each bank providing fault tolerance for the previous bank in
the chain and the first bank providing tolerance for the last bank.
This is illustrated in Fig. 3. RDC-Cache provides a word-level fault
tolerance. It generates and keeps a special defect map that has the
defect information at a word level granularity. In RDC-Cache the
last cache way in each row is used for Fault Tolerance (FT-way).
If a cache way contains a defective word, the information that is

3

mapped to that defective word is relocated and saved in FT-way in
its next bank in the circular chain. RDC-Cache uses a mechanism
that allows saving the relocated words of two or more ways in one
or more rows in a single FT-Way. An FT-way that all its words are
used as a destination for relocated words is called “saturated”.

Figure 4: access to a RDC-Cache in low voltage mode [34]

When choosing the destination FT-Way for relocated words, the
RDC-Cache first uses unsaturated FT-ways that contain defective
word(s). Then it uses the unsaturated previously used FT-ways
that are not yet saturated and finally the defect-free FT-ways. This
allows us to keep the maximum possible number of defect-free
FT-ways. Finally, if these FT-ways are not used they are released
and used as ordinary ways in the cache. This increases the final
RDC-cache size compare to previously suggested re-sizable caches
[2, 46]. The process of associating an FT-Way in the next bank to
a defective cache way is referred to as “linking”. The proposed
structure allows the linking of any defective way to any FT-way in
its next bank.

Figure 5: access flowchart to a RDC-Cache in low voltage mode [34]

At low voltage, when reading from a defective cache way, as it
is illustrated in Fig. 4, the RDC-Cache first identifies the location of
relocated words from the defect map and then accesses both banks
(addressed bank and one containing relocated words) at the same

time. Then through logical operations (combining logic), based on
the defect map of an accessed cache way, FT-way, etc., it combines
the information in both cache ways and generates the defect-free
fetch group which is sent back to the requesting unit. The usage of
another memory bank for remapping of defective words is a means
to avoid designing multi-port caches to improve the area and delay
of the cache. The access scenario to an RDC-Cache is illustrated in
the flowchart in Fig. 5.

A raw defect map is generated at boot time. During the boot
time, using the memory BIST unit, the L1 and L2 cache(s) are tested
under low voltage conditions. The output of the BIST is a raw defect
map containing one bit per each word in the cache. If there are
multiple operating points for a different combination of voltage,
temperature, and frequency, the BIST operation is repeated for each
of these settings. The obtained defect map is then modified and
processed to be usable with RDC-Cache.

A raw defect map has to be processed and converted to Reloca-
tion Aware Defect Map (RADM) format. Fig. 6 illustrates an example
of how RADMfields are generated. This figure illustrates the RADM
or two rows that use the same row in the next bank for fault toler-
ance. The first row [R:0011011] contains a defect in the third word
of its second associative way. The second row [R:1101110] contains
two defective ways one in the first way and the second one in its
third way. The FT-way that is chosen in a row [R:0101110] of the
next bank also has one defect in its FT-way. However, the total
number of available words is equal to that needed for the tolerance
of defects in rows ’0011011’ and ’1101110’. Fig. 6 also shows the
RADM for each of these rows. Each RADM entry includes the defect
map of the first 3 associative ways, the address of the row contain-
ing the FT-way in the next bank, the defect map of the FT-way
in the next bank followed by three 2-bit Starting Word Location
Indexi (SWLIi) fields. Each SWLIi index points to the location of
the first relocated word in the cache way “i”. The ability to use a
defective FT-Way for fault tolerance of defective ways in the main
bank allows RDC to preserve the non-defective FT-ways to be used
only if no other defective FT-way was available. Therefore, if after
RADM generation some of the FT-ways were unused they could be
released increasing the cache associativity in that row by one and
the cache capacity.

Figure 6: Combinational Logic Unit (CLU) used when reading data from RDC
[34]

Reading a cache way containing defective words from RDC-
Cache involves reading the addressed bank, reading the FT-way

4

from the next bank, and then passing the data through a Combining
Logic Unit (CLU). The CLU also needs the defect map of the accessed
cache way and the FT-way. With this information provided, CLU
will process and combine the words in the defective way with those
obtained from FT-Way and produce the final defect-free group of
words to be sent back to the requesting unit. A simple realization
of the combining logic for a 4-way associative cache is illustrated
in Fig. 6.

As explained previously, the relocated words to the FT-way are
saved in a compact form. This means that one FT-way might be
used to store defect-free copies of defective words located in more
than one row in the previous bank. The first 2bits of the Starting
Word Location Index (SWLI) field in the defect map is used to realize
the starting location (offset) of the first relocated word. More than
one defective word may be in a cache way, however, all these words
regardless of their location in the original cache way are compacted
next to each other. For example, in Fig. 6 the words B1 and B3 are
defective and they are compacted and saved in locations A1 and
A2 in an FT-way. In this case, the SWLI index is “01” meaning the
first word is either defective or used for fault tolerance of another
cache way. The combination of (s0,s1) bits and defect map of the
FT-way could be used to generate an array of bits (a0,a1,a2,a3) that
indicate the locations of relocated words in the FT-way. A simple
realization of such a circuit is provided in 6. This array of indexes
along with defect map of the currently accessed defective cache
way (b0, b1, b2, b3), its data (B0, B1, B2, B3) and finally the data of
the FT-way (A0, A1, A2, A3) is the input to the Combining Mesh
Grid (CMG). CMG is a matrix of M boxes. The functionality of each
M box is very simple; M boxes help with routing the data words
such that the relocated data words in the FT-way would find the
proper location in the final fetch group.

Writing to a defective cache way in the RDC-Cache involves
regrouping and compacting the words mapped to defective loca-
tions in the accessed way to their corresponding location in their
associated FT-way. Before writing the information in the FT- way
one should identify in which cache-way in the accessed bank, will
the data be saved. Writing to the FT-way involves compacting the
defective words together, shifting the compacted words to the ap-
propriate starting word suggested by the SLWI index in the defect
map, and then going through a muxing stage to make sure data
will not be saved in the defective locations in the FT- way. This
process is simply achieved by a Decomposition Logic Unit (DLU)
similar to that used for combining. Note that in this case writing to
the FT-way is on the critical path of the write operation. Further-
more, writing to the FT-way cannot start until data has propagated
through the decomposition matrix (in case of a 4-way associative
cache, it is the propagation delay of 4 multiplexers). Normally, the
cache is designed so that, the write time is shorter than the read
time. Thus, although writing to the FT-way extends the delay of
write critical path, the write time is still expected to be much lower
than the read time

The probability of a 32 KB RDC-Cache failure is illustrated in
Figure 9. This figure also compares the Failure probability of other
caches with the same size realized by different fault-tolerant Means.
Authors adopt the definition for Vcc-min as the voltage at which 1
out of every 1000 cache instances is defective [46]. With no fault-
tolerant mechanism in place, a 32 KB cache composed of 6T SRAMS

has a Vcc-min of 0.87 V. Introducing a 1-Bit ECC reduces the Vcc-min
to 0.68 V. On the other hand, if memory array is realized via ST-
Cells the Vcc-min is effectively reduced to 500 mV. However, an
area penalty of 2X in the array size incurs. The Word-Fix Fault
Tolerance mechanism suggested in [46] also reduces the Vcc-min
lower but close to 500 mV. The Bit-Fix mechanism in [46] further
reduces the Vcc-min to 480 mV. However, the cache size in both
methods suggested in [46] is lower than that realized by RDC-
Cache. Finally, the RDC-Cache realizes the Vcc-min at only 450 mV
in 32 nm technology.

Figure 7: Probability of cache failure for different fault tolerant mechanisms
including BitFix in [46], wordFix in [46], Schmitt Trigger 10T RAM in [19],
RAM designed with conventional 6T memory cell, and RAM designed with
conventional 6T and protected using 1-Bit ECC.

Process Variation-Aware Non-uniformCacheManagement
in aThree-Dimensional (3D)Die-StackedMulti-core Processor
[48]

The idea presented by the paper is to circumvent the effects of
process variation by developing a cache management technique
that would overcome the non-equal access times associated with
the different memory banks. The cache management technique
would migrate data from slow banks to fast banks to decrease the
access time. The paper is using a 3D bank. The 3D bank is formed by
dividing the bank into several sub-banks that are stacked together
to form a 3D bank. Therefore, the interconnection wires inside the
bank are all shorter which decreases the access latency of the mem-
ory. The energy overhead resulted from the proposed technique is
negligible. The idea explored by the paper is to migrate data from
slow sub-banks to fast sub-banks. The migration is happened based
on either Bank Latency-based Migration Policy or Tiered Migration
Policy.

The Bank Latency-Based Migration Policy always moves the
data to the fastest sub-bank. For example, if we have 16 sub-banks,
all 16 sub-banks in memory are ranked and sorted based on their
access latencies in ascending order from Bank-0 to Bank 15. Upon
accessing a cache line from a slow sub-bank, it migrates to the
fastest sub-bank (Bank-0). The victim cache line from bank-i is
moved to bank-(i+1).

The Tiered Migration Policy divides the sub-banks in one rank
of memory into multiple tiers based on their speed. Therefore, each
tier has multiple sub-banks with similar speed. Instead of always
migrating data to the fastest sub-bank the data is migrated to the

5

fastest tier, and the victim cache line from the fastest tier is moved
to the tier below. As a result, the impact on Bank-0 is now evenly
divided between the plurality of sub-banks.

Paper further goes on to note that an increase in the number
of tiers would not provide an extraordinary performance benefit.
Therefore, it concludes that the two-tier enabled migration scheme
is adequate and it achieves significant performance improvement.
The energy overhead resulted from the proposed technique is neg-
ligible.

3.3 Circuit-Level, Peripheral level:
In this type of technique, the memory process variation is mitigated
by employing a "Peripheral level" solution. This means adding an
auxiliary part to the main memory to mitigate the effects of process
variation. Different techniques are introducing different peripheral
devices used to achieve the above-mentioned goal. One of these
techniques is a proposed technique disclosed by [17] that regulates
RESET current by intentionally reducing the RESET current for
the cells that are difficult to reset to let them fail temporarily and
then uses error correction schemes to recover them. As a result, the
RESET current for the remainder of cells can be decreased which
results in lifetime improvement of nonvolatile memory.

Moreover, as recited by [35] a small one step charge pump is
employed to allow selective wordline overdriving. The detailed sum-
mary of the paper [35] is presented in the Architectural solutions
section. Furthermore, the technique presented [1] is another exam-
ple of using a peripheral circuitry, such as BIST to detect process
variation impacted cells.

Furthermore, as recited by [22] the paper is employing a Physical
Status Register (PSR) and augments the cache to localize the effects
of process variations. As a result, it provides a finer granularity.

In more advanced technique, as suggested by [36] the BIST cir-
cuitry is employed in combination with the Fault-Tolerant Memory
(FTM). At run time BIST tests the memory arrays at lower voltages
and writes the defect map into BLB. BIST generates a different BLB
for operation at each PVT corner. Defect maps for previously tested
voltages could be saved by the system in non-volatile memory to
avoid running the BIST in the future or can be rerun on demand.
BLB should also be updated by possible defects in the result of the
operating environment changes.

In IDC [36], a conventional cache is augmented with two aux-
iliary blocks. The BLB is a defect map for the cache and the IDC
which is a small auxiliary cache that acts as dynamic redundancy
to tolerate defects within the most recently visited, yet defective
cache lines, in the conventional cache.

Furthermore, [29] employs a plurality of circuit-level techniques
to change the access latency of selected cache lines based on the
criticalities of the load instructions that access them.

In the remainder of this section, I will provide a more extensive
description of some selected papers associated with Circuit-level,
Peripheral technique to mitigate the effects of process variation.

Fine-grained Fault Tolerance for Process Variation-aware
Caches [22]

In this paper, the effect of continuous scaling in CMOS fabrication
process has been analyzed. As noted the highly persistent scaling
makes the circuits more susceptible to effects of processes variation.

Which results in delay, defects and/or leaky circuits. The paper [22]
is specifically targeting spatially uncorrelated defects resulted from
Random Dopant Fluctuation (RDF).

To lessen the impacts of process variations on caches, the paper
[22] proposes an architectural technique at finer granularity by
augmenting cache with a set of Physical Status Registers (PSR)
to localize the effects of process variations at a word level. The
technique proposed by the paper is an example of augmenting
Cache with an additional resource which was one of the innovative
solutions discussed in section four of the instant survey paper. The
technique discussed provides 10% less performance loss with 90%
of cases. As per area overhead considering additional SRAM cell
area the proposed technique gives the area overhead of 3%.

In this technique, the Faulty words are disabled or shut down
completely and access to those words is bypassed to a small set
of word-length buffers. This technique is shown to be effective in
reducing the performance penalty due to process variations and
in increasing the parametric yield up to 90% when subjected to
the performance constraints. The new fine granular technique pre-
sented in this paper [22] provides resilience at much higher defect
densities which are predicted in the future process technologies
due to large deviations in Vt.

Individual 32-bit words of a cache block are augmented with an
extra bit indicating those as either defective or not defective. These
defective words are substituted by another set of word-length fault
buffers tagged with the faulty-word location in the cache.

The PSR contains one bit for each word in a block/cache-line.
These word-level defect-bits are multiplexed with the word offset
part of a memory address. Hence, a particular cache access is con-
sidered defective if the bit corresponding to the accessed word is
set. PSR multiplexing is done in parallel with tag matching, there-
fore, the overhead of this scheme is only the area for PSR and their
energy consumption while no significant addition in the critical
path.

Because the defective portions of cache lines are never used, they
may be turned off to avoid leakage power loss using previously
proposed leakage power reduction techniques like gated-VDD [4].
Rendering healthy words usable with PSR has a significant benefit,
compared to other techniques, as will be demonstrated in the next
section. PSR-array is configured using a March test that writes a
cache with test patterns and then reads them to detect defective
words. Based on this test, each bit in the PSR is set or cleared. If
this configuration is predicted to be invariant of operating condi-
tions and aging, PSR can be fused in the cache permanently or the
configuration can be stored in flash memory to be accessible on
system boot.

In conclusion, the paper [22] discloses a fine-grained fault-tolerant
cache architecture to mitigate process-variations artifacts on SRAM-
based caches. The proposed technique makes efficient use of resid-
ual cache capacity by turning off or disabling only defective cache
words and supplementing those with a set of fault buffers. Fault
buffers-augmented cache is shown to recover parametric chip yield
up to 90% sustaining a maximum performance loss of 10% while
achievable parametric yields of other schemes do not surpass 60%.

Inquisitive Defect Cache (IDC) [36]
6

The technique used in IDC [36] is an architectural technique to
address process variation using a dynamic redundancy, where the
redundant rows are used only to mitigate process-variation-induced
errors withing the window of execution of a program within the
cache. The IDC cache-organization dynamically maps the in-use
defective locations in a processor cache to an auxiliary parallel
memory, creating a defect-free view of the cache for the processor.
This allows the limited yet available redundancy resources to be
used for tolerating a large number of defects as at each point of time,
the available redundancy is used to mitigate errors in a subsection
(most recently visited) of the cache.

Fig. 8 illustrates the IDC cache organization. In IDC, a conven-
tional cache is augmented with two auxiliary blocks. The BLB is
a defect map for the cache and the IDC which is a small auxiliary
cache that acts as dynamic redundancy to tolerate defects within
the most recently visited, yet defective cache lines, in the conven-
tional cache. Both of these auxiliary structures are kept at high
supply voltage when the voltage of the main cache is scaled. This
is to guaranty reliable storage of defect information in the defect
map and to avoid process-variation-induced defects in the smaller
cache used as dynamic redundancy. The size of the added memory
structures, compared to the main cache, is significantly smaller.

Figure 8: The organization of Inquisitive Defect Cache [36]

Generating the defect map BLB could be accomplished at manu-
facturing time, however testing for multiple vectors significantly
increases the chip cost. Another approach is to generate the defect
map at boot time. In this method, at manufacturing time, the mem-
ory is only tested for manufacturing defects at the nominal voltage
process corners, fixing such errors using the available redundancy
and leaving the process variation induced defects to the combina-
tion of the FTM and BIST unit. At run time BIST tests the memory
arrays at lower voltages and writes the defect map into BLB. BIST
generates a different BLB for operation at each PVT corner. Defect
maps for previously tested voltages could be saved by the system
in non-volatile memory to avoid running the BIST in the future or
can be rerun on demand. BLB should also be updated by possible
defects in the result of the operating environment changes.

The number of words that are read from a cache at each read
cycle is referred to as a Fetch Group (FG). The size of the IDC
cache could be much smaller than the total number of defective
FGs in a cache. In a sense, the IDC could be considered as a group
of redundancy rows with the main difference being that mapping
to redundancy is fixed and one time, whereas mapping to the IDC
is dynamic and changes with changes in the addressing behavior of
the program. Furthermore, in the IDC case, the defective FGs within
the WoE of the program in the cache is mapped to IDC allowing
much higher coverage than that of a redundancy scheme.

The conceptual view of an IDC enabled cache structure is illus-
trated in Fig. 9, where IDC, Cache, and BLB represent the Inquisitive
defect cache, cache, and defect map BLB, respectively. The WoE
and “Int” are conceptual structures (do not exist but drawn to ease
the understanding of IDC structure and its operation) representing
the WoE of the program in the cache and intersection of the WoE
and BLB, respectively. The BLB marks the defective FGs in the
cache. The WoE marks the in-use section of the cache (FGs that the
processor has recently visited). The “Int” is in the results defective
FGs in the WoE which should be mapped to IDC. In Fig. 9, the IDC
and cache have associativity of 2 and 4, respectively. If the IDC size
and associativity are chosen properly, the WoE of a program that
is mapped to the cache (after its first pass) should experience very
few defective/disabled words and could be virtually viewed as a
defect-free segment in the cache by the processor.

Figure 9: The organization of Inquisitive Defect Cache [36]

If an FG is defective, its information could only be found in the
IDC since every read/write access to defective words is mapped to
the IDC. The BLB should be designed such that its access time is
smaller than the cache cycle time. Considering the small size of the
defect map when one bit per FG is chosen, and also the fact that
the defect map voltage will not be scaled makes it fairly easy to
meet this design constraint. Fig. 10 compares the minimum cycle
time of a 16KB IDC to that of a traditional cache of the same size.
As illustrated, the IDC allows the system to operate at lower cycle
times that are can be up to 25% shorter at sub-500 mV supply.

Process variation in embedded memories [29]
The paper [29] is purposing an adaptive cache management

policy based on non-uniform cache access along with a latency
compensation approach that employs several circuit-level tech-
niques to modify the selected cache line access latency based on
the level criticalities of the load instructions that access them.

The paper addresses on-chip data caches three different aspects
"Exploiting Variable access latency," "Selective latency compensa-
tion," and "Experimental evaluation." Furthermore, it presents the
simulation platform and default values of major simulation parame-
ters. it discusses the impact of process variation on cache memories.

7

Figure 10: Minimum cycle time improvement when IDC is used to realize a
faster [36]

Presents the technical details of variable latency exploitation and
selective latency compensation techniques, that are respectively
purposed by the authors.

In the implementation, for both L1 data cache and L1 instruction
cache the paper has assumed two read papers and one write port.
The availability of the port is checked and if a port is available, the
port is assigned to the requested load instruction. For the sake of
simplicity, if the port is not available the requested load instructions
are blocked. The default configuration parameters are shown in Fig.
11. The paper uses six SPEC 2000 CPU integer benchmarks and six
SPEC 2000 CPU floating-point benchmark. ([29])

As illustrated by Fig. 12, The paper’s suggested approach is com-
pared against three different pipeline structures. The first one is
the ideal case without process variation as disclosed by Fig. 12(a) In
this scenario, the cache access is assumed to be pipe-lined into two
single-cycle stages. The second scenario as depicted by Fig. 12(b)
discloses one solution to combat the effects of process variation
which impacts both these pipeline stages during cache access. The
delay of either pipeline stage can exceed that of the nominal cycle
time due to process variation. The third scenario as depicted by Fig-
ure 19.C discloses a different solution to process variation effect by
increasing the cycle time. Please note that solutions in both Figure
19b and Fig. 12(c) are based on the worst-case design paradigm and
can lead to significant losses in performance.

The most important parameters effected by process variations
include channel length (L), gate oxide thickness Tox, and threshold
voltage Vth.

In this work, the threshold voltage (Vth) variation has been con-
sidered as the major cause of intra-die variation, since the effect of
other parameter variations can be translated as an effective vari-
ation in threshold voltage. The intra-die variations can result in
Functional failures, Timing failures, and Noise margin reduction.

Figure 20 shows the proposed architecture for variable latency
caches and the corresponding pipeline. This architecture has two
major components: Set Predictor and latency table. The cache set

Figure 11: Default Configuration Parameters [29].

Figure 12: Different Scenarios assuming an original cache access latency of
two cycles. (a) Pipline progress without process variation. (b) Increasing num-
ber of cache access cycles. (c) Increasing clock cycle time. [29].

address of the data to be accessed is predicted by the set predictor.
In this work, the paper uses a 2-delta stride-based address predic-
tor for set prediction. Stride-based address predictors predict the
next address by adding the sum of the most recent address to the
difference between the two most recent addresses produced by an
instruction.

In the 2-delta stride-based method, two strides are maintained.
One of these strides (s1) is always updated by the difference between
the two most recent values, whereas the other stride (s2) is used for
computing the predictions. When (s1) occurs twice in a row, then
it is used to update the prediction stride (s2). Once the address of
a load instruction is predicted, we compute the corresponding set
address. We consider the size of the prediction table as 2K entries
because it is providing good accuracy with the nominal power and
area overhead as compared to other sizes such as 1K, 2K, 8K, and
16K entries.

The second element of the technique suggested by the paper
design is the latency table obtained by augmenting the March test
that maintains the access latencies at a cache set granularity. The

8

Figure 13: Proposed architecture and corresponding pipeline for exploiting
variable latency data cache. PL and AL are predicted and actual latencies re-
spectively. [29].

latency table is adopted during the functional testing of memory
components.

In comparison, the experiments with the proposed scheme (with
variable latencies under the original clock frequency) show an aver-
age increase of around 0.67 percent in execution time as compared
to the ideal case with no process variation. The proposed architec-
ture benefits over the baseline architecture by permitting dependent
instructions to be issued based on the variable latencies captured
by the latency table.

In this work, the paper [29] focused on the timing failures result-
ing from process variation and proposed two novel techniques to
manage these failures. Our first approach deals with timing failures
by allowing, where possible, some cache sets to operate with higher
access latencies. The second approach tries to compensate for the ef-
fects of process variation by trading off higher energy consumption
and/or accelerated aging with better performance. The proposed
mechanism would result in a process variation mitigation solution
that is a combination of architectural and circular based solution.

4 ARCHITECTURAL-LEVEL SOLUTIONS:
Based on the above description the architectural techniques to
mitigate the process variation effects can be categorized as follow:

4.1 Architectural-Level, Disabling:
In this technique, as recited by[27] faulty cache blocks are disabled,
and the programmable address decoder is re-mapping references
to faulty blocks to the healthy blocks.

The Architectural-Level, Disabling technique can be further cat-
egorized as follow:

4.1.1 Disabling, Byte-Level: The disabling technique is per-
formed at Byte-level. As recited by [42] Point-and Discard (PAD)
technique instead of the entire cache line only faulty Bytes is dis-
carded when a hard error occurs, and healthy Bytes are used in the
impacted cache line.

4.1.2 Disabling, Word-Level: In this technique, the disabling
technique is performed at Word-Level. As suggested by [35] a se-
lective wordline overdriving technique is utilizing a small one step
charge pump. In the approach of [35], a modified wordline driver
peripheral device is used to allow selective wordline overdriving.

In the remainder of this section, I will provide a more extensive
description of some selected papers associated with Architectural-
level, Disabling, Word-level techniques to mitigate the effects of
process variation.

Process VariationAware SRAM/Cache forAggressive Voltage-
Frequency Scaling [35]

In CP cache [35], the peripheral circuitry of the SRAM ismodified
to selectively allow over-driving a word line which contains weak
cell(s). This architecture allows reducing the power on the entire
array; however, it selectively trades power for correctness when
rows containing weak cells are accessed. Cell sizing is designed to
assure successful read operations. This avoids flipping the content
of the cells when the word line is over-driven.

Fig. 14 outlines the CP-Cache word-line driver architecture. It
consists of two consecutive NAND gates(possibly preceded by two
or more inverters to increase fan-out). The second NAND gate’s pull
up PMOS (P1) as shown in Fig. 14 is connected to the supply voltage.
Pull up PMOS (P2) is connected to the charge pump output. Using
this driver P1 first drives the word line to Vdd and conditioned
upon activation of P2 the charge pump and word-line start charge
sharing. Being at a higher voltage the charge pump’s capacitor
charge migrates to the word-line, effectively raising its voltage as
shown in Fig. 15.

Figure 14: Proposed wordline driver [35]

The selective behavior of this circuit is controlled by the input
to the Nand-gate in the delay unit of the word-line driver. If the
external-input to this Nand-gate is high, the word-line overdrive
will be inactive whereas a low input initiates the overdriving behav-
ior. Typically, the input to the Nand-gate will be from a defect map
that stores the results of a BIST run that is performed for each new
set of voltage, frequency, and temperature. This approach assures
support for a large number of operation modes. Alternatively, if
the system is known to have a small number of operating modes,
the configuration information can be stored inside fuses that are
configured for each mode.

Overdriving the word-line driver may cause cell stability prob-
lems. The access and pull-down transistors in an SRAM cell during

9

Figure 15: Signals timing order in the proposed charge pumped wordline
driver[35]

Figure 16: Total probability of failure (Weite Failure +Access Failure +Read
Failure) for FFVS policy (top) and FSVS policy (buttom)[35]

a read form a voltage divider. The size of the pull-down transistor
is chosen large enough to assure that the rise in the intermediate
node of the voltage divider smaller than the threshold voltage of de-
vices used in the cell. Increasing the voltage of the access transistor
lowers the resistance of the access transistor effectively increasing
the voltage at this intermediate node. This, in turn, increases the
likelihood of a bit flip during a read operation. To prevent this ef-
fect, one could trade cell area increases the size of the pull-down
transistor to counter the voltage overdrive impact on cell stability.
Increasing the size of the pull-down device also impacts the Static
Noise Margin (SNM) and the leakage of the SRAM cell.

Overdriving the word-line using a charge pump improves both
mean and standard deviation of the access/write time distribution.
As illustrated in Fig. 16, this results in a significant reduction in
read access and write failure at scaled voltages.

4.1.3 Disabling, Row-Level: In this technique, the disabling tech-
nique is performed at Row-Level. For example, the technique as
suggested by [21, 40] the memory design is simply altered by modi-
fying and equipping the decoder with the added capability of using
the redundant row(s) instead of defective memory row in case of
such faults (that could be detected using memory march and testing
solutions).

4.2 Architectural-Level, Masking:

4.2.1 Architectural-Level, Masking, Re-locating: In this type
of technique, the memory cache is modified to combat the effects of
process variation. For example, the cache blocks can be rearranged
[28], to minimize the number of sets having both high and normal
latency. This is achieved by mapping and grouping together Process
Variation affected blocks in a few sets.

Furthermore, reviewing the techniques explored by [16, 34], the
paper could also be categorized into Architectural-level, Masking,
relocating technique since the technique introduces a smart defect
relocation technique, wherein the technique decomposes the data
destined to be transferred to a defective cache way and relocates
one or a few words of data to a new location. As a result, it avoids
a write to the defective bits. The detailed analysis of [16, 34] has
been presented in Circuit-Level, Memory Bank sub-section.

In the remainder of this section, I will provide a more extensive
description of some selected papers associated with Architectural-
level, Masking, re-locating techniques to mitigate the effects of
process variation.

Dynamic Cache Pooling for Improving Energy Efficiency in
3-D Stacked Multi-core dynamic processor [48] :

This paper proposes a run time policy to dynamically appropri-
ate jobs to cores on the three-dimensional stacked system based
on applications cache needs and cache uses. The applications with
different cache needs are paired up with each other. The technique
increases energy efficiency by providing flexible heterogeneity of
cache resources. The proposed technique is of circular and archi-
tectural nature. The dynamic policy is allowing the cache to be
re-sized while job scheduling is based on pairing applications with
contrasting needs.

The analysis shows that the suggested dynamic run time policy is
increasing the three-dimensional processors’ Energy Delay Product
(EDP) by up to 39.2% in comparison to three-dimensional processors
with static cache sizes. As per Energy Delay-area Product (EDAP)
the dynamic policy proposed by the paper increases by 57.2% in
comparison to its counterpart having static cache sizes.

The technique disclosed by the paper [24] enables vertical cache
resource pooling in three-dimensional architecture. The disclosed
architecture as displayed by Fig. 17, has a four-layer 3-D system
with one core on each layer wherein a private L2 caches of the
cores are capable of increasing their size by exploiting the cache
resources from other layers.

Fig. 17 (a) and (b) are the baseline 3D systems with 1MB and
2MB static private L2 caches, respectively. Furthermore, in Fig. 17
(c), each core has a 1MB private L2 cache and the vertically adjacent

10

caches are connected using Trough Silicon-Vias (TSVs) for enabling
cache resource pooling.

Figure 17: Proposed 3D systemwith cache resource pooling versus 3D systems
with static 1MB and 2 MB caches. In (c), cores are able to access caches on the
adjacent layers through the TSVs. [48].

The re-sizeable cache allows the cores to increase their respective
L2 cache sizes by the expense of cache resources from other layers
with negligible access latency penalty. The design achieves two
objectives of increasing the performance and power efficiency by
respectively increasing the cache size and turning off unused cache
partitions.

The performance improvement resulted from increasing the
cache size is based on the modification of the cache associativity.
The cache associativity is calculated based on block size, the num-
ber of sets and the level of associativity. While the power efficiency
is obtained by selectively turning off unneeded cache ways. Each
cache way is called a cache partition. Each partition is indepen-
dently poolable to one of its neighboring layers.

The paper introduces a Local Cache Status Register (LCSR) for
each cores private L2 cache partition (e.g., there are four partitions
in a 1MB cache in our design) to store the status of the cache
partitions. The paper [24] also introduces Remote Cache Status
Registers (RCSR) for the L1 cache so that the L1 cache is aware of
its remote cache partitions. RCSR and LCSR logics are illustrated
in Fig. 18 (a), (b), and (c).

Figure 18: Cache resource pooling implementation: (a) Logic for cache re-
source pooling (b) L2 request generation logic (c) Output location generation
logic (d) Local cache status registers. [48].

There are four different scenarios for each of the local cache
partitions. (1) used by the local layer, (2) used by the upper layer, (3)
used by the lower layer and (4) being turned off. The core’s LCSR

has two bits to specify the current status of the corresponding
local cache partition as indicated by the table in Fig. 18 In addition,
two 1-bit RCSR is allocated in L1 caches for each core to be aware
of its remote cache partitions. Upon receiving the requests and
addresses, the tag extracted from the requested address will be
cross-referenced at each block with the tag array. Meantime, the
entries of each way will be selected based on the index.

Furthermore, the paper presents the flow of our run-time job
allocation and cache resource pooling policy. The policy contains
two stages (1) Job allocation which decides on which core each job
should run on, and (2) cache resource pooling, which distributes a
pool of cache partitions among a pair of applications.

This paper has introduced a novel design for three-dimensional
cache resource pooling that necessitates minimal circuit and archi-
tectural modification. In addition, an application-aware job alloca-
tion and cache pooling policy improves the energy efficiency of
three-dimensional systems.

Working with Process Variation Aware Caches [27]
In this paper, a block-rearrangement technique has been pro-

posed to minimize the performance penalty resulted from a process
variation aware cache which works at set-level granularity. The
paper rearranges physical locations of cache blocks by distributing
blocks of a cache set over multiple sets to minimize the number of
sets being impacted by process variation. Furthermore, the impact
of access latency variations on performance is analyzed. Based on
the proposed design and different tested benchmark the worst-case
performance penalty for the proposed technique would be 7.76%.
As per area overhead the paper notes that area overhead is similar
to [39]. It is worth noting that the reported area overhead for [39]
is 10%. The proposed block-rearrangement technique is an example
of one of the many architectural techniques developed to combat
the effects of process variations.

The concentration of the paper experiment is on on-chip data
caches. To decrease performance loss resulted from the process
variation the technique is using a process variation aware cache
which utilizes access latency fluctuations.

The paper is analyzing two rearrangement techniques, wherein
the cache blocks are rearranged between a pair of cache sets and be-
tween all cache sets. The two rearrangement techniques are paired
block rearrangement technique (PairedBRT) and perfect block re-
arrangement technique (PerfectBRT), respectively. In PairedBRT
arrangement two adjacent sets are considered as a group and block
rearrangement is performed inside the group. In PerfectBRT, the
block can be rearranged to any location within the set it belongs
to in the associated cache way. In both techniques, blocks in a
cache way are rearranged by moving the high latency blocks to the
bottom of a group or an entire cache way. Each of the suggested
techniques have their own pros and cons it is noted that PairedBRT
is simple to implement, whereas PerfectBRT is very effective in
performance.

This paper [27] is using a 2-way set-associative cache which
has 8 sets (numbered from 0 to 7). Blocks of a set i are represented
as block i in both way 0 and way 1. In Conventional Addressing
Scheme (CAS), all blocks of a set are placed in a single row so that
even if one block is affected by process variation, the corresponding

11

set takes high access latency. From CAS part of Figure 19, we know
that two sets, i.e., sets 5-6, take low latency and all other sets take
high access latency as they have at least one high latency block.

Figure 19: An illustration for Cache block organization in CAS, PairedBRT,
and PerfectBRT. Shaded portions indicate the blocks which are affected by
process variation. [27].

In PairedBRT section of Fig. 19, blocks which belong to sets 2i
and 2i + 1, 0 i 3, are rearranged, it is noted that four sets, i.e., sets
0, 2, 4, and 6, take low latency and the other sets take high latency.
Note that after applying PairedBRT, we have set 5 with one high
latency block in way 1 and set 7 with one high latency block in
way 0. As these two sets are differently grouped, it is not possible
to rearrange their blocks. We can overcome this problem by using
PerfectBRT, where any block can be placed anywhere in its cache
way. PerfectBRT part of Fig. 19 shows that five cache sets take low
latency.

To rearrange cache blocks, the paper [27] considers a programmable
address decoder to disable faulty cache blocks. Wherein the pro-
grammable address decoder is re-mapping any references to the
faulty blocks to the healthy blocks. To program the address decoder,
the paper suggests use of the March test which can differentiate
the low and high latency cache blocks.

This paper examines a 4-way set-associative cache where each
way has one decode. The modified decoder which is used in Paired-
BRT is shown in Fig. 20 PairedBRT rearranges blocks of adjacent
sets. The block characterization attributes fi, which is resulted from
the March test, are used in combination with the attributes a0 and
a0 to update the control inputs of the pass transistors. For exam-
ple, if we consider block 0 and block 1 with f0 = 1, then block 0 is
mapped to block 1 and block 1 is mapped to block 0. In PerfectBRT,
we need to program at all levels.

By considering a process variation aware data cache layout that
operates at set-level granularity, the paper proposed a block re-
arrangement technique to minimize the performance penalty due
to access latency variations in data caches. By validating the pro-
posed technique using SPEC2000 CPU benchmarks, showed that
the proposed technique can drastically decrease the performance
penalty happened by a conventional addressing scheme.

4.2.2 Architectural-Level, Masking, Temporary Fix: In this
type of technique, the processor is modified to combat the effects of
process variation. For example, the processor pipeline is modified

Figure 20: Decoder configuration in Paired-BRT. Here fi indicated whether or
not the ith block is affected by process varaition. [27].

[41] to improve performance. In this technique, the pipeline clock
is a period equal to the average stage delay instead of the longest
one. In another word, the spare time of the faster stage is added to
the slow ones by skewing clock arrival times to latching elements
after fabrication.

Another example of processormodification to improve the effects
of process variation would be the employment of an additional
cache to mitigate the impact of Translation Look-aside Buffer (TLB)
latency variation as recite by [18]

Variation Trained Drowsy Cache (VTD) [32, 33]
The ideas proposed in VTD [32, 33] is to manage the voltage scal-

ing at a very fine granularity, where each cache way can be sourced
at a different voltage. The selection of voltage levels depends on
both the vulnerability of the memory cells in that cache way to
process variation and the likelihood of access to that cache loca-
tion. After a short training period, the proposed architecture will
micro-tune the cache, allowing significant power reduction with
a negligible increase in the number of misses. Also, the proposed
architecture actively monitors the access pattern and re-configures
the supply voltage setting to adapt to the execution pattern of the
program. The novel and modular architecture of the VTD-Cache
and its associated controller makes it easy to be implemented in
memory compilers with a small area and power overhead.

The VTD-Cache conceptually operates by allowing a fine-grain
control over the voltage of each cache way. Among available voltage
levels, the supplied voltage is chosen by a simple voltage selector
that is implemented at each cache way. The voltage selector dy-
namically changes its state as the processor explores new segments
of the running program and shifts and/or resizes its window of exe-
cution (WoE). In VTD-Cache each cache way can be supplied from
one of three possible voltages. The lowest voltage level supplies
Data Retention Voltage (DRV) for cold lines which are determined
by cache access pattern and are managed via the proposed archi-
tecture. Cache ways that are supplied with this voltage are referred
to as “Cold Ways”. The remaining two voltage levels are used in
cache ways located within the CacheWindow of Execution (CWoE).

12

V Low
dd is supplied if the cache way could operate correctly in that

voltage, otherwise, the cache way is supplied with VHiдh
dd . In VTD

cache ways are referred to asWarm andHotWays if they are sup-
plied from V Low

dd or VHiдh
dd accordingly. The decision to use which

supply voltage is made based on a defect map that is generated
using the memory BIST. Section III-F further elaborates on how the
Warm and Hot cache ways are redefined based on the change in
the operational temperature.

Figure 21: Top level view of the VTD-Cache, sets with non-zero set counters
take part in WoE for which ways with defect bit set to 1 are on high voltage
and the rest on low voltage [32, 33].

Fig. 21 illustrates the general idea of this architecture. In this
Figure, each line represents a set that consists of four ways. Each set
has its own Set Voltage Selector (SVS) which contains a dedicated
bit counter (with N = 1 being the simplest realization and equal
to what was proposed in the drowsy cache suggested in [6]). Upon
access to a cache way in that set, the set is identified as being in
the CWoE. This is being done with setting the countdown counter
to a nonzero value. Each cache way has its own simple Way Volt-
age Selector (WVS), which is linked to a defect bit that indicates
whether that specific way contains defective bits or not. If the SVS
counter reaches zero, all WVSs that are associated with that SVS
automatically shift the state of their cache way to data retention
(Drowsy) mode. Otherwise based on their internal defect map bit,
they supply their associated cache way from eitherV Low

dd orVHiдh
dd .

As suggested by Fig. 21, all cache ways within WoE (which are
not cold/drowsy lines) and have their defect map bit set to one are
sourced from a higher voltage and those with defect map bit of zero
are supplied from V Low

dd . A Set enters the CwoE by access to the
set and exits the CWoE when its associated counter reaches 0. The
set counter counts down when a count down signal (CDS) is sent
from the global counter. The global counter acts as a cache access
frequency divider and is shared by all sets. It is a cyclic counter
that counts down and upon reaching 0 while being reset to its high
value generates the CDS-signal that is fed to all SVSs.

Failure Analysis and Variation Aware Architecture [2]
In this paper, the authors are proposing an architectural solution

to mitigate the effects of process variation. The solution is to ana-
lyze the failure and provides a variation aware architecture. The
paper is analyzing the SRAM cell failures under process variation.
The proposed architecture for high-performance applications is
avoiding faulty cells by adaptively re-sizing the cache. The pro-
posed solution has a negligible, 0.5%, area overhead. The energy

overhead is at 1.8%, the obtained yield is at 93% while the CPU
performance loss is an average 5.7%.

The paper is focusing on achieving better yield by increasing
the number of blocks in a row. In conventional techniques such as
[15] and [45] multiple cache blocks are placed in a single row to
achieve lower delay and to decrease the area overhead and routing
complexity. The optimum number of blocks being placed in one
row is determined based on a cache size to minimize the cache
access time. It is worth noting, that the increase in the number
of blocks placed in a row would request in total energy increase.
However, the main concern in designing the L1 cache is the cache
access time and the reasonable increase in energy is acceptable if
the access time is increased.

The paper [2] focuses on increasing the yield at the cost of a slight
increase in energy overhead and cache access time. The proposed
design assumes a 32K cache designed with four blocks in a row.
The design increases the cache access time by only 2% while the
energy overhead is increased by 7% compared to a design having
two blocks in a row. In return, the yield is improved by 14%. The
paper goes on to conclude that even in a larger cache four or more
blocks in a row will be the optimum case and will not result in a
drastic increase in the cache access time.

As disclosed by Fig. 22 the proposed cache architecture focuses
on direct map L1 cache, however, the design is applicable to both
direct and set-associative caches as well as different levels of cache
hierarchy such as the L2 or L3 caches. By adaptively resizing the
cache the architecture detects and replaces faulty cells under pro-
cess variation. The architecture assumes that the cache is equipped
with a Built-In Self Test (BIST) circuitry, which tests the entire cache
and detects faulty cells based on the failure mechanisms. Since the
number of faulty cells and their location changes depending on
operating conditions (e.g., supply voltage, frequency), such tests
are conducted whenever there is a change in operating conditions.

The proposed solution adaptively resizes the cache to circum-
vent faults. This solution is transparent to the processor and has
negligible energy and area overhead. The experimental results on
a 32 K L1 cache show redundant rows/columns and ECC results
in only 52% and 77% yield, respectively. Hence, with the increase
in process variations, the proposed scheme can be useful in future
cache design to achieve high yield.

4.3 Architectural-Level, Error Correction:

In the remainder of this section, I will provide a more extensive
description of some selected papers associated with Architectural-
level, Error Correction technique to mitigate the effects of process
variation.

ExploringVariation-Aware Fault-TolerantCacheunderNear-
Threshold Computing [43]

The paper is purposing an innovative fault-tolerant cache archi-
tecture suitable for high error rates memories. The technique is
evolved around a variation-aware skewed associative cache which
redirects the faulty blocks to the error-free blocks. The approach is
an architectural approach to overcome the effects of processor vari-
ations. The advantage of the suggested technique is that it has the
least cache capacity waste by using all error-free blocks without the

13

Figure 22: Architecture of 32 K process-tolerant cache [2].

need to disable any fault-free blocks to form a complete functional
set. Furthermore, the skewed cache design minimizes the hardware
overhead by avoiding the complex remapping from faulty blocks to
the error-free blocks. The design has a high error rate tolerance. In
the near-threshold region, the performance is improved while the
cache miss rate is reduced. The paper evaluates it is cache design
using Zsim, wherein the system has Out-of-Order cores, with each
core having L1 data and L1 instruction caches. All the system cores
are sharing one Last-Level Cache (LLC). The simulation has been
performed using SPEC CPU2006 benchmarks. The performance
effectiveness is analyzed in different environments starting at Super
Threshold-voltage Computing (STC) moving to Low-voltage Com-
puting (LVC) to Near-threshold Voltage Computer (NTC) where the
supply voltage is aggressively scaled down to the near-threshold
environment. A lower the supply voltage goes higher is the error
rate and lower is the cache capacity. Furthermore, the paper is an-
alyzing the bit-cell failure rate and block failure rate in different
environments.

The area overhead in the proposed design is the fault-map which
based on calculation presented by the paper is 1.3% across the
board. The other factor affecting the total overhead is a hash unit
to index the way, which causes around 0.31% area over the head.
Considering all the aforementioned factors the worst-case scenario
for the total overhead would be less than 6%. For this paper, the
worst-case scenario has been used in the classification table.

As per access latency and delay penalty the design includes
the delay on the hash function and the access delay to the fault
map based on the index output from the hash function. Because
the design does not need tag comparison the hit rate is similar to
conventional set-associative design.

Fig. 23 shows the proposed fault-tolerant cache design. Upon the
voltage scaling, Cache first generates the fault map by re-structures

the position of blocks that contain faulty cells using the fault detec-
tion method. Next, the skewed-associative cache design takes the
aggregated effect of processes variation and aging impact into the
hash function for the address index upon receiving the memory
access request. Third, the faulty blocks are circumvented based on
the re-programmed fault map obtained in step one. Afterward, we
could access the storage array directly if the cache hits, or cache
replacement policy generates a candidate tree if the cache misses.
The generated candidate tree finds the best replacement block.

Figure 23: Architecture of the proposed fault-tolerant cache. [43].

In conclusion, Near-Threshold Voltage (NTV) Technology as pur-
posed by the paper [43] provides a reliable and efficient SRAM cache
structure by considering a compound effect of process variation
and aging impact. The design provides more replacing candidates
to maximize the utilization of error-free cache lines and avoids the
complicated cache remapping procedure to minimize the hardware
overheads.

5 SOFTWARE AND SYSTEM LEVEL:

In this section, we are reviewing papers that are proposing Sys-
tem or Software-Level solutions to mitigate the impact of memory
process variation.

In this type of technique, the operation of the main memory
is effected and modified. For example, to mitigate the effects of
process variation in Phase Change Memory (PCM) main memory,
the PCM is partitioned into a plurality of domains and voltage
level is adjusted for different domains [47]. In other techniques,
the memory pages are categorized into two different types of hot
and cold based on the frequency of page updates. afterward, the
hot-modified pages are correlated to regions that are positively
impacted by the process variation, and the cold modified pages are
correlated to regions that are negatively impacted by the process
variation [47].

In the remainder of this section, I will provide a more extensive
description of some selected papers associated with System or
Software-level technique to mitigate the effects of process variation.

Adaptive ProactiveReconfiguration: ATechnique for Process-
Variability and Aging Aware SRAM Cache Design [30]

The paper [30] provides a new method to compensate for the
effects of process variation for SRAM design by extending the cache
lifetime using an adaptive strategy. The paper proposes an on-chip

14

monitoring technique to monitor the effects of aging in the SRAM
cells. The results provided by the paper show the technique as a
practical method to extend the cache lifetime up to 5X with around
a 12% area overhead and negligible drop of performance.

The paper provides an architectural as well as a circuit-based
solution to remedy the effects of process-variation and aging in
SRAM cache designs. The paper [30] addresses the background of
how the process variation and aging caused by Bias Temperature
Instability (BTI) are two key reliability concerns in modern tech-
nologies. The effect and importance of BTI has been drastically
increased when operating and integrating at the deep nanoscale.
The SRAM is one of the main sections in integrated circuits prone
to such type of deviations due to its utmost sensitivity to process
variations.

Cache memories are normally designed based on reactive con-
figuration principles. Where the memories are designed with a
plurality of spare columns/rows to substitute the failing ones for
yield improvement purposes. In this design, upon detection of a
failure, the non-operational spare spaces are becoming operative.
In another design, called proactive reconfiguration all the spare
units are used in the normal operation of the memory system until
the time of failure, as a result, the aging phenomena are shared
among all the units, resulting in a longer lifetime of the memory.

The paper [30] recites an improved proactive reconfiguration
technique in which results in a balanced aging distribution and
larger lifetime extensions throughout the memory columns.

The paper’s suggested technique considers the process variation
and BTI wear-out of SRAM cells based on time and it is designed
based on a non-homogeneous round-robin sequence between all
the memory columns. The utilization of spare units provides a
possibility of making a test in the memories to determine the status
of memory columns.

It also allows defining distinct recovery times, which can be
dynamically adapted to the respective VT values. It starts with a
test that measures the VT value of each SRAM cell. Then, each of the
tracked columns will be characterized by its highest VT SRAM cell
(the weakest cell in the column). These calculated values, determine
the needed recovery time length (Di) for each of the trackedmemory
columns.

The recovery duration calculation technique is based on the
value determined by subtraction between the weakest and strongest
SRAM cells VT values [min is the value of the minimum (best) VT
column, and max is the value of the maximum (worst) VT column]
in the memory columns. First, we consider several VT ranges in
which we want to classify the memory columns among them. Then,
we calculate the VT, which is the difference value between the
best and worst column VTT values. Finally, the specific ranges
are determined by the mentioned values. The columns are divided
between these ranges such that the columns with higher VT values
will have longer recovery times.

This paper’s technique has only the additional overhead of the
monitoring circuits in comparison to the technique discussed by
IBM. The implemented technique in the SRAMmemory has a slight
effect on memory cache performance. The frequency of reconfig-
uration process between columns is very low, which results in
small performance loss at a switching time of a column to another,

wherein the monitoring process of the recovery column can be a
dc measurement.

This paper [30] discloses an adaptive proactive re-configuration
technique for SRAM-based memory systems. It concludes that the
adaptive proactive approach extends the system lifetime larger
than the former (IBM) proactive approach. Also, the paper has
proposed a specific monitoring circuit that tracks the time zero
process variation and BTI aging of SRAM cells during operation.

Process Variation Aware Cache Leakage Management [25]
In this paper, the effects of within-die and die-to-die leakage

variation for on-chip caches are analyzed. It purposes way prioriti-
zation, a manufacturing variation aware technique that minimizes
cache leakage energy.

The paper employs a Six-Transistor (6-T) as the basic construc-
tion block for cache design as the basis for static power analysis
and focuses on sub-threshold leakages.

The proposed technique as suggested by the paper [25] uses a
two-phase approach as disclosed by Fig. 24. In the first phase, a
statistical model for a cache is constructed based on organizational
parameters such as capacity and block size as well as physical
parameters such as geometric position on-chip and overall die size.
In the second phase, by generating multiple random samples that
have the statistical properties for computing total leakage the model
Monte Carlo analysis is conducted.

Figure 24: Leakage Variation Modeling approach used in [25].

Since conventional cache sizing strategies do not differentiate
cache ways, although some portions of the cache will be leakier
than others. In cases where one of the enabled ways happens to
have a high overall leakage current, the conventional cache sizing
strategies would not achieve good energy savings. To overcome the
issue arising from conventional cache sizing strategies the paper
is purposing way prioritization as a technique to enable the appro-
priate number of cache ways and select which subset of the cache
array to make active. with circuit-level leakage and variation aware
design techniques such as adaptive body-biasing and multiple vt
assignments to maximize leakage savings. The key hardware dif-
ference between a standard selective cache ways implementation
and a way prioritized one is a set of hardware registers that iden-
tify the leaky cache ways and make cache sizing effective. Fig. 25
depicts the hardware differentiation and highlights the PRIORITY
and DEGREE registers.

The DEGREE register supplements this information by tracking
the absolute leakage of the corresponding physical way. When the

15

Figure 25: Hardware Organization for prioritized cache ways used in [25].

cache is being resized for a particular workload, these registers
can be queried to determine how many ways should be enabled
and which specific ways should be enabled. The measurements
needed to populate the leakage registers can be collected off-line
during the manufacturing test phase. Individual cache ways can be
independently enabled as part of a BIST sequence while the rest
of the processor is left idle. The leakage current for each way can
be calculated from ammeter readings of total chip current draw.
Collected data can be quantified, physical ways can be sorted by
their leakage power, and the resultant information can be kept in
non-volatile near-chip storage. At boot time, the PRIORITY and
DEGREE registers can be configured based on the previously deter-
mined values.

TheWay Prioritization allows the cache to be sized and config-
ured on a per workload and per chip basis. Given knowledge of how
application performance varies with increasing total cache size, we
can either choose a sizing that minimizes power for a fixed perfor-
mance level or we can target a more flexible power/performance op-
timization metric. For optimizations which allow a variable amount
of performance degradation, we need to know the incremental
energy cost of enabling each additional way. Different physical
chips may have different total leakage or different ratios of leakage
between ways. The DEGREE register tracks how much leakage
energy each additional way contributes. When re-configuring the
cache to minimize energy-delay, for example, the optimal value can
be found by iterating through the PRIORITY and DEGREE registers.

The paper uses the Monte Carlo method to evaluate spatial leak-
age variation under several different cache configurations. In all
cases, there is an assumption of a normal distribution on gate length
intra-die variation and the 3σ value of the distribution was set to
9.4% of the nominal value. We see that there is a dramatic differ-
ence in cache leakage for regions chosen from different locations
in the data array. The leakage ratio decreases rapidly as the region
size increases. This is due to the fact that when the regions are
small, there are many distant sections to choose from, increasing
the chance that the regions do not have similar parameter sizes.
As the regions grow, both the maximum and minimum leakage

regions tend towards mean values, and the distance between the
regions decreases. The second trend is that increasing cache sizes
boost the max/min ratio. This is due to the fact that larger caches
have a larger population of 6-T cells and hence longer “tails” on the
distribution.

McPAT-PVT:Delay andPowerModeling Framework for Fin-
FET Processor Architectures Under PVT Variations [20]

In this paper, the authors are addressing the problem posed by
using FinFETs. The FinFETs have surfaced as a replacement for
conventional CMOS due to their exceptional control of Short Chan-
nel effects (SCEs) and process scalability. However, FinFETs still
have challenges such as process, supply voltage, and temperature
(PVT) variations, which, in turn, results in a large increase in de-
lay and leakage. The paper introduces both Circuit-level and an
architectural-level solution based on FinFET processor to overcome
the challenges of process, supply voltage, and temperature varia-
tions.

To address the ever-increasing demand for high-performance,
high frequency the processor architectures and designs are moving
toward increasing the processor tiles count. This has resulted in a
significant boost in Chip Multiprocessor (CMP) power consump-
tion. As the Transistors scale to deep sub-micrometer technology
nodes, leakage is becoming an even more important part of power
consumption. In CMOS implemented circuits the leakage in the
active-mode has been estimated to be as high as 40% of the total
power consumption even at the 90-nm technology node. To coun-
teract the pointed out deficiency the FinFETs have been replacing
bulk CMOS at the 22-nm node and beyond as they provide better
scalability. The paper further has analyzed the characteristics of
FinFETs as being non-planar double-gate devices. They provide a
higher degree of control of short-channel effects compare to CMOS
transistors and have smaller sub-threshold leakage. It is also possi-
ble to independently control the two-transistor gates of FinFETs.
These design features and capabilities have resulted in the design
of creative circuit modules, and dynamic power and thermal man-
agement schemes. Despite all these significant benefits of FinFETs,
Process, Supply Voltage, and Temperature (PVT) variations still
strike a big challenge to the designers. Process variations in FinFETs
are mainly caused by lithographic constraints and difficulties in
gate-work function engineering.

The paper [20] presents a Multicore Power, Area, and Timing
(McPAT)-PVT, an integrated framework for the simulation of power,
delay, as well as PVT variations of FinFET-based processors. McPAT-
PVT uses a FinFET design library, consisting of logic and memory
cells, to model circuit-level characteristics as well as their PVT vari-
ation trends. The integrated framework is based on macro-models,
determined from highly precise TCAD device simulations that de-
scribe different functional units in a processor under PVT variations,
making yield analysis for timing and power for processor compo-
nents possible. McPAT-PVT can model both Shorted-Gate (SG)
and Asymmetric-work-function Shorted-Gate (ASG), FinFET-based
processors. Combining these macro-models with a FinFET-based
CACTI-PVT cache model and an ORION-PVT on-chip network
model, McPAT-PVT can simulate a delay and power consumption
of all processor components under PVT variations.

16

The paper [20] analyzes the different time delays imposed based
on different scenarios. For example, the paper looks into the vari-
ation in the time delay between SG-Mode and ASG-mode. Both
modes have a good timing yield, all above 90%. It is worth saying
that for an alpha-like processor andmulti-core simulations based on
Princeton Application Repository for Shared-Memory Computers
benchmarks. The Result of simulations shows that the ASG FinFET-
based processor implementation has 73× lower leakage power and
2.6× lower total power relative to the SG FinFET-based processor
implementation for the same performance, with <1% area penalty.

In conclusion, this paper[20] is using McPAT-PVT built on top of
a FinFET design performed processor-level simulations under PVT
variations as well as real-traffic PARSEC simulations for varying
number of cores. Results show that ASG-mode implementations
can meet the same performance.

6 BENCHMARKING AND ANALYSIS
CRITERIA

In this survey paper, the cache and memory design solutions are
discussed and compared according to the following design and
solution characteristics:

• re-sizable:Does the solutions allow the cache or thememory
size to changes, when the number of faults increases. For
example, does the solution support operation fo the cache in
two voltages (high and low) which require fault tolerance at
only one scaled voltage, or at multiple voltages, supporting
various defect maps.

• technology dependence: is the solution processing tech-
nology dependent, or technology solutions in dependent. For
example is the solutions applicable for specific technology
(planer vs Finfet).

• DVFS tolerance limit: the extent of the tolerance of the
cache/memory to change in voltage or frequency. Some solu-
tions allow limited range of change in voltage, while others
can support very wide range of change in voltage. The solu-
tions are divided between small (less than 5% DVFS change),
moderate (less than 15%), high (less than 25%), and aggressive
(more than 25%).

• Area overhead: the area overhead for building the the fault
tolerance solutions

• Power overhead: the power overhead for building the the
fault tolerance solutions

• Delay overhead: The timing impact of the tolerance so-
lutions at full voltage, when compared to a conventional
memory/cache operated at the same Process, Voltage, and
Temperature (PVT).

• Fault Map: does the solution require access to the fault map
of the defective memories, and if it does, what is the defect
map granularity (bank, row, word or byte level). Note that
the smaller the granularity of defect map, the larger the area
overhead of the design.

• Adeptness: is the fault map generated once at fabrication
time, or there exist a mechanisim (such as MBIST) for the
regeneration of the defect map. The memory solutions that
support regeneration of the defect map and dynamically
change the solutions to protect against such defects deemed

more reliable and could also protect against aging induced
defects that are not observed during the manufacturing test.

7 INNOVATIVE SOLUTIONS FOR PROCESS
VARIATION MANAGEMENT

In this section, we are addressing the innovative solutions employed
by the papers surveyed to mitigate the process variations effects.

7.1 Augmenting Cache with Additional
Resources

The differences in features, parameters, and characteristics would
be alleviated by assigning additional resources such as augmenting
the cache with two auxiliary blocks.

The augmentation is assigned for example as suggested by [36].
In this approach, The Bit Lock Block (BLB) is a defect map for
the cache and the Inquisitive Defect Cache (IDC) which is a small
auxiliary cache operating as a dynamic redundancy to tolerate
defects within the most recently visited locations is added to the
cache.

7.2 Over-driving the Memory Array
In this approach, the entire memory array voltage is over-driven,
which would result in increased power consumption.

7.2.1 Selective Over-driving. - To minimize the power consumption
and effect on the entire memory array the paper [35] suggests
selective wordline overdriving utilizing a small one step charge
pump. In the approach of [35], a modifiedwordline driver peripheral
device is used to allow selective wordline overdriving.

7.2.2 Body Biasing Techniques. - Body biasing is a circuit-level
technique used to reduce the effect of process variation and the
performance loss. In body biasing the Vth is modified at post-
fabrication or during run-time to mitigate the process variation
effects.

7.3 Decreasing the Workload of Process
Variation affected segments

7.3.1 Decrease the workload. - In this approach to decrease the
workload on the memory portions affected by process variation
is to substitute the defected portions. As suggested by the paper
[16, 34], the data that is destined to be written at a defective cache
way is decomposed and relocated to a new location. Therefore,
avoiding a write to a defective bit. In this approach, a Re-sizeable
Data Composer Cache is utilized.

7.3.2 disabling the defected area. - In this approach as suggested
by [2] the cache is adaptively resized to avoid the defected area and
as a result, the yield is increased.

7.4 Providing Process Variation Aware
Configuration Techniques

In this approach, the architecture is informed of process variation
affected areas and manages the cache based on the knowledge of
defected areas.

17

Title ArchCircuit Overhead Delay Pen Cell-typeRe-sizable
Inquisitive Defect Cache (IDC) [36] ✓ ✓ %7.3 1 1% SRAM
PV Aware SRAM/Cache for Aggressive... [35] ✓ 4% not reported SRAM
Re-sizable Data Composer Cache (RDC) [34] ✓ 6.72% 0.91% SRAM ✓

Variation Trained Drowsy Cache (VTD) [32] ✓ 4% 1% SRAM ✓

History and Variation Trained Cache (HVT-Cache) [33] ✓ 4% 1% SRAM ✓

Process Variation Aware Cache Leakage Management [25] ✓ 25% not reported SRAM ✓

Failure Analysis and Variation Aware Architecture [2] ✓ 0.5% 5.7% SRAM ✓

Process Variation-Aware Adaptive Cache...[29] ✓ ✓ not reported not reported SRAM
Exploring Variation-Aware Fault Tolerant... [43] ✓ 6% negligible SRAM
Dynamic Cache Pooling [48] ✓ ✓ 1% negligible SRAM ✓

Working with Process Variation Aware Caches [27] ✓ 10% 7.76% SRAM
Fine-Grained Fault Tolerance for PVA Cache [22] ✓ 3% 10% SRAM
PV and Aging-Aware SRAM Cache Design [30] ✓ ✓ 12% negligible SRAM
McPAT-PVT [20] ✓ 1% very small FinFET

Table 1: Classification of references analyzed in this survey

One way to obviate the effect of process variation as suggested
by [32, 33], the architecture is to only applying a higher voltage to
the cells, and other areas are operating at a lower voltage level. As
a result, this approach is providing a low cost distributed supply
voltage management. The dependent instructions are issued based
on the forecasted latency of the associated load instruction.

Another way as suggested by [25] is to use way prioritization,
that re-sizes caches to reduce the average and worst-case leakage
power without compromising performance. As a result, it provides
a leakage reduction strategy.

7.5 Bypassing Process Variation Using
Instruction Scheduling Techniques

In this approach, the effect of process variation on manufactured
cache sets is bypassed using different instruction scheduling tech-
niques.

For example, the technique cited by [29] uses a set predictor
and latency table, wherein the latency table for the cache sets can
be determined by the March set performed during the functional
testing of the memory [29].

8 CONCLUSIONS
In this short servery paper, I reviewed several of the fault-tolerant
cache organizations proposed for tolerating a large number of pro-
cess variation induced defects when the supplied voltage to the
cache (that is fabricated at advanced geometry nodes) is reduced.
The proposed solutions covered a range of techniques from circuit
level to architectural and organization level solutions. Some of the
covered techniques (such as Charge Pumping Word-line driver so-
lution) apply to both memory and Cache organizations, while some
others rely on the temporal and locality of access to the data stored
in the cache to mitigate and hide the impact of defects while slowly
downsizing the cache size.

REFERENCES
[1] Amit Agarwal, Bipul Chandra Paul, Hamid Mahmoodi, Animesh Datta, and

Kaushik Roy. 2005. A process-tolerant cache architecture for improved yield in
nanoscale technologies. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 13, 1 (2005), 27–38.

[2] A. Agarwal, B. C. Paul, S. Mukhopadhyay, and K. Roy. 2005. Process variation
in embedded memories: failure analysis and variation aware architecture. IEEE

Journal of Solid-State Circuits 40, 9 (Sep. 2005), 1804–1814. https://doi.org/10.
1109/JSSC.2005.852159

[3] M. Anis. 2003. Subthreshold leakage current: challenges and solutions. In
Proceedings of the 12th IEEE International Conference on Fuzzy Systems (Cat.
No.03CH37442). 77–80. https://doi.org/10.1109/ICM.2003.238359

[4] A. J. Bhavnagarwala, , and J. D. Meindl. 2001. The impact of intrinsic device
fluctuations on CMOS SRAM cell stability. IEEE Journal of Solid-State Circuits 36,
4 (April 2001), 658–665. https://doi.org/10.1109/4.913744

[5] B. Cheng, S. Roy, and A. Asenov. 2007. The scalability of 8T-SRAM cells under the
influence of intrinsic parameter fluctuations. In ESSDERC 2007 - 37th European
Solid State Device Research Conference. 93–96. https://doi.org/10.1109/ESSDERC.
2007.4430887

[6] K. Flautner, , S. Martin, D. Blaauw, and T. Mudge. 2002. Drowsy caches: simple
techniques for reducing leakage power. In Proceedings 29th Annual International
Symposium on Computer Architecture. 148–157. https://doi.org/10.1109/ISCA.
2002.1003572

[7] Siddharth Garg and Diana Marculescu. 2011. System-level leakage variability
mitigation for mpsoc platforms using body-bias islands. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 20, 12 (2011), 2289–2301.

[8] P. Ghafari, M. Anis, and M. Elmasry. 2007. Impact of technology scaling on
leakage reduction techniques. In 2007 IEEE Northeast Workshop on Circuits and
Systems. 1405–1408. https://doi.org/10.1109/NEWCAS.2007.4488021

[9] Houman Homayoun, Mohammad Makhzan, and Alex Veidenbaum. 2008. Mul-
tiple Sleep Mode Leakage Control for Cache Peripheral Circuits in Embedded
Processors. In Proceedings of the 2008 International Conference on Compilers, Ar-
chitectures and Synthesis for Embedded Systems (CASES ’08). ACM, New York, NY,
USA, 197–206. https://doi.org/10.1145/1450095.1450125

[10] H. Homayoun, M. Makhzan, and A. Veidenbaum. 2008. ZZ-HVS: Zig-zag hori-
zontal and vertical sleep transistor sharing to reduce leakage power in on-chip
SRAM peripheral circuits. In 2008 IEEE International Conference on Computer
Design. 699–706. https://doi.org/10.1109/ICCD.2008.4751937

[11] Houman Homayoun, Sudeep Pasricha, Mohammad Makhzan, and Alex Veiden-
baum. 2008. Dynamic Register File Resizing and Frequency Scaling to Improve
Embedded Processor Performance and Energy-delay Efficiency. In Proceedings of
the 45th Annual Design Automation Conference (DAC ’08). ACM, New York, NY,
USA, 68–71. https://doi.org/10.1145/1391469.1391488

[12] Houman Homayoun, Sudeep Pasricha, Mohammad Makhzan, and Alex Veiden-
baum. 2008. Improving Performance and Reducing Energy-delay with Adap-
tive Resource Resizing for Out-of-order Embedded Processors. In Proceedings
of the 2008 ACM SIGPLAN-SIGBED Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES ’08). ACM, New York, NY, USA, 71–78.
https://doi.org/10.1145/1375657.1375668

[13] Houman Homayoun, Sudeep Pasricha, Avesta Sasan (MA Makhzan), and Alex
Veidenbaum. 2008. Improving performance and reducing energy-delay with
adaptive resource resizing for out-of-order embedded processors. ACM Sigplan
Notices 43, 7 (2008), 71–78.

[14] Houman Homayoun, Avesta Sasan, Jean-Luc Gaudiot, and Alex Veidenbaum.
2011. Reducing power in all major CAM and SRAM-based processor units via
centralized, dynamic resource size management. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 19, 11 (2011), 2081–2094.

[15] Masashi Horiguchi. 1997. Redundancy techniques for high-density DRAMS.
In 1997 Proceedings Second Annual IEEE International Conference on Innovative
Systems in Silicon. IEEE, 22–29.

[16] Michael Hübner and Cristina Silvano. 2015. Near Threshold Computing: Technol-
ogy, Methods and Applications. Springer.

18

https://doi.org/10.1109/JSSC.2005.852159
https://doi.org/10.1109/JSSC.2005.852159
https://doi.org/10.1109/ICM.2003.238359
https://doi.org/10.1109/4.913744
https://doi.org/10.1109/ESSDERC.2007.4430887
https://doi.org/10.1109/ESSDERC.2007.4430887
https://doi.org/10.1109/ISCA.2002.1003572
https://doi.org/10.1109/ISCA.2002.1003572
https://doi.org/10.1109/NEWCAS.2007.4488021
https://doi.org/10.1145/1450095.1450125
https://doi.org/10.1109/ICCD.2008.4751937
https://doi.org/10.1145/1391469.1391488
https://doi.org/10.1145/1375657.1375668

[17] Lei Jiang, Youtao Zhang, and Jun Yang. 2011. Enhancing phase change memory
lifetime through fine-grained current regulation and voltage upscaling. In Pro-
ceedings of the 17th IEEE/ACM international symposium on Low-power electronics
and design. IEEE Press, 127–132.

[18] Ismail Kadayif, Mahir Turkcan, Seher Kiziltepe, and Ozcan Ozturk. 2013. Hard-
ware/software approaches for reducing the process variation impact on instruc-
tion fetches. ACM Transactions on Design Automation of Electronic Systems
(TODAES) 18, 4 (2013), 54.

[19] J. P. Kulkarni, , S. P. Park, and K. Roy. 2008. Process variation tolerant SRAM array
for ultra low voltage applications. In 2008 45th ACM/IEEE Design Automation
Conference. 108–113. https://doi.org/10.1145/1391469.1391498

[20] C. Lee and N. K. Jha. 2014. FinCANON: A PVT-Aware Integrated Delay and
Power Modeling Framework for FinFET-Based Caches and On-Chip Networks.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 22, 5 (May 2014),
1150–1163. https://doi.org/10.1109/TVLSI.2013.2260569

[21] M. A. Lucente, C. H. Harris, and R. M. Muir. 1990. Memory system reliability
improvement through associative cache redundancy. In IEEE Proceedings of the
Custom Integrated Circuits Conference. 19.6/1–19.6/4. https://doi.org/10.1109/
CICC.1990.124781

[22] T. Mahmood and S. Kim. 2010. Fine-Grained Fault Tolerance for Process Variation-
Aware Caches. In 2010 IEEE Computer Society Annual Symposium on VLSI. 46–51.
https://doi.org/10.1109/ISVLSI.2010.57

[23] M. A. Makhzan, A. Khajeh, A. Eltawil, and F. Kurdahi. 2007. Limits on voltage
scaling for caches utilizing fault tolerant techniques. In 2007 25th International
Conference on Computer Design. 488–495. https://doi.org/10.1109/ICCD.2007.
4601943

[24] Jie Meng, Tiansheng Zhang, and Ayse K Coskun. 2013. Dynamic cache pooling
for improving energy efficiency in 3D stacked multicore processors. In 2013
IFIP/IEEE 21st International Conference on Very Large Scale Integration (VLSI-SoC).
IEEE, 210–215.

[25] K. Meng and R. Joseph. 2006. Process Variation Aware Cache Leakage Manage-
ment. In ISLPED’06 Proceedings of the 2006 International Symposium on Low Power
Electronics and Design. 262–267. https://doi.org/10.1145/1165573.1165636

[26] Sparsh Mittal. 2016. A survey of architectural techniques for managing process
variation. ACM Computing Surveys (CSUR) 48, 4 (2016), 54.

[27] M. Mutyam and V. Narayanan. 2007. Working with Process Variation Aware
Caches. In 2007 Design, Automation Test in Europe Conference Exhibition. 1–6.
https://doi.org/10.1109/DATE.2007.364450

[28] Madhu Mutyam and Vijaykrishnan Narayanan. 2007. Working with process
variation aware caches. In 2007 Design, Automation & Test in Europe Conference
& Exhibition. IEEE, 1–6.

[29] M. Mutyam, F. Wang, R. Krishnan, V. Narayanan, M. Kandemir, Y. Xie, and
M. J. Irwin. 2009. Process-Variation-Aware Adaptive Cache Architecture and
Management. IEEE Trans. Comput. 58, 7 (July 2009), 865–877. https://doi.org/10.
1109/TC.2009.30

[30] P. Pouyan, E. Amat, and A. Rubio. 2015. Adaptive Proactive Reconfiguration:
A Technique for Process-Variability- and Aging-Aware SRAM Cache Design.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 23, 9 (Sep. 2015),
1951–1955. https://doi.org/10.1109/TVLSI.2014.2355873

[31] Avesta Sasan. 2010. Low power and process variation aware SRAM and Cache
design fault tolerance in SRAM circuit, architecture and organization. University
of California, Irvine.

[32] Avesta Sasan, Kiarash Amiri, Houman Homayoun, Ahmed M Eltawil, and Fadi J
Kurdahi. 2012. Variation trained drowsy cache (VTD-cache): A history trained
variation aware drowsy cache for fine grain voltage scaling. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 20, 4 (2012), 630–642.

[33] A. Sasan, H. Homayoun, K. Amiri, A. Eltawil, and F. Kudahi. 2012. History
amp; Variation Trained Cache (HVT-Cache): A process variation aware and fine
grain voltage scalable cache with active access history monitoring. In Thirteenth
International Symposium on Quality Electronic Design (ISQED). 498–505. https:
//doi.org/10.1109/ISQED.2012.6187540

[34] Avesta Sasan, Houman Homayoun, Ahmed Eltawil, and Fadi Kurdahi. 2009. A
fault tolerant cache architecture for sub 500mV operation: resizable data com-
poser cache (RDC-cache). In Proceedings of the 2009 international conference on
Compilers, architecture, and synthesis for embedded systems. ACM, 251–260.

[35] A. Sasan, H. Homayoun, A. Eltawil, and F. Kurdahi. 2009. Process Variation
Aware SRAM/Cache for aggressive voltage-frequency scaling. In 2009 Design,
Automation Test in Europe Conference Exhibition. 911–916. https://doi.org/10.
1109/DATE.2009.5090795

[36] A. Sasan, H. Homayoun, A. M. Eltawil, and F. Kurdahi. 2011. Inquisitive Defect
Cache: A Means of Combating Manufacturing Induced Process Variation. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 19, 9 (Sep. 2011),
1597–1609. https://doi.org/10.1109/TVLSI.2010.2055589

[37] Avesta Sasan (MA Makhzan), Amin Khajeh, Ahmed Eltawil, and Fadi Kurdahi.
2009. A low power JPEG2000 encoder with iterative and fault tolerant error
concealment. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 17,
6 (2009), 827–837.

[38] Avesta Sasan (MA Mazkhan). 2006. JPEG2000 Error Detection and Concealment.
Ph.D. Dissertation. University of California, Irvine.

[39] Philip P Shirvani and Edward J McCluskey. 1999. PADded cache: a new fault-
tolerance technique for cache memories. In Proceedings 17th IEEE VLSI Test
Symposium (Cat. No. PR00146). IEEE, 440–445.

[40] G. S. Sohi. 1989. Cache memory organization to enhance the yield of high
performance VLSI processors. IEEE Trans. Comput. 38, 4 (April 1989), 484–492.
https://doi.org/10.1109/12.21141

[41] Abhishek Tiwari, Smruti R Sarangi, and Josep Torrellas. 2007. ReCycle:: pipeline
adaptation to tolerate process variation. ACM SIGARCH Computer Architecture
News 35, 2 (2007), 323–334.

[42] Jue Wang, Xiangyu Dong, and Yuan Xie. 2012. Point and discard: a hard-error-
tolerant architecture for non-volatile last level caches. In Proceedings of the 49th
Annual Design Automation Conference. 253–258.

[43] J. Wang, Y. Liu, W. Zhang, K. Lu, K. Qiu, X. Fu, and T. Li. 2016. Exploring
Variation-Aware Fault-Tolerant Cache under Near-Threshold Computing. In
2016 45th International Conference on Parallel Processing (ICPP). 149–158. https:
//doi.org/10.1109/ICPP.2016.24

[44] V. Wang, K. Agarwal, S. Nassif, K. Nowka, and D. Markovic. 2008. A Design
Model for Random Process Variability. In 9th International Symposium on Quality
Electronic Design (isqed 2008). 734–737. https://doi.org/10.1109/ISQED.2008.
4479829

[45] Don Weiss, John J Wuu, and Victor Chin. 2002. The on-chip 3-mb subarray-
based third-level cache on an itanium microprocessor. IEEE Journal of Solid-State
Circuits 37, 11 (2002), 1523–1529.

[46] C. Wilkerson, H. Gao, A. R. Alameldeen, Z. Chishti, M. Khellah, and S. Lu. 2008.
Trading off Cache Capacity for Reliability to Enable Low Voltage Operation.
In 2008 International Symposium on Computer Architecture. 203–214. https:
//doi.org/10.1109/ISCA.2008.22

[47] Wangyuan Zhang and Tao Li. 2009. Characterizing and mitigating the impact of
process variations on phase change based memory systems. In 2009 42nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 2–13.

[48] B. Zhao, Y. Du, J. Yang, and Y. Zhang. 2013. Process Variation-Aware Nonuniform
CacheManagement in a 3D Die-StackedMulticore Processor. IEEE Trans. Comput.
62, 11 (Nov 2013), 2252–2265. https://doi.org/10.1109/TC.2012.129

19

https://doi.org/10.1145/1391469.1391498
https://doi.org/10.1109/TVLSI.2013.2260569
https://doi.org/10.1109/CICC.1990.124781
https://doi.org/10.1109/CICC.1990.124781
https://doi.org/10.1109/ISVLSI.2010.57
https://doi.org/10.1109/ICCD.2007.4601943
https://doi.org/10.1109/ICCD.2007.4601943
https://doi.org/10.1145/1165573.1165636
https://doi.org/10.1109/DATE.2007.364450
https://doi.org/10.1109/TC.2009.30
https://doi.org/10.1109/TC.2009.30
https://doi.org/10.1109/TVLSI.2014.2355873
https://doi.org/10.1109/ISQED.2012.6187540
https://doi.org/10.1109/ISQED.2012.6187540
https://doi.org/10.1109/DATE.2009.5090795
https://doi.org/10.1109/DATE.2009.5090795
https://doi.org/10.1109/TVLSI.2010.2055589
https://doi.org/10.1109/12.21141
https://doi.org/10.1109/ICPP.2016.24
https://doi.org/10.1109/ICPP.2016.24
https://doi.org/10.1109/ISQED.2008.4479829
https://doi.org/10.1109/ISQED.2008.4479829
https://doi.org/10.1109/ISCA.2008.22
https://doi.org/10.1109/ISCA.2008.22
https://doi.org/10.1109/TC.2012.129

	Abstract
	1 Introduction and Background
	2 Overall Process Variation Mitigation Techniques
	3 Circuit-Level solutions:
	3.1 Circuit-Level, Memory Cell Modification:
	3.2 Circuit-Level, Memory Bank:
	3.3 Circuit-Level, Peripheral level:

	4 Architectural-Level solutions:
	4.1 Architectural-Level, Disabling:
	4.2 Architectural-Level, Masking:
	4.3 Architectural-Level, Error Correction:

	5 Software and System Level:
	6 Benchmarking and Analysis Criteria
	7 Innovative Solutions for Process Variation Management
	7.1 Augmenting Cache with Additional Resources
	7.2 Over-driving the Memory Array
	7.3 Decreasing the Workload of Process Variation affected segments
	7.4 Providing Process Variation Aware Configuration Techniques
	7.5 Bypassing Process Variation Using Instruction Scheduling Techniques

	8 Conclusions
	References

