CONSTRUCTIVE INDUCTION FROM DATA IN AQ17-DCI:
Further Experiments

Eric Bloedorn and Ryszard S. Michalski

Artificial Intelligence Center
George Mason University

Fairfax, VA 22030

MLI 91-12

December 1991

CONSTRUCTIVE INDUCTION FROM DATA IN AQ17-DCI:
Further Experiments

Abstract

This paperpresentsa methodfor data-drivenconstructiveinduction, which generatesiew problem-
orientedattributesby combining the original attributesaccordingto a variety of heuristic rules. The
combination of attributes are defined by different logical and/or mathematical operators, thus praducin
potentially very large spaceof features.This spaceis reducedby applying an “attribute quality”
evaluation function which selects the “best” skfeatures.The data,enhancedvith the new attributes,

is used to generate rules which are then evaluated by a “rule quality” furtidvute constructionand

rule generationis repeateduntil a terminationconditionis satisfied.Attributes producedoy the method

often represent meaningful and useful concepts. The program, AQ17-DCI, implementing thehasthod
beenexperimentallyappliedto a numberof problemsand producesvery satisfactoryresults. These
results are comparable to the best existing machine learning methods.

key words: concept learning, empirical methods, empirical evaluation

Acknowledgements

The authorswish to thank Michael Hieb, Ken Kaufman and JanuszWnek for their ideasand critical
review of this paper.We alsowish to thankthe UCI repositoryof machinelearningdatabasegor the
1984 congressional voting data.

This researchwas conductedin the Centerfor Atrtificial Intelligence at George Mason University.

Research of the Center for Artificial Intelligence is suppoitegart by the DefenseAdvancedResearch
Projects Agencyindergrant, administeredy the Office of Naval ResearchNo. N00014-87-K-0874,
andNo. N00014-91-J-1854in part by the Office of Naval Researclundergrant No. NO0014-88-K-
0397, No. N00014-88-K-0226,and No. N00014-91-J-1351and in part by the National Science
Foundation under grant No. IRI-9020266.

1. INTRODUCTION

Most inductive learning programsperform a "selective"induction, that is, they generatedescriptions
(rules, decision trees, etc.) thaivolve only attributesselectedamongthoseprovidedin the examples.
Thus, if the attributesusedin the examplesare weakly relevant,the learneddescriptionsmay also be

weak. It is possible,however,that althoughthe original attributesmay be of poor quality, there exist
certain combinations or functions of these attributes that are highly relevant to the piidbtepaperis

concernedwith the problemof discoveringsuch relevant combinationsof the original attributes. A

methodof data-drivenconstructiveinduction (DCI) is presentedhere, for the constructionof new
attributesthroughthe applicationof variousmathematicahndlogical operatorsto the initial attributes.
The currently available operators include multiplication, integer divisiddition, subtractionrelational
operators,average,most-common least-commonmaximum, minimum, and number of attributes
having some value. The method has been implemented in AQ17-DCI.

There are a number of othgrogramswhich perform constructiveinduction. One of the first programs
to exhibit someconstructiveinduction abilities was INDUCE (Michalksi, 1980) which generatechew
attributes or predicatdsy applying"constructivegeneralizatiorrules”. BACON.1 (Langley, Bradshaw
and Simon, 1983), and ABACUS.2 (Greene,1988) are quantitativediscoveryprogramswhich search
for mathematical relationships that summarize all of the data. Other programs include the LEX system
acquiringand refining problem-solvingheuristics(Mitchell, Utgoff and Banerji, 1983), Schlimmer's
STAGGER (Schlimmer,1986), which usesthree learning modules,Muggleton'sDuce (Muggleton,
1987) which is an oracle based approach and Pagallo and Haussler's FRINGE, GREEBR®#id
(Pagallo and Haussler, 1990). Other similar efforttude CITRE (Matheusand Rendell,1989)which
constructsnew terms using the repeatedapplicationof booleanoperatorsto nodeson the positively
labelled branches. An approach which uses boolean and arithmetic combinations of theatiriinais
to extend the initial attribute set is proposed by Utgoff (Utgoff, 1986). A method complemerdatg-to
driven constructive induction for producing new features involves an analysis of the resulting
hypotheses, rather than the training data. Inrttéthodlearningon a subsetof the training dataresults
in rules oftern characterized by patterns of features and values.f€éhtgesarethen proposedas new
attributes (AQ17-HCI, Wnek and Michalski, 1991).

AQ14 (Mozetic, 1985), the rule generatiorprogramusedby DCI, learnsdecisionrules by performing
inductive inference on examples. Training examples are vectatgibfitevalues.Theseattributesmay
be providedexplicitly by the user, or they may be constructedoy the programitself as directedby the
user. These constructed attribusee combinationsof given attributesand involve relationsselectedoy
the user. Available operationscurrentlyinclude addition, subtraction,multiplication, and the equality,
greater-than, or less-than relations. The addition of a newly constructed attribute to the avtaitatike
set (AS) is determinedby the attribute quality function (AQF). Training examplesare expresseds
conjunctionsof attribute values, and initial or induced decision rules are logical expressionsin
disjunctive normal form. The program performs a heuristic searchthrough the space of logical
expressionsuntil it finds a decisionrule that is satisfiedby all positive examplesand no negative
examples.This searchis guidedby a rule preferencecriterion. The programis basedon the AQ
algorithm for solving the general covering problem (Michalski, 1969). A detailed descriptioadzta-
driven method is given in section 3, and a brief review of the AQ algorithm is given in section 4.

A drawbackof programsthat cannotconstructnew attributesis an inability to take advantageof some
fairly simple relationshipg-or example, supposehereexist two classef boxes,eachbox described
by three attributes: Height, Length, and Width. Sample data are shown in table 1.

Classl Class2
Height Length Width Height Length Width
2 12 2 12 4 2

6 4 2 4 12 2
3 8 2 8 6 2
4 4 3 4 8 3

Table 1 Example of two classes of boxes described by Height, Length and Width.

The rule which describesthe characteristicof each classof box when found by a non-attribute-
constructing program, such as AQ14, is fairly complex:

Classl <:: [Height= 2 v 3] v [Height=4 v 6] & [Length=4]
Class2 <:: [Height=4 v 8] [Length=6 v 8 v 12] v [Height= 12]

Table 2 Rules describing examples in Table 1 using only original attributes.

This complexityis due to the limits of the representatiofanguage By generatingnew attributesthe
representatiolanguageis enrichedand constructedrules are simpler and more accurate.Various
combinationsof attributesusinga variety of operationsare calculated.Useful combinationswhich in
this caseinvolve multiplication, arekept. In the "box" examplethe areaof the front face of the box,
Height*Lengthwas calculatedandfound to be useful. This areawas thenretainedand combinedwith
the Width attributeto discoveranotheruseful attributewhich we call volume. The systemnamedthis
new attribute HLW. The rules produced using this constructed attribute are shown below.

Classl <:: [HLW =48]
Class2 <:: [HLW = 96]

Table 3 Rules describing examples in Table 1 using a constructed attribute.
2. GENERATION OF NEW ATTRIBUTES

The DCI method for constructing new attributes is primaniig of generateandtest. First all candidate
featuresare identified (all linear-typefeatures).Then the operationto be performedon this pair is

selectedrom the list suppliedby the user. With the features,and operationselectedhe valuesfor the

new featureare calculated.The discriminatorypower of thesefeaturevaluesis then testedusing the

Attribute Quality Function (AQF). The form of the AQF is shown below:

#Positive events
Total Number of events in selector class

The AQF is calculated fagachclass,for eachattribute.A positive eventvalueis definedby the ambig
parameter found in the parameters-table.arbig parametehasthreepossiblevalues:pos neg and
empty A value of pos is meaninglesdor attribute quality becauseit resultsin all new features
evaluatingto unity. This valueis, however,usefulfor handlingambiguousevents when constructing
rules so it is retained. The default value for the ambig parameieg i8V/ith neg only valuesuniqueto

a classwill be consideredpositive for that class. Only unique values are allowed with the ambig
parameter set to empty as well. The number of events in the selector class is the total numbeiiof even
the original class.A perfectdiscriminatoryattribute, which alonediscriminatesone classfrom all the
other classes, will have an AQF value oPbssibleAQF valuesrangefrom negative(total #of events

in other classes-1) to 1.

A numberof different operationsare availableto constructnew features.These operationscan be
classifiedas either binary operatorsor multi-argumentoperators(functions). In the binary group are
currently the relational operator, and a number of mathematical operators including: addition,

subtraction(absolutalifference), multiplication, and integer division. Examples of each of these
operations is shown below:

Operator feature 1 feature 2 result

relation X y lifx=y;2ifx<y;and 3ifx>y
addition 6 8 14

subtraction 6 8 2

multiplication 6 8 48

integer division 6 8 1

In the multi-argumentclassare the following functions:maximum, minimum, averagejeast_common,
most_common, and #VarEQ(x). Except for the latter, these function are self-explanatory. #VarEQ(X) it
function which calculatesthe numberof times the value x appearsn a row. For a vector of binary
attributes, #VarEQ(1) measures the number of variables (attributes) that take the value x in anoéxampl
a given class. Examples of each of these operations is shown below:

Operator featurel feature2 feature3 feature4d result
maximum 4 8 6 6 8

minimum 4 8 6 6 4

average 4 8 6 6 6
most_common 4 8 6 6 6
least_common 4 8 6 6 4 (first seen)
#VareQ(4) 4 8 6 6 1

#VareEQ(6) 4 8 6 6 2

#VareEQ(8) 4 8 6 6 1

The program has a default list of global functions, but allows the user to modify the list to fit the proble
at hand. The default list of functions include maximum, minimum, average, most frequent, least freque
and #VarEQ(x).

3. DESCRIPTION OF THE DCI METHOD

The algorithmfor data-drivenconstructionof new attributesis shown below. The algorithm hastwo
stages: the first stage uses linear-typed attributes as the basis for construction. Liregtitiyfeshave
a finite number of discrete ordered values. The second stdbe algorithmusesbinary nominaltyped
attributes.(attributeswith a finite numberof discreteunorderedvalues).This stageof the algorithm is
constructssumsof binary attributes,which is equivalentto searchingior m of n conceptsStagell is
partially based on ideas found in SYM-1 (Jensen, 1975).

Stage |

1. Identify in the data all attributes that are linear.

2. Repeat steps 3 through 5 for each possible attribute pair.

3. Repeat steps 4 and 5 for each binary mathematical, or relational operator. (operators available inclt
addition, subtraction, multiplication, division, and relation)

4. Calculate the values of this attribute pair for the given operator.

5. Evaluate the quality of this newly constructed attribute using the Attribute Quality Function (AQF)
described above. If the attribute is above some threshold then store it, else discard it.

6. If new attributes are constructed, repeat steps 3-5 for each pair of new and original attributes.

7. Repeat steps 4-5 for each user-selected function (available functions include: maximiomam,

average, least-common, most-common, #VarEQ(x)).

Stage I

1. Identify in the data all attributes that are binary.

2. Search for pairwise symmetry among the attributes and then for larger symmetry or approximate
symmetry groups, based on the ideas described in (Michalski, 1969a; Jensen, 1975).

3. For each candidate symmetry group, createw attributethat is the arithmeticsum of the attributes
in the group.

4. Determine the quality function of the newly created attributes, and select the best attribute.

5. Enhance the dataset with the values of this attribute, and induce new decision rules.

Figure 1. The DCI Method

After finding all linear-typeattributes the algorithm generategvery binary combinationof attributeand
operation. After each new attribute's values are calculatedittiimite quality function, AQF, is usedto
judge its quality before adding it to the AS.

After all binary combinations are proposed and evaluated, the prograrethelateshe valuesfor each
of the user-selected functions. The values of theseatielyutesare evaluatedust asin the earliercase.
After all linear type constructionsare attempted,the program searchedor all binary nominal typed
attributes.The sumof binary attributes,whenthoseattributessignalthe presenceor non-presencef a
feature, can be described as "if x of the following y features exist" (thiofypanceptis alsoknown as
an "m of n" concept"). Such an attribute coptussiblybe quite usefulin a medicaldomainwherethese
binary attributes signal the presence of a symptom or disEasen of n conceptis also capturedn the
attribute "#VarEQ(x)" which is the number of values in a row (feature vector) that have thz.Vlilke
a group of z booleanattributes,#VarEQ(1)=3is equivalentto "3 of the z featuresare true". The
differences between the #VarEQ(x) function and stage Il of the algorithmtheir methodand domain.
The function can take non-boolearvalued attributesas its domain,and it checksonly the quality of
combiningall availablefeaturesPartll of the algorithmusesonly booleanattributes,and initially tries
combining all availabléeatures.If unsuccessfulthis methodtries subsetf featuresaswell. Figure 2
gives a functional description of the algorithm.

Because the newly generated attributes are combinatiangofal attributesthey are more complicated
than the original attributes. Thwstof theseattributesshouldreflect this addedcomplexity. To do this
eachoperationand relation has beenassigneda cost. Thesecostswere determinedfrom an overall
ranking by the authors of selector complexity. Hotualvaluesare not meaningful,but are only meant
to reflect relative complexity. Thesevaluescan be changedoy the userif desired.The currentdefault
values for these costs is shown in Table 5.

Operator types Default Cost

relation(<,<=,=,=>,>)
addition (+)
subtraction (-)
multiplication (*)
integer division (div)

[(eR{cN N2 I)

functions (max, min, ave) 10
functions (most-common, least-common) 11
functions (counting) 12

Table 5.0perator costs

DATA SOURCE

A

Input FACTS and EXAMPLES

y

New Descriptor Generation

Expert advise <+—>| Example analysis

¢ ¢

Descriptor evaluation and reformulation of examples

[
y

Rule Generation

y

[KNOWLEDGE BASE]

Figure 2. A functional diagram of the method.

4. A BRIEF DESCRIPTION OF THE AQ ALGORITHM

Because the AQ algorithm is used in the inductive module ofrtetiod,for completenessye provide
a brief description of it. Th&Q algorithmgenerateshe minimum or nearminimum numberof general
decisionrules characterizinga setof instancesasoriginally describedin (Michalski, 1969; Michalski
and McCormick, 1971).

1. A single positive example,called a seed,is selectedand a set of most general
conjunctive descriptions of this example is computed (such acatdda starfor the

seed). Each of these descriptions must exclude all negative examples.

2. Using a descriptionpreferencecriterion a single descriptionis selectedfrom the

star, called the 'best' description. If this descriptionersall positive examplesthen

the algorithm stops.

3. Otherwise a new seed is selected among the unexplained (uncovered) examples, and
steps 1 and 2 are repeated until all examples are covered.

The disjunctionof the descriptionsselectedn eachstepconstitutesa complete,consistentand general
descriptionof all examples.The preferencecriterion usedin selectinga descriptionfrom a star is
expressed as a list of elementary criteria that are applied lexiographically and with a certain tolerance.
criteria may be simplicity of description(measuredy the numberof variablesused),cost (the sum of

the given costs of the individual variables), or other criteria (Michalski and Larson, 1978).

The descriptionof a classis expressedising the variable-valuedogic systeml (VL1), which is a
multiple-valued logic propositional calculusth typedvariables(Michalski, 1974). A classdescription
is called acoverwhich is a disjunctionof complexesdescribingall positive examplesand noneof the

negativeexamplesA complexis a conjunctionof selectors,andis the simpleststatemenin VL. A
selector relates a variable to a value or a disjunction of values, for eXéenmberature= cold], or [x <
5]. The general form of a selector (condition) is:

[L#R]

where L, called the referee, is an attribute, and R, cHikedbferentis a setof valuesin the domainof
the attribute in L, # is a relational symbol which can be one of the following: =, <,>,>=,<=,<>,

5. EXPERIMENTAL RESULTS
5.1 Monk's Problems

The Monk's problemsare three artificial problemsproposedby the attendeesof the 2nd European
Summer School on Machine Learning (Thrun et.al. 1991). Theseptokkemswere intendedto serve

as benchmarkswith which to testa wide variety of learning algorithms. Each problemis a binary
classificationtask. From a subsetof the total data,the taskis to producea generalizeddescriptionthat
accurately predicts the membership of the remaining events in the learning space. The goal dbecept o
first problem is stated in standard disjunctive form and is given by:

[x1 =x2] or [x5 = 1]

From 432 possible examples124 were randomly selectedfor the training set. There were no
misclassifications.The second problem has a more distributed coding, smtilarparity problemsand
the goal concept is given as:

exactly two of the six attributes have their first value

From 432possibleexamplesl89 were randomlyselected Therewas no noise. The third problemhas
noise in the training set and the goal concept is given by:

[x5 = 3] and [x4 = 1] or [x5 <> 4] and [x2 <> 3]
From 432 examples, 122 were randomly selected. Among the training set were 6 misclassifications.

The performance of AQ17-DCI and a number of other machine-learning programs apiiesiliémk’s
problems is shown in table 6 (table from Thrun, et. al. 1991). AQ17-DCI performedvekgapturing
perfectly the first and second goal concepts. For the tloindeptan approachdesignedo handlenoisy

data was employed with the data-driven method. The approach for the third problem and resulting tes
valuewas only recentlycompletedandis not shownin (Thrunetal. 1991). The standarddata-driven
method resulted in the 94.2 testing accuracy reported by Thrun.

The noise-tolerant method used by AQ17-DCI for the thmhk problemis derivedfrom the oneused

by AQ17-NT (Thrun, et al, 1991Yhis methodselectsthoseexamplesn the datawhich were covered

by light disjunctsin the generatedules. Theseexamplesare eliminatedfrom the training set, and rule
generationis repeated.In the AQ17-DCI/NT approachfeature constructionand rule generationis
performed as normal, followed by example elimination and new feature generation and rule constructi
A detailed description of the noise-tolerant method can be foutittiAQ17-NT description(Thrun, et

al, 1991).

The values shown in Table 6 and table 8 for the AQ programs were calculated using a testing tool call
ATEST (Reinke, 1984). In ATEST rule performance is measured by the degree of agreement betwee

Percent Correct Classification
Program #1 #2 #3
AQ17-DCI 100% 100% 97.2%
AQ14 100% 77% 84%
AQ17-HCI 100% 93.1% | 100%
AQ17-FCLS 92.6% | 97.2%
AQ17-NT 100%
AQ17-GA 100%
Assistant Professional 100% 81.2% | 100%
mFOIL 100% 69.2% | 100%
ID5R 81.7% 61.8%
IDL 97.2% 66.2%
ID5R-hat 90.3% 65.7%
TbIDT 75.7% | 66.7%
ID3 98.6% 67.9% | 94.4%
ID3, no windowing 83.2% 69.1% | 95.6%
ID5R 79.7% 69.2% | 95.2%
AQR 95.9% 79.7% | 87.0%
CN2 100% 69.0% | 89.1%
PRISM 86.3% 72.7% | 90.3%
Backpropagation 91.7% 100% | 87.7%
Cascade Correlation 100% 100% 97.2%

Table 6. Summary of results for Monk's Problems

class description rule and a testexpmplefrom an assignectlass.ATEST views rulesas expressions
when comparing them to a vector of attributes (e.g., a testing example). The rédsaleshluationis a
real numberwhich is the degreeof consonanc®etweenthe conditionalpart of the rule and the event.
For a set of rules and classifiedtesting events, ATEST resturnthree values: overall percentcorrect,
overall percentfirst rank correct,and overall percentonly choice. Overall correctis the percentageof
events that matched the correct class with degree greater than 50%. The overall percentaisteresnk
the percentage of events which matched the correct description rule within a small degredtbiis is
alsoknown asa flexible match).Percentcorrectonly is the percentagef eventsfor which the correct
rule was the one that matchedthe testing exampleto the highestdegree.Resultsfor AQ17-DCI for
problemsl and2 are overall percentcorrectonly choice,andfor problemthreeis overall percentfirst
rank.

Number of disjuncts in Rule
Program #1 #2 #3
AQ17-DCI 3 3 3
AQ14 8 35 8

Table 7. Number of disjuncts:Monk's Problems

Not only did AQ17-DCI perfectly predict all of the evemshe testingclass,but it alsoproducedrules
that were very simple. In the first problem for example, the rule produced by AQ14 for the negative cle
was:

Pos-class
[x1=1][x2=2,3][x5=2..4] or
[x1=2,3][x2=1][x5=2..4] or
[x1=2][x2=3][x5=2..4] or
[x1=3][x2=2][x5=2..4]

This rule performed perfectly in the testing data, butmuigh more complicatedthanthe rule produced
by AQ17-DCI:

Pos-class
[x5=2..4][x1<>x2]

AQ17-DCI produced rules of significantly higher accuracy for problems Bahdn AQ14. In addition
the rules produced by AQ17-DCI were usually simpler than those produced by AQ14. Table 7 shows
total number of disjuncts in the rules produced by AQ17-DCI and AQ14 for the three Monk problems

5.2 Congressional Voting

This data in these experiments is from voting records for members of the U.S. HReg@exentatives
for 1981 and 1984In both datasetstherearetwo classesRepublicanand Democrat.The goal of this
learning is to find discriminant descriptions for the voting recofdbe two parties.The 1981 training
data consists of 51 events (31 democrat and 20 Repubtieaa)bedby 19 attributes.Theseattributes
are primarily recordsof a member’svote on a particularissue (MX missle, for example),but also
includes attributes concerning the members home state location, and income. The testitigesE28ar
data consistedof 49 events (29 Democratand 20 Republican). The 1981 data was taken from
(Bergandano et al, 1990) where is was used to test a system called POSEIDON.

The 1984 data was randomly split into equal-sizedgroups of 116 events (62 Democratand 54
Republican)describedoy 16 booleanattributesfor testingand training. This datais from the house-
voting-recordsdata found in the UCI databasewith all of the eventscontaining unknown values
removed.All datawas convertedto integervaluesso thatit may be operatedupon by the data-driven
operators.

For the 1981 data, the difference operator found two powerful new features: (draft_vote diff
education_vote)and (draft_votediff food _stamp_cap_vote].he differenceoperatorappliedto these

attributesis equivalentto a checkfor equality.If the differencebetweenvoting recordsis 0, then the
votes were the same,otherwisethe votes were different. AQ17-DCI found useful new featuresthat
increasedoredictiveaccuracy andthat were meaningful.For the 1984 datathe relationaloperatorwas
used,andit found threenew usefulfeatures.Thesethree new featureswere (physician-fee-freezeel
anti-satellite-test-ban){adoption-of-the-budget-resolutiorel el-salvador-aid) and (adoption-of-the-
budget-resolution rel superfund-right-to-sue). Oagainthesefeaturesrepresentelationshipsetween
votes on different issues. The rule found by AQ17-DCI, for the Republican class is shown below:

[physician-fee-freeze = no] or
[adoption-of-the-budget-resolution = el-salvador-aid] and [physician-fee-freeze > anti-satellite-test-ban

This rule can be translated into “A Republican votes against physician fee fogehesyotesthe same
on the adoption of thbudgetbill ashe doeson el-salvadoraid, and votesfor physician-fee-freezand
againstthe anti-satellite-test-ban'Resultsfrom testingAQ17-DCI, AQ14, POSEIDON,ASSISTANT
and asimple-exemplabasedmethodon the 1981 dataand AQ17-DCI and AQ14 on the 1984 dataare
shown in table8. The resultsfor POSEIDON,ASSISTANT, andthe exemplarmethodare takenfrom
(Bergadano et al, 1990). Results AQ17-DCI, and AQ14 are overall percentcorrectfirst rank results
from ATEST (see section 5.1 for description of ATEST).

Percentage Correct Classification

Program 1981 1984
AQ17-DCI 95.9% | 98.2%
AQ14 85.7% | 93.1 %
POSEIDON 92 % -
ASSISTANT 86 % -
Simple exemplar- [86 % -
based method

Table 8.Summary of results for AQ17-DCI, AQ14, POSEIDON, ASSISTANT and a simple
exemplar-based method on Congress voting records

6. CONCLUSION

The methodof data-drivenconstructiveinduction implementedin AQ17-DCI, performedwell in the
experiments producing new features that were useful as well as understandablldnkiseproblems
new features were constructed that represented the relationship between valinesyamderof times
a particular value was present(value cardinality). Featuresrepresentingelationshipsbetweenvotes,
Republican’svote the sameon the budgetandon aid to El Salvadorfor example,were found in the
Congressional voting domain With these features rules wihgrk meaningful,and had high predictive
acccuracy were generated.

Despite these strong results, thethodreportedherecanbe improved.Oneimprovementwould be to
check the original feature set for quality: if there already exists a single featulesthaminatesetween
the given classes,then constructive induction is not needed.Another improvementinvolves the
evaluationof new features.New featuresshould be rewardedfor covering previously uncovered

examples, rather than for those already covered. Uncovered examples atbdikedyd’ examplegshat
cause complex rules and should be the inspirationdarfeatures However,theseexamplesmay also
be noise and should be avoided. A method for satisfying both concerns is being investigated.

References

F. Bergadano, S. Matwin, R.S. Michalksi, and J. Zhang, “Learning Two-Tiered Descriptions of
Flexible Concepts: The POSEIDON SysteR&ports of Machine Learning and Inference Laboratory
MLI 90-10, Center for Artificial Intelligence, George Mason University, Fairfax, VA, 1990.

G.H. Greene, “Quantitative Discovery: Using Dependencies to Discover Non-Linear Terms”, M.S.
Thesis, University of lllinois at Urbana-Champaign, 1988.

G. Jensen,"SYM-1: A Program that Detects Symmetry of Variable-Valued Logic Functions”,
UIUCDCS-R-75-729 Departmenbf ComputerScience University of Illinois at Urbana-Champaign,
1975.

C. J. Matheus, and L.A. Rendell, “Constructive Induction on Decision TreeBfpteedings of the
Eleventh International Joint Conference on Artificial Intelligerue 645-650, 1989.

R.S. Michalski, “Recognitionof Total or Partial Symmetryin a Completelyor Incompletely Secefies
Switching Function,” Proceedingof the IV Congressof the International Federationon Automatic
Control (IFAC), Vol. 27 (Finite Automata and Switching Systems), pp. 109-129, Walsae16-21,
1969.

R.S. Michalski, “On the Quasi-Minimal Solution of the Covering Problem” Proceedingsof the V
International Symposiunon Information Processing(FCIP 69), Vol. A3 (Switching Circuits), Bled,
Yugoslavia, pp. 125-128, 19609.

R.S. Michalski and B.H. McCormick, “Interval Generalization of Switching Theory.” Réy@ri442,
Dept. of Computer Science, University of lllinois, Urbana. 1971.

R.S. Michalski, “Variable-Valued Logic: System VL1, Proceedingsof the 1974 International
Symposium on Multiple-Valued Logpp. 323-346. West Virginia University, Morgantown, 1974.

R.S. Michalski and J.B. Larson, “SelectionMbst Representativd@raining Examplesand Incremental
Generation of Vi Hypotheses: the underlying methodology anddiecriptionof programsESEL and
AQ11, “ Report No. 867, Dept. of Computer Science, University of lllinois, Urbana, 1978.

R.S. Michalski, “Pattern Recognitionas Rule-GuidedInductive Inference,” IEEE Transactionson
Pattern Analysis and Machine Intelligence, PAMI, vol 2, No. 4, pp.349-361, 1980.

T. Mitchell, Utgoff, P. and Banerji, R., "Learning by Experimentation:Acquiring and Refining
Problem-Solving Heuristics," in Machine Learning: An Atrtificial Intelligence Approach, R. Michalski, J.
Carbonell, and T. Mitchell (eds.), Morgan Kaufman, Los Altos, CA, 1983.

I. Mozetic,"NEWGEM: Programfor Learningfrom Examples- ProgramDocumentatiorand User’s
Guide”, ReportNo. UIUCDCS-F-85-949 Departmenbf ComputerScience,University of Illinois at
Urbana-Champaign, 1986.

S. Muggleton, "Duce, an Oracle-Based Approach to Constructive Induddmteeding®f IJCAI-87,
pp. 287-292, Morgan Kaufman, Milan, Italy, 1987.

G. PagalloandD. Haussler,"BooleanFeatureDiscoveryin Empirical Learning", Machine Learning
vol. 5, pp. 71-99, 1990..

R.E. Reinke,“Knowledge Acquisition and RefinementTools for the ADVISE Meta-expertSystem,”
Master’s Thesis, University of lllinois, 1984.

J. Schlimmer, "Concept Acquisition Througepresentationahdjustment,”MachineLearning,vol. 1,
pp. 81-106, 1986.

S. Thrun, J. Bala, E. Bloedorn, I. Bratko, B. Cestnik, J. Cheng, K. De Jong, S. Dzeroski, S.
Fahlman,R. Hammann,K. Kaufman,S. Keller, I. Kononenko,J. Kreuziger, R.S. Michalski, T.
Mitchell, P. Pachowicz,H. Vafaie, W. Van de Velde, W. Wenzel, J. Wnek, and J. Zhang, “The
Monk’s Problem’s: A PerformanceComparisonof Different Learning Methods”, Carnegie Mellon
University, October, 1991.

P. Utgoff, "Shift of Bias for Inductive Learning,", in Machine Learning: An Atrtificial Intelligence
Approach,Vol. Il, R. Michalski, J. Carbonell,andT. Mitchell (eds.), Morgan Kaufman, Los Altos,
CA, pp. 107-148, 1986.

J. Wnek, R.S. Michalksi, “Hypothesis-Driven Constructive Induction in AQ17: A Method and
Experiments” MLI Report91-9, Centerfor Artificial Intelligence,GeorgeMasonUniversity, Fairfax,
Va. 1991.

